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ON THE STEADY STATES OF THIN FILM EQUATIONS

Guoqing Liu, PhD

University of Pittsburgh, 2015

This dissertation studies the steady state of thin film type equations. Different considera-

tions of physical forces give different formulations of differential equations. We start with

generalized thin film evolution and derive the second order elliptic equation for steady states.

For the thin film driven by both van der Waals force and Born repulsion force, we define

associated energy and obtain a classical energy minimizing problem by taking semi-limit.

The solution has been proven to converge to a Dirac measure in the limit that repulsive

force term tends to 0. Asymptotic analysis show that the location of the spike would be a

point on the boundary with maximal curvature.

Furthermore, we neglect the Born repulsion force and study radial steady state solution

for van der Waals force driven thin film equation. We link the volume constraint problem

with a initial value ordinary different equation and analyze how radial steady state solution

and associated energy depend on the average thickness.

Keywords: Thin Film Equations, Dirac Measure, Maximal Curvature, Van der Waals

Force, Radial Steady States, Born Repulsion Force.
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1.0 INTRODUCTION AND SUMMARY OF RESULTS

Thin film type equation models the evolution of a thin film of viscous fluids on a solid sur-

face. Due to the large number of applications in coatings industry, including painting and

adhesives, more and more researchers from physics, mathematics and engineering depart-

ments are conducting experiments and analysis to understand the dynamics. It is also a

very interesting and challenging problem in mathematics.

1.1 MATHEMATICAL BACKGROUND

The general form of thin-film equation is given by a fourth order, nonlinear partial differential

equation :

ut = −∇ · (f(u)∇∆u+ g(u)∇u). (1.1.1)

Here u ≥ 0 stands for the thickness of the thin film. The set of points where u = 0 is called

rupture set and the corresponding solution is rupture solution. The highest order term

containing linearized curvature ∆u describes the effects of surface tension. The particular

form of the function f(u) depends on the boundary conditions between the fluid and the

solid surface. Another function g(u) can model additional practical physical force. For most

of cases, we choose polynomials for f and g as following:

ut = −∇ · (un∇∆u+ um∇u). (1.1.2)

When f(u) = u and g(u) = u, it models the thin jet in a gravity driven Hele-Shaw cell

[2, 17, 34, 40, 45, 46, 47]. When f(u) = u3 and g(u) = u3, it models fluid droplet hanging
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from a ceiling [41]. When f(u) = u3 and g(u) = um with typical negative m, it models the

thin film driven by van der Waals force.

If we neglect the second order term in (1.1.1) which is derived from lubrication approxi-

mation, we have the degenerate parabolic equation,

ut = −∇ · (f(u)∇∆u). (1.1.3)

The equation models the surface tension dominated thin films. For the one dimensional

space, there exists a weak solution which preserves the nonnegativity in [14] for the case

f(u) = un. A remarkable technique used there is to study the regularized problem

ut = − ((un + ε)uxxx)x

and prove the boundedness of Hölder norm with respect to x and t which is uniform in ε.

The solution satisfying periodic boundary conditions [19] tends to be strongly positive in

a finite time T and approaches to its mean as t → ∞ when n > 0. Physically, the thin

film spreads and merge into a uniform layer. Moreover, Bertta, Bertsch and Dal Passon [10]

describes in detail about the support of solution depending on the exponent n. If n is large,

the support of the solution is more likely to expand. Regarding the expansion of its support,

Bernis [12, 13] has proven the interface between the region {u > 0} and {u = 0} moves

with finite velocity. In multi-dimensional space, the existence and long time convergence of

weak solutions have been proven in [35, 48] and finite speed of propagation has also been

verified for 1
8
< n < 2 in [27]. One interesting phenomena worthing mention here is about

the existence of so called waiting time. The support for thickness function u expands and

covers the bounded domain eventually. However, if appropriate initial states are given [36],

there will be a time point called waiting time locally at which the support does not expand.

Back to (1.1.1) and (1.1.2), the existence of weak solution for (1.1.2) in one dimension

and its asymptotic behavior in infinite time similarly as degenerate case have already been

shown in [20]. Some other aspects on this thin film equation have been investigated.
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For blow up analysis, Bertozzi and Pugh [22] have proven that for (1.1.1), the solution

would be possible to grow without bound only if

lim
s→∞

s2f(s)

g(s)
<∞ and lim

s→∞

g(s)2

f(s)
=∞.

That is for power law case, only the cases m ≥ n + 2 can allow to have blow up. Later in

[21], They analyzed the case n = 1 and proved the existence of a solution which blows up in

a finite time if m ≤ 3 = n+ 2. Regarding the critical case m = n+ 2, solutions are bounded

for all the time if the total mass is small enough and the critical mass has been explicitly

calculated for n = 1,m = 3 in [15].

Another important mathematical issue is about the self-similar solution in the critical

case m = n + 2 starting from [15]. When n = 1 and m = 3, Bernoff, Bertozzi and Witelski

consider the rescaled solution of the form

u(t, x) = λ(t)ρ(λ(t)x).

There are two main types of solutions, self-similar solution that is spreading and exists for

all t and self-similar solution which blows up at a finite time. They obtained that self-similar

spreading solutions and self-similar blowup solutions with single bump are linearly stable

and self-similar blowup solutions with multi-bumps are linearly unstable by numerically

computing the eigenvalues for the linearized operator. For the general critical case with

various m and n, Beretta [9] provided the condition for the existence of self-similar spreading

solution that 0 < n < 3. In [72], Pugh and Splečev showed self-similar finite time blowup

solution exists only when 0 < n < 3
2
. And the solution might have one or more local

maximum, comparing to the self-similar infinite-time spreading solutions are allowed to

have only one local maximum. In 2007, Splečev [71] demonstrated the numerical calculation

results in [15] with a rigorous mathematical analysis.

Extensive mathematical analysis about the steady states for one-dimensional space case

(n = 1) has also been made in the past decades. R. Laugesen and M. Pugh analyzed

comprehensively the linear stability of positive steady states and touchdown steady states and
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compared their energy level for a more general setting [58, 59, 60]. Later they summarized

the stability and instability results under zero mean perturbation in a bifurcation digram for

power law coefficients [61].

Here we may rewrite (1.1.1) as

ut = ∇ · (f(u)∇p) (1.1.4)

where p can be viewed as the pressure and for power-law coefficients case,

p = − 1

m− n+ 1
um−n+1 −∆u.

We consider the thin film of viscous fluid in a cylindrical container with a finite size. Denote

the bottom of the container with bounded and smooth boundary to be Ω ⊂ Rn with n ≥ 1.

Assume that there is no flux through the boundary,

n · ∇p = 0, on ∂Ω (1.1.5)

where n is the unit outer normal vector. Furthermore, we neglect the wetting and nonwetting

effect and assume the surface of fluid is perpendicular to the container walls,

n · ∇u = 0, on ∂Ω. (1.1.6)

For physical meaning, we will assume that the total volume is given by a constant M > 0

as is the average film thickness

ū =
1

|Ω|

ˆ
Ω

u.

Under the above setting, we are going to introduce two related problems in the next two

sections. Later in Chapter 2, we will formalized the first energy minimizing problem, proved

the main convergence theorem and explicitly located the boundary spike. In Chapter 3, the

radial steady states of some type of thin film equations are investigated. Finally, we make

some conclusions about my work and post my further directions in the last chapter.
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1.2 ENERGY MINIMIZING PROBLEM

For (1.1.1), we will study the semi-limit of the steady state of thin film equation with

f(u) = u3 and p = u1−α − εβu1−α−β −∆u.

ut = −∇ ·
(
u3∇

(
∆u− u1−α + εβu1−α−β)) (1.2.1)

Here p is the total contributions from van der Waals force (u1−α with α > 0), the Born

Repulsion force (εβu1−α−β with ε > 0, β > 0) and surface tension effect (−∆u). We define

the associated energy

Eε [u] =

ˆ
Ω

{
1

2
|∇u|2 − u−α

α
+
εβu−α−β

α + β

}
. (1.2.2)

We have

d

dt
Eε [u] =

ˆ
Ω

{
−∆u+ u1−α − εβu1−α−β}ut

=

ˆ
Ω

div (M (u)∇p) p

= −
ˆ

Ω

M (u) |∇p|2 .

Hence, for a thin film fluid at steady state, p has to be a constant. This leads to the following

elliptic problem with Neumann boundary condition:
−∆u = p− u1−α

(
1−

(
ε
u

)β)
in Ω,

∇p = 0 in Ω,

∂νu = 0 on ∂Ω.

(1.2.3)

Similar lubrication type equations have been researched for the existence of strictly pos-

itive, smooth solution in [49, 50, 54]. In one dimensional space, the existence of solution

to (1.2.1) with mass constraint have been proven in [24]. Also the authors analyzed the

stability of equilibrium and investigated the asymptotic convergence to a δ distribution as

ε → 0. For a higher dimensional space, Chen and Jiang [32] verified this phenomena and

obtained the concentration on the boundary for its singular limit.
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We rewrite the energy (1.2.2) as following,

Eε [u] =

ˆ
Ω

{
1

2
|∇u|2 +

1

εα
F

(
u− ε
ε

)}
dx− F∗

εα
(1.2.4)

where

F (s) =
(1 + s)−α−β

α + β
− (1 + s)−α

α
+ F∗, F∗ =

β

α (α + β)
.

If we take ε approaching 0, F
(
u−ε
ε

)
tends to F∗χ{u>0}. We will investigate its semi limit

energy minimizing problem

Eε[u] :=

ˆ
Ω

{
1

2
|∇u|2 +

1

ε2
χ{u>0}

}
dy. (1.2.5)

with u satisfying mass constraint

H (M) =

{
u ∈ H1 (Ω) : u ≥ 0 a.e. in Ω and

ˆ
Ω

udy = M

}

We will prove that for such an energy minimizer problem (1.2.5), as ε→ 0, energy minimizers

similarly converge to a Dirac measure concentrated on the boundary. Then we apply the

asymptotic analysis and derive the energy formula in terms of curvature. In order to minimize

the associated energy, the boundary spike has to be located at the point with maximal

curvatures.
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1.3 THIN FILM EQUATION WITH ATTRACTIVE VAN DER WAALS

FORCE

Taking ε = 0 and α = 3 in (1.2.1), we only take van der Waals force driven thin film into

account in this section. Then the pressure is given by

p =
1

3
u−3 −∆u.

Fitting into the power law equation (1.1.2), m = −1 and n = 3. For this particular type

thin film evolution equation, lots of research has been done about rupture. The numerical

experiments in [38] imply, perturbation of uniform layer thin film leads to a rupture in finite

time. Later some numerical simulations prove the existence of self-similar solution with

finite time rupture [25, 26, 63]. Chou and Kwong [33] gave some theoretical proofs for the

condition of initial value to have a finite time rupture.

We consider the steady states of this type of thin film equations. Mathematically, we

generalize to for α > 1,

p =
1

α
u−α −∆u.

We associate (1.2.1) with an energy functional

E (u) =

ˆ
Ω

(
1

2
|∇u|2 − 1

α (α− 1)
u1−α

)
,

and formally, using the boundary conditions (1.1.5) , (1.1.6), we have

d

dt
E (u) =

ˆ
Ω

∇u∇ut +
1

α
u−αut

=

ˆ
Ω

(
−∆u+

1

α
u−α

)
ut

=

ˆ
Ω

p∇ (un∇p)

= −
ˆ

Ω

un |∇p|2 ≤ 0.

Hence, for a thin film fluid at rest the pressure p has to be a constant and u satisfies the

elliptic equation

−∆u+
1

α
u−α = p in Ω

7



with the Neumann boundary condition (1.1.6) and volume constraint

1

|Ω|

ˆ
Ω

u = ū for given ū.

We restrict to the radial case with Ω = B1(0) and p = 1
α

,

urr +
1

r
ur =

1

α
u−α − 1

α
.

Take initial value u(0) = η and solution with η = 0 is the rupture solution [57, 56]. Every

radial solution to volume prescribed problem can be constructed by this initial value problem

by choosing appropriate η and k-th critical value [57]. In my dissertation, we research the

continuous dependence of the average thickness ū and associated energy E on η ∈ [0,∞).

Especially, we provide theoretical proof for the asymptotic behavior of ū and E as η → ∞

which was verified numerically in [64]. Moreover, the description of limiting profile will be

given.

8



2.0 SINGULAR LIMIT OF AN ENERGY MINIMIZING PROBLEM

2.1 INTRODUCTION AND MAIN RESULTS

Let Ω ⊂ Rn, n ≥ 2 be a smooth bounded domain. For any ε > 0, we consider the energy

functional

Eε[u] :=

ˆ
Ω

{
1

2
|∇u|2 +

1

ε2
χ{u>0}

}
dy (2.1.1)

in the space

H (M) =

{
u ∈ H1 (Ω) : u ≥ 0 a.e. in Ω and

ˆ
Ω

udy = M

}

where M > 0 is a given constant.

Such energy functional without mass constraint has been extensively studied. Here is

the brief history. Caffarelli and Alt [3] showed the Lipschitz continuity for the minima and

proved singularities cannot occur for minimizer in two dimensional space. Later, Alt, Caf-

farelli and Friedman [4] extended the result to the case with two phases using monotonicity

formula and developed the full regularity theory of the free boundary ∂{u > 0} in dimension

2 and partial regularity theory in higher dimension. In 1999, Weiss [73] claimed the existence

of critical dimension k such that the free boundary is smooth if n < k. Later, Caffarelli,

Jerison and Kenig [30] proved the full regularity result in three-dimensional space which

indicated k > 3. Moreover, the work completed by De Silva and Jerison pointed out k < 7

since in 7-dimensional space the singular axisymmetric critical point of the functional is an

energy minimizer. Till now, the cases 4 ≤ k ≤ 6 remain open. Also more general energy

functional has been studied in [1, 5, 31, 37, 62].
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Under current setting with mass constraint, the energy minimizing problem can be viewed

as a semi-limit of a singular elliptic equation [32, 54] modeling steady states of thin film

equation with both van der Waals force and Born repulsion force. In these papers, the

energy is defined in the following form,

Eε [u] =

ˆ
Ω

{
1

2
|∇u|2 +

1

εα
F

(
u− ε
ε

)}
dx− F∗

εα

where

F (s) =
(1 + s)−α−β

α + β
− (1 + s)−α

α
+ F∗, F∗ =

β

α (α + β)
.

If we let ε approaching 0, F
(
u−ε
ε

)
tends to F∗χ{u>0} formally. It was shown by Chen and

Jiang, for thin film equation with both van der Waals force and Born repulsion force, the

energy minimizing solutions converge to the limiting profile which is a Dirac measure locat-

ed on the boundary. Such behavior has also been verified in one dimensional space in [18].

Abundant research on some other aspects of thin film equations including the stability of the

solutions has been done by lots of authors [8, 9, 18, 19, 23, 34, 27, 35, 55, 57, 58, 59, 60, 61, 71].

The existence of energy minimizers of Eε in H (m) follows from the direct method of

calculus of variation. Moreover, we have the following asymptotic behavior of the energy

minimizers:

Theorem 1. Let M > 0 and {εk}∞k=1 be a positive sequence converging to 0. For each

k ≥ 1, let uεk ∈ H (M) be an energy minimizer of Eεk in H (M). Then up to subsequence if

necessary, {uεk}∞k=1 approaches a Dirac mass supported on the boundary; that is, there exists

p ∈ ∂Ω such that

lim
k→∞

ˆ
Ω

uεk (x)ϕ (x) dx = M ϕ (p) ∀ϕ ∈ C(Ω̄).

Next, we want to understand the microscopic structure of the energy minimizer near its

concentration point. Let uε ∈ H (M) be a minimizer of Eε. Let xε ∈ Ω be a point where

uε attains its maximum and pε ∈ ∂Ω be such that

|pε − xε| = inf
p∈∂Ω
|p− xε| . (2.1.2)
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Let δ = ε1/(n+1). We define

Ωδ =

{
x− pε
δ

: x ∈ Ω

}
(2.1.3)

and

vδ (y) = δnuε (x) where y =
x− pε
δ
∈ Ωδ. (2.1.4)

Then one can verify that vδ is an energy minimizer of

Eδ[v] :=

ˆ
Ωδ

{
1

2
|∇v|2 + χ{v>0}

}
dy (2.1.5)

in the space

Hδ (M) =

{
v ∈ H1 (Ωδ) : v ≥ 0 a.e. in Ωδ and

ˆ
Ωδ

vdy = M

}
.

Theorem 2. Under the assumption of Theorem 1, passing to a subsequence if necessary, as

k →∞, pεk → p for some point p ∈ ∂Ω and vδk → v∗, locally uniformly in

R+
ν(p) := {y ∈ Rn | y · ν(p) < 0}

where δk = ε
1/(n+1)
k and ν(p) is the unit exterior normal of ∂Ω at p. Here

v∗ (y) = A∗ max{0, R∗2 − |y|2}

where

R∗ :=

(
1

2

)− 1
2(n+1)

(
(n+ 2)M

ωn

) 1
n+1

, A∗ :=

(
1

2

) n+2
2(n+1)

(
(n+ 2)M

ωn

)− 1
n+1

.

and ωn denotes the volume of unit ball in Rn.
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Note that v∗ is the global minimizer of

E∗ [v] :=

ˆ
Rn+

{
1

2
|∇v|2 + χ{v>0}

}
dy

in the space

H∗ (M) :=

{
v ∈ H1

(
Rn

+

)
:

ˆ
Rn+
v (y) dy = M and v ≥ 0

}
.

Now, we are about to investigate the location of the boundary spike. After translation

and rotation if necessary, we suppose the concentration point p to be the origin point. Locally

the boundary of ∂Ω can be written as

xn = ψ (x′) , x′ = (x1, · · · , xn−1) , |x′| ≤ η

where ψ (0′) = 0,∇x′ψ (0′) = 0′. Consequently, the boundary of Ωδ near the origin can be

expressed as

yn =
1

δ
ψ (δy′) , y′ = (y1, · · · , yn−1) , |y′| ≤ η

δ
.

Based on the limit profile of v∗, we apply the asymptotic analysis and assume the energy

minimizer has the asymptotic expansion as follows,


D =

{
y ∈ Rn : yn > ψ(δy′)/δ, |y| < R + δR1

(
y
|y|

)
+O(δ2)

}
,

v = λ
2n

[R2 − |y|2] + δv1(y) +O(δ2) ∀ y ∈ D̄.

Here D = {y : v(y) > 0}, v and R are some constants depending on δ, λ depending on

δ through R is Lagrange multipliers corresponding to the mass constraint. We know, in

general, the solution does not necessarily have its mass concentrated near original point.

Then some additional constraints have been added.

ˆ
Ωδ

yivdy = 0 ∀ i = 1, · · · , n− 1.
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Therefore, v1, R1 satisfy

−∆v1 = 0 in BR ∩ Rn+ =: B+
R ,

v1 = R∂nv1 on ∂BR ∩ Rn+ =: ΓR,

∂ynv1 = − λ
2n

∑n−1
i=1 κiy

2
i on B′R × {0},

R1(y/|y|) = n∂nv1(y)/λ ∀ y ∈ ΓR.

(2.1.6)

Analyzing the system leads to the following theorem,

Theorem 3. The energy of the Quasi-stationary solution (v,D) has the asymptotic expan-

sion

Eδ[v] ≡
ˆ
D

{
1

2
|∇v|2 + 1

}
= E∗ [v∗]− c (n)Mκδ +O(δ2)

where

c (n) =
(n− 1) (n+ 2) (n+ 7)ωn−1√

2(n+ 1) (n+ 3)ωn

is a positive constant.

The above formula implies the peak should be situated near the “most curved”part of

∂Ω. This type of behavior has been seen before in [67, 68] where Ni and Takagi proved

that a type of semilinear elliptic equation with homogeneous Neumann boundary condition

admits a least energy solution using Mountain-Pass Lemma and the solution, approximated

by ground state solution in Rn, attains exactly one peak on the boundary with the maximum

of the peak uniformly bounded. We all have that the points where the minimizer takes its

maximum tends to a point on the boundary as ε→ 0. However, the difference of the behavior

of our solution with theirs is that maximum of our solutions tends to be unbounded. Later,

related results for the semilinear Dirichlet problem have been obtained by Ni and Wei in

[69].

This chapter is organized as follows: after introduction, we prove the existence of energy

minimizing solution to (2.1.1). Later, we present some preliminary results about the energy

bound for (2.1.5) obtained after scaling in section 3. We derive corresponding Euler equation

and prove the some regularity results in the following three sections. And then the limit

profiles in the theorem 1 and 2 are obtained in section 7. We perform asymptotic analysis in
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section 8 and prove the existence of the solution to the linearization problem (2.1.6). Finally

in section 9, we end with the derivation of the energy expansion which is the theorem 3.

2.2 EXISTENCE OF ENERGY MINIMIZING SOLUTIONS

We will show the existence of minimizers for energy function (2.1.1) in the admissible space

using standard direct method of calculus of variations.

Recall the energy functional,

Eε[u] :=

ˆ
Ω

{
1

2
|∇u|2 +

1

ε2
χ{u>0}

}
dy (2.2.1)

in the space

H (M) =

{
u ∈ H1 (Ω) : u ≥ 0 a.e. in Ω and

ˆ
Ω

udy = M

}
where M > 0 is a given constant.

Theorem 4. For any ε > 0, there exists at least one global minimizer of (2.2.1) in H (M).

Proof. Taking the constant function u0 = M
|Ω| , we have

Eε[u0] =
|Ω|
ε2

<∞.

Since Eε[u] is nonnegative, there exists a minimizing sequence {uk}∞k=1 in H (M). Then,

|∇uk| is bounded in L2(Ω). Applying Poincaré Inequality and M =
´

Ω
uk, we have,

ˆ
Ω

|uk −
M

|Ω|
|2 ≤ C

ˆ
Ω

|∇uk|2.

It follows that uk is bounded in H1(Ω). Up to a subsequence, there exists u ∈ H1(Ω) such

that {uk}∞k=1 weakly converges in H1(Ω) and strongly converges in L2(Ω) to u. Then, {uk}∞k=1

converges to u almost everywhere in Ω.

ˆ
Ω

χ{u>0} ≤
ˆ

Ω

χ{uk>0} and

ˆ
Ω

u = lim
k→∞

ˆ
Ω

uk = M

14



which indicates the limit function u ∈ H (M). On the other side,
ˆ

Ω

|∇u|2 ≤ lim inf
k→∞

ˆ
Ω

|∇uk|2.

Hence,

Eε[u] =

ˆ
Ω

{
1

2
|∇u|2 +

1

ε2
χ{u>0}

}
dy

≤ lim inf
k→∞

ˆ
Ω

{
1

2
|∇uk|2 +

1

ε2
χ{uk>0}

}
dy = lim inf

k→∞
Eε[uk].

Therefore, we conclude that u is a global minimizer in H (M).

2.3 PROPERTIES OF ENERGY

First of all, let v∗ be a minimizer of

E∗[v] =

ˆ
Rn+

{
1

2
|∇v|2 + χ{v>0}

}
dy

in the admissible class

H∗ (M) :=

{
v ∈ H1

(
Rn

+

)
:

ˆ
Rn+
v (y) dy = M and v ≥ 0

}
.

Regarding this limit case problem, Chen and Jiang [32] have proved the following propo-

sition:

Proposition 1. Up to a translation, any global minimizer of E∗ in H∗(M) is of the form

v∗ (y) = A∗ max{0, R∗2 − |y|2}

where  R∗ :=
(

1
2

)− 1
2(n+1)

(
(n+2)M
ωn

) 1
n+1

,

A∗ :=
(

1
2

) n+2
2(n+1)

(
(n+2)M
ωn

)− 1
n+1

and ωn denotes the volume of unit ball in Rn. The minimum energy is given as

e∗(M) = inf
v∈H∗(M)

E∗ [v] = 2(n+ 1)(
ωn
n+ 2

)
1

n+1 (
1

2
)

n+2
2(n+1)M

n
n+1 .

15



Now let vδ be a minimizer to

Eδ[v] :=

ˆ
Ωδ

{
1

2
|∇v|2 + χ{v>0}

}
dy

in the admissible class

Hδ (M) =

{
v ∈ H1 (Ωδ) : v ≥ 0 a.e. in Ωδ and

ˆ
Ωδ

vdy = M

}
.

Denote

eδ(M) = inf
v∈Hδ(M)

Eδ[v].

We start with the dependence of energy on M .

Lemma 1. For 0 < δ < 1, 0 < M1 ≤ M2,

eδ(M1) ≤ eδ(M2) ≤ (
M2

M1

)2eδ(M1).

In particular, eδ(M) is continuous in M.

Proof. Assuming v1 is a minimizer for Eδ[v] in Hδ(M1), we have

M2

M1

v1 ∈ Hδ(M2)

and

eδ(M2) ≤ Eδ[
M2

M1

v1] =

ˆ
Ωδ

{
1

2
(
M2

M1

)2 |∇v1|2 + χ{v1>0}

}
≤ (

M2

M1

)2

ˆ
Ωδ

{
1

2
|∇v1|2 + χ{v1>0}

}
= (

M2

M1

)2eδ(M1).

Assuming v2 is a minimizer for Eδ[v] in Hδ(M2), we define

v1 =

 v2 if v2 ≤ η,

η if v2 > η

where η > 0 is chosen so that ˆ
Ωδ

v1 = M1.
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Therefore,

v1 ∈ Hδ(M1)

and

eδ(M1) ≤ Eδ[v1] =

ˆ
Ωδ

{
1

2
|∇v1|2 + χ{v1>0}

}
≤
ˆ

Ωδ

{
1

2
|∇v2|2 + χ{v2>0}

}
= eδ(M2).

Now for any given M and t, then if t > 1,

eδ(M) ≤ eδ(tM) ≤ t2eδ(M).

If t < 1,

t2eδ(M) ≤ eδ(tM) ≤ eδ(M).

Hence,

lim
t→1

eδ(tM) = eδ(M).

Next, we establish an upper bound of eδ(M).

Lemma 2. For small δ > 0,

eδ(M) ≤ e∗(M)[1 +O(δ)].

Proof. Up to a translation and rotation, we can assume p ∈ ∂Ω is the origin and the unit

exterior normal of ∂Ω at p is (0, · · · , 0,−1). In a small neighborhood of p we express the

boundary of Ω as

xn = ψ (x′) , x′ = (x1, · · · , xn−1) , |x′| ≤ η

where ψ (0′) = 0,∇x′ψ (0′) = 0′ and ψxixj(0
′) = κiδ

ij, 1 ≤ i, j ≤ n − 1. Here κi is the

principal curvature and

κ =
n−1∑
i=1

κi/(n− 1)

17



is the mean curvature of Ω at p. Consequently, the boundary of Ωδ near the origin can be

expressed as

yn =
1

δ
ψ (δy′) , y′ = (y1, · · · , yn−1) , |y′| ≤ η

δ
.

Denoting by Br the ball of radius r centered at the origin, using the Taylor expansion

1

δ
ψ (δy′) =

δ

2
κiy

2
i +O

(
δ2
)
,

we can conclude, for r ∈ (0, R] with fixed R independent of small δ,

|∂Br ∩ Ωδ| −
1

2
|∂Br| = −

(n− 1)ωn−1

2
κrnδ +O

(
δ2
)
,

|Br ∩ Ωδ| −
1

2
|Br| = −

(n− 1)ωn−1

2 (n+ 1)
κrn+1δ +O

(
δ2
)
.

Let v = A
(
R∗2 − |y|2

)
+

where

A =
A∗

´
BR∗∩Rn+

(
R∗2 − |y|2

)
dy´

BR∗∩Ωδ

(
R∗2 − |y|2

)
dy

,

we have

A = A∗ [1 +O (δ)] and

ˆ
Ωδ

v = M.

Consequently, v ∈ Hδ (M) implies

eδ(M) ≤ Eδ [v] =

ˆ
Ωδ

{
1

2
|∇v|2 + χ{v>0}

}
dy

≤
ˆ

Ωδ

1

2
(
A

A∗
)2 |∇v|2 dy + |BR∗ ∩ Ωδ|

= e∗(M)[1 +O(δ)].

Remark 1. The above estimate gives that the boundedness of eδ(M) is uniform in δ. We

can pick up δ small such that eδ(M) ≤ 2e∗(M). Note that

eδ (M) ≥
ˆ

Ωδ

χ{vδ>0}dy.

The upper bound for eδ (M) implies that for δ small enough, the minimum for vδ(y) is equal

to 0. Meanwhile, the measure of set {x : vδ(x) > 0} is bounded above by 2e∗(M).
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Lemma 3. When 0 < δ < M
|Ω| ,

max
y∈Ωδ

vδ (y) ≥ M

eδ (M)
.

Proof. Since

eδ (M) ≥
ˆ
{vδ>0}

1 ≥
ˆ
{vδ>0}

vδ(y)dy

max vδ
=

M

max vδ
,

we have

max
y∈Ωδ

vδ (y) ≥ M

eδ (M)
.

Analogously to [32], we use a rearrangement argument to establish a lower bound for

eδ (M) and then obtain the limit of eδ (M) .

Theorem 5. For any M > 0,

lim inf
δ→0+

eδ (M) ≥ e∗ (M) .

Moreover,

lim
δ→0+

eδ(M) = e∗(M).

Proof. Let v be a minimizer of Eδ in Hδ (M) and

v̄ = max
y∈Ωδ

v (y) and v = min
y∈Ωδ

v (y) .

For δ small enough, from the above remark, we know v = 0. We define for any t ∈ [0,∞),

D (t) = {x ∈ Ωδ : v (x) > t} , Γ (t) = ∂D (t) ∩ Ωδ

and

µ (t) = |D (t)| , ` (t) = |Γ (t)| .

For any open interval (a, b), we have from the coarea formula [42],

−µ′ (t) =

ˆ
Γ(t)

1

|∇v (y)|
dHn−1 (y) (2.3.1)
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and ˆ
{x∈Ωδ,a<v<b}

|∇v|2 dy =

ˆ b

a

ˆ
Γ(t)

|∇v (y)| dHn−1 (y) dt.

Using

|` (t)|2 =

(ˆ
Γ(t)

1dHn−1

)2

≤
ˆ

Γ(t)

1

|∇v (y)|
dHn−1

ˆ
Γ(t)

|∇v (y)| dHn−1,

we derive from (2.3.1), ˆ
Γ(t)

|∇v (y)| dHn−1 (y) ≥ |` (t)|2

−µ′ (t)
.

Thus, ˆ
{x∈Ωδ,a<v<b}

|∇v|2 dy ≥
ˆ b

a

|` (t)|2

−µ′ (t)
dt.

Let P (·) be the best constant of isometric inequality:

P (α) := inf
D⊂Ωδ,|D|≤α

|∂D ∩ Ωδ| 2
nωn(

|D| 2
ωn

)n−1
n

.

P (α) is decreasing in α. Now for small ε > 0, since

eδ (M) ≥
ˆ

Ωδ

χ{v>ε} = µ (ε) ,

we have

µ (ε) ≤ e∗ (M) [1 +O (δ)] .

Also as Ωδ has almost flat and smooth boundary ∂Ωδ = ∂Ω/δ, we see that

P (ε) = 1 +O (δ) .

Hence,

ˆ
Ωδ

|∇v|2 dy ≥
ˆ v̄

ε

|` (t)|2

−µ′ (t)
dt

≥
ˆ v̄

ε

[P (µ (t))]2
(

2µ(t)
ωn

)2− 2
n
n2ω2

n

−4µ′ (t)
dt

≥ (P (ε))2
(ωn

2

) 2
n
n2

ˆ v̄

ε

µ (t)
2− 2

n

|µ′ (t)|
dt.
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Now define the symmetric decreasing rearrangement function w by

r (t) =

(
2µ (t)

ωn

) 1
n

, w (r (t)) = t, t ∈ [0, v̄] .

Then

µ (t) =
ωnr (t)n

2
, w′ (r (t)) r′ (t) = 1,

µ′ (t) =
nωnr

n−1r′ (t)

2
=
nωnr

n−1
n

2wr
, dt =

dr

r′ (t)
= wrdr.

It then follows that

ˆ
Ωδ

|∇v|2 dx ≥ (P (ε))2
(ωn

2

) 2
n
n2

ˆ v̄

ε

µ (t)
2− 2

n

|µ′ (t)|
dt

≥ (P (ε))2
(ωn

2

) 2
n
n2

ˆ r(ε)

0

(
ωnrn

2

)2− 2
n∣∣∣nωnrn−1

2wr

∣∣∣ wrdr
=

[1 +O (δ)]

2

ˆ r(ε)

0

w′2nωnr
n−1dr.

And then,

eδ(M) =

ˆ
Ωδ

{
1

2
|∇v|2 + χ{v>0}

}
≥ [1 +O (δ)]

2

ˆ r(ε)

0

{
1

2
w′2+

}
nωnr

n−1dr.

Finally, we define

ŵ (r) =



w (r) if r ∈ [0, r (ε)] ,

ε+ r (ε)− r if r ∈ [r (ε) , r (ε) + ε] ,

0 if r ∈ [r(ε) + ε,∞) .
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Then we have

ˆ ∞
0

ŵ′2rn−1dr −
ˆ r(ε)

0

w′2rn−1dr =

ˆ r(ε)+ε

r(ε)

ŵ′2rn−1dr

≤ε |r (ε) + ε|n−1 = ε

∣∣∣∣∣
(

2µ (ε)

ωn

) 1
n

+ ε

∣∣∣∣∣
n−1

≤ε

∣∣∣∣∣
(

2eδ (M)

ωn

) 1
n

+ ε

∣∣∣∣∣
n−1

= O (ε) .

Meanwhile

ˆ r(ε)+ε

0

rn−1dr −
ˆ r(ε)

0

rn−1dr

≤
ˆ r(ε)+ε

r(ε)

rn−1dr

≤ ε |r (ε) + ε|n−1 = O (ε)

and

M̂ :=
nωn

2

ˆ ∞
0

ŵrn−1dr =
nωn

2

ˆ r(ε)+ε

r(ε)

ŵrn−1dr +

ˆ
{v>ε}

v (x) dx

≥M −
ˆ
{v≤ε}

v (x) dx ≥M − ε |Ωδ| .

Thus, we obtain

eδ (M) ≥ [1 +O (δ)]

2

ˆ r(ε)

0

{
1

2
w′2 + 1

}
nωrn−1dr

≥ [1 +O (δ)]

{ˆ
Rn+

{
1

2
|∇ŵ|2 + χ{ŵ>0}

}
−O (ε)

}
≥ [1 +O (δ)]

{
e∗
(
M̂
)
−O (ε)

}
≥ [1 +O (δ)] {e∗ (M − ε |Ωδ|)−O (ε)} .

Letting ε→ 0, we obtain

eδ (M) ≥ [1 +O (δ)] e∗(M).

Taking δ → 0,

lim inf
δ→0+

eδ (M) ≥ e∗ (M) .

The assertion is completely proved due to Lemma 2.

22



2.4 EULER-LAGRANGE EQUATION

In this section we are going to derive the Euler-Lagrange equation for the minimizer vδ.

Firstly, we prove that vδ is continuous inside Ωδ.

Theorem 6. For any compact set K ⊂ Ωδ, there exists a constant C such that

|vδ(x)− vδ(y)| ≤ C|x− y| log(
1

|x− y|
) (2.4.1)

if x, y ∈ K, |x− y| < r0 with r0 small.

Proof. Let Br(y) ⊂ Ωδ be any ball of radius r with center y and u ∈ H1(Ωδ) be the unique

function satisfying

∆u = 0 in Br(y) and u = vδ in Ωδ\B̄r(y).

Then let Mr =
´

Ωδ
(vδ − u) then

´
Ωδ
u = M −Mr and

|Mr| ≤
ˆ
Br(y)

|vδ − u|

≤ Crn/2(

ˆ
Br(y)

|vδ − u|2)1/2

≤ Crn/2+1(

ˆ
Br(y)

|∇vδ −∇u|2)1/2 (2.4.2)

= Crn/2+1(

ˆ
Br(y)

|∇vδ|2 −
ˆ
Br(y)

|∇u|2)1/2 (2.4.3)

≤ Crn/2+1(eδ(M))1/2 ≤ Crn/2+1 (2.4.4)

where C = C(M,n) is some constant depending on the total mass M and dimension n.

Here (2.4.2) follows from the Poincaré Inequality and the last step (2.4.4) holds according to

Lemma 2. We choose r small such that |Mr| ≤ M
2

. Define ũ = ku, where k = M
M−Mr

. Note

that 2
3
≤ k ≤ 2. Since ũ ∈ Hδ(M), we can derive,

0 ≤ Eδ(ũ)− Eδ(vδ)

=

ˆ
Ωδ

{
1

2
k2 |∇u|2 + χ{u>0}

}
−
ˆ

Ωδ

{
1

2
|∇vδ|2 + χ{vδ>0}

}
=

ˆ
Br(y)

(χ{u>0} − χ{vδ>0}) +
k2 − 1

2

ˆ
Ωδ

|∇vδ|2 +
k2

2

ˆ
Br(y)

(|∇u|2 − |∇vδ|2)

≤ C1r
n + C2(k2 − 1)− 1

2
k2

ˆ
Br(y)

|∇(u− vδ)|2.
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C1, C2 = C2(M,n) are constants following Lemma 2. Therefore,

ˆ
Br(y)

|∇u−∇vδ|2 ≤ C1
2

k2
rn + C2

2(k2 − 1)

k2
(2.4.5)

≤ 9

2
C1r

n +
27

M
C2Mr.

Plug (2.4.2) into (2.4.5), we obtain

ˆ
Br(y)

|∇(u− vδ)|2 ≤
9

2
C1r

n +
27

M
C2r

n/2+1(

ˆ
Br(y)

|∇(u− vδ)|2)1/2.

Consequently, solving the above quadratic equation yields

ˆ
Br(y)

|∇vδ|2 −
ˆ
Br(y)

|∇u|2 =

ˆ
Br(y)

|∇u−∇vδ|2 ≤ Crn

where C = C(M,n) is a constant.. Proceeding as [4] Theorem 2.1, we have finished the

proof of the above estimate.

For convenience, we will suppress the subscript δ here and let v = vδ. D = {y ∈ Ωδ : v > 0}

is an open set as a result of the continuity. By the standard calculus of variation, for

∀ζ ∈ C∞0 (D) with
´
D
ζdy = 0 and ε sufficiently small so that v + εζ > 0 in D,

0 = lim
ε→0

1

ε
(Eδ[v + εζ]− Eδ[v]) =

ˆ
D

∇v · ∇ζdy.

We can derive that

∆v = −λδ in D

where λδ is the Lagrange multiplier.

The next theorem shows that, in a generalized sense, on the free boundary ∂D ∩ Ωδ,

∂νv = −
√

2.

Theorem 7. If v = vδ is a minimizer of Eδ[v], then

lim
ε→0

ˆ
∂{v>ε}

(|∇v|2 − 2)η · νdHn−1 = 0

for every η ∈ C∞0 (Ω,Rn) where ν is the outer normal vector.
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Proof. For η ∈ C∞0 (Ω,Rn), define τε(y) = x+ εη(y) for ε > 0 small. Then, it follows that

Dτε = I + εDη and detDτε = 1 + ε∇ · η +O(ε2).

Let vε(τε(y)) = v(y). The mass Mε of vε is obtained by

Mε =

ˆ
Ω

vε(τε(y)) detDτεdy =

ˆ
D

v(y) detDτεdy

= M + ε

ˆ
D

v∇ · ηdy +O(ε2).

Since M
Mε
vε ∈ Hδ(M),

0 ≤ Eδ[
M

Mε

vε]− Eδ[v]

=

ˆ
D

[
1

2

(
M

Mε

)2

|∇v(Dτε)
−1|2 + 1

]
detDτεdy −

ˆ
D

[
1

2
|∇v|2 + 1

]
dy

=

ˆ
D

[
1

2

(
M

Mε

)2

|∇v(I − εDη)|2 + 1

]
(1 + ε∇ · η)dy −

ˆ
D

[
1

2
|∇v|2 + 1

]
dy

=
1

2

(
1−

ε
´
D
v∇ · ηdy
M

)2 ˆ
D

[
|∇v|2 − 2ε∇v ·Dη · ∇v

]
(1 + ε∇ · η)dy

−
ˆ
D

[
1

2
|∇v|2 + 1

]
dy + ε

ˆ
D

∇ · ηdy

= ε

(
1

2

ˆ
D

[
−2∇v ·Dη · ∇v + |∇v|2∇ · η + 2∇ · η − 2v∇ · η

´
D
|∇v|2dy
M

]
dy

)
.

The linear term in ε must vanish, giving

0 =

ˆ
D

[
−2∇v ·Dη · ∇v + |∇v|2∇ · η + 2∇ · η − 2v∇ · η

´
D
|∇v|2dy
M

]
dy

= lim
ε→0

(ˆ
{v>ε}

2(∆v + λ)∇v · ηdy −
ˆ
∂{v>ε}

(|∇v|2 − 2 + 2λv)η · νdHn−1

)
= lim

ε→0

(ˆ
{v>ε}

2(∆v + λ)∇v · ηdy −
ˆ
∂{v>ε}

(|∇v|2 − 2 + 2λε)η · νdHn−1

)

where λ =
´
D |∇v|

2dy

M
. Therefore,

lim
ε→0

ˆ
∂{v>ε}

(|∇v|2 − 2)η · νdHn−1 = 0.
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So far we have shown that in the sense of Theorem 7, v = vδ is a weak solution of the

Euler-Lagrange equation



∆v = −λδ in D = {y ∈ Ωδ : v > 0}

v = 0 and ∂νv = −
√

2 on ∂D ∩ Ωδ,

∂nv = 0 on ∂D ∩ ∂Ωδ,´
D
v (y) dy = M,

(2.4.6)

where ν is the unit outer normal and the constant λδ is the Lagrange multiplier such that

for δ small,

λδ =

´
D
|∇v|2dy
M

≤ 2eδ(M)

M
≤ 4e∗(M)

M
.

2.5 UNIFORM HÖLDER CONTINUITY

In this section, we prove the Uniform Hölder Continuity for the minimizer vδ. we need the

following uniform Poincaré inequality.

Lemma 4. For any open connected domain Ω in class Θ defined by

Θ = {Ω(a, f) with 0 ≤ a ≤ 1, f ∈ C2(Bn−1
1 ), ‖f‖C2 ≤ ε <

1

2
with f(0) = f ′(0) = 0}

where

Ω(a, f) = {∀x = (x′, xn) ∈ B1(0), xn < a+ f(x′)},

there exists a uniform C such that

(

ˆ
Br(0)∩Ω

u2)1/2 ≤ Cr(

ˆ
Br(0)∩Ω

|∇u|2)1/2

for ∀u ∈ H1(Ω) with u = 0 on ∂Br(0) ∩ Ω and r < 1.
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Proof. Apply the Corollary 3 in [29]. One can check that B1(0) ∩ Ω satisfies the ε-cone

property. Then there exists a uniform C such that

(

ˆ
B1(0)∩Ω

u2)1/2 ≤ C(

ˆ
B1(0)∩Ω

|∇u|2)1/2

for all Ω in class Θ and ∀u ∈ H1(Ω) with u = 0 on ∂B1(0) ∩ Ω. Rescaling argument shows

that

(

ˆ
Br(0)∩Ω

u2)1/2 = (rn
ˆ
B1(0)∩Ω̃

u(ry)2)1/2

≤ C(rn+2

ˆ
B1(0)∩Ω̃

|∇u(ry)|2)1/2 = Cr(

ˆ
Br(0)∩Ω

|∇u|2)1/2

where Ω̃ is the transformation of Ω after scaling which still belongs to class Θ.

It is ready to make a comparison with a harmonic function in any small ball and obtain

the growth of local integrals.

Lemma 5. For any y ∈ Ωδ and r > 0,

ˆ
Br(y)∩Ωδ

|∇vδ|2 ≤
ˆ
Br(y)∩Ωδ

|∇v|2 + Crn (2.5.1)

holds for any v ∈ H1 (Ωδ) satisfying v is harmonic in Br(y) ∩ Ωδ and v = u in Ωδ\Br (y).

Here C is a constant depending on m.

Proof. Let Br(y) be any ball of radius r with center point y in Ωδ and define function

v ∈ H1(Ωδ) satisfying

∆v = 0 in Br(y) ∩ Ωδ and v = vδ in Ωδ\Br(y).

Then let Mr =
´

Ωδ
(vδ − v) then

´
Ωδ
v = M −Mr and

|mr| ≤
ˆ

Ωδ

|vδ − v| ≤
ˆ
Br(y)∩Ωδ

|vδ − v|

≤ Crn/2(

ˆ
Br(y)∩Ωδ

|vδ − v|2)1/2 ≤ Crn/2+1(

ˆ
Br(y)∩Ωδ

|∇vδ −∇v|2)1/2 (2.5.2)

≤ Crn/2+1(

ˆ
Br(y)∩Ωδ

|∇vδ|2)1/2 ≤ Crn/2+1eδ(M) ≤ Crn/2+1 (2.5.3)
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where C = C(M) is some constant. (2.5.2) follows from the uniform Poincaré Inequality

(Lemma 4) due to the fact that the smooth boundary of Ωδ is almost flat if we take r so

small. The last step (2.5.3) holds according to Lemma 2. We choose δ to be small so that

|Mr| ≤ M
2

. Define ṽ = kv, where 2
3
≤ k = M

M−Mr
≤ 2. Since ṽ ∈ Hδ(M), we can derive,

0 ≤ Eδ(ṽ)− Eδ(vδ)

=

ˆ
Ωδ

{
1

2
k2 |∇v|2 + χ{ṽ>0}

}
−
ˆ

Ωδ

{
1

2
|∇vδ|2 + χ{vδ>0}

}
=

ˆ
Br(y)∩Ωδ

(
χ{ṽ>0} − χ{vδ>0}

)
+
k2 − 1

2

ˆ
Ωδ

|∇vδ|2 +
k2

2

ˆ
Br(y)∩Ωδ

(
|∇v|2 − |∇vδ|2

)
≤ C1r

n + C2(k2 − 1)− 1

2
k2

ˆ
Br(y)∩Ωδ

|∇v −∇vδ|2.

C1, C2 = C2(M) are constants following Lemma 2. Therefore,

ˆ
Br(y)∩Ωδ

|∇v −∇vδ|2 ≤ C1
2

k2
rn + C2

2(k2 − 1)

k2
(2.5.4)

≤ 9

2
C1r

n +
27

M
C2Mr.

Plug (2.5.2) into (2.5.4), we obtain

ˆ
Br(y)∩Ωδ

|∇v −∇vδ|2 ≤
9

2
C1r

n +
27

M
C2r

n/2+1(

ˆ
Br(y)∩Ωδ

|∇v −∇vδ|2)1/2.

Consequently, solving the above quadratic equation yields

ˆ
Br(y)∩Ωδ

|∇vδ|2 −
ˆ
Br(y)∩Ωδ

|∇v|2 =

ˆ
Br(y)∩Ωδ

|∇v −∇vδ|2 ≤ Crn

where C = C(M) is a constant only depending on M .

Checking the harmonic function v in the right hand side of (2.5.1) which satisfies the

Neumann boundary condition on the boundary, we quote Lemma 9 in [32] which gives the

estimate.
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Lemma 6. Let 0 < ε ≤ 1. For any α̃ ∈ (0, 1), there exist r0 > 0 and Kα̃ > 1 such that for

any y ∈ Ωδ and r ∈ (0, r0] and for any v satisfying

∆v = 0 in Ωδ ∩Br (y) , ∂νv = 0 on ∂Ωδ ∩Br (y) ,

we have for any σ ∈ (0, 1),

ˆ
Bσr(y)∩Ωδ

|∇v|2 ≤ Kα̃σ
n−2+2α̃

ˆ
Br(y)∩Ωδ

|∇v|2. (2.5.5)

Combining (2.5.1) and (2.5.5) gives the core lemma regarding the growth of the Dirichlet

integral for vδ. This is the key step to show Cα continuity.

Lemma 7. Let 0 < δ ≤ 1 and α ∈ (0, 1). There exists r0 > 0 such that for any y ∈ Ωδ and

r ∈ (0, r0], ˆ
Br(y)∩Ωδ

|∇vδ|2 ≤ C3r
n−2+2α.

Here we can take

C3 = inf

α̃∈(α,1), 0<σ<K
− 1

2(α̃−α)
α̃

{√
C1r

1−α
0 σ1−α−n/2

1−
√
Kα̃σα̃−α

+

(
2eδ (M)

(σr0)n−2+2α

) 1
2

}
.

Proof. For any α ∈ (0, 1), let α̃ ∈ (α, 1). Let r0 be defined in Lemma 6. For any y ∈ Ωδ and

r ∈ (0, r0], for simplicity we denote B̃r = Br (y)∩Ωδ. Let v be the unique harmonic function

in B̃r satisfying

v = vδ in Ωδ ∩ ∂Br (y) ,
∂v

∂ν
= 0 on ∂Ωδ ∩Br (y) .

We have from Lemma 5,

ˆ
B̃r

|∇ (vδ − v)|2 =

ˆ
B̃r

|∇vδ|2 −
ˆ
B̃r

|∇v|2 ≤ Crn.

For any σ ∈ (0, 1), we have(ˆ
B̃σr

|∇vδ|2
)1/2

≤
(ˆ

B̃σr

|∇ (vδ − v)|2
)1/2

+

(ˆ
B̃σr

|∇v|2
)1/2

≤
(ˆ

B̃r

|∇(vδ − v)|2
)1/2

+

(
Kα̃σ

n−2+2α̃

ˆ
B̃r

|∇v|2
)1/2

≤ (Crn)1/2 +

(
Kα̃σ

n−2+2α̃

ˆ
B̃r

|∇vδ|2
)1/2

.
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Here in the second inequality, we have applied Lemma 6 to the second term on the right-hand

side. Divide both sides by (σr)n/2−1+α and define

φ(r) =

(
1

rn−2+2α

ˆ
B̃r

|∇vδ|2
) 1

2

.

We have

φ(σr) ≤
√
Cr1−ασ1−α−n/2 +

√
Kα̃σ

α̃−αφ(r)

≤
√
Cr1−α

0 σ1−α−n/2 +
√
Kα̃σ

α̃−αφ(r).

Choose σ so that
√
Kα̃σ

α̃−α < 1. A simple induction then gives for any r ∈ (σr0, r0] and for

any k ∈ N.

φ(r) ≤

(
1

(σr0)n−2+2α

ˆ
B̃r0

|∇vδ|2
) 1

2

≤
(

2eδ (m)

(σr0)n−2+2α

) 1
2

.

and furthermore,

φ(σkr) ≤

√
Cr1−α

0 σ1−α−n/2
[
1−

(√
Kα̃σ

α̃−α)k]
1−
√
Kα̃σα̃−α

+
(√

Kα̃σ
α̃−α
)k+1

φ(r)

≤
√
Cr1−α

0 σ1−α−n/2

1−
√
Kα̃σα̃−α

+ max
r∈[σr0,r0]

φ(r)

≤
√
Cr1−α

0 σ1−α−n/2

1−
√
Kα̃σα̃−α

+

(
2eδ (M)

(σr0)n−2+2α

) 1
2

.

A uniform Hölder bound for vδ follows from the decay estimate of Lemma 7:

Theorem 8. Let M > 0, δ > 0 and vδ be a minimizer of Eδ in Hδ (M). There exists a

constant C such that for given small δ0 and any 0 < δ ≤ δ0,

‖vδ‖Cα(Ωδ)
≤ C.

Therefore, vδ is uniformly bounded in δ.
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Proof . Applying Poincaré’s inequality, we have for any y ∈ Ωδ and r ∈ (0, r0],

inf
c∈R

ˆ
Br(y)∩Ωδ

|vδ − c|2 ≤ Cr2

ˆ
Br(y)∩Ωδ

|∇vδ|2 ≤ C4r
n+2α.

Hence, vδ is in Campanato space L2,n+2α (Ωδ). Following from Theorem 1.2 in page 70 of

[43], vδ is Hölder continuous with αth Hölder seminorm bounded by constant C4 which is

independent of δ. Since

2
e∗ (M)

F ∗
≥ eδ (M)

F ∗
≥
ˆ

Ωδ

χ{vδ>0}dy

we are able to choose R ≥ (2e∗(M)
ωnF ∗

)1/n such that ∀y ∈ D = {y : vδ > 0}, there exists

z ∈ BR(y) ∩Dc,then vδ(z) = 0.

vδ(y) ≤ vδ(z) + C4R
α = C4R

α.

Therefore, sup vδ is uniformly bounded which ends the proof of the theorem.

2.6 UNIFORM LIPSCHITZ CONTINUITY

The main goal of this section is to prove the uniform Lipschitz continuity of vδ in order to

obtain the convergence of minimizer sequence. The idea is based on the work by Caffarelli

and H.W.Alt [3] with Dirichlet boundary setting. The mass constraint is the new technical

difficulty here and we requires uniform global estimate involving boundary under Neumann

boundary setting which is not adjusted in [3]. In this section, we assume δ is small and all

the constants are independent of such uniformly small δ.

Theorem 9. Let M > 0, δ > 0 and vδ be a minimizer of Eδ in Hδ (M). There exists a

constant C = C(M,n) such that, for δ0 sufficiently small and any 0 < δ ≤ δ0,

‖∇vδ‖L∞(Ωδ)
≤ C.

Firstly, we prove the following lemma.
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Lemma 8. Let v ∈ Hδ[M ] be a minimizer of Eδ[v]. Then for any small ball Br ⊂ Ωδ,

1

r

 
∂Br

v ≥ C implies v > 0 in Br

where C is positive constant independent of δ.

Proof. Take harmonic function u such that

∆u = 0 in Br and u = v in Ωδ\Br.

Case 1:
´
Br
u ≥

´
Br
v. Since eδ(M) is increasing in M, we have

ˆ
Ωδ

{
1

2
|∇v|2 + χ{v>0}

}
dy ≤

ˆ
Ωδ

{
1

2
|∇u|2 + χ{u>0}

}
dy

It follows that ˆ
Br

1

2
|∇(v − u)|2dy ≤

ˆ
Br

χ{v=0}dy. (2.6.1)

Since (2.6.1) is scaling invariant, we just take Br = B1(0). For |z| ≤ 1
2
, define

vz(x) = v((1− |x|)z + x)

and

uz(x) = u((1− |x|)z + x).

Note that the map x 7−→ (1 − |x|)z + x is an isomorphism from B1(0) to itself. Also for

∀ξ ∈ ∂B1, define

rξ := inf{r|1
8
≤ r ≤ 1 and vz(rξ) = 0}

if the set is nonempty and rξ = 1 if the set is empty. For almost all ξ ∈ ∂B1,

uz(rξξ) =

ˆ 1

rξ

d

dr
(vz − uz)(rξ)dr ≤

√
1− rξ(

ˆ 1

rξ

|∇(vz − uz)(rξ)|2dr)
1
2 . (2.6.2)

Also using Green function G(x, y) with ∆G(x, y) = δx for x ∈ B1(0) ,

uz(rξξ) =

ˆ
∂B1

∂G(rξξ, y)

∂y
uz(y)dS(y) ≥ c(n)(1− rξ)

 
∂B1

v. (2.6.3)
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Combining (2.6.2) and (2.6.3), we have,

ˆ 1

rξ

|∇(vz − uz)(rξ)|2dr ≥ C(n)(1− rξ)(
 
∂B1

v)2.

Integrating over ξ and then integrating over z,

C(n)

ˆ
B1

|∇(vz − uz)|2 ≥
ˆ
B1

χ{v=0}(

 
∂B1

v)2. (2.6.4)

Together with (2.6.1), we obtain,

C(n)

ˆ
B1

χ{v=0}dy ≥
ˆ
B1

χ{v=0}(

 
∂B1

v)2. (2.6.5)

Case 2:
´
Br
u <

´
Br
v. We define

ũ = u+
λ

2n
(r2 − |x|2)

where λ > 0 is chosen such that
´
Br
ũ =

´
Br
v. It is easy to check that

ˆ
Br

|∇v|2 − |∇ũ|2 =

ˆ
Br

|∇v −∇ũ|2 + 2

ˆ
Br

∇(v − ũ)∇ũ

=

ˆ
Br

|∇v −∇ũ|2 − 2

ˆ
Br

(v − ũ)∆ũ

=

ˆ
Br

|∇v −∇ũ|2 + 2λ

ˆ
Br

(v − ũ) =

ˆ
Br

|∇v −∇ũ|2. (2.6.6)

Then (2.6.1) follows. Repeat the process in Case 1. It remains to check (2.6.3). By the

definition of Green function, G(x, y) < 0 for x, y ∈ B1(0).

ũz(rξξ) =

ˆ
∂B1

∂G(rξξ, y)

∂y
ũzdS(y) +

ˆ
B1

∆ũzG(rξξ, y)

≥ C(n)(1− rξ)
 
∂B1

ũz − λ
ˆ
B1

G(rξξ, y)

≥ C(n)(1− rξ)
 
∂B1

v. (2.6.7)

Therefore for both cases, we have (2.6.5), that is,

C(n)

ˆ
B1

χ{v=0}dy ≥
ˆ
B1

χ{v=0}(

 
∂B1

v)2. (2.6.8)

If
ffl
∂B1

v > C(n), then
´
B1
χ{v=0} = 0 which indicates v > 0 in B1.
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Recall that D = {x ∈ Ωδ : v(x) > 0} and the measure of D is bounded above by 2e∗(M).

Define Σ = {x ∈ Ωδ : v(x) = 0}. We have the following interior estimate,

Lemma 9. For any x ∈ Ωδ\Σ such that dist(x,Σ) ≤ dist(x, ∂Ωδ), we have

|∇v(x)| ≤ C

where C = C(M,n) is a positive constant.

Proof. For any x ∈ Ωδ, take the maximal ball Br(x) ⊂ D = Ωδ\Σ. Since the measure of D

is bounded above, then r ≤ C(M,n). Since ∆v = −λδ in Br(x), then we can rewrite v as

v = v∗ + λδ
r2 − |x|2

2n
where ∆v∗ = 0 in Br(x). (2.6.9)

For dist(x,Σ) < dist(x, ∂Ωδ), ∂Br(x) does not touch ∂Ωδ. Then for arbitrary small ε,

Br+ε(x) ∩D is nonempty which follows,

1

r + ε

 
∂Br+ε(x)

v ≤ C(n).

Take ε→ 0, then

1

r

 
∂Br(x)

v∗ =
1

r

 
∂Br(x)

v ≤ C(n).

Consequently,

|∇v| ≤ |∇v∗|+
λ

n
r ≤ 1

r

 
Br

v∗ +
λ

n
r ≤ C(n,M).

For dist(x,Σ) = dist(x, ∂Ωδ), we see x as the limit of a sequence of points {xn}∞n=1 with

dist(xn,Σ) < dist(xn, ∂Ωδ). By applying the continuity of |∇v| in D, we will be able to

finish our proof for this lemma.
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In order to prove the uniform Lipschitz continuity, we have to make some boundary

estimates and prove the boundedness of |∇v(x)| for dist(x,Σ) > dist(x, ∂Ωδ). So we divide

into two cases dist(x,Σ) ≥ r0 and r0 > dist(x,Σ) > dist(x, ∂Ωδ) for fixed small r0.

For any given small r0 > 0 and x ∈ D, if dist(x,Σ) ≥ r0, we consider the following

elliptic problem in Br0(x) ∩ Ωδ, ∆v = −λδ in Br0(x) ∩ Ωδ,

∂nv = 0 on Br0(x) ∩ ∂Ωδ.
(2.6.10)

Since ∂Ω is smooth, Neumann boundary condition allows us to perform the standard even

reflection of v. Denote d(y) := dist(y, ∂Ω) = dist(y, py) and n(y) := n(py) where py ∈ ∂Ω.

Then the resulting function

ṽ(y) =

 v(y) for y ∈ Br0(x) ∩ Ω̄δ

v(y − 2n(y)d(y)) for y ∈ Br0(x)\Omegaδ.
(2.6.11)

satisfies

∂yi(aij(y)∂yj ṽ) = −λδ in B 1
3
r0

where |aij − δij| is uniformly small. Applying Lemma 6.5 and Theorem 6.6 in [44],

|∇ṽ(x)| ≤ C(‖ṽ‖L∞ + |λδ|).

According to Theorem 8, v is uniform bounded by a constant depending on total mass M

and dimension n. Moreover, λδ is bounded by 4e(M)
M

. Therefore, there exists a constant

C = C(M,n, r0) such that for x ∈ D with dist(x,Σ) ≥ r0,

|∇v(x)| ≤ C. (2.6.12)

The remaining case is r0 > dist(x,Σ) > dist(x, ∂Ω). For simplicity, denote R =

dist(x,Σ). Considering BR(x) ∩ Ωδ, we define this rescaled function

v̂(z) =
1

R
v(y) (2.6.13)
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where z ∈ B1(x) and y = x+R(z − x). Hence,

|∇v̂(z)| = |∇v(y)| and ∆v̂(z) = R∆v(y) = −Rλδ.

Also, ∂Ω̂δ = {z : y ∈ ∂Ωδ} is almost flat. Take the ball Br̃(x0) with center point x0 =

px − 1
2
(1 + R̃)nx and radius r̃ = 1

2
(1 + R̃) where R̃ = dist(x, ∂Ω̂δ). Roll Br̃(x0) along ∂Ω̂δ

towards Σ unitl it touches Σ which results a ball Br̃(x1) satisfying,

r̃ = dist(x1,Σ) ≤ dist(x1, Ω̃δ).

Since the boundary is almost flat,

dist(x1, x0) < 1.

According to Lemma 9, there exists some positive constant C independent of δ, |∇v̂(x1)| ≤ C.

It yields that |v̂(x1)| ≤ C. Similarly as above, we extend v̂ to w by even reflection,

w(y) =

 v̂(y) for y ∈ B1(x) ∩ Ω̂δ

v̂(y − 2n(y)d(y)) for y ∈ B1(x)\Ω̂δ.
(2.6.14)

w satisfies

∂yi(aij(y)∂yjw(y)) = −λδR,

where |aij − δij| is small and aij = δij for y ∈ B1(x)∩ Ω̂δ. We take finite series of ball Br̃(yi)

with 1 ≤ i ≤ N such that dist(x0, y1) = dist(y1, y2) = · · · = dist(yN , x1) ≤ 1
4
. Apply the

Harnack inequality for ṽ in each ball,

|ṽ(x0)| ≤ C|v̂(y1)| ≤ C2|ṽ(y2)| ≤ · · ·CN+1|ṽ(x1)|.

Note that the Harnack inequality we used here is for function ∆u = −λδR ≤ 0 in a ball

BR(0). The proof is to take the classical the Harnack inequality on harmonic function

u∗ = u− λδR
2n

(R2 − |x|2). Then,

|ṽ(x0)| ≤ C.

Now take ball B 1
2
(x) and then x0 ∈ B 1

2
(x). Apply the Harnack inequality again in B 1

2
(x),

‖w‖L∞(B 1
2

(x)) ≤ C.

Therefore, apply the same estimate as above for w(x) in B 1
3
(x)

|∇v(x)| = |∇ṽ(x)| = |∇w(x)| ≤ C(‖w‖L∞(B 1
2

(x)) + |λδR|) =: C̃.

where C̃ only depends on M,n and r0.
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2.7 SINGULAR LIMIT PROFILE

Given the total mass M > 0, let {εk}∞k=1 ⊂
(

0, M|Ω|

)
be a sequence such that limk→∞ εk = 0.

Let uεk ∈ HM be an energy minimizer of Eεk in HM . For simplicity, we will suppress the k

subscript whenever there is no confusion.

Let xε ∈ Ω̄ be a point where uε attains its maximum and pε ∈ ∂Ω be such that

|pε − xε| = min
p∈∂Ω
|p− xε| .

Passing to a subsequence if necessary, we can assume

lim
k→∞

pεk = p∗ ∈ ∂Ω

and we denote ν∗ = ν (p∗), the unit outer normal of ∂Ω at p∗. Let Ωδ and vδ be defined in

(2.1.3) and (2.1.4). Then vδ is a minimizer of Eδ in H (M,Ωδ) and as k →∞,

Ωδ → Rn
ν∗ := {y ∈ Rn | y · ν∗ < 0}.

For simplicity, after a rotation if necessary, we assume ν∗ = (0, · · · , 0,−1) and hence Rn
ν∗ =

Rn
+.

Proposition 2. There exist constants C1,C2,C3 > 0 such that for any k ∈ N

max
y∈Ωδk

vδk (y) ≥ C1, ‖vδk‖C0,α(Ωδk)
≤ C2 and ‖∇vδk‖L∞(Ωδk)

≤ C3.

Proof. When k is sufficiently large, we have δk ≤ m
2|Ω| and from Theorem 5, eδ (M) ≤ 2e∗ (M),

hence Lemma 3 implies

max
y∈Ωδk

vδk (y) ≥ M

eδ (M)
≥ M

2e∗ (M)
.

On the other hand, the uniform Hölder norm of vδk follows from Theorem 8 and uniform

Lipschitz continuity follows from Theorem 9. Note that the constant is independent of δ.

Due to the uniform bound of Hölder continuity, passing to a subsequence if necessary, we

can assume vδ converges locally uniformly to a limit v∗ in Rn
+. The main goal in this section

is to show that v∗ is the unique energy minimizer of E∗ with
´
Rn+
v∗ (x) dx = M .
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Lemma 10. There exists a constant C > 0, such that for any k ∈ N,

|pεk − xεk |
δk

≤ C.

Proof. If such constant doesn’t exist, passing to a subsequence if necessary, we can assume

lim
k→∞

|pεk − xεk |
δk

=∞.

For simplicity, we again suppress the k subscript. We define a blow up sequence along xε by

Ω̃δ =

{
x− xε
δ

: x ∈ Ω

}
. (2.7.1)

Correspondingly,

ṽδ (y) = δnuε (x) where y =
x− xε
δ
∈ Ω̃δ. (2.7.2)

Then ṽδ is a minimizer of Eδ in the space

H
(
M ; Ω̃δ

)
:=

{
v ∈ H1

(
Ω̃δ

)
: v ≥ 0 a.e. and

ˆ
Ω̃δ

vdy = M

}
where in the definition of energy Eδ, Ωδ is replaced by Ω̃δ. Since |pε−xε|

δ
→ ∞, we have

Ω̃δ →Rn as k → ∞. Noticing that for each k, ṽδ is a translation of vδ, the uniform bound

of Hölder norms of vδ implies that, passing to a subsequence if necessary, ṽδ → v∗ locally

uniformly in Rn as k →∞, which implies

M∗ =

ˆ
Rn
v∗dy ≤M.

Since

ṽδ (0) = max
y∈Ωδk

vδk (y) ≥ C1,

the uniform Hölder continuity of ṽδ implies

M∗ =

ˆ
Rn
v∗dy > 0.

For any σ > 0 sufficiently small, we can choose R0 > 0, such that

ˆ
BR0

(0)

v∗dx ≥M∗ − σ.
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Let N =
[

1
σ

]
+ 1. For small δ > 0, we have BR0+N ⊂ Ω̃δ. Since

ˆ
BR0+N

\BR0

{
1

2
|∇ṽδ|2 + χ{ṽδ>0}

}
+

ˆ
BR0+N

\BR0

{
|ṽδ|2 + |ṽδ|

}
≤ eδ (M) +M max ṽδ +M ≤ K

for some K > 0 which is independent of small ε, we can choose 1 ≤ l ≤ N so that

ˆ
BR0+l

\BR0+l−1

{
1

2
|∇ṽδ|2 + χ{ṽδ>0} + |ṽδ|2 + |ṽδ|

}
≤ K

N
≤ σK.

Now let η ∈ C∞ (Rn) be a cutoff function, such that

η (x) = 1 if x ∈ BR0+l (0) ; η (x) = 0 if x 6∈ BR0+l−1 (0) ;

η ∈ [0, 1] and |∇η| ≤ 2 for any x ∈ Rn.

We have

ṽδ = ηṽδ + (1− η) ṽδ ≡ ṽ1
δ + ṽ2

δ .

Direct calculation yields

1

2

ˆ
Ω̃δ

∣∣∇ṽ1
δ

∣∣2 +
1

2

ˆ
Ω̃δ

∣∣∇ṽ2
δ

∣∣2 − 1

2

ˆ
Ω̃δ

|∇ṽδ|2

=
1

2

ˆ
Ω̃δ

{(
η2 + (1− η)2 − 1

)
|∇ṽδ|2 + 2 |∇η|2 |ṽδ|2 + (−2 + 4η) ṽδ∇ṽδ∇η

}
≤1

2

ˆ
BR0+l

(0)\BR0+l−1(0)

{
8 |ṽδ|2 + 4 |ṽδ∇ṽδ|

}
≤
ˆ
BR0+l

(0)\BR0+l−1(0)

(
|∇ṽδ|2 + 5 |ṽδ|2

)
≤7σK,

and ,

ˆ
Ω̃δ

χ{ṽ1δ>0} + χ{ṽ2δ>0}dy −
ˆ

Ω̃δ

χ{ṽδ>0}

≤
ˆ
BR0+l

(0)\BR0+l−1(0)

χ{ṽδ>0} < σK.

Hence, we conclude

eδ (m) ≥ Eδ

[
ṽ1
δ

]
+ Eδ

[
ṽ2
δ

]
− 8σK.
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Since

lim
k→∞

ˆ
Ω̃δ

ṽ1
δk

= lim
k→∞

ˆ
Rn
ηv∗ ∈ [M∗ − σ,M∗] ,

when k sufficiently large, we have

ˆ
Ω̃δ

ṽ1
δ ∈ [M∗ − 2σ,M∗ + σ] and

ˆ
Ω̃δ

ṽ2
δ ∈ [M −M∗ − σ,M −M∗ + 2σ] .

Letting k →∞, we have

e∗ (M) ≥ 2e∗
(
M∗ − 2σ

2

)
+ e∗ (M −M∗ − σ)− 8σK

where

lim inf
k→∞

Eδk

[
ṽ1
δk

]
≥ 2e∗

(
M∗ − 2σ

2

)
follows from the fact that ṽ1

δ is compactly supported. Letting σ → 0, we have

e∗ (M) ≥ 2e∗
(
M∗

2

)
+ e∗ (M −M∗)

Recall that e∗ (M) is strictly convex. Therefore forM∗ ∈ (0,M ] , we have a contradiction.

Next, we show there is no loss of mass in the limiting process.

Lemma 11.
´
Rn+
v∗ (x) dx = M .

Proof. Let

M∗ =

ˆ
Rn+
v∗ (y) dy.

Since |pε−xε|
δ

is uniformly bounded, the uniform Hölder bound for vδ and uniformly positive

lower bounds for

vδ

(
xε − pε
δ

)
= max

y∈Ωδ

vδ (y)

implies

m∗ > 0.

Similar argument as Lemma 10 will imply

e∗ (M) ≥ e∗ (M∗) + e∗ (M −M∗)

Now M∗ > 0 implies M∗ = M .
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Now we are ready to prove Theorem 2.

Proof of Theorem 2. Up to a subsequence, we also assume vδk converges to v∗ weakly in

H1
loc

(
Rn

+

)
as k →∞ and hence, the lower semi-continuity of norms implies

1

2

ˆ
Rn+
|∇v∗|2 dy ≤ lim inf

k→∞

1

2

ˆ
Ωδk

|∇vδk |
2 dy. (2.7.3)

On the other hand, let

|{v∗ > 0}| = µ∗ > 0.

For each σ > 0, there exists N > 0 such that

∣∣∣∣{v∗ > 1

N

}
∩BN (0)

∣∣∣∣ ≥ µ∗ − σ.

Now since vδ converges to v∗ uniformly on
∣∣{v∗ > 1

N

}
∩BN (0)

∣∣, we conclude

lim
k→∞

ˆ
{v∗> 1

N }∩BN (0)∩Ωδ

χ{vδ>0} =

∣∣∣∣{v∗ > 1

N

}
∩BN (0)

∣∣∣∣ ≥ µ∗ − σ.

Since σ is arbitrary,

lim inf
k→∞

ˆ
Ωδ

χ{vδ>0} ≥ µ∗. (2.7.4)

Combining (2.7.3) and (2.7.4), we have

E∗ [v∗] ≤ lim
k→∞

eδk (M) = e∗ (M) .

On the other hand, since
´
Rn+
v∗ (x) dx = M , we have E∗ [v∗] ≥ e∗ (M) and hence E∗ [v∗] =

e∗ (M). Our choice of pε guarantees that max v∗ is assumed on the vertical line passing

through the origin. So the theorem follows from the uniqueness up to a translation of the

global energy minimizer for E∗.

The convergence of the blow up sequence vδ implies the convergence of uε.

41



Proof of Theorem 1. Since {uεk}∞k=1 is a sequence of positive function with total mass m,

there exists a measure µ on Ω̄ such that passing to a subsequence if necessary

uεk
∗
⇀ µ

in the weak star topology as k →∞. Passing to a subsequence if necessary , we also have

the blow up sequence vδ → v∗ locally uniformly as k →∞ and
´

Ω
v∗ = M . Hence

lim
k→∞

ˆ
BR∗ (0)∩Ωδ

vδ (y) dy = M

which implies

lim
k→∞

ˆ
BδR∗ (pε)∩Ω

uε (x) dx = M.

Since
´

Ω
uε (x) dx = M and pε → p∗, we conclude uε

∗
⇀ µ = Mδp∗ as k →∞.

The above theorem implies when ε approaches zero, the energy minimizer converges to

a Dirac measure concentrated on the boundary. Later we are going to show that actually

specify the location of the Dirac Measure which is with maximal mean curvature. On the

contrary, when ε is sufficient large, we can the classical Poincaré inequality and obtain a

simple proposition as following,

Proposition 3. When ε is large enough, the energy minimizer of Eε[u] is a constant function.

Proof.

Eε[u] =

ˆ
Ω

{
1

2
|∇u|2 +

1

ε2
χ{u>0}

}
dy

≥
ˆ

Ω

{
1

2C(Ω)
|u− M

|Ω|
|2 +

1

ε2
χ{u>0}

}
dy

≥
ˆ

Ω

1

2C(Ω)
|u− M

|Ω|
|2χ{u>0}dy +

|Ω|
ε2

+

ˆ
Ω

[
1

2C(Ω)
(
M

|Ω|
)2 − 1

ε2

]
χ{u=0}dy

where C(Ω) is a constant depending on Ω. Therefore if we choose ε large enough such that

1

2C(Ω)
(
M

|Ω|
)2 − 1

ε2
> 0,

then the energy minimizer will be a constant function u = M
|Ω| .
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2.8 LINEARIZATION

To understand the location of the boundary spike, we consider the free boundary problem

(2.4.6) associated to the scaled energy minimizing problem:



∆v = −λ in D = {y ∈ Ωδ : v > 0}

v = 0 and ∂nv = −
√

2 on ∂D ∩ Ωδ,

∂nv = 0 on ∂D ∩ ∂Ωδ,´
D
v (y) dy = M.

(2.8.1)

Since true solution should have spikes near specific boundary points, here for a fixed point

p ∈ ∂Ω, we seek a pair (v,D) such that the “center” of D is the origin and that (v,D) only

approximately solves the free boundary problem (2.8.1), e.g., having error O (δ2). Then we

compare the energy when p is moving around the boundary.

By shifting and rotation, we assume that p = 0 and the unit normal of ∂Ω at p is (0′,−1).

The boundary near p is represented in local coordinates as

xn = ψ(x1, · · · , xn−1), ψ(0′) = 0, ψxi(0
′) = 0, ψxixj(0

′) = κiδ
ij.

We call κi the principal curvature of ∂Ω at p and denote by κ =
∑n−1

i=1 κi/(n− 1) the mean

curvature of ∂Ω at p. Locally the boundary of ∂Ωδ near q := p/δ is expressed as

δyn = ψ (δy′) =
δ2

2

n−1∑
i=1

κiy
2
i +O

(
δ3 |y′|3

)
.

In general, (2.8.1) does not have a solution that has mass concentrated near q. To

overcome this difficulty, we add an extra constraint in the class of minimization to ensure

that the mass is near q. Hence we consider the minimization of E∗δ in the space

H (q,M) =

{
v ∈ H1 (Ωδ) : v ≥ 0 a.e. in Ωδ,

ˆ
Ωδ

vdy = M and

ˆ
Ωδ

(y − q)vdy // N(q)

}
where N(q) is the normal direction of Ωδ at q. In the current notation, the second set of

constraints mean ˆ
Ωδ

yivdy = 0 ∀ i = 1, · · · , n− 1. (2.8.2)

43



The corresponding free boundary problem can be written as

∆v = −λ−
∑n−1

i=1 λiyi in D = {y ∈ Ωδ : v > 0}

v = 0 and ∂nv = −
√

2 on ∂D ∩ Ωδ,

∂nv = 0 on ∂D ∩ ∂Ωδ,´
D
v (y) dy = M.

(2.8.3)

where λ, λ1, · · · , λn−1 are Lagrange multipliers.

We search a solution of (2.8.3) that can be expanded in the δ-power series as follows

D =
{
y ∈ Rn : yn > ψ(δy′)/δ, |y| < R + δR1

(
y
|y|

)
+O(δ2)

}
,

v = λ
2n

[R2 − |y|2] + δv1(y) +O(δ2) ∀ y ∈ D̄, v(y) = 0 ∀ y ∈ Ωδ \D,

λi = O(δ2) ∀ i = 1, · · · , n− 1.

where R and λ are constants depending on δ, R1 and v1 are unknown functions that depend

on δ only through the constants λ and R.

We derive the equations for (R, λ, v1, R1) as follows.

(1) The free boundary condition v = 0 on the free boundary implies

0 = v (y) =
λ

2n

[
R2 −

∣∣∣∣R + δR1

(
y

|y|

)
+O(δ2)y

∣∣∣∣2
]

+ δv1 (y) +O(δ2)

= δ

−λRR1

(
y
|y|

)
n

+ v1 (y)

+O(δ2)

which is equivalent to

v1(y) =
λR

n
R1

(
y

|y|

)
∀ y ∈ ΓR := ∂BR ∩ Rn+.

(2) The normal of the free boundary is

N = (N1, · · · , Nn), N i =
yi

|y|
− δ

n∑
j=1

∂R1

∂yj

(
δji

|y|
− yiyj

|y|3

)
+O(δ2),

‖N‖ =

√√√√ n∑
i=1

∣∣∣∣∣ yi|y| − δ
n∑
j=1

∂R1

∂yj

(
δji

|y|
− yiyj

|y|3

)∣∣∣∣∣
2

=
√

1 +O(δ2).
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The free boundary condition ∂nv = −
√

2F∗ becomes

−
√

2F∗ = n · ∇v

=
1√

1 +O(δ2)

n∑
i=1

[
yi

|y|
− δ

n∑
j=1

∂R1

∂yj

(
δji

|y|
− yiyj

|y|3

)](
−λyi
n

+ δ∂iv1

)

=
n∑
i=1

[
yi

|y|
− δ

n∑
j=1

∂R1

∂yj

(
δji

|y|
− yiyj

|y|3

)](
−λyi
n

+ δ∂iv1

)(
1 +O(δ2)

)
=

(
−λ (R + δR1)

n
+ δ

y

|y|
· ∇v1

)
+O(δ2)

which can be achieved by setting

λ =

√
2n

R
,

and

∂nv1 = λR1

n
= v1

R
on ΓR.

(3) Finally, using

yn =
δ

2

n−1∑
i=1

κiy
2
i +O

(
δ2 |y′|3

)
,

we have

N = (δκ1y1, · · · , δκn−1yn−1,−1) +O
(
δ2
)
,

and the boundary condition ∂nv = 0 on ∂Ωδ can be written as

0 = N · ∇v

= δ
n−1∑
i=1

κiyi

(
−λyi
n

+ δ∂iv1

)
−
(
−λyn

n
+ δ∂nv1

)
+O(δ2)

= δ
n−1∑
i=1

κiyi

(
−λyi
n

+ δ∂iv1

)
−

(
−λ
n

δ

2

n−1∑
i=1

κiy
2
i + δ∂nv1

)
+O(δ2)

= δ

(
− λ

2n

n−1∑
i=1

κiy
2
i − ∂nv1

)
+O(δ2).

This can be achieved only by setting

∂v1

∂yn
(y′, 0) = − λ

2n

n−1∑
i=1

κiy
2
i ∀ y′ ∈ B′R := {y′ ∈ Rn−1 | |y′| < R}.
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Thus we see that (v1, R1) needs to be a solution of the linearized problem given by



−∆v1 = 0 in BR ∩ Rn+ =: B+
R ,

v1 = R∂nv1 on ∂BR ∩ Rn+ =: ΓR,

∂ynv1 = − λ
2n

∑n−1
i=1 κiy

2
i on B′R × {0},

R1(y/|y|) = n∂nv1(y)/λ ∀ y ∈ ΓR.

(2.8.4)

It is sufficient to consider only the equation for v1. Note that

ˆ
D

yi(R
2 − |y|2)dy = O(δ2) ∀ i = 1, · · · , n− 1.

We derive from (2.8.1) that

ˆ
B+
R

yiv1(y)dy = 0 ∀ i = 1, · · · , n− 1. (2.8.5)

Theorem 10. The mixed boundary condition problem 2.8.4 with the constraint 2.8.5 admits

a unique solution.

First we establish the lemma for Robin boundary condition problem on a ball.

Lemma 12. Assume f ∈ L2(SR), the Robin boundary condition problem on a ball with

radius R given by  ∆u = 0 in BR,

u
R
− ∂nu = f on ∂BR =: SR.

(2.8.6)

admits a solution u ∈ H1(BR) if and only if f satisfies the compatibility condition

ˆ
∂BR

yif(y)dHn−1 = 0, ∀ i = 1, · · · , n.

The solution is unique if we add the constraints

ˆ
BR

yiudy = 0, ∀ i = 1, · · · , n.
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Proof. Firstly, let u ∈ H1(BR) be a solution to (2.8.6). ∀ i = 1, · · · , n,

0 = −
ˆ
BR

∇yi∇udy +

ˆ
SR

yi∂nudHn−1

= −
ˆ
SR

∂nyiudHn−1 +

ˆ
BR

∆yiudy + +

ˆ
SR

yi∂nudHn−1

= −
ˆ
SR

yi(
u

R
− ∂nu)dHn−1.

that is, ˆ
SR

yif(y)dHn−1 = 0, ∀ i = 1, · · · , n.

Secondly, suppose f ∈ L2(SR) satisfying the compatibility condition. Let Hm(Rn) denote

the subspace of all the homogeneous harmonic polynomials on Rn of degree m. and Hm(SR)

represent the subspace of all the homogeneous harmonic polynomials in Hm(Rn) with re-

striction to SR of degree m. Since L2(SR) = ⊕∞m=0Hm(SR) (Theorem 5.12 and Theorem 5.29

in [6]),

f =
∞∑
m=0

pm(y)

where pm(y) ∈ Hm(SR) satisfying

ˆ
SR

pm(y)pk(y)dHn−1 = 0, ∀m 6= k.

Using the homogeneity, we see,

ˆ
Sr

pm(y)pk(y)dHn−1 =

ˆ
SR

(
R

r
)m+k+n−1pm(y)pk(y)dHn−1 = 0, ∀ r > 0.

Furthermore, ˆ
BR

pm(y)pk(y)dy =

ˆ R

0

ˆ
Sr

pm(y)pk(y)dHn−1dr = 0

and each component in ∇pm(y) belongs to Hm−1(Rn) implies

ˆ
BR

∇pm(y) · ∇pk(y)dy = 0.

Suppose solution u has expansion

u =
∞∑
m=0

dmpm(y)
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where dm is to be determined. Formal calculation gives

u

R
− ∂nu =

∞∑
m=0

dmpm(y)

R
−
∞∑
m=0

mdmpm(y)

R
=

∞∑
m=0

(1−m)dmpm(y)

R
.

According to the Robin boundary condition, we define

dm =
R

1−m
and uM =

M∑
m≥0,m 6=1

R

1−m
pm(y).

Then uM is harmonic is BR and for N > M > 1,

‖uN − uM‖L2(BR) =

∥∥∥∥∥
N∑

m>M

R

1−m
pm(y)

∥∥∥∥∥
L2(BR)

= (

ˆ R

0

ˆ
Sr

(
N∑

m>M

R

1−m
pm(y))2dHn−1dr)1/2

= (

ˆ R

0

ˆ
SR

N∑
m>M

R2

(1−m)2
pm(y)2 r

2m+n−1

R2m+n−1
dHn−1dr)1/2

= (

ˆ
SR

N∑
m>M

R2

(m− 1)2
pm(y)2 R2m+n

(2m+ n)R2m+n−1
dHn−1)1/2

≤ R3

(M − 1)2

∥∥∥∥∥
N∑

m>M

pm(y)

∥∥∥∥∥
L2(SR)

.

Moreover,

‖∇uN −∇uM‖L2(BR) =

∥∥∥∥∥
N∑

m>M

R

1−m
∇pm(y)

∥∥∥∥∥
L2(BR)

=
N∑

m>M

R

m− 1
‖∇pm(y)‖L2(BR)

=
N∑

m>M

R

m− 1
(

ˆ
SR

pm(y) · ∂pm(y)

∂n
dHn−1)1/2

=
N∑

m>M

R

m− 1
(
m

R
)1/2 ‖pm(y)‖L2(SR)

≤
√
R√

M − 1

∥∥∥∥∥
N∑

m>M

pm(y)

∥∥∥∥∥
L2(SR)

.
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Therefore uM is a Cauchy sequence in L2(BR) and ∇uM is a Cauchy sequence in (L2(BR))n.

Then let

u =
∑
m 6=1

R

1−m
pm(y)

we can obtain that as the limit of uM in H1(BR), u ∈ H1(BR) is harmonic in BR.

Regarding the uniqueness, we consider solution u ∈ H1(BR) to the homogeneous system,

 ∆u = 0 in BR,

u
R
− ∂nu = 0 on SR.

Using Spherical Harmonic Functions (for example corollary 5.34 of [6]),

u =
∞∑
m=0

pm(y)

where pm(y) ∈ Hm(Rn). Applying the robin boundary condition, we obtain,

0 =
u

R
− ∂nu =

∞∑
m=0

pm(y)

R
−
∞∑
m=0

mpm(y)

R
=

∞∑
m=0

(1−m)pm(y)

R
.

Due to the orthogonality of Hm(Rn) on SR in sense of L2 inner product, then,

pm(y) = 0, ∀ m 6= 1.

We have,

u =
n∑
i=1

ciyi where ci are arbitrary constant.

Therefore, the constraints
´
BR
yiudy = 0 implies ci = 0 which is the uniqueness of the

solution.

Now we are ready to prove the existence of the solution to the non-homogeneous problem

on half ball.
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Theorem 11. Given f ∈ L2(B+
R), g ∈ L2(ΓR) and h ∈ L2(B′R × {0}), the mixed boundary

condition problem given by 
∆w = f in B+

R ,

w
R
− ∂nw = g on ΓR,

∂ynw = h on B′R × {0}

(2.8.7)

admits a solution w ∈ H1(B+
R), if and only if (f, g, h) satisfies the compatibility conditions

ˆ
B+
R

yif(y)dy +

ˆ
ΓR

yig(y)dHn−1 +

ˆ
B′R

yih(y′)dy′ = 0 ∀ i = 1, · · · , n− 1. (2.8.8)

If there is a solution wsp, then the general solution is given by

w(y) = wsp(y) +
n−1∑
i=1

ciyi

where c1, · · · , cn−1 are arbitrary constants. The solution is unique if we require

ˆ
B+
R

yiw(y)dy = 0 ∀ i = 1, · · · , n− 1.

Proof. Let w ∈ H1(B+
R) be a solution to (2.8.7). For i = 1, · · · , n− 1,

ˆ
B+
R

yi∆wdy =

ˆ
ΓR

yi∂nwdHn−1 −
ˆ
B′R

yi∂ynwdy
′ −

ˆ
ΓR

w(y)∂nyidHn−1

−
ˆ
B′R

w(y′, 0)∂ynyidy
′ +

ˆ
B+
R

w∆yidy

=

ˆ
ΓR

yi∂nwdHn−1 −
ˆ
B′R

yi∂ynwdy
′ −

ˆ
ΓR

w
yi
R
dHn−1

=

ˆ
ΓR

yi(∂nw −
w

R
)dHn−1 −

ˆ
B′R

yi∂ynwdy
′

= −
ˆ

ΓR

yig(y)dHn−1 −
ˆ
B′R

yih(y′)dy′.

That is the compatibility condition (2.8.8).

We first consider the homogeneous system
∆w = 0 in B+

R ,

w
R
− ∂nw = 0 on ΓR,

∂ynw = 0 on B′R × {0}.
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Due to the Neumann boundary condition on B′R × {0}, even reflection gives

 ∆w = 0 in BR,

w
R
− ∂nw = 0 on ∂BR.

Applying Lemma 12 and the fact that w is even in yn, we have the general solutions for the

homogeneous system are given by

w =
n−1∑
i=1

ciyi.

Next, for the non-homogeneous problem, we choose functions F ∈ H2(B+
R) and H ∈ H1(B+

R)

such that  ∆F = f in B+
R ,

F = 0 on ∂B+
R

and  ∆H = 0 in B+
R ,

∂ynH = h− ∂ynF on B′R × {0}.

Set u = w − F −H,


∆u = 0 in B+

R ,

u
R
− ∂nu = G = g + ∂nF − H

R
+ ∂nH on ΓR,

∂ynu = h− ∂ynF − (h− ∂ynF ) = 0 on B′R × {0}.

Here G ∈ L2(ΓR). Similarly apply even reflection for u and make use of Lemma 12. Solution

u ∈ H1(BR) exists if and only if

ˆ
∂BR

p1(y)Gdy = 0.
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That is ∀ i = 1, · · · , n− 1

0 =

ˆ
ΓR

yiGdy

=

ˆ
ΓR

yi(g + ∂nF −
H

R
+ ∂nH)dHn−1

=

ˆ
ΓR

(yig + yi∂nF − yi
H

R
+ yi∂nH)dHn−1

=

ˆ
ΓR

yigdHn−1 + (

ˆ
B+
R

yi∆Fdy +

ˆ
B′R

yi∂ynF (y′, 0)dy′) +

ˆ
ΓR

−yi
H

R
dHn−1

+ (

ˆ
B′R

yi∂ynH(y′, 0)dy′ +

ˆ
ΓR

∂yi
∂n

HdHn−1 +

ˆ
B′R

∂yi
∂n

H(y′, 0)dy′)

=

ˆ
ΓR

yigdHn−1 +

ˆ
B+
R

yifdy +

ˆ
B′R

yi∂ynF (y′, 0)dy′ +

ˆ
ΓR

−yi
H

R
dHn−1

+

ˆ
B′R

yi(h− ∂ynF )dy′ +

ˆ
ΓR

yi
R
HdHn−1 +

ˆ
B′R

∂yi
∂n

H(y′, 0)dy′

=

ˆ
ΓR

yigdHn−1 +

ˆ
B+
R

yifdy +

ˆ
B′R

yihdy
′.

In order to obtain the explicit solution, we can compute the basis for Hm(Rn) using zonal

harmonics (See Chapter 5 in [6]). Then given compatibility condition, the special solution

for u can be calculated using inner product. Therefore it gives the special solution wsp =

u+ F +H.The general solution is given by

w(y) = wsp(y) +
n−1∑
i=1

ciyi.

It is easy to see problem (2.8.4) together with the constraint (2.8.5) is a special case of

(2.8.7). Then the proof of Theorem 10 naturally follows theorem 11. Hence, v1 is uniquely

solvable.
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2.9 LOCATION OF SPIKE

Though it is hard to find explicit solution of (2.8.4) and (2.8.5), we can still proceed to find

quantities of our interest. In this section, we will focus on the energy expansion which helps

to locate the position of the spike. Applying the asymptotic analysis, we consider the effect

of the mass constraint. Later as the theorem 3 stated, the energy of the Quasi-stationary

solution (v,D) has the asymptotic expansion

Eδ[v] ≡
ˆ
D

{
1

2
|∇v|2 + 1

}
= E∗ [v∗]− c (n)Mκδ +O(δ2)

where

c (n) =
(n− 1) (n+ 2) (n+ 7)ωn−1√

2(n+ 1) (n+ 3)ωn
.

Hence, the spike should locate on the boundary point with the maximum curvature. We

begin with computing

ˆ
B+
R

v1(y)dy =

ˆ
B+
R

v1(y)
∆(|y|2 +R2)

2n
dy

=
1

n

ˆ
∂B+

R∩R
+
n

{
Rv1 −R2∂nv1

}
+

1

2n

ˆ
B′R

{ (
|y′|2 +R2

)
∂ynv1

}
=

1

2n

ˆ
B′R

(
|y′|2 +R2

)[
− λ

2n

n−1∑
i=1

κiy
2
i

]
dy′

= − λ

4n2

n−1∑
i=1

κi

ˆ
B′R

(
|y′|2 +R2

)
y2
i dy

′.

Note that, by symmetry,

ˆ
B′R

(
|y′|2 +R2

)
yi

2dy′ =

ˆ
B′R

(
|y′|2 +R2

) |y′|2
n− 1

dy′

=

ˆ R

0

(
r2 +R2

) r2

n− 1
(n− 1)ωn−1r

n−2dr

=
2 (n+ 2)

(n+ 1) (n+ 3)
ωn−1R

n+3
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where ωn−1 is the volume of the unit ball in Rn−1. Recalling the definition of mean curvature,

we then obtain

ˆ
B+
R

v1(y)dy = − λ (n− 1) (n+ 2)

2n2 (n+ 1) (n+ 3)
ωn−1κR

n+3

= −
√

2F∗ (n− 1) (n+ 2)Rn+2

2n (n+ 1) (n+ 3)
ωn−1κ.

Similarly, we can estimate

ˆ
D

λ

2n

(
R2 − |y|2

)
dy

=

ˆ
B+
R

λ

2n

(
R2 − |y|2

)
dy −

ˆ
B′R

[ˆ δ
2

∑n−1
i=1 κiy

2
i

0

λ

2n

(
R2 − |y|2

)
dyn

]
dy′

=
λωnR

n+2

2n(n+ 2)
−
ˆ
B′R

δλ

4n

n−1∑
i=1

κiy
2
i

(
R2 − |y′|2

)
dy′

=
λωnR

n+2

2n(n+ 2)
−

n−1∑
i=1

κi
δλ

4n (n− 1)

ˆ
B′R

|y′|2
(
R2 − |y′|2

)
dy′

=
λωnR

n+2

2n(n+ 2)
−

n−1∑
i=1

κi
δλ

4n (n− 1)
(n− 1)ωn−1R

n+3 2

(n+ 1) (n+ 3)

=
λωnR

n+2

2n(n+ 2)
− δ

n−1∑
i=1

κi
λ

2n (n+ 1) (n+ 3)
ωn−1R

n+3

=
λωnR

n+2

2n(n+ 2)
− δ λ (n− 1)

2n (n+ 1) (n+ 3)
ωn−1κR

n+3.

Here we used

ˆ δ
2

∑n−1
i=1 κiy

2
i

0

λ

2n

(
R2 − |y|2

)
dyn

=
λ

2n

ˆ δ
2

∑n−1
i=1 κiy

2
i

0

(
R2 − |yn|2 − |y′|2

)
dyn

=
λ

2n

(
R2 − |y′|2

) δ
2

n−1∑
i=1

κiy
2
i +O

(
δ3
)
.
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Now the mass constraint
´
D
v = M is equivalent to

M =

ˆ
D

λ

2n

(
R2 − |y|2

)
dy + δ

ˆ
D

v1 +O(δ2)

=

ˆ
D

λ

2n

(
R2 − |y|2

)
dy + δ

ˆ
B+
R

v1 +O(δ2)

=
λωnR

n+2

2n(n+ 2)
− δλ (n− 1)

2n (n+ 1) (n+ 3)
ωn−1κR

n+3 − δλ (n− 1) (n+ 2)

2n2 (n+ 1) (n+ 3)
ωn−1κR

n+3 +O(δ2)

=
λωnR

n+2

2n(n+ 2)
− δ λ (n− 1)

n2 (n+ 3)
ωn−1κR

n+3 +O(δ2)

=

√
2n

R

(
ωnR

n+2

2n(n+ 2)
− δ (n− 1)

n2 (n+ 3)
ωn−1κR

n+3

)
+O(δ2)

=
√

2

(
ωnR

n+1

2(n+ 2)
− δ (n− 1)

n (n+ 3)
ωn−1κR

n+2

)
+O(δ2).

Hence, the mass constraint implies

R = R∗

{
1 +

(n−1)
n(n+3)

ωn−1κR
∗

(n+ 1) ωn
2(n+2)

δ +O
(
δ2
)}

= R∗
{

1 +
2(n+ 2) (n− 1)ωn−1

n(n+ 1) (n+ 3)ωn
κR∗δ +O

(
δ2
)}

where

(R∗)n+1 :=
2 (n+ 2)M

ωn
√

2
.

For the solution of (2.8.3),(2.8.2), we can compute its energy as follows:

e (q,M) =

ˆ
D

{
1

2
|∇v|2 + 1

}
= −1

2

ˆ
D

v∆v dy + |D|

=
λ

2

ˆ
D

vdy + |D|

=
λM

2
+

{
ωnR

n

2
+ δ

ˆ
ΓR

R1 − δ
ˆ
B′R

n−1∑
i=1

κiyi
2dy′ +O

(
δ2
)}

.

Finally,

ˆ
ΓR

R1 =
n

λ

ˆ
ΓR

∂nv1 =
n

λ

ˆ
B+
R

∆v1 +
n

λ

ˆ
B′R

∂ynv1(y′, 0)dy′

= −1

2

ˆ
B′R

n−1∑
i=1

κiyi
2dy′ = −(n− 1)κωn−1R

n+1

2(n+ 1)
.
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Thus, using

R = R∗
{

1 +
2(n+ 2) (n− 1)ωn−1

n(n+ 1) (n+ 3)ωn
κR∗δ +O

(
δ2
)}

= R∗
{

1 + Aδ +O
(
δ2
)}
,

we have

e(q,M)− e∗(M)

=
M
√

2n

2R
+
ωnR

n

2
− 3 (n− 1)κωn−1R

n+1

2(n+ 1)
δ +O(δ2)− e∗(M)

=
M
√

2n

2R∗
(1− Aδ) +

ωn (R∗)n

2
(1 + nAδ)− 3 (n− 1)κωn−1 (R∗)n+1

2(n+ 1)
δ

+O(δ2)− e∗(M)

= −δ(M
√

2n

2R∗
A− ωn (R∗)n

2
nA+

3 (n− 1)κωn−1 (R∗)n+1

2(n+ 1)
) +O(δ2)

= −δM
√

2
(n+ 2)(n− 1)ωn−1

(n+ 1)(n+ 3)ωn
κ+ δ (R∗)n

(n+ 2) (n− 1)ωn−1

(n+ 1) (n+ 3)
κR∗

− δ (R∗)n+1 3 (n− 1)κωn−1

2(n+ 1)
+O(δ2)

= δ (R∗)n+1 ωn−1κ

[
(n+ 2)(n− 1)

(n+ 1)(n+ 3)
− 3 (n− 1)

2(n+ 1)

]
− δM

√
2

(n+ 2)(n− 1)ωn−1

(n+ 1) (n+ 3)ωn
κ+O(δ2)

= −δM
√

2

[
(n+ 2)(n− 1)ωn−1

(n+ 1)(n+ 3)ωn
κ+

(n+ 2)

ωn

(n− 1)(n+ 5)

2(n+ 1)(n+ 3)

]
+O(δ2)

= −δMκ
√

2ωn−1

ωn

[
(n+ 2)(n− 1)

(n+ 1)(n+ 3)
+

(n+ 2) (n− 1) (n+ 5)

2(n+ 1)(n+ 3)

]
+O(δ2)

= −δMκ
√

2ωn−1

ωn

(n+ 2) (n− 1) (n+ 7)

2(n+ 1) (n+ 3)
+O(δ2)

= −c (n)Mκδ +O(δ2)

where

c(n) =
(n− 1) (n+ 2) (n+ 7)ωn−1√

2(n+ 1) (n+ 3)ωn

is a positive constant. It then follows that energy minimizer should be concentrated near

the point of maximal mean curvature. Theorem 3 has been proved.
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3.0 RADIAL STEADY STATE SOLUTION FOR THIN FILM EQUATION

In this chapter, we will focus on the radial steady states of van der Waals force driven thin

film. In particular, we want to understand the thin film configuration when the total liquid

volume in a cylindrical container is prescribed. We present a theoretical proof of a result

claimed by Miloua in his thesis [64] with a more precise description of the limiting profile

used in the construction of stationary solutions.

3.1 INTRODUCTION

Recall that the thin film type equation driven by van der Waals force and surface tension is

governed by the fourth order nonlinear partial differential equation

ut = ∇ (un∇p) (3.1.1)

where u is the thickness of the thin film and the pressure

p = −∆u+
1

α
u−α (3.1.2)

is a sum of linearized surface tension and van der Waals force. Here n > 0 and α > 1 are

physical constants. Physical experiments suggest α = 3 for van der Waals force. Let Ω

be a bounded smooth domain in R2 which represents the bottom of a cylindrical container

containing thin film liquid. For physical meaning, the total volume is fixed, i.e.

ū =
1

|Ω|

ˆ
Ω

u(x)dx

is a given constant.
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As previously mentioned, we assume that there is no flux across the boundary, which

yields the boundary condition
∂p

∂ν
= 0 on ∂Ω. (3.1.3)

Also we assume the following Neumann boundary condition

∂u

∂ν
= 0 on ∂Ω (3.1.4)

which means that we ignore the wetting effect and the fluid surface is orthogonal to the

boundary of the container.

Define associated energy functional

E (u) =

ˆ
Ω

(
1

2
|∇u|2 − 1

α (α− 1)
u1−α

)
. (3.1.5)

We compute the derivative with respect to time by integration by parts, using equation

(3.1.1) and the boundary conditions (3.1.3) , (3.1.4),

d

dt
E (u) =

ˆ
Ω

∇u · ∇ut +
1

α
u−αut

=

ˆ
Ω

−∆uut +
1

α
u−αut

=

ˆ
Ω

p∇ · (un∇p)

= −
ˆ

Ω

un |∇p|2 ≤ 0.

Hence, for a thin film fluid at rest, u satisfies the elliptic equation

−∆u+
1

α
u−α = p in Ω

with the Neumann boundary condition (3.1.4) and pressure p being a constant.
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Therefore for any given ū > 0, we need to find a function u and an unknown constant p

satisfying



∆u = 1
α
u−α − p in Ω,

1
|Ω|

´
Ω
u(x)dx = ū,

∂u
∂ν

= 0 on ∂Ω.

(3.1.6)

Comparing to this, in the chapter 2, we consider semi limit case of the thin film with

additional born repulsion force that leads to the following elliptic equation,



∆u = 1
α
u−α

(
1− ( ε

u
)β
)
− p in Ω,

1
|Ω|

´
Ω
u(x)dx = ū,

∂u
∂ν

= 0 on ∂Ω.

For the above elliptic equation, A. L. Bertozzi, G. Grun and T.P. Witelski [24] proved the

existence of the solution and obtained asymptotic behavior of solution in one dimensional

space numerically and theoretically. Later Jiang [54] extended the result to multi-dimensional

situation. Their variational approach relied on the boundedness of the associated energy

Eε [u] =

ˆ
Ω

{
1

2
|∇u|2 − u−α

α
+
εβu−α−β

α + β

}
.

Our case can be seen as the limiting case of the above equation with ε = 0. However, the

associated energy defined by (3.1.5) is indefinite due to its singularity. Hence we will try to

understand the radial solutions first.

59



3.2 SETTING AND RESULTS

Now we will consider the profile of thin film on a disk in R2. Take Ω = B1 (0). Equation

(3.1.6) can be rewritten as
urr + 1

r
ur = 1

α
u−α − p in B1 (0) ,

2
´ 1

0
ru(r)dr = ū,

u′ (1) = 0.

(3.2.1)

From the elliptic theory, u is smooth whenever it is positive, hence we also require that

u′ (0) = 0 if u (0) > 0.

We first ignore the volume constraint and the Neumann boundary condition. We consider

the ordinary differential equation
urr + 1

r
ur = 1

α
u−α − p,

u (0) = η,

u′ (0) = 0

(3.2.2)

defined on [0,∞). Jiang and Ni [57] gave a complete description of the radial solution to

(3.2.2). For η > 0, there exists a unique positive solution uη defined on [0,∞). And when

η = 0, there exists a unique rupture solution u0 which is continuous on [0,∞) such that

u (0) = 0 and u is positive and satisfies the ordinary differential equation in (3.2.2) on

(0,∞). Obviously uη ≡ (αp)−
1
α if η = (αp)−

1
α . For η ≥ 0 and η 6= (αp)−

1
α , uη oscillates

around the constant (αp)−
1
α . There exists an increasing sequence of critical radius rηk →∞

such that (uη)′ (rηk) = 0. Moreover, uη (rηk) achieves local maximum and local minimum

alternatively and approaches the constant (αp)−
1
α eventually.

We will obtain the radial solutions to (3.2.1) by scaling uη with p = 1
α

. We remark here

that different values of p will yield the same scaled solution. Given η ≥ 0, η 6= 1 and a

positive integer k, we have uη (r) satisfies the Neumann boundary condition at r = rηk. We

now define

uη,k (r) = (rηk)
− 2

1+αuη(rηkr).
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Then,

∆uη,k = uη,krr +
1

r
uη,kr

= (rηk)
2− 2

1+α

[
(uη)′′ (rηkr) +

1

rηkr
(uη)′ (rηkr)

]
= (rηk)

2α
1+α (

1

α
(uη)−α − p)

=
1

α
(uη,k)−α − 1

α
(rηk)

2α
1+α .

Therefore, uη,k (x) satisfies the elliptic equation

∆u =
1

α
· u−α − pη,k in B1(0)

with Neumann boundary condition

∂u

∂ν
= 0 on ∂B1(0),

where pη,k is defined by

pη,k =
1

α
(rηk)

2α
1+α .

We can calculate the average thickness for uη,k,

ūη,k =
1

|B1(0)|

ˆ
B1(0)

uη,k(x)dx =
(rηk)

− 2
1+α

|Brηk
(0)|

ˆ
B
r
η
k

(0)

uη(r)dr

= 2(rηk)
− 2

1+α
−2

ˆ rηk

0

ruη(r)dr.

Hence, we constructed a nontrivial radial solution to (3.2.1) with the average thickness

ū = ūη,k = 2(rηk)
− 2

1+α
−2

ˆ rηk

0

ruη(r)dr. (3.2.3)

Since any nontrivial solutions to (3.2.1) can be obtained in this manner, in order to solve

(3.2.1) with prescribed volume, we need to understand the dependence of ūη,k on initial value

η and number of bumps k.

The following result is claimed by Attou Miloua in [64] which we will give a rigorous

proof.

61



Theorem 12. For fixed integer k ≥ 1, ū(η, k) can be defined as a continuous function for

η ∈ [0,∞). Moreover,

lim
η→∞

ū(η, k)

η
α

1+α

= C, where C = C(k, α).

As we know, classical theory in ordinary differential equation gives the continuous de-

pendence on the initial data which indicates, ū (η, k) = ūη,k is a continuous function on η on

(0, 1) ∪ (1,∞). We will just concentrate on the three cases in the next several sections as

η → 0, η → 1 and η →∞.

Also we compute associated energy for (3.2.1) as following,

Eη,k =

ˆ
B1(0)

(
1

2

∣∣∇uη,k∣∣2 − 1

α (α− 1)

(
uη,k
)1−α

)
= (rηk)

− 4
1+α

ˆ
B
r
η
k

(0)

(
1

2
|∇uη|2 − 1

α (α− 1)
(uη)1−α

)

= 2π(rηk)
− 4

1+α

ˆ rηk

0

(
1

2

(
duη

dr

)2

− 1

α (α− 1)
(uη)1−α

)
rdr.

Similarly, we have the following theorem that

Theorem 13. For fixed integer k, Eη,k is a continuous function for η ∈ [0,∞) and

lim
η→∞

Eη,k

η
2α
1+α

= C where C = C(k, α).

Hence,

Eη,k ∼ ū2 as η →∞.

Therefore, for volume constraint problem (3.2.1), we have the existence of radial solution

for given volume.

Theorem 14. For given average thickness ū, the equation (3.2.1) admits infinitely many

radial solutions.
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Proof. For radial rupture solution, there exists a sequence of thickness ūk [57] satisfying

lim
k→∞

√
kπū0k = 1

and rupture solution exists if and only if ū = ū0k. Any rupture solution with ū = ū0k has

exactly k critical values including 1. It implies that

lim
k→∞

ū0k = 0.

For any given average thickness ū, these exists K0 such that for any k ≥ K0,

ū0k ≤ ū.

According to Theorem 12, ū(η, k) is continuously depending on η and as η →∞,

ū(η, k)→∞.

It follows, there exists a ηk such that

ū(ηk, k) = ū.

As a consequence, we construct a radial solution with k critical values satisfies (3.2.1). Since

k can be arbitrary integer satisfying k ≥ K0, we have the infinite many radial solution with

critical values equal to or more than K0.

Now we will consider there cases in the next several sections and gives the uniform

convergence to finish the proof of Theorem 12 and Theorem 13. Moreover, we will have a

description of the limiting profile.
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3.3 RUPTURE SOLUTION BY TAKING LIMIT η → 0

Rupture solution has been investigated to a large extent in [26, 57, 51, 56, 52]. Jiang and

Ni [57] proved the existence and uniqueness of rupture solution for our equation. Moreover,

they have given an accurate estimation for a small interval starting from 0,

u(r) ∼ r
2

1+α .

As η → 0+, uη converges uniformly to the rupture solution u0 on [0,∞). Hence, ū (η, k) is

continuous at η = 0.

Denote {rk}∞k=1 to be the increasing sequence where (u0)′(r) = 0. They have proven for

such rupture solution,

lim
k→∞

(rk+1 − rk) = π.

We remark here that rupture solutions has been constructed by Jiang and Miloua in

physical dimension 2 [56] and in higher dimensions by Guo, Ye and Zhou [51] for more

general equations

∆u = f (u)

with f satisfying certain growth conditions.

3.4 LINEARIZATION WHEN η → 1

For η = 1, we know that the radial solution to (3.2.1) is a trivial constant solution uη ≡ 1.

Here, the critical values {rk}∞k=1 is not well defined. So we need to understand the behavior

of uη as η → 1 first. As uη oscillates around 1, we can apply linearization by defining

ε = η − 1,

and

wη (r) =
uη (r)− 1

ε
.
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Then wη is a solution to the differential equation

wrr +
1

r
wr =

1

ε

[
1

α
(1 + εw)−α − 1

α

]
(3.4.1)

with initial condition

w (0) = 1, w′ (0) = 0.

Sending η → 1 and so ε→ 0, (3.4.1) formally converges to the limiting problem,


w∗rr + 1

r
w∗r + w∗ = 0,

w∗ (0) = 1,

(w∗)′ (0) = 0

(3.4.2)

Denote {rk}∞k=1 to be the increasing sequence of the critical point of w and {r∗k}∞k=1 to

be the increasing sequence of the critical points of w∗. We establish the following theorem,

Theorem 15. As η → 1, the solution wη to (3.4.1) converges uniformly to the solution w∗

to (3.4.2). Furthermore, rk converges to r∗k.

Proof. In order to apply the classical perturbation theory, we will prove wη is bounded first.

For simplicity, we will suppress script η here. Since u is the solution to (3.2.2), we define

e(r) =
1

2
(u′(r))2 + F (u(r))

with

F (u) =
1

α(α− 1)
u1−α +

1

α
u.

One can easily verify that F ′(u) > 0 for u > 1 and F ′(u) < 0 for 0 < u < 1. F (u) attains

its minimum 1
α−1

at u = 1. We have

d

dr
[e(r)] = u′(r)u′′(r)− 1

α
u−αu′(r) +

1

α
u′(r)

= −1

r
(u′(r))2 ≤ 0.
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e(r) is decreasing which yields that F (u(r)) ≤ e(r) ≤ e(0) = F (η). Note that for any positive

constant C > 1, as η → 1,

F (1 + C(1− η))− F (η)

= F (1 + C(1− η))− F (1 + (η − 1))

= [F (1) +
1

2
F ′′(1)C2(1− η)2]− [F (1) +

1

2
F ′′(1)(η − 1)2] +O((η − 1)3)

=
1

2
(C2 − 1)(η − 1)2 +O((η − 1)3)

≥ 0

For η > 1, then 1 + C(1− η) ≤ u(r) ≤ η. It follows that

−C ≤ C(1− η)

ε
≤ w =

u− 1

ε
≤ η − 1

ε
= 1.

For η < 1, then η ≤ u(r) ≤ 1 + C(1− η). It follows that

−C ≤ C(1− η)

ε
≤ w =

u− 1

ε
≤ η − 1

ε
= 1.

Thus as η → 1, |w| ≤ C for some constant C > 1.

Now check the equation (3.4.1),

wrr +
1

r
wr =

1

ε

[
1

α
(1 + εw)−α − 1

α

]
= −w + (α + 1)εw2 +O(ε2).

By perturbation theory, solution to the equation system w(r) and w′(r) is continuous in

parameter ε. That is, w(r) and w′(r) uniformly converges to w∗(r) and (w∗)′(r). It is easy

to have the convergence of the critical points which ends the proof.

66



Actually, (3.4.2) is called the Bessel’s differential equation of the first kind with order 0.

The solution is uniquely given by

J0(r) =
∞∑
n=0

(−1)n

(n!)2

(r
2

)2n

.

Note that J0 (r) is oscillating around 0. We are interested in the behavior of critical values

r∗k. r∗k are the zeros of (w∗)′(r) which satisfies the Bessel’s equation of the first kind with

order 1, i.e.

r2y′′ + ry′ + (r2 − 1)y = 0.

When r is sufficiently large, the asymptotic formula is given by [28].,

J̃1(r) =

√
2

πr
cos(r − 3

4
π) +O(r−

3
2 ).

The difference between two successive zeros becomes approximately π. That is,

lim
k→∞

(r∗k+1 − r∗k) = π.

Since uη → 1 uniformly, rηk → r∗k as η → 1, we have the average thickness ū(η, k) and

the associated energy Eη,k are continuously defined at η = 1. Therefore, we can define ūη,k

and Eη,k so that they are both continuous functions on [0,∞). Moreover,

ūη,k =
(rηk)

− 2
1+α

|Brηk
(0)|

ˆ
B
r
η
k

(0)

uη(r)dr → (r∗k)
− 2

1+α

as η → 1 and

Eη,k = (rηk)
− 4

1+α

ˆ
B
r
η
k

(0)

(
1

2
|∇uη|2 − 1

α (α− 1)
(uη)1−α

)
→ − 1

α (α− 1)
(r∗k)

− 4
1+α

∣∣Br∗k
(0)
∣∣ = − π

α (α− 1)
(r∗k)

2− 4
1+α

as η → 1.
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3.5 LIMITING PROFILE WHEN η →∞

In this section, we will end the proof of Theorem 12 and Theorem 13 by investigating the

behavior of h̄η,k and Eη,k as η →∞.

Let η > 1 and uη be the solution to (3.2.2). we define the blow down solution z after

scaling by

z (x) =
1

η
u(r)

with x = r√
αη

. Then we have

zx =

√
α
√
η
ur(r),

zxx = αurr(r)

and hence

z′′ +
1

x
z′ = α

(
urr +

1

r
ur

)
= u−α − 1

=
η−α

zα
− 1.

Denoting ε = 1
η
, we have ε → 0 as η → ∞. The blow down function z satisfies the initial

value problem

 z′′ + 1
x
z′ = εα

zα
− 1,

z (0) = 1, and z′ (0) = 0.
(3.5.1)

Formally, as ε→ 0, (3.5.1) converges to the limiting equation z′′ + 1
x
z′ = −1,

z (0) = 1, and z′ (0) = 0.
(3.5.2)

which has a unique global solution

z (x) = 1− 1

4
x2.
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Figure 1: Limit radial solution z∗

However, we can’t expect

lim
ε→0

zε (x) = 1− 1

4
x2

since the function 1− 1
4
x2 becomes negative when x > 2.

Nonetheless, we can establish the following theorem:

Theorem 16. For every ε > 0, let zε (x) be the unique solution of the initial value problem

(3.5.1). Then as ε tends to zero positively, zε (x) converges uniformly to z∗(x), the solution

of the limiting initial value problem


z′′∗ + 1

x
z′∗ = −1, z∗ > 0 in

⋃∞
j=0(aj, aj+1).

z∗ (0) = 1, and z′∗ (0) = 0,

z∗ (aj) = 0, z′∗ (aj+) = −z′∗ (aj−)

(3.5.3)

where a0 = 0 , 2 = a1 < a2 < · · · are inductively computed by solving the IVP (3.5.3).
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In the next sections we will prove this theorem and give a description of the limiting

solution to equation (3.5.3) by constructing the estimate of aj. From the above theorem,

we have zε (x) converges uniformly to 1 − 1
4
x2 on [0, 2] as ε → 0 and a1 = 2. That is,

rη1√
αη

converges to 2 as η →∞. More generally, we have for k = 1, 2, 3, · · · ,

lim
η→∞

rη2k−1√
αη

= ak

and

lim
η→∞

rη2k√
αη

= bk

where bk is the maximum point of z∗ in (aj−1, aj).

Now we are ready to compute the average thickness. Given a positive integer k and η

large enough, we have

ūη,k = 2(rηk)
− 2

1+α
−2

ˆ rηk

0

ruη(r)dr

= 2(rηk)
− 2

1+α
−2η

ˆ rηk

0

rz

(
r
√
αη

)
dr

= 2(rηk)
− 2

1+α
−2αη2

ˆ r
η
k√
αη

0

sz (s) ds

= 2α−
1

1+αη
α

1+α

(
rηk√
αη

)− 2
1+α
−2 ˆ r

η
k√
αη

0

sz (s) ds.

Hence, we have for k = 1, 2, 3, · · · ,

lim
η→∞

ūη,2k−1

η
α

1+α

= 2α−
1

1+αa
− 2

1+α
−2

k

ˆ ak

0

sz∗ (s) ds.

and

lim
η→∞

ūη,2k

η
α

1+α

= 2α−
1

1+α b
− 2

1+α
−2

k

ˆ bk

0

sz∗ (s) ds.

For fixed integer k, ū increases to infinity with order α
α+1

as η tends to infinity.

Similarly we investigate the energy of radial solutions as η →∞. Since

u(r) = ηz (x) ,
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duη

dr
= ηz′ (x)

dx

dr
=

√
η
√
α
z′ (x) .

Hence

Eη,k = 2π(rηk)
− 4

1+α

ˆ rηk

0

(
1

2

(
duη

dr

)2

− 1

α (α− 1)
(uη)1−α

)
rdr

= 2π(
rηk√
αη

)−
4

1+α (αη)1− 2
1+α

ˆ r
η
k√
αη

0

(
1

2

η

α
(z′ (x))

2 − 1

α (α− 1)
(ηz (x))1−α

)
xdx

= πα−
2

1+α (
rηk√
αη

)−
4

1+αη2− 2
1+α

ˆ r
η
k√
αη

0

x |z′|2 dx+O
(
η2−α− 2

1+α

)
.

Hence, we have for k = 1, 2, 3, · · · ,

lim
η→∞

Eη,2k−1

η2− 2
1+α

= πα−
2

1+αa
− 4

1+α

k

ˆ ak

0

s
∣∣(z∗)′∣∣2 ds.

and

lim
η→∞

Eη,2k

η2− 2
1+α

= πα−
2

1+α b
− 4

1+α

k

ˆ bk

0

s
∣∣(z∗)′∣∣2 ds.

For fixed integer k, Eη,k increases to infinity with order 2α
α+1

as η tends to infinity. Therefore,

Eη,k ∼ h̄2(η, k) as η →∞.

3.6 PROOF OF THE MAIN CONVERGENCE THEOREM 15

Define energy as follows,

e(x) =
1

2
(z′(x))2 +G(z) (3.6.1)

where

G(z) =
εα

α− 1
z1−α + z.

It is easy to check that G has the following properties:

G(ε) = minz∈(0,∞) G(z) = α
α−1

ε

G′(z) > 0 for v > ε and G′(z) < 0 for v < ε,

G′′(z) ≥ 0,

limz→0G(z) =∞.
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Figure 2: function G(z)

See the figure of function G(z).

By integration by parts, we can rewrite energy as

e(x) = G(1)−
ˆ x

0

2(z′(y))2

y
dy. (3.6.2)

The above formula indicates the energy dissipation in x and therefore e(x) is bounded above

by G(1) = 1 + εα

α−1
.

We know that z(x) oscillates around ε. Firstly, we will show an auxiliary problem for

the above equation to analyze the part of the solution which is below z = ε.

Lemma 13. Let z(x) be the solution to

 z′′ + 1
x
z′ = εα

zα
− 1,

z (xm) = m, and z′ (xm) = 0.
(3.6.3)
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Assume that:

(1) there exists an interval (a, b) such that z < ε in (a, b) and z(a) = z(b) = ε.

(2) xm ∈ (a, b) and xm > a ≥ 1.

(3) z(x) attains its unique minimum m in (a, b) at xm with 0 < m < ε
2
.

Then for ε sufficiently small,

(i)

b− a ≤
√

2ε(1 +
1

1−
√

2ε
). (3.6.4)

(ii) ˆ b

a

(z′(x))2

x
dx ≤ 3ε

√
2G(m) (3.6.5)

Proof. Multiply both sides of (3.6.3) by 2x2z′(x),

2x2z′z′′ + 2x(z′)2 = 2x2(
εαz′

zα
− z′).

That is,
d

dx
(x2(z′)2) = −2x2 d

dx
G(z),

Integrating from xm to x gives

(z′)2 =
2

x2

ˆ x

xm

y2 d

dy
[G(m)−G(z(y))]dy.

Now it is necessary for us to compute

G(m)−G(z) =
εα

α− 1
m1−α +m− εα

α− 1
z1−α − z = (z −m)(

εα

α− 1

m1−α − z1−α

z −m
− 1).

Apply the mean value theorem, we have,

G(m)−G(z) = (z −m)(
εα

α− 1

zα−1 −mα−1

(z −m)mα−1zα−1
− 1) = (z −m)(

εαξα−2

mα−1zα−1
− 1).

For 0 < m < ε
2

and m ≤ ξ ≤ z ≤ ε, it follows that

G(m)−G(z) ≥ (z −m)(
ε

m
− 1) ≥ (z −m).
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(1) For x ∈ [a, xm],

xm
x

√
2(G(m)−G(z)) ≥ |dz

dx
| ≥

√
2(G(m)−G(z)).

Then we have

xm − a =

ˆ xm

a

dx ≤
ˆ ε

m

dz√
2(G(m)−G(z))

≤
ˆ ε

m

dz√
2(z −m)

≤
√

2ε (3.6.6)

and ˆ xm

a

(z′(x))2

x
dx ≤ xm

a2

ˆ ε

m

√
2(G(m)−G(z))dz ≤ xm

a2
ε
√

2G(m). (3.6.7)

(2) For x ∈ [xm, b],

xm
x

√
2(G(m)−G(z)) ≤ |dz

dx
| ≤

√
2(G(m)−G(z)).

Then we have,

xm
b

(b− xm) ≤
ˆ b

xm

xm
x
dx ≤

ˆ ε

m

dz√
2(G(m)−G(z))

≤
√

2ε (3.6.8)

and ˆ b

xm

(z′(x))2

x
dx ≤ 1

xm

ˆ ε

m

√
2(G(m)−G(z))dz ≤ 1

xm
ε
√

2G(m). (3.6.9)

We can derive from (3.6.8) ,

b− xm ≤
√

2ε
1

1−
√

2ε
xm

. (3.6.10)

Consequently, adding (3.6.6) and (3.6.10), we obtain

b− a ≤
√

2ε(1 +
1

1−
√

2ε
xm

) ≤
√

2ε(1 +
1

1−
√

2ε
).

Energy dissipation in (a, b) is given by adding (3.6.7) and (3.6.9),

ˆ b

a

(z′(x))2

x
dx ≤ (

xm
a2

+
1

xm
)ε
√

2G(m).

Use (3.6.6) and for ε small enough,

ˆ b

a

(z′(x))2

x
dx ≤ 3ε

√
2G(m).
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Remark 2. Since the solution to equation (3.5.1) in [0, 2] uniformly converges to 1− x2

4
, the

first point a such that u(a) = ε is bounded below by 1. Then, (3.6.4) indicates that interval

(a, b) tends to be shrinking to 0 as ε approaches 0. On the other side, the energy dissipation

given by (3.6.5) converges to 0. This formally implies that for the limit solution z∗ given by

(3.5.3), z′∗ (aj+) = −z′∗ (aj−) .

Now we are going to check the condition (3) in Lemma 13 for the first local minimum. As

we know, starting from 0, z is decreasing in x. Suppose that z attains its first local minimum

m1 at xm1 . Oscillation around ε gives that m1 < ε. We are able to prove the following

estimate for m1 as ε→ 0.

Lemma 14. Let z be the solution to Equation (3.5.1) and m1 be its first local minimum,

then

lim
ε→0

m1

ε
= 0.

More accurately, m1 = O(ε
α
α−1 ) and G(m1) is bounded below by a positive constant.

Proof. Starting from the equation (3.5.1) , we obtain,

(xz′(x))′ = x(
εα

zα
− 1).

Firstly, we derive the lower bound for z(x). That is,

z′(x) ≥ 1

x

ˆ x

0

−ydy = −x
2
.

Thus,

z(x) ≥ 1− x2

4
for arbitrary x ∈ (0,∞).

Now we restrict x ∈ (0, 2) and apply the above lower bound,

z′(x) ≤ 1

x

ˆ x

0

y

[
εα

(1− y2

4
)α
− 1

]
dy =

2εα

(α− 1)x

[
1

(1− x2

4
)α−1

− 1

]
− x

2
.
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Integrating from 0 to x again,

z(x) ≤ 1− x2

4
+

2εα

α− 1

ˆ x

0

1

y

[
1

(1− y2

4
)α−1

− 1

]
dy

= 1− x2

4
+

εα

α− 1

ˆ 1

1−x2
4

1− uα−1

(1− u)uα−1
du

≤ 1− x2

4
+ εα

ˆ 1

1−x2
4

1

uα−1
du.

If α = 2, then

z(x) ≤ 1− x2

4
− εα ln(1− x2

4
).

Otherwise,

z(x) ≤ 1− x2

4
+

εα

2− α
(1− (1− x2

4
)2−α).

Take appropriate x∗ such that 1− x2∗
4

= ε1+r with 1
α−1

> r > 0, therefore,

m1 ≤ z(x∗) ≤ ε1+r (3.6.11)

which indicates that limε→0
m1

ε
= 0. On the other side, if we denote a1 to be the first value

such that z(a) = ε, then 1 < a1 < x∗ < 2.

e(a1) = G(1)−
ˆ a1

0

(z′(x))2

x
dx

≥ 1 +
εα

α− 1
−
ˆ a1

0

x

4
dx ≥ 1

2
+

εα

α− 1
.

Apply the estimate (3.6.7),

G(m1) = e(a1)−
ˆ xm1

a1

(z′(x))2

x
dx ≥ 1

2
− a1 +

√
2ε

a2
1

ε
√

2G(m)

For ε sufficiently small, G(m1) is bounded below and then

m1 = O(ε
α
α−1 ).
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Parallelly, we consider another auxiliary problem for the above equation to investigate

the part of the solution which is above z = ε. Denote z(x) be the solution to the following

problem  z′′ + 1
x
z′ = εα

zα
− 1,

z (xM) = M, and z′ (xM) = 0.
(3.6.12)

Lemma 15. Under the assumptions,

(1) there exists an interval (a, b) such that z > ε in (a, b) and z(a) = z(b) = ε.

(2) e(a) ≥ C for some positive constant C independent of ε.

(3) z(x) attains its unique minimum M in (a, b) at xM and xM > a > 1.

we have,

M > C̃ where C̃ is positive and independent of ε.

Proof. To start, we make an estimate for G(z) for M ≥ z ≥ ε.

G(M)−G(z) =
εα

α− 1
M1−α +M − εα

α− 1
z1−α − z

= (M − z)(1− εα

α− 1

Mα−1 − zα−1

Mα−1zα−1(M − z)
)

≥ (M − z)(1− εα

Mzα−1
) ≥ (M − z)(1− ε

M
).

Similarly as above, we have

(z′)2 =
2

x2

ˆ x

xM

y2 d

dy
[G(M)−G(z(y))]dy.

It follows that for x ∈ [a, xM ],

xM
x

√
2(G(M)−G(z)) ≥ |dz

dx
| ≥

√
2(G(M)−G(z)). (3.6.13)

Then we obtain,

xM − a ≤
ˆ M

ε

dz√
2(G(M)−G(z))

≤
ˆ M

ε

dz√
2(M − z)(1− ε

M
)

=
√

2M (3.6.14)

and

ˆ xM

a

(z′(x))2

x
dx ≤ xM

a2

ˆ M

ε

√
2(G(M)−G(z))dz ≤ xM

a2
M
√

2G(M). (3.6.15)
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That is,

C ≤ e(a) ≤ G(M) +
xM
a2
M
√

2G(M) ≤ G(M) +
a+
√

2M

a2
M
√

2G(M).

Since a > 1 and M < 1,

C ≤ G(M) + (1 +
√

2)
√

2G(M).

By proof of contradiction, it is easy to see that, there exists some positive constant D

independent of ε such that

D ≤ G(M) =
εα

α− 1
M1−α +M.

Hence, we have finished proving the lemma.

As we know, the solution z(x) is oscillating around z = ε. Define xm = sup{x > xM :

z′(y) < 0 for all y ∈ (xM , x)} and m = G(xm). Then m is the local minimum of z(x) and

m < ε. The following lemma will give an estimate for m which is the same as m1 proved in

Lemma 14 for inductive purpose.

Lemma 16. Under the assumptions in Lemma 15, then

lim
ε→0

m

ε
= 0.

Furthermore, G(m) is bounded below by a positive constant independent of ε.

Proof. As shown above, G(M) ≥ D for some positive constant D independent of ε. For any

x ∈ [xM , b],
xM
x

√
2(G(M)−G(z)) ≤ |dz

dx
| ≤

√
2(G(M)−G(z)). (3.6.16)

Similarly, we calculate the upper bound for b and the energy dissipation in [xM , b].

xM
b

(b− xM) ≤
ˆ b

xM

xM
x
dx ≤

ˆ M

ε

dz√
2(G(M)−G(z))

≤
√

2M.

Thus,

b− xM ≤
√

2M

1−
√

2M
xM

≤
√

2M

1−
√

2M
a+
√

2M

≤ 2
√

2M. (3.6.17)
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Meanwhile,

ˆ b

xM

(z′(x))2

x
dx ≤ 1

xM

ˆ M

ε

√
2(G(M)−G(z))dz ≤ M

xM

√
2G(M). (3.6.18)

It follows that

e(b) = G(M)−
ˆ b

xM

(z′(x))2

x
dx ≥ G(M)− M

xM

√
2G(M).

By Lemma 15, 1 > M > C̃ > 0. Note that xM > 2. It is easy to check that for ε small

enough, e(b) is bounded below by a positive constant which is independent of ε. On the other

side, for any x ∈ [b, xm], Apply the estimate

G(m)−G(z) ≥ (z −m)(
ε

m
− 1).

into

xm − b =

ˆ xm

b

dx ≤
ˆ ε

m

dz√
2(G(m)−G(z))

.

We obtain,

xm − b ≤
ˆ ε

m

1√
2(z −m)( ε

m
− 1)

dz =
√

2m.

Regarding the energy dissipation, same as Lemma (13),

ˆ xm

b

(z′(x))2

x
dx ≤ xm

b2
ε
√
G(m) ≤ b+

√
2m

b2
ε
√
G(m).

Then,

e(b) ≤ G(m) + ε

√
G(m)(b+

√
2m)

b2
≤ G(m) + ε

√
G(m).

In consequence, G(m) is bounded below by a positive constant and bounded above by G(1).

That is, there exists positive constants C1 and C2 such that

C1ε
α
α−1 ≥ m ≥ C2ε

α
α−1 .
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Now we obtain a global picture of the solution z(x) to equation (3.5.1). z(x) oscillates

around ε which is its asymptotic limit. For ε sufficiently small, the local minimum m has the

order ε
α
α−1 and the local maximum M is bounded below by a positive constant independent

of ε. Each interval where z(x) > ε is bounded above by 3
√

2M by adding (3.6.14) and

(3.6.17) while each interval where z(x) < ε is ε followed by (3.6.6). Before we process the

proof of uniform convergence, we are about to show the core lemma as following,

Lemma 17. For any given interval [a, b] in the domain,

ˆ b

a

εα

zα
dx ∈ L1([a, b]) and lim

ε→0

ˆ b

a

εα

zα
dx = 0.

Proof. Without loss of generality, we can restrict on the interval where z(x) is above z = ε.

We first assume that z(a) = z(b) = ε and z(x) > ε for x ∈ (a, b). Then denote M = z(xM)

as the maximum of z(x) in [a, b]. Firstly, (3.6.13) implies

ˆ xM

a

εα

zα
dx ≤ εα

ˆ M

ε

dz

zα
√
G(M)−G(z)

≤ εα
ˆ M

ε

dz

zα
√

2(M − z)(1− ε
M

)
.

Direct calculation of the above integral shows,

εα
ˆ M

ε

dz

zα
√

2(M − z)(1− ε
M

)
=

εα√
2(1− ε

M
)

1

α− 1

[ˆ M

ε

(2α− 1)dz

2Mzα−1
√

(M − z)
−
√
M − z
Mzα−1

|Mε

]

=
εα√

2M(M − ε)
2α− 1

2(α− 1)

ˆ M

ε

dz

zα−1
√

(M − z)
+

ε

(α− 1)
√

2M

≤ ε√
2M(M − ε)

2α− 1

2(α− 1)

ˆ M

ε

dz√
(M − z)

+
ε

(α− 1)
√

2M

=
ε√

2M(M − ε)
2α− 1

α− 1

√
(M − ε) +

ε

(α− 1)
√

2M

=
2αε

(α− 1)
√

2M
≤ 2αε

(α− 1)
√
G(M)

.

On the other side, from (3.6.16), we have

ˆ b

xM

εα

zα
dx ≤ b

xM
εα

ˆ M

ε

dz

zα
√
G(M)−G(z)

≤ b

xM

2αε

(α− 1)
√
G(M)

.

From (3.6.17), b− xM ≤ 2
√

2M. Then b
xM
≤ 1 + 2

√
2M
xM

< 5, due to xM > 1. Thus,

ˆ b

a

εα

zα
dx ≤ 12αε

(α− 1)
√
G(M)

.
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If xM = 0, then let b = inf{x > 0 : z(x) = ε}. Then according to the estimate in Lemma

14, we simply compare with x∗ where z(x∗) < ε and

ˆ b

0

εα

zα
dx ≤

ˆ x∗

0

εα

(1− x2

4
)α
dx ≤

ˆ 2−ε1+r

0

εα

(1− x
2
)α
dx <

2α

α− 1
ε1−(α−1)r.

Now we are ready to prove the main Theorem 16 for the case η →∞.

Proof. Firstly, denote x1 = inf{x > 0 : z(x) = ε}, yn = inf{x > xn : z(x) = ε} and

xn+1 = inf{x > yn : z(x) = ε}. From lemma 13, we have limε→0(yn− xn) = 0. By lemma 14,

x1 < 2− ε1+r < y1. Then it is easy to have limε→0 x1 = limε→0 y1 = 2.Now let us concentrate

on the interval (a0, a1) with a1 = 2. Then for x ≤ x1,

|z′(x)− z′∗(x)| = |1
x

ˆ x

0

y(
εα

zα
− 1)dy − 1

x

ˆ x

0

−ydy| = 1

x

ˆ x

0

y
εα

zα
dy <

2α

α− 1
ε1−(α−1)r.

It follows that

|z(x)− z∗(x)| ≤ 2α

α− 1
ε1−(α−1)rx ≤ 2α+1

α− 1
ε1−(α−1)r.

Since x1 → a1 as ε → 0, we have z(x) uniformly converges to z∗(x) in (a0, a1). Later,

we consider on the interval (a1, a2). Due to the fact that y1 → a1, we are able to pick ε

small enough such that y1 < a1 + δ. Here δ is to be determined so that |z∗(x)− z∗(a1)| and

|z′∗(x) − z′∗(a1+)| sufficiently small for x ∈ (y1, a1 + δ). By lemma 13, e(y1) − e(x1) → 0.

Therefore,

|z′(y1)−z′∗(y1)| ≤ ||z′(y1)|− |z′(x1)||+ |z′(x1)−z′∗(a1−)|+ |z′∗(y1)−z′∗(a1+)| is small enough.

Hence for x ∈ [a1, y1],

|z(x)− z∗(x)| ≤ |z∗(x)|+ |z(x)| ≤ ε+ |z∗(x)− z∗(a1)|.

For x ∈ [y1, x2], following Lemma 17,

|z′(x)− z′∗(x)| ≤ |z′(y1)− z′∗(y1)|+ |1
x

ˆ x

y1

y(
εα

zα
− 1)dy − 1

x

ˆ x

y1

−ydy|

= |z′(y1)− z′∗(y1)|+ 1

x

ˆ x

y1

y
εα

zα
dy ≤ Cε1−(α−1)r.
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It derives that

|z(x)− z∗(x)| ≤ C(a2 − a1)ε+ |z(y1)− z∗(y1)|.

Meanwhile, we obtain that |z(a2)| < ε which indicates that x2 < a2 < y2. Since x2 → a2

as ε→ 0, we have z(x) uniformly converges to z∗(x) in (a0, a2). By inductive approach, we

are able to show that on a fixed interval [0, R], z(x) converges to z∗(x) uniformly. It is well

known that as R → ∞, z(x) approaches ε while z∗(x) approaches 0. Consequently, As ε

goes to 0, z(x) tends to 0 at infinity. Taking R sufficiently large, |z(x)− z∗(x)| < ε. Then it

is easy to see that z(x) uniformly converge to z∗(x) in (0,∞).

3.7 ASYMPTOTIC BEHAVIOR OF LIMIT SOLUTION

From the main result Theorem 16, we have z(x) is uniformly convergent to limit z∗(x)

satisfying 
z′′∗ + 1

x
z′∗ = −1, z∗ > 0 in

⋃∞
j=0(aj, aj+1).

z∗ (0) = 1, and z′∗ (0) = 0,

z∗ (aj) = 0, z′∗ (aj+) = −z′∗ (aj−)

In this section, we are solving z∗ in the following manner.

(i) In [0, a1],

(xz′∗)
′ = −x and z∗(0) = 1, z′∗(0) = 0.

Integrating twice gives

z∗(x) = 1− x2

4
.

Hence,

a1 = 2 and e1 := |z′(a1)|2 = 1.

(ii) In [a1, a2],

(xz′∗)
′ = −x and z′∗(2+) = 1.

Then,

xz′∗(x) = 4− x2

2
.
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z∗(x) = 4 ln
x

2
+

4− x2

4
.

Note that z′′∗ (x) = − 4
x2
− 1

2
< 0, z∗(x) is concave down. Therefore, there exists a unique

solution a2 ∈ (2,∞) to

4 ln
a2

2
+

4− a2
2

4
= 0.

That is,

a2 = 3.74853 and e2 := |z′(a2)|2 = (
a2

2
− 4

a2

)2 = 0.6515.

(iii) In [aj, aj+1],

(xz′∗)
′ = −x and z′∗(aj+) =

√
ej.

Integrating from aj to x,

xz′∗ = aj
√
ej +

a2
j

2
− x2

2
.

z∗(x) = (aj
√
ej +

a2
j

2
) ln

x

aj
−
x2 − a2

j

4
.

Then similarly as above, aj+1 is the unique root in (aj,∞) such that

(aj
√
ej +

a2
j

2
) ln

aj+1

aj
−
a2
j+1 − a2

j

4
= 0. (3.7.1)

And
√
ej+1 is given by

√
ej+1 = −z′∗(aj+1) = −(aj

√
ej +

a2
j

2
)/aj+1 +

aj+1

2
. (3.7.2)

Theorem 17. Let aj and ej be defined as above, we have as j →∞, for some constants A

and B,

aj ∼ Aj
3
4 and

√
ej ∼ Bj−

1
4 .

Proof. Firstly, according to (3.7.2), we have,

√
ej+1 +

aj
aj+1

√
ej =

a2
j+1 − a2

j

2aj+1

Since
√
ej is decreasing,

aj+1 + aj
aj+1

√
ej+1 ≤

a2
j+1 − a2

j

2aj+1

≤ aj+1 + aj
aj+1

√
ej.
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It follows that

2
√
ej+1 ≤ aj+1 − aj ≤ 2

√
ej.

Then as j →∞, aj+1

aj
− 1→ 0. Denote t = (

aj+1

aj
)2 − 1. Now rewrite (3.7.1),

t

ln(t+ 1)
=

2
√
ej

aj
+ 1.

For convenience, we take bj =
√
ej
aj

. By Taylor expansion, we have,

t

2
− t2

12
' 2bj

which yields

t ' 4bj +
t2

6
= 4bj +

8

3
b2
j +O(b3

j).

Therefore,

aj+1

aj
=
√

1 + t = 1 +
t

2
− t2

8
+O(t3) (3.7.3)

= 1 + 2bj −
2

3
b2
j +O(b3

j). (3.7.4)

Plug into (3.7.2),

√
ej+1
√
ej

=
aj+1 − aj

2
√
ej

− aj
aj+1

[
1− aj+1 − aj

2
√
ej

]
(3.7.5)

=
1

2bj
(
aj+1

aj
− 1)− aj

aj+1

(1− 1

2bj
(
aj+1

aj
− 1)) (3.7.6)

= 1− 2

3
bj +O(b2

j). (3.7.7)

Hence,

bj+1

bj
=

√
ej+1
√
ej

(
aj+1

aj
)−1 = (1− 2

3
bj +O(b2

j))(1 + 2bj −
2

3
b2
j +O(b3

j))
−1

= (1− 2

3
bj +O(b2

j))(1− 2bj +O(b2
j))

= 1− 8

3
bj +O(b2

j).

As bj is decreasing and converges to 0,

1

bj+1

=
1

bj
+

8

3
+O(bj).
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We can obtain that for j large enough, bj = O(1
j
). Then,

√
ej+1
√
ej

(
aj+1

aj
)
1
3 = (1− 2

3
bj +O(b2

j))(1 + 2bj −
2

3
b2
j +O(b3

j))
1
3

= (1− 2

3
bj +O(b2

j))(1 +
2

3
bj +O(b2

j))

= 1 +O(b2
j) = 1 +O(

1

j2
).

It follows that limj→∞
√
ej+1a

1
3
j+1 exists and assume the limit is γ. (3.7.3) implies ,

aj+1 = aj + 2γa
−1/3
j +O(

1

a
4/3
j

).

Hence,

aj ∼ Aj
3
4 with A = (

8γ

3
)
3
4 .

As a consequence,
√
ej ∼ Bj−

1
4 , with B = (

8γ

3
)−

1
4γ

and

aj+1 − aj ∼ j−
1
4 .
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4.0 CONCLUSIONS AND FUTURE WORK

In my dissertation, we have started with a thin film coupled with Born repulsion force and

van der Waals forces. In [32, 54], they have proved the existence of positive, smooth solutions

with prescribed volume and gave an rigorous proof for the asymptotic zero Born repulsion

force limit. In order to investigate the location of boundary spike, we simplify the problem by

taking semi limit. However, the solution admitted by new energy minimizing problem with

volume constraint is no longer smooth with a jump for its Laplacian. It can be identified as

a free boundary problem and regularity of the free boundary Ω ∩ ∂{u > 0} attracts great

attention in [3, 4]. We have proven the uniform convergence of the minimizer to a Dirac

measure and located the concentration at the point on the boundary with maximal curvature

by applying the asymptotic analysis.

Later in chapter 3, we performed the theoretical analysis for the radial steady states

for thin film equation driven by van der Waals force only. We tried to understand the

physical quantities, the average thickness and energy through the initial value u(0). Based

on the previous work by [57, 64], the construction of radial solutions has been given and

numerical experiments has shown the convergence for u(0) → 0, u(0) → 1 and u(0) → ∞.

Making adequate use of the oscillation property, we scale the thickness function and derive

the accurate estimate for the critical values. As a consequence, we show the dependence of

thin film solution and its energy on the average thickness and give a description of limiting

profile, especially when u(0) is large.

So far, most of the rigorous mathematical work about thin film equation were done when

the space dimension is one. For the physically realistic dimension, the dynamics is not well

understood. Many questions and challenges are still open. The following are a few ideas for

future research.
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• Location of boundary spike for thin film equation: The energy minimizing prob-

lem we consider here is the semi-limit of the original thin film energy. Let us come back

to original energy problem (1.2.4). It has been proven that the zero Born repulsion limit

is a Dirac Measure located on the boundary. Regarding the location of boundary spike,

the complexity of pressure function makes the problem still open.

• Rigorous proof for asymptotic analysis In my formal calculation for asymptotic

analysis, we are seeking for a special type solution by perturbation to limiting profile.

We need a rigorous proof to have the existence of this solution. Moreover, we have to

prove that energy minimizer would only have one piece.

• Comparison of energy level of radial solution: We know that for thin film equation

driven by van der Waals forces, the radial solution can be constructed for given initial

value η and numbers of oscillations k. It is natural to ask, what is the optimal k to

minimize the energy? Numerical experiment indicates that for a given volume, the total

energy is increasing in k. However, there exists a critical value ū0 for given k0 such that

no radial solution with k < k0 exists with average thickness ū < ū0. Comparing to

constant solution, numerical experiment also shows that for ū large, constant solution

usually has a lower energy. We need more theoretical results about the dependence of

average thickness and energy on k.

• Stability property of these radial solution and rupture solution: In dimension

one, R. Laugesen and M. Pugh has concluded the linear stability and energy stability for

a more general setting in [58, 60, 61]. The next step in my work would be to investigate

the stability of radial solutions and rupture solution and give a bifurcation digram for

multiple solutions.

• Rupture solution for non radial case: We know that nonunformities in coating

industry are very undesirable. So people are very interesting in the rupture set Σ = {x ∈

Ω : u(x) = 0} where ”dry spot” occurs. It has been proven that rupture can only occur

at original point for radial rupture solution. For non radial case, Huiqiang Jiang and

Fanghua Lin [55] has obtained an estimate on the Hausdorff dimension of the rupture

set under the assumption that the total energy is finite. What is the optimal Hausdorff

dimensions is still open? And how to construct a non trivial rupture solution in non
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radial case?

• Thin film evolution: In a more general setting, we would like to come back to fourth

order parabolic equation with nonnegative initial values for any given domain. A sys-

tematic theory in multi-dimensional space about the existence, uniqueness, long time

behavior, blow up analysis and finite time rupture is still open.
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