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 Anthropogenic stressors are ubiquitous and have been implicated in species declines 

worldwide. Pesticides are one such stressor that can have profound effects on aquatic 

communities by directly affecting sensitive species and indirectly affecting other species via 

trophic cascades, which can alter ecosystem function.  However, there is growing evidence that 

non-target species can evolve increased resistance to these chemicals. When such species are 

important drivers of the food web, such as zooplankton, then evolved resistance should help 

buffer communities from the effects of pesticides.  Furthermore, given that some species can 

evolve cross-resistance to other pesticides, one would predict that cross-resistance could have 

pronounced effects on community stability.   

 The studies herein attempt to address these concerns through a series of experiments that 

build on each other in complexity.  In the first study, we found that populations of two common, 

co-occurring zooplankton species collected from ponds near surrounding agriculture were more 

resistant to a commonly applied insecticide (chlorpyrifos) and this variation was correlated with 

surrounding agricultural land use.  In the second study, we utilized this pre-existing variation in 

resistance to determine whether resistant populations of zooplankton could buffer an entire 
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aquatic community from the effects of pesticides.  Chlorpyrifos caused direct mortality of 

zooplankton in communities containing sensitive populations and this led to a bloom of 

phytoplankton and subsequent declines in periphyton abundance and amphibian mass and 

survivorship.  In the third study, we exposed communities to several concentrations of AChE-

inhibiting or sodium channel-inhibiting insecticides.  We discovered that communities 

containing resistant zooplankton were buffered from adverse effects at low-to-moderate 

concentrations of all AChE-inhibiting insecticides, but were not buffered against sodium 

channel-inhibiting insecticides. Conversely, communities with sensitive zooplankton 

experienced pronounced trophic cascades when exposed to all insecticides.  The fourth study 

manipulated the diversity of zooplankton within the experimental communities. We discovered 

that populations of cladocerans and copepods living near agriculture were more resistant to 

chlorpyrifos, but rotifers did not show a clear pattern of variation in that could be associated with 

land use. Furthermore, unlike communities with cladocerans, communities containing only 

copepods and rotifers were unable to buffer the community from the effects of the pesticide. 
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PREFACE 

 

When I was younger, I used to thoroughly enjoy mathematics.  In particular, I was fascinated by 

a sequence of numbers known as the Fibonacci sequence, which was named after the renowned 

Italian mathematician.  The sequence, which is recursive in nature, begins with 0 and 1 (or 1 and 

1) and each subsequent number in the sequence is the sum of the two preceding numbers.  At 

first, this seems rather uninteresting – that is, until you attempt to visualize it graphically.  If you 

take the first two numbers (1 and 1), made two unit squares corresponding to them and placed 

them side by side, and then added a new square consisting of the same length of the largest side 

of the original rectangle to those two original unit squares and continued this process over and 

over, you create an outward spiral of progressively larger rectangles.  Finally, if you use quarter-

circle arcs starting at the smallest square and connect them together, you find that the line that is 

created is a logarithmic spiral that continues outward towards infinity.   

 As time went by, my enthusiasm for math waned (as it does for most), and I became 

increasingly more interested in the sciences.  Then, one fortuitous day in high school, the 

sequence reappeared in a short film during my AP biology class which completely reignited my 

interests.  The film showed how the Fibonacci numbers were pervasive in nature: they could be 

found in the petals of a rose, to the conical shape of a pinecone, the distribution of seeds in a 

sunflower, the spiral shape of the nautilus shell and even the cochlea of the human inner ear.  

With all of the complexity and diversity of life that exists, how could it be that this pattern shows 
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up time and time again?  Not often can we pinpoint an exact moment in our lives as a truly life-

altering experience, but I can certainly say that this was the exact moment that I knew that I was 

destined to become a biologist. 

 When I recount my journey through graduate school, I cannot help but to relate it to the 

spiraling nature of the Fibonacci sequence as well.  In my first year of study, the vast majority of 

my time the lab was spent pouring over was seemed to be an insurmountable amount of literature 

in order to narrow down potential areas of research.  At times it seemed almost hopeless and 

there were several instances in which I considered leaving the program.  However, once I found 

one broad, testable and important question, it opened the doors to new and exciting opportunities 

for future avenues of research.  By the end of my time in graduate school, I almost felt as if I was 

left with more questions than answers.  That is the beauty of science.  From one question comes 

a handful more, and from those, even more still.  

 Though this has largely been a five year process of discovery, intellectual development 

and self-improvement, there have certainly been low points.  Often, graduate students become 

overly frustrated because of failed experiments, seemingly harsh criticisms from colleagues, or 

the knowledge that a particular pet hypothesis was most likely untrue.  However, it is in the 

company that we keep that we are able to summon the strength to persevere.  As I reflect back on 

my time in graduate school, I now realize that all of this would not be possible without the input, 

assistance, guidance and friendship of many individuals.  Although it would be nearly impossible 

to thank everyone who I have come into contact with throughout these past five years, I do want 

to take the time to reflect and thank those individuals who have left an indelible mark on my life 

and have helped shape me into the person I am today.  Firstly, I have to thank my advisor, Rick 

Relyea, who was undoubtedly the best advisor I could have ever possibly imagined.  When Rick 



xxiii 

informed the lab group that he would be leaving the University of Pittsburgh to join the faculty at 

Rensselaer Polytechnic Institute for my final year of graduate study, we all assumed it was an 

elaborate hoax (he told us on April Fools’ Day of all days).  However, when we all came to the 

realization that this was not a joke, we were all faced with a rather difficult decision: to remain in 

Pittsburgh or to go with Rick to New York.  In reality, this was not a difficult decision for me.  In 

my mind, there is no possible way that I could have made it to where I am today without all of 

Rick’s tireless efforts to improve my abilities as not only a scientist, but as a human being.  Rick 

maintains one of the most intimidating schedules that one could ever imagine, but still prioritizes 

time for his students and treats them as if they were members of his own family.  Words cannot 

describe how much that meant to me over the five years that I spent in his lab. 

I would also like to thank the members of my dissertation committee.  Nate Morehouse 

was always able to provide tremendous amounts of insight towards my experimental designs and 
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1.0 INTRODUCTION 

One of the most central and on-going goals in the field of ecology is to be able to predict the 

consequences of anthropogenic disturbances on community structure and function.  This has 

proven to be a rather difficult undertaking, as there is seemingly limitless amounts of complexity 

when attempting to understand the nature of interactions within any ecosystem (Simberloff 

2004).  A range of these stressors including (but not limited to) habitat fragmentation, 

deforestation, over-harvesting of natural resources and the production and release of chemical 

contaminants have directly led to what some are considering the 6th largest mass extinction of 

species in our planet’s history; the ‘Anthropocene extinction’ (Barnosky et al. 2011).  One such 

stressor that has received a great deal of attention both from an economic and an ecological point 

of view has been the use of synthetic pesticides.  Undoubtedly, synthetic pesticides have 

increased our capacity to produce the food resources needed to meet the needs of a burgeoning 

human population, but the use of these chemicals has been shown to come at a significant cost 

(Pimentel 2005).  From deleterious effects on human health, direct toxicity to both target and 

non-target organisms as well as the development of insecticide-resistant pest species, the effects 

of pesticides have been a major focus of ecological, entomological, and economic studies for 

decades (Pimentel et al. 1992). What has garnered markedly less attention, however, are the 

array of indirect effects that low, sublethal and, most importantly, environmentally-relevant 

concentrations of pesticides can have on community stability and ecological function.  
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Wetlands and vernal ponds are two such community types that are often indirectly 

inundated with an array of pesticides via aerial drift, run-off, and even inadvertent direct 

application (Davidson et al. 2012).  Wetlands and ponds can contain diverse assemblages of 

organisms within a multi-trophic community that can be highly sensitive to anthropogenically-

produced stressors (De Meester et al. 2005).  They are often the preferred breeding habitat of 

amphibians, a unique group of vertebrates containing more than 7,000 species that are facing 

worldwide declines in both diversity and abundance (Blaustein et al. 2003, Stuart et al. 2004). 

Most importantly, ponds communities are model systems that are ideal for asking ecologically or 

evolution-based questions, in that they are relatively contained systems and easier to study and 

manipulate when compared to terrestrial systems (De Meester et al. 2005).   

Studies within the past few years have shown that aquatic community function can be 

significantly impaired by extremely low concentrations of insecticides that are sublethal to most 

species within the community (Mills and Semlitsch 2004, Relyea and Diecks 2008).  Insecticides 

often extirpate the most sensitive species within the community, which are typically the 

zooplankton.  Zooplankton are essential for proper aquatic community function, as they maintain 

top-down control on their primary food resource, phytoplankton.  When low concentrations of 

insecticides enter these communities, zooplankton immediately decline in abundance causing a 

sharp increase in phytoplankton content.  This bloom in phytoplankton shades out competing 

species of algae within the community, particularly the attached periphytic algae along the 

substrate at the bottom of the pond. The decline in periphytic algae can then cause dramatic 

effects on grazers that consume periphyton such as amphibians (Relyea and Diecks 2008).  Many 

of these pond communities are ephemeral and throughout the summer, the hydroperiod will 

continually get shorter, so amphibians that cannot attain the necessary energy and resources to 
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successfully metamorphose before the pond dries, will die.  In these studies, which have utilized 

natural pond-drying regimes, low concentrations of insecticides (that are in some cases more 

than 100x lower than concentrations that have been shown to be directly toxic to amphibians) 

resulted in pronounced insecticide-induced trophic cascades that can result in delayed growth 

and development in tadpoles leading to amphibian mortality (Mills and Semlitsch 2004, Boone et 

al. 2004, Relyea and Diecks 2008). 

This thesis aims to expand upon and explore how natural variation within zooplankton 

assemblages can potentially buffer aquatic communities from the detrimental effects of low and 

environmentally-relevant concentrations of commonly applied insecticides.  In the first chapter, 

we explore whether or not there is natural variation in insecticide resistance among two different 

species of zooplankton (Daphnia pulex and Simocephalus vetulus) that were collected from 

ponds that varied in the amount of agricultural land use around them.  Whereas insecticide 

resistance is a well-known phenomenon that has received a great deal of attention over the years 

due to the economic implications associated with it, insecticide resistance in non-target 

organisms, like zooplankton, is a remarkably understudied area that may potentially have 

dramatic effects within a community.  We hypothesized that populations of zooplankton from 

ponds surrounded by a high (>30%) amount of agriculture would be more resistant to the 

commonly applied insecticide chlorpyrifos, than those from ponds with little to no (<5%) 

surrounding agriculture.  Using standardized toxicological methodology (i.e. LC50 tests), we 

found that D. pulex and S. vetulus populations showed marked natural variation in resistance to 

chlorpyrifos, and that this resistance was, in general, highly correlated with surrounding land use, 

such that ponds with high amounts of surrounding agriculture had populations of zooplankton 

that were more resistant to the insecticide.  To our knowledge, these are only the second and 



4 
 

third cladoceran species to have been shown to have developed naturally-occurring population-

level variation in resistance to a pesticide, and the first study to show that this variation is 

correlated with surrounding agricultural land use.  This paper is co-authored by Rick Relyea and 

is published in Environmental Toxicology and Chemistry. 

In the second chapter of this thesis, we utilized the variation in resistance among 

naturally-occurring D. pulex populations to determine if these differences in sensitivity to 

chlorpyrifos had the potential to affect the entire aquatic community.  We hypothesized that 

communities with sensitive populations of D. pulex would experience higher rates of mortality 

with the insecticide and that this would in turn, cause insecticide-induced trophic cascades 

through the food web across a range of chlorpyrifos concentrations.  This trophic cascade would 

then have the potential to affect phytoplankton and periphyton abundance, as well as larval 

amphibian development.  Conversely, communities with resistant populations of D. pulex would 

be buffered from the effects of the insecticide and the communities would not exhibit these 

pronounced cascades.  To test this theory, we cultured four populations of D. pulex that we had 

previously demonstrated were either sensitive or resistant to chlorpyrifos.  Using outdoor 

mesocosms that contained identical aquatic communities of phytoplankton, periphyton, and 

leopard frog tadpoles (Lithobates pipiens), we manipulated these four D. pulex populations and 

four chlorpyrifos concentrations. As we monitored the communities for nearly three months, we 

found that the insecticide caused significant direct mortality of D. pulex in communities 

containing sensitive populations and this led to a bloom of phytoplankton.  In contrast, 

chlorpyrifos caused significantly less direct mortality in communities containing resistant D. 

pulex populations and the trophic cascade was prevented under low to moderate insecticide 

concentrations. Across all treatments, survivorship of leopard frogs was ~72% in communities 
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with resistant D. pulex but only 35% in communities with sensitive D. pulex. This is the first 

study using naturally-occurring population variation in insecticide resistance to show that the 

evolution of pesticide resistance in zooplankton can mitigate the effects of insecticide-induced 

trophic cascades and that this outcome can have far-reaching community effects.  This paper is 

co-authored by Rick Relyea and is in review at Oecologia. 

In the third chapter of this thesis, we built on previous knowledge from the studies 

performed in chapters 1 and 2 in order to determine if the resistant and sensitive populations of 

D. pulex were cross-resistant to multiple insecticides and, if so, whether or not this cross-

resistance was related to the insecticide mode of action.  Cross-resistance to insecticides, 

particularly those with similar modes of action, is a fairly common phenomenon that has been 

found in many pest species.  However, due to a lack of economic incentive there is almost no 

evidence of cross-resistance in non-target organisms, nor are there any studies that attempt to 

discern whether or not there are any pertinent community-wide effects associated with this cross-

resistance that may be generalizable to a wide array of insecticides.  In this study, we 

hypothesized that D. pulex populations that were resistant to the acetylcholinesterase (AChE)-

inhibiting insecticide chlorpyrifos, would also be resistant to insecticides that share the same 

mode of action, but not necessarily to those with a markedly different mode of action.  To 

address this hypothesis, we conducted a mesocosm experiment comprised of 200 identical 

aquatic communities. We then added one of the four D. pulex populations that were either 

resistant or sensitive to chlorpyrifos (based on previous studies) and exposed the communities to 

either no insecticide or three different concentrations of AChE-inhibiting insecticides 

(chlorpyrifos, malathion or carbaryl) or sodium channel-inhibiting pyrethroid insecticides 

(permethrin or cypermethrin). We found that communities containing sensitive D. pulex 
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experienced phytoplankton blooms and dramatic community-wide effects at moderate to high 

concentrations of all five insecticides.  However, communities containing resistant D. pulex were 

buffered from these effects at moderate concentrations of all AChE-inhibiting insecticides, but 

were not buffered against the pyrethroid insecticides.  This suggests that resistance in 

zooplankton to a single insecticide can have widespread consequences for community stability 

and that the effects can potentially be extrapolated to a wide variety of pesticides that have 

similar modes of action.  This paper is co-authored by Rick Relyea and will be submitted to 

Ecological Applications. 

In the fourth and final chapter of this thesis, we continue to build on the narrative by 

adding additional complexity to our experimental aquatic communities.  Our previous studies 

had only utilized variation within D. pulex populations, as cladocerans have been consistently 

cited as being responsible for maintaining top-down control on phytoplankton abundance as they 

are prolific consumers of phytoplankton (Tessier and Woodruff 2002, Korosi et al. 2012).  

Although cladocerans are typically the most sensitive group of zooplankton in terms of their 

response to anthropogenic disturbances, there are two other groups of zooplankton (copepods 

and rotifers), which also feed on and compete for phytoplankton that could potentially fill the 

same ecological role as cladocerans. To test this theory, we again utilized outdoor mesocosms 

and set up 152 identical aquatic communities. We then manipulated the identity of the 

zooplankton assemblages by adding an assemblage from either near or far from agriculture that 

was comprised of only cladocerans, a background assemblage of copepods and rotifers, or an 

entire assemblage of all three groups. These communities were then exposed to one of five 

chlorpyrifos concentrations. We discovered that populations of cladocerans and copepods living 

near agriculture were more resistant to chlorpyrifos.  Rotifers, on the other hand, showed 
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population-level variation in resistance to chlorpyrifos, but it was not clearly associated with 

patterns of land use.  Furthermore, the communities containing cladocerans collected from near 

agriculture were able to buffer the community from the cascading effects of chlorpyrifos, but 

communities composed of only copepods and rotifers from the same pond were not. This is one 

of the first empirical tests to show that pesticide-induced trophic cascades cannot be fully 

prevented by copepods and rotifers and that there is no real evidence of functional redundancy 

within zooplankton assemblages regarding the ability to buffer communities from insecticide-

induced trophic cascades. Such information may be crucial in determining future effects of 

contaminants on aquatic communities, as it indicates that cladocerans are critical to the stability 

of the community and cannot be functionally replaced with either of the two more resistant major 

groups of macro-zooplankton.  Rick Relyea is also a co-author on this paper which will be 

submitted to Oikos. 

The four chapters within this thesis logically build on each other, as we have continually 

attempted to increase the ecological realism and level of complexity with each consecutive 

experiment.  Our findings indicate, however, that there are still numerous questions left to be 

fully answered.  In the concluding chapter, I discuss the implications of this research in terms of 

conserving vernal pond and wetland communities and furthering our understanding of the 

ecological theory surrounding the impacts of pesticides on aquatic communities. 
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2.0 LIVING ON THE EDGE: POPULATIONS OF TWO ZOOPLANKTON SPECIES 

LIVING CLOSER TO AGRICULTURAL FIELDS AND MORE RESISTANT TO A 

COMMON INSECTICIDE 

 

 

2.1 INTRODUCTION 

 

 

 

Anthropogenic alterations of numerous environments across the globe force organisms living in 

these habitats to adapt to novel conditions or face extirpation (Zalasiewicz et al. 2010).  

Numerous sources of anthropogenic change have been the focus of ecological research for 

decades including deforestation, urban encroachment, habitat destruction, and pollution (Urban 

2004, Tylianakis et al. 2008).  Pollution has been implicated in a wide range of detrimental 

outcomes including trophic cascades (Mills and Semlitsch 2004, Relyea and Diecks 2008, 

Clements and Rohr 2009), increasing organismal susceptibility to pathogens (Jansen et al. 

2011a), and reducing biodiversity and altering community structure in terrestrial and aquatic 

ecosystems (Tilman et al. 2001, Relyea 2005). In addition to documenting ecological effects, 

there has also been an effort to understand the evolution of resistance to pesticides. However, 

this effort has been almost entirely focused on targeted pest species. 

 Evolved resistance to pesticides in targeted pest species has been observed for nearly a 

century and is well established in the literature (Georghiou 1990, Hoy 1998).  Today, the 
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application of nearly every major class of agrochemicals has caused evolved resistance in one or 

more pest species (ffrench-Constant 2007).  Indeed, over 540 target pest species have evolved 

resistance to one or more pesticides; in many of these cases we also know the mechanisms by 

which this resistance occurs (i.e. metabolic or altered target-site resistance; Georghiou 1990, Hoy 

1998).  Worldwide, about 3 billion kg of pesticides are applied each year; in the U.S. alone, 

approximately 500 million kg of pesticides are applied annually at a cost of nearly 10 billion 

dollars (Pimentel 2005).  The evolution of resistance to agrochemicals has caused approximately 

1.5 billion dollars in economic costs per year (Pimentel 2005); this has been a major motivation 

to determine how insecticide resistance evolves in pest species and can be done to prevent 

further resistance to evolve in the future (Laurence 2001, Tilman et al. 2002). Because the 

physiological mechanisms that confer resistance in targeted species are largely evolutionarily 

conserved, we might expect non-target organisms to be capable of evolving resistance as well. 

 Freshwater zooplankton are a group of non-target organisms that have received some 

investigation of evolved resistance to insecticides. Zooplankton are a critical component of 

aquatic ecosystems worldwide (Relyea and Diecks 2008) and recent studies have found that low 

and environmentally relevant concentrations of insecticides can cause trophic cascades through 

communities by killing most of the zooplankton, which are generally highly sensitive to 

insecticides (Boone et al. 2004, Mills and Semlitsch 2004, Relyea and Diecks 2008, Clements 

and Rohr 2009).   Many zooplankton have generation times of only 5 to 7 days, which means 

that tens of thousands of generations of zooplankton have been produced since the advent of 

organic insecticides (Hairston Jr. et al. 1999).  Most studies demonstrating evolved resistance in 

zooplankton have used laboratory experiments that employed relatively high pesticide 

concentrations (Hanazato 2001, Brausch and Smith 2009, Jansen et al. 2011b).  Such studies 
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confirm that the evolution of increased resistance is possible, but we need to determine whether 

natural populations with different proximity to pesticide are more resistant to pesticides when 

they are located closer to areas of pesticide applications such as agricultural areas. Recent work 

has shown patterns of resistance in Daphnia magna that exhibited nearly significant correlations 

with greater agricultural land use and markedly lower genetic variation among clones hatched 

from dormant egg banks in ponds located closer to agriculture (Coors et al. 2009).  These results 

suggest that inadvertent exposures of zooplankton to anthropogenic chemicals may impose 

strong bouts of selection for resistance.  However, we need to determine the extent to which 

zooplankton populations positioned across the landscape can vary in their susceptibility to 

insecticides based on their proximity to agriculture. 

 To address this challenge, we tested whether two species of common freshwater 

zooplankton show variation in resistance to a common insecticide (chlorpyrifos) and whether this 

variation is associated with surrounding agricultural land use. We hypothesized that zooplankton 

populations collected from ponds near agricultural fields—which are assumed to experience 

more frequent exposures to pesticides—would be more resistant to commonly applied 

insecticides than populations collected from ponds far from agricultural fields.  

 

 

2.1.1 Insecticide background 

 

 

 

In the United States, chlorpyrifos is one of the most widely applied organophosphate insecticides 

in agriculture and is also one of the most common insecticides found in water bodies 

(Christensen et al. 2009). Chlorpyrifos has broad-spectrum abilities as an insecticide and 

miticide.  As an inhibitor of acetylcholinesterase (AChE), it is used to control foliage and soil-
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borne insect pests on a variety of crops. The chemical was first registered in 1965 by the Dow 

Chemical Company and was originally available for home and garden use under various trade 

names such as Dursban and Lorsban.  By the end of 2001, Dow Chemical halted sales of the 

chemical for household use due to impending regulatory action by the Environmental Protection 

Agency (EPA).  However, the insecticide is still extensively used in agriculture; approximately 

4.54 x 106 kg of the active ingredient in chlorpyrifos are applied annually (Christensen et al. 

2009).  According to the United States Geological Survey’s (USGS) National Water Quality 

Survey, chlorpyrifos is used extensively in northwestern Pennsylvania with primary applications 

on corn and soybeans (Stone 2013).  Chlorpyrifos is considered to be highly toxic to most 

aquatic invertebrates. 

 

2.2 METHODS 

 

 

 

2.2.1 The Simocephalus vetulus experiment 

 

 

 

We conducted a laboratory experiment at the University of Pittsburgh’s Donald S. Wood Field 

Laboratory in Linesville, Pennsylvania.  The experiment was a completely randomized design 

employing a factorial combination of 10 populations of the zooplankton species Simocephalus 

vetulus crossed with seven treatments: five nominal concentrations of chlorpyrifos (0.05, 0.25 

μg/L, 0.5 μg/L, 1.0 μg/L, and 5.0 μg/L), a negative control of 0 μg/L chlorpyrifos, and a vehicle 

control (ethanol [EtOH]) because the chlorpyrifos is moderately insoluble in water.  For the 

vehicle control, we added the same amount of ethanol as used in the 5.0 μg/L chlorpyrifos 

treatment (0.25 mL EtOH/L of water) to demonstrate that the amount of ethanol added to each 
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jar did not cause mortality.  The chlorpyrifos concentrations were chosen based on published 

chlorpyrifos LC50 (lethal concentration causing 50% mortality of a tested population) values of 

S. vetulus (0.2 to 0.5 μg/L; Brock et al. 1992, Grist et al. 2006, van den Brink et al. 2007).  In 

order to detect differences among the populations in their LC50 values, we set our concentrations 

from sublethal to 10 times higher than the highest LC50 values for the species.  Furthermore, our 

lower three concentrations (0.05, 0.25. and 0.50 μg/L chlorpyrifos) were similar to those reported 

as environmentally relevant and found in natural wetland ecosystems (0.01-0.65 μg/L; Brock et 

al. 1992).  The 70 treatment combinations (10 populations x 7 pesticide treatments) were 

replicated three times each for a total of 210 experimental units. 

 We made all pesticide concentrations in large batches using carbon-filtered, UV-

irradiated well water and then distributed them into the appropriate containers. A sample of each 

solution was saved in pre-cleaned, glass amber jars and shipped to the University of Georgia’s 

Chemical Analysis Laboratory for independent analysis of chlorpyrifos concentrations. These 

analyses determined that four of the nominal concentrations of chlorpyrifos (0.25, 0.50, 1.0 and 

5.0 μg/L) produced actual concentrations of 0.27, 0.33, 0.82, and 3.10 μg/L (hereafter termed 

0.25, 0.5, 1.0, and 5.0 μg/L for simplicity). Thus, on average, the actual concentrations were 80% 

of the nominal concentrations. The negative control (0 μg/L chlorpyrifos) had no detectable 

traces of chlorpyrifos.  The lowest concentration (0.05 μg/L) was not tested because it was below 

the 0.1 μg/L detection limits of the University of Georgia’s equipment. 

 We selected ponds and wetlands in northwestern Pennsylvania based on previous 

research that examined wood frog (Lithobates sylvaticus) population-level resistance to 

chlorpyrifos in relation to their distances from agricultural fields (Cothran et al. 2013). We 

collected S. vetulus from 10 wetlands using dipnets and zooplankton tows during 6 to 12 June 
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2011 (Table A.1). We cultured each population in the lab using five, 8-L containers of UV-

filtered water per population.  We initiated each of these lab populations with 20 juvenile (instars 

3-4) S. vetulus and the zooplankton within each container were fed 2 mL of concentrated 

Scenedesmus spp algae that had been grown in high phosphorus COMBO medium every two 

days. Each population was culled regularly and water in each of these containers was changed 

every seven days to prevent fouling. The S. vetulus populations were cultured in the lab for at 

least three generations to reduce variation due to environmental and maternal effects among the 

populations.  To do this, we removed mothers that had released their young and placed them in 

separate bins, thereby creating populations separated by generation i.e. GO, F1, F2, F3 etc. Only 

F3 individuals and beyond were used to assess resistance. 

 For the LC50 test, we used 210, 200-mL glass jars that were filled with UV-filtered water 

containing either no chlorpyrifos (negative control), an ethanol control or one of the five 

chlorpyrifos concentrations. Once the jars were filled, we pipetted 10 juvenile S. vetulus from a 

given population onto a mesh net and then added the animals to a jar to prevent additional water 

from entering the jar and diluting the insecticide concentration.  After adding the animals, we 

recorded the number of individuals that survived after 2, 6, 12, 24, and 48 hours.  Mortality was 

negligible during the first 12 hours of the experiment (except in the 5.0 μg/L treatment); 

therefore, we only analyzed the 24 and 48 hour results.  An individual was considered “alive” if 

it was moving or moved after being gently sprayed with water from a pipette after any of three 

attempts. 
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2.2.2 The Daphnia pulex experiment  

 

 

The following year, we conducted a second laboratory experiment using a second species of 

zooplankton (Daphnia pulex).  The experiment was a randomized design employing a factorial 

combination of four populations of D. pulex crossed with the same five chlorpyrifos treatments 

used in the S. velutus experiment plus the negative and vehicle controls (EtOH).  The same 

chlorpyrifos concentrations were used because they are also within the range of chlorpyrifos 

LC50 values of D. pulex (0.1 to 0.8 μg/L; Brock et al. 1992, van der Hoeven and Gerritsen 

1997). Again, the lower three concentrations (0.05, 0.25. and 0.50 μg/L chlorpyrifos) are 

environmentally-relevant based on previous research (Christensen et al. 2009).  The 28 treatment 

combinations (4 populations x 7 treatments (0 [negative control], 0.05, 0.25, 0.5, 1.0, 5.0 μg/L 

chlorpyrifos, and EtOH control) were replicated 4 times for a total of 112 experimental units. 

 As in the first experiment, we made all pesticide concentrations in large batches using 

carbon-filtered, UV-irradiated well water and then distributed them into the appropriate jars. A 

sample of each solution was saved in pre-cleaned, glass amber jars and shipped to the University 

of Georgia’s Chemical Analysis Laboratory for independent analysis of chlorpyrifos 

concentration. These analyses determined that the four testable concentrations of chlorpyrifos 

(0.25, 0.5, 1.0, 5.0 μg/L) produced actual concentrations of 0.28, 0.39, 0.91, and 3.92 μg/L 

(hereafter termed 0.25, 0.5, 1.0, and 5.0 μg/L for simplicity). Thus, on average, the actual 

concentrations were 90% of the nominal concentrations. As in the previous experiment, the 

negative control did not contain any detectable chlorpyrifos and is hereafter termed 0 μg/L. 

 We selected the four D. pulex populations based on the results of the S. vetulus 

experiment.  We sampled D. pulex from two ponds that were close to agriculture (Mallard and 
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Love) and contained a more resistant S. vetulus population as well as one pond that was close to 

agriculture (Hopscotch) and contained a less resistant S. vetulus population. Only one of the 

ponds that were far from agriculture and contained S. vetulus also contained D. pulex.  Therefore, 

we had to sample an additional pond (Minnow) containing D. pulex that was relatively far from 

agriculture. We hypothesized that populations of D. pulex would show a similar pattern of 

resistance across the landscape as S. vetulus.  The ponds were sampled with dipnets and 

zooplankton tows on May 2 2012. We cultured each population in the lab using five, 8-L 

containers of UV-filtered water per population. Again, each population was initiated with 20 

juvenile (instars 4-6) D. pulex females.  Zooplankton within each container were fed 2 mL of 

concentrated Scenedesmus spp algae that had been grown in high phosphorus COMBO medium 

every two days.  Populations were culled and water in each of these containers was changed 

every seven days to prevent fouling. As in the previous experiment, the D. pulex were grown in 

the lab for at least three generations to limit variation due to environmental and maternal effects.   

 For the LC50 test, we used 112, 200-mL glass jars that were filled with UV-filtered water 

containing 1 of the 7 treatments. Assignment of individuals to jars and assessment of survival 

over the course of the experiment followed the same methods utilized in the S. vetulus.  Again, 

although survivorship data was monitored 2, 6 and 12 hours into the experiment, mortality was 

negligible during this time period across most treatments, so the data were not analyzed for these 

early time points. 
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2.2.3 Statistical analysis 

 

 

 

For both experiments, we used the mortality data from each pesticide concentration to estimate 

LC5024h and LC5048h values with 84% confidence intervals (CI) using standard probit analyses.  

Simulation tests have shown that when 84% confidence intervals do not overlap between two 

LC50 estimates, this method approximates an α = 0.05 (Payton et al. 2003). We then used 

Abbott’s formula to account for any mortality within our negative and ethanol vehicle controls 

(Rosenheim and Hoy 1989). 

 To determine the amount of agriculture surrounding each wetland, which served as a 

proxy of historic pesticide use, we took aerial images of each of the wetlands using Google Earth 

Pro.  We visually estimated the center of the pond and drew three concentric circles with radii of 

200, 300, and 500 m.  We chose 500 m as the upper boundary of our land use estimates because 

recent studies have found that agricultural fields outside of this boundary have negligible effects 

on aquatic systems (Declerck et al. 2006). To verify that the land in each image was used for 

agriculture, we used USGS crop use overlay maps (Stone 2013) to determine if the land was 

being actively used and what crops were produced there. 

 To quantify the amount of agriculture within each of these circles, we used Photoshop 

software to crop out all areas containing agriculture.  We then quantified the proportion of pixels 

that contained agriculture relative to the total number of pixels contained in the circle around the 

wetland to find the total percentage of agriculture (Table 2.1).  We then used Pearson product-

moment correlation analysis to assess whether population LC5024h and LC5048h estimates were 

associated with agricultural land use. In all cases, we set the significance level at  < 0.05. 
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Table 2.1. The percentage of agriculture surrounding the ponds where populations of S. vetulus 

and D. pulex were collected. Percentage of agriculture was calculated across 3 different spatial 

scales (200, 300 and 500 m from the center of each pond.) An asterisk ‘*’ denotes ponds used in 

both experiments whereas two asterisks ‘**’ denotes a pond only used in the D. pulex 

experiment. 

 

Pond Name 200-m radius 300-m radius 500-m radius 

Blackjack 0% 2% 7% 

Graveyard 16% 21% 25% 

Hopscotch* 0% 0% 0% 

Log 0% 2% 10% 

Love* 30% 32% 35% 

Minnow** 2% 10% 6% 

Mallard* 35% 29% 20% 

Road 0% 1% 5% 

Staub 20% 23% 29% 

Trailer Park 10% 20% 16% 

Turkey Track 0% 0% 2% 
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2.3 RESULTS 

 

 

 

2.3.1 The Simocephalus vetulus experiment 

 

 

 

Across all 10 populations, survival in the control treatments remained high after 48 hours (range: 

93 to 100%) and the ethanol vehicle controls showed a similar pattern of high survival (range: 90 

to 100%).  This indicates that the ethanol had a negligible effect on mortality. 

Across the 10 populations, the LC5048h values were 52 to 84% of the LC5024h values. The 

populations of S. vetulus exhibited differences in their LC5024h or LC5048h values. However, the 

general relationship between LC50 values for each of the 10 ponds remained fairly constant 

between both time points. Across populations, LC50 estimates exhibited a three-fold difference, 

ranging from 0.14 to 0.43 µg/L (Table 2.2). Taking into account the upper and lower bounds of 

the 84% CIs, the most resistant populations of S. vetulus (i.e. Love, Mallard, and Staub) were 2 

to 3.5 times more resistant than the least resistant population (i.e. Log). Survivorship curves for 

each population after 48 hours are provided as supplemental data in Appendix B (Figure B.1). 

 We then examined whether LC50 values were associated with percent agriculture that 

existed around each wetland.  At all three spatial scales (200, 300 and 500 m), we found 

significant, positive relationships (all p < 0.02) with R2 values ranging from 0.53 to 0.62; 

populations collected from wetlands surrounded by a higher percentage of agricultural land 

possessed higher LC5048h values than populations collected from areas surrounded by little to 

no agricultural land (Figure 2.1).  While we present the correlations only for the LC5048h values, 

the results were similar for both time points.   
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Table 2.2. The LC50 estimates after 24 and 48 hours for the 10 populations of S. vetulus along with the lower and upper boundaries of 

84% confidence intervals (CI). The populations are ordered by ascending 48 hour LC50 values. 

 

 

 

 

Population 

24-hr 

LC50 

84% CI 

lower boundary 

84% CI 

upper boundary 

48-hr 

LC50 

84% CI 

lower boundary  

84% CI 

upper boundary 

Log 0.27 0.23 0.30 0.14 0.11 0.17 

Hopscotch 0.34 0.29 0.38 0.22 0.18 0.26 

Trailer Park 0.26 0.21 0.31 0.22 0.18 0.26 

Road 0.28 0.24 0.31 0.23 0.19 0.26 

Blackjack 0.33 0.28 0.38 0.26 0.22 0.30 

Graveyard 0.37 0.32 0.42 0.26 0.22 0.30 

Turkey Track 0.38 0.33 0.43 0.26 0.22 0.31 

Mallard 0.42 0.38 0.48 0.35 0.31 0.40 

Staub 0.51 0.44 0.59 0.39 0.34 0.46 

Love 0.51 0.44 0.60 0.43 0.38 0.49 
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Figure 2.1. The relationship between percentage of agriculture in the area surrounding each 

population and the LC5048-hr value of each of the 10 S. vetulus populations.  Data are presented 

for correlations conducted using radii of A) 200 m, B) 300 m, and C) 500 m
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2.3.2 The Daphnia pulex experiment 

 

 

Across the four populations of D. pulex, survival in the control treatments remained high after 48 

hours (range: 97 to 100%) and the ethanol vehicle controls showed a similar pattern of high 

survival (range: 93 to 100%).  Again, these data demonstrate that ethanol did not affect survival. 

The chlorpyrifos LC5048h values differed among the four populations of D. pulex.  Across 

the 4 populations, the LC5048h values were 62 to 84% of the LC5024h values. Based on the lack 

of overlap among the 84% CIs, there were two populations that were significantly more resistant 

and two that were more sensitive.  The two most resistant populations were not different from 

each other and the two least resistant populations were not different from each other.  Across the 

four populations, LC50 estimates exhibited up to a nearly 3-fold difference, ranging from 0.18 to 

0.53 μg/L (Table 2.3). Survivorship curves for each population after 48 hours are provided as 

supplemental data in Appendix B (Figure B.2). 

 We then examined whether LC50 values were associated with percent agriculture that 

existed around each wetland.  At the smallest spatial scale (200 m) we found a significant (p = 

0.029) relationship with a high R2 value of 0.94, which indicates that populations collected from 

wetlands surrounded by more agricultural land possessed higher LC5048h values than populations 

collected from wetlands surrounded by less agricultural land (Figure 2.2).  At larger spatial 

scales, the relationship remained positive, but the relationships were no longer significant (p > 

0.09) and the R2 values declined (0.54 to 0.82). Again, we present the correlations for LC5048h 

values, but results and data trends were similar for LC5024h values. 
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Table 2.3. The LC50 estimates after 24 and 48 hours for the 4 populations of D. pulex along with the lower and upper boundaries of 

84% confidence intervals (CI).  The populations are ordered by ascending 48 hour LC50 values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Population 

24-hr 

LC50 

84% CI 

lower boundary 

84% CI 

upper boundary 

48-hr 

LC50 

84% CI  

lower boundary 

84% CI  

upper boundary 

Hopscotch 0.29 0.22 0.36 0.18 0.12 0.24 

Minnow 0.33 0.28 0.38 0.24 0.19 0.29 

Love 0.59 0.53 0.65 0.41 0.35 0.47 

Mallard 0.63 0.57 0.69 0.53 0.47 0.61 
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Figure 2.2. The relationship between percentage of agriculture in the area surrounding each 

population and the LC5048-hr value of each of the four D. pulex populations.  Data are presented 

for correlations conducted using radii of A) 200 m, B) 300 m, and C) 500 m.
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2.4 DISCUSSION 

 

 

 

Using two species of common zooplankton (S. vetulus and D. pulex) we found that populations 

collected from ponds containing a higher percentage of agricultural land were more resistant to 

the insecticide chlorpyrifos than populations collected from ponds containing a low percentage 

of agricultural land.  Moreover, this pattern was consistent across 3 different spatial scales (i.e. 

200, 300, and 500 m) for both species. These two species, which are from different genera, differ 

a great deal in their behaviors, patterns of foraging, activity levels and many other traits (Tollrian 

1995, Van Doorslaer et al 2007) yet we still see the same general pattern of variation in 

resistance across a geographic landscape.  Given that the physiological mechanisms that confer 

resistance in targeted species are evolutionarily conserved, other species of zooplankton and 

even non-related taxa that co-occur with these populations may too possess genetic variation for 

resistance to pesticides. This pattern of spatial variation in resistance to insecticide exposure in 

these two species of zooplankton is consistent with the evolution of resistance to chlorpyrifos.   

Resistance to agrochemicals, like chlorpyrifos, is a widespread phenomenon in pest 

species (Georghiou 1990, Hoy 1998, ffrench-Constant 2007).  However, many non-target species 

are also inadvertently subjected to these and other related insecticides, which means that the 

evolution of increased resistance in populations living closer to agriculture may be a widespread 

phenomenon that has received little investigation.  Our results are consistent with the findings of 

Coors et al. (2009) who found a nearly significant correlation between the resistance of D. 

magna exposed to the insecticide carbaryl and the percentage of land used for cereal and corn 

crops. Our results are also consistent with the work of Cothran et al. (2013) who found that wood 

frogs living closer to agriculture exhibited higher resistance to chlorpyrifos.  
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Chlorpyrifos is one of the most commonly applied insecticides in the United States. In 

northwestern PA, where we performed our studies, chlorpyrifos is regularly applied to crops to 

control pests of corn, winter wheat, and soybeans. Most importantly, chlorpyrifos is an 

organophosphate insecticide that shares its mode of action with numerous other insecticides.  

Therefore, the evolution of resistance in the two species of zooplankton may have occurred due 

to selection by chlorpyrifos or due to selection by other insecticides that inhibit AChE (e.g., 

carbaryl, malathion) and provide cross-resistance to chlorpyrifos. Cross-resistance occurs 

commonly among pest species (ffrench-Constant 2007) and recent research has shown it can also 

occur in non-target species such as wood frog tadpoles (Hua et al. 2013).  As is often the case, 

we have no information on the concentrations of the pesticides in the water for the past several 

decades at each of the population locations, so it is difficult to determine whether chlorpyrifos 

specifically or other AChE-inhibiting pesticides selected for the high resistance of the 

zooplankton populations living near agricultural fields.  We did not test the water when we 

collected the animals because most modern pesticides degrade relatively rapidly in the water 

column due to UV radiation, bacterial breakdown, sorption onto aquatic plants/detritus/soil and 

other various means (Brock et al. 1992, van den Brink et al. 2007, Clements and Rohr 2009). 

Interestingly, previous studies that have examined variation in Daphnia resistance to 

other chemical stressors have shown similar differences in the amount of variation between 

populations or clonal lines.  In the present study, LC50 values among populations of both species 

of zooplankton differed between 2 to 4-fold.  Past studies have shown that different populations 

of D. magna collected from ephippial egg banks in the field show similar amounts of variation (≤ 

6 fold) when exposed to an array of other chemicals including cadmium, ethyl parathion (Barata 

et al. 2000), λ-cyhalothrin (Barata et al. 2002) and fenitrothion (Damásio et al. 2007).  
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Furthermore, studies have found that resistance in field populations is highly influenced by the 

genetic composition of the population whereas testing laboratory-reared, genetically distinct 

clonal lines has very limited usefulness in predicting the effects of chemicals in natural settings 

(Barata et al. 2000).  With the recent publication of the D. pulex genome (Brede et al. 2009, 

Colburne et al. 2011), we can potentially unravel the mechanisms behind insecticide resistance in 

D. pulex to determine if resistance that naturally evolves in field populations is, in any way, 

analogous to resistance that is selected for in the laboratory. 

Given the key ecological role that zooplankton play in aquatic food webs including being 

substantial grazers of phytoplankton, major cyclers of nutrients, and an important prey source for 

many species of aquatic predators (Mills and Semlitsch 2004, Relyea and Diecks 2008, Clements 

and Rohr 2009), studies on the impacts of pesticides on naturally-occurring zooplankton 

assemblages are of critical importance. For instance, the existence of population-level variation 

in pesticide resistance may have community-wide consequences. Past studies have shown that 

very low concentrations of insecticide can decimate zooplankton populations and this initiates a 

trophic cascade throughout the food web (Boone et al. 2004, Mills and Semlitsch 2004, Relyea 

and Diecks 2008).  When the zooplankton die off, the phytoplankton that is normally consumed 

by zooplankton can dramatically increase in abundance, thereby producing a phytoplankton 

bloom. This bloom in phytoplankton shades out the periphytic algae that is attach to substrates in 

the benthos, which ultimately causes reduced growth, development, and survival of tadpoles that 

consume periphytic algae (Relyea and Diecks 2008).  Based on this research, one can 

hypothesize that the occurrence of insecticide resistance in zooplankton populations may be able 

to buffer aquatic ecosystems from the cascading effects initiated by agrochemicals. This is an 

important hypothesis that needs to be tested in future studies.  



27 
 

2.4.1 Conclusions 

 

Our results are one of the first examples indicating that zooplankton populations near agriculture 

are more resistant to pesticides than populations found far from agriculture, which is consistent 

with the evolution of pesticide resistance. While pesticides can have a multitude of effects on 

non-target organisms including direct lethal and deleterious sublethal effects via life history 

tradeoffs (i.e. reduced fecundity, increased susceptibility to parasites, etc.), we have also shown 

that zooplankton can evolve resistance to these chemicals. Such costs have been confirmed in lab 

selection studies using clonal zooplankton lines (i.e. Coors and De Meester 2008, Jansen et al. 

2011a), but future studies should examine this question among populations that naturally differ 

in resistance.  Finally, given the key role of zooplankton in aquatic food webs, future studies 

should examine whether the occurrence of resistant zooplankton populations can alter the trophic 

cascades that commonly occur when these systems are contaminated by insecticides, affect the 

rate at which nutrients are cycled throughout contaminated water sources, or potentially alter 

interactions among other taxa within the community. 
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3.0 WETLAND DEFENSE: NATURALLY-OCCURRING PESTICIDE RESISTANCE 

IN ZOOPLANKTON POPULATIONS PROTECTS THE                                            

STABILITY OF AQUATIC COMMUNITIES 

 

 

 

3.1 INTRODUCTION 

 

 

One of the most challenging tasks facing ecotoxicologists is to understand how anthropogenic 

chemicals can potentially affect the multitudes of non-target organisms that exist within 

communities (Boone et al. 2004, Relyea et al. 2005, Rohr et al. 2006, Relyea and Diecks 2008, 

Clements and Rohr 2009).  To achieve this goal, the traditional approach has been to use highly 

controlled, short-term laboratory experiments to test the direct toxicity of contaminants on a 

number of model organisms (Moore et al. 1998).  These single species laboratory tests can 

determine the concentrations of a particular chemical that cause 50% mortality of the 

experimental population i.e. LC50 (Stephan 1977) and which concentrations have no observable 

effects on the organisms i.e. NOEC (Chen et al. 2013).  Such tests are important for assessing 

relative sensitivity among taxa and among contaminants, but they isolate organisms from their 

natural environmental context. Because there are myriad interactions within ecological 

communities that can be affected by contaminants, it is difficult to extrapolate the effects of a 

contaminant within communities based upon single-species laboratory tests (Liebold et al. 1997, 



30 
 

Brock et al. 2000 a/b, Boone et al. 2004, Mills and Semlitsch 2004, Relyea and Hoverman 2006, 

Rohr et al. 2006). 

 Aquatic ecosystems are particularly vulnerable to contamination by pesticides due to 

accidental drift via wind, through groundwater, or even direct application such as insecticide 

applications over water to remove disease vectors such as mosquitoes (Relyea 2005, Gilliom 

2007, Downing et al. 2008). Furthermore, as our human population expands, agricultural 

production is projected to increase dramatically as well, along with new insecticides to combat 

the issue of insecticide resistance in pest species (Laurence et al. 2001, Tilman et al. 2001).  

Insecticide exposure is relatively common in natural aquatic communities (Gilliom 2007, Stone 

et al. 2014), but our understanding of how these insecticides affect organisms within these 

communities is derived from the aforementioned short-term laboratory tests which cannot 

highlight the indirect effects of pesticides on food webs (Boone et al. 2004, Mills and Semlitsch 

2004, Relyea and Hoverman 2006, Relyea and Diecks 2008). We need to know more about the 

impacts of low, environmentally-relevant concentrations of pesticides on natural community 

assemblages by incorporating more realistic scenarios into ecotoxicological studies. 

 Insecticides at high concentrations are often directly lethal to a wide array of taxa found 

in aquatic communities such as zooplankton, macroinvertebrates, amphibians and fish (Boone et 

al. 2004, Mills and Semlitsch 2004, Rohr et al. 2006, Relyea and Diecks 2008).  

Environmentally-relevant concentrations of these insecticides, however, are typically quite low 

due to the relatively rapid breakdown of insecticides in water due to hydrolysis, bacterial action, 

UV-degradation and even sorption by aquatic plants (EPA ECOTOX database).  Low 

concentrations of pesticides can have adverse effects throughout the food web by directly 

affecting sensitive species that interact with other species in the food web (de deNoyelles et al. 
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1994, Fleeger et al. 2003, Boone et al. 2004, Mills and Semlitsch 2004, Relyea and Hoverman 

2006, Relyea and Diecks 2008).  As highlighted in the above studies, low concentrations of 

commonly applied insecticides can cause marked declines of zooplankton.  This decline in 

zooplankton can lead to a phytoplankton bloom that decreases light transmission down through 

the water column.  As a result, periphytic algal content declines, which results in the decreased 

growth and survival of periphyton grazers such as tadpoles. These important community-level 

studies indicate that although many taxa that are directly affected by low pesticide 

concentrations, they can be susceptible to substantial indirect effects via altered food web 

interactions. 

 The above studies highlight the fact that pesticide-induced trophic cascades are initiated 

by the effect of insecticides that directly kill the zooplankton. However, an important issue that 

needs to be addressed is whether population variation in zooplankton resistance to insecticides 

can potentially prevent these trophic cascades.  Such variation in zooplankton resistance may 

have important community-wide effects.  Recent studies have discovered that various species of 

zooplankton show naturally occurring population variation in resistance to commonly applied 

insecticides and that this variation is associated with land use (Coors et al. 2009, Jansen et al. 

2011b, Bendis and Relyea 2014).  Due to this variation, it is conceivable that aquatic 

communities historically located near agriculture and containing zooplankton that have evolved 

higher insecticide tolerance may be buffered from the effects of a pesticide-induced trophic 

cascade.  While this possibility has major implications for the persistence of communities and 

their proper functioning close to and far from agriculture, no studies have examined the role that 

population variation in zooplankton pesticide resistance has on aquatic communities. 

 We explored the community-wide impacts of insecticide resistance in zooplankton using 
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a mesocosm experiment, where we created otherwise identical aquatic communities, but with 

different populations of Daphnia pulex (D. pulex). We then exposed the communities to a range 

of low, environmentally-relevant concentrations of a commonly applied insecticide (i.e. 

chlorpyrifos).  We hypothesized that communities with sensitive populations of D. pulex 

(collected far from agricultural fields) would experience higher rates of mortality with the 

insecticide and that this would in turn cause insecticide-induced trophic cascades through the 

food web across a range of insecticide concentrations, affecting phytoplankton, periphyton, and 

larval amphibians.  Conversely, communities with resistant populations of D. pulex (collected 

close to agricultural fields) would be buffered from the effects of the insecticide and the 

communities would not exhibit an insecticide-induced trophic cascade. 

 

3.2 METHODS 

 

 

 

We conducted a mesocosm experiment at the University of Pittsburgh’s Donald S. Wood Field 

Laboratory at the Pymatuning Laboratory of Ecology.  Using mesocosms allowed us to replicate 

aquatic communities, while simultaneously subjecting these communities to a range of pesticide 

applications (Relyea and Diecks 2008).  The experimental design was a full factorial 

combination of four distinct Daphnia pulex populations (two resistant populations from ponds 

with surrounding agriculture, two sensitive populations from ponds with little or no surrounding 

agriculture) and four nominal concentrations of chlorpyrifos (0, 0.25, 0.50 and 1.0 μg/L).  The 

differences in sensitivity among D. pulex populations were determined via prior short-term LC50 

pilot experiments in the lab (Bendis and Relyea 2014).  These 16 treatment combinations were 

replicated 3 times for a total of 48 experimental units.  A timeline of the experiment can be found 
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in Appendix F (Figure F.1) 

 These experimental units were 800-L cattle tanks that were filled with approximately 550 

L of well water from 30 March to 2 April 2012.  On 6 April we added 200 g of dry leaf litter 

(primarily Quercus spp.) to each mesocosm to provide both nutrients and additional surface area 

for periphyton growth.  On 7 April we added 15 g of rabbit chow to provide an additional 

nutrient spike.  On 20-21 April, we took pond water samples from each of the four ponds where 

our D. pulex populations were collected and we visually screened each for invertebrate predators.  

After removing predators, we ran the water through a series of cylinder sieves (1 mm, 250 µm, 

80 µm) and then treated the pond water with carbonated water to remove any zooplankton.  Once 

each sample of water had been processed, we combined the pond water samples and added equal 

aliquots to each experiment unit to provide a natural source of periphyton and phytoplankton.  

On 27 April, we added four unglazed ceramic tiles (15 cm x 15 cm) along the north side of each 

tank to provide a standardized methodology of sampling periphyton abundance.   

We then isolated D. pulex from additional pond water samples taken from each of our 

four focal populations and placed each population in separate plastic containers (each population 

was replicated four times).  Each container was filled with carbon-filtered, UV-irradiated well 

water and the Daphnia populations were fed 2 mL of lab cultured Scenedesmus spp. algae once 

every 2 days.  As female Daphnia released their offspring, these older females were removed 

from the experimental populations. On May 3, after the D. pulex populations had produced at 

least three generations of offspring in the lab, we added 50 juvenile females from one of the four 

D. pulex populations to the corresponding experimental units. 

 Leopard frog tadpoles (Lithobates pipiens) were raised from egg masses that we collected 

from a single pond in northwestern Pennsylvania (Mallard Pond).  We collected 10 egg masses 
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on March 20 and reared the hatched tadpoles in 200-L pools containing well water.  Once 

hatched, the tadpoles were fed rabbit chow ad libitum.  On 7 May, after the algal and bacterial 

assemblages had developed for 16 d, we added 30 leopard frog tadpoles to each mesocosm.  We 

selected the tadpoles for our experiment by mixing all 10 egg masses and then selected 

individuals of a similar size (initial mass ± SE: 45 mg ± 6 mg). Survival of the leopard frog 

tadpoles after a 24-hour handling test was 100%. 

 We allowed the tadpoles to acclimate to experimental conditions for 4 d before applying 

the insecticide treatments.  On 11 May (day 1), we exposed the mesocosms to one of four 

chlorpyrifos concentrations (0, 0.25, 0.50, and 1.0 μg/L); these concentrations were based on our 

data examining the sensitivity of the four D. pulex populations to chlorpyrifos in the laboratory 

(Bendis and Relyea 2014).  All details related to the application of the pesticides and the 

resulting concentrations in the mesocosms can be found in Appendix C.  

 

3.2.1 Abiotic response variables 

 

 

During the course of the experiment, we measured pH, temperature, dissolved oxygen, and the 

decay rate of light with increased water depth. All details of these measurements can be found in 

Appendix C. 

 

3.2.2 Biotic response variables 

 

 

 

We also quantified several biotic response variables during the experiment.  We sampled 

Daphnia abundance seven times during the experiment (typically 3 to 4 days before and after 
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each pesticide applications; Figure F.1). We also measured phytoplankton and periphyton four 

times during the experiment. All methodological details can be found in Appendix C.  

 The first leopard frog metamorphs emerged on day 38; every day thereafter we conducted 

checks for metamorphs from all tanks.  We visually scanned each tank and removed all 

individuals when both hindlimbs and forelimbs emerged and their tail was almost completely 

resorbed.  Once metamorphs were removed from the mesocosms, they were kept in 1-L plastic 

containers in the laboratory containing a layer of moist sphagnum moss.  Each metamorph was 

checked daily and when the tail was completely resorbed, we euthanized the metamorph using a 

2% solution of MS-222.  All metamorphs were then preserved in a solution of 10% formalin. 

 On day 76 (July 27) we began a tank drying protocol to simulate the natural drying cycle 

that occurs in wetlands in our region during the late summer. It is important to draw down the 

water gradually because amphibians can sense the drying of a pond by sensing a reduced volume 

and respond to speeding up their development (Denver et al. 1998). To simulate the gradual 

drying of a pond, we removed 20 L of water each day for a period of two weeks; on day 89 we 

terminated our experiment when the water depth was ~10 cm (~145 L) in each mesocosm.  On 

that day, we drained the remainder of water from the tanks and sorted through the leaf litter and 

detritus to recover all amphibians that had not metamorphosed.  If an amphibian had at least one 

emerged forelimb (i.e. Gosner stage 46; Gosner 1960), we allowed that individual to complete 

metamorphosis in the lab.  All other amphibians that did not have any forelimbs were humanely 

euthanized using MS-222 and preserved in a 10% formalin solution. These latter individuals 

were categorized as not surviving to metamorphose. For the leopard frogs that metamorphosed, 

we recorded time to metamorphosis (from the start of the experiment), mass at metamorphosis, 

survivorship to metamorphosis (% of animals ≥ Gosner stage 46 at the end of the experiment) 
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and overall survivorship (% of all leopard frogs [i.e metamorphs + tadpoles] that were alive at 

the end of the experiment). For leopard frogs that did not metamorphose, we recorded the mass 

of the tadpoles and developmental stage (Gosner 1960). 

 

3.2.3 Statistical analysis 

 

 

 

All details of the statistical analysis can be found in Appendix C. In brief, our preliminary 

analyses found no differences between the two sensitive populations and no differences between 

the two resistant populations, so we pooled the four populations into one “sensitive” and one 

“resistant” category. We tested for effects on the abiotic and biotic variables using analyses of 

variance including repeated measures analyses for responses that were repeatedly measured over 

time using SPSS statistical software (IBM, Version 22). 
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3.3 RESULTS 

 

 

 

3.3.1 Abiotic variables 

 

 

A detailed analysis of all abiotic response variables can be found in Appendix D. In brief, pH 

and DO experienced an increase with higher concentrations of chlorpyrifos, and this difference 

grew larger over time. Temperature experienced small, but significant changes in response to the 

treatments. Light attenuation increased with higher concentrations of chlorpyrifos on all three of 

the sample dates. 

 

3.3.2 Zooplankton 

 

 

The rm-ANOVA of D. pulex abundance indicated that there were significant effects of 

insecticide concentration, D. pulex sensitivity, time, and several interactions (Table E.4).  We 

then ran individual univariate ANOVAs for each time point (Table E.5A).  On the first sampling 

date (day 14), there was an effect of insecticide concentration and D. pulex sensitivity, but no 

significant interaction (Figure 3.1). Treatments containing no insecticide had more D. pulex than 

treatments containing any of the three insecticide concentrations (p < 0.001). However, the effect 

of D. pulex sensitivity was clearly driven by the three treatments that contained chlorpyrifos. 

On the second sampling date (day 21), which immediately preceded the second pesticide 

application, we observed a similar pattern, but now the difference in Daphnia sensitivity with 

increasing chlorpyrifos was large enough to cause a significant concentration-by-sensitivity 

interaction (Table E.5A).  Communities containing sensitive D. pulex populations had a lower 
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abundance of D. pulex when exposed to the two highest concentrations (0.5 and 1.0 μg/L, both p 

< 0.001) compared to when the insecticide was absent. However, communities containing 

resistant zooplankton only experienced a decline in D. pulex when exposed to the highest 

concentration (1.0 μg/L; p = 0.023).  Communities exposed to the lowest pesticide concentration 

(0.25 μg/L) did not differ from the control regardless of the sensitivity of the D. pulex population 

within the community (p > 0.05). 

 On all subsequent sample dates (days 28, 42, 50, 62, and 83), we continued to observe 

effects of concentration, D. pulex sensitivity, and their interaction (Table E.5A). Throughout all 7 

samples, there was a consistent decline in the abundance of sensitive D. pulex populations 

whenever they were exposed to ≥ 0.50 ppb chlorpyrifos (p ≤ 0.008 in all cases). In communities 

exposed to 1.0 μg/L chlorpyrifos, nearly every community containing sensitive D. pulex 

experienced complete extirpation of the D. pulex within the community after the first application. 
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Figure 3.1. D. pulex abundance across seven sampling dates in experimental communities that 

were exposed to a range of chlorpyrifos concentrations.  The solid line indicates communities 

with resistant D. pulex whereas the dashed line indicates communities with sensitive D. pulex.   

 

3.3.3 Phytoplankton  

 

 

The rm-ANOVA of the phytoplankton data revealed significant effects of insecticide 

concentration, the sensitivity of the D. pulex populations, time, an insecticide concentration-by-

time interaction, and a marginal concentration-by-Daphnia sensitivity interaction (Table E.4).  

To further understand these effects, we analyzed phytoplankton at each sample date (Table E.5B; 

Figure 3.2).   

On the first sampling date (day 20), there was a significant effect of insecticide 

concentration as well as D. pulex sensitivity, but no significant interaction term. Compared to 

control treatments, communities subjected to the highest two insecticide applications (0.50 and 

1.0 μg/L) had more phytoplankton (p ≤ 0.010).  Across all concentrations, the increase in 

phytoplankton with sensitive Daphnia populations was relatively small. On the subsequent 

sample dates (days 40, 61, 81), we saw two distinct patterns emerge. On all sample dates, 

increases in chlorpyrifos caused increases in phytoplankton. Across the concentrations, we 

repeatedly observed no difference in phytoplankton between sensitivity categories at the lowest 

two concentrations of chlorpyrifos (all p > 0.052), a large increase of phytoplankton with 

sensitive Daphnia populations at 0.5 μg/L of chlorpyrifos when compared to resistant Daphnia 

populations (all p < 0.024), and no difference in phytoplankton between sensitivity categories at 

the highest concentration of chlorpyrifos (all p > 0.431).  
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3.3.4 Periphyton 

 

 

The rm-ANOVA of the periphyton data revealed significant effects of insecticide concentration, 

the sensitivity of the D. pulex populations, and time (Table E.4; Figure 3.2).  Periphyton 

abundance increased over time but decreased with higher concentrations of chlorpyrifos. Across 

all sample dates and chlorpyrifos concentrations, periphyton abundance was higher when 

communities contained resistant Daphnia populations than when they contained sensitive 

Daphnia populations. 
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Figure 3.2. Phytoplantkon and periphyton abundance across four sampling dates in experimental 

communities that were exposed to a range of chlorpyrifos concentrations. The solid line indicates 

communities with resistant D. pulex whereas the dashed line indicates communities with 

sensitive D. pulex.   

 

3.3.5 Leopard frogs 

 

 

When we analyzed the three life-history variables of the leopard frogs (overall survivorship, time 

to metamorphosis, and mass at metamorphosis), we found multivariate effects of concentration, 

Daphnia sensitivity, and their interaction (Table E.6A). We then ran separate univariate analyses 

of the life history traits of the leopard frogs: survivorship, time to metamorphosis and mass at 

metamorphosis.   

To better understand how the treatments affected amphibian survival, we considered two 

different measures:  1) overall survival of all metamorphs and tadpoles at the end of the 

experiment or 2) just the survivorship to metamorphosis. The ANOVA of overall survivorship 

indicated that there was an effect of D. pulex sensitivity (F1,40 = 8.229, p = 0.007) but no effect of 

insecticide concentration (F3,40 = 1.570, p = 0.741) nor was there a significant interaction (F3,40 = 

0.846, p = 0.477, Table E.6B; Figure 3.3B).  In general, overall survivorship of leopard frogs 

was significantly higher in communities with resistant zooplankton, but this difference was only 

significant under the two highest concentrations of chlorpyrifos (both p < 0.032). 

When we analyzed survival to metamorphosis (Figure 3.3A), we found significant effects 

of insecticide concentration (F3,40 = 24.162, p = 0.001) and D. pulex sensitivity (F1,40 = 49.713, p 

< 0.001) but no significant interaction (F3,40 = 2.403, p = 0.082).  Because the interaction term 



44 
 

was nearly significant and the data suggested a strong difference in survival to metamorphosis at 

low versus high pesticide concentrations, we conducted mean comparisons at each concentration.  

Leopard frogs from communities with resistant D. pulex had increased survival to 

metamorphosis across all four treatment levels (all p < 0.001).  At the lowest two concentrations 

of chlorpyrifos, 78-80% of the leopard frogs metamorphosed from communities containing 

resistant D. pulex, whereas only 55-59% metamorphosed from communities containing sensitive 

D. pulex.  At the highest two concentrations of chlorpyrifos, 61-72% of the leopard frogs 

metamorphosed from communities containing resistant D. pulex, whereas only 17-23% 

metamorphosed from communities containing sensitive D. pulex.  

 For time to metamorphosis, the ANOVA indicated that there were no significant main 

effects of concentration or sensitivity of the D. pulex population, but there was a chlorpyrifos 

concentration-by-sensitivity interaction (Table E.6B; Figure 3.3C).  In the control and 0.25 μg/L 

treatments, leopard frogs took 8.5 to 10.8 d longer to metamorphose if they were from 

communities with sensitive D. pulex.  In the 0.50 μg/L treatment, time to metamorphosis did not 

differ between communities with either a resistant or sensitive population of Daphnia (p = 

0.718).  In the 1.0 μg/L treatment, the relationship was reversed and leopard frogs took ~9 d 

longer to metamorphose if they were from communities with resistant D. pulex (p < 0.001). 

 For mass at metamorphosis, there was an effect of D. pulex sensitivity, but no effect of 

chlorpyrifos concentration or their interaction (Table E.6B). Across all chlorpyrifos treatments, 

leopard frogs from communities with resistant D. pulex metamorphosed at a larger size than 

leopard frogs from communities with sensitive D. pulex (all p ≤ 0.05; Figure 3.3D).  In summary, 

increasing insecticide concentrations had an effect on survivorship to metamorphosis, but the 

majority of the effects on leopard frog life history were driven by the genetics of the D. pulex 
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populations within the communities. 

 

 

 

Figure 3.3. Respones of leopard frog tadpoles exposed to combinations of different chlorpyrifos 

concentrations and Daphnia populations that were either resistant or tolerant to the pesticide: A) 

survivorship to metamorphosis and B) overall survivorship of all metamorphs and tadpoles, C) 

time to metamorphosis, and D) mass at metamorphosis.  The solid line indicates communities 

with resistant D. pulex whereas the dashed line indicates communities with sensitive D. pulex.   
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3.4 DISCUSSION 

 

The results of this particular study indicate that extremely low and environmentally relevant 

concentrations of a historically common insecticide, chlorpyrifos, can trigger a series of 

cascading events, which can ultimately result in reduced growth and survivorship of amphibians.  

Our study is the one of the first to show that differences in population genetics of the 

zooplankton within the community had a marked impact on the trajectories of these communities 

after insecticides were added.  Communities with resistant populations of D. pulex were buffered 

from the detrimental effects of the trophic cascade to a much greater extent than communities 

with sensitive populations of D. pulex.  To our knowledge, this is the first study that suggests that 

differences in naturally occurring population-level variation in resistance to insecticides in 

zooplankton can determine whether or not a pond community is dramatically affected by, or 

almost entirely buffered from, the effects of an insecticide-induced trophic cascade.  

Furthermore, our chlorpyrifos concentrations spanned the range from having no observable 

effects on D. pulex abundance to completely extirpating all D. pulex in some experimental 

communities.  However, abundance varied greatly between the tolerant populations that were 

collected near agricultural areas versus sensitive populations that were collected far from 

agricultural areas.  This is consistent with our previous laboratory studies that demonstrated 

differences in sensitivity among the four populations (Bendis and Relyea 2014).  Moreover, the 

concentrations utilized in this experiment (all ≤ 1.0 μg/L) are substantially lower (10-500x) than 

previously utilized concentrations of other related chemicals with similar modes of action.  

Interestingly, even at such extremely low concentrations, the community-wide effects of these 

insecticides were dramatic.   

Our highest pesticide concentration (1.0 μg/L) was lethal to almost all of the D. pulex 
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within the experimental communities.  In communities with sensitive D. pulex, the zooplankton 

were entirely eliminated from the community after the first application and never recovered.  In 

communities with resistant D. pulex, most of the mesocosms experienced a similar phenomenon 

where all D. pulex were extirpated after the first application.  This is not surprising as most 

zooplankton are generally highly susceptible to a wide array of insecticides (Boone and James 

2003, Boone et al. 2004, Mills and Semlitsch 2004, Relyea and Diecks 2008).  However, in 

several of the communities where D. pulex were virtually eliminated, cladoceran populations 

rebounded to some degree as resistant genotypes repopulated the mesocosms.   

Our third highest concentration (0.5 μg/L) caused the greatest differences in D. pulex 

abundance between communities with different D. pulex sensitivities.  This is consistent with our 

previous laboratory LC50 work on these populations (Bendis and Relyea 2014) as well as several 

other studies that have examined chlorpyrifos toxicity in cladocerans (van der Hoeven and 

Gerritsen 1997, Caceres et al. 2007, Palma et al. 2009).  In the 0.5 μg/L treatment, both 

populations of resistant zooplankton had abundances that were not different from the control 

communities.  However, in communities with populations of sensitive zooplankton, there were 

significantly fewer zooplankton present.  It was this difference in survivorship of D. pulex 

populations between the different community types that drove the differences throughout the 

entire community. 

Whereas the sensitive and resistant populations differed in their response to chlorpyrifos, 

the two resistant populations responded similarly to each other and the two sensitive populations 

responded similarly to each other, despite being collected at different locations and dispersal 

between the ponds is unlikely.  The resting eggs (i.e. ephippia) of cladoceran zooplankton are 

typically dispersed through surface water, transfer via animals (i.e. humans, birds and 
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Notonecta), and even the wind (Havel and Medley 2006, van de Meutter et al. 2008).  However, 

there is still much debate concerning how far these eggs typically disperse.  One study found 

that, within 15 months, an average of four cladoceran species colonized newly created pools; this 

represented nearly 40% of the species richness within 3 km of the pools (Louette and De Meester 

2005).  However, another study that examined the range expansion of the invasive cladoceran 

Daphnia lumholtzi found that all 40 ponds sampled within the watersheds of 11 reservoirs known 

to have D. lumholtzi did not contain any of the species of interest (Dzialowski et al. 2000).  The 

conclusion of this study (and several others) is that non-human dispersal mechanisms probably 

plays an insignificant role in the zooplankton dispersal (Jenkins and Underwood 1998).  The two 

ponds from which we collected sensitive D. pulex are located > 55 km apart from each other, 

which would make it unlikely that cladocerans could have dispersed between the two ponds.  

Although the two ponds where we collected resistant D. pulex are closer to each other (~2.5 km 

apart), both ponds are located on private property and are not frequently visited by people. 

Previous studies have shown that many species of Daphnia, and other species of non-

target organisms, often exhibit marked life-history trade-offs associated with the maintenance of 

resistance to pesticides or parasites such as reduced growth rates and smaller clutch sizes which 

both would lead to slower overall population growth rates (Ebert 1995, van der Hoeven and 

Gerritsen 1997, Shirley and Sibley 1999, Little and Ebert 2001, Duffy and Sivars-Becker 2007, 

Coors and De Meester 2008, Little et al. 2008, Jansen et al. 2011, Auld et al. 2013).  

Interestingly, in our communities with 0 μg/L chlorpyrifos, there were no significant differences 

in the abundance of Daphnia during any of the seven time points.  This suggests that higher 

tolerance in both of our Daphnia populations collected near agricultural areas did not experience 

a life-history trade-off that affected the growth rates of their populations.   
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Because D. pulex is a major consumer of phytoplankton, additions of chlorpyrifos that 

caused declines in D. pulex also caused phytoplankton blooms.  Further evidence of a 

phytoplankton bloom was that the increase in DO and pH in communities where D. pulex were 

nearly eradicated at high chlorpyrifos concentrations.  Such increases in pH and DO are due to 

increased photosynthetic activity from the phytoplankton bloom.  Similar results have been 

found in other studies where insecticides indirectly caused phytoplankton blooms by eliminating 

zooplankton from aquatic communities (Sierzen et al. 1998, Boone et al. 2004, Mills and 

Semlitsch 2004, Relyea and Diecks 2008, Hua and Relyea 2012).  

We also found that light decay rates were higher in communities containing sensitive D. 

pulex and high concentrations of chlorpyrifos, which reflects the fact that phytoplankton blooms 

reduce the amount of light that can pass through the water column. Communities with 0 or 0.25 

μg/L chlorpyrifos never experienced a full phytoplankton bloom. At the next higher chlorpyrifos 

concentration (0.50 μg/L), we observed the largest difference in phytoplankton abundance 

between communities with resistant and sensitive D. The highest concentration (1.0 μg/L) caused 

a phytoplankton bloom in all communities, regardless of D. pulex sensitivity because although 

the D. pulex populations differed in sensitivity, there is a limit to their tolerance.  In short, our 

results show that incorporating natural genetic variation among Daphnia populations can have 

dramatic effects on the phytoplankton. 

Because phytoplankton and periphyton compete for resources including light, the 

phytoplankton blooms that occurred at the highest two insecticide concentrations led to a decline 

in periphyton abundance by the end of the experiment. Similar phytoplankton blooms and 

subsequent declines in periphyton abundance have been found in several other studies examining 

the effects of insecticide-induced trophic cascades in experimental mesocosms (Mills and 



50 
 

Semlitsch 2004, Relyea and Diecks 2008, Relyea and Hoverman 2008).  However, as the 

experiment progressed there was also a divergence in the abundance of periphyton between 

communities with resistant and sensitive D. pulex. By the final sample of periphyton, this 

difference was most noticeable at two highest chlorpyrifos concentrations; in short, the 

concentration where we saw the greatest difference in zooplankton abundance among 

populations was also where we saw the largest increase in phytoplankton abundance and the 

largest decrease in periphyton.   

While the decline in periphyton with sensitive D. pulex populations was most pronounced 

under the higher chlorpyrifos concentrations, we also observed that periphyton was less abundant 

with sensitive D. pulex populations even when no chlorpyrifos was present during the first and 

third samples. Because we could not detect any differences in the abundance of the D. pulex 

populations in the absence of chlorpyrifos, it is unclear why periphyton was less abundant with 

sensitive D. pulex populations.  It may be that the D. pulex populations differ in the species of 

phytoplankton that they consume or the amount of nutrients that they recycle, which in turn may 

affect light transmission and alter periphyton abundance.  Clearly, further research should be 

undertaken to determine how population-level differences in resistant and sensitive D. pulex can 

potentially alter the abundance of periphyton in aquatic communities. 

The trophic cascade initiated by the direct lethal effects of chlorpyrifos on the 

zooplankton also affected the leopard frogs in the communities. As we simulated pond drying at 

the end of the experiment, we found that the insecticide-induced trophic cascade indirectly 

caused a decline in tadpole survivorship to metamorphosis.  As in previous studies, the 

proximate cause for the leopard frog mortality was pond drying, but the ultimate cause was the 

alteration of the food web by the repeated insecticide applications.   
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When we examined overall survivorship, we found that leopard frogs exposed to the two 

highest chlorpyrifos concentrations only survived better if they were from communities with 

resistant D. pulex.  More importantly, we were able to rule out pesticide exposure being linked to 

leopard frog mortality because overall survivorship across all four treatments was above 90% in 

communities with either resistant population of D. pulex.  Furthermore, the concentrations 

utilized in this experiment are entirely sublethal to leopard frogs (Gaizick et al. 2001, Relyea 

2009).  Therefore, the patterns in mortality and effects on time and mass at metamorphosis were 

the result of the populations of D. pulex that were present.   

While there were no interactive effects of chlorpyrifos applications and differences in D. 

pulex sensitivity on overall survivorship, there were significant and striking effects on 

survivorship to metamorphosis.  When we analyzed the data for survival to metamorphosis, we 

found that leopard frogs emerging from communities with resistant D. pulex had a higher chance 

of surviving to metamorphosis across all treatments, including the no-pesticide control.  The 

likely reason for this pattern was the higher abundance of periphyton in communities with 

resistant D. pulex. Concordant with our other data, the largest declines in survivorship to 

metamorphosis was between communities with resistant versus sensitive D. pulex were at the 

two highest concentrations of the insecticide (0.5 and 1.0 μg/L) where leopard frogs were 

approximately 4.5 and 2.7 times more likely to successfully metamorphose from a community 

with resistant D. pulex relative to communities with sensitive D. pulex. 

Several other studies have found that insecticide applications that are entirely sublethal to 

amphibians can have marked negative effects on survivorship to metamorphosis through a 

variety of direct and indirect effects on the aquatic food web (Mills and Semlitsch 2004, Boone 

et al. 2005, Relyea and Diecks 2008).  Where our results differ, however, is that the effects of the 
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insecticide-induced trophic cascade are depend on the genetics of the zooplankton populations.  

To our knowledge, this is the first study to demonstrate that the population genetics of 

zooplankton in a community can cause significant effects on amphibian survivorship through the 

stabilization of an aquatic food web after the addition of an insecticide.   

Leopard frog time to metamorphosis was also affected by the trophic cascade initiated by 

chlorpyrifos.  When exposed to either 0 or 0.25 μg/L of the insecticide, leopard frogs emerging 

from communities with sensitive D. pulex took 8.5 to 10 days longer to metamorphose than 

leopard frogs emerging from communities with resistant zooplankton.  Interestingly, leopard 

frogs in communities with 0.50 μg/L of the insecticide, where we saw the largest differences in 

zooplankton and phytoplankton abundance, metamorphosed at similar times regardless of 

whether the community contained resistant or sensitive D. pulex.  In communities with 1.0 μg/L 

of the insecticide, however, the relationship was reversed: leopard frogs emerging from 

communities with sensitive D. pulex emerged an average of 9 days earlier than leopard frogs 

emerging from communities with resistant D. pulex.   

One reason for this pattern may be the time lag associated with the phytoplankton bloom 

and the growth of periphyton.  Although phytoplankton blooms were maintained throughout the 

experiment (particularly in the 0.5 μg/L treatment), the associated decline in periphyton 

abundance only began to differ more intensely towards the end of the experiment because the 

trophic cascade takes time to develop. As the phytoplankton bloom developed in communities 

with sensitive D. pulex, the periphyton within these communities were outcompeted by 

phytoplankton for access to resources (e.g., light) and subsequently declined in abundance which 

would have an effect on tadpole time to metamorphosis, particularly at the higher two insecticide 

concentrations.  On the other hand, in communities with resistant D. pulex, the phytoplankton 
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bloom was prevented and the competing periphyton had the resources necessary to continually 

grow throughout the majority of the experiment.  This led to higher abundances of periphyton 

which, in turn, gave the leopard frogs in these communities adequate access to the resources 

needed to metamorphose. Since periphyton abundance was high in these communities and the 

environment was relatively benign (i.e. free of predators) leopard frogs from communities with 

resistant D. pulex may have delayed metamorphosis.  In communities with sensitive D. pulex, 

competition may have driven leopard frogs to complete metamorphosis earlier at a smaller, non-

optimal size. 

In terms of mass at metamorphosis, leopard frog metamorphs emerging from 

communities with resistant D. pulex always metamorphosed at a larger size when compared to 

those emerging from communities with sensitive D. pulex, even when the insecticide was absent. 

This difference in mass is consistent with the higher abundance periphyton in communities with 

resistant D. pulex relative to communities with sensitive D. pulex during two of the four sample 

dates. This increased abundance in periphyton in communities containing resistant D. pulex 

allowed leopard frogs to grow to a larger size compared to leopard frogs living in communities 

with sensitive D. pulex, which is a phenomenon that, to our knowledge, has not been previously 

observed. 

At the highest concentration, however, all communities with sensitive D. pulex 

experienced large declines in abundance elimination and the phytoplankton bloom periphyton 

decreased the amount of resources (e.g., light) that were available to the periphyton.  In 

communities with resistant D. pulex, cladoceran populations were negatively affected by the 

insecticide as well.  However, some of the resistant D. pulex populations rebounded and 

dampened the magnitude of the phytoplankton bloom. This would lead to the pattern where 
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leopard frogs from communities with resistant D. pulex metamorphosed faster in the highest 

chlorpyrifos treatment (1.0 μg/L).   

 

3.4.1 Conclusions 

 

 

In this study, we have demonstrated that low and environmentally-relevant concentrations of a 

commonly applied insecticide had direct lethal effects on zooplankton and this led to numerous 

indirect effects throughout the aquatic community food web.  Amazingly, the entire food web 

was affected by simply altering the population of D. pulex that was present in the community 

including abiotic conditions (pH, DO, and light transmission), phytoplankton abundance, 

periphyton abundance, and amphibian survival, mass at metamorphosis, and time to 

metamorphosis. To further our understanding of the effects of insecticides on aquatic 

communities, future studies should search for the potential for cross-resistance among 

zooplankton to insecticides of both similar and differing modes of action.  This is essential as 

some populations may be resistant to a wide array of pesticides, especially those pesticides that 

share a similar mode of action.  Furthermore, future studies should utilize more diverse 

zooplankton assemblages to determine whether or not the effects of these pesticide-induced 

perturbations are driven primarily by the loss of Daphnia or are there other species of 

zooplankton that are generally more resistant to insecticides that can fill the same functional role.  

To better understand how future perturbations will impact aquatic communities across an 

agricultural gradient, and to protect globally threatened species such as amphibians, we must 

incorporate as much ecological realism into our community studies as possible.   
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Only by doing so will we be able to determine how incidental exposure to anthropogenic 

chemicals will effect natural pond communities for generations to come. 
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4.0 LIFE DOWN ON THE FARM: COMMUNITY-WIDE EFFECTS OF PESTICIDE 

CROSS-RESISTANCE IN ZOOPLANKTON POPULATIONS                                      

NEAR AND FAR FROM AGRICULTURE 

 

 

 

4.1 INTRODUCTION 

 

 

 

Synthetic pesticides are ubiquitous across the globe and have been largely responsible for 

increasing agricultural yields since their introduction in the late 1930s.  It has been estimated that 

every $1 spent on pesticide production and use, has led to $4 in crops being saved from their 

target pest species (Pimentel et al. 1992). Although overall pesticide use in the United States has 

been slowly declining over recent years, due to the phasing out of specific classes of pesticides 

(i.e. organophosphates), worldwide production of these chemicals has increased dramatically to 

the point where nearly 2.4 billion kg of pesticides are applied every year (Grube et al. 2011).  

These chemicals are designed to affect the physiology of target pest species by either deterring, 

incapacitating, or killing them.  However, widespread pesticide use can also cause direct, 

indirect, and sublethal effects on non-target organisms, as well as lead to the evolution of 

pesticide resistance.  Evolved resistance in targeted pest species has received a lot of attention by 

researchers across the globe (Georghiou and Taylor 1977, Hoy 1998, Weill et al. 2003) and it is 

estimated that pesticide resistance causes more than $1.5 billion in crop losses each year 
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(Pimentel 2005). What is far less understood, however, is whether evolved pesticide resistance 

also occurs in non-target species that are inadvertently exposed to these chemicals (Brausch and 

Smith 2009a/b, Jansen et al. 2011). 

Although there is less of an economic incentive to study evolved resistance in non-target 

species, such resistance may have important ecological and conservation implications (Hua et al. 

2013).  For instance, pesticides can markedly decrease population-level genetic variation and this 

can be disadvantageous in terms of responding to future environmental change (Georghiou 1990, 

Carriere et al. 1994).  Pesticides can have a range of sublethal effects on non-target organisms 

(i.e. life history trade-offs) that can have direct effects on the survivorship and fecundity of the 

directly impacted species and can also have an array of indirect effects throughout the food web.  

On the other hand, populations of non-target species that have evolved resistance and play key 

roles in communities can buffer aquatic communities from the negative effects of a pesticide-

induced trophic cascade (Bendis and Relyea, in review).   

Today there are more than 1,055 active ingredients that are registered as pesticides in the 

United States (Goldman 2007).  Due to this large number of chemicals, pesticides are often 

classified by their mode of action, which is the method by which chemicals affect target pest 

species.  An interesting aspect of considering pesticide modes of action is that target species can 

commonly evolve cross-resistance to multiple chemicals of the same class or mode of action and 

sometimes even cross-resistance among pesticides with different modes of action, (Brengues et 

al. 2003, Brausch and Smith 2009a, Mitchell et al. 2012, Hua et al. 2013).  It is reasonable to 

predict that cross-resistance may also be common in non-target species, but we know very little 

about the prevalence of cross-resistance among non-target species.  Furthermore, we know 
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nothing about whether patterns of cross-resistance to pesticides that share a mode of action can 

have the same community-wide effects as pesticide that have different modes of action.   

Pond communities are ideal for studying the community-wide effects of cross-resistance 

to insecticides because they are found across a wide range of distances from agricultural areas 

and are therefore subjected to a variety of pesticide types and application frequencies (De 

Meester et al. 2005).  Habitats with higher proportions of surrounding agriculture and closer 

distances to agricultural areas have proven to be useful proxies of historic pesticide exposures 

that lead to populations evolving higher pesticide resistance (Coors et al. 2009, Cothran et al. 

2013, Bendis and Relyea 2014).  For example, recent studies have shown that wood frog 

populations (Lithobates sylvaticus) living closer to agricultural areas have higher resistance to 

the insecticide carbaryl (Cothran et al. 2013).  A subsequent study found that these populations 

that were not only resistant to this one acetylcholine esterase (AChE)-inhibiting insecticide, but 

they also exhibited cross resistance to two additional AChE-inhibiting insecticides, thereby 

indicating that cross-resistance may be common among non-target species (Hua et al. 2013). 

Recent studies have also shown that zooplankton populations in the genus Daphnia can vary in 

their resistance to commonly applied insecticides such as carbaryl (D. magna, Coors et al. 2009) 

and chlorpyrifos (D. pulex, Bendis and Relyea 2014) and that these patterns of resistance are also 

related to agricultural land use surrounding the ponds.  Such evolved resistance is important 

because zooplankton are one of the most sensitive taxonomic groups to insecticides, and they 

play a key role in the function of pond communities as consumers, as prey, and as cyclers of 

nutrients (Hanazato 1998, 2001). When zooplankton are exposed to an insecticide, they can 

experience large declines in abundance and their food resource (i.e. phytoplankton) typically 

experiences a dramatic increase in abundance. The increase in phytoplankton can, in turn, cause 
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a further trophic cascade that has numerous deleterious effects throughout the community (Barry 

and Logan 1998, Boone and James 2003, Fleeger et al. 2003, Boone et al. 2004, Mills and 

Semlitsch 2004, Relyea and Diecks 2008, Relyea 2009).  However, we recently discovered that 

communities containing resistant populations of D. pulex can buffer the entire aquatic 

communities from the impacts of insecticides (Bendis and Relyea, in review).  Although this is 

an important finding, we need to know if zooplankton can evolve cross-resistance to other 

pesticides with the same or different modes of action, and whether this allows the zooplankton to 

buffer communities from pesticide exposures. 

We addressed this question using populations of D. pulex that vary in their resistance to 

the insecticide chlorpyrifos (Bendis and Relyea 2014).  We created identical aquatic 

communities that varied only in the population of D. pulex that the community received (two 

“resistant” populations collected from ponds near agriculture, two “sensitive” populations 

collected from ponds far from agriculture). We hypothesized that communities containing 

populations of chlorpyrifos-resistant D. pulex would be buffered from the effects of low 

concentrations of not only chlorpyrifos, but also carbaryl and malathion, which have the same 

mode of action as chlorpyrifos (i.e. they inhibit AChE). In contrast, communities exposed to low 

concentrations of permethrin and cypermethrin, which have a different mode of action (i.e. Na+ 

channel-inhibiting insecticides), should not exhibit any differences in resistance to these 

insecticides, regardless of the D. pulex population included and should therefore not be buffered. 

 

4.2 METHODS 

 

We conducted a mesocosm experiment at the University of Pittsburgh’s Donald S. Wood Field 

Laboratory at the Pymatuning Laboratory of Ecology.  Using mesocosms allowed us to replicate 
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aquatic communities, while simultaneously subjecting these communities to a range of pesticide 

applications (Relyea and Diecks 2008).  The experimental design was a full factorial using four 

D. pulex populations:  two resistant populations from ponds with surrounding agriculture (>30% 

agricultural land within a 300-m radius) and two sensitive populations from ponds with little or 

no surrounding agriculture (<5% agricultural land within a 300-m radius). These four 

populations were each exposed to 16 insecticide treatments ([0.25, 0.50 and 1.0 μg/L 

chlorpyrifos], [12.5, 25 and 50 μg/L carbaryl], [0.5, 1.0, and 2.0 μg/L malathion], [0.5, 1.0, and 

2.0 μg/L permethrin], [0.5, 1.0 and 2.0 μg/L cypermethrin], and a negative control).   

The insecticide concentrations were determined from our review of published data on 

recorded LC50s for D. pulex for each insecticide, a comparison of LC50 values from other LC50 

pilots performed within our lab, and from a series of LC50 experiments that we performed prior 

to the setup of the mesocosm experiment (Bendis and Relyea 2014, Table I.1).  For the LC50 

pilot, we exposed 10 juvenile female D. pulex from either a resistant (Love pond) or sensitive 

(Minnow pond) to a range of concentrations of malathion, carbaryl, cypermethrin or permethrin 

for a period of 24 hours.  Additionally, we utilized a negative control containing only UV-

filtered water and an ethanol vehicle control to ensure that the highest concentration of ethanol 

used to dissolve the pesticides was not directly responsible for D. pulex mortality.  We knew that 

these two populations significantly varied in their natural resistance to chlorpyrifos from 

previous studies (Bendis and Relyea 2014, Bendis and Relyea, in review).  From this pilot, we 

found that the populations that were resistant to chlorpyrifos also showed signs of resistance to 

carbaryl and malathion, as their respective 84% confidence intervals (CI) did not overlap with 

those of the sensitive populations (simulation tests have shown that when 84% CIs do not 

overlap between two LC50 estimates, this method approximates an α = 0.05, Payton et al. 2003).  
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Moreover, there was no evidence of cross-resistance to insecticides with different modes of 

action as the 84% CIs of the resistant and sensitive population LC50 values overlapped a great 

deal (Table I.1). 

We used the LC50 data from our pilot lab experiments to find a range of suitable 

concentrations to use in the community experiment. Specifically, we set the middle 

concentrations to be similar to the LC50 of the resistant population utilized in our pilot studies.  

The lower concentrations were set to be sublethal and have no observable effect to the resistant 

population, whereas our higher concentration was set to be lethal to both resistant and sensitive 

populations (based on our pilot mortality studies). In setting these concentrations relative to each 

insecticide’s LC50 value, our goal was to compare our responses of the community between D. 

pulex populations within a given insecticide; our goal was not to directly compare community 

responses to the different insecticides. The 64 treatment combinations were replicated three 

times and an additional eight experimental units (2 for each D. pulex population) were used as 

vehicle controls, since the insecticides were dissolved in ethanol. These vehicle controls allowed 

us to test the effects of ethanol on the community.  In total, there were 200 individual mesocosm 

communities that were monitored throughout the remainder of the experiment. 

 

4.2.1 Mesocosm set up 

 

 

These experimental units were 75-L garbage cans (58.4 cm x 49.5 cm - Rubbermaid BRUTETM) 

that were filled with approximately 65-L of well water from 21 May to 22 May 2013.  Each 

mesocosm was covered by a 60% shade-cloth lid to prevent any movement of animals. On 6 

April, we added 200 g of dry leaf litter (primarily Quercus spp.) to each mesocosm to provide 
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both nutrients and additional surface area for periphyton growth.  On 23 May, we added 1.5 g of 

rabbit chow and 20 g of leaf litter (Quercus spp.) to provide an initial nutrient spike.  On this 

day, we also added four unglazed ceramic tiles (7.5 cm x 15 cm) along the north side of each 

mesocosm to provide a standardized measure of periphyton abundance.  On 24 May, we took 

pond water samples from each of the four ponds where our D. pulex populations were collected 

(Love, Mallard, Minnow and Hopscotch), as well as one additional pond (Trailer Park); we 

visually screened the zooplankton samples for invertebrate predators.  After removing predators, 

we ran the water through a series of sieves (1 mm, 250 µm, 64 µm) four times to remove all 

zooplankton and then treated the pond water with carbonated water to remove any smaller 

zooplankton, such as rotifers or copepod nauplii that may have made it through the sieves.  Once 

each sample of water had been processed, we combined the pond water samples and added equal 

aliquots to each experimental unit to provide a natural source of periphyton and phytoplankton. 

 

4.2.2 Daphnia population collection and rearing 

 

 

On 6 May, we collected and isolated D. pulex (hereafter referred to as “Daphnia” for simplicity) 

from pond water samples taken from each of our four focal populations and placed each 

population in separate 12.5-L plastic containers (each population was held in eight replicate 

containers).  Each container was filled with carbon-filtered, UV-irradiated well water and the 

Daphnia populations were fed lab-cultured algae (Scenedesmus spp.) ad libitum.  As female 

Daphnia released their offspring, these females were removed from the experimental 

populations. On 25 May, after the Daphnia populations had produced at least 2-3 generations of 
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offspring in the lab, we added 100 juvenile females from one of the four Daphnia populations to 

the corresponding mesocosms. 

 

4.2.3 Leopard frog collection and rearing 

 

 

Leopard frog tadpoles (Lithobates pipiens) were raised from egg masses that we collected from a 

single pond in northwestern Pennsylvania (Mallard Pond; Lat 41.691669, Long-80.501070).  We 

collected 12 egg masses on 17 April and reared the hatched tadpoles in 200-L pools containing 

well water.  Once hatched, the tadpoles were fed rabbit chow ad libitum.  On 5 June, after the 

algal and bacterial assemblages had developed for 13 days, we added five leopard frog tadpoles 

to each mesocosm.  We chose the tadpoles for our experiment by mixing tadpoles from all 10 

egg masses, and then selected individuals of a similar size (initial mass ± SE: 76.5 mg ± 7.1 mg).  

We used tadpoles that had experienced some growth since hatching to ensure that the individuals 

were healthy, and to simulate a scenario in which animals have lived a portion of their life under 

pesticide-free conditions and then are subjected to sublethal concentrations of pesticides. 

Survival of the leopard frog tadpoles 24 hours after being handled was 100%. 

 

4.2.4 Pesticide additions 

 

 

We allowed the tadpoles to acclimate to experimental conditions for 6 days before applying the 

insecticide treatments.  On 11 June (defined as day 1 of the experiment), we exposed each 

mesocosms to one of the 16 pesticide treatments.  We began by creating a stock solution for each 

insecticide by dissolving the respective chemical in ethanol (EtOH), as many of these chemicals 
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are moderately insoluble in water (for details, see Appendix G).  For control mesocosms with 0 

μg/L chlorpyrifos, we added 626 µL of carbon-filtered, UV-irradiated well water.  For the eight 

mesocosms assigned the ethanol treatment, we added 626 µL of EtOH to verify that the largest 

amount of EtOH added to experimental communities (i.e. the amount included in the highest 

pesticide concentrations) did not affect the community. After the pesticide treatment was applied 

to a given mesocosm, we stirred and agitated the water in the mesocosm to equalize disturbance 

and to ensure that the pesticide was mixed throughout the water column.   

To verify the actual concentrations of the insecticides used in our experimental 

communities, we collected an aliquot of water from each of the mesocosms assigned to a 

particular concentration within 1.5 hours of applying the insecticides and pooled the samples into 

pre-cleaned, 500-mL amber jars containing 2 mL of methylene chloride (CH2Cl2) to stabilize the 

insecticides.  We sent these samples to an independent laboratory for chemical analysis using 

high-performance liquid chromatography (Center for Environmental Services and Engineering, 

University of Connecticut, Connecticut, USA).  For the carbaryl, chlorpyrifos and malathion (the 

AChE-inhibiting insecticides), the actual average concentrations were within 93, 94 and 72% of 

the nominal concentrations, respectively. For permethrin and cypermethrin (the two pyrethroid 

insecticides), the actual average concentrations were significantly lower and only within 28 and 

5% of the nominal concentrations, respectively (Appendix G).  This, however, is not surprising 

as half-life for pyrethroid insecticides can be extremely low (~0.5 days) as the insecticide is 

rapidly broken down via both hydrolysis and UV-degradation (Lutnicka et al. 1999, Bennett et 

al. 2005).  None of the five insecticides were detected in our non-insecticide controls.   

Three weeks after applying the insecticides (day 23), we re-applied the insecticide 

concentrations and re-tested our nominal concentrations for the second application.  For the 
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carbaryl, chlorpyrifos and malathion, the actual average concentrations were within 76, 57 and 

65% of the nominal concentrations, respectively. For permethrin and cypermethrin, the actual 

average concentrations were 38 and 45% of the nominal concentrations, respectively (Appendix 

G).  Again, there were no pesticides detected in our control samples. 

 

4.2.5 Abiotic response variables 

 

 

 

During the course of the experiment, we measured several abiotic response variables to help us 

understand the effects of the various insecticides on the communities (Appendix H).  On days 4, 

26 and 48, we measured pH, temperature, and dissolved oxygen (DO, Figure 4.1).  Days 4 and 

26 immediately followed our two pesticide applications and the day 48 was immediately before 

initiating the water drawdown on day 50.  Temperature, pH and DO content readings were taken 

with a calibrated digital water meter (YSI, Yellow Springs, OH, USA). On days 8, 30 and 50 we 

took light measurements primarily because these days followed pesticide applications, were 

close to the days in which we sampled other abiotic factors and were clear, cloudless days, which 

are ideal for taking light measurements.  We measured light radiation from the middle of each 

mesocosms at depths of 10 and 30 cm and calculated the decay rate of light with increased water 

depth (k) using the equation  

k = [ln(L10/L30)]/d 

where L10 is the intensity of sunlight from a depth of 10 cm, L30 is the intensity of sunlight from a 

depth of 30 cm, and d is the difference in depth between the two measurements of intensity 

(Relyea and Diecks 2008).  Light attenuation was measured with an underwater light meter (LI-

COR. Lincoln, Nebraska, USA).   
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4.2.6 Biotic response variables 

 

 

We quantified several biotic response variables during the experiment.  We sampled Daphnia 

abundance at four time points during the experiment (Figure 4.1).  We sampled the Daphnia by 

submerging a 0.2-L plastic sampling tube in the middle of the water column at six different 

locations within each mesocosms (north, south and middle quadrants of each mesocosm both 

towards the surface and near the benthos).  All six samples within each mesocosm were pooled 

and the sample was filtered through a 64-µm Nitex cloth screen and poured into a Whirlpak bag 

containing 30% ethanol to preserve the samples for subsequent enumeration. For Daphnia 

enumeration, we poured the ethanol from the Whirlpaks containing our zooplankton samples 

onto a Petri dish with a preset grid.  We counted all Daphnia individuals in each grid and 

summed the total to get a count for each sample.  We also identified and enumerated any 

zooplankton that were not Daphnia. 

 We measured phytoplankton twice during the experiment (days 22 and 51, Figure 4.1).  

Phytoplankton was sampled just prior to the second pesticide application and at the end of the 

experiment to determine how much phytoplankton was in each mesocosm. To measure 

phytoplankton, we sampled 0.5 L of water from the center of each mesocosm.  The water 

samples were poured through a vacuum-filtration system and through GF/C Whatman glass 

microfiber filters (Whatman Industries Inc., Florham Park, New Jersey, USA).  After each 

sample had been vacuum-filtered, each sample was wrapped in aluminum foil and stored in a 

freezer at -18 °C.  To assess phytoplankton abundance, we used the concentration of chlorophyll 

a as our proxy which was quantified using a fluorometer (Turner Designs TD-700, Sunnyvale, 

CA, USA) and the protocols developed by Arar and Collins (1997). 
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 Periphyton abundance was also quantified twice during the course of the experiment 

(days 26 and 53, Figure 4.1) by removing one of the four clay tiles from each mesocosm. 

Periphyton was always sampled within two days of our phytoplankton samples.  Once a tile was 

removed, it was vigorously scrubbed with a toothbrush to remove all of the periphyton on the 

face of the tile and subsequently rinsed with carbon-filtered, UV-irradiated well water.  The 

slurry containing water and periphyton was then vacuum-filtered onto a Whatman GF/C filter 

that had been previously dried for 24 hours at 80°C and weighed. After the periphyton sample 

was vacuum-filtered, the filters were again dried at 80°C for an additional 24 hours and weighed.  

The amount of periphyton biomass was measured as the mass of the filter paper containing the 

dried periphyton subtracted by the original mass of the dry, unused filter.   

 The first leopard frog metamorphs emerged on day 33; every day thereafter we conducted 

checks for metamorphs from all mesocosms.  We visually scanned each mesocosm and removed 

all individuals when both hindlimbs and forelimbs emerged and their tail was almost completely 

resorbed.  Once metamorphs were removed from the mesocosms, they were kept in 1-L plastic 

containers in the laboratory containing a layer of moist sphagnum moss.  Each metamorph was 

checked daily and when the tail was completely resorbed, we euthanized the metamorph using a 

2% solution of MS-222.  All metamorphs were then preserved in a solution of 10% formalin. 

 On day 50 (31 July) we began a week-long drying protocol to simulate the natural drying 

that occurs in wetlands in our region during the late summer. It is important to conduct water 

drawdowns gradually because amphibians can sense the drying of a pond by detecting a reduced 

volume and respond by speeding up their development (Denver et al. 1998). To simulate the 

gradual drying of a pond, we removed 5 L of water each day for 1 week; on day 57 we 

terminated our experiment when approximately 30 L of water remained in each mesocosm.  On 
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that day we drained the remainder of water from the mesocosms and sorted through the litter and 

detritus to recover all amphibians that had not metamorphosed yet.  If we collected amphibians 

that had at least one forelimb, we allowed that individual to complete metamorphosis (Gosner 

stage 46, Gosner 1960) in the lab.  All other amphibians that did not have any forelimbs were 

euthanized using MS-222 and preserved in a 10% formalin solution.  Most animals (94.4%) did 

not metamorphose by the end of the experiment.  For those individuals that metamorphosed, we 

recorded time to metamorphosis, mass at metamorphosis, and survival to metamorphosis. For 

those individuals that did not metamorphose, we recorded the mass of the tadpoles and 

developmental (Gosner) stage. 
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Figure 4.1. Experimental timeline to illustrate when the insecticides were added and when biotic and abiotic variables were measured.  

In this figure, “DO” stands for dissolved oxygen and “light transmission” indicates when light attenuation was measured to quantify 

light decay rates.
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4.2.7 Statistical analysis 

 

 

We conducted initial ANOVA analyses to determine whether we could group the two resistant 

Daphnia populations and the two sensitive Daphnia populations. Of the 21 response variables, 

including those measured over time, 19 showed no significant differences between the two 

resistant or between the two sensitive populations after a Bonferroni adjustment.  As a result, and 

because the populations did not differ in the previous two studies that we had performed, we 

decided to pool the two resistant and two sensitive populations in all subsequent analyses.   

We transformed any response variables that did not meet the assumption of homogenous 

variances.  Data for temperature, pH and DO content were analyzed simultaneously on three 

separate occasions allowing us to conduct a repeated-measures MANOVA on our abiotic data. 

When we found significant multivariate effects, we then performed univariate repeated-measures 

ANOVAs (rm-ANOVA) on those variables that were measured multiple times throughout the 

experiment to determine how each variable was affected by the treatments. Whenever significant 

effects were found, particularly treatment-by-time interactions, we conducted independent 

ANOVAs for each variable at each time point in order to discern the factor(s) driving the 

significance of the multivariate tests.  Finally, if we found significant results within the ANOVA 

test (particularly a significant effect of sensitivity), we ran mean comparisons between 

communities with resistant and sensitive Daphnia for each insecticide to see if there were 

population-level differences at each concentration. Light attenuation was measured only twice 

due to inclement weather, and therefore was not included in the overall MANOVA for abiotic 

variables.  Light attenuation was analyzed independently using rm-ANOVA. 
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For the remaining biotic response variables, we first ran a MANOVA (as well as 

subsequent rm-ANOVAs and univariate ANOVAs) to test for the effects of pesticide type, 

concentration and sensitivity of the Daphnia population on the final measurements of 

periphyton, phytoplankton, and Daphnia abundance.  The leopard frog response variables 

(survivorship, tadpole mass and tadpole developmental stage) were analyzed using a separate 

MANOVA (as well as subsequent univariate ANOVAs).  For this experiment, survivorship was 

defined as survival to the end of the experiment as either a tadpole or a metamorph. Since so few 

individuals actually metamorphosed before the end of the experiment, we did not include the 

mass and developmental (Gosner) stage for the 5.6% of individuals that metamorphosed. 

 

4.3 RESULTS 

 

 

4.3.1 Abiotic variables 

 

 

A detailed analysis of all abiotic response variables can be found in Appendix H. Because we 

found significant multivariate effects when we ran a MANOVA on the final sample of the 

abiotic variables, we ran subsequent rm-ANOVAs for each variable (Table I.2). Given that every 

abiotic variable exhibited treatment-by-time interactions, we then ran individual ANOVAs for 

each time point. Temperature, which fluctuated throughout the experiment, experienced small 

changes in response to the treatments but was unaffected by the sensitivity of the Daphnia within 

the community (Table I.3A; Figure J.1). For pH, the insecticides and Daphnia sensitivity both 

had effects during the experiment, but they only interacted on the final sample date, when adding 

the AChE-inhibiting pesticides to communities with sensitive Daphnia caused an increase in pH, 
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whereas adding AChE-inhibiting pesticides to communities with resistant Daphnia caused a 

decrease in pH (Table I.3B; Figure J.2). We observed a similar pattern of ANOVA results across 

the samples dates for DO (Table I.3C; Figure J.3). Light attenuation generally increased with 

higher concentrations of the five insecticides and this increase grew in magnitude over time 

(Table I.3D; Figure J.4). 

 

4.3.2 Zooplankton 

 

 

The rm-ANOVA of Daphnia abundance indicated that there were significant effects of 

insecticide treatment, Daphnia sensitivity, time, and several interactions (Table I.4). All sample 

dates exhibited effects of the insecticides and Daphnia sensitivity and three of the four sample 

dates exhibited insecticide-by-sensitivity interactions (Table I.5A).  We then compared whether 

sensitive and resistant populations of Daphnia differed in abundance when exposed to each of 

the insecticides.  

On the first sample (day 3; Figure 4.2), we found that there was a difference in control 

communities; there were significantly more Daphnia in communities with resistant Daphnia (p = 

0.004).  Furthermore, communities containing resistant Daphnia had more zooplankton than 

communities containing sensitive zooplankton if they were exposed to the two lowest 

concentrations of chlorpyrifos (C1 and C2; C3 was marginally non-significant, p = 0.057), the 

two lowest concentrations of carbaryl (C1 and C2), and the two highest concentrations of 

malathion (C2 and C3; all p ≤ 0.004). Daphnia sensitivity had no effect on the abundance of 

Daphnia when exposed to either pyrethroid insecticide (all p > 0.323). 

On the second sample (day 24; Figure 4.2), which preceded the second pesticide 
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application, we saw fewer differences as the pesticides continued to break down. Unlike the first 

sample, in the absence of pesticides there was no significant difference in Daphnia abundance 

between communities with resistant or sensitive Daphnia (p = 0.623).  Communities containing 

resistant Daphnia populations had higher abundances when exposed to the middle concentration 

of carbaryl (C2; p = 0.045) and the highest concentrations of malathion and chlorpyrifos 

compared to communities containing sensitive Daphnia (C3; both p ≤ 0.023). There were no 

effects of Daphnia sensitivity when communities were exposed to either pyrethroid insecticide 

(all p > 0.478).   

 On the final two samples (days 33 and 48; Figure 4.2), which followed the second 

application of the insecticides, again, in the absence of pesticides, there were no differences in 

Daphnia abundance between communities with resistant or sensitive Daphnia (p = 0.504 and 

0.854 for samples 3 and 4, respectively).  There were also higher Daphnia abundance in 

communities containing resistant Daphnia that were exposed to the three carbaryl and 

chlorpyrifos concentrations (C1, C2, C3) across both dates (all p ≤ 0.026), compared to 

communities containing sensitive Daphnia. The same pattern was observed with the second 

highest malathion concentration on day 33 (C2; p = 0.10) and the highest malathion 

concentration on day 48 (C3; p < 0.001).  For cypermethrin, there were no differences between 

the two community types at any concentration (all p > 0.098).  Surprisingly, with permethrin 

there were lower Daphnia abundances in communities containing resistant Daphnia than 

communities containing sensitive Daphnia at the middle concentration on day 33 (C2; p = 

0.038).  In contrast, there were more Daphnia in communities containing resistant Daphnia at 

the highest concentration of permethrin on day 48 (C3; p = 0.027).   
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Figure 4.2. Differences in zooplankton abundance within experimental communities across the 

four sampling dates.  For all figures, communities containing Daphnia populations that were 

previously shown to be sensitive to chlorpyrifos are on the left, populations that were resistant to 

chlorpyrifos are on the right. 

 

4.3.3 Phytoplankton  

 

 

The rm-ANOVA of the phytoplankton data revealed significant effects of insecticide treatment, 

Daphnia sensitivity, time, and multiple interactions with time (Table I.4). For both samples, 

there were significant effects of insecticide treatment, Daphnia sensitivity, and their interaction 

(Table I.5B). 

On the first sample (day 22; Figure 4.3), communities with resistant Daphnia had less 

phytoplankton than communities with sensitive Daphnia, when exposed to the lowest two 

concentrations of chlorpyrifos (C1 and C2; both p ≤ 0.042).  The same pattern was observed in 

communities exposed to the lowest concentration of malathion, but this was marginally non-

significant (p = 0.063).  Daphnia sensitivity had no effect on the abundance of phytoplankton 

when exposed to carbaryl or either pyrethroid insecticide (all p > 0.061). 

On the second sample (day 51; Figure 4.3), communities with resistant Daphnia had less 

phytoplankton when exposed to the middle concentration (C2) of all three AChE-inhibiting 

insecticides as well as the highest concentrations of carbaryl and malathion (C3), when compared 

to communities with sensitive Daphnia (all p ≤ 0.002).  Consistent with the surprising 

observation that permethrin exposures caused fewer Daphnia to be present in resistant 

communities, communities with resistant Daphnia had more phytoplankton than communities 
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with sensitive Daphnia when exposed to the highest two concentrations of permethrin (C2 and 

C3; both p ≤ 0.048).  Conversely, there was more phytoplankton in communities with sensitive 

Daphnia when exposed to the highest concentration of cypermethrin (C3; p = 0.003).   

 

 

Figure 4.3.  Differences in chlorophyll a abundance (in μg/L) within experimental communities 

across the two sampling dates of phytoplankton abundance.   

 

 

 

B

B

B

B

J

J

J

J

H

H

H

H

F

F

F

F

3

3

3 3

0.7

0.9

1.1

1.3

1.5

1.7

1.9

L
o

g
 [

p
h

y
to

p
la

n
k

to
n

 a
b

u
n

d
a
n

c
e

 (
u

g
/L

)]

B

B

B

B

J

J

J

J

H

H

H
H

F

F

F

F

3

3 3

3

0.7

0.9

1.1

1.3

1.5

1.7

1.9
Sensitive - sample 2

0 1 2 3

Resistant - sample 1

B
B

B

B

J

J

J

J

H H

H

H

F

F

F

F

3

3

3

3

B Carbaryl

J Malathion

H Chlorpyrifos

F Cypermethrin

3 Permethrin

Sensitive - sample 1 Resistant - sample 1

B

B
B

B

J

J

J

J

H

H

H

H

F

F

F

F

3

3

3

3

Relative concentration
0 1 2 3

Resistant - sample 2



77 
 

4.3.4 Periphyton 

 

 

The rm-ANOVA of the periphyton data revealed significant effects of insecticide treatment, the 

sensitivity of the Daphnia populations, and time as well as a significant insecticide treatment-by-

Daphnia sensitivity interaction and a time-by-insecticide treatment interaction (Table I.4). On 

both sample dates, there were significant effects of insecticide treatment and Daphnia sensitivity, 

but there was only a significant interaction term for the second sample (day 53; Table I.5C).   

On the first sample (day 26; Figure 4.4), there was more periphyton in communities with 

resistant Daphnia compared to communities with sensitive Daphnia, when exposed to the middle 

concentration of chlorpyrifos and malathion (C2; both p ≤ 0.003) as well as the highest 

concentration of carbaryl (C3; p = 0.010).  Daphnia sensitivity had no effect on the abundance of 

periphyton when exposed to either of the pyrethroid insecticides (all p > 0.076). 

On the second sample (day 53; Figure 4.4), there was more periphyton in communities 

with resistant Daphnia than communities with sensitive Daphnia when exposed to the lowest 

two concentrations of chlorpyrifos (C1, C2), the middle concentration of malathion (C2) and the 

highest concentration of (C3) carbaryl (all p ≤ 0.045). Consistent with the fact that the highest 

permethrin treatment caused fewer zooplankton and more phytoplankton in communities 

containing resistant Daphnia, communities with resistant Daphnia had less periphyton when 

exposed to the highest concentration of permethrin compared to communities with sensitive 

Daphnia (p = 0.001).  
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Figure 4.4. Differences in periphyton abundance (in g) within experimental communities across 

the two sampling dates of periphyton abundance.   

 

4.3.5 Leopard frogs 

 

 

We analyzed leopard frog survivorship, average tadpole mass and average developmental 

(Gosner) stage using a MANOVA. We found multivariate effects of insecticide treatment and 

Daphnia sensitivity (both p < 0.001), but no significant interaction (Table I.6). We then ran 

separate univariate analyses of the aforementioned leopard frog variables. 
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We began by analyzing survivorship (Figure 4.5).  The ANOVA of survivorship 

indicated that there was an effect of insecticide treatment (p < 0.001), a marginally non-

significant effect of Daphnia sensitivity (p = 0.072), and a non-significant interaction (p = 0.861, 

Table I.7A). Averaged across all pesticide treatments, overall survivorship of leopard frogs was 

slightly higher (3.7%) in communities with resistant Daphnia.  Exposure to chlorpyrifos did not 

affect mortality beyond that of the control at any of the three concentrations in either community 

type (all p > 0.255). Malathion exposure did not result in lower survivorship in either community 

type, when compared to controls (all p > 0.198). Carbaryl exposure did not result in decreases in 

survivorship beyond those seen in controls at any concentration in either community type, but a 

comparison of communities with resistant versus sensitive Daphnia showed that there was lower 

survivorship of amphibians in communities with sensitive Daphnia exposed to the highest 

concentration relative to communities with resistant Daphnia (p = 0.011).  Finally, in 

communities exposed to the two pyrethroid insecticides, in both community types there were 

declines in survivorship when exposed to the two highest concentrations of each of the 

pyrethroid insecticides compared to controls (all p < 0.001).  

For tadpole mass, there was an effect of Daphnia sensitivity, insecticide treatment, and 

their interaction (all p ≤ 0.037; Table I.7B; Figure 4.5).  In control treatments, there was a 

marginal difference in average tadpole mass when comparing communities with sensitive versus 

resistant Daphnia (p = 0.076). Exposure to the three AChE-inhibiting insecticides led to larger 

leopard frog tadpoles in communities with resistant Daphnia when subjected to the lowest two 

concentrations of carbaryl (C1 and C2), the highest two concentrations of malathion (C2 and C3) 

and all three concentrations of chlorpyrifos (all p ≤ 0.035). There were no differences in tadpole 

mass when we compared communities containing sensitive versus resistant Daphnia that were 
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exposed to either of the pyrethroids (all p < 0.103).  

For Gosner stage, the ANOVA indicated significant main effects of insecticide treatment 

and Daphnia sensitivity as well as a significant interaction term (all p ≤ 0.002; Table I.7C; 

Figure 4.5).  The general trend was that leopard frogs in communities containing resistant 

Daphnia developed more quickly when compared to communities with sensitive Daphnia. This 

pattern held true for communities exposed to no pesticide (p < 0. 001), communities exposed to 

all three concentrations of the three AChE-inhibiting insecticides (all p ≤ 0.016) and 

communities exposed to the lowest and highest concentration of permethrin (C1 and C3; both p 

≤ 0.004). Unlike the communities exposed to permethrin, there were no differences in average 

Gosner stage achieved across any of the three cypermethrin treatments (all p > 0.409). 
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Figure 4.5. Differences in overall survival, average tadpole mass (g), and developmental stage, 

between communities with resistant or sensitive Daphnia.  
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4.4 DISCUSSION 

 

In this study, we discovered that naturally-occurring populations of Daphnia that vary in their 

resistance to a commonly applied insecticide (chlorpyrifos), also show a pattern of cross 

resistance to other insecticides with a similar mode of action (carbaryl and malathion).  Our 

LC50 studies in the lab found that Daphnia populations collected from ponds near agricultural 

fields were more resistant to AChE-inhibiting insecticides than populations collected far from 

agricultural fields. In contrast, the populations did not differ in their resistant to two pyrethroid 

insecticides, which have a different mode of action. These patterns translated into strikingly 

similar community-wide effects, when communities were exposed to moderate concentrations of 

the AChE-inhibiting insecticides.  In contrast, communities exposed to the pyrethroid insecticide, 

showed markedly different effects with no evidence of resistant Daphnia populations being able 

to prevent zooplankton-mediated trophic cascades.  

 Previous studies have found that cladocerans, such as Daphnia are typically the most 

sensitive class of zooplankton in terms of their exposure to many, but not all, insecticides (Boone 

and James 2003, Mills and Semlitsch 2004, Relyea and Hoverman 2006, Relyea and Diecks 

2008, Relyea 2009).  We found that the concentrations used in our experiment ranged from 

sublethal to lethal and when communities were exposed to the two lowest concentrations of 

chlorpyrifos, there were more Daphnia in communities with resistant populations than in 

communities with sensitive populations. Given that our previous study (Bendis and Relyea 2014, 

in review) and the current study found consistent variation in resistance to chlorpyrifos, this 

suggests that the resistance to chlorpyrifos is maintained across multiple years.   

The other two AChE-inhibiting insecticides (carbaryl and malathion) had similar effects 

on Daphnia abundance throughout the experiment. In communities exposed to carbaryl and 
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malathion, there were commonly more Daphnia in communities with resistant populations than 

communities with sensitive populations, although the particular concentrations that exhibited the 

population difference varied among the pesticides.  The highest concentration, which was 

intended to be lethal for both populations regardless of their sensitivity, caused a marked decline 

in Daphnia abundance. In short, there was clear evidence that the Daphnia populations that were 

previously shown to be resistant to chlorpyrifos were also cross-resistant to malathion and 

carbaryl. This pattern of cross-resistance was concordant with our hypothesis that cross-

resistance between insecticides should be related to their mode of action.  Evidence of cross-

resistance to insecticides with similar modes of action is relatively common among targeted pest 

species, but is not commonly described in non-target species (Tabashnik et al. 1987, ffrench-

Constant et al. 1993, Daborn et al. 2002, Smirle et al. 2002, Hua et al. 2013).   

 When we exposed the communities to the two pyrethroid insecticides, which have a 

different mode of action compared to the three AChE-inhibiting insecticides, we hypothesized 

that we would not observe cross-resistance in Daphnia.  For communities exposed to 

cypermethrin, there was no evidence of more Daphnia in communities that contained 

chlorpyrifos-resistant Daphnia. For permethrin, we saw an interesting pattern where Daphnia 

populations that were less resistant to chlorpyrifos were actually more resistant to permethrin.  It 

is unlikely that this was due to insecticide exposure to both types of chemicals in the wild, as 

both sensitive populations were collected in protected wildlife areas with little to no surrounding 

agriculture.  Some studies have found that cross-resistance can develop for insecticides that have 

markedly different modes of action (Scott 1989, Zhao et al. 1996, Berengues et al. 2003, Brausch 

and Smith 2009a/b, Mitchell et al. 2012), but we found no such evidence here. However, our 

results are concordant with our pilot LC50 data, which found that the population that was more 



84 
 

sensitive to chlorpyrifos had a higher LC50 value for permethrin compared to the population that 

was less sensitive to chlorpyrifos (Table A1).  This suggests an interesting tradeoff between the 

evolution of resistance to AChE-inhibiting insecticides and permethrin, which is an unexpected 

finding that, to our knowledge, has not been found in other previous studies. Because permethrin 

and cypermethrin share the same mode of action, but have different effects on Daphnia 

populations, this suggests that we cannot group the pyrethroids by modes of action when 

extrapolating their potential effects on aquatic communities.  

 There was no evidence of a life history-trade-off between the resistant and sensitive 

populations of Daphnia.  Although we did not explicitly track the population growth rates of the 

Daphnia within our communities, our samples of Daphnia abundance showed that early in the 

experiment, communities containing resistant Daphnia actually had more Daphnia than 

communities containing sensitive Daphnia, which is the opposite outcome expected from a life- 

history tradeoff as the energetic constrains of maintaining resistance within a population may 

lead to decreased fecundity or longer generation times. The equivalent numbers of Daphnia later 

in the experiment may reflect all communities achieving a similar carrying capacity for the 

Daphnia. These results are concordant with our previous work that found that these populations, 

which were sampled a year earlier, also showed no evidence of a tradeoff between insecticide 

resistance and Daphnia population abundance (Bendis and Relyea, in review). Many other 

studies have found that the resistance or tolerance of Daphnia species to parasites, disease, 

anthropogenic chemicals, and other factors are often associated with one or more life-history 

trade-offs that could potentially lead to reductions in population growth rates (van der Hoeven 

and Gerritsen 1997, Duffy and Sivars-Becker 2007, Coors and De Meester 2008, Jansen et al. 

2011a, Auld et al. 2013).  
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Studies have shown that cladocerans such as Daphnia are the primary drivers of 

phytoplankton abundance in many aquatic ecosystems (Relyea and Diecks 2008).  This is 

particularly important because low and environmentally-relevant concentrations of insecticides 

can cause complete extirpation of zooplankton assemblages causing a phytoplankton bloom and 

subsequent trophic cascade (Sierzen et al 1998, Boone et al. 2004, Mills and Semlitsch 2004, 

Relyea and Diecks 2008).  All five insecticides caused increases in phytoplankton and the 

magnitude of the increase grew with increasing insecticide concentrations across nearly every 

treatment.  Associated with these increases in phytoplankton content were increases in light 

decay rates, DO, and pH; the latter two variables reflect the increase in photosynthesis that 

occurs with an increase in phytoplankton.   

 The differential survivorship among Daphnia populations drove changes throughout the 

community.  For example, across the two sampling dates, there was a pattern of lower 

phytoplankton abundance in communities with resistant Daphnia populations that were exposed 

to low to moderate concentrations of the three AChE-inhibiting insecticides.  This indicated that 

Daphnia populations with resistance and cross-resistance to these insecticides could mitigate the 

trophic cascade from the zooplankton to the phytoplankton.  In contrast, because the resistant 

Daphnia populations exhibited no cross-resistance to cypermethrin and permethrin, the resistant 

Daphnia populations were not able to prevent the trophic cascade from the zooplankton to the 

phytoplankton  Indeed, permethrin caused the opposite effect; it caused a higher abundance of 

the sensitive Daphnia and a subsequent lower abundance of phytoplankton.  Previous studies 

have shown the importance of zooplankton in maintaining the stability of aquatic communities 

through their top-down control on phytoplankton abundance (Mills and Semlitsch 2004, Boone 

et al. 2004, Hanson et al. 2007, Relyea and Diecks 2008, Bendis and Relyea, in review).  This 
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study, however, is the first to show that naturally occurring cross-resistance to these 

agrochemicals may protect pond communities that are chronically impacted by such stressors. 

The trophic cascade caused by insecticides that reduce the zooplankton and increase 

phytoplankton often causes sufficient light decay as to reduce the abundance of periphyton at the 

bottom of a body of water (Mills and Semlitsch 2004, Rohr et al. 2006, Hanson et al. 2007, 

Relyea and Diecks 2008).  In our study, there was a clear pattern of increased insecticide 

concentrations causing a decrease in the abundance of periphyton.  However, the effect on the 

periphyton differed between resistant and sensitive Daphnia populations. Periphyton was often 

more abundant in communities with resistant Daphnia compared to communities with sensitive 

Daphnia when exposed to moderate to high concentrations of the three AChE-inhibiting 

insecticides. This is clear evidence of the far-reaching effects of resistance and cross-resistance 

of Daphnia to the AChE-inhibiting insecticides.   

Daphnia sensitivity had no effect on periphyton abundance when exposed to either of the 

two pyrethroid insecticides for the first sample.  During the second sample, however, there was 

less periphyton in communities with resistant Daphnia exposed to the highest concentration of 

permethrin.  This was consistent with there being both fewer Daphnia and significantly more 

phytoplankton within this treatment during this time period.  Furthermore, it highlights that the 

far-reaching effects of the tradeoff between resistance to AChE-inhibiting insecticides and the 

pyrethroid insecticide permethrin; permethrin not only had direct effects on zooplankton 

abundance but led to dramatic community-wide effects across trophic levels. 

 The trophic cascade that was initiated by the direct lethal effects of the insecticides on the 

zooplankton also affected the leopard frogs. In terms of survivorship, we found a modest 

increase (3.7%) in survivorship of leopard frogs in communities with resistant Daphnia when 
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survivorship was averaged across all treatments.  Furthermore, we were able to rule out pesticide 

exposure being linked to leopard frog mortality for 3 of the 5 insecticides (chlorpyrifos, carbaryl, 

and malathion) because overall survivorship across all treatments was not significantly different 

from survivorship within control communities in communities with resistant Daphnia. For the 

two pyrethroid insecticides, we saw moderate decreases in survivorship, but we attempted to 

utilize concentrations that had been shown to be sublethal to other anuran species (Paulov 1990, 

Saha and Kaviraj 2008, Agostini et al. 2009, Biga 2013).  Thus, the decline in amphibian 

survivorship was likely due to declining food availability.  Furthermore, while we saw small 

improvements in amphibian survivorship in communities with resistant Daphnia compared to 

communities with a sensitive population, there were more substantial effects of Daphnia cross-

resistance on tadpole mass and development.   

There was clear evidence that the effects of cross-resistance within Daphnia resulted in 

faster development and higher growth rates of amphibians within communities exposed to 

several concentrations of all of the AChE-inhibiting insecticides.  Given the lack of evidence for 

cross-resistance of Daphnia to the pyrethroids, we expected to see no evidence of faster 

development in communities exposed to pyrethroids. This was true for cypermethrin, but we 

found that amphibians in communities exposed to C1 and C3 of permethrin actually developed at 

a faster rate for reasons that remain unclear.  Aside from this one anomaly, our results coincided 

clearly with our hypothesis that Daphnia resistance to chlorpyrifos would lead to cross-resistance 

to chemicals with a similar mode of action, but not necessarily to insecticides with a different 

mode of action.  Daphnia that were cross-resistant to the three AChE-inhibiting insecticides 

survived to a greater degree when compared to sensitive Daphnia.  This led to more 

phytoplankton being removed from the water column and an increase in resources (i.e. light) for 
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periphyton, and as periphyton abundance increased this led to an increase in average tadpole 

mass and faster overall developmental rates.  We anticipated this finding from previous studies 

which have shown that concentrations of insecticides that are lethal to zooplankton can cause 

marked trophic cascades that can eventually affect amphibian growth a development through a 

series of cascading events (Fleeger et al. 2003, Boone et al. 2004, Mills and Semlitsch 2004, 

Relyea and Diecks 2008, Hua and Relyea 2012).  These studies, however, typically only 

manipulate one insecticide and then use inference to hypothesize how insecticides with similar 

chemical structures or modes of action might affect similar aquatic ecosystems.  Our study 

explicitly shows that cross-resistance of Daphnia may be common in nature and that insecticides 

of the same mode of action do indeed cause similar community responses that can affect 

amphibians at extremely low and environmentally-relevant concentrations.  Furthermore, our 

study is the first to demonstrate that genetic differences between populations that promote 

insecticide cross-resistance in Daphnia can result in the buffering of aquatic communities via a 

chain of events that can alter the growth and development of grazers such as amphibians. 

 

4.4.1 Conclusions 

 

 

We have shown that low and environmentally-relevant concentrations of five commonly applied 

insecticides had direct lethal effects on zooplankton, which lead to a series of indirect effects that 

cascaded throughout the entire aquatic community.  More importantly, we incorporated our pre-

existing knowledge of natural variation in Daphnia population-level resistance to the insecticide 

chlorpyrifos to explore the possibility of the evolution of cross-resistance in Daphnia.  Our 

results indicate that populations that were resistant to the AChE-inhibiting insecticide 
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chlorpyrifos were also resistant to carbaryl and malathion, which share the same mode of action.  

We detected no signs of cross-resistance to cypermethrin, but found an interesting possible 

tradeoff between resistance to AChE-inhibiting insecticides and sensitivity to permethrin. To 

further our understanding of the effects of insecticides on aquatic communities, future studies 

should attempt to utilize more diverse and realistic zooplankton assemblages to determine 

whether or not the effects of these insecticide induced trophic cascades are driven by the loss of 

Daphnia (as posited by both our previous and current findings).  If it is possible that other 

species of copepods, rotifers or even other genera of cladocerans may have the potential to fill 

the same ecological niche as Daphnia.  If these species are more resistant than Daphnia, and can 

potentially consume phytoplankton at an equal or greater rate, then the future for aquatic 

ecosystems that are at high risk from nearby agricultural chemicals may be brighter than initially 

anticipated.  Only by fully understanding variation within and among both abiotic and biotic 

factors (particularly those that can have dramatic effects on aquatic food web stability) will we 

be able to protect these threatened ecosystems from future anthropogenically-induced stressors. 
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5.0 KEYSTONE CONSUMERS: A TEST OF FUNCTIONAL REDUNDANCY 

WITHIN NATURAL ZOOPLANKTON ASSEMBLAGES THAT VARY IN THEIR 

RESISTANCE TO AGROCHEMICALS 

 

5.1 INTRODUCTION 

 

Attempting to predict the effects of environmental change on community and ecosystem 

dynamics is a major issue in the field of ecology.  A common focus of ecologists over the past 

few decades has been on biotic perturbations and their cascading effects throughout the food web 

(Shurin et al. 2002, Finke and Denno 2004, Schmitz et al. 2004, Altieri et al. 2012).  However, 

abiotic stressors, even if they are only periodic, can also have marked impacts on aquatic and 

terrestrial communities that may rival, if not surpass, the impacts of biotic stressors, particularly 

if these stressors are anthropogenic (Rohr et al. 2006, Relyea and Hoverman 2006, Kratina et al. 

2012).  Furthermore, biotic and abiotic stressors can often interact synergistically (Blaustein and 

Kiesecker. 2002, Crain et al. 2008, Montoya and Raffaelli 2010). 

 One such abiotic stressor that often interacts with biotic stressors in aquatic systems is the 

presence of pesticides (Relyea and Mills 2001, Boone and James 2003, Blaustein et al. 2003).  

Very low concentrations of insecticides can have indirect lethal effects on other organisms (Mills 

and Semlitsch 2004, Relyea and Diecks 2008, Bendis and Relyea, in review).  This can happen 

when pesticides are directly lethal to a sensitive species in the community, such as the high 
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sensitivity of zooplankton when exposed to most insecticides (Brock et al. 1996, Hanazato 2001, 

Van Wijngaarden et al. 2005). When zooplankton are reduced or eliminated, it causes a 

cascading chain of events that starts with a bloom in phytoplankton (Fleeger et al. 2003, Mills 

and Semlitsch 2004).  The bloom in phytoplankton shades out the periphytic algae that lives 

below the phytoplankton and this causes the periphyton to decline over time. Organisms that 

consume periphyton (e.g., tadpoles) grow and develop more slowly to the point that those living 

in vernal pools can fail to metamorphose before their pond dries (Boone et al. 2004, Relyea and 

Diecks 2008).  As a result, pesticide concentrations that are sublethal to grazers such as tadpoles 

can become lethal through a chain of indirect effects.   

 Previous studies that have examined pesticide-induced trophic cascades have implicated 

the loss of zooplankton as the primary cause of the phytoplankton bloom and the resulting chain 

of effects through the food web (Mills and Semlitsch 2004, Boone et al. 2004, Relyea and 

Hoverman 2006, Relyea and Diecks 2008).  Of the three major groups of freshwater “macro-

zooplankton” (cladocerans, copepods and rotifers), cladocerans are generally the largest in body 

size and they typically consume the most phytoplankton per capita via non-selective filter 

feeding (Hanazato 1998).  Copepods, which are typically smaller than most cladocerans, are 

mainly omnivorous and will consume phytoplankton, protozoa, detritus, bacteria, rotifers, other 

copepods and even some smaller-bodied cladocerans (Dagg et al. 1989).  Rotifers are the 

smallest in body size and they feed primarily on phytoplankton and bacteria suspended in the 

water column, but they can also feed on other rotifers and even juvenile cladocerans (Stemberger 

and Gilbert 1985).  Although these groups of zooplankton differ greatly in their overall body 

sizes, foraging efficiencies, ability to recycle nutrients and dietary intake, all three groups 

compete for phytoplankton and, consequently, have an impact on phytoplankton abundance and 
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diversity (Tilman 1977, DeMott and Kerfoot 1982, Vanni 1986, Hanazato 1998).   

The current paradigm is that the loss of cladoceran zooplankton, such as those in the 

genus Daphnia, is the primary cause of these pesticide-induced trophic cascades (Carpenter et al. 

1985, Tessier and Woodruff 2002, Korosi et al. 2012).  Cladocerans have rapid generation times 

(~5-7 d for many species) that allow fast population growth rates (Lynch 1989).  In contrast, 

most copepods have longer generation times (Miralto et al. 1999).  In rotifers, generation times 

can range widely (Welch and Meselson 2000).  Taking into account the differences in body 

sizes, resource intake, and generation times, it is not surprising that most studies show that the 

loss of cladocerans can have a disproportionately large effect on phytoplankton abundance.  This 

suggests that, within these communities, copepods and rotifers have a negligible effect on 

phytoplankton abundance when they are in competition with cladocerans.  However, this 

hypothesis has yet to be explicitly tested in a community context when subjected to 

anthropogenic stressors. 

An on-going pursuit in ecology is to functional redundancy in ecosystems, such that a 

missing species can be functionally “replaced” by a similar species that fill a similar ecological 

role (Naaem 1998).  In such situations, the loss of one species has little to no effect on 

community stability in response to perturbations (Tilman et al. 1998).  Evidence of functional 

redundancy between the three major freshwater zooplankton groups has been noted in previous 

studies looking at the effects of acidification (Fischer et al. 2001), climate variation (Johnson et 

al. 2011), eutrophication (Bowszys et al. 2014), and exposure to the fungicide carbendazim 

(Slijkerman et al. 2004).  Large-bodied cladocerans, like Daphnia are competitively superior to 

most other zooplankton and may often outcompete other species, driving the other species to low 

densities (DeMott and Kerfoot 1982, Vanni 1986, Korosi et al. 2012).  The loss of Daphnia from 
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insecticide exposure should therefore release other species from competitive pressure, allowing 

populations of these other species to increase in abundance. Such a response would then reduce 

the abundance of phytoplankton to levels that could be similar to when the zooplankton 

assemblage was dominated by Daphnia, which would be evidence of functional redundancy. 

 We performed a mesocosm study in which we manipulated the composition of 

zooplankton assemblages, the source of the zooplankton (i.e. ponds that varied in their proximity 

of agriculture), and a range of environmentally relevant concentrations of the widely-utilized 

insecticide chlorpyrifos.  We tested four hypotheses. First, we hypothesized that the cladocerans 

that came from ponds far from agriculture would be more susceptible to chlorpyrifos than those 

collected from a pond near agriculture, as we have seen in previous studies (Bendis and Relyea 

2014, in review, in prep.). Second, we hypothesized that other groups of zooplankton (i.e. 

rotifers and copepods) that came from ponds far from agriculture would also be more susceptible 

to chlorpyrifos than those collected from a pond near agriculture.  Third, we hypothesized that 

communities with resistant cladocerans would be buffered from the effects of the chlorpyrifos at 

low to moderate concentrations, whereas communities with sensitive cladocerans would not be 

buffered.  Fourth, we hypothesized that communities with only a background assemblage should 

not exhibit functional redundancy in regard to preventing algal blooms and the resulting trophic 

cascade compared to full assemblages that include cladocerans.  

 

 

 

 

 



94 

5.2 METHODS 

5.2.1 Experimental set up 

We conducted the experiment at the University of Pittsburgh’s Donald S. Wood Field Laboratory 

at the Pymatuning Laboratory of Ecology in Linesville, PA. Our design was a full-factorial 

experiment of identical aquatic communities that crossed six zooplankton treatments with five 

insecticide treatments. The six zooplankton treatments included partial or complete zooplankton 

assemblages from a pond that was either close to agriculture (i.e. surrounded by > 30% 

agricultural land within a 300-m radius) and contained a population of D. pulex that was 

relatively resistant to a commonly applied insecticide (i.e. chlorpyrifos) or a pond that was far 

from agriculture (i.e. surrounded by <5% agricultural land within a 300-m radius) and contained 

a population of D. pulex that was relatively sensitive to chlorpyrifos (Bendis and Relyea 2014). 

Using the zooplankton collected from a given pond, we added the following zooplankton 

assemblages to the mesocosms:  only cladocerans, the background assemblage comprised of all 

zooplankton except cladocerans (i.e. copepods and rotifers), or a full assemblage of zooplankton 

(cladocerans, copepods and rotifers). For simplicity, we will hereafter refer to this as the 

“assemblage” treatment. 

The five insecticide treatments represented five concentrations of the insecticide 

chlorpyrifos (0, 0.25, 0.50, 1.0 or 2.5 μg/L), which is commonly used in northwestern 

Pennsylvania on corn and soybeans (Thelin and Stone 2013). Chlorpyrifos is a widely applied 

insecticide in U.S. agriculture; approximately 3.6-5.0 x 106 kg of active ingredient are applied 

annually (Grube et al. 2011).  In natural lakes and streams, chlorpyrifos is typically found at 

relatively low concentrations from around 0.01 to 0.65 μg/L (Christensen et al. 2009).  
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Volatilization of chlorpyrifos, which is the most likely cause of chlorpyrifos breakdown in water, 

occurs fairly rapidly with estimated half-lives of 3-20 days (Christensen et al. 2009).  

We selected the chlorpyrifos concentrations based on our review of published LC50 data 

for various zooplankton found in northeastern PA, our previous research on LC50 values for 

chlorpyrifos on these and other populations of D. pulex (Bendis and Relyea 2014), and pilot 

LC50 experiments that we performed prior to the current experiment.  These LC50 studies were 

used to confirm that the wild populations of cladocerans (i.e. D. pulex) that were previously 

reported to be either sensitive or resistant to chlorpyrifos retained their relative susceptibilities to 

chlorpyrifos when collected in 2014.   

The 30 treatment combinations were replicated five times for a total of 150 experimental 

units. Because the insecticide was dissolved in ethanol (EtOH) prior to being added to the 

mesocosms, we used two additional replicates to serve as vehicle controls to test for any effects 

of the highest EtOH concentration.  As a result, there was a total of 152 experimental units.  

There were no differences in any of the variables at any time when comparing communities 

exposed to EtOH orcontrol conditions, thereby indicating that EtOH had no effect on any of the 

variables. Therefore, the EtOH treatment was removed from our statistical analysis. . Our 

experimental units were 75-L garbage cans (58.4 cm x 49.5 cm - Rubbermaid BRUTETM) that 

were filled with approximately 65-L of well water on 14 May 2014.  Each mesocosm was 

covered by a 60% shade-cloth lid to prevent organisms from entering or exiting. On 15 May we 

added 1.5 g of rabbit chow and 20 g of leaf litter (Quercus spp.) to each mesocosm to provide an 

initial source of nutrients.  On 16 May we added four unglazed, ceramic tiles (7.5 cm x 15 cm) 

along the north side of each mesocosm to serve as a standardized measure of periphyton 

abundance.   
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Also on this day, we took pond water samples from five local ponds (Love, Mallard, 

Minnow, Hopscotch and Trailer Park).  Two of these ponds (Love and Minnow) were the same 

ponds from which we collected our zooplankton assemblages for the experiment.  We ran each 

water sample through a series of sieves (1 mm, 25µ um, 64 µm) five times to remove nearly all 

zooplankton and then treated the pond water with carbonated water to kill any smaller 

zooplankton, such as rotifers or copepod nauplii that may have passed through the sieves.  Once 

the water from each pond was processed, we combined the five pond water samples and added 

equal aliquots (~180 mL) to each experimental unit to provide a natural source of bacteria, 

periphyton and phytoplankton. 

 

5.2.2 Culturing and adding zooplankton 

 

 

On May 24 we collected and isolated a complete assemblage of zooplankton from one pond 

located near agriculture (Love Pond, which contains resistant D. pulex) and another pond located 

far from agriculture (Minnow Pond, which contains sensitive D. pulex; Bendis and Relyea 2014) 

using a zooplankton tow with 64-µm mesh. We placed assemblages from each pond into 15, 1.8-

L plastic containers. Each container was filled with carbon-filtered, UV-irradiated well water and 

the zooplankton assemblages were fed lab cultured Scenedesmus spp. algae ad libitum.  As older 

female cladocerans released their offspring, they were removed from the experimental 

populations. We did not replicate sensitive or resistant ponds because our past experiments have 

consistently demonstrated that multiple sensitive populations respond quite similarly to the 

insecticide chlorpyrifos and other AChE-inhibiting insecticides; the same is true when we have 

tested multiple resistant populations (Bendis and Relyea 2014, in review, in prep.). 
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After approximately 3 weeks in the lab, most of the cladoceran zooplankton populations 

had produced at least two generations of offspring. At this time we separated cladoceran 

zooplankton from the background assemblage of zooplankton.  We used a 180-um sieve to 

separate most of the cladoceran zooplankton from the rotifers and copepods.  A 64-µm sieve was 

subsequently used to ensure that only copepod nauplii, copepodites, and rotifers could pass 

through (i.e. no cladocerans) to serve as our background communities. Samples were inspected at 

random and we verified that no cladocerans were found in the background assemblage.   

All assemblage additions occurred 3 weeks prior to the experimental start date to allow 

the populations to establish. For the cladoceran-only treatment, we added approximately 400 

cladocerans from their respective populations to each randomly assigned mesocosm.  For the 

background-assemblage treatment, we added a standardized amount of water (~350 mL) 

containing a concentrated amount of rotifers, copepod nauplii, and adult copepods 

(approximately 800-900 of each).  We intentionally added more members of the background 

assemblage to account for body mass differences between the larger cladocerans and other 

smaller species of zooplankton.   For the full-assemblage treatment, communities received both 

of the aforementioned zooplankton treatments in an additive design (~400 cladocerans + the 

mixture of 800-900 background zooplankton).  Before adding zooplankton to the mesocosms, we 

first verified that there were no cladocerans in background-assemblage treatments and no 

copepods or rotifers in cladoceran-only treatments.  However, over time it was apparent that a 

few individuals of the excluded groups colonized the tanks and then grew to become more 

abundant.  Therefore, when analyzing data for zooplankton abundance we included counts for all 

three zooplankton groups for every treatment.   
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5.2.3 Culturing and adding amphibians 

 

 

Green frog tadpoles (Lithobates clamitans) were raised from egg masses that we collected from a 

single pond in northwestern PA (Geneva Pond #5).  We collected 10 partial egg masses on 25 

May and reared the hatched tadpoles in 200-L pools containing well water.  Once hatched, the 

tadpoles were fed rabbit chow ad libitum.  On 10 June, after the algal and bacterial assemblages 

had developed in the mesocosms for 24 days, we added 10 green frog tadpoles to each 

mesocosm.  We selected the tadpoles for our experiment by mixing individuals from all 10 egg 

masses and then sorted for individuals of a similar size (initial mass ± SE:  9.5 mg ± 1.4 mg).  

Survival of the green frog tadpoles after a 24-hour handling test was 100%. 

 

5.2.4 Insecticide additions 

 

 

On 11 June (defined as day 1; for a timeline, see Figure 5.1), we exposed the mesocosm 

communities to the chlorpyrifos treatments.  We began by creating a stock solution of technical 

grade chlorpyrifos by dissolving it in ethanol.  We dissolved 0.05 g of technical-grade 

chlorpyrifos in 20 mL of EtOH. We then added 6.3, 12.6, 25.2 or 63 µL of the stock solution to 

each mesocosm to achieve the respective nominal concentrations (0.25, 0.50, 1.0 and 2.5 μg/L).  

For control tanks with 0 μg/L chlorpyrifos, we added 63 µL of carbon-filtered, UV-irradiated 

well water.  For the two mesocosms assigned the ethanol treatment, we added 63 µL of EtOH to 

verify that the largest amount of EtOH added to experimental communities did not affect the 

community. After the chlorpyrifos was applied to a given mesocosm, the water was stirred to 

equalize disturbance and to ensure that the insecticide was properly mixed throughout the water 
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column.  Communities exposed to the control and EtOH treatments were similarly stirred to 

equalize disturbance among all tanks.  Chlorpyrifos treatments were applied three times during 

the course of the experiment  (about every 2.5 weeks, Figure 5.1) to simulate natural patterns of 

exposure and to maintain the concentration of the insecticide within the treatments as 

chlorpyrifos breaks down fairly rapidly in water (Brock et al. 1996).  

To verify the concentrations of chlorpyrifos in our mesocosms, we collected an aliquot of 

water from each tank within a particular concentration within 1 hour of applying the stock 

solution. We pooled the samples by concentration in pre-cleaned, 500-mL amber jars containing 

2 mL of methylene chloride (CH₂Cl₂) to stabilize the insecticide.  We sent these samples to an 

independent laboratory for chemical analysis using high-performance liquid chromatography 

(Center for Environmental Services and Engineering, University of Connecticut).  Because the 

laboratory was unable to process our first application (taken on day 1) due to scheduling 

constraints, we tested the second and third applications.  For the second application (day 20), the 

actual concentrations for the 0.25, 0.50, 1.0 and 2.5 μg/L nominal concentrations of chlorpyrifos 

were 0.29, 0.52, 0.94 and 2.28 μg/L, respectively.  For the third application (day 36), the actual 

concentrations were 0.35, 0.51, 1.15 and 2.44 μg/L.  These results verified that the actual 

concentrations were within 90% of the nominal values (on average) and that chlorpyrifos was 

completely breaking down between applications.  In both samples tested, our controls had no 

detectable traces of chlorpyrifos (detection limit = 0.07 μg/L). 
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Figure 5.1. Experimental timeline to illustrate when chlorpyrifos treatments were added and when biotic and abiotic variables were 

measured.  In this figure, “DO” stands for dissolved oxygen and “light transmission” indicates when light was measured to quantify 

light decay rate.
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5.2.5 Abiotic response variables 

During the course of the experiment, we measured several abiotic response variables to help us 

understand the effects of chlorpyrifos on the communities.  On days 19, 37 and 51, we measured 

pH, temperature, and dissolved oxygen (DO) content (Figure 5.1). Temperature, pH and DO 

content readings were taken simultaneously with a calibrated digital aquatic multi-meter (YSI, 

Yellow Springs, OH, USA). All abiotic readings for all treatments were recorded within a span 

of 80 minutes so that we did not confound the time of day with the concentrations that were 

being tested. On days 30 and 31, we measured light transmission through the water column. Both 

days were cloudless, which is ideal for taking light measurements.  Light radiation was measured 

from the middle of each mesocosm at depths of 10 and 30 cm and we then calculated the decay 

rate of light with increased water depth (k) using the equation: 

k = [ln(L10/L30)]/d 

where L10 is the intensity of sunlight from a depth of 10 cm, L30 is the intensity of sunlight from a 

depth of 30 cm, and d is the difference in depth between the two measurements of intensity 

(Relyea and Diecks 2008).  Light attenuation was measured with an underwater light meter (LI-

COR. Lincoln, Nebraska, USA). 

5.2.6 Biotic response variables 

Several biotic response variables were also measured during the experiment.  We sampled 

zooplankton abundance at six times throughout the experiment (Figure 5.1.)  Zooplankton were 

sampled by submerging a 0.2-L plastic sampling tube in the middle of the water column at six 
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different locations within each mesocosm (north, south and middle quadrants of each mesocosm 

both towards the surface and near the benthos as different species of zooplankton tend to be 

found in different regions of the water column).  All six samples from a given mesocosm were 

pooled, the sample was filtered through a 64-µm Nitex cloth screen, and the captured 

zooplankton were placed into a Whirl-Pak® bag containing 30% EtOH to preserve the samples. 

This mesh size was selected because it is small enough to capture young and adult cladocerans, 

copepods, larger copepod nauplii and many species of rotifers. For zooplankton enumeration, the 

contents of the bags were poured onto a Petri dish with a preset grid.  All zooplankton were 

counted and identified as cladocerans, copepods, or rotifers.  Although there is variation in 

sensitivity to chlorpyrifos among species within each of these groups, there is a clear pattern that 

indicates that the larger-bodied cladocerans are typically more sensitive than copepods and 

rotifers (Brock et al. 1996, Lopez-Mancisidor et al. 2008, Daam et al. 2008).  Moreover, 

grouping the zooplankton into these groups takes into account the variation in dietary habits 

between groups (i.e. cladocerans that specialize on consuming phytoplankton versus copepods 

which are generalists and consume a wide array of food items).  An overall species list was 

maintained by spot checking samples at random.   

Although there were some species that differed between ponds, the similarity in 

zooplankton diversity between ponds was striking.  In both ponds, the cladoceran assemblages 

were dominated by Daphnia pulex (94% and 79% in near agriculture and far from agriculture 

ponds, respectively).  We identified five other species of cladocerans (Daphnia ambigua, 

Scapholebris mucronata, Chydorus sphaericus, and Simocephalus vetulus), with D. ambigua 

found only in the pond far from agriculture and S. vetulus only found in the pond near 

agriculture.  We also identified eight species of copepods (Leptodiaptomus minutus, L. siciloides, 



103 
 

Eurytemora affinis, Senecella calanoides, Skistodiaptomus oregonensis, Acanthocyclops 

robustus, and A. vernalis).  S. calanoides and E. affinis were found only within the pond that was 

located far from agriculture. Aside from the two predatory cyclopoid copepods that were found 

in both ponds (A. robustus and A. vernalis), most copepods were calanoid copepods that feed 

primarily on phytoplankton, but can be omnivorous (Wong and Chow-Frasier 1985). Finally, we 

identified five species of rotifers across the two ponds (Keratella spp., Platyias patulus, Notholca 

spp. Lecane spp., and Brachionus calyciflorus). 

Phytoplankton was quantified three times during the experiment (Figure 5.1). To measure 

the phytoplankton, we sampled 0.5 L of water from the center of each mesocosm and in the 

middle of the water column.  Each water sample was vacuum-filtered through GF/C Whatman 

glass microfiber filters (Whatman Industries Inc., Florham Park, New Jersey, USA).  After 

filtering, each filter was individually wrapped in aluminum foil and stored in a freezer at -18 °C.  

We used a fluorometer (Turner Designs TD-700, Sunnyvale, CA, USA) to measure the 

concentration of chlorophyll a, which we used as our proxy for phytoplankton abundance using 

the protocol developed by Arar and Collins (1997). 

 We quantified periphyton abundance three times during the course of the experiment 

(Figure 5.1) by removing one of the clay tiles from each mesocosm. Once a tile was removed, it 

was scrubbed with a toothbrush to remove all of the periphyton on the face of the tile and 

subsequently rinsed with carbon-filtered, UV-irradiated well water.  The mixture containing 

water and periphyton was then vacuum-filtered onto a Whatman GF/C filter that had been 

previously dried for 24 hours at 70°C and weighed. After the periphyton sample was vacuum 

filtered, the filters were dried at 70°C for an additional 24 hours and re-weighed.  The amount of 

periphyton biomass was measured as the mass of the filter paper containing the dried periphyton 
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minus the original dry mass of the unused filter.   

 On day 52 we terminated the experiment by draining the water from the mesocosms.  We 

then sorted through the leaf litter to recover all surviving green frog tadpoles.  For each 

mesocosm, all tadpoles were massed and were euthanized using a 2% solution MS-222 (tricane 

mesylate).  We then quantified the survival and mean mass of the tadpoles from each mesocosm. 

 

5.2.7 Statistical analysis 

 

 

All response variables that did not meet the assumption of homogenous variances were 

transformed.  We initially ran a MANOVA on all of the abiotic and biotic response variables 

collected during the final takedown.  Whenever significant effects were found, we ran individual 

repeated measures ANOVAs (rm-ANOVAs) or univariate ANOVAs depending on whether a 

variable was measured multiple times. If there were significant effects in any of the rm-

ANOVAs, we then further analyzed the data for that particular variable by using ANOVAs at 

each time point.  

For the biotic response variables, we used a MANOVA to test for the effects of 

chlorpyrifos concentration, assemblage, and proximity to agriculture on the final measurements 

of periphyton, phytoplankton, and zooplankton (copepod and rotifer) abundances. We did not 

include cladocerans in the MANOVA because few or no cladocerans were alive at the end of the 

experiment in the highest chlorpyrifos concentration. Given that phytoplankton and periphyton 

abundances were measured three times, while zooplankton abundances were measured six times 

during the experiment, we used separate rm-ANOVAs for each variable.  When significant 

effects were found, we subsequently used univariate ANOVAs at each time point. For 
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cladocerans, we removed the highest chlorpyrifos treatment from the analysis because few or no 

cladocerans survived this treatment.  Reponses variables for the green frogs (survivorship and 

average tadpole mass) were analyzed using a separate MANOVA.  

 

5.3 RESULTS 

 

The overall MANOVA of the three abiotic variables (pH, DO, and temperature) and four biotic 

variables (copepod, rotifer, phytoplankton and periphyton abundances) sampled at the end of the 

experiment found main effects of assemblage (Wilks’ λ, F14,228 = 8.18, p < 0.001), proximity to 

agriculture (Wilks’ λ, F7,114 = 3.48, p = 0.002), chlorpyrifos concentration (Wilks’ λ, F28,412 = 

11.64, p < 0.001), and several significant interaction terms (Table L.1).  We then analyzed each 

variable separately using rm-ANOVAs (Table L.2).   

 

5.3.1 Abiotic variables 

 

 

A detailed analysis of the abiotic variables can be found in Appendix K. Temperature fluctuated 

during the course of the experiment, but was not significantly affected by any of the main effects 

(Table L.2, Figure M.1).  Analyses of DO and pH both showed significant effects of assemblage 

concentration, and several interactions. In general, pH and DO showed similar patterns across the 

course of the experiment; as chlorpyrifos concentration increased, so did pH and DO (Figure 

M.2, M.3).  Data for pH and DO showed similar patterns with respect to the assemblages as both 

showed significant proximity to agriculture-by-concentration interactions (Table L.3A,B)  Light 

decay, which was only sampled once during the experiment, only showed main effects of 

assemblage and chlorpyrifos concentration (both p < 0.001), but no significant interactions 
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(Table L.3C).  In general, light decay rate increased as chlorpyrifos concentration increased and 

there was a general trend of higher rates of light decay in communities with only a background 

assemblage of zooplankton (Figure M.4). 

 

5.3.2 Zooplankton 

 

 

5.3.2.1 Cladocerans – The rm-ANOVA of cladoceran abundance found main effects of 

assemblage, proximity to agriculture, concentration, time (all p ≤ 0.001), and several interactions 

(Table L.4).  We then ran individual ANOVAs for each of the six sample dates and found that 

the three main effects were frequently significant as were the assemblage-by-concentration and 

the proximity-by-concentration interactions (Table L.5A; Figure 5.2, M.5).  In general, we saw a 

decline in cladocerans with higher chlorpyrifos treatments across all sample dates.  As the 

experiment progressed, cladocerans, which were not originally detected in the background 

assemblages, began to appear and increase in abundance, particularly in communities exposed to 

little or no chlorpyrifos.  To address our hypothesis concerning variation in cladoceran resistance 

with proximity to agriculture, below we focus on the abundance of cladocerans in communities 

containing zooplankton populations collected near to versus far from agriculture. 

 On the first sample (day 3), there were no clear differences in cladoceran abundance 

within any of the treatments when comparing between assemblages from either near or far from 

agriculture.  On the second sample (day 17), we found that within the cladoceran-only treatment 

exposed to 0.5 μg/L, communities with zooplankton collected near agriculture had more 

cladocerans than communities with zooplankton collected far from agriculture (p = 0.048).  

 On the third sample (day 22), communities with a background assemblage that were 
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exposed to 0.5 μg/L and communities of cladocerans only or the full assemblage that were 

exposed to 1.0 μg/L had more cladocerans, if they were collected near agriculture than if 

collected far from agriculture (all p ≤ 0.004).  On the fourth sample (day 35), there were more 

cladocerans in the cladoceran-only treatment within communities containing zooplankton 

collected near agriculture, but only at the 1.0 μg/L concentration. 

On the fifth sample (day 38), in communities with a full assemblage, there were more 

cladocerans in those communities with zooplankton collected near agriculture at the 0.5 μg/L 

treatment level (p = 0.004).  Furthermore, in communities with only cladocerans, there were 

more cladocerans in communities with zooplankton collected near agriculture at the 1.0 μg/L 

treatment level (p < 0.001).  There were also more cladocerans in the background assemblage 

exposed to 1.0 μg/L, compared to communities with background assemblages containing 

zooplankton collected from the pond that was located near agriculture (p < 0.001).  On the sixth 

and final sample (day 49), there were more cladocerans in communities with zooplankton 

assemblages from near agriculture when these communities were exposed to 0.5 μg/L 

(background treatment) or 1.0 μg/L (background and cladoceran only treatments, all p ≤ 0.001) 

when compared to communities with assemblages collected further from agriculture. 
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Figure 5.2. Differences in cladoceran abundance within experimental communities across the 

three sampling dates that immediately followed the three chlorpyrifos additions. 
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5.3.2.2 Copepods – The rm-ANOVA of copepod abundance indicated that there were main 

effects of assemblage, concentration, time, as well as several significant interaction terms (all p < 

0.001, Table L.4).  We then ran univariate ANOVAs for each of the six sampling dates and 

found that the three main effects were frequently significant as were several of the interactions 

(Table L.5B).  Much like the data for cladoceran abundances, copepod abundances tended to 

decline with increasing chlorpyrifos concentrations. However, copepods were more resistant to 

the effects of the insecticide (Figure 5.3, M.6).  We also observed that while the copepods were 

not detected in the initial cladoceran-only treatment, there must have been some rare individuals 

that became abundant over time.  To address our hypothesis concerning variation in resistance to 

chlorpyrifos in copepods collected from ponds near versus far from agriculture, we first focused 

on whether there were differences in copepod abundance between communities with 

zooplankton collected near or far from agriculture.   

In the first sample, within the cladoceran-only treatment there were more copepods in 

communities collected from near agriculture, when exposed to the lowest two concentrations and 

the highest concentrations of chlorpyrifos (all p ≤ 0.043).  In the full-assemblage treatment, there 

were more copepods in communities collected near agriculture when exposed to the middle three 

concentrations of chlorpyrifos (all p < 0.001).  In the second sample of copepod abundance, there 

were more copepods across all chlorpyrifos treatments in communities containing zooplankton 

that were collected near agriculture when compared to communities with assemblages collected 

further from agriculture (all p < 0.001; Figure M.6).  

In the third sample, there were more copepods in the communities with cladoceran-only 

and full-assemblage treatments that were collected near agriculture across nearly all treatments 

(all p < 0.001, except for those communities with a full assemblage at highest concentration).  In 
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the fourth sample, there were generally higher copepod abundances under low chlorpyrifos 

concentrations in communities with zooplankton collected near agriculture.  There were more 

copepods in communities with zooplankton from nearby agriculture within the cladoceran-only 

treatment at the three lowest concentrations of chlorpyrifos (p ≤ 0.003).   

The fifth sample indicated that in communities exposed to 1.0 μg/L chlorpyrifos, there 

were more copepods in communities with zooplankton collected near agriculture within the 

background-assemblage and full-assemblage treatments (p ≤ 0.029). At the 0.5 μg/L treatment 

level, there were more copepods in communities with zooplankton collected near agriculture 

within the full-assemblage treatment (p = 0.045). In the sixth and final copepod sample, there 

were more copepods in communities with zooplankton collected near agriculture within the 

cladoceran-only treatment at the 0, 0.5 and 1.0 μg/L treatment levels (all p ≤ 0.037).   
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Figure 5.3. Differences in copepod abundance within experimental communities across the three 

sampling dates that immediately followed the three chlorpyrifos additions.   
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5.3.2.3 Rotifers – The rm-ANOVA of rotifer abundance found significant effects of assemblage 

type time (both p < 0.001) and several significant interaction terms (Table L.4).  We then 

analyzed each sampling date separately using univariate ANOVAs (Table L.5C). Unlike the data 

for cladocerans and copepods, rotifers did not respond to increasing chlorpyrifos concentrations 

in a generalizable way and abundances varied greatly throughout the experiment at most 

concentrations (Figure 5.4, M.7).  To address our hypothesis concerning variation in resistance to 

chlorpyrifos among rotifer assemblages from ponds near versus far from agriculture, we focused 

our analysis on differences in rotifer abundance between communities with zooplankton 

collected near or far from agriculture.  

On the first sample date, there were fewer rotifers in the cladoceran-only treatment 

collected near agriculture, when exposed to 0.25 and 0.5 μg/L (both p ≤ 0.051).  Conversely, 

there were fewer rotifers in the background-assemblage treatment collected farther from 

agriculture when exposed to 0.5 μg/L (p < 0.001).  On the second sampling date (Figure M.7), 

there was no significant evidence of variation in resistance that could be attributed to proximity 

to agricultural land use.  On the third sampling date, there were more rotifers in communities 

containing a background assemblage collected farther from agriculture at the 0.25 and 0.5 μg/L 

treatments levels (both p < 0.001).  Furthermore, there were more rotifers in communities 

containing a background assemblage collected near agriculture at the 1.0 μg/L treatment level (p 

< 0.001). 

During the fourth sampling date, communities containing cladoceran-only assemblages 

from near agriculture contained fewer rotifers at the two highest concentrations, when compared 

to communities with cladoceran only assemblages found near agriculture (both p ≤ 0.006).  

There were also fewer rotifers in communities containing a full assemblage from near agriculture 
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that were exposed to the highest concentration of chlorpyrifos (p = 0.001).  In the fifth sample, 

were fewer rotifers in communities containing background assemblages collected near 

agriculture exposed to 1.0 μg/L chlorpyrifos, when compared to communities with zooplankton 

collected farther from agriculture (p = 0.008).  Furthermore, there were more rotifers in 

communities containing the cladoceran-only assemblages collected near agriculture at the lowest 

two concentrations when compared to communities with zooplankton collected farther from 

agriculture (p ≤ 0.002).  Finally, during the sixth sample, there were more rotifers in 

communities with background-only assemblages from near agriculture at the lowest and highest 

concentrations of chlorpyrifos, when compared to communities with zooplankton collected 

farther from agriculture (both p < 0.001). 
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Figure 5.4. Differences in rotifer abundance within experimental communities across the three 

sampling dates that immediately followed the three chlorpyrifos additions. 
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5.3.3 Phytoplankton 

 

 

The rm-ANOVA on phytoplankton abundance revealed main effects of assemblage, proximity to 

agriculture, concentration, time, and several interactions (Table L.6).  We then analyzed each 

sampling date of phytoplankton abundance independently using univariate ANOVAs and found 

that all three main effects and most interactions were significant during one or more sample dates 

(Table L.7A).  In general, increasing chlorpyrifos concentrations, which caused a decline in 

zooplankton, also caused increases in phytoplankton (i.e. an algal bloom, Figure 5.5).  We then 

used the ANOVAs to determine whether any of the zooplankton assemblages that were collected 

near agriculture were superior in preventing algal blooms compared to those collected far from 

agriculture across a range of chlorpyrifos concentrations.  

We first compared the amount of phytoplankton within communities containing each of 

the three zooplankton assemblage treatments from either near or far from agriculture.  In the first 

sample, in communities with zooplankton collected near agriculture, there was less 

phytoplankton in cladoceran-only and full-assemblage treatments exposed to 0.5 μg/L 

chlorpyrifos, when compared to communities with zooplankton collected farther from agriculture 

(both p ≤ 0.039).  On the second sampling date, we found that at the 0.5 and the 1.0 μg/L 

treatment levels, there was also less phytoplankton in communities with cladocerans or a full 

assemblage of zooplankton from a pond near agriculture when compared to communities with 

the same assemblages from a pond near agriculture (all p < 0.009).  On the third and final 

sampling date, there was more phytoplankton in communities within the cladoceran-only or full-

assemblage treatments in communities where the zooplankton were collected farther from 

agriculture relative to the communities where the zooplankton were collected from near 
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agriculture (0.5 and 1.0 μg/L treatments, both p ≤ 0.044).  Within communities with zooplankton 

collected near agriculture, there was less phytoplankton in communities with cladocerans only 

relative to the full-assemblage treatment at the 0.5 μg/L treatment level (p < 0.001). 

To address the hypothesis of functional redundancy, we tested whether the background 

assemblage was able to prevent algal blooms to a similar degree as cladocerans alone and the full 

assemblage within each agricultural category across a range of chlorpyrifos concentrations.  On 

the first sample date, in communities containing zooplankton from near agriculture, there was 

more phytoplankton in communities with a background assemblage of zooplankton, when 

compared to cladoceran-only or full-assemblage treatments at the 0.25, 0.50 and 1.0 μg/L 

treatments levels (all p < 0.001).  For communities with zooplankton collected farther from 

agriculture, there was more phytoplankton in communities with a background assemblage at the 

0.25 μg/L treatment level, when compared to the other two assemblages (p < 0.001).   

On the second sample date, communities with zooplankton collected from near 

agriculture, there was more phytoplankton in communities containing a background assemblage 

of zooplankton when compared to communities with cladocerans-only or a full assemblage of 

zooplankton, across the middle three concentrations (all p < 0.001).  On the third sample date, 

there was more phytoplankton in communities with a background assemblage of zooplankton 

from near agriculture, when compared to the cladoceran- only and full-assemblage treatments 

across the middle three concentrations of chlorpyrifos (all p < 0.001).  In those communities with 

zooplankton collected farther from agriculture, relative to communities with either cladocerans 

or a full zooplankton assemblage, there was more phytoplankton in those communities with a 

background assemblage that was exposed to 0.25 μg/L chlorpyrifos (p = 0.001).   
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Figure 5.5. Differences in phytoplankton content (measured in chlorophyll a content in μg/L) 

across the three sampling dates of phytoplankton abundance. 

H

H
H H

H

J J

J J

J

B
B

B B

B

Far from agriculture - sample 1

H

H

H H

H

J
J

J
J

J

B
B

B
B

B

3

23

43

63

83

103

123
H Background

J Cladocerans

B Full assemblage

Near agriculture - sample 1

H

H H

H

H

J
J

J
J

J

B
B

B

B

B

Far from agriculture - sample 2

H

H

H

H

H

J
J J

J

J

B B B B

B

3

23

43

63

83

103

123
Near agriculture - sample 2

H

H

H

H

H

J J

J

J

J

B B

B

B

B

0.25 0.50 1.0 2.50

Far from agriculture - sample 3

H

H

H

H

H

J

J
J

J

J

B
B B B

B

3

23

43

63

83

103

123

Chlorpyrifos concentration (ug/L)
0.25 0.50 1.0 2.50

Near agriculture - sample 3



118 
 

5.3.4 Periphyton 

 

 

The rm-ANOVA of periphyton abundance revealed that there were effects of the assemblage 

type, concentration and time (all p < 0.001), as well as a number of significant interaction terms 

(all p ≤ 0.036, Table L.6).  We then ran individual ANOVA analyses on periphyton abundance 

for each sampling date and found multiple main effects and interactions (Table L.7B). Once the 

zooplankton had died and the phytoplankton began to bloom, we could discern a pattern of 

increasing chlorpyrifos concentrations causing decreases in periphyton abundance beginning on 

the second sample date (Figure 5.6).  Data was used to determine whether or not declines in 

cladocerans caused decreases in periphyton, and whether or not cladocerans that were collected 

near agriculture, were superior in preventing periphyton decline. On the first sample date, there 

was no evidence of communities with zooplankton assemblages from nearby or far from 

agriculture differing in their periphyton content.   

 On the second sample date, there was a clear trend in declining periphyton content within 

communities with zooplankton collected farther from agriculture.  Communities exposed to 0 or 

0.25 μg/L chlorpyrifos with either cladocerans or a full assemblage of zooplankton had more 

periphyton than all other community treatments exposed to the highest three concentrations of 

chlorpyrifos (all p ≤ 0.043).  There was significantly more periphyton in communities with a 

cladoceran-only or full assemblage collected near agriculture that was exposed to 0.5 or 1.0 μg/L 

chlorpyrifos relative to communities with zooplankton collected farther from agriculture (all p < 

0.001).  On the third sample date, in communities with zooplankton from a pond farther from 

agriculture, we again saw a marked decline in periphyton abundance in communities subjected to 

more than 0.5 μg/L chlorpyrifos relative to controls.  There was also less periphyton in 
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communities with a background assemblage of zooplankton collected near agriculture when 

exposed to the four highest concentrations of chlorpyrifos relative to communities with 

background assemblages collected farther from agriculture (all p ≤ 0.002).   

Furthermore, to address the hypothesis of functional redundancy, we also wanted to 

determine whether or not a background assemblage was able to prevent periphyton decline to the 

same degree as cladocerans. On the first sample date, within the communities containing 

zooplankton collected farther from agriculture, there was more periphyton in communities with a 

background assemblage exposed to 0.5 μg/L chlorpyrifos and within those communities with a 

cladoceran-only assemblage exposed to 2.5 μg/L, when compared with communities containing 

zooplankton collected near agriculture (both p < 0.001).   

On the second sample date, communities with zooplankton from near agriculture, there 

was significantly more periphyton in those communities exposed to 0.5 or 1.0 μg/L chlorpyrifos 

within the cladoceran-only or full-assemblage treatments relative to the background assemblage 

(all p < 0.001).  On the third sample date, communities with zooplankton collected near 

agriculture had more periphyton in the cladoceran-only or full-assemblage treatments, relative to 

communities with only a background assemblage when exposed to the four highest 

concentrations of chlorpyrifos (all p ≤ 0.053).  In control communities, there was more 

periphyton in cladoceran-only communities, when compared to communities with only a 

background assemblage of zooplankton (p < 0.001).  However, as insecticide concentration 

increased, there was no longer any significant differences in periphyton abundance, when 

comparing the three types of zooplankton assemblages (all p ≥ 0.213).   
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Figure 5.6. Differences in periphyton content (in g) across the three sampling dates of 

periphyton abundance. 
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5.3.5 Amphibian responses 

 

 

The MANOVA on amphibian response variables (average mass of tadpole and survivorship) 

indicated that there were no significant main effects or any significant interaction terms (Table 

L.8).   

 

5.4 DISCUSSION 

 

As in previous studies, we were able to demonstrate that naturally occurring populations of 

cladocerans collected near agriculture were more resistant to a commonly applied insecticide 

than those collected far from agriculture (Bendis and Relyea 2014, Bendis and Relyea in review, 

in prep).  However, we also found that copepods from these same ponds exhibited a similar 

pattern of resistance to chlorpyrifos, but with rotifers, although there were several instances of 

population-level differences in resistance, these differences were unrelated to their proximity to 

agriculture. To our knowledge, this is the first study to examine population-level variation in 

insecticide resistance among copepods and rotifers based on proximity to agriculture.  We also 

showed that there is little to no evidence of functional redundancy in terms of the ability of 

copepods and rotifers to buffer vernal pond communities from trophic cascades initiated by 

insecticide applications.  Among the three major groups of zooplankton, previous studies have 

implicated cladocerans as being one of the most important drivers of phytoplankton abundance 

in limnetic systems, but this is not often empirically tested in a community context (Carpenter et 

al. 1985, Hanazato 1998, Tessier and Woodruff 2002, Korosi et al. 2012). This study is the first 

to combine the effects of insecticide applications on zooplankton assemblages that vary in their 

resistance to an insecticide, as well as the identities of the zooplankton within the community, to 



122 
 

explicitly test the hypothesis of functional redundancy in phytoplankton consumption among 

different zooplankton assemblages. 

 Of the three main groups of zooplankton, cladocerans were the most heavily affected by 

periodic applications of chlorpyrifos.  Sensitivity to a wide range of insecticides is a common 

theme among many cladoceran species, particularly those within the genus Daphnia (Barata et 

al. 2001, Hanazato 2001, Baird and Van den Brink 2007, Relyea and Hoverman 2008, Daam et 

al. 2008, Simpson et al. 2014).  Moreover, this also confirms previous findings that copepods and 

rotifers are typically less affected by low, environmentally relevant concentrations of 

organophosphate insecticides compared to cladocerans (Havens 1994, Hanazato and Kasai 1995, 

DeLorenzo et al. 2001).  Our range of chlorpyrifos treatments spanned the range from having no 

observable effects on cladoceran abundance (0 – 0.25 μg/L) to completely extirpating all 

cladocerans by the end of only the first application (2.5 μg/L).  More importantly, whereas 

previous experiments have shown that cladoceran populations can often rebound between 

applications of an insecticide, the highest concentration of chlorpyrifos was lethal to all 

cladoceran zooplankton and prevented cladocerans from recolonizing the tanks. 

 There were clear effects of increasing chlorpyrifos concentrations on both cladocerans 

collected both near and far from agriculture.  During the first two sample dates, there was no 

clear difference in Daphnia abundance, when comparing those cladocerans collected near or far 

from agriculture, but as time progressed, significant differences in Daphnia abundance began to 

develop in communities exposed to moderate concentrations of chlorpyrifos (0.5 – 1.0 μg/L).  In 

general, there were more Daphnia in communities comprised of zooplankton that were collected 

from the pond found near agriculture.  This is consistent with the hypothesis that populations of 

zooplankton in ponds near agricultural fields can evolve increased resistance to pesticides, 
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whereas zooplankton from ponds far from agriculture should not evolve such resistance (Coors 

et al. 2009, Jansen et al. in press).  Moreover, the differences in cladoceran abundance at these 

concentrations is consistent with LC50 data for D. pulex that we have found in several previous 

experiments (Bendis and Relyea 2014, Bendis and Relyea in review, in prep).   

The effects of increasing chlorpyrifos concentrations on copepods were similar to 

cladocerans; increasing concentrations resulted in declining abundance.  Where these results 

differed, however, were that copepods were not completely extirpated from the community, even 

at the highest concentration, which was lethal to nearly all cladocerans.  This finding coincides 

with previous community studies that have shown that concentrations of several insecticides that 

are lethal cladocerans are sublethal to copepods (Sierzen and Lozano 1988, DeLorenzo et al. 

2001, Van Wijngaarden et al. 2005, Daam et al. 2008).   

We also found that there were differences in copepod abundance when they were 

collected from assemblages near versus far from agriculture.  For example, during the first three 

samples of copepod abundance, there were more copepods in communities with zooplankton 

collected near agriculture, particularly in communities exposed to the middle three 

concentrations of chlorpyrifos (0.25 – 1.0 μg/L).  Over time, however, this effect diminished and 

the differences between copepod abundance in communities near and far from agriculture began 

to disappear.   

We hypothesize that the first and second pesticide applications served as major selection 

events, which removed the especially sensitive copepod genotypes from the community.  This 

allowed more resistant genotypes (even within the assemblages collected far from agriculture) to 

reproduce and proliferate, thereby increasing the resistance of overall copepod assemblage 

through time.  Conversely, chlorpyrifos applications may have removed particular species of 
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copepods that were initially predominant in the communities or may have had disproportionately 

large effects on particularly sensitive size or age classes.  Once these more sensitive species or 

age classes were removed, this may have no longer competitively excluded other species that 

may have been more resistant, but were also initially less abundant.  Though we did not 

determine the species identity of all copepods within our samples due to time constraints, future 

work to explicitly examine population-level variation in resistance to insecticides for each 

species of copepod would be crucial in determining the mechanism of increased resistance 

during the experiment. 

Rotifers, unlike cladocerans and copepods, did not show a clear pattern of increased 

resistance with a closer proximity to agriculture. Interestingly, rotifers generally survived well 

across all chlorpyrifos treatments, whereas the highest chlorpyrifos treatments typically caused 

precipitous declines in survivorship of both copepods and cladocerans.  A general pattern that we 

did see, however, was that there were typically more rotifers in communities exposed to 

moderate chlorpyrifos concentrations when compared to copepod or cladoceran abundances.  We 

hypothesize that competition with highly abundant cladocerans for access to phytoplankton (and 

potentially some inadvertent consumption of rotifers by cladocerans) in control treatments may 

have kept rotifer abundance lower in unexposed communities (Vanni 1986, Hanazato and Kasai 

1995).  Furthermore, there may have been direct predation on rotifers by omnivorous or 

predatory copepods, particularly at low to moderate insecticide concentrations.  When these 

communities were exposed to the highest concentrations of chlorpyrifos, cladocerans and 

copepods were nearly eliminated.  However, both copepods and rotifers did not increase in 

abundance even when freed from competition from the larger-bodied cladocerans.  This suggests 

that perhaps rotifers and copepods may have been near a threshold between sublethal and lethal 
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concentrations at this particular concentration.  It is also possible that copepods and rotifers may 

have been constrained in development or their reproductive output by sublethal effects of 

chlorpyrifos at these higher concentrations.  Regardless, across the range of chlorpyrifos 

concentrations that were used, both rotifers and copepods may have been somewhat constrained 

in the ability to increase in abundance due to possible competitive pressure from cladocerans or 

predation by copepods in unexposed communities and possible direct or indirect effects of 

toxicant exposure at higher concentrations.  This, however, would need to be more explicitly 

tested in smaller, more controlled laboratory-based studies. 

Although we initially set up communities with zooplankton assemblages that were 

visually inspected and verified to be either only cladocerans or only copepods and rotifers, over 

time we observed an increasing number of copepods and rotifers in the cladoceran-only 

assemblage and an increasing number of cladocerans in the background assemblage.  As noted 

earlier, visual inspections of the samples that were initially added to each mesocosm did not 

detect any of the undesired taxa, but clearly some small individuals must have been present. 

Because there was evidence of unexpected zooplankton getting into other treatments in the first 

sample of zooplankton abundance, and because these animals showed patterns of resistance that 

were consistent with proximity to agriculture, we are fairly certain that these colonizers entered 

the mesocosms when we added our initial zooplankton treatments rather from unintended 

transfers of zooplankton when sampling the mesocosms.  Although this is an issue from the 

standpoint of determining the possible effects of functional redundancy, we argue that the initial 

abundances of the “invading” zooplankton were extremely low and that competition between 

some species and direct predation by others may have ameliorated the effects of these invading 

species. 
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The direct toxic effects of chlorpyrifos on the zooplankton assemblages led to dramatic 

increases in phytoplankton.  The general trend was that as chlorpyrifos concentrations increased, 

the amount of phytoplankton in the communities increased.  The amount of phytoplankton was 

also largely determined by the type of zooplankton assemblage and whether the zooplankton 

were collected near or far from agriculture.  Communities containing only a background 

assemblage of copepods and rotifers had more phytoplankton than communities with only 

cladocerans or the full assemblage of zooplankton when exposed to moderate concentrations 

(0.25 – 1.0 μg/L) of chlorpyrifos.  The disparity of phytoplankton in communities containing 

cladocerans-only or the full assemblage of zooplankton was due to the rapid consumption of 

phytoplankton by cladocerans.  Of the three groups of zooplankton, the large-bodied cladocerans 

consume far more phytoplankton per capita than do copepods and rotifers and therefore should 

have the most dramatic impact on phytoplankton abundance (Vanni 1986, Hanazato and Kasai 

1995, Hanazato 1998).  Furthermore, in communities with a background assemblage, there is the 

additional complexity of there being numerous food sources for copepods.  Whereas some 

copepods are herbivorous, others are predatory and will consume not only other copepods but 

cladocerans and rotifers as well. Therefore, increases in phytoplankton content within 

communities with a background assemblage could potentially be exacerbated by predatory 

copepods that are consuming other herbivorous species of zooplankton. 

There were also differences in phytoplankton abundance within treatments that only 

differed in the source of zooplankton.  In communities that were exposed to either 0.5 or 1.0 

μg/L, there was more phytoplankton in communities with cladocerans or full assemblages of 

zooplankton that were collected near versus far from agriculture.  This can be directly attributed 

to the higher abundances of the insecticide-resistant Daphnia within these particular 



127 
 

communities.  Resistance within these Daphnia populations and the associated higher 

abundances of these competitively dominant zooplankton caused direct declines in 

phytoplankton.  Although the differences in cladoceran abundance between these two 

community types at these concentrations were significant, they were not dramatically different.  

This is reflected in the smaller albeit significant differences in the first two samples of 

phytoplankton content.  However, as time progressed the differences in cladoceran abundance 

and phytoplankton abundance grew to be quite substantial, thereby indicating that there was a 

pronounced lag effect of the phytoplankton bloom.  Additionally, there may have been 

differences in the nutrient cycling efficiencies of zooplankton assemblages that were collected 

near agriculture versus those further from agriculture, which would need to be explicitly tested 

using more controlled laboratory assays.  These results are strikingly similar to other studies that 

have found that the population genetics Daphnia populations can have dramatic community-

wide effects on aquatic ecosystems that are impacted by anthropogenic stressors such as 

insecticides (Bendis and Relyea in review, in prep). 

In our experimental communities, the resultant phytoplankton blooms caused declines in 

periphyton content and these declines were affected by the particular assemblage within the 

community, as well as whether or not the zooplankton assemblage was from a pond either near 

or far from agriculture.  From previous studies, it is known that relatively low insecticide 

concentrations in aquatic communities can cause dramatic declines in zooplankton abundance 

that cause increases in the phytoplankton content, which is the main food for numerous species 

of zooplankton.  As phytoplankton content increases, the rate of light transmission through the 

water column continually declines, which prevents the attached periphytic algae on the bottom 

and sides of the pond from access to this now limiting resource (Boone et al. 2004, Mills and 



128 
 

Semlitsch 2004, Relyea and Diecks 2008).  Furthermore, as phytoplankton abundance increases, 

the phytoplankton utilizes the majority of other dissolved nutrients that are available in limited 

quantity, such as phosphorus, nitrogen, and calcium, thereby exacerbating the decline in 

periphyton content (Hansson 1988, Korosi et al. 2012). 

Concordant with our data of phytoplankton abundance, there was an effect of 

zooplankton assemblage type on periphyton abundance, but this effect was somewhat less 

pronounced when compared to the effects on phytoplankton content.  In general, there was less 

periphyton in communities with only a background assemblage of zooplankton, when compared 

to communities containing cladocerans only or a full assemblage of zooplankton.  This is 

consistent with our hypothesis that a community comprised of mainly copepods and rotifers will 

experience prolonged phytoplankon blooms, as these groups of zooplankton are not functionally 

redundant in their abilities to consume and draw down phytoplankton content.  In communities 

with either cladocerans or the full assemblage of zooplankton, the typically more insecticide- 

sensitive cladocerans are consuming the majority of the phytoplankton content and, in doing so, 

can competitively exclude copepods and rotifers when exposed to sublethal concentrations of 

insecticides.  Our experiment simulates how press insecticide exposures can control the 

abundance of, and in some cases completely extirpate, cladoceran zooplankton.  This results in 

higher abundances of phytoplankton available for the more resistant zooplankton groups 

(copepods and rotifers), when exposed to higher insecticide concentrations.  However, evidence 

here shows that copepods and rotifers are not able to consume the adequate amount of 

phytoplankton required to re-stabilize these aquatic communities - at least within the timespan of 

this experiment.  Given enough time, however, copepods and rotifers may be able to increase in 

abundance to a point where they may be able to significantly affect phytoplankton abundance 
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and this is an area where future studies should be focused. 

There were also marked differences in periphyton content, when comparing the same 

zooplankton assemblages from different native ponds within a given treatment of chlorpyrifos 

exposure.  In communities exposed to 0.5 or 1.0 μg/L chlorpyrifos, there was more periphyton in 

communities with cladoceran-only and full-zooplankton assemblage treatments that were 

collected from the pond near agriculture in comparison to those same assemblages that were 

collected farther from agriculture.  Again, this was due to the differential survivorship of 

zooplankton (primarily Daphnia) within these treatments.  More Daphnia within communities 

containing zooplankton assemblages collected near agriculture survived when compared to 

Daphnia collected farther from agriculture at these concentrations.  This meant that there would 

be less phytoplankton within these communities and, as a result, a higher abundance of 

periphyton to be made available to grazers.   

The variation in periphyton abundance between community types has the potential to 

negatively affect the growth, development and survivorship of grazers such as amphibians.  In 

our study, we found no effects of any treatments on green frog tadpole mass or survivorship.  A 

previous study performed under similar conditions demonstrated that low, environmentally- 

relevant concentrations of chlorpyrifos had significant effects on the survivorship and growth of 

a different amphibian species (the northern leopard frog, L. pipiens; Bendis and Relyea, in prep).  

Survivorship declines in that study were attributed to insufficient periphyton, which prevents 

amphibians from attaining the nutrients necessary to metamorphose prior to pond desiccation. In 

the current study, there was reduced periphyton content in those treatments that experienced an 

algal bloom, but the amount of periphyton available to amphibians was not limiting.  When 

comparing the average masses of leopard frog tadpoles in the previous study and green frog 
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tadpoles in the current study, we found that the mean mass of our green frog tadpoles were only 

~15% of the mass of the leopard frog tadpoles.  Previous studies have also shown that green frog 

tadpoles are typically less active and forage for periphyton less than leopard frog tadpoles 

(Relyea 2001).  Therefore, it is perhaps not surprising that we found no effects on tadpole growth 

and overall survivorship in our green frogs. 

 

5.4.1 Conclusions 

 

 

In this study, we found that cladocerans and copepods collected from a pond closer to agriculture 

were more resistant to chlorpyrifos than those collected from a pond in a more pristine location.  

Although there was variation in resistance among rotifers collected far and near agriculture, there 

was no clear evidence that this variation was associated with surrounding land use as we did with 

cladocerans and copepods. Laboratory-based studies examining the effects of chlorpyrifos on the 

individual species of copepods and rotifers found in ponds across a gradient of surrounding 

agricultural land use are needed to determine just how pervasive the phenomenon of insecticide 

resistance is among zooplankton taxa.  We found no evidence that a background community 

composed of the copepods and rotifers would be able to protect the stability of an aquatic 

community from environmentally-relevant concentrations of chlorpyrifos.  On the contrary, 

communities with more resistant cladocerans collected from a pond near agriculture, which are 

typically more sensitive to insecticides, were buffered from the deleterious effects of the 

chlorpyrifos at moderate to moderately high concentrations of the insecticide.  Future studies 

should aim to isolate individual genotypes of zooplankton and use pure cultures of previously 

identified zooplankton to populate mesocosms to prevent cross-contamination of zooplankton so 
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that communities will contain purely cladocerans or background assemblages.  This can be 

paired with smaller laboratory studies that examine differences in foraging efficiencies or 

elemental content of zooplankton species collected near and far from agriculture. To gain a better 

understanding of the effects of future anthropogenic perturbations and to protect the stability of 

these often heavily impacted vernal pond communities, we must fully understand how 

insecticides can affect the most sensitive and integral members of the community by 

incorporating as much ecological realisms into studies as possible. 
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6.0 CONCLUSION 

 

 

 

 

In order to protect and conserve vernal pond communities and wetlands from future 

anthropogenic disturbances, we have to fully understand how the organisms within these 

communities are adapting to these stressors and how these changes can potentially affect overall 

ecosystem function. We have found that there is clear variation in population-level resistance to 

several insecticides in common zooplankton species and that this variation is associated with 

nearby agricultural land use.  The difference in sensitivity between populations is not staggering 

from a purely toxicological standpoint, but these small differences have been empirically shown 

to translate into dramatic community-wide effects when aquatic communities are exposed to 

environmentally-relevant concentrations of commonly applied insecticides. With this in mind, 

we could hypothesize that ponds that have not historically been located near agriculture are at the 

highest risk of species loss through the deleterious direct and indirect effects of toxicity.  Ponds 

with a history of high agricultural land use surrounding them would potentially be the most 

protected from pesticide contamination.  From a conservation-based standpoint, if time and 

resources were limited, one could potentially use historical agricultural land use as a proxy to 

determine which ponds should be the primary targets for protection.   

Consideration should also be given to determining possible differences in foraging 

efficiencies or preferences among resistant and sensitive D. pulex clones.  An unanticipated 

finding in two of the aforementioned experiments was that leopard frog tadpoles in control 
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communities developed at different rates based on whether or not they were in a community with 

resistant or sensitive D. pulex.  There were no differences in D. pulex abundance or any 

associated differences in phytoplankton or periphyton abundance in these communities, which 

would have led to differences in amphibian growth, but there were still differences in variables 

such as mass at metamorphosis and average developmental (Gosner) stage.  The only differences 

between the communities were the population genetics of the D. pulex, which suggests that 

resistant and sensitive D. pulex clones potentially had differential foraging strategies (i.e. in 

species of phytoplankton preferentially consumed or the amount of nutrients efficiently recycled, 

Garcia et al. 2007).  For instance, D. pulex has been shown to be fairly phosphorous-limited in 

many ecological contexts (DeMott and Gulati 1999, Elser et al. 2001, Jeyasingh and Weider 

2005).  If the maintenance of resistance within a population is costly when there are no 

insecticides present, then perhaps resistant Daphnia are selectively feeding on phytoplankton 

containing high phosphorous content whereas sensitive Daphnia can be a more of a generalist 

grazer.  This, in turn, could have subtle albeit significant effects on light transmission and 

periphyton growth (in terms of quality versus quantity), which would have an effect on tadpole 

growth and development as well. Clearly, more attention should be paid to determining whether 

or not resistance to insecticides has a cost in terms of competitive ability or dietary restrictions.  

There is ample ecological theory in the realm of ecological stoichiometry that could be used to 

generate predictions as to why these different clones of D. pulex may alter their respective 

communities in these subtle and complex ways (Lind and Jeyasingh 2015). 

Although the utilization of mesocosms to study community dynamics is undoubtedly a 

useful way to simulate natural pond communities while allowing the researcher to manipulate 

specific conditions and directly test their hypotheses, we need to pair these findings with 
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observations and in situ experiments performed in natural pond or wetland communities.  

Additionally, one drawback with mesocosms and controlled, large-scale community experiments 

is that we can collect large amounts of data in a relatively short period of time, but the data is 

typically more quantitative than qualitative.  We can determine how much periphyton or 

phytoplankton exist within a particular community, but we often do not know anything about the 

nutritional quality of the algae in questions or what species exist within the typically diverse 

algal assemblage.  Studies explicitly examining how resistant or sensitive D. pulex can 

potentially modify phytoplankton and periphyton species abundance and diversity as well as its 

nutritional quality are of the utmost importance in order to understand how these different 

populations can cause divergent community effects even in unexposed communities.  Small-

scale laboratory experiments that can adequately control zooplankton abundance while providing 

standardized amounts of phytoplankton (with known or potentially modified nutritional content) 

to each experimental unit can test for trade-offs in terms of foraging efficiencies or competitive 

ability may not have been able to be detected within the large-scale mesocosm studies.  

Further effort should be made to expand our existing knowledge of zooplankton 

sensitivity to insecticides and to determine if the phenomenon of insecticide resistance is 

widespread among zooplankton taxa.  Only a handful of previous studies have found naturally 

existing variation in insecticide resistance in zooplankton and, of those, two recent studies have 

found that surrounding agricultural land can be used as a proxy for determining whether or not 

resistance within cladocerans may have previously evolved within these communities (Bendis 

and Relyea 2014, Jansen et al. in press).  Furthermore, studies within this thesis are the first to 

show natural variation in resistance among copepod and rotifer assemblages.  To explicitly test 

for effects of these insecticides on individual species, short-term laboratory toxicity tests are 
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required to fully discern whether these differences in resistance truly exist.  These tests are 

simple to perform, relatively cost-effective and can greatly enhance our understanding of the 

effects of chemical stressors on natural zooplankton assemblages. Nonetheless, these findings 

suggest that a wide array of non-target organisms may be evolving resistance to agrochemicals.  

For each species that shows the potential for evolved resistance to environmentally-relevant 

concentrations of these chemicals, the future prospects for these threatened and fragile 

ecosystems look continually brighter. 

Finally, wetlands are often at the lowest topographical points within a specific 

geographical area which means that gravitational run off from surrounding agriculture will 

continually drain directly into them (Bedford 1999, Stoler 2013).  Vernal ponds typically exist in 

relative isolation and are not directly connected with any source of flowing water meaning that 

any chemical contaminants that enter the water remain there until they are broken down 

(Heimbach et al. 1992). Thus, these ecosystems are arguably some of the most threatened in 

terms of their exposure to pesticides, as pesticide use is not likely to end in the foreseeable 

future. The data presented in this thesis suggests that future perturbations on aquatic 

communities may be buffered by the presence of insecticide resistant zooplankton. However, the 

concentrations that these organisms can withstand are extremely low (albeit environmentally-

relevant), leaving these communities in a somewhat precarious state in terms of their future 

exposures to these chemicals. By continuing to deepen our understanding of ecological theory 

and pairing theory with innovative empirical experiments that build in more of the complexity 

that often exists in nature, the studies presented here can undoubtedly contribute to advancing 

our understanding of the effects of anthropogenic disturbance on aquatic communities. 
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CHAPTER TWO: SUPPLMENTAL TABLES 

 

 

 

Table A.1. The location of S. vetulus and D. pulex populations in northwest Pennsylvania. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pond Name Latitude Longitude 

Blackjack 41.65564 80.51270 

Graveyard 41.68436 80.04728 

Hopscotch 41.86568 80.47036 

Log 41.96912 79.59869 

Love 41.41064 80.30460 

Minnow 41.41121 80.25302 

Mallard 41.69198 80.50071 

Road 41.88464 79.60533 

Staub 41.58932 80.43100 

Trailer Park 41.56900 80.45248 

Turkey Track 41.63039 79.91281 
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Figure B.1. Survivorship curves for the 10 populations of S. vetulus across a span of 48 hours. 

J
J

J

J

J
J0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n

 s
u
rv

iv
in

g

Blackjack

J

J

J

J

J

J

Graveyard

J

J

J

J

J J0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 s

u
rv

iv
in

g

Hopscotch

J

J

J

J

J J0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n

 s
u
rv

iv
n
g

Log

J J

J

J

J

J

Love

J

J

J
J

J

J

Mallard

J
J

J

J

J J0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 s

u
rv

iv
in

g

Road

J
J

J

J

J

J

Staub

J

J

J

J

J J0

0.2

0.4

0.6

0.8

1

-3

-2
.5 -2

-1
.5 -1

-0
.5 0

0
.5

P
ro

p
o

rt
io

n
 s

u
rv

iv
in

g

Log (chlorpyrifos conc. + 0.001)

Trailer

J

J

J

J

J J

-3

-2
.5 -2

-1
.5 -1

-0
.5 0

0
.5

Log (chlorpyrifos conc. + 0.001)

Turkey Track



139 
 

 

Figure B.2. Survivorship curves for the four populations of D. pulex across a span of 48 hours. 

The upper two populations (Love and Mallard) were collected from ponds near agriculture 

whereas the bottom two populations (Hopscotch and Minnow) were collected from ponds further 

from agriculture. 
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APPENDIX C 

 

 

 

 

CHAPTER THREE: SUPPLMENTAL METHODS 

 

 

 

C.1 PESTICIDE APPLICATIONS 

 

 

We began by creating a stock solution of chlorpyrifos containing 0.2 g of technical grade 

chlorpyrifos and 100 mL of ethanol. From this stock solution, we added 71, 142 or 284 µL of the 

stock solution to each mesocosm to achieve the respective nominal concentrations (0.25, 0.50, 

and 1.0).  For control tanks with 0 μg/L chlorpyrifos, we added 284 µL of carbon-filtered, UV-

irradiated well water.  After the pesticide treatment was applied to a given mesocosm, we stirred 

and agitated the water in each mesocosm to equalize disturbance and to ensure that the pesticide 

was spread throughout the water column.   

To verify the actual concentrations of chlorpyrifos in our experimental communities, we 

collected 0.125 L of water from each of the tanks 2 hours after applying the pesticides and 

pooled the samples by concentration.  We sent these samples to an independent laboratory for 

chemical analysis using high-performance liquid chromatography (Agricultural and 

Environmental Services Laboratory, University of Georgia, Georgia, USA). The actual 

concentrations for the 0.25, 0.50 and 1.00 μg/L nominal concentrations were 0.17, 0.76 and 1.04 
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μg/L, respectively.  Our control samples had < 0.1 μg/L, which was the laboratory’s detection 

limit.  We reapplied the insecticide concentrations three times on a schedule of every 2.5 weeks. 

We re-tested our nominal concentrations on two of the three additional applications.  When the 

nominal concentrations were analyzed after the third application, the actual concentrations for 

the 0.25, 0.50 and 1.0 μg/L treatments were 0.23, 0.46 and 0.80 μg/L, respectively.  When the 

nominal concentrations were analyzed after the fourth application, the actual concentrations for 

the same three nominal concentrations were 0.36, 0.69 and 2.01 μg/L. We did not retest the 

control samples as the first sample indicated that we had no detectable amounts of chlorpyrifos 

within our control tanks. 

 

C.2 ABIOTIC RESPONSE VARIABLES 

 

 

 

During the course of the experiment, we measured several abiotic response variables to help us 

understand the effects of chlorpyrifos on the communities.  At four times during the experiments, 

we measured pH, temperature, and dissolved oxygen (DO; Figure F.1).  We chose to measure the 

abiotic variables on these days because they immediately preceded our four pesticide 

applications.  Temperature, pH and DO content readings were taken with a calibrated digital 

water meter (YSI, Yellow Springs, OH, USA) whereas light attenuation was measured with an 

underwater light meter (LI-COR. Lincoln, Nebraska, USA).  On days 33, 41, 62, and 82 we took 

light measurements, primarily because these days followed pesticide applications and were all 

clear, cloudless days, which are ideal for taking light measurements.  We measured light 

radiation from the middle of each mesocosms at depths of 10 and 30 cm and calculated the decay 

rate of light with increased water depth (k) using the equation:  
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k = [ln(L10/L30)]/d 

where L10 is the intensity of sunlight from a depth of 10 cm, L30 is the intensity of sunlight from a 

depth of 30 cm, and d is the difference in depth between the two measurements of intensity 

(Relyea and Diecks 2008). 

 

C.3 BIOTIC RESPONSE VARIABLES 

 

 

 

We sampled the Daphnia by submerging a 0.2-L plastic sampling tube in the middle of the water 

column at five different locations within each mesocosm (north, south, east and west quadrants 

as well as the center).  All five samples within each mesocosm were pooled and the sample was 

filtered through a 60-µm Nitex cloth screen and into a Whirlpak bag containing 30% ethanol to 

preserve the samples for subsequent enumeration. For zooplankton enumeration, we poured the 

ethanol from the Whirlpaks containing our zooplankton samples onto a Petri dish with a preset 

grid.  We counted all D. pulex individuals in each grid and summed the total to get a count for 

each sample.  We also identified and enumerated any zooplankton that were not D. pulex. 

Phytoplankton was sampled just prior to each pesticide application. To measure 

phytoplankton, we sampled 0.5-L of water from the center of each tank.  The water samples were 

poured through a vacuum-filtration system and through GF/C Whatman glass microfiber filters 

(Whatman Industries Inc., Florham Park, New Jersey, USA).  After each sample had been 

vacuum-filtered, each sample was wrapped in aluminum foil and stored in a freezer at -18 °C.  

These samples were analyzed later using the protocol developed by Arar and Collins (1997). To 

assess phytoplankton abundance, we used the concentration of chlorophyll a as our proxy, which 

was quantified using a fluorometer (Model ED-700, Turner Designs, Sunnyvale, California). 
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Periphyton was sampled within one or two days from our phytoplankton samples by 

removing one of the clay tiles (Figure F.1) because the abundance of phytoplankton can affcet 

how much periphyton is within each tank.  Once a tile was removed, it was vigorously scrubbed 

with a toothbrush to remove all of the periphyton on the front face of the tile and subsequently 

rinsed with carbon-filtered, UV-irradiated well water.  The slurry containing water and 

periphyton was then vacuum-filtered onto a Whatman GF/C filter that had been previously dried 

for 24 hours at 80°C and weighed. After the periphyton sample was vacuum filtered, the filters 

were again dried at 80°C for an additional 24 hours and weighed.  The amount of periphyton 

biomass was measured as the mass of the filter paper containing the dried periphyton subtracted 

by the original mass of the dry, unused filter. 

 

 

C.4 STATISTICAL ANALYSIS 

 

 

 

Because we observed similar responses between communities the two sensitive populations of D. 

pulex and similar responses between communities with the two resistant populations of D. pulex, 

initially conducted nested analyses of variance (ANOVAs) that included the four populations and 

the four pesticide treatments. Using the generalized linear model (GLM) for each variable to 

determine if the two populations within each sensitivity category ever differed, we nested the 

two sensitive populations within the category “sensitive” and the two resistant populations within 

the category “resistant.”  The sensitive and resistant populations were defined a priori by Bendis 

and Relyea (2014). Because these nested analyses never found significant differences between 

the two sensitive populations or between the two resistant populations for any of our response 

variables (all p-values > 0.05), we pooled the two resistant populations and we pooled the two 
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sensitive populations for all subsequent analyses.   

 We used multivariate analysis of variance (MANOVA) to test for effects of the 

chlorpyrifos concentration and sensitivity of the D. pulex populations (resistant or sensitive) on 

the three abiotic response variables (pH, DO, and temperature) at each of the four time points. 

When we found significant multivariate effects, we performed univariate repeated-measures 

ANOVAs (rm-ANOVA) to determine how each abiotic variable was affected by the treatments. 

Light attenuation was measured at three time points, which were different from the days when 

other abiotic variables were measured due to inclement weather conditions.  Light attenuation 

was analyzed using rm-ANOVA. We log-transformed any response variables that did not meet 

the aforementioned assumption. 

 We used a MANOVA to test for effects of chlorpyrifos concentration and Daphnia 

population sensitivity on the final measurements of six biotic response variables:  periphyton, 

phytoplankton and D. pulex abundance, and the three leopard frog life-history variables (i.e. time 

to metamorphosis, mass at metamorphosis and survival to metamorphosis).  To gain an 

understanding of which response variables were responsible for any significant multivariate 

effects, we conducted ANOVAs on variables that were measured only at the end of the 

experiment (leopard frog survivorship, mass at metamorphosis and size at metamorphosis) and 

rm-ANOVAs on other individual variables that were measured at several time points throughout 

the experiment (zooplankton, phytoplankton, and periphyton abundance.)  All statistics were 

calculated using SPSS statistical software (IBM, version 22).   
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APPENDIX D 

 

 

 

 

CHAPTER THREE: SUPPLMENTAL RESULTS 

 

 

 

D.1 ABIOTIC VARIABLES 

 
 

The MANOVA from the final sample on water temperature, pH and DO indicated that there was 

a significant effect of insecticide concentration (Wilks’ λ, F9,73 = 5.575, p < 0.001) but no effect 

of sensitivity of the D. pulex population (Wilks’ λ, F9,73 = 0.658, p = 0.774) or any significant 

interaction (Wilks’ λ, F27,88 = 1.286, p = 0.190).  Subsequent univariate tests revealed effects on 

pH (F3,32 = 19.042, p < 0.001) and DO (F3,32 = 15.352, p < 0.001), but not on water temperature 

(F3,32 = 1.453, p = 0.246). We then conducted individual rm-ANOVAs on pH, DO and 

temperature.   

 

D.1.1 pH and DO content 

 

The rm-ANOVA of pH revealed that there were significant effects of time, insecticide 
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concentration, and a time-by-concentration interaction. (Table E.1). The general pattern was that 

there was an increase in pH as chlorpyrifos concentration increased (Figure F.2).  The rm-

ANOVA of DO also indicated that there were significant effects of time, insecticide 

concentration and a time-by-concentration interaction (Table E.1; Figure F.3).   

 

D.1.2. Temperature 

 

The rm-ANOVA of temperature revealed significant effects of time, insecticide concentration, 

and a time-by-concentration interaction.  Unlike pH and DO, there were also significant time-by-

Daphnia sensitivity and time-by-Daphnia sensitivity-by-insecticide interactions (Table E.1). The 

general trend was that there was an increase in temperature as chlorpyrifos concentration 

increased (Figure F.4).  The 1.0 μg/L treatment showed the greatest amount of variation and 

indicated that communities with resistant D. pulex had significantly higher water temperatures 

when compared to communities with sensitive D. pulex (p < 0.001).  As the experiment 

progressed, specifically during the third and fourth samples (days 61 and 82), there was little to 

no effect of any of the variables on water temperature (Table E.2C) 

 

D.1.3 Light attenuation 

 

The rm-ANOVA of the rate of light decay indicated that there were significant effects of time, 

insecticide concentration, and a time-by-concentration interaction (Table E.3, Figure F.5). 
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APPENDIX E 

 

 

 

 

CHAPTER THREE: SUPPLMENTAL TABLES 

 

Table E.1. Results of repeated-measures ANOVAs to determine the effects of experimental 

manipulations on the three abiotic variables (pH, DO, and temperature) that were measured 

simultaneously at four time points throughout the experiment. Because the analyses of pH and 

temperature used Greenhouse-Geisser corrections due to lack of sphericity, these two response 

variables have different adjusted degrees of freedom.  F values for each factor are followed by p 

values in parentheses (significant p values in bold.)   

  

Factor pH df DO  df Temperature df 

Conc. (C) 40.3 (<0.001) 3,40 38.5 (<0.001) 3,40 4.1 (0.012) 3,40 

Sensitivity (S) 1.3 (0.264) 1,40 0.1 (0.719) 1,40 3.1 (0.083) 1,40 

C x S 1.1 (0.350) 3,40 0.6 (0.636) 3,40 1.4 (0.267) 3,40 

Time (T) 109.5 (<0.001) 2,86 40.7 (<0.001) 3,120 558 (<0.001) 3,102 

T x C 4.0 (0.001) 6,86 4.8 (<0.001) 9,120 3.2 (0.003) 8,102 

T x S 0.1 (0.886) 2,86 0.6 (0.630) 3,120 3.4 (0.027) 3,102 

T x C x S 1.2 (0.370) 6,86 0.8 (0.606) 9,120 2.5 (0.016) 8,102 
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Table E.2. Results of univariate analyses of variance for each sample date for A) pH, B) DO, 

and C) temperature.  Values in the table are p values (significant p values in bold.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) pH Day 20 Day 40 Day 61  Day 81 

Concentration (C) < 0.001 < 0.001 < 0.001 < 0.001 

B) DO Day 20 Day 41 Day 62  Day 82 

Concentration (C) < 0.001 < 0.001 < 0.001 < 0.001 

C) Temperature Day 20 Day 41 Day 61  Day 82 

Concentration (C) 0.024 0.143 < 0.001 0.302 

Sensitivity (S) 0.010 0.574 0.053 0.864 

C x S 0.124 0.041 0.973 0.929 
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Table E.3. Results of the A) repeated-measures ANOVAs and B) univariate ANOVAs at each 

sample time to determine the effects of experimental manipulations on light attenuation 

(measured three times throughout the experiment). Because the analysis of light attenuation 

utilized Greenhouse-Geisser corrections due to lack of sphericity, this response variable has 

adjusted degrees of freedom.  F values for each factor are followed by p values in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) rm-ANOVA Light decay (K) df 

Concentration 

(C) 

9.1 (<0.001) 3,40 

Sensitivity (S) 0.6 (0.454) 1,40 

C x S 0.4 (0.398) 3,40 

Time (T) 755 (<0.001) 2,65 

T x C 74.2 (<0.001) 5,65 

T x S 0.1 (0.895) 2,65 

T x C x S 1.2 (0.301) 5,65 

B) ANOVAs Day 41 Day 62 Day 82  

Concentration (C) < 0.001 < 0.001 < 0.001 
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Table E.4. Results of repeated-measures ANOVAs to determine the effects of experimental 

manipulations on the abundance of Daphnia, periphyton, and phytoplankton. Because the 

analyses for Daphnia and periphyton abundance used Greenhouse-Geisser corrections due to 

lack of sphericity, these two response variables have different adjusted degrees of freedom.  F 

values for each factor are followed by p values in parentheses (significant p values in bold.)   

 

 

 

 

 

 

 

 

 

 

 

Factor 

Daphnia 

abundance 

 

df 

Phytoplankton 

abundance 

 

df 

Periphyton 

abundance 

 

df 

Conc. (C) 91.7 (<0.001) 3,40 47.0 (<0.001) 3,40 24.5 (<0.001) 3,40 

Sensitivity (S) 40.3 (<0.001) 1,40 8.5 (0.006) 1,40 8.1 (0.007) 1,40 

C x S 9.9 (<0.001) 3,40 2.4 (0.078) 3,40 0.3 (0.859) 3,40 

Time (T) 7.0 (<0.001) 4,160 8.2 (<0.001) 3,120 115.5 (<0.001) 2,86 

T x C 1.9 (0.044) 12,160 6.3 (<0.001) 9,120 1.8 (0.104) 6,86 

T x S 2.3 (0.058) 4,160 1.2 (0.306) 3,120 2.4 (0.098) 2,86 

T x C x S 1.9 (0.039) 12,160 1.7 (0.096) 9,120 1.0 (0.429) 6,86 
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Table E.5. Results of univariate analyses of variance for each sample date for A) Daphnia 

abundance and B) phytoplankton abundance.  Values in table are p values (significant p values in 

bold.)  Univariate analyses of periphyton were not preformed since neither of the main effects 

(concentration or sensitivity) interacted with time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Daphnia Day 14 Day 21 Day 28  Day 42 Day 50 Day 62 Day 83 

Concentration (C) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Sensitivity (S) 0.003 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 

C x S 0.328 0.035 < 0.001 < 0.001 0.001 < 0.001 0.003 

B) Phytoplankton Day 20 Day 40 Day 61  Day 81 

Concentration (C) < 0.001 < 0.001 < 0.001 < 0.001 

Sensitivity (S) 0.019 0.041 0.104 0.004 
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Table E.6. Results of a A) multivariate analysis of variance (using Pillai’s Trace) and B) 

subsequent univariate analyses of the effects of insecticide concentration and Daphnia sensitivity 

on overall survivorship, mass at metamorphosis, and time to metamorphosis of leopard frog 

tadpoles (significant p values in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

A) MANOVA df F value p value 

Concentration (C) 9,117 0.7 0.683 

Sensitivity (S) 3,37 2.3 < 0.001 

C x S 9,117 3.0 0.039 

B) ANOVAs Overall 

survivorship 

Mass at 

metamorphosis 

Time to 

metamorphosis  

Sensitivity (S) 0.007 <0.001 0.101 

C x S 0.385 0.143 < 0.001 
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CHAPTER THREE: SUPPLMENTAL FIGURES 
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Figure F.1. Experimental timelines to indicate when chlorpyrifos was added and when variables were measured.  “DO” stands for 

dissolved oxygen and “light transmission” indicates when light transparency was measured for light decay rate calculations. 
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Figure F.2. Differences in pH within experimental communities across the four sampling dates 

of abiotic variables.  The solid line indicates communities with resistant D. pulex whereas the 

dashed line indicates communities with sensitive D. pulex. 
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Figure F.3. Differences in DO within experimental communities across the four sampling dates 

of abiotic variables.  The solid line indicates communities with resistant D. pulex whereas the 

dashed line indicates communities with sensitive D. pulex.   
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Figure F.4. Differences in temperature within experimental communities across the four 

sampling dates of abiotic variables. The solid line indicates communities with resistant D. pulex 

whereas the dashed line indicates communities with sensitive D. pulex. 
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Figure F.5. Differences in light rate decay (K) within experimental communities across the three 

sampling dates for light transmission.  The solid line indicates communities with resistant D. 

pulex whereas the dashed line indicates communities with sensitive D. pulex. 
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APPENDIX G 

 

 

 

 

CHAPTER FOUR: SUPPLMENTAL METHODS 

 

 

 

 

G.1 PESTICIDE PREPARATION AND TESTING 

 

 

 

G.1.1 Preparation of stock solutions  

 

For chlorpyrifos, we dissolved 0.05 g of technical-grade chlorpyrifos in 20 mL of ethanol 

(EtOH). From this stock solution, we added 6.5, 13 or 26 µL of the stock solution to each 

mesocosm to achieve the respective nominal concentrations (0.25, 0.50, and 1.0 μg/L).  For 

malathion, permethrin and cypermethrin, we dissolved 0.05 g of the respective technical-grade 

chemicals in 20 mL of EtOH to create separate stock solutions.  From these stock solutions, we 

added 13, 26 or 52 µL of stock solution to each mesocosm to achieve the respective nominal 

concentrations (0.50, 1.0 and 2.0 μg/L).  For carbaryl, we dissolved 0.1 g of technical-grade 

carbaryl in 10 mL of EtOH.  From this stock solution, we added 82, 164, or 328 µL of stock 

solution to each mesocosm to achieve nominal concentrations of 12.5, 25 and 50 μg/L.   
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G.1.2 Determination of the actual concentrations of each insecticide 

 

For application #1: For chlorpyrifos, the actual concentrations for the 0.25, 0.50 and 1.0 μg/L 

nominal concentrations were 0.3, 0.5 and 1.0 μg/L, respectively.  For malathion, the actual 

concentrations for the 0.5, 1.0 and 2.0 μg/L nominal concentrations were 0.7, 1.0 and 2.3 μg/L, 

respectively.  For carbaryl, the actual concentrations for the 12.5, 25 and 50 μg/L nominal 

concentrations were 14.6, 25, and 51.9 μg/L.  For cypermethrin, our 0.50 μg/L treatment fell 

below the laboratory’s detection limits for cypermethrin (0.84 μg/L), so it was not tested.  The 

actual concentrations of the 1.0 and 2.0 μg/L nominal concentrations were 0.2 and 0.7 μg/L.  For 

permethrin, our lowest two concentrations (i.e. 0.5 and 1.0 μg/L) fell below the laboratory’s 

detection limits for permethin (1.02 μg/L) and were not tested. The actual concentration of the 

2.0 μg/L nominal concentration was 0.1 μg/L.   

 For application #2: For chlorpyrifos, the actual concentrations for the 0.25, 0.50 and 1.0 

μg/L nominal concentrations were 0.4, 0.8 and 1.1 μg/L, respectively.  For malathion, the actual 

concentrations for the 0.5, 1.0 and 2.0 μg/L nominal concentrations were 0.4, 0.6 and 1.1 μg/L, 

respectively.  For carbaryl, the actual concentrations for the 12.5, 25 and 50 μg/L nominal 

concentrations were 11.9, 35.8, and 61.7 μg/L.  For cypermethrin, our 0.50 μg/L treatment again 

fell below the detection limits of the equipment of the laboratory and was not tested.  The actual 

concentrations of the 1.0 and 2.0 μg/L nominal concentrations were 0.4 and 0.7 μg/L, 

respectively.  For permethrin, our lowest two concentrations, again, fell below the minimum 

detection levels of the equipment and were not tested. The actual concentration of the 2.0 μg/L 

nominal concentration was 0.9 μg/L.   
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APPENDIX H 

 

 

 

 

CHAPTER FOUR: SUPPLMENTAL RESULTS 

 

 

 

 

H.1 ABIOTIC DATA 

 

 

 

The MANOVA from the final sample on the four abiotic variables (water temperature, pH, DO, 

and light transmission) and the three biotic variables (zooplankton, phytoplankton and 

periphyton abundance) indicated that there were significant effects of insecticide treatment 

(Wilks’ λ, F112,1044 = 9.946, p < 0.001), sensitivity of the D. pulex population (Wilks’ λ, F7,160 = 

19.191, p < 0.001) and an interaction (Wilks’ λ, F112,1044 = 2.284, p < 0.001).  We then conducted 

individual rm-ANOVAs on all of the aforementioned variables.   

 

H.1.1 Temperature 

 

The rm-ANOVA of temperature revealed significant effects of time, insecticide treatment, and a 

time-by-insecticide treatment interaction.  Unlike pH and DO, there were no significant time-by-

Daphnia sensitivity and time-by-Daphnia sensitivity-by-insecticide interactions (Table I.2). The 
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general trend was that there were increases in temperature as insecticide concentration increased. 

 

H.1.2 pH 

 

The rm-ANOVA of pH revealed that indicated that there were significant effects of all of the 

main effects (sensitivity, insecticide treatment, and time) as well as all possible interactions. 

(Table I.2).  The general pattern was that there was an increase in pH as chlorpyrifos 

concentration increased (Figure J.2).  The driving force of these significant effects were the 

differences in DO content during the third and final sample (day 48; Table I.3B).  Communities 

with resistant D. pulex that were exposed to the two highest concentrations of the three AChE-

inhibiting insecticides (chlorpyrifos, carbaryl and malathion), all had significantly lower (all p < 

0.002) DO when compared to communities with sensitive D. pulex. 

 

H.1.3 DO Content 

 

The rm-ANOVA of DO also indicated that there were significant effects of time, sensitivity, and 

insecticide treatment and significant interactions with any factor that interacted with time. The 

only non-significant interaction was the interaction between insecticide treatment and D. pulex 

sensitivity (Table I.2).  On day 4, there was a significant difference in pH between communities 

with resistant and sensitive D. pulex that were exposed to the first and second highest 

concentrations of chlorpyrifos, as well as the second highest concentration of carbaryl (all p < 

0.024).  Communities containing resistant D. pulex had lower pH than communities with 

sensitive D. pulex (Table I.3C). On day 48, communities with resistant D. pulex all had 
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significantly lower pH, when compared to communities with sensitive D. pulex, but only when 

exposed to the three AChE-inhibiting insecticides (all p < 0.045; Figure J.3). 

 

 

H.1.4 Light attenuation 

 

 

 

The rm-ANOVA of the rate of light decay indicated all main effect variables as well as all 

interaction terms were significant (Table I.2).  Generally, the pattern was that the rate of light 

decay increased over time.  More specifically, the effects on light attenuation were mainly driven 

by the differences on the final sampling date of light transmission (day 50; Table I.3D).  

Communities with resistant D. pulex that were exposed to the second highest concentration of 

carbaryl or the two highest concentrations of either chlorpyrifos or malathion had significantly 

lower rates of light decay, when compared to communities with sensitive D. pulex at the same 

concentrations (all p < 0.019; Figure J.4).   
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CHAPTER FOUR: SUPPLMENTAL TABLES 
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Table I.1. Calculated LC50 values and associated 84% confidence intervals for the resistant (Love pond) and sensitive (Minnow 

pond) populations of D. pulex based on a 24 hour laboratory study. These values were used to infer the median concentrations of each 

of the five insecticides to use in our large outdoor mesocosm experiment. Data for chlorpyrifos taken from Bendis and Relyea 2014. 

All values are in μg/L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Insecticide Resistant D. 

pulex LC50  

84% CI  

lower bound  

84% CI  

upper 

bound 

Sensitive D. 

pulex LC50  

84% CI  

lower bound 

84% CI  

Upper bound 

Chlorpyrifos 0.59 0.53 0.65 0.33 0.28 0.35 

Malathion 3.35 1.27 5.35 0.70 0.025 1.12 

Carbaryl 50.51 41.84 56.97 32.42 28.98 34.45 

Permethrin 1.47 0.74 1.87 2.05 1.09 2.86 

Cypermethrin 2.16 1.24 2.57 1.56 0.78 1.95 
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Table I.2. Results of repeated-measures ANOVAs to determine the effects of experimental manipulations on the four abiotic variables 

(pH, DO, temperature and light transmission) that were measured simultaneously at three time points throughout the experiment. 

Because the analyses of DO, temperature and light transmission used Greenhouse-Geisser corrections due to lack of sphericity, these 

two response variables have different adjusted degrees of freedom.  F values for each factor are followed by p values in parentheses 

(significant p values in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Temp. df pH df DO  df Light decay df 

Insecticide (I) 7.8 (<0.001) 16,166 12.8 (<0.001) 16,166 16.9 (<0.001) 16,166 22.7 (<0.001) 16,166 

Sensitivity (S) 0.5 (0.477) 1,166 43.9 (<0.001) 1,166 38.9 (<0.001) 1,166 8.7 (0.004) 1,166 

I x S 0.2 (0.999) 16,166 2.5  (0.002) 16,166 1.4 (0.169) 16,166 3.1 (<0.001) 16,166 

Time (T) 2587 (<0.001) 1.5,220 458.9 (<0.001) 2,332 354.3 (<0.001) 2,312 285.9 (<0.001) 2,300 

T x I 20.4 (<0.001) 21,220 7.6 (<0.001) 32,332 11.2 (<0.001) 30,312 29.9 (<0.001) 29,300 

T x S 0.1 (0.799) 1.5,220 8.9 (<0.001) 2,332 26.1 (<0.001) 2,312 9.1 (<0.001) 2,300 

T x I x S 0.7 (0.855) 21,220 2.6 (<0.001) 32,332 1.6 (0.024) 30,312 1.7 (0.015) 29,300 
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Table I.3. Results of univariate analyses of variance for each sample date for the abiotic 

variables sampled during the course of the experiment: A) temperature, B) pH, and C) DO 

content and D) light decay.  Values in the table are p values (significant p values in bold.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Temperature Day 4 Day 26 Day 48  

Insecticide (I) < 0.001 0.597 < 0.001 

B) pH Day 4 Day 26 Day 48 

Insecticide (I) < 0.001 < 0.001 < 0.001 

Sensitivity (S) < 0.001 0.115 < 0.001 

I x S 0.515 0.154 < 0.001 

C) DO content Day 4 Day 26 Day 48  

Insecticide (I) < 0.001 < 0.001 < 0.001 

Sensitivity (S) < 0.001 0.520 < 0.001 

I x S 0.131 0.656  0.001 

D) Light decay Day 8 Day 30 Day 50  

Insecticide (I) < 0.001 < 0.001 < 0.001 

Sensitivity (S) 0.011 0.269 < 0.001 

I x S 0.047 0.228 < 0.001 
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Table I.4. Results of repeated-measures ANOVAs to determine the effects of experimental 

manipulations on three biotic variables that were measured over time (zooplankton, 

phytoplankton, and periphyton abundance) that were measured at two time points during the 

experiment. F values for each factor are followed by p values in parentheses (significant p values 

in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Zooplankton df Phytoplankton df Periphyton df 

Insecticide (I) 79.2 (<0.001) 15,160 26.4 (<0.001) 15,160 12.5 (<0.001) 15,160 

Sensitivity (S) 89.6 (<0.001) 1,160 22.2 (<0.001) 1,160 30.9 (<0.001) 1,160 

I x S 6.2 (<0.001) 16,166 3.7  (<0.001) 16,166 2.2 (0.010) 16,166 

Time (T) 124 (<0.001) 3,480 12.3 (0.001) 1,160 5.1 (0.025) 1,160 

T x I 7.1 (<0.001) 45,480 6.6 (<0.001) 15,160 2.4 (0.004) 15,160 

T x S 4.9 (0.002) 3,480 0.8 (0.402) 1,160 0.5 (0.484) 1,160 

T x I x S 1.5 (0.027) 45,480 1.7 (0.061) 15,160 1.6 (0.067) 15,160 
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Table I.5.  Results of univariate analyses of variance for each sample date for A) D. pulex 

abundance B) phytoplankton abundance and C) periphyton abundance.  Values in tables are p 

values (significant p values in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Daphnia Day 3 Day 24 Day 33  Day 48 

Insecticide (I) < 0.001 < 0.001 < 0.001 < 0.001 

Sensitivity (S) < 0.001 0.007 < 0.001 < 0.001 

I x S < 0.001 0.199 < 0.001 0.002 

B) Phytoplankton Day 22 Day 51 

Insecticide (I) < 0.001 < 0.001 

Sensitivity (S) 0.009 < 0.001 

I x S 0.042 < 0.001 

C) Periphyton Day 26 Day 53 

Insecticide (I) < 0.001 < 0.001 

Sensitivity (S) < 0.001 < 0.001 

I x S 0.145 0.010 
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Table I.6. Results of a multivariate analysis of variance (using Pillai’s Trace) of the effects of 

insecticide treatment and Daphnia sensitivity on survivorship, tadpole mass, and developmental 

(Gosner) stage (significant p values in bold.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor df F value p value 

Insecticide (I) 48,483 2.6 < 0.001 

Sensitivity (S) 3,159 39.4 < 0.001 

I x S 48,483 1.3 0.102 
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Table I.7. Results of univariate ANOVAs of the effects of insecticide treatment and Daphnia 

sensitivity on: A) tadpole survivorship, B) tadpole mass, and C) tadpole developmental (Gosner) 

stage.  Values in tables are p values (significant p values in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Factor Survivorship 

Insecticide (I) <0.001 

Sensitivity (S) 0.072 

I x S 0.861 

B) Factor Mass at 

metamorphosis 

Insecticide (I) <0.001 

Sensitivity (S) <0.001 

I x S 0.037 

C) Factor Developmental stage  

Insecticide (I) <0.001 

Sensitivity (S) <0.001 

I x S 0.002 
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Figure J.1. Differences in temperature (in °C) within experimental communities across the three 

sampling dates for abiotic variables during the course of the experiment.  For all figures, 

communities containing D. pulex populations that are sensitive to chlorpyrifos are on the left, 

populations that are resistant to chlorpyrifos are on the right. 
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Figure J.2. Differences in pH within experimental communities across the three sampling dates 

for abiotic variables during the course of the experiment.   
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Figure J.3. Differences in DO content (in mg/L) within experimental communities across the 

three sampling dates for abiotic variables during the course of the experiment. 
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Figure J.4. Differences in light decay rate (K) within experimental communities across the three 

sampling dates for abiotic variables during the course of the experiment. 
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APPENDIX K 

 

 

 

 

CHAPTER FIVE: SUPPLMENTAL RESULTS 

 

 

K.1.1 Temperature  

 

The rm-ANOVA of temperature revealed only significant effects of time and a time-by-

chlorpyrifos concentration interaction (both p < 0.001; Table L.2).  Unlike pH and DO, there 

were no significant main effects of the zooplankton assemblage type, proximity to agriculture or 

chlorpyrifos concentration (all p > 0.084). There were no discernable patterns in temperature 

fluctuations throughout the experiment (Figure M.1). 

 

K.1.2 pH 

 

The rm-ANOVA of pH indicated that there were significant effects of three of the four main 

effects (zooplankton assemblage type, concentration of chlorpyrifos, and time – all p < 0.001), 

but no significant main effect of proximity to agriculture (Table L.2).  There were also several 

significant interaction terms. The general pattern throughout the course of the experiment was 

that there was an increase in pH as chlorpyrifos concentration increased (Figure M.2).  During 

the first sampling date of the abiotic factors, there was only a significant effect of zooplankton 
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assemblage type (p = 0.007) and no significant interaction terms (Table L.3A).  In the second 

and third samples, however, there were significant effects of both zooplankton assemblage type, 

as well as chlorpyrifos concentration (all p < 0.002), but no significant effect of proximity to 

agriculture in either case (both p > 0.069).  In the second sample, there were significant 

zooplankton assemblage type-by-chlorpyrifos concentration (p < 0.001) and proximity to 

agriculture-by-chlorpyrifos concentration (p = 0.016) interactions.  During this sampling date, 

the pH in control communities with a full assemblage of zooplankton collected from near 

agriculture (cladocerans and the background assemblage) was higher than in communities with a 

full assemblage collected further from agriculture (p < 0.001).  In the third sample of pH, there 

were significant proximity to agriculture-by-zooplankton assemblage (p = 0.002) and proximity 

to agriculture-by-chlorpyrifos concentration (p = 0.025) interactions.  Communities with a 

resistant background assemblage had a higher pH when exposed to 0.5 or 1 μg/L chlorpyrifos 

(both p < 0.021), whereas communities with a sensitive full assemblage of zooplankton had 

higher pH at the same two concentrations (both p < 0.005). 

 

K.1.3 DO content 

 

The rm-ANOVA of DO also revealed that there were significant effects of zooplankton 

assemblage type, chlorpyrifos concentration time (all p < 0.001) and a number of significant 

interaction terms (Table L.2).  Like the data for pH, the general trend throughout the course of 

the experiment was that there was an increase in DO content as chlorpyrifos concentration 

increased (Figure M.3).  In the first sample, there was only a significant effect of zooplankton 

assemblage (p < 0.001; Table L.3B).  During the second and third samples, however, there were 
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significant main effects of zooplankton assemblage and chlorpyrifos concentration (both p < 

0.001), as well as a significant zooplankton assemblage-by-concentration interactions for both 

sampling dates and a significant proximity to agriculture-by-concentration interaction for the 

third and final sampling date (all p < 0.001) .  In the second sample of DO, there was a sharp 

increase in DO content in communities with only the background assemblage of zooplankton, 

when compared to other zooplankton assemblage types, but this difference was not affected by 

their proximity to agriculture (p > 0.548).  Furthermore, communities with a full zooplankton 

assemblage far from agriculture had higher DO content when compared to communities with a 

full zooplankton assemblage from near agriculture (p = 0.034).  In the third sample, communities 

with a full assemblage from near agriculture had higher DO content (p < 0.001) when compared 

to communities with full assemblages far from agriculture, whereas communities with 

cladoceran-only treatments far from agriculture had higher DO content (both p < 0.019). 

 

K.1.4 Light decay  

 

The univariate ANOVA of light attenuation indicated that there were only significant effects of 

zooplankton assemblage type and chlorpyrifos concentration (both p < 0.001; Table L.3C).  

There were no significant interactions nor was there a significant effect of proximity to 

agriculture (all p > 0.148).  Generally, the pattern was that the rate of light decay increased as 

chlorpyrifos concentration increased (Figure M.4). 
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CHAPTER FIVE: SUPPLMENTAL TABLES 
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Table L.1. Results of the MANOVA for the treatment effects on the final measurements of three 

abiotic variables (pH, DO content, and temperature) and five biotic variables (cladoceran, 

copepod, rotifer, phytoplankton and periphyton abundances) that were measured at the end of the 

experiment.  Multivariate statistics were analyzed using a Wilks’ Lambda distribution (all 

significant p values are in bold.) 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Factor F value df p value 

Zooplankton assemblage (A) 8.18 14,228 <0.001 

Proximity to agriculture (P) 3.48 7,114 0.002 

Concentration (C) 11.64 28,412 <0.001 

A x P 3.91 14,228 <0.001 

P x C 1.76 28,412 0.011 

A x C 1.93 56,619 <0.001 

A x P x C 1.44 56,619 0.023 
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Table L.2. Results of repeated-measures ANOVAs to determine the effects of experimental 

manipulations on the three abiotic variables (pH, DO, and temperature) that were measured 

simultaneously at three time points throughout the experiment.  Because data for temperature 

violated the assumptions of sphericity, Greenhouse-Geisser corrections and adjusted degrees of 

freedom were used.  F values for each factor are followed by p values in parentheses. 

 

 

 

Factor pH df DO df Temp.  df 

Zooplankton 

assemblage (A) 
10.6 (<0.001) 2,120 36.6 (<0.001) 2,120 1.1 (0.325) 2,120 

Proximity to 

agriculture (P) 
0.1 (0.755) 1,120 0.1 (0.831) 1,120 0.6 (0.447) 1,120 

Conc. (C) 107.7 (<0.001) 4,120 24.2 (<0.001) 4,120 2.1 (0.084) 4,120 

Time (T) 163.8 (<0.001) 2,240 194.6 (<0.001) 2,240 469.4 (<0.001) 2,181 

A x P 2.3 (0.103) 2,120 0.8 (0.466) 2,120 0.9 (0.400) 2,120 

P x C 3.9 (0.005) 4,120 3.1 (0.019) 4,120 0.4 (817) 4,120 

A x C 1.0 (0.459) 8,120 3.4 (0.002) 8,120 1.0 (0.458) 8,120 

T x A 2.7 (0.029) 4,240 6.3 (<0.001) 4,240 0.6 (0.607) 3,181 

T x P 4.2 (0.016) 2,240 0.2 (0.824) 2,240 1.7 (0.197) 2,181 

T x C 112.7 (<0.001) 8,240 6.4 (<0.001) 8,240 5.9 (<0.001) 6,181 

A x P x C 1.0 (0.424) 8,120 0.8 (0.602) 8,120 0.6 (0.759) 8,120 

T x A x P 4.5 (0.002) 4,240 0.4 (0.796) 4,240 0.8 (0.518) 3,181 

T x A x C 3.7 (<0.001) 16,240 3.0 (<0.001) 16,240 1.0 (0.475) 12,181 

T x P x C 1.4 (0.179) 8,240 2.4 (0.017) 8,240 1.3 (0.254) 6,181 

A x P x C x T 0.9 (0.578) 16,240 0.8 (0.710) 16,240 0.6 (0.824) 12,181 
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Table L.3. Results of univariate analyses of variance for each sample date for the abiotic 

variables sampled during the course of the experiment: A) pH, B) DO content and C) light decay.  

Values presented in the tables are p values (all significant p values in bold.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) pH Sample 1 Sample 2 Sample 3  

Zooplankton assemblage (A) 0.007 0.001 0.002 

Proximity to agriculture (P) 0.682 0.069 0.130 

Concentration (C) 0.893  <0.001 <0.001 

A x P 0.376 0.233 0.002 

A x C 0.632 <0.001 0.130 

P x C 0.258 0.016 0.025 

A x P x C 0.954 0.548 0.200 

B) DO  Sample 1 Sample 2 Sample 3  

Zooplankton assemblage (A) <0.001 <0.001 <0.001 

Proximity to agriculture (P) 0.498 0.900 0.831 

Concentration (C) 0.117 <0.001 <0.001 

A x P 0.982 0.324 0.700 

A x C 0.993 0.001 <0.001 

P x C 0.392 0.230 0.001 

A x P x C 0.925 0.824 0.284 
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Table L.3. (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C) Light decay Sample 1 

Zooplankton assemblage (A) <0.001 

Proximity to agriculture (P) 0.148 

Concentration (C) <0.001 

A x P 0.212 

A x C 0.601 

P x C 0.228 

A x P x C 0.985 
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Table L.4. Results of rm-ANOVAs to determine the effects of experimental manipulations on 

the three biotic variables (cladoceran, copepod and rotifer abundances) that were measured 

simultaneously at six time points during the experiment.  Because data for cladoceran and 

copepod abundances violated the assumptions of sphericity, Greenhouse-Geisser corrections and 

adjusted degrees of freedom were used.  F values for each factor are followed by p values in 

parentheses (all significant p values are in bold.) 

Factor Cladoceran 

abundance 

df Copepod 

abundance 

df Rotifer 

abundance  

df 

Zooplankton 

assemblage (A) 
72.4 (<0.001) 2,96 12.0 (<0.001) 2,120 8.5 (<0.001)  2,120 

Proximity to 

agriculture (P) 
11.0 (0.001) 1,96 175.4 (<0.001) 1,120 0.1 (0.748) 1,120 

Conc. (C) 46.7 (<0.001) 3,96 22.3 (<0.001) 4,120 1.3 (0.246) 4,120 

Time (T) 128.9 (<0.001) 5,440 154.5 (<0.001) 5,546 49.3 (<0.001)   5,600 

A x P 0.6 (0.557) 2,96 15.6 (<0.001) 2,120 1.1 (0.340) 2,120 

P x C 6.4 (0.001) 3,96 1.3 (0.272) 4,120 0.8 (0.542) 4,120 

A x C 2.4 (0.032) 6,96 1.0 (0.430) 8,120 2.1 (0.049) 8,120 

T x A 16.8 (<0.001) 9,440 7.4 (<0.001) 9,546 3.9 (<0.001) 10,600 

T x P 4.9 (<0.001) 5,440 28.4 (<0.001) 5,546 2.7 (0.020) 5,600 

T x C 3.1 (<0.001) 14,440 5.4 (<0.001) 18,546 2.0 (0.007) 20,600 

A x P x C 0.8 (0.564) 6,96 0.9 (0.560) 8,120 1.4 (0.220) 8,120 

T x A x P 0.8 (0.640) 9,440 1.6 (0.102) 9,546 3.8 (<0.001) 10,600 

T x A x C 3.4 (<0.001) 28,440 1.1 (0.322) 36,546 1.5 (0.019) 40,600 

T x P x C 0.5 (0.920) 14,440 1.0 (0.451) 18,546 2.0 (0.008) 20,600 

A x P x C x T 0.7 (0.848) 28,440 1.0 (0.520) 36,546 1.5 (0.021) 40,600 
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Table L.5. Results of univariate analyses of variance for each sample date for the three 

zooplankton abundance variables sampled during the course of the experiment: A) cladocerans, 

B) copepods and C) rotifers. Values presented in tables are p values (significant values in bold.)   

 

 

 

 

 

A) Cladocerans Sample 1 Sample 2 Sample 3  Sample 4 Sample 5 Sample 6 

Zoop. assemblage (A) <0.001 <0.001 <0.001 <0.001 <0.001 0.058 

Proximity to ag. (P) 0.647 0.767 0.002 0.045 0.003 <0.001 

Concentration (C) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

A x P 0.866 0.734 0.482 0.625 0.475 0.198 

A x C 0.001 0.080 0.002 0.001 0.004 0.346 

P x C 0.087 0.025 0.011 0.256 0.016 0.028 

A x P x C 0.724 0.753 0.339 0.747 0.743 0.444 

B) Copepods Sample 1 Sample 2 Sample 3  Sample 4 Sample 5 Sample 6 

Zoop. assemblage (A) 0.004 0.156 <0.001 <0.001 0.033 0.004 

Proximity to ag. (P) <0.001 <0.001 <0.001 <0.001 0.001 0.003 

Concentration (C) 0.008 0.005 <0.001 <0.001 0.001 <0.001 

A x P 0.005 0.172 <0.001 0.010 0.018 0.105 

A x C 0.695 0.266 0.039 0.616 0.702 0.763 

P x C 0.952 0.460 0.730 0.026 0.274 0.507 

A x P x C 0.685 0.497 0.783 0.426 0.797 0.114 
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Table L.5. (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C) Rotifers Sample 1 Sample 2 Sample 3  Sample 4 Sample 5 Sample 6 

Zoop. assemblage (A) 0.010 0.456 0.066 <0.001 0.187 0.051 

Proximity to ag. (P) 0.964 0.091 0.334 0.247 0.749 0.012 

Concentration (C) 0.310 0.308 0.010 0.177 0.282 0.134 

A x P 0.021 0.615 0.986 0.001 0.002 0.085 

A x C 0.221 0.273 0.308 <0.001 0.275 0.626 

P x C 0.751 0.141 0.010 0.159 0.494 0.274 

A x P x C 0.587 0.217 0.169 0.232 0.009 0.247 



188 
 

Table L.6. Results of repeated-measures ANOVAs to determine the effects of experimental 

manipulations on the two biotic variables (phytoplankton and periphyton abundance) that were 

measured simultaneously at three time points throughout the experiment.  F values for each 

factor are followed by p values in parentheses (all significant p values in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Phytoplankton 

abundance 

df Periphyton 

abundance 

df 

Zooplankton assemblage (A) 96.3 (<0.001) 2,120 13.5 (<0.001) 2,120 

Proximity to agriculture (P) 9.2 (0.003) 1,120 0.1 (0.844) 1,120 

Concentration (C) 180.1 (<0.001) 4,120 10.7 (<0.001) 4,120 

Time (T) 8.6 (<0.001) 2,240 115.2 (<0.001) 2,240 

A x P 10.9 (<0.001) 2,120 3.8 (0.025) 2,120 

P x C 7.2 (<0.001) 2,120 0.9 (0.484) 4,120 

A x C 10.5 (<0.001) 8,120 2.6 (0.013) 8,120 

T x A 4.5 (0.002) 4,240 0.7 (0.563) 4,240 

T x P 12.3 (<0.001) 2,240 2.7 (0.069) 2,240 

T x C 27.0 (<0.001) 8,240 15.6 (<0.001) 8,240 

A x P x C 2.9 (0.005) 8,120 2.2 (0.031) 8,120 

T x A x P 2.1 (0.087) 4,240 2.6 (0.036) 4,240 

T x A x C 1.5 (0.102) 16,240 1.9 (0.024) 16,240 

T x P x C 1.4 (0.187) 8,240 1.7 (0.096) 8,240 

A x P x C x T 1.3 (0.179) 16,240 1.0 (0.415) 16,240 
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Table L.7. Results of univariate analyses of variance for each sample date for the biotic 

variables sampled during the course of the experiment: A) phytoplankton and B) periphyton. 

Values presented in the tables are p values (all significant p values in bold.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

A) Phytoplankton abundance Sample 1 Sample 2 Sample 3  

Zooplankton assemblage (A) <0.001 <0.001 <0.001 

Proximity to agriculture (P) 0.426 <0.001 0.034 

Concentration (C) <0.001 <0.001 <0.001 

A x P <0.001 0.169 <0.001 

A x C 0.002 <0.001 <0.001 

P x C 0.173 <0.001 0.001 

A x P x C 0.956 0.031 <0.001 

B) Periphyton abundance Sample 1 Sample 2 Sample 3  

Zooplankton assemblage (A) 0.100 0.003 0.001 

Proximity to agriculture (P) 0.914 0.022 0.223 

Concentration (C) <0.001 <0.001 <0.001 

A x P 0.484 0.304 0.003 

A x C 0.001 0.124 0.484 

P x C 0.330 0.026 0.473 

A x P x C 0.063 0.057 0.605 
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Table L.8. Results of the MANOVA to determine the effects of experimental manipulations on 

the green frog tadpole average mass and survivorship.  Multivariate statistics were analyzed 

using a Wilks’ Lambda distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor F value df p value 

Zooplankton assemblage (A) 0.74 4,238 0.564 

Proximity to agriculture (P) 0.72 2,119 0.490 

Concentration (C) 0.67 8,238 0.722 

A x P 1.12 4,238 0.346 

A x C 0.64 16,238 0.846 

P x C 1.04 8,238 0.406 

A x P x C 0.66 16,238 0.829 
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CHAPTER FIVE: SUPPLMENTAL FIGURES 
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Figure M.1. Differences in temperature (in °C) within experimental communities across the 

three sampling dates of abiotic variables. 
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Figure M.2. Differences in pH within experimental communities across the three sampling dates 

of abiotic variables. 
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Figure M.3. Differences in dissolved oxygen content (in mg/L) within experimental 

communities across the three sampling dates of abiotic variables. 
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Figure M.4. Differences in light transmission rates within experimental communities across the 

three sampling dates of abiotic variables. 
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Figure M.5. Differences in cladoceran abundance during the two samples immediately 

preceeding the second and third chlorpyrifos applications as well as the experimental takedown.   
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Figure M.6. Differences in copepod abundance during the two samples immediately preceeding 

the second and third chlorpyrifos applications as well as the experimental takedown.   
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Figure M.7. Differences in rotifer abundance during the two samples immediately preceeding 

the second and third chlorpyrifos applications as well as the experimental takedown.   
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