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Abstract

Land surface models (LSMs) are increasingly called upon to represent not only the ex-
changes of energy, water and momentum across the land-atmosphere interface (their
original purpose in climate models), but also how ecosystems and water resources
respond to climate and atmospheric environment, and how these responses in turn in-5

fluence land-atmosphere fluxes of carbon dioxide (CO2), trace gases and other species
that affect the composition and chemistry of the atmosphere. However, the LSMs em-
bedded in state-of-the-art climate models differ in how they represent fundamental as-
pects of the hydrological and carbon cycles, resulting in large inter-model differences
and sometimes faulty predictions. These “third-generation” LSMs respect the close10

coupling of the carbon and water cycles through plants, but otherwise tend to be under-
constrained, and have not taken full advantage of robust hydrological parameterizations
that were independently developed in offline models. Benchmarking, combining mul-
tiple sources of atmospheric, biospheric and hydrological data, should be a required
component of LSM development, but this field has been relatively poorly supported15

and intermittently pursued. Moreover, benchmarking alone is not sufficient to ensure
that models improve. Increasing complexity may increase realism but decrease relia-
bility and robustness, by increasing the number of poorly known model parameters.
In contrast, simplifying the representation of complex processes by stochastic param-
eterization (the representation of unresolved processes by statistical distributions of20

values) has been shown to improve model reliability and realism in both atmospheric
and land-surface modelling contexts. We provide examples for important processes
in hydrology (the generation of runoff and flow routing in heterogeneous catchments)
and biology (carbon uptake by species-diverse ecosystems). We propose that the way
forward for next-generation complex LSMs will include: (a) representations of biologi-25

cal and hydrological processes based on the implementation of multiple internal con-
straints; (b) systematic application of benchmarking and data assimilation techniques
to optimize parameter values and thereby test the structural adequacy of models; and
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(c) stochastic parameterization of unresolved variability, applied in both the hydrological
and the biological domains.

1 Introduction

The land surface, together with the soil column underneath it, plays a key role in control-
ling not only the partitioning of available energy (into latent, sensible and ground heat5

fluxes) and water (into evapotranspiration, surface runoff, interflow, baseflow and soil
moisture), but also the land-atmosphere exchange of carbon dioxide (CO2) and the
close coupling between photosynthesis and the cycling of energy and water vapour.
Adequate representations of biological, physical and hydrological processes in a land
surface model (LSM) are therefore a prerequisite for improving the accuracy of both nu-10

merical weather forecasts and climate predictions. LSMs also provide a valuable tool to
assess water resources, and the hydrological impacts of changes in climate and land
use, over large river basins and continents, having the advantage of a globally consis-
tent physical basis (Eagleson, 1986; Harrison et al., 1991). Moreover, LSMs are being
required to perform new functions. In emerging Earth system models, they are called15

upon to model land-atmosphere exchanges of biogenic greenhouse gases other than
CO2; other reactive trace gases with influences on atmospheric chemistry and compo-
sition; emissions of aerosols in biomass burning and dust deflation; and emissions of
volatile organic compounds as aerosol precursors. This list could be continued, and is
lengthening as knowledge increases about the diversity and complexity of Earth sys-20

tem interactions and feedbacks (Friedlingstein et al., 2013; Scholze et al., 2013; Ciais
et al., 2014).

Many LSMs now include representations of the slower processes of vegetation dy-
namics, coupled to the fast exchanges of water, energy, momentum and CO2 that are
at their core (Arora, 2002). Dynamic global vegetation models (DGVMs) have been25

reviewed elsewhere (e.g. Prentice et al., 2007; Tang and Bartlein, 2008; Prentice and
Cowling, 2013). Some offline DGVMs (i.e. models not coupled to a climate model) have
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been used to address water resources questions (e.g. Rost et al., 2008; Murray et al.,
2011, 2012a, b). Thus the boundaries between LSMs, DGVMs and global hydrological
models are increasingly blurred. Here we focus on LSMs sensu stricto but our treat-
ment applies equally to the representation of core land-surface processes in DGVMs.
We first briefly review the evolution of land surface modelling, then proceed to consider5

the present state of the art and how it could be improved upon.

2 Evolution of land surface models

Land surface modelling consists of the development and application of computational
models integrating biological, hydrological, and physical processes within the soil-plant-
atmosphere continuum. LSMs have two essential characteristics: (1) they consider pro-10

cesses related to the energy, water, and carbon cycles and their interactions, and (2)
they operate over relatively large spatial domains with short temporal scales. Depend-
ing on their complexity, different LSMs may consider different processes and represent
them differently.

Manabe (1969) was the first to include land-surface interactions explicitly in a cli-15

mate model. Manabe’s so-called bucket model includes vastly simplified hydrology (for
example, no surface runoff is generated until the entire soil column reaches satura-
tion), a simple energy balance equation, and no explicit vegetation characteristics. But
Manabe’s pioneer work ignited many significant developments in later LSMs.

In common with several earlier reviews including the influential article by Sellers et20

al. (1997), we consider the subsequent evolution of LSMs as a sequence of “gener-
ations”, with Manabe’s bucket model representing the first generation. But whereas
Sellers et al. (1997) focused exclusively on LSMs as a component of climate models,
our treatment also covers the extensive offline development of LSMs for hydrological
applications that took place from the late 1980s onwards.25

The pioneers of the second generation of LSMs were Deardorff (1978), Dickinson
et al. (1986, 1993) (the BATS model) and Sellers et al. (1986, 1996) (the SiB model).
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These “generation 2A” LSMs focused on achieving a much more detailed representa-
tion of vegetation as the locus of many of the physical exchanges between land and the
atmosphere, and a more realistic computation of the surface energy budget (Fig. 1).
Later models followed along similar lines, including a variety of innovative components
(e.g. Noilhan and Planton, 1989; Xue et al., 1991; Koster and Suarez, 1992; Ducoudré5

et al., 1993; Verseghy et al., 1993; Viterbo and Beljaars, 1995; Wetzel and Boone,
1995; Desborough and Pitman, 1998).

Parallel developments in offline models (Fig. 2) tackled problems caused by the unre-
solved (sub-grid scale) variability of precipitation and land-surface characteristics (to-
pography, vegetation and soils). Because of the extreme non-linearity of many key10

processes, disregarding this variability can lead to substantially incorrect computations
of the aggregate surface water and energy budgets (e.g. Chen et al., 1997). Stochas-
tic parameterizations, discussed in more depth later, were introduced as a means to
deal with this problem of sub-grid scale variability. Attention was also paid to improving
the representation of specific hydrological processes including infiltration, surface and15

subsurface runoff, and processes associated with snow. Representative LSMs in this
“generation 2B” include the VIC (Liang et al., 1994, 1996a, b; Liang and Xie 2001),
TOPLATS (e.g., Famiglietti and Wood, 1994; Peters-Lidard et al., 1997) and NOAH
(e.g., Chen et al., 1996; Schaake et al., 1996) models, and the work of Ducharne et
al. (1999) based on the TOPMODEL framework.20

Crossley et al. (2000) and Gedney and Cox (2003) noted that inadequate representa-
tions of hydrological processes can significantly limit our ability to project future climate
change and its impacts. Improvements in hydrological process representation (includ-
ing runoff, groundwater exchanges, snow and frozen soil) continued in many second-
generation LSMs (e.g., Koster et al., 2000; Liang and Xie, 2001; Milly and Shmakin,25

2002; Cherkauer and Lettenmaier, 2003; Liang et al., 2003; Huang et al., 2007), pro-
viding more realistic representations of land-atmosphere water and energy exchanges.
An additional focus was on achieving better representation of canopy hydrology, based
on the schemes of Shuttleworth (1988), Liang et al. (1996b) and Wang and Wang
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(2007), for instance, to account for the effects of sub-grid variability in precipitation on
its partitioning to the different components of evapotranspiration and runoff.

The third generation of LSMs (Fig. 3) was developed with the principal motivation to
solve a “new” problem, the representation of the carbon cycle in climate models. Rep-
resentative work includes that of Bonan (1995), Sellers et al. (1996), Cox et al. (1998),5

and Dai et al. (2003). Our designation of these models as the third generation is con-
sistent with Sellers et al. (1997) and Pitman (2003), who provided comprehensive dis-
cussions of them. The appearance of the third-generation models in particular marked
a transition from the representation of the surface conductance to water vapour – a key
quantity determining the evapotranspiration rate – by empirical relationships to multiple10

environmental predictors, to a new representation that explicitly recognized the close
coupling between CO2 and water exchanges across the surface of leaves. This inno-
vation allowed a simultaneous reduction in complexity and an improvement in realism.
The closure schemes used to predict stomatal conductance at the leaf level have re-
mained largely empirical, but Medlyn et al. (2011) showed how all of the commonly15

used expressions (including the Ball-Berry, Leuning and Jacobs formulae) can be in-
terpreted as approximations of a single equation that represents biologically optimized
stomatal behaviour. Prentice et al. (2013) further generalized the derivation of Med-
lyn et al.’s equation, showing how this can be predicted based on the relative carbon
“costs” of maintaining the water flow pathway required for transpiration and the bio-20

chemical capacity for photosynthesis.
Representing land-atmosphere exchanges of water and carbon also required a rep-

resentation of dynamic changes in green vegetation cover, especially the seasonal
cycle. But how to represent vegetation phenology in a model is still a work in progress.
Two principal approaches can be distinguished: plant-physiological (e.g. Lu et al., 2001)25

and rule-based (e.g. Foley et al., 1996; Levis and Bonan, 2004; Kim and Wang, 2005).
This remains one of the least well modelled aspects of the land surface (Keenan et al.,
2014). One promising avenue of development considers the biologically adaptive na-
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ture of phenology (Caldararu et al., 2014), leading to the idea of biologically optimized
control of leaf flushing and senescence.

Many LSMs are now coupled to explicit representations of vegetation dynamics, rep-
resented by quantitative mixtures of plant functional types (PFTs) that are updated at
intervals much longer than the timestep of the LSMs. The land-surface component of5

many climate and Earth system models is therefore now a full DGVM, representing a
cascade of processes with intrinsic time scales ranging from minutes to centuries, with
asynchronous coupling to link faster and slower processes (Prentice et al., 2007). This
development could, optimistically, be regarded as a major achievement in the integra-
tion of physical and biological aspects of the land surface (McGill et al., 2006). However,10

as discussed in the next section, the performance of such models has proved incon-
sistent. Reliability appears to have been lost in the scramble to develop multifunctional
LSMs. Furthermore, the third-generation models and DGVMs have generally not fully
capitalized on advances in the representation of hydrological processes made in the
second generation. The time is ripe for a synthesis of these elements.15

3 Model comparisons, evaluations, and the need for benchmarking

The Programme for Intercomparison of Land-surface Parameterization Schemes
(PILPS) was founded in the early 1990s (Henderson-Sellers et al., 1993, 1995) as
an attempt to make sense of large differences that had been noted in the behaviour of
contemporary LSMs, through community involvement in standardized model “experi-20

ments”. The specific goal of PILPS was to improve understanding and implementation
of first- and second-generation LSMs, as used to represent land-surface physical pro-
cesses at regional to continental scales.

PILPS was one of six international efforts later subsumed under the umbrella of
the Global Land/Atmosphere System Study (GLASS). GLASS aims to improve model25

representations of land-surface states and fluxes, to better understand interactions of
the land surface with the overlying atmosphere, and to maximize the fraction of inher-
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ent predictability in land-atmosphere coupled processes (van den Hurk et al., 2011).
PILPS has been through five phases: documenting the status of LSMs (Phase 0),
performing offline tests of LSMs using synthetic atmospheric forcings (Phase 1a-c),
using observed forcings and observations to evaluate the performance of LSMs offline
(Phase 2a-e), coupling tests of LSMs within the Atmospheric Model Intercomparison5

Project (AMIP) (Phase 3), and evaluation of the performance of LSMs when coupled to
their host climate models (Phase 4) (Henderson-Sellers et al., 1996). Results of “point”
and small-area studies from PILPS 1a–c and 2a, b and d revealed large differences
among models, and the fact that many diverged considerably from observations (e.g.,
Shao and Henderson-Sellers, 1995; Henderson-Sellers et al., 1996; Chen et al., 1997;10

Schlosser et al., 2000).
PILPS 2c and 2e were carried out for large river basins: 2c focusing on the mid-

latitude Red-Arkansas River basin in the central USA, 2e on high-latitude Torne-Kalix
basin in Sweden. The principal findings (Liang et al., 1998; Lohmann et al., 1998a;
Wood et al., 1998; Bowling et al., 2003a, b; Nijssen et al., 2003) were as follows.15

1. LSMs that applied sub-grid scale runoff parameterizations could simulate large-
scale river discharges better than others.

2. The modelled partitioning between surface and subsurface runoff varied even
more than the modelled total runoff. In particular, the runoff parameterizations
of LSMs under dry conditions were found to need improvement (Lohmann et al.,20

1998b; Bowling et al., 2003a).

3. The attenuation of solar shortwave radiation by vegetation needs to be considered
in order to calculate the ground heat flux properly (Liang et al., 1998).

4. The partitioning of water and energy (i.e. the modelling of runoff and evapotran-
spiration) differed greatly among LSMs, even on an annual and monthly basis25

and even when the same forcing data, vegetation and soil information, and model
parameters were used.
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5. Mean values and spatial patterns of net radiation and surface temperature in
warm conditions generally showed the best agreement among the LSMs, and
with observations (Liang et al., 1998).

6. Models that conducted calibrations on some of their parameters performed con-
sistently better than those that did not, regardless of the specific calibration5

method used.

7. Some model parameters in LSMs were found to be particularly critical for the par-
titioning of water and energy. For example, in the high-latitude study (PILPS 2e), it
was shown using a simple “equivalent model” that variations in the partitioning of
precipitation and energy at an annual scale could be attributed primarily to param-10

eters related to snow albedo, effective aerodynamic resistance and evaporation
efficiency (Bowling et al., 2003b).

For the mid-latitude study (PILPS 2c), Liang and Guo (2003) applied the fractional
factorial method to ten LSMs in order to investigate the sensitivities of four quanti-
ties (annual evapotranspiration, total runoff, sensible heat flux, and soil moisture), and15

their combined effects, to five parameters that the models had in common: maximum
soil moisture content (MSMC), effective available water content, the Clapp-Hornberger
B parameter, leaf area index, and minimum stomatal resistance. It was shown that
MSMC and the Clapp-Hornberger B were usually the most critical. This study also
indicated that variations associated with soil properties (due to measurement uncer-20

tainties, and/or spatial heterogeneity) played a stronger role in the partitioning of water
and energy budgets than those associated with vegetation properties. Sensitivities to
different parameters were found to vary across hydroclimates, and generally the ef-
fects of different parameterizations were greater under arid than moist conditions (also
shown by Lohmann et al., 1998a).25

Despite the achievements of PILPS, and subsequent projects with more specific
goals including GSWP (Global Soil Wetness Project: Dirmeyer et al., 1999; 2006),
GLACE (Global Land Atmosphere Coupling Experiment: Koster et al., 2004; 2010) and
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LUCID (Land-Use and Climate, IDentification of robust impacts: Pitman et al., 2009),
many of the most general questions originally posed are still unanswered. This situ-
ation was articulated in a recent review of GLASS by van der Hurk et al. (2011). For
example, it is still not clear to what extent predictability can be achieved in a LSM; what
parameterizations are more appropriate, under what conditions; and what is the best5

strategy to reduce prediction uncertainties. Moreover, many of the differences among
LSMs, and discrepancies between LSMs and observations, have not been resolved
and remain incompletely understood.

The co-ordinated international activities described above focused on the comparison
and evaluation of LSMs sensu stricto. The international LAnd Model Benchmarking (iL-10

AMB) project was inaugurated in 2009 with the explicit goal of a unified approach to
the comparison and evaluation of land models including both carbon and water cycling
aspects, and an unstated one, to rekindle apparently flagging enthusiasm for the eval-
uation and improvement of land models of all kinds. The project recognized from the
outset its equal relevance to DGVMs, LSMs and numerical weather prediction. The15

project’s stated goals are to (quoted from http://www.ilamb.org/):

“1. to develop internationally accepted benchmarks for land model perfor-
mance,

2. promote the use of these benchmarks by the international community for
model intercomparison,20

3. strengthen linkages between experimental, remote sensing, and climate
modeling communities in the design of new model tests and new measure-
ment programs, and

4. support the design and development of a new, open source, benchmark-
ing software system for use by the international community.”25

These goals set out exactly what is required in order to make systematic testing against
observations into a routine part of model development. However, the most recent iL-
AMB workshop took place in January 2011, and the stated goals seem to be some
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way from achievement. Some groups have published ‘first draft’ sets of benchmark
protocols and metrics (Randerson et al., 2009; Kelley et al., 2013) principally (not ex-
clusively) focused on the carbon-cycle aspects. The Protocol for the Analysis of Land-
Surface models (PALS) software (Abramowitz, 2005; http://www.pals.unsw.edu.au/) al-
lows rapid comparison of modelled and observed CO2 and latent heat fluxes at the5

publicly available eddy-covariance flux measurement stations in the FLUXNET archive.
The ecosystem Modelling And Scaling infrasTructure (eMAST) project of the Australian
Terrestrial Ecosystem Research Network (TERN) (http://www.tern.org.au/) is assem-
bling diverse data sets and developing software to facilitate terrestrial ecosystem data-
model comparison and integration, with an initial focus on the Australian continent. This10

is by no means a comprehensive list of such initiatives. Nevertheless, our impression
is that there is still limited momentum in the co-ordinated development of international
benchmark systems, and that this is to the detriment of LSM improvement.

In summary, the development of LSMs in the climate modelling context has been
characterized by intermittent and insufficient attention to model evaluation (Prentice,15

2013). Probably as a direct consequence, those aspects of climate model predictions
of the historical observational record that depend most strongly on the land surface
component are subject to remarkably large differences between models, which affect
the quantification of both climate feedbacks (Ciais et al., 2014) and impacts with ma-
jor consequences for human society (Schellnhuber, 2014). Two such areas of major20

disagreement among models were highlighted in the IPCC Fourth Assessment Report
(Denman et al., 2007), and persisted without resolution into the Fifth:

(a) The hydrological cycle, specifically the degree to which precipitation over the con-
tinents depends on soil moisture and evapotranspiration from the land surface.
The GLACE-1 experiment (Koster et al., 2002) showed that different GCMs be-25

have very differently in this respect. Although the differences could be partly due
to different schemes for generating precipitation in the atmosphere, the evidence
points to differences among LSMs as a prime suspect.
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(b) The carbon cycle, specifically the degree to which the growth rate of CO2 in future
is likely to be reduced due to enhancement of NPP (“CO2 fertilization”), and also
the extent of compensating increase due to the acceleration of soil organic matter
decay in a warming climate. In the Coupled Carbon-Climate Model Intercompari-
son Project (C4MIP) (Friedlingstein et al., 2006) the participating models agreed5

that the sign of the feedback from climate change to atmospheric CO2 is positive,
i.e. the effect of a warming climate is to release CO2 from the land surface. Some
new models including C-N cycle coupling have predicted the opposite sign, i.e. a
negative feedback (Thornton et al., 2007; Sokolov et al., 2008), although this is
not consistent with evidence from past changes in atmospheric CO2 concentra-10

tion shown in ice-core records of the past millennium (Friedlingstein et al., 2010).
The models reported in the IPCC Fifth Assessment Report (AR5) have produced
carbon-climate feedbacks with consistently positive sign, but varying greatly in
magnitude (Ciais et al., 2014). All the AR5 models underestimate the historically
observed CO2 uptake by the land (Hoffman and Price 2014). The two models that15

included C-N cycle coupling perform worst in this respect, suggesting that the way
in which they have represented this coupling is incorrect.

The differences among different models’ predictions of 21st century CO2 uptake have
remained large through successive IPCC Assessments (Fig. 4). Alarmingly, the spread
of modelled present values of gross primary production (GPP) and latent heat flux20

(λE), integrated across the global land surface – arguably the most fundamental of all
carbon-cycle and hydrological quantities – is wide, with many modelled values falling
well outside of accepted, observationally based ranges (Fig. 5). The problem here is
not properly characterized as “uncertainty”. It is rather that many models are certainly
incorrect in their representation of the recent past.25

It has become recognized across the community of land surface and vegetation mod-
ellers that (a) multiple observational constraints are possible, and (b) more systematic
application of these constraints is needed to improve confidence in land surface mod-
elling. Recent reviews (Luo et al., 2012; Foley et al., 2013) and proof-of-concept stud-
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ies (Randerson et al., 2009; Kelley et al., 2013; Piao et al., 2013) have promoted the
concept of model benchmarking against a range of carbon-cycle and hydrological in-
dicators. This is a welcome development. But benchmarking is not a panacea, and
there are limits to the extent to which the routine application of observational data sets
and data-model comparison metrics can constrain models. Some aspects also need5

close attention to developments in process understanding, e.g. experimental studies of
CO2 effects on plants (Ainsworth and Long, 2005), or effects of land-use changes on
catchment hydrology (e.g. Siriwardena et al., 2006).

Attention also needs to be paid to model structure, and especially to the way in which
natural variability and heterogeneity in biological and physical quantities is represented.10

It is still common practice in LSMs and DGVMs for highly variable quantities to be
represented by a single-valued parameter. For example the hydrological properties of
soils are usually assumed either globally constant, or assigned a constant value for
each of a small number of soil texture classes; and in any case assigned a constant
value across each model grid cell. Biological properties such as leaf photosynthetic15

capacity have been treated analogously. Many models assign a constant value within
each of a small number of Plant Functional Types, PFTs, even though up to 75 %
of the observed variation in some important plant traits occurs within PFTs (Kattge
et al., 2011). Such devices have the potential to generate artefacts, which should be
identifiable as a systematic failure to meet benchmarks. In Sect. 5 we discuss examples20

of an alternative general approach that appears to yield more robust results.

4 Complexity versus robustness

As more processes continue to be identified and included in LSMs, the almost univer-
sal tendency is for LSMs to become more and more complex. A worrying side-effect is
the progressive introduction of more model parameters with (commonly) substantially25

uncertain values. Moreover, complexity can conceal lack of rigour, because it becomes
progressively easier to fit observations as more parameters are introduced. Thus, in-
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creasing complexity can mask a lack of understanding, resulting in a situation whereby
models are tuned to perform well at standard tests but produce widely divergent re-
sults when projected beyond the domain of calibration. This seems to be precisely the
situation currently observed with coupled carbon cycle-climate models, as reported in
AR5 (Ahlström et al., 2012; Anav et al., 2013; Arora et al., 2013; Jones et al., 2013;5

Todd-Brown et al., 2013; Ciais et al., 2014). Although it seems reasonable to expect
that a model including a larger subset of processes that are known to be important
should be more realistic than a simpler model, increases in reliability and robustness
are by no means automatic.

Comparative studies have shown that indeed, complexity in land surface models10

has not generally improved their reliability (e.g. Desborough and Pitman, 1998). Fur-
thermore, there is no point in achieving sophistication in one set of processes while
retaining simple empiricism in another. Complexity needs to be balanced. This is not
a precisely defined principle, but it is an important practical one (Smith et al., 2013).
We suggest that there is often a trade-off between complexity and robustness, and that15

robustness is more important than (often spurious) precision. Whereas the representa-
tion of a complex system cannot be achieved in a simple model, it seems of paramount
importance that complexity is dealt with in a carefully controlled manner that minimizes
the scope for over-fitting and thus for the spurious impression of predictive skill.

5 Stochastic parameterization20

Stochastic (or statistical) parameterization has gained considerable traction in the at-
mospheric modelling community, where it has been shown to yield improved robust-
ness and to reduce model artefacts in the numerical representation of weather pro-
cesses (e.g. Palmer, 2012; Arnold et al., 2013). Stochastic parameterizations repre-
sent one or more model parameters as a statistical distribution of values. Atmospheric25

modelling differs from land-surface modelling in that the equations describing weather
processes are inherently chaotic, requiring ensembles of simulations to achieve prob-
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abilistic forecasts; implementing a stochastic parameterization in this context can be
done by allowing ensemble members to differ in the assignment of parameter values.
The equations describing carbon and water cycle processes at and below the land
surface are in principle deterministic, in a given environment (Xia et al., 2013). How-
ever, the land surface – in contrast with the atmosphere – is heterogeneous at spatial5

scales down to metres and below, and this heterogeneity cannot be explicitly resolved
for the purposes of large-scale modelling. Some form of parameterization is required.
Similarly, the ecosystem consists of species with a range of properties, whose aggre-
gate behaviour is not accurately represented by the behaviour of a single species; but
a complete enumeration of species and their functional properties would be entirely10

impractical. As in the atmosphere, the processes represented can be highly non-linear,
so that the mean behaviour of the system is not satisfactorily captured by its behaviour
at the mean values of the system’s parameters. This is a general property of non-linear
systems. Stochastic parameterizations get around this difficulty, and they can often be
implemented in a computationally efficient way, avoiding the need for multiple model15

runs by including calculations on probability density functions within a single realiza-
tion of the model.

5.1 Hydrological examples

Because runoff is the residual of two relatively large quantities (precipitation versus
evapotranspiration and changes in soil water storage), and because there are no di-20

rect observations of evapotranspiration over large areas, streamflow data continue to
have a great potential to be used to evaluate land surface models’ simulation of land-
atmosphere latent heat and water vapour exchange. (This situation is evolving as im-
proved methods for deriving evapotranspiration from remotely sensed measurements
are developed: see Mueller et al., 2013.) Many LSMs fail to generate realistic temporal25

distributions of streamflow, limiting the potential for such data to be used to test and
constrain LSMs. The fundamental problem is that the pointwise generation of runoff is
a threshold process (compounded by other highly non-linear properties, including the
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relationship between hydraulic conductivity and soil water potential) and soil and topo-
graphic properties are highly variable. Representing this system by a single “typical”
soil profile results in too sharp a transition between high and low flows.

An effective solution to this problem was embedded in the VIC (which stands for
“Variable Infiltration Capacity”) LSM (Liang et al., 1994, 1996a) in which the sub-grid5

scale spatial variabilities of both soil moisture capacity and potential infiltration rate are
represented by statistical distributions (Liang and Xie, 2001). The impact of sub-grid
scale variability of precipitation is also considered (Liang et al., 1996a). These aspects
of variability have significant consequences for the grid-cell total values of the com-
ponents of the water budget, which are better modelled as a result. VIC has been10

widely used for land-surface and hydrological impact studies. The soil-moisture capac-
ity curve (a statistical distribution) used for the saturation-excess surface-runoff param-
eterization in VIC has been implemented in the ISBA (Habets et al., 1999) and SEWAB
(Mengelkamp et al., 1999) LSMs. VIC has been used as a tool to provide retrospective
global surface water flux fields (Nijssen et al., 2001). The runoff parameterization of15

VIC has also been implemented in the Community Land Model (CLM4VIC: Li et al.,
2011).

The development of VIC recognized that heterogeneity of land-surface properties is
ubiquitous on all spatial scales, down to metres and below. Therefore increasing spatial
resolution, tiling, grid nesting and similar devices cannot solve the problem of hetero-20

geneity. Instead, VIC represents sub-grid scale heterogeneity statistically, taking into
account of spatial autocorrelation properties as well as variability per se. VIC cannot
provide location-specific information on fluxes within each grid cell, but this does not
matter, because the objective is only to provide robust information integrated across
the grid cell.25

Liang and Guo (2003) showed that LSMs such as ISBA and VIC, which explicitly rep-
resent the sub-grid scale spatial variability of soil, vegetation, and/or atmospheric forc-
ings, can be less sensitive to the choice of parameter values and thereby produce more
robust results, and several other studies have supported this conclusion (e.g. Liang et
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al., 1996b; Koren et al., 1999; Liang et al., 2004; Li et al., 2011). VIC is insensitive to
the assumption of different precipitation distributions within the precipitation-covered
area (e.g., Liang et al., 1996b) compared to other LSMs that treat soil properties as
invariant (Pitman et al., 1990), and is robust with respect to changes in grid resolution
and selection of parameter values (Liang et al., 2004).5

A parallel approach has been applied to the routing of streamflow by Wen et
al. (2012). This routing scheme, an extension of the one proposed by Guo et al. (2004),
applies a statistical distribution for the overland flow path. It is different in several re-
spects from other commonly used routing schemes. Runoff from a grid-cell is allowed to
exit in multiple directions and a tortuosity coefficient is used to account for geomorphic10

properties such as channel slope and length. The flow network differentiates explicitly
between overland and river flows. The scheme as implemented by Wen et al. (2012)
was found to dramatically reduce the dependence of the routing model on the timestep
(Table 1), and to produce good results for hourly flows (needed, for example, for flood
prediction) where the previous, deterministic parameterization had failed.15

A further example is provided by the VIC-SED model (Xie and Liang, 2014), where
a stochastic parameterization was successfully used to overcome the large mis-match
in both temporal and spatial scales between the usual representation of soil erosion
processes (hillslope scale, timestep of minutes) and the much coarser temporal and
spatial resolution of the LSM.20

DGVMs, even when used for water resources applications, have not generally in-
cluded parameterizations of land-surface physical variability. However, the inclusion of
such a parameterization can greatly improve the hydrological outputs of DGVMs (e.g. Li
and Ishidaira, 2011). Exactly why stochastic parameterizations work so well in the con-
text of real landscapes is a research question greatly in need of further study. However,25

it is worth noting that the statistical properties of landscapes are by no means arbitrary,
but are predictable in principle based on the nature of erosion processes (e.g. Turcotte,
2007; Saeki and Okamura, 2010), presumably leading to commonalities that can be
exploited for modelling.
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5.2 A biological example

Gross primary production (GPP, the space-time integral of carbon uptake by photo-
synthesis) is the basis of all plant growth. Its global total value is reasonably well con-
strained by observations (Wang et al., 2014). There is a close coupling between GPP
and transpiration, because stomatal opening and closure regulates both CO2 uptake5

into and water loss out of leaves. Adequate estimation of GPP in the third-generation
LSMs is therefore important for modelling the hydrological cycle as well as the carbon
cycle. Some of the parameters of photosynthesis (the in vivo enzyme kinetic constants
and their temperature responses) can be regarded as constant and well known for
global modelling purposes, but others – notably the maximum rate of carboxylation,10

Vcmax, and at least one parameter characterizing the relationship between stomatal con-
ductance and vapour pressure deficit – vary greatly, both within and among species.
The usual approach to provide values of these variables in LSMs has been to draw on
literature sources to estimate values of each parameter, with the parameters thereby
treated as constant (within PFTs) and independent of one another.15

There has been little systematic investigation of the consequences of these assump-
tions. However, just as the representation of hydrological responses can be improved
by accounting for the variation and autocorrelation of physical properties within the
landscape, it seems likely that the representation of CO2 uptake could be improved by
accounting for the variation and covariation of ecophysiological properties within the20

community of species that carry out photosynthesis.
A vast amount of empirical work during the past decade has gone into the compila-

tion of relevant trait measurements from many plant species (see Wright et al., 2004;
Kattge et al., 2011), so the single-value approach can no longer be justified by the
paucity of availability data (as was the case during the early years of LSM develop-25

ment). In addition to the large variation within PFTs (Kattge et al., 2011), a key finding
of this research has been that the parameters, far from being independent, show cor-
relations, so that the variation among species can be collapsed into a few dimensions.
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One of these dimensions is the so-called leaf economics spectrum, relating photosyn-
thetic rates, leaf longevity and specific leaf area (Wright et al., 2004). Although there
has been criticism of the presentation of the leaf economics spectrum, centring on the
existence of necessary correlations among various combinations of measurements, its
existence and biological significance are not in any doubt (e.g. Lloyd et al., 2013).5

In a typical LSM representation, GPP depends on canopy leaf area index and Vcmax.
Canopy leaf area index is modelled as a function of the fraction of net primary pro-
duction allocated to leaves and of the leaf lifespan (τ in years), and Vcmax is modelled
as a function of leaf nitrogen per unit leaf area – i.e. the product of leaf nitrogen con-
centration (n in g N g−1) and leaf mass per area (m in g m−2). Field observations from10

over 50 000 plant species show that leaf lifespan and leaf mass per area are positively
correlated, while both are negatively correlated with leaf nitrogen concentration (Wright
et al., 2004). Using the CABLE LSM (Kowalczyk et al., 2006; Wang et al., 2010, 2011),
Wang et al. (2012) calculated the global mean and standard deviation of modelled GPP
using two groups of 500 randomly sampled sets of the three leaf traits n, τ and m with15

their observed means and standard deviations. One group also applied the observed
covariances of the traits while the other group assumed zero covariance. Simulated
global GPP was found to vary from 115 to 170 Gt C a−1 when the three model param-
eters were varied independently. Including covariances did not change the mean GPP,
but reduced its standard deviation by 28 %, indicating that the observed trait correla-20

tions help to constrain the value of global total GPP.
This analysis by Wang et al. (2012) represents a first step towards the realistic in-

clusion of plant trait variability and correlation patterns in LSMs. The adaptive DGVM
approach (Scheiter and Higgins, 2009) represents a somewhat different implementa-
tion of stochastic parameterization of plant traits at the continental scale. The general25

idea that the functional diversity of plants should be represented by continuous trait
variation, rather than by a small number of PFTs with fixed characteristics, has been
repeatedly mooted (e.g. Kleidon, 2007; van Bodegom et al., 2012). Key to this ap-
proach is the idea that functional convergence (the achievement of similar, optimized
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large-scale fluxes by diverse communities of plants differing in phylogeny) is a con-
sequence of biodiversity, with environmental selection and competition ensuring that
niches are filled.

6 Towards next-generation models

Figure 6 presents a view of what next-generation LSMs might look like. The key de-5

velopments illustrated there are: the implementation of multiple constraints; the use of
data assimilation; and the more general application of stochastic parameterization as
discussed above.

6.1 Bounding complexity: the use of multiple constraints

There are encouraging signs that ecologists and ecophysiologists, atmospheric sci-10

entists and hydrologists are beginning to work together to improve understanding of
large-scale ecosystem and landscape processes, and to identify and quantify the pro-
cesses that need to be included in LSMs. For example, recognizing the role of deep
roots in the function of the soil-plant-atmosphere continuum, researchers are now begin
to investigate ‘new’ processes including hydraulic redistribution (e.g., Lee et al., 2005;15

Amenu and Kumar, 2008; Li et al., 2011; Wang, 2011; Quijano et al., 2012; Luo et al.,
2013; Prentice and Cowling, 2013), plant water storage (e.g., Luo et al., 2013), surface
water and groundwater interactions (e.g., Winter, 2001; Gutowski et al., 2002; York et
al., 2002; Liang et al., 2003; Maxwell and Miller, 2005; Yeh and Eltahir, 2005; Liang
et al., 2006; Fan et al., 2007; Niu et al., 2007), and the interactions among these pro-20

cesses (e.g., Luo et al., 2013) and with other existing processes in current LSMs (e.g.,
Luo et al., 2013). Further new developments include consideration of the relevance of
agriculture, wetlands and lakes for the aggregate behaviour of the land surface (e.g.,
Rosnay et al., 2003; Ringeval et al., 2012; Webler et al., 2012; Drewniak et al., 2013).

24830

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/24811/2014/acpd-14-24811-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/24811/2014/acpd-14-24811-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 24811–24861, 2014

The three R’s of
next-generation land

surface modelling

I. C. Prentice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

With these aspects adding ever-increasing complexity, however, a new modelling
strategy is required to ensure that the uncertainties do not spiral out of control as
more and more uncertain parameters are introduced. The key lies in ensuring that
physical and biological constraints are identified, and explicitly embedded in models.
The application of observational constraints (benchmarking against multiple types of5

observations) routinely during model development is necessary, but not sufficient.
The key principle applied in the recent development of the VIC+ model (Luo et al.,

2013) is to enforce multiple constraints on each process, as far as possible, to reduce
the number of free (or highly uncertain) parameters in the model. The prototype for this
approach was the realization that stomatal conductance to water vapour – which, when10

combined with leaf area index, is the largest land-surface control on the latent heat flux
in vegetated landscapes – must conform (on a fast time scale of seconds) to the same
equations (apart from a factor 1.6, relating the molecular diffusivities of water vapour
and CO2) that describe how stomatal conductance to CO2 responds to environmental
signals. This equality continues to hold even if stomatal conductance is reduced, and/or15

photosynthetic capacity inhibited, in response to soil drying (Tuzet et al., 2003; Zhou et
al., 2013). Moreover, the rate of photosynthesis implied by the concentration difference
across the stomata must be equal to the rate of photosynthesis implied by the incident
photosynthetic photon flux density and key photosynthetic parameters (Vcmax and Jmax).
These insights were essential for the inclusion of coupled carbon and water exchanges20

in the third-generation LSMs (e.g. Collatz et al., 1992). But these are not the only
relevant constraints. Allowing for small, but finite, water storage, the rate of evaporation
at the leaf surface must be equal to the rate of water flow through the xylem; which
in turn, following the Ohm’s law analogy for water flows, must be equal to the product
of plant hydraulic conductance and the water potential difference between the soil and25

the leaves. This constraint allows transpiration to be controlled by both the soil water
potential of the root zone and the atmospheric conditions simultaneously, mediated
by measurable plant characteristics (Tuzet et al., 2003). Figure 7 summarizes how the
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stomatal and hydraulic constraints are combined in VIC+ to determine the transpiration
rate.

VIC+ also represents the influence of soil water potential (via its effect on transpira-
tion, and thus leaf water potential) on stomatal conductance, according to the model
of Tuzet et al. (2003) which in turn built on pioneering work by Cowan (1965). The5

calculation of CO2 assimilation in the model is constrained as a consequence of the in-
terplay of the stomatal and biochemical limitations simultaneously, taking into account
the effect of soil moisture signalling, by way of computing the CO2 concentration within
the leaf. If transpiration is appropriately represented by Etr1 and Etr2 (Fig. 7) then these
two quantities must converge, as must the two rates An1 and An2 (also shown in Fig. 7)10

representing CO2 uptake.
The constraints discussed above pertain to physically necessary relationships be-

tween fluxes, arising from the architecture of leaves and plants. Potentially, many ad-
ditional constraints may arise due to natural selection in biological systems, which
acts to eliminate ‘ineffective’ combinations of traits, even if they are not directly phys-15

ically linked. The leaf economics spectrum provides one such set of constraints. The
least-cost hypothesis introduced by Wright et al. (2003) and elaborated by Prentice et
al. (2013) provides another, potentially powerful constraint, as it leads to an indepen-
dent specification of the leaf-internal CO2 concentration as calculated in Fig. 7. The
co-limitation (or co-ordination) hypothesis further leads to a prediction of both photo-20

synthetic rate (given leaf temperature and internal CO2 concentration) and Vcmax as a
function of light availability (Dewar, 1996; Haxeltine and Prentice, 1996; Maire et al.,
2012). With consideration of biologically optimized constraints, we are optimistic that
the number of unknown or poorly constrained parameters describing the controls of
CO2 and water exchange by plants can be greatly reduced.25

6.2 Optimizing model performance: the potential of data assimilation

Obtaining best estimates of parameters, given a set or multiple sets of observations,
is one of the recent goals of data assimilation (e.g., Moradkhani et al., 2005a; Qin et
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al., 2009; Montzka et al., 2011; Vrugt et al., 2013). Data assimilation has evolved from
Newtonian ‘nudging’ to more comprehensive approaches including various flavours of
traditional, extended, ensemble Kalman filtering, variational data assimilation using the
adjoint method, and the particle filtering method (e.g. Houser et al., 1998; Walker and
Houser, 2001; Reichle et al., 2002a, b; Margulis et al., 2002; McLaughlin, 2002; Crow5

and Wood, 2003; Montaldo and Albertson, 2003; Moradkhani et al., 2005a, b; Pan and
Wood, 2006; Qin et al., 2009; Montzka et al., 2011; Vrugt et al., 2013). Parada and
Liang (2004) developed a new spatial data assimilation framework, an extension of
the multiscale Kalman Smoother-based (MKS-based) framework (Chou et al., 1994;
Fieguth et al., 1995; Luettgen and Willsky, 1995; Kumar, 1999). This framework is in-10

novative in the way it accounts for error propagation, dissimilar spatial resolutions, and
the spatial structure within which the distribution of the data is considered. Concepts
from this framework have been adopted in several other data assimilation studies (e.g.
Parada and Liang, 2008; Pan et al., 2009; Lannoy et al., 2010).

Techniques for data assimilation are thus an active research area. To an even greater15

extent than is the case for model evaluation and benchmarking, however, the routine
use of data assimilation is far from being common practice. It has been stated a number
of times that data assimilation should be a standard part of model development. More
work is needed to develop generic schemes that would allow data assimilation to be
applied to any model, and to set up data sets and protocols for doing so.20

Data assimilation, when used to optimize parameter values in a model, is valuable
above all because it can potentially reveal whether or not a particular model structure
is capable of generating the observed patterns. In normal practice, if a model fails a
benchmark test, this does not necessarily indicate that the model is incorrectly speci-
fied; it could simply mean that the parameter values in the model are incorrect. If the25

model fails after assimilation of the relevant data set, however, this may be a strong
indication that some structural aspect of the model needs improvement.

Data assimilation confronts a number of practical difficulties. Computational demand
is an issue. Investigators have usually to choose between gradient-based methods

24833

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/24811/2014/acpd-14-24811-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/24811/2014/acpd-14-24811-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 24811–24861, 2014

The three R’s of
next-generation land

surface modelling

I. C. Prentice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and ‘brute force’ ensemble simulation (see Wang et al., 2009). Gradient-based meth-
ods use adjoint codes or finite-difference methods to compute the gradients that are
required for optimization (Rayner et al., 2005). The gradient-based approach is much
more efficient than ensembles of simulations whenever a large number of parameters
are to be optimized. However, adjoint code needs to be generated afresh whenever the5

model code is modified (Kaminski et al., 2013). Ensemble simulations are much more
computationally intensive than the gradient-based method, and become impractical for
global land surface models with several hundred parameters. Other issues include the
need for state variables to maintain mass conservation during data assimilation, and
the quantification of data and model uncertainties. Multiple data sets are recommended10

for constraining model parameters, but the uncertainties of multiple datasets and how
those uncertainties vary in space and time are poorly quantified in many cases – intro-
ducing an element of subjectivity into the analysis.

7 Concluding remarks

Substantial progress has been made in the development of LSMs since Manabe’s pi-15

oneering work. The models will continue to evolve. They are already complex. They
will become inevitably more complex as they come to represent (a) a more complete
description of the set of key processes that determines the exchanges of materials
and energy between the atmosphere and the underlying surface and subsurface, for
example including surface and groundwater interactions, sediment transport, and bio-20

geochemical interactions of the carbon, nitrogen and phosphorus cycles; (b) sub-grid
scale spatial variability, reflecting the natural diversity of ecosystems and landscapes;
and (c) processes requiring high temporal resolution: notably flooding, a key issue in a
changing climate.

Process understanding continues to evolve, both in biology and in hydrology. At any25

one time, different models may reasonably differ in the explicit assumptions they make
about key processes. This is unavoidable. We suggest that it is also desirable. Global
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models should incorporate explicit hypotheses about processes, and they are the tool
that should allow these hypotheses at the process level to be tested against large-
scale observations. Realization of this vision, however, will require teamwork: people
with different disciplinary knowledge will need to work together with increased intensity.
This is a pre-requisite for LSMs to come into their own, as tools for discovery and5

improved quantitative understanding of the fundamental laws that control energy, water
and carbon cycling between the atmosphere and land. Moreover, the widening field of
applications of models to project the consequences of a changing atmospheric and
human environments calls for LSMs to be simultaneously reliable, robust and realistic
(the three R’s of the title) so that they can be used confidently, in new interdisciplinary10

contexts, to project consequences and potential policy implications of environmental
change for agriculture, biodiversity, public health and human security (AR5 TS). It will
be challenging, but with determination and collaboration, it can be done.
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Table 1. Comparison of hourly and daily Nash-Sutcliffe model efficiency values between ob-
served and modelled streamflow in three river basins, using a deterministic (Guo et al., 2004)
and a new stochastic parameterization of river routing. From Wen et al. (2012).

Method Deterministic Stochastic

Hourly Daily Hourly Daily

Blue River −2.05 0.47 0.60 0.61
Illinois River near Watts −5.50 0.59 0.56 0.67
Elk River −16.68 0.52 0.68 0.74
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Figure 01. Schematic of ‘generation 2A’ LSMs.  

 
 

 

 

Figure 1. Schematic of “generation 2A” LSMs.
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Figure 02. Schematic of ‘generation 2B’ LSMs. 
 

 

 Figure 2. Schematic of “generation 2B” LSMs.
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Figure 03. Schematic of third-generation LSMs. 

 

 
 

 

 

Figure 3. Schematic of third-generation LSMs.
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Figure 04. Simulated land carbon uptake to 2100 under a ‘high-end’ global warming 

scenario, as projected by global models in the three most recent IPCC Assessment Reports 

(TAR, AR4 and AR5). The cross represents the mean of the models for each assessment. 

 
Figure 4. Simulated land carbon uptake to 2100 under a ‘high-end’ global warming scenario,
as projected by global models in the three most recent IPCC Assessment Reports (TAR, AR4
and AR5). The cross represents the mean of the models for each assessment.
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Figure 05. Mean annual gross primary production (Pg C a
-1

) and evapotranspiration (mm a
-1

) 

from the global land surface during 1901-2010, as simulated by 12 Earth system models in 

the IPCC Fifth Assessment Report. The grey lines represent upper and lower limits based on 

observations. 

 

 Figure 5. Mean annual gross primary production (Pg C a−1) and evapotranspiration (mm a−1)
from the global land surface during 1901-2010, as simulated by 12 Earth system models in
the IPCC Fifth Assessment Report. The grey lines represent upper and lower limits based on
observations.
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Figure 06. Schematic of next-generation LSMs. 

 

 

Figure 6. Schematic of next-generation LSMs.

24860

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/24811/2014/acpd-14-24811-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/24811/2014/acpd-14-24811-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 24811–24861, 2014

The three R’s of
next-generation land

surface modelling

I. C. Prentice et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 07. How co-ordinated processes can represent transpiration and assimilation. 

Rectangles indicate calculation processes; parallelograms represent variables. From Luo et al. 

(2013).   

 

 

Figure 7. How co-ordinated processes can represent transpiration and assimilation. Rectan-
gles indicate calculation processes; parallelograms represent variables. From Luo et al. (2013).
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