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Diagnosis
Biomarkers are the only feasible way to detect andmonitor presymptomatic Alzheimer's disease (AD). No single
biomarker can predict future cognitive declinewith an acceptable level of accuracy. In addition to designing pow-
erful multimodal diagnostic platforms, a careful investigation of the major sources of disease heterogeneity and
their influence on biomarker changes is needed. Here we investigated the accuracy of a novel multimodal bio-
marker classifier for differentiating cognitively normal (NC), mild cognitive impairment (MCI) and AD subjects
with and without stratification by ApoE4 genotype. 111 NC, 182 MCI and 95 AD ADNI participants provided
both structuralMRI and CSF data at baseline.Weused an automatedmachine-learning classifier to test the ability
of hippocampal volume and CSF Aβ, t-tau and p-tau levels, both separately and in combination, to differentiate
NC, MCI and AD subjects, and predict conversion. We hypothesized that the combined hippocampal/CSF bio-
marker classifier model would achieve the highest accuracy in differentiating between the three diagnostic
groups and that ApoE4 genotypewill affect both diagnostic accuracy and biomarker selection. The combined hip-
pocampal/CSF classifier performed better than hippocampus-only classifier in differentiating NC from MCI and
NC from AD. It also outperformed the CSF-only classifier in differentiating NC vs. AD. Our amyloid marker played
a role in discriminating NC fromMCI or AD but not forMCI vs. AD. Neurodegenerativemarkers contributed to ac-
curate discrimination of AD from NC and MCI but not NC from MCI. Classifiers predicting MCI conversion per-
formed well only after ApoE4 stratification. Hippocampal volume and sex achieved AUC = 0.68 for predicting
conversion in the ApoE4-positive MCI, while CSF p-tau, education and sex achieved AUC = 0.89 for predicting
conversion in ApoE4-negative MCI. These observations support the proposed biomarker trajectory in AD,
which postulates that amyloid markers become abnormal early in the disease course while markers of neurode-
generation become abnormal later in the disease course and suggests that ApoE4 could be at least partially re-
sponsible for some of the observed disease heterogeneity.

© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Alzheimer's disease (AD), the most common neurodegenerative
disorder, is increasingly prevalent among those aged 65 years and
over. AD prevalence is projected to triple by the year 2050 (Hebert
et al., 2001) making it vital to achieve early and accurate diagnosis
and to discover disease-modifying therapies. The only feasible approach
for presymptomatic diagnosis to date is through the use of biomarkers.

Hippocampal atrophy is the most established AD structural imaging
biomarker. Hippocampal atrophy is seen in normal aging, yet in the
latent AD stages hippocampal atrophy becomes greatly accelerated
(Apostolova et al., 2006, in press, 2010a; Jack et al., 1997, 1998, 2000).
Hippocampal atrophy shows strong correlation with cognitive decline
(de Toledo-Morrell et al., 2000; Fleischman et al., 2005; Mortimer
et al., 2004) and with AD pathologic markers such as neuronal and
neurofibrillary tangle counts and Braak and Braak pathological stages
(Apostolova et al., 2010b; Bobinski et al., 1995, 1997; Schonheit et al.,
2004; Zarow et al., 2005).

Cerebrospinalfluid (CSF)measures of amyloid beta protein (Aβ) and
tau are the most established AD fluid biomarkers. Pathologic Aβ
deposition in the brain tissue is thought to occur early in the disease
course and is associated with low CSF Aβ42 levels (Blennow and
Hampel, 2003). CSF total tau (t-tau) and phosphorylated tau (p-tau)
are significantly elevated in subjects with AD (Andreasen et al., 2001;
Blennow et al., 1995; Clark et al., 2003; Galasko et al., 1998) and are
thought to reflect neurodegeneration of tau-containing neurons. Unlike
CSF Aβ42 (Wallin et al., 2006), CSF t-tau and p-tau changes occur later in
the disease course and are associated with cognitive decline (Buerger
et al., 2002, 2005; Riemenschneider et al., 2002; Wallin et al., 2006).

Several research groups have independently investigated the
individual accuracy of these biomarkers to differentiate cognitively nor-
mal elderly, MCI and AD subjects (Andreasen et al., 2001; Brys et al.,
2009; de Leon et al., 2006; Frisoni et al., 2009; Galasko et al., 1998;
Hampel et al., 2004; Mattsson et al., 2009; Shaw et al., 2009). Yet
while biomarker changes are clearly present years before AD is
diagnosed, no single biomarker can adequately predict conversion to
AD or serve as a diagnostic tool with an acceptable level of accuracy.

Many groups including ours have made important strides towards
multimodal biomarker diagnostic discrimination (Cui et al., 2011;
Davatzikos et al., 2011; Ewers et al., 2012; Kohannim et al., 2010; Vos
et al., 2012; Walhovd et al., 2010; Westman et al., 2012). Here we
combined imaging and CSF biomarker data from the Alzheimer's
Disease Neuroimaging Initiative-1 (ADNI-1) dataset to compare the
performance of unimodal (hippocampal atrophy or CSF biomarkers
alone) and multimodal (hippocampal atrophy, CSF variables and ApoE
genotype combined) biomarker classifiers for differentiating NC, MCI
and AD. We also examined to what extent the amyloid (i.e., CSF Aβ42)
and the neurodegenerative biomarkers (CSF tau, CSF p-tau and hippo-
campal atrophy) play a role for differentiating different disease stages
from each other and for predestining conversion to AD. In addition we
sought to determine the effect of ApoE4 genotype on diagnostic accuracy
and biomarker selection.

2. Materials and methods

2.1. Subjects

Data used preparing this article were obtained from the ADNI
database (www.loni.ucla.edu/ADNI). ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions
and private corporations; subjects have been recruited from over 50
sites across the U.S. and Canada. For up-to-date information, please
see www.adni-info.org.

ADNI-1 enrolled approximately 400 amnestic MCI, 200mild AD and
200 NC subjects, aged 55–90. Written informed consent was obtained
from all participants. The clinical description of the ADNI-1 cohort
was recently published (Petersen et al., 2010). The full list of inclusion/ex-
clusion criteria may be accessed online at http://www.adni-info.org/
Scientists/ADNIGrant.aspx.

As all ADNI subjects had serial 1.5TMRI images, their inclusion in our
analyses was largely determined by the availability of CSF data. CSF
measures were performed in only a subset of the ADNI subjects. 111
NC, 182 MCI and 95 AD ADNI participants had both structural MRI and
CSF assessment at baseline. 191 subjects (49%; 27 NC, 99 MCI, 65 AD)
were apolipoprotein E4 (ApoE4) carriers and 197 (51%; 84 NC, 83
MCI, 30 AD) were noncarriers. Additionally 21 NC, 14 MCI and 3 AD
subjects were ApoE2 carriers.

As one of the main goals of ADNI is to carefully track biomarker
changes in NC and MCI predestined to convert to AD, we also analyzed
which combination of biomarkers can predict conversion to AD. We
used all available MCI subjects who had either converted to AD at any
point between baseline and month 36 (MCI converters, N = 80)
or remained stable all the way to month 36 (MCI nonconverters,
N = 80). 22 MCI subjects dropped out before month 36 without
converting to AD and were excluded from our analyses.

2.2. CSF biomarker data

We downloaded the baseline CSF Aβ42, t-tau and the tau
phosphorylated at threonine at position 181 (p-tau181) data from the
ADNI website (http://www.loni.ucla.edu/ADNI) in October 2008. CSF
collection and transportation protocols, and procedural details on CSF
Aβ42, t-tau and the p-tau181 measurements are provided in the ADNI
procedural manual posted at http://www.adni-info.org and in a recent
publication by Shaw et al. (Shaw et al., 2009).

2.3. MRI preprocessing

All subjects were scanned with a standardized high-resolution
MRI protocol (http://www.loni.ucla.edu/ADNI/Research/Cores/index.
shtml) on scanners developed by one of three manufacturers (General
Electric Healthcare, Siemens Medical Solutions and Philips Medical
Systems) with a protocol optimized for best contrast to noise in a
feasible acquisition time (Jack et al., 2008; Leow et al., 2006). Raw
data with an acquisition matrix of 192 × 192 × 166 and voxel size
1.25 × 1.25 × 1.2 mm3 in the x-, y-, and z-dimensions was subjected
to in-plane, zero-filled reconstruction (i.e., sinc interpolation) resulting
in a 256 × 256 matrix and voxel size of 0.9375 × 0.9375 × 1.2 mm3.
Image quality was inspected at the ADNI MRI quality control center at
the Mayo Clinic (in Rochester, MN, USA) (Jack et al., 2008). Phantom-
based geometric corrections, image non-uniformity and bias field correc-
tions were applied (Gunter et al., 2006; Jack et al., 2008; Jovicich et al.,
2006; Sled et al., 1998). Both the uncorrected and corrected image files
are freely available to interested researchers at http://www.loni.ucla.
edu/ADNI.

2.4. Hippocampal segmentation

The preprocessed baseline 1.5T 3D T1-weighted scans were
downloaded and linearly registered to the International Consortium
for Brain Mapping (ICBM-53) brain template (Mazziotta et al., 2001)
using the Minctracc algorithm and 9-parameter (9P) transformation
(3 translations, 3 rotations, 3 scales) (Collins et al., 1994). The aligned
images were resampled in an isotropic space of 220 voxels along each
axis (x, y, and z) resulting in a final voxel size of 1 mm3. The hippocampi
were segmented with our recently developed and validated automated
machine-learning hippocampal segmentation technique (AdaBoost)
which uses the adaptive boosting approach originally proposed by
Freund and Shapire (1997) as previously described (Apostolova et al.,
2010d; Morra et al., 2008a,b,2009a,b). Hippocampal volumes were
extracted.
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Table 1
Mean demographic and biomarker data.

Variable at baseline NC N = 111 MCI N = 182 AD N = 95 One-way ANOVA/chi squared test, p-value

Age, years 75.5 (5.2) 74.2 (7.4) 74.6 (7.9) 0.3
Gender, M:F 56:55 121:61 55:40 0.023
Education, years 15.8 (2.8) 15.8 (3.0) 15.3 (3.0) 0.3
MMSE 29.1 (1.0) 26.9 (1.8) 23.6 (1.9) b0.001
CSF Aβ42 level, pg/ml 206 (55) 163 (55) 143 (40) b0.001
CSF t-tau level, pg/ml 69 (30) 103 (61) 124 (58) b0.001
CSF p-tau181 level, pg/ml 25 (15) 35 (18) 43 (20) b0.001
Mean hippocampal volume, mm3 4100 (586) 3779 (631) 3518 (604) b0.001

ApoE4 positive subjects

Variable at baseline NC N = 27 MCI N = 99 AD N = 65 One-way ANOVA/chi squared test, p-value

Age, years 75.8 (5.8) 73.5 (6.6) 74.0 (7.4) 0.3
Gender, M:F 18:9 60:39 39:26 0.8
Education, years 15.6 (2.8) 15.7 (2.8) 14.8 (3.0) 0.2
MMSE 28.9 (1.1) 27.0 (1.8) 23.6 (1.9) b0.001
CSF Aβ42 level, pg/ml 157(49) 143 (41) 131 (27) 0.012
CSF t-tau level, pg/ml 80 (40) 117 (67) 122 (53) 0.007
CSF p-tau181 level, pg/ml 32 (21) 40 (18) 43 (19) 0.05
Mean hippocampal volume, mm3 4175 (443) 3708 (608) 3476 (608) b0.001

ApoE4 negative subjects

Variable at baseline NC N = 84 MCI N = 83 AD N = 30 One-way ANOVA/chi squared test, p-value

Age, years 75.4 (5.0) 74.9 (8.2) 75.9 (8.9) 0.8
Gender, M:F 38:46 61:22 14:16 0.001
Education, years 15.8 (2.7) 16.0 (3.2) 16.3 (2.8) 0.7
MMSE 29.1 (1.0) 26.8 (1.8) 23.5 (1.9) b0.001
CSF Aβ42 level, pg/ml 222 (48) 187 (60) 168 (52) b0.001
CSF t-tau level, pg/ml 65 (25) 85 (48) 127 (69) b0.001
CSF p-tau181 level, pg/ml 22 (11) 30 (16) 42 (22) b0.001
Mean hippocampal volume, mm3 4077 (625) 3731 (573) 3610 (564) b0.001

Bold values indicate significance at pb0.05.
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2.5. Statistical methods

2.5.1. Demographic comparisons
We used one-way Analyses of Variance (ANOVA) with post hoc

Bonferroni correction for multiple comparisons to examine diagnostic
differences in age, education, MMSE, CSF biomarker levels and hippo-
campal volume at baseline, and chi-squared test to determine differ-
ences in sex distribution between each diagnostic group. For
comparison of baseline demographic and biomarkermeasures between
ApoE4-positive and negative subjects and MCI converters (MCIc) and
MCI nonconverters (MCInc) we used a two-tailed Student's t-test for
continuous variables, and a chi-squared test for categorical variables.

2.5.2. Support vector machines classifier
SVMs are popular machine learning algorithms, formulated to learn

patterns in training data and classify new testing data. Themathematical
principle by which SVM performs pattern recognition is by finding
a multidimensional plane that maximizes the margin between data
points in different classes (Vapnik, 1995). SVMs have been particularly
Table 2
Demographic and biomarker comparisons by ApoE genotype using a two-tailed t-test for contin
for each variable, please see Table 1).

Variable at baseline MCI ApoE4+ vs ApoE4-

Age, years 0.7
Gender, M:F 0.053
Education, years 0.8
MMSE 0.4
CSF Aβ42 level, pg/ml b0.001
CSF t-tau level, pg/ml 0.07
CSF p-tau181 level, pg/ml 0.024
Mean hippocampal volume, mm3 0.5

Bold values indicate significance at pb0.05.
successful in biological classification problems, as non-linear kernels
can be introduced to the algorithm so that non-planar, multidimension-
al surfaces can instead be used to classify patterns of data. In our study,
we implemented the radial basis function (RBF) kernel and optimized
its width or γ parameter (as well as the SVM cost or C parameter)
through grid search using the e1071 package (Dimitriadou et al., 2006)
in R (http://cran.r-project.org). Often, addition of non-contributory
features can reduce classification performance. For this reason, we
ranked our features based on the elements of a linear SVM's normal
vector (i.e., |wi|; (Guyon et al., 2002)) and iteratively removed those
with lower weights to find sets of features that yield maximal classifica-
tion accuracies.

We trained the SVM algorithm with CSF, ApoE4 and imaging
measures for subjects with known diagnoses and used the leave-
one-out approach to predict each new subject's diagnostic category.
This process was repeated n times and the machine's predictive
accuracy was measured by summing up the correct and incorrect
classifications. All classifiers included age, sex, and educational level
(in years). Next, we obtained receiver operating characteristic (ROC)
uous and a chi-squared test for categorical variables (p-values are shown; formean and SD

MCI ApoE4+ vs. ApoE4- AD ApoE4+ vs ApoE4-

0.2 0.3
0.07 0.5
0.5 0.02
0.6 0.8

b0.001 0.001
b0.001 0.8
b0.001 0.9
0.8 0.3

http://cran.r-project.org)


Table 3
Baseline demographic and biomarker comparisons of MCI converters vs. nonconverters using a two-tailed t-test for continuous and a chi-squared test for categorical variables.

Variable at baseline MCI converters MCI nonconverters Two-tailed t-test/chi squared test, p-value

Age, years 74.8 (7.1) 73.6 (7.5) 0.3
Gender, M:F 48:32 55:25 0.3
Education, years 15.5 (3.0) 16.3 (2.8) 0.1
ApoE4 positive:negative 53:27 35:45 0.004
MMSE 26.6 (1.8) 27.3 (1.7) 0.014
CSF Aβ42 level, pg/ml 145 (40) 172 (60) 0.001
CSF t-tau level, pg/ml 113 (51) 88 (47) 0.002
CSF p-tau181 level, pg/ml 40 (16) 31 (17) 0.001
Mean hippocampal volume, mm3 3600 (569) 3803 (542) 0.022

Bold values indicate significance at pb0.05.
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curves for the predictions to additionally assess the classifier's sensitivity,
specificity and area under the curve (AUC) characteristics.

Our classifier resultswere further subjected tomultiple comparisons
correction by permutation analyses.We ran 10,000 permutations of the
dependent variable (clinical diagnosis) against the sets of individual
biomarker characteristics for each individual classifier and defined a
final single corrected p-value for each ROC.

3. Results

3.1. Demographic characteristics

The demographic characteristics of the diagnostic groups are shown
in Tables 1–3. There were no significant age or educational differences
between the diagnostic groups. The MCI group had significantly more
males relative to both the NC and the AD groups (p = 0.023). As
expected, AD subjects had the lowest mean MMSE and CSF Aβ42

and NC the highest (p b 0.001). The opposite was seen for CSF t-tau
and p-tau (both p b 0.001). The MCI group was intermediate on these
variables (Table 1).

ApoE4-positive NC subjects had significantly lower CSF Aβ42

(p b 0.001) and higher CSF p-tau levels (p = 0.024) relative to
ApoE4-negative NC. ApoE4-positive MCI subjects also showed signifi-
cantly lower CSF Aβ42 (p b 0.001), higher CSF tau and p-tau (both
p b 0.001) relative to ApoE4-negative MCI subjects. ApoE4-positive AD
subjects were significantly less educated (p = 0.02) and had lower
CSF Aβ42 levels (p = 0.001) relative to ApoE4-negative AD subjects
(Table 2).

Relative toMCI nonconverters,MCI converters had significantly lower
MMSE (p = 0.014), higher proportion of ApoE4 carriers (p = 0.004),
lower hippocampal volume (p = 0.022) and CSF Aβ42 (p = 0.001),
and higher CSF tau (p = 0.002) and p-tau (p = 0.001, Table 3).

3.2. Classifier results

3.2.1. Cross-sectional classifiers
Fig. 1 and Table 4 show the cross-sectional classifier ROCs, classifier

performancemetrics, ranking of variables selected by each classifier and
permutation corrected classifier significance.

3.2.1.1. NC vs.MCI classifiers (Fig. 1 top portion first row). Thehippocampal
NC vs. MCI classifier achieved an AUC of 0.68. The features selected by
the classifier included hippocampal volume, age and sex. The permuta-
tion corrected classifier significance was pcorrected b 0.0001.

The CSF NC vs. MCI classifier achieved an AUC of 0.77. The features
selected by the classifier included CSF Aβ42, CSF tau, sex and age. The
permutation corrected classifier significance was pcorrected b 0.0001.

ApoE4 genotype performed as well as hippocampal volume and CSF
biomarkers regardless of whether ApoE2 carriers were excluded or not
(all subjects AUC = 0.7, pcorrected b 0.0001, without ApoE2 carriers
AUC = 0.71, pcorrected b 0.0001). Substituting the binary ApoE4-positive
vs. negative predictor variable with a variable reflecting the number of
ApoE4 alleles (0, 1 or 2) did not result in overall improvement in classifier
performance (AUC = 0.67, pcorrected b 0.0001).

The multimodal NC vs. MCI classifier presented with all three CSF
variables, hippocampal volume, age, sex and education achieved an
AUC of 0.78. The variables selected by the classifier included CSF Aβ42,
CSF tau, hippocampal volume, sex, and age. The permutation corrected
classifier significance was pcorrected b 0.0001. The addition of ApoE4
genotype did not seem to affect the overall multimodal classifier results
(AUC = 0.79, pcorrected b 0.0001, Table 6).

Direct statistical comparison showed that the CSF NC vs. MCI classi-
fier performed significantly better than the hippocampal NC vs. MCI
classifier (p = 0.01). The hippocampal + CSF classifier performed bet-
ter than the hippocampal-only (p = 0.0044) but not the CSF-only
(p = 0.65) classifiers. Adding ApoE4 genotype to the multimodal
hippocampal + CSF classifier did not result in a statistically significant
difference (p = 0.56).

3.2.1.2. NC vs. AD classifier (Fig. 1 top portion second row). The
hippocampalNCvs. AD classifier achieved anAUCof 0.78. The features se-
lected by the classifier included hippocampal volume, age, and education.
The permutation corrected classifier significance was pcorrected b 0.0001.

The CSF NC vs. AD classifier achieved an AUC of 0.85. The features
selected by the classifier included CSF Aβ42, CSF tau and p-tau, sex,
education and age. The permutation corrected classifier significance
was pcorrected b 0.0001.

ApoE4 genotype performed about the same as the hippocampal
volume and worse than CSF regardless of whether ApoE2 carriers
were excluded or not (all subjects AUC = 0.76, pcorrected b 0.0001,
without ApoE2 carriers AUC = 0.74, pcorrected b 0.0001). Substituting
the binaryApoE4-positive vs. negative predictor variablewith a variable
reflecting the number of ApoE4 alleles (0, 1 or 2) did not result in overall
improvement in classifier performance (AUC = 0.78, pcorrected b 0.0001).

Themultimodal NC vs. AD classifier presented with all CSF variables,
hippocampal volume, age, sex and education achieved an AUC of 0.90.
The variables selected by the classifier included CSF tau, CSF Aβ42,
hippocampal volume, age, CSF p-tau and sex. The permutation
corrected classifier significance was pcorrected b 0.0001. The addition of
ApoE4 genotype did not affect the overall multimodal classifier results
(AUC = 0.88, permutation corrected significance pcorrected b 0.0001,
Table 6).

Direct statistical comparison showed that CSF NC vs. AD classifier
performed significantly better than the hippocampal NC vs. AD classifier
(p = 0.04), and the hippocampal + CSF classifier performed better
than the hippocampal-only (p = 0.0001) and the CSF-only (p = 0.03)
classifiers. Adding ApoE4 genotype to the multimodal hippocampal +
CSF classifier did not result in a statistically significant difference
(p = 0.43).

3.2.1.3. MCI vs. AD classifier (Fig. 1 top portion bottom row). The
hippocampal MCI vs. AD classifier achieved an AUC of 0.53. The features
selected by the classifier included education and hippocampal volume.
The permutation corrected classifier significancewas pcorrected = 0.024.



Fig. 1. Receiver Operation Characteristic (ROC) for the cross-sectional classifiers.
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The CSF MCI vs. AD classifier achieved an AUC of 0.61. The single
feature selected by the classifier was CSF p-tau. The permutation
corrected classifier significance was pcorrected b 0.001.

ApoE4 genotype performed about the same as the hippocampal
volume and worse than CSF regardless of whether ApoE2 carriers
were excluded or not (all subjects AUC = 0.52, pcorrected b 0.0001,
without ApoE2 carriers AUC = 0.51, pcorrected b 0.0001). Substituting
the binary ApoE4-positive vs. negative predictor variablewith a variable
reflecting the number of ApoE4 alleles (0, 1 or 2) did not result in overall
improvement in classifier performance (AUC = 0.53, pcorrected b 0.0001).
The multimodal MCI vs. AD classifier presented with all CSF
variables, hippocamapal volume age, sex and education achieved
an AUC of 0.62. The variables selected by the classifier included
hippocampal volume, CSF p-tau, sex and CSF tau. The permutation
corrected classifier significance was pcorrected b 0.001. The addition
of ApoE4 genotype did not seem to affect the overall multimodal
classifier results (AUC = 0.61, permutation corrected significance
pcorrected = 0.0011, Table 6).

Direct statistical comparison showed no statistically significant
improvement in performance between the various classifiers.



Table 4
Classifier performance metrics, ranking of variables selected by each classifier, and permutation corrected classifier significance.
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3.2.1.4. ApoE4 stratified analyses (Fig. 1 bottom portion). Hippocampal
volume and CSF biomarkers both separately and in combination
performed well in discriminating NC vs. AD regardless of ApoE4
genotype (ApoE4-positive subjects: hippocampal classifier AUC = 0.74
pcorrected b 0.0001, CSF classifier AUC = 0.73 pcorrected = 0.0005 and
combined classifier AUC = 0.83 pcorrected b 0.0001; ApoE4-negative
subjects: hippocampal classifier AUC = 0.73 pcorrected = 0.0002,
CSF classifier AUC = 0.88 pcorrected b 0.0001 and combined classifier
AUC = 0.87 pcorrected b 0.0001).

In the NC vs. MCI analyses CSF biomarkers alone and the combi-
nation of hippocampus and CSF biomarkers achieved reasonable
AUCs in the ApoE4-negative sample only (ApoE4-negative sub-
jects: hippocampal lassifier AUC = 0.70 pcorrected = 0.008, CSF classifi-
er AUC = 0.78 pcorrected = 0.0008 and combined classifier AUC = 0.79



467L.G. Apostolova et al. / NeuroImage: Clinical 4 (2014) 461–472
pcorrected = 0.003; ApoE4-positive subjects: hippocampal classifier
AUC = 0.64 pcorrected = 0.005, CSF classifier AUC = 0.52 pcorrected =
0.01 and combined classifier AUC = 0.58 pcorrected = 0.0006).

In the MCI vs. AD analyses the hippocampal classifier performed
best in ApoE4-positive subjects (AUC = 0.69, pcorrected = 0.0006) and
the CSF classifier performed best in the ApoE4-negative subjects
(AUC = 0.74, pcorrected b 0.0001).

Among ApoE4-positive subjects classifiers did not prove to be statis-
tically significant from each other. Among ApoE4-negative subjects
the hippocampal + CSF classifier was significantly better than
the hippocampal-only classifier when discriminating NC vs. MCI
(p = 0.012) and NC vs. AD (p = 0.008, Table 6). The CSF-only clas-
sifier performed significantly better than the hippocampal-only clas-
sifier when discriminating Apoe4-negative NC vs. AD subjects
(p = 0.012, Table 6).

3.2.2. Predicting conversion
Fig. 2 and Table 5 show the SVMclassifier ROCs, classifier performance

metrics, ranking of variables selected by each classifier and permutation
corrected classifier significance for the MCI conversion classifier
analyses.

In the classifier model including both ApoE4-positive and negative
subjects the hippocampal-only classifier selected hippocampal volume,
sex and education and achieved an AUC = 0.64 (pcorrected = 0.048).
The CSF-only classifier selected only CSF Aβ42 and achieved an
AUC = 0.63 (pcorrected = 0.008). The combined hippocampal-CSF
classifier selected hippocampal volume, CSF Aβ42, CSF p-tau, education,
sex and CSF tau and achieved an AUC = 0.64 (pcorrected = 0.042).
The addition of ApoE4 genotype did not seem to affect the overall
multimodal classifier results (AUC = 0.68, pcorrected = 0.019). ApoE4
genotype performed about the same as hippocampal volume and CSF
regardless of whether ApoE2 carriers were excluded or not (all subjects
AUC = 0.64, pcorrected = 0.002, without ApoE2 carriers AUC = 0.61,
pcorrected = 0.004). Substituting the binary ApoE4-positive vs.
negative predictor variable with a variable reflecting the number of
ApoE4 alleles (0, 1 or 2) did not result in overall improvement in
classifier performance (AUC = 0.61, pcorrected = 0.0026).

Once stratified by ApoE4 genotype the best results for predicting
conversion to AD were achieved by the hippocampus-only classifier in
ApoE4-positive (predictors: hippocampal volume and sex; AUC =
0.68, pcorrected b 0.0001) and CSF-only classifier for ApoE4-negative
subjects (predictors: CSF p-tau, education and sex; AUC = 0.89,
pcorrected b 0.0001).

4. Discussion

All classifier models performed very well in discriminating NC from
AD and moderately well in discriminating NC from MCI. The MCI vs.
AD ascertainment, as expected, proved to be more challenging for
unimodal and multimodal classifiers alike presumably due to the fact
that the MCI biomarker pattern is rather similar to the one seen in AD.
The multimodal biomarker classifier approach had better diagnostic
and predictive power than any unimodal classifier.

Several important observations can bemade from the discriminative
classifier performance. CSF Aβ42 played a significant role in discriminat-
ing NC from MCI and AD but was not selected by the MCI vs. AD
classifiers while CSF p-tau contributed to accurate discrimination of
AD from both NC and MCI, yet played no role in differentiating NC
from MCI. These observations are in agreement with the proposed
biomarker trajectory in AD where amyloid markers become abnormal
early in the disease course and neurodegenerative markers (here
CSF p-tau) become abnormal later in the disease course. Interesting-
ly hippocampal atrophy and CSF t-tau seemed quite ubiquitously
used by most classifiers including the NC vs. MCI classifiers, suggest-
ing that these neurodegenerative biomarkers are becoming abnor-
mal somewhere between the CSF Aβ42 and the CSF p-tau changes.
CSF Aβ42 proved to be useful for differentiating NC from MCI only
among ApoE4-negative but not ApoE4-positive subjects. This is likely
due to the fact that many ApoE4-positive cognitively normal elderly
already have significant brain amyloidosis and low CSF Aβ42 rendering
amyloid biomarkers insensitive for differentiating NC and MCI. At the
same time neurodegenerative biomarkers (CSF tau, CSF p-tau and/or
hippocampal atrophy) were readily chosen in both ApoE4-positive
and ApoE4-negative NC vs. MCI classifiers establishing their discrim-
inative role for patients with either genotype.

Both amyloid and neurodegenerative biomarkers were readily
chosen by the conversion classifiers. Similar to the observations of
others (Cui et al., 2011; Davatzikos et al., 2011; Ewers et al., 2012; Vos
et al., 2012; Westman et al., 2012) the classifier accuracies in the full
sample were marginal at best. However once split by ApoE4 genotype
we observed that hippocampal volume and sex were helpful
for predicting conversion to AD among ApoE4-positive MCI, while CSF
p-tau was helpful for the prediction of conversion to AD among
ApoE4-negative MCI subjects. Both classifier algorithms chose only
markers of neurodegeneration as one might expect to be the case in
the symptomatic MCI stage. These conclusions are well supported by
data from a recent paper by Jack et al. showing that among amyloid
positive MCI subjects hippocampal atrophy, and not amyloid burden,
predicted shorter time to progression to dementia (Jack et al., 2010)
because amyloid load plateaus (Jack et al., 2013) while hippocampal
volume does not (Jack et al., 2010).

The CSF outperformed the hippocampal metrics in discriminating
NC from MCI and AD. Low CSF Aβ42 is tightly linked to the presence of
amyloid pathology in the brain while hippocampal atrophy is criticized
for being a nonspecific measure observed in many disease states and in
normal aging (Apostolova and Thompson, 2008). Techniques capable
of detecting hippocampal atrophy in selected subfields are being
developed (Apostolova et al., 2010a,c; Csernansky et al., 2000; Mueller
and Weiner, 2009) and some have even demonstrated ability to
detect hippocampal atrophy in the presymptomatic disease stages
(Apostolova et al., 2010c). Alternatively more sophisticated MRI
measures such as for instance the Structural Abnormality Index
(STAND), which captures hippocampal and cortical atrophy, can also
improve the ability of MRI for predicting future decline (Vemuri et al.,
2009a,b).

In contrast to other groups that have publishedmultimodal diagnos-
tic classification papers using ADNI data (Cui et al., 2011; Davatzikos
et al., 2011; Ewers et al., 2012; Kohannim et al., 2010; Vos et al., 2012;
Walhovd et al., 2010; Westman et al., 2012) we also investigated
classifier performance after ApoE4-stratification (i.e., investigated the
classifier performance separately in carriers and noncarriers). This led
to some interesting observations in respect to the modulatory effect
of ApoE4 genotype on biomarker trajectory in AD. It is fascinating
that support vector machine classifiers can help uncover interesting
observations in respect to AD pathophysiology. This is a novel way of
utilization of a statistical methodology thought by many to be only
capable of diagnostic discrimination and outcome prediction.

Although multicollinearity can be a problem for multiple linear
regression, it is standard for SVMs to be provided with thousands
of correlated predictors, and still perform very well. Only certain
kinds of machine learning methods, such as naive Bayes methods, as-
sume that the inputs of the classifier are statistically independent.
Even when inputs considered to be an n-dimensional vector by SVM,
are highly correlated, the SVMwill find the optimal hyperplane for sep-
arating the samples and making decisions to categorize or classify fu-
ture data.

Correlation among inputs is less of an issue when making predic-
tions. Redundancy among predictors is common and does not under-
mine the predictive accuracy of the classifier. However correlated
inputs do tend to complicate the interpretation of which predictor
variables are driving the effects. This is more of an issue if the classi-
fier is considered as a “descriptive” model — telling us the relative



Fig. 2. Receiver Operation Characteristic (ROC) for the conversion classifier.
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importance of variables for the prediction, but it is less of an issue for
predictive accuracy as many of the redundant predictors can be used.

When one fits an SVMwithmultiple predictors, if the predictors are
correlated, SVM might pick some predictors on one occasion and may
do equally well on another occasion using other predictors. SVM will
always pick the one that minimizes the error. Sometimes the accuracies
of certain feature combinations are very close, yet SVMwill pick the one
with the lowest error. It does notmean that the other dropped variables
might not be predictive, only that they are sufficiently redundant with
the ones that were used that they were not chosen.

This study has several strengths and limitations. The strengths of
ADNI lie in its large size, its detailed cognitive assessment protocol
and careful diagnostic ascertainment, as well as in the implementation
of unified MRI and CSF collection and processing strategies across
multiple sites and the meticulous data quality control. Yet ADNI was
designed to inform decisions about future disease modifying clinical
trials and as such it employs the rigorous inclusion and exclusion
criteria typical of clinical trials. As such, the ADNI cohort is not a
complete representation of the elderly population and its findings
should be generalized with caution; for example, the classification
accuracies may be poorer in populations with a great mix of conditions
and co-morbidities. Another relative weakness of our study is the
etiologic/pathologic uncertainty in the MCI stage as at least 30% of
amnestic MCI subjects have been found to harbor non-AD pathology
(Jicha et al., 2006). Even so, etiologic heterogeneity should not be
expected to invalidate the biomarker-to-biomarker correlations across
the pooled sample.

Another important limitation of our study is the classifiers' exclusive
reliance on biomarkers for diagnostic categorization. By doing so we
inadvertently compromise our ability to accurately classify AD vs. MCI
subjects as the diagnostic distinction between these categories is
determined by the presence or absence of functional decline which
cannot be ascertained from biomarker data. Thus it is not surprising
that our biomarker-based classifier models failed to discriminate
between MCI and AD. However we must acknowledge that providing
our classifiers with functional or cognitive variables would have
introduced a circularity argument, as cognitive variables were used for
diagnostic ascertainment of ADNI subjects.

One must also take under consideration that CSF tau and p-tau
changes do not accurately reflect (i.e., lag behind) the severity and
extent of tau pathology in the AD brain. CSF biomarkers are just periph-
eral surrogates of actual tau pathology. Several tau-imaging ligands are
currently under development. Such technology might provide a much
more accurate metric of tau pathology and contribute meaningfully
to an improved understanding and staging of the early and presymp-
tomatic stages of AD. Last but not least, our classifier results will benefit
from independent validation in a different cohort with similar longitu-
dinal follow-up and biomarker data availability.
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Table 6
Statistical comparisons of classifiers (p-values).

Diagnostic comparison Classifier Comparison p-value

NC vs. MCI Hippocampal vs. CSF classifier 0.01
Hippocampus + CSF vs. hippocampal classifier 0.0044
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

NC vs. AD Hippocampal vs. CSF classifier 0.04
Hippocampus + CSF vs. hippocampal classifier 0.0001
Hippocampus + CSF vs. CSF classifier 0.03
Hippocampus + CSF + ApoE vs. hippocampus + CSF NS

MCI vs. AD Hippocampal vs. CSF classifier NS
Hippocampus + CSF vs. hippocampal classifier NS
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

ApoE4+ NC vs. MCI Hippocampal vs. CSF classifier NS
Hippocampus + CSF vs. hippocampal classifier NS
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

ApoE4+ NC vs. AD Hippocampal vs. CSF classifier NS
Hippocampus + CSF vs. hippocampal classifier NS
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

ApoE4+ MCI vs. AD Hippocampal vs. CSF classifier NS
Hippocampus + CSF vs. hippocampal classifier NS
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

ApoE4− NC vs. MCI Hippocampal vs. CSF classifier NS
Hippocampus + CSF vs. hippocampal classifier 0.012
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

ApoE4− NC vs. AD Hippocampal vs. CSF classifier 0.012
Hippocampus + CSF vs. hippocampal classifier 0.008
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

ApoE4− MCI vs. AD Hippocampal vs. CSF classifier NS
Hippocampus + CSF vs. hippocampal classifier NS
Hippocampus + CSF vs. CSF classifier NS
Hippocampus + CSF + ApoE vs. hippocampus + CSF classifier NS

NS—not significant.
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