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This investigation explored the ways in which the four principles of productive disciplinary 

engagement (Engle & Conant, 2002) may be used as a tool for informing the design of the 

norms, structures, and classroom features that combine to form a learning environment that 

supports the CCSS-M.  The study examined both the instructional practices employed by the 

teacher and the nature of student engagement in a suburban, regular education, seventh grade 

classroom over the course of one unit of study, following the implementation of intentional 

pedagogical practices aimed at implementing the four principles of productive disciplinary 

engagement.  Data were gathered using several sources:  transcriptions of video recordings of 

one unit of study that unfolded over 15 class sessions, the mathematical tasks used within the 

unit, lesson plans and teacher reflections, and a student survey. Applying an inductive scoring 

method  (Miles & Huberman, 1994), the entire body of transcriptions of classroom video was 

scored in an effort to identify indications of each principle and the relationship between them. 

Teacher questions were scored using the Boaler & Brodie (2002) framework in an effort to 

identify the actions of the teacher that contributed to the enactment of the principles of 

productive disciplinary engagement.  Mathematical tasks used throughout the unit of study, 
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considered to be an important element in achieving the principle of problematizing, were coded 

using the Math Task Analysis Guide (Stein & Smith, 1998). A survey was administered to 

students at the conclusion of the unit in order to understand their perceptions regarding the 

classroom environment and to triangulate the data.  Evidence illustrates that elements such as the 

mathematical task in which students engage, utilizing the teacher-as-partner stance (Tabak & 

Baumgartner, 2004), deliberately offering students choices, and positioning students as capable, 

independent, decision-makers were identified among the ways the teacher encouraged the 

students to participate using the principles of productive disciplinary engagement. Results point 

to the interrelated nature of the four principles and student behaviors that occur when the social 

configurations are arranged so that students assume some of the roles typically associated with 

the teacher.  

Keywords: productive disciplinary engagement, mathematical tasks, five practices for 

orchestrating discussion, participation pattern, teacher questions, noticing, teacher-as-partner 
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1.0  THE RESEARCH PROBLEM 

1.1 INTRODUCTION 

The National Council of Teachers of Mathematics (NCTM) has led an effort to change 

mathematics teaching and learning for more than twenty-years.  Among the sources fueling the 

need for change was recognition that in an increasingly technological society, mathematics plays 

a central role and students were not being adequately prepared for this change. This lack of 

preparation is reflected in the analysis of results of the Third International Mathematics and 

Science Study (TIMSS) which compared Mathematics and Science achievement in fourth, 

eighth, and twelfth grade students from 41 nations. Only seven nations scored lower than 

students in the United States (Stigler & Hiebert, 1999).  In addition, this study revealed that most 

U.S. students spend the majority of their instructional time completing procedural exercises. Our 

global society demands now that students are able to think, reason, and problem solve in addition 

to developing skills related to computational accuracy (Schoenfeld, 2013).  Students are expected 

to understand mathematics not only as they master facts and procedures, but to see connections 

among multiple representations while building interpretive frameworks to make sense of their 

experiences (Engle, 2011). 

 The Common Core State Mathematics Standards (CCSS-M, 2010) provide an 

opportunity to reenergize the efforts of NCTM. Although these standards do not dictate 
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curriculum nor pedagogy, the emphasis they place on student reasoning and communication 

challenges the traditional method of delivery, wherein teachers model procedures and students 

use the procedures in repetitive fashion (Lampert,1990; Ball, Goffney, & Bass, 2005).  

Supporting students in a way that encourages a belief in their own efficacy and a positive 

disposition toward mathematics, necessary for successful implementation of CCSS-M,, demands 

teacher reflection regarding the vision of good instruction and the related classroom culture that 

supports it (Hill, Rowan, & Ball, 2005). 

When one considers classroom culture, teaching mathematics in a way that is consistent 

with the Common Core State Standards includes more than teaching mathematical content. The 

Standards for Mathematical Practices are an integral part of the Common Core State Standards. 

The first three practices: make sense of problems and persevere in solving them; reason 

abstractly and quantitatively; and construct viable arguments and critique the reasoning of others, 

focus on making sense of problems and solutions through the process of logical explanation as 

well as through probing the understanding of others as students construct arguments, identify 

correspondences among approaches, and explore the truth of conjectures. 

An environment that is supportive of these practices uses differences in student thinking 

as a tool for productive collective work (Boaler & Staples, 2008; Hufferd-Ackles, Fuson, & 

Sherin, 2004).  Through the discursive patterns in the classroom, rights and obligations among 

participants are established, including expectations regarding the work of each participant as a 

member of the group.  This talk, or classroom discourse, establishes a culture where students can 

participate or are marginalized in the learning and doing of mathematics.  Established norms, 

such as the need to question peers’ explanations, or provide mathematical justifications, 
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challenge the conventional assumptions about what it means to learn mathematics, as well as the 

expected role of the teacher and student. 

It is through talk that mathematical ideas are aired, revised, connected to prior knowledge 

and to one another, examined, and challenged. Exchanges between students or teachers and 

students, go beyond describing a summary of steps in solving routine problems. Instead different 

strategies for solving challenging tasks are presented, differences in how problems are solved are 

expected and respected, and disagreements are resolved by reasoned arguments. Mathematical 

reasoning is seen as a practice to be learned, not an innate ability (Ball, Goffney, & Bass, 2005).  

Hence, patterns of participation in classrooms define learning. 

This investigation explores the ways in which the four principles of productive 

disciplinary engagement (Engle & Conant, 2002) may be used as a tool for informing the design 

of the norms, structures, and classroom features that combine to form a learning environment.  

The study will examine both the instructional practices employed by the teacher and the nature 

of student engagement in a seventh grade classroom over the course of one unit of study, 

following the implementation of intentional pedagogical practices aimed at implementing the 

four principles of productive disciplinary engagement during the initial half of the year. 

1.1.1 Learning as a social process 

The type of environment which will support the implementation of the CCSS-M is based on the 

view that mathematics is learned not by the transmission of knowledge, but rather by 

participating in a culture as part of a “social practice” (Lave & Wenger, 1991, p. 47).  Lave & 

Wenger emphasize the importance of social practices as defined by the culture, and view these 

practices as instrumental in learning mathematics.  They stipulate that learning is always 
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“situated” in a community or culture.  That is, the learner is naturally engaged because of the 

learning situation. Learning is seen as a complex, dynamic, social experience that occurs as 

situations of co-participation wherein the social context provides the context for the development 

of conceptual structures.  From this perspective, when a novice engages in a new activity or in an 

unfamiliar body of knowledge, he becomes increasingly engaged and active as a member of the 

community. As he becomes increasingly knowledgeable he moves from the periphery as an 

apprentice, to eventually becoming a full participant in the practice that includes learning to talk, 

act, and interact in the manner of the community. Lave and Wenger  (1991) refer to the process 

of moving from the periphery to a central position, legitimate peripheral participation (p. 29).  

Experts, who serve as models, guide the development of less expert members of the community.  

As the novice’s involvement increases, so does his mastery. 

Rogoff (1994, p.209) contrasts learning as transformation of participation with discovery 

of knowledge by oneself, such as in child-run learning, and acquisition of knowledge from 

someone else, such as adult-run learning.  She argues that what is learned is different; not that 

one model is better than another. Rogoff explains that the learner has a different relation with the 

information in each model.  In the transmission model, “students learn information to be able to 

demonstrate that it has been encoded and retained in response to tests evaluating the 

transmission, piece by piece” (p. 210).   In contrast, she notes that in collaboration with other 

children, “students learn the information, with purposes connected explicitly with the history and 

practices of the community” (p. 211).  She emphasizes that both adults and children are actively 

engaged; adults are structuring shared endeavors while children learn to participate in the 

management of their own learning. Greeno (1997) views participation in social and cultural 

practices as that which defines learning mathematics, and the environment as that which defines 

 22 



their adaptations related to participation.  Lave & Wenger, Greeno, and Rogoff’s views all 

emphasize the importance of the community related to student learning and the active nature of 

learning as a “two-sided” endeavor.  Their theories point to the integral nature of social 

interaction and participation in the learning of mathematics. 

Mathematical learning entails both social and communicative activities (Sfard, Forman, 

& Kiernan, 2001; Cobb, 1988).  To consider teaching and learning it is imperative to bear in 

mind the culture of the learning environment.  One of the constructs that link culture and 

learning is the notion of a community of practice ( Lave, 1991; Lave & Wenger, 1991; 

Wenger,1998).  In Wenger’s view, a community of practice characterizes the relationship among 

learners and stresses that individual learning takes place as each contributes to the norms and 

practices of the community. He emphasizes three essential dimensions that separate a community 

of practice from other, more common groups in which people participate.  The first characteristic 

of practice that supports the coherence of its members is mutual engagement. Among the 

important ideas related to developing mutual engagement is the idea that people are engaged in 

“dense relations” of mutual engagement organized around something that matters to the group 

(Wenger, 1998, p. 74).  Mutual engagement in this definition includes developing relationships 

through interactions that include both the latest piece of work-related information as well as the 

latest personal information.  Group members are closely connected by more than just the task at 

hand.  Mutual engagement then supports the negotiation of a joint enterprise, the second 

characteristic of practice that serves as a source of a community of practice.  Disagreements are 

viewed as a productive part of the group’s work. The enterprise is joint not because everybody 

believes the same thing, but rather because beliefs are communally negotiated.  Negotiation is 

also central to the third characteristic of practice that includes accumulating a repertoire of 
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resources over time.  These resources might include vocabulary, routines, gestures, or concepts 

that the community has adopted over time.  Through the implementation of these three elements, 

according to Lave and Wenger (1991), a community of practice may be formed. 

Communities of practice are not static.  Sustaining the community involves developing 

mutual relationships, establishing who is good at what, who is easy and who is hard to get along 

with, aligning engagement with it, reconciling what the enterprise is about, producing or 

adopting tools, and inventing new terms, to name a few.  Learning is seen to occur as the learners 

contribute to the evolution of communal norms and practices.  In other words, when a learner 

vocalizes an argument he is simultaneously participating in a communal practice and an 

individual act. In the view of Sfard (2008) thought cannot be separated from communication and 

has coined the word commognition to reflect the intersection of the two. 

By conforming to classroom norms, a student illustrates that she is a legitimate member 

of a community of practice that includes a particular social participation structure. Members of a 

community of practice negotiate their roles and hold each other accountable to work toward a 

common goal while using available resources.  As students participate in conversations they take 

on certain roles, such as speaker, active or passive listener, or opponent of the issue at hand. As 

conversations evolve, roles and responsibilities change. 

1.1.2 Creating supportive environments 

If social relations and communication are considered to be essential elements of learning, then 

the environment that supports interaction must be carefully considered.  Research has identified 

“design principles” or “principles of learning” that capture key theoretical ideas underlying 

innovative learning environments and provide guidance so that others can recreate them (Boaler 
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& Staples, 2008; Tarr et. al., 2008; Kazemi & Stipek, 2001; Chapin & O’Connor, 2007; Goos, 

2004; Hiebert & Wearne, 1993; Silver, Smith & Nelson, 1995).  Of particular interest to the 

study being proposed herein is the Productive Disciplinary Engagement framework (Engle & 

Conant, 2002).  Presented as a theory, the principles of productive disciplinary engagement were 

proposed in response to a challenge to the design-based research community that included a 

request for a consensus on a small set of common principles that research suggested were critical 

for supporting effective learning environments.  The principles of productive disciplinary 

engagement were presented as a proposal to members of the research community as a set of 

principles that they likely shared.  Thus, the goal of Engle and Conant (2002) was “ to abstract 

principles that could apply across learning environments in ways that could inform both the 

design of a wide range of new learning environments as well as research about existing ones” 

(Engle, 2011). 

Consistent with the sociocultural and situative perspective of learning (Greeno, 1989, 

1991; Lave & Wenger, 1991; Rogoff, 1994), Engle & Conant anchored their framework on the 

goal of “explaining students’ deep involvement in and progress on concepts and/or practices 

characteristic of the discipline they were learning about” (Engle & Conant, 2002, p. 400). As an 

organizer for thinking about instruction that supports productive disciplinary engagement, four 

principles were specified: authority, accountability, problematizing, and resources.  These 

principles, described in the paragraphs that follow, provide the basis of the proposed study. 

Authority reflects the idea that in order for students to become genuinely engaged in 

problems, they must have intellectual authority to do so.  As learners are authorized to share their 

thinking, they become recognized as authors of the ideas and contributors to the ideas of others, 

leading to students becoming local authorities on a subject. In order to balance authority, 
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accountability addresses the need for students to be accountable to explain their own thinking; 

making sense of their own thoughts in light of other people’s ideas. As accountability increases, 

learners improve their ideas so they are ready to be challenged more thoroughly by peers, 

internal authorities, and finally external disciplinary authorities (Engle, 2011). The assumption is 

that as a learner is expected to explain the reason that his ideas make sense given the relevant 

idea of others, the process provides the social conditions that prompt the learner to revise his 

ideas for the better. Other people’s ideas become resources for revising, refining, and better 

defending one’s own.  Contrary to Engle and Conant’s (2002) hypothesis, Forman and Ford 

(2014) hypothesize that the interpersonal process of constructing ideas through challenging peers 

precedes and fosters its intrapersonal appropriation. Notwithstanding this difference, both 

research groups agree on the importance of authority and accountability in the process of 

establishing productive disciplinary engagement. 

A learning environment embodies the principle of problematizing to the extent that 

learners are encouraged to address problems that engender genuine uncertainty, are responsive to 

the learners’ own commitments, and embody central aspects of the discipline.  Problematizing 

can be achieved by creating uncertainty regarding what to do, what to conclude, or how to justify 

what one is doing.  Providing resources, the fourth principle, provides balance to problematizing.  

The provision of relevant resources that are necessary for the work may be provided 

insufficiently, resulting in learners being overwhelmed with the problem at hand.  In contrast, if 

too many resources are provided, the problematic nature of the work may be reduced so that the 

potential for productive disciplinary engagement is lost (Engle, 2011). 

Research since the original work that introduced the principles of productive disciplinary 

engagement has been extensive (Windschitl & Thompson, 2006; Gresalfi, Hand, & Hodge, 2006; 
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National Research Council, 2008). Engle (2011) reviewed seventeen case studies that were 

explained using the principles of productive disciplinary engagement. The work to date suggests 

that the principles of productive disciplinary engagement appear to capture some consensus ideas 

within the research community related to a wide variety of respected educational innovations 

developed over the last twenty years ( Forman, Engle, Venturini, & Ford, 2013).  However, the 

work to date provides little guidance to teachers regarding ways to operationalize these ideas in 

the classroom.  Articulating the knowledge and skills necessary for creating the kind of learning 

environment that implementation of the principles of productive disciplinary engagement 

demands has yet to be defined. 

1.1.3 The purpose of the study 

This investigation explored the ways in which the four principles of productive disciplinary 

engagement may be used as a tool for informing the design of the norms, structures, and 

classroom features that combine to form a learning environment.  The study examined both the 

instructional practices employed by the teacher and the nature of student engagement in a 

seventh grade classroom over the course of one unit of study, following the implementation of 

intentional pedagogical practices aimed at implementing the four principles of productive 

disciplinary engagement during the initial half of the year. The guiding assumption is that for 

most students, the extent of their engagement in personal thought and the thinking of peers 

defines their learning. Further it is assumed that when all four of the principles of productive 

disciplinary engagement are realized together in the learning environment, productive 

disciplinary engagement has been achieved. 
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Learning to talk with peers regarding the discipline is critical, and depends on specific 

teacher practices to encourage this kind of behavior. Although Engle & Conant’s work provided 

a synthesis of design features that were highlighted in individual research studies, this study 

adapts their framework as a practical tool for use by a classroom teacher in the design of the 

learning environment. Supporting teachers in a way that enables them to encourage student 

learning by creating environments that foster communication and mathematical reasoning, 

consistent with the CCSS-M, Mathematical Practices calls for a great deal of learning on the part 

of teachers.  Transforming teachers’ knowledge, beliefs, and habits of practice will require 

professional development that can lead to changes in the judgments and complex decisions that 

teachers make on a moment-by-moment basis. If opportunities to develop new levels of 

awareness and knowledge are to be provided, research that decomposes effective practices and 

positions them in a way that professional developers may present them to teachers will be crucial 

to the successful implementation of the consensus of ideas that research on this subject has 

captured (Grossman, Hammerness, &McDonald, 2009). 

1.2 THE RESEARCH QUESTIONS 

This study examined the instructional practices and the nature of student participation in a 

seventh grade mathematics classroom over the course of one instructional unit in the second half 

of a school year, following the implementation of intentional pedagogical practices aimed at 

implementing the principals of productive disciplinary engagement during the initial two 

quarters of the year. 

The study examined the following research questions: 
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Research Question #1: 

In what ways are the principles of productive disciplinary engagement: 1) evident in the 

instructional practices implemented by the teacher and 2) enacted by the students? 

A) In what ways does the teacher expand or constrict the distribution of authority within 

the classroom?  In what ways do the students act with authority? 

B) In what ways does the teacher hold students accountable to themselves, peers, and the 

discipline?  In what ways do the students engage in the social and intellectual 

practices that reflect accountability? 

C) In what ways does the teacher encourage students to take up intellectual problems 

that simultaneously:  engender genuine uncertainty in students, and embody some 

central aspects of the discipline in question, that  defines problematizing? In what 

ways do the students reflect genuine uncertainty in the instructional environment? 

D) In what ways does the teacher encourage students to amplify their capacity to solve 

problems through the provision of resources? In what ways do students utilize 

resources to problem solve? 

Research Question #2 

A) What work is required of the teacher in order to translate the principles of productive 

disciplinary engagement into practice? 

B) What challenges and successes does the teacher encounter along the way? 
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1.3 SIGNIFICANCE 

Key features of innovative instructional environments that have been captured by Engle & 

Conant’s (2002) principles of productive disciplinary engagement offer a theoretical framework 

for designing supportive learning environments. The study will provide insight into the extent to 

which the use of the framework accomplishes this goal. Hence, results of the study may serve a 

practical purpose in guiding others interested in the design of learning environments. It extends 

the work of Engle & Conant (2002) by employing the framework, originally created as a tool for 

research, as a tool for the design of learning environments by practitioners.  The study may be of 

particular interest at the present time, as teachers struggle to enact mathematics instruction 

consistent with the eight Mathematical Practices; an integral component of successful 

implementation of the CCSS-M. 

1.4 LIMITATIONS 

There are several limitations to the study.  First, the study includes only one teacher/researcher 

and her students in a suburban setting. Because of the small number of participants enrolled in 

the study, generalizability of its findings is limited. 

In addition, the teacher is a doctoral candidate in Mathematics education who is 

simultaneously serving the role of researcher.  Her undergraduate education in engineering and 

her work in that field prior to becoming an educator, influences her perspective of both 

mathematics and mathematics education. Her background is as atypical of mathematics teachers 

as are her strong beliefs regarding ways that students learn (Stodolsky & Grossman, 1995).   
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Further, the teacher/researcher was free to design lessons using any appropriate curricular 

resources rather than being confined to one particular publisher, a restraint often imposed on 

teachers.  These differences further limit the generalizability of the data. 

1.5 OVERVIEW 

This document consists of five chapters. The first chapter provided an argument about the 

essential nature of social relations and communication in learning; demanding that the 

environment that supports interaction be carefully considered.  Further, it proposed the potential 

use of the principles of productive disciplinary engagement as a tool for informing the design of 

the norms, structures, and classroom features that combine to form a learning environment that 

supports that talk. Chapter 2 provides a detailed account of the research that has contributed to 

the development of “design principles” or “principles of learning” that capture key theoretical 

ideas underlying innovative learning environments.  Because the principles of productive 

disciplinary engagement were proposed as a consensus of ideas shared by the research 

community related to the design of learning environments, the work described in Chapter 2 tests 

the efficacy of using these principles in this way. Chapter 3 presents the methodology and 

includes a description of the context of the planned study, the participants in the study, the data 

sources, and the analysis procedures. The results of the analysis are reported in Chapter 4. 

Chapter 5 presents the discussion of the findings, conclusions drawn from these findings, and 

suggestions for future research. 
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2.0  THE LITERATURE REVIEW 

2.1 INTRODUCTION 

The purpose of this study is to consider the use of Engle & Conant’s (2002) principles for 

productive disciplinary engagement as a practical tool for the design of a learning environment.  

If one is to repurpose these principles, it is critical to recall that they were proposed in response 

to a challenge to the research community that included a request for a consensus on a small set of 

common principles that research suggested were critical for supporting effective learning 

environments.  The principles of productive disciplinary engagement were presented as a 

proposal to members of the design-based research community as a set of principles that they 

likely shared.  Thus, the goal of Engle and Conant (2002) was “ to abstract principles that could 

apply across learning environments in ways that could inform both the design of a wide range of 

new learning environments as well as research about existing ones” (Engle, 2011).  

Consistent with the sociocultural and situative perspective of learning (Greeno, 1989, 

1991; Lave & Wenger, 1991; Rogoff, 1994), Engle & Conant anchored their framework on the 

goal of “explaining students’ deep involvement in and progress on concepts and/or practices 

characteristic of the discipline they were learning about” (Engle & Conant, 2002,  p. 403). They 

considered social relations and communication to be essential elements of learning, and the 

environment that supported that interaction worthy of careful consideration.  As an organizer for 

 32 



thinking about the environment that supports productive disciplinary engagement, four principles 

were specified: authority, accountability, problematizing, and resources. Research has indicated 

that all four elements must be embodied in the environment to realize productive disciplinary 

engagement, and that having one or more principles missing results in productive disciplinary 

engagement falling short (Engle, 2004; Engle & Faux, 2004 as reported in Engle, Conant, & 

Greeno, 2007).   

2.2 METHODS 

The literature review includes empirical studies related to the teaching and learning of 

mathematics and science from 1980 onward. Key search terms included forms of mathematical 

thinking, mathematical discourse, small collaborative mathematics groups, mathematical 

learning, principles of productive disciplinary engagement, classroom discourse, collaborative 

mathematical problem solving, and small group interaction.  I limited my review to include those 

studies that address K-12 classrooms, not focused on the use of technology. Although I have read 

literature outside the field of mathematics that informs my perspective, I have included only 

studies directly related to mathematics and science teaching and learning. I limited the search to 

research published in scholarly journals or as book chapters in the field of education. I also 

performed a search within key journals that publish research in Mathematics Education, such as 

the Journal for Research in Mathematics Education. Examining the references for the related 

research as well as conducting Google Scholar searches on selected citations led to other relevant 

articles for inclusion. Studies that were not written in English were excluded. 
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2.3 ORGANIZATION OF THE LITERATURE REVIEW 

Research studies in two related areas have direct relevance to the proposed study.  In this chapter 

I describe studies that provide a valid argument for using the principles of productive 

disciplinary engagement as a lens for examining features of the environment that contribute to 

student engagement. The review of these studies assumes that Engle and Conant (2002) were 

correct in their assumption that the four principles of productive disciplinary  engagement are 

necessary for productive disciplinary engagement, and examines selected research for the ways 

that these principles are apparent in the learning environment under study.  

 In order to answer that question, I examine four studies that focus on whole class settings 

to provide the reader with insight regarding the strength of the evidence that underlies these 

principles as key elements in the creation of the learning environments described. The review 

serves to analyze selected studies in terms of the ways in which the principles of productive 

disciplinary engagement were enacted in the intervention as well as to review the outcomes and 

limitations of each study. Next, I examine research that focus on the ways that the students and 

teachers participate in the classroom learning environment.  

First I define the key terms that are prevalent in the research. Then I review the literature 

that informs the design of the proposed study. The literature review is accomplished in three 

sections: research related to whole group discussion, research related and the ways that people 

participate in the instructional environment, and a summary of research directly related to the 

principles of productive disciplinary engagement since the original research was reported.  
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2.4 PRINCIPALS OF PRODUCTIVE DISCPILINARY ENGAGEMENT 

2.4.1 Definition of key terms 

Fostering norms that support a learning environment conducive of productive work by all its 

members has been explained using the concept of “productive disciplinary engagement” (Engle 

& Conant, 2002), which the authors define as, “ students’ deep involvement in and progress on 

concepts and/or practices characteristic of the discipline they were learning about” (p. 400). The 

authors define engagement using three criteria. First, the number of students participating is 

indicative of engagement.  That is, more students participating, and few students “off task” is 

considered as more engagement.  Second, greater intensity in the way students participate in the 

mathematics instruction is greater engagement.  Such intensity might be apparent as students’ 

speech overlap and the way they attend to each other with eye gaze and body position.  Third, the 

extent to which participation of learners is responsive to others indicates greater engagement. 

Examples of responsive behaviors might include students making emotional displays, building 

on the thinking of others, and attending to their work for long periods of time. Further, Engle & 

Conant (2002) define engagement to be disciplinary when there is “some contact between what 

students are doing and the issues and practices of a discipline’s discourse” (p. 402).   They define 

the word productive to include, “significant disciplinary progress from the beginning to the end” 

of students’ engagement (Engle, 2007, p. 215).  They believe that productivity largely depends 

on the discipline, the task, the topic, and where students are when they begin to address the 

problem. Productivity, then, can only be judged on an individual basis. Disciplinary progress 

could be related to a design, making a new connection between ideas, or students shifting from 

explaining their own ideas toward a posture that allows them to compare and challenge others’ 
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ideas.  These principles are intended to function as organizers for thinking about norms 

established by the teacher in the learning environment.  

 A skeletal definition of each of the constructs that comprise the principles of productive 

disciplinary engagement as well as examples of their existence in research will be provided in 

the following paragraphs.  Engle and Conant (2002) define authority with regard to two ideas.  

The first idea is related to students having an agency in defining addressing and resolving 

problems.  The second includes members of the learning community positioning students as 

stakeholders by publicly identifying them with the claims, approaches, explanations, designs and 

other responses to problems.  Students may develop into classroom experts to whom others rely 

for help.  In other words, students who have authority are encouraged to be authors and 

producers of knowledge rather than consumers of it. In other words, students become active 

learners who take responsibility for their own learning (Hufferd-Ackles, Fuson, & Sherin, 2004).  

It demands that teachers share authority with students in developing the learning community, and 

in so doing provide the opportunity for students to develop a sense of agency.  

This idea is congruent with the goals of the NCTM’s Principles and Standards document 

(1989, 2000), and the CCSS-M Mathematical Practices (CCSS-M, 2010).  Central to these 

standards is the commitment to develop mathematical literacy and power in every student 

wherein mathematical power encompasses the ability to "explore, conjecture, and reason 

logically, as well as the ability to use a variety of mathematical methods effectively to solve 

nonroutine problems" and the self-confidence and disposition to do so (National Council of 

Teachers of Mathematics, 1989, p. 5).  Similarly the Common Core State Standards’, 

Mathematical Practices emphasize the importance of active learning in supporting all students 

(CCSS-M, 2010).  The first three practices: make sense of problems and persevere in solving 
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them; reason abstractly and quantitatively; and construct viable arguments and critique the 

reasoning of others, focus on making sense of problems and solutions through the process of 

logical explanation as well through probing the understanding of others.  Students must construct 

arguments, identify correspondences among approaches, and explore the truth of conjectures. 

These practices demand that students have the authority to actively engage in the learning 

process. Through these principles, the Mathematical Practices encourage students to be active 

knowers and doers of mathematics. In terms of Engle & Conant’s (2002) principles, the principle 

of authority is congruent with these NCTM Principles and CCSS-M Mathematical Practices.   

Research points to evidence of teacher moves that encourage students to be accountable 

to the teacher and other members of the learning community, through the implementation of 

classroom norms (Yackel & Cobb, 1996).  This principle, being accountable to others and to 

disciplinary norms, implies that the teacher and other members of the learning community foster 

students’ responsibilities to consult others in constructing understanding in a domain; it doesn’t 

require acceptance of others’ views, but responsiveness to them.  “This principle is an expression 

of the value that each member of a learning community is not an authority unto himself, but one 

intellectual stakeholder among many in the classroom and beyond” (Engle & Conant, 2002, p. 

405).  Students who take their peers’ ideas into account may be better positioned to persuade 

others of their own ideas, thus motivating further participation.  In addition, being held to 

disciplinary norms helps to balance student authority and reduce the chance of students 

constructing haphazard responses to problems without peer review (Cobb & Hodge, 2002).  

Engle & Conant (2002) discuss the importance of “problematizing” as the third core idea 

in their framework. Engle (2011) describes problematizing as, “any individual or collective 

action that encourages disciplinary uncertainties to be taken up by students” (p. 6).  She further 

 37 



describes problematizing to include the extent to which genuine uncertainty is engendered in 

students, that problems are not easily resolved, that problems embody “big ideas of the 

discipline”, and that they are related to a topic that is of some interest to the learner. In order to 

succeed in problematizing, a teacher must create an environment where students must persevere 

together toward a common goal.  Discourse among students is truly necessary in an environment 

that embodies the principle of problematizing because a course toward solution is not apparent. 

Students genuinely need to talk in order to determine a solution path, draw a conclusion, or 

synthesize their work. Problematizing describes a purposeful choice by the teacher in terms of 

the kinds of tasks students will engage and how problems will be designed.  In other words, 

problematizing includes choosing tasks that encourage students to both interpret them and 

persevere in solving them, using available knowledge and resources.  Genuine uncertainty must 

be created within students to have enacted the principle of problematizing. Congruent with other 

research that draws a connection between discursive participation, the related teacher practices 

that influence student learning, and the mathematical task selected by the teacher, problematizing 

is a central theme (Leinhardt & Steele, 2005; Stein, Smith, Henningsen, Silver, 2000; Silver, 

Smith, & Nelson, 1995; Smith, 2000; Lotan, 2003; Hiebert & Wearne, 1993; Kieran, Forman, & 

Sfard, 2003).   

Research collectively points to the importance of the task in creating a sense of 

uncertainty in students. A mathematical task is defined as a set of problems or single complex 

problem that focuses students’ attention on a particular mathematical idea (Stein, Grover, & 

Henningsen, 1996). It is the task that provides something worthy of talk while promoting or 

discouraging students to explore deeply the intended mathematical goal. Although task selection 
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and problematizing are not synonymous, problematizing largely depends on task selection and 

the enactment of the task by the teacher.  

 Problematizing is balanced by the principle of providing resources to students. With 

insufficient resources, students are unable to act and may be overwhelmed with the challenge; 

with too many resources provided, the problematic nature of the task is diminished. Engle & 

Conant (2002) describe the provision of resources as a necessary fourth element in the support of 

productive disciplinary engagement. They define resources very generally and include anything 

or anyone that may be seen as necessary to support the embodiment of the other principles.  

Resources may be as fundamental as providing students with time to solve meaningful problems 

(Henningsen & Stein, 1997) or may be more specific to the task. They cite examples of 

providing resources; the provision of home-based modes (talk that is consistent with the style at 

home) of discussion in support of problematizing content as well as the provision of models and 

norms in the classroom.  Peers, physical manipulatives, teacher questions, and anything that 

might amplify a student’s capacity to problem solve would qualify as a resource using this broad 

definition.   

Encouraging productive disciplinary engagement through the implementation of the four 

principles as I have described them is to characterize a new participant structure in terms of 

social practices and the related discursive practices (Palincsar & Brown, 1984; Tabak & 

Baumgartner, 2004) . When I speak of participant structure, I adopt the definition described by 

Cornelius & Herrenkohl (2004).  These authors describe participant structures to include what 

some others call participant frameworks (O’Connor & Michael, 1996); that is an interest in 

conventional classroom social arrangements, including rights and responsibilities, with the 

notion of “social positioning” or the ways that discussions linguistically place speakers in 
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relation to the subject matter and other participants (Goffman, 1974). Although “positioning 

theory” as a means to explain the relationship between discourse and psychological phenomena 

is beyond the scope of this work, attending to the dynamic role that participants assume within 

classroom conversations is relevant to this study.  Therefore, positioning provides a useful tool in 

describing and assessing relationships.  

I have chosen eight studies to examine in detail with regard to assessing the extent to 

which the principles of productive disciplinary engagement are present in learning environments 

that mathematics research has deemed to be effective. Four of these studies represent the analysis 

of student learning in whole group settings, and four studies focus on small, collaborative 

groups. I chose the studies based on several factors: 1) the study includes the researchers’ 

attention to both the teacher and students actions, 2) the study uses a very “up close” 

examination of the culture which places the researcher in a position to provide an in-depth 

portrait of the individuals and their relationships in the learning environment, 3) the study 

illustrates a relationship between the instructional environment and the way it contributes to 

student success, and 4) the studies chosen represent different sample sizes from case studies to 

large-scale studies.  The research that I have included in the first two sections of this chapter are 

summarized in Tables 2.1.  Table 2.1 serves to illustrate a few examples of the presence of the 

principles of productive disciplinary engagement that are evident in studies that examine whole 

group interactions . The table is not  intended to be a comprehensive list of every example of the 

principles productive disciplinary engagement present in the studies.  
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2.5 PRODUCTIVE DISCIPLINARY ENGAGEMENT IN WHOLE GROUP 

DISCUSSION 

In the following section, four samples that represent examples of research wherein the 

instructional environment has been described to be effective are reviewed with regard to the 

presence or absence of the principles of productive disciplinary engagement. In each study, I 

have attempted to both describe the study, as well as its relationship to each of the principles of 

productive disciplinary engagement. 

2.5.1 Boaler & Staples (2008) 

In a 5 year, longitudinal study of high school students employing mixed methods, Boaler & 

Staples (2008) studied student learning in approximately 300 students at Railside school and two 

other high schools having approximately the same size but composed of students of different 

demographics.  While Railside was an urban high school with an ethnically, linguistically, and 

economically diverse student body, Hilltop was situated in a rural setting wherein half of the 

students were Latino and half white, and Greendale included a high majority of white students.  

The schools also represented differences in choice of curriculum.  Both Hilltop and Greendale 

employed traditional curriculum while Railside used a reform-oriented approach. The authors 

use the word reform-oriented and reform teaching to imply the use of curricula and pedagogy 

that is consistent with the principles promoted by the National Council of Teachers of 

Mathematics ( NCTM, 1989).  The unique features of Railside school included a commitment to 

reform teaching that include mixed-ability groups, and opportunities for student advancement as 

opposed to a traditional tracking system. The comparison groups in the study were 
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approximately 300 students who followed the traditional curriculum and pedagogy at Hilltop and 

Greendale, and 300 students at Railside who were taught using reform-oriented approaches. The 

same content was taught in all three schools.  

Data sources included: lesson observations, interviews, videos, questionnaires, and 

assessments that combined to provide information on the teaching and learning practices in the 

different approaches and the students’ responses to them.  The researchers assessed students’ 

understanding of math content using content- aligned tests and open-ended project assessments 

that were reviewed by teachers prior to administering.  Groups were videotaped as they worked 

on open-ended projects.  Researchers also gathered scores on state assessments that they used to 

compare performance of the three target schools.  

The authors report many features that combined to create an environment wherein 

differences in attainment between students of different ethnic groups were reduced or erased. I 

have tabulated some of the features of the instructional environment that provide evidence of the 

principles of productive disciplinary engagement in Table 1. Among those features that the 

authors attribute to student success were that teachers presented all students, in a heterogeneous 

setting, with a rigorous curriculum that included tasks of high cognitive demand and high 

expectations for success. Drawing conceptual connections using student’s existing 

understanding, modeling high level performance, and pressing for justifications and 

explanations, were just a few of the teacher moves that this research has identified as essential 

elements in Railside students’ success and which is supported by other research (Carpenter, 

Fennema, Peterson, Chiang, Loef, 1989; Carpenter & Fennema, 1992, Kazemi & Stipek, 2001). 

With regard to the principles of productive disciplinary engagement, choosing tasks of high 

cognitive demand contributes to problematizing; creating genuine uncertainty in students.  
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Pressing for justifications and explanations is a way to hold students accountable to rigorous 

thinking, while drawing conceptual connections and modeling high-level performance is an 

example of encouraging the use of resources.  

Teachers at Railside taught students to be accountable not only for their own ideas, but 

for the each others’ learning. At Railside students talked about the value that their peer-group 

added to their own learning, but comments were distinctly reciprocal, and expressed concern for 

the learning of classmates as well.  One of the ways in which teachers nurtured the feeling of 

accountability was through the assessment system.  Teachers assigned grades for individual and 

group tests and for the quality of conversations that groups had. Another way in which 

responsibility was encouraged was through the practice of asking one student a question after the 

group had engaged in a task.  If the student couldn’t answer the question, the teacher would leave 

the group to encourage further discussion among students and return later to ask the same student 

the question again.  In the intervening time the group was expected to be helping the student 

learn the mathematics in question. In this way, teachers and peers attended to students’ current 

understanding and worked together toward creating high quality work and deep conceptual 

understanding.  

Pre and post tests were used to gauge the mathematical progress of students.  At the 

beginning of year 1 the students at Railside were achieving at significantly lower levels than 

students at the two other schools using the traditional teaching method (t=-9.141, p<0.001, n= 

658).  At the end of year 1, students were administered a test of algebra to measure what students 

had learned over the year.  The difference in means (1.8) indicated that the students were 

performing equally.  At the end of year 2, students were administered a test of Algebra and 

Geometry.  Railside students significantly outperformed the students in the traditional 
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classrooms (t=-8.304, p<0.001, n=512).  Boaler & Staples concluded that the combination of 

heterogeneous grouping, high- level tasks, and instructional moves of the teachers, which 

included purposeful teacher questioning and accountability, combined to create an equiTable 

4.7nvironment that supported increased student learning.   

The Boaler & Staples (2008) work presents large-scale evidence of improvements in 

student learning resulting from instructional practices and the learning environment in the 

classroom.  There is substantial evidence for these claims because the data sources are 

triangulated (Miles & Hubbard, 2004).  Standardized test scores are supported by content 

paper/pencil tests and video footage of student interactions in the classroom.  The authors seek to 

explain the classroom environment that supported student learning using a variety of elements 

and attempt to understand the interaction of many variables that combine to form that 

environment.  The principles of productive disciplinary engagement are clearly present in the 

learning environment that supported student learning.  

2.5.2 Chapin & O’Connor (2008) 

The essential nature of student accountability was investigated by Resnick, O’Connor, Michaels, 

and Chapin (Chapin & O’Connor, 2004; Chapin & O’Connor, 2007; O’Connor & Michaels, 

unpub; O’Connor & Michaels, 1993; Michaels, O’Connor, & Resnick, 2008).  Deemed 

Accountable Talk, several studies involving Language Arts and Mathematics instruction 

demonstrated the potential student learning gains when teachers use specific norms and forms of 

talk that actively engages learners in reasoning about the knowledge they are acquiring. The term 

Accountable Talk refers to several techniques used by teachers to encourage respectful and 

reasoned discussion in a classroom setting. The use of Accountable Talk moves encourages 
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student participation in this discussion through three Accountable Talk features: accountability to 

knowledge, accountability to the community, and accountability to rigorous thinking.  Talk that 

is accountable to the community creates an environment that provides students with 

opportunities to formulate their own ideas and challenge the ideas of others.  Participants listen 

carefully to one another’s ideas and provide reasons for agreement or disagreement.  Drawing of 

reasonable conclusions and making logical connections is the focus of talk that is accountable to 

standards of reasoning.  “Talk that is accountable to knowledge, is based explicitly on facts, 

written texts or other publicly accessible information that all individuals can access” (Michaels, 

O’Connor, & Resnick, 2008, p. 289). The teacher’s goal is to guide student discussions toward 

academically correct concepts and ideas.  

Chapin & O’Connor (2004) conducted qualitative research on the ways effective teachers 

used various discourse practices and utterance types to orchestrate classroom discussion in 

elementary and middle school classrooms. Using the Connected Mathematics and Investigations 

curricula in a low-income, urban school district the research, called Project Challenge, began 

with the intent to identify and develop unrecognized talent and the potential for “giftedness in 

mathematics.”  Project Challenge teachers were supported in using a variety of academically 

productive “talk moves” designed to press students to explicate their reasoning and build on one 

another’s thinking. Project Challenge students included 100 students each of four years, 

beginning in their 4th grade year. Students were chosen for the project using the Naglieri Non-

Verbal Abilities Test (NNAT) among approximately 600 third grade students. Those with scores 

in the 7th, 8th and 9th stanines were automatically placed in the program. The remaining half of 

the 100 places were filled with students scoring in the 5th and 6th stanines, the average scorers.  

Instruction was provided five days per week and was centered on complex problems that 
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prepared students for college-track math courses in high school. After only eight months in the 

program, students were administered the MCAS, the Massachusetts Comprehensive Assessment 

System test. On average, 57% of each 4th grade Project Challenge class, scored "Advanced" or 

"Proficient" on the MCAS mathematics test; significantly better than Massachusetts scored as a 

whole (38%).  Project Challenge results on the MCAS in sixth grade were even more dramatic. 

At the end of 6th grade, for students who had participated in the project for three years, at least 

82 % of each Project Challenge class scored "Advanced" or "Proficient" on the MCAS 

mathematics test.  The California Achievement Test Mathematics Portion (both Concepts and 

Computation) was administered to students when they reached sixth grade.  The results were 

scored externally. Each year, the cohort being tested scored on average at the 90th percentile on 

this nationally-normed test. 

In order to compare the performance of students in the Project Challenge and those who 

participated in traditional instruction, a post hoc, quasi-controlled comparison of students who 

had been eligible for Project Challenge (and matched with Project Challenge students), but not 

selected, was conducted. The differences between MCAS scores of the Project Challenge 

students and their matched controls was significant and effect sizes were large (Cohen’s d =1.8) 

(O’Connor & Michaels, 2007; Resnick, 2007).  

This study represents a substantial body of research that reflects the idea that learning is 

robust when learners are held accountable for becoming actively involved in reasoning (Resnick 

& Hall, 1998).  The principle of problematizing was embodied through the use of carefully 

selected tasks, that provided something of substance in which students could engage. The study 

encouraged the use of resources through the encouragement of talk between students; they used 

each other as ideational and relational resources. Further, students were free to author their own 
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ideas and to build on the thinking of others, leading to the enactment of the principle of 

authority.   

2.5.3 Goos (2004) 

A similar set of priorities is echoed in a case study by Goos (2004) wherein she considered what 

specific teacher actions might contribute to a culture of inquiry in a secondary mathematics 

classroom.  She examined a single classroom over a period of two years in an effort to analyze 

some of the teaching and learning practices used by one teacher in helping students appropriate 

the ways of knowing, speaking, and acting that is characteristic of a community of mathematical 

inquiry.  This study is indicative of a case study wherein the researcher explores a bounded 

system over time using a detailed, in depth collection of data (Cresswell, 2007).  

The participants in the study were white, middle-class Australian students in grades 11 

and 12. Weekly lesson observations were supplemented by video and audio- taped recordings of 

teacher-student and student-student interactions and field notes made during lesson observations.  

Stimulated recall interviews were conducted with the teacher and groups of students to seek their 

interpretations of videotaped excerpts. Semi-structured interviews of students were also 

conducted to investigate their views about learning mathematics. The author’s effort to 

triangulate the data brings credence to her claims.  

Goos reports several features of the classroom that are significant examples of providing 

students with authority.  First, discussions in this classroom were frequently directed between 

students, rather than through the teacher, in contrast to a traditional classroom.  The teacher 

allowed students to seek and receive help from each other as he purposefully ceded control of 

debates.  Further, the teacher regularly allowed time in class for students to study worked 
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examples so that they would learn to find their way independently through mathematical texts 

and be able to use them as resources.  Frequently, during disagreements, the teacher withdrew 

from discussion and encouraged students to resolve issues alone; a move to encourage 

accountability and relinquish authority.  His classroom was described as one where students 

engaged in tasks for extended periods of time, consistent with the principle of problematizing, 

and as they engaged their knowledge claims were recognized as conjectures that had to be 

validated. Explaining was used to both evaluate and strengthen student understanding. Students 

asked questions of peers; proposing and evaluating alternate solutions to mathematical tasks.    

The rich description of the classroom interactions in the Goos (2004) study makes a 

valuable contribution to the mathematics education literature because it offers a view into a way 

that the culture of a mathematical community might be developed over time. It highlights several 

assumptions, teacher actions, and resultant student actions that contribute to the development of 

the community.  Goos (2004) moves from the assumption that there is a way to establish a 

community with specific features that are desirable in supporting student learning, and then goes 

about to find out how the community is established from the start. Relinquishing authority by the 

teacher is a significant feature in this study, although all of the principles of productive 

disciplinary engagement are apparent. The researcher has claimed that the instructional 

environment provided to students has had a profound impact on the classroom culture and the 

ways that students have engaged in learning mathematics.  Although she does not have student 

test scores as a data source to support her claim, she effectively uses description of student 

behaviors to indicate positive examples of learning.  
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2.5.4 Silver, Smith & Nelson (1995) 

One seminal project that supports the careful selection of tasks and in so doing provides an 

excellent example of the principles of productive disciplinary engagement was QUASAR 

(Silver, Smith & Nelson, 1995). QUASAR was both a practical demonstration project and 

complex research study catalyzed by the inequities in mathematics learning opportunities in 

schools serving poor communities. It was a large-scale study that focused attention on particular 

ways that teachers mediate curriculum approaches to make them equitable.  For the purposes of 

this review, it provides a large-scale example of a research project wherein problematizing is 

fundamental to student success.   

Using specific criteria, researchers chose six public, middle schools in different states as 

sites for the study.  The students in these schools included a culturally and socially diverse, urban 

population. The project’s goals were to, “develop, implement, and refine innovative instructional 

programs for all students” (Smith, 2000, p. 354).  In support of these goals, the work of the 

researchers included curriculum development and modification, professional development and 

teacher support, classroom and school-based assessment design, as well as community outreach 

efforts over a period of five years.  

In an analysis of roughly 150 tasks used over a three-year period in the QUASAR project, 

Stein, Grover, & Henningsen (1996) determined that over three fourths of the mathematical 

episodes included tasks intended to invoke students’ reasoning, conceptual understanding, and 

problem solving.  Tasks that were part of the intervention were designed to encourage students to 

use novel methods of problem solving and rather sophisticated mathematical thinking in 

QUASAR classrooms. Teachers had a more difficult time enacting the tasks at high level, with 

only 42% of cognitively challenging tasks enacted in ways that maintained students opportunity 
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for engagement in ways that demanded high-level cognitive processes. Another distinguishing 

feature of the instruction was the frequency of opportunity for students to communicate and 

collaborate. Many teachers emphasized the development of understanding through student 

discourse about mathematical ideas using both collaborative learning groups and whole class 

discussion.  

The extent to which the instructional design had beneficial effects on student learning 

were evaluated based primarily by measuring changes in student mathematical performance over 

time using the QUASAR Cognitive Assessment Instrument (QCAI).  Developed specifically to 

examine students’ capacity to reason, problem solve, and communicate mathematically, the 

QCAI challenged students to solve complex mathematical tasks requiring the use of high-level 

thinking (Lane, 1993; Silver & Lane, 1993).  Further, analysis that examined the relationship 

between instruction and learning in QUASAR classrooms indicated that student gains were 

especially positive in classrooms wherein the setup and implementation of instructional tasks 

encouraged high-level thinking and reasoning, the use of multiple representations, mathematical 

explanations, and multiple solution strategies. In addition, eighth grade students who participated 

in QUASAR were administered a subset of items from the NAEP Grade 8 mathematics 

assessment in an effort to establish normative information regarding QUASAR students.  

QUASAR students significantly outperformed the NAEP disadvantaged urban sample, the 

sample demographically most similar to QUASAR students (Silver & Lane, 1995).  

Among the outcomes of the QUASAR project include a qualification system, called the 

Math Task Analysis Guide (Appendix C), that uses the cognitive demand necessary to solve the 

task to rank tasks.  The framework is important because it provides a practical means that 

teachers might use to choose tasks worthy of classroom use. The cognitive demand, that is the 
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level and type of thinking that a task has the potential to engage in a student, has been 

differentiated into four distinct categories (Stein & Lane, 1996).  The Math Task Analysis Guide 

illustrates characteristic features of tasks requiring low-level and high level cognitive demand. In 

general, low-level cognitive demand tasks are algorithmic in nature (Stein, Smith, Henningsen, 

& Silver, 2000).  They involve using or producing previously learned facts or procedures.  There 

is little ambiguity about the direction or steps needed for solution and they are generally not 

connected to concepts underlying the procedure.  The focus is primarily on obtaining a correct 

answer with little need for explanation.  Examples of tasks requiring low cognitive demand 

would include completing a two-digit by two-digit multiplication problem using an established 

procedure, or reproducing memorized addition facts.  Conversely, tasks that require students to 

explore and understand mathematical concepts, processes, or relationships, requiring that 

students develop meaning through the use of multiple representations and analysis, while 

accessing prior relevant knowledge fall into the category of high-level cognitive demand. These 

tasks often require students to use non-algorithmic thinking while persevering to develop 

solution strategies.   

In terms of Engle & Conant’s principle of using resources, the use of multiple 

representations offers opportunities to engage in using ideational resources.  While one 

representation may encourage sense-making in one student, another may amplify student 

problem solving capacity in another. Freedom to use multiple representations also embodies the 

principle of authority; offering the students the chance to author solutions themselves. As 

students authored solutions, teachers pressed for conceptual understanding; an instructional 

practice that is indicative of the principle of accountability. Choosing a task that created genuine 

uncertainty in students, a criteria necessary for the principle of problematizing, contributed to 
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student learning as well. All four of the principles of productive disciplinary engagement were 

clearly present in this study. 

Using data from the QUASAR study, Stein & Lane (1996) examined the relationship 

between student learning and the way that tasks were enacted during instruction.  Specifically, 

using video tapes and narrative summaries of classroom observations from four school sites, the 

work examines differences in instruction at sites that varied in levels of student learning gains 

(high, medium, or low). The researchers theorized that the sites identified as having high student 

learning gains would be characterized by instruction that included set up and implementation of 

the task using instructional features promoted by the NCTM Principles and Standards (1989).  A 

stratified random sample of the 620 tasks used was chosen using year, site, and teacher as 

stratification dimensions. The resulting sample included 144 tasks.  Each task was coded along 

four main categories including task description, task set up, task implementation, and the factors 

of maintenance or decline of high-level tasks.  In order to examine the consistency with which 

tasks were set up and implemented, the characteristics of the tasks as they were setup were 

superimposed with the characteristics of the task as implemented, resulting in the ability to 

directly compare the two. Evidence of student learning outcomes was based on results of the 

assessment tool developed by QUASAR researchers, the QUASAR Cognitive Assessment 

Instrument, QCAI. School sites were rank-ordered based on the student learning gains over a 

three-year period.  

The results indicate that classrooms that focused on tasks of high-level cognitive demand 

were associated with the most gain in student learning. Conversely, students’ learning gains were 

relatively small where instruction was procedurally based. Further, students’ learning gains were 

more robust when the instruction was focused on a task that was set up to include a high level of 
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cognitive demand, even if it was implemented in such a way that students were not engaged in 

high levels of reasoning or problem solving. Student thinking in the high set-up/high 

implementation classrooms was characterized by complex, non-algorithmic thinking while 

student thinking in the low set-up/low implementation classrooms was mechanical, and included 

predetermined routes that exposed neither the conceptual underpinnings nor mathematical 

reasoning.  The different forms of thinking were associated with differences in student learning 

based on the QCAI.   

These QUASAR-related studies point to the significance of the task as selected and 

enacted by the teacher as a critical step toward student learning. Tasks that require students to 

explore and understand mathematical concepts, processes, or relationships, requiring that 

students develop meaning through the use of multiple representations and analysis, while 

accessing prior relevant knowledge fall into the category of high-level cognitive demand. These 

tasks often require students to use non-algorithmic thinking while persevering to develop 

solution strategies. Properly chosen tasks that contribute to the principle of problemetizing offer 

the opportunity for everyone to make a contribution to both individual and group success.  

Although important, the high level mathematical tasks themselves are necessary but not 

sufficient in developing a rich learning environment because the cognitive demand of the task 

may change as the tasks are enacted during instruction (Stigler & Hiebert, 2004; Tarr et al., 

2008; Stein & Lane,1996).  Maintaining the task’s high level of cognitive demand without 

allowing the task to degrade to a routine, algorithmic problem requires vigilance and skill on the 

part of the teacher.  Drawing conceptual connections, modeling high level performance, pressing 

for justifications and explanations, are just a few of the elements that must be integrated into the 
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classroom by the teacher if the cognitive demand is to be maintained and the problematizing 

principle is to undergird instruction (Stein & Lane, 1996). 

The four studies that are summarized in Table 1 represent a sample that illustrates the 

presence of the principles of productive disciplinary engagement in learning environments that 

mathematics research has deemed to be effective. Engle and Conant (2002) presented their 

principles of productive disciplinary engagement as a theory that these principles could apply 

across learning environments in ways that could inform both the design of a wide range of new 

learning environments as well as research about existing ones. Based on these examples of 

research that represent different-sized studies and with varying character, I concur that the 

principles of productive disciplinary engagement are present in innovative learning environment.  
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Table 1. Principles of Productive Disciplinary Engagement in Whole Class Discussions 
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Table 1 (continued)  
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2.6 PARTICIAPNT FRAMEWORKS 

The principles of productive disciplinary engagement inform the design of a classroom culture 

that utilizes a particular participant structure.  Contrary to an IRE sequence (Cazden, 1988; 

Mehan, 1979) in a traditional classroom, where the teacher initiates a question, waits for a 

student’s response, then reserves the right to evaluate the student’s response, the sharing of 

authority that is an essential principle of productive disciplinary engagement, has the potential to 

dramatically transform the roles and responsibilities of classroom participants.  Researchers have 

proposed and evaluated new classroom “participant structures” (Phillips, 1972) that have enabled 

students to become contributors and active participants in classroom discourse.  Many of these 

studies point to the complicated process of language use in teaching and learning and the ways 

that language may be used as a resource by a teacher to coordinate participant structures 

(Erickson, 1982; O’Connor & Michaels, 1993; Lampert, 1990; Boaler & Brodie, 2004; Hufferd, 

Ackles, Fuson, & Sherin, 2004; Cornelius & Herrenkohl, 2004; Tabak & Baumgartner, 2004). 

Lampert’s (1990) action research study designed to examine whether and how it might be 

possible to bring what it means to know mathematics in school, closer to that within the 

discipline by deliberately altering classroom discourse and tasks is a noTable 4.7xample of 

research that points to the ways in which the teacher’s discursive practices work to coordinate 

academic tasks with social participation.  In this study, Lampert served the dual role of 

researcher and teacher in a fifth grade, heterogeneous classroom in a public school.  The study 

included an intervention that included purposefully changing the mathematical tasks and social 

norms that were present in a traditional classroom; challenging students’ assumptions about what 

it means to know mathematics.  She illustrates that students have changed in the way they think 

about what it means to know and do mathematics.  She uses the term “cognitive technologies” to 
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mean the knowledge of tools, symbols, and vocabulary that were necessary in establishing the 

mathematical arguments that were a part of her goal for students. In her description of her 

teaching she relied heavily on “cognitive technologies” as students gained both knowledge of 

mathematics (mathematical content), and knowledge about mathematics. She described 

pedagogical moves involved in implementing new participant structures, including encouraging 

students to engage in struggling through solving of mathematical tasks.  The questions that she 

expected them to answer went well beyond simply determining if they could get the answer. She 

expected them to answer questions about mathematical assumptions and the legitimacy of their 

strategies. This study is an early example wherein the goal was in essence to subject theory to the 

conditions of practice.  Lampert clearly represents herself as having different skills than an 

elementary teacher.  However, notwithstanding the differences, her claim that it was possible to 

produce the kind of classroom environment that was more consistent with the discipline, and 

advocated by the standards-based movement was warranted.  The purposeful modification of a 

traditional IRE participant structure to one wherein authority was shared and roles and 

responsibilities were consequently redefined, produced a classroom culture that would be 

congruent with one informed by the principles of productive disciplinary engagement.  

This study is widely cited because it provides insight into what is possible. Through her 

knowledge of theories and conviction toward developing a culture wherein mathematics learning 

was more than memorization and procedures, she demonstrated that what had been recently 

reported in the NCTM Principles and Standards (1989) could become a reality.   

Likewise, Boaler &Brodie’s (2004) questioning framework delineates differences in the 

focus of questions from finding the right answer toward a posture of questioning to uncover the 

mathematical thinking behind the answers.  Central to the framework is the concept that different 
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question types shape the nature and flow of classroom discourse and that instruction must be 

viewed using a fine grain size to uncover essential differences in instruction. Details of the 

Questioning framework may be found in Appendix B.  Their work draws attention to role of the 

teacher question type in determining participant structure. For example, a question that is aimed 

at gathering information results in the teacher likely serving in the role of an evaluator of the 

information, whereas a question posed with the intent of encouraging discussion likely places the 

students in a more authoritative position, resulting in a different participant structure.  

Tabak & Baumgartner (2004) use the metaphor of symmetry to compare participant 

structures.  They present the teacher as partner versus the teacher as monitor and the teacher as 

mentor structure.  These three participant structures were used to delineate the ways that teachers 

engaged students in conversations about their work in a small group setting.  In a symmetrical, 

teacher as partner, relationship the teacher investigated with students, joining a group for a few 

minutes and taking part in the investigation as a genuine member of the group. In this way the 

teacher-student relationship was described as being symmetrical.  This shift in the mode of 

interaction, from a traditional classroom includes a shift in number of teacher or student turns.  

There may be a sequence of consecutive teacher or student turns. This symmetrical relationship 

is in direct contrast to the teacher as monitor participant structure wherein the teacher serves to 

set up the task and make sure the flow of classroom activity is sustained.  The teacher either 

briefly acknowledges student progress or she may provide feedback and explain procedures.  In 

the teacher as mentor structure the discourse pattern is an I-R-F (Initiation, response, feedback 

from the teacher) pattern.  The teacher tries to help the students align their thinking and actions 

without dictating actions or explanations.  Interactions focus on supporting the substance of the 

inquiry process. In my opinion, the teacher as mentor structure is inadequately defined in relation 
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to the others. For this reason, I will refer to only the teacher as monitor or teacher as partner 

participation summary.  

2.7 RESEARCH RELATED TO THE PRINCIPLES OF PRODUCTIVE 

DISCIPLINARY ENGAGEMENT 

Following Engle & Conant’s (2002) proposal of the principles of productive disciplinary 

engagement as a framework that was intended be used across classroom case studies to support 

comparisons, much research has built on the original framework.  Engle (2011) advances the 

ideas introduced in the framework to a large extent through the review of fourteen case studies 

that were explained using the principles, three case studies that included partial realization of the 

principles, and six case studies that lacked the characteristics of the principles of productive 

disciplinary engagement.  

Among the empirical studies on which Engle (2011) focuses includes Stein, Engle, 

Smith, & Hughes, (2008) related to five teacher practices for facilitating discussions.  This paper 

focuses attention on the principle of problematizing primarily, as well as the other principles to a 

lesser degree.   According to Engle, utilization of the five practices for orchestrating discussions 

engenders students’ commitment to address the tasks while maintaining the intended cognitive 

demand of the task through a set of teaching strategies that include anticipating student 

responses, monitoring student responses that arise, selecting which student solutions to present to 

the class, sequencing the responses with a particular learning goal in mind, and asking 

preplanned questions that encourage students to connect the responses to each other in order to 

surface disciplinary ideas and practices.  The implementation of the five practices described 
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above depends on the teachers’ choice of tasks having a high cognitive demand (Henningsen & 

Stein, 1997; Stein, Grover, & Henningsen, 1996; Stein, et al., 2000). Largely through the choice 

of the task and the instructional practices related to orchestrating classroom discussion, students 

are likely to experience uncertainty; a key element of problematizing. According to Engle (2011, 

p. 7), that is uncertainty about what to do, uncertainty about what to conclude, uncertainty about 

how to justify what one is doing or concluding, or uncertainty caused by competing alternatives 

about any of the three other issues.  In addition, authority in terms of authorship and sense of 

intellectual agency is supported through student presentations to their class, in the five practices 

model.  Through the practice of connecting, students are held accounTable 4.8or relating to 

others the ways that disciplinary ideas are related.   Selecting particularly innovative or canonical 

approaches to solutions through the process of selecting offers students the resources for 

disciplinary engagement as well as a way for the teacher to hold them accountable to the 

discipline and other students.   

More recently, an entire section of the International Journal of Educational Research 

(2014, vol. 64)  was devoted to reporting empirical studies related to the principles of productive 

disciplinary engagement.  The journal included an introduction to the special issue authored by 

Forman, Engle, Venturini, & Ford, and four articles that shared in common the use of the 

productive disciplinary engagement framework.  The article by Mortimer and Oliveira de 

Araujo, (2014) describes a private high school classroom for middle class students.  Whether or 

not the teacher’s practices can be considered instances of productive disciplinary engagement 

and whether teaching that encourages productive disciplinary engagement can co-exist with 

more traditional instruction were the foci of the study. Venturini and Amade-Escot’s (2014) 

article describes a French middle-school classroom in an impoverished area where student safety 
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is a concern.  This study focuses on the nature of productive disciplinary engagement in this 

challenging setting and the dynamic balance between the selected tasks and the resources 

provided. Meyer’s (2014) study highlights how supporting productive disciplinary engagement 

may need to be considered as an iterative process, with necessary support changing from the 

initiation to later teacher experiences. The introduction to the special section, frames the articles 

and highlights the contributions of the articles to the productive disciplinary framework, as well 

as to engage the readers in considering ways of extending, challenging, and elaborating on the 

framework. 

2.8 SUMMARY 

The studies reviewed inform the proposed study in several ways.  First, the aggregate of studies 

that individually offer consistent support of the principles described by Engle & Conant (2002) 

begin to validate the generality of their assertion; that is the principles of productive disciplinary 

engagement apply across learning environments in ways that could inform the design of new 

learning environments as well as research about existing ones. In other words, the composite of 

studies suggests that Engle & Conant’s four principles of productive disciplinary engagement 

(authority, accountability, problematizing and using resources) may be used as a framework for 

analyzing features of the environment that contribute to student engagement.  Studies that are 

largely focused on instructional practices related to whole group discussion support and define 

the four principles suggested by Engle & Conant (2002).  The norms, structures, and classroom 

features that combine to create an environment supportive of productive disciplinary engagement 

encourages students to participate with increasing intensity in the practices of the community, 
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becoming active in the learning process (Boaler & Staples, 2008; Tarr et. al., 2008; Kazemi & 

Stipek, 2001; Chapin & O’Connor, 2007; Goos, 2004; Hiebert & Wearne, 1993; Silver, Smith & 

Nelson, 1995).  

The proposed study contributes to the mathematics education field in several ways.  First, 

it examines the instructional environment, teacher and student behaviors when the principles of 

productive disciplinary engagement are used as a tool to design the learning environment.  If one 

agrees that the principles are present in effective learning environments, as I claim after 

reviewing the research related to whole group discussion, then using these same principles to 

design the environment seems to be a worthwhile endeavor. Instead of examining the 

environment after it has been established, results from this research might inform practitioners in 

ways that may enable them to construct the environment using the principles of productive 

disciplinary engagement as a design tool. Recognizing the complexity of integrating all four 

principles of productive disciplinary engagement simultaneously, it is my intent for the proposed 

study to include these principles while relating teacher practices and student behaviors. 

Understanding the nature of student behaviors when the principles of productive disciplinary 

engagement are used for the design of the learning environment will be essential toward 

understanding student learning. The guiding assumption is that for most students, the extent of 

their engagement in personal thought and the thinking of peers defines their learning.  Learning 

to talk with peers regarding the discipline is critical, and depends on specific teacher behaviors to 

encourage this kind of behavior. So examining student behaviors will provide insight toward 

understanding student learning.  Schoenfeld (2012) examined the complexities related to 

constructing a classroom analysis scheme and he proposed several well-grounded frameworks to 

establish a relationship between classroom practices and the student understandings that result 
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from those practices. His work causes reflection related to ways to capture the relationship 

between classroom practices and the robust student understandings that may be related to those 

practices.  
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3.0  METHODOLOGY 

3.1 INTRODUCTION 

This investigation explored the ways in which the four principles of productive disciplinary 

engagement may be used as a tool for informing the design of the norms, structures, and 

classroom features that combine to form a learning environment.  The study examined both the 

instructional practices employed by the teacher and the nature of student engagement in a 

seventh grade classroom over the course of one unit of study, following the implementation of 

intentional pedagogical practices aimed at implementing the four principles of productive 

disciplinary engagement during the initial half of the year.  

 The study  examined the following research questions using mixed methods.  Given the 

goal of understanding the ways that the principles of productive disciplinary engagement are 

evident in the instructional practices implemented by the teacher and enacted by the student, data 

were collected to inform my understanding of the instructional practices and classroom 

interactions, students’ views of their mathematics class, and the work required of the teacher to 

implement these principles in the classroom.  Recognizing that qualitative research can never 

capture “reality” and that what is captured is really people’s construction of the way they 

understand the world, I  attempted to address internal validity through the use of the triangulation 

of multiple data sources (Patton, 2002).  Data sources included video transcripts of one unit of 
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study, the tasks used within the unit, the student work that was produced as part of assessment or 

used in whole group discussion, teacher reflections of the lessons, and a student survey. Findings 

from these multiple sources were analyzed independently then in relation to one another in order 

to illuminate trends and themes across sources and to afford the opportunity to triangulate the 

data. By using multiple data sources that provide information related to one research question the 

validity of the results was established. 

  Validity was also established within the analysis of video transcriptions.  Using complete 

lesson transcriptions enabled me to look for multiple instances of the principles of productive 

disciplinary engagement, as described in the research literature, within and across lessons as well 

as instances where those principles may not be apparent; establishing validity. Pattern matching 

(Yin, 2009) is described as comparing empirically based patterns with predicted ones. Patterns in 

this case are ways of enacting the principles of productive disciplinary engagement.  In this 

study, internal validity was strengthened when research-based findings, reported in the literature, 

coincide with the empirical evidence in the classroom.  

Research Question #1:  

In what ways are the principles of productive disciplinary engagement: 1) evident in the 

instructional practices implemented by the teacher and 2) enacted by the students? 

A) In what ways does the teacher expand or constrict the distribution of authority within 

the classroom?  In what ways do the students act with authority? 

B) In what ways does the teacher hold students accountable to themselves, peers, and the 

discipline?  In what ways do the students engage in the social and intellectual 

practices that reflect accountability? 

C) In what ways does the teacher encourage students to take up intellectual problems 
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that simultaneously:  engender genuine uncertainty in students, are responsive to 

learners' own interests and goals, and embody some central aspects of the discipline 

in question, that defines problematizing? In what ways do the students reflect genuine 

uncertainty in the instructional environment? 

D) In what ways does the teacher encourage students to amplify their capacity to 

solve problems through the provision of resources? In what ways do students utilize 

resources to problem solve? 

Research Question #2 

A) What work is required of the teacher in order to translate the principles of productive 

disciplinary engagement into practice?  

B) What challenges and successes does the teacher encounter along the way? 

I chose a case-study approach because the purposes of the study demand an in-depth 

understanding of the situation and its meaning for those involved (Merriam, 1988).  Because I 

was interested in the process of describing the elements of an instructional environment, it was 

necessary to describe interactions among the students, as well as their interactions with the 

teacher.  The shared disciplinary norms, ways of interacting and roles assumed by participants 

needed to be thoroughly described.   

 

3.2 CONTEXT OF THE CLASSROOM STUDY 

This study focused on the students and teacher in one seventh- grade mathematics classroom. 

Each of the lessons that together comprise one mathematics unit from the seventh grade 
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Connected Mathematics unit focused on probability was captured.  I chose this unit of study 

because students generally have limited experience with this topic, but have engaged in the study 

of proportional reasoning, a related unit, earlier in the school year.  Students’ limited experience 

with the topic of probability offered the opportunity to document the ways that students were 

productive in making connections to prior experiences with proportional reasoning and in 

developing generalizations related to ways to calculate probability without the interference of the 

prior procedural instruction.   The unit of study included fifteen lessons and took place over a 

four-week period.  The unit began with eleven sequential lessons, was interrupted by state 

testing, then resumed for four days the following week.  In order to provide additional context 

for the study, the participants and the school are described in the following sections.  

3.2.1 School 

The current study focused on one class of students and one teacher in a seventh-grade regular 

education classroom at Berry Middle School over a unit of instruction related to the topic of 

probability.  Berry Middle School, located in a suburban school district, includes approximately 

620 seventh grade and 600 eighth grade students and was named a 2012 Blue Ribbon School and 

a 2011 and 2014 National and State School to Watch.  Mathematics for seventh grade students is 

taught by five, regular education mathematics teachers and five special education teachers using 

a team concept.  

Not including students with severe disabilities, seventh grade students in this district are 

enrolled in one of three seventh-grade courses based on standardized test scores, academic 

grades, and teacher recommendations. Using this criteria, the lowest-performing, quartile 

(approximately) of the students are enrolled in Pre-Algebra that includes three extra periods of 
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mathematics instruction per week; the middle two quartiles of the students are enrolled in Pre-

Algebra which meets daily, and the highest performing students (approximately one quartile) are 

enrolled in Honors Algebra.  The teacher/researcher who is the focus of this study taught four 

sections of Pre-Algebra that met for one period, five days per week and one section of Honors 

Algebra.  Approximately eight students within this teacher’s Pre-Algebra classes (90 students 

total) required modifications to instruction or assessments based on the demands set forth in the 

students’ Individualized Education Plan (IEP). 

3.2.2 Participants 

The teacher /researcher and the students in the seventh period, Pre-Algebra class were the subject 

of this investigation. The nineteen students in the class included nine boys and ten girls.  All 

twenty students were Caucasian. Students represented a range of socio-economic conditions that 

included approximately 10% of students who qualified for free and reduced lunches.  Four 

students had Individualized Education Plans (IEPs). I chose to focus on the seventh period class 

for practical reasons related to the availability of a videographer. All four Pre-Algebra classes 

were a heterogeneous mix of students who performed relatively equally (between classes).   

The researcher was a doctoral candidate in Mathematics education who served the role of teacher 

simultaneously.  My background is atypical of mathematics teachers because my education and 

professional experience includes a B.S. in Materials Engineering and work in a related industry.  

Eleven years of teaching experience in grades K-4 preceded this teaching opportunity in seventh 

grade which I requested following a sabbatical year at the University of Pittsburgh in pursuit of a 

doctoral degree in Mathematics Education.  
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3.2.3 Instructional practices 

The data for this study were gathered in a classroom following twenty two weeks of instruction 

that focused on purposefully implementing the principles of productive disciplinary engagement 

into the instructional environment.  Although it would be impossible to characterize every 

element that was a part of the planning for this project, some of the decisions that influenced the 

character of the instructional environment are listed below.  

• The principle of problematizing was addressed through the selection of tasks that 

were intended to develop students’ conceptual understanding. Although the district 

uses the traditional Prentice-Hall Pre-Algebra curriculum materials, I chose to use the 

Connected Mathematics series as the basis of instruction, recognizing that these 

materials were designed to support teachers who were interested in teaching in a way 

that was consistent with the principles promoted by the NCTM and the CCSS-M. In 

addition to the Connected Mathematics lessons, in some instances I chose 

complimentary high-level tasks to include in lessons that I believed would support 

learning.  (Tasks were gathered from NAEP release items, Mathematics education 

research, or tasks from the NCTM or Illuminations websites). Mathematics education 

research suggests a relationship between the task chosen and student learning (Boaler 

& Brodie, 2004; Stein & Lane, 1996). In addition, the principle of problematizing 

(Engle, 2011) draws attention to importance of the task in engendering uncertainty in 

the learner, and embodying “big ideas” of the discipline.  Through the use of these 

materials, I have attempted to implement the principle of problematizing.  

• The principle of accountability has been purposefully implemented using several 

pedagogical moves.  Student assessments have included both individual paper/pencil 
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assessments as well as group assessments. This decision stems from my intent to 

illustrate that I value and take seriously the work that students do related to classroom 

tasks and to hold them accountable to classmates, the discipline, and to themselves 

(Forman & Ford, 2014). My perception of the necessary elements that combine to 

produce excellent quality work was defined in terms of rubrics for each assessment. 

Communication is an essential part of the environment. Students consistently 

addressed learning in groups of 2, 3, or 4; working together toward solution of the 

task and toward the production of a representation (or several) of the solution.  The 

expectation for students to ask questions of each other, perform think-alouds, 

challenge thinking and reasoning of others has become the norm, and provides a 

social condition that invites students to revise their ideas.  Explaining their ideas in 

light of others’ ideas has also been promoted through the teacher’s use of 

Accountable Talk.  Fostering disciplinary engagement through purposefully 

encouraging students to consider how their ideas do or do not make sense is a central 

feature of the pedagogy that supports the principle of accountability.   

• Developing student authority undergirds much of the structure of classroom lessons.  

Students work in small groups most of each class period.  A whole group wrap-up 

usually follows wherein ideas are shared and discussed.  As students work together in 

small groups, they develop solution strategies and make connections to other 

mathematical topics or representations.  These differences in thinking then are aired 

during whole group discussions.  Often, as students agree and disagree with solution 

methods presented, students exhibit passion about their view.  As authors of the ideas, 

they exhibit the ownership that the principle of authority represents. In addition to 
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authoring ideas orally, students frequently create representations of their thinking in 

written form.  These products offer the opportunity for students to evaluate other 

students’ work and cooperatively develop rubrics that illustrate elements of 

exemplary work. In addition, often students participate in a “gallery walk” wherein 

they ask questions of student-author work using sticky notes posted directly on the 

product.  These notes then provide opportunities for class discussion the following 

day, after I have had the opportunity to review them and identify partial 

understandings or ideas that deserve further discussion. In this way I try to balance 

authority with accountability. Homework assignments encompass several days; it is 

often assigned on Monday and due for submission on Friday. In this way, students 

have the authority to choose when to complete it, based on their own schedules. 

When it is submitted, a cover sheet must be attached.  The cover sheet includes 

questions that the student must reflect upon including: what mathematical questions 

remain, what resources they used in completing the assignment, and names and phone 

numbers of peer resources they used.  Homework is not graded for correctness 

because many parents participate in the completion of homework assignments while 

some students have no one to help them. Rather, students are awarded a small number 

of points for on-time submission that reflects “considerable effort”.   

• Resources such as manipulatives, virtual manipulatives using technology, graph 

paper, drawing tools, and peer groups are carefully considered in lesson planning. 

Using a variety of mathematical representations offers students ideational resources. 

Representations that include tables, graphs, student-drawn pictures, as well as other 

student-derived solutions offer peers a way to consider the task.  Resources are 
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available for students to use at any time.  In many cases, students have been reluctant 

to use the resources available; requiring encouragement and instruction regarding 

ways to use them.  

The building Principal has supported my use of lesson plans that are not consistent with the 

district lesson plan format. The lesson plan format that I submit includes a section for each of the 

four principles of productive disciplinary engagement so that I have a tool to help me plan the 

ways that I will include these principles in every lesson. An example is attached in Appendix E.  

Pre-planned questions, anticipated student solution and errors, ways I will structure the class to 

offer students authority and provide resources for example, were planned in advance as much as 

possible.   

3.3 DATA SOURCES 

The examination of an instructional environment required a description of an amalgam of 

pedagogical features and student behaviors.  Answering the research questions required a close 

examination of the classroom so as to determine the ways that students and the teacher interacted 

to construct the environment. With regard to research question one, there were several data 

sources that were used: verbatim transcripts of video recorded lessons, mathematical tasks, and 

student work that was produced as a result of the completion of assessments or was used during 

whole group instruction. In addition, a student questionnaire served to triangulate the data 

gathered by the teacher/researcher.  In order to answer research question two, data sources 

included lesson plans, teacher reflections, mathematical tasks, and transcripts of video recorded 

lessons.  
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3.3.1 Video of instruction 

Video records of daily, seventh-period, classroom lessons, transcribed verbatim, in their entirety, 

were the primary source of data for this study. Each forty-two minute lesson was videotaped 

using two cameras.  One camera was set on a tripod to capture the activity of the whole 

classroom, while the other was hand-held and focused on one small group per class. For the 

purpose of this study, the video that captured the entire class was used. Only fourteen of the 

fifteen videos were useable due to a technical difficulty during one videotaping session.  All 

students in the classroom had parent permission to participate in the study.  Table 3.1 offers an 

overview of the lessons that comprised the study. Mathematical tasks featured in each lesson are 

detailed in Appendix I.  
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1Adapted from Connected Mathematics (Lappan et.al, 2014) 
2Unless noted, the tasks were used without modification, from CONNECTED MATHEMATICS 3 WHAT DO 
YOU EXPECT? Copyright © 2014 by Michigan State University. G.Lappan. E.Phillips, J. Fey, and S.Friel. Used 
with permission of Pearson Education, Inc, 2014).  

Table 2. Overview of Probability Lessons in the Study 

Class Focus Question/Topic Tasks utilized during each 
lesson 

Data collected 

1 How does collecting more data help 
you predict the outcome of a situation? 

Problem 1.11 (For this 
problem, students were 
also asked to graph the 
percent of heads versus the 
number of tosses, 
following a coin-flipping 
task.)   

Video and student graphs 

2 How does modeling with an 
experiment help you determine possible 
outcomes and the likelihood of each 
outcome?  

Problem 1.2; part A,B Video  

3  How do you determine the relative 
frequency of an outcome?  

Problem 1.3 A,B, C and 
Problem 6A 

Video 

4  Partner Quiz 
 

4 questions and #19, p. 20 
(#19 had been assigned as 
homework.) 

Student written work 
Video of discussion 
related to #19. 

5  Using evidence to support the analysis 
of events 

Marble Task (Silver, 
Smith, & Nelson, 1995) 

Written work of partners 
and video 

6 Wrap up of marble task Marble task continued Video 
7 Developing probability models: using a 

tree diagram to analyze outcomes. 
Problem 2.3 and the 
Cafeteria Problem. 

Video and student tree 
diagram 

8 Using strategies to find theoretical 
probabilities. 

Marbles task (NAEP 
released item) and the 
Sticky Gum Problem 
(Silver, Smith, & Nelson, 
1995) 

Video and student written 
work. 

9 Using an area model to analyze 
compound events. 

Problem 4.1A and 4.1C Video 

10 Using an area model to analyze 
compound events 

Problem 1-4, pg 80 
Making Purple 

Video 

11 Assessment NAEP released item Video and individual 
student work 

12 Using an area model to analyze 
compound events 

Problem 4.2D Video (technical 
difficulty- no audio) 

13 and 14 Simulating a probability situation. How 
is an area model for the one-and-one 
free-throw situation like or unlike the 
area model for the Making Purple 
game?  

Problem 4.3 B1 and  
Problem 15, the Caves 
Paths task 

Video 

15 Assessment and student questionnaire Three questions and the 
questionnaire.  

Individual student written 
work and student 
questionnaire 
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3.3.2 Mathematical tasks and student work 

Another source of data that was used in the study included the tasks posed to students. Because 

the tasks chosen contribute to the establishment of problematizing within the instructional 

environment, they were considered carefully.  Each task that was assigned to students was 

collected for later analysis. Student work was not coded, but was collected and used to provide 

clarity related to whole class discussions and assessments. 

3.3.3 Student questionnaire 

A student questionnaire, shown in Appendix A, that sought to gather student perceptions related 

to the classroom instructional practices and the classroom environment was given to students at 

the conclusion of the data collection process.  I chose this time frame so that the instructional 

practices of this unit were those that were most recently experienced by students.  The survey 

included questions related to all four principles of productive disciplinary engagement (authority, 

accountability, problematizing, and resources).  Table 4.6 in the Results section highlights which 

questions address each principle.  

3.3.4 Lesson plans 

Lesson plans followed the format shown in Appendix E.  As I composed the plans for this unit, I 

used the materials for the teacher in the Connected Mathematics (Lappan et.al, 2014) curriculum 

as a guide.   Lesson plans were completed at least five successive days at a time, and modified as 

necessary, based on student thinking.  As the unit commenced, lesson reflections allowed for a 
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comparison of the intended lessons and the enacted lessons. I added that reflective narrative to 

the bottom of each lesson plan. The format was consistent throughout the school year and 

encouraged the consideration of ways to include the four principles of productive disciplinary 

engagement during the lesson enactment.  

3.3.5 Teacher reflection 

In an effort to answer the second question regarding the challenges and successes of 

implementing the principles of productive disciplinary engagement, I kept a daily reflection 

journal wherein I captured my frustrations and barriers to implementation, as well as successes 

and surprises related to implementation. Reflections took the form of a journal entry that was 

completed immediately following the class.  It was important that the reflection take place 

directly following the class because my perceptions of the class, the ways that students engaged 

and my own challenges and decision-making process during the class were best remembered 

then.  Moment-to-moment decisions were affected by my knowledge and disposition. It was my 

intent to decompose my practice, and in so doing, to further our understanding of the character of 

this particular endeavor of implementing the principles of productive disciplinary engagement. 

Lesson plans and teacher reflections are found in Appendices J through V.  
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3.4 CODING AND ANALYSIS OF DATA 

3.4.1 Data, Coding and Analysis: Research Question 1 

A description of the plan for coding and analysis of the data follows.  The description is 

separated into sections that detail coding and analysis plans related to each research question.  

For each question, each phase of analysis is described. 

Research Question #1:  

In what ways are the principles of productive disciplinary engagement: 1) evident in the 

instructional practices implemented by the teacher and 2) enacted by the students? 

A) In what ways does the teacher expand or constrict the distribution of authority within 

the classroom?  In what ways do the students act with authority? 

B) In what ways does the teacher hold students accountable to themselves, peers, and the 

discipline?  In what ways do the students engage in the social and intellectual 

practices that reflect accountability? 

C) In what ways does the teacher encourage students to take up intellectual problems 

that simultaneously:  engender genuine uncertainty in students, and embody some 

central aspects of the discipline in question, that defines problematizing? In what 

ways do the students reflect genuine uncertainty in the instructional environment? 

D) In what ways does the teacher encourage students to amplify their capacity to solve 

problems through the provision of resources? In what ways do students utilize 

resources to problem solve? 

The four principles of productive disciplinary engagement described by Engle & Conant (2002), 

include authority, accountability, problematizing, and resources.  The ways in which these 
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principles were embodied in the learning environment were captured via transcriptions of 

videotaped classroom lessons, mathematical tasks, and student work that was associated with 

classroom discussions or assessments, described earlier.  The coding of the video transcriptions 

with regard to each of the four principles was accomplished in several phases. A description of 

the collection, analysis, and reporting process, related to the ways that the teacher and the 

students reflect each of the four principles, follows.  

3.4.1.1 Video transcripts 

Engle & Conant (2002) define engagement using three criteria related to students. First, the 

number of students participating is indicative of engagement.  That is, more students 

participating, and few students “off task” is considered as more engagement. Second, greater 

intensity in the way students participate in the mathematics instruction is greater engagement.  

Such intensity might be apparent as students’ speech overlap and the way they attend to each 

other with eye gaze and body position.  Third, the extent to which participation of learners is 

responsive to others indicates greater engagement. Examples of responsive behaviors might 

include students making emotional displays, building on the thinking of others, and attending to 

their work for long periods of time. Further, Engle & Conant (2002) define engagement to be 

disciplinary when there is “some contact between what students are doing and the issues and 

practices of a discipline’s discourse” (p. 402).  They define the word productive to include, 

“significant disciplinary progress from the beginning to the end” of students’ engagement 

(Engle, 2007, p. 215).  They believe that productivity largely depends on the discipline, the task, 

the topic, and where students are when they begin to address the problem. Productivity, then, can 

only be judged on an individual basis. Disciplinary progress could be related to a design, making 

a new connection between ideas, or students shifting from explaining their own ideas toward a 
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posture that allows them to compare and challenge others’ ideas.  Authority reflects the idea that 

in order for students to become genuinely engaged in problems, they must have intellectual 

authority to do so.  As learners are authorized to share their thinking, they become recognized as 

authors of the ideas and contributors to the ideas of others, leading to students becoming local 

authorities on a subject. In order to balance authority, accountability addresses the need for 

students to be accountable to explain their own thinking; making sense in light of other people’s 

ideas. As accountability increases, learners improve their ideas so they are ready to be challenged 

more thoroughly by peers, internal authorities, and finally external disciplinary authorities 

(Engle, 2011).   

As the teacher relinquishes authority students develop into classroom experts, producing 

knowledge with ownership.  Students assume the task of developing problem solving strategies 

with increasing independence and also monitor the quality of their own work and the work of 

their peers.  Examples of ways that a teacher may share authority with students may include 

encouraging a student to share a solution method, setting the expectation that students will ask 

questions of peers so that classroom discourse is not between the teacher and individual students, 

and redirecting student questions to other students.  

Accountability in a classroom may include many facets including assessment practices 

and procedures, practices related to homework, norms related to the use of classroom tools, and 

other norms and procedures within a classroom.  For the purpose of this study, I refer to 

accountability in terms of the interaction between individuals; the teacher and students, or among 

students.  

The ways in which the environment embodies the principle of problematizing demands 

the analysis of both teacher and student behaviors. With regard to students, problematizing 
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includes examining ways that genuine uncertainty is evident.  Engle points to four kinds of 

uncertainty that may be apparent: 1) uncertainty about what to do, 2) uncertainty about what to 

conclude, 3) uncertainty about how to justify what one is doing or concluding, and 4) uncertainty 

caused by competing alternatives about any of the three prior issues.  Student behaviors that are 

indicative of uncertainty in the environment may include reassessing a solution path, trying a 

new tact, thinking but not writing, asking questions related to what to do or what to conclude, 

multiple attempts to justify a position orally or in writing, to name a few. Problematizing also 

suggests specific actions and choices made by the teacher.  In order for problematizing to be 

present in the environment the task chosen must create genuine uncertainty, be responsive to the 

learners’ own interests and goals, and embody some central aspects of the discipline in question 

(Engle, 2011).  In addition, the definition I use for problematizing includes the selection of a task 

that meets the criteria of one of high cognitive demand (Stein, Smith, Henningsen, & Silver, 

2000).  These criteria suggest that the task chosen by the teacher is of significant importance to 

ensuring that problematizing is embodied in the environment.  

The provision of relational, material, and ideational resources amplify a student’s 

capacity to participate in productive disciplinary engagement. Video footage of classroom 

episodes in both small, collaborative groups and whole group discussion, provide the data to 

determine the ways in which resources are evident in the instructional environment. Relational 

resources as described by Nasir & Cooks (2009) include the relationship between students and 

each other, and students and the teacher.  Material resources may include physical manipulatives, 

the time to work on a problem, or physical mathematical tools.  Resources that offer the student a 

way to think about a task or their posture about a task would be termed an ideational resource.  

An alternate representation, an organizing method for data, the development of language that 
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could be used in expressing mathematical ideas or the teacher’s emotional stance would all be 

examples of ideational resources. 

 The first phase of the plan for data coding included transcribing each video in its entirety 

and then highlighting every instance of the principles of productive disciplinary engagement that 

were apparent in each of the video transcriptions using the operational definitions defined prior 

to the start of the investigation to guide my work.  Instances of the four principles of productive 

disciplinary engagement were highlighted in the original transcripts in contrasting colors.  

Review of the transcript and modifications to the operational definition occurred iteratively until 

each transcript had been reviewed exhaustively.  The operational definitions that were used as a 

starting point for identification in the transcripts follow.  

Operational definition of shared authority:  

• Students demonstrate authority when they make claims and anticipate the potential 

critique of others. Student authority will be  apparent in the way students explain their 

mathematical reasoning when they offer potential solutions.  Careful consideration of 

the reasons behind their solution indicate students  anticipating the critique of others. 

For example, “I think three is the most likely outcome, because there are four chances 

of getting three and only two chances for the other numbers.”  

• Students simultaneously make ideas their own as they critique the reasoning of 

others. Critiquing the reasoning of others may be apparent in both oral and written 

student work.  A position-driven discussion offers students the opportunity to change 

their mind.  They may initially agree with one side of the argument, then reconsider 

their position; based on the critique of the reasoning behind their position. An 

hypothetical example of such a discussion follows. 
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Teacher: Henriet, do you agree with Bob or Madia? 

Henriet: I understand Bob’s reasoning, but Madia’s also is making sense. 

Ute: I disagree with Madia because there is a higher proportion of yellow faces than 

green faces. 

Henriet: Oh, I see Ute’s point.  There must be a larger chance of rolling a yellow 

because the number of yellow faces to the total number of faces is a higher percent of 

the total.  

• Students initiate ideas that are taken up by the teacher and class. As the teacher or 

another student gives credit to a student for an idea, and the class then engages in a 

discussion of that idea, authority is being shared. 

• The teacher positions herself as a peer through the use of first-person or inclusive 

pronouns such as “this tells me..” (Cornelius & Herrenkohl, 2004). 

• Turn taking is I-R-R-R (Cazden, 2001; Mehan, 1979). 

• The teacher’s use of revoicing acts to promote student power (O’Connor & Michaels, 

1993, 1996). 

• The teacher uses language that places herself as a co-learner.  In so doing she shifts 

the power from herself to her students because she has placed them in a position to 

decide what part of the message to believe or adopt (Cornelius &Herrenkohl, 2004). 

• The students are allowed and encouraged to question each others’ thinking and 

theories (Boaler & Brodie, 2004) 

Operational definition of accountability: 

• Learners are positioned to evaluate their own ideas and those of others (Davies & 

Harre, 1999; Yamakawa, Forman, & Ansell, 2009). 
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• The teacher consistently presses for explanations that include the underlying 

mathematical thinking; not just procedural steps (Kazemi & Stipek, 2001) . 

• Students are encouraged to agree /disagree with classmates using mathematical 

reasoning and justification in sustained exchanges.  

• The teacher and students respond with respectful, substantive interest when another 

student genuinely shares what he is really thinking about a topic. 

• The students are encouraged to justify their reasoning to themselves during written 

work; what O’Connor & Michaels (1993) would call being accountable to 

themselves.   

• The students are encouraged to justify their reasoning to peers during small group 

work and whole class discussions. The teacher frequently accomplishes this task 

using Accountable Talk moves listed in Appendix F (O’Connor & Michaels, 1993, 

1996),  and questions characterized by Boaler & Brodie, (2004), as “probing”, 

“generating discussion”, “linking and applying”, and “exploring mathematical 

meaning” (Appendix B) .  

Operational definition of problematizing: 

• The task chosen is one that is high-level (Appendix C)  according to the Math Task 

Analysis Guide (Stein, Smith, Henningsen, & Silver, 2000),  and represents “big 

ideas” of mathematics for students of the grade level. 

• The teacher has chosen a task that engenders genuine uncertainty in students that may 

include: uncertainty about what to do or what solution path to follow, what to 

conclude, how to justify what one is doing or concluding, or caused by competing 
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alternatives about any of the three prior issues. Students must exert effort to arrive at 

a task solution and cannot immediately solve it.  

• The students do not give up and ask the teacher for the solution to a challenging task; 

they struggle toward the common goal of solution.  

• The students express uncertainty in the form of statements of uncertainty, asking 

questions, rereading the question/problem, sitting silently, seeking material resources.   

Operational definition of resources:  

• Resources include material, ideational, and relational resources (Nasir & Cooks, 

2009).  This definition expands that of Engle & Conant (2002).   

• Material resources include traditional tools such as manipulatives, paper, spinners, 

clocks, or any other tool that amplifies a student’s capacity to problem solve. 

• Relational resources include other humans and human interaction, such as that of 

peers, coaches, parents, teachers. 

• Ideational resources help students construct meaning through linking of ideas such as 

through the use of multiple mathematical representations (tables, graphs, pictures), or 

ideas for questions that students may ask of peers in the form of a wall-mounted 

chart. Material resources will be limited to paper, pencils, manipulatives, while 

ideational resources will include mathematical representations, or alternate ways of 

illustrating a problem or solution.  

• Student errors or partially solved problems are used to encourage students to 

construct meaning.  
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• Time is considered as a resource by the teacher.  Adequate time is provided to 

students to solve problems.  Students have time to complete the task with care, but 

not so much time that they engage in off-task talk or activities.  

As I highlighted each transcription for the four principles, using the operational 

definitions above, patterns related to the ways each of the principles was apparent began to 

emerge.  For example, as I highlighted instances of students assuming authority, a pattern related 

to the teacher positioning herself as a peer became apparent.  Additionally, other patterns became 

apparent, such as students’ noticing different features of tasks and solutions. Students repeatedly 

exhibited specific behaviors.  As I saw behavior patterns emerging, I used sticky notes to index 

instances of each.  Piles of sticky notes, related to certain teacher or student behaviors informed 

the coding scheme.  The coding scheme that emerged from the use of the operational definitions 

and that was ultimately applied uniformly to all transcripts is shown in Appendix G.   

Video records also provided the necessary data to produce event maps of each class.  An 

example of an event map is illustrated in Figure 3.1.  The event maps provide a macro-level view 

of each class, allowing the reader to locate the transcribed examples within the lesson.  The value 

of this capacity is that the reader may glance at the event map and recognize what events and 

structures have come before or after the segment being described in the text; providing 

perspective for the reader.  For example, the event map shown in Table 3.1 illustrates for readers 

the changes from small group to whole group instruction as well as the time spent on individual 

topics, called topically related segments (TRS).  This information helps the reader to recognize 

that in this lesson, the class’ attention to developing a generalization related to the theoretical and 

experimental probability included a computer simulation for the whole group, followed by whole 

group discussion of the salient points of the simulation.  Next small groups discussed the 
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generalization, followed by a whole group wrap up.  The event map provides a “birds-eye” view 

of the lesson.  When placed in parallel with transcript selections throughout this document, that 

include time stamps and line numbers, the event map offers a way for the reader to accurately 

locate the event within the context of the lesson.  

Each event map was created following the transcription of a lesson.  Because the 

topically related segments necessitate the identification of occasions within the lesson where the 

class is focused on one topic, I watched the videotape repeatedly, concurrently reading the 

transcript.  When the topic changed, and the class was refocused, I marked the transcript to 

indicate the change.  In addition, in order to produce the event map, I needed to identify whether 

students were working in small or whole group.   Changes in the activity structure and the topic 

are located on each event map, including the elapsed time with the lesson.   
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Figure 1. Sample Event Map 

3.4.1.2 Mathematical tasks 

The tasks posed, that contribute to the establishment of problematizing within the instructional 

environment, were coded using the Math Task Analysis Guide (Stein, Smith, Henningsen, Silver, 

2000) shown in Appendix C. The tasks were carefully selected to: 1) meet the criteria of a task of 

high cognitive demand, 2) engender genuine uncertainty within students, and 3) reflect 

mathematics that is part of the CCSS-M content standards for seventh grade. Because tasks 

labeled “doing mathematics” in the Math Task Analysis guide require complex, non-algorithmic 

thinking, do not suggest a solution pathway, and require students to self-monitor their progress, 

these tasks often produce anxiety or uncertainty in students.  Through the analysis of the 
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potential cognitive demand of the task, I characterized the tasks that have been assigned.  

Individual tasks used in lessons were scored.  If more than one task was used in a lesson each 

task was scored. According to the definition of task referenced previously, individual questions 

were not scored. Rather, a group of questions designed around one concept were scored.  For 

example, during the first day’s work, students attended to Problem 1.1 in the Connected 

Mathematics materials (Appendix I).  The task had three parts, labeled A-C, and several 

questions within part B.  I coded the entire Problem 1.1 with one designation using the Math 

Task Analysis Guide.  Task scores were reported as a percent of tasks used for each category of 

the Math Task Analysis guide. For example, “73% of tasks used in this unit fell within the 

Procedures with Connections category.” This information provided insight regarding 

instructional elements that contributed to enacting the principle of problematizing in a classroom, 

including the instructional task. 

According to the Math Task Analysis Guide, tasks with lower level cognitive demands 

are labeled either memorization tasks or procedures without connections tasks.  Both of these 

groups of tasks are focused on producing the correct answer and have little ambiguity about what 

needs to be done and the way to do it. An example of such a task used in this study is homework 

problem 1, assigned day 2.  The problem states,   “Mikki tosses a coin 50 times, and the coin 

shows heads 28 times.  What fraction of the 50 tosses is heads? What percent is this?”  Based on 

the idea that most seventh grade students already understand a procedure for finding a percent of 

a total, this task is algorithmic. 

With regard to probability, an example of a task deemed procedures with connections is 

homework question three, assigned on day 2 of the study. The problem says, “Kalvin tosses a 

coin five days in a row and gets tails every time. Do you think there is something wrong with the 
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coin?” Although the solution depends on a procedure, there is no solution path that is prescribed 

and the solution requires some degree of cognitive effort.  

At the highest level of cognitive demand are doing mathematics tasks (Stein, Silver, 

Smith, & Henningsen, 2000).  An example of such a task is the well-documented task shown in 

Appendix I, day 5, the Marble task (Silver, Smith, & Nelson, 1995).  This task offers students 

multiple solution paths, and the exploration of relationships among mathematical concepts.  For 

seventh graders, students must draw on their knowledge of proportional relations, graphing, and 

linear relations and develop connections to probability.  Because there is no algorithm presented, 

students must explore and develop a solution path themselves.  

 

Table 3. Student Work Codes 

Code Definition  Example Principle 

US Student uncertainty “I don’t understand” Problematizing 
JS Student justifying reasoning 

without prompt 
“ I know the answer is 
2 outcomes because… 

Accountability 

N Learning to Notice- student 
sorts through information 
provided and selects 
features of the task to use in 
solution. 

“I notice that the 36 is 
3 times the size of 
12.” 
 

Authority 

    
 

3.4.1.3 Student questionnaire 

A student questionnaire (Appendix A) offered students the opportunity to express their view of 

the ways that they participate and engage in the principles of productive disciplinary 

engagement.  The first portion of the survey was used to inform the results of research question 

#1, while the second portion informed the results of research question #2.  Table 4.6 informs the 
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reader regarding which principle is addressed by each student question. Frequency of student 

responses for each category was tabulated for every question.  This questionnaire served as one 

method of triangulation of data regarding the ways that the principles of productive disciplinary 

engagement were present in the instructional practices and enacted by students. Student 

perceptions of the mathematics classroom norms and instructional practices that were a part of 

the student questionnaire were compared with the descriptions of the classroom environment as 

presented by the teacher/researcher.  Comparison of the data gathered from each perspective 

provides validity to claims.  For example, the data may reveal, according to the researcher, that 

students often demonstrate authority through the independent decision to use the document 

projector to illustrate their ideas. A question in the student questionnaire to determine their 

perception of the use of the document projector seeks to understand their view.  Internal validity 

will be strengthened if both the researcher and students agree on that particular point.  

3.4.2 Data coding and analysis: Research question 2 

Research Question #2 

A)  What work is required of the teacher in order to translate the principles of productive 

disciplinary engagement into practice?  

B)  What challenges and successes does the teacher encounter along the way? 

Fostering norms that support a learning environment conducive of productive work by all its 

members has been explained using the concept of “the principles of productive disciplinary 

engagement” (Engle & Conant, 2002), These principles, designed for use in research, are  

repurposed in this study as guiding principles in the creation of the learning environment.  They 

are being subjected to the conditions of practice and examined in a concrete situation.  
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Recognizing that, “the knowledge that is used to analyze teaching is not entirely the same as the 

knowledge that is used to teach” (Lampert, 1990, p. 37), the research question posed here points 

to the examination of the teacher’s role, the specific instructional strategies the teacher uses, and 

the practical reasoning entailed in teaching lessons having a specific character in one particular 

setting.  

3.4.2.1   Lesson plans 

In order to answer research question 2, I examined lesson plans in relation to the lesson 

reflections, looking for consistencies and inconsistencies related to the plan versus the way the 

lesson actually unfolded.  In addition, I examined the lesson plans alone for features of the plans 

that were common to all or most of the plans. Through the examination of the plans and 

reflections, I was able to identify critical components of the planning process and suggest 

reasons for inconsistencies in the planning/enactment of the lessons that contribute to 

understanding the work of the teacher. 

3.4.2.2 Student questionnaire 

The results of the second portion of the student questionnaire contributed information related to 

the establishment of social practices in the classroom. The question, “How often does this 

happen in your mathematics lessons?” offered students the opportunity to express their views of 

some of the norms established.  The quantitative results of the survey were compared to results 

gathered through the analysis of the transcripts to establish validity. Quantitative results included 

tabulating the frequency of each student response category for every question. 
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3.4.2.3 Video tapes and transcriptions 

Because the enactment of the principles of productive disciplinary engagement depend on robust 

discussion, with the teacher positioning herself as one who is interested in students’ 

mathematical thinking, verbatim transcriptions were used to consider what teacher moves 

contributed or inhibited the interpretation of students’ mathematical thinking as each lesson 

proceeded.  Examining the transcripts for teacher moves that emerged within and across lessons 

provided information related to the work of the teacher at specific moments within lessons.  

Specifically, I examined the transcripts for evidence of the use of five practices for orchestrating 

productive discussion, a tool that I have purposefully incorporated into lessons for many years 

(Stein, Engle, Smith, & Hughes, 2008). 

  Another way that the transcripts were used was to examine teacher questioning. The 

Boaler and Brodie (2004) questioning framework was utilized to examine the work of teacher 

questioning. The importance of teacher questions in shaping the nature and flow of classroom 

discussion has been identified as a critical and challenging part of a teacher’s work (Boaler & 

Brodie, 2004; Hiebert & Wearne, 1993).  The Boaler & Brodie (2004) study resulted in a tool 

that was useful for categorizing teacher questions, used in this study (Appendix B).  Sharing the 

definition of a question, used by Boaler & Brodie, every teacher question in fourteen lessons 

were coded.  (The twelfth class included a technical difficulty, wherein no audio was captured.).  

I chose to include utterances that had both the form and function of a question.  That is, I 

excluded statements that sounded like a question but didn’t function as such.  For example,  

“Would you like to share your thinking?” would not be coded for it serves as an imperative. In 

addition, questions needed to be mathematical in nature.  I excluded questions like, “Do you 
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have your homework?”.  If a question were repeated exactly, I counted it only once.  Results of 

the coding were reported both in tabular and graphical form and described in the text.  

3.5 REPORTING 

3.5.1 Research question one 

The results of analysis related to research question one will be in the form of rich, thick, 

descriptions that uses verbatim transcripts, mathematical tasks, student work, and the results of 

the student questionnaire as evidence of the ways that the principles of productive disciplinary 

engagement were 1) evident in the instructional practices implemented by the teacher and 2) 

enacted by the students. The patterns that emerged as a result of the coding process were also  

reported. Event maps of each class were reported as well.  

The mathematical tasks chosen were scored using the Math Task Analysis framework 

(Appendix C).  Tasks were scored and reported individually as well as a percentage of the total 

in each task category. A display that included the lesson day number, the mathematical task, its 

cognitive demand, and the lesson goal provided a way to examine general trends regarding the 

task selection on a day-by-day basis and across days.  

The resources utilized, were reported in tabular and descriptive form for each 

instructional day. Reporting in tabular form allowed for the consideration of general trends 

across lessons and the consideration of the resources that aligned with each task presented.  

The student questionnaire offered insight into the students’ perceptions of classroom 

instruction and the environment.  Results of this data source were compared with that of the 
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transcriptions of classroom videos.  Questionnaire results related to the first question, “How 

much do you agree with the following statements about your teacher in your Math class?”  were 

reported both quantitatively and qualitatively. Responses related to the second question in the 

student questionnaire are reported in the Results section related to research question #2.  

The results of video analysis and transcription were reported using specific examples 

from multiple lessons that shared common features. For example, multiple examples from 

several lessons wherein problematizing could be identified using the cognitive demand of the 

task combined with the expression of student uncertainty were reported using descriptive 

language combined with excerpts of verbatim transcription, and task code. Verbatim 

transcriptions were reported in tabular form for longer sections and embedded in the text for 

sections comprising less than ten turns of talk.  

3.5.2 Research question two 

The work that is required of the teacher in order to translate the principles of productive 

disciplinary engagement into practice as well as to identify the challenges and successes that she 

encounters along the way were reported in the form of thick, rich description; making every 

attempt to connect lesson plans, decision making, lesson reflections, and classroom events 

continuously and transparently. Patterns and themes that might inform others who are interested 

in implementing the principles of productive disciplinary engagement were reported.    

 The student questionnaire, question number two, addresses students’ perceptions 

regarding many of the social practices that contribute to the definition of the classroom norms.  

Who assumes responsibility for certain things, who explains and who listens at what times, who 

is free to move about the room and who is not, are just a few of the social practices of which 
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students are acutely aware.  The frequency of student responses on the questionnaire, were 

tabulated and reported.  These responses shed additional information regarding the work of the 

teacher.  

 Data regarding the challenges and successes of the teacher reflect my thought process.  I 

examined lesson reflections and considered challenges and successes on a day-by-day basis and 

also across the unit that I encountered. 

3.6 INTERRATER RELIABILITY 

In an effort to establish interrater reliability, a second coder was trained in the use of the 

abovementioned coding schemes using a sample transcript with accompanying video, and 

samples of student work. Specifically, three complete, randomly selected lesson transcripts 

(approximately 20% of the data) were double coded using the coding schemes in Appendix G 

(my framework related to the Principles of Productive Disciplinary Engagement), and Appendix 

B (Boaler & Brodie (2004) framework). In addition, all of the mathematical tasks used 

throughout the data gathering period were double coded using the Math Task Analysis guide 

(Stein, Smith, Henningsen, & Silver, 2000). The second coder was a doctoral student, familiar 

with Mathematics Education and Learning Sciences research. The training included a review of 

the coding schemes and independent coding of a sample lesson segment. Coding results were 

compared and differences were resolved by consensus.  An agreement level of approximately 

95% was achieved. Following all coding, the results were reviewed with Dr. Margaret Smith, co-

author of the Math Task Analysis Guide.  Her insights regarding codes for several tasks were 

considered and disagreements were resolved through discussion, resulting in full agreement. 

 96 



3.7 SUMMARY 

This study explores the ways in which the four principles of productive disciplinary engagement 

may be used as a tool for informing the design of the norms, structures, and classroom features 

that combine to form a learning environment.  The study examines both the instructional 

practices employed by the teacher and the nature of student engagement in a seventh grade 

classroom over the course of one unit of study, following the implementation of intentional 

pedagogical practices aimed at implementing the four principles of productive disciplinary 

engagement during the initial half of the year.  The data sources included video of classroom 

lessons, tasks in which the students engage, event maps, the student questionnaire,  and student 

work related to assessments or whole class discussion for research question one, and lesson 

plans, lesson reflections, the student questionnaire, and video of classroom lessons for research 

question two.  Data sources were analyzed using mixed methods. Reporting of the results of the 

analysis was in the form of thick, rich descriptions of the findings, tables, and figures, as well as 

through the quantitative results of the student questionnaire and the teacher questions.       
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4.0  RESULTS 

The results of the data analysis reported in this chapter are organized into two sections 

corresponding to the two research questions presented in Chapter 1. Each section has sub-

sections that explain patterns related to the principles of productive disciplinary engagement that 

became apparent as a result of the data analysis process.   As a reminder, the research questions 

are shown below.  

Research Question #1:  

In what ways are the principles of productive disciplinary engagement: 1) evident in the 

instructional practices implemented by the teacher and 2) enacted by the students? 

A) In what ways does the teacher expand or constrict the distribution of authority within 

the classroom?  In what ways do the students act with authority? 

B) In what ways does the teacher hold students accountable to themselves, peers, and the 

discipline?  In what ways do the students engage in the social and intellectual 

practices that reflect accountability? 

C) In what ways does the teacher encourage students to take up intellectual problems 

that simultaneously:  engender genuine uncertainty in students, and embody some 

central aspects of the discipline in question, that  defines problematizing? In what 

ways do the students reflect genuine uncertainty in the instructional environment? 
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D) In what ways does the teacher encourage students to amplify their capacity to solve 

problems through the provision of resources? In what ways do students utilize 

resources to problem solve? 

Research Question #2 

A) What work is required of the teacher in order to translate the principles of productive 

disciplinary engagement into practice? 

B) What challenges and successes does the teacher encounter along the way? 

These results include those from the analysis of verbatim transcriptions of classroom 

lessons, students’ assessments, the mathematical tasks used in each lesson, a student 

questionnaire, and event maps of each lesson. Consistent with the research questions, Section 

4.1.1 addresses the ways that the teacher and students enact the principle of authority.  Section 

4.1.2 addresses the ways that the teacher holds students accountable to themselves, peers, and the 

discipline as well as the ways that the students engage in the social and intellectual practices that 

reflect accountability.  The principle of problematizing is addressed in Section 4.1.3; addressing 

the mathematical tasks selected by the teacher and the uncertainty expressed by the students.  

The tasks and uncertainty are examined both independently and as well as in the ways they relate 

to one another.  Section 4.1.4 addresses the provision of resources by the teacher, as well as the 

ways that students utilize resources to problem solve. Each of these sections includes sub-

sections that describe patterns that became apparent during the analysis process. As coding 

proceeded, certain student behaviors or teacher practices began to repeat themselves.  The coding 

process thus informed the reporting of results.   In each of the sub- sections I have included 

topically related segments that serve to illuminate certain features of the lesson.  I have chosen to 

use multiple examples, highlighting some features, while backgrounding others.  The reason I 
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have made this choice is to make it clear to the reader that the lesson features that represent these 

principles did not occur one time, but rather were embedded in every lesson.  As each principle 

is considered, the features that I wish to highlight are discussed beginning with gross features, 

and moving toward more subtle features that are apparent in the data.  Short sections of 

transcriptions are embedded in the text itself, while longer classroom segments are included in 

figures.  The results include exemplars drawn from every lesson in an effort to demonstrate that 

the principles of productive disciplinary engagement were apparent across the data gathering 

period, not just in one or two isolated lessons.  The specific lesson day that provides evidence for 

the patterns identified is noted for each transcription. In addition, both time-stamps and line 

numbers are noted to afford the reader quick reference to the lesson portion under consideration.  

Event maps of each lesson allow the reader to get an overall sense of each lesson and to place the 

topically related segment, that might be the focus of the discussion, into perspective related to 

the events that preceded or followed the highlighted segment. An overview of the way each 

lesson was utilized in the results is shown below. The column entitled “Patterns Illustrated” 

refers to section titles of this document. Because I am both the researcher and the teacher, I have 

chosen to refer to myself as “I” when I am in the role of the researcher and “the teacher” when I 

have assumed the role of the teacher. 
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Table 4. Patterns Illustrated During Each Lesson 

Lesson/day 
number  

Patterns Illustrated 

Day 7 and 2 Participation pattern, turns of talk 
Day 8, 2, 13 Teacher as partner and  offering choices 
Day 3, 7  Critiquing the reasoning of peers 
Day 7 and 

question 3  
(assessment) 

Opportunity to notice 

1 Positioning students as authors 
4,5,6  Placing students in a position to publically revise 
9,10  Demonstrating intellectual courage to hold peers accountable 
3,5 Student uncertainty 
5 , 14 Resources 
4 Planning, enactment, reflection 

 

4.1 RESULTS RELATED TO RESEARCH QUESTION 1 

4.1.1 Ways that the teacher and students enact the principle of authority 

Engle and Conant (2002) define authority with regard to two ideas.  The first idea is related to 

students having an agency in defining, addressing and resolving problems.  The second includes 

members of the learning community positioning students as stakeholders by publicly identifying 

them with the claims, approaches, explanations, designs and other responses to problems.  

Students may develop into classroom experts to whom others rely for help.  Students who have 

authority are encouraged to be authors and producers of knowledge rather than consumers of it. 

In other words, students become active learners who take responsibility for their own learning 

(Hufferd-Ackles, Fuson, & Sherin, 2004). Enacting this principle demands that teachers share 
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authority with students in developing the learning community, and in so doing provide the 

opportunity for students to develop a sense of agency.  

In order to enact the principle of authority, my goal for students was to learn not only 

about the ways of solving problems related to probability, but also that the warrant for doing so 

comes from a mathematical argument, not from a teacher or a book. Consequently, my intent 

included teaching mathematical content, technical skills and knowledge of the discipline, 

simultaneously with teaching the way to participate in the disciplinary discourse of the class 

while using all the resources available to them. Central to the process was positioning students as 

capable, independent, decision-makers who had much to offer each other and the class.  It was 

my goal for students to attribute success to their own action; to consider themselves as being 

responsible for their own learning.  The “I can DO this…I can figure this out” attitude means that 

students consider themselves to be capable of acting strategically when they encounter an 

unfamiliar task, believing that they can be successful, and knowing that their ideas are of value.  

Generating ideas and strategies must be something that is valued and students must recognize 

that they are in control of the process of generation.  That is dichotomous with a student 

thinking, “My answer was right because the teacher helped me.”  This contrast suggests a change 

in the role of the teacher from one who is explicit in the way that she thinks about a type of 

problem, then expects the students to duplicate her thinking in the solution of like problems.  

Expanding the distribution of authority places students in an active versus a passive role.  

The subtitles in this section reflect the patterns that emerged as part of the coding process.  

For example because every code included an indication regarding whether it was indicative of a 

student or teacher response, the participation pattern became apparent.  Likewise, I coded for 

instances of the teacher as partner stance and times that students were offered choices.  Only 

 102 



after the coding was partially complete did I notice that these two codes emerged together.  

Therefore, in the results section that follows, they are reported in the same section. These 

patterns, taken together, were used to develop a holistic view of the classroom norms, structures, 

and classroom features that combined to form a supportive environment for students in the 

enactment of the principles of productive disciplinary engagement. 

4.1.1.1 The participant pattern 

The environment on which this study relies was created to purposefully develop a participation 

pattern wherein students were active participants.  Encouraging active participation by students 

with the goal of creating an environment where all voices may be heard demands attention to 

changing the relationships of power within the classroom (Cornelius & Herrenkohl, 2004).  

Power to assess information and monitor progress; traditionally held by the teacher must be 

assumed in part, by students.  One of the ways that power is apparent is through the examination 

of who does the talking in the class. As students assume the ownership of ideas, the expression 

of ideas becomes both a right and a responsibility.  

The analysis of the verbatim transcriptions of the fifteen classes that were part of this 

study indicates that active student participation was accomplished.  Every lesson includes 

examples of students assuming authority through atypical participation patterns.  The typical IRE 

(Mehan, 1979) participant structure was replaced by students assuming consecutive turns of talk.  

This participation pattern is apparent in the topically related lesson segment shown in Table 4.2.  

In the seventh lesson, the teacher has selected Estelle to come to the document projector to 

describe her tree diagram, representing the following problem. “Suppose that you spin the 

pointer of a spinner at the right (having 2 colors) once and roll the number cube. The numbers on 

the cube are 1,2,3,4,5,6.  Make a tree diagram of the possible outcomes resulting from a spin of 
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the spinner and a roll of the six-sided number cube.” (Lappan, et.al, 2014).  The diagram that 

Estelle presented is shown below in Figure 4.1.  A portion of the classroom discussion that 

followed Estelle’s presentation is shown in Table 4.2.  This segment will be examined in more 

detail in subsequent sections, but currently I draw attention to only the feature of turns of talk.  

 

Table 5. Topically Related Segment Related to Estelle’s Tree Diagram 

  Teacher Student Function/Commentary 

(323) Teacher: Estelle, you want to 
share your tree? (32:03)  

 The teacher is asking her to make her 
thinking public; holding her 
accountable.  

  Estelle: I’m 
not 100% 
sure. 
 
 

Student expresses uncertainty.  

(338) Teacher: That’s ok.  Throw it 
up there.  And let’s see. My 
computer went blank. I might 
have to put my password in 
again.  Ok folks. Take a look 
up here.  Is this what yours 
looks like?  
 

 The teacher asks for intellectual 
courage and for the student to explain 
how they understand.  She is sharing 
authority with both Estelle and the 
class.  
 
The question begs students to compare 
features of their own work with that of 
Estelle. 

  (lots of 
student 
comments at 
the same 
time) 
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Table 5 (continued) 

(353) Teacher: Let’s think 
about it . I’m sure 
she’d be happy to take 
feedback. She said 
right off that she 
wasn’t that sure.  But 
she’s being a good 
sport about it.  
 

 Using a teacher as partner 
stance, the teacher relays that 
the reasoning process will be 
public and cooperative.  She 
makes clear that it is ok to be 
unsure and that it’s safe to 
present incomplete 
understanding.  

  Nancy: I agree. It goes 
one through six.  It goes 
1,2 then goes 6 on a 
side.  I agree with that 
one, just not so much 
the one below 

Demonstrating her authority to 
evaluate Estelle’s tree diagram.  

(357)  Estelle: I’m not sure how 
I thought of the dice. 
 

Again expresses uncertainty and 
implies that she can’t explain her 
logic but she understands that it is 
expected that she do so.  

(362) Teacher: Use a pen 
 ( on the paper under 
the document projector) 
 

 The teacher holds her accountable 
suggesting that she remain there 
and write with a pen that can be 
clearly seen by the class.  

(371)  Estelle:  For the dice you 
only roll 1 through 6, so 
that's’ like 1,2,3,4,5,6. 
Then if you roll one of 
them. Like if you roll a 1 
or 2 after that ….I guess 
that is what I was 
thinking.   
 

She responds to the indirect 
message to attempt to explain her 
thinking.  
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Table 5 (continued) 

(383) Teacher: What are 
you thinking, 
folks? (long pause- 
students do not 
talk) 
So what are your 
outcomes, Estelle? 
I’m not sure what 
to think of the 
outcomes.  
 

 The teacher asks a question to 
generate discussion.  When 
students do not begin to talk, 
she directs the conversation to 
Estelle.  
 
Teacher takes a teacher-as-
partner stance and in so doing 
asks the student to explain her 
thinking on a specific topic. She 
inserts vocabulary into the 
question.  

(366)  Estelle: Let’s just take this 
one for example.  If you spin 
a 1, you can get 1,1,; 1,2, 
1,3, 1,4 , 1, 5, 1 ,6 like that’s 
only if you spin a 1 on the 
spinner the die. 
 
 

Makes her thinking public, using 
the tree diagram under the 
document projector as a resource.  

(391) Teacher: Ok.. 
 

 She relays that she is listening 
carefully.  

  Estelle: Then, for like the 
dice, if you rolled a 
1,2,3,4,5, or 6, then if you 
spin the spinner, you can 
either get  like a 6,1 or 6,2… 
 
 

Continues to make her thinking 
public with regard to the second 
tree diagram. 
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Table 5 (continued) 

(400) Teacher: So what do you notice 
about these, guys? What’s the same 
or different about the two…the one 
that starts with the spinner or the 
one that is the dice.  Just talk to 
her.  
 

 (Exploring 
mathematical meanings 
and/or relationships 
and encouraging 
discussion)  She 
encourages students to 
participate without 
hand-raising and “just 
talk” using a discussion 
format.  

(409)  Inez: I think they 
are the same, 
they just have a 
different base. 
You started one 
with a spinner 
and one with the 
dice.   
 
 

She sees a relationship 
among the two 
representations and 
introduces the word 
“started” ; implying that 
Inez is visualizing 
actually spinning the 
spinner and rolling the 
dice.  She demonstrates 
her authority to 
determine the 
mathematical merit of 
each representation.  

 Teacher: K….  Dennis, does yours 
look like that?   

 Holds Dennis 
accounTable 4.8or 
listening and 
participating.  

(423)  Dennis: It doesn’t 
look like that but I 
agree with that.  
 

Responds to request.  

 Teacher: Does she need both of 
them? 
 
 

 (Generating discussion 
and exploring 
mathematical 
meaning/relationships) 

  Several students 
say “no” 
together. 

Using authority to assess 
mathematical merit.  
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Table 5 (continued) 

(431)  Nya: I’d say the 
top one is less 
confusing.  The 
bottom one looks 
like a lot of lines.  
 

Uses authority to assess 
mathematical merit.  

 Teacher: Estelle, I’m a little confused.  
I’m thinking …does the student need 
all those outcomes or do you have two 
representations of the same thing?  
How many outcomes are you 
representing there? I’m not sure.  
 
 

 Using the teacher as 
partner stance, models 
thinking aloud.  She 
expresses confusion and 
simultaneously interjects 
vocabulary and requests 
her to share logical 
reasoning.  
(inserting terminology 
and probing)  

(446)  Estelle: Honestly, 
I think both 
represent the same 
thing.  
 

Expresses intellectual 
honesty implying that 
there is good reason to 
change it.  

  Bob: Why are 
they like that? 
Like they’re 
two separate 
things.   

 

Expresses that he hasn’t 
followed the logic 
presented. 

 Teacher: This one has both the 
spinner and the dice in it. Right? 
(writing at the doc projector). 
These are the dice. Right?   

 

 Teacher assumes 
authority and begins to 
explain at the document 
projector.  

(560)  Bob: I see that.  
 

He implies that the 
discussion is not 
beginning in the right 
place. He already 
understands that.  
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Table 5 (continued) 

  Nancy: She 
just did the 
dice 
backwards 
from the 
spinner.  
(inaudible) If 
you just 
picked one it 
would be the 
same as the 
other one.  

 

She tries to restate the 
logic presented earlier; 
assuming authority 
without any prompting 
from the teacher or 
students.  

(572) Teacher: What’s your question, 
Bob? 

 

 Teacher tries to 
determine the point of 
partial understanding for 
Bob. 

  Bob: Why are 
they linked?  

 

He expresses confusion 
about having 2 tree 
diagrams.  

(578) 
Teacher: They’re not linked . 
They’re 2 separate things.  The way 
she has them written, she wrote 
them 2 ways but they are the same 
thing.  They represent the same 
number of outcomes. This is 12 and 
this is 12. It’s the same 12 
outcomes written in 2 different 
ways.  You don’t see it.  

 

 Teacher again assumes 
authority to clarify the 
meaning of the 
representations that 
Estelle presented.  
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Table 5 (continued) 

(595)  Lyla: It’s like 
she said 
before. It’s 
like if Estelle 
started with 
the spinner 
then went on 
to the dice or 
and the 
second one she 
started  with 
the dice then 
went on to the 
spinner.  

 

She assumes authority 
and restates the logic 
behind each 
representation.   

  Nancy: It’s 
….(overlapping) 

She begins to do the 
same. 

  Bob: Ohhhhh Bob expresses that he 
now understands the 
logic.   

(610)  Ute: It’s like 
the die you 
end up with 
any number 1 
thru 6 but the 
second one is 
the other way 
around. Say it 
lands on one. 
It says the 
spinner could 
land either 1 
or 2. They are 
the same exact 
thing just in a 
different 
order.  

 

Ute summarizes the 
discussion, assuming 
authority with no 
prompting.  
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Throughout the segment, the non-traditional role of the teacher and students is apparent.  In 

contrast to a traditional classroom where the pattern follows the ubiquitous initiation-response-

evaluation (IRE) form (Mehan, 1979), the pattern takes on a different complexion. The teacher 

neither speaks every other turn, nor does her talk take on an authoritarian tone.  The teacher turns 

in this exchange follow the pattern shown: (T=teacher, S=student) T-S-T-S-S-T-S-S-T-S-S-T-S-

T-S-S-S-S.  The turn-taking pattern itself indicates a change in power, with students consuming 

more of the talk turns. Similarly in the following segment shown in Table 4.2, as students discuss 

homework problem number four, during the second day of the probability unit, the teacher–

student turns follow the pattern: T-S-T-S-S-S-S. Homework problem number four was, “Len 

tosses a coin three times.  The coin shows heads every time. What are the chances the coin shows 

tails on the next toss? Explain.” (Lappan, et.al, 2014). 

 

 

Figure 2. Estelle’s Tree Diagram 
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Table 6. Example of Participation Pattern, Turns of Talk, Day 2 

 Teacher Student Function/Commentary 

50 Teacher: Are there any ones you 
want to talk about? I have one I 
want to talk about but are there 
any that you guys want to talk 
about?  (pause- no one replies) 
Ok. So let’s talk about number 4 
for just a couple minutes.      ( 
Teacher walks to the whiteboard) 
(5:25)  The problem says that the 
person flipped four heads (writing 
H, H, H, H, in a vertical line on 
the board), and wants to know 
what the probability is for the 
fifth one.  So you don’t need to 
raise your hands, just talk.  
Henriet, you want to start?  
 

 The teacher is asking students to 
assume authority by choosing a 
homework problem they’d like to 
discuss.  When there are no 
suggestions from the students, the 
teacher makes a selection. 

71  Henriet: There are only 3 
heads. 
 

Student corrects the teacher’s 
expression of the task.  

 Teacher:  Three heads. Forgive 
me. (Erases one of the H’s on the 
board) So what do you think?  
Henriet, what do you think about 
this? 
 

 The teacher corrects here error.  
 

80 
 Henriet: Well I said it 

would be one-fourth, cuz 
I  (teacher writing ¼ on 
board)  I said if he had 
already had head three 
times….i would think 
that the fourth time it is 
more likely he’d get a 
tail. (teacher sitting with 
a group near the board) 
(Pause) 

 

Student provides her 
explanation.  
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Table 6 (continued) 

90 
 Lyla:  I think it’s still like a 50% chance because even though it’s 

heads three times, that doesn’t really matter.Because no matter 
how many times you flip it, it’s going to be a 50-50 chance because 
it’s a fair game, it’s equal chances.  (Teacher  still sitting) 

 

Student disagrees 
with prior response 
and explains her 
position. 

99 
 Bob: I have to agree with Lyla.  I mean you’re using the same coin.  

The chance is always going to be 50-50.  I mean, there’s a heads 
there’s a tails (Bob, crouches on his seat) . There’s only two chances.  
Two choices I mean.  

 

Student assumes a 
position and explains 
his reason.  

108 
 (6:56) Nancy: I agree.  But can’t you like have a coin that has both on 

one side?  
 
 
 

Student assumes a 
position. 

 

These examples typify student participation during whole group discussion.  Many students are 

engaged in expressing their thoughts and ideas.  However, not every student was equally 

engaged.  Two students (Henry and Dennis) were both were very engaged in small group 

discussions but rarely spoke during whole group discussion at all. Henry spoke in whole group 

discussion when he was prompted to do so, but Dennis largely refused to share his thinking.  A 

segment that highlights the way that Dennis participated is shown in Table 4.1 and discussed in 

the section related to students holding each other accountable.   

 As other features of the enactment of the four principles of productive disciplinary 

engagement are discussed in the remaining portions of this document, I will draw attention to 

additional examples of teacher-student turns of talk.  
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4.1.1.2 Offering choices and the teacher-as-partner stance 

Offering choices to the students and the implementation of a teacher-as-partner stance (Tabak & 

Baumgartner, 2004) is discussed together, because as I coded the data, the two repeatedly 

occurred in pairs.  Offering choices and the teacher-as-partner stance worked together to offer 

students power; making them decision-makers while backgrounding the authority of the teacher. 

Together, these two pedagogical features helped to create a level of symmetry in the social 

configuration of the classroom.  Offering choices demands that the teacher recognize the 

multiple ways of approaching problems, making connections, bringing prior knowledge and 

experiences to the task, and the long term value of allowing students to grow through the process 

of decision-making. Recognizing that students’ backgrounds have afforded varying degrees of 

experiences with the decision making process, offering choices to students that allows for 

decision-making practice becomes of even greater significance.  The teacher-as-partner stance 

contributed to students assuming a decision-making role. As the teacher deflected the decision 

making to students, through her teacher-as-partner stance, they quickly assumed the 

responsibility.  

   As I examined the data for ways that positioning contributed to offering students 

authority, the task selected by the teacher surfaced as one way that she offered students an 

opportunity to make choices and practice decision-making skills.  Because high-level tasks 

(Stein, Smith, Henningsen, & Silver, 2000), discussed in more detail in section 4.3, offer 

students a variety of solution possibilities, students made choices regarding where to begin and 

what solution method to use, depending on what method was accessible for them. This choice, 

often negotiated with a partner or several peers in a small group setting, positions students as 

capable, decision makers who must take an active role.  Offering choices to students is in 
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contrast to a situation wherein one method of solution has been practiced by the class, and the 

next problem set is predictably more of the same.   

An example discussion from the eighth class in this study follows. 

(11:30)  Teacher:  This kind of problem makes it hard for me to keep track of my thinking.  

Bob: Ya 

Inez: I tried one of those tree things…it didn’t work out.  

Teacher:  Is there anything else you could use? If the tree thing is being hard for 

you, is there any other thing you could use to keep track of your thinking?  

There are two ways that authority is distributed in this excerpt.  First, the teacher positions 

herself as someone who would have a similarly difficult time if she were engaged in the same 

intellectual work. When she says “….hard for me”… she seems to also be a person who is 

fallible and who has experienced similar struggles. She has positioned herself as a partner (Tabak 

& Baumgartner, 2004).  When Inez admits that she had tried unsuccessfully to use a “tree thing” 

(tree diagram), the teacher suggests that there may be other options and that she knows that Inez 

is capable of making an alternate decision. They clearly agree on the value of record-keeping; the 

decision to be made is what method to use. The teacher leaves that choice to Inez.  Had the task 

in which the students engaged been one that had one solution process; one way of addressing it, 

the preceding discussion would have been unlikely to occur.  However, because the task offered 

choices to students, and the teacher deflected the decision-making process, Inez was placed in a 

position of authority.  

Student choice and the teacher positioning herself as a peer is also apparent in the 

following topically related segment.  In this lesson (day 2), the teacher is introducing a task 

wherein students will collect data resulting from flipping cups.  As she introduces the task, she 
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reminds students that the theoretical probability is unknown to them, unlike the prior experience 

they had flipping coins.  She offers students a choice in how to keep track of their data, as 

opposed to distributing a work sheet or table.  However, she makes it clear that they are 

accounTable 4.8or some record-keeping system.  In addition, the use of the pronoun, “we” and 

“we’re” positions the teacher as a partner; someone who will be engaged in the same intellectual 

activity.  

Teacher:  “We’re going to do that today.  We’re going to flip cups. (Nya raises 
her arms over her head.)  You don't know what the theoretical probability is. So I 
need you to flip the cup thirty times. And I need you to keep track, however you 
think you should keep track.  We’ll combine our data and see what we get.”  (Day 
2) (adapted from Lappen et.al. 2014, p.10) 

 
Also implied, is the idea that the teacher believes that the students can be successful in this 

assignment. The described task demands that they mentally engage in developing a plan for 

recording their data and prepare to share it with the class. The comment, “We’ll combine our 

data and see what we get” implies that there is a mystery to be solved and that students will need 

to take an integral role in solving it based on the information.  

 Additionally, students routinely made choices regarding where to physically position 

themselves.  Because they were not confined to their seats during whole group discussions, 

students often walked to the white board or document projector to explain their thinking; freely 

moving about the room.  The freedom to move about the room contributed to students assuming 

authority and positioning each other as experts.  In the following segment from day 13, a student 

has been asked to share his thinking regarding an area model that represents a compound event; a 

one-and-one free throw.  The task is shown in Figure 4.2. 
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In the district finals, Nishi’s basketball team is 1 point behind with 2 seconds left.  
A player on the other team fouls Nishi. Now she is in a one-and –one free-throw  
situation. This means that Nishi will try one free throw. If she makes it, she tries a 
second free throw.  If she misses the first free throw, she does not get to try a second  
free throw.   

 
 An area model representing the possible outcomes for Nishi’s one-and-one free  

throws is shown below.  Explain what you know about the design of the area model  
(This task was adapted to include a partially completed area model as below) 

 
 1.  Why are the blocks the size they are? 

 2. How would you label the left side of the area model? Explain. 

  3.  How would you label the top side of the area model? Explain 

 

 

 

 

 

 

 

 

 

Figure 3. One-and-one free throw task and area model. Adapted from (Lappen, et.al., 2014, p. 76), Day 13 

 

During the day 13 class the students engaged in a discussion of the task described in 

Figure 4.3.  The area model that is part of that figure was reproduced onto the white board prior to 

the start of class.  Students walked to the whiteboard freely as they commented on the model.   
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Following Ute’s comment, (line 394), in the following exchange that summarizes his 

small group’s work, the teacher reminds students of the classroom norms and encourages them to 

freely make contributions.  Immediately following her statement, Bob walks to the board and 

engages Ute with his thinking. He is followed by Lyla, Sydney, and Estelle, who walk to the 

white board to engage Ute and the class in their thinking during day 13 class. 

(line 394) Ute:  We put yes and no for the chances of making it (pointing to the horizontal 
line at the top of the area model.)  I think I have this messed up (begins to erase 
the 60% and  40%.  But um, this side, because it’s bigger is 60% of the 
(inaudible) and this 40. (Students have hands raised))  

 
(23:00) Teacher:  You don’t have to raise your hand. You can talk, you can walk up there, 

talk to him. I don’t know what you’re waiting for.  But there has to be ONE 
conversation.  

 
Bob: (stands up and goes to Ute) What I’m thinking right now is can you make 
this chance to be given again. Like can you add the line up here. 

 
Ute: (inaudible) (Bob sits down) 

 
(Lyla goes up with encouragement from her group) 

 
Lyla: With ours, we didn’t draw a line here. We just counted this section and it 
was 36. So that’s a 36 % chance she would make it on the first shot. The second 
one, that’s like ..this would be 24 (writing in the box) . So that’s the 24% chance 
she’ll make it on the second shot.  

 
Sydney: And that would equal 60%  

 
Nya: That’s how like we did it in the beginning.  

 
Bob: (Begins to sing) 

 
(Lyla writes 36+24=60% on the board) 

 
(There is discussion among students but not audible) 
(Estelle walks to the board) 

 
Teacher: Ok. Hold up.  Keep watching. 
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Estelle: I guess. I didn’t understand this until just now. This would kind of be like 
the first shot (pointing to the orange section) If she doesn’t make it, she doesn’t  
(inaudible), but this could be (pointing to the purple section) like (inaudible) 

 
Teacher: Your thinking is really building on each other. I’m really thrilled about 
that.  I want to add some labels. Nobody is putting a label on here. How about if 
this was Shot 1 (writes “shot 1 “ on the left side of the model) Assume that’s shot 
1.  Keep going Estelle.  Now if that’s shot 1 , how does that divide that box by 
putting shot 1 there.? What does the orange and purple mean if that’s shot 1?  

 
Interestingly, students have assumed authority; taking responsibility for actively 

immersing themselves in the details of the task and the thinking of their peers. Several students 

were willing to assume an intellectual risk, walk to the front of the room, and add to the 

discussion.  The teacher has contributed little to the discussion; but has encouraged students to 

freely contribute. It is not until after Estelle speaks that the teacher interjects by placing a label 

on the area model.  She applauds students’ efforts to listen and respond to peers’ ideas. 

Throughout the segment, students are positioned as independent, decision-makers by the teacher 

and each other. They eagerly respond to the opportunity to make choices and assume 

responsibility.   

Three elements of student choice have been documented in the preceding discussion: 

choice as to the way to enter the task and represent their solutions to tasks, choice as to the way 

to keep track of their thinking during the solution process, and choice as to where to physically 

place themselves in the classroom. Choice as to the way to enter the task was unexpected on my 

part. Although everyone was asked to utilize an area model, students at their desks reproduced 

the area model on graph paper.  Using the squares in the graph paper as a resource, Lyla counted 

the centimeter squares to gain entry to the task.  When she talks about counting 36, she is talking 

about counting graph paper squares. With regard to keeping track of their thinking during the 

solution process, there was no prescribed method regarding the way to make sense and label the 
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area model.  The necessary connection between the area model and the word problem belonged 

to the student, so the way they kept track of that connection was also their own.  Some students 

used the words, “Make” and “Miss”, while others used only percentages as they worked.   

Essential to each of these choices is the task itself.  The task has contributed to student 

uncertainty; resulting in students having a genuine need to exchange ideas with one another or 

for the teacher to resolve uncertainty directly, herself. She has chosen to share authority with 

students, and encouraged them to author the solution using reasoned explanations.  Integral to all 

the choices offered to students is the way the teacher has positioned students as independent, 

decision-makers who are capable of producing knowledge and authoring ideas. 

4.1.1.3 Critiquing the reasoning of peers 

Critiquing the reasoning of peers is an indicator of student authority.  As students developed a 

sense of agency, they assumed some of the roles that are traditionally held by the teacher 

including the evaluation of ideas.  In Table 4.2(Day 7), all of the bolded turns indicate student 

turns wherein the primary function of the talk was assessment of the information. Several 

students demonstrated intellectual courage and engaged in Estelle’s thinking.  Nancy began the 

discussion of Estelle’s diagram saying, “ I agree. It goes one through six. It goes 1,2 then goes 6 

on a side. I agree with that one, just not so much the one below.”   In making this evaluation, she 

has necessarily immersed herself in Estelle’s diagram, truly attempting to analyze her thinking 

and make a connection between that and the diagram. She attempts to restate the logic presented 

earlier; assuming authority without prompting from either the teacher or students. Likewise, Lyla 

assumes authority and restates the logic without prompting.  Later, Inez also critiques Estelle’s 

thinking when she says, “I think they are the same, they just have a different base.  You started 
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one with a spinner and one with the dice.” Finally, Ute assumes authority to summarize the 

discussion.  All of these students provide examples of student agency.   

  Common to the examples related to critiquing the reasoning of peers in the study were 

students having the time and agency to talk to each other about an idea or representation. 

Extended examples of students critiquing peer reasoning occurred during the wrap up of a task 

wherein students presented solutions. With regard to the discussion regarding Estelle’s tree 

diagram, Figure 4.3 illustrates the location of the discussion within the class. The topically 

related segment that addresses Estelle’s tree diagram begins about thirty-two minutes into the 

class; after small groups have had the opportunity to discuss the task.   

As noted in the example with Estelle’s tree diagram, the selection of the solutions to be 

presented to the class was an essential element in encouraging other students to critique peer 

thinking (Stein, Engle, Smith, & Hughes, 2008). The selection of solutions to be presented 

during whole class discussions will be discussed again with regard to the work of the teacher.   

Estelle’s tree diagram offered the opportunity for the teacher to formatively assess the capacity 

of students to understand the tree diagram model.  They thought abstractly in bringing meaning 

to both representations in her diagram.  

The Day 3 class affords another example wherein students carefully consider the 

reasoning of peers.  Students were addressing Problem 6A, page 17 from Connected 

Mathematics, What Do You Expect? (Lappan et.al, 2014). These tasks are shown below.  

Problem 6A, page 17.  (Lappan et.al, 2014) 
 
Kalvin tosses a paper cup once per day each day for a year to determine his 
breakfast cereal.  Use your results from Problem 1.2 to answer the following. 
a. How many times do you expect the cup to land on its side? On one of its ends? 
b. How many times do you expect Kalvin to eat Cocoa Blast in a month? In a 
year? Explain. 
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Problem 1.2, page 11 
A.  Conduct an experiment to test your prediction about how a paper cup lands.  
Toss a paper cup 50 times. Make a table to record your data.  
(Lappan, et.al. 2014) 

 
Students had gathered data regarding (Problem 1.2), tossing cups, in the previous lesson.  

Problem 6A asks students to use the proportions related to the times the cup lands on its side or 

end to scale up to the number of times it would occur in 365 tosses.  The context provided is that 

Kalvin gets to eat Cocoa Blasts each time the cup lands on its side.    

 The discussion provides another example of students critiquing the reasoning of peers. 

Following small groups addressing the problem, Nya is asked to come to the document projector 

to share her thinking.   

(17:42)  Teacher : How about you Nya? 

Nya- I did mine wrong.  

Teacher- Let’s see it anyway. 

Although the student expresses uncertainty, the teacher insists that she share her thinking with 

the group.  

(206) Nya (walks to document projector) – Okay well I couldn’t really find a number 
and I don’t know why. But I also based it off of our own logic, by what we did in 
our  groups. So in my group it landed pretty much on its side most of the time. So 
I  expected it to… So pretty much it’s an estimate. I expect mine to be about three 
out  of four times. Just because of the way the cup shaped and how it’s not like a 
coin. 

 
Teacher – Is that what you got yesterday? Three out of four times it landed on its 
side? 

Nya – a little bit more. 

Teacher – OK, so you used that kind of as a round number? 

Nya – I did mine as logic. 

Teacher – Okay, so did you come up with a number? 
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Nya – no. 

Teacher – Could you? 

 Nya – Probably. 

Teacher – Can somebody help her? She says yesterday it landed on its side three 
out of four times. Is there a way to use that to figure out how many times out of 
365?  (hands go up) Just talk.  

The teacher has recognized that Nya is considering the results regarding her cup flipping from 

the day prior proportionally.  However, she has not transitioned that proportional understanding 

to the capacity to use scale.   

(220) Sydney – I was kind of thinking you could divide 365 by 4 and then you do 
however many, like 3 sides – three times out of the four sides. 
(Nya is writing at the document projector)  

  Teacher – So the 365, she is saying divide by 4 is 91 x 3 = 273. 

  Sydney – So it would be like 273 days out of the one year. 

In this exchange, Sydney makes a suggestion for a way to consider scaling.  The teacher restates 

her suggestion and adds the product of 91 times 3. She then encourages the group to talk without 

raising their hands. 

(224)  Teacher – Just talk. 
 

Henriet- Is this ABOUT this much?  

Teacher – She’s asking if this is exact or about. What do you think about this? 

Henriet critiques the reasoning involved in the discussion; questioning whether 
the result would be an approximation or an exact answer.  

(227)  Henriet – I know it’s not exactly. Would you write “ about”?  

Teacher – Would you write “about”?  Ute’s saying yes. Why would you 
write“about”? 
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This segment demonstrates the students actively engaged in the thinking of their peers. The 

assumptions regarding how exact the answer needed to be and what the answer would represent 

was the topic of discussion in this small segment. The teacher’s moves to encourage discussion, 

emboldens peers to participate in directing the direction of the conversation. 

 

Figure 4. Event Map of Day 7 Class 

4.1.1.4 The opportunity to notice 

Among the codes developed during the analysis process was “noticing”.  The distribution of 

authority was apparent in the particular way the teacher invited students to notice features of 
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mathematical information in whole group presentations.  Students were encouraged to select a 

piece or pieces of information from competing information; what is often referred to in 

mathematical literature as noticing or, more specifically, executive attention (Hatano & Greeno, 

1999; Loboto, Hohansee, & Rhodehamel, 2013).  Through the invitation to notice, students 

necessarily were placed in a position as an active participant, challenged to sort through the 

visual cues; selecting and sorting information in an effort to identify particular mathematical 

features among competing bits of mathematical information. Features noticed by one student 

were not necessarily the same as the next student. What each student noticed served to draw 

attention to his own thought process, and to distinguish his thinking from another student’s 

thinking. As each student shared, she donned an author’s hat to provide an explanation in the 

form of a narrative.  In sharing what she has noticed with the community of learners, she has 

authored a mathematical idea necessary of consideration by the members of the community.  

This noticing then served both an individual and a community function; as both the individual 

and other students sought to identify the pattern or feature as the original author viewed it. He 

immersed himself in the thinking of his peers. Several examples of such instances are illustrated 

in the discussion of Estelle’s tree diagram, Table 4.2.   

In the classroom discussion in Table 4.2, that begins thirty two minutes into the lesson, 

the teacher asks students to notice features of Estelle’s tree diagram. She directs their thinking to 

compare the two and to “just talk to her”.   This phrase reminds the class of the established norm 

where students don’t need to raise their hands to speak, but rather are expected to share their 

thinking via a conversation. Directly following the teacher request to notice, Inez provides her 

observation. She evaluates the two representations and determines that they are “the same..they 

just have a different base.”  In terms of noticing, Inez has examined the information, sorting and 
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selecting the necessary information.  She determined that there was a relationship between the 

two representations and demonstrates her authority to determine the mathematical merit of each 

representation. Further, Inez has visualized actually spinning the spinner and rolling the dice 

when she says , “You just started one with the spinner and one with the dice.”   Nya (in 

subsequent lines) also has sorted and selected information to discuss. She has compared the two 

representations and determined that the top one is “less confusing”.  Nancy and Lyla also have 

compared the two representations, immersing themselves in Estelle’s thinking, and they have 

determined that the diagrams represent the same action of rolling the dice and spinning the 

spinner.  Ute then summarizes the discussion in his own words. He says, “It’s like the die you 

end up with any number 1 through 6 but the second one is the other way around. Say it lands on 

one. It says the spinner could land either 1 or 2.  They are the same exact thing just in a different 

order.”  

While this exchange demonstrates students assuming authority as they actively construct 

meaning and express ideas, the teacher has also immersed herself in Estelle’s thinking and asks 

questions that serve to draw attention to specific features of Estelle’s representation.  Taking a 

stance as teacher as partner (Tabak & Baumgarnter, 2004), mentioned earlier, she draws 

attention to the difference in the number of potential outcomes when she says, “Estelle, I’m a 

little confused.  I’m thinking…does the student need all those outcomes or do you have two 

representations of the same thing? How many outcomes are you representing? I’m not sure.”  

Through the use of a probing question, she has invited Estelle to compose an authoritative 

narrative.  Expressing confusion and simultaneously interjecting vocabulary, she is requesting 

Estelle to explain something that may have been an unconscious decision.  
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Although Estelle’s representation was central to the discussion, the fact that Bob couldn’t seem 

to notice the features that Inez, Nya, Estelle, and the teacher had discussed early in the 

conversation prompted additional conversation.  Following Bob’s question, “Why are they like 

that? Like they’re two separate things”, the teacher and Nancy try to determine the point of 

partial understanding for Bob.  Following the teacher’s attempt to explain at the document 

projector, where she assumes authority, Nancy restates the logic, assuming authority without a 

teacher prompt.  Following another question by Bob, the teacher again tries to clarify the 

meaning of the representations. Her attempt is followed by Lyla who assumes authority, by also 

trying to bring clarity to Bob’s thinking. Lyla’s comment gives authority to Nancy’s earlier 

comment when she says, “It’s like she said before….” . Ute, quiet throughout the discussion, 

assumes authority by summarizing the discussion. The work of helping Bob to notice salient 

features of Estelle’s representations was the work of the community; not solely owned by the 

teacher, and served to socialize the class’ attention to mathematical features of her display.  

Important to the discussion that invited students to notice the mathematical features 

presented by Estelle was the task itself and the way the lesson was enacted by the teacher. The 

task as it was presented offered students the opportunity to represent the mathematical ideas in 

more than one way.  No one answer was sought by the teacher, nor was the answer viewed to be 

the most important element of the discussion.  The task offered the community something 

worthy of discussion; something that would cause students to think and reason. The way the 

teacher enacted the task also provoked discussion.  As students worked on this task in small 

groups, the teacher had monitored student work and noticed that Estelle had an unusual 

representation. Through deliberate selection of Estelle’s work for whole class discussion, the 

teacher offered the class a representation that was likely to bring about a rich, mathematical 
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discussion, centered on student thinking and reasoning (Stein, Engle, Smith & Hughes, 2008). In 

terms of Lave & Wenger’s (1991) idea of a community of practice, both the students and the 

teacher helped to apprentice those students who were less experienced at noticing to the key 

features of the activity and their significance.  

Noticing was apparent in student written work as well and contributed to students’ capacity to 

make a conjecture and provide an explanation; an act indicative of students’ authoring ideas and 

making connections among ideas. Question 3 of the final assessment is shown in Figure 5.   

 

 

Figure 5. Question 3- Final Assessment 

 

This question demands that the student use proportional reasoning or part –to-whole 

relationships to predict the size of the spinner  pieces.  Several student responses point to the 

importance of identifying patterns in the question that allows them to develop a conjecture and 

provide a supporting explanation.  Ute’s response, shown in Figure 6 is one example. 
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Figure 6. Ute’s Response to Question 3 

 

His response uses the word “saw” instead of “notice”, but he notes explicitly what 

information he used in developing his conjecture.  He says that he used the number of times the 

spinner landed in region 2 was one third the times it landed in region 3.  He also noticed that the 

number of times it landed in region 1 was approximately double that of region 2.  He then 

develops an explanation that reflects the information he has used from the problem statement. 

Interestingly, the teacher had returned the assessment to Ute because when he first submitted it, 

he had included little explanation.   

Henriet also noticed features of the problem, but what she noticed was quite different 

than Ute’s observation.  Her response is shown in Figure 7. 
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Figure 7. Henriet’s Response to Question 3 

 

Henriet has noticed the part-to-whole relationship of the number of times the spinner 

lands in a region.  Using her observation, she chose to develop her conjecture using fractions to 

represent the relationship. She has noticed that the total number of spins was 36 and that 12 

times, the spinner landed in region 3. She clearly recognizes that region 3 should represent 1/3 of 

the circle. She relates each part to the whole value of 36.  Her explanation makes the rationale 

supporting her conjecture easy to follow.  Conversely, Inez’s response indicates that what she 

noticed included a larger grain size.  Inez’s response shown in Figure 4.7, indicates that the 

feature that she noticed in the task was that there were four sections to the spinner and the 

number of times the spinner landed in each region was not the same.  She used the information 

not to compare the numbers to each other using part-to-whole relations or proportional relations, 

but rather only with regard to relative size (e.g. 9 is larger than 4 so the spinner piece may be 

larger).  Her response may have been more elegant had she observed that the number of times the 

spinner landed in a region could be considered in relation to each other or as parts of the total 36 

spins. Only eight students of the class of nineteen noticed the relationship among the numbers in 
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the task that allowed for a reasoned conjecture between the number of times the spinner lands in 

a region, supported by logical explanation. The remainder of the students used the idea that 

larger numbers of times the spinner lands in a region correlates with a larger portion of the 

spinner. There was no mention of the exact size of the region.  

 

 

Figure 8. Inez’s Response to Question 3 

 

Ute and Henriet’s capacity to notice the salient features of the spinner task are consistent 

with their comments regarding their attention to the details regarding Estelle’s tree diagram.  In 

both instances, these two students were able to sort the mathematical features provided in the 

task and choose those that offered an opportunity to bring meaning to the solution.  I can’t 

explain the fact that Inez did not notice the features of the written task, but fluidly discussed the 

features of Estelle’s tree diagram.  It is possible that she considered the values provided to be 

approximations due to the fact that they were experimental data.  Or, perhaps she noticed the 
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proportional relationship among the values, but elected to assume a more general view of the 

information.  

4.1.1.5 Positioning the students as authors 

Positioning students as stakeholders by publicly identifying them with the claims, approaches, 

explanations, designs and other responses to problems is another element of authority as it is 

defined by Engle & Conant (2002).  Many instances of this element of the principle of authority 

were present in the lesson transcripts.  In fact, there were instances of the teacher positioning 

students as authors in each of the lessons included in this study. Common to most examples of 

the teacher positioning students as authors was the role the teacher assumed within the class. The 

teacher chooses not to evaluate student thinking and positions herself as a thinking partner. 

Students represent their own ideas and peers are expected to evaluate them; an established norm 

within the class.  The participation pattern reflects atypical roles and responsibilities for both the 

teacher and the students.   Several examples follow from a discussion during the first day of 

instruction related to probability.  Near the conclusion of the lesson, the students were asked to 

graph the percent of heads versus the number of tosses, following a coin-flipping task.  Students 

were encouraged to theorize regarding the shape of the graph when the number of tosses 

increased to a very large number.  Students worked in small groups on the task for several 

minutes, then students were selected to present their graphs.  Following Ed’s presentation, the 

teacher makes the following comment. 

Teacher: Not making sense to Dennis. This is Ed’s reasoning. I didn’t say that I 
shared his reasoning or anything about it. This is about what HE thinks so it is 
your job to ask questions if you disagree or don’t understand, go up there. (day 1) 
 

In this comment, the teacher attributes the thinking to Ed and clearly states that she will 

not be the person to evaluate his thinking.  She assumes the role of neither the creator of the idea 
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nor the evaluator; atypical of traditional classroom. Similarly, in the following example, the 

teacher has monitored student work, and asked Bob to share his graph.  She encourages Bob to 

talk about his creation; a move that offers Bob agency. 

Teacher: Bob, you wrote the red graph. The red graph is yours. You want to talk about it? 

These two examples represent an established norm within the class. That is, if the work or idea 

belonged to a student and it was selected for discussion, the student or group of students were 

encouraged to explain their thinking. Student work during this unit was discussed via a document 

projector, using large sheets of white paper, and on the white board.  Making thinking public was 

an essential part of the class, and students eagerly presented their ideas. In addition to the teacher 

positioning students as authors, peers placed each other in the position to author ideas. As  

students exchanged ideas in both small and large groups, they authored ideas and critiqued the 

reasoning of each other. Examples of this behavior are discussed in more detail in section 4.2 

wherein the principle of accountability is discussed.  

The results of the student questionnaire support the results related to the ways the 

students and teachers enact the principle of authority.  Students’ views of their own opportunities 

for sharing authority were captured via question numbers 2, 4, 6, 8, 9, and 10 (Appendix A).  It is 

important for the reader to recognize that some questions may provide information related to 

more than one of the principles, because of their integral nature.  

Results of each question follow: 

• 100% of students either agree or strongly agree on question 2,6,8,9 

• 95% of students either agree or strongly agree on question 4 

• 84% of students either strongly disagree or disagree 
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These results indicate the extent to which students were aware of their own authority 

within the classroom. Overwhelmingly, these results indicate that students were cognizant of 

their own capacity to assume authority in this environment.  

4.1.2 Ways the teacher and students enact the principle of accountability 

Research points to evidence of teacher moves that encourage students to be accountable to the 

teacher and other members of the learning community, through the implementation of classroom 

norms (Yackel & Cobb, 1996).  The principle of accountability, being accountable to others and 

to disciplinary norms, implies that the teacher and other members of the learning community 

foster students’ responsibilities to consult others in constructing understanding in a domain; it 

doesn’t require acceptance of others’ views, but responsiveness to them. “This principle is an 

expression of the value that each member of a learning community is not an authority unto 

himself, but one intellectual stakeholder among many in the classroom and beyond” (Engle & 

Conant, 2002, p. 405).  Students who take their peers’ ideas into account may be better 

positioned to persuade others of their own ideas, thus motivating further participation.  In 

addition, being held to disciplinary norms helps to balance student authority and reduce the 

chance of students constructing haphazard responses to problems without peer review (Cobb & 

Hodge, 2002). Balance between authority and accountability is central to the principles of 

productive disciplinary engagement (Engle & Conant, 2002).  That is, certain ways of 

communicating can in themselves affect the power among people.   

In order to understand the way that accountability was enacted in the classroom, verbatim 

transcripts were analyzed.  As I coded for instances of accountability, patterns began to emerge.  

That is, the instances had common features that allowed them to be grouped into categories; used 
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as sub-headings in this section. Among the patterns that emerged included: 1) the teacher placing 

student in a position to publically revise their thinking, and 2) students demonstrating intellectual 

courage to hold peers accountable.   

4.1.2.1 Placing students in a position to publically revise their thinking 

Among the student responsibilities that were apparent in transcripts of classroom lessons 

included the students making their thinking public. As a matter of routine, students presented 

their work and thinking to the class.  Thinking was both a private and a public event; an 

individual and a community responsibility. The teacher’s role then included positioning students 

to both make their thinking public as well as to revise their thinking as ideas changed.    

Implementing public thinking changes the authority for determining valid knowledge, from the 

teacher, to the student and community.  In a classroom where authority is shared with students, 

multiple students may make their thinking public; listening to themselves as they talk. Engle & 

Conant (2002) posit that making sense of these ideas relative to other people’s ideas encourages 

learners to consider how their ideas do or do not make sense in light of each other; prompting 

learners to revise their ideas for the better.  An example of thinking being both a private and 

public event for students is shown in the following segment  as students considered the Marble 

task  (Figure 9) on day 5 and day 6 of the study.   
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Mrs. Rhee’s math class was studying statistics.  She brought in three bags containing red and 
blue marbles.  The three bags were labeled as shown below. 
Bag X: 75 red, 25 blue        Bag Y: 40 red, 20 blue  Bag Z: 100 red, 25 blue 
 
Mrs. Rhee shook each bag.  She asked the class, “ If you close your eyes, reach into the bag, and 
remove 1 marble, which bag would give you the best chance of picking a blue marble?  
Which bag would you choose? ____ 
Explain why this bag gives you the best chance of picking a blue marble.  You may use the 
diagrams above in your explanation.  
 

 

In this example, during exploration time when students were working in small groups, the 

teacher requested an explanation of a student and her partner.  In response, Sydney (the student) 

offers a succinct explanation of the pairs’ thinking.   

Teacher: Ok. So tell me about this.  

Sydney: (while she’s writing…)The first method we had was we took 25 blue 
versus the total.  And we took that and made it a percent cuz a percent is easier for 
us to compare. So we found that bag y was a better chance of picking out a blue. 
..so that was our first method. Then our second method  Lyla came up with this 
one (Lyla making faces to teacher).  We simplified blue over the red and 
simplified and found out bag y.  That bag y has the best chance. 

 
This explanation, and others like it, demands that classmates consider their words 

carefully.  Sydney, both explains the thinking while concurrently giving credit to Lyla for her 

solution method. This explanation served as a sort of rehearsal for a whole group discussion of 

problem solutions that took place the following day, (day 6).   

During the day 6 class, several pairs were chosen to present to the class.  Among the 

groups that presented were Ed and Estelle.  Following Henriet’s description of her method that 

included using a part to whole relationship, just as Sydney and Lyla had explained the day earlier 

to the teacher, Ed explains his method.  

 

Figure 9. Marble task adapted from the Quasar study (day 5,6) (Silver, Smith, & Nelson, 1995) 
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(2:54)  Teacher: K. Ed. Would you and Estelle talk about this? First show your picture 
and then your graph. (Ed/Estelle go to the doc projector. ) 

 
Ed: So we picked bag y because it had the best portion of blue marbles to red 
marbles. Bag x had one blue marble to 3 red marbles; bag y was one blue marble 
to every 2 red marbles; and bag z was one blue marble to every 5 red marbles. 

 
Teacher: (to class) So what is different about this than the one before? (referring 
to the last presentation) Talk to him.  

  
Sydney: Basically, what you’re doing . It’s kinda like how Henriet did it. It’s like 
one –third..oh, no it’s not…I’m sorry… 

 
Teacher: It’s different. 

 
Sydney: Ya, it’s different. Sorry, because it’s basically a ratio. You’re taking one 
to three. So, its like one for every three marbles…what they did, they divided 
into a fraction. 

 
Bob: They used the red and blue instead of the blue and total. (inaudible) 
 

In this exchange, Sydney is thinking along with each of the presenters, but doesn’t quickly notice 

the difference between Henriet’s presentation of the part-whole relationship and Ed’s 

presentation of the part-part relationship.  She quickly corrects herself as she sees her own 

confusion; making sense of her own ideas in light of  her peers’ explanations.   Bob summarizes 

the difference in methods for her following her expression of momentary confusion.   

Students revising their own thinking was apparent during a partner quiz, administered on 

day 4, as well.  One question, shown in Figure 4. 9, in particular caused students to consider their 

responses carefully.  

 

 
“Juanita is holding five coins with a total value of 27 cents. A) What is the probability 
that three of the coins are pennies? Explain your answer. B) What is the probability that 
one of the coins is a quarter? Explain your answer.“ (Lappan et.al, 2014).   

 

 Figure 10. Assessment item from the Partner quiz (day 4) 
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In the following sequence Inez and Henriet complete their quiz and had submitted it to 

the teacher, who glanced at the paper.  She used the phrase “talk to me” as a way to hold them 

accounTable 4.8or explaining their response.  As students began to talk, they determined that it 

was impossible to have a quarter as a part of the five coins: proving through exclusion.   

(32:14)  Inez: We’re not quite sure about the last one. 

Teacher: So, so talk to me. 
 

Henriet: So (inaudible) cause one penny is worth one cent? Or does it mean how 
many times 3 goes into 27? 

 
Teacher: (reading the question) It says, … “what is the probability that three of 
the coins are pennies? In other words can three of the … So how do you make, 
with 5 coins,  make 27 cents with 5 coins.  

 
Inez: 3 pennies. 

 
Teacher: That’s 3 cents. 

 
Inez: You need…. 

 
Henriet: A dime… 

 
Teacher: You need 24 cents. 

 
Inez: Wait. 

 
Henriet: It’s not possible…because you can’t have a quarter. 

 
Teacher: So if it’s not possible, how do you record that as a probability?  

 
Inez: Zero? 

 
Henriet: Zero? 

 
Teacher: Zero. If it’s impossible, there is a zero percent chance of happening. 

 
The teacher becomes a thinking partner in this episode; reading and rewording the 

question, reminding them that three pennies is three cents. It is unclear whether Henriet was 

considering the need to have twenty-four cents, or if the teacher spoke too quickly and led her to  
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the need for twenty four cents.  It seems that the act of encouraging them to talk about their 

thinking was enough to give them access to the solution. Henriet concludes that it isn’t possible, 

revising her earlier solution.  The teacher then prompts them to think about the way to record an 

impossible probability and confirms their conjecture that it is zero.  

Similarly during the same partner quiz with Marcy and Estelle on the identical question a 

prompt to “just talk to me” resulted in the students thinking more carefully about their 

mathematical reasoning and revising their response.  

(34:00)  Marcy and Estelle (walk up to teacher and hand her the test) We’re done. 
 

Teacher: I’ll take it.  (she looks at it briefly)  Now hold on a second. So 
show me how you’re going to get three pennies here. You’re going to use 
three  pennies. Just talk to me for a second. How are you going to use 
three pennies to get 27cents? 

 
Marcy: OOOH 

 
Teacher: What will you have? What will the other coins be? 
Three pennies…. 

 
Estelle: It’d be…….that wouldn’t work. 

 
Marcy : We did this with…we did that wrong.  Thank you. (turned and 
returned to their seats with the paper) 

 
In this short sequence, the suggestion for mathematical justification resulted in both students 

rethinking their response. Neither student finished a sentence before revising their thinking and 

correcting their response. Making thinking public and students revising their thinking is 

addressed further in section 4.2.3.  

4.1.2.2  Students demonstrate intellectual courage to hold peers accountable 

Similarly, in the topically related segment that follows in Table 4.4, taken from lesson ten, there 

was an extended discussion that included several significant features that are consistent with the 
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students having a high degree of both accountability and authority; represented by the upper right 

quadrant in Figure 4.10.  (The task was presented near the end of day 9, but the majority of 

discussion was held on day 10.)  Due to the extended nature of this discussion and my intention 

to illustrate the function of each utterance, I have included a line-by-line commentary that is 

intended to draw the reader’s attention to the ways that the teacher and students enact the 

principle of accountability.  By the end of this segment, it is apparent that several students have 

reconsidered their conjectures and have altered their conclusions as a result of listening to peer 

reasoning.  Although I present this example as an exemplar of peers holding each other 

accountable, there are numerous examples of peer accountability throughout the data including 

the topically related segment already discussed in Table 4.2.  

The task in which students are engaged is one that includes the investigation of an area 

model that represents the contents of two buckets of marbles of various colors, shown in 

Figure 4.10.  The task challenges students to make sense of the provided area model and to 

notice the relationship between proportional reasoning and the area model.  Of course, all three 

options provided in the task, could represent the contents of the buckets. The commentary to the 

right of each utterance (Table  C) represents my view of the function of each comment through 

the lens of the principles of accountability and authority. Students repeatedly demonstrated 

intellectual courage and held peers accountable for their reasoning.  In this whole group 

discussion, Dennis and Ed, partners in the task, are presenting at the document projector.  The 

teacher asked Dennis to do the presentation, but he refused.  When he refused, she asked his 

partner, Ed, to join him at the document projector for support.   Dennis sat with his arms crossed, 

slumped in his chair, determined not to participate in the discussion. Table 4.4 represents the 

discussion that followed, with Ed doing the talking for the pair.  Although the teacher tried to 
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hold Dennis accountable for engaging in the discussion, he provides an example of a student she 

could not engage in discussions most of the time.  Dennis was not among the special needs 

students in the class.  He was capable of participating but chose not to do so.  

 

 

Figure 11. Two Buckets Task (day 9 and 10) 
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Table 7. Classroom Discourse Related to the Modeling Two Marbles Task 

 

 

 

 

 Teacher Student Commentary 

222 (22:00) Teacher: Dennis, 
come on, let’s do it. Hey, 
there’s no harm.  If you 
need help from your group 
you need help. That’s fine.  
Talk about what you know.  
Maybe somebody would 
like to come up with him.  
Maybe you’d feel a little 
more comfortable if you 
had a buddy to support and 
help answer questions.  I 
know I am making you 
uncomfortable.  That’s all 
right.  We are not going to 
let you hang.  (Dennis sits 
in the chair, crosses his 
arms, and slumps.  Ed joins 
him.) There is another chair 
there. Okay, so the two of 
you can do it. Dennis, 
which did your group vote 
for?  

  

247  Dennis- A 
 

 

248 Teacher: So you voted for 
two reds and eight greens.  
Let’s just start with that. 
How does that represent 
two reds and eight greens? 
Do you have any idea about 
that? 

 The teacher tries to encourage 
Dennis to speak.  

255  Dennis: No  
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Table 7 (continued) 

256  Ed: It’s equal on both 
sides. (Writing under 
the document 
projector) 2+8=10; 5+5 
=10 

Ed addresses the 
question. 

 Teacher: So where are those numbers? 
On the pictures?  

 The teacher tries to help Ed 
make his thinking 
accessible to the class.  

263  Ed: So this is bucket 1.   
 Teacher: Wait. We can’t see what you’re 

writing on.  Let’s move down here 
(repositions his paper under the 
document projector.  

  

271  Ed: And this is bucket 2. 
There are 10 on each 
side. 

 

 Teacher: Are there any questions? Don’t 
ask me, ask him.  

 Students have hands raised. 
She tries to deflect the 
questions to Ed. 

277  Henriet: The bucket one 
would be the red and the 
blue.  Just that side. 

.  

280 Teacher: Henriet is saying this side 
represents bucket one and this side 
represents bucket two (pointing to the 
document projector image). What are you 
saying Ed and Dennis?  

 The teacher revoices 
Henriet then positions Ed 
and Dennis to answer 
Henriet’s  question.  

  Ed: I’m saying all the 
stuff on this side is 
bucket one and this side 
is bucket two.  

 

292 Teacher: How about you Dennis? Do you 
see what he is saying? 

 She is checking for 
understanding the 
explanation of his peer.   

  Dennis – No. It doesn’t 
make sense. 
 

He is expressing 
uncertainty about the 
explanation that has been 
presented by Ed.  
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Table 7 (continued) 

297 Teacher: Not making 
sense to Dennis. This is 
Ed’s reasoning. I didn’t 
say that I shared his 
reasoning or anything 
about it. This is  
 
about what HE thinks so 
it is your job to ask 
questions if you disagree 
or don’t understand, go 
up there. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

She is sharing authority with Ed; 
giving credit to his thinking process 
without evaluating it.  She encourages 
him to author his own ideas. She 
invites peers to critique  
 
his reasoning and infers that the 
answer was arrived at via a process of 
reasoning that makes sense to Ed.   

308  Nancy: I agree. 
 

She assumes authority, evaluates,  and 
agrees with Ed. 

  (many students begin to talk at 
once.) (25:41) 

Students demonstrate their authority 
and boldly question the mathematical 
reasoning of the presenter.  

 Teacher – Yoohoo! if 
you have questions or 
you disagree, your 
comments need to go up 
here.  Come on, let’s go. 
There is a lot of uprising. 
What is bothering you? 
 
 

 She is encouraging discussion and in 
doing so demonstrates to students that 
their ideas are of value and that 
knowledge is to be constructed 
together. Further she is encouraging 
students to use each others’ ideas as 
resources and sends the message that 
thinking is a public, collaborative 
activity.  

316  Henriet– I agree that it is A. 
But I don’t agree with how you 
found it. (speaking to Ed) The 
whole thing is out of 10 I don’t 
agree with adding 2+8 and 
5+5, even though together you 
get 10. I don’t really see that 
adding those… gets you your 
answer. 
 

After considering Ed’s mathematical 
explanation, she critiques his 
reasoning and in so doing, assumes 
authority and holds Ed accountable to 
restate his position or modify it.  

  Nancy: I know. If you add the 
2 and the 8 and got 10 and it 
equals 100 percent.  
 

She also critiques his reasoning and in 
so doing assumes authority and holds 
Ed accountable.   
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Table 7 (continued) 

330  Sydney - can I come up there and 
explain it?  (She walks to the board 
and begins to explain to the class). 
(27:33) So what I did is 2/10 would 
be in here and 8/10 down here and 
5/10 on this one and 5/10 here.  You 
add and this would be 10/10 over 
here and over here 5 + 5 and this 
equals 10/10 also.  So, that is how I 
kind of think of it.   But how we 
solved this is we multiplied it 
because if you multiply 10 x 10 you 
get 100. 
 

She assumes authority and 
anticipates accountability via an 
unsolicited explanation.  She 
uses the white board at the front 
of the class as a resource for her 
explanation .   

346  Bob– I agree. All I want to do 
(writes on board). I think that might 
clear up a little bit of the confusion.  
(He writes the bucket 2 on the side 
of the area model opposite bucket 
1.) 
 

He assumes authority and 
shares a different representation 
that he believes is better than 
Sydney’s.  

353 Teacher – Now I have a 
problem with that because 
we don’t have an area 
model anymore if you put 
yellow and blue down the 
other side. You have two 
separate things and one 
has to be on one axis and 
the other has to be on the 
other axis. 
 

 Noticing that there is a 
mathematical representation 
error, she assumes authority for 
a moment to correct the 
mathematical representation 
that will lead students to an 
incorrect conclusion. In this 
move, she holds students 
accountable to the discipline.  

363  Ophelia : But if you are looking at 
those buckets, red, green and yellow 
would be in one bucket and blue 
would be in another. 
 

She is clarifying her thinking.  
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Table 7 (continued) 

368 Teacher – No. You have to look at 
bucket one as down the left side and 
bucket two across. So, what you need to 
notice is that across here, these are two 
equal parts. This part, and this part are 
equal. So you have the same number of 
yellow as blue. That is the take away 
here on yellow and blue. Yellow and 
blue have to be across the top and you 
can see that they are equal. So, for 
yellow and blue, I buy this 2 to 8 or 2/10 
to 8/10. For yellow and blue, you have 
5/10 and 5/10. Think about it like those 
clear plastic sheets where one is on top of 
the other so although this represents a 
proportion this way it can be a different 
proportion going this way and this way. 
You have two overlapping things. 
 

 She again assumes authority 
for a moment to correct a 
mathematical representation 
that will lead students to an 
incorrect conclusion. In this 
move, she holds students 
accountable to the discipline. 

397  Sydney –(who is still 
standing at the board)  
So then after that, we 
just kind of did in our 
heads because it was 
really simple we just 
multiplied it to get 100 
over 100. 
 
 

She resumes authority and 
continues her explanation to 
the class.  

404 Teacher – What fractions did you see? 
Those fractions?  
 

 Exploring mathematical 
meanings and/or 
relationships,  she is holding 
Sydney accountable to the 
discipline. 

407  Sydney – Yeah, 2/10 + 
8/10 you get 10/10. 
5/10 + 5/10 get 10/10 
and then you multiply 
them together and you 
get 100 over 100.  

She is responding to the 
request for accountability.   
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Table 7 (continued) 

 Teacher – How does that help you decide 
which bucket? 
 

 The teacher is probing for 
mathematical explanation.  She is 
giving Sydney the authority to 
think about it in her own way, 
while holding her accounTable 
4.8or the communication of sound 
mathematical reasoning.  

  Sydney – Well 
because they are 
both equal. 
 

She is responding to the request 
for accountability. 

 Teacher – What is equal? 
 

 She continues to probe in an effort 
to get Sydney to communicate 
sound mathematical reasoning.  

  Sydney – if you 
are looking at it 
this way, this 
bucket would be 
10/10 and this 
bucket would be 
10/10. 
 

She is responding to the request 
for accountability. 

512 Teacher – So this only works if you have 
an equal number of marbles, is that what 
you’re saying? 
 

 In an effort to extend student 
thinking, she is probing to 
determine if students are noticing 
a relationship between the area 
model and proportional reasoning.  

  Ed – yes. 
 

Demonstrates authority by 
evaluating the statement and 
agreeing.  

 Teacher – So that is what you are saying? 
For this area model to work you have to 
have an equal number of red and green 
marbles and yellow and blue marbles. The 
two buckets have to be equal numbers. 
Does everyone in the class agree with that? 
No? Only one person doesn’t agree? 
Henriet is standing her ground. Nya, let’s 
hear you say something. 
 

 In an effort to generate discussion 
and continue to probe student 
understanding, she continues to 
try to encourage students to notice 
that the area model represents 
several proportional relationships. 
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Table 7 (continued) 

533  Nya (walks up to the board) (31:24) I 
was thinking of all of this as a visual. 
I was thinking about to red and eight 
green and you look at it like this and 
the number is 10 so then you would 
have it like this. And then for the two 
red you would put it like, I don’t 
know how to word it for it to make 
sense…(jumping up and 
down…making a circular motion 
with her hands)  
 

She demonstrates 
authority through her 
attempt to provide an 
explanation of her own 
view of the area model 
resource.  Her body is 
very animated but she 
demonstrates an 
incomplete explanation. 

  Madia – Just draw it. 
 

Expresses impatience 
with Nya. 

  Nya – So what I’m trying to say is, I 
am thinking of it like a picture 
because if you look at this…and I 
know. 
 

She clearly wants to 
make sense of the 
resource but can’t 
verbalize an explanation.  

552 Teacher – Let’s think about this 
as an area model. So if this is a 
playground and this is the grass 
we are cutting. If this is 2/10 
what percentage of the grass are 
we cutting? And this? And this? 
It is 50 percent so then this is 
also 50 percent. It is 20% when 
you think of bucket one but it is 
50% when you think of bucket 
two. You ignore it when you are 
thinking about the second 
bucket. Because the second 
bucket goes this way and it has 
two halves. So think about it in 
percent.  So how does that 
change your thinking at all.   
 

 She attempts to make a 
connection to a 
traditional area problem 
by simplifying the 
context.  Finally, she 
probes for understanding  

575  Henriet – I still agree that it is A, but 
I don’t agree with any of the ways 
that have been presented. 
 

She demonstrates 
authority and critiques 
the reasoning of the 
peers and teacher.  

 Teacher – Okay, so let’s hear 
yours. (33:32) 
 

 She relinquishes 
authority and encourages 
Henriet to provide a 
mathematical 
justification.  
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Table 7 (continued) 

581  Henriet – (walks to the 
board)  She said both of 
these are 5/10, but they’re 
not equal.  
 

She assumes authority. 

585 Teacher – They are not equal. 
Sydney, do you see why those 
are not equal? Up and down they 
are not equal but they are side to 
side.  Go ahead…. 
 

 Revoices Henriet, then probes the 
understanding of Sydney. With 
this statement she has controlled 
the pace of the information that 
Henriet is providing.  

  Henriet – So the way that I 
solved it – so what I did 
was 1/10 + 1/10 is 2/10 
and and then 4/10+4/10 is 
8/10. And then 1/10 +4/10 
is 5/10.(pointing to 
segments in the area 
model) 
 

She assumes authority and 
positions herself as an expert. 

  Students– oh…., that 
makes perfect sense! 
 

Students evaluate her thinking and 
concur.  

600  Bob – you can see 
perfectly then if you go 
across… 
 

He evaluates her thinking and 
concurs.  

  Students (several)  – That 
makes sense. 
 

They evaluate her thinking and 
concur.  

  (students begin to clap)  
 

Students demonstrate appreciation 
to Henriet for sharing her thinking 
process.  They all assume 
authority by evaluating her 
thinking and simultaneously 
position Henriet as an expert.  

 Teacher – That’s better than I 
did, Henriet.  
 Okay, so then the question is 
does it have to be…why does 
two and eight work? Why does 2 
here and 8 here work (pointing 
to the area model) Just think of 
the reds and the greens. Does it 
work? Dennis said it works. 
Why does it work? Estelle, why 
does it work? Why does two reds 
and eight greens work here?  

 She positions Henriet as an expert 
and positions herself as  teacher as 
partner, engaged in the same 
intellectual work.  
(Tabak/Baumgartner). 
 She is probing to extend their 
thinking and in so doing, holding 
students  accountable to herself 
and the discipline.  
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In addition to Dennis’ lack of engagement, perhaps the most significant feature of the 

discussion is the ease with which other students respond to mathematical ideas presented by their 

peers.  Henriet, Nancy, Sydney, Ophelia, Nya, Madia, and Bob make contributions to a 

discussion that began with uncertainty expressed by Dennis regarding Ed’s explanation.  During 

this discussion, which proceeds for more than ten minutes, several students in succession walk to 

the white board while the teacher and the rest of the class look on. They are both eager to present 

their ideas and seemingly unaffected by whether their conjectures are correct or incorrect. In 

addition, their responses reflect that they are listening to the entire conversation and engaging 

with the thinking of their peers. Their refutations of their peers’ ideas is a significant indication 

regarding the way they believe truth is established in mathematics.  They seem to agree that truth 

is not established by the teacher or a book determining whether the answer is right or wrong, but 

by providing evidence to support or disprove a conjecture.  Throughout the segment, it is 

apparent that they had been listening to peers’ and the teacher’ attempt to explain the 

mathematical thinking.  However, until Henriet explained her thinking, they could not make the 

connection between the area model and the proportions represented by the problem. Henriet 

maintains her intellectual courage through the course of the discussion.  The repeated assertions 

of other students did not incline her to revise her thinking and in fact allowed her to explain and 

challenge her peers’ mathematical logic. Henriet agrees with the answer provided by Ed, but not 

his method of solution. She says, “ I agree that it is A. But I don’t agree with how you found it.”  

Henriet seems to be following Ed’s explanation of his mathematical thinking. Later, Henriet 

explains her own thinking; resulting in student applause.  The fact that students clap at the 

conclusion of Henriet’s explanation indicates the extent to which students are engaged in the 
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discussion. The intensity of student engagement to which Engle and Conant (2002) refer is 

apparent in this segment.   

It is interesting that despite the enthusiasm of the class, and the number of speakers in 

this segment, that Dennis had not engaged publically.  

Throughout the discussion authority and accountability seemed to be reflexively related.  

Without the distributed authority, students could not hold each other accountable. Each student 

exhibited authority as he critiqued the reasoning of peers. However, without the accountability, a 

discussion of this magnitude and detail may not have occurred. Students held each other 

accountable for clear explanations that reflected the area model.   

Several moves by the teacher encouraged students to persevere in problem solving while 

holding them accountable to the community, knowledge, and rigorous thinking.  First, she uses 

Accountable Talk moves (O’Connor & Michaels, 1993), (Appendix F) to probe student 

understanding and generate discussion.  She says, “The two buckets have to be equal numbers. 

Does everyone in the class agree with that?”  Later in the segment she says, “ So this only works 

if you have an equal number of marbles. Is that what you’re saying?”  Both of these examples 

serve to generate discussion and encouraged students to examine their own assumptions.  

Second, she assumes total authority when Bob presents a model that she believes will serve to 

undermine the direction of the discussion to that point. She makes an in-the-moment decision to 

keep the class from following Bob’s thinking; refuting his assertion and redirecting the 

discussion back to points discussed by Sydney. In that move, she offers to distribute authority, 

but quickly reassumes it in an attempt to keep the mathematical discussion progressing toward 

her goal of having students notice the connection between the area model and proportional 

reasoning.  
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In the following comment wherein she uses the word “notice”, she draws attention to the 

size of the area model portions. She says, “So what you need to notice is that across here, these 

are two equal parts.”  She has both assumed authority and encouraged students to pay attention 

to the details of the construction of the area model. A few sentences later, she reminds students 

of a previous day where plastic transparency sheets had been used by students to represent the 

contents of each bucket. Using that resource, she provides students with structure that may be of 

use in making sense of the problem at hand.  

The student questionnaire supports the results reported related to the principle of 

accountability.  Question numbers 3,4, and 6 address accountability as well as several other 

principles. 

How much do you agree with the following statements about your teacher in your Math 
class:  My teacher: (circle the answer that reflects your opinion) 

 
3. Often requires me to explain my answers.   

Strongly disagree      Disagree        Agree        Strongly agree  
     

4.Encourages us to consider different solutions or points of view.   
Strongly disagree      Disagree        Agree        Strongly agree 
 

6. Expects us to work together to solve problems.       
Strongly disagree      Disagree        Agree        Strongly agree  
 
The results of student answers to these questions are as follows: 

• 95% of students agree or strongly agree to question 3 and 4 

• 100% of students agree or strongly agree to question 6. 

The results indicate that students are aware of the expectation that they work together and 

consider others’ point of view as a peer explains their thinking.  The students not only 

understood the expectation, but also were able to enact the capacity to critique the reasoning of 

others.  
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4.1.3 Ways the teacher and student enact the principle of problematizing 

Engle & Conant (2002) discuss the importance of “problematizing” as the third core idea in their 

framework. Engle (2011) describes problematizing as, “any individual or collective action that 

encourages disciplinary uncertainties to be taken up by students” (p. 6).  She further describes 

problematizing to include the extent to which genuine uncertainty is engendered in students, that 

problems are not easily resolved, that problems embody “big ideas of the discipline”, and that 

they are related to a topic that is of some interest to the learner. In order to succeed in 

problematizing, a teacher must create an environment where students must persevere together 

toward a common goal.  Discourse among students is truly necessary in an environment that 

embodies the principle of problematizing because a course toward solution is not apparent. 

Students genuinely need to talk in order to determine a solution path, draw a conclusion, or 

synthesize their work. Problematizing describes a purposeful choice by the teacher in terms of 

the kinds of tasks students will engage and the way the tasks will be enacted.  In other words, 

problematizing includes choosing tasks that encourage students to both interpret them and 

persevere in solving them, using available knowledge and resources.  Genuine uncertainty must 

be created within students to have enacted the principle of problematizing. Congruent with other 

research that draws a connection between discursive participation, the related teacher practices 

that influence student learning, and the mathematical task selected by the teacher, problematizing 

is a central theme (Leinhardt & Steele, 2005; Stein, Smith, Henningsen, Silver, 2000; Silver, 

Smith, & Nelson, 1995; Smith, 2000; Lotan, 2003; Hiebert & Wearne, 1993; Kieran, Forman, & 

Sfard, 2003).   
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4.1.3.1 The task 

Research collectively points to the importance of the task in creating a sense of uncertainty in 

students. A mathematical task is defined as a set of problems or single complex problem that 

focuses students’ attention on a particular mathematical idea (Stein, Grover, & Henningsen, 

1996). It is the task that provides something worthy of talk while promoting or discouraging 

students to explore deeply the intended mathematical goal. Although task selection and 

problematizing are not synonymous, problematizing largely depends on task selection and the 

enactment of the task by the teacher. This idea will be further explained in subsequent 

paragraphs.  

Each of the tasks used in the study are illustrated in Appendix I. Table 4.5 represents a 

visual description of the task, the way it was used with students, along with the cognitive demand 

as described by the Math Task Analysis Guide (Stein, Smith, Henningsen, & Silver, 2000), 

shown in Appendix C. 
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Table 8. Summary of Tasks Utilized in this Study 

3 DM=Doing Mathematics, PW=Procedures with Connections, PWC= Procedures w/o Connections 
(Stein,Smith, Henningsen, & Silver, 2000) 

Data Collection 
Day 

Task by name or number Cognitive Demand3 
 

Setting utilized 

Collection day Task Cognitive Demand Setting utilized 
1 Problem 1.1 PWC In class 
 Orally assigned graphing task DM In class 

2 Problem 1.2 PWC In class 
 Develop definition DM In class 
 Homework problem 1 PWOC Homework 
 Homework problem 2 PWOC Homework 
 Homework problem 3 PWC Homework 
 Homework problem 4 PWC homework and in class 

 Homework problem 5  PWC Homework 
3 Problem 6A PWC In class 
 Problem 1.3 PWC In class 
4 Partner Quiz  Assessment 
 Problem 1 DM In class 

 Problem 2 DM In class 

 Problem 3 DM In class 

 #19 a,b,c,d  PWOC Homework 
5  Marbles task (Quasar) DM In class 
6  No new tasks   
7 Problem 2.3  DM In class 
 Cafeteria problem PWC  In class 

8 Marbles task ( NAEP) DM  Assessment 

 Sticky Gum Problem DM In class 

9 Problem 4.1 A,C PWC In class 
10 Problem 1-4 PWC In class 
11 Yellow face cube task DM Assessment 
12 Making Purple DM  In class 

13 Problem 4.3  PWC In class 

14  Problem 15- One and One 
simulation 

DM In class 

15 Assessment – question 1,2,3 PWC,PWC,PWC Assessment 
 
 

Caves Paths PWC Homework and in class 
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The results indicate that a high percentage of tasks utilized in this unit of study fall within the 

categories designated as high cognitive demand: either procedures with connections or doing 

mathematics.  Specifically 9% of tasks were of low cognitive demand, and 91 % of tasks were 

classified as tasks of high cognitive demand.  Within those tasks of high cognitive demand, 52% 

were considered as procedures with connections and 39% were classified as doing mathematics. 

All three tasks having low cognitive demand were assigned for homework as procedural practice. 

Several of the tasks that were classified as doing mathematics were from the Connected 

Mathematics curriculum (Lappan et.al, 2014), while others were integrated from released NAEP 

items or items from the QUASAR study (Silver, Smith & Nelson, 1995). 

4.1.3.2 Student uncertainty 

The authors of the Math Task Analysis Guide indicate that the solution process is unpredictable 

in a task of that qualifies as doing mathematics, and that students may experience “anxiety” as a 

result. Engle and Conant (2002) use the word “uncertainty” to refer to the same student 

disequalibrium. Once students understand the task, they may still not be able to arrive at a 

solution path quickly or know what to conclude, or how to justify their reasoning. The struggle 

requires perseverance on the part of students and often includes uncertainty; what Engle & 

Conant (2002) refer to as uncertainty as to what to do  or uncertainty as to what to conclude and 

what the CCSS-M, Mathematical Practices refer to as persevering in problem solving.  All of 

these sources agree that this struggle is productive and necessary in the process of students’ 

construction of mathematical meaning.  In this study, uncertainty was very common, and present 

during each day of instruction.  

In regards to the results of this study, I coded all verbatim transcriptions for student 

uncertainty.  Specifically, I coded instances wherein students orally expressed uncertainty such 
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as, “ I don’t understand” or “I don’t get it”.  Every class transcript had expressions of student 

uncertainty.  It is likely that student uncertainty resulted from their engagement with tasks of 

high cognitive demand that were utilized in every class.  In the coding process, I did not 

distinguish between uncertainty as to what to conclude, how to justify what one is doing, what to 

do, or a combination. An example of the way student uncertainty was apparent follows.  

This struggle and uncertainty as to what to conclude is apparent in the excerpt of the third class 

during the review of homework.  The task (homework problem 4) that students addressed was, 

“Len tosses a coin three times.  The coin shows heads every time.  What are the chances the coin 

shows tails on the next toss? Explain.”  (Lappan et.al, 2014).  This task challenges students to 

consider events that are independent or dependent, an unfamiliar concept to students, and asks 

them to consider prior experience or knowledge that might be useful.  The student (Henriet) who 

begins the discussion assumes authority and offers a conjecture.  Her erroneous response 

provides a point for further class discussion and the airing of student uncertainty.   

Henriet: Well I said it would be one-fourth, cuz I  (teacher writing ¼ on 
board)  I said if he  had already had head three times….i would think 
that the fourth time it is more likely  he’d get a tail. (teacher sitting with a 
group near the board) (Pause) 

 

Lyla:  I think it’s still like a 50% chance because even though it’s heads 
three times, that  doesn’t really matter. Because no matter how many 
times you flip it, it’s going to be a  50-50 chance because it’s a fair 
game, it’s equal chances.  (Teacher still sitting) 

 

Bob: I have to agree with Lyla.  I mean you’re using the same coin.  The 
chance is  always going to be 50-50.  I mean, there’s a heads there’s a 
tails (Bob, crouches on his  seat) . There’s only two chances.  Two 
choices I mean.  (day 3) 
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Lyla and Bob have disagreed with Henriet and have attempted to justify their conjectures 

using mathematical reasoning.  They have necessarily elaborated their assumptions and have 

held Henriet accounTable 4.8or her mathematical reasoning.  The teacher has chosen to share her 

authority by allowing the students to provide comments to Henriet, and by sitting quietly with 

another student group. In the next exchange, the teacher generates further discussion by 

positioning students on two sides of the argument: Henriet’s side or Lyla and Bob’s side. 

Following a clarification of what constitutes a fair coin, both Madia and Ute express some 

uncertainty.   Both are assuming authority by attempting to evaluate student contributions.  Ute 

has clearly immersed himself in the thinking of both groups of students and summarizes each 

position.   

(6:56)   Nancy: I agree.  But can’t you like have a coin that has both on one side?  
 

Teacher: We’re assuming they’re not biased. 
 

Nancy: Ok . Unless it’s like that. There’s always going to be a 50-50 
chance. 

 
Teacher: Who agrees with Henriet? Anybody agree with Henriet?  (Madia 
raises her hand) 

 
Madia: I’m both.  I can’t decide. 

Ute: I don’t agree with it, but I can see where it’s coming from because 
it’s just common sense to think ok, well, if I’m going to flip it four times 
that ..and I already had three heads that y’know there’s probably going to 
be a tails because they ARE equal.  But at the same time, like Bob said, 
it’s the same coin. The same deal. It’s always going to be 50-50 so it really 
could be either way. So I see where she’s coming from but I don’t 
necessarily agree with it.  
 
Madia: I get both sides, but I’m not sure which one I agree with. (day 3) 
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After a further expression of uncertainty, the teacher returns to Henriet to probe her 

understanding, now that she has considered an alternate position.  Although confident in her 

initial response to begin the discussion, Henriet now exhibits uncertainty.  She is publically 

reconsidering her position.  

Teacher: Henriet, what do you think, after hearing the other side? 

Henriet: I thought about that and I see it from both sides…like …I don’t 
know. 

 
The teacher then assumes authority to interject the words independent and dependent events.  

Once students realize that the fourth coin is not dependent on the results of the previous three 

flips, they arrive at a consensus position regarding a 50% probability of flipping a head on the 

fourth coin.  

Teacher: (stands and walks to the white board) How about these words? 
How about this  word?  You have to ask yourself if these are 
(writing) INDEPENDENT or DEPENDENT  events.  What is …I 
don’t know how to spell this… What is independent versus  dependent 
events?  (sits back down with a group) Does the fourth one depend on how 
the  other three went?  
 
Henriet: No 

Teacher: No, it doesn’t depend on it, so it is an INDEPENDENT event. 
It’s not  dependent on the first three.  So…. (pause)  What probability does 
it have?  

 
(8:58)    Nadeem: 50% 

Teacher: You think? 

Bob: Ya 

Teacher: Does everybody think it’s fifty percent?  

Nya, Kasey, Henriet, and others shake heads yes. (day 3) 
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This segment emphasizes the importance of the task to the principle of problematizing.  The task 

presented caused students to be uncertain and to monitor their own cognitive processes, as was 

apparent in Ute’s summary of the two sides.  He is reflecting aloud about his perception of each 

student’s explanation as he considers both sides carefully.  The task has encouraged uncertainty 

which was presented by students confidently and was in fact embraced by fellow students. The 

student and teacher reaction to uncertainty was respectful and took the form of mathematical 

reasoning.  

Similarly when the class undertook the following task on day 5, uncertainty was 

expressed and students and teacher responded with mathematical reasoning.  The task presented 

was: “Mrs. Rhee’s math class was studying statistics.  She brought in three bags containing red 

and blue marbles. The 3 bags were labeled as shown. Mrs Rhee shook each bag. She asked the 

class, “If you close your eyes reach into a bag and remove 1 marble, which bag  would give 

you the best chance of picking a blue marble? Notice that the bags don’t have the same number 

of marbles in them. So you need an explanation and two representations.” (adapted from Silver, 

Smith, & Nelson, 1995) (day 5) 

  As students undertook the completion of this task in their small groups, they used a 

variety of solution methods, as requested; demonstrating authority.  Some determined the 

fraction of each bag that blue marbles, one group utilized percent of blue marbles, several groups 

used part-to-part ratio comparing blue to red marbles, while another scaled up each bag so that 

the same number of marbles was contained in each bag. Student solutions are shown in 

Appendix X.  Groups generally had little problem utilizing one strategy, but were challenged to 

produce two solution methods.  
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  When it came time for sharing solution methods, Ed was chosen among the presenters. 

He and his partner were the third and final pair to present.  He illustrated the ratios of blue 

marbles to red marbles in each bag represented in the form of line graphs (Figure 4.11). Marcy 

was uncertain regarding Estelle and Ed’s method. The uncertainty itself is an important element, 

but perhaps more importantly, as in the last segment, her uncertainty is met with mathematical 

reasoning by another student and the teacher who work together; each providing different 

representations, to help Marcy make sense of his method.  

Marcy: I don’t understand how you got that. 

Teacher: She’s not understanding how you got that.  Can you talk more?  

Ed: For bag y it’s double. For the red ones there’s two for every one (showing his 

 graph under the document projector). 

 

Figure 12. Estelle and Ed’s Marble Graph (day 6) 
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As the exchange begins, the teacher uses Accountable Talk (O’Connor & Michaels, 

1993) to encourage Ed to clarify his explanation.  She revoices Marcy’s expression of 

uncertainty, then asks Ed to say more so that Marcy can engage more profitably from his idea.  

Teacher: Look up here. This might help you, Marcy.  Twenty to forty, 
turns into a  ratio of one to two (referring to the ratio that is one the 
white board) Which is what  you’re saying, right? (talking to Ed) 
 
Ed: Exactly 

Teacher: So how does that one to two, show up on that graph? How does it 
represent on  the graph? 
 
Ed: It goes over 2 and up one. 

Teacher: Show us. Point to it with a pencil. (Ed is showing on the 
document projector) So every 2 it goes up 1.   
 

In this exchange, the teacher and Ed share authority in providing Marcy with a response 

to her expression of uncertainty. The teacher addresses her uncertainty initially by offering a 

familiar representation, a ratio, to Lauren.  She shares authority with Ed when she says, “Which 

is what you’re saying, right?”.  Ed and the teacher become partners in helping Marcy to see the 

connection between the ratio and the graph when he answers, “Exactly”.  The teacher uses 

Accountable Talk to encourage Ed to say more regarding the tie between the proportional 

reasoning representation and the line graph. The teacher opens a conversation for Ed to explain 

the relationship between the proportion that was written on the whiteboard and the graphical 

representation that he is illustrating when she says, “So how does that one to two show up on the 

graph? How does it represent on the graph?” Although she recognizes that Ed understands the 

concept in question, she asks Ed the question for Lauren’s benefit.  He becomes the authority in 

this instance.   Ed demonstrates his method of “goes over 2 and up 1” in an effort to help Marcy 

follow his mathematical reasoning. The teacher requests that Ed provide a very deliberate 
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explanation using his graph when she says, “Show us.  Point to it with a pencil.” She is holding 

Ed accountable for an explanation that is complimented by a visual demonstration in the use of 

his graph.  In addition, by using the word, “us” she has assumed the position of teacher as 

partner, implying that she, too, needs the explanation. By assuming that stance she sends the 

message to Marcy that her question is worthy and there will be others that benefit from further 

discussion. In the next line, the teacher begins the sentence with “so”, further positioning herself 

as teacher as partner (Tabak & Bumgartner, 2004).  By using the discourse marker, “so” prior to 

revoicing (O’Connor & Michaels, 1993) Ed’s comment she not only rephrases his remark, but 

she does so in a way that attributes the “revoiced” statement to Ed and entitles him to negotiate 

her interpretation of his remarks. This use of teacher as partner and revoicing is what Tabak & 

Baumgartner (2004) call symmetry fostering participant structures.  That is, setting up symmetry 

between the students and teacher regarding the respective authority over knowledge construction.  

A key point to which I would like to draw attention is the entwined nature of the task, the 

expression of uncertainty by Lauren, and the way that authority and accountability were used in 

this segment. The task itself provided the opportunity for multiple solution methods.  Student 

groups addressed this task using several representations.  When Ed provided his graphical 

representation and explanation, Marcy expressed uncertainty; not following his mathematical 

thinking. The way the uncertainty was handled by Ed and the teacher are important pedagogical 

features that illuminate the bond between the principles of authority, accountability and 

problematizing. Without the attention to sharing authority, the teacher may have become the 

authority of the knowledge. Her talk may have been in the form of evaluation of Ed’s 

mathematical thinking or of Lauren’s lack of understanding.  In this exchange, it was neither. 

 163 



She has suggested to students, through sharing authority, that learning includes both 

mathematical analysis and extension of ideas.   

The integral nature of the task to the principle of problematizing is apparent in the two 

segments discussed.  Because a well-chosen task provides some degree of uncertainty, students 

necessarily are engaged in talking about their mathematical thinking.  The strategic choice of 

representations for class discussion provides an opportunity to both air uncertainty and to make 

public the construction of meaning among representations. Students must persevere in problem 

solving in order to arrive at solutions that are accepted by their peers (CCSS-M, 2010).  

Results of the student questionnaire point to the awareness that students developed 

regarding the types of tasks they were provided, and the expectation to persevere in problem 

solving. Question 5 asks students to circle a response ranging from strongly disagree, disagree, 

agree, or strongly agree related to the phase, “Encourages students to stop working when the 

work gets hard.”  Thirteen students voted strongly disagree, 4 voted disagree, 1 voted agree, and 

1 voted strongly agree.  Likewise, regarding the phrase, “Gives us work in class that is 

challenging”, the overwhelming majority recognized that tasks were not routine; 11 voted agree 

and 5 voted disagree (Not all students answered the question.) Offering tasks that were of low 

cognitive-demand, but simply too difficult for students might result in a similar student response.  

However, I contend that because I have demonstrated that the majority of tasks were of high 

cognitive demand; that was not the case. Question 8, “Wants us to become better thinkers, not 

just memorize things” also points to the selection of tasks.  Twelve students strongly agreed and 

7 agreed. Students apparently recognized that thinking was valued and that struggling to 

complete the task was acceptable.  
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4.1.4 Ways the teacher and the students enact the principle of resources 

In the analysis of the preceding segment, I chose to background the resources used by the 

participants.  I will highlight them in this section, to demonstrate that Engle & Conant’s (2002) 

claim that problematizing is balanced by the principle of providing resources to students. With 

insufficient resources, students are unable to act and may be overwhelmed with the challenge; 

with too many resources provided, the problematic nature of the task is diminished. Engle & 

Conant (2002) describe the provision of resources as a necessary fourth element in the support of 

productive disciplinary engagement. They define resources very generally and include anything 

or anyone that may be seen as necessary to support the embodiment of the other principles.  

Resources may be as fundamental as providing students with time to solve meaningful problems 

(Henningsen & Stein, 1997) or may be more specific to the task. Engle and Conant (2002) cite 

examples of providing resources; the provision of home-based modes (talk that is consistent with 

the style at home) of discussion in support of problematizing content as well as the provision of 

models and norms in the classroom.  Peers, physical manipulatives, teacher questions, and 

anything that might amplify a student’s capacity to problem solve qualify as a resource using this 

broad definition.  

   In this study, physical manipulatives and graph paper were always available.  Students 

left their seats to gather both when they felt they needed it.  I often drew attention to it, but most 

often did not need to, as students used them without prompting.  Peers were also utilized daily 

because most work was small group or whole group; little individual work time was provided.  

Some resources, like prior tasks or experiences on which students drew, I didn’t predict or plan 

for; they became resources through connections within the student’s mind.  Table 4.6 represents 

the resources on which students depended.  
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The student questionnaire points to the students’ awareness of the provision of resources. 

Question 11 requests a response ranging from strongly disagree, disagree, agree, or strongly 

agree regarding the phrase, “Makes resources (graph paper, spinners, books) available to us in 

case we need it.  All nineteen students voted strongly agree or agree, indicating they recognized 

that physical tools were offered as a matter of routine.  

In the segment described in Table 4.1, wherein Ed provided a representation that caused 

Marcy to express uncertainty, resources were critical to the discussion (Figure 4.11).  Ed and the 

teacher both serve as ideational (Nasir & Cooks, 2009) resources for Lauren; both offering their 

ideas about the ways the representations were related. The teacher attempted to help Marcy move 

from a representation she understood, ratios, to something less familiar, the graph.  The ideas she 

presented were resources as well as the representation, a ratio, presented on the white board.  

Likewise, Ed provided both a visual resource, his line graph, as well as some idea of the way the 

mathematics made sense to him.  In the end, however, it was Lauren’s responsibility to make 

sense of it all.  It was necessary for her to persevere, assume authority and responsibility for her 

own learning.  In fact, it was that authority or intellectual courage that caused her to express 

uncertainty at all.  Her question, was in fact, an expression that implied that she was trying to 

follow his mathematical thinking, but couldn’t. At the foundation of the entire lesson was the 

task.  By challenging students to engage in a task that offered a number of solutions, and 

enacting it in a way that encouraged students to make connections among the strategies, students 

needed to grapple with both their solution method and the mathematical thinking of their peers.  

The task created uncertainty regarding the connection among the representations; uncertainty 

that may have been overwhelming without the resources provided by the teacher and Ed.   
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Table 9. Visible Resources Utilized by Students During Class Work 

 

In order to strengthen the validity of the point I have just made, regarding the importance 

of the task selected as it contributes to problematizing, and the role of resources in balancing the 

challenge, the following segment represents another group of three students who are engaged in 

the same marbles task. In this segment the teacher had spoken to students as she circulated from 

Data 
Collection 
day number 

Task by name or number 
(Cognitive demand) 

Resources utilized by students 

1 Problem 1.1 (PWC) Coins, peers, teacher, table structure for record 
keeping 

 Orally assigned graphing task 
(DM) 

Graph paper, peers, teacher 

2 Problem 1.2 (PWC) Cups, calculators, peers, paper for record 
keeping, teacher 

 Develop definition (DM) Peers, Venn diagram on the white board 
3 Problem 6A (PWC) Peers, teacher 
 Problem 1.3(PWC) Coins, peers, teacher 
4 Partner Quiz: Problems 1,2,3 

(PWC) 
Partners, NCTM Core Tools on the Smartboard,  

5 Marbles Task (Quasar) (DM) Graph paper, peers, prior proportional reasoning 
tasks, chips (for marbles) 

6 No new tasks  
7 Problem 2.3 (PWC) Coins, peers, teacher 
 Cafeteria problem Past experience with the tree diagram, peers, 

teacher 
8 Marbles task (NAEP)  
 Sticky Gum Problem Chips (for gumballs), peers, teacher 
9 Problem 4.1 A,C Experience with arrays, peers, teacher 
10 Problems 1-4, page 80 Peers, teacher, task  from day 9 
11 Yellow-face cube task Peers, teacher 
12 Making Purple Experience with arrays, peers, teacher, visual on 

white board 
13 Problem 4.3 Experience with arrays, peers, teacher, 

connection to basketball experience for some.  
 
 
 

14 One-and one simulation Dice, spinners, area models 
15 Assessment questions 1-3 None visible. 
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group to group.  Nadeem demonstrated an incomplete understanding of the relationship between 

the probability of choosing a specific color and the proportions of each color.  What follows is 

discussion between the other students in Nadeem’s group and the teacher regarding formerly – 

experienced tasks that they envision as related to the one at hand.  Through the discussion they 

offer their former experience as a resource from which Nadeem may draw.  

Teacher: So Matt, Dennis, and Nancy, what are you doing? What are you 
thinking? I come in late all the time and I miss part of the story.  

 
Nadeem: (dropping chips) We found the number of chips so we divided  
The blue by the red in order to find the percent of …we found bag y is the 
most effective  in pulling out a blue…if you double this you have more of 
a chance of hooking red..the same thing holds for this (overlapping) 
 
Teacher: I’m a little bit confused though, because I thought when you had 
a 50% chance  of something like the coin toss you’d need an equal number 
to give you a 50% chance.  The 50% probability that you are saying is 
confusing me a little bit because I would think  if you had a 50% 
probability there’d be 20 blue and 20 red. (day 5) 
 

The teacher’s first questions, position her as someone interested in students’ thinking, not 

just their answer.  Nadeem responds with a statement that causes the teacher to believe he is 

thinking about the chips he is using to represent marbles, in the same way as the students had 

considered their recent experience with coins. She is wondering if he notices the difference in the 

likelihood of choosing a blue marble and the likelihood of flipping a head with a fair coin.  Her 

comment to Nadeem and his partners positions her as teacher-as-partner through the use of an 

expression of uncertainty.  Her comment begs for an explanation from someone in the group; an 

explanation that might serve as a resource for Nadeem.  Dennis and Nancy respond.  

Dennis: There are 60 total and 20 of them are blue. So it’s one 
third…..point 3333.  
 
Nancy: That‘s what I was thinking. 
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Teacher: So I think what you were thinking of is taking a ratio…. a part to 
part  relationship, not a part to whole relationship. Do you remember 
anything you did, you did like this before? 

 
Dennis and Nancy make the point that the part-to-whole relationship shows one-third blue 

marbles.  The teacher’s response is erroneous in that she is thinking they are considering a part-

to-part relationship, but her comment still points them all to consider a prior experience, related 

to proportions, that she thinks might be useful as a resource and is consistent in keeping with her 

goal of students understanding the relationship between proportions and probability.  

Nancy: Like this year? 

Teacher: Ya, this year. 

Dennis: Was it the orange concentrate thing? 

Teacher: Ya.  The orange juice concentrate thing was kinda like this, 
right? You had water and orange juice and you had a ratio of the 
relationship and you also had a part to whole relationship, right? Ya, it’s 
similar. 

 
Dennis recognizes a relationship between the marbles task and the orange juice task that 

the class had completed months prior. The teacher positions Dennis as the expert regarding the 

relationship between the two tasks when she verifies his connection and expands his response to 

include the idea of a part-whole relationship as a commonality that she notices in both tasks.  

The lesson that transpired during day 15 also included the use of resources albeit 

different.  This lesson exemplifies the balance between using resources and problematizing as 

one considers the principles of productive disciplinary engagement.  The class spent roughly 

twenty three minutes discussing one homework problem, #15 on page 85 of Connected 

Mathematics (Lappan et.al, 2014). The question refers to the area model from problem #14 that 

is shown below problem 15 in Figure 4.11.   Resources were central to the engagement of 

students. Each of the “maps” shown in Figure 4.11 was posted on large white paper on the board 
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as students arrived along with a copy of the area map. Posting the maps on the board provided 

students with a common reference to center class conversation. Having a large model allowed 

students to explain their thinking via walking to the front of the room and pointing to features of 

each map, later in the class.  The teacher asked students to vote for which area map they 

considered to be a “match” with the area model, early in the class.   Using this resource, students 

were encouraged to take a position.  The class then engaged in a discussion regarding different 

groups’ explanations.  This position-driven discussion was made possible through the use of the 

resource that included encouraging students to align with one posted figure. Had the teacher just 

indicated the right answer to students, the discussion that followed would have been lost.  The 

provision of the resource was key to actually producing uncertainty and the need to explain 

mathematical thinking.  

These examples indicate ways that the teacher and students have enacted the principle of 

resources (Engle & Conant, 2002).  The resources discussed in the previous paragraphs included 

the prior tasks in which students engaged, peers, the teacher, a variety of representations of 

mathematical thinking, and material resources such as chips, the white board, video simulation, 

and document projector.  The provision of resources made the tasks doable for students and have 

aided in the connection among mathematical ideas.  
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Engle and Conant (2002) make clear the importance of implementing all four principles 

concurrently in order to accomplish productive disciplinary engagement.  In the preceding 

results sections I have provided exemplars drawn from every lesson demonstrating each principle 

individually, in an effort to explicate ways that the principle was evident in the instructional 

environment. I highlighted some features while backgrounding others because it was important 

for readers to gain an understanding of the ways the teacher and students enacted each principle. 

Section 4.1.1, the section devoted to the results related to authority, and section 4.1.2, the section 

that addressed the principle of accountability, both utilized a lesson segment from day 7  

described in Table 4.2.  In those sections I described the ways that the teacher and students 

enacted the principles of authority and accountability in the same segment, but I only hinted at 

Figure 13. Day 15 Task   (Task #15, p. 85, Connected Mathematics, What do You 
Expect? (Lappan, et.al. 2014) 
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examples of problematizing and the use of resources in the column designated as 

function/commentary. In the following paragraphs, I highlight the ways that problematizing and 

resources are also present in that same segment.  The segment provides one example of the 

presence of all four principles synchronously.  I argue that I could make this point for every 

lesson in the study.  

As a reminder, in the day 7 lessons, Estelle was sharing her tree diagram with the class 

during the highlighted segment.  The tree diagram that she designed had attracted the attention of 

the teacher as she monitored student progress in small groups.  The tree diagram served as a 

resource that helped Estelle make her thinking public and afforded her classmates the 

opportunity to explore mathematical meaning as they investigated and discussed the possible 

meaning of the representation (lines 426 to lines 622).  In addition, the students served as 

resources for each other in this segment. For example in lines 595 through 605, Lyla assumes 

authority and restates the logic behind each representation.  In so doing, she offers the other 

students an idea to consider; a resource for further consideration.  The tree diagram resource 

balanced the challenge associated with the task.  As students engaged with the visual 

representation that the tree diagram provided, they were afforded access to the challenge of the 

task.    The resource offered each student a thinking tool as well as a common public thinking 

tool as Estelle shared her tree diagram.    

Finally, problematizing was prominent in this segment.  The task itself presented students 

with the opportunity to air uncertainty and to make public the construction of meaning using the 

tree diagram.  Students persevered in problem solving to arrive at a solution that was accepted by 

their peers, and were positioned as decision makers, resulting in the authentic need for classroom 

discourse. The task selection, combined with careful teacher monitoring of student thinking as 
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they worked in small groups, allowed for a robust discussion focused on the tree diagram that 

Estelle had produced.   

As one considers the four principles enacted simultaneously, the reflexive relationships 

among the principles becomes apparent.  Resources provided access for students in engaging in 

the task.  Both the resource and the task itself offered students something worthy of a discussion.  

The discussion allowed students to hold one another accountable and enabled students to assume 

authority, traditionally held by the teacher.   

4.1.5 Summary of results related to research question one 

The results of the analysis of the data indicate that the ways that the teacher and students enacted 

the principles of productive disciplinary engagement were identifiable.  Through the coding of 

verbatim transcripts of each classroom lesson, the participation pattern of the students and 

teacher became apparent.  For example, the turn-taking pattern was often initiated by the teacher 

but followed by several consecutive student turns. Unlike the traditional I-R-E (Mehan, 1979) 

pattern, students’ assumption of authority and accountability was apparent through peer 

evaluation of ideas, peers asking questions of each other, and by making their thinking public. As 

students voiced their thinking, others often made comments; adding to their thinking process or 

disagreeing. Critiquing the reasoning of peers was widely apparent. As students developed a 

sense of agency, they assumed some of the roles that are traditionally held by the teacher.  

The teacher supported the students’ assumption of both authority and accountability 

through the assumption of the teacher as partner stance and by offering choices to students.  

Offering choices and the teacher-as-partner stance worked together to offer students power: 

making them decision-makers while back grounding the authority of the teacher. Together, these 
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two pedagogical features helped to create a level of symmetry in the social configuration of the 

classroom. Offering choices related to the ways of approaching tasks, making connections, 

bringing prior knowledge and experiences, and using resources allowed students to further their 

decision-making capacity.  The distribution of authority was apparent in the particular way the 

teacher invited student to notice features of mathematical information in whole group 

discussions.  Through the invitation to notice, students were necessarily placed in a position as 

an active participant; challenged to sort through the visual cues; selecting and sorting 

information in an effort to identify particular mathematical features among competing bits of 

mathematical information.  Features noticed by one student were not necessarily the same as the 

next student. This noticing served both an individual and a community function: as both the 

individual and the students sought to identify the pattern or feature as the original author viewed 

it. As times peers redirected the thinking of the original author, while at other times the author 

publically revised his thinking after listening to peer ideas. Widely apparent, the teacher 

positioned students as authors in each lesson, identifying them with their ideas.   In addition, the 

use of Accountable Talk moves acted to probe student understanding and generate discussion.  

Through the use of specific pedagogical moves, she has positioned students as stakeholders and 

independent, capable, thinkers.   

The strategic choice to include a large portion of tasks of high-cognitive demand offered 

students the opportunity to air uncertainty and to make public the construction of meaning 

among representations.  Students persevered in problem solving in order to arrive at solutions 

that were accepted by their peers. The use of resources aided students in addressing the tasks. A 

wide variety of resources were used by students including material, ideational, and relational 
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resources. The provision of resources made the tasks doable for students and aided in the 

capacity to draw connections among representations.  

The analysis of data related to research question one suggests that the principles of 

productive disciplinary engagement were present in the classroom over the fifteen days of 

instruction.  A set of patterns that resulted from the analysis indicate that the principles of 

productive disciplinary engagement may be used in the design of a learning environment.  The 

patterns that emerged with regard to the principles of productive disciplinary engagement include 

the following:  

• Offering students power and making them decision makers through the use of 

Accountable Talk, offering choices, implementation of the teacher-as-partner stance, 

and positioning students as authors resulted in students exhibiting the capacity to 

critique the reasoning of peers and demonstrating the intellectual courage to hold 

peers accountable. Apparent in every lesson were students assuming roles that are 

traditionally held by teachers.  

• The high-percentage of mathematical tasks of high-cognitive demand that were 

chosen contributed to student uncertainty that was apparent in every class. In 

addition, the task chosen contributed to students’ need to explicate their mathematical 

thinking; providing an authentic need for classroom discourse.  

• Material, relational, and ideational resources, carefully considered in lesson planning 

and enactment, were apparent in the classroom instruction and contributed to student 

access to the tasks offered to students.  
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4.2 RESULTS RELATED TO RESEARCH QUESTION 2 

4.2.1 The work of the teacher 

The results related to question one, indicate that the principles of productive disciplinary 

engagement were enacted by the students and the teacher.  In reporting those results, much of the 

work of the teacher was reported.  However, research question two points to the work of the 

teacher specifically; focusing attention on some of her efforts and thinking that was not apparent 

in the results related the first question.  

Research question two addresses the work of the teacher.  As a reminder, the question is:  

A) What work is required of the teacher in order to translate the principles of productive 

disciplinary engagement into practice?  

B)  What challenges and successes does the teacher encounter along the way? 

I will attempt to answer these questions using the data that includes lesson plans, 

reflections that were completed immediately following each day of classroom instruction, 

transcriptions of classroom lessons, and the tasks utilized.  It is beyond the scope of one 

document to discuss all the elements of teacher decision making during planning, enactment, and 

lesson reflections. Therefore, through the examination of the plans and reflections, I was able to 

identify reasons for inconsistencies in the planning/enactment of the lessons that contribute to 

understanding the work of the teacher.  In addition, the results of the second portion of the 

student questionnaire contributed information related to the establishment of social practices 

within the classroom that are instrumental in implementing the principles of productive 

disciplinary engagement.  
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4.2.1.1 Planning, enactment, reflection 

Planning for the instruction is perhaps the most important task of the teacher who is interested in 

implementing the principles of productive disciplinary engagement; for it is this plan that defines 

the journey that is the lesson. With the learning objective, principles of productive disciplinary 

engagement, CCSS-M, Mathematical Practices, and state standards as a starting point, I 

constructed plans on a weekly basis. In most cases, plans were developed using the Connected 

Mathematics curriculum materials (Lappan et.al, 2014) as a guide.  However, I did make some 

significant changes to the curriculum as it was written.  The reasons that I made the changes and 

the changes themselves are detailed in the following section. Actual lesson plans are attached as 

Appendices J through T. Because the first page for each of the lesson plans was identical, I have 

included only page 2 for each lesson. Page one included the standards and practices, applicable 

to all of the lessons.  At the bottom of each plan I have embedded the lesson reflection that I 

wrote directly following instruction. As I discuss reasons for decisions I made, I will refer to 

reflections on the day’s lesson, if they are relevant. It would be beyond the scope of this work to 

discuss every change made or every decision during the course of each lesson.  The addition of 

selected tasks, the inclusion of resources outside those available in the Connected Mathematics 

curriculum, and in-the-moment decisions related to the way to spend time were three decisions 

that I made as I considered what I thought students needed at the time, based on the information 

that I gathered from small and large group discussions 

Among the decisions that I made during the planning process was to include additional 

tasks that would qualify as doing mathematics (Stein, Smith, Henningsen, & Silver, 2000).  

These tasks were added on days 1,2, and 5.  The majority of tasks within the Connected 

Mathematics curriculum were high-level (procedures with connections) but were not as 
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challenging as some I had used previously. The tasks that I added were intended to cause 

students to think deeply regarding the concepts related to probability and to make connections 

among them.  Hence, I added three tasks during the course of the fifteen lessons.  

Among the tasks added was the marbles task (Table 4.20), adapted from the QUASAR study 

(Silver, Smith, & Nelson, 1995).  This task and the anticipated student solutions are well 

documented by Smith & Stein, 2011. In fact the solutions that my students produced were 

consistent with my expectations and are shown in Appendix X. I anticipated a variety of 

representations on which my lesson depended.   I had used this task with students in previous 

years at another school, so I was very aware of the potential for making connections among 

representations that the task offered.  I modified the task to include the need for each pair of 

students to use two representations in their solutions, based on what I thought students 

understood about proportional reasoning from prior units, earlier in the year.   As my reflection 

indicates, that was a good decision, because student pairs arrived at one solution easily, albeit not 

using the same representation.  What caused the productive struggle for students was the need to 

utilize two representations. I was interested in student pairs making connections among 

representations and engaging in a challenge prior to the whole group discussion.  

  I find it to be interesting that at the time I wrote the reflection, I didn’t consider the 

discussion to be among our most robust.  I stated that I was tired, and wondered whether that had 

affected the discussion.  However, when I watch the classroom video and read the transcript, I 

would not arrive at that conclusion at all!  Students were eager to engage and discussion was 

rich. I had selected student work strategically for student presentations and made a concerted 

effort to ask probing questions aimed at making connections among the presentations. The order 

of presentations included Bryce and Lauren, who had used the percent of blue marbles in the 
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total bag to arrive at their conclusion.  The second group to present was Madia and Henriet.  

They utilized unit rate; number of total marbles for each blue marble.  Finally, Ed and Estelle 

presented their graph; illustrating the proportion of blue marbles to red marbles.  The discussion 

encompassed nearly a full class period, highlighting key concepts embedded in the task.  In 

addition, based on the discussion I recognized which students could make the connection 

between proportions, probability, and linear relations. So the task served as a formative 

assessment in addition to a cognitively challenging task for students.  

Two other tasks were interjected by me that qualify as doing mathematics: the orally 

assigned graphing task on the first day, and the development of a definition for experimental and 

theoretical probability on day 2.  The graphing task on the first day was intended to cause 

students to move from concrete to more abstract thinking.  They had flipped coins on the first 

day and knew that half of the flips should be each heads/tails, but had not achieved those results 

exactly with a sample of thirty flips. The question that I asked was,  

“Some groups are done, some are not, while you are waiting, just take a piece of 
notebook paper and just sketch this for me… Percent of heads…just a trend. 
Folks, percent of heads (pointing to the vertical axis of a sketch on the board), and 
number of tosses (pointing to the horizontal axis).  This is a small number of 
tosses, and this is a larger number of tosses as you go to the right.  As this goes 
on, how is this going to look. Is it a straight line? Is it going to be this way 
(indicating a negative slope)?  Will it be jagged? (indicating with a marker), 
What’s it going to look like if you just kind of guessed what a graph of this data 
would look  like.  Collecting more data, more tosses, might change how this 
looks.  Just theorize with the graph…what this might look like.” 
 

   I thought this exercise would challenge them to consider that the experimental data 

gathered over many trials approached the theoretical probability.  In the discussion the previous 

day, it had been apparent that no students had recognized that more coin tosses provided a better 

predictor of the frequency than one sample. I wanted to draw attention to that concept.   
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 The lessons in the Connected Mathematics (Lappan et.al, 2014) attempts to draw 

students’ attention to the idea of the Law of Large Numbers through the repeated combination of 

student data into one large group of data for coin tossing, cup flipping, etc.  My students engaged 

in these tasks as prescribed. However, because I had not heard evidence that they understood, I 

augmented that experience with a simulation using NCTM Core Tools (www.nctm.org) during 

day 4.  Using the simulation, students watched as I used the tool on the Smartboard.  Students 

engaged in a teacher-led, discussion as they watched the change in frequency graph as the 

sample size increased.  

Teacher: (sitting at the computer with the smart board on – about to bring 
up a simulation from Core Tools on the NCTM website) So I want to 
show you a little simulation…this is pretty cool. So we’re going to pick 
the die and we’re going to conduct  …ten experiments.  So what would 
you expect to happen?  You know that one out of 6 times…are they 
equally likely?  To land on a 1 , a 2, a 3, a 4, a 5, a 6, are they ..is that 
equally likely when you flip a dice? No?  

 
Students: several voices say yes 

Teacher: It’s equally likely right?  You could land on a 2 just as well as a 
3. So at the end of things you’d expect to have, theoretically, you’d expect 
to have the same number of 2s rolled as 3s  , right?  K, so let’s watch what 
happens. (The simulation shows the die on the top and a bar graph 
indicating frequency on the bottom). Here’s a graph of the number of 1s , 
2s , 3s , 4s…What do you see here? Are they equal?  

 
Students: shake heads and say no 

Teacher: Not very equal. So let’s do a couple more flips of this dice. 
(using simulator) What do you notice happened?  

 
Student: They’re more equal. 

Teacher: More equal… (still the bar graph indicates unequal proportions) 
How about if we do 500? 

 
Students: some 

 
Teacher : Somewhat equal..How about if we do 5000? 
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Students: (inaudible) 

 
Teacher: Pretty close to equal.  So what could you say from that? Can you 
make a generalization? This is the experimental probability, right? What 
can you say about the theoretical probability if this is the experimental 
probability? Talk in your groups for a second. See if you can generalize 
something from that. The sample size got bigger, bigger, bigger, right? 
Related to the theoretical probability, what happened there?  
(students talk in small group while teacher joins each group briefly) 

 
The lesson plan for day 4 includes no mention of using Core Tools, although the reflection does. 

I had planned for the fourth day of instruction without every talking to students about probability 

before.  Hence I had no idea of their conceptions regarding the topic when the lesson plan was 

developed.  What I thought I was going to do seemed inappropriate for the students as the first 

three days of instruction unfolded.  Therefore, I drew upon a resource that I thought could help 

students develop a deeper conceptual understanding and included it in the lesson.   

An event map of the lesson, shown in Appendix H further verifies the dichotomy 

between the lesson plan (Appendix M) and the enacted lesson. The event map indicates the 

frequent transitions between whole group and small group work within the classroom, that is not 

indicated in the lesson plans.  The reason for transition to small group is an in-the-moment 

decision based on many factors .  However, among the reasons to transition to small group for 

short segments is to offer all students an opportunity to engage in thinking and discussing about 

the question at hand.  By engaging in discussion with students in small groups I also gather 

information about what students are thinking.  

 In addition, the event map indicates the topically related segments (TRS) that are the 

subject of discussion among the teacher/students. This lesson, typical of most of the lessons in 

this unit of study, consists of four separate but related topics.  The lesson begins with a topic that 

carried into this lesson from the prior day, followed by students attempting to define 
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experimental and theoretical probability.  This discussion is followed by the Core Tools 

demonstration, intended to further inform students’ conceptual understanding related to 

experimental and theoretical probability, and then closing with a partner quiz.  Although I had 

intended to follow my plans when they were constructed five days earlier, the enactment of the 

lesson had little resemblance to the plan.  Not all lessons were this divergent from the plan. For 

example, day 10 lesson plan includes at the beginning of the lesson the review of four homework 

problems.  In fact, homework review problem number four was the source of discussion for the 

entire class period.  The topic was consistent with the plan, but I made a decision to allow 

discussion of the task to continue based on the student needs at that moment.  An event map of 

the class, shown in Appendix U, illustrates the flow of the class, managed by the teacher, during 

enactment of the lesson.  The accompanying transcription for the whole group discussion ranging 

from 22:14 through 40:03 is noted in Table 4.22, discussed earlier.  The rich discussion resulting 

from the in-the-moment decision to allow the class to discuss homework problem 4 resulted in a 

high degree of student participation and the exploration of an area model as a tool for use in 

compound events. 

The addition of selected tasks, the inclusion of resources outside those available in the 

Connected Mathematics curriculum, and in-the-moment decisions related to the way to spend 

time were three decisions that I made as I considered what I thought students needed at the time, 

based on the information that I gathered from small and large group discussions.  These 

decisions were instrumental in implementing the principles of productive disciplinary 

engagement.  The task selection encouraged uncertainty and offered students a rich topic of 

discussion, essential elements in problematizing.  Adding Core Tools as a resource for students 

was one way that I tried to offer access to students regarding the conceptual understanding of the 
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Law of Large numbers. The decision to spend additional time on a problem, beyond what I had 

planned to spend also was a necessary resource to provide at the time. 

4.2.1.2 Interpreting students’ mathematical thinking 

Interpreting the substance of students’ mathematical thinking and reasoning and then 

improvising subsequent instruction in response to various elements of their thinking is what 

Black & William (2007) call formative assessment, and what Ball (1993, p. 374) referred to as 

the “twin imperatives of responsiveness and responsibility”. In a class discussion, interpreting 

student mathematical thinking demands that teachers listen carefully to student reasoning and 

respond in a way that moves students toward more sophisticated conceptual understanding.  It is 

related to what Stein, Engle, Smith, & Hughes (2008) refer to as monitoring; a process of paying 

attention to the thinking of students during the actual lesson as they work individually or 

collectively on a particular task.  This attention to student thinking by the teacher is among the 

features of an environment that is conducive to the implementation of the principles of 

productive disciplinary engagement, for it drives the communication pattern and social 

interactions on which learning depends.  

Attending to student thinking during the enactment of a lesson, demands that teachers 

sort the many sources of information that are available at the moment, and choose among them 

to determine which deserve attention.  In order to attend to student thinking, a teacher must first 

“tune in” to it.  This attention is what is currently referred to in the mathematical literature as 

noticing. I have adopted the definition of noticing used by Sherin, Russ, & Colestock, 2008.  

That is, noticing is exploring what a teacher attends to as well as what the teacher decides not to 

attend to.  It includes the filtering of activity as well as the teacher’s interpretation of that 

activity.   
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In the current study, lesson reflections that were composed immediately following the 

lesson drew attention to my awareness of the ways that students were thinking. Among the 

patterns included in the lesson reflections was the word,“ notice”.  I admit that I was surprised by 

this finding; not realizing the extent to which I was “noticing” what the students were thinking.  

In fact, the word “notice” was written ten times during the fifteen paragraphs that constitute the 

lesson reflections.  During the coding process of this project, I had coded student discourse for 

“noticing”; carefully examining the transcripts for the patterns and mathematical content to 

which they attended. I realized that my report regarding what the students noticed, depended on 

what I noticed.  The analysis of these lesson reflections provided an opportunity for the unveiling 

of the lens through which I see their work and my role in it. The way that “notice” has been used 

in the lesson reflections follow.  I have labeled each with a letter for later reference. 

A) “Ed noticed that the percentage should hover around 50%, but at first many didn’t 

even notice that.” (day 1) 

B)  “Some students definitely noticed the value of a large sample size via the provided 

student graph while others are still working on it.” ( day 2) 

C)  “ I notice that students are beginning to use the word “outcome” and several saw the 

relationship with proportional reasoning.” (day 2) 

D) “I noticed they are trying to provide evidence of their thinking, even without 

prompting.” (day 3) 

E)  “Students struggled to generalize in words what they noticed as the sample size 

increased due to limited familiarity with vocabulary, I think.” (day 4) 

F)  “Second, I wondered if kids noticed that probability had to be less than or equal to 

one.” (day 4) 
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G) “One student did an amazing job at the end of the class in generalizing the pattern; 

noticing that the number of pennies would always be odd for two colors of gumballs.” 

(day 8) 

H) “I’m sure they noticed that I valued that capacity.” (day 8) 

I)  “I wonder if tomorrow, students will notice they are multiplying the probability of one 

bucket with the other,” (day 9) 

J) “A few noticed that the likelihood of getting two points was 36% but no one said 

anything about multiplying .60 times .60 to get it.” (day 9) 

Most of these examples point to information gathered related to student thinking that 

might influence subsequent instruction.  Quote J, for example, indicates attention to helping 

students draw a connection between the area model and the multiplicative procedure that might 

be used to find the probability of a compound event. Students, working on an area model to 

represent a compound event, in Part C of Problem 4.1 (Appendix I) were not linking the percent 

they had determined from the area model to a multiplicative procedure of length times width. I 

considered that idea for later lesson integration.  

  Likewise, quotes E and G focused on student capacity to generalize solutions. Quote E 

refers to students’ response to the teacher’s prompt for a generalization regarding the relationship 

between theoretical and experimental probability after they had watched a Core Tools simulation 

that demonstrated the change in experimental probability with large sample sizes. Students 

struggled with the generalization despite witnessing the change in experimental probability, a 

noteworthy event to the teacher.  Quote G refers to an uncommonly insightful generalization by 

Ute following class work on the Sticky Gum problem (Appendix I).  Ute had recognized that the 
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number of pennies necessary to ensure two similar-color gumballs would always be an odd 

number.   

Quote A and B point to the apparent disparity in students’ capacity to notice the 

importance of sample size with regard to probability. This observation led to a lesson that 

included a computer simulation on day 4, using Core Tools wherein sample size could be 

increased easily and the effect regarding experimental probability was documented via changes 

in data on the screen.    

  Quote C reflects my view of the value of talking like a mathematician.  There are many 

instances in the transcripts were I interject mathematical vocabulary in revoicing a student’s 

contribution.  In addition quote C  is indicative of the importance of relational understanding; 

knowing what to do and why. It reflects my belief that integrating new ideas into a rich web of 

concepts through the use of multiple representations improves student retention (Lesh, Cramer, 

Doerr, Post, & Zawojewski, 2003). Quote C indicates an instance of feeling successful in 

students’ use of vocabulary.  

Another major theme among these quotes is equity. I am challenged to encourage the 

participation of some reluctant students who are afraid of intellectual risk taking and so are quiet.  

Understanding that there are some quiet, but engaged, learners I am more comfortable that I 

know students are engaged when I have the tangible evidence that classroom discourse provides.  

I don’t want attention-seekers to diminish the opportunity for those students who may be 

tentative but want to speak.  Hence, several of these reflections point to that idea. 

K) “I am challenged to diminish the talking of some and encourage talking in 

 others.” (day 13) 
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L) “Henry is still not taking risks.  I think it is time for a formative assessment to see if all 

are understanding.”  

M) “ I’m quite sure that the whole class did not follow his thinking but that is ok with me. 

I feel that the students who are most capable of thinking abstractly had the 

opportunity and encouragement to do it, and those that are developing that capacity 

had someone to model it for them.” (day 8) 

These quotes point to equity with regard to opportunity to speak, but also with regard to 

the value of more capable students modeling abstract thinking for those developing the skill.  

Quote M indicates that I value opportunities for abstract thinking, and I believe it is a skill to be 

developed, not an innate ability. Quote L points to the value of formative assessment in both oral 

and written forms so that instructional modifications may be made so that all students make 

progress toward conceptual understanding.    

Quote D, focuses attention on a point of success.  Students providing evidence of their 

thinking without prompting is celebrated in this quote, obviously a point of attention for me in 

lessons prior to this lesson.  Interest in evidence of their thinking indicates that I value the logic 

that students use to develop conjectures and deem them to be capable of explaining it.  

The reflection of the meaning of these lesson reflections is a rich source of information 

related to the beliefs and habits of mind that guide my work of teaching.  Through the analysis of 

these reflections I have established for the reader, and reminded myself, of the beliefs that 

undergird the enactment of the principles of productive disciplinary engagement in my 

classroom.  Why is equity, relational understanding, adapting teaching to student understanding, 

and students’ capacity to provide evidence of their thinking important to enacting the principles 

of productive disciplinary engagement (authority, accountability, problematizing, and 
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resources)? They reflect my beliefs about what it means to know and do mathematics and about 

the ways that students make sense of mathematics. What I notice, depends on what I believe to 

be important.   

Closely related to noticing, monitoring (Stein, Engle, Smith, & Hughes, 2008) refers to 

the teacher paying attention to student thinking as they work toward the solution of a task.  

Anticipating, monitoring, selecting, sequencing, and connecting are commonly referred to as the 

5 Practices for Orchestrating Discussion (Smith & Stein, 2011).  Each of these practices is 

evident in the teacher’s work.  Anticipating was apparent in lesson plans in the form of 

preplanned questions in every lesson. Considering carefully what questions to ask and what 

solutions were likely to be completed by students, were done together.  Anticipating student 

solutions was also apparent in the day 5 lesson plan in the form of mentioning using a 

monitoring tool, a practice often utilized.  Considering what solutions were likely, then keeping 

track of student thinking (monitoring) during enactment of the task contributed to the enactment 

of the principles of productive disciplinary engagement. Finally, choosing what solutions would 

be discussed during whole class discussion was a critical component to the enactment.  Noticing 

student solutions that would generate discussion (such as Estelle’s tree diagram) and ordering 

solutions to encourage the connections between probability and proportional reasoning were 

evident in nearly every lesson plan. Preplanning how I would make the connections among 

representations using student work, allowed me to relax and manage the talk instead of focusing 

my thinking on the mathematics while the discussion was proceeding (Stein, Engle, Smith, & 

Hughes, 2000).   
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4.2.1.3 Developing questions that elicit evidence of learning 

Questioning has been identified as a critical and challenging part of a teacher’s work. Boaler & 

Brodie (2004) noted that, “the act of asking a good question is cognitively demanding; requires 

considerable pedagogical content knowledge, and necessitates that teachers know their students 

well” (p. 773). They explain the importance of questions in shaping the nature and flow of 

classroom discussion. The Boaler & Brodie (2004) study resulted in a tool that is useful for 

categorizing teacher questions; used in this study (Appendix B).  Sharing the definition of a 

question, used by Boaler & Brodie (2004), every teacher question in thirteen lessons was coded.  

(The final class of the unit was an assessment for the entire class, and as such did not include 

questions of a mathematical nature. The 12th class included a technical difficulty wherein no 

audio was captured.)  I, like Boaler & Brodie (2004), chose to include utterances that had both 

the form and function of a question.  That is, I excluded statements that sounded like a question 

but didn’t function as such.  For example, “Would you like to share your thinking?” would not 

be coded.  In addition, questions needed to be mathematical in nature.  I would exclude the 

question, “Do you have your homework?”.  If a question were repeated, I counted it only once.  

Results of the coding are indicated in Figure 4.13. and in Table 4.7.  A summary of 

questions asked each day of instruction are illustrated in Appendix Y. The data illustrates the 

consistently high proportions of questions classified as probing, generating discussion, and 

exploring mathematical meaning.  
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Gathering information   55 
Inserting Terminology  15 
Exploring mathematical meaning 88 
Probing    118 
Generating Discussion  140 
Linking/applying   8 
Extending Thinking   33 
Orienting/focusing   22 
Establishing Context   3 
Total questions   482 

 

 

 

Roughly two-thirds of the questions in the sample were categorized as generating 

discussion, probing, or exploring mathematical meaning. With the remaining third comprising 

Table 10. Questions by Type (adapted from Boaler & Brodie, 2004) 
 

Figure 14. Questions by Type (adapted from Boaler & Brodie, 2004) 
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the other categories. Generating discussion-type questions accounted for approximately one-third 

of the questions.  This is not surprising, based on the teacher’s purposeful attempt to encourage 

classroom discussion, a necessary element for the enactment of the principles of productive 

disciplinary engagement. The question-type ranking second in use was probing. Making students 

accountable to themselves, the community, and the discipline requires probing of student 

thinking.  Thinking deeply to encourage conceptual understanding was among the goals of 

instruction. Gathering information, the question-type most prominent in traditional classrooms, 

accounted for 11% of the questions in the study.  The large variety of questions is consistent with 

finding by Hiebert and Wearne (1993) wherein teachers in “alternative” classrooms asked a 

larger range of questions and more questions that required explanation and analysis than did 

teachers in “traditional” classrooms.   

The lesson plans illuminate the consideration of questions prior to instruction by the 

teacher.  The section entitled, “assessing and advancing questions” includes questions aimed at 

eliciting student mathematical thinking and encouraging the students to think deeply about the 

mathematical content. Although I often did not use the questions exactly as they were planned, 

planning the questions served the purpose of thinking deeply during the planning process. 

Through the consideration of specific questions, I rehearsed a way to phrase a question that 

encouraged students to talk about their thinking. Using this technique helped me to avoid 

questions that might be answered with a single number or yes/no answer.  

The answers related to several questions on the student questionnaire further validate the 

use of teacher questions in probing student’s mathematical thinking.  The question asks, “How 

much do you agree with the following statements about your teacher in your Math class?” (circle 

the answer that reflects your opinion).  Question 3 is “Often requires me to explain my answers”.  
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Although the question does not delineate between oral and written explanations, of the 19 

students in the class, 14 students responded strongly agree, and 5 responded agree.  Question 8 

also addresses teacher questions.  It also asks for a response ranging from strongly disagree to 

strongly agree related to the phrase, “Wants us to become better thinkers, not just memorize 

things.” Thirteen students responded strongly agree and 6 responded agree on this question. 

Although several factors may have contributed to student’s opinion on this question, I propose 

that teacher questioning was among the features of the environment that contributed to that 

response. Likewise, question 2 on the survey states, “Encourages students to share their ideas 

about things we are studying in class”.  One of the ways that students are encouraged to share is 

through teacher questioning; specifically those that generate discussion or ask students to explain 

their thinking.   Likewise, number 4 of the questionnaire requests a response to, “Encourages us 

to consider different solutions or points of view.”  Through the generation of discussion, students 

not only share their own ideas but become active in considering the solutions of other students. 

Teacher questioning contributes to responses on the student questionnaire.  

4.2.1.4 Establishing social practices –results of the student questionnaire 

The student questionnaire addresses students’ perceptions regarding many of the social practices 

that contribute to the definition of the classroom norms. Who is free to do what, who assumes 

responsibility for certain things, who explains and who listens at what times, are just a few of the 

social practices that must be consciously established and which students are acutely aware.  The 

survey questions and the results are shown in Table 4.8.  Numbers below each response indicate 

the number of students who independently voted for that response.  
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How much do you agree with the following statements about your teacher in your Math 
class:  My teacher: (circle the answer that reflects your opinion) 
 
1.  Often connects what I am learning to life outside of the classroom.    
Strongly disagree      Disagree        Agree        Strongly agree  
 0    5  14  
2.  Encourages students to share their ideas about things we are studying in class.    
Strongly disagree      Disagree        Agree        Strongly agree  
       0  0  5  14 
3. Often requires me to explain my answers.   
Strongly disagree      Disagree        Agree        Strongly agree  
      0 1  6  13 
4. Encourages us to consider different solutions or points of view.   
Strongly disagree      Disagree        Agree        Strongly agree 
  0 1  9  9 
5. Encourages students to stop working when the work gets hard.         
Strongly disagree      Disagree        Agree        Strongly agree  
     13 4  1  1 
6. Expects us to work together to solve problems.       
Strongly disagree      Disagree        Agree        Strongly agree  
  0  0  12  7 
7.   Gives us work in class that is challenging. 
Strongly disagree      Disagree        Agree        Strongly agree  
  0  2  11  5 
8. Wants us to become better thinkers, not just memorize things.    
Strongly disagree      Disagree        Agree        Strongly agree  
  0  0  6  13 
 

 

 

 

 

 

 

 

Table 11. Student Survey and Results 
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Table 11 (continued) 

 9. Wants us to discuss possible solutions to problems with other students.         

Strongly disagree      Disagree        Agree        Strongly agree  
 1  0  7  11 
10.   Rarely asks students to show their work on the board or document projector       
Strongly disagree      Disagree        Agree        Strongly agree 
  12  4  1  2 
11. Makes resources ( graph paper, spinners, books) available to us in case we need it.      
Strongly disagree      Disagree        Agree        Strongly agree  
 0  0  6  13 
  
 
How often does this happen in your mathematics lessons?  
 
a)The teacher shows us how to do mathematics problems. 
never        once in a while  usually   always 
11   5   1   2  
 
b) We copy notes from the board. 
never        once in a while  usually   always 
7   12   0   0 
 
c) We work on mathematics tasks in small groups  
never        once in a while  usually   always 
0   0   8   11 
 
d) Students use the board or document projector 
never        once in a while  usually   always 
0   2   6   11 
Table 11.(continued) Student Survey and Results 
 
e) The teacher uses the board or document projector 
never        once in a while  usually   always 
0   4   8   7 
 
f) If we don’t know how to solve a difficult problem we ask other students for help. 
never        once in a while  usually   always 
0   3   7   9 
 
g) If we don’t know how to solve a difficult problem we ask the teacher for help. 
never        once in a while  usually   always 
1   6   8   3 
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Table 11 (continued) 
 
h) Desks are organized in rows so that we can work independently. 
never        once in a while  usually   always 
10   8   0   0 
 
i) During student presentations, we ask questions of each other if  we don’t understand 
what he is explaining. 
never        once in a while  usually   always 
0   2   6   11 
 
j) I feel free to invent my own way to solve a mathematics problem. 
never        once in a while  usually   always 
3   2   9   6 
 k) Students read and work from the textbook while the teacher talks about it. 
never        once in a while  usually   always 
11   7   1   0 
 
12. Students listen while the teacher explains rules and definitions. 
never        once in a while  usually   always 
6   6   2   6 
 
m) Students, together with the teacher, decide whether an answer is correct. 
never        once in a while  usually   always 
3   1   5   1 
 
n) The teacher decides whether an answer is correct. 
never        once in a while  usually   always 
2   7   8   2 

 

 

While I have referenced responses from the first portion of the survey in the previous 

sections, I draw attention here to the results of the second section, “How often does this happen 

in your mathematics lessons?” in Table F and Table 4.9. These questions address the classroom 

norms on a large grain size, focusing attention on what a naïve observer might “see”.  Students 

largely agree, based on the frequency of responses, on the following features of the classroom. 

Specifically, at least 80% of students agree or strongly agree that these features are present. 
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Feature        Question  Related 
         Referenced  Principle 

   The teacher does not show students    a  authority, 
how to do mathematics problems       accountability 
            problematizing 
 
They usually don’t copy notes from the board  b  authority 
            problematizing 
 
Students work on tasks in small groups   c  problematizing 
            resources 
 
Both the teacher and students use the     d,e  authority 
document projector         accountability  

      
Desks are rarely organized in rows    h  resources 
            authority 
 
During student presentations, peers ask   i  accountability  
questions of each other        authority 
 
Students rarely work from a textbook    k  problematizing 
 
Students and teacher decide when an answer   m  authority 
is correct          

 accountability 

 

 

The conclusion that one might draw related to questions f, and g (dealing with who 

students ask for help) is less clear. Sixteen students (84%) indicated that if they are uncertain 

about the way to solve a problem they always or usually ask a peer (f). Eleven students (57%) 

indicated that if they are uncertain they always or usually ask the teacher (g).  Perhaps a subset of 

students are expressing that they ask both peers and the teacher for help if they are uncertain.  

Although these features would not, alone, create an environment that is conducive to the 

enactment of the principles of productive disciplinary engagement, they are integral to the 

Table 12. Features of the Classroom described by the Student Questionnaire results 
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foundation necessary to do so.  Examining the features and concurrently considering the 

principle addressed via that classroom feature draws attention to the interconnected nature of 

each principle. 

4.2.2 Challenges and successes 

The most significant challenge for a teacher who is engaged in enacting the principles of 

productive disciplinary engagement is the redefining of success for students.  Students arrive, 

having had experience in the way to succeed in mathematics class.  They know the routines and 

expectations of a traditional classroom.  They understand how to get good grades, when to stay 

quiet, who the authority figure is, and what the routines include.  The very best students were 

most confident in the way to succeed.  In many cases, they had been successful for their entire 

school career, participating in a traditional classroom.  Convincing these students and their 

parents that new rules, routines, and norms applied and teaching them the way to participate in a 

non-traditional class, was not easy work.  For months, students were reluctant to participate in 

the conversation necessary to define the class.  It took consistent teaching about the way to 

participate; when to ask questions of peers, providing example questions, generating discussion 

through my own questions before students began to participate.  Then there was the problem of 

grading.  They were used to an assessment with many questions that were all replicas of 

problems completed in class.  Again, expectations needed to be redefined. My estimate is that it 

took six weeks for the first students to change their ideas regarding success in the mathematics 

class, while others took at least twice as long, and a few resigned themselves to participating but 

not loving it. Without the full support of the district administrative, I could not have succeeded in 

my journey to enact these principles.  
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However difficult it was to get going, I felt success by the end of the school year.  Most 

students were eagerly participating and assuming responsibility for their own learning as 

demonstrated in this work. Finally, the most significant marker of success came in the form of a 

student note shown in Figure 4.14.  Students, themselves, realized the change that they had 

endured.  They recognized that perseverance was a necessary part of learning math.  That made 

all of my effort worth the challenge. 

 

 

Figure 15. Student Note 
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5.0  DISCUSSION 

In this chapter, a discussion of what can be learned from this investigation and how the findings 

can inform the design of norms, structures, and classroom features that combine to form a 

learning environment is presented.  The chapter begins by describing the importance of the study 

including a discussion of the ways in which this investigation contributes to the knowledge base 

of research related to the decomposition of effective teacher practices and the identification of 

related student behaviors that contribute to the design of a learning environment. Next, possible 

explanations for the results of the study are presented.  The chapter closes with concluding 

remarks and suggestions for further research.   

5.1 IMPORTANCE OF THE STUDY: USING THE PRINCIPLES OF PRODUCTIVE 

DISCIPLINARY ENGAGEMENT AS A TOOL FOR CLASSROOM DESIGN 

The purpose of this study was twofold: 1) to describe the ways that the principles of productive 

disciplinary engagement were evident in the instructional practices implemented by the teacher 

and enacted by the students, and 2) to explicate the work of the teacher in translating the 

principles into practice. This phenomenon was examined using the researcher as a teacher in a 

seventh-grade mathematics classroom, collecting video data, lesson plans, teacher reflections, 
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mathematical tasks, and a student questionnaire. The study’s  focus was student reasoning and 

communication, consistent with the CCSS-M Standards for Mathematical Practice.    

The results of this study are important to teaching and learning because key features of 

innovative instructional environments that have been captured by Engle & Conant’s (2002) 

principles of productive disciplinary engagement, originally offered as a theoretical framework 

for designing supportive learning environments, have been used as a practical tool for the design 

of a learning environment.   The study provides insight into the extent to which the framework is 

useful for this purpose. Research that has been published since the original work that introduced 

the principles of productive disciplinary engagement has been extensive (Meyer,  2013; Kelly,  

2013; Venturini, & Amade-Escot, ., 2013; Windschitl & Thompson, 2006; Gresalfi, Hand, and 

Hodge, 2006).  In addition, Engle (2011) reviewed seventeen case studies that used the principles 

of productive disciplinary engagement.  The work to date suggests that there is some consensus 

within the research community that the principles of productive disciplinary engagement capture 

a wide array of respected educational innovations developed over the past twenty years (Forman, 

Engle, Venturini, & Ford, 2013).  However, the work to date provides little guidance to teachers 

or teacher educators regarding the ways to operationalize these ideas in the classroom.  Results 

of the study reported herein serve a practical purpose in guiding others interested in the design of 

learning environments, and extends the work of Engle & Conant (2002) by employing the 

framework as a tool for the design of learning environments by practitioners.  The study may be 

of particular interest at the present time as teachers struggle to enact mathematics instruction 

consistent with the eight Standards for Mathematical Practice, an integral component of 

successful implementation of the CCSS-M.  
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In addition, this work extends the work of Engle & Conant (2002) by attending to both 

the ways the teacher and students enacts the principles.  The original work, focused only on the 

students, placed the work of the teacher in the background. This study provides a compelling 

argument for the reflexive relationship between the teacher and student behaviors and the value 

in considering both simultaneously when considering these principles.  

The results of this study provide evidence that the principles of productive disciplinary 

engagement may be useful in the design of a learning environment.  Further it describes the 

instructional practices of the teacher and ways that students engaged in the classroom when these 

principles undergirded the creation of the environment.  Table 5.1 summarizes the results 

obtained from this study.  

Currently, teachers across the country are struggling to enact the Standards for 

Mathematical Practice in the CCSS-M. Although the CCSS-M helps to focus and clarify 

intended outcomes, it does not prescribe the actions, practices, programs, or policies for 

successful implementation. The principles of productive disciplinary engagement inform those 

who intend to teach in concert with the CCSS-M Standards for Mathematical Practice.  

Specifically, the first three practices: make sense of problems and persevere in solving them; 

reason abstractly and quantitatively; and construct viable arguments and critique the reasoning of 

others, focus on making sense of problems and solutions through the process of logical 

explanation as well through probing the understanding of others.  As students construct 

arguments, identify correspondences among approaches, and explore the truth of conjectures 

they are both enacting the CCSS-M Mathematical Practices and enacting the principles of 

productive disciplinary engagement. An environment that is supportive of the CCSS-M and the 

principles of productive disciplinary engagement offers an opportunity for developing a shared 

 201 



experience that uses differences in student thinking as a tool for productive collective work 

(Boaler & Staples, 2008; Hufferd-Ackles, Fuson, & Sherin, 2004).  Table 5.2 illustrates several 

parallel behaviors, identified in this study, that are examples of both the CCSS-M Standards for 

Mathematical Practice and the principles of productive disciplinary engagement. This list is not 

meant to be exhaustive; only to provide the reader with a sense of the commonality in student 

behaviors described in each document.  

 

Table 13. Summary of Results 

 
Ways the Teacher and Students Enacted the Principle of Authority 
 
The participation pattern did not follow the traditional IRE pattern.  Although the teacher 
frequently initiated discussion, several student -turns often followed.  The attention to 
pedagogical moves such as the use of Accountable Talk and questioning contributed to the 
development of the desired participation pattern.  
Instances of offering choices and the implementation of the teacher-as-partner stance were 
found  together.  The teacher’s posture and the attention to student choices offered students 
power and provided opportunities for decision making.   
As students developed a sense of agency, they assumed some of the roles traditionally held by 
the teacher including critiquing the reasoning of peers.  
The opportunity to notice features of mathematical information during whole group 
presentations served to draw attention to students’ own thought processes and to distinguish one 
student’s thinking from another. 
Positioning students as authors by publically identifying them with their own claims 
approaches, and explanations was widely apparent.  
 
Ways the Teacher and Students Enacted the Principle of Accountability 
 
Thinking was both a private and public event. Placing students in a position to publically 
revise their thinking allowed for thinking to be an individual and a community responsibility.  
As they assumed roles that are traditionally held by the teacher, students demonstrated 
intellectual courage to hold peers accountable. 
Use of Accountable Talk was one move used by the teacher to encourage students’ 
accountability to the community, the discipline, and each other.  
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Table 13 (continued) 
 
 
 
Ways the Teacher and Students Enacted the Principle of Problematizing 
 
The mathematical tasks chosen by the teacher included a high percentage of tasks requiring a 
high cognitive demand, contributing to student uncertainty and the need for students to persevere 
in problem solving and explicate their mathematical reasoning.  
Student uncertainty regarding the way to proceed in solution, or what to conclude, was 
apparent in verbatim transcripts in every lesson, and was accomplished by the choice of the 
mathematical task.   
 
Ways the Teacher and Students Enacted the Principle of Resources 
 
Material, relational, and ideational resources were carefully considered in lesson planning and 
enactment, and apparent during the classroom instruction. 
 
The Work of the Teacher in Translating the Principles into Practice 
 
The addition of selected tasks, the inclusion of resources outside those available in the 
curriculum, and the in-the-moment decisions related to the way to spend time were among 
the decisions made based on information gathered from small and large group discussions.  
Attending to student thinking during the enactment of the lesson informed instructional 
decisions.  
The approximately two-thirds of all teacher questions in the category of exploring mathematical 
meaning, generating discussion, or probing were evidence of the teacher’s purposeful effort to 
generate discussion related to mathematical conceptual understanding.  
The established social practices that contributed to the definition of classroom norms were 
defined by the student questionnaire.  
The most significant challenge for a teacher who is engaged in enacting the principles of 
productive disciplinary engagement is redefining success for students. The feeling of success 
comes when students assume responsibility for their learning and contribute as a part of a 
learning community, once the principles are in place.  
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Table 14. Partial List of Student Behaviors Found in this Study 

Student Behavior CCSS-M, Mathematical 
Practice 

Principles  of Productive 
Disciplinary Engagement 

As students developed a sense 
of agency, they assumed some 
of the roles traditionally held 
by the teacher including 
critiquing the reasoning of 
peers 

Construct viable arguments 
and critique the reasoning of 
others 

Authority 

Positioning students as 
authors by publically 
identifying them with their 
own claims approaches, and 
explanations was widely 
apparent. 

Construct viable arguments 
and critique the reasoning of 
others 

Authority 

The opportunity to notice 
features of mathematical 
information during whole 
group presentations served to 
draw attention to students’ 
own thought processes and to 
distinguish one student’s 
thinking from another. 

Construct viable arguments 
and critique the reasoning of 
others. 
 
Reason abstractly and 
quantitatively.  

Authority 

The mathematical tasks 
chosen by the teacher included 
a high percentage of tasks 
requiring a high cognitive 
demand, contributing to 
student uncertainty and the 
need for students to persevere 
in problem solving and 
explicate their mathematical 
reasoning. 

Persevere in problem solving. 
Reason abstractly and 
quantitatively.  

Problematizing 
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Table 14 (continued) 

Thinking was both a private 
and public event. Placing 
students in a position to 
publically revise their 
thinking allowed for thinking 
to be an individual and a 
community responsibility. 
 

Construct viable arguments 
and critique the reasoning of 
others 
 
Reason abstractly and 
quantitatively. 

Authority and Accountability 

As they assumed roles that are 
traditionally held by the 
teacher, students 
demonstrated intellectual 
courage to hold peers 
accountable. 

Construct viable arguments 
and critique the reasoning of 
others. 
 
Reason abstractly and 
quantitatively.  

Authority and Accountability 

Student uncertainty 
regarding the way to proceed 
in solution, or what to 
conclude, was apparent in 
verbatim transcripts in every 
lesson, and was accomplished 
by the choice of the 
mathematical task.   

Persevere in problem solving. Problematizing 

 

The student behaviors described in Table 5.2 and in the preceding sections of this 

document are evidence of the teacher’s goal for students to participate in a very specific way; a 

goal that was defined well before the study began by the definitions of each of the principles of 

productive disciplinary engagement.  The principles of productive disciplinary engagement were 

used as the tool that helped me to create the environment that supported the defined participation 

pattern. I argue that these principles may be used by teacher educators to help teachers redefine 

success for themselves. They may be utilized both as a framework for instruction- related 

practices that support the CCSS-M, as well as to help teachers establish new measures of 

success.   
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5.2 EXPLANATIONS OF THE RESULTS 

This section offers explanations for the results obtained in this study. The enactment of 

principles of productive disciplinary engagement relies significantly on the view that 

mathematics is learned not by the transmission of knowledge, but rather by participating in a 

culture as part of a “social practice” (Lave & Wenger, 1991, p. 47). That is, mathematical 

learning entails both social and communicative activities in a supportive learning environment 

wherein the member of the community are engaged in “dense relations” of mutual engagement 

organized around something that matters to the group (Wenger, 1998, p. 74).  The principles of 

productive disciplinary engagement were used as a framework for the design of that learning 

environment.  What follows is an explanation for the reasons that these principles were useful for 

this purpose. 

5.2.1 The mathematical task: A critical element of implementing the principles of 

productive disciplinary engagement 

Each of the principles of productive disciplinary engagement (Engle & Conant, 2002) was 

embodied in the environment in numerous and interconnected ways. The selection of the 

mathematical task, an element of the principle of problematizing, was a critical element in the 

entire process of creating the learning environment, for it provided the foundation upon which 

the enactment of the other principles depended.  Figure 5.1 illustrates the interconnected nature 

of the principles and the central role of the mathematical task.   

Through the examination of the tasks and consideration of my goals related to the ways 

students would participate in the classes, I have become aware that task selection included more 
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than the criteria set forth in the Math Task Analysis Guide, as I had planned and reported in 

Chapter 3.  In fact, upon reflection, in addition to the cognitive demand of the task, I also chose 

tasks considering the extent to which a robust classroom could be created.  For example, as I 

chose the Caves Task for day 15, I recognized that providing four solution paths would allow me 

to encourage students to assume authority through a vote for one solution over the others.  I have 

found that tasks which provide solution options typically afford the opportunity for robust 

classroom discussion.  I enlarged the solutions and hung them on the front classroom wall in an 

effort to provide a resource for the students that further encouraged the discussion. During the 

class, students walked freely to the front of the class to adamantly oppose peer votes for the 

correct solution.  The task selection was critical to the implementation of the principles of 

productive disciplinary engagement, and my commitment to the enactment of the principles also 

was critical to the task selection. In addition to the Caves task, tasks utilized on days 8, 9, and 10 

shared a similar characteristic of encouraging students to align themselves with a particular 

solution.  In so doing, students necessarily defended their positions.   

The Caves task offered students the necessary complexity for sorting and classifying 

information.  As a part of the solution process, it was apparent that different students noticed 

different features of the task.  Those differences contributed to the variety of solution processes 

developed; offering students the opportunity for authorship. Differences in student focus also 

provided something worthy of discussion, as students worked cooperatively to solve the task. As 

each pair authored their own solutions, it was necessary for each to engage in considering what 

his partner noticed; placing students in a position to consider alternative ideas.  In general, the 

tasks themselves offered students the opportunity to solve them in different ways, with a variety 
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of entry points.  Depending on students’ prior understanding, and the way they viewed the tasks, 

they proceeded toward solution in one of several possible ways.  

The task also stimulated a sense of uncertainty in students.  Because it was necessary for 

students to think deeply regarding how to proceed, the way to represent solutions, and what to 

conclude, they often expressed uncertainty to their peers and to me.  The uncertainty, in turn, 

also provided an impetus for discussion.  Students talked because they were placed in a position 

where talk was a necessary element of success.  Further, middle school students are naturally 

social, and so this need for discussion was eagerly embraced. Peers, a relational resource, were 

critical to individual success.   

The uncertainty created a need for the provision of other resources as well. Monitoring 

student progress during small group and whole group discussions allowed me to recognize the 

depth of student understanding as well as misunderstandings. The careful selection of questions 

and unremitting attention to student thinking helped me to provide resources that would make 

student access to the task possible.  Questions ranged from those that might help students redirect 

themselves toward a more productive direction, to others that served to advance student thinking 

toward deeper understanding or a more sophisticated solution.  At times the entire class needed a 

resource, such as the Core Tools demonstration described in the study. At other times, one 

student needed to be reminded of a prior task upon which he could draw. The provision of 

resources was apparent in whole group discussions of lessons as well.  The strategic selection of 

student solutions, and the order in which they presented them, offered a resource to all of the 

students; encouraging discussion and helping students to make mathematical meaning (Stein, 

Engle, Smith, & Hughes, 2008).  The resulting whole group discussion, offered students the 

opportunity to critique the reasoning of peers as they verbalized their own mathematical 

 208 



understanding.  They learned quickly that evidence was an essential element of the reasoned 

disagreements, and nearly every student became fluid at the public thinking process, prevalent in 

the class. The teacher was no longer the single authority; nor were students accountable to her 

alone.   

In summary, the selection of the mathematical task was among the most critical decisions 

made with regard to enacting the principles of productive disciplinary engagement.  Features of 

the task that have been highlighted as essential elements toward the creation of an environment 

wherein the principles of productive disciplinary engagement are apparent, are summarized 

below.  In addition to engaging students at a high level cognitively, tasks should be chosen that 

have some or all of the following characteristics: 1) encourage students to take a position and 

justify it mathematically, 2) provide several solution paths that are not prescribed, 3) encourage 

students to sort and classify information, 4) offer several entry points depending on students’ 

prior understanding and what they notice, and 5) solve using several representations.  These 

characteristics were present in the tasks that were chosen for this study, and that contributed to 

the creation of an environment that supported the principles of productive disciplinary 

engagement.  Not every task included all of these features, but most tasks included several of the 

aforementioned features. 
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5.2.2 The principles of productive disciplinary engagement: A useful tool for practitioners 

In this section, I address the potential value of this study for teachers and teacher educators. 

Specifically I consider the lessons from this study that might inform the practice of others. In 

addition, I discuss the adequacy of this framework for the design of a learning environment. 

From the standpoint of a practitioner, the principles of productive disciplinary 

engagement are very useful as a design tool.  Using the principles as a framework for lesson 

Figure 16. The Role of the Mathematical Task in the Implementation of the Principles of Productive 

Disciplinary Engagement 
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planning focuses thinking related to many instructional practices that are consistent with the 

CCSS-M Mathematical Practices.   For example, during lesson planning, with the four principles 

before me, I selected the task that students would address, considering those within and outside 

the selected curriculum.  I considered the principle of problematizing, and what student 

uncertainty might be created through the introduction of the task.  In addition, planning the 

enactment of the task included considerations related to the ways I would share authority with 

students.  I mentally rehearsed the lesson, considering where I would stand and the best ways to 

allow students to assume roles of responsibility.  Anticipating student solutions as part of the 

planning process (Stein, Engle, Smith, & Hughes, 2008) gave me confidence in offering students 

authority since I had already considered the most likely solutions to the tasks.   In addition, by 

anticipating student solutions, I was able to preplan some of the questions I used to assess or 

advance student understanding.  By preplanning the questions, I reduced the likelihood of asking 

a series of known-answer questions; a plan that the results indicate was successful. In general, 

the Five Practices (Stein, Engle, Smith, & Hugher, 2008) were very helpful to me in creating an 

environment that supported the  principles of productive disciplinary engagement. .         

Using the principles of productive disciplinary engagement in planning may help to 

create instructional habits.  I had begun to use the four principles in my lesson planning at the 

start of the year and by the time this study commenced, their consideration was a habit of mind.  

The fact that there are only four principles, made it easy for me to mentally check for their 

inclusion prior to teaching a lesson.  Further, it streamlined the planning process for me because 

some of the habits that I had created for myself no longer needed to be written in the plan. For 

example, I developed the habit of sitting with small groups as they worked, thus placing myself 

in a teacher-as-partner stance.  It became routine to ask questions that probed student thinking 
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and pushed them to think more deeply.  Problematizing through careful task selection was also a 

routine of planning.  

In addition, , using the principles of productive disciplinary engagement offers teachers 

and teacher educators a way to establish “new moorings” for efficacy  p. 396., J.P. Smith,1996)).  

With the principles of productive disciplinary engagement as a measuring tool, teachers would 

have a way to gauge their success at the end of a lesson or set of lessons. These principles offer 

teachers a framework with which they could use to evaluate themselves and a reflection tool that 

would encourage continued growth.   If teachers developed an understanding of each of the 

principles of productive disciplinary engagement, they could begin to establish new meaning for 

effective teaching. The principles of productive disciplinary engagement could replace the view 

that effective teaching means providing explanations and procedures, and could serve to provide 

teachers with a meaningful tool for implementing the CCSS-M Mathematical Practices.   

 It will not be enough to for teachers to learn the instructional tools related to enacting the 

principles of productive disciplinary engagement described in this document. Learning to use 

Accountable Talk, the teacher-as-partner stance, or teaching students to hold one another 

accountable may not be enough.  There are several teacher attitudes that will impact the 

implementation of the four principles.  First, implementing these instructional practices demands 

flexibility on the part of the teacher.   For example, although I know that I will include the 

Making Purple task this year when I teach the unit related to probability, I can’t say for certain 

that it will be used on the seventh, the eighth, or the ninth day of the unit.  When I will choose to 

use it depends on the students and their thinking at the time. The common practice of teachers 

using guided notes and exact lesson plans from the year prior are indicative of a view that 

planning is a static process and that students learn the same material the same way at the same 

 212 



time.  Planning the implementation of tasks is useful from year to year, but the plan for the entire 

lesson is much less predictable. For example, I would certainly use my notes from the Making 

Purple task next year.  However, the lesson may not flow in exactly the same way. Students may 

need more time, have disagreements that must be addressed, or require some additional resources 

beyond what I used this year.  I argue that fully embracing the principles of productive 

disciplinary engagement demands that teachers view planning as a dynamic process, and allow 

for some flexibility so that teaching is responsive to students.  

 Second, implementation demands attention to student thinking with preplanned 

questions.  If a teacher is to plan each lesson using the thinking of students at a moment in time, 

then questions need to be focused on students’ mathematical thinking.  One needs a very 

accurate indication of student thinking.  Since every student constructs meaning in a potentially 

different way, one needs to have many students talk; not just one or two.  Hence, the 

participation pattern that includes many students is critical.  

In addition, commitment to the principles on the part of the teacher is critical.  

Unswerving teacher commitment was necessary for months preceding this study in order to 

encourage students to participate in a way that was consistent with the principles of productive 

disciplinary engagement.  While students frequently complained that “you didn’t teach me how 

to do this”, and parents emailed that “I wasn’t teaching”, my practice and my expectations were 

consistent. As the months progressed from August to December, students learned to adapt to new 

expectations.  I knew they would. I knew they could be decision-makers. I knew they could 

assume authority and hold each other accountable.  I knew that given the right balance of 

resources and tasks that students would participate in the way I had planned.  My only question 

was how long it would take.  My belief in the students’ capacity to participate was unshakable.  
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The students’ capacity to redefine success in mathematics class was largely due to the consistent 

and relentless effort on my part to use the instructional practices that I described in this 

document. They learned to participate in the way that I had envisioned through “immersion”, 

much like students learn a new language when they move to a foreign nation.  They learn 

because it is necessary to learn. Students recognize that the natives are not going to change their 

tongue to meet their needs and that they must be the ones who adapt.    

Implementing the principles of productive disciplinary engagement in the way that I have 

describe, challenges the use of short, daily math classes for secondary students.  It causes me to 

wonder if longer classes might lead teachers to construct lessons that focus more on student 

mathematical thinking.  I say this because it is often true that teachers believe that at the 

conclusion of a forty-two minute lesson, students should exit understanding the same 

mathematics in the same way. Learning is viewed and measured using a very short increment of 

time. Traditional lesson formats allow little time for exploring and talking about mathematics. 

Often, lessons begin with a review of homework, some time for direct instruction, followed by 

time for students to practice skills.  Conversely, my commitment to the belief that learning takes 

place over time, contributed to students’ capacity to participate in the way I had planned.  The 

underlying belief that not everyone learns the same thing at the same time, allowed me to be 

content that not everyone exhibited the same competencies at the conclusion of a forty-two 

minute lesson.  In my view, though, everyone would develop similar competencies over the 

course of the unit of study.  Lesson structure was influenced by this belief.  Lessons were 

continuous and not implemented as discrete lessons wherein every lesson was a small, separate 

topic.  Influenced by my view of learning as a continuum and also my view of mathematics as a 

series of interrelated ideas, the lessons often flowed from one to another without a distinct ending 
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point at the conclusion of the forty-two minutes.  There were times where the discussion 

continued from one class to another, such as days four and five, and days five and six;  where the 

resources provided during one class were provided based on the discussion the preceding day, 

such as the Core Tools simulation; where student work on a task was continued from the end of 

one period to the start of the next class, such as day six and seven lessons; where the class 

opened with addressing misconceptions that had become apparent in the preceding class; such as 

days ten and eleven.  I argue that this continuous view of learning and the related integration of 

each day’s instruction into the next, contributed to the students’ capacity to participate in the way 

that it is described in this document. I would not argue that the principles could not be 

implemented using another strategy: only that the continuity was helpful.   This continuity might 

be implemented by teachers more easily if the class length were longer. Certainly a planning 

document that supports this continuum of learning would help teachers to embrace this view.   

 Largely due to this view of learning, the rhythm of each class was authentic.  That is, not 

every class followed the same format.  The lesson each day was structured to be responsive to 

the understanding presented by the students the preceding day, and move students toward the 

learning goal.   The lack of a repetitive lesson structure contributed to the sense that students 

were doing real work that was not contrived to fit into a preplanned portion of the lesson that 

necessarily was a certain length of time. In reality, lessons were planned using the rather 

traditional lesson plan format, but the enactment of each lesson reflected the continuous view of 

learning that allowed for lessons to flow from one to another.  The responsiveness of the lessons 

to the students’ developing understanding was one way that authority was shared with the 

students.  Although it was probably not apparent to the students, in essence the enactment of my 

lessons and student thinking were reflexively related.  Lessons were not “delivered”.  Content 
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was not “covered”.  Using my content knowledge, setting clear goals for student learning, 

selecting tasks that would move students closer to the intended goal, and listening carefully for 

ways that students understood the content, lessons were enacted with students.  Although I chose 

tasks based on cognitive demand, I also considered tasks based on developing a continuing 

student trajectory toward the learning goal. Using carefully selected tasks that offered students 

something worthy of talk, students were doing mathematics, engaging in mathematical thinking 

together, and making their thinking public.    

5.2.3 Limitations of the study 

Classroom instruction is a complex array of people, talk, activity, and mathematical content that 

is interwoven in an intricate, and changing design.  It is impossible to capture all of the nuances 

that together create a classroom environment. Ideally, a researcher can capture those areas of 

most interest using video and sound equipment that provide the opportunity for repeated review.  

However, even these tools allow for the capture of only a small part of the intended environment 

and largely ignore the thinking of the teacher as she makes a myriad of decisions throughout the 

enactment of the lesson. Limitations with regard to what is captured in a lesson are compounded 

by limitations in the analysis of the data, interpretation of the data, and conclusions drawn from 

the data.  Every element of the study depends on the views of the researcher and the lens through 

which she interprets information.  

I have repeatedly stated that this study addresses productive disciplinary engagement 

(Engle & Conant, 2002), however this work speaks only to the disciplinary and engagement 

portions of the term.  Using Engle and Conant’s definition for productive that is, “to make 

intellectual progress” then the study has not addressed the extent to which the lessons were 
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productive.  In order for productive to be addressed, the study would have needed to include 

some measure of change in student understanding over an increment of time such as would be 

the case if one uses pre-tests and post-tests.  Thus, the productive portion of the term was beyond 

the scope of this work and would be an excellent topic of subsequent research.  

The definition of problematizing utilized throughout this study reflects the definition 

provided in Engle (2011) which is a refinement in the definition put forth in her original work on 

the subject (Engle & Conant, 2002).  In the original work, the authors present the definition 

broadly to include the idea that “teachers should encourage students’ questions, proposals, 

challenges, and other intellectual contributions rather than expecting that they should assimilate 

facts, procedures and other answers” (p.404).   In other words, students should be provided the 

opportunity to define problems that elicit their curiosities. It is in Engle (2011) that 

problematizing is more carefully described to include, “any individual or collective action that 

encourages disciplinary uncertainties to be taken up by students” (p.6). In the original study, the 

controversy in which students initiated and engaged, , was indicative of problematizing.  Using 

the Engle (2011) definition, this instance would also qualify as an incidence of problematizing. 

However, the more recent definition focuses attention more on problematizing as initiated by the 

teacher. The teacher chooses tasks with certain kinds of features and in so doing, the teacher 

creates uncertainty for students. My view of uncertainty and problematizing is limited to the 

research with which I am familiar and the fourteen years of classroom experience that has 

influenced this work.  It is through a lens created by the two, that I have described the principle 

of problematizing and the relationship to uncertainty.   

It is difficult to conclude the extent to which every student was served by the 

implementation of the principles of productive disciplinary engagement.  Based on the data, it is 
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apparent that some students spoke more than others in whole group settings. I can confidently 

state that the four special education students were actively engaged and spoke frequently. A 

casual observer would not have been able to identify which students received special education 

services except for the fact that I read all materials to one student.  In order to confidently draw 

conclusions related to the extent to which the implementation was effective for each student, one 

could count turns of talk for each student and compare them, recognizing that some students 

learn without making their thinking public. There was one student (David) who flatly refused to 

make his thinking public, either orally or in writing, and was not an identified Special Education 

student. An episode that highlights one of my attempts to encourage his participation was 

discussed in Chapter 4.  I would be very interested to examine the data of his small group 

interaction and note whether his participation in both activity settings were similar or not.  My 

anecdotal evidence suggests that he was active in small groups. In addition, it would be very 

interesting to collect assessment data that would suggest a relationships between the extent  to 

which students orally  participate and the extent to which they moved toward the learning goals. 

All students didn’t participate in whole group discussions at the same level.  It would be 

interesting to determine to what extent those who participated to a lesser degree met the intended 

learning goals.  I wonder if they were not as robustly engaged in learning or were they just 

learning silently (Hatano & Inagaki, 1998).     

Finally, a reader may wonder whether the findings in this document are domain specific. 

Because the study entailed only one content area, probability, one might wonder if there was 

something specific about the topic that made it a particular fit with the implementation of 

productive disciplinary engagement.  My experience suggests that the results were not domain 

specific. Productive disciplinary engagement may be accomplished in a variety of domains. I 
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believe that productive disciplinary engagement depends more on the tasks chosen than the 

domain in which the task lies.   It would be interesting to repeat this study using another domain.  

Conducting a similar study may provide insight regarding commonalities and differences in 

student behaviors as they engage in learning another content topic.   

5.2.4 Directions for further research 

This study provides one glimpse of a classroom in which the principles of productive 

disciplinary engagement were evident.  The decomposition of some of the supporting teacher and 

student behaviors will hopefully provide information for studies of larger size that might further 

this work.  The work described here has helped me to identify other potential studies that may 

contribute to a more comprehensive understanding of the elements that impact the enactment of 

the principles of productive disciplinary engagement.   

Creating a learning environment that supports the students in productive disciplinary 

engagement is a practical challenge for teachers.  Although the application of these design 

principles have been investigated in educational environments, including the one in this study, 

the articulation of the way to create the environment has not been articulated.  This study helps to 

define the teacher and student behaviors that are evident once the environment is created, 

however, it doesn’t address its creation at all.  It leaves the reader wondering what happened 

from the first day of school until the study commenced.  Did students come already knowing 

how to participate in the way that is described in this study? The way to develop the environment 

can be inferred, in part, from the study, but much more work is needed to decompose the teacher 

practices in a way that might allow teachers and teacher educators to apply these principles in a 

variety of educational settings with teachers of varying background and experience. 
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What students noticed with regard to mathematical features of tasks and solutions was 

quite varied.  Whole group discussion emphasized the differences and encouraged students to 

consider what their peers had noticed in this study.  Much of the research in the mathematical 

literature has addressed what teachers notice, but what students notice is also a critical factor. 

Studies that address pedagogical moves that might encourage students to “see” mathematical 

patterns, encourage student capacity for sorting information, and choose salient features of tasks 

would contribute to our understanding of the way students learn and the instruction that might 

support learning.  

In addition, research related to what teachers need to know in order to enact the principles 

of productive disciplinary engagement will inform teacher education.  For example, I wonder 

what contributes to a teacher being willing to battle external constraints that might limit the 

enactment of the principles of productive disciplinary engagement? What contributes to a 

teacher’s capacity to balance student frustration with their new authority to solve problems as 

they learn a new way to participate in mathematics class, and the teacher’s own feeling of 

success?  

5.3 SUMMARY 

This study examined the ways that the teacher and students enacted the principles of productive 

disciplinary engagement in one classroom.  Further it considered the work of the teacher as she 

purposefully utilized the principles of productive disciplinary engagement in constructing an 

environment. The results provided insight related to the actions of the students and the teacher 

during a unit of study that encompassed fifteen days.  Finally, although the study addresses the 
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research questions, it draws attention to other potential questions that may be answered in future 

studies. 
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APPENDIX A 

STUDENT QUESTIONNAIRE 

ME Williams’ Dissertation Study 

2013-2014 

Date:______________ 

I  want to know what you think!  

 

This is NOT a test. There are NO wrong answers. I want to know what you think about 

math class this year.  

Your answers are confidential.  No one will be told what you answered.  Your answers 

will be combined to reflect the attitudes and opinions of the entire class. This survey is 

anonymous.  

This survey is voluntary. You do NOT have to answer any question that you do not 

wish to answer, but I hope you will answer as many questions as you can.  Your answers will 

help me to become a better teacher and complete my school work.  

This survey is not related to your grade.  Your grade will not reflect participation or 

non-participation in the survey.   
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How much do you agree with the following statements about your teacher in your Math 

class:  My teacher: (circle the answer that reflects your opinion) 

1. Often connects what I am learning to life outside of the classroom.    

Strongly disagree      Disagree        Agree        Strongly agree  

     

2. Encourages students to share their ideas about things we are studying in class.   

Strongly disagree      Disagree        Agree        Strongly agree  

      

3.Often requires me to explain my answers.   

Strongly disagree      Disagree        Agree        Strongly agree  

     

4. Encourages us to consider different solutions or points of view.   

Strongly disagree      Disagree        Agree        Strongly agree 

 

5. Encourages students to stop working when the work gets hard.         

Strongly disagree      Disagree        Agree        Strongly agree  

     

6. Expects us to work together to solve problems.       

Strongly disagree      Disagree        Agree        Strongly agree  

 

7.  Gives us work in class that is challenging. 

Strongly disagree      Disagree        Agree        Strongly agree  
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8. Wants us to become better thinkers, not just memorize things.    

Strongly disagree      Disagree        Agree        Strongly agree  

 

9. Wants us to discuss possible solutions to problems with other students.         

Strongly disagree      Disagree        Agree        Strongly agree  

 

10.   Rarely asks students to show their work on the board or document projector       

Strongly disagree      Disagree        Agree        Strongly agree 

  

11. Makes resources ( graph paper, spinners, books) available to us in case we need it.      

Strongly disagree      Disagree        Agree        Strongly agree  

 

How often does this happen in your mathematics lessons?  

 

a) The teacher shows us how to do mathematics problems. 

never        once in a while  usually   always 

 

b) We copy notes from the board. 

never        once in a while  usually   always 

 

c) We work on mathematics tasks in small groups  

never        once in a while  usually   always 
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d) Students use the board or document projector 

never        once in a while  usually   always 

 

e) The teacher uses the board or document projector 

never        once in a while  usually   always 

 

f) If we don’t know how to solve a difficult problem we ask other students for help. 

never        once in a while  usually   always 

 

g) If we don’t know how to solve a difficult problem we ask the teacher for help. 

never        once in a while  usually   always 

 

h) Desks are organized in rows so that we can work independently. 

never        once in a while  usually   always 

 

i) During student presentations, we ask questions of each other if we don’t understand 

what he is explaining. 

never        once in a while  usually   always 

 

j) I feel free to invent my own way to solve a mathematics problem. 

never        once in a while  usually   always 
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k) Students read and work from the textbook while the teacher talks about it. 

never        once in a while  usually   always 

 

l) Students listen while the teacher explains rules and definitions. 

never        once in a while  usually   always 

 

m) Students, together with the teacher, decide whether an answer is correct. 

never        once in a while  usually   always 
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APPENDIX B 

QUESTIONING FRAMEWORK 

Table 15. Question Framework 

    Question Type 
 

      Description Example 

Gathering information, 
leading students through 
a method 
 

Requires immediate answer. Rehearses 
known facts/procedures. Enables students 
to state facts/procedures 

What is the value of this 
equation? How would 
you plot this point? 

Inserting terminology Once ideas are under discussion, enables 
correct mathematical language to be used 
to talk about them 

What is this called? How 
would you write this 
correctly? 

Exploring mathematical 
meanings and/ or 
relationships 

Points to underlying mathematical 
relationships and meanings. Makes links 
between mathematical ideas and 
representations 

What is this x on the 
diagram? What does 
probability mean? 

Probing, getting students 
to explain their thinking 

Ask students to articulate, elaborate, or 
clarify ideas 

How did you get 10? 
Can you explain your 
idea? 

Generating Discussion Solicits ideas from other members of the 
class 

Is there another opinion 
about this?  
What did you say  
Justin? 

Linking and applying Points to relationships among 
mathematical ideas and mathematics and 
other areas/life 

In what other situation 
could you apply this? 
Where else have we used 
this? 

Extending thinking Extends the situation under discussion to 
other situations where similar ideas may 
be used 

Would this work for 
other numbers? 

Orienting and focusing 
 

Helps students focus on key elements or 
aspects of the situation in order to enable  

What is the problem 
asking you?  What is  
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Table 15 (continued)   
 problem solving important about this? 
Establishing context Talks about issues outside of math in 

order to enable links to be made with 
mathematics 

What is the lottery? How 
old do you have to be to 
play the lottery?  
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APPENDIX C 

THE MATHEMATICS TASK ANALYSIS GUIDE 

   

Lower-Level Demands 

Memorization Tasks 

Involves either producing previously 
learned facts, rules, formulae, or 
definitions OR committing facts, rules, 
formulae, or definitions to memory. 
 
Cannot be solved using procedures 
because a procedure does not exist or 
because the time frame in which the 
task is being completed is too short to 
use a procedure. 
 
Are not ambiguous – such tasks involve 
exact reproduction of previously seen 
material and what is to be reproduced is 
clearly and directly stated. 
 
Have no connection to the concepts or 
meaning that underlie the facts, rules, 
formulae, or definitions being learned or 
reproduced. 
 

Procedures Without Connections Tasks 

• Are algorithmic.  Use of the 
procedure is either specifically 
called for or its use is evident 
based on prior instruction, 
experience, or placement of the 

Higher-Level Demands 

Procedures With Connections Tasks 

Focus students’ attention on the use of procedures for the purpose of 
developing deeper levels of understanding of mathematical concepts and 
ideas. 
 
Suggest pathways to follow (explicitly or implicitly) that are broad general 
procedures that have close connections to underlying conceptual ideas as 
opposed to narrow algorithms that are opaque with respect to underlying 
concepts. 
 
Usually are represented in multiple ways (e.g., visual diagrams, 
manipulatives, symbols, problem situations).  Making connections among 
multiple representations helps to develop meaning. 
 
Require some degree of cognitive effort.  Although general procedures may 
be followed, they cannot be followed mindlessly.  Students need to engage 
with the conceptual ideas that underlie the procedures in order to 
successfully complete the task and develop understanding. 

 

 

Doing Mathematics Tasks 

Requires complex and non-algorithmic thinking (i.e., there is not a 
predictable, well-rehearsed approach or pathway explicitly suggested by the 
task, task instructions, or a worked-out example). 
 
Requires students to explore and to understand the nature of mathematical 
concepts, processes, or relationships. 
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task. 
• Require limited cognitive 

demand for successful 
completion.  There is little 
ambiguity about what needs to 
be done and how to do it. 

• Have no connection to the 
concepts or meaning that 
underlie the procedure being 
used. 

• Are focused on producing 
correct answers rather than 
developing mathematical 
understanding. 

• Require no explanations, or 
explanations that focus solely on 
describing the procedure that 
was used. 

 
Demands self-monitoring or self-regulation of one’s own cognitive 
processes. 
 
Requires students to access relevant knowledge and experiences and make 
appropriate use of them in working through the task. 
 
Requires students to analyze the task and actively examine task constraints 
that may limit possible solution strategies and solutions. 
 
Requires considerable cognitive effort and may involve some level of anxiety 
for the student due to the unpredictable nature of the solution process 
required. 

Figure 17. The Mathematics Task Analysis Guide (Stein, Smith, Henningsen, & Silver, 2000) 
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APPENDIX D 

TASK RUBRIC EXAMPLE 

Summative Assessment- Probability 

Question 1- Part A 

3  A.  The answer reflects an understanding that the probability that a player gets H/H or T/T 

results in her likely losing $3.  The explanation supports the correct answer with enough detail to 

explain not only what the outcomes might be but also the likelihood of each in writing that 

follows a logical sequence.   

2-A.  The answer reflects an understanding that the probability that a player gets H/H or T/T 

results in her likely losing $3.  However, the explanation is not detailed enough or does not 

follow a logical sequence that allows the reader to understand the student’s reasoning process or 

the student has used faulty reasoning.  

1-A.  The answer is incorrect but the student has demonstrated some understanding of the 

likelihood of specific outcomes. The explanation reflects a partial understanding of the 

mathematical reasoning behind the answer.  

0-A.  The answer is incorrect with no demonstrated understanding of the likelihood of the 

specific outcomes. The explanation does not reflect a logical explanation using mathematical 

reasoning. Alternatively, the student has not answered the question. 
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APPENDIX E 

LESSON PLAN FORMAT EXAMPLE 

Table 16.  Lesson Plan Format Example 

Lesson 
Objective, 
Standards,  and 
CCSS-
Mathematical 
Practices 

 

 
Use random sampling to draw inferences about a population. 
1. Understand that statistics can be used to gain information about a 
population by examining a sample of the population; generalizations 
about a population from a sample are valid only if the sample is 
representative of that population. Understand that random sampling 
tends to produce representative samples and support valid inferences. 
2. Use data from a random sample to draw inferences about a population 
with an unknown characteristic of interest. Generate multiple samples 
(or simulated samples) of the same size to gauge the variation in 
estimates or predictions. For example, estimate the mean word length in 
a book by randomly sampling words from the book; predict the winner of 
a school election based on randomly sampled survey data. Gauge how far 
off the estimate or prediction might be. 
Draw informal comparative inferences about two populations. 
3. Informally assess the degree of visual overlap of two numerical 
data distributions with similar variabilities, measuring the difference 
between the centers by expressing it as a multiple of a measure of 
variability. For example, the mean height of players on the basketball 
team is 10 cm greater than the mean height of players on the soccer team, 
about twice the variability (mean absolute deviation) on either team; on 
a dot plot, the separation between the two distributions of heights is 
noticeable. 
4. Use measures of center and measures of variability for numerical data 
from random samples to draw informal comparative inferences about 
two populations. For example, decide whether the words in a chapter 
of a seventh-grade science book are generally longer than the words in a 
chapter of a fourth-grade science book. 
Investigate chance processes and develop, use, and evaluate 
probability models. 
5. Understand that the probability of a chance event is a number 
between 0 and 1 that expresses the likelihood of the event occurring. 
Larger numbers indicate greater likelihood. A probability near 0 
indicates an unlikely event, a probability around ½ indicates an event 
that is neither unlikely nor likely, and a probability near 1 indicates a 
likely event. 
6. Approximate the probability of a chance event by collecting data on 
the chance process that produces it and observing its long-run relative 
frequency, and predict the approximate relative frequency given the 
probability. For example, when rolling a number cube 600 times, predict 
that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 
200 times. 

Make sense of problems 
and persevere in solving 
them.   

 
Model with mathematics 

 
Use tools strategically 

 
Construct viable 
arguments and critique the 
reasoning of others.  

 
Look for and make use of 

structure 

Look for and express 

regularity in repeated 

reasoning. 
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7. Develop a probability model and use it to find probabilities of events. 
Compare probabilities from a model to observed frequencies; if the 
agreement is not good, explain possible sources of the discrepancy. 
a. Develop a uniform probability model by assigning equal 
probability to all outcomes, and use the model to determine 
probabilities of events. For example, if a student is selected at 
random from a class, find the probability that Jane will be selected 
and the probability that a girl will be selected. 
b. Develop a probability model (which may not be uniform) by 
observing frequencies in data generated from a chance process. 
For example, find the approximate probability that a spinning penny 
will land heads up or that a tossed paper cup will land open-end 
down. Do the outcomes for the spinning penny appear to be equally 
likely based on the observed frequencies? 
8. Find probabilities of compound events using organized lists, tables, 
tree diagrams, and simulation. 
a. Understand that, just as with simple events, the probability of a 
compound event is the fraction of outcomes in the sample space 
for which the compound event occurs. 
b. Represent sample spaces for compound events using methods 
such as organized lists, tables and tree diagrams. For an event 
described in everyday language (e.g., “rolling double sixes”), 
identify the outcomes in the sample space which compose the 
event. 
c. Design and use a simulation to generate frequencies for 
compound events. For example, use random digits as a simulation 
tool to approximate the answer to the question: If 40% of donors 
have type A blood, what is the probability that it will take at least 4 
donors to find one with type A blood? 

Procedure 
 
 

Resources; area 
model that we 
constructed for 
Making Purple, 
last week.  

 
 

Probability- Day 12 
Focus question: How can you use experimental or theoretical probabilities of a 

compound event to predict the number of times one particular combination will occur out of 
any given number of repetitions of the event?  

 
Review how to analyze a two-stage outcome using an area model.  Have students 

turn to pg. 75 in CMP. Review our discussion of last week.  Are purple and not purple equally 
likely?  How might you figure it out exactly? For Spinner A, what is the likelihood of getting 
red? H ow is this represented on the square? Distribute the area model that we agreed to for that 
scenario.   

 
Address question D.  Let students work in pairs to complete.  Every person must turn 

in a written response. Following student completion, engage students in a discussion of their 
thinking. If time permits, begin the next lesson: regarding one and one free throws.   

 
Homework #8, page 82. Complete written explanation is expected.  

Assessing and 
advancing 
questions 

What does each partition in the side of the square represent? What does the area of 
each section represent? How many regions are there? Why? What do you notice about the 
sections when there is an equal number of each color? When it is different? What other 
numbers of each color might this same table represent?  

Ways that 
authority will 
be shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  

Ways that 
students will be 
held 
accountable to 
each other and 
the teacher 

Team members will be accountable to respond to peers and me.  I will use 
AT to encourage discussion and check for understanding.  Written work will be 
evidence of student effort and understanding.  

 
 

 

Table 16 (continued) 
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Table 16 (continued) 

Student 
resources that 
will be made 
available 

Red/blue chips, graph paper, peers, .  

Problemetizing: 
Ways that 
students will be 
challenged in 
ways that 
engender 
genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work toward 
solution.  

 
My intent is that through questioning I can help students to make connections 

between probability and algebraic reasoning.   
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APPENDIX F 

ACCOUNTABLE TALK MOVES 

 

Table 17. Accountable Talk Moves 

Talk Move Function Example 

Marking  Direct attention to eh value 
and importance of a 
student’s contribution 

That’s an important point. 

Challenging Redirect a question back to 
the students, or use 
students’ contributions as a 
source for further challenge 
or query 

Let me challenge you: Ist 
that always true? 

Modeling Make one’s thinking public 
and demonstrate expert 
forms of reasoning through 
talk. 

Show us your thinking. 
Here’s how a 
manthematician works. 

Recapping Make public in a concise, 
coherent form, the group’s 
achievement at creating a 
shared understanding of the 
phenomenon under 
discussion 

Let me put these ideas 
together. What have we 
discovered?  
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Table 17. (continued)               

To Support Accountability to Community 

Keeping the Channels Open Ensure that students can 
hear each other, and remind 
them that they must hear 
what others have said 

Sya that again and louder. 
Can someone repeat what 
was just said? 

Keeping Everyone Together Ensure that everyone not 
only heard, but also 
understood what the 
speaker said 

Can someone add on to 
what was just said? Did 
everyone hear that? 

Linking Contributions Make explicit the 
relationship between a new 
contribution and what has 
gone before 

Does anyone have a similar 
idea? Do you agree or 
disagree with what was 
said? Your idea sounds 
similar to his idea. 

Verifying and Clarifying Revoice a student’s 
contribution, thereby 
helping both speakers and 
listeners to engage more 
profitably in the 
conversation 

So are you saying…?  
Can you say more? 
Who understands what was 
said? 

 

                            To Support Accountability to Knowledge 

Pressing for Accuracy Hold students accounTable 
4.8or the accuracy, 
credibility, and clarity of 
their contributions 

Why does this happen? 
Someone give me the term 
for that. 

Building on Prior 
Knowledge 

Tie a current contribution 
back to knowledge 
accumulated by the class at 
a previous time. 

What have we learned in 
the past that links with this? 

 

                      To Support Accountability to Rigorous Thinking 

Pressing for Reasoning Elicit evidence to establish 
what contribution a 
student’s utterance is 
intended to make within the 
group’s larger enterprise 

Say why this works. 
What does this mean? 
Who can make a claim then 
tell us what their claim 
means? 
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Table 17. (continued)   
   
Expanding Reasoning Open up extra time and 

space in the conversation 
for student reasoning 

Does the idea work if I 
change the context? Use 
bigger numbers? 

(O’Connor & Michaels, 1993) 
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APPENDIX G 

CODING SCHEME FOR THE PRINCIPLES OF PRODUCTIVE 

 DISCIPLINARY    ENGAGEMENT 

 

Table 18. Disciplinary Engagement 

Code Definition  Principle 
T Teacher   
S Student   
U Uncertainty expressed orally  “ I don’t get it.”; “ What do 

you mean? 
Problematizing 

US Student uncertainty “ I don’t understand.”  Problematizing 
UT Teacher uncertainty “ I don’t understand what you 

mean.” 
Problematizing 

QSS Student to student question 
(not asking for a justification)  

“Does this remind you of when 
we studied proportions? “ 

Problematizing 

QTS Teacher question or comment  
to student or class that 
highlights differences in 
student conjectures or asks for 
a conjecture or asking a 
question that requires students 
to generalize or extend their 
thinking   

“Does anyone have another 
opinion?”  or “ Do you agree 
with Jack’s answer or John’s 
answer?”  or “It works in 
example x, will it work in 
example y?”   “Can you 
generalize …..” 

Problematizing/ 
Accountability 

JS Student justifying reasoning 
without prompt 

“I know the answer is 2 
possible outcomes because 
…..” 

Accountability 

 

 238 



Table 18 (continued) 

JWT Justifying reasoning as a result 
of a prompt by the teacher 

Teacher:” Can you say more 
about that?” 
Student: “I know it is two 
because of the distributive 
property. “ 

Accountability 

JWS Justifying reasoning as a result 
of a prompt by a student 

Student 1:” I didn’t get what 
you got. Can you explain your 
answer?” 
Student 2 : “The way I was 
thinking about this was….” 

Accountability 

ATT Teacher holds students 
accountable using Accountable 
Talk or the insertion of 
mathematical vocabulary. 

See Appendix F Accountability 

ATS Accountable talk used by the 
students 

See Appendix F Accountability 

T or S Teacher or student talk turn  Authority 
AT Teacher provides  answer or 

assumes authority 
“The answer to #1 is 7”.  Authority 

AS Student  publicly provides 
answer (correct or incorrect); 
makes conjecture 

“I got 3 as the most likely 
outcome”. )  (This statement 
gives classmates the 
opportunity to critique, placing 
them in an authority position. ) 

Authority 

ASC Student self corrects previously 
flawed or incomplete 
explanation or answer.  

“ I see now. It’s not 1/2 , it’s 
more like 2/3 because of the 
number of pieces.” 

Authority 

N Noticing. Students select 
information from competing 
information. They are 
challenged to sort through 
visual cues, in an effort to 
identify particular 
mathematical features among 
competing bits of mathematical 
information.  

“Although the numbers are 
larger they are the same 
proportion.  The part to whole 
relationship is the same.”  

Authority 

PTP Positioning- teacher positions 
herself as a peer 

“Let’s try to figure this out.”  
“How are we doing on this 
task?” 

Authority 

PTA Positioning- teacher positions 
herself as an authority 

“This isn’t right.  The way to 
do this is to use a tree 
diagram.”  

Authority 
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Table 18 (continued) 

PTS Positioning- teacher positions 
student in authority position-
capable independent decision-
makers 

“MaLyla’s solution is a good 
example of a tree diagram.” 
(Draws attention to her as the 
author.) 
 
“ I notice that you chose to use 
an area model.  I am 
wondering why you made that 
choice?”  ( This question begs 
for an explanation regarding an 
authorial decision; requiring  
an explanation of something 
that may have been an 
unconscious decision. The 
student must don an author’s 
hat to provide the narrative.  
 
Do you agree with what 
Lynsey just said? (This begs an 
authorial decision: requiring an 
explanation in the form of a 
narrative. It also assumes that 
the student is capable of an 
independent decision.) 
 
“Thanks for straightening me 
out.”  This comment implies 
that the student has helped the 
teacher understand more fully.  
The teacher is fallible and is 
engaged in the same 
intellectual work. Correcting 
errors is a joint concern. 

Authority 

PSS Positioning- student places 
another student in an authority 
position 

Lynsey’s way works really 
well for me.  (Student places 
Lynsey in the postion of an 
author) 
 
 
 

Authority 
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Table 18 (continued) 

PS 
 

Positioning- student exhibits 
authority through the act of 
publically disagreeing or 
agreeing with a peer or the 
teacher, by answering a peer 
question, or by walking to the 
overhead or another group to 
make a point. 

“I don’t think I agree with her 
logic.”  

Authority 

RT Resource provided by the 
teacher- may be ideational, 
relational, or material or more 
than one; or she states that she 
expects students to use a 
resource.  

Ideational- “ Remember the 
problem we did with unit 
rates? “ 
Material-  coins, counters, 
graphs,  
Relational- peers- may include 
directions regarding the way to 
participate.  “ I want one 
explanation for your whole 
group”.   

Resource 

RS Resource as above, provided 
by a peer. Students are 
providing resources to each 
other or are using each other as 
resources ; such as listening to 
an explanation then adding to it   

“ Like Bob said, it makes more 
sense to look at the area of 
each segment of the area 
model.”  

Resource 
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APPENDIX H 

 

Figure 18. Event Map Example
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APPENDIX I 

TASKS USED IN THE STUDY 

Day 1    Problem 1.1 (Lappan et.al, 2014, p. 9)   

                   

Figure 19. Problem 1.1 
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Orally assigned task; Graph the percent of heads versus the number of tosses.  

They were asked to theorize regarding the shape of the graph when the number of 

tosses increased to very large numbers. (teacher developed) 

 

Day 2   Problem 1.2 (Lappan, et.al.,  2014)- part A, B 

Part A: Conduct an experiment to test your prediction about how a paper cup lands. 

Toss a paper cup 50 times. Make a table to record your data.  

Part B: Use your results to answer the following questions:  

1. For what fraction of your 50 tosses did the cup land on one of its ends? What 

percent is this? 

2. For what fraction of your 50 tosses did the cup land on its side? What percent is 

this? 

3.  Do the landing positions end and side have the same chance of occurring? If not, 

which is more likely? Explain. 

Define experimental versus theoretical probability in small groups (teacher 

developed) 
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Homework: problems 1-5 on page 17  

1. Mikki tosses a coin 50 times, and the coin shows heads 28 times. What fraction 

of the 50 tosses is heads? What percent is this? 

2. Suppose Kalvin tosses a coin to determine his breakfast cereal every day. He 

starts on his 12th birthday and continues until his eighteenth birthday. About how 

many times would you expect him to eat Cocoa Blast cereal? 

3.  Kalvin tosses a coin five days in a row and gets tails every time. Do you think 

there is something wrong with the coin? How can you find out? 

4.  Len tosses a coin three times.  The coin shows heads every time. What are the 

chances the coin shows tails on the next toss? Explain.  

5.  Is it possible to toss a coin 20 times and have it land heads up 20 times? Is this 

likely to happen? Explain.  

    

 

Day 3    Problem 6A, page 17.  (Lappan, et.al., 2014) 

Kalvin tosses a paper cup once per day each day for a year to determine his breakfast 

cereal.  Use your results from Problem 1.2 to answer the following. 

a. How many times do you expect the cup to land on its side? On one of its ends? 

b. How many times do you expect Kalvin to eat Cocoa Blast in a month? In a year? 

Explain. 
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  Problem 1.3, A, B, C  (Lappan, et.al., 2014) 

 Part A:  

1. Conduct an experiment by tossing a pair of coins 30 times.  Keep track of the 

number of times the coins match and the number of times no match occurs.  

 2. Based on your data, what is the experimental probability of getting a match? 

Getting a no-match? 

Part B:  

Combine your data with your classmates’ data. 

1. Find the experimental probabilities for the combined data. Compare these 

probabilities with the probabilities in Question A. 

2. Based on the class data, do you think a match and a no-match have the same 

chance of occurring? Explain.  

 

Day 4   Partner Quiz: Task 1, Task 2, Task 3A, Task 3B  

1. The probability of a particular event is 3/8. What is the probability that the event 

will not happen? Explain. 

 2. Multiple choice. Which of the following numbers could not be a probability? 

Explain. 

  A.  1/3  B. 0  C. 8/9  D. 1  E. 5/4 

  3.  Juanita is holding 5 coins with a total value of 27 cents. 

 a. What is the probability that three of the coins are pennies? Explain your 

reasoning. 

b.  What is the probability that one of the coins is a quarter? Explain your 

reasoning.  
 

 246 



 

Homework: #19, page 20  (Lappan, et.al., 2014) 

19.  Colby rolls a number cube 50 times. She records the result of each roll and organizes her 

data in the Table 4.3elow. 

 

 

 

a. What fraction of the rolls are 2’s? What percent is this? 

b. What fraction of the rolls are odd numbers? What percent is this? 

c. What percent of the rolls is greater than 3? 

d. Suppose Colby rolls the number cube 100 times. About how many 

times can she expect to roll a 2? Explain. 
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Day 5  Marble task (Silver, et.al, 1995) 

Mrs. Rhee’s math class was studying statistics.  She brought in three bags 

containing red and blue marbles.  The three bags were labeled as shown below. 

Bag X: 75 red, 25 blue Bag Y: 40 red, 20 blue  

                              Bag Z: 100 red, 25 blue 

 

Mrs. Rhee shook each bag.  She asked the class, “ If you close your eyes, 

reach into the bag, and remove 1 marble, which bag would give you the 

best chance of picking a blue marble?  

Which bag would you choose? ____ 

Explain why this bag gives you the best chance of picking a blue marble.  

You may use the diagrams above in your explanation .  

Day 6   No new tasks 

Day 7    Problem 2.3, A2  presented orally 

A.2. How many possible outcomes are there when you toss three coins? 

Are the outcomes equally likely? 

    Cafeteria problem  (Lappan, et.al, 2014) 

(Provided in writing) Today, the school’s cafeteria is offering a choice of 

pizza or spaghetti. You can get milk or juice to drink. For dessert you can 

get pudding or an apple. You must take one of each choice. Draw a tree 

diagram to show all the possibilities. 
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Day 8   Marbles task 

The bowl below contains the indicated number of marbles. The marbles 

are well-mixed in this bowl. Juan believes that his chance of picking a 

blue marble is the same as his chance of picking a yellow marble. Is Juan 

correct? Explain your answer. (NAEP released item) 

  

   

 

 

  

 

Sticky Gum Problem  (Silver, et.al, 1995) 

 A penny bubble gum machine is filled with red and white gumballs. Mrs. 

Jones’twins want to have the same color gumball.  How many pennies must Mrs. 

Jones be prepared to spend to be sure she gets a pair of matching gumballs?  Now 

suppose Mrs. Jones’ has triplets.  How many pennies must Mrs. Jones be prepared 

to spend to be sure she gets three matching gumballs?  

 

 

 

 

10 red    20 yellow 

20 blue 
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Day 9   Problem 4.1 A and 4.1 C (Lappan, et.al, 2014) 

   R 

   G 

   G 

 

Miguel adds to his diagram to help him find the theoretical probabilities of 

drawing marbles from Bucket 1. 

   Part A 

1. Explain what Miguel has done so far.  Does this look reasonable? 

2. Use the top edge to represent Bucket 2. How many sections do you need 

to represent the marbles in Bucket 2? Draw the lines and lablel the 

sections you need to represent Bucket 2.  

3.  Now label each of the sections inside the square with two letters to 

represent the results of choosing two marbles.  RR in a section would 

mean that two red marbles were drawn from the buckets.  

   Part C 

The area model below represents a different situation from Questions A 

and B.  In this area model, P(RY)=1/10,  
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P(RB)=1/10, P(GY)=4/10, and P(GB)=4/10.  Use the area model and these 

probabilities to answer the following questions: 

  

  

 

  Y  B 

R 

 

G 

 

 

 

4. Which of the following could be the contents of the two buckets? 

Explain your reasoning. 

   a.  2 red and 8 green in bucket 1; 5 yellow and 5 blue in bucket 2 

   b.  2 red and 8 green in bucket 1; 10 yellow and 10 blue in bucket 2 

   c.  1 red and 4 green in bucket 1; 3 yellow and 3 blue in bucket 2 
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Day 10   Problems 1-4 (Lappan, et.al., 2014) 

    

                                 Figure 20. Problems 1-4 
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Day 11 Each of the 6 faces of a fair cube is painted red, yellow, or blue.  This cube 

is rolled 500 times. The Table 4.3elow shows the number of times each 

color landed face up.  Based on these results, what is the most likely 

number of yellow faces on the cube.  (NAEP) 

 

 Red 100  Yellow 340  Blue 60 

 

Day 12  Problem 4.2 Part D (Lappan, et.al., 2014)  

  

Part D: The cost to play the game is $2.  The winner gets $6 for making 

purple.  Suppose 36 people play the game. 

 1.  How much money will the school take in from this game? 

 2. How many people do you expect to win a prize? 

 3. How much money do you expect the school to pay out in prizes? 

 4.  How much profit do you expect the school to make from this game? 

 5.  Should the school include this game in the carnival? Justify your 

answer using your answers from parts 1-4.  
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Day 13 Problem 4.3 Part B revised- provided partially completed area model 

(Lappan, et.al., 2014) 

 In the district finals, Nishi’s basketball team is 1 point behind with 2 
seconds left.  A player on the other team fouls Nishi. Now she is in a one-
and –one free-throw situation. This means that Nishi will try one free 
trwo. If she makes it, she tries a second free throw.  If she misses the first 
free thwo, she does not get to try a second free throw.   

 

 An area model representing the possible outcomes for Nishi’s one-and-one 
free throws is shown below.  Explain what you know about the design of 
the area model (This task was adapted to include a partially completed 
area model as below) 

 

 1.  Why are the blocks the size they are? 

 2. How would you label the left side of the area model? Explain. 

 3.  How would you label the top side of the area model? Explain.  

 

  

 

 

 

 

 

 

 

 

 

 254 



Day 14 -  (orally presented)  How might you simulate the one-and-one free throw problem we 

did yesterday, using dice or a spinner?  (adapted from Lappan, et.al, 2014, Problem 4.3A.3, p.77) 

 

Day 15-  Problem 15- Cave paths task (Lappan,et.al., 2014) 
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Day 15 Assessment item 
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APPENDIX J 

LESSON PLAN AND REFLECTION 

(DAY 1) 

Table 19. Lesson Plan and Reflection( Day 1) 

Lesson 
Objective, 
Standards,  and 
CCSS-
Mathematical 
Practices 

 

 
Use random sampling to draw inferences about a population. 
1. Understand that statistics can be used to gain information about a 
population by examining a sample of the population; generalizations 
about a population from a sample are valid only if the sample is 
representative of that population. Understand that random sampling 
tends to produce representative samples and support valid inferences. 
2. Use data from a random sample to draw inferences about a population 
with an unknown characteristic of interest. Generate multiple samples 
(or simulated samples) of the same size to gauge the variation in 
estimates or predictions. For example, estimate the mean word length in 
a book by randomly sampling words from the book; predict the winner of 
a school election based on randomly sampled survey data. Gauge how far 
off the estimate or prediction might be. 
Draw informal comparative inferences about two populations. 
3. Informally assess the degree of visual overlap of two numerical 
data distributions with similar variabilities, measuring the difference 
between the centers by expressing it as a multiple of a measure of 
variability. For example, the mean height of players on the basketball 
team is 10 cm greater than the mean height of players on the soccer team, 
about twice the variability (mean absolute deviation) on either team; on 
a dot plot, the separation between the two distributions of heights is 
noticeable. 
4. Use measures of center and measures of variability for numerical data 
from random samples to draw informal comparative inferences about 
two populations. For example, decide whether the words in a chapter 
of a seventh-grade science book are generally longer than the words in a 
chapter of a fourth-grade science book. 
Investigate chance processes and develop, use, and evaluate 
probability models. 
5. Understand that the probability of a chance event is a number 
between 0 and 1 that expresses the likelihood of the event occurring. 
Larger numbers indicate greater likelihood. A probability near 0 
indicates an unlikely event, a probability around 1/2 indicates an event 
that is neither unlikely nor likely, and a probability near 1 indicates a 
likely event. 

Make sense of problems 
and persevere in solving 
them.   
Model with mathematics 
Use tools strategically 
Construct viable 
arguments and critique the 
reasoning of others.  
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Table 19 (continued) 
 6. Approximate the probability of a chance event by collecting data on 

the chance process that produces it and observing its long-run relative 
frequency, and predict the approximate relative frequency given the 
probability. For example, when rolling a number cube 600 times, predict 
that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 
200 times. 
7. Develop a probability model and use it to find probabilities of events. 
Compare probabilities from a model to observed frequencies; if the 
agreement is not good, explain possible sources of the discrepancy. 
a. Develop a uniform probability model by assigning equal 
probability to all outcomes, and use the model to determine 
probabilities of events. For example, if a student is selected at 
random from a class, find the probability that Jane will be selected 
and the probability that a girl will be selected. 
b. Develop a probability model (which may not be uniform) by 
observing frequencies in data generated from a chance process. 
For example, find the approximate probability that a spinning penny 
will land heads up or that a tossed paper cup will land open-end 
down. Do the outcomes for the spinning penny appear to be equally 
likely based on the observed frequencies? 
8. Find probabilities of compound events using organized lists, tables, 
tree diagrams, and simulation. 
a. Understand that, just as with simple events, the probability of a 
compound event is the fraction of outcomes in the sample space 
for which the compound event occurs. 
b. Represent sample spaces for compound events using methods 
such as organized lists, tables and tree diagrams. For an event 
described in everyday language (e.g., “rolling double sixes”), 
identify the outcomes in the sample space which compose the 
event. 
c. Design and use a simulation to generate frequencies for 
compound events. For example, use random digits as a simulation 
tool to approximate the answer to the question: If 40% of donors 
have type A blood, what is the probability that it will take at least 4 

donors to find one with type A blood? 
Procedure 

 
 
 

Probability- Day 1 
 

Give students time to review the intro individually, ask students to describe to their 
group some examples of probability situations, have a student summarize the 
scenario.  Make a prediction in groups- groups test their prediction-Combine results 
of all groups 

 
Assessing and 
advancing 
questions 

What is the trend of the results? If you graphed the percent of the number of heads 
that were tossed, what would the graph look like? Kalvin’s mother tells him that the 
chance of tossing a head is ½.  Does that mean that for every 2 tosses he will get one 
heads and one tails?  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence 

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
Exit slip- What was the mathematical message of this lesson? 

Student resources 
that will be made 
available 

Peers. Pennies. Cups. Question examples hanging on the wall.  
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Table 19 (continued) 
Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning 
and understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make 

connections between probability and proportional reasoning.   
 

2/28 Day 1-  I am surprised that students evidently don’t understand  that more coin tosses is a better 
prediction than 30 tosses.  Ed noticed that the percentage should hover around 50%, but at first many 
didn’t even notice that.  No student’s graph represented the change in percentage of heads (as the number 
of flips increased) as moving closer to 50%.  Students are talking freely, but still some are quiet.  Students 
in Bob’s group had a hard time getting a word in .  Groups were very aware of the technical bias of 
flipping styles.  Students still want to graph specific data—trends are not easy for them to envision.  Most 
students were eager to engage and shared the flipping responsibility.  Bryce, although not always engaged 
physically, seemed to notice the connection to proportional reasoning.  I chose not to follow up on his 
comment with a class question because I didn’t want to side track our discussion.  I’m hoping that more 
students see the connection as time goes on in the unit.  

Accountability- to peers in group discussion- to me through AT-  

Authority- used board to record- shared ideas with small and large group- asked questions, critiqued the 
thinking of peers’ graphs- students selected their roles 

Resources- coin, data sheet, peers, graphs 

Problematizing- uncertainty as to what to conclude – creating the graph caused uncertainty in students, 
made them extrapolate their data in an abstract way.  
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APPENDIX K 

LESSON PLAN AND REFLECTION  

 

(DAY2) 

 

Table 20. Lesson Plan and Reflection (Day 2) 

 
Procedure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1:40 exit slip 

Probability- Day 2- cmp lesson 1.2 and 1.3 
Review homework: Students will work in groups for a short time to compare answers. 
I will circulate and ask questions especially focused on #4 that addresses independent 
events., also ensure that all have completed it ( 3 pts for completion) .  

 
Whole group discussion on the problem of their choice. Focus question: How  does 
modeling with an experiment help you determine possible outcomes and the 
likelihood of each outcome? Connect with last lesson.  Post the correct representation 
of the graph that students developed last class couched as another student’s response.  
Whole group discussion.  I am interested in the students seeing the merits of this 
graph themselves. So, why do you think the jagged parts are bigger at the start? What 
do you think of this line eventually comes down to 50%? 

 
Students will experiment with paper cups: their first experiment with events that are 
not equally likely. Will a cup behave like a coin and land on an end or side an equal 
number of times? Distribute paper so that students can develop their own recording 
scheme. Give individual time to consider Kalvin’s question on page 10. Students will 
be tossing cups 50 times.  What data is worthy of collecting? Ask questions regarding 
whether the fractions are ratios.  Use the words “experimental probability, theoretical 
probability, bias” with purpose. If time permits, begin lesson 1.3 (flipping two coins). 
Ask students to make a prediction about what is more likely to occur; a match or no 
match.  Have groups record their data and discuss.  Is a match/no match equally likely 
events? Why? 

 
Close: return to the focus question- How did we use modeling to develop 
experimental probability?  

 
Homework #6,7 on page 17.  
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Table 20 (continued) 
Assessing and 
advancing 
questions 

What is the trend of the results? How do we develop the probability for the cup 
landing on a side or end? Is that a ratio? Connect to orange juice problem?  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. They have authority to contruct their own 
record keeping system.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
Exit slip- What was the mathematical message of this lesson? 

Student resources 
that will be made 
available 

Peers. Pennies. Cups. Question examples hanging on the wall.  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make connections 
between probability and proportional reasoning.   

 
3/3-  Day 2  Students addressed the differences with cup vs coin flipping today. Talk was robust today; 
students easily talking in whole group.  The timing of the lesson was tricky because while some groups 
were finished, others were still working.  SOME students definitely noticed the value of a large sample 
size via the provided “student” graph while others are still working on it. Most students saw #4 of the 
homework as an independent event, although not all did. Henriet definitely saw them initially as 
dependent events.  I notice that students are beginning to use the word “outcome” and several saw the 
relationship with proportional reasoning.    

Accountability- students were accountable to me and peers for homework 

Authority- used the Elmo to record their data, critiqued the reasoning of peers in a respectful way, 
students selected roles 

Resources- cups, paper, graph of other “student”- ideas of peers 

Problematizing- interpreting the provided graph caused uncertainty related to the way to interpret it.  
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APPENDIX L 

Lesson Plan and Reflection 

 (DAY 3) 

 

Table 21. Lesson Plan and Reflection (Day 3) 

Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1:35 pair exercise 

Probability- Day 3- cmp lesson 1.3 and 1.4 
Review homework: Students will work in groups for a short time to compare answers. I will 
circulate and ask questions especially focused on 6a that points to proportional reasoning( 3 pts 
for completion) . Whole group discussion on the problem of their choice. 
 Focus question: How do you determine the relative frequency of an outcome? 
Lesson 1.3 asks students to flip two coins. Students will be flipping two coins and determining 
the likelihood of a match or no match.  They will first make a prediction, then flip the coins 
fifty times.  
So what did you find out about the probability of a match or no match?.  Probe student inking 
to determine if they have considered all the possible outcomes T/T, H/H, T/H, H/T.   
Focus question:What does it mean for two events to be equally likely? Connect with last lesson.  
Was it equally likely for coins to match or not match?  
Give students quiet time to read Kalvin’s story about the penny on the train track.  
Why is Kalvin’s mother suspicious of the coin? What does it mean for a coin to be “fair?  Read 
the story about names in a hat. Why is each card equally likely to be chosen but not each name? 
How many more of each name to add to make it equally likely?  Have students address 
Problem 1.4 on page 16- discuss in small groups.  

 
Homework #19 on page 20.  
 
 

Close: Pair exercise- # 10 on page 18 of CMP- students can work in pairs or triples to 
complete.  

 
Assessing and 
advancing 
questions 

What are the possible outcomes? How did doing the experiment help you to visualize the 
outcomes? What does it mean to model mathematics? In what ways has modeling helped you? 
We have talked about visualizing many times, is there a connection? 

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. They have authority to contruct their own 
record keeping system.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
Exit slip- What was the mathematical message of this lesson? 
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Table 21 (continued) 
Student resources 
that will be made 
available 

Peers. Pennies. Cups. Question examples hanging on the wall.  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work toward 
solution.  

 
My intent is that through questioning I can help students to make connections 

between probability and proportional reasoning.   

 
3-4-14- Day 3 We began with a discussion of problem 6 that asked for students to scale yesterday’s 
results regarding the probability of a cup landing on its side to establish the number of times it would land 
on its side in a year (365 days).  Bryce quickly began to think proportionally, but was struggling with both 
the format for writing it and the language in helping others to understand his thinking.  As he spoke at the 
document projector, I wrote a proportion to help students recognize the connection to proportional 
reasoning. I am disappointed that more students didn’t quickly use proportional reasoning.  Like my prior 
classes today, I don’t think students considered this very extensively last night, although it was assigned.  
19 d and e of the homework assignment also focuses on proportional reasoning. I will grade this 
assignment tomorrow.  I don’t usually grade assignments for correctness, only an attempt at completion- 
feel like it an equity issue. I will let them collaborate a few minutes before collecting the assignment.  I 
am feeling very successful at encouraging students to express their thinking and feeling free to disagree.  I 
noticed that they are really trying to provide evidence of their thinking, even without prompting.   There 
are a few students still not talking much- Ed, Henry, Dennis. Dennis rarely does home work and when he 
does, I think someone else does it. Today he had something written, but couldn’t talk about his work with 
group mates for problem 6A at the start of class. Most of his group didn’t even attempt  the homework. I 
will continue to work to get everyone talking.  Students flipped two coins today. Nya and Estelle 
disagreed about what the potential outcomes might be and how many there were.  Other students took 
sides.  Discussion proceeded with very little intervention from me, including work on the white board. I 
asked them to consider their positions a little more for homework.  I will encourage the group to draw a 
conclusion tomorrow regarding the theoretical probability of predicting a match.  
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APPENDIX M 

 

LESSON PLAN AND REFLECTION 

 (DAY 4) 

 

Table 22. Lesson Plan and Reflection (Day 4) 

 Probability- Day 4- cmp lesson 1.3 and 1.4 
Review homework: Students will work in groups for a short time to compare answers. 
I will circulate and ask questions especially focused on 6a that points to proportional 
reasoning( 3 pts for completion) . Whole group discussion on the problem of their 
choice. 

Focus question: How do you determine the relative frequency of an 
outcome? 

Lesson 1.3 asks students to flip two coins. Students will be flipping two 
coins and determining the likelihood of a match or no match.  They will first make a 
prediction, then flip the coins fifty times.  

 So what did you find out about the probability of a match or no match?.  
Probe student thinking to determine if they have considered all the possible outcomes 
T/T, H/H, T/H, H/T.   

 
Focus question:What does it mean for two events to be equally likely? 

Connect with last lesson.  Was it equally likely for coins to match or not match?  
Give students quiet time to read Kalvin’s story about the penny on the train 

track.  
Why is Kalvin’s mother suspicious of the coin? What does it mean for a coin 

to be “fair?  Read the story about names in a hat. Why is each card equally likely to 
be chosen but not each name? How many more of each name to add to make it 
equally likely?  Have students address Problem 1.4 on page 16- discuss in small 
groups.  

 
Homework #19 on page 20.  
 
 

Close: Pair exercise- # 31 on page 24 of CMP- students can work in pairs or triples to 
complete.  
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Table 22 (continued) 
Assessing and 
advancing 
questions 

What are the possible outcomes? How did doing the experiment help you to visualize 
the outcomes? What does it mean to model mathematics? In what ways has modeling 
helped you? We have talked about visualizing many times, is there a connection? 

Ways 
that authority will 
be shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. They have authority to contruct their own 
record keeping system.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
Exit slip- What was the mathematical message of this lesson? 

Student resources 
that will be made 
available 

Peers. Pennies. Cups. Question examples hanging on the wall.  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make connections 
between probability and proportional reasoning.   

 
 
3-5-14- Day 4  I felt like I had to be the authority and begin the class with clarification regarding the 
percentage of matches with two coins. I don’t feel really comforTable 4.2bout doing that, but I wanted to 
be sure they  all knew there were four outcomes, not three.  From there, students worked in groups to 
define “experimental” and “theoretical “ probability. I’ve been using the words and wanted them to stop 
and consider their meaning and the relationship between them.  I used a Venn diagram to model the two 
and scribed kids’ words in each side.  It was clear that they didn’t understand theoretical probability nor 
the relationship between the two words.  Using a simulation program for rolling a dice, students watched 
the experimental probability move toward the theoretical value as the number of rolls increased (sample 
size).  Students struggled to generalize in words what they noticed as the sample size increased due to 
limited familiarity with vocabulary, I think.  I’m hoping as they continue to use the words, that vocab will 
flow.  Finally, I administered a formative assessment completed in pairs.  I would classify this quiz as an 
assessment for learning, as I think the questions helped students make connections (based on their 
comments during the quiz).   A number of students were on a Science trip today, but I felt like the class 
was eager to engage and willing to struggle through some tough concepts.  

The formative assessment that I administered had several functions.  First, it acted as a pretest to 
determine if kids understood that the sum of the probabilities of all events must equal 1.  The first 
question addressed this issue as well as #2, to a lesser degree.  Students definitely understood that as 
evidenced by 100% of students answering that question correctly.  Second, I wondered if kids noticed that 
probability had to less than or equal to one.  #2 addressed this concept and only one pair missed this 
question.  Some students were not thorough in their analysis of problems 3a and b.  Several students 
didn’t notice that both scenarios were impossible; a probability of 0.   
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APPENDIX N 

LESSON PLAN AND REFLECTION 

 (DAY 5) 

 
Table 23. Lesson Plan and Reflection (Day 5) 

Procedure 
 
 
 
 
 
 
 

Probability- Day 5 and 6  
Review homework on day 5 : Students will work in groups for a short time 

to compare answers. I will circulate and ask questions especially focused on c,d  that 
points to proportional reasoning( 3 pts for completion) . Whole group discussion 
regarding homework grading policy.  Plan to increase pts to 10 – all effort, not 
correctness.  

  
Assign pairs of students to solve the Quasar marble task.  Remind students to 

use private think time, then solve using two ways.  Probe student thinking as they 
solve. I will use the tool from the 5 Practices book to order student work on day 6.  I 
will order from simplest to most complex- Students will explain their own work, 
while the class asks clarifying questions.  Drawing connections among 
representations will be the focus of my questionsl. 

 
If time permits,I will explore what they know about compound events to 

determine the best place to start on Monday. I wonder what record keeping system 
they are familiar with regarding compound events?  I will ask them to find the 
theoretical probability of tossing 3 heads if they are tossing 3 two-sided coins.   

  
 
 

Assessing and 
advancing 
questions 

What other tasks have you done that relate to this one? Why would you 
examine the number of blue /red marbles? What conclusion can you draw from this 
information? Is there another way to represent the information? Could you use this 
ratio to produce a graph? In what way does unit rate relate to slope?  
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Table 23 (continued) 
Ways 

that authority will 
be shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. They have authority to contruct their own 
record keeping system.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
 

Student resources 
that will be made 
available 

Red/blue chips, graph paper, peers, .  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make connections 
between probability and proportional reasoning.   

 
The wrap up for the marbles task didn’t go very well.  The class had two tests in other subjects today and 
they arrived in a rather restless state.  Behavior wasn’t the best for some, and for others they didn’t 
contribute much to discussion.  Student work was of varied representations which I was pleased with, but 
the conversation to bring it all together and connect them was only ok. I have done this lesson before and 
had a much more robust discussion.  I’m not sure that this task created as much uncertainty as I would 
like.  It was too easy for them to quickly arrive at a percent.  The only thing that made it interesting was 
asking for two representations.  Dennis Mason is not engaging in my class or any class.  It is frustrating 
because he is smart, but none of his teachers has connected with him despite our effort.  Students certainly 
had the opportunity to take authority; explaining their own work and ideas. I’m tired today, perhaps my 
attitude was apparent to students today and affected their performance.  
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APPENDIX O 

 
LESSON PLAN AND RELECTION 

(DAY 7) 

Table 24. Lesson Plan and Reflection (Day 7) 

Procedure 
 
 
 
 
 
 
 

Probability- Day 7 
Mini quiz to start class- 1)How do you find the experimental probability that a 
particular result will occur?2) In an experiment, are 30 trials as good as 500 trials to 
predict the chances of a result? Explain.  3) Quasar spinner problem. 
Focus question- How does understanding probability help you to determine a 
winning strategy?  
Following the quiz, students will finish their work regarding the probability of 
flipping three heads, if you toss 3 coins.  The groups were very wild on Friday. Make 
this an individual activity for 5 minutes, then a group activity.  Do students know how 
to use a tree diagram? An organized list? Let students demo both strategies.  Discuss 
in whole group.  In class #12, 13 page 40 and 14-17, page 41.  
Return to the focus question. Discuss in whole group.   

Assessing and 
advancing 
questions 

What other tasks have you done that relate to this one? What strategies did you use 
for keeping track of your thinking?  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. They have authority to contruct their own 
record keeping system.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  
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Table 24 (continued) 
Student 

resources that 
will be made 
available 

Red/blue chips, graph paper, peers, .  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make connections 
between probability and proportional reasoning.   

 
Students were unfamiliar with the use of tree diagrams for keeping track of outcomes.  I reminded them 
that they had learned it in fourth grade, but it seemed like a distant memory.  They used it to find 
combinations of food and a spinner/ cube compound event.   Students were very eager and stayed on task.  
They are very competent at explanations for the most part and few avoid the task.  No one seems to be 
hurt by redirection either, a change from the start of the year.  
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APPENDIX P 

 
LESSON PLAN AND REFLECTION 

 (DAY 8) 

Table 25. Lesson Plan and Reflection (Day 8) 

Procedure 
 
 
 
 
 
 
 

Probability- Day 8 
Mini quiz to start class- NAEP question- labeled question 2.  Majority of the 

class will be centered on the sticky gum problem in small groups.  I expect students 
will solve via an organized list, pictures, and using tree diagrams.  Large whole group 
discussion will encourage students to critique the reasoning of others and justify their 
reasoning. If time permits, I will encourage students to make a Table 4.2nd generalize 
a solution.  

Assessing and 
advancing 
questions 

What other tasks have you done that relate to this one? What strategies did 
you use for keeping track of your thinking? Can you generalize a solution for any 
number of children with two colors of gum balls?  

Ways 
that authority will 
be shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. They have authority to contruct their own 
record keeping system.  

Ways 
that students will 
be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use 
AT to encourage discussion and check for understanding.  Written work will be 
evidence of student effort and understanding.  

 
 

Student 
resources that 
will be made 
available 

Red/blue chips, graph paper, peers, .  
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Table 25 (continued) 
Problem

etizing: Ways that 
students will be 
challenged in 
ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning 
and understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make 

connections between probability and algebraic reasoning.   

 
Day 8- Tuesday 

The first task was a quiz from the released NAEP items.  Students must take a position and provide an 
explanation.  Then small groups addressed  the sticky gum problem.  Student groups used organized lists 
or reasoning based on “worst case” scenarios (alternating colors) to determine the number of pennies that 
Mrs. Jones would need .  One student did an amazing job at the end of the class in generalizing the 
pattern;  noticing that the number of pennies would always be odd for 2 colors of gum balls.  I’m quite 
sure that most of the class didn’t follow his thinking but that’s ok with me.  I feel as though the students 
that are most capable of thinking abstractly had the opportunity and encouragement to do it and those that 
are developing that capacity had someone to model it for them.  I’m sure they noticed that I valued that 
capacity.  Many students were unsure of the way to enter the problem and struggled to get going so I’m 
quite sure that problematizing was achieved.  Students authored their own solutions using whatever model 
they chose.  I’m thinking about where to go from here.  I have three more days of instruction and want to 
be sure they could solve problems related to compound events.  I’m a little concerned that no groups in 
this class used a tree diagram as a model.   

I’m feeling more than a little stressed. This lesson with the modified sticky gum problem bridges the way 
to learning about two-stage probability with and without replacement.  Based on upcoming standardized 
testing, I will need to stop this unit and review test directions for at least 3 days prior to the test.  I also 
haven’t even touched on area models at all.  I don’t want to tell students that the procedure for 
multiplying the probabilities of each event  so I’ll follow CMPs method of using an area model so that 
kids can make sense of it.  The model also lends itself to additional experience with proportional 
reasoning. It will take more time, but it will be worth it if kids remember it through sense making.  
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APPENDIX Q 

 
LESSON PLAN AND REFLECTION  

(DAY 9) 

Table 26. Lesson Plan and Reflection (Day 9) 

Procedure 
 
 
 
 
 
 
 

Probability- Day 9 
*The sticky gum problem introduced the idea of more than one event 

happening. We found the number of pennies that Mrs. Jones would need to spend, but 
not the probabilities or frequencies of each event.  Today we will explore the ways 
that an area model can help us make sense of a situation so that we can analyze 
probabililites.   

* Note that students have used two strategies: o lists and tree diagrams. 
Today we will add a third strategy. (area models) 

* Start 4.1 pg. 72- Have students read silently, then address in small groups.   
Go through section focusing on the relationships between area and proportional 
reasoning.  

* After discussion, let students begin homework (#1-4 pg 80 due Thurs), (#5 
pg. 81 due Friday) 

Assessin
g and advancing 
questions 

What does each partition in the side of the square represent? What does the 
area of each section represent? How many regions are there? Why? What do you 
notice about the sections when there is an equal number of each color? When it is 
different? What other numbers of each color might this same table represent?  

Ways 
that authority will 
be shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  
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Table 26 (continued) 
Ways 

that students will 
be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use 
AT to encourage discussion and check for understanding.  Written work will be 
evidence of student effort and understanding.  

 
 

Student 
resources that 
will be made 
available 

Red/blue chips, graph paper, peers, .  

Problem
etizing: Ways that 
students will be 
challenged in 
ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning 
and understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make 

connections between probability and algebraic reasoning.   

 

Day 9- Thursday- CMP 4.1  Students were very lively today.   I suspect that Bob understands more than 
he seems. He loves any way to get attention.  I’ll check tomorrow.  I like the way that CMP uses and area 
model to teach compound events. ..better than just telling students to multiply as the HM text does.  I 
wonder if tomorrow, students will notice that they are multiplying the probability of one bucket with the 
other.  Problematizing was really noticeable today. Many students actually said that they didn’t know 
where to start.  Providing the idea that a 10 x 10 grid might be used to help them was my way of helping 
them.  I wonder if they will come into class tomorrow , with a connection to proportional reasoning.   Nya 
didn’t see the value of the area model today…wonder if she will tomorrow. Nikki is still not taking risks.  
I think it is time for a formative assessment to determine if all are understanding. 
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APPENDIX R 

 
LESSON PLAN AND REFLECTION  

(DAY 10) 

Table 27. Lesson Plan and Reflection (Day 10) 

Procedure 
 
 

Resources; need 
blanks of spinners, 
10 sided number 
cubes, blocks in a 
bag.  

 
 
 
 

Probability- Day 10 
*Review homework(#1-4 pg 80 due Thurs)  What solutions/problems did 

individuals have? Compare solutions within groups first then ask questions.  
* Introduce Section 4.3 One-and-One Free Throws 
Focus question: how is an area model for the free throw situation unlike ones 

we’ve used before? 
Begin by reading the scenario so that students understand what it means to 

have a one and one free throw.  Follow questioning on pg. 76 to be sure they 
understand the context. Ask students to address 4.3 part B.  We will use only an area 
model. However, students will design simulations. Each model must address a miss 
on the first attempt, a hit followed by a miss and a hit followed by a hit. Does yours?  

 
How would you simulate this with a ten-sided number cube? A spinner? 

Blocks in a bag? Assign student groups the model they will use.  
Assessing and 
advancing 
questions 

What does each partition in the side of the square represent? What does the 
area of each section represent? How many regions are there? Why? What do you 
notice about the sections when there is an equal number of each color? When it is 
different? What other numbers of each color might this same table represent?  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  
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Table 27 (continued) 
Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use 
AT to encourage discussion and check for understanding.  Written work will be 
evidence of student effort and understanding.  

 
 

Student 
resources that 
will be made 
available 

Red/blue chips, graph paper, peers, .  

Problem
etizing: Ways that 
students will be 
challenged in 
ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning 
and understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make 

connections between probability and algebraic reasoning.   

 
Day 10.  Thursday  Dennis Mason’s group was filmed today.  He said he didn’t understand, but seems to 
make no effort to ask questions.  Part way through the class, I asked him to come to the doc projector and 
explain his thinking.  I gave him extra time and told his team they were accounTable 4.8or helping him to 
understand, but still he didn’t make any effort.  I asked Ed to come up with him to support him and Ed did 
all the talking. I was quite frustrated with his behavior.  I have tried to reach him, but seem not to make 
any progress at all.  Most often he completes not homework and participates very little in class. When he 
does complete work, he seems to have reasonable number sense.    
Overall the class was confused by the area model 4.2 problem wherein they needed to work backwards. 
The problem was excellent because it brought to light their lack of connection to percentages and 
proportional reasoning (with probability).  I will plan to do some direct instruction tomorrow and 
determine specific areas of partial understanging.  Also I’ll give a formative assessment  to assess 
progress.   
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APPENDIX S 

 
LESSON PLAN AND REFLECTION 

 (DAY 11) 

Table 28. Lesson Plan and Reflection (Day 11) 

Procedure 
 
 

Resources; need 
blanks of spinners, 
10 sided number 
cubes, blocks in a 
bag.  

 
 
 
 

Probability- Day 11 
 

Focus question: how is an area model for the free throw situation unlike ones we’ve 
used before? 

 
Check to be sure students understand the relationship between an array and area 
model. Help them make the connection between finding area, and the area model. 

 Yellow face cube task    
 

Assessing and 
advancing 
questions 

What does each partition in the side of the square represent? What does the area of 
each section represent? How many regions are there? Why? What do you notice about 
the sections when there is an equal number of each color? When it is different? What 
other numbers of each color might this same table represent?  
How does proportional reasoning help you complete the yellow face cube task?  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  
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Table 28 (continued) 
Ways 

that students will 
be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
 

Student resources 
that will be made 
available 

Draw cube on white board, graph paper, peers,  Drawing area model on 
white board 

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

The yellow faced cube problem will assess whether students are making a 
connection to proportional reasoning.   

My intent is that through questioning I can help students to make 
connections between probability and algebraic reasoning.   

 
Day 11- Friday- Last day of probability before PSSA tests.  I fretted about the structure of this class last night, 
recognizing that there was a lot of confusion at the end of the class yesterday.  I know I need to help them connect 
the area model to their prior knowledge of area.  I don’t see a good way to do it without me doing most of the 
telling. I want to be the authority today, so that I leave no question about my thinking of a way to use an area model 
for the purpose of modeling probability of two independent events.  Decided to lay out my thinking in stages going 
from left to right across the board. The leftmost picture, the starting point will be a square noting that A= l xw.  
Next, I’ll show a small square and note the area is 3 x2 =6 in sq.  Next, I’ll show one bucket’s marbles represented 
along the length , demanding that the rectangle be separated into fifths. I’ll use a clear sheet to overlay the marbles 
of other bucket on top (1/4 of the bucket for each color).  Now to find Blue/blue we have 1/5 of ¼ or 1/20th.  Finally, 
I’ll give kids  a spinner/marble bag problem to do independently 
This lesson seemed to work well.  All but 2 kids solved the problem successfully alone.  Dennis refused to write 
anything, even when I prompted him and probed a little. He clearly is being passive aggressive.  I collected their 
homework then gave the NAEP question ( how many yellow sides?) as a quiz. It is a good place to take a break for 
the PSSAs.  
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APPENDIX T 

LESSON PLAN AND RELECTION  

(DAY 12) 

Table 29. Lesson Plan and Reflection (Day 12) 

Procedure 
 
 

Resources; area 
model that we 
constructed for 
Making Purple, 
last week.  

 
 

Probability- Day 12 
Focus question: How can you use experimental or theoretical probabilities of a 
compound event to predict the number of times one particular combination will occur 
out of any given number of repetitions of the event?  

 
Review how to analyze a two-stage outcome using an area model.  Have students turn 
to pg. 75 in CMP. Review our discussion of last week.  Are purple and not purple 
equally likely?  How might you figure it out exactly? For Spinner A, what is the 
likelihood of getting red? H ow is this represented on the square? Distribute the area 
model that we agreed to for that scenario.   

 
Address question D.  Let students work in pairs to complete.  Every person must tun 
in a written response. Following student completion, engage students in a discussion 
of their thinking. If time permits, begin the next lesson: regarding one and one free 
throws.   

 
Homework #8, page 82. Complete written explanation is expected.  

Assessing and 
advancing 
questions 

What does each partition in the side of the square represent? What does the area of 
each section represent? How many regions are there? Why? What do you notice about 
the sections when there is an equal number of each color? When it is different? What 
other numbers of each color might this same table represent?  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  
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Table 29 (continued) 
Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
 

Student resources 
that will be made 
available 

Red/blue chips, graph paper, peers, .  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make 

connections between probability and algebraic reasoning.   
 

Day 12- This was our first day after the pSSA break, so I resumed instruction of the Making Purple game 
and followed the lesson plan exactly.  Two groups were working on developing a relationship between 
profit and number of people at the end of the class. I will begin with that tomorrow.  The students were 
quiet while Sydney explained her rationale because most got the same answer.  Bob didn’t but then 
seemed to understand once Mrs C explained.  There was lots of good small group discussion that I missed 
because my mic wasn’t on.  Not sure if we got any sound at all.   
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APPENDIX U 

LESSON PLAN AND REFLECTION 

(DAY 13 /14) 

Table 30. Lesson Plan and Reflection (Day13/14) 

Procedure 
 
 

Resources; need 
blanks of spinners, 
10 sided number 
cubes, markers 

 
Handout with 
questions to 
answer.  

Probability- Day 13 and 14 
*Focus question: How is an area model for the one and one free-throw situation like 
or unlike the area model for the Making Purple game?  

 
(see CMP pg. 204) Begin by describing what it means to have a one and one free 
throw situation. Have a student demonstrate with the classroom hoop. Pose to the 
class: Which score is most likely to happen? How might we figure it out? How could 
we SIMULATE a situation to generate experimental data about the likelihood of each 
result using spinners, cubes or blocks? What does SIMULATE mean? The discussion 
should raise the question of how a simulation will handle the fact that getting the 
second shot depends on whether the first free throw is made.  See page 204 for 
examples of student strategies. Have students demo their suggestions. Offer students 
the blank spinners/markers.  Make sure they understand to record the score of each 
trial( 0,1,2)  

 
Combine all the experimental data and find an overall class experimental probability.  
.  

 
Provide an area model that represents the one-and –one free throw scenario.  Ask 
students to explain in writing,1) how the area model helps to find the theoretical 
probability and 2) How it is different than the Making Purple area model.   What is 
the theoretical probability of scoring 0, 1, 2?  

 
Wrap up- Engage is a discussion; How does the experimental probability compare to 
the theoretical probability?  

 
.  
Homework pg. 84,85 #14 and 15. 
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Table 30 (continued) 
Assessing and 
advancing 
questions 

What does each partition in the side of the square represent? What does the area of 
each section represent? How many regions are there? Why? What do you notice about 
the sections when there is an equal number of each color? When it is different? What 
other numbers of each color might this same table represent? How does the model 
represent a “miss”.  

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use AT to 
encourage discussion and check for understanding.  Written work will be evidence of 
student effort and understanding.  

 
 

Student resources 
that will be made 
available 

Grid paper, graph paper, peers, .  

Problemetizing: 
Ways that students 
will be challenged 
in ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning and 
understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make connections 
between probability and proportional reasoning.   

 
Day 13- (mon) The task was to label and make sense of a partially completed area model that represented 
one and one free throws.  They made some sense of the model but it was clear that they don’t see the idea 
of taking a fraction or percent of a fraction.  …one probability times another probability.  A few noticed 
that the likelihood of getting 2 pts was 36% but no one said anything about multiplying .60 by .60 to get 
it.  The break in continuity of thinking seemed to stem from a partial understanding of the two events they 
were modeling.  Throw 1 and Throw 2 were not clearly marked on the model with distinctions for what 
the outcomes might be for each.  Bob is so anxious for attention he wants to talk whether he has 
something justifiable or not.  Tomorrow students will simulate the context using spinners and 10 sided 
cubes.  I will come back to the area model at the conclusion of the simulation to compare exp and theor 
probability.   
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APPENDIX V 

LESSON PLAN AND REFLECTION 

 (DAY 15) 

 
Table 31. Lesson Plan and Reflection (Day 15) 

Procedure 
 
 

Resources; need 
blanks of spinners, 
10 sided number 
cubes, Labsheet 
4.3 

 
 

Probability- Day 15 
Begin with a review of homework, problems 14,15 on page 85 (the cave 

problem that asks to match an area model and the picture of the paths to the caves).  
Have students vote on their choice of path pictures.  Then I will choose a student to 
justify his reasoning- other students will be encouraged to challenge and reason. I will 
direct the discussion as necessary to help students make meaning of the size of the 
pieces of the area model and the meaning of the labels.  I will then have students 
complete the exit slip re: area models and simulations.  Finally students will make 
generalizations about the exp prob and theor prob of the one-an-one free throw  
simulation they did yesterday.  Short discussion of some of the things they observe ( 
exp data is much like theoretical data,  

Assessing and 
advancing 
questions 

What does each partition in the side of the square represent? What does the 
area of each section represent? How many regions are there? Why? What do you 
notice about the sections when there two paths at a decision point? When it is 
different? What maps can you rule out based on the area model for choice one? 

Ways that 
authority will be 
shared with 
students 

Students must take charge and figure out what they don’t know and seek 
understanding. Students will do the majority of talking and question asking of peers. 
Students will be pressed for evidence. I am removing some authority today by 
insisting on one representation, but it is necessary.  

Ways that students 
will be held 
accountable to 
each other and the 
teacher 

Team members will be accountable to respond to peers and me.  I will use 
AT to encourage discussion and check for understanding.  Written work will be 
evidence of student effort and understanding.  
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Table 31 (continued) 
Student 

resources that 
will be made 
available 

Grid paper, graph paper, peers, .  

Problem
etizing: Ways that 
students will be 
challenged in 
ways that 
engender genuine 
uncertainty 

Selected problems are new and require making connections to prior learning 
and understanding. I seek to establish uncertainty and a necessity to persevere to work 
toward solution.  

 
My intent is that through questioning I can help students to make 

connections between probability and proportional reasoning.   
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APPENDIX W 

 

Figure 21. Event Map 
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APPENDIX X 

STUDENT WORK- MARBLES TASK 

 

 

Figure 22. Student 1 Solution  
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Figure 23. Student 2 Solution 
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Figure 24. Student 3 Solution 
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Figure 25. Student 4 Solution 
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Figure 26. Student 5 Solution 
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APPENDIX Y 

SUMMARY OF QUESTION TYPES ASKED BY INSTRUTIONAL DAY  

Table 32. Summary of Question Types Asked by Instructional Day 

Day Gathering  
information 

Insert 
Termin-
ology 

Explore 
Mathematical 
Meaning/ 
Relationships 

Probing Generate 
Discussion 

Link 
Apply 

Extend 
Thinking 

Orient 
Focus 

Estab-
lish 
Context 

1 2 - 3 5 11 1 8 1 - 
2 - 1 3 3 10 3 4 2 - 
3 7 3 8 6 18 - - 2 1 
4 9 6 8 14 16 3 8 2 - 
5 1 - 3 1 7 - - - - 
6 5 1 7 11 11 1 1 7 1 
7 8 1 6 10 18 - 3 2 1 
8 1 - 6 9 8 - 3 - - 
9 8 - 11 8 11 - 2 - - 
10 3 - 9 17 11 - 2 3 - 
11 3 - 3 4 1 - - 2 - 
12 - - -no audio - - - - - - 
13 2 - 6 17 11 - - 1 - 
14 6 4 13 11 4 - 2 - - 
15 - - 3 2 3 - - - - 
          
Total 55 15 88 118 140 8 33 22 3 

 

Reference:  Boaler & Brodie, 2004 
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APPENDIX Z  

EVENT MAPS BY DAY 

 

Figure 27. Event Maps by Day 1 
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Figure 28. Event Maps by Day 2 
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Figure 29. Event Maps by Day 3 
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Figure 30. Event Maps by Day 4 
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Figure 31. Event Maps by Day 5 

 295 



 

Figure 32. Event Maps by Day 6 
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Figure 33. Event Maps by Day 7 
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Figure 34. Event Maps by Day 8 

 298 



 

Figure 35. Event Maps by Day 9 
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Figure 36. Event Maps by Day 10 
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Figure 37. Event Maps by Day 11 
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Figure 38. Event Maps by Day 12 
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Figure 39. Event Maps by Day 13 
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