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THE 3N+1 PROBLEM: SCOPE, HISTORY, AND RESULTS

T. Ian Martiny, M.S.

University of Pittsburgh, 2015

The 3n + 1 problem can be stated in terms of a function on the positive integers:

C(n) = n/2 if n is even, and C(n) = 3n + 1 if n is odd. The problem examines

the behavior of the iterations of this function; specifically it asks if the long term

behavior of the iterations depends on the starting point or if every starting point

eventually reaches the number one.

We discuss the history of this problem and focus on how diverse it is. An in-

triguing aspect of this problem is the vast number of areas of mathematics that can

translate this number theoretic problem into the language of their discipline and the

result is still a meaningful question which requires proof.

In addition to its history and the scope of the problem we discuss a probability

theoretic approach which gives a model to predict how many iterations it will take

to reach 1 for any given starting value. We also present some major results on

this problem, one which demonstrates that “most” numbers eventually reach 1 and

another which shows that any cycle that exists must be extremely large.
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1.0 INTRODUCTION

1.1 EXAMPLE

In the set of all mathematics problems there is a special subset which contains very easy

to state problems that are still very difficult to solve. These problems are quite interesting

because it seems the prerequisites for understanding the statement of the problem are much

lower than the prerequisites for working on the problem. As an example consider problem

34 from Section 8.1 on sequences, in Stewart’s Essential Calculus [12]:

Problem 1. Find the first 40 terms of the sequence defined by

an+1 =


1

2
an if an is even

3an + 1 if an is odd

and a1 = 11. Do the same if a1 = 25. Make a conjecture about this type of sequence.

Solution. The first 40 iterates with a1 = 11 are:

{11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . . , 4}

The first 40 iterates with a1 = 25 are:

{25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1 . . . , 4}
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Based on our work so far we may be tempted to draw the conclusion that as long as our

initial choice is odd our sequence eventually repeats at {. . . , 4, 2, 1, 4, 2, 1, . . .}.
Often the iteration is stated through a function:

C(n) =


n

2
if n is even

3n+ 1 if n is odd

Though not stated as such in Stewart’s calculus book this problem, i.e., proving any

conclusions about the sequence, is still an open problem. The sequence, as its given, is

known as the Collatz sequence, and is part of a conjecture by Collatz (among others):

Conjecture 2 (Collatz Conjecture). Starting from any positive integer n, iterations of the

Collatz function will eventually reach the number 1. Thereafter iterations will cycle, taking

successive values 1, 4, 2, 1, . . ..

1.2 HISTORY

The 3n + 1 problem is an open problem dealing with a sequence of numbers, whose terms

are based on the starting value of the sequence.

The problem has many names including the Collatz Conjecture (named after Lothar

Collatz), the Hasse Algorithm (after Helmut Hasse), Ulam’s Conjecture (after Stanis law

Ulam), the Syracuse Problem, Kakutani’s problem (after Shizuo Kakutani), the Thwaites

conjecture (after Sir Bryan Thwaites), etc. .

The problem is also occasionally referenced as the Hailstone Numbers, due to the sudden

rising and falling of the numbers in a sequence, similar to how hailstones are formed via

repeated risings and fallings in clouds.

It is generally agreed that the problem was distributed in the 1950’s [7]. The common

story is that Lothar Collatz circulated the problem (among others of his creation) at the

International Congress of Mathematicians in Cambridge, Massachusetts in 1950. Quite a

number of people who are credited with work on this problem were in attendance, including:
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Harold Scott MacDonald Coxeter, Shizuo Kakutani, and Stanis law Ulam[7]. The true origins

– much like the truth of the conjecture itself – are not clear.

The interest in this problem extends past the area of Number Theory; including Com-

puter Science, via algorithms to help compute and find patterns in our iteration, into Logic

as decision problems, and Dynamical Systems, by examining our iteration as a dynamical

system on Z. The problem can also be viewed from a Probability Theory and Stochastic

Processes standpoint by creating and analyzing heuristic algorithms.

Other notables associated with this problem include John Conway and Jeffrey Lagarias,

who has written numerous papers on the topic and edited the first book on the problem[7].

Ulam is considered as one of the major projector’s of this problem, distributing the

problem to any who might solve it. In fact a quote from Paul Stein, a collaborator of

Ulam’s, Paul said:

...it was [Ulam’s] particular pleasure to pose difficult, though simply stated, questions in
many branches of mathematics. Number theory is a field particularly vunerable to the
“Ulam Treatment”, and [Ulam] proposed more than his share of hard questions; not being
a professional in the field, he was under no obligation to answer them.[11]

1.3 SUPPORTING EVIDENCE

The natural question, since we have no solution yet, would be “should we suspect this

conjecture is true?”. Why should one believe that this conjecture is true?

For starters there is an abundance of evidence that an n that does not eventually iterate

to 1 does not exist. It has been computationally verified for all starting values n < 5×260 ≈
5.7646× 1018 [9] the Collatz iteration eventually reaches 1. Of course this does not suffice as

a proof, we need only look to the Pólya Conjecture (below) to see that having a large number

of confirmed cases does not prove a conjecture true; the first proposed counter-example was

1.845× 10361 (though a smaller counter example of 906,150,257 now exists).

Conjecture 3 (Pólya’s Conjecture). For any n > 1, partition the positive natural numbers

less than or equal to n into two sets A and B where A consists of those with an odd number of
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prime factors, and B consists of those with an even number of prime factors, then |A| ≥ |B|.

Further, fantastic mathematicians have worked on this problem including Conway and

Tao. Even they have been unable to draw a definitive conclusion to this problem. Paul

Erdős has been quoted numerous times as having said “Mathematics is not yet ready for

such problems”.

Following this, why should we not just abandon this problem? Because this problem is

still a good one. Legarias uses the Hilbert criteria for a good problem and concludes:

• The 3n+ 1 problem is a clear, simply stated problem;

• The 3n+ 1 problem is a difficult problem;

• The 3n+ 1 problem initially seems accessible.

1.4 DIFFICULTY

If the difficulty of a problem were proportional to the sophistication of its statement then

this should not be a difficult problem to solve; indeed a background in Calculus is a bit of

overkill for the statement of this problem. Alas, this is not the case. Why then is this, as of

yet, unsolved? In [7] Lagarias credits the difficulty of this problem to “pseudorandomness”,

in the sense that from a given randomly selected starting point predicting the parity of

the nth iteration is a “coin flip random variable”. Legarias also attributes the difficulty of

this problem to non-computability, referencing a result of John Conway[1] which relates a

generalized version of the Collatz function to unsolvability.

The difficulty of this problem is tangentially related to the difficulty of factoring integers.

Given a prime factorization of the integer n, this factorization does not lend itself to the

factorization of n+ 1, other than the parity. This relates the the 3n+ 1 problem, due to the

iteration; if we know n’s factorization and it is even, n
2

changes the factorization very little.

If n is odd 3n changes the factorization very little, but adding 1 to arrive at 3n + 1 could

change the factorization immensely. Thus after an iteration of our function C, we may have

no clue as to the type of number we have, other than if n was odd C(n) is even.
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Since it is known that an even will follow an odd after an iteration of C we use a new

function T (n) that divides C(n) by 2 when n is odd, essentially calling C twice (in this

instance only).

T (n) =


n

2
if n is even

3n+ 1

2
if n is odd

Compounded with not knowing the factorization of iterations of a starting number n, we

have that our iteration grows by a factor of 3
2

for each odd iterate and shrinks by a factor

of 1
2

for each even integer. Thus if the sequence, under the function T , continually has odd

iterates the sequence would be growing rapidly. Likewise, if we have many even iterates the

sequence would shrink quickly. Even less helpful, if the sequence goes between even and odd

iterates then our sequence could grow and shrink many times, hence the name “Hailstone

Numbers”.
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2.0 DEFINITIONS AND NECESSARY MATHEMATICS

This chapter is included to be a one-stop-shop for the main definitions and concepts necessary

for later work in this paper. While not all terms are used later, they are terms used commonly

in the literature and worth knowing. We also include some background information on some

of the more complicated material, put here as a quick reference which can be skipped or

focused on as necessary. Definitions which are specific to results are introduced in the

respective sections.

2.1 BASIC DEFINITIONS

Definition 4 (Half or Triple plus one Process). The process of dividing even integers by

2 or muliplying odd integers by 3 and adding 1 is called the Half Or Triple Plus One

(HOTPO) process.

Definition 5 (Oneness). The property that a number evenutally reaches 1 under the

HOTPO process is called oneness. e.g., 4 has oneness since it eventually reaches 1 under

the HOTPO process.

Definition 6 (Collatz function). We refer to the function T as the Collatz function:

T (n) =


n

2
if n is even

3n+ 1

2
if n is odd

Definition 7 (Collatz sequence). We refer to any sequence {an} whose terms are determined

by the Collatz function as a Collatz sequence.
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Definition 8 (trajectory). The trajectory of a number, n, is the Colltaz sequence beginning

at n.

Definition 9 (Stopping time). The least positive k for which T (k)(n) < n is called the

stopping time, σ(n) of n. Or σ(n) =∞ if no k occurs with T (k)(n) < n.

Example 10. Examine the trajectory of 15:

(15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1, . . .)

Thus σ(15) = 7, since T (7)(15) = 10 is the first time our iteration is below 15

Definition 11 (Convergence). We say that a Collatz sequence has stopped or converged

if it reaches the number 1. Thus we stop considering values after the first instance of 1 in

the sequence. That is we now write

(15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1, . . .)

simply as

(15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1)

Definition 12 (Total stopping time). The least positive k for which T (k)(n) = 1 is called

the total stopping time, σ∞(n) of n, or σ∞(n) =∞ if no k occurs with T (k)(n) = 1.

Example 13. With the same iteration:

(15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1)

σ∞(n) = 12 since T (12)(15) = 1 is the first time our iteration reaches 1.

2.2 FORMAL STATEMENT

We can now formally state our problem in terms of our new definitions:

Conjecture 14 (3n+ 1 Conjecture). Every integer n ≥ 2 has a finite total stopping time.

In fact it is enough to show (by induction) that every integer has a finite stopping time.

7



2.3 P-ADIC NUMBERS

The use a p-adic numbers occurs occasionally when examining the Collatz conjecture, hence

we define the system here.

Let p be a prime number, and define the function | · |p : Q→ R as |0|p = 0 and for every

other rational write r = pkab−1 where a, b ∈ Z with (a, p) = (b, p) = 1 then |r|p = p−k. This

can be thought of as factoring out all powers of p from a fraction. This function is called

the p-adic valuation, or p-adic absolute value, on Q.

Example 15. Let us use p = 2. Then we can compute the 2-adic absolute value on rational

numbers:

1. |2|p = 1
2
.

2.
∣∣1

2

∣∣
p

= |2−1|p = 2.

3.
∣∣2

3

∣∣
p

=
∣∣2 · 1

3

∣∣
p

= 1
2
.

4.
∣∣1

7

∣∣
p

=
∣∣20 · 1

7

∣∣
p

= 1.

The p-adic valuation measures how many powers of p are in the number. The p-adic

valuation has the following properties:

1. |x|p ≥ 0 with equality if and only if x = 0,

2. |x+ y|p ≤ max(|x|p, |y|p),
3. |xy|p = |x|p|y|p,
4. | − 1|p = |1|p = 1, and

5. | − x|p = |x|p.

Property 2 has equality if and only if |x|p 6= |y|p, when |x|p = |y|p we have x + y =

a
b

+ c
d

= ad+bc
bd

and bd has no additional factors of p if b and d are relatively prime to p; thus

the p-adic absolute value of the sum can be no more than the max of the p-adic absolute

values. Property 3 is obvious, if a, b, c, and d share no common factors with p, then neither

does ac or bd. The rest of the properties follow from the above. Property 2 is called the

ultrametric inequality and implies |x|p + |y|p ≤ |x+ y|p (the triangle inequality).

The p-adic absolute value function gives a metric on Q, for each prime p, as dp(x, y) = |x−
y|p. It can be seen that dp(x, y) satisfies the conditions of a metric, for all prime p: Property 1
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above gives dp(x, y) ≥ 0 and equal to 0 only when x = y, Property 5 gives dp(x, y) = dp(y, x)

and as mentioned above Property 2 gives the triangle inequality dp(x, z) ≤ dp(x, y)+dp(y, z).

All of this gives that the fuction dp(x, y) = |x− y|p forms a metric on Q×Q, called the

p-adic metric on Q.

Equipped with the p-adic metric we may consider many of the notions we do with a

distance function: specifically we can consider convergent and divergent sequences of rational

numbers. In fact, under the p-adic metric the sequences which converge are drastically

different than convergent sequences under the standard Euclidean Metric d(x, y) = |x− y|.

Example 16. Consider the sequence {2, 4, 8, . . . , 2n, . . .}. Note that d2(2n, 0) = |2n|2 = 1
2n

.

Hence under the 2-adic metric we see that this sequence converges to 0.

Example 17. However the sequence

{
1

2
,
1

4
, . . .

1

2n
, . . .

}
does not converge under the 2-adic

metric. This can be seen by recognizing that the sequence is not even Cauchy: Assume

n > m

∣∣∣∣ 1

2n
− 1

2m

∣∣∣∣
2

=

∣∣∣∣ 1

2n
− 2n−m

2n

∣∣∣∣
2

=
∣∣2−n(2n−m − 1)

∣∣
2

= 2n

Thus there is an ε > 0 (say ε = 1) such that no N exists with all n,m ≥ N has∣∣ 1
2n
− 1

2m

∣∣
2
< ε

It can be seen that the rationals under the p-adic metric are not complete, that is, there

are Cauchy sequences which do not converge. In a similar sense to how the real numbers,

R, are the completion of Q under the standard metric, the completion of Q under a p-adic

metric are called the p-adic numbers, Qp.

The p-adic numbers are briefly discussed in Section 5.1.
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2.4 CONTINUED FRACTIONS

We introduce a method of approximating rational and real numbers with fractions. It is a

standard result in analysis that the rational numbers are dense in the real numbers, and as

such we can construct sequences of rational numbers to approximate real numbers. How-

ever for concreteness we can also explicitly construct rational numbers which can closely

approximate real numbers. One method to do this is continued fractions.

To begin, we describe how to represent rational numbers as continued fractions. We do

this with the Euclidean algorithm for, say, 56 and 17:

56 = 3 · 17 + 5

17 = 3 · 5 + 2

5 = 2 · 2 + 1

2 = 2 · 1 + 0

Now dividing each row by the next row gives the following expressions, which we write

in a specific form:

56

17
= 3 +

5

17
= 3 +

1
17
5

17

5
= 3 +

2

5
= 3 +

1
5
2

5

2
= 2 +

1

2

10



Putting everything we have together as one continued fraction:

56

17
= 3 +

1

17

5

= 3 +
1

3 +
1

5
2

= 3 +
1

3 +
1

2 +
1

2

Using this we can define the following:

Definition 18 (Simple finite continued fraction). A simple finite continued fraction is

an expression of the form:

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an

where ai ∈ Z. Since the above notation is very space consuming we adopt the standard

notation of [a0; a1; . . . ; an].

Simple finite continued fractions are useful, because via the method described above we

have that every simple continued fraction corresponds uniquely to a rational number, as well

as every rational number can be written as a simple finite continued fraction. See [10] for

proofs of these claims.

However more interestingly, if we extend to infinite continued fractions, that is using an

infinite sequences of integers [a0; a1; a2; . . .] we can approximate any real number [10].
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The simple continued fraction for a real number can be computed as follows. Let α be

the number we try to approximate. For the sake of the algorithm set α0 = α. Then we

define the sequence [a0; a1; . . .] as ai = [αi] and αi+1 = 1/(αi − ai) where [n] represents the

greatest integer less than n. We showcase this by writing the continued fraction of
√

18:

Example 19. Here α =
√

18. So then we set a0 =
[√

18
]

= 4 and then compute α1 =
1√

18− 4
and continue on. The results are summarized:

a0 =
[√

18
]

= 4, α1 =
1√

18− 4
=

√
18 + 4

2
,

a1 =

[√
18 + 4

2

]
= 4, α2 =

1(√
18+4
2

)
− 4

=
√

18 + 4,

a2 =
[√

18 + 4
]

= 8, α3 =
1(√

18 + 4
)
− 8

=

√
18 + 4

2
(= α1)

Since we see that α3 = α1 we get a repeating pattern and we can represent
√

18 =

[4; 4; 8; 4; 8; 4; 8; . . .]

An interesting note, for those interested is that the continued fraction expansion for the

golden ratio is: φ = [1; 1; 1; . . .].

Definition 20 (Convergents). When we are working with infinite continued fractions we

adopt the notation that Ck = [a0; a1; . . . ; ak]. As stated above this is a rational number, if we

wish to know the exact numerator and denominator we identify them as: pk
qk

= [a0; a1; . . . ; ak].

The Ck are referred to as the convergents, or occasionally as truncated continued frac-

tions.

A standard result in algebra on continued fractions is the following:

Lemma 21. If Ck is a sequence of convergents to α then C2m < α < C2m+1 for every m.

That is the even indexed convergents will always under approximate α while the odd indexed

convergents will over approximate α.

As mentioned it is often desired to know the exact rational of our truncated continued

fraction approximation. We can compute these using a recurrence relation, that is pk
qk

=

12



[a0; a1; a2; . . . ; ak] is given by the recurrence relations:

pk = akpk−1 + pk−2 (2.1)

qk = akqk−1 + qk−2 (k ≥ 0) (2.2)

with the initial values p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0 [8]. These convergents have a

useful property. First:

Definition 22 (Farey pair). Two fractions (any fractions, not necessarily convergents) p
q

and

p′

q′
with p, q, p′, q′ non-negative integers and in reduced form are a Farey pair if pq′−p′q = ±1.

Example 23. The following pairs form Farey pairs:

1

4
,

1

3
1

3
,

1

2
1

2
,

2

3
2

3
,

3

4

These pairs form the Farey Series (of order 4), proper fractions, namely h
k

with gcd(h, k) = 1

with k ≤ 4 [10].

With this definition we can demonstrate that each pair of consecutive convergents forms

a Farey pair:

Theorem 24. If {pi} and {qi} are defined as in (2.1) and (2.2) then

piqi−1 − pi−1qi = (−1)i−1 (i ≥ −1)

13



Proof. We prove this by induction on i. We can computationally show this result holds for

i = −1, 0:

p−1q−2 − p−2q−1 = 1(1)− 0(0)

= 1 = (−1)−2

p0q−1 − p−1q0 = a0(0)− 1(1)

= − 1 = (−1)−1

Now we assume that the result holds for i = k − 1 and we show it holds for i = k, that

is we show:

pkqk−1 − pk−1qk = (−1)k−1

what we know from their definition is:

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2

substituting into the left hand side of the desired relation:

pkqk−1 − pk−1qk = (akpk−1 + pk−2)qk−1 − pk−1(akqk−1 + qk−2)

= akpk−1qk−1 + pk−2qk−1 − akpk−1qk−1 − pk−1qk−2

= pk−2qk−1 − pk−1qk−2

= (−1)(pk−1qk−2 − pk−2qk−1)

Since the Theorem holds for i = k − 1 we can replace the second term:

= (−1)(−1)k−2

= (−1)k−1

Which proves the result.

A helpful property of Farley pairs is if any fraction is in the middle of the pair it must

have a larger denominator, this can be stated explicitly as:
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Lemma 25. Let p
q
< p′

q′
form a Farley pair. Then any intermediate fraction with p

q
< x

y
< p′

q′

which has y > 0 is of the form:
x

y
=
ap+ bp′

aq + bq′

with a, b positive integers. In particular x ≥ p+ p′ and y ≥ q + q′.

Proof. The proof is simple if our pair is 0
1

and 1
1

so we restrict to the case where neither

numerator is zero. We now examine the matrix:

F =

p′ − p p

q′ − q q


notice that detF = p′q − pq′ = ±1 by assumption thus F is invertible, with inverse:

F−1 =

 q −p
q − q′ p′ − p


We can consider F a linear map from Z2 → Z2, by restricting the input we can think of

this as a map from Q → Q and we can use this to introduce a bijection: f : [0, 1] ∩ Q →[
p

q
,
p′

q′

]
∩Q defined as

f
(u
v

)
=

(p′ − p)u+ pv

(q′ − q)u+ qv

whose inverse is:

f−1
(u
v

)
=

qu− pv
(q − q′)u− (p− p′)v

Back to our original problem if we have that p
q
< x

y
< p′

q′
we define a = p′y − q′x and

b = qx− py, then a and b are positive integers as seen by:

x

y
<
p′

q′
=⇒ 0 < p′y − q′x

p

q
<
x

y
=⇒ 0 < qx− py

We use a and b because it reduces the inverse of f to:

f−1

(
x

y

)
=

qx− py
(q − q′)x− (p− p′)y =

b

a+ b

15



Now by construction we have:

x

y
= ff−1

(
x

y

)
= f

(
b

a+ b

)
=
ap+ bp′

aq + bq′

Which proves the claim, in particular since a, b > 0 we have that x ≥ p+ p′ and y ≥ q + q′.

A summarization of our current standing with continued fractions is if pn
qn

is the nth

truncated continued fraction [a0; aq; . . . ; an] approximating the real number θ in (reduced)

rational form then we have:

pnqn+1 − pn+1qn = (−1)n+1 (2.3)

p0

q0

<
p2

q2

· · · < θ < · · · < p3

q3

<
p1

q1

(2.4)

We now focus in on the upper convergents namely the convergents with odd indices.

While consecutive convergents form a Farey pair, in general two consecutive upper conver-

gents do not. We now create a type of “intermediate” upper convergent such that this chain

always forms a Farey pair. We define the intermediate terms as:

pn,i = pn + ipn+1 qn,i = qn + iqn+1

where n ≥ −2 and i is a non-negative integer. In particular pn,0 = pn and from our relation

in equation (2.1) we have pn+2 = pn + an+2pn+1 so we restrict i ≤ an+2. Under the above

notation we will call a fraction
pn,i
qn,i

=
pn + ipn+1

qn + iqn+1

an intermediate convergent (to θ), and if n is odd we call it an upper intermediate

convergent (to θ). Now we can state and prove some helpful results:

16



Lemma 26. For a, b, c, d ∈ Z if ad− bc > 0 then we have that:

a+ (i+ 1)c

b+ (i+ 1)d
<
a+ ic

b+ id

for any i ∈ N.

Proof. We work algebraically:

0 < ad− bc ⇐⇒ cb < ad

Then for any i ∈ N:

⇐⇒ iad+ (i+ 1)cb < (i+ 1)ad+ icb

⇐⇒ ab+ iad+ (i+ 1)cb+ i(i+ 1)cd < ab+ (i+ 1)ad+ icb+ i(i+ 1)cd

⇐⇒ (a+ (i+ 1)c)(b+ id) < (a+ ic)(b+ (i+ 1)d)

⇐⇒ a+ (i+ 1)c

b+ (i+ 1)d
<
a+ ic

b+ id

Theorem 27. Under the above notation, if n is odd and we use a for an+2 (to simplify

notation) then:
pn+2

qn+2

=
pn,a
qn,a

<
pn,a−1

qn,a−1

< · · · < pn,1
qn,1

<
pn
qn

and any two consecutive (upper) intermediate convergents form a Farey pair.

Proof. We can easily see that pn+2/qn+2 < pn/qn from Equation (2.4), we need to show that

the (upper) intermediate convergents are decreasing. Notice that the inequalities we need

to show fall exactly in to the case for Lemma 26 since we have that pnqn+1 − pn+1qn =

(−1)n+1 = 1 by Equation (2.3) and n being odd. Which means in the context of Lemma 26

we can let a = pn, b = qn, c = pn+1 and d = qn+1 and we achieve the desired inequalities.

17



We now show that consecutive intermediate convergents form a Farey pair, that is

pn,iqn,i+1 − pn,i+1qn,i = ±1:

pn,iqn,i+1 − pn,i+1qn,i = (pn + ipn+1)(qn + (i+ 1)qn+1)− (pn + (i+ 1)pn+1)(qn + iqn+1)

= pnqn + (i+ 1)pnqn+1 + ipn+1qn + i(i+ 1)pn+1qn+1 − pnqn − ipnqn+1

− (i+ 1)pn+1qn − i(i+ 1)pn+1qn+1

= pnqn+1 − pn+1qn

= (−1)n+1

Now we look at another (the main) useful component of the pn,i, qn,i. We will show that

if we are approximating any irrational θ and we have a fraction θ < k
l
< bθc + 1 (b·c is the

round down function, often called the floor function) where either k or l is minimal fitting

in that region (meaning, choose the rational in the region so that every other fraction has a

larger numerator (or denominator)) then k = pn,i and l = qn,i.

Theorem 28. Let θ > 0 be an irrational number and let θ′ be any number with θ < θ′ <

bθc+ 1. If k, and l are positive integers so that

θ <
k

l
< θ′

and if either k or l is minimal with this property then k
l

is an upper intermediate convergent

to θ. That is k = pn,i and l = qn,i for some odd positive integer n and some integer

i = 0, 1, . . . , an+2 − 1.

Proof. Since θ < k
l

if k and l do not form an upper intermediate convergent to θ then it must

lie between some two consecutive intermediate convergents to θ, say

θ <
p

q
<
k

l
<
p′

q′

But by Theorem 27, p
q

and p′

q′
form a Farey pair. And thus by Lemma 25 we have that

k ≥ p + p′ and l ≥ q + q′ so in particular k > p and l > q. This contradicts the minimality

of k (or of l), thus k
l

is an upper intermediate convergent; that is k = pn,i and l = qn,i for n

odd and i = 0, 1, . . . an+2 − 1.
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This concludes the results on continued fractions that will be used in this paper. While

the proofs are necessary to justify the claims the results are what are important later in this

paper. In particular we will make use of the notion of Farey pairs and and intermediate

convergents. Lemma 25 and Theorem 28 are the results most important in later sections.
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3.0 HEURISTIC PROOF

There are many reasons that lead one to suspect the Collatz problem should be true. One

such justification is the existence of some heuristic proofs. As an example let us compute

the expected growth between consecutive odd iterations in a sequence. We assume that the

function T “mixes” evens and odds well enough that whether the output of T is even or odd

happens with equal probability, i.e.,

Assumption 29. For any n ∈ N, selected at random, the probability that n is even is 1
2

which is also the probability that n is odd.

Assumption 30. The function T (n) “mixes” evens and odds equally, that is for any n ∈ N,

selected at random, the probability that T (n) is even = 1
2

= probability that T (n) is odd.

3.1 HEURISTIC ARGUMENT

Under these assumptions we begin a heuristic proof that every number should converge to

1 under the Collatz function. Choose an odd integer n0, we iterate T until we arrive at the

next odd integer n1. Thus after one iteration 3n0+1
2

is even with probability 1
2

and odd with

a probability 1
2

etc.

This gives that the next odd number in our iteration is 3n0+1
2

with probability 1
2
, 3n0+1

4

with probability 1
4
, 3n0+1

8
with probability 1

8
etc. This is summarized in Figure 1. Then we

can compute the expected growth factor between successive odd iterates in our sequence as

(
3

2

) 1
2
(

3

4

) 1
4
(

3

8

) 1
8
(

3

16

) 1
16
(

3

32

) 1
32

· · ·
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n0

3n0+1
2 is odd3n0+1

2 is even

Pr = 1
2Pr = 1

2

3n0+1
4 is odd3n0+1

4 is even

Pr = 1
4Pr = 1

4

...

Figure 1: Probability tree

Lemma 31.
∞∏
i=1

(
3

2i

) 1

2i

=
3

4

Proof. We show
∞∏
i=1

3
1

2i and
∞∏
i=1

(
1

2i

) 1

2i

both converge, and thus

∞∏
i=1

(
3

2i

) 1

2i

=
∞∏
i=1

3
1

2i ·
∞∏
i=1

(
1

2i

) 1

2i

Note:

∞∏
i=1

3
1

2i = 3
∑∞

i=1
1

2i

= 3

For
∞∏
i=1

(
1

2i

) 1

2i

we examine partial products, and after simplification we see:

Pn =

(
1

2

)∑n
i=1

i

2i
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Thus

∞∏
i=1

(
1

2i

) 1

2i

= lim
n→∞

Pn

=
1

4

So our entire product is:
∞∏
i=1

(
3

2i

) 1

2i

= 3 · 1

4
=

3

4

The significance is that this infinite product represents the expected growth between

successive odd iterates of a Collatz sequence i.e., we expect successive odd iterates to shrink

by a factor of 3
4
. In particular, divergent trajectories should not exist.

We can use this idea to give us an approximation on the total stopping time of a number

n. If σ∞(n) = k we recall we are under the assumption that T (n) mixes odds and evens

equally, so we should have as many evens as odds, thus in our sequence of k numbers (starting

with n and ending with 1) we should have about k
2

evens and k
2

odds. Thus following our

above calculation starting with n and ending at 1 should have us decrease by a factor of 3
4

each odd iterate. That is: (
3

4

) k
2

n = 1

k

2
log

(
3

4

)
= log

(
1

n

)
k = − 2 log(n)

log
(

3
4

)
So the total stopping time for a number n should roughly be a constant multiple of log n.

From this approximation on the total stopping time we can create a linear model of where we

expect our sequence to be after a given number of iterations. We will plot the iterations and

our model on a semilog plot (x-axis is normal but we take take the natural log of the y-axis).

We can create our linear model by letting the x-axis represent the number of iterations of

our Collatz function, and the y-axis represent the natural log of the xth iterate of the Collatz

function. Examining two points we know will agree with the value of Collatz sequence: we
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know the first entry of our sequence is n, so if we take the natural log and place it on the

graph of our linear function we get the point (0, log n). If k (above) is the total stopping

time of the Collatz sequence that means that after k iterations of T we arrive at 1 in our

sequence. Taking the natural log of the y-coordinate we get the point
(
−2 logn

log 3
4

, 0
)

, the slope

between these points is:

m =
log(n)− 0

0−−2 logn

log 3
4

=
log n
2 logn

log 3
4

=
log 3

4

2

Using this slope we can look at how well this linear model approximates the Collatz

iteration:

As shown in Figure 2 we can see that the model follows our sequence well. The overall

slope is the same, and the model fits with the plot. However Figure 3 shows a different

picture. The model appears to have the same general slope as the sequence, but there is a

jump in the beginning that the model does not notice. Figure 5 also shows how the model

does not follow the Collatz sequence well in all cases. Even the overall shape of the iteration

plot is different than the slope of the model.

Examining total stopping times in Figure 3.1 we can see that the total stopping time

n = 230−1 is approximated well by the model. It takes 122 iterations of the Collatz function

T (n) to reach 1 and the model predicts 145 iterations. However looking at n = 230 + 1 we

get a much worse approximation. It takes T (n) 288 iterations to reach 1, but the model

still predicts 145. This example characterizes the difficulty of the Collatz problem

well: the function T (n) is not well behaved on neighboring starting values. Having

looked at a sequence from one value of n it is easy to convince ourselves of this by watching

the falling and rising of the iterations, but more than that, the behavior from two different

starting values are seemingly unrelated. This relates back to the problem of integer

factorization. Knowing how T behaves on n does not lend insight to how T

behaves on n+ 1.
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n σ∞(n) k

230 − 1 122 145

230 + 1 288 145

320 − 1 98 153

320 + 1 71 153

Figure 6: Table of total stopping times vs. model approximations
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4.0 PARTIAL RESULTS

Though the conjecture as a whole does not yet have a proof, there are many partial results

that have been shown. We cover some of these results now; in particular, we examine a more

rigorous explanation of why we expect almost every positive integer to have a finite stopping

time.

4.1 A DENSITY PROOF

First we define a few terms:

Definition 32 (Parity sequence). Given a positive integer starting value, n, we can assign

a parity sequence

n→ {x0, x1, x2, . . .}

where

xm =

0 if Tm(n) is even

1 if Tm(n) is odd

Example 33. The parity sequence of 7 is:

{1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, . . .}

Where {1, 0, 1, 0, . . .} corresponds to our sequence having reached one.
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We show, following Everett’s paper [3], that we can think of starting values instead by

the parity sequence it creates. That is we will show that given a starting value n ≤ 2N , for

some positive integer N , this number corresponds (in a one-to-one fashion) to a sequence

{x0, x1, . . . , xN−1} with xi ∈ {0, 1}.
Of course there is the usual method of representing integers as a sequence of 0s and 1s, in

binary. But here we instead want to represent them as parity sequences, where xn = T n(m)

mod 2. In fact what we show is that every finite binary sequence (of length N) corresponds

to the first N terms of a parity sequence for a unique integer less than 2N . Given this result

we have an interesting consequence for infinite binary sequences: the following theorem gives

that every finite binary sequence of length N corresponds to the first N terms of a parity

sequence for a unique integer less than 2N but if the Collatz Conjecture is true, then every

parity sequence must end in {. . . , 1, 0, 1, 0, 1, 0, . . .} since this is the parity sequence for the

number 1. This means that not every infinite binary sequence is an integer’s parity sequence,

in particular sequences that end with any pattern other than {. . . , 1, 0, 1, 0, 1, 0, . . .} cannot

be a parity sequence for an integer since its Collatz sequence would not end in 1.

The fact that we can represent every integer n ≤ 2N as a unique sequence like this

requires proof. Another way of stating our immediate goal is: if we take all positive integers

n ≤ 2N and list their parity sequences no two sequences will have the exact same first N

terms. Here all we are referencing is the first N terms of the parity sequence, we have no clue

(or at this point interest) in how long our parity sequence is. We state the result rigorously

as:

Theorem 34. There is a one-to-one correspondence between integers less than 2N and the

first N terms of parity sequences. That is the integers 0, . . . , 2N−1 have that the first N terms

of their parity sequences are distinct.

Before we prove this recall that a parity sequence of an integer, m, is a binary sequence,

{x0, x1, . . .}, such that xi = T (i)(m) mod 2. Thus the first term of the sequence lists the

parity of m. Further this correspondence gives that with a sequence {x0, x1, . . .} we get an

integer m such that m mod 2 = x0 and in general T (i)(m) mod 2 = xi.

Proof. We show that for any sequence of length N we can find a unique integer modulo 2N
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that corresponds. We do this via induction, by considering the binary sequence of length N

as the first N terms of a parity sequence where xi = T (i)(m) mod 2, our goal is to find this

m.

Base case N = 1: here we deal with {x0} if x0 = 0 then m is even so m = 2k ≡ 0 mod 2.

If x0 = 1 then m is odd so m = 2k + 1 ≡ 1 mod 2.

Induction Hypothesis: For N = p we have a one-to-one correspondence between the

integers 1, . . . , 2p − 1 and the first N terms of their parity sequences.

Induction step N = p + 1: we deal with {x0, . . . , xp}. First we ignore x0 and examine

the sequence {x1, . . . , xp} this sequence is length p and by our induction hypothesis we have

this sequence corresponds uniquely to an integer less than 2p.

Thus we can write m′ ≡ j mod 2p. Where m′ is in the same equivalence class as T (m)

modulo 2p since T (m) and m′ have the same first p terms of their parity sequence agreeing,

they must be in the same equivalence class modulo 2p. Then based of x0:

Case 1 (x0 = 0): here we have that m is even. Since T (m) = m
2

and we know that

m′ and T (m) are the same modulo 2p we have that m ≡ 2m′ mod 2p+1. Thus m ≡ 2j

mod 2p+1. This corresponds to all the even integers less than 2p+1 since we have 0 ≤ j < 2p.

Case 2 (x0 = 1): here m is odd. Since T (m) = 3m+1
2

and m′ and T (m) are the same

modulo 2p we have that m ≡ 2m′−1
3

mod 2p+1. Thus m ≡ 2j−1
3

mod 2p+1 ≡ (2j − 1) · 3−1

mod 2p+1 which corresponds to all the odd integers less than 2p+1 since we have that

0 ≤ j < 2p =⇒ 0 ≤ 2j < 2p+1

=⇒ − 1 ≤ 2j − 1 < 2p+1 − 1

=⇒ 0 ≤ 2j − 1 mod 2p+1 < 2p+1

the 2j − 1 corresponds to all the odd integers less than 2p+1 and multiplying by 3−1 is an

invertible operation preserving our correspondence.

Thus in each case we have a correspondence between the first N terms of a binary

sequences and integers less than 2N .

It can be a bit more clarifying to work a few examples to help understand this corre-

spondence.
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{0, 0, . . .} ↔ 0 mod 4
i mi implication
1 0 m1 = 2k
0 0 m = 2m1 = 4k ≡ 0 mod 4

{0, 1, . . .} ↔ 2 mod 4
i mi implication
1 1 m1 = 2k + 1
0 0 m = 2m1 = 4k + 2 ≡ 2 mod 4

{1, 0, . . .} ↔ 1 mod 4
i mi implication
1 0 m1 = 2k
0 1 m = 2m1−1

3 = 4k−1
3 ≡ (−1)(−1) mod 4 = 1 mod 4

{1, 1, . . .} ↔ 3 mod 4
i mi implication
1 1 m1 = 2k + 1
0 1 m = 2m1−1

3 = 4k+1
3 ≡ 1(−1) mod 4 ≡ 3 mod 4

Figure 7: Method for the equivalence between parity sequences and a number modulo 4.

Example 35. For N = 2 we have the four sequences: {0, 0, . . .}, {0, 1, . . .}, {1, 0, . . .},
{1, 1, . . .}. We adopt the notation mi = T (i)(m). Thus our sequences give the following

dependencies, with the understanding that once we know the parity of an iterate of T we

know how the function behaves.

In the tables of Figure 7 we determine what m is by examining parity sequences indexed

as {m0 mod 2,m1 mod 2, . . .} where m0 = m. We work from the back of the sequence

first, that is if we know m1 = 1 then it is odd so m1 = 2k+ 1 and then use knowledge of m0

and knowing m1 = T (m0).

Example 36. We can do the same for N = 3, and N = 4. We summarize the results in

Figure 8.

Since we have shown that the parity sequences of length N and integers less than 2N are

in bijection, we can use the term parity sequence a bit more loosely for either category, as

convenient. Now we introduce a new concept to help make our goal of almost every number
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N = 2 0 ≤ m < 22 N = 3 0 ≤ m < 23 N = 4 0 ≤ m < 24

{0, 0, . . .} 0
{0, 0, 0, . . .} 0

{0, 0, 0, 0, . . .} 0
{0, 0, 0, 1, . . .} 8

{0, 0, 1, . . .} 4
{0, 0, 1, 0, . . .} 4
{0, 0, 1, 1, . . .} 12

{0, 1, . . .} 2
{0, 1, 0, . . .} 2

{0, 1, 0, 0, . . .} 10
{0, 1, 0, 1, . . .} 2

{0, 1, 1, . . .} 6
{0, 1, 1, 0, . . .} 6
{0, 1, 1, 1, . . .} 14

{1, 0, . . .} 1
{1, 0, 0, . . .} 5

{1, 0, 0, 0, . . .} 5
{1, 0, 0, 1, . . .} 13

{1, 0, 1, . . .} 1
{1, 0, 1, 0, . . .} 1
{1, 0, 1, 1, . . .} 9

{1, 1, . . .} 3
{1, 1, 0, . . .} 3

{1, 1, 0, 0, . . .} 3
{1, 1, 0, 1, . . .} 11

{1, 1, 1, . . .} 7
{1, 1, 1, 0, . . .} 7
{1, 1, 1, 1, . . .} 15

Figure 8: Summary of Theorem 34 for N = 2, 3, 4.

has a finite stopping time more rigorous, that is we define what “almost every” means.

Definition 37 (Natural density). A subset A of positive integers has natural density α

where 0 ≤ α ≤ 1 if the proportion of elements of A among all natural numbers from 1 to n

is asymptotic to α as n tends to infinity.

More explicitly if A(n) = #{i : 1 ≤ i ≤ n and i ∈ A} (often called a counting function)

then A has natural density α if

lim
n→∞

A(n)

n
= α

Example 38. A good way to examine the difference between natural density and cardinality

is through perfect squares. A natural thought is that there are more positive integers than

perfect squares, since every perfect square is a positive integer. Though of course both are

countable sets and can be put in one-to-one correspondence.

However, the perfect squares become very sparse in the positive integers as we examine

larger and larger numbers. Indeed in this case our counting function A(n) = b√nc counts

30



the number of perfect squares less than n. It satisfies 0 ≤ A(n)

n
and:

lim
n→∞

A(n)

n
= lim

n→∞

b√nc
n

≤ lim
n→∞

√
n

n

= 0

So by squeeze theorem, the natural density of A = {n2 : n ∈ N} is 0. Which fits with our

intuition that there are “less” perfect squares than natural numbers.

For the following theorem we need a standard result in statistics:

Theorem 39 (Bernoulli’s Law of Large Numbers). In an experiment with probability of

success P , after increasing the number of repeated independent trials, the ratio of successful

trials to the total number of trials approaches P .

Example 40. This can best be explained with coin flips. With a fair coin, which has a

probability of 0.5 to land heads (or tails), as the number of coin flips increases the number

of successes (heads) approaches the number of failures (tails). Stated colloquially, flipping a

coin many times results in (roughly) the same number of the heads as tails.

Back to our problem:

Definition 41. Let A(M) be the number of positive integers less than M that have a finite

stopping time.

We want to show that A(M) has natural density 1. That is we want to show that

A(M)/M approaches 1 as M →∞. More rigorously:

Theorem 42. For the Collatz function T “almost every” integer m has some iterate mk =

T k(m) < m, in the sense that the density, A(M)/M , of such integers approaches 1.

Proof. We first show when M = 2N for some N a positive integer.

Our motivation is that for large N most parity sequences have roughly the same number

of 0s and 1s, (Theorem 39) . We again use the notation above to define xi = T (i)(m) mod 2.

From such a parity sequence, which we know from above represents a unique integer m ≤ 2N ,

31



we see that for any 0 ≤ n < N if xn = 0 then the nth iterate of T is even so: mn+1

mn
= 1

2
. and

if xn = 1 the nth iterate of T is odd so: mn+1

mn
= 3Q+2

2Q+1
< 5

3
, for some Q. And since we have

roughly the same number of 1s as 0s we can approximate: mN ≈
(

1
2

)N/2 (5
3

)N/2
m0 < m0.

More rigorously: define HN to be the set of all sequences of 1s and 0s of length N ,

{x0, . . . , xN−1}, that satisfy the relation:

1

2
− ε < X

N
<

1

2
+ ε (4.1)

where X =
∑
xi and ε = log 2

log(10/3)
− 1

2
.

Since there are at most 2N sequences of length N of 0s and 1s we have trivially that

#HN

2N
≤ 1. From [15] we have that

1− 1

4ε2N
≤ #HN

2N
(4.2)

Define DN to be the set of all sequences of 1s and 0s of length N that satisfy only the

upper bound above, i.e.,

X

N
<

1

2
+ ε (4.3)

this gives that #DN ≥ #HN .

Of the numbers m ≤ 2N represented as parity sequences in DN we have exactly two

groups, either m has a total stopping time less than N or it does not. That is for each

sequence in DN , which we have shown corresponds to a unique integer m ≤ 2N , either

T n(m) = 1 with n ≤ N − 1 or no iterate T n(m) = 1 for n ≤ N − 1. For the second case

we can still show that the Nth iterate of T is smaller than the starting location m. But we

need an equivalence of Eq. (4.3) with a new identity:
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X

N
<

1

2
+ ε ⇐⇒ X

N
<

log 2

log(10/3)

⇐⇒ X log(10/3) < N log 2

⇐⇒ X(log 2 + log(5/3))−N log 2 < 0

⇐⇒ (X −N) log 2 +X log(5/3) < 0

⇐⇒ (N −X) log(1/2) +X log(5/3) < 0

⇐⇒ log

[(
1

2

)N−X
]

+ log

[(
5

3

)X
]
< 0

⇐⇒
(

1

2

)N−X (
5

3

)X

< 1

Thus this condition shows us that for each m ∈ DN we have that

mN = m0(m1/m0) · · · (mN/mN−1) ≤
(

1

2

)N−X (
5

3

)X

m0 < m0 = m

where the inequality comes from (mi/mi−1) = 1
2

if xi−1 = 0 and (mi/mi−1) ≤ 5
3

if xi−1 = 1

we have exactly X ones and N −X zeros.

Thus we have that every element of DN has a finite stopping time, and thus

A(2N) ≥ #DN − 1 ≥ #HN − 1

we need to subtract an element from DN and HN since the sequence corresponding to the

number 1 is in DN and HN but technically 1 does not have a finite stopping time (it never

gets smaller) thus 1 is not counted in A(M) for any M .

Since A(2N) is at most 2N we have 1 ≥ A(2N)/2N and by the condition on HN , (4.2),

we have:

lim
N→∞

A(2N)

2N
≥ lim

N→∞

#HN − 1

2N

≥ lim
N→∞

1− 1

4ε2N
− 1

2N

= 1
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So with Squeeze Theorem we have:

lim
N→∞

A(2N)

2N
= 1

Thus it only remains to show our result when 2N < M < 2N+1. For simplicity set

AN = A(2N) and define

nN = AN + (2N+1 − AN+1)

nN represents the number of sequences of length 2N which have a finite stopping time plus

the number of sequences of length between 2N and 2N+1 which do not have finite stopping

time. We can recognize that nN ≥ 2N by adding and subtracting 2N as follows:

nN = 2N +
[
(2N+1 − 2N)− (AN+1 − AN)

]
which is greater than 2N since (2N+1 − 2N)− (AN+1 − AN) reprsents the numbers between

2N and 2N+1 which do not have finite stopping time, a non-negative number.

Thus for M = 2N + 1, 2N + 2, . . . , nN we have that A(M) ≥ AN and that M ≤ nN thus

A(M)

M
≥ AN

nN

Now for M = nN + k where k = 1, 2, . . . , 2N+1 − 1− nN we can say that

A(M)

M
≥ AN + k

nN + k
≥ AN

nN

For the first inequality we can see this is true conceptually. Since M = nN + k we need

to show A(M) ≥ AN + k, we think about this for each k. When k = 1, M = nN + 1 or

conceptually it is 2N plus how many numbers between 2N and 2N+1 do not converge to one

under the Collatz iteration, plus one. Thus if we look at A(M) in the worse case scenario all

of the numbers which do not converge are first, that is all the numbers between 2N and 2N+1

which do not converge are immediately after 2N . In this case we would have A(nN) = AN ,

so when we go one further it MUST be that the next number converges, since all of the

non-convergent numbers were first; we have A(M) = AN + 1. Again this is the worst case

scenario, in generally the numbers which do not converge (if they exist) would be spread out

in which case A(M) ≥ AN + 1. The same idea holds true for every k.
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For the second inequality since nN ≥ 2N ≥ AN ≥ 0 we can add a positive constant to

the numerator and denominator of AN

nN
and our result is bigger:

nN ≥ AN ⇐⇒ knN ≥ ANk

(k is greater than 0)

⇐⇒ ANnN + knN ≥ ANnN + ANk

⇐⇒ (AN + k)nN ≥ AN(nN + k)

⇐⇒ AN + k

nN + k
≥ AN

nN

Thus regardless of where M falls between 2N and 2N+1 we have that:

A(M)

M
≥ AN

nN

We still have that 1 ≥ A(M)
M

for all M and by our inequalities here we have:

lim
M→∞

A(M)

M
≥ lim

N→∞

AN

nN

= lim
N→∞

AN

AN + (2N+1 − AN+1)

= lim
N→∞

AN

2N

AN

2N
+
(

2N+1

2N
− AN+1

2N

)
= lim

N→∞

AN

2N

AN

2N
+ 2

(
1− AN+1

2N+1

)
=

1

1 + 2(0)

= 1

Thus by Squeeze Theorem we have

lim
M→∞

A(M)

M
= 1

as desired.

This concludes our section on natural density. The above result shows that we expect

almost every integer to eventually converge; if there is a number that does not converge

under the Collatz iteration then it is not part of a “large” class of number, in the sense of

natural density.
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4.2 CYCLE LENGTH

As shown above we would expect most numbers to eventually converge to 1 under the Collatz

iteration. If there is a number that does not converge then the iteration will either shoot

towards infinity or will enter a cycle. We now demonstrate that if a cycle exists its length

must be very, very large. We demonstrate a lower bound on the length of a cycle (that is not

the trivial {4, 2, 1, . . .} cycle) using Shalom Eliahou’s paper “The 3x+ 1 problem: new lower

bounds on nontrivial cycle lengths”. The method of determining the minimal length of a

cycle here is particularly helpful because as the Collatz conjecture is verified for higher and

higher numbers this method provides larger and larger lower bounds on cycle length. Indeed

presented in Eliahou’s paper, [2], is the lower bound of 17, 087, 915 for cycle length, using

Eliahou’s method Tempkin and Arteaga in [14] improve the lower bound to 272, 500, 658; we

present an even larger lower bound of 10, 439, 860, 591.

Recall the trajectory of a number n is the set of iterates:

Ω(n) = {n, T (n), T (2)(n), . . .}

A trajectory Ω is called a cycle of length k if T (k)(x) = x for all x ∈ Ω. We call k the length

or cardinality of the cycle. We consider the trajectory to be the finite number of elements

where no terms are repeated. A simple (and the only so far) example is Ω(1) = {1, 2}, which

is a cycle of length 2, called the trivial cycle.

Example 43. A less trivial example cannot be produced with T as defined throughout this

paper, no other cycle has been found; the existence of one would disprove the conjecture.

However if we extend T to allow negative integers as input as well then we can see additional

cycles, such as {0}, {−5,−7,−10} and {−17,−25,−37,−55,−82,−41,−61,−91,−136,−68,

−34}. There is more on extensions of the problem discussed in Section 5.1.

We now wish to present bounds on cycle length, to do so we need some intermediate

results first:
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Lemma 44. Let Ω be a cycle of T and let Ω1 ⊂ Ω denote the subset of its odd elements and

let k = #Ω, then ∏
n∈Ω1

(3 + n−1) = 2k

Proof. Since Ω is a cycle then evaluating T on each element of Ω does not change the elements

(other than their order), thus looking at the product of elements in Ω:

∏
n∈Ω

n =
∏
n∈Ω

T (n)

which of course gives: ∏
n∈Ω

T (n)

n
= 1

Now recalling the definition of T (n) we can evaluate T (n)
n

:

T (n)

n
=


1

2
if n is even

3 + n−1

2
if n is odd

Then our product turns into:

1 =
∏
n∈Ω

T (n)

n

=

(∏
n∈Ω1

T (n)

n

) ∏
n∈Ω\Ω1

T (n)

n


=

(∏
n∈Ω1

3 + n−1

2

) ∏
n∈Ω\Ω1

1

2


=

(∏
n∈Ω1

(3 + n−1)

)(∏
n∈Ω

1

2

)

2k =
∏
n∈Ω1

(3 + n−1)

Using the above lemma we can prove a slightly stronger theorem which bounds the ratio

of
#Ω

#Ω1

:
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Theorem 45. Let Ω be a cycle of T and let Ω1 ⊂ Ω be the odd elements of Ω. Then:

log2(3 +M−1) <
#Ω

#Ω1

≤ log2(3 +m−1)

where M = max Ω, m = min Ω. We can have a stronger right inequality of:

#Ω

#Ω1

≤ log2(3 + µ)

where µ = (1/#Ω1)

(∑
n∈Ω1

n−1

)

Proof. First note that max Ω > max Ω1, that is the largest element of a trajectory will be

even. This is simple to see: if the largest, M , were odd then the cycle contains T (M) = 3M+1
2

which is larger, a contradiction. Now notice that

3 +M−1 < 3 + n−1

where M = max Ω and n ∈ Ω1, similarly:

3 + n−1 ≤ 3 +m−1

where m = min Ω. Thus if we let k1 = #Ω1 then by Lemma 44 we get:

(
3 +M−1

)k1 =
∏
n∈Ω1

(
3 +M−1

)
< 2k ≤

∏
n∈Ω

(
3 +m−1

)
=
(
3 +m−1

)k1
algebra yields:

log2

(
3 +M−1

)
<

k

k1

≤ log2

(
3 +m−1

)
As for the the stronger inequality we call on the Arithmetic-Mean-Geometric-Mean

(AMGM) inequality for a sequence of numbers x1, . . . , xr:

r

√∏
i

xi ≤
1

r

∑
i

xi
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In our case we obtain:

2k =
∏
n∈Ω1

(
3 + n−1

)
≤
(

1

k1

∑
n∈Ω1

(
3 + n−1

))k1

=

(
3 +

1

k1

∑
n∈Ω1

n−1

)k1

Taking logarithms base 2 gets the stronger inequality:

k

k1

≤ log2 (3 + µ)

One immediate comment is that for practical purposes the use of µ as a stronger bound

is mostly useless. The computation of µ directly requires knowledge of the cycle, but if we

can find a cycle then we immediately disprove the Collatz Conjecture. However, even though

directly using µ is not possible we can still get an inequality on the size of µ that can be

helpful:

Lemma 46. Using the notation above we have that µ ≤ 8
9
m−1, as long as m = min Ω > 1.

Proof. First we show that if n ∈ Ω1 and n < 9
7
m then we have T (n) ∈ Ω1 and T (n) ≥ 9

7
m.

For the inequality we see that
3m+ 1

2
>

9

7
m

And that T is an increasing function on odd inputs. That is if m ≤ n and n,m both odd

then T (m) ≤ T (n). Given our assumptions we have m ≤ n < 9
7
m; m,n both odd. This gives

that T (m) ≤ T (n) and by the above inequality we have that 9
7
m < T (m) ≤ T (n) which

gives T (n) ≥ 9
7
m.

Suppose for a contradiction that T (n) is even. Then we have that T 2(n) = 3n+1
4

, notice:

T 2(n) =
3n+ 1

4

<
3
(

9
7
m
)

+ 1

4

=
27

28
m+

3

4
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and for m ≥ 21:

<m

This contradicts minimality of m.

Since n <
9

7
m then

3n+ 1

4
<

3(9
7
m) + 1

4
. Also, it is acceptable to require m ≥ 21 since

we know the 3n + 1 problem holds for numbers less than 21; thus numbers less than 21

cannot be part of a cycle.

From the above it follows that at least half of Ω1 lies in the interval [9
7
m,∞), since for

every number below 9
7
m we have T (n) ∈ [9

7
,∞). Thus we can compute, using k1 = #Ω1:

µ =
1

k1

∑
n∈Ω1

n−1

≤ 1

k1

(
k1

2
m−1 +

k1

2

7

9
m−1

)
This follows from at least half of Ω1 is in [9

7
m,∞), and the other “half” are in [m, 9

7
m)

=
8

9
m−1

For the rest of this result we do not use the stronger bounds on
#Ω

#Ω1

, but we have

included how it may be used for completeness. Back to proving our result on the length of

a cycle we introduce another function:

We introduce two functions, K : N→ N, L : N→ N, defined as follows: for every m ∈ N,

K(m) is the smallest positive integer k with:

log2(3) <
k

l
≤ log2(3 +m−1)

for some positive integer l. Analogously we define L(m) to be the smallest positive l that

satisfies the above inequality for some k. Alternatively, since log2(3) < log2(3 + m−1) there

must be a rational number between them, K(m) is the numerator of the fraction with

smallest numerator. Similarly L(m) is the denominator of the fraction with the smallest

denominator. We examine an example of how K(n) can be determined for a given n.

With these definitions we get an easy Corollary of Theorem 45:
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Corollary 47. Let Ω be a cycle of T , and let Ω1 ⊂ Ω denote the subset of its odd elements.

Then

#Ω ≥K(min Ω)

#Ω1 ≥L(min Ω)

To get a (meaningful) lower bound on the size of a cycle we consider the continued fraction

expansion of θ = log2(3), θ = [a0; a1; a2; . . .] (for a review of the needed materials in continued

fractions, see Section 2.4). We also need pn, qn which represent the rational number obtained

by truncating the continued fraction as [a0, a1; . . . ; an] = pn/qn with gcd(pn, qn) = 1; defined

by the recurrence relations in equations: (2.1) and (2.2) repeated for convenience below:

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

for n ≥ 0 with p−2 = 0, p−1 = 1, q−2 = 1, and q−1 = 0.

We also use the sequence of upper intermediate convergents to θ, recall that the upper

intermediate convergents are steps in between pn/qn and pn+2/qn+2 for n odd and are defined:

pn,i
qn,i

=
pn + ipn+1

qn + iqn+1

where i = 0, 1, . . . , an+2 − 1.

It will help to have an understanding of how the functions K and L behave. First,

both K and L are increasing functions, as we increase n the distance between log2(3) and

log2(3 + n−1) decreases, eliminating “more” rational numbers between them. Thus we must

increase the denominator and numerator to stay in the correct range. More accurately the

functions are not decreasing, they tend to be constant for many n. This should fit with

intuition, after finding the smallest k (or l) for a given n, increasing it will not change the

distance between log2(3) and log2(3 + n−1) much.

Definition 48 (Transition point). A transition point for the function K is an integer n

such that K(n) > K(n− 1).
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Example 49. Notice that log2(3) ≈ 1.5850. If we choose n = 1 then log2(3 + 1) = 2. So

we look for a rational number between log2(3) and 2 with smallest numerator. One method

to determine K is to proceed from the smallest possible numerator, looking at all possible

denominators until we have one in the correct range. The smallest possible numerator is 1.

But no possible denominators put our fraction in the correct range (smallest possible is 1

which makes our fraction 1/1 = 1 < 1.5).

The next possible numerator is 2. In this case with denominator 1 our fraction 2/1 = 2

falls just in the region log2(3) < 2 ≤ 2. Thus we have that K(1) = 2.

Example 50. A more interesting example is when we allowm = 2. In this case log2

(
3 + 1

2

)
≈

1.8074. Here we have 5 is the smallest numerator and 3 the smallest denominator. This can

be seen by inspection, in the same process as above.

If our numerator were 1 then no denominator allows our fraction to be in the correct

range. Similarly with a numerator of 2 a denominator of 1 makes our fraction too large but

any larger denominator makes our fraction too small. For a numerator of 3 we have the same

split, a denominator of 1 makes the fraction too big but any larger denominator makes the

fraction too small. With a numerator of 4 a denominator of 1 and 2 makes the fraction too

big but any larger denominator makes the fraction too small.

Finally with a numerator of 5, a denominator of 1 and 2 makes the fraction too large,

but with a denominator of 3 we get the fraction 5/3 ≈ 1.6667 our fraction falls right into

the desired range. Thus we have K(2) = 5. The above procedure can be summarized by the

following:

1. k = 1, l = 1 too small

2. k = 2, l = 1 too large, l = 2 too small.

3. k = 3, l = 1 too large, l = 2, 3 too small.

4. k = 4, l = 1, 2 too large, l = 3, 4 too small.

5. k = 5, l = 1, 2 too small l = 3 fits!

So K(2) = 5, in fact we have the same value for K and L for n = 2, 3, 4, 5.

Recall Theorem 28 (from Section 2.4) that the range of K is exactly the pn,i, the upper

intermediate convergents to log2(3). This means we have a transition point of K for each
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value of pn,i, i.e., for each pn,i we get a transition point of K. Thus we can define the function:

tr(n, i) = the least integer m such that K(m) equals pn,i

See [2] for how to compute the transition points of K, as well as for a very informative table

with values pn,i, qn,i, tr(n, i).

In order to give an explanation of how these numbers all fit together, recall that the 3n+1

problem has been verified up to 5×260 [9]. Thus if a cycle exists its smallest number must be

bigger than 5× 260. Let this number be m, it turns out there is a transition point near 260,

at 1.08× 260 = tr(19, 0). Thus this means that K(5× 260) = p19,0 = 630, 138, 897, since the

next transition number is 1.46×267. Thus by Corollary 47 we have that #Ω ≥ 630, 138, 897.

The next transition number being 1.46 × 267 means that to get a stronger lower bound on

cycle lengths, using just this method, we would need to verify the 3n + 1 conjecture past

this number. Now we can prove a more explicit statement about the cardinality of a cycle.

Theorem 51. Let Ω be a nontrivial cycle of T . Provided that min Ω > 1.08× 260 we have

#Ω = 630 138 897a+ 10 439 860 591b+ 103 768 467 013c

where a, b, c are nonnegative integers, b > 0 and ac = 0. Specifically the smallest possible

values for #Ω are 10, 439, 860, 591; 11, 069, 999, 488; 11, 700, 138, 385, etc.

Proof. As stated above the conjecture has been verified up to 5×260, thus if Ω is a nontrivial

cycle of T we have min Ω > 5 × 260 > 1.08 × 260. Using the notation above, with pn
qn

being

the rational approximation of log2(3) with continued fractions to n terms. Indeed we know

that for n even pn
qn

under approximates log2(3) and with n odd it over approximates log2(3).

With very precise computations1 it can be observed that we have the following inequalities:

p22

q22

< log2(3) <
p21

q21

< log2

(
3 +

1

5× 260

)
<
p19

q19

1Eliahou’s paper [2] actually gives a method for fitting this inequality using the transition points. When
going through this I numerically verified this computation using quadruple precision in C++, I have included
the code in the Appendix.

43



If we continue with the notation k = #Ω, l = #Ω1 where Ω1 is the set of odd entries

of Ω, Theorem 45 offers that k
l
∈ (log2(3 +M−1), log2(3 +m−1)]. Where M and m are the

largest and smallest elements in the cycle respectively; in particular we have:

k

l
∈
[
log2(3), log2

(
3 +

1

5× 260

)]
It can be computed that there are no intermediate convergents between p19/q19 and

p21/q121. Then by Theorem 27 (from Section 2.4) p19/q19, and p21/q21 form a Farey pair,

that is p19q21 − p21q19 = 1 (in our case); similarly the pair p21/q21 and p22/q22 form a Farey

pair (this time by Theorem 24).

All together we have three possibilities for the fraction k
l
:

k

l
∈
(
p22

q22

,
p21

q21

)
or

k

l
=
p21

q21

or

k

l
∈
(
p21

q21

,
p19

q19

)
In the first we can use Lemma 25 to get that k = p21b + p22c, with b, c ∈ N (> 0); since

k
l

is a fraction in between a pair of fractions which form a Farey Pair; the second case of

course gives k = p21b, with b ∈ N (in this case b = 1). The last case gives k = p19a + p21b

some a, b ∈ N (> 0) again using Lemma 25. It is worth noting that in this last paragraph

we have kept the coefficient for p21 to be b and given p19 and p22 different coefficients.

Since k
l

must fall into exactly one of the cases above we have that at least one of a or c

is zero, thus ac = 0. Since b shows in each of the cases and b ∈ N we have that b > 0. And

we can state our result as:

#Ω = 630 138 897a+ 10 439 860 591b+ 103 768 467 013c

with a, b, c ∈ N and ac = 0 and b > 0.
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This completes the finished work on cycle length. We have demonstrated that if a cycle

exists it must have at the very least 10,439,860,591 elements, and as the conjecture is verified

for larger and larger numbers this lower bound will also get larger (once we surpass another

transition point of K).

4.3 FUTURE WORK ON CYCLE LENGTH

An interesting consequence of the result from the last section is that as we strengthen the

claim of Theorem 51 to get larger lower bounds, we of course need to increase our supposition

to insist the smallest element of the cycle increase to higher transition points of K. For

example in [2] Eliahou uses that at the time the conjecture had been verified only up to 240

to prove the result that

|Ω| = 301 994a+ 17 087 915b+ 85 137 581c

where the a, b, c are as in Theorem 51

The significance of this is that even though the conjecture has been verified for larger

numbers the assumptions of his theorem are still satisfied. In fact we can play this game for

every transition point of K we get an equation of the same form. Thus we must have the

following equalities hold:

24 727 a1 + 75 235 b1 + 50 508 c1 = |Ω|

75 235 a2 + 125 743 b2 + 176 251 c2 = |Ω|

125 743 a3 + 301 994 b3 + 16 785 921 c3 = |Ω|

301 994 a4 + 17 087 915 b4 + 85 137 581 c4 = |Ω|

17 087 915 a5 + 102 225 496 b5 + 85 137 581 c5 = |Ω|

102 225 496 a6 + 187 363 077 b6 + 85 137 581 c6 = |Ω|

187 363 077 a7 + 272 500 658 b7 + 357 638 239 c7 = |Ω|

272 500 658 a8 + 630 138 897 b8 + 9 809 721 694 c8 = |Ω|

630 138 897 a9 + 10 439 860 591 b9 + 103 768 467 013 c9 = |Ω|
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among other equations outside the transition points of K which are listed in Eliahou’s

paper, that is transition points less than 228. The point is that these equations must all

be simultaneously satisfied with non-negative integers (bi > 0) and at least one of ai and ci

needs to be zero for each i. It is important to note that each equation has its own ai, bi, ci so

that for each equation we get 3 variables, but each equation needs to evaluate to the same

positive integer.

If it is possible to solve this system of simultaneous linear Diophantine equations (with

conditions), I believe it will result in a much larger lower bound on cycle length, requiring

no further assumptions.
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5.0 OTHER VIEWS OF THE PROBLEM

Above we have seen much about the 3n+1 problem. However there is no hope of portraying

all the recent or important results all in one paper; and certainly not in the depth that is

presented above. In order to paint a more complete picture of the 3n + 1 problem we will

now present a few different methods of working on the problem, but not in as much detail.

5.1 GENERALIZATIONS

Often in the realm of mathematics a specific problem can be difficult to solve on its own but

be a direct result from a more general theorem. In hopes that this is the case for the 3n+ 1

problem many mathematicians have examined various generalizations and extension of the

problem. One such generalization is to consider the class of functions:

T3,k(n) =


n

2
if n is even

3n+ k

2
if n is odd

for k ≡ 1 or 5 mod 6. In this case our 3n + 1 problem becomes a consequence of showing

that for any allowed k every iteration of T3,k becomes periodic (hits a cycle) and that there

are only a finite number of distinct cycles. [6]

This generalization of the problem is actually equivalent to an extension of this problem

to the rationals. The Collatz function T can be extended to take all rational numbers n
k

with odd denominator with the exact same definition (based on parity of the numerator).

However a simple rearranging of terms turns this function into exactly T3,k as above. There
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are extensions to the real and complex numbers in an effort that continuous extensions can

lend insight to their discrete counterparts.

This problem can also be generalized to use different coefficients of n when n is odd. The

5n+1 problem, for example, is one of interest which is thought to have a divergent sequence.

This problem is analyzed in [4]

There is also an extension of this problem to the d-adic integers, Zd; specifically of

interest are the 2-adic integers, Z2 (see review section for a brief introduction to p-adic

integers). These extensions are of interest to those working in ergodic theory; an area of

math which studies iterations of functions which preserve a measure. Lagarias among others

has published their work on the Collatz problem using ergodic theory [5]. Terry Tao has also

done a bit of investigation into this problem using the 2-adic numbers [13].
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6.0 CONCLUSIONS

As we have seen the Collatz conjecture is very easy to approach; namely it allows a very quick

understanding of the premise. But in order to get results we needed to delve deeper into

more advanced mathematics. We approached this problem with using probability theory,

number theory, and combinatorics; though this only scratches the surface of the various ways

this problem can be attacked.

We now have a better understanding of the problem and some of the major results

on the problem; including justification that almost every positive integer should converge

(eventually), and that cycles of our iteration should not exist (more precisely, if they exist

they will be extremely large).

The question some mathematicians (and every mathematician’s parents) ask about this

problem is why? What is the importance of this problem and why do we care? Shortly after

this problem was proposed, when none could find a solution, the same questions were asked

of it. At the time, aspiring and settled mathematicians alike were focused on getting strong

results and solving the problem, things the 3n + 1 problem does not seem to allow. This

lead to a period of time where very few worked on the problem.

Now the same questions can be asked of the problem, and the problem itself has not been

more lenient in providing results. But personally, the difficulty of this problem along with its

easy-to-state nature makes this a very interesting problem; it also suggests that if a solution

is to come along it will be the result of a very beautiful area of mathematics. Whether that

area is already studied or still needs to be discovered, well, this is still an open problem.
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APPENDIX

C++ CODE

As mentioned in Section 4.2, specifically the footnote in the proof of Theorem 51 the in-

equality to prove the Theorem can be explained with the transition number discussed in

[2]. However, when going through his proof I attempted my own computations using the

following C++ code to verify the inequalities. The following code uses quadmath.h which

is included with most compilers (anything after GCC 4.6.0), this also requires an extra flag

-lquadmath when linking the o-file.

//Theodore Ian Martiny

#include<quadmath.h>

#include<iostream>

using namespace std;

/*

This code will compute the continued fraction approximations

to log_2(3). Then it will determine the numerator of the last

continued fraction that is larger than log_2(3+1/(5*2^{60})).

This is used to create the rational inequality p(i+1)/q(i+1)

< log_2(3) < p(i)/q(i) < log_2(3+1/(5*2^{60})) < p(i-2)/q(i-2).
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Note that finding this value for other values of n may not work

as expected, since it is occasionally the case that we need

intermediate upper convergents.

*/

int main()

{

int j, n=60;

__float128 pg, pm1, pm2, qm1,qm2,theta,a,pold,pnew,qold;

__float128 qnew, pold2, qold2;

// compute log_2(3+2^(-n)) for n = 60, scale by 5 since

// min value is 5*2^60

pg = log2q(3. + 1/(5*powq(2.,n)));

// we start with computing the components of the

// continued fraction approx to pg and then use this

// to compute the p_n.

// computes p and q using: where a_n nth term in continued fraction,

// computed as well below.

// p_n = a_n*p_{n-1} + p_{n-2}

// q_n = a_n*q_{n-1} + p_{n-2}

// using initial conditions:

pm2 = 0; // p_{-2}

pm1 = 1; // p_{-1}

qm2 = 1; // q_{-2}

qm1 = 0; // q_{-1}
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// now we begin the recursive definition, until we get

// out of base cases.

theta = log2q(3.);

a = floorq(theta);

pold2 = a*pm1 + pm2;

qold2 = a*qm1 + qm2;

theta = 1./(theta -a);

a = floorq(theta);

pold = a*pold2 + pm1;

qold = a*qold2+qm1;

j= 2;

// now we loop and compute updated a, p, q, theta for more j.

while(true)

{

// we do this twice since we are only interested in upper

// convergents.

for (int k=0;k<2;k++)

{

//compute the next continued fraction coefficient

theta = 1./(theta-a);

a = floorq(theta);

//compute the next continued fraction num/denom

pnew = a*pold + pold2;

qnew = a*qold + qold2;
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j = j+k;

pold2 = pold;

qold2 = qold;

pold = pnew;

qold = qnew;

}//for

// now j is odd. Thus log2(3)<p(j)/q(j) we want to know if

// p(j)/q(j) < log2(3 + 2^(-n)) or not, if so then the index we want

// is i = j-2, otherwise we carry on

if (pold/qold < pg)

break;

j = j+1;

}//while

// we’ve broken out of the loop so print the desired index.

cout<<"n="<<n<<": Value of i: "<<j-2<<endl;

return 0;

}//main
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