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ABSTRACT 

Purpose  

Gene signature development using microarrays started more than 15 years ago, yet there are still 

common mistakes made by researchers. The goal of this research is to investigate and implement 

gene signature methods using Affymetrix array data. It aims to establish a work flow with well-

justified steps for gene signature development.  

Public Health significance  

The public health significance is to minimize NSCLC patients’ risks of recurrence after surgical 

resection by identifying poor prognosis patients and suggesting that those who have high risk of 

recurrence to receive chemotherapy and/or supplemental treatments after surgery.  

Methods 

Gene expression data from 62 surgery samples of early stage un-treated NSCLC patients in JBR10 

trial was used for training model development. Individual genes were selected using univariate 

Cox regression analysis, and then the gene set was summarized by principle components, which 

then served as the inputs to the Cox regression model. A multi-layer internal validation was 

conducted for model evaluation. The performance of the gene signature was evaluated by testing 

on two independent data sets.  
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Results 

A signature of 88 genes was developed that can identify patients with significantly different 

survival prognosis (Hazard Ratio (HR): 11.5, 95% CI: 3.44 to 38.46, P<0.05). The signature was 

successfully validated in independent datasets (CAN_DF (N=59): HR: 3.56, 95% CI: 1.38 to 9.19, 

P<0.05; HR: 1.94, 95% CI: 0.89 to 4.21, P=0.088; CAN_DF: HR, 95% CI, P; HR, 95% CI, P; 

UM (N=155): HR: 1.82, 95% CI: 1.09 to 3.03, P<0.05; UM (N=176): HR: 1.95, 95% CI: 1.29 to 

3.40, P<0.05;).  

Conclusion  

A work flow of gene signature development has been constructed, which is composed of 

preliminary gene filtering, individual gene selection, predictive model construction using 

supervised principle component analysis and further internal/external validation. . Using gene 

expression of 62 patients from Affymetrix array data in JBR.10 trials, an 88-gene signature for 

predicting a high likelihood of recurrence was obtained and validated in independent datasets.  
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1.0  INTRODUCTION 

Gene signature development using microarrays started more than 15 years ago, yet there are still 

common mistakes made by researchers. Some of these mistakes are very basic. For example, the 

expression level, expression variation, and detectability (absent/present call) are often not 

considered in the selection of individual gene[1]. The primary goal of this thesis research project 

is to investigate and implement gene signature using Affymetrix array data. We aim to establish a 

work flow with well-justified steps for gene signature development. Generally, Cox proportional 

hazards regression was used for individual gene selection and principal components analysis of 

the gene sets were used for predictive model construction using Cox proportional hazards 

regression models. We have established a rigorous workflow for model evaluation that includes 

interval validation (e.g. leave-out-out cross validation, Bootstrapping) and validation on 

independent datasets. 

The secondary goal is to compare different strategies in developing gene signature. In 

particular, we are interested in comparing different strategies for (i) individual feature selection 

and (ii) prediction model building after genes are selected. In surveying the literature for cancer 

gene signatures, most, if not all, choose the individual genes using Cox regression[2]. In this 

research, we explore and compare whether other strategies, such as t-test, can identify more 

informative genes. The results for the secondary goals are provided in appendix.  
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Lung cancer is the leading causes of cancer-related death in US and worldwide. Non-small 

cell lung cancer (NSCLC) defined as a disease in which malignant cells form in the tissues of the 

lung, occupies more than 85% of lung cancer cases[3]. Squamous cell carcinoma, large cell 

carcinoma and adenocarcinoma are three common types of non-small cell lung cancer named for 

the kinds of cell found in the cancer and how the cells look under a microscope. NSCLC are 

classified into 4 main stages (I-IV) by the TNM staging system, depending on the size of the tumor 

and, where the tumor is found [4]. Cancer stage is regarded as a main factor in guiding treatment. 

Surgical resection is the most recommended surgery procedure, yet five-year survival ranges from 

only 30%-60% percent among early-stage NSCLC patients[5]. 30% to 40% of stage I patients will 

relapse[6]. Nearly 50% of patients with stage I/ II non-small cell lung cancer (NSCLC) will die 

from recurrent disease despite surgical resection[7].  Though the current standard of treatment for 

patients with stage I NSCLC remains surgery alone, those poorer prognosis patients might benefit 

from ACT. Previous clinical trials[8] have determined that adjuvant vinorelbine plus cisplatin 

based chemotherapy (ACT) can prolong disease-free and overall survival among patients with 

completely resected in a range of IA-IIIA NSCLC [4]. However, the survival benefit for patient 

with stage IB is not significant[5, 9]. Very few patients with stage IA NSCLC have been enrolled 

in cisplatin-based chemotherapy. Some even observed a potential detrimental effect of using the 

chemotherapy on stage IA patients[8].  

A challenge is the heterogeneity in recurrence rate among patients with the same lung 

cancer stage. This means that TNM staging incorrectly predicts the diseases recurrence and further 

suggest follow-up treatments. It’s crucial to isolate a reliable molecular signature in tumors that 

could be used to identify those who are likely to develop recurrent disease and would thus benefit 

from adjuvant chemotherapy[10]. It’s also assumed that a multiple gene signature might be 
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stronger than individual gene signature. Currently there is no consistent prognostic molecular 

marker for early stage cancer. Prognostic signatures in NSCLC with minimal overlap in their gene 

sets have been identified among previous studies[10-18]. A few of them have been subjects to 

independent validation[10, 12, 14, 16].  A recent study on identifying a 15-gene signature 

demonstrated its potential to identify high-risk patients among observation patients[1]. The testing 

results failed to predict the benefit from adjuvant chemotherapy as it proposed. Moreover, four of 

the fifteen genes in this signature are not always detectable (often called ‘Absent’ by Affymetrix 

MAS5 algorithm), indicating a less robust biomarker product.   

The ultimate goal of personalized medicine is to limit chemotherapy intervention to those 

who will derive maximum benefit from it. In this study, it is hypothesized that if prognostic value 

of gene signature is achievable, risk stratification can be predicted for untreated NSCLC patient at 

stage I-II. Thus adjuvant chemotherapy can be applied to those who have higher risk and then 5-

year survival of patient can be improved.   
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2.0  MATERIALS AND DATA 

The training data set was composed of sixty-two gene expression profiles generated with U133A 

oligonucleotide microarrays by the National Cancer Institute of Canada Clinical Trials Group 

JBR.10[5, 8]. These were fresh frozen tumor tissues from early stage NSCLC patients who did 

not undergo chemotherapy The microarray data were publically available at the National 

Center for Biotechnology Information Gene Expression Omnibus (GSE14814).  

Candidate signatures were tested in two independent microarray data sets, which were all 

from the Consortium with support and collaboration of NCI investigators to develop and validate 

gene expression signatures of lung adenocarcinomas. The two testing datasets were a set of 176 

samples from University of Michigan (UM) and a dataset of 83 samples from Dana-Farber Cancer 

Center (CAN_DF)[19]. 
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3.0  METHOD 

3.1 CLINICAL DATA AND DESCRIPTIVE ANALYSIS 

The event of interest was defined as relapse free survival (free of lung cancer recurrence within 5-

year follow-up), ie. survival time was calculated as t=Min (relapse-free follow-up time, 5). Death 

from other causes was simply described as right censoring. Events occurred after 5 years were 

considered as a non-event; any non-event with less-than 5-year follow up time was considered 

censored.  

3.2 DATA PROCESSING   

Arrays of JBR10 were processed at two different times. Thereby data used here were from the 

original author in which the batch effect was removed by distance-weighted discrimination 

method. For all of the datasets, raw microarray data were normalized by the RMA method and 

then transformed to log2 scale[20]. The Affymetrix MAS5 algorithm[21, 22] was used to evaluate 

the Absent/Present call for each probe set. 

3.3 PRELIMINARY GENE FILTERING  

From the entire 22283 probe sets, genes with low expression level and quality was filtered out. 

That is, we kept only probes with grade A annotation[23]  and with high mean (greater than 25th 
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percentile), and high variation (standard derivation greater than 25th percentile), and probe sets 

with more than 50% Present call among sample for future analysis. The expressions for each gene 

were then standardized to z-score (centered and scaled) after primary gene filtering.  

3.4 INDIVIDUAL FEATURE SELECTION  

In order to preselect survival-related genes, univariate analyses were performed on each probe set 

using both two-sample t-tests (equal variance) and Cox regression models. Specifically, in t-tests, 

patients with events occurring before or after 5 years were assigned into two groups. Thereby those 

censored before 5 years belonged to neither of the groups (9 patients were identified) and were 

excluded from the t-test analysis. Probes with significant association with survival (P<0.05) in 

either test were retained. Candidate genes were the top probes from either the results of Cox 

regression alone (main criterion) or from both Cox regression and t tests (alternative criterion).  

For the Cox + T-test approach, two-thirds of the genes were from Cox regression, and the 

remaining one-third are exclusively from t-test. These two gene selection methods were compared 

conditioning on the same number of genes used in the model.  

3.5 PREDICTIVE MODEL BUILDING 

Supervised Principal Component Regression Model (SuperPC) 

To develop a gene signature for prediction patient’s survival outcome, principle component 

analysis (PCA)[1] was applied to synthesize information from the candidate genes selected above 
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(Cox regression alone or Cox regression + T-test). The first six principal components (PC) with 

Eigen Values >1 were chosen as the inputs to Cox regression model. The risk scores derived from 

a Cox regression was a linear combination of the 6 PCs, which was then transformed into a linear 

combination of the individual genes. Taking the binary risk group as the covariate, univariate Cox 

regression analysis was conducted test the association between risk categories and survival 

outcome. Differences of survival distributions between two risk groups were studied by Kaplan-

Meier product limit methods and log rank tests.  

To determine the optimal number of probes for the signature, an iterative process was 

conducted to evaluate the model performance versus the number of probe sets included. 

Specifically, the process followed these steps: (1). Based on the gene rank from the Cox regression 

analysis, one probe each time was added to the candidate gene set (2). PCA of the gene set, and 

(3) Cox regression on the top 6 PCs. The regression model was then used to calculate the risk score 

for each patient. The Cox cutoff was predetermined to be the 50th percentile and 40th percentile of 

risk scores. (4) Calculate HR for high-risk group for each model and plot HR versus the number 

of genes. (5). Identify the area such that the model performance was good and also stable over a 

range of the number of genes.  

3.6 INTERNAL VALIDATION 

A multi-layer strategy of internal validation was conducted that includes bootstrapping and leave-

one-out cross validation (LOOCV). Specifically, using Bootstrap sampling 40 times, each 

Bootstrap sample was composed of 62 random draws with replacement from the original 62 

patients. Then for each of the 40 bootstrap samples, LOOCV was performed. As a result, there 
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were 62 LOOCV procedures within one Bootstrap. For one LOOCV, a SuperPC model was 

constructed for signature development based on gene expression of chosen 61 patients. Then the 

obtained cutoff was used to identify risk category of the left one patient by comparing to his/her 

risk score.  

With a pre-determined number of genes to be used in the signature, the validation process 

was followed the same way for each Bootstrap sample (Individual Feature Selection -> PCA -> 

Cox Regression -> risk score formula and cutoff determination). This algorithm was then applied 

to the one sample left out to determine its risk category.  

The accuracy for each gene signature was calculated to evaluate its performance on testing data. 

It was defined as the percentage of patients who had developed events within 5 years of follow-up 

who were predicted to be in the high-risk group plus the percentage of patients who were censored 

after 5 years and were predicted to be in the low-risk group. 

3.7 SIGNATURE VALIDATION ON INDEPENDENT MICROARRAY DATA SETS 

The 88-gene signature was tested for its performance on two independent published microarray 

data (CAN_DF, UM) described above. The risk scores were calculated according to the risk score 

formula obtained using the training data. When the risk scores were dichotomized at the values of 

40th percentile and 50th percentile of risk scores from the training set, the 88-gene signature 

classified samples into high and low risk groups.  
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4.0  RESULTS 

4.1 PATIENT DEMOGRAPHICS 

Histology subtype, cancer stage, age, sex and event rate were described in the table below for both 

training and testing datasets. Generally, distributions of those geographic information seem to be 

somewhat distinct in different cohorts. However, due to the fact that this study mainly focused on 

exploring the prognostic value from genomic data, the independence from clinical information 

would not be accessed here. We considered the event rate (41.9%) for training dataset as a guide 

for cutoff selection. Thus 40th percentile of risk score could be used as the cutoff for risk 

stratification. However, a 50th percentile of risk score would be more preferable if we want to 

increase sensitivity in detecting poor prognosis patients.  

Table 1 Demographic Feature of Patients in the Training and Validation Cohorts 

Clinical factor  JBR.10 
(N=62) 

UM 
(N=176) 

CAN_DF 
(N=83) 

Pathological 
subtype  
Adenocarcinoma 
Non-adenocarcinoma 

 
 
32(51.6%) 
30(49.4%) 

 
 
176(100%) 
0(0%) 

 
 
83(100%) 
0(0%) 

ACT 
Treated 
Untreated 

 
0(0%) 
62(100%) 

 
21(11.9%) 
155(88.1%) 

 
24(28.9%) 
59(71.1%) 

Stage  
I 
II 
III 

 
34(54.8%) 
28(45.2%) 
0(0%) 

 
115(65.3%) 
28(15.9%) 
33(18.8%) 

 
57(68.7%) 
26(31.3%) 
0(0%) 

Age  
>=65 
<65 

 
43(69.4%) 
19(30.6%) 

 
90(51.1%) 
86(48.9%) 

 
32(38.6%) 
51(61.4%) 

Sex  
Male 
Female 

 
44(71%) 
18(29%) 

 
98(55.7%) 
78(44.3%) 

 
46(55.4%) 
37(44.6%) 
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Starting from 22283 probes, as designed on the U133A Affymatrix platform, primary gene 

filtering kept 22277 with Grade A annotation. Then 14232 probes with mean and median greater 

than 25% of those from Grade A probes were retained. This was followed by filtering out probes 

with less than 50% Present calls, and 8910 probes were left. Using P=0.05 as the cutoff, 424 of the 

8910 probe sets were significantly associated with survival in 62 patients. Using the same cutoff, 

310 of 8190 were left from two-sample T test of 53 patients.  

4.2 DERIVATION OF THE GENE EXPRESSION SIGNATURE 

Figure 1, including the results of ranked probe sets from a number of 6 to 200, illustrated 

how HR changed at the two cutoff levels (40th percentile and 50th percentile) as increasing number 

of probes included in the risk score models.  

 

A homogeneous trend was found between two different cutoff levels. As depicted, the 

hazard ratios obtained fluctuate significantly when numbers of probes included were small. It 

reached a local maximum at around 50, and sustained until around 100. The hazard ratios then 

decreased after probes >120.  
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Figure 1 Hazard Ratio from Principal Component Regression Model through an Iterative Process 

 

It was our primary interests to include a number of probes that provide relative high hazard 

ratios under this iterative procedure. In addition, it was assumed that additional contribution from 

T tests would help to improve signature performance especially when a fixed number of probes 

from the Cox-only scenario did not perform well. Moreover, choosing appropriate number of 

probes was also a matter of convenient comparison among different levels of cutoffs. Based on the 

above considerations, 88 and 118 were chosen as fixed number of probes to be considered in the 

multi-variable model under both Cox-only scenario and Cox+T test scenario. Considering levels 

of cutoff for each candidate signature, we eventually have 8 models (2 X 2 X 2) constructed under 

training dataset.  

Under 4 models with different fixed number of probes included in the statistical model, 

both the 88-gene and the 118-gene signature were able to separate risk groups in combined stage 

I/II with a relative higher hazard ratio in a under Cox-only scenario in different cutoff level. (Table 

2: Under the Cox-Only scenario: 88-genes: 40th Percentile of RS: HR: 11.6, 95%CI: 2.74 to 49.18, 
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P<0.001; 50th Percentile of RS: HR: 11.5, 95%CI, 3.44 to 38.46, P<0.001; 118-genes: 40th 

Percentile of RS: HR: 7.19, 95%CI: 2.15 to 24.05, P<0.001; 50th Percentile of RS: HR: 8.16, 

95%CI, 2.8 to 23.75, P<0.001).  

Table 2 Cox Regression Results from Training Data, Risk Stratification Using Cutoff of 40th and 50th 

Percentile of Risk Score 

No. Probes 
Cutoff Level 

HR 95CI% Log-Rank Test 
P value 

88 
40th Percentile  
50th Percentile 

 
11.6 
11.5 

(2.74,49.18) 
(3.44,38.46) 

 
2.76e-05 
5.94e-07 

118 
40th Percentile  
50th Percentile 

 
7.19 
8.16 

(2.15,24.05) 
(2.8,23.75) 

 
1.88e-04 
4.95e-06 

 
 

            40th  percentile              50th  percentile  

  
Figure 2 Kaplan Meier Curves of Survival for High-Risk and Low-Risk Groups Assigned by 88-Gene 

Signature at Cutoffs of 40th and 50th percentile of Risk Score 
 

Results of the 118-gene signature and results under Cox plus T test scenario could be found in 

appendix (Table 7 and Table 11). As mentioned, we observed same pattern of signature 

performance, in terms of values of hazard ratio, under models with two different cutoffs.  
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4.3 INTERNAL VALIDATION  

A multi-layer internal validation was conducted onto the 88-gene /118-gene signatures with 2 

different cutoffs in order to compare signature performance of these four models. The mean 

accuracy values, averaged by 40 accuracy values in Bootstraps for one model, were compared 

using T tests. As a result, there were no significant differences between the accuracies of signature 

of different number of probes using either 40th or 50th Percentile of risk score as cutoffs (T test of 

88-Gene vs. 118-Gene: At 40th percentile: P=0.6; At 50th percentile: P=0.947), between the 

accuracies of same number of probes under different cutoffs (T test of 88-gene: At 40th Percentile 

of RS v.s. 50th Percentile of RS: P=0.062; T test of 118-gene: At 40th Percentile of RS v.s. 50th 

Percentile of RS: P=0.178;). It was also noticed that difference between the mean accuracy of 88-

gene at 50th and 40th percentile levels was at a marginal level.  

4.4 VALIDATION OF PROGNOSTIC SIGNATURE 

The 88-gene signature was tested for its significance in three independent published microarray 

data sets. The cutoffs from the 40th and 50th percentile of risk score obtained in training sets were 

-0.505 and -0.154, which we used to classify patients from CAN_DF, UM and MSK datasets into 

low- and high- risk groups. In detail, we tested on no treatment subjects and all treatment status 

subject in CAN_DF (59 vs. 83) and UM dataset (155 vs. 176), regardless of their cancer stages. 

The numbers of patients assigned to each group in each validation set were shown in Table 3.  

Results of 118-gene signature could be found in Appendix (Table 8).  
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Table 3 Risk Stratification in CAN_DF and UM datasets Using a 88-Gene Signature 

Test Cohort Event Rate 40th Percentile of Risk Score 50th Percentile of  Risk score 
  High-risk  Low-risk  High-risk  Low-risk  
CAN_DF (83) 29/83=34.9% 20 63 40 43 
CAN_DF (59) 21/59=35.6% 15 40 30 29 
UM (176) 75/176=42.6% 45 131 79 97 
UM (155) 65/155=41.9% 42 113 71 84 

 

4.4.1 CAN_DF 

Overall, there was evidence of validation in applying purposed gene signatures in CAN_DF 

datasets, as shown in Table 4, Table 9 and Table 12.  

 

The 88-gene signature (Table 4) under 50th percentile of risk scores as cutoff (N=59: HR: 

3.56, 95%CI: 1.38 to 9.19, P<0.05;N=83: HR: 1.94, 95%CI: 0.89 to 4.21, P<0.088;) performed 

better compared with that under 40th percentile of risk scores as cutoff (N=59: HR: 1.63, 95%CI: 

0.55 to 4.85, P=0.375;N=83: HR: 1.62, 95%CI: 0.62 to 4.27, P=0.324;), in terms of separating 

subjects into two risk groups with significantly different survival. Kaplan Meier Curves (Figure 

3) illustrated how survival in different groups varied over 5 years.  

Table 4 Cox Regression Results from CAN_DF Dataset, Risk Stratification by an 88-Gene Signature, 
Using 40th and 50th Percentile of Risk Scores as cutoffs from Training Data 

No. Probes 
Cutoff Level 

HR  95CI% Log Rank Test 
P value 

N=59 
40th  Percentile 
50th  Percentile 

 
1.63 
3.56 

 
(0.55,4.85) 
(1.38,9.19) 

 
0.375 
0.005 

N=83 
40th  Percentile 
50th  Percentile 

 
1.62 
1.94 

(0.62,4.27) 
(0.89,4.21) 

 
0.324 
0.088 
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                   40th Percentile                   50th Percentile 
N=59 
 

  
N=83 
 

  
Figure 3 Kaplan Meier Curves of Survival for High-Risk and Low-Risk Groups Assigned by 88-Gene 

Signature at Cutoff of 40th and 50th percentiles of Risk Score 

4.4.2 UM 

Significant results (Table 5) were obtained in UM datasets at both cutoffs from the 88-gene 

signature (At cutoffs of 40th percentile of risk scores: N=155: HR=1.73, 95%CI; 0.94 to 

3.18,P=0.07; N=176: HR=1.95, 95%CI; 1.07 to 3.55,P=0.0254; At cutoffs of 50th percentile of risk 

scores: N=155: HR=1.82, 95%CI; 1.09 to 3.03,P=0.0188; N=176: HR=2.09, 95%CI; 1.29 to 

3.40,P=0.00243). Similarly, it appeared to perform better in the model using cutoffs of 50th 

percentile of risk scores. Kaplan Meier Cures in Figure 4 could also estimate survival differences.  
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Table 5 Cox Regression Results from UM Dataset, Risk Stratification by an 88-Gene Signature, 
Using Cutoff of 40th and 50th Percentile of Risk Scores from Training Data 

No. Probes 
Cutoff Level 

HR  95CI% Log Rank Test 
P value 

N=155 
40th Percentile  
50th Percentile 

 
1.73 
1.82 

 
(0.94,3.18) 
(1.09,3.03) 

 
0.0745 
0.0188 

N=176 
40th Percentile 
50th Percentile 

 
1.95 
2.09 

 
(1.07,3.55) 
(1.29,3.40) 

 
0.0254 
0.00243 

 
 
 
 
 
 
 

          40th Percentile           50th Percentile 
N=155 
 

  
N=176 
 

  
Figure 4 Kaplan Meier Curves of Survival for High-Risk and Low-Risk groups assigned by 88-Gene 

Internal validation accessing modeling predict accuracy 
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Figure 5 Prognostic Signature Development and Validation Flowchart 

 

III. Feature Selection:  
1. Univariate Cox Regression (N=62) 
2. Two sample T tests (N=53) 

II. Preliminary Gene Filtering 
Include: Grade A annotation 
Exclude: low intensity 
/low variation/<50% PA Call 

 

IV. Predictive Modeling:  
SuperPC+Cox Regression 

 

VI. Independent validation:   
UM (N=176) 
CAN_DF (N=83) 

I. Data preprocessing: 
Normalization (RMA)  
Present-Absent (PA) Call (Mas5)  

V. Internal validation: 
40 Bootstrap+LOOCV  

 

JBR.10 Microarray study  
Observation group: N=62 

8190ps 

22283ps 

P<0.05 
T test: 310ps 
Cox: 424ps 

Signatures: 
88ps 
118ps 
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5.0  CONCLUSION AND DISCUSSION 

A work flow of gene signature development composed of preliminary gene filtering, individual 

gene selection, predictive model construction using supervised principle component analysis and 

further internal/external validation, has been constructed. These steps ensured that the selected 

probes are of high qualities, in terms of variation and detectability, and differential expression 

among subjects, and also in terms of their association with survival time. Using the gene expression 

of 62 patients from the JBR.10 trial, an 88-gene signature was developed and then both validated 

internally and in 2 independent datasets. A 118-gene signature also worked successfully in 

predicting subjects (from training and testing datasets) into two risk groups with significantly 

different survival.  Two cutoffs were considered, 50th percentile and 40th percentile of the risk 

scores. 40th percentile was considered because it is in line with the observed event rates in the 3 

datasets. 50th percentile was considered because of the clinical reasons that a false negative is more 

costly than a false positive. There was no significant difference among different four models under 

Cox-alone criteria in terms of LOOCV. Taking potential additional contributions from T test into 

consideration, we compared hazard ratios from models with features selected by either Cox 

regression alone or Cox regression + T test. There was no clear evidence that Cox+ T test criteria 

would improve signature performance.  

 This study focused on implementing Principal Component Analysis into Cox regression to 

stratify patients into risk groups using their gene expression from Affymetrix array data. Other 

dimension reduction techniques, such as Partial Least Square and Support Vector Machine, could 

be used. It was our interest to explore the potential benefit of using T test in individual 

feature selection. However, T-test had its limitations in dealing with censored data. This thesis  
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project provided a workflow for gene signature development for risk stratification of various 

types of cancers that could be applied to microarrays. Further study on the candidate gene 

signatures could take into account other clinical covariates, such as cancer histology type, stage, 

sex and age. It is also of interest to assess the predictive value of the candidate gene 

signatures, which can be tested for whether certain chemotherapy (e.g. Adjuvant cisplatin/

vinorelbine) could benefit early stage NSCLC patients, regarding their survival.  
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APPENDIX A: SUPPLEMENTAL RESULTS UNDER COX ALONE STRATEGY 

Table 6 coefficient of each probes of 88-gene signature under 50th percentile of risk score as cutoff 
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Table 7 Cox regression on risk groups defined by a 118 gene signature using cutoffs of 40th and 50th 
percentile of risk score as cutoffs (training) 

No. Probes 
Cutoff Level 

HR  95CI% Log-rank  

118-Gene Sig 
40th Percentile 
50th Percentile 

 
7.19 
8.16 

 
(2.15,24.05) 
(2.8,23.75) 

 
1.88e-04 
4.95e-06 

 
 
 
 
 
 

                   40th percentile                     50th percentile  

  
Figure 6 Kaplan Meier Curves of survival for high- and low-risk groups assigned by a 118-gene 

signature using cutoffs of 40th and 50th percentile of risk scores as cutoffs (training) 
 

 
 
 

 
 

Table 8 Risk Stratification in CAN_DF and UM datasets Using a 88-Gene Signature  

118 Event rate 40th Percentile of Risk Score 50th Percentile of Risk Score 
  High-risk  Low-risk  High-risk  Low-risk  
CAN_DF (83) 29/83=34.9% 20 63 35 48 
CAN_DF (59) 21/59=35.6% 14 45 27 32 
UM (176) 75/176=42.6% 42 134 71 105 
UM (155) 65/155=41.9% 37 118 64 91 

 
 
 
 
 

 21 



Table 9 Cox regression on risk groups defined by a 118 gene signature using cutoffs of 40th and 50th 
percentile of risk score as cutoffs (CAN_DF) 

No. Probes 
Cutoff Level 

HR  95CI% Log-rank 

N=59     
118-Gene Sig 
40th Percentile 
50th Percentile 

 
1.54 
2.75 

(0.52,4.58) 
(1.06,7.10) 

 
0.437 
0.029 

N=83    
118-Gene Sig 
40th Percentile 
50th Percentile 

 
1.62 
2.14 

(0.62,4.27) 
(0.94,4.86) 

 
0.324 
0.064 

 
 
 
 

        40th Percentile        50th Percentile 
N=59 
118-Gene Sig 

  
N=83 
118-Gene Sig 

  
Figure 7 Kaplan Meier Curves of survival for high- and low-risk groups assigned by a 118-gene 

signature using cutoffs of 40th and 50th percentile of risk scores as cutoffs (CAN_DF) 
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Table 10 Cox regression on risk groups defined by a 118 gene signature using cutoffs of 40th and 50th 
percentile of risk score as cutoffs (UM) 

No. Probes 
Cutoff Level 

HR  95CI% Log-rank 

N=155    
118-Gene Sig 
40th Percentile 
50th Percentile 

 
1.36 
1.87 

 
(0.74,2.5) 
(1.10,3.17) 

 
0.324 
0.018 

N=176    
118-Gene Sig 
40th Percentile  
50th Percentile 

 
1.53 
1.96 

 
(0.86,2.73) 
(1.19,3.22) 

 
0.146 
0.00675 

 
 
 
 

                      40th Percentile                       50th Percentile 
N=155 
118-Gene Sig 

  
N=176 
118-Gene Sig 

  
Figure 8 Kaplan Meier Curves of survival for high- and low-risk groups assigned by a 118-gene 

signature using cutoffs of 40th and 50th percentile of risk scores as cutoffs (UM) 
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APPENDIX B: TRAINING AND TESTING RESULTS UNDER COX+ T TEST 
STRATEGY 

Table 11 Cox regression results on risk groups from training data under Cox+ t test scenario, risk 
stratification using 40th and 50th percentile of risk score as cutoffs (training) 

No. Probes 
Cutoff Level 

HR  95CI% Log rank 

88-Gene Sig 
40th Percentile 
50th Percentile 

 
11.6 
8.47 

 
(2.74,49.18) 
(2.90,24.75) 

 
2.76e-05 
3.31e-06 

118-Gene Sig 
40th Percentile 
50th Percentile 

 
11.6 
8.16 

 
(2.74,49.18) 
(2.80,23.75) 

 
2.76e-05 
4.95e-06 

 
 

                   40th Percentile                    50th Percentile 
88 

  
118 

  
Figure 9 Kaplan Meier Curves of survival for high- and low-risk groups assigned by a 88-gene and 118-gene 

signature using cutoffs of 40th and 50th percentile of risk scores as cutoffs under Cox+T test strategy 
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Table 12 Cox regression results on risk groups from training data under Cox+ t test scenario, risk 
stratification using 40th and 50th percentile of risk score as cutoffs (CAN_DF) 

No. Probes 
Cutoff Level 

HR  95CI% Log 
rank  

N=59    
88-Gene Sig 
40th Percentile 
50th Percentile 

 
1.73 
2.27 

 
(0.58,5.14) 
(0.88,5.86) 

 
0.319 
0.0814 

118-Gene Sig 
40th Percentile 
50th Percentile 

 
1.69 
3.57 

 
(0.5,5.74) 
(1.2,10.64) 

 
0.393 
0.016 

N=83    
88-Gene Sig 
40th Percentile 
50th Percentile 

 
1.42 
1.76 

 
(0.54,3.74) 
(0.8,3.89) 

 
0.481 
0.159 

118-Gene Sig 
40th Percentile 
50th Percentile 

 
1.54 
1.89 

 
(0.53,4.44) 
(0.72,4.94) 

 
0.42 
0.124 
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40th Percentile 50th Percentile 
N=59 
88-Gene Sig 

118-Gene Sig 

N=83 
88-Gene Sig 

118-Gene Sig 

Figure 10 Kaplan Meier Curves of survival for high- and low-risk groups assigned by a 88-gene and 118-
gene signature using cutoffs of 40th and 50th percentile of risk scores as cutoffs under Cox+T test strategy 

(CAN_DF) 
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Table 13 Cox regression results on risk groups from training data under Cox+ t test scenario, risk 
stratification using 40th and 50th percentile of risk score as cutoffs (UM) 

No. Probes 
Cutoff Level 

HR  95CI% Log rank 

N=155    
88 
40th Percentile 
50th Percentile 

 
2.17 
2.14 

 
(1.2,3.92) 
(1.28,3.58) 

 
0.00853 
0.00302 

118 
40th Percentile 
50th Percentile 

 
1.98 
1.89 

 
(1.08,3.64) 
(1.14,3.15) 

 
0.0249 
0.013 

N=176    
88 
40th Percentile 
50th Percentile 

 
1.95 
2.09 

 
(1.07,3.55) 
(1.29,3.4) 

 
0.0254 
0.00243 

118 
40th Percentile 
50th Percentile 

 
1.53 
1.96 

 
(0.86,2.73) 
(1.19,3.22) 

 
0.146 
0.00675 
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40th Percentile 50th Percentile 
N=155 
88 

118 

N=176 
88 

118 

Figure 11 Kaplan Meier Curves of survival for high- and low-risk groups assigned by a 88-gene and 118-
gene signature using cutoffs of 40th and 50th percentile of risk scores as cutoffs under Cox+T test strategy 

(UM) 
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APPENDIX C: R CODE 

I. Data Preprocessing 
GSE14814.cli=read.csv(paste(dir1,"GSE14814_clinical.csv", sep=""), row.names=1,check.names=F) 
save(GSE14814.cli,file="GSE14814.cli.Rdata") 
GSE14814.exp=t(read.csv(paste(dir1,"GSE14814_expression.csv", sep=""), row.names=1,check.names=F)) 
save(GSE14814.exp,file="GSE14814.exp.Rdata") 
 
dim(GSE14814.cli)#133:44 
dim(GSE14814.exp)#22283 
 
clinical.jbr10_133=GSE14814.cli[,c("characteristics_ch1.1","characteristics_ch1.2","characteristics_ch1.3", 
                              "characteristics_ch1.4","characteristics_ch1.5","characteristics_ch1.6", 
                                   "characteristics_ch1.9","characteristics_ch1.10")] 
colnames(clinical.jbr10_133)=c("trt","stage","age","sex","Cause","Histo","time","status") 
 
#age 
clinical.jbr10_133[,"age"]=as.numeric(substr(clinical.jbr10_133[,"age"],6,9)) 
clinical.jbr10_133=cbind(clinical.jbr10_133,ageI=clinical.jbr10_133[,"age"]) 
clinical.jbr10_133[,"ageI"]=as.factor(ifelse(clinical.jbr10_133[,"ageI"]<65,0,1)) 
 
#time 
time=c(0) 
for (i in 1:133){ 
  time[i]=as.numeric(strsplit(as.character(clinical.jbr10_133[i,"time"]),":")[[1]][2]) 
} 
clinical.jbr10_133[,"time"]=time 
clinical.jbr10_133=cbind(clinical.jbr10_133,time.5y=time) 
clinical.jbr10_133[clinical.jbr10_133[,"time.5y"]>5,"time.5y"]=5 
 
#sex 
clinical.jbr10_133[,"sex"]=matrix(unlist(strsplit(as.vector(clinical.jbr10_133[,"sex"]), ":", fixed = TRUE)),ncol=2,byrow=TRUE)[,2] 
clinical.jbr10_133=cbind(clinical.jbr10_133,female=c(0)) 
clinical.jbr10_133[,"female"]=ifelse(clinical.jbr10_133[,"sex"]==" Female",1,0) 
clinical.jbr10_133[,"sex"]=as.factor(clinical.jbr10_133[,"sex"]) 
 
#status 
clinical.jbr10_133=cbind(clinical.jbr10_133,statusI=clinical.jbr10_133[,"status"]) 
clinical.jbr10_133[,"statusI"]=ifelse(clinical.jbr10_133[,"statusI"]=="DSS status: Alive",0,1) 
save(clinical.jbr10_133,file="clinical.jbr10_133.Rdata") 
 
summary(clinical.jbr10_133[,c("sex","stage","status","Histo","Cause","time","time.5y","age","ageI")]) 
 
#descriptive analysis 
#if no treatment patients 
clinical.jbr.untrt=subset(clinical.jbr10_133,clinical.jbr10_133[,"trt"]=="Post Surgical Treatment: OBS")#62 
dim(clinical.jbr.untrt)#62:12 
save(clinical.jbr.untrt,file="clinical.jbr.untrt.Rdata") 
 
summary(clinical.jbr.untrt[,c("sex","stage","status","Histo","Cause","time","time.5y","age","ageI")]) 
evet_rate.jbr10=nrow(subset(clinical.jbr.untrt,!(clinical.jbr.untrt[,"status"]=="DSS status: Alive")))/nrow(clinical.jbr.untrt) 
GSE14814.exp.untrt=GSE14814.exp[rownames(clinical.jbr.untrt),] 
save(GSE14814.exp.untrt,file="GSE14814.exp.untrt.Rdata") 
 

II. Preliminary Gene Filtering  
#grade A 
aa=read.delim("export.tsv", header = TRUE) 
gradeA.probe=aa[[1]]#gene list in Grade A###22277 
 
###  mean 
Mean.62=apply(jbr10.untrt.exp.gradeA,2,mean) 
quantile(Mean.62,na.rm = TRUE)[2]#4.84 
S1=names(Mean.62[Mean.62>quantile(Mean.62,na.rm = TRUE)[2]])#16723 
 
### standard deriation 
Sd.62=apply(jbr10.untrt.exp.gradeA,2,sd) 
quantile(Sd.62,na.rm=TRUE)[2]#0.262 
S2=names(Sd.62[Sd.62>quantile(Sd.62,na.rm=TRUE)[2]])#16723 
 
name1=intersect(S1,S2)#14232 
sum(is.na(name1))#1 
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name2=intersect(name1,gradeA.probe) 
sum(is.na(name2))#0 
S3exp=GSE14814.exp.untrt[,name2]#62:14231 
 
####################pacall>50%################### 
load("pacall133.Rdata")#pacall.exprs:22283:133 
 
#dealing with name 
colnames(pacall.exprs)[1:43]=substr(colnames(pacall.exprs)[1:43],1,10) 
colnames(pacall.exprs)[44:133]=substr(colnames(pacall.exprs)[44:133],1,9) 
 
PaCall62=pacall.exprs[colnames(S3exp),rownames(S3exp)]#14231:62 
 
prop62=c(rep(0,nrow(PaCall62))) 
for (i in 1:nrow(PaCall62)){ 
prop62[i]=sum(PaCall62[i,]=="P")/ncol(PaCall62) 
} 
names(prop62)=rownames(PaCall62) 
 
#>50% 
Pcut=0.5 
sum(prop62>=Pcut)#8190 
S4exp=S3exp[,names(prop62[prop62>=Pcut])]#62:8910 
save(S4exp,file="S4exp.Rdata") 

III. Feature selection  
time.jbr=clinical.jbr.untrt[,"time.5y"] 
names(time.jbr)=rownames(clinical.jbr.untrt) 
event.jbr=clinical.jbr.untrt[,"statusI"] 
names(event.jbr)=rownames(clinical.jbr.untrt) 
##univariate Cox regression 
Cox_filter=function(data){ 
  summary(coxph(Surv(time.jbr,event.jbr)~ data))$coef[,"Pr(>|z|)"] 
} 
cox_probe=apply(data, 2, Cox_filter) 
names(cox_probe)=colnames(data) 
save(cox_probe,file="cox_probe.Rdata") 
  
 
o.cox.p=cox_probe[order(cox_probe),drop = FALSE] 
o.cox.na=names(o.cox.p) 
opv.fdr.unicox=data.frame(gene=o.cox.na, cox.pv=o.cox.p) 
save(uni.cox,file="uni.cox.Rdata") 
load("uni.cox.Rdata") 
 
#### t-test--only 53 
##I.(2-sample, equal variance) 
sub1=subset(clinical.jbr.untrt,clinical.jbr.untrt[,"time.5y"]<5,select=c("time.5y","statusI")) 
sub2=subset(sub1,sub1[,"statusI"]==0) 
exclude=rownames(sub2) 
save(exclude,file="exclude.Rdata") 
load("exclude.Rdata") 
 
eventI=event.jbr 
eventI=subset(eventI,!names(eventI)%in%exclude) 
 
event0=eventI[eventI==0]#27 
event1=eventI[eventI==1]#26 
 
#test on equal variance 
var.test(data[names(event0),],data[names(event1),]) 
#con: equal vairance 
 
ttest.P=c(0) 
for (i in 1:ncol(data)){ 
  ttest=t.test(data[names(event0),i], data[names(event1),i], 
               alternative =c("two.sided", "less", "greater"), 
               mu = 0, paired = FALSE, var.equal = TRUE, 
               conf.level = 0.95) 
  ttest.P[i]=ttest$p.value 
} 
names(ttest.P)=colnames(data) 
save(ttest.P,file="ttest.P.Rdata") 
 
fdr.ttest.P=subset(ttest.P,ttest.P<0.01)#48 
fdr.ttest.P2=subset(ttest.P,ttest.P<0.05)#310 
 
opv.fdr.unicox=fdr.unicox[order(fdr.unicox[,"pv"]),drop=FALSE] 
o.ttestP=ttest.P[order(ttest.P),drop = FALSE] 
save(o.ttestP,file="o.ttestP.Rdata") 
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sig.list_coxttest=function(ncox,nttest) 
{ 
  list_u=union(cox.Na[1:ncox],ttest.Na[1:nttest]) 
  list_ucox=setdiff(cox.Na[1:ncox],ttest.Na[1:nttest]) 
  list_ut=setdiff(ttest.Na[1:nttest],cox.Na[1:ncox]) 
  list_inter=intersect(ttest.Na[1:nttest],cox.Na[1:ncox]) 
  return(list(list_u,list_ucox,list_ut,list_inter)) 
} 
 
### T test for extreme observation  
## rank survival time(concerning the original), pick top10 from the top/botton 
## 
time.ori=clinical.jbr.untrt[,"time"] 
names(time.ori)=rownames(clinical.jbr.untrt) 
time.order=names(time.ori[order(time.ori)]) 
grpS=time.order[1:10] 
grpL=time.order[53:62] 
var.test(data[grpS,],data[grpL,]) 
 
# ttest in extreme 
extr.ttest=c(0) 
for (i in 1:ncol(data)){ 
  extr.ttest[i]=t.test(data[grpS,i], data[grpL,i], 
               alternative =c("two.sided", "less", "greater"), 
               mu = 0, paired = FALSE, var.equal = TRUE, 
               conf.level = 0.95)$p.value 
} 
names(extr.ttest)=colnames(data) 
 
rank_compare=function(n,data,cox_probe,ttest.P){ 
  pv=data.frame(gene=colnames(data),coxP=cox_probe,ttest.P=ttest.P) 
  sort1=pv[order(pv$coxP),] 
  S200_cox=cbind(sort1[1:n,],rank.C=c(1:n)) 
  sort2=S200_cox[order(S200_cox$ttest.P),] 
  S200_ttest=cbind(sort2,rank.T=c(1:n)) 
  plot(S200_ttest$rank.C,S200_ttest$rank.T,xlab="Ranks from Cox Model", 
       ylab="Ranks from T Test",main="Rank Comparisons") 
} 
save(rank_compare,file="rank_compare.Rdata") 
 
#2. cox and ttest in extreme observation  
plot_10=rank_compare(10,data,cox_probe,extr.ttest) 
plot_100=rank_compare(100,data,cox_probe,extr.ttest) 
plot_500=rank_compare(500,data,cox_probe,extr.ttest) 
 
#1.cox and ttest 
plot_10=rank_compare(10,data,cox_probe,ttest.P) 
plot_100=rank_compare(100,data,cox_probe,ttest.P) 
plot_500=rank_compare(500,data,cox_probe,ttest.P) 

IV. Supervised Principal Component-Cox Regression Model 
findcoeff.new=function(x,list,time,event,nPCA,P){ 
  ##I. x manipulate into a n by p matrix, where n is #. of patients, P is #. of probes 
  ##1. x is firstly Z score transformed 
  X.S=scale(x,T,T) 
  ##2. gene expression of gene list  
  X.sig=X.S[,list] 
  ## 
  #II. PCA  
  pca=prcomp(X.sig,retx=T, center=T, scale=T) 
  eigen=(pca$sdev^2)#find components that are >1 
  #at this stage we choose 6 
  #we can choose non-trivial components 
  ### 
  #nCom=6 
  #PC=list(c(0)) 
  #for (i in 1:nCom){ 
  #PC[i]=pca$x[,i] 
  #} 
  #### 
  pc1=pca$x[,1] 
  pc2=pca$x[,2] 
  pc3=pca$x[,3] 
  pc4=pca$x[,4] 
  pc5=pca$x[,5] 
  pc6=pca$x[,6] 
  #calculate coefficient from cox regression 
  pcr=coxph(Surv(time,event)~pc1+pc2+pc3+pc4+pc5+pc6) 
  coeff.pc=pcr[[1]] 
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  ### 
  loading.pc=pca$rotation[,1:nPCA] 
  ##risk score derived from PCA 
  RS.pca=c(0) 
  for (i in 1:nrow(X.sig)){ 
    RS.pca[i]= coeff.pc[1]*X.sig[i,]%*%loading.pc[,'PC1'] 
    + coeff.pc[2]*X.sig[i,]%*%loading.pc[,'PC2']  
    + coeff.pc[3]*X.sig[i,]%*%loading.pc[,'PC3'] 
    + coeff.pc[4]*X.sig[i,]%*%loading.pc[,'PC4'] 
    + coeff.pc[5]*X.sig[i,]%*%loading.pc[,'PC5'] 
    + coeff.pc[6]*X.sig[i,]%*%loading.pc[,'PC6'] 
  } 
  names(RS.pca)=rownames(X.sig) 
  cutoff=median(RS.pca) 
  grp=ifelse(RS.pca>=cutoff, 1, 0) 
  ### survival for high-low risk group 
  surv=coxph(Surv(time,event)~grp) 
  plot(survfit(Surv(time,event)~grp),xlab="Time(Years)", ylab="Disease Specific Survival(%)",col=c("black","red")) 
  title("Kaplan-Meier Curves") 
  legend(0.3,0.3,c("Low risk", "High Risk"),c("black","red")) 
  ### coeff for every probe 
  coeff.probe=c(0) 
  for (i in 1:nrow(loading.pc)){ 
    coeff.probe[i]=coeff.pc[1]*loading.pc[i,'PC1'] 
    +coeff.pc[2]*loading.pc[i,'PC2'] 
    +coeff.pc[3]*loading.pc[i,'PC3'] 
    +coeff.pc[4]*loading.pc[i,'PC4'] 
    +coeff.pc[5]*loading.pc[i,'PC5'] 
    +coeff.pc[6]*loading.pc[i,'PC6'] 
  } 
  names(coeff.probe)=rownames(loading.pc) 
   
  RS.train=c(0) 
  for (i in 1 : nrow(X.sig)) 
  { 
    RS.train[i]=X.sig[i,] %*% coeff.probe 
  } 
  
  names(RS.train)=rownames(X.sig) 
  hist(RS.train) 
  cut.train=quantile(RS.train,P) 
  grp.train=ifelse(RS.train>=cut.train, 1, 0) 
  cox.train=coxph(Surv(time,event)~grp.train) 
  logrank.train=survdiff(Surv(time,event) ~ grp.train) 
  plot.train=plot(survfit(Surv(time,event)~grp.train),xlab="Time(Years)", ylab="Disease Specific Survival(%)",col=c("black","red")) 
  title("Kaplan-Meier Curves") 
  legend(0.3,0.3,c("Low risk", "High Risk"),c("black","red")) 
  return(list(grp.train,coeff.probe,cut.train,cox.train,logrank.train)) 
} 
 

V. Internal Validation (for cox alone) 
LeaveOneOut=function(x){ 
  # x is n x p  
  #I. subsamples 
  s.exp=scale(x,T,T) 
  ## II. generate subset sample list for loocv (62 subsamples with 61 patients for each) 
  in.list=matrix(c(0),nrow(s.exp),nrow(s.exp)-1)#62 x 61 
  for (i in 1:nrow(s.exp)){ 
    in.list[i,]=rownames(s.exp)[-i] 
  } 
  rownames(in.list)=c(1:nrow(s.exp)) 
  rownames(in.list)=paste("cv",rownames(in.list),sep="") 
   
  out.list=as.matrix(c(rownames(s.exp)),npatient,1) 
  rownames(out.list)=c(1:nrow(s.exp)) 
  rownames(out.list)=paste("cv",rownames(out.list),sep="") 
   
  ## III. get the gene expression data/survival data for each subset(data frame as a whole) 
  in.exp=data.frame(matrix(c(0),ncol(in.list),ncol(s.exp)))#62 matrix:61 X P 
  out.exp=matrix(c(0),nrow(s.exp),ncol(s.exp))#62 x p 
  for (i in 1:nrow(s.exp)){ 
    in.exp[[i]]=s.exp[in.list[i,],] 
    colnames(in.exp[[i]])=colnames(s.exp) 
    out.exp[i,]=s.exp[out.list[i,],] 
    rownames(out.exp)=as.vector(out.list) 
    colnames(out.exp)=colnames(s.exp) 
  } 
   
  return(list(in.exp,out.exp)) 
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} 
 
#try on the 1st boot--62 loocv, calculate accuracy  
boot_loocv_acc=function(boot.exp.i,nmatrix,npatient,oriProbe,nProbe,exlude){ 
  #for one boot 
  loocv1.exprs=LeaveOneOut(boot.exp.i)  
  loocv1.exp.61=loocv1.exprs[[1]]#data frame, 62 matrices, each 61 X 8910 
  loocv1.exp.1=loocv1.exprs[[2]]#matrix 
   
  time.b1=list(c(0))#62 list, each is a 61 length vector 
  event.b1=list(c(0)) 
  coxP.b1=list(c(0)) 
   
  for(i in 1:nmatrix){ 
    time.b1[[i]]=time.jbr[rownames(loocv1.exp.61[[i]])] 
    event.b1[[i]]=event.jbr[rownames(loocv1.exp.61[[i]])] 
  } 
## 
coxP.b1=list(list()) 
for(i in 1:nmatrix){ 
  #coxP.b1[[i]]=apply(loocv1.exp.61[[i]],2,Cox_filter,time=time.b1[[i]],event=event.b1[[i]]) 
  coxP.b1[[i]]=apply(loocv1.exp.61[[i]],2,function(x) summary(coxph(Surv(time.b1[[i]],event.b1[[i]])~x))$coef[,"Pr(>|z|)"]) 
  cat("i=") 
  cat(i) 
  cat("\n") 
} 
  ### 
  coxP.b1<- matrix(unlist(coxP.b1), nrow=nmatrix,ncol=oriProbe, byrow = TRUE) 
  rownames(coxP.b1)=c(1:nmatrix) 
  rownames(coxP.b1)=paste("Loocv1_",rownames(coxP.b1),sep="") 
  colnames(coxP.b1)=colnames(data) 
   
  ### 
  O.coxP.b1=list(c(0)) 
  lista88.b1=list(c(0)) 
  for(i in 1:nmatrix){ 
    O.coxP.b1[[i]]=coxP.b1[i,][order(coxP.b1[i,]),drop = FALSE] 
    #pick top88 
    lista88.b1[[i]]=O.coxP.b1[[i]][1:nProbe] 
  } 
   
  #SuperPC 
  grp_b1_loocv=list(c(0)) 
  for(i in 1:nmatrix){ 
    grp_b1_loocv[[i]]=findcoeff.new(loocv1.exp.61[[i]],names(lista88.b1[[i]]),time.b1[[i]],event.b1[[i]],nPCA=6,P=0.5)  
    #output:(list(grp.train,coeff.probe,cut.train,surv.train)) 
  } 
   
  # risk stritification on testing # 1st cv 
  loocv1.testexp=matrix(c(0),nmatrix,nProbe) 
  loocv1.testRS=matrix(c(0),nmatrix,1) 
  loocv1.testgrp=c(0) 
  for (i in 1:nmatrix){ 
    loocv1.testexp[i,]=loocv1.exp.1[i,names(lista88.b1[[i]])] 
    loocv1.testRS[i,]=matrix(c(loocv1.testexp[i,]),1,nProbe)%*%as.matrix(c(grp_b1_loocv[[i]][[2]]),nProbe,1) 
    rownames(loocv1.testRS)=rownames(loocv1.exp.1) 
    loocv1.testgrp[i]=ifelse(loocv1.testRS[i,]>=grp_b1_loocv[[i]][[3]],1,0) 
  } 
  names(loocv1.testgrp)=rownames(loocv1.exp.1) 
   
  # accuracy  
  event.loocv1=event.jbr[names(loocv1.testgrp)] 
  loocv1.test_hit=c(0) 
  irre=c(0) 
  for(i in 1:nmatrix){ 
    if (names(loocv1.testgrp)[i] %in% exclude){ 
      loocv1.test_hit[i]=="NA" 
      irre[i]=1 
    } 
    else{ 
      loocv1.test_hit[i]=ifelse(loocv1.testgrp[i]==event.loocv1[i],1,0) 
      irre[i]=0 
    } 
  } 
#names(loocv1.test_hit)=c(1:nrow(exp.sig.ori)) 
#names(loocv1.test_hit)=paste("cv",names(loocv1.test_hit),sep="") 
  #names(loocv1.test_hit)=names(loocv1.testgrp) 
  loocv1_accu=sum(loocv1.test_hit,na.rm = T)/(nmatrix-sum(irre)) 
  return(loocv1_accu) 
} 
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acc=c(0) 
nboot=40 
for (j in 1:nboot){ 
  acc[j]=boot_loocv_acc(boot_62exp[[j]],oriProbe=8190,nmatrix=62,npatient=61,nProbe=88,exlude)   
  cat("j=") 
  cat(j) 
  cat("\n") 
} 
 
#optimization concern for cox alone  
#select top6 to top200 probe in cox test to find the one generate most largest HR 
#at 0.5 
hr.supPC50=c(0) 
nPCA=6 
for(i in nPCA:200){ 
  hr.supPC50[i]=exp(findcoeff.new(GSE14814.exp.untrt,cox.Na[1:i],time.jbr,event.jbr,nPCA,0.5)[[4]]$coef) 
} 
save(hr.supPC50,file="hr.supPC50.Rdata") 
load("hr.supPC50.Rdata") 
plot(c(6:200),hr.supPC50[6:200],xlab="#.of probes",ylab="Hazard Ratio", main="Probe Sets Optimization Using HR") 
 
#at 0.4 
hr.supPC40=c(0) 
nPCA=6 
for(i in nPCA:200){ 
  hr.supPC40[i]=exp(findcoeff.new(GSE14814.exp.untrt,cox.Na[1:i],time.jbr,event.jbr,nPCA,0.4)[[4]]$coef) 
} 
save(hr.supPC40,file="hr.supPC40.Rdata") 
load("hr.supPC40.Rdata") 
plot(c(6:200),hr.supPC40[6:200],xlab="#.of probes",ylab="Hazard Ratio", main="Probe Sets Optimization Using HR") 
 
##**************************88a 
rs.lista88_40=findcoeff.new(GSE14814.exp.untrt,lista88,time.jbr,event.jbr,nPCA=6,0.4) 
rs.lista88_50=findcoeff.new(GSE14814.exp.untrt,lista88,time.jbr,event.jbr,nPCA=6,0.5) 
 
##**************************88b 
rs.listb88_40=findcoeff.new(GSE14814.exp.untrt,listb88[[1]],time.jbr,event.jbr,nPCA=6,0.4) 
rs.listb88_50=findcoeff.new(GSE14814.exp.untrt,listb88[[1]],time.jbr,event.jbr,nPCA=6,0.5) 
 
##**************************118a 
rs.lista118_40=findcoeff.new(GSE14814.exp.untrt,lista118,time.jbr,event.jbr,nPCA=6,0.4) 
rs.lista118_50=findcoeff.new(GSE14814.exp.untrt,lista118,time.jbr,event.jbr,nPCA=6,0.5) 
 
##**************************118b 
rs.listb118_40=findcoeff.new(GSE14814.exp.untrt,listb118[[1]],time.jbr,event.jbr,nPCA=6,0.4) 
rs.listb118_50=findcoeff.new(GSE14814.exp.untrt,listb118[[1]],time.jbr,event.jbr,nPCA=6,0.5) 
 

VI. External Validation  
test.RS=function(test,list,time.t,event.t,coeff.probe,cut.train) 
{ 
  ##test:n x p 
  test.S=scale(test,T,T) 
  test.sig=test.S[,list] 
  RS.test=c(0) 
  for (i in 1 : nrow(test.sig)) 
  { 
    RS.test[i]=test.sig[i,] %*% coeff.probe 
  } 
  names(RS.test)=rownames(test.sig) 
  hist(RS.test) 
  grp.test=ifelse(RS.test>=cut.train,1,0) 
  cox.test=coxph(Surv(time.t,event.t)~grp.test) 
  logrank.test=survdiff(Surv(time.t,event.t) ~ grp.test) 
  plot.test=plot(survfit(Surv(time.t,event.t)~grp.test),xlab="Time(Years)", ylab="Disease Specific Survival(%)",col=c("black","red")) 
  title("Kaplan-Meier Curves") 
  legend(0.35,0.38,c("Low risk", "High Risk"),c("black","red")) 
  return(list(RS.test,grp.test,cox.test,logrank.test)) 
} 
 
###CAN_DF 
CAN_DF83=t(read.csv(paste(dir1,"data.CAN_DF(83).csv", sep=""), row.names=1,check.names=F)) 
save(CAN_DF83,file="CAN_DF83.Rdata")#83:22296 
load("CAN_DF83.Rdata") 
CAN_DF83_2=CAN_DF83 
#dds time(censored) 
CAN_DF83_2[as.numeric(CAN_DF83_2[,"overall_survival_months"])>60,"death"]="Alive" 
CAN_DF83_2[as.numeric(CAN_DF83_2[,"overall_survival_months"])>60,"overall_survival_months"]="60" 
CAN_DF83_2[,"death"]=ifelse(CAN_DF83_2[,"death"]=="Alive", 0,1) 
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CAN_DF83_2[,"had_adjuvant_chemo"]=ifelse(CAN_DF83_2[,"had_adjuvant_chemo"]=="FALSE",0,1) 
CAN_DF.sub=CAN_DF83_2[,c("histology","had_adjuvant_chemo","death","overall_survival_months", 
                         "age","gender","stage.title")] 
rownames(CAN_DF.sub)=rownames(CAN_DF83_2) 
ageI=ifelse(as.numeric(CAN_DF.sub[,"age"])>65,1,0)#one age is missing  
names(ageI)=rownames(CAN_DF.sub) 
CAN_DF.sub=cbind(CAN_DF.sub,ageI) 
 
#use the whole dataset(trt +utrt) 
CAN_DF.exp.w=apply(CAN_DF83_2[,14:22296],2,as.numeric)#83:22283 
rownames(CAN_DF.exp.w)=rownames(CAN_DF83_2) 
 
time.CAN_DF.w=as.numeric(CAN_DF.sub[,4])/12 
names(time.CAN_DF.w)=rownames(CAN_DF.sub) 
event.CAN_DF.w=as.numeric(CAN_DF.sub[,3]) 
names(event.CAN_DF.w)=rownames(CAN_DF.sub) 
 
###cox 
CAN83.a88_40=test.RS(CAN_DF.exp.w,lista88,time.CAN_DF.w,event.CAN_DF.w,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
CAN83.a88_50=test.RS(CAN_DF.exp.w,lista88,time.CAN_DF.w,event.CAN_DF.w,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
CAN83.a118_40=test.RS(CAN_DF.exp.w,lista118,time.CAN_DF.w,event.CAN_DF.w,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
CAN83.a118_50=test.RS(CAN_DF.exp.w,lista118,time.CAN_DF.w,event.CAN_DF.w,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
###cox+t test 
CAN83.b88_40=test.RS(CAN_DF.exp.w,listb88[[1]],time.CAN_DF.w,event.CAN_DF.w,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
CAN83.b88_50=test.RS(CAN_DF.exp.w,listb88[[1]],time.CAN_DF.w,event.CAN_DF.w,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
CAN83.b118_50=test.RS(CAN_DF.exp.w,listb118[[1]],time.CAN_DF.w,event.CAN_DF.w,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
CAN83.b118_40=test.RS(CAN_DF.exp.w,listb118[[1]],time.CAN_DF.w,event.CAN_DF.w,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
 
#use only urt 
CAN_DF.cli.untrt=subset(CAN_DF.sub,CAN_DF.sub[,2]=="0")#59 
CAN_DF.exp.untrt=apply(CAN_DF83_2[rownames(CAN_DF.cli.untrt),14:22296],2,as.numeric)#41:22283 
rownames(CAN_DF.exp.untrt)=rownames(CAN_DF.cli.untrt) 
 
time.CAN_DF.untrt=as.numeric(CAN_DF.cli.untrt[,4])/12 
names(time.CAN_DF.untrt)=rownames(CAN_DF.cli.untrt) 
event.CAN_DF.untrt=as.numeric(CAN_DF.cli.untrt[,3]) 
names(event.CAN_DF.untrt)=rownames(CAN_DF.cli.untrt) 
 
CAN59.a88_40=test.RS(CAN_DF.exp.untrt,lista88,time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
CAN59.a88_50=test.RS(CAN_DF.exp.untrt,lista88,time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
CAN59.a118_40=test.RS(CAN_DF.exp.untrt,lista118,time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
CAN59.a118_50=test.RS(CAN_DF.exp.untrt,lista118,time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
 
CAN59.b88_40=test.RS(CAN_DF.exp.untrt,listb88[[1]],time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
CAN59.b88_50=test.RS(CAN_DF.exp.untrt,listb88[[1]],time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
CAN59.b118_40=test.RS(CAN_DF.exp.untrt,listb118[[1]],time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
CAN59.b118_50=test.RS(CAN_DF.exp.untrt,listb118[[1]],time.CAN_DF.untrt,event.CAN_DF.untrt,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
 
#UM 
#UM176=t(read.csv(paste(dir1,"data.UM(176).csv", sep=""), row.names=1,check.names=F)) 
#save(UM176,file="UM176.Rdata")#176:22296 
load("UM176.Rdata") 
#UM176[1:4,1:13] 
UM176_2=UM176 
 
UM176_2[as.numeric(UM176_2[,"overall_survival_months"])>60,"death"]="Alive" 
UM176_2[as.numeric(UM176_2[,"overall_survival_months"])>60,"overall_survival_months"]="60" 
 
UM176_2[,"death"]=ifelse(UM176_2[,"death"]=="Alive", 0,1) 
UM176_2[,"had_adjuvant_chemo"]=ifelse(UM176_2[,"had_adjuvant_chemo"]=="FALSE", 0,1) 
 
UM176.sub=UM176_2[,c("histology","had_adjuvant_chemo","death","overall_survival_months","age","gender","stage.title")] 
rownames(UM176.sub)=rownames(UM176_2) 
 
###using the whole sample 
#um 
save(UM176.sub,file="UM176.sub.Rdata") 
load("UM176.sub.Rdata") 
 
UM176.sub[1:4,] 
time.um.w=as.numeric(UM176.sub[,"overall_survival_months"])/12 
names(time.um.w)=rownames(UM176.sub) 
event.um.w=as.numeric(UM176.sub[,"death"]) 
names(event.um.w)=rownames(UM176.sub) 
 
UM.exp.w=apply(UM176[,14:22296],2,as.numeric) 
rownames(UM.exp.w)=rownames(UM176) 
 
UM176.a88_40=test.RS(UM.exp.w,lista88,time.um.w,event.um.w,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
UM176.a88_50=test.RS(UM.exp.w,lista88,time.um.w,event.um.w,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
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UM176.a118_40=test.RS(UM.exp.w,lista118,time.um.w,event.um.w,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
UM176.a118_50=test.RS(UM.exp.w,lista118,time.um.w,event.um.w,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
 
UM176.b88_40=test.RS(UM.exp.w,listb88[[1]],time.um.w,event.um.w,rs.listb88_40[[2]],rs.listb88_40[[3]]) 
UM176.b88_50=test.RS(UM.exp.w,listb88[[1]],time.um.w,event.um.w,rs.listb88_50[[2]],rs.listb88_50[[3]]) 
UM176.b118_40=test.RS(UM.exp.w,listb118[[1]],time.um.w,event.um.w,rs.listb118_40[[2]],rs.listb118_40[[3]]) 
UM176.b118_50=test.RS(UM.exp.w,listb118[[1]],time.um.w,event.um.w,rs.listb118_50[[2]],rs.listb118_50[[3]]) 
 
##using only untrt 
UM.cli.nochemo=subset(UM176.sub,as.numeric(UM176.sub[,2])==0)#155:7 
time.um.untrt=as.numeric(UM.cli.nochemo[,"overall_survival_months"])/12 
names(time.um.untrt)=rownames(UM.cli.nochemo) 
event.um.untrt=as.numeric(UM.cli.nochemo[,"death"]) 
names(event.um.untrt)=rownames(UM.cli.nochemo) 
UM.exp.untrt=apply(UM176[rownames(UM.cli.nochemo),14:22296],2,as.numeric) 
rownames(UM.exp.untrt)=rownames(UM.cli.nochemo) 
 
UM155.a88_40=test.RS(UM.exp.untrt,lista88,time.um.untrt,event.um.untrt,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
UM155.a88_50=test.RS(UM.exp.untrt,lista88,time.um.untrt,event.um.untrt,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
UM155.a118_40=test.RS(UM.exp.untrt,lista118,time.um.untrt,event.um.untrt,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
UM155.a118_50=test.RS(UM.exp.untrt,lista118,time.um.untrt,event.um.untrt,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
 
UM155.b88_40=test.RS(UM.exp.untrt,listb88[[1]],time.um.untrt,event.um.untrt,rs.listb88_40[[2]],rs.listb88_40[[3]]) 
UM155.b88_50=test.RS(UM.exp.untrt,listb88[[1]],time.um.untrt,event.um.untrt,rs.listb88_50[[2]],rs.listb88_50[[3]]) 
UM155.b118_40=test.RS(UM.exp.untrt,listb118[[1]],time.um.untrt,event.um.untrt,rs.listb118_40[[2]],rs.listb118_40[[3]]) 
UM155.b118_50=test.RS(UM.exp.untrt,listb118[[1]],time.um.untrt,event.um.untrt,rs.listb118_50[[2]],rs.listb118_50[[3]]) 
 
####MSK###104 
MSK104=t(read.csv(paste(dir1,"data.MSK(104).csv", sep=""), row.names=1,check.names=F)) 
save(MSK104,file="MSK104.Rdata") 
load("MSK104.Rdata") 
MSK104_2=MSK104 
MSK104_2[as.numeric(MSK104_2[,"overall_survival_months"])>60,"death"]="Alive" 
MSK104_2[as.numeric(MSK104_2[,"overall_survival_months"])>60,"overall_survival_months"]="60" 
MSK104_2[,"death"]=ifelse(MSK104_2[,"death"]=="Alive", 0,1) 
MSK104_2[,"had_adjuvant_chemo"]=ifelse(MSK104_2[,"had_adjuvant_chemo"]=="FALSE",0,1) 
 
MSK104_2[,"stage.title"] 
MSK104.sub=MSK104_2[,c("histology","had_adjuvant_chemo","death","overall_survival_months","age","gender","stage.title")] 
rownames(MSK104.sub)=rownames(MSK104_2) 
### 
#use the whole datset 
MSK.exp.w=apply(MSK104_2[,14:22296],2,as.numeric)#104:22283 
rownames(MSK.exp.w)=rownames(MSK104.sub) 
time.MSK.w=as.numeric(MSK104.sub[,"overall_survival_months"])/12 
names(time.MSK.w)=rownames(MSK104.sub) 
event.MSK.w=as.numeric(MSK104.sub[,"death"]) 
names(event.MSK.w)=rownames(MSK104.sub) 
 
msk104.a88_40=test.RS(MSK.exp.w,lista88,time.MSK.w,event.MSK.w,rs.lista88_40[[2]],rs.lista88_40[[3]]) 
msk104.a88_50=test.RS(MSK.exp.w,lista88,time.MSK.w,event.MSK.w,rs.lista88_50[[2]],rs.lista88_50[[3]]) 
msk104.a118_40=test.RS(MSK.exp.w,lista118,time.MSK.w,event.MSK.w,rs.lista118_40[[2]],rs.lista118_40[[3]]) 
msk104.a118_50=test.RS(MSK.exp.w,lista118,time.MSK.w,event.MSK.w,rs.lista118_50[[2]],rs.lista118_50[[3]]) 
msk104.b88_40=test.RS(MSK.exp.w,listb88[[1]],time.MSK.w,event.MSK.w,rs.listb88_40[[2]],rs.listb88_40[[3]]) 
msk104.b88_50=test.RS(MSK.exp.w,listb88[[1]],time.MSK.w,event.MSK.w,rs.listb88_50[[2]],rs.listb88_50[[3]]) 
msk104.b118_40=test.RS(MSK.exp.w,listb118[[1]],time.MSK.w,event.MSK.w,rs.listb118_40[[2]],rs.listb118_40[[3]]) 
msk104.b118_50=test.RS(MSK.exp.w,listb118[[1]],time.MSK.w,event.MSK.w,rs.listb118_50[[2]],rs.listb118_50[[3]]) 
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