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ASSUME A SPHERICAL COW:  

STUDIES ON REPRESENTATION AND IDEALIZATION 

Elay Shech, PhD 

University of Pittsburgh, 2015 

This dissertation concerns the philosophical underpinnings of representation and idealization in 

science. I begin by looking at the philosophical debate revolving around phase transitions and 

use it as a foil to bring out what I take to be most interesting about phase transitions, namely, the 

manner by which they illustrate the problem of essential idealizations. I continue to solve the 

problem in several steps. First, I conduct an interdisciplinary comparative study of different 

types of representations (e.g., mental, linguistic, pictorial) and consequently promote a content-

based account of scientific representation intended to accommodate the practice of idealization 

and misrepresentation. I then critically asses the literature on idealizations in science in order to 

identify the manner by which to justify appeals to idealizations in science, and implement such 

techniques in two case studies that merit special attention: the Aharonov-Bohm effect and the 

quantum Hall effects. I proceed to offer a characterization of essential idealizations meant to 

alleviate the woes associated with said problem, and argue that particular types of idealizations, 

dubbed pathological idealizations, ought to be dispensed with. My motto is that idealizations are 

essential to explanation and representation, as well as to methodology and pedagogy, but they 

essentially misrepresent. Implications for the debate on platonism about mathematical objects are 

outlined. 

Keywords: philosophy of physics, philosophy of science, philosophy of mathematics, 

representation, idealization, phase transitions, Aharonov-Bohm effect, fractional quantum 

statistics, quantum Hall effects. 
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1.0  INTRODUCTION 

Milk production at a dairy farm was so low that the farmer wrote to the local university, 

asking help from scientists. A multidisciplinary team of professors was assembled, 

headed by a theoretical physicist, and two weeks of intensive on-site investigation took 

place. The scholars then returned to the university, notebooks crammed with data, where 

the task of writing the report was left to the team leader. Shortly thereafter the physicist 

returned to the farm in order to explain the report to the farmer. He asked for a 

blackboard and then drew a circle. He began: “Assume the cow is a sphere . . .”1 

 

A common attitude among many philosophers is that science has a special epistemic status—a 

privileged source of knowledge—and supports realism, broadly construed, about the existence of 

a mind-independent world and (or) objects within it.2 Often, this takes the form of scientific 

realism with commitments varying between metaphysical, semantic, epistemic and axiological 

                                                 

1 “Old” physicist’s/mathematician’s joke. Exact origins are unknown to me but it is presented in a delightful version 
in Lawrence M. Krauss’ (1994, 3-4) Fear of Physics. 
2 See, for example, Khlentzos (2011) (who emphasizes metaphysical realism): 

Many philosophers believe metaphysical realism is just plain common sense. Others believe it to be a direct 
implication of modern science, which paints humans as fallible creatures adrift in an inhospitable world not 
of their making. 

Similar sentiments can be extracted from other authoritative survey articles such as Miller (2010) and Chakravartty 
(2011). 
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dimensions.3 That said, even those that support non-realist views regarding science4 share some 

basic tenets with the scientific realist. Arthur Fine (1996, 128) explains: 

 

They must both accept certified results of sciences as on par with more homely and 

familiarly supported claims … both realist and antirealist accept the results of scientific 

investigation as “true” … 

 

 Accordingly, it ought to be worrisome to many that our best scientific theories indulge in 

ubiquitous appeals to falsehoods, distortions and unfaithful representations of reality for the 

purpose of attaining empirical adequacy and explanatory success.5 One notable line of 

argumentation, emphasized repeatedly by Cartwright (1983, 1989, 1999), is that the use of 

idealizations, abstractions, and approximations strongly undermines a realist conception of 

science, and can be taken as grounds for both denying the truth of scientific assertions and 

questioning our ability to empirically confirm scientific theories. Crudely put, the motto is that 

our most mature scientific theories and best accounts of physical phenomena, akin to their 

superseded predecessors, are “strictly speaking, false.” But perhaps a more apt characterization 

of the state of affairs may be stated as follows: Our best scientific accounts are highly idealized, 

                                                 

3 Roughly, the metaphysical dimension has to do with commitment to the existence of a mind-independent world 
and/or objects within it, (possibly) along with their properties and relations. The semantic dimension concerns 
interpreting the claims of scientific theories literally, as ones satisfying truth conditions. The epistemic dimension 
regards the empirical and explanatory success of science as evidence for the (approximate) truth of the claims of 
science, so that scientific claims constitute knowledge about the world and objects within it. The axiological 
dimension takes the aim of science to give approximately true descriptions and faithful representations of the world. 
See Boyd (1983, 45), Psillos (1999, xix), Niiniluoto (1999, 21) and Chakravartty (2011). See Balaguer (1998) and 
Leng (2010, 2012) for the type of nominalistic scientific realism that will be assessed in Chapter 9. 
4 E.g., constructive empiricism (van Fraassen 1980), historicism (Kuhn 1970, 1983), pragmatism (Peirce 1998). 
5 My tendency is to use “scientific accounts” as an umbrella term for scientific theories, laws, models, explanations, 
descriptions, representations, etc., wherein the process of “accounting” might take the form of an explanation (on 
one’s favorite sense of the notion), derivation, deduction, prediction and retrodiciton, description, representation, or 
just a general sense of insightfulness and illumination. 
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abstracted, and approximated misrepresentations of reality.6 What then justifies the 

commonsensical notion that science has a special access to knowledge and that it is a rational 

and coherent enterprise, let alone that it supports some version or other of realism? 

 A common attitude shared by philosophers and scientists alike, and meant to alleviate the 

woes associated with appeals to idealizations, is captured by the following statement made by 

John Earman (2004, 191): 

 

EARMAN’S SOUND PRINCIPLE7 ― While idealizations are useful and, perhaps, even 

essential to progress in physics, a sound principle of interpretation would seem to be that 

no effect can be counted as a genuine physical effect if it disappears when the 

idealizations are removed.8 

 

In other words, we can view idealizations as scaffoldings of sorts. They are temporary structures 

there for mathematical convenience, practical or instrumental purposes, and possibly for reasons 

of pedagogy. That being said, in principle, they can be removed. They are not part and parcel of 

mature scientific theories. They do not represent genuine physical effects, and hence they cannot 

be the basis of a scientific account of some physical phenomenon. 

 

                                                 

6 Unless otherwise qualified, I shall use the term “idealization” to refer to idealizations, abstractions, 
approximations, and misrepresentations. See Chapter 4 for a literature review concerning these notions, as well as an 
identification of how they are characterized and distinguished in the literature. 
7 To my best knowledge, Jones (2006, 194) is the first to call (a version of) this “Earman’s Principle” and Ruetsche 
(2011, 336) the first to call it the “Sound Principle.” 
8 Similar sentiments, among many others, arise in Laymon (1985, 1989), McMullin (1985, 257), Nowak (1980), and 
in Galileo (Drake 1967, 117 and 225). See Chapter 4 for details. Earman elaborates (in conversation): More 
cautiously, if a theory uses an idealization to predict an effect which disappears when the idealization is removed 
then either the effect is an artifact of the idealization or else (if experiment confirms the effect) the theory is 
inadequate. Ruetsche (2011, 336) adds: “No effect predicted by a non-final theory can be counted as a genuine 
physical effect if it disappears) and stays disappeared from that theory’s successors.” 
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However, one wonders whether there are idealized scientific representations, or 

misrepresentations, that do not fit neatly into the story told above. Representations that, when de-

idealized, render the scientific account that appeals to them ultimately unsuccessful. Questions 

arise: Do such “essential idealizations” and misrepresentations exist? Do canonical accounts of 

scientific representation and idealizations address such phenomena? What would be a 

justification for appealing to such idealizations? For instance, can one characterize essential 

idealization in a manner that conforms to Earman’s sound principle (or, “the sound principle,” 

for short)? Should essentially idealized theories, laws, or models be considered explanatory or 

descriptive? Can idealizations be necessary in accounting for physical phenomena? If 

idealizations are, in some sense, dispensable, are there any substantive roles for idealizations to 

play in science? Are idealizations there simply for instrumental reasons, e.g., to make the math 

easier? 

The purpose of this dissertation is to explore and suggest answers to such questions. Or, 

said differently, I aim to make headway on solving the following problem: 

 

THE ESSENTIAL IDEAIZATION PROBLEM (EIP) ― We need an account of how our 

abstract and essentially idealized scientific representations correspond to the concrete systems 

observed in the world, we need a characterization of essential idealizations, and a justification for 

appealing to such idealizations, i.e., an explanation of why and which indispensable idealizations 

are successful. 
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In a nutshell, my proposed solution will be to endorse what I will call a content-based 

account of representation, to justify certain essential idealizations instrumentally, reject others as 

pathological, but still identify substantive explanatory, methodological, and pedagogical roles for 

idealizations to play in science, thereby defending a compatibilist approach to the role of 

idealizations in science—namely, a midway position between those who propose to dispense 

with idealizations and those who believe idealizations are essential to scientific accounts of 

physical phenomena. 

In particular, I’ll begin in Chapter 2 by looking to the concrete case study of phase 

transitions to identify and flesh out the EIP. Chapter 3 will concentrate on the representation 

component of the EIP, namely, the representational relation between theory and world. I will 

conduct an interdisciplinary comparative analysis and argue for a content-based approach to 

scientific representation. The connection between Chapter 3 and the proposed solution to the EIP 

is as follows: By endorsing a content-based account of representation, one is committed to the 

idea that theoretical investigations are needed in order to decipher the contents of our scientific 

representations (theories, models), but such investigations include appealing to idealizations and 

abstractions that allow for an exploration of the possible structure and representational capacities 

of a theory. Chapters 4 and 5 will treat the idealization component of the EIP. In Chapter 4 I will 

look to the canonical literature on idealizations and argue that, indeed, the sound principle is both 

the standard and most plausible justification for appealing to idealizations, and Chapter 5 will 

build on prior work in order to introduce the notion of a pathological idealization, i.e., an 

idealization that is absolutely inconsistent with the sound principle.  Subsequently, Chapters 6-7 

put distinctions and concepts introduced in prior chapters into action, so to speak, in some 

concrete case studies including the Aharonov-Bohm effect and the fractional quantum statistics 
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allegedly manifested in the quantum Hall effects. In Chapter 8, I revisit the question of whether 

or not idealizations can be essential to scientific accounts of physical phenomena and defend my 

compatibilist approach via an identification of the substantive roles that idealizations play in 

science (including pedagogical, methodological, and explanatory roles) and a characterization of 

essential idealizations based on core tenets endorsed by both camps of the essential idealization 

debate. 

At this point the EIP will be solved, or, at least, substantial headway will have been made 

in solving the EIP and pathways for future study will have been identified. In Chapter 9 I attempt 

to reconnect with the issue of realism by outlining some implications of my work for the 

realism/anti-realism debate in the philosophy of mathematics. I end the dissertation with a short 

conclusion in Chapter 10. 

In essence, this dissertation is a collection of thematically connected, but independent, 

papers, each of which is meant to portray an important contribution to the scholarly literature. 

Although independent, it is fair to say that, roughly, all the chapters collectively suggest the 

following generic thesis of the dissertation: 

 

Generic Thesis: Canonical accounts of scientific representation and idealization, fail. 

They do so for two main reasons. First, they are too narrow. Second, they do not do 

justice to important examples. 

 

Or, perhaps more humbly: Many people have done good work on scientific 

representation and idealizations, but there is lots more important work to do and this dissertation 

does just that. In particular, the “important examples” include those discussed above (and in 
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Chapters 2, 6-7, and 9), while “narrowness” is essentially used as an umbrella term for the 

various mini-theses argued for throughout the entire work (in Chapters 3, 4-5, and 8) and 

identified in the subsection that follows. More specifically, the chapters in this dissertation will 

work collectively to argue for the following thesis: 

 

Specific Thesis: The sound principle is the standard and most plausible justification for 

appealing to idealization in science, and this implies that pathological idealization ought 

to be dispensed with in accounting for concrete phenomena in the world. However, and 

first, pathological idealizations still play indispensable pedagogical and methodological 

roles in science. Second, non-pathological idealizations remain essential for particular 

types of explanatory purposes. 

 

Further details will be given in the remaining subsection of this chapter, where I present a 

chapter-by-chapter summary of the main content and claims of the dissertation. 

1.1 CHAPTER-BY-CHAPTER SUMMARY 

Chapter 2 begins by discussing the so-called paradox of phase transitions. I look at the 

philosophical literature on phase transitions, with an attempt to understand what the “paradox” 

is. I identify how almost all philosophical accounts of phase transitions and related claims, e.g., 

that phase transitions are examples of emergent phenomena, stem from the paradox, and so I set 

a condition of adequacy on any such account of phase transitions: that there really must be a 

bona fide paradox of, i.e., a contradiction corresponding to, phase transitions (Section 2.1). I then 
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continue to argue for a negative and positive thesis via the distinction between abstract and 

concrete objects. 

My negative thesis is that there really is no paradox of phase transitions and that in order 

to get a bona fide paradox one must undertake substantial philosophical work and ground a type 

of indispensability argument, akin to the kind appearing within the context of the philosophy of 

mathematics (Section 2.2). Since none of the proponents of the phase transitions debate 

undertake such work, and since indispensability arguments are highly controversial, I claim that 

the entirety of the debate, insofar as it is grounded in the paradox of phase transitions, is 

misguided and that the philosophical import that has been extracted from the case study of phase 

transitions with regard to emergence, reduction, explanation, etc., is not warranted. 

My positive thesis is to show how the “paradox” can be generalized and arises whenever 

a scientific account appeals to an essential idealization coupled with the notion of a faithful 

representation (Section 2.3). Thus, I suggest that what is really interesting about phase transitions 

is the manner by which they illustrate the EIP, which is tightly connected to issues arising in the 

context of scientific representation and scientific realism. The upshot is that, insofar as 

proponents of the phase transitions debate have been contributing to this problem, certain aspects 

of the debate have been fruitful. The rest of the dissertation is dedicated to solving the EIP by 

concentrating on two of its main components, representation and idealization, and fleshing out 

some of the philosophical consequences of my work. 

Chapter 3 tackles the notion of scientific representation. There are two worthwhile points 

to note. (i) Most discussion of scientific representation per se focuses on the constitution 

question, which asks for the necessary and sufficient conditions for a vehicle of representation V 

to represent a target of representation T. (ii) There is a (rough) consensus that the main tension in 
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the literature arises between what one may call functional theories, which emphasize uses in 

cognitive activities (such as inferential practices), and informational theories, which emphasize 

objective relations (such as an isomorphism) between vehicle and target.  

In contrast, (i*) my analysis shows that the deep problem of scientific representation 

concerns answering the following two questions: (Q1) What are the contents of this or that 

representational vehicle (content identification) and (Q2) in virtue of what facts are such contents 

determined (content determination)? Hence, my work attempts to refocus and reorient the debate 

on scientific representation, calling for a substantial research program to be undertaken with 

respect to said questions. Furthermore, (ii*) I defend a thesis by Anjan Chakravartty (2010), 

which states that there is no tension between functional and informational theories, by 

identifying how functional theories mainly target Q1, while informational theories concentrate 

on Q2. My analysis leads naturally to a content-based account of scientific representation and a 

simple answer to the constitution question: 

 

[cont] V represents T if and only if V’s (representational/semantic) contents are about T. 

 

My method includes showing how certain requirements must be set on any tenable 

account of scientific representation, such as the requirement allowing for misrepresentation 

(Section 3.2). I then continue to argue that two leading accounts of scientific representation―the 

inferential account (Section 3.4) and the interpretational account (Sections 3.5, 3.6)―are flawed 

for they do not satisfy such requirements. Through such criticism, and drawing on an analogy 

from non-scientific representation (Section 3.3), I also sketch the outline of a superior content-

based account (Section 3.7). In particular, I propose to take epistemic representations to be 
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intentional objects that come with reference, semantic contents and a representational code, and I 

identify faithful representations as representations that act as guides to ontology. 

To emphasize, in addition to making available the terminology and concepts needed for a 

tenable account of scientific representation meant to accommodate the practice of idealizations in 

science, the work of Chapter 3 connects directly to the solution of the EIP in the following 

manner: By endorsing a content-based account of representation, one is committed to the idea 

that theoretical investigations are needed in order to decipher the contents of our scientific 

representations (theories, models), but such investigations include appealing to idealizations and 

abstractions that allow for an exploration of the possible structure and representational capacities 

of a theory. 

Chapter 4 has two main goals. The first is to present a critical survey of the current state 

of the literature on idealizations. I discuss distinctions between idealizations, abstractions, and 

approximations (Section 4.2) and present some of the main taxonomies due to McMullin (1985), 

Weisberg (2007a, 2013), the Poznań School (Nowak 1980), and Shaffer (2012) (Section 4.3). 

The main upshot will be that indeed the sound principle is the standard and most plausible 

justification for appealing to idealizations in science. 

The second goal is to sketch how the pervasiveness of idealizations, abstractions and 

approximations in science raises various foundational problems (Section 4.4). Roughly, many 

such problems can be defused insofar as the idealizations in question are consistent with the 

sound principle, namely, by appealing to some standard de-idealization or concretization 

scheme, in which more realistic scientific representations and models are accompanied by 

improvements in predictive output, and/or improvability of other theoretical merits such as 

explanatory and descriptive power. The punch line of this section is that insofar as de-
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idealization schemes fail for cases of essential idealizations, the problems identified reemerge 

with a vengeance, so to say.  

Chapter 5 presents a distinction due to Butterfield (2011) and Norton (2012) that plays an 

important role in identifying the possible problems (or lack of) corresponding to essential 

idealizations (Section 5.1). I define and explain the significance of the notion of a pathological 

idealization, i.e., an idealization that is genuinely incompatible with the sound principle, and 

identify three types of possible incompatibilities (Section 5.2). Subsequently, I make use of such 

distinctions and concepts in the following chapters. 

Chapter 6 turns to investigate the representational structures and idealizations that arise in 

standard accounts of the Aharonov-Bohm (AB) effect (in which an interference pattern, 

manifested by a beam of electrons in standard double-slit experiments gains a shift in the pattern 

due to presence of an isolated magnetic field). It is suggested that interpreting the effect as 

fundamentally topological in nature commits one to an untenable view of the necessity of 

idealizations in science. Specifically, the received view of the AB effect states that one must 

appeal to a topologically non-simply connected (configuration) space in order to account for the 

effect (Section 6.2). However, I argue that such a topological idealization is a pathological one, 

and hence does not conform to the standard justification via the sound principle (Section 6.3). 

Moreover, I submit that this undesirable consequence can be evaded by embracing an alternative 

non-topological approach to the nature of idealizations arising in the AB effect (Section 6.4).  

Chapter 7 extends the discussion in Chapter 6 to the context of the fractional quantum 

statistics allegedly manifested by anyons in fractional quantum Hall effect (FQHE) systems. 

After a short introduction to anyons and the quantum Hall effects (Sections 7.1 and 7.2), I 

continue to outline two approaches to fractional quantum statistics. The standard account, the 
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topological approach, is precise and well understood (Section 7.3). However, I argue that it 

appeals to pathological idealizations (as discussed in Chapters 5 and 6), since the approach takes 

fractional statistics to be grounded in the one-dimensional unitary representation of the 

fundamental group (the first homotopy group) of the configuration space of identical particles in 

exactly two-dimensions. But FQHEs are not two-dimensional. Accordingly, I suggest an 

alternative approach, the geometric approach, based on calculations done by Arovas, Schrieffer, 

and Wilczek (1984) to show that excited FQHE states obey fractional statistics (Section 7.4). The 

geometric phase approach does not stem from a solid foundation like the configuration space 

approach, but it also does not appeal to pathological idealizations. I then make some headway in 

identifying what kind of work must be done in order to develop the conceptual foundations of the 

geometric phase approach (Section 7.5). 

Chapter 8 looks to the question at the center of the growing literature on essential 

idealizations, specifically, whether idealizations are genuinely necessary for scientific accounts 

of physical phenomena (Section 8.1). A debate has risen between those who embrace essential 

idealizations, call these the “essentialists,” and those who abhor them, call these the 

“dispensabilists.” The purpose of the chapter is to show that the division between essentialists 

and dispensabilists is in fact a false dichotomy. I do so in three steps. First, I show that even 

pathological idealizations have indispensable pedagogical and methodological roles to play in 

science (Section 8.2). In addition, I argue that the well-received account of idealizations 

presented in Chapter 4 does not account for, but distorts the story behind the idealizations that 

arise in the case studies I look at (in Chapters 6 and 7). Second, I note that certain non-

pathological idealizations are essential for giving “structural,” “asymptotic,” or “minimal model” 

explanations of physical phenomena (Section 8.3). Hence, my slogan: 
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Idealizations are essential to explanation and representation, as well as to methodology 

and pedagogy, but they essentially misrepresent. 

 

Third, I propose a working characterization of essential idealizations based on insights 

offered by both camps and in doing so contend that essentialist and dispensabilists views are 

importantly complementary (Section 8.4). I also sketch some examples intended to implement 

and further elucidate the characterization (Section 8.5). In short, my working characterization 

runs as follows: 

 

Essential Idealization ― Novel and robust mathematical structure that arises via a 

Nortonian approximation (or idealization), secludes those features that are relevant for 

soundly representing and/or asymptotically explaining phenomena of interest, and is 

essential for the success of present science and/or will underlie the empirical success of 

future theories. 

 

Together, the three steps constitute my own attempt to solve, or make substantial 

headway into solving, the EIP posed above and in Chapter 2 (Section 8.6). Possible objections 

from both the essentialist camp (Section 8.3.1) and the dispensabilist camp (Section 8.6.1) are 

considered.  

Chapter 9 attempts to place my discussion of essential and pathological idealizations in 

its broader context by entering into a recent debate regarding whether or not there exists a so-

called “easy road” to nominalism. Specifically, the question motivating (what I will call) the easy 
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road nominalism debate is whether or not it is possible to reject platonism about mathematical 

objects, while committing to some substantial form of scientific realism, but doing so without 

taking the “hard road” to nominalism (Section 9.1). The hard road includes purging our best 

scientific theories from quantifying over abstract mathematical objects. One prominent and 

promising attempt to take the easy road includes Leng’s (2010, 2012) approach, which defends a 

version of nominalistic scientific realism, and depends on the idea that physical structure can 

“approximately instantiate” mathematical structure (Section 9.2). Against Leng’s approach, I 

show that standard topological approaches to fractional statistics and the AB effect block her 

path to easy road nominalism (Section 9.3). The reason is that on such approaches there is no 

sense in which the mathematical structure appealed to in order to explain fractional statistics and 

the AB effect is “approximately instantiated” in a physical system. Accordingly, I consider a 

nominalist rejoinder, which emphasizes that on my alternative non-topological accounts to these 

effects, Leng’s approach to easy road nominalism becomes a viable option once more (Section 

9.4). The main goal is to show how discussions of essential and pathological idealizations have 

consequences for the easy road nominalism debate, and so I suggest that proponents of the 

debate pay closer attention to such case studies from science (Section 9.5). 

I end the dissertation with some final concluding remarks in Chapter 10. 
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2.0  THE PARADOX OF PHASE TRANSITIONS 

As a motivation of sorts, this chapter looks to the concrete study of phase transitions and the 

philosophical debate that revolves around phase transitions in order to identify and explicate the 

Essential Idealization Problem (EIP). Subsequently, Chapters 3-8 will attempt to make 

substantial headway in solving this problem. 

2.1 WHAT IS THE “PARADOX OF PHASE TRANSITIONS”? 

“Phase Transitions” (PT) include a wide variety of common and not so common phenomena in 

which the qualitative macroscopic properties of a system or a substance change abruptly. Such 

phenomena include, among others, water freezing into ice or boiling into air, iron magnetizing, 

graphite spontaneously converting into diamond, and a semi-conductor transitioning into a 

superconductor.  There exists a flourishing scholarly debate with respect to the philosophical 

import one should infer from the scientific accounts of phase transitions, in particular the 

accounts’ appeal to the “thermodynamic limit” (TDL), and regarding how the nature of PT is 

best understood. It has become standard practice to quote the authoritative physicist, Leo P. 

Kadanoff, who is responsible for much of the advances in Renormalization Group methods and 

in understanding PT, in order to better illustrate the puzzlement associated with PT: 
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The existence of a phase transition requires an infinite system. No phase transitions occur 

in systems with a finite number of degrees of freedom. (Kadanoff 2000, 238) 

 

If we add to the above that observations of boiling kettles confirm that finite systems do undergo 

PT, we conclude that a rather odd paradox arises: PT do and do not occur in finite, and thus 

concrete and physical, systems. The above is taken as a basis for warranting such scholarly 

claims to the effect that PT are irreducible emergent phenomena (e.g., Lebowitz 1999, S346; Liu 

1999, S92; Morrison 2012, 143; Prigogine 1997, 45), which necessitate the development of a 

new physical theory (Callender 2001, 550), and for inducing a wide array of literature that argues 

to the contrary (e.g., Bangu 2009; Batterman 2005; Butterfield 2011; Menon and Callender 2013; 

Norton 2012; Wayne 2009). 

 In this section, I would like to build on the works of Mainwood (2006) and Jones (2006) 

to further investigate what exactly is the “paradox” of PT, which is meant to license the type of 

scholarly conclusions and discussions noted above. It seems to me that a natural condition of 

adequacy for the particular claim that PT are emergent phenomena, as well as the more general 

debate that arises, is that there really is a bona fide paradox associated with PT. In other words, it 

really must be the case that a phase transition “is emergent precisely because it is a property of 

finite systems and yet only reducible to micro-properties of infinite systems” (Liu 1999, p. 

S104), or more recently, that “the phenomenon of a phase transition, as described by classic 

thermodynamics cannot be derived unless one assumes that the system under study is infinite” 

(Bangu 2009, 488).9 Accordingly, in Section 2.2, I describe the paradox and suggest that much 

                                                 

9 Even more recently: “A well-known fact about phase transitions is that even though they take place in finite 
systems, they can be accounted for only by invoking the thermodynamic limit 𝑁 → ∞… this happens only in 
infinite systems…” (Morrison 2012, 156-158). 
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of the debate revolving around PT stems from it. In doing so, I appeal to Contessa’s (2007, 52-

55) distinction between “representation” understood as “denotation,” and “faithful 

representation” understood as a type of “guide to ontology” (Sklar 2003, 427).10 Afterwards, I 

will continue to argue for a negative and a positive thesis. My negative thesis is that there really 

is no paradox of phase transitions and that in order to get a bona fide paradox, i.e., a 

contradiction, one must undertake substantial philosophical work and ground a type of 

indispensability argument, akin to the kind appearing within the context of the philosophy of 

mathematics.11 Since none of the proponents of the PT debate undertake such work, and since 

indispensability arguments are highly controversial, I claim that the entirety of the debate, 

insofar as it is grounded in the paradox of PT, is misguided and that the philosophical import that 

has been extracted from the case study of PT with regard to emergence, reduction, explanation, 

etc., is not warranted.  

However, I also have a positive thesis. In Section 2.3 I show how the “paradox” can be 

generalized and arises whenever a scientific account appeals to an “essential idealization”12—

roughly, when a scientific account of some concrete physical phenomena appeals to an 

idealization in which, in principle, one cannot attain a more successful account of said 

phenomena by “de-idealizing” the idealization and producing a more realistic idealization. In 

doing so, I suggest that what is really interesting about phase transitions is the manner by which 

they illustrate the “Essential Idealization Problem” (EIP), which is tightly connected to issues 

arising in the context of scientific representation and scientific realism. The upshot is that, 

insofar as proponents of the phase transition debate have been contributing to the EIP, certain 

                                                 

10 See Chapter 3 for details on “faithful representation.” 
11 See Colyvan (2001, 2015) for more on indispensability arguments and a defense. 
12 Butterfield (2011) and Mainwood (2006) use the term “Indispensible,” Jones (2006) uses “Ineliminable,” and 
Batterman (2005, 2013) uses “Essential.” 
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aspects of the debate have been fruitful. My own contribution to the solution of the problem 

appears in the following chapters (with an emphasis on Chapter 8). 

Before continuing and diving into the paradox of phase transitions, it would do well to 

give a schematic presentation of the theoretical framework in which phase transitions are studied. 

I refer the reader to Kadanoff (2000) and Stanley (1971) for standard textbooks, and to 

Batterman (2002, 2005) and Butterfield (2011, Section 7) for philosophical friendly accounts. 

Here I only sketch the framework. 

Canonical accounts of phase transitions characterize them by non-analyticities (or 

discontinuities) in the partition function (per particle) associated with some system, or (similarly) 

as discontinuities in the various thermodynamic potentials associated with the system such as the 

(Helmholtz or Gibbs) free energy (see Figure 2.1). In this sense non-analytic partition functions 

represent phase transitions since they mark the occurrence of a concrete phase transition (as 

might appear in a lab). Moreover, such representational structure is faithful in the sense that it 

allows for a great deal of sound inferences to be made about an actual system undergoing a phase 

transition. 
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Figure 2.1: Graphs Displaying a First-order Phase Transition. Graph (a) displays the Gibbs free 

energy (or Gibbs thermodynamic potential) 𝐺 as a function of the pressure 𝑃, graph (b) displays 

the Helmholtz free energy (or Helmholtz thermodynamic potential) 𝐴 as a function of the 

volume 𝑉. Graphs (c) and (d) display functional relations between 𝑃 and 𝑉. Based on Stanley 

(1971, 31). 

 

For instance, concentrating on Figure 2.1, one can establish the various functional 

relations between the thermodynamic potentials associated with some system (which can be 

ascertained by taking partial derivatives of the system’s partition function), and properties such 

as pressure, volume and temperature. However, known methods for making such mathematical 

structure available all appeal to the TDL in which the system’s particle number and volume 

diverges. To get a sense for why this is the case, note that a partition function is a sum of non-
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discontinuous analytic functions, but any such finite sum will also be analytic. Yet, such a result 

can be avoided by appealing to a thermodynamic-type limit. For instance, the series ∑ 𝑥𝑛𝑁
𝑛=0 =

1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑁 has no discontinuity for any finite sum. But if we allow for infinite sum 

𝑁 → ∞ the series tends toward 1
1−𝑥

 and has a discontinuity at 𝑥 = 1. We need to take the limit in 

order to get the discontinuity. Analogously, we need to take the TDL in order to allow for non-

analytic partition functions to arise. 

2.2 IDENTIFYING THE “PARADOX” OF PHASE TRANSITIONS 

In his 2001 paper, “Taking Thermodynamics Too Seriously,” Craig Callender presents several 

allegedly true propositions that jointly induce a paradox concerning PT―that concrete systems 

can and cannot undergo PT:13 

 

1. Concrete systems are composed of finitely many particles 𝑁. 

2. Concrete systems display PT. 

3. PT occur if and only if the partition function 𝑍 has a discontinuity. 

4. The partition function 𝑍 of a system with finitely many particles 𝑁 can only display a 

discontinuity by appealing to the TDL. 

5. A system in the TDL has infinitely many particles.14 

                                                 

13 The paradox of PT presented here is not the exact version presented in Callender (2001, 549). Instead, I present 
the paradox in a manner that is more relevant to my discussion. Several authors, such as Mainwood (2006, 223) and 
Jones (2006, 114-7), have undertaken a similar approach.  
14 For precise characterization of various forms of the TDL, see Norton (2012, Sections 3 and 4) and references 
therein. 
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Tenets 1-2 imply that concrete and finite systems display phase transitions while tenets 3-5 imply 

that only infinite systems can undergo a phase transitions. However, contra Bangu (2009), 

Callender (2001), Mainwood (2006), Jones (2006) and others, I contend that no contradiction 

arises by conjoining tenets 1-5. To see this, we must first distinguish between “concrete” PT, on 

the one hand, and “abstract mathematical representations” of them, on the other hand.15 To be 

clear, a “concrete” system would include a physical thermal system of the type we find in the 

world or in a lab, while “abstract mathematical” just refers to pieces of math, e.g., a set with a 

function defined on it.16 Also, I take the term “representation” here to be stipulated denotation 

that is agreed upon by convention.17 For instance, the notation “𝑁” represents “the number of 

particles” (in a given system) in the sense that it denotes the number of particles. Second, notice 

that there are ambiguities with regard to whether the terms “PT” and “partition function” (“𝑍”) in 

tenets 3 and 4 refer to concrete objects, or abstracts mathematical representations of them. As 

concrete objects, PT are concrete phenomena or processes that arise within concrete systems, 

while 𝑍 is some sort of concrete property of such systems. As abstract mathematical 

representations, both PT and Z are just pieces of mathematics that allegedly denote concrete 

objects. To avoid confusion, note that by “abstract PT” I only mean PT in the sense that an 

abstract 𝑍 displays a discontinuity. In the same manner, there is a clear ambiguity concerning the 

physical interpretation, i.e., the concreteness or abstractness, of the TDL. 

                                                 

15 The distinction between concrete and abstract objects is well-known. Abstract objects differ from concrete ones in 
the sense that they are non-spatiotemporal and causally inefficacious. Paradigm examples include mathematical 
objects and universals. See Rosen (2001). 
16 I remain agnostic regarding the possible mind-independent existence of such entities (Platonism), versus their 
mind-dependent existence as fictions of sorts (nominalism). Chapter 9 will bring such issues to the forefront. 
17 See Contessa (2007, 52-55) and references therein. 
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Thus, for example, if “PT” and “𝑍” in tenets 3 and 4 refer to abstract mathematical 

representations, as opposed to concrete objects, then there is no paradox: Concrete and finite 

systems display PT while abstract and finite ones do not. Just because abstract mathematical 

representations of concrete systems with finite N do not display PT, this does not mean that 

concrete finite systems do not display PT. Alternatively, if “PT” in tenets 3 and 4 do refer to 

concrete PT, it also does not immediately follow that there is a paradox. Rather, what follows is 

that concrete PT “occur” when abstract representations of them display various abstract 

properties, such as a discontinuity in 𝑍 and an appeal to the TDL. One might wonder what 

explains this particular correlation between discontinuities in abstract representational partition 

functions and concrete phase transitions. However, prima facie, there is no paradox. 

 The point is that without adding additional tenets that make a claim about the relation 

between, on the one hand, concrete PT occurring in physical systems and, on the other hand, the 

abstract mathematical representation of concrete PT, which arise in scientific accounts of PT, no 

paradox occurs. In the following subsection I will add such additional tenets in hope to further 

shed light on the central philosophical issue that arises in the context of PT. To end, it is worth 

noting that, if my claim about there being no paradox is correct, then the entire debate revolving 

around PT, insofar as it is grounded in the paradox of PT as stated above, is unmotivated and 

misguided. In particular, notice that the various positions expressed with regards to the debate 

can be delineated by identifying which tenet of the paradox is denied or embraced by a particular 

proponent. Authors such as Lebowitz (1999, S346), Liu (1999b, S92), Morrison (2012, 143) and 

Prigogine (1997, 45) can be read as embracing tenet 3 and identifying PT as a kind of non-

reductive emergent phenomenon. Contrasting attitudes have been voiced by Wayne (2009), 

where Callender (2001) and Menon and Callender (2013) explicitly deny that phase transitions 
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are irreducible and emergent phenomena by rejecting tenet 3. Butterfield (2011) can be read as 

both denying and embracing tenet 3, in an effort to reconcile reduction and emergence. Norton 

(2012) can be understood as denying tenet 5.18 I refer the reader to Mainwood (2006, 223-237), 

who presents an exposition of this type of delineation―i.e. a classification of scholarly attitudes 

to the nature of phase transition grounded in the paradox. For my purposes what is important is 

to identify that the large majority, if not all, of the phase transition debate arises from the 

alleged paradox of phase transition. 

2.2.1 The Bona Fide Paradox of Phase Transitions and its Generalization 

The key ingredient necessary to engender a bona fide paradox is for a particular kind of 

correspondence relation to hold between abstract representations and concrete systems. To make 

this point clear we must appeal to a further distinction. While I take “representation” to be 

stipulated denotation, by “faithful representation” I mean a representation that allows agents to 

perform sound inferences from the representational vehicle to the target of representation 

(Contessa 2007, 52-55). That is to say, a faithful representation allows agents to make inferences 

about the nature of the target of representation. Thus, it acts as a kind of “guide to ontology” 

since it accurately describes aspects of the target of representation (Sklar 2003, 425). In other 

words, a faithful representation is one in which the vehicle and target of representation resemble 

each other in some manner, e.g., they share some of the same, or approximately same, properties 

and/or relations. The classic example here is a city-map, which is a faithful representation of a 
                                                 

18 See Norton (2012) for details. In short, Norton differentiates between a strong version of the TDL, in which 
reference to an infinite system is presumed, and a weak version of the TDL, in which the limiting procedure 
corresponds to the behavior of certain sequences of properties and thus there is no reference to an infinite system. 
Subsequently, he urges us to dispense with the strong version and appeal only to the weak version in accounting for 
phase transitions. 
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city because it allows us to perform sounds inferences from the vehicle to the target, i.e., from 

the map to the city. This is so because both the vehicle and the target share various properties. 

For instance, if two streets intersect in the map, then they also intersect in the city. That is to say, 

intersecting streets in the map correspond to intersecting streets in the city. Therefore, the map 

acts as a type of ontological guide accurately describing the city, e.g., there really are 

intersecting streets in the city. It is worth noting that my account here differs from Contessa 

(2007), who isn’t clear about the ontological aspect of faithful representations.19 Contessa (2007) 

differentiates between “epistemic representations,” from which valid inferences can be drawn, 

and faithful ones that permit sound inferences. Whether or not such inferences come with 

ontological baggage depends on whether they are about the target itself. On my account here, 

faithful representations license sound inferences about the target itself and hence they the fix the 

ontology of the target.20 

 With this distinction in hand, if we add a tenet which states that the abstract 

representational discontinuities representing phase transitions are faithful and hence correspond 

to concrete physical discontinuities we do get a genuine contradiction. This is so because if 

systems are composed of finitely many particles, which is the case within the context of the 

atomistic theory of matter conveyed in tenet 2, then it makes no sense to talk of concrete 

discontinuities. The notion of concrete discontinuities presupposes that matter is a continuum so 

that there can be an actual discontinuity. Otherwise, an apparent discontinuity is actually the 

rapid coming apart of particles and not a real discontinuity. Consequently, adding a tenet as the 

one just described amounts to claiming that systems are not composed of finitely many particles 

                                                 

19 I treat the issue in Section 3.5. 
20 See Chapter 3 for a more thorough and detailed discussion. It turns out that the relation between faithful 
representations as surrogates for sound inferences, on the one hand, and guides to ontology, on the other, is a 
complicated subject that deserves more attention than what can be given in this chapter. 
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and so we arrive at the following statement: Concrete systems are and are not composed of 

finitely many particles 𝑁. 

 In a similar manner, one can engender a kind of paradox by reifying the TDL through an 

appropriate correspondence relation. For instance, one could add the tenet that an appeal to the 

TDL, which could be interpreted as a type of continuum limit faithfully representing an abstract 

system, in fact faithfully represents a concrete system.21 Thus, we deduce the claim that concrete 

systems are and are not composed of finitely many particles 𝑁 (in the sense that the ontology of 

concrete systems is both atomistic and that of a continuum, i.e., not atomistic). 

 The source of the problem of PT seems to be that the mathematical structure that 

scientifically represents concrete PT—a discontinuity in the partition function—looks like an 

artifact of an idealization (or an approximation)—the TDL—which is essential in the sense that 

when one “de-idealizes” said idealization, the mathematical structure representing PT no longer 

exists.22 Accordingly, I would like to suggest that what is really interesting about PT is the 

manner by which they might shed light on the nature of scientific representation and idealization. 

In particular, notice that when concerns regarding representations are incorporated, the paradox 

of PT can be generalized by making use of the concept of an essential idealization: 

 

1. Concrete systems include a concrete attribute 𝐴.23 

2. Concrete systems display a concrete phenomenon 𝑃. 

3. 𝑃 is scientifically-mathematically represented by 𝑃’. 

                                                 

21 But see Norton (2012) for an argument to the effect that the so-called “continuum limit” does not correspond to a 
continuum and, in the terminology introduced in Chapter 5, is a case in which no limit system exists. 
22 For a more precise statement, see Butterfield’s (2011, 1123-1130) and Mainwood’s (2006, 216-218) discussion of 
Yang-Lee Theory and KMS states. 
23 By “attribute” here, I just mean “property,” or a relation of some order. I only use attribute, denoted by 𝐴, so as 
note to confuse it with a phenomenon, denoted by 𝑃.  
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4. 𝑃’ can only arise by appealing to an idealizing limit 𝐼. 

5. A system in the idealizing limit I includes an attribute 𝐴≈ such that 𝐴 ≠ 𝐴≈. 

6. 𝑃′ faithfully represents 𝑃. 

 

Tenets 1 and 2 imply that concrete systems are 𝐴 and display 𝑃. Tenets 3-5 imply that 𝑃 is 

scientifically represented by 𝑃’, which presupposes 𝐴≈. Tenet 4 encompasses our essential 

idealization since any de-idealization of 𝐼 will render 𝑃’ nonexistent. So far there is no 

contradiction. But, when one adds the correspondence relation described by tenet 6, a bona fide 

paradox arises: Concrete systems are and are not 𝐴 (since they are 𝐴 and they are 𝐴≈and 𝐴 ≠

𝐴≈). What is important to notice is that tenets 1 and 2 are claims about concrete systems, 

wherein tenet 2 identifies the concrete phenomenon to be scientifically accounted for, while 

tenets 3-5 are claims about abstract scientific accounts of concrete systems, and it is tenet 6 that 

connects the abstract with the concrete via faithful representation, thereby engendering a genuine 

paradox. 

 For illustration purposes, consider how the above general paradox template can be 

instantiated for a case different from phase transitions (one which we study in Chapter 7): 

 

1. Concrete systems are three-dimensional (3D). 

2. Concrete systems display the fractional quantum Hall effect (FQHE) wherein concrete 

fractionally-charged quasi-particles are observed in an electron gas. 

3. Concrete fractionally-charged quasi-particles are represented by anyons. 
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4. The two-dimensional (2D) limit is an essential idealization with respect to anyons in the 

sense that anyons only arise in 2D systems and any de-idealization of the 2D limit 

renders anyons nonexistent. 

5. A system in the 2D limit is 2D and not 3D. 

6. Anyons faithfully represent the concrete fractionally-charged quasi-particles that arise 

in the FQHE. 

 

It follows that concrete systems that display the FQHE are and are not 3D (since they are 3D and 

they are 2D and 3D≠2D). 

The question, of course, is why one would endorse tenet 6. The answer is that without tenet 6 

the entire scientific account of the concrete phenomenon in question seems somewhat mysterious 

to anyone with non-instrumental sympathies. In particular, those with realist intuitions will want 

to unveil the mystery with a correspondence relation that tells us that our abstract scientific 

accounts gets something right about the concrete world. But how would one argue for a 

correspondence relation along the lines of 6? It seems to me that, given the “essentialness” aspect 

of the idealizing limit that arises in tenets 3 and 4, the only way to justify tenet 6 is by an appeal 

to an indispensability argument.24 In other words, an argument to the effect that we should be 

ontologically committed to the existence of objects indispensable to our best scientific theories. 

Said differently, and in the specific cases of PT, since reference to a discontinuity in 𝑍 is 

indispensable to scientific accounts of PT, and since these discontinuities only arise by appealing 

to essential idealizations, we ought to believe in the existence of concrete discontinuities. In the 

following chapters I discuss the issue in detail (especially Chapters 8 and 9). For now, all that is 

                                                 

24 See Colyvan (2001, 2015). 
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important for my account is that since indispensability arguments are non-trivial, and seem 

necessary to support tenet 6, which effectively gives rise to a paradox, it is fair to say that there is 

no paradox of phase transition that can license the type of debate undertaken in the scholarly 

literature. 

 Said differently, in contrast to many of the scholars engaged in the phase transition 

debate, who assume that there is a paradox and then continue to attempt to dissolve it by some 

manner or other, I claim that in order to get a genuine paradox one needs to justify a 

correspondence relation (such as the one appearing in tenet 6) by appealing to an 

indispensability-type argument. Since cogent indispensability-type arguments require serious 

philosophical work and are very much controversial, and since no author engaged in the phase 

transition debate has undertaken such work, it follows that much of the controversy revolving 

around phase transitions is not well-motivated. That is to say, claims to the effect (i) that PT are 

or are not emergent, (ii) that they are or are not reducible to Statistical Mechanics (SM), and (iii) 

that they do or do not refute the atomic theory of matter, are grounded in a frail foundation that 

does not license such significant conclusions. 

One might worry that, contrary to my claims, a bona fide paradox of PT can arise on the 

epistemological level by conceding to a set of tenets from which it is possible to deduce that SM 

does and does not govern phase transitions. The idea here is to argue that “SM-proper” is not 

licensed to appeal to the TDL and so SM-proper does not govern PT. However, the objection 

continues, it is generally assumed that SM is the fundamental theory that governs PT. Thus, we 

have a paradox and the natural manner by which to dissolve it is to argue that SM-proper does 

indeed have the tools to account for PT (Callender 2001, Menon and Callender 2013), or else to 

claim that PT are emergent. In reply, it is far from clear to me that SM-proper is not licensed to 
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appeal to the TDL, and so that it does not govern PT. In fact, there are reasons to think that the 

TDL is part and parcel of SM-proper because (a) it is common practice to appeal to the TDL in 

modern approaches to SM, and (b) the TDL is used in SM not only to account for phase 

transitions but to account for, among others, the equivalence of SM ensembles, the extensivity of 

extensive thermodynamic parameters, Bose condensation, etc. (Styer 2004). In addition, (c) all 

the best scientific accounts of PT, and these include mean field theories, Landau’s approach, 

Yang-Lee theory and Renormalization Group methods, represent PT as discontinuities by 

appealing to the TDL, and (d) the large majority of empirically confirmed predictions of SM, 

within the context of PT and beyond, appeal to the TDL. 

Moreover, even if it were the case that SM-proper is not licensed to appeal to the TDL, 

no contradiction would arise. Rather, it would be a brute fact that SM-proper does not govern 

phase transitions and “SM-with-the-TDL” does. If then it is claimed that the ontologies of SM-

proper and SM-with-the-TDL are radically different so that indeed there is a paradox, we must 

notice that such a claim amounts to no more than reviving the paradox at the level of ontology, 

and hence my discussion in this section bears negatively on this claim. 

Last, the claim that PT are emergent because SM-proper cannot account for them seems 

to replace one problem—PT are not governed by the fundamental theory—with another 

problem—PT are emergent. How does dubbing PT “emergent” illuminate our understanding of 

them or of their scientific accounts? How is this philosophically insightful? Accordingly, for now 

I endorse Butterfield’s (2011) description of emergence as novel and robust behavior, as opposed 

to a failure of intertheoretic reduction of some sort.25 

                                                 

25 In Chapter 8 I will suggest that Butterfield’s (2011) notion of emergence is better saved for a characterization of 
EI. 
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2.3 THE ESSENTIAL IDEALIZATION PROBLEM 

The above discussion points to what I consider to be the central philosophical issues arising out 

of the debate concerning PT: the discussion regarding (i) the need for a correspondence relation 

between our abstract scientific-mathematical representations and concrete systems, (ii) the 

appeal to the concept of “faithful representation,” and (iii) the identification that the phase 

transition paradox can be generalized to any scientific account that appeals to essential 

idealizations, demonstrates that a solution to the following problem is needed: 

 

THE ESSENTIAL IDEAIZATION PROBLEM (EIP) ― We need an account of how our 

abstract and essentially idealized scientific representations correspond to the concrete 

systems observed in the world, we need a characterization of essential idealizations, and a 

justification for appealing to such idealizations, i.e., an explanation of why and which 

indispensable idealizations are successful.26 

 

Insofar as solutions to the EIP can be found in the literature, they pave the road for 

further work to be done, but it is questionable whether they are conclusive and exhaustive.27 My 

                                                 

26 Mainwood (2006, 214-5) also identifies a similar problem but in a context that is different from mine, and his 
solution (238), endorsed by Butterfield (2011), misses the central issue discussed here. 
27 For example, potential solutions to the paradox of PT can be extracted from two recent contributions to the 
debate: Butterfield (2011) and Norton (2012). Butterfield (2011) grants that the TDL is “epistemically 
indispensable” for the emergence of the novel and robust mathematical structure that is used to represent PT, but 
denies that any paradox emerges because the limit is not “physically real.” Using the terminology expressed here, 
the discontinuities in 𝑍 play a representational role but not a faithfully representational one. The question arises: how 
can unfaithful representations work so well? To that end, Butterfield (2011, Section 3) appeals to the distinction, 
also used by Norton (2012, Section 3), between “limit quantities” or “limit properties,” i.e., the limits of properties 
(of a sequence of systems), and a “limit system,” i.e., the system at the limit. He continues to argue that the behavior 
of certain observable properties of concrete finite systems, e.g., magnetization of a ferromagnet, smoothly 
approaches the behavior of the corresponding properties of abstract infinite systems. Moreover, it is the large 𝑁 
behavior, not the infinite 𝑁, which is physically real. 
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Norton (2012) suggest that by viewing the TDL as an “approximation”—an inexact description of a target 
system, instead of an “idealization”—a novel system whose properties provide inexact descriptions of a target 
system, we can defuse any problems that might arise. Within the context of our discussion, Norton’s idea is that no 
paradox can arise if the TDL is an approximation since approximations do not refer to novel systems whose 
ontology might be drastically different from the target system’s ontology, thereby engendering a paradox once we 
add an appropriate correspondence relation. In a similar manner to Butterfield (2011), his justification for appealing 
to such an approximation is pragmatic: the behavior of the non-analytic 𝑍 belonging to an infinite system, is 
approached by an analytic Z corresponding to a finite system with large 𝑁. 

From my viewpoint, although both Butterfield (2011) and Norton (2012) make substantial headway in 
solving the EIP vis-à-vis phase transitions, this cannot be the whole story. First, both accounts seem to ignore that it 
is a mathematical structure that arises only in the limit that is doing the representational work for us. Moreover, the 
accounts seem to suggest that we must revise our definition of PT as occurring if and only if the partition function 
has a discontinuity and substitute it with something along the lines of “PT occurs when various thermodynamic 
potentials portray sufficiently extreme gradients.” The weakness of this suggestion is that we have substituted a 
precise characterization of PT with a vague one.  But more problematic is the idea that we should be able to 
construct a finite 𝑁 system that has, say, a Helmholtz free energy with an extreme gradient, which does not evolve 
into a discontinuity once the TDL is taken. Second, the Butterfield-Norton approach outlined above seems 
incomplete, for it does not leave room for a substantive positive role for idealization to play in science. Instead, 
Butterfield (2011) and Norton (2012) seem to think that idealizations simply ought to be dispensed with. As I will 
argue in Chapter 8, I don’t think this is the case. 

Another possible solution to the EIP, which I reject, can be extracted from Jones (2006) and from Liu 
(1999a, 2001 and 2004a). Jones’ (2006) solution to the paradox is to deny that the TDL, or the “𝑁 → ∞” syntax, 
should be physically interpreted as a system in the continuum or infinite particle limit. That is to say, Jones denies 
that the TDL is an idealization. Rather, he suggests that it be interpreted as an abstraction, in particular, as the limit 
in which surface and boundary effects are ignored. Since ignoring boundary effects does not amount to an outright 
distortion of the target system, there is no clash between the ontologies of target and analogue systems, and so, Jones 
claims, no paradox. Consequently, Jones urges that all cases of idealizations be re-interpreted as abstractions if 
possible, because abstractions appear less problematic philosophically than idealizations. One might wonder though, 
what justification is given for interpreting the TDL in such an unorthodox manner? The answer can be illustrated 
with the following example (Hill 1963, 1, 41-44): Consider the Gibbs free energy per particle 𝑔 ∗= 𝑔(𝑝,𝑇) for a 
single colloidal particle where 𝑝 is pressure, 𝑇 temperature, 𝑁 is the number of particles of the system, 𝐺 is the 
Gibbs free energy, 𝑎(𝑝,𝑇) the surface free energy, and  𝑏(𝑇) and 𝑐(𝑝,𝑇) are terms describing effects due to, among 
other things, rotational and translational motion (Jones 2006, 156):  

𝑔 ∗= 𝑔(𝑝,𝑇) +
1
√𝑁3 𝑎(𝑝,𝑇) +

𝑙𝑙(𝑁)
𝑁

𝑏(𝑝,𝑇)  + 
1
𝑁
𝑐(𝑝,𝑇) 

When one takes the TDL of 𝑔 ∗, the 𝑎(𝑝,𝑇), 𝑏(𝑇) and 𝑐(𝑝,𝑇) terms vanish since 𝑁 → ∞, and g* reduces to: 
𝑔 ∗= 𝑔(𝑝,𝑇) 

Thus, one sees, how when taking the TDL the terms describing surface and boundary effect vanish. However, the 
question remains: does physically interpreting the TDL as an abstraction solve the paradox of phase transitions and 
can it be used to defuse the EIP? I answer in the negative for it remains a brute fact, given Jones’ (2006) solution 
and his take on the paradox, that phase transitions occur only in systems where surface and boundary effects are 
ignored. Once one “de-abstracts” (or “concretizes”) and brings such effects back in, the account of phase transitions 
fails. This, I submit, is just as mysterious as our original problem and so the EIP stands unsolved (only now it might 
be renamed the “essential abstraction problem”).  
 Next, another manner by which to attempt to solve the paradox of phase transitions and the EIP is to argue 
that the TDL is not an idealization, but an approximation, and so it is justified within the mathematical formalism 
itself. Such a technique is considered by Liu (1999a, 2001 and 2004a), and encapsulated by the following statement 
by Gelfert (2005, 4, his emphasis): 
 

One might worry that the qualitative difference between a finite and an infinite system could not be greater 
and, hence, that the thermodynamic limit would necessarily be a wild extrapolation indeed, but given the 
number of particles in a macroscopic system, typically of the order of 𝑁~1023, and the statistical results 
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goal in the rest of the dissertation will be to make substantial headway in solving the EIP. There 

are two components that must be catered to in an exhaustive solution. The first concerns the 

representational relation between theoretical structure and the world, while the second has to do 

with the nature of the idealizations that give rise to the EIP. Chapters 4-8 will deal specifically 

with idealizations and essential idealizations, and Chapter 3, which I turn to next, will 

concentrate on the representational relation between theory and world. 

 

 

 

 

                                                                                                                                                             

that the (relative) error of a statistical average behaves as ~ 1 √𝑁⁄ , the expected accuracy of the 
approximation can be seen to be more than satisfactory for most experimental and theoretical purposes. 

 
However, there is a worry that arises with such an approach and is explained nicely by Liu (1999, S101) so I shall 
quote him in length: 
 

[Consider small bit of mass ∆𝑀 and of volume ∆𝑉, and let the mass density be 𝜎𝑀 = ∆𝑀 ∆𝑉⁄ .] … imagine 
a series of ∆𝑉’s , in which each later ∆𝑉 is smaller than the earlier one. At each ∆𝑉𝑛 , the average mass 
density, ∆𝑀𝑛 ∆𝑉𝑛⁄ , is well-defined and as ∆𝑉𝑛 → 0 (i.e., 𝑛 → ∞): ∀𝜀 > 0,∃𝑁(𝜀) > 0, such that ∀𝑛 >
𝑁(𝜀), |(∆𝑀𝑛 ∆𝑉𝑛) −⁄ 𝜎𝑀| < 𝜀. And since the molecules in the solid are so densely populated, the different 
between the actual average mass density and the limit density is so small as to make the latter a good 
approximation for the former… [And so we say that 𝜎𝑀 = lim∆𝑉→∞ ∆𝑀 ∆𝑉⁄ = 𝑑𝑑/𝑑𝑑.] However, this 
does not seem to apply to phase transitions. The singularities [in various thermodynamic variables] are not 
reached asymptotically toward [the TDL], for (i) at no stage of the process in which 𝑉,𝑁 → ∞, is a 
singularity of a system even roughly defined, (ii) nor is the singularity approached or approximated in any 
proper sense of approach or approximation. 
 

In other words, it is not clear that the notion of approximation can be applied in the case of phase transitions, since 
the novel mathematical structure that is used to represent phase transitions―discontinuities and KMS states―arise 
solely in the limit. So it does not matter that, say, the Helmholtz Free Energies of a finite system and a system in the 
TDL look similar―one has no discontinuity and the other does, and if we take seriously the fact that phase 
transitions are represented by discontinuities, then approximation does not seem like the right interpretation of the 
TDL. 
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3.0  SCIENTIFIC MISREPRESENTATION AND GUIDES TO ONTOLOGY 

In this chapter I argue that two leading accounts of scientific representation―the inferential 

account and the interpretational account—are flawed, and I also sketch the outline of a superior 

content-based account of scientific representation drawn from a comparative interdisciplinary 

analysis of the notion of representation. The content-based account holds that idealizations are 

indispensable for the identification and determination of the representational contents of 

scientific theories. 

3.1 INTRODUCTION 

The subject of scientific representation can be traced historically at least as far back as Charles 

Sanders Peirce’s work on signs in the 1860’s, and has received wide attention from philosophers 

of science in recent years (see below).  Broadly speaking, I will follow Chakravartty (2010, 198-

199) in identifying two main approaches to scientific representation that he calls informational 

theories and functional theories: 

  

The idea [with informational theories] is that a scientific representation is something that 

bears an objective relation to the thing it represents, on the basis of which it contains 

information regarding that aspect of the world… the other broad approach to scientific 
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representation [(functional theories)] comprises theories that emphasize the functions of 

representations: their uses in cognitive activities performed by human agents in 

connection with their targets. The idea here is that a scientific representation is something 

that facilitates these sorts of activities… 

 

Informational theories take the essence of representation to be one of a similarity or resemblance 

relation (Cartwright (1983), Giere (1985, 1988, Chapter 3; 1999a, 1999b, 2004), Godfrey-Smith 

(2006), Teller (2001), Weisberg (2013)), a structure-preserving mapping (of some kind) (da 

Costa and French (1990), French and Ladyman (1999), Swoyer (1991), Pincock (2012)), (or 

more specifically) an isomorphism (van Fraassen (1980, Chapter 3; 1989, Chapter 9), French 

(2003)), homomorphism (Bartels (2006), Lloyd (1994), Miller & Page (2007), Mundy (1986)), or 

partial isomorphism (Bueno (1997), Bueno et al. (2002), da Costa and French (2003, Chapter 3), 

French (2014)).28 On the one hand, functional theories of representation emphasize denotation 

                                                 

28 Various objections have been put forth against informational theories, e.g., Frigg (2002, 2006), Goodman (1972, 
1976), Suárez (1999, 2003). For concreteness, take representation to be a similarity or resemblance relation. 
Similarity does not seem to be a sufficient condition on representation, since any object is similar to any other object 
to some extent. As Goodman (1976, 4) notes: 
 

None of the automobiles of an assembly line is a picture of any of the rest; and a man is not normally a 
representation of another man, even his twin brother. Plainly, resemblance in any degree is no sufficient 
condition for representation. 
 

 It has also been argued that similarity is not necessary for representation. For example―so the claim 
goes―words represent concepts and objects and yet there is no sense in which they are similar to their targets. More 
generally, anything can represent anything else through conventional stipulated denotation, and so similarity is not 
necessary for representation. 
 Another classical line of objection, originally posed by Goodman (1976, 3-10), is that the logical properties 
of the representation relation and the similarity relation do not match up. Similarity is a reflexive, symmetric and, 
arguably, transitive relation. Representation, on the other hand, is non-reflexive, non-symmetric, and non-transitive. 
 In addition, it has been objected that “similarity” and “resemblance” are too ambiguous to count as 
insightful accounts of representations. For instance, Quine (1960, 59) thought the notion of similarity is “logically 
repugnant,” because it cannot be reduced to logical or empirical notions. We may then move on to theories that talk 
about representation as an isomorphism, homomorphism, or partial isomorphism between a representational 
structure and the world. In such a context, it is objected that either the physical world has no “structure” in the 
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(Goodman 1976, Hughes 1997), exemplification (Elgin 2004), inferences (Suárez 2004), 

interpretation (Contessa 2007), and informativeness (Bolinska 2013). 

 However, the general notion of representation as a subject of philosophical inquiry has a 

longer history and is much wider in scope, occupying a central stage in areas such as philosophy 

of mind and cognitive sciences, philosophy of language, and the philosophy of art. Since 

scientific representation is, first and foremost, an instance of representation, it seems prudent to 

pay attention to how the notion arises in various contexts. It is this intuition that will motivate the 

content-based account of representation outlined in this chapter. 

Specifically, drawing again on the case of phase transitions (discussed in Chapter 2), I 

show how certain requirements must be set on any tenable account of scientific representation, 

such as the requirement allowing for misrepresentation (Section 3.2). I then continue to argue 

that two leading accounts of scientific representation―the inferential account (Section 3.4) and 

the interpretational account (Sections 3.5, 3.6)―are flawed for they do not satisfy such 

requirements. Through such criticism, and drawing on an analogy from non-scientific 

representation (Section 3.3), I also sketch the outline of a superior content-based account of 

scientific representation (Section 3.7). What determines the contents of scientific representations 

will turn out to be a substantial philosophical question meriting further study (analogous to 

questions about content determination in the context of linguistic and mental representations).29 

My account amounts to a rejection of two claims commonly found in the literature: (i) 

The pertinent question that must be answered in a philosophical account of scientific 

                                                                                                                                                             

precise sense that there can be an isomorphism, etc., between representation and world, or that “structure” is also 
overly ambiguous. 
 Last, many argue that informational theories do not properly accommodate misrepresentation and 
idealization (Batterman 2010). I discuss this last issue further in this chapter. 
29 See Stich and Warfield (1994) for an anthology of theories of content determination in the context of mental 
representations. Speaks (2014) contains a thorough discussion regarding linguistic content determination. 
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representation per se concerns the constitution question, which asks for the necessary and 

sufficient conditions for a vehicle of representation V to represent a target of representation T.30 

(ii) In answering the constitution question, the main tension in the literature arises between 

functional theories and informational theories.31  

In contrast, (i*) my analysis shows that the deep problem of scientific representation 

concerns answering the following two questions: (Q1) What are the contents of this or that 

representational vehicle (content identification) and (Q2) in virtue of what facts are such contents 

determined (content determination)? Hence, my work attempts to refocus and reorient the debate 

on scientific representation, calling for a substantial research program to be undertaken with 

respect to said questions. Furthermore, (ii*) I defend a thesis by Anjan Chakravartty (2010), 

which states that there is no tension between functional and informational theories, and that two 

approaches are complimentary, by identifying how functional theories mainly target Q1, while 

informational theories concentrate on Q2. My analysis leads naturally to a content-based account 

of scientific representation encompassed in a simple answer to the constitution problem: 

 

[cont.] V represents T if and only if V’s (representational/semantic) contents are about T. 

3.2 SCIENTIFIC MISREPRESENTATION 

In this section I would like to ascertain what requirements must be met by any acceptable 

account of scientific representation, such as the requirement allowing for misrepresentation. To 

                                                 

30 See Callender and Cohen (2006), Contessa (2011), Frigg (2006), Suárez (2010). 
31 See Chakravartty (2010), Contessa (2007, 2011), Suárez (2003, 2004, 2010). 
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that effect, notice that scientific representation concerns scientific methodology. That is to say, 

the manner by which scientists choose to represent the world and phenomena within it, say, 

through scientific theories, laws, equations of motion, graphs, simulations, etc., has to do with 

the methods deemed best fit to satisfy the goals of science (whatever those goals might be). But 

there are also clear epistemological and ontological aspects to scientific representation. Scientists 

routinely use representational structures such as models to make inferences about the world 

(epistemological aspect) and to tell us what it is like (ontological aspect). An example ought to 

add clarity to the matter. Consider the much-debated case study of phase transitions discussed in 

the previous chapter. Recall, in such a context we represent phase transitions as discontinuities 

(or, synonymously for our purposes, non-analyticities) ― i.e., points in which a function is not 

infinitely differentiable ― in the partition function (per particle) associated with a given system, 

where a partition function is a function that contains information about the various microstates 

that a system might occupy along with their probabilities. We say that such discontinuities mark 

(or refer to) concrete phase transitions arising in our system of study. The choice to represent 

phase transition in such a manner is a methodological one. In principle, other options are also 

possible.32 Nevertheless, representing phase transitions in such a manner allows us to gain much 

information regarding their behavior and nature. Consequently, the epistemological and 

ontological aspects of scientific representation enter. For instance, a quick a look at the scientific 

representation of phase transitions through graphical representations of a system’s 

thermodynamic potentials (which can be ascertained by taking partial derivatives of the system’s 

partition function) allows one to infer the functional relation between various potentials such as 

the relation between the Gibbs free energy and the pressure in graph (a) (see Figure 3.1).  One 
                                                 

32 For alternative representations of phase transitions see, for example, Gross and Votyakov (2000), Chomaz et al. 
(2001), and Borrmann et al. (2000). 
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can establish, for instance, how the pressure of a particular fluid varies as the volume is increased 

or decreased, and vice versa (graphs (c) and (d)). However, not every aspect of the diagrams is 

meant to represent. The texture of the paper on which the diagrams are printed, for example, 

does not represent the corresponding “texture” or “feel” of the fluid being represented. We call 

such non-representational properties the artifacts of the representation (Swoyer 1991, 463).   

 Moreover, even those properties of our diagrams that are meant to play a representational 

role, and allow us to make sound inferences about the system represented, do not necessarily tell 

what the system is like. Or, to use terminology introduced by Sklar (2003), certain properties of 

our representations are not ontological guides.33 To see this, notice that all four graphs contain 

discontinuous jumps or kinks (see Figure 3.1). As just mentioned, these discontinuities represent 

the occurrence of a phase transition. However, there is an ontological sense in which the 

discontinuities representing phase transitions fail to represent. Or, rather, they misrepresent the 

system. It is well known that although the most sophisticated accounts of phase transitions 

characterize them as discontinuities (of the kind appearing in the graphs), strictly speaking, such 

sharp discontinuities can only arise in infinite systems (i.e., by taking some limit in which the 

number of particles diverges as discussed in Chapter 2). Still, neither boiling kettles nor iron bars 

undergoing a transition from a ferromagnetic to paramagnetic phase are infinite in extent. 

                                                 

33 To clarify: one might say that ontological guides (or guides to ontology) concern representations (or properties of 
representations) that provide accurate (or approximately accurate) descriptions. I prefer Sklar's (2003) terminology 
of “ontological guides” because descriptions are linguistic entities, while not all representations (or properties of 
representations) are linguistic entities. Similarly, we could also talk about ontological guides as representations that 
resemble the object being represented in some manner. But, again, it is not necessarily the case that accurate 
representations resemble the object being represented, as is clear from accurate (linguistic) descriptions. This is why 
the somewhat amorphous terminology of “ontological guides” is better suited for my purposes. 
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Figure. 3.1: Graphs displaying a first-order phase transition. Graph (a) displays the Gibbs free 

energy (or Gibbs thermodynamic potential) 𝐺 as a function of the pressure 𝑃, graph (b) displays 

the Helmholtz free energy (or Helmholtz thermodynamic potential) 𝐴 as a function of the 

volume 𝑉. Graphs (c) and (d) display functional relations between 𝑃 and 𝑉. Based on Stanley 

(1971, 31). 

 

Accordingly, although the various discontinuities appearing in the graphs represent phase 

transitions in methodological and epistemological senses, they are not guides to ontology in the 

sense that we can validly and soundly infer from the scientific representation of phase transitions 

that such phenomena arise solely in infinite systems. Thus, we need to be able to distinguish 

between a representation that (allows for sound inferences to be extracted but at the same time) 
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misrepresents some system of interest, on the one hand, and a representation that tells us what 

the system is like, on the other hand. 

 The take-home message from all of this is that philosophical accounts of scientific 

representations must satisfy certain requirements. In particular, any tenable theory of scientific 

representation must make room for three notions. The first is that of a representational artifact, 

i.e., we must be able to identify whether or not inferences extracted from a representation are 

licensed. The second and third notions concern misrepresentation and ontological guide, 

respectively.34 In other words, given that a representational structure allows for sound inferences 

to be extracted, we still must be able to make a distinction between representations that 

misrepresent the object being represented and those that act as guides to ontology that tell us 

what the object is like. Recall, part of what I will argue in this chapter is that Suárez’s (2004) 

inferential account and Contessa’s (2007) interpretational account of scientific representation are 

flawed, for they do not satisfy one or more of the aforementioned requirements. In the following 

section I continue to introduce terminology and concepts from the philosophical literature on 

both scientific and non-scientific representation, which will be pertinent for arguments to come. 

                                                 

34 The idea that a tenable theory of representation must allow for misrepresentation is identified also in Stich and 
Warfield (1994, 6-7) in the context of mental representation and by Frigg (2006, 51), Suárez’s (2003) (and also 
implicitly by Hughes (1997)) in the context of scientific representation. 
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3.3 REPRESENTATION 

In a typical case of representation, scientific or otherwise, there are two objects that play 

conspicuous roles: the vehicle and the target.35  The classical example is one of a map, say, of a 

city. The map is the vehicle of representation, and the city is the target. One of the important 

features of this type of representational relation is that a competent agent can use the map to 

reason and make inferences about the city. Following Swoyer (1991) and Contessa (2007), we 

call this process surrogative reasoning, or surrogative inference, and dub these types of 

representations epistemic representations.36 It is worthy to note that we allow surrogative 

reasoning, in principle, to be any kind of reasoning―deductive, inductive, abductive, etc. 

Contessa (2007) further differentiates between valid and sound surrogative inferences. The 

former includes licensed inferences from vehicle to target, while the latter―called “faithful 

representations”―pertains to inferences that are valid and also “true of the target” (51).37  Such 

concepts are important for they are meant to ground a robust notion of representation that 

satisfies the requirements discussed in Section 3.2. In particular, invalid inferences correspond to 

representational artifacts, valid but unsound inferences (leading to false conclusions about a 

                                                 

35 It is also common to call the vehicle the source and the target the object (Suárez 2003, 2004). 
36 Epistemic representations have been called cognitive representations by Suárez (2004) and structural 
representations by Syower (1991). I will adopt Contessa’s (2007) terminology because I think it is most apt. 
37 The distinction can be motivated with the example of using old and outdated, versus new and updated, maps. Both 
allow for valid surrogative inferences about the terrain, but the new and fully updated map will allow for sound 
surrogative inferences, while the outdated map will give rise to inferences that are not sound (although some 
inferences may still be sound). Note that Suárez (2003, 229) takes the “means of representation” to be the relation 
between vehicle and target that must obtain in order to allow for surrogative reasoning. However, given the 
distinction between valid and sound surrogative inferences, it should be clear that terminology of “means” is too 
coarse-grained for a proper investigation. This is so because the means allowing for valid reasoning, and those 
allowing for sound reasoning, might be very different. 
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target) correspond to misrepresentations, and sound inferences correspond to faithful 

representations that might ultimately act as ontological guides.38 

 In contrast, I will argue in the following sections that the above framework does not 

allow for important notions such as representational artifacts and misrepresentation, and is thus 

deficient. Instead, I suggest that we think of epistemic representations as intentional objects that 

come with reference, semantic contents and a representational code. I submit that it is in virtue 

of their intentional (semantic) contents that epistemic representations can be used for surrogative 

reasoning. The purpose of the rest of this section is to introduce and elaborate on the concepts of 

intentionality, contents, reference, and code, by making a connection between discussions of 

mental, linguistic and pictorial representations, on the one hand, and scientific representation, on 

the other. 

3.3.1 Intentionality, Reference, Contents and Code 

The word “intentionality,” as it arises in the literature on the philosophy of mind―not to be 

confused with “intention” as in having a purpose or end―derives from the Latin verb intendere, 

which means directed towards something (Jacob 2010). It is used to convey the directedness or 

aboutness associated with mental states with respect to objects and state of affairs in the world 

(Siewert 2006). However, although non-mental intentionality might very well derive from the 

mental, it seems that representations such as pictorial, linguistic and scientific representations all 

                                                 

38 There is a potential source of confusion here. According to Contessa (2007), “faithful representations” are 
representations that allow for sound inferences, i.e., true conclusions, to be made about the target. However, the 
question of whether or not faithful representations provide accurate descriptions that can be used as ontological 
guides is ignored. This is why I state that faithful representations “might” act as ontological guides. Section 3.6 
elaborates on this issue. There I will argue that we must make a distinction between representations that provide 
sound inferences, and those that can also act as ontological guides.   
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exhibit the phenomenon of intentionality in the following sense: A vehicle is a representation of 

a target only if it is directed toward or about a target (in some sense).39 

 Moreover, we can further extend the connection between mental, linguistic and pictorial 

representations, on the one hand, and scientific representations, on the other. Mental, linguistic, 

and pictorial representations all come with contents. For example, my fear that “Kurt Cobain was 

murdered” contains the (propositional) content that, in fact, Kurt Cobain was murdered. 

Similarly: 

 

For a person to believe that the flower is in the vase is for the person to stand in the 

relation constitutive of believing to a state of the person, a mental representation, which 

means that the flower is in the vase. (Warfield and Stich 1994, 3). 

 

“Means” here is synonymous with representational content. Similarly, consider examples from 

linguistic and pictorial representations. The sentence “Superman is Clark Kent” contains the 

(propositional) content that Superman is Clark Kent, while a painting of Superman flying will 

contain the pictorial content that Superman is flying. In both cases, it is the representational 

content that ascribes properties to Superman (e.g., the ability to fly) and conveys information 

about him (e.g., that he is Clark Kent). And so it is in virtue of contents that one can use the 

vehicle to make inferences and extract information about the target.  

 In addition, in all such representations the vehicle refers to the target of representation. 

For example, the proper name “Superman” and definite description “the flying superhero with 

                                                 

39 This point is not meant to be controversial. I take is as evident that the concept of representation presupposes that 
something is being represented, and it is in this minimal sense that representations are intentional objects. 
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blue tights and a red cape” both refer to Clark Kent.40 What is noteworthy is that on most 

accounts of, say, linguistic representation, it is the contents (along with context and 

circumstances of utterance) that ground reference (Speaks 2014). Similarly, it is the contents of a 

picture (or mental state) of Superman that determines a relation of reference from the picture (or 

mental state) to Superman. The contents are fundamental, while reference (or “denotation”) is 

derivative. 

 Last is the notion of a representational code, which licenses valid inferences from vehicle 

to target. One may think of a code as a function from a vehicle to its contents. For example, a 

simple look at a world map found in “Google Maps” will suggest that Greenland is comparable 

in size to Africa. This of course is not the case (Africa is about fourteen times larger than 

Greenland). This is an example in which a representational vehicle contains surplus features, the 

purpose of which is not to represent. It is important to note that Google Maps does not 

misrepresent the size of Greenland. Rather, the size is an artifact of the vehicle. Whether or not 

features of our vehicle license inferences to be made about the target is decided by what I call the 

code.41 In our example, it is clear that the code is grounded via normative conventions of map 

                                                 

40 I’m setting aside here worries regarding the fact that both Superman and Clark Kent are fictional. I could have 
equally well used an example with non-fictional persons. 
41 Other authors have discussed similar ideas. Bolinska (2013, 224) takes “informativeness” to be what I call a code: 
“Informativeness is the feature of a vehicle that allows a user to draw conclusions about the target system at all.” 
However, she then continues to argue that a vehicle is informative if and only if it is constructed with the aim of 
faithfully representing (i.e., extracting sound inferences about) a target. But this cannot be the case. This should be 
clear from political caricatures in which the representational vehicle constructed aims at misrepresenting the states 
of affairs. That is to say, in such caricatures the idea is that the viewer will understand that the representation 
attributes qualities to its target which the target does not have. See Section 3.5 for more on the issue. 
 Contessa (2007, 55) talks about “scope of representation,” which, on his account, is grounded in an 
“interpretation.”  His account will be discussed in Section 3.4-3.5. Giere (2004, 748) and Teller (2001, 401) at times 
use the word “relevance” for code. But “relevance” is also used as a criterion for constructing and/or choosing a 
particular representational vehicle to begin with, so I will not use “relevance” in this way. Instead “code,” as in the 
“code of representation,” is especially apt to capture the relevant notion of “scope” because of its double meaning. 
On the one hand, a code, understood as a key, legend or guide, is needed in order to make use of a representational 
vehicle for surrogative reasoning. On the other hand, understood as a cryptogram or cipher, the code of a 
representation is not always known and so it must be “deciphered,” so to speak. 
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making. But there are cases, such as tree rings representing the age of a tree, in which the code 

must be deciphered through empirical investigation. There are also cases, such as when deciding 

which operators in quantum mechanics will count as genuine observables and selecting 

superselection rules, in which the code must be deciphered through theoretical investigation. 

 To end, a study of the literature on mental, linguistic and pictorial representations―only 

hinted at in this section―suggests that non-scientific representations are intentional objects that 

come with reference, code and contents. Since scientific representations are first and foremost 

representations, I propose we think about them in the same manner. In the following three 

sections I will illustrate how canonical accounts of scientific representation are flawed―i.e., they 

do not satisfy the requirements mentioned in Section 3.2―because they lack reference to the 

important features discussed here such as code and contents. 

3.4 THE INFERENTIAL ACCOUNT AND REPRESENTATIONAL CODE 

Suárez’s (2004) inferential conception of scientific representation may be formulated as follows: 

 

[Inf.] A represents B only if (i) the representational force of A points towards B, and (ii) 

A allows competent and informed agents to draw specific inferences regarding B. (Suárez 

2004, 773) 
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According to Suárez, “denotation takes care of [representational] force,” so the purpose of 

condition (i) is to ground the idea that a vehicle must refer to its target.42 Condition (ii) relates to 

                                                 

42 First, in order to alleviate potential confusion, note that “denotation” is sometimes used restrictively between 
linguistic entities such as terms and non-linguistic entities such as concrete objects. Here it is used as a labeling or 
referential relation between any object, linguistic or otherwise, and any other object.  
 Second, for the interested reader, I think subject of force merits some additional discussion. Specifically, 
Suárez (2004, 768; 771) takes representational force, or “force” for short, to be an irreducible feature of 
representation, its “essential directionality,” which acts as a necessary condition for something to be a 
representation. However, what exactly is the representational force is more delicate manner. Suárez (2004) describes 
it as follows: 
 

This is the capacity of a source to lead a competent and informed user to a consideration of the target. Force 
is a relational and contextual property of the source, fixed and maintained in part by the intended 
representational uses of the source on the part of agents: No object or system may be said to possess 
representational force in absence of any such uses… The source’s force varies with intended use. In each 
case an informed and competent agent will be led, upon considering the source, towards the correct 
target… (768-9) 
 
The establishing and maintaining of representational force … requires some agent’s intended uses to be in 
place; and these will be driven by pragmatic considerations. (773) 

 
Several remarks are in order.  To begin, as mentioned, insofar as representational force is established and maintained 
by agents and their intended use, it would seem that all that is meant by force is conventionally stipulated 
denotation.  On the other hand, the claim that an “agent will be led, upon considering the source, towards the correct 
target…” (768-9) makes it seem like representational force is related to an agent’s ability to produce valid or sound 
surrogative inference. What else can “correct” mean?  However, Suárez (2004) clearly divorces between the notions 
of representational force and surrogative inference, and sees both as necessary, but independent, conditions on 
scientific representations. 
 In addition, how is it that force is contextual, given that it is fixed by an agent? Presumably what is meant it 
that a particular context guides the fixing of force. But then it would seem that a new context allows for the same 
force to be “re-fixed.” The claim that stipulated denotation changes from context to context based on the whim of 
agents, hides a deep philosophical issue: the phenomenon of reference change in the context of direct reference. This 
is a well-known problem with Kripkean causal-direct theories of reference (Reimer 2009). I will not belabor on the 
issue here. Instead, the point is that, when discussing the issue of representation, one must further elaborate on how 
force can be contextual. For example, it is clear how change of reference is possible if reference is cashed out via 
descriptions, but this is not what authors (e.g., Contessa 2007, Goodman 1976, Hughes 1997) mean when they talk 
about force as denotation in the context of scientific representation. All this is to say that we should be suspicious of 
Suárez characterization of force, which, by his own account, should be first and foremost understood as inherent 
directionality.  
 Last, one may wonder whether denotation characterized as a standing-in-for relation is even sufficient for 
directionality. Directionality is an anti-symmetric relation like representation. It is usually agreed that denotation is 
also an anti-symmetric relation: my name denotes me, but I do not denote it. One the other hand, it would seem that 
a standard example of denotation qua standing-in-for is the phenomenon of change of variables from mathematics 
which is a symmetric relation. For instance, if we want to find roots of sixth order polynomial, 𝑥6 + 9𝑥3 = 8, we 
can let the letter 𝑢 label, “stand in for,” or denote 𝑥3: 𝑢 ≡ 𝑥3. The new equation reduces to quadratic equation 
𝑢2 + 9𝑢 = 8 that is easily solved with the roots 𝑢 = 1, 8 corresponding to the roots 𝑥 = 1, 2. This is a classic case 
of denotation qua standing-in-for. That said, notice that there is nothing about 𝑢 which directs itself to 𝑥3. 𝑢 is not 
about 𝑥3, it is just a place holder. Moreover, we are free at any point in time in the calculation to switch between 𝑢 
and 𝑥3, just as a person who has two names (which they equally embrace) can switch between the two. Thus, 
denotation―again, understood as “standing for,” or labeling, or identification―is a symmetric relation. 
Accordingly, denotation cannot capture the essential directionality of representation. 
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how representations can be used as surrogates to reason about a target. However, as is made clear 

by Contessa (2007, 61) and emphasized by Bolinska (2013, 225-226), Suárez is quiet on how 

exactly users are able to make inferences about a target by using a representational vehicle. 

Moreover, the inferential conception leaves the phenomenon of misrepresentation unaccounted 

for. I would like to add to this critique in order to stress my claim that representations come with 

a code. To that effect, consider the following passage from Suárez (2004, 772; emphasis mine): 

 

Suppose that I stipulate that the paper upon which I am writing represents the sea, and the 

two pens that I use to write represent ships on the sea. This act of denotation allows us to 

correctly draw a few inferences about the ship-on-sea system on the basis of a 

consideration of the pens-on-paper system, such as, for instance, that the trajectories of 

ships may cross and that they may crash. I may have just as well stipulated that the pens 

will represent the sea and the paper will represent the ships; but this correlation seems 

counterintuitive and unnatural. I would argue that it seems so because it is less 

informative, since the relative movements of pens and paper [cannot] allow us, for 

instance, to infer the possibility that the two ships may crash. The ships-on-sea system is 

more objectively characterized by the first denotational arrangement than by the second. 

 

First, I take issue with the claim that just by stipulating that the paper denotes the sea, and the 

two pens denote ships we can then “correctly” draw inferences about the ship-on-sea system. 

How, for instance, may we correctly infer by inspecting the paper and pens that “the trajectories 

of ships may cross and that they may crash?” The answer is that we cannot because there is no 
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representational code licensing any inferences from the vehicle of representation to the target. To 

see this, imagine that instead we stipulate that the paper denotes the color blue and the pens 

denote the numbers three and four. Are we then to infer “on the bases of consideration of the 

pens-on-paper system” that the trajectories of the numbers three and four may cross or crash as 

they traverse on top of the color blue? Or, to use the original example, why didn’t Suárez infer 

that the sea has the same texture of paper that denotes it and that ships are excellent writing 

instruments? The reason is that Suárez, as well as all competent agents submersed in symbolic 

and linguistic norms, implicitly assume that “denotes” brings with it a representational code.43 

But here’s the rub: denotation is a labeling procedure and so it does not come with a set of 

inference rules or norms, i.e., with a code. It is the code that tells us which inferences are valid 

and which are not. In many contexts, the code is implicit. For instance, we know that although a 

map represents structural relations between streets in a city, the texture of the map does not 

represent anything at all. However, in some cases, such as in my example with the numbers 

three, four, and the color blue, a code must be deciphered in order to license any inferences from 

vehicle to target.  

 Certainly, there are numerous occasions in the history of science in which some 

representational structure, say, the square root of negative one, is discarded as a representational 

artifact, only to be later rediscovered as a genuine representational structure, an imaginary 

number. For instance, whereas Einstein abandoned the addition of the cosmological constant (Λ) 

to his gravitational field equations after Hubble’s observation that the universe is not static, 

recent inflationary cosmologies have readopted Λ as the mathematical structure representing the 

                                                 

43 Note that it will not do to try to sneak in the concept of a code through the language of “competent and informed 
user” (Suárez 2004, 773). It is reasonable to demand that an account of scientific representation per se will say more 
about how competent and informed users are licensed to make certain inferences and not others. See Contessa 
(2007, 61) and Bolinska (2013, 225-226) for a similar critique of Suárez. 
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exponentially-fast expansion of the early universe (Earman 2003a, 559-560). Similarly, 

previously discarded negative energy solutions were taken by Dirac to represent particles with 

positive charge and energy (and consequently predicted the positron) (Pashby 2012). 

 This leads us to a second qualm that I have with Suárez’s claims in the above quote. In 

particular, he says that choosing a different vehicle, in which the pens denote the sea and the 

paper denotes the ships, we arrive at a “less informative” representation.  However, pace Suárez, 

without a representational code in place both representational systems—arrived at through mere 

stipulated denotation—are equally uninformative. Let us be clear here on what “denotation” is, 

lest we place too much philosophical burden on the notion. Denotation is synonymous with (or 

taken to be a type of) reference, which is the primitive “standing for” or labeling relation 

(Goodman 1976, Chapter 1). Paradigmatic examples include proper names. To say that a pen 

represents a ship by the mere act of stipulated denotation is to say that the pen labels or stands in 

for a ship. However, it does not follow that any of the properties or relations that apply to the 

pen also apply to the ship. This point is analogous to John Norton’s claim that there is no 

“principle of similarity” that states “that things that share some properties must share others” 

(2011, 2). Only I wish to take things a step further by emphasizing that denotation alone does not 

even ground that things share the first set of properties to begin with, let alone any other ones. It 

should be clear then that mere denotation, without a representational code, does not license any 

inferences to be made from vehicle to target. Accordingly, Suárez’s inferential account satisfies 

none of the requirements needed for a tenable theory of scientific representation. 

 One might object, however, that since Suárez’s (2004) account is deflationary-in-spirit, 

my criticism can be avoided. After all, Suárez claims that “representational force” (roughly, a 

directedness from vehicle to target) and surrogative reasoning are aspects of scientific 
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representation that are necessary, not sufficient, for representation (773). It might very well be 

that one must also adopt or decipher code, but this will be done on a case-by-case basis.  In reply 

I’d like to make two points. First, as stated above, it is not my intention here to produce a knock-

down argument against the inferential account. My goals are to illustrate the need for a 

representational code that licenses valid inferences from a vehicle to target, and to emphasize 

that the mere act of denotation will not do the trick. These goals have been met. Second, it seems 

reasonable to demand that an account of scientific representation will say more about how 

competent and informed users can use vehicles for surrogative reasoning, and how a vehicle 

gains its representational force.44 To that effect we can remain deflationary-in-spirit, stating that 

a detailed account of content determination and code decipherment might necessitate a case-by-

case study, but also be explicit about the need for a representational code and contents. 

Accordingly, we might reformulate the inferential account as follows: 

 

[Inf.*] A represents B only if (i) the representational contents of A determine that A 

refers to B, and (ii) A allows competent and informed agents to draw specific inferences 

regarding B through a deciphered representational code. 

 

                                                 

44 See footnotes 42 and 43. I would add that Suárez’s (2010) presentation of his own (2004) inferential account 
amends for some of the faults identified here. For example, Suárez (2010, 98) takes a different line on 
“representational force,” emphasizing that it is established by the norms that govern scientific practice, instead of 
mere convention or stipulation. In this context, the inferential account to scientific representations is more analogous 
to inferential accounts found in the philosophy of language literature (e.g., Brandom 1994). Clearly, it is beyond the 
scope of this dissertation to treat the details of this amended inferential account of scientific representation. 
However, I will say that from my perspective such inferential approaches, especially in a scientific context, seem 
like a case of putting the cart before the horse: It is in virtue of the fact that a representational vehicle represents a 
target that the former can be used to make inferences about the later, not the other way around. That said, a true 
inferentialist would not be moved by such intuitions, and it would be interesting to see if a thorough and developed 
inferential account (such as Brandom’s (1994)) can be extended to scientific case studies. 
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 It is worthwhile here to connect back to our motivating example from Section 3.2 (and 

Chapter 2) of phase transitions. The inferential account tells us that discontinuous partition 

functions (or thermodynamic potentials)45 represent concrete phase transitions because the 

former both refer to (i.e., the representational force is directed at) and can be used to make 

inferences about the latter. However, it is silent on how such discontinuities refer to phase 

transitions and can be used for surrogative reasoning, especially in light of the fact that there are 

no physical discontinuities in the concrete systems undergoing phase transitions. Moreover, as I 

have argued, without a deciphered representational code, it is not possible to make any 

inferences from the discontinuities to the phase transitions. In the following section I will 

emphasize the role of contents in representation and the importance of misrepresentation. 

3.5 THE INTERPRETATIONAL ACCOUNT AND REPRESENTATIONAL 

CONTENTS 

The notion of a representational code is similar to Contessa’s (2007) notion of interpretation in 

the sense that they both license inferences from vehicle to target. However, Contessa’s account, 

which comes in general and specific versions, is deficient. The general version, which states that 

an interpretation takes place when a user takes facts about the vehicle to stand in for (i.e., denote) 

facts about the target, sheds little light on why such a process can license inferences from vehicle 

to target. This is the same criticism I put forth against Suárez in the last section. For instance, I 

can take this sentence to denote the mass of the electron and the sentence that came before it to 

                                                 

45 That is to say, the kinks and jumps in graphs a-d in Figure 3.1. 
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denote the charge of the electron, but it does not seem to follow that I can make any valid 

inferences about the electron or its charge from this interpretation. We turn then to the specific 

version, which Contessa calls an “analytic interpretation” (57). I will argue that an analytic 

interpretation does not allow for misrepresentation so that it does not satisfy the requirements set 

on theories of scientific representation.46 My argument comes in two parts, for there are two 

different senses in which misrepresentation is missing from the interpretational account. First, I 

will suggest that on an analytic interpretation all valid inferences will also be sound. If I’m 

correct about this, it will also be clear that analytic interpretation does not capture the logic of 

surrogative reasoning—as will be illustrated with an example from diagrammatic representation 

below—thereby adding another reason to be skeptical of the account. Second, even if the 

interpretational account is sensitive to the distinction between valid and sound inferences, it is 

still insensitive to the distinction between misrepresentations and ontological guides (accurate 

representations) when both structures allow for sound inferences. 

 The following two subsections will be dedicated to presenting Contessa’s position and 

illustrating its shortcomings, respectively, via the first sense of misrepresentation. Limitations of 

the interpretational account concerning the second sense of misrepresentation will be presented 

in Section 3.6. The upshot is that the distinction between valid and sound inferences, and the 

distinction between misrepresentation and ontological guides, cannot be gained without 

appealing to representational content. 

                                                 

46 To emphasize: such criticism ought to be worrisome, for the “key advantage” of Contessa’s account is that “it 
renders the concept of epistemic representation applicable not only to instances of truthful or accurate 
representation, but to those of misrepresentation as well,” as is identified, for instance, by Bolinska (2013, 222). 
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3.5.1 Contessa’s Analytical Interpretation 

To begin, it is necessary to explicate Contessa’s characterization of an analytic interpretation in 

detail, and so I quote him in verbatim (2007, 57-58):47 

 

An analytic interpretation of a vehicle in terms of the target identifies a (nonempty) set of 

relevant objects in the vehicle (Ω𝑉 = {𝑜1𝑉 , … 𝑜𝑛𝑉}) and a (nonempty) set of relevant objects 

in the target (Ω𝑇 = {𝑜1𝑇 , … 𝑜𝑛𝑇}), a (possible empty) set of relevant properties of and 

relations among the objects in the vehicle (𝑃𝑉 = {𝑛𝑅1𝑉, … ,𝑛𝑅𝑚𝑉 }, where 𝑛𝑛 denotes an 𝑛-

ary relation and properties are construed as 1-ary relations) and a set of relevant 

properties and relations among the object in the target (𝑃𝑇 = {𝑛𝑅1𝑇 , … ,𝑛𝑅𝑚𝑇 }), … 

  

A user adopts an analytic interpretation of a vehicle in terms of a target if and only if 

 

1. The user takes the vehicle to denote the target. 

2. The user takes every object in Ω𝑉 to denote one and only one object in Ω𝑇 and every 

object in Ω𝑇 to be denoted by one and only one object in Ω𝑉. 

3. The user takes every 𝑛-ary relation in 𝑃𝑉to denote one and only one relevant 𝑛-ary in 𝑃𝑇 

and every 𝑛-ary relation in 𝑃𝑇to be denoted by one and only one 𝑛-ary relation in 𝑃𝑉. 

 

Furthermore, the above account is meant to underlie the following set of inference rules (61): 

 
                                                 

47 For simplicity, I have extracted Contessa’s (2007) talk of functions, and this includes his “Rule 3” (57-58, 61-62). 
My claims can be easily extended from objects, properties, and relations to include functions as well. 
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Rule 1: If 𝑜𝑖𝑉 denotes 𝑜𝑖𝑇according to the interpretation adopted by the user, it is valid for 

the user to infer that 𝑜𝑖𝑇 is in the target if and only if 𝑜𝑖𝑉 is in the vehicle, 

Rule 2: If 𝑜𝑖𝑉 denotes 𝑜𝑖𝑇, . . ., 𝑜𝑛𝑉 denotes 𝑜𝑛𝑇, and 𝑛𝑅𝑘𝑉 denotes 𝑛𝑅𝑘𝑇 according to the 

interpretation adopted by the user, it is valid for the user to infer that relation 𝑛𝑅𝑘𝑇 holds 

among 𝑜𝑖𝑇, . . ., 𝑜𝑛𝑇 if and only if  𝑛𝑅𝑘𝑉 holds among 𝑜𝑖𝑉, . . ., 𝑜𝑛𝑉, … 

 

Last, but importantly, the concept of validity is cashed out as follows (p. 62): 

 

If a user adopts analytic interpretation of the vehicle, then an inference from the vehicle 

to target is valid (for that user according to that interpretation) if and only if it is in 

accordance with Rule 1 [and/or] Rule 2 … 

 

That is to say, the interpretational account is superior to the inferential account in the sense that it 

does distinguish between valid and invalid inferences, and so it can accommodate the notions of 

artifact and code.48 

                                                 

48 It is worthwhile to word a worry regarding a possible circularity in Contessa’s account. The qualification 
“relevant” throughout Contessa’s discussion is a serious fault of the account. This is so because in order to adopt an 
interpretation, one must know what the “relevant” properties are. However, in order to know what the relevant 
properties are, it seems one would need to first adopt an interpretation. As an example consider again a map. It is 
valid to infer that if two streets cross in the map they also do so in the city, but it is not valid to infer that if the 
streets are several inches long in the map then they are also several inches long in the city. However, before 
adopting a representational code, which is what an analytic interpretation is meant to ground, how is one to know 
that streets crossing in the map are relevant (while street lengths are not relevant) properties to adopt for the 
purposes of valid inferences? The point is that the qualification “relevant” might make Contessa’s account circular: 
one needs to adopt an analytic interpretation (or code) in order to know what are the “relevant” objects and 
properties in the vehicle and target, but in order to adopt an analytic interpretation (or code) one needs to first know 
what are the “relevant” objects and properties. Accordingly, Contessa ought not to let too much depend on such a 
qualification.  
 Another noteworthy worry is the fact that if we flesh out the word “denotation” by “a mapping from 
objects, properties, and relations in the vehicle to the target,” then adopting an analytic interpretation reduces to 
identifying an isomorphic relation between vehicle and target. It is questionable, then, whether the interpretational 
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3.5.2 The Need for Representational Contents 

I will argue that on an analytic interpretation all valid inferences are also sound, so that the 

account leaves no room for misrepresentation in this sense. Moreover, the logic of surrogative 

reasoning, in which an agent first investigates a vehicle, and only later extracts inferences about 

the target, is not accounted for. My purpose is to stress the need for representational content. I 

will be considering two examples that illustrate my claims. The first focuses on diagrammatic 

representation, while the second focuses on both pictorial and mental representation. 

 Consider the following vehicle and target of a diagrammatic representation (see Figure 

3.2): 

 

 Figure 3.2: An equilateral triangle (the vehicle) and an obtuse triangle (the target). 

 

The vehicle diagram is of an equilateral triangle with three equal sides 𝐴, 𝐵 and 𝐶, with 

corresponding angles 𝛼,𝛽, and 𝛾. The target diagram is an obtuse triangle with unequal sides 𝐴’, 
                                                                                                                                                             

account’s claim to novelty can withstand scrutiny when compared to, say, Swoyer’s (1991) structural account of 
scientific representation. 
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𝐵’ and 𝐶’, with corresponding angles 𝛼′,𝛽′, and 𝛾′. Let us adopt an analytic interpretation of the 

vehicle in terms of the target such that 𝐴 denotes 𝐴’, 𝐵 denotes 𝐵’, and so on. Given the fact that 

triangle 𝐴𝐴𝐴 is a triangle with equal sides we can deduce the following property belonging to 

triangle 𝐴𝐴𝐴 (or “relation” among the angles): 𝛼 = 𝛽 = 𝛾. That is to say, after investigating the 

vehicle, we conclude that the angles interior to triangle 𝐴𝐴𝐴 are all equal, and the question is 

what valid inferences we may conclude about our target using our vehicle. One might think that 

a simple substitution will avail that 𝛼′ = 𝛽′ = 𝛾′, which would turn out to be a valid but unsound 

inference that misrepresents the target. However, this is not the case because by adopting an 

analytic interpretation we have to take the relation 𝛼 = 𝛽 = 𝛾 to denote some relation in the 

target. The relation 𝛼′ = 𝛽′ = 𝛾′ is not one that appears in the target, and so we cannot let 

𝛼 = 𝛽 = 𝛾 denote 𝛼′ = 𝛽′ = 𝛾′ for two reasons.  

First, Contessa’s own account does not allow for such identification for he claims that the “set of 

relevant properties and relations among the object” must be “in the target” (p. 57).49 Second, it is 

not possible for a relation in the vehicle to denote a relation in the target that doesn’t exist. 

Instead, possible denotable relations might include 𝐵’ > 𝐶’ > 𝐴’ or 𝛽 > 𝛾 > 𝛼. Accordingly, 

we’ll be able to validly infer from the fact that 𝛼 = 𝛽 = 𝛾, that 𝐵’ > 𝐶’ > 𝐴’ or 𝛽 > 𝛾 > 𝛼. This 

is problematic, again, for two reasons. First, as mentioned before, analytic interpretation leaves 

no room for misrepresentation in the sense that some inferences are valid but not sound. Second, 

the account distorts the logic behind surrogative reasoning (or diagrammatic reasoning in our 

case) in which a user can extract inferences about a target by investigating the vehicle. I’ll 

elaborate on this second point below, but first a word in reply to a potential objection. 

                                                 

49 Also see Rule 2 above: the “relation 𝑛𝑅𝑘𝑇 holds among 𝑜𝑖𝑇, . . ., 𝑜𝑛𝑇” where 𝑜𝑖𝑇, . . ., 𝑜𝑛𝑇 are objects in the target 
(61). 
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 The reader might worry that it may be possible to give a more charitable reading of 

Contessa’s account, or amend it in an appropriate way, so that we may make a distinction 

between valid inferences that are sound and those that are not sound. Given the type of logical 

framework used by Contessa to present his analytic interpretation, so the complaint goes, surely 

we can speak of, say, stipulated relations that are syntactically true of some target but not 

semantically true of the particular target at hand. In other words, we allow a relation in the 

vehicle to denote a relation that is “in the target” in the sense that we stipulate that such a relation 

exists. For instance, considering Fig. 3.2, the relation 𝛼′ = 𝛽′ = 𝛾′ might not be in the target in 

the sense that is not semantically true of the target, but we may still stipulate that the general 

relation equality-between-two-objects is in the target, and adopt an analytic interpretation to infer 

via Rule1 and Rule 2 that indeed 𝛼′ = 𝛽′ = 𝛾′. This will be a valid inference that is not sound, 

thereby allegedly allowing for a notion of misrepresentation. However, this is not the case. If 

indeed such an inference procedure is possible then by the same account we could adopt an 

interpretation of a target in terms of a vehicle in which both are identical, and still extract 

inferences that are valid but not sound.50 But if the vehicle and target are identical, then a valid 

but unsound inference is not a mark of misrepresentation and, again, the interpretational account 

is insensitive to misrepresentations. 

 Moreover, to return to the second point from above, the interpretational accounts gets the 

logic of surrogative reasoning wrong. To see this, consider a similar diagrammatic representation 

from Euclid’s Elements (proposition 32) (see Figure 3.3): 
                                                 

50 For example, let the target of Figure 3.5.1 be both the vehicle and the target of representation and adopt an 
analytic interpretation in which 𝐴′ in the vehicle denotes 𝐴’ in the target, 𝐵′ in the vehicle denotes 𝐵’ in the target, 
and so on. Also let the greater than relation > denote the equality relation =. It will follow from the fact that 
𝛽 > 𝛾 > 𝛼 in the vehicle, that 𝛽 = 𝛾 = 𝛼 in the target. This is a valid inference that is not sound. But since the 
vehicle and the target are identical this is not a case of misrepresentation. How can a vehicle misrepresent a target if 
the two are identical? In other words, on this reading (of Contessa’s (2007) account) valid but unsound inferences do 
not correspond to misrepresentations. 
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Figure: 3.3 A triangle 𝐴𝐴𝐴 with a line 𝑙 parallel to side 𝐴𝐴 (the vehicle), and an almost identical 

figure in with the exception of side 𝐴𝐴 bent outward as an arc. 

 

 One can use the vehicle diagram to demonstrate that the interior angles in the triangle 

𝐴𝐴𝐴 are equal to two right angles via steps 1-4 below.51 We can further adopt an analytic 

interpretation in which the vehicle diagram denotes the target diagram, and A denotes A, B 

denotes B, and so on, with a denoting a’ and c denoting c’. Similarly, we can let relations 1-4 

within the vehicle denote relations 1’- 4’ within the target (i.e., 𝑐 = 𝑒 denotes 𝑐’ > 𝑒, etc.): 

 

1. 𝑐 = 𝑒 (alternate interior angles)  1’.     𝑐’ > 𝑒 (by construction) 

2. 𝑎 = 𝑑 (by prop. 29)    2’.     𝑎’ > 𝑑 (by construction) 

3. 𝑏 + 𝑒 + 𝑑 =two right angles (by prop. 13) 3’.     𝑏 + 𝑒 + 𝑑 =two right angles (by prop. 

13) 

4. Thus, 𝑎 + 𝑏 + 𝑐 =two right angles  4’.     Thus, 𝑎′ + 𝑏 + 𝑐′ > two right angles 

 

                                                 

51 See Burton (2011, 156), from which this example is taken, for a proof. 
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It will follow then that by working through the steps 1-4 of Euclid’s proof for proposition 32, we 

can demonstrate that 𝑎′ + 𝑏 + 𝑐′ > two right angles. But this is absurd. The logic of surrogative 

reasoning (in the context of Euclidean proofs with diagrammatic representations) allows us to 

reach conclusions about a target through the investigation of a vehicle, in virtue of the fact that 

vehicle is about the target in an appropriate way. Instead, what we had to do is investigate both 

the target and the vehicle and then define various denotational relations. Recall, proposition 32 is 

not meant to be about the one triangle that appears in the proof but about all triangles. It is 

because triangle 𝐴𝐴𝐴 “represents” any generic triangle that we can infer that all such triangles 

have interior angles equal to two right angles. If triangle 𝐴𝐴𝐴, along with its properties and 

relations, were to solely “denote” generic triangles a la analytic interpretation, then we would not 

be able to make such an inference any more than we can infer that the internal angles of the 

object in the target diagram (in Fig. 3.3) are greater than two right angles (𝑎′ + 𝑏 + 𝑐′ = two 

right angles). 

 In order words, contra Contessa (2007, 66) it is not “in virtue of their interpretation of the 

vehicle in terms of the target that users would be able to perform surrogative inferences from 

vehicle to the target.”52 Rather, users can perform surrogative reasoning in virtue of taking the 

vehicle and its components to both refer to (denote) the target, but also be about the target in a 

manner determined by the representational contents of the vehicle (as was made clear by the 

discussion of non-scientific representation in Section 3.3). 

                                                 

52 Recall that for Contessa “interpretation” is a term of art. Colloquially, we might say that it is in virtue of an 
interpretation that a user is able to perform surrogative inferences from vehicle to target so long as the interpretation 
is determined by the representational contents of the vehicle. See Bolinska (2013, 227-228) who also complains 
about Contessa’s odd use of the term and appeals to the “ordinary” notion of interpretation to capture the concept of 
“informativeness” (which for her is a term of art). 
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 Consider a second example of a pictorial representation of a white cube (Figure 3.4) and 

the mental representation associated with perceiving the pictorial representation below. 

 

Figure 3.4. A white cube. 

 

How do we know that this is indeed a pictorial representation of a white cube, and not, say, of a 

green sphere? How do we know that our perceptual mental representation is of a white cube and 

not a green sphere? According to Contessa (2007), the above pictorial representation can be 

either, depending on which interpretation one chooses. Certainly, as intelligent and purposive 

agents we can let cubical objects denote spherical ones, and let whiteness denote greenness. Such 

a stipulation will allow agents to communicate about green spheres by appealing to white cubes. 

However, the reason we know that the pictorial representation is about a white cube is because 

we see a white cube in the picture.53 Similarly, our perceptual mental representation of a white 

cube includes the intentional contents of “white cube.” To be clear, there is no doubt that some 

hidden or implicit norms are in play. Nevertheless, unless one has a well-developed theory of the 

normativity of determination of representational content, the most plausible view is that said 

representation contains the content “white cube.” What determines the representational content 

                                                 

53 See Hopkins (2005) and Wollheim (1987) on “seeing-in.” 



 61 

of scientific representations is a substantial question that merits serious philosophical inquiry―in 

the same manner that analogous questions regarding pictorial, linguistic and mental 

representations have given rise to flourishing research programs. But what is certain is that there 

is more than just stipulated denotation and interpretation at play.54 

 The problem is that on the analytic interpretational account, it is not possible to attribute 

properties and relations to the target via the vehicle. Rather, one can only denote. Said 

differently, the account only leaves room for reference, but not for content. The problem is well-

known in other contexts in which representations are discussed. For instance, consider Frege’s 

                                                 

54 To emphasize this last point, consider Contessa (2007, 59-60) on the matter: 
 

For example, one does not need to believe that the string from which a certain pendulum hangs is massless 
in order to adopt an interpretation of the ideal pendulum according to which the string is massless. The 
knowledgeable user knows perfectly well that, since no real string is massless, the inference, though valid, 
is not sound… 

 
But how is it possible to make such a “valid” inference? The ideal pendulum is an object in the ideal pendulum 
system―the vehicle―that denotes a massive pendulum system―the target. Call this object 𝑜1𝑉. As an object in the 
vehicle it must denote an object in the target a la an analytic interpretation. Say it denotes the massive pendulum, 
which we label 𝑜1𝑇. The ideal pendulum’s zero mass is a property of an object in the vehicle (and according to the 
presented notation it would be 1𝑅1𝑉, which we label by 𝑝1𝑉 for simplicity). Again, this property in turn must denote a 
property of an object in the target system, 𝑝1𝑇. Let’s say it denotes the massive pendulum’s mass. Rule 2 then tells us 
that it is valid to infer that 𝑝1𝑇 holds for 𝑜1𝑇 if and only if 𝑝1𝑉 holds for 𝑜1𝑉. And so from the fact that the ideal 
pendulum is massless we can validly infer, and soundly I might add, that the massive pendulum is massive. 
However, I do not see how we can ever make a valid inference that was not sound, e.g., the massive pendulum is 
massless. In order to make such an inference we would have to do more than just denote the massive pendulum by 
the massless one, or to denote the pendulums mass with zero mass. 
 Again consider Contessa’s (2007, 62) own elaboration of his inferential rules:  
 

According to Rule 2, from the fact that the circle labeled “Holborn” is connected to the tab labeled 
“Bethnal Green” by a colored line, one can infer that a direct train service operates between Holborn and 
Bethnal green station. 

 
Let us assume that there is no direct train service operating between Holborn and Bethnal Green. Is the above a valid 
but unsound inference? I claim the answer is “no,” i.e., all reasoning that is valid will be sound, leaving no room for 
misrepresentation or error.  The reason is that in such a scenario the colored line connecting “Holborn” and “Bethnal 
Green” will either not denote anything in the target and so no valid inference can be made. Or, instead, it will 
denote, say, the fact that the two stations are not directly connected. In such a case, a valid inference would be: 
 

According to Rule 2, from the fact that the circle labeled “Holborn” is connected to the tab labeled 
“Bethnal Green” by a colored line, one can infer that a direct train service does not operate between 
Holborn and Bethnal green station. 
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(1892/1960) famous example regarding the difference between the “the Morning Star” and “the 

Evening Star.” Both phrases refer to the same object; they both denote the planet Venus. But the 

phrases differ because they have different semantic contents. The interpretational account a la 

analytic interpretation leaves no room for the content of representational vehicles. Consequently, 

the account does not satisfy the requirement that a tenable theory of representation must allow 

for misrepresentation. 

 To clarify, my complaint is not meant to be a superficial one about what must denote 

what when an interpretation is adopted by a user for the purposes of substantiating a code that is 

meant to license inferences from vehicle to target. Rather, my point is that reference and 

denotation are notions that cannot bear the semantic weight that comes with representations. This 

is clear from a mere glance at other types of representations such as pictorial, linguistic and 

mental. The “Goodmanian” turn, which takes “denotation to be the core of representation”―a 

motto that is suggested by the claims made by Suárez (2004) and Contessa (2007)―must be 

abandoned. 

3.6 MISREPRESENTATION, FAITHFUL REPRESENTATION, AND GUIDES TO 

ONTOLOGY 

In this section I want to emphasize that there is a second sense in which the interpretational 

account does not capture the notion of misrepresentation. It is insensitive to the distinction 

between accurate representations (ontological guides) and inaccurate representations 

(misrepresentations) so long as both can be used to obtain sound inferences to the same degree 

(approximately). This is clear from the fact that Contessa dubs representations that allow for 
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sound inferences “faithful representations,” whether said representations are misrepresentations 

or not. Consider an illustrating example. Political caricatures clearly misrepresent various states 

of affairs in the world but such inaccuracies are used by a competent user to extract many sound 

inferences about a target vis-à-vis information communicated to the user by the caricaturist. On 

the interpretational account such representations are faithful for they allow for valid and sound 

surrogative reasoning―they are not misrepresentations. But, indeed, we know that caricatures 

are misrepresentations, and so there is a second sense (different from the first) in which the 

interpretational account fails to allow for misrepresentations for it is insensitive to the difference 

between accurate and inaccurate representations in such contexts. 

 Lest we stray too far from our aim of gaining insight into scientific representation, it 

would do well to attempt to connect back with examples from science. The paradox of phase 

transitions (discussed in Chapter 2 and Section 3.2) is a case in point. Both phase transitions 

(mis-)represented as discontinuities (in the partition function or thermodynamic potentials 

associated with a target system) and phase transitions realistically represented by sharp enough 

but continuous changes allow for sound surrogative reasoning. That is to say, both 

representational structures are (in principle) empirically adequate. However, given a background 

of scientific facts and theories—in this case, the atomic theory of matter—we say that one 

representational structure is a misrepresentation while another is not.  

 Similarly, scientists represent water as a collection of molecules for the purposes of 

investigating Brownian motion, but then they also represent water as continuous fluid when 

studying water flowing through pipes.55 The problem with Contessa’s notion of faithful 

representation is that both the water-as-a-collection of molecules and water-as-a-continuous-fluid 
                                                 

55 This example is also used by Teller (2001) and Giere (2004) to stress representations can have different purposes 
based on an agent’s (scientist) intentions. 
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can act as representations that are faithful (in Contessa’s sense) to the same degree. Yet, the 

question then arises: “[Is there] no principled way of distinguishing conceptualization meant to 

represent how things really are with a system and these meant merely to describe ‘useful 

fictions’ about the system” (Sklar 2003,  430)? Or, similarly, is there no way to identify those 

misrepresentations “required to make available structures that will persist in, and underlie the 

empirical success of future theories?” (Ruetsche 2011,  337) 

 Furthermore, the problem can become even more extreme when we consider that in 

certain instances misrepresentations are more informative and lead to better predictions, as in the 

case of predicting and explaining the critical exponents associated with universality classes of 

systems portraying critical phenomenon (Batterman 2002, 2005). To be clear, this occurrence of 

superior predictions and explanations through misrepresentation is widespread and arises in 

varied phenomena such as the breaking of liquid drops, modeling shocks, and explaining the 

rainbow (Batterman 2002, 2005, 2009).56 This means that on Contessa’s (2007) terminology 

misrepresentations can be more faithful than ones that describe a target accurately in the sense 

that a misrepresentation might allow for more sound inferences to be extracted from a vehicle. 

But this is highly counterintuitive. How can a misrepresentation be more faithful than an 

admittedly (approximately) accurate representation? Accordingly, I submit that the 

interpretational account does not capture the notion of misrepresentation—again, it is insensitive 

to the differences between misrepresentations and guides to ontology that are equally well suited 

for extracting sound inferences—and I suggest then that we alter the terminology introduced by 

                                                 

56 In order to prevent objections of the kind raised in Butterfield (2011), Callender (2001), Menon and Callender 
(2013), and Norton (2012) against Batterman (2002, 2005, 2009), note that I am not claiming here that such 
misrepresentations or idealizations are necessary. That is a claim that I will qualify and defend in Chapters 4-8. 
Rather, my claim is that there are many instances in which scientists aim at misrepresenting aspects of the world in 
order to extract sound inferences from a vehicle to a target. 
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Contessa (2007) to better capture our commonsensical intuitions on the matter. Let us say that 

while some epistemic representations allow for valid and sound inferences to be made about the 

target―we might call these sound representations―still, faithful representations are those 

which represent a target accurately. Faithful representations act as guides to ontology, i.e., they 

contain information about “how things really are” as Sklar (2003, 430) explains:  

 

[T]here is something very different between characterizing an atomic nucleus as a 

complex system of neutrons and protons, with these composed of quarks bound by 

gluons, and with the neutrons and protons bound by a van der Waals residual effect of the 

quark-quark binding, and a characterization of a fissionable nucleus as a “liquid drop” 

held together by a “surface tension.” 

 

The former description is at least a part of the structure “on the road” to our desired 

ultimately theory. The latter is intended, from the start, as nothing more than a weak 

model adequate only in the most restricted ways to characterizing what is really going on. 

(Sklar 2003, 439) 

 

 One might object a la Teller (2004, 440) that a distinction between representations qua 

useful fictions and representations qua ontological guides is artificial since “both are 

idealizations.” However, this misses the point, for I’m not claiming that some representations are 

not idealized. After all, faithfulness and accuracy are matters of degree. Rather, I first claim that 

a tenable theory of scientific representation needs a conceptual and terminological framework 

that allows us to differentiate between those aspects of a vehicle that we think tell us what the 
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target is like―the ontological sense of scientific representation―and those aspects that solely 

license sound inferences―the epistemological sense of scientific representation. Second, I 

submit that the relation between faithful representations and sound representations requires 

further scrutiny. As I see it, it is by conducting research into the determination of 

representational contents in the context of scientific representations that we can further our 

understanding of when sound representations imply faithful ones and vice versa. 

 Another worthwhile objection to consider may be stated as follows. In cases that I 

discussed, it is clear that scientists take misrepresentations to be informative. However, this does 

not go against either Contessa (2007) or Suárez (2004). Rather, scientists taking less informative 

representation to be more accurate or faithful would be a problem for their accounts. Yet, how do 

scientists know that the less informative representations are more faithful representations other 

than by means of either inference or interpretation-cum-inference? In reply, two remarks are in 

order. First, if the interpretational and inferential accounts are insensitive to the distinction 

between misrepresentations and faithful ones, then this does go against both accounts, full stop. 

This is so because the accounts do not satisfy the requirements set (in Section 3.2) on a tenable 

account of scientific representation. 

 Second, the cases that I am discussing (e.g., phase transitions and critical phenomena) are 

exactly cases in which a scientific representation is less informative (in the sense that we cannot 

extract many sound inferences), but also more faithful. For example, characterizing phase 

transition without appealing to discontinuities would allow for a more accurate representation of 

phase transitions. However, such characterizations may sometimes be mathematically intractable 

and so offer little to no information about a target system. It is well known, for example, that 

appealing to limiting procedures in which various variables diverge allows us to make the 
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mathematical models representing some concrete target system more tractable so as to extract 

much information about such targets.57 In the context of phase transitions, I mentioned that the 

misrepresentations appealed to include taking the limit in which the number of particles diverges. 

Nevertheless, scientists know that such representations are less faithful because of empirical 

observations (to the effect that boiling kettles are not infinite) and the vast empirical evidence 

supporting the atomic theory of matter.58 

 In conclusion, I would like to emphasize what I take to be correct about the inferential 

and interpretational accounts, and identify how my view diverges from Suárez (2004) and 

Contessa (2007). I agree with Suárez (2004) that emphasis ought to be placed on the inferential 

practices related to scientific representation via surrogative reasoning. However, I think more can 

and must be said about how scientific representations allow for surrogative reasoning. From my 

                                                 

57 See, for instance, Batterman (2002, 2005, 2009), Butterfield (2011) and Norton (2012), and Chapters 4-8, all of 
which discuss such limiting procedures. 
58 A somewhat lengthy intermission might be called for at this point. It is a working assumption in the literature that 
phase transitions are faithfully represented by a finite-dimensional state space. I have justified this assumption by 
appealing to the atomic theory of matter, but one could argue that on field theoretic accounts of matter this is simply 
not the case. If (say) quantum field theory (QFT) is true, then matter is just excitations in quantum fields so that 
there is a sense in which even a boiling kettle is infinite (and this is true also for local QFT). To me this seems a bit 
extreme. We take phase transitions to be phenomena that are accounted for by classical statistical mechanics. We do 
not think about phase transitions as we do about, say, quantum non-locality. While the latter is clearly foreign to the 
classical world, and arises solely as a quantum effect, the former is not. Moreover, the fact that we can represent 
phase transitions without appealing to infinite-limit misrepresentations―e.g., as in for example, Gross and 
Votyakov (2000), Chomaz et al. (2001), and Borrmann et al (2000)―seems to confirm the idea that phase 
transitions ought to be accounted for within a classical world-picture. See Callender (2001) and Menon and 
Callender (2013) for a defense of the claim that phase transitions are governed by classical statistical mechanics. 
 As a retort, one might argue that misrepresentations analogous to the ones in the phase transitions case arise 
also in the context of spontaneous symmetry breaking in QFT. In such a context, it certainly is questionable whether 
infinite limits correspond to accurate or inaccurate representations. See Earman (2004, 191-192) who discusses the 
issue and is a proponent of the view in which infinite limits are not misrepresentations in the context of QFT. 
However, even in here, he admits, there is room for dispute (since what is the ontology of QFT is a disputed matter). 
 In any case, what is brought to the fore here is an interesting observation to the effect that the identification 
of representational artifacts versus genuine representational structures, and misrepresentations versus faithful (or 
accurate) representations, depends on the background theories and auxiliary assumptions that one is dealing with. 
While finite-dimensional state space representations of systems are faithful representations in the context of theories 
with a (finite) corpuscular ontology, such representations become misrepresentations when one moves to field 
theories. From my perspective, this point strengthens one of the general themes of this paper: deciphering a 
representational code and determining representational contents necessitates both empirical and theoretical 
investigation, and is part and parcel of the scientific enterprise. This point is emphasized in Section 3.7.  



 68 

perspective, it is in virtue of having the semantic contents that they indeed have, that vehicles can 

be used as inferential surrogates for targets of representation (and not the other way around). 

 Next, on a general or loose conception of “interpretation,” I think Contessa (2007) is 

correct to note that it is necessary and sufficient to adopt an interpretation of the target in terms 

of the vehicle in order to distinguish between valid and sound surrogative inferences. To that 

extent, my view expands on his by noting that “adopting an interpretation” includes deciphering 

a code and determining semantic contents (in addition to adopting symbolic conventions and 

learning the language of the particular science one is working with). However, I have argued that 

the specific conception of interpretation that Contessa (2007) elaborates on―the so-called 

analytic interpretation―is neither necessary nor sufficient for scientific representation for it 

would deem representations insensitive to misrepresentation and ontological guides. 

 We may end then by summarizing the content-based account of scientific representation 

sketched in this chapter and elaborated on in Section 3.7 as follows: 

 

[cont.] A vehicle V is an epistemic representation of a target T if and only if V’s 

representational (semantic) contents—determined vis-à- vis a representational code that 

is adopted and deciphered by intentional agents—are about T. 

3.7 THE ROAD AHEAD 

In this chapter I have identified requirements that must be set on any tenable account of scientific 

representation (Section 3.2), drawn on an analogy from non-scientific representation (Section 

3.3), and put forth a critique of two canonical accounts of scientific representation (Sections 3.4-
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3.6), in order to motivate the idea that we should think of scientific representations—in 

particular, epistemic representations that are used for surrogative reasoning—as intentional 

objects that come with a representational code and contents (and reference determined by 

contents). I argued that denotation alone can not bear the semantic weight that comes with a 

philosophically robust notion of representation. Consequently, I showed that a framework 

appealing to code and contents was needed in order to satisfy requirements set on any tenable 

theory of scientific representation, specifically, to allow for the notions of artifacts, 

misrepresentations, and faithful representations that can act as ontological guides. My hope is 

that such insight will pave the way for superior accounts of scientific representation, and in this 

section I’d like to reflect on both the main work left to be done, and on the relation between the 

work conducted in this chapter and the larger issue dealt with in this dissertation, namely, the 

EIP. 

To begin, in “General Semantics,” David Lewis wrote: 

 

I distinguish two topics: first, the description of possible languages or grammars as 

abstract semantic systems whereby symbols are associated with aspects of the world; and, 

second, the description of the psychological and sociological facts whereby a particular 

one of these abstract semantic systems is the one used by a person or population. Only 

confusion comes of mixing these two topics. (Lewis 1970, 19) 

 

In other words, and taking into account the idea that representation are intentional objects with 

semantic contents, there are really two different important questions that one must answer in an 

investigation of scientific representation: 
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Q1 Content-Identification: What are the contents of this or that representational 

vehicle? 

Q2  Content-Determination: In virtue of what facts is the content of this or that 

representational vehicle determined? 

 

With respect to Q1, deciphering and adopting a representational code, which is a function 

from vehicle to contents, will allow for an answer. This is where emphasis on interpretation, 

demonstration, computation, inferential practices, etc., by functional theories of representation 

takes center stage. With respect to Q2, since such a question has given rise to flourishing 

literature in the realms of pictorial, linguistic, and mental representation, and so I submit that an 

analogous research program in needed in the realm of scientific representation. What is clear is 

that informational theories (such as those emphasizing a similarity relation) are targeting Q2, and 

so are not in tension with functional theories.  

Thus, the central issues we are left with after my analysis concern code decipherment and 

content determination of scientific representations. Recall that code and contents are what allow 

for discrimination between representational artifacts, misrepresentations and faithful 

representations. We may then ask how such discrimination may be attained. Certainly, a full 

answer to this question cannot be given with armchair reflections. We must instead look to actual 

scientific theories and case studies. However, it seems to me that some general remarks can be 

made. In particular, that code decipherment and content determination can be ascertained by 

looking to science itself, and that both are part and parcel of the scientific enterprise: 
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Science is replete both with schemes intended to truly characterize “how things are” and 

with other schemes intended only as knowingly false but useful models of the real 

situation. But only science itself can do the job of explicating the intended purpose of its 

own descriptive and explanatory schemes... there is no a priori way of deciding which 

descriptive schemes are to be taken as straightforward and which as useful fictive modes 

of characterizing the world… And much useful and sometime[s] very hard and very 

brilliant science is devoted to just that question. Figuring out which “fictional” schemes 

to apply and understanding why, in the light of the nonfictive science they can work so 

well, is quite often an ongoing scientific project. (Sklar 2003, 413, 438) 

  

 Accordingly, it is empirical and theoretical investigation that will allow us to discriminate 

between genuine representational structures and descriptive fluff, and between 

misrepresentations and faithful ones. For an example of the former consider how Aharonov and 

Bohm (1959) showed that the gauge freedom associated with the electromagnetic vector 

potential, which was taken to be no more than an artifact of the representational framework of 

classical electrodynamics, played a genuine representational role in the context of quantum 

mechanics leading to novel empirical predictions.59 

 An example of the latter concerns the belief, prior to Einstein’s Special Theory of 

Relativity (STR), that the Galilean addition law was a faithful representation of the states of 

affairs regarding relative motion between observers: 𝑉𝐴,𝐶 = 𝑉𝐴,𝐵 + 𝑉𝐵,𝐶 where 𝑉𝑋,𝑌 is to be read 

as “the velocity of 𝑋 with respect to 𝑌.” Einstein’s theoretical investigation of Maxwell’s 

electrodynamics, along with the unsuccessful empirical attempts to discover the luminiferous 

                                                 

59 This, at least, is the orthodoxy on the issue. I discuss the AB effect in detail in Chapter 6. 
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ether, led him to develop the relativistic addition law: 𝑉𝐴,𝐶 = (𝑉𝐴,𝐵 + 𝑉𝐵,𝐶)(1 + (𝑉𝐴,𝐵)(𝑉𝐵,𝐶)
𝑐2

)−1. 

Such a development exemplified that the original Galilean addition law was a misrepresentation 

of the state of affairs, while the relativistic law was a faithful one. Similarly, another empirically 

confirmed consequence of STR, the relativity of simultaneity,60 along with Minkowski’s 

geometrical reformulation of STR led to the abandonment of the representation of space and time 

as two independent entities—a misrepresentation—and the adoption of the view that faithfully 

represents space and time as a single entity, a space-time: 

 

The views of space and time which I wish to lay before you have sprung from the soil of 

experimental physics, and therein lies their strength. They are radical. Henceforth space 

by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind 

of union of the two will preserve an independent reality. (Minkowski 1908/1952, 75) 

 

 A more detailed analysis of code decipherment and content determination of scientific 

representations necessitates a more fine-grained study of significant scientific case studies. What 

should be clear is that decipherment and determination are activities dependent on empirical and 

theoretical investigation, constituent of the scientific method, and involve more than a 

sophisticated web of evermore complex stipulated denotational arrangements. 

To end, I would like to reconnect with the larger issue discussed in this dissertation, 

namely, the EIP. I have attempted in this chapter to make headway on the part of the EIP that 

discusses the relation between abstract mathematical structure (the vehicle) and physical 

                                                 

60 That is to say, that observers undergoing relative inertial motion will disagree on simultaneity judgments 
regarding spatially separated events. 
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phenomenon in the world (the target) by outlining, elaborating, and endorsing a content-based 

approach to scientific representation. The connection to idealizations—discussed more 

thoroughly in the following chapters to which I turn to next—comes through the idea that 

theoretical investigation is necessary in order to decipher a code that determines and identifies 

representational contents. Such theoretical investigation, as will be emphasized in Chapter 8, 

necessitates exploring the full and possible structure and representational capacities of a theory. 

But an appeal to highly idealized, abstract mathematical structure, which, at best, misrepresents 

the world, is essential and absolutely indispensable for such investigation. I now turn to a general 

discussion of the philosophical literature on idealizations. 
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4.0  IDEALIZATIONS IN SCIENCE 

In this chapter I present a critical survey of the current state of the literature on idealizations. The 

main upshot will be that the sound principle is indeed the standard and most plausible 

justification for appealing to idealizations in science. I also identify how the pervasiveness of 

idealizations, abstractions and approximations in science raises various foundational problems. 

The punch line is that insofar as the sound principle fails for cases wherein appeals to essential 

idealizations are made, the problems identified reemerge with a vengeance, so to say. 

4.1 INTRODUCTION 

Idealizations are ubiquitous in science. Examples include, among others, the frictionless plane, 

the simple pendulum, point particles and test particles, nonviscous fluid flow, infinitely thin 

wires and infinitely long cylinders or planes, a perfect vacuum, non-interacting particles, 

perfectly rational agents and isolated populations. However, there is no agreed upon uniform 

terminology or taxonomy used either by scientist or philosophers.  

 This chapter has three main goals. The first is to introduce the notion of an idealization, 

and important associated notions such as abstraction and approximation, as they arise in the 

scholarly literature on the subject (Section 4.2). The second is to present a critical survey of the 

current state of the literature on idealizations (Section 4.3). The third goal is to sketch how the 
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pervasiveness of idealizations, abstractions and approximations in science raises various 

foundational problems (Section 4.4). 

 Roughly, many such problems can be defused by appealing to some “de-idealization” or 

“concretization” scheme, in which more realistic scientific representations and models are 

accompanied by improvements in predictive output, as well as improvability of other theoretical 

merits such as explanatory and descriptive power. Accordingly, the main upshot of this chapter is 

that the most plausible and typical justification for appealing to idealizations, abstractions and 

approximations in science is that it is possible, in principle, to implement some sort of standard 

de-idealization or concretization scheme, thereby dispensing with such idealizations. Said 

differently, idealizations must abide by what has been come to be called Earman’s sound 

principle (or sound principle for short): 

 

EARMAN’S SOUND PRINCIPLE ― While idealizations are useful and, perhaps, even 

essential to progress in physics, a sound principle of interpretation would seem to be that 

no effect can be counted as a genuine physical effect if it disappears when the 

idealizations are removed. (Earman 2004, 191) 

 

Or, taking into account insights presented by Laura Ruetsche (2011, 336): 

 

EARMAN-RUETSCHE SOUND PRINCIPLE ― If a scientific account (theory, model) 

uses an idealization to predict or explain an effect which disappears when the idealization 

is removed then either the effect is an artifact of the idealization or else (if experiment 

confirms the effect) the theory is inadequate. 
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Part of the punch line of this chapter, especially Section 4.4 which discusses problems associated 

by appealing to idealizations, is that insofar as de-idealization schemes fail for cases of 

“essential” or “indispensable” idealizations, then problems associated with appeals to 

idealizations reemerge with a vengeance, so to speak. 

In what remains of this introduction, I discuss some important terminology related to 

“idealizations.” Namely, from a conceptual perspective, the term “idealization” is strongly 

associated with terms such as “abstraction,” “approximation,” “model,” “representation,” and 

“approximate truth.” “Abstractions” and “approximations” are sometimes used interchangeably 

with “idealizations.” “Models” and “representations” tend to be the objects that are regarded as 

idealized, abstracted or approximated in some sense, but some specifically discuss theories and 

laws as the idealized objects. “Approximate truth” is then, arguably, the relation that holds 

between idealized objects and the world.  

 However, idealizations are interesting in their own right. Accordingly, in as much as it is 

possible, in what follows I present conceptions and taxonomies of idealizations and do my best 

not to discuss in any detail the related concepts mentioned. Instead, I’ll introduce necessary 

concepts for discussion without elaboration, and I refer the reader to the appropriate literature 

(also see referenced therein).61 Scientific representations and representations in general were 

discussed in detail in the previous chapter. Here I’ll only outline some helpful terminology so 

that this chapter can be read independently. The reader familiar with the terminology can jump 

ahead to the next section. 

                                                 

61 For Abstractions see Cartwright (1983; 1989, Ch. 5), for a general treatment of Models see Frigg & Hartmann 
(2012), for Mary Hesse’s approach to models and analogies in science see Koperski (2006), and for Approximate 
Truth see Oddie (2007). 



 77 

 The important ingredients of scientific representation include the following: A 

representational vehicle with representational contents that represent a target or target system, an 

agent (or group of agents) that is (are) undertaking in the activity of representation, and a 

representational code that allows agents to use the representational vehicle to make valid 

inferences about the target, the process of which is called surrogative reasoning. When a vehicle 

allows for valid surrogative inferences we call this an epistemic representation, and when such 

inferences are sound, i.e., true of the target, we call this a sound representation. If, further, the 

sound representation acts as an accurate representation, a kind of guide to ontology, which tells 

us what the target is like, we call this a faithful representation. Laws and scientific principles, 

along with specific agent intention and context dependent details, guide the construction of 

scientific representations. Models are just types of scientific representations, in fact, scientific 

theories, laws, and principles can also be thought of as types scientific representations. 

4.2 IDEALIZATIONS, ABSTRACTIONS AND APPROXIMATIONS 

The complexity of the world coupled with the limited and finite cognitive abilities of human 

beings, as well as intuitions of parsimony—which dictate that scientific accounts of phenomena 

should include only those features that are relevant for its manifestation—compel scientists to 

appeal to idealizations, abstractions and approximations. Such appeals concern the formulation 

of theories, laws, scientific models and representations, as well as the application of these objects 

to the concrete world. As already mentioned, the concepts of idealizations, abstractions and 

approximations are tightly intertwined, with no agreed upon uniform terminology or taxonomy 

used either by scientist or philosophers. Nevertheless, it is fair to say that, roughly, the three 
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notions can be differentiated as follows: Idealizations include deliberately distorting some target 

system thereby creating an idealized analogue system that can be thought of as a false 

description of the original target system, but can also be in some sense approximately true. The 

main feature of this notion of idealization is that it introduces simplifying falsehoods. For 

example, Laymon (1995, 354) writes that the “most natural attitude to take toward idealizations 

… is to assume that their use introduces distortion or bias into the … analysis,” Morrison (1999, 

38 fn. 1) claims an idealization is “a characterization of a system or entity where its properties 

are deliberately distorted in a way that makes them incapable of accurately describing the 

physical world,” and Cartwright (1989, 187) understands an idealization as a conceptual 

reorganization of complicated aspects of a target system with ones that  “are easier to think 

about, or with which it is easier to calculate.” As is clear from the above, some authors 

emphasize that idealizations are simplifications, while other concentrate on idealizations as 

distortions. So, for example, Frigg & Hartman (2012) characterize idealizations as “deliberate 

simplification of something complicated,” and continue to call idealizations that involve 

distortions, “Galilean Idealizations,” while those that involve “stripping away” details, 

“Abstractions” (or “Aristotelian Idealizations”). Other authors, e.g. Jones (2005), Weisberg 

(2007a, 2013), and Lind (1993) take idealizations to be distortions, allowing for some to be 

simplifications while others not. Shaffer (2012, 19-20), on the other hand, insists that 

idealizations must be accompanied by simplifications. He argues that the process of merely 

distorting a model can render it significantly more complicated than the original, and such 

scenarios should not be considered idealizations because they do not respect our pre-theoretical 

intuitions. See Hooker (1994) for a similar characterization of idealizations that also emphasizes 

the mathematical aspects. Historically, explicit and repeated use of idealizations as simplified 



 79 

distortions is traced back to Galileo (Clavelin 1974, Koertge 1977, McMullin 1985). That said, 

such notions arise already as far back as Plato’s theory of forms, in which the concrete world is 

an approximate representation of an idealized world of forms. 

 Abstractions, on the other hand, have been most emphasized by Cartwright (1983; 1989, 

Ch. 5), and have been also called “negligibility assumptions” (Musgrave 1981), “method of 

isolation” (Mäki 1994), and “Aristotelian Idealizations” (Frigg & Hartman 2012). The idea here 

is that, rather than introducing falsehoods into our idealization, we instead strip away properties 

of the target system and ignore them (for similar characterizations, see also, for example, 

Brodbeck 1968, 460; Chakravartty 2001, 327; O’Neil 2000, 67-68). In other words, the 

abstracted analogue system is not, strictly speaking, a false description of the target system. 

Rather, it is partially true but not completely (or exhaustively) true.  

 Consider an example that illustrates the interpretive difference between the notions of 

idealizations and abstractions: We can think of a frictionless plane as an idealized system that 

stands in an idealization-relation to, and is approximately true of, a concrete plane with little 

friction, or is a false description of a plane with much friction. The frictionless plane is an 

idealization because we take it to be a distortion of the original concrete plane, which introduces 

a simplification. In contrast, we can instead think of a frictionless plane as an abstracted system, 

if we identify that friction is not essential to whatever phenomenon we are interested in and so 

we abstract it away in thought. The abstracted system stands in a relation of partial truth to the 

original concrete system. Historically, the method of abstraction (abstracting away the details) 

can be traced back to Aristotle and his philosophy of mathematics (Mendell 2004). 

 



 80 

 Approximations are meant to be a purely formal matter that is legitimized within the 

context of mathematics itself and the particular case at hand. Consider an example. It is a 

mathematical fact that a real-valued function 𝑓(𝑥) that is infinitely differentiable at a real 

number 𝑎 can be expanded as an infinite power series, this being the Taylor series of the 

function: 

𝑓(𝑥) = �
𝑓𝑛(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛
∞

𝑛=0
= 𝑓(𝑎) +

𝑓′(𝑎)
1!

(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ 

(where 𝑓(𝑎) is the function’s value at a, 𝑓𝑛(𝑎) is the 𝑛-th derivative with respect to 𝑥, 𝑛! is the 

factorial of the integer 𝑛 that is summed from zero to infinity, and the first three terms of the 

series have been written out.) Let us consider the particular case of the function 𝑓(𝑥) = 𝑒𝑥 and 

expand it about the real number 𝑎 = 0: 

𝑒𝑥 = �
𝑥𝑛

𝑛!

∞

𝑛=0
= 1 +

𝑥1

1!
+
𝑥2

2!
+
𝑥3

3!
+ ⋯ 

So far, our results have been exact. There have been no appeals to approximations. Now let us 

calculate the values of 𝑒𝑥 when 𝑥 = 2 for the exact case and compare it to various finite parts of 

the Taylor series. The exact value is 𝑒2 = 7.389056099 … …, where values for the 𝑛 =

0, 1, 2, 3, 4, 5, 6 cases are 1, 3, 5, 6. 3�, 7, 7.26� , 7.35�, respectively (for example, the calculation for 

the last term: 𝑒2 ≈ 1 + 21

1!
+ 22

2!
+ 23

3!
+ 24

4!
+ 25

5!
+ 26

6!
= 7.35�). The claim that 𝑒2 is approximated 

by 7.35� is grounded by the above procedure of expansion, while the further claim that this 

approximation is “good” or “good enough” will depend on the context of the case at hand. For 

example, if the observational accuracy of some empirically obtained measurement is such that 

there is ±1 error associated with said measurement, then 6. 3�, 7, 7.26�, 7.35� are all “good” 

approximations of 7.389056099 because they differ from it by ±1.  On the other hand, a 

calculation of asteroid trajectory might necessitate accuracy of several digits beyond the decimal 
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point for which none of the above approximations are “good approximations.” From a 

philosophical perspective, the main point is that, on the face of it, issues concerning physical 

interpretation need not arise. Accordingly, we tend to think that approximations do not pose any 

serious philosophical problems. 

 A noteworthy question (Ladyman 2008, 360-361), which has not received enough 

attention in the literature, is what distinguishes legitimate idealizations, abstractions and 

approximations from downright impossibilities? For example, idealized perfectly reversible 

Carnot engines, which could never be built in practice, are part and parcel of the theory of 

thermodynamics, while a perpetual motion machine (PPM) is absolutely prohibited by the same 

theory. There seems to be a distinction drawn here between a contingent possibility—possible 

but not practical—and a necessarily impossible one. However, it is not at all clear what grounds 

a distinction in which a Carnot engine is considered an idealization, while a PPM is considered 

an impossibility. One possible (conjectural) answer, appealing here to Norton’s (2012) analysis 

of idealizations and approximations (see Chapter 5 and below), is that a Carnot engine arises as a 

structure that is asymptotically approached in some idealizing limit, while a PPM cannot be 

reached via such a limiting procedure. 

This naturally connects with an additional distinction made recently by Norton (2012) 

between idealizations/abstractions and approximation.62 The idea is that, whereas 

idealizations/abstractions bring with them novel reference―in particular, they refer to an 

idealized/abstracted analogue system―approximations are just “inexact descriptions” (Norton 

2012, 209): 

 
                                                 

62 Similar distinctions have been alluded to by Butterfield (2006,  24-5), Teller (1979, 348-9), McMullin (1985, 
255). 
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An approximation is an inexact description of a target system. It is propositional. 

An idealization is a real or fictitious system, distinct from the target system, some of 

whose properties provide an inexact description of some aspects of the target system. 

 

It may be worthy to note that it is not clear to me how an object can be propositional, i.e., have 

semantic content, but yet not refer to anything (concrete or abstract). It seems to me that such an 

issue must be treated before the distinction can be embraced. 

4.3 TAXANOMIES OF IDEALIZATIONS 

The purpose of this section is to convey to the reader what are some of the most influential 

taxonomies of idealizations. It will be shown that the standard and most plausible justification 

for appealing to idealization is given by the sound principle, i.e. that in principle idealizations 

can be de-idealized away. We begin by discussing McMullin’s (1985) classic paper on 

idealizations, and continue to present what can be thought of as a more modern treatment of 

McMullin’s approach, a framework presented by Weisberg (2007a, 2013). Afterwards, we 

sketch another classical approach by Nowak (1980), and follow that up with a corresponding 

modern formulation by Shaffer (2012). 
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4.3.1 McMullin on Idealizations 

One of the most influential taxonomies of idealizations appeared in Ernan McMullin’s 1985 

paper “Galilean Idealization.” A Galilean Idealization is taken to signify the “deliberate 

simplifying of something complicated (a situation, a concept, etc.),” which may involve a 

distortion or may just leave aside some details (the former concept is what we have called an 

“idealization” and latter is we called “abstractions” in Section 4.2) (McMullin 1985, 248). 

According to McMullin (see Figure 4.1), “Mathematical idealization” imposes a mathematical 

formalism on a situation, and so the process of representing a concrete system in the outside 

world via mathematics already instantiates an idealization (McMullin 1985, 254). A “Galilean 

Idealization” comes in two flavors, the first, “Causal Idealization,” is one in which the target of 

idealization is the “problem-situation itself,” while the second, “Construct Idealization, is one in 

which the target of idealization is the “conceptual representation of the object.” In other words, 

whereas, in the case of Causal Idealization, the target system is some concrete system, in the case 

of Construct Idealizations the idealization seems to inhabit two different levels: the target of 

idealization is a representation of a concrete system, that is to say, the target is some analogue 

system. The analogue system itself, arguably, is some sort of idealized representation of the 

original system, but we’ll leave this complexity aside since McMullin does not attend to it.  

Examples of Construct Idealizations might include simplified diagrams, as in geometry 

for instance, or mathematical equations. Construct Idealizations are created in two different 

manners and so they, in turn, also come in two forms, depending on whether idealized features 

are known to be relevant, in which we have a “Formal Idealization,” or irrelevant, in which we 

have a “Material Idealization.” So for example, a frictionless plane that models the behavior of a 

ball rolling down a plane is a Construct Idealization of the Formal Idealization kind, since 
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friction is known to be relevant for the motion of the ball. However, if we further ignore the 

internal structure of the rolling ball or its color, because such features are irrelevant for the 

purposes of modeling the ball’s motion, the Construct Idealization is of the Material Idealization 

kind. Clearly, a particular Construct Idealization can be both a Formal and Material Idealization 

(and also a Mathematical Idealization). 

Causal Idealizations are ones in which the concrete system in the physical world itself is 

simplified. This can be done in two different forms. First, one could consider setting up an 

experimental procedure by which certain “idealizations” are instantiated. For example, we could 

conduct a ball-rolling-down-an-inclined plane experiment with different planes each with a 

decreasing amount of friction. This type of Causal Idealization is called “Experimental 

Idealization.” One could also conduct such an experiment in thought and talk about “what would 

happen if…” such and such physical situations were instantiated. This second type of Causal 

Idealization is called a “Subjunctive Idealization.” See Figure 4.1 for a summary of McMullin’s 

taxonomy of idealizations. 

 

 

Figure 4.1: McMullin’s taxonomy of idealizations. 
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How does one go about justifying the appeal to a Construct Idealization? According to 

McMulling (1985, 257), the justification includes the claim that, in principle, one can add back 

details to the model or representation without significantly damaging any sought after result: 

“…once the idealization has yielded a result, that result can (perhaps) be modified in order to 

make allowances for the ‘departures from truth’ that the original idealization required.” 

Furthermore, this type of justification can be tracked back to Galileo (Drake 1967, 225): 

 

If we wish to use these conclusions proved by supposing an immense distance [from the 

earth’s center] for finite distances, we must remove from the demonstration truth 

whatever is significant in [the fact that] our distance from the center is not really infinite. 

 

The above process is standardly called “de-idealization” and the act of undertaking it “de-

idealizing.” A similar type of justification can be given for Causal Idealizations as is clear from 

the following well-known passage from Galileo (Drake 1967, 117): 

 

…let us (instead) observe what happens in the thinnest and least resistant media, 

comparing this with what happens in other less then and more resistant. If we find in fact 

that moveables of different weight differ less and less in speed as they are situated in 

more and more yielding media, and that finally, despite extreme difference of weight, 

their diversity of speed in the most tenuous medium of all (though not void) is found to 

be very small and almost unobservable, then it seems to me that we may believe, by a 

highly probable guess, that in the void all speeds would be entirely equal. 
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Important for our purposes, as we shall emphasize in Chapter 5, Galileo’s justification for 

appealing to idealizations concerns looking to sequences of systems and inspecting how they 

behave in particular limits. It is exactly this type of justification that we will be investigating in 

concrete case studies in Chapters 6 and 7.63 

4.3.2 Weisberg on Idealizations 

Weisberg (2007a, 2013) takes an idealization to be the intentional introduction of distortion into 

scientific representation and presents a taxonomy of three kinds of idealizations: Galilean 

Idealizations, Minimalist Idealizations, and Multiple-model Idealizations (see Figure 4.2). He 

also identifies what he calls “representational ideals,” which play a role in categorizing types of 

idealizations, and are made up of two components: “inclusion rules” and “fidelity rules.” The 

representational ideals Weisberg identifies include “completeness,” “simplicity,” “1-causal,” 

“maxout,” and “p-general.” Completeness inclusion rules dictate that all properties of target 

systems are to be included in its representation and completeness fidelity rules state that these 

properties be as similar as possible to that of the target system. Simplicity inclusion rules dictate 

to include as little as possible in a representation, while still being consistent with the fidelity 

rules, which demand a qualitative match between target system and its representation. 1-Causal 

inclusion rules dictate to include only difference-making causal factors in a representation, and 

                                                 

63 Shaffer (2012, 33) criticizes McMullin’s taxonomy for two reasons. First, he claims McMullin does not seem to 
make room for the idealization/abstraction distinction. However, in defense of McMullin, one could claim that 
Formal Idealization incorporates the introduction of idealization through both removal and distortion of properties, 
as is clearly stated in McMullin (1985, 248, first full paragraph). In other words, although McMullin might not 
identify the distinction explicitly, contra Shaffer, there is room for it in the taxonomy. Second, Shaffer claims that 
Material Idealizations are not idealizations at all since “omitting irrelevant properties does not simplify a model in 
any useful sense” (Shaffer 2012, 33). The same criticism is put forward by (Liu 1999a, 246), who further criticizes 
McMullin, claiming that Formal Idealizations are types of Causal Idealizations since both seem to carve nature at it 
joints. 
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fidelity rules match those of simplicity. Maxout states that the precision and accuracy of a 

representation’s prediction and retrodiction power should be maximized, without detailing how 

this should be accomplished. Generality as a representational ideal has two parts, a-general and 

p-general. A-general is the number of actual targets (systems or properties of systems), while p-

general is the number of possible targets, that a particular model (or set of models) capture 

(Mathewson & Weisberg 2009). As an ideal, p-generality states that considerations of p-

generality “should drive the construction and evaluation of theoretical models” (Weisberg 2013, 

110).64 

 

Figure 4.2. Weisberg’s taxonomy of idealizations. 

 

 “Galilean idealization is the practice of introducing distortions into models with the goal 

of simplifying, in order to make them more mathematically or computationally tractable” (2013, 

99). The motivation of tractability is a pragmatic one, and the justification given for Galilean 

Idealizations is that of de-idealization and concretization. The representational ideal of Galilean 
                                                 

64 The entire presentation of representational ideals is a paraphrase of Weisberg (2013, 105-111). 
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Idealizations is completeness. This notion of idealization is attributed by Weisberg to McMullin 

(1985). However, Weisberg is clearly overly simplifying McMullin’s account, which admits to a 

higher level of complexity. For example, McMullin’s Causal Idealization, a type of Galilean 

Idealization, does not fit into Weisberg’s characterization of Galilean Idealization, for Weisberg 

does not make a distinction between a distortion directed at a representation of a target system, 

and one directed at the target system itself. Moreover, it is questionable whether completeness as 

a representational ideal drives any scientific activity, let alone the construction of Galilean 

Idealizations. After all, if we abide by completeness, then it would seem that a perfect replica of 

a target would be the most complete representation of the target. However, why would a perfect 

replica of a target tell us anything about the target that the target didn’t already tell us in the first 

place? Potentially, completeness is relevant to the construction of scale models, but even then 

there is a caveat. Specifically, we do not want the scale of the model to be driven by the 

representational ideal of completeness, i.e., the scale model and target must, at least, vary in 

scale. 

 “Minimalist idealization (also known as ‘minimal model’) is the practice of constructing 

and studying models that include only the core causal factors which give rise to a phenomenon,” 

and are attributed by Weisberg to several different authors (Weisberg 2013, 100). For example, 

Strevens (2004, 2009) takes (what Weisberg calls) minimalist idealizations to be composed of 

difference-making causal factors, such that the removal of a causal factor prevents the entailment 

of a phenomenon of interest (for which the causal factors are difference makers). An 

“idealization” according to Stevens is the introduction of a non-difference making factor. 

Batterman (2002) and Batterman and Rice (2014) take minimal models to be those that are 

essential for the explanation of universal behavior such as critical phenomena, while Hartmann 
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(1998) seems to identify them with theories appealing to effective degrees of freedom. Weisberg 

also groups Cartwright’s (1983; 1989, Ch. 5) account of abstraction under the category of 

minimalist idealization. The representational ideal for Minimalist Idealizations is 1-causal, 

although some worries concerning this claim will be worded below. 

 “Multiple-models idealization (hereafter MMI) is the practice of building multiple related 

but incomplete models, each of which makes distinct claims about the nature and causal structure 

giving rise to a phenomenon” (Weisberg 2013, 103). This type of idealization, with its 

corresponding modeling technique, is attributed mainly to Levins (1966), but also to 

sympathizers (Weisberg 2006, Matthewson & Weisberg 2009), and differs from Galilean 

Idealizations and Minimalist Idealizations “in not expecting a single best model to be generated” 

(Weisberg 2013, 103). While the motivation for Galilean Idealization is pragmatic and justified 

by de-idealization, the case is different, claims Weisberg, for minimal models and MMI. 

Minimal models are motivated by explanatory needs (e.g., Strevens’ and Cartwright’s causal 

explanatory models, Batterman’s asymptotic explanatory model), while MMI are motivated by 

the varying goals of scientific theorizing, such as accuracy, precision, generality and simplicity. 

As for their justification, Weisberg explains, “…it is not justified by the possibility of de-

idealization back to the full representation” (Weisberg 2013, 113). Due to the varying nature of 

MMI motivation, such idealizations can have any representational ideal. 

 Several comments are in order. First, there is a serious worry here that Weisberg’s 

insistence on organizing various accounts according to his taxonomy significantly distorts the 

presentation of those accounts. For example, although both idealizations and abstractions might 

be appealed to with the goal of capturing core factors, the difference between introducing a 

distortion (idealization) and ignoring details (abstraction) might be philosophically relevant (see 
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Jones (2006) for such a claim). It is certainly historically relevant in the sense that abstraction 

refers to an Aristotelian technique (Mendell 2004 and references therein), while idealization 

refers to a Galilean one (McMullin 1985). Consider another example. Whereas Strevens 

identifies idealizations as non-difference-making causal factors, while minimal models are those 

that contain only the difference making causal factors, Batterman’s discussion of minimal 

models takes the idealizations themselves to be essential to the explanatory story and, 

importantly, minimal models are non-causal on Batterman’s account (Batterman and Rice 2014). 

This is worth emphasizing. There is no sense in which Batterman’s account (of the appeal to 

minimal models for the purposes of the asymptotic explanation of universal phenomena) is a 

causal one, while Strevens’ account is specifically causal. 

 Next at issue is the claim that with MMI there is no expectation of a single best model but 

with other types of idealizations there is. With respect to the latter part of the claim, there are 

clear counter examples. For instance, Batterman’s asymptotic explanation of critical phenomena 

via Renormalization Group method appeals to classes of Hamiltonians and the manner by which 

they transform under the Renormalization Group transformation. In such a case, there is no 

reason to think that we are dealing with one idealized model. Rather, each Hamiltonian in a class 

of Hamiltonians refers to an idealized model with a possible corresponding idealized system. In 

what sense are all such Hamiltonians one minimal model instead of MMI? Moreover, in this 

case, the multiplicity of models does not stem from varying theoretical goals. Instead, there is 

one goal, of accounting for critical phenomena, in which all models play a role. 

 With respect to the first part of the claim, that with MMI there is no expectation of a 

single best model because varying theoretical merits necessitate a multiplicity of models, another 

objection can be raised. In particular, what is the argument for the claim that, in principle, no one 
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model will be able to best account for all theoretical merits? Or that such a scenario is 

“unlikely?” Without such an argument, such in principle claims are unfounded. In particular, it 

does not follow from the fact that there are different theoretical merits, that indeed no one model 

best fulfills them all. Furthermore, any argument to the effect that there is no one best model is 

bound to set strict constraints on the future of scientific progress. History of science alone should 

convince us to reject any such constraints. 

 A last worry concerns the claim that minimal models and MMI, as opposed to Galilean 

Idealizations, cannot be de-idealized and “we should not expect it to abate with the progress of 

science” (Weisberg 2013, 103). There is something greatly worrisome about this claim. If it is 

truly the case that distortions and falsehoods are necessary to account for a phenomenon and, 

worse yet, portray the core causal factors entailing a phenomenon, how are we to interpret such 

an account realistically? The claim is not just that this would be a problem for a full-blooded 

scientific realist (see Section 4.4). Rather, anyone who does not want to commit oneself to an 

extreme instrumentalist view has to be able to tell a story about how, whatever work an 

idealization does for us, the ultimate success of a representation or model is that it gets 

something right about the world. In the case of causal minimal models, it seems such a story is at 

hand. However, in the case of the type of minimal models discussed by Batterman (2002), 

Batterman and Rice (2014), and Hartmann (1998), the story is more complicated than 

Weisberg’s (2013) account admits (as I will stress in Chapters 5-7 and as has been recently 

emphasized by Batterman and Rice (2014)). 

 In other words, although Weisberg (2007a, 2013) rejects the sound principle, claiming 

that one need not appeal to de-idealization in order to justify appeals to MMI, I fail to see any 

good argument supporting this claim. It is true that science may have varying goals. However, it 
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does not follow from the varying goals of science that there is some alternative justification for 

appealing to idealizations other than de-idealization as is discussed in the sound principle. At the 

very least, the burden of proof here clearly belongs to Weisberg (2007a, 2013). If not the sound 

principle, then what is the alternative justification for appealing to idealizations? I fail to find a 

plausible reply. Moreover, even if it is the case that many different models will be needed to 

account for different theoretical merits, each model justified independently will surely appeal to 

some sort of de-idealization scheme. So, for example, say I have two models, one that captures 

core causal factors and one used to make practical predictions. In each independent case we 

ought to expect a de-idealization process to justify appeals to idealizations.65 

4.3.3 Poznan School on Idealizations 

A different approach to idealizations in science is given by what has become to be known as the 

Poznań School methodology of science (Krajewski 1977, Nowak 1980; 1989).66  In short, 

Nowak (1992) identifies five paradigms of idealizations in science. These include the neo-

Duhemian paradigm, in which idealization is a method of transforming raw data, such as when 

systematic errors are corrected into data that can be used in the scientific enterprise (see also 

Suppes 1967). The neo-Weberian paradigm, in which idealization is a method of constructing 

scientific notions, and the neo-Leibnizian paradigm, in which idealization is a deliberate 

                                                 

65 In the case of a model that captures core causal factors, our justification for idealizing away the non-core causal 
factors is that they are irrelevant to our subject of interest, and so, in principle, bringing such factors back into our 
model will not affect the result of identifying the core causal facts. In the case of a model that is used for making 
predictions, again, de-idealization ought to, in principle, only make the predictions more accurate. This is so because 
any idealization introduces error into our predictions. Unless one can give a de-idealization type story about how 
such error is not significant for our predictive purposes, the model’s predictive success will remain a mystery. 
66 The literature on this approach is large enough to merit a chapter (or a dissertation) of its own, so I will not 
elaborate much on it here but instead I refer the reader to survey articles, Nowak (1992), along with authoritative 
compilations of collected papers: Brzezinski & Nowak (1992) and Nowakowa & Nowak (2000). 
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falsification. The neo-Millian paradigm, in which idealization is taken to be a consequence of the 

discrepancy between mathematical representation and the physical world. Last, the neo-Hegelian 

paradigm, in which idealization is the process of focus on only those essential and relevant 

features of some phenomenon.  

 In the Poznań School framework, one thinks of idealizations as “idealizational 

statements,” which are conditional statements with an “idealizing condition” as the antecedent. 

For instance, a (material) conditional statement of the sort: “If the plane is a frictionless and 

infinitely long plane, then a body with initial velocity slides on it forever” is an idealizational 

statement with “frictionless and infinitely long plane” signifying the idealizing condition. What 

we called before “de-idealization” is called within this framework “concretization,” and it is the 

process of removing idealizing conditions, replacing them with realistic ones, and 

accommodating for consequences that follow.  

 Consider a schematic exposition of the approach. Let 𝑇0 be a law, model, or theory that 

entails (and governs) some phenomenon, and is a completely non-idealized representation of 

such phenomenon. Let  𝑇𝑘 be a highly idealized law, model, or theory, with k idealized premises 

denoted by 𝑝𝑖 = 0, which entails (and governs) some phenomenon, and only accurately 

represents those features that are essential, or relevant, for manifesting said phenomenon. 

Science is in the business of producing 𝑇𝑘, while philosophical issues (such as understanding 

scientific explanation and confirmation in light of ubiquitous appeals to idealizations) can be 

accounted for by the process of concretization via (conditional) idealizational statements in 

which we de-idealize 𝑇𝑘: (𝑇𝑘& 𝑝𝑖 ≠ 0) → 𝑇𝑘−1, thereby creating a sequence leading to the non-

idealized 𝑇0: 𝑇𝑘, 𝑇𝑘−1,…, 𝑇0. 
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A scientific law is basically a deformation of a phenomenon being rather a caricature of 

facts than generalization of them. The deformation of fact is, however, deliberately 

planned. The thing is to eliminate inessential components of it. (Nowakowa and Nowak 

2000, 110) 

 

For our purposes the main take-home message is that also on this influential approach, all 

idealizations and abstractions are ultimately justified view a de-idealization or concretization 

procedure, of the kind encapsulated in the sound principle.67 

4.3.4 Shaffer on Idealizations 

The view that the ubiquitous appeal to idealizations and abstractions in science renders scientific 

realism—roughly, the position that our best scientific theories are approximately true—

untenable, is at the core of Nancy Cartwright’s attack on scientific realism (Cartwright 1983, 

1999) (see Section 4.4 below). Shaffer’s (2012) work is a recent attempt to argue against such a 

line of thinking, and to make scientific realism compatible with the practice of idealization and 

abstraction in science. He suggests that there are two basic types of idealizations in science, 

theoretical idealizations, involving idealizations concerning theoretical claims, and non-

theoretical idealizations, which concern idealizing initial and boundary conditions (Shaffer 2012, 

14). Theoretical idealizations are further sub-divided into non-constructive idealizations, in 

                                                 

67 An issue of controversy includes how to interpret the conditional in idealization statements. While Nowakowa and 
Nowak (2000) take idealization statements to be material conditionals, it has been argued by Niiniluoto (1990) (also 
see Shaffer 2001) that idealizational statements ought to be interpreted as counterfactual conditionals, e.g., “If it 
were the case that the plane was frictionless and infinitely long plane, then it would be the case that a body with 
initial velocity would slide on it forever.” Nowak (Nowakowa and Nowak 2000) claims that such a move brings 
with it serious semantic and epistemological problems, but see Shaffer (2012, 69-81) for a reply. 
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which properties are idealized away by removal—call this model-contraction (what we have 

called “abstraction”)—and constructive idealizations, in which properties are idealized away by 

replacing them with different properties—call this model replacement (what we have called 

“idealization”) (Shaffer 2012, 33, 43). There are two types of non-constructive idealizations, 

local non-constructive idealizations, in which some parochial causal factor is idealized away as 

negligible, and general non-constructive idealizations, in which some causal factors are no 

longer parochial but are idealized away either because said factors introduce too much 

complexity—call these strong general causal factors—or because they are negligible compared 

to other primary causal factors—call these weak general causal factors (Shaffer 2012, 37, 39). 

(See Figure 4.3 for Shaffer’s taxonomy of idealizations.) 

 All idealizations, however, are idealizational statements (see Section 4.3.3 above), 

understood as counterfactual conditionals, which are simplified representations of concrete target 

systems. Further, idealized representations are similar to their target with respect to structural, 

causal and/or dynamical features, for they allow surrogative reasoning about the actual world.68 

More precisely: 

 

A model 𝑀’ is an idealization of a base model 𝑀 if and only if 𝑀’ is a simplified proxy 

for 𝑀 such that 𝑀’ represents 𝑀 with respect to some of the features, {𝐹1,𝐹2, … ,𝐹𝑛}, of M 

demmed to be scientifically interesting in some context C. (Shaffer 2012, 17, 91) 

 

                                                 

68 See Swoyer (1991) and Chapter 3 for more on surrogative reasoning. 
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“Simplicity” (as well as “complexity”) is understood in terms of properties and relations, and so 

it is fleshed out via Swoyer’s (1991) notion of an “intentional relational system” (IRS).69 The 

main idea is that it is possible to use IRS to compare two models 𝑀’ and 𝑀, so as to decide if one 

is a simplified proxy of the other such that one might be an idealization (with respect to the 

other). Similarly, IRS can be used to cash out the representational relation between 𝑀’ and 𝑀 via 

“minimality,” which states that some of the structure of the vehicle of representation 𝑀’ that has 

empirical (i.e., measurable) content approximates some of the structure of the target of 

representation 𝑀 that has empirical content (see Shaffer 2012, 92-3 for details). Moreover, 

models and truth-values of idealized models can be understood within the philosophical 

framework of possible worlds: A model or possible world is “real” if it is “complete,” in the 

sense that every proposition in some language will be either true or false in that world. A model 

or possible world is idealized if it is an “incomplete world” or “partial model,” in the sense that 

some proposition might not have a truth-value in such worlds, and so are taken to be false by 

default. Idealizations, then, are true simplified partial worlds that are most similar to the actual 

world. This is one of the main upshots of Shaffer’s account since it allegedly allows him to reject 

the anti-realist claim—à la Cartwright (1983, 1989, 1999) (see Section 4.4 below)—which states 

                                                 

69 Swoyer (1991) takes “structural representations” to be cases in which the vehicle and target of representation have 
a shared structure where, roughly, the idea is that the two be homomorphic to each other. The concept of shared 
structure is cashed out via what Swoyer (1991, 455) calls an intensional relational system (IRS)—an intensional kin 
of the logician’s concept of a relational system. An IRS is an ordered 3-tupple 𝑆𝐴 = 〈𝐼𝐴,  ℜ𝑛

𝐴,𝑚, 𝑓〉 where 𝐼𝐴,  ℜ𝑛
𝐴,𝑚 

and 𝑓 are non-overlapping sets. I used the notation 𝑆𝐴 because we think of an IRS as some (representation of) 
system 𝐴, with 𝐼𝐴 its domain of individuals, ℜ𝑛

𝐴,𝑚 is the domain of 𝑚th-order 𝑛-place relations (i.e., ℜ1
𝐴,1 is the set of 

first-order one-place relations or properties, ℜ2
𝐴,1 is the set of first-order two-place relations, etc.) 𝑓 is a unary 

function on ℜ𝑛
𝐴,𝑚 that assign extensions, i.e., sets of individuals, to all the relations in this set (see Swoyer (1991, 

501) for generalizations that include times and possible histories). We’ll call the union of the domain of individuals 
and domain of relations the “total domain,” and for simplicity we’ll consider only first-order relations. Let ℎ be a 
homomorphic function from the total domain of the IRS 𝐴 to the total domain of the IRS 𝐵, which preserves the 
structure of relations in 𝐴, such that for every first-order 𝑛-place relation 𝑅 ∈ ℜ𝑛

𝐴,1 and 𝑛-tuple of individuals 
〈𝑖1, … , 𝑖𝑛〉 ∈ 𝐼𝐴: 〈𝑖1, … , 𝑖𝑛〉 = 𝑓(𝑅) if and only if 〈ℎ(𝑖1), … , ℎ(𝑖𝑛)〉 = 𝑓(ℎ(𝑅)), where 𝑆𝐵 = 〈𝐼𝐵,ℜ𝑛

𝐵 , 𝑓〉 is some other 
IRS 𝐵, ℎ(𝑅) ∈ ℜ𝑛

𝐵,1and 〈ℎ(𝑖1), … , ℎ(𝑖𝑛)〉 ∈ 𝐼𝐵. 
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that since theoretical claims in the sciences are only true in highly idealized models, they cannot 

be even approximately true of the concrete and actual world. 

 

 

Figure 4.3: Shaffer’s Taxonomy of Idealizations. 

 

According to Shaffer (2012), idealizations are not only justified via de-idealization 

schemes. In fact, in his book he argues for the following thesis called the “weak ineliminability 

thesis” (WIT) (53): 

 

(WIT) Some idealizing assumptions . . . with respect to some theoretical claim T, are not 

even in-principle eliminable from T. 

 

His main argument for the WIT is stated as follows (66-67; original emphasis): 

 

[It] is an empirical fact that the real – or actual – world is characterized by a variety of 

complex features and interactions. . . . It is also an empirical fact that human cognitive 
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capacities and the computational resources of machines are considerably limited both 

individually and as a corporate body by both physical and computational constraints. So 

it is easy on this basis to argue that this disparity gives rise to a physical need on our part 

to impose simplifying assumptions on our descriptions of the world – these 

simplifications are known to be false – some of which we cannot in practice eliminate. 

On this view [WIT] can be grounded as a matter of physical necessity. It is simply a 

matter of empirical fact that most theories hold only under at least one idealizing 

assumption that cannot be eliminated . . . 

 

In reply, and first, the claim that idealizations cannot be eliminated “in-principle” does not 

follow from the fact that they cannot be eliminated “in practice,” but that seems to be the heart of 

Shaffer’s argument above. Second, even if one can argue that there are senses for which 

idealizations are essential for science—as I will argue in Chapters 6-8—it does not follow from 

this claim that there exist justifications for appealing to idealizations that are significantly 

different from the sound principle and the de-idealization scheme inherent to it. We may have 

explanatory, methodological, and pedagogical reasons for appealing to idealizations, but still 

admit that a sound principle of interpreting physical theories would deem any effect that is an 

artifact of an idealization to be a non-physical or non-actual effect. 

4.3.5 Conclusion: The Earman-Ruetsche Sound Principle 

In conclusion, what I would like to emphasize is that, broadly speaking, all approaches to 

idealizations that we have encountered so far justify the appeal to idealizations via some de-

idealization or concretization scheme, or else claim that an alternative justification is possible but 
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then offer little to no convincing exposition of such an alternative justification. We may then 

place a principle of adequacy on an interpretation of the role of idealizations in science, namely, 

that such idealizations abide by the sound principle: 

 

EARMAN-RUETSCHE SOUND PRINCIPLE ― If a scientific account (theory, model) 

uses an idealization to predict an effect which disappears when the idealization is 

removed then either the effect is an artifact of the idealization or else (if experiment 

confirms the effect) the theory is inadequate. 

 

However, two worries arise. The sound principle seems to imply that idealizations are 

dispensable to science, e.g., that they are there solely for instrumental purposes, say, to make the 

math easier. This is worrisome because many believe that idealizations play substantive roles in 

science. Chapter 8 will be dedicated to alleviating this worry. There I will argue that the 

substantive roles of idealizations are compatible with the sound principle, so that there is a sense 

in which idealizations are essential for science, but still abide by the sound principle. 

 The second worry concerns the fact that identifying some particular structure in a theory 

as an “idealization,” already makes substantial presuppositions about the ontology of the theory 

and the world. For example, many talk about a version of the thermodynamic limit, “the 

continuum limit” (Compagner 1989), as an idealization because such a limit is taken to represent 

a continuum, while objects in the physical world are fundamentally corpuscular, as the atomic 

theory of matter would suggest. However, such a claim makes some nontrivial assumptions 

about ontology, namely, that the ontology of our world is scale-independent, so that whatever 

things turn to be made up of, say, particles, waves, fields, etc., dictates the ontology of our world. 
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An alternative view takes ontology to be a scale-dependent issue. So, for example, we may say 

that on the macroscopic scale a drop of water really concerns a continuum, while on the 

microscopic scale it really is corpuscular, and there is no contradiction in the two statements. I 

am sympathetic to this view, but I will remain agnostic about it in this dissertation. Instead, what 

I want to emphasize is that my embrace of the sound principle does not commit me to the view 

that ontology is scale-independent. This issue will remain open. 

4.4 IDEALIZATIONS IN PHILOSOPHY OF SCIENCE 

The purpose of this section is to sketch how the pervasiveness of idealizations, abstractions and 

approximations in science raises various foundational problems in philosophy of science, 

specifically with respect to Laws of Nature, Scientific Confirmation, Scientific Explanation and 

the Realism/Anti-realism debate. It should be clear that the problems discussed become even 

more significant if idealizations appealed to are in some sense essential or indispensable. 

 The type of questions that we’ll be dealing with consist of the following: If scientific 

accounts appeal to idealizations in accounting for concrete physical phenomena, i.e., they appeal 

to distorted analogue systems instead of the target systems being accounted for, is not the success 

of such accounts left mysterious? If two idealized hypotheses are incompatible with each other, 

which is to be taken as a guide to what the world is really like? If some effect depends essentially 

on an idealization that cannot be manifested in the laboratory, how is the effect to be empirically 

confirmed? If idealized law statements are falsehoods, how can they be confirmed by evidence? 

Moreover, if idealized laws are, strictly speaking, false, how is it said that they govern concrete 

behaviors of physical systems? 
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4.4.1 Laws of Nature 

The last two questions have been raised explicitly by Nancy Cartwright in her well-known book, 

How the Laws of Physics Lie, which launched an attack on realist conceptions of laws of nature 

as fundamental and true. 

 

A long tradition distinguishes fundamental from phenomenological laws, and favors the 

fundamental. Fundamental laws are true in themselves; phenomenological laws hold only 

on account of more fundamental ones. This view embodies an extreme realism about 

fundamental laws of basic explanatory theories. Not only are they true (or would be if we 

had the right ones), but they are, in a sense, more true than the phenomenological laws 

that they explain. I urge just the reverse. (Cartwright 1983, 100) 

 

Cartwright’s goal here is to argue against the view known as fundamentalism―that there are true 

fundamental laws of nature and science that govern the behavior of matter throughout all of 

space and time―as well as to reject the received hierarchical connection between fundamental 

laws and the (non-fundamental) phenomenological ones. She calls the position that takes 

phenomenological laws to be true because they are logically entailed by the more general 

fundamental laws, the “generic-specific account” (Grünbaum 1954, 14; Cartwright 1983, 102). 

Roughly, Cartwright’s claim is that the generic-specific account, and the fundamentalism 

position that drives it, cannot be true because in order to derive phenomenological laws from 

fundamental ones, one has to appeal to approximation schemes and idealizations that are, strictly 

speaking, false, and so such derivations cannot be sound. 
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 Moreover, bracketing aside worries about the generic-specific account for the time being, 

fundamentalism itself is objectionable on grounds that fundamental laws are only true, strictly 

speaking, in highly idealized or abstracted scenarios that never obtain in concrete physical 

situations and so, contra the fundamentalist, all fundamental laws are really only ceteris paribus 

laws: 

 

My conclusion from looking at a large number of cases of how theories in physics are 

used to treat real situations in the world, both in testing the theories and in their 

impressive technological applications, is that it is always ceteris paribus regularities that 

come into play. All the cases I have looked at have just the characteristic I point to: they 

are either especially engineered or especially chosen to include only those causes that 

occur in the preferred set of the theory. They are, moreover, always arranged in a very 

special way: a way that the theory knows how to describe and to predict from. That is not 

surprising where ceteris paribus laws are involved, since we can neither test laws of this 

kind nor apply them until we are sure the ceteris paribus conditions are satisfied. The 

point is that these are the kinds of cases that give us our most powerful reasons for 

accepting our theories in physics. And the laws they give us reason to accept are all 

ceteris paribus laws. (Cartwright 2000, 210) 

 

Similar sentiments are conveyed in Cartwright (1999, Ch. 2). For our purposes we do not need to 

dive into the ceteris paribus debate (see Earman et al. 2002). Rather, what is important to 

identify is that all of Cartwright’s talk (in the above quote) of “especially engineered,” 

“especially chosen,” “arranged in a very special way” and “all things being equal” amounts to an 
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appeal to idealized conditions, abstracted scenarios and approximation schemes. Thus, if laws 

given to us by actual scientific practice “are all ceteris paribus laws” then by the same token, 

they are all laws that appeal to idealizations, abstractions and approximations. In response to 

such concerns some authors have suggested that fundamental laws do not govern concrete 

systems in the world, but instead govern abstract or fictional models or scientific representations 

(e.g., Cartwright 1983, 1999; Giere 1999a, 1999b; van Fraassen 1989). Still other authors such as 

Teller (2001) agree that idealizations are an indispensable part of science, thereby seemingly 

defending Cartwright’s thesis: 

 

Indeed, simplifying is just what physics and most other sciences do… In 1974 I read 

through all of Feynman’s Lectures on Physics (1963). I was flabbergasted. Almost 

nowhere could I find deductions from first principles. Most of the work involved 

ingenious tailoring of both the laws and facts to produce accounts which, at the same 

time, fit the world well enough but were also sufficiently simple for us to manage. (Teller 

2001, 394) 

 

However, Teller does not come to the same conclusion as Cartwright for he takes truth itself to 

be qualified, inexact or partial (Teller 2001, 2004, 2011). This amounts to rejecting standard 

accounts of truth as exact correspondence. 

 In the following section we will turn to the issue of scientific confirmation and 

idealizations, but before doing so let me reiterate the take home message of this section: The 

appeal to idealizations in deriving phenomenological laws from fundamental laws, as well as the 
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alleged necessity of referring to idealized conditions in order for fundamental laws to be, strictly 

speaking, true, threaten fundamentalism (or a realist conception of laws). 

4.4.2 Scientific Confirmation 

A different problem that arises by appeals to idealizations concerns scientific confirmation and 

this can be the confirmation of theories, laws, scientific hypothesis, models, etc. The problem is 

nicely demonstrated within the context of Hempel-Oppenheim’s hypothetico-deductive (HD) 

method (Hempel and Oppenheim (1948), reprinted in Hempel (1965)), although it can be 

generalized to any scheme that goes from a theory that is to be tested, on the one hand, to the 

experimentally testable results, on the other hand, by way of auxiliary assumptions. In short, the 

idea is that idealizations and approximations act as types of auxiliary assumptions so that all the 

problems that auxiliary assumptions raise for confirmation theory are also raised by idealization 

and approximation. The difference is that, whereas auxiliary assumptions tend to be unnoticed 

and become prominent when there is predictive failure, idealizations and approximations are 

known to be false right from the start. The point is illustrated by Laymon (1985, 1989) and I 

shall follow him closely in this subsection. 

 Consider some scientific account 𝑆 that is composed of a set of premises 𝑇, such as a 

theory and/or law(s) and/or boundary condition(s), and a set of various idealizations, abstractions 

and approximations 𝐼, which are known to be, strictly speaking, false premises. Let 𝑃 be some 

directly or indirectly observably verifiable prediction or retrodiction, and assume that 𝑃 follows 

from 𝑇 and 𝐼 (either in a deductive manner or by some mathematical derivation) so that 𝑇 & 𝐼 →

𝑃. There are two options: either experiment shows us that 𝑃 or that not 𝑃. If the former, i.e., the 

scientific account predicts empirically adequate results, then we know 𝑇 must be false because 
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only a false, say, theory, when conjoined with false idealizations could lead to correct 

predictions. If the latter, then we know that either both 𝑇 and 𝐼 are false, or 𝑇 is true but 𝐼 is 

false, or 𝑇 is false but 𝐼 is true. However, since 𝐼 is known to be false, the use of idealizations, 

abstractions and approximations effectively shields 𝑇 from being disconfirmed. That is to say, 

we know 𝐼 is false but we don’t know whether 𝑇 is true or false. We don’t know if our failure to 

confirm the theory arises because of problems with the theory T itself or because of our appeal to 

idealizations I. In order to remedy the situation, one modifies the confirmatory scheme to take 

the notion of approximate truth into account: 

 

CONFIRMATION   DISCONFIRMATION 
𝑇 & 𝐼 → 𝑃        is true  𝑇 & 𝐼 → 𝑃        is true 
𝐼         is approximately 𝐼         is approximately 
  true to degree 𝑑   true to degree 𝑑 
 
𝑃         is approximately 𝑃         is not approximately 
  true to degree 𝑆(𝑑)   true to degree 𝑆(𝑑) 
𝑇         is true   𝑇         is false 
 

In other words, a theory is confirmed when 𝑃 is predicted by a scientific account 𝑆 to some 

degree 𝑆(𝑑) computed on the basis of 𝑆 and it is disconfirmed when 𝑃 is not true to degree 𝑆(𝑑). 

However, herein lies “the crux of the problem:” 

 

Idealizations are introduced precisely because we lack the analytic and computational 

skills to calculate “correct” theories, but in the absence of these correct theories we 

cannot compute the predictive bias introduced by our idealization… the assumption that 

we can meaningfully assign some degree or measure of the distance of our idealizations 
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[or approximate predictions] from the truth [, independent of a correct scientific account,] 

… is not generally true. (Laymon 1985, 153-4) 

 

And so it is not clear how to make sense of scientific confirmation when appeals to idealizations, 

approximations, and abstractions are made by candidate scientific accounts. Said differently, we 

generally believe that if a scientific account 𝑆 is correct, then we are justified in believing 

conclusion 𝑃 that follows from the account. But how can we have justified belief in 𝑃 when it 

follows from a set of premises 𝑇 & 𝐼 that include falsehoods?70  

 One might worry though that the above problem posed to confirmation theory by 

idealizations is somewhat outdated and does not extend to approaches that prevail today, such as 

Bayesian confirmation theory (Bayesianism). This is not the case. Shaffer (2001) (see also 

Shaffer 2012, Ch.3) challenges (subjective) Bayesianism to show that idealized hypotheses have 

some degree of confirmation, thereby pressing for a proposal for how to assign posterior 

probabilities to counterfactual conditionals.71 If ℎ is a hypothesis and 𝑒 the evidence, P(ℎ│𝑒) is 

the posterior probability of ℎ given 𝑒, and plays a role in determining how well 𝑒 confirms ℎ. 

There have been various suggestions made by Bayesian theorists as how to flesh out “𝑒 

confirms ℎ”72 but all such suggestions involve the quantity P(ℎ│𝑒). If idealized hypotheses are 

to be construed as counterfactuals as Shaffer insists, wherein > is the symbol for counterfactual 

                                                 

70 Liu (2007) criticizes Laymon’s possible solution to the idealization problem a la de-idealization. See Shaffer 
(2012, Ch. 4) for an account of scientific confirmation via inference to best explanation, which accommodates 
involved idealizations. Davey (2011) appeals to a type of contextualization to explain of how justified beliefs can be 
generated from appeals to idealizations, abstractions and approximations. 
71 See Jones (2006, Ch. 7) for a Bayesian reply to Shaffer (2001). 
72 Some options of what “𝑒 confirms ℎ” amounts to include, among others, a difference measure such as 𝑃�ℎ│𝑒� −

𝑃(ℎ) (Earman 1992 and Rosenkrantz 1994), a log-ratio measure such as log (𝑃�ℎ│𝑒�
𝑃(ℎ)

) (Howson and Urbach 1993, and 

Milne 1996), a counterfactual difference measure such as 𝑃�ℎ│𝑒� − 𝑃(ℎ│¬𝑒) (Christensen 1999 and Joyce 1999); 
see Hartmann and Sprenger (2010) for a Bayesian primer. 
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conditional, 𝐴 is an idealized antecedent condition and 𝐶 is a consequence, then P(ℎ│𝑒) 

becomes P(𝐴 > 𝐶│𝑒). According to Bayes’ theorem, 

 

P(𝐴 > 𝐶|𝑒) =
𝑃(𝑒│𝐴 > 𝐶)𝑃(𝐴 > 𝐶)

𝑃(𝑒)
 

 

But it is well-known that there exists no nontrivial and coherent proposal for assigning values to 

𝑃(𝐴 > 𝐶) (Shaffer 2001, 43-45). Hence, Shaffer concludes (2001, 45, his emphasis), 

 

[The] situation is unfortunate for the Bayesian as there does not seem to be any extant, 

coherent, suggestion as to how we are to nontrivially assign prior probabilities to 

indicative or counterfactual conditionals. This problem, the Bayesian problem of 

idealization, appears to have devastating consequences for Bayesianism. Unless 

Bayesians can come up with a coherent suggestion for how such probabilities are to be 

understood, either Bayesianism must be rejected or, given the ubiquity of idealizations, 

Bayesians must accept the rather counterintuitive conclusion that few, if any, scientific 

theories have ever been confirmed to any extent whatsoever. 

4.4.3 Scientific Explanation 

Idealizations also raise problems for accounts of scientific explanation. For instance, our 

discussion of the problems posed by idealizations to the HD method of confirmation, which is an 

extension of Hempel and Oppenheim’s (1948) deductive-nomological (DN) account of 

explanation (also known as the “covering law” account), can be extended to any type of 
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nomological account of explanation wherein the appeal to idealized laws is made use of in the 

explanation of phenomena. This is so because, according to DN the explanans that explains 

phenomena must be true, but idealized explanantia are false (Hempel 1965). In similar manner, 

causal approaches to explanations such as Lewis’ (1986), Salmon’s (1998) and Woodward’s 

(2003), and unification accounts such a Kitcher’s (1981), all require factual correctness and deny 

falsehoods as part of their explanatory approach. See Jones (2006, Ch. 1) for an elaboration on 

how idealizations pose problems for traditional representative accounts of scientific explanation, 

such as ones just mentioned, which fail to incorporate falsehood into their explanation schemes. 

 However, there are accounts that do attempt to incorporate idealizations into their 

approach to scientific explanation and these usually go under the name of “Explanatory 

Falsehoods” or “Explanatory Fictions.” What is particularly interesting is that most accounts of 

explanation, insofar as they can be modified to accommodate the inclusion of idealizations, 

depend crucially on one’s ability to de-idealize said idealization. Four such accounts include 

(Jones 2006; 35, 58): 

 

1. Ronald Laymon [(1980), which] allows idealized descriptions to be explanatory if they 

counterfactually approximate correct descriptions. 

2. Alexander Rueger and David Sharp [(1998), which] allow idealized descriptions to be 

explanatory if they qualitatively approximate correct descriptions … [in the sense that] (a) 

the description is law-like and (b) either the idealized law is structurally stable or the law 

family for the idealized law is structurally stable as a family.73 

                                                 

73 See Rueger and Sharp (1998, 212) for more on “structural stability.” 
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3. Philip Kitcher [(1989), which] allows idealized descriptions to be explanatory if the error due 

to the idealized descriptions is either negligible or unlikely to make a non-negligible 

difference. 

4. Ronald Giere [(1988)], R.I.G. Hughes [(1993)], and Paul Teller [(2001), which] allow 

idealized descriptions to be explanatory if the systems they describe are sufficiently similar 

to real systems. 

 

All of these explanatory accounts seem to accommodate the appeal to de-idealizable 

idealizations, i.e., idealizations that are consistent with the sound principle. That said, see Jones 

(2006) for a defense of the claim that none of the above accounts can accommodate 

“ineliminable idealizations,” i.e., what we have been calling “essential idealizations.” 

4.4.4 Scientific Realism 

“Scientific Realism,” roughly, can be taken as the position that science “aims to give us, in its 

theories, a literally true story of what the world is like; and acceptance of a scientific theory 

involves the belief that it is true (van Fraaseen 1980, 8).74 Wherein, “to have good reason for 

holding a theory is ipso facto to have good reason for holding that the entities postulated by the 

theory exist” (Sellars 1963, 97). Moreover: 

                                                 

74 The situation is in fact more complicated since there are various dimensions to scientific realism. Roughly, the 
metaphysical dimension has to do with commitment to the existence of a mind-independent world and/or objects 
within it, (possibly) along with their properties and relations. The semantic dimension concerns interpreting the 
claims of scientific theories literally as satisfying truth conditions. The epistemic dimension regards the empirical 
and explanatory success of science as evidence for the (approximate) truth of the claims of science, so that scientific 
claims constitute knowledge about the world and objects within it. The axiological dimension takes the aim of 
science to give approximately true descriptions and faithful representations of the world. See Boyd (1983, 45), 
Psillos (1999, xix), Niiniluoto (1999, 21) and Chakravartty (2011). 
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Theoretical terms in scientific theories (i.e., non-observational terms) should be thought 

of as putatively referring expressions; that is, scientific theories should be interpreted 

“realistically.” … The reality which scientific theories describe is largely independent of 

our thoughts or theoretical commitments. (Boyd, 1984, 41)  

 

However, appeals to idealizations and abstractions seem to undermine scientific realism as has 

been stressed by Cartwright (1983, 1989, 1999) and formulated in deductive form by Hughes 

(1990, 71):75 

 

Premise 1. Scientific theories provide models of the processes and entities of nature. 

Premise 2. To have a model, whether of a physical process like the propagation of light or 

of an entity like an atom, is not to have a literally true account of the process of entity in 

question. 

Conclusion. It follows that science does not provide true descriptive accounts of these 

processes and entities. 

Corollary. If we consider theory alone, scientific realism cannot be justified. 

 

 Furthermore, consider the two main (and related) arguments in favor of scientific realism 

include the “Ultimate (or Miracle) Argument” and an appeal to “Inference to Best Explanation” 

(IBE). The Ultimate Argument for scientific realism states that realism “is the only philosophy 

that doesn’t make the success of science a miracle.” 

                                                 

75 See Shaffer (2012) and Pincock (2012) for a reply. 
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That terms in mature scientific theories typically refer …, that theories accepted in a 

mature science are typically approximately true, that the same term can refer to the same 

thing even when it occurs in different theories―these statements are viewed by the 

scientific realist not as necessary truths but as part of the only scientific explanation of 

the success of science, and hence as part of any adequate scientific description of science 

and its relations to its objects. (Putnam 1975, 73) 

 

However, if scientific theories, laws, and models appeal to idealizations, abstraction and 

approximations, and this includes appealing to fictional entities, how is the Ultimate argument 

cogent? That is to say, if the success of science can only be explained by believing in the 

existence of the entities science posits, and if science ubiquitously appeals to fictional entities 

known not to exist (through idealizations, abstractions, approximations) in achieving its 

“success,” then the ultimate argument is reduced to absurdity for it compels us to maintain that 

various entities are and are not fictions. A similar problem arises when IBE is taken as an 

argument for realism. 

 

Let us suppose that we have evidence 𝐸, and are considering several hypotheses, say 𝐻 

and 𝐻’. [IBE] says that we should infer 𝐻 rather than 𝐻’ exactly if 𝐻 is a better 

explanation of 𝐸 than 𝐻’ is… It is argued that if we follow this rule in all ‘ordinary’ 

cases; and that if we follow it consistently everywhere, we shall be led to scientific 

realism, in the way Sellar’s dictum [(above)] suggests. (van Fraaseen 1980, 19) 
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Yet, three problems arise when one considers idealizations. First, as discussed in the last 

subsection, how can an explanation be explanatory if some of its explanatia are idealizations and 

thus false? Second, granting that we can make sense of idealized explanation, how are we to tell 

which parts of a scientific explanation is descriptively true and which parts are false? That is to 

say, how do we know beforehand which explanatia are idealizations and which tell us what the 

word is really like? Third, given that both 𝐻 and 𝐻’ appeal to idealizations so that neither is 

strictly speaking true, how can we tell which one is a better guide to ontology?76 

 In contrast to the aforementioned problems posed by idealizations to realism, some 

authors consider the practice of idealization to support a realist conception of science. For 

example, commenting on the process of de-idealization, McMullin (1985, 262, 264) notes that  

 

…the ‘adding back’ [, i.e. de-idealizing,] if it accounts for additional experimental data 

and especially if it leads to the discovery of new empirical laws, is a strong validation for 

the model and its accompanying theory… this becomes a strong (though not conclusive) 

argument for the existence of structure postulated by the model… What makes it 

heuristically sensible to proceed in this way is the belief that the original model does give 

a relatively good fit to the real structure of the explanandum object. Without such a fit, 

there would be no reason for the model to exhibit this sort of fertility. This gives perhaps 

the strongest grounds for the thesis of scientific realism. 

 

Similar sentiments can be found in Nowak (1980) and in Brzezinske & Nowak (1992), and in the 

many works of Ronal Laymon (1980, 1984, 1985, 1989a, 1989b, 1995). Laymon (1985, 155) 

                                                 

76 See Sklar (2000, 2003) and Chapter 3. 
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begins by noting that we can account for the process of scientific confirmation via our ability to 

de-idealize with the “converging counterfactual theory of confirmation:” 

 

A scientific theory is confirmed (or receives confirmation) if it can be shown that using 

more realistic idealizations will lead to more accurate predictions. 

A scientific theory is disconfirmed if it can be shown that using more realistic 

idealizations will not lead to more accurate predictions. 

 

He then argues that cases in which de-idealization leads to “successful convergence to better 

experimental fit are miraculous coincidences for the antirealist” (Laymon 1984, 118). 

Antirealists, e.g., Cartwright (1989), argue that it might not be possible to improve a model by 

de-idealization, and that the procedure is not faithful to actual scientific practice, in which 

scientist tend to shift to different models (Hartmann 1998). Furthermore, it is claimed that 

sometimes multiple contradictory models are used to represent the same phenomenon (Morrison 

2000). 

In conclusion, the ubiquitous appeals to idealizations, abstractions, and approximations in 

science raise various philosophical problems. Taking a coarse-grained perspective, we may say 

that all such problems can be alleviated by appealing to standard de-idealization or 

concretization schemes, as is encapsulated in the sound principle.77 If, however, there were 

idealizations that were inconsistent with the sound principle, then all the problems that arise due 

                                                 

77 From a more fine-grained perspective, even if idealizations are consistent with the sound principle, certain 
technicalities need to be accounted for with respect to particular theories of scientific laws, explanation, 
confirmation, and specific accounts of scientific realism. 
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to the presence of idealization would reemerge. In the following chapter we turn to a generic 

discussion of such idealizations, and in Chapters 6-7 we look at purported concrete examples. 
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5.0  PATHOLOGICAL IDEALIZATIONS 

The goal of this chapter is to make use of distinctions, due to Butterfield (2011) and Norton 

(2012), between limit properties and properties of limit systems in order to characterize the 

notion of a pathological idealization, specifically, an essential idealization that is inconsistent 

with and marks the failure of the sound principle. 

5.1 LIMIT PROPERTIES AND LIMIT SYSTEMS 

The sound principle tells us that if we remove an idealization—call this process de-

idealization—then those effects that disappear cannot be counted as genuinely physical effects. 

We can gain further insight into the meaning of the principle if we relate the notions of 

introducing and removing idealizations to limiting procedures, where taking a limit may 

correspond to introducing an idealization or abstraction. In a recent work, John Norton (2012, 

Section 3) distinguishes between a “limit system” and a “limit property.”78 A limit system 

concerns a system and its limit, i.e., a limit of a sequence of systems, while a limit property has 

to do with the property of a system and its limit, i.e., a limit of a property of a sequence. The 

                                                 

78 We could equally well talk about “objects” and “relations.” A system is an object. System properties are one-place 
relations. Parts of the system, or parts of the object, are other objects that stand in part-whole relations to the system, 
and so on.  
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distinction is best understood through some simple examples, which we shall turn to soon. First 

though, let us add some precision to our discussion.  

Specifically, Butterfield (2011, Section 3) discusses similar distinctions. He makes a 

distinction between a system 𝜎(𝑁) that depends on some parameter 𝑁 (let {𝜎(𝑁)} denote a 

sequence of such systems), a quantity defined on the system 𝑓(𝜎(𝑁)) (let {𝑓(𝜎(𝑁))} denote a 

sequence of quantities on successive systems), and a (real number) value 𝑣(𝑓�𝜎(𝑁)�) of 

quantities on successive systems (where a sequence of states on 𝜎(𝑁) is implicitly understood; 

let {𝑣(𝑓�𝜎(𝑁)�)} denote a sequence of values on successive systems). A limit system 𝜎(∞) 

arises when lim𝑁→∞{𝜎(𝑁)} is well-defined―otherwise there is no limit system. A property of a 

limit system refers to the value 𝑣(𝑓�𝜎(∞)� of the (natural) limit quantity 𝑓�𝜎(∞)� (in the natural 

limit state) on 𝜎(∞). A limit property 𝑣(𝑓�𝜎(𝑁)� is a limit of a sequence of values of quantities 

on successive systems (or, values on the systems on the way to the limit) and is well-defined 

when lim𝑁→∞{𝑣(𝑓�𝜎(𝑁)�)} exists. The question that I will be discussing is whether a property 

of a limit system equals the system’s limit property. More precisely, the question asks 

whether 𝑣(𝑓(𝜎(∞)) = lim𝑁→∞{𝑣(𝑓�𝜎(𝑁)�)} (assuming both are well-defined). 

Let us now illustrate the distinction with an example, which will also foreshadow 

problems to come. Envision a concrete three-dimensional cubical system with sides of length 𝐿 

and with some impenetrable point-like object in its interior (i.e., a “hole”). We wish to represent 

this system, so we call it our target system. The target system is the concrete and physical system 

in the world, which we wish to study. Pictorially, one may imagine a scientist in a box 

conducting experiments (see Figure 5.1). The object that represents the target system will be 

called the vehicle of representation. A corresponding “realistic” or “faithful” representational 
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vehicle would consist of modeling the target system as a three-dimensional cubical space with an 

impermeable hole (see Figure 5.2a).79 

 

Figure: 5.1 The target system. A scientist in a box, with an impenetrable object represented by a 

“hole,” conducting experiments. 

 

We’ll be interested in two properties concerning this target system (or its faithful 

representation). First, whether or not loops inside the cubical space can be continuously 

deformed (shrunk) into a point. If this is possible we’ll say that (the topology of) the space is 

simply connected, that it has a trivial topology, and that its fundamental group is trivial (see 

Figure 5.2b). If not, we’ll say the space is non-simply connected (or that it is multiply connected), 

that it has a non-trivial topology, and that its fundamental group is non-trivial (see Figure 

5.3a).80 Second, we’ll want to ascertain whether the cubical system has the course-grained 

                                                 

79 Roughly, by a “faithful representation” I mean a vehicle that can be used to extract inferences about a target that 
are true of the target (Contessa 2007), but also that the vehicle can tell us what the target is like (in the sense of 
Sklar’s (2003) “guides to ontology”). I discuss the notion in detail in Chapter 3. 
80 These are all rough and intuitive characterizations of the notions of connectedness, homotopy, etc, and will do for 
my purposes. For precise characterization see standard textbooks on topology and algebraic topology, e.g., Munkres 
(2007), Hatcher (2002). 
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property of a  non-zero or exactly zero (three-dimensional notion of a) volume 𝑉. Clearly, our 

cubical system does have a non-zero volume equal to 𝐿3 and (as can be seen in the Figure 5.3b) 

its space is simply connected since all loops―even those that lie in the plane with the 

impenetrable hole―can be continuously deformed and shrunk to a point. 81 

       

Figure 5.2: (Left) (a) A 3D cubical space with a hole (an impenetrable obstruction). (Right) (b) A 

simply connected space, with a trivial fundamental group, in which loops can be continuously 

deformed to a point. 

 

Next, consider a family of such systems in which the height of the cuboids, denoted by 𝑙, 

shrinks (see Figure 5.4).  That is to say, we’ll consider the sequence in the limit in which 𝑙 → 0, 

and the location of the interior hole in the sequence will be a function of the height of the cuboid. 

So long as we are on the way to the limit system, each system in our sequence will have some 

non-zero volume and will be simply connected. However, at the limit our limit system will be a 

                                                 

81 The volume will clearly be equal to 𝐿 3 because the Lebesgue integral is invariant under the replacement of a 
function with one that is almost identical in every way, i.e., one that differs only on a measure zero subset. 
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two-dimensional square with a zero volume and a multiply connected space (see Figure 5.5). 

That is to say, loops surrounding the hole cannot be continuously deformed to a point without 

being obstructed by the impenetrable hole (see Figure 5.6). We have here a case in which the 

limit properties, i.e., a simply connected space with a trivial fundamental group and a non-zero 

volume, do not match the corresponding properties of the limit system, i.e., a multiply connected 

space with a non-trivial fundamental group and a zero volume. A lack of correspondence 

between limit properties and properties of limit systems marks a potential failure of the sound 

principle, or, said differently, shows that the limit system fails the Earman-Ruetsche soundness 

test.  In other words, when we partially remove the idealizations by de-idealizing away from the 

limit system we lose the properties of zero volume and a non-trivial topology. Now, insofar as 

such properties are used to predict a physical effect that has been empirically confirmed, the 

removal of the idealizations renders the effect non-physical according to the sound principle, and 

so a problem arises: an effect that is non-physical according to the sound principle is actually 

empirically confirmed in the laboratory—and so the sound principle fails. 

Concentrating on the multiply connected topology of the space, I call such an idealization 

a pathological idealization. It is an idealization because we are dealing with limiting procedures, 

particularly, with a property of a limit system.82 It is a pathological idealization because the 

property of the limit system does not correspond to the limit property (in the sense that any de-

idealization from the limit systems renders the property nonexistent), and because there is no 

sense in which the multiply connected space can be seen to emerge continuously in the limiting 

procedure. Said differently, the idealization is pathological because there is no sense in which a 

                                                 

82 One may wonder why my example of a sequence of cuboid-models ought to be labeled an “idealization,” when I 
have not identified what in the physical world is being idealized. My point is that given some physical cubical 
system with an impenetrable object in its interior, all the cuboids in the sequence except for the first are idealized 
models of this original physical system. See Butterfield (2011) and Norton (2012), for further details and discussion. 
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non-simply connected topology is the limit of simply connected topologies. To see this, contrast 

the topology of the space with the property of zero versus non-zero volume. Such a coarse-

grained distinction would have us think that that the zero volume of the limit system is also the 

product of a pathological idealization. But if we instead look at the more fine-grained value of 

the volume, it is clear that a property of the sequence is that the volume goes to zero.83 Said 

differently, if we de-idealized away a small epsilon 𝜀 amount from the limit system so that the 

height 𝑙 = 𝜀, then the volume will be 𝑉 = 𝐿2𝜀 and this is approximately equal to zero.84 In 

contrast, the space will not be “approximately multiply connected” on the way to the limit 

system, and we cannot create a space that is as “approximately multiply connected” as we may 

want by choosing an appropriate epsilon 𝜀. Instead, the space will be simply connected, full stop.  

See Table 5.1 for a summary. 

 

Limit Property: Property of Limit System: Type of Idealization: 
Simply Connected Space Multiply Connected Space Pathological 
Volume 𝑉 = 𝐿2𝜀 Zero Volume 𝑉 = 0 Non-Pathological 𝑉 = 𝐿2𝜀 ≈ 0 

 
Table 5.1: Summary (of the example) exemplifying the distinction between limit property and 

limit system. 

 

 

 

                                                 

83 What I mean by transitioning from a coarse-grained to a fine-grained distinction, in Butterfield’s (2011) 
terminology, is to transition from looking at a particular value of a quantity on successive systems to a different one 
that sheds light on the first. See Butterfield (2011, 1078-1079) for an illuminating and simple example. 
84 By “approximately” we mean that we can have the volume 𝑉 = 𝐿2𝜀 be as small as we want by choosing an 
appropriate epsilon. Said differently, for any non-zero epsilon of maximal error about the volume one may care 
about, we can find a de-idealization with volume less than this epsilon. 
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Figure 5.3: (a) (Left) Multiply connected space, with a non-trivial fundamental group, in which 

some loops cannot be continuously shrunk to a point. (b) (Right) A cubical space that is simply 

connected and has a volume of 𝑉 = 𝐿3. 

 

Figure 5.4: A sequence of systems of cuboids as the height shrinks. 
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 Figure 5.5: On the way to the limit, each system in the sequence of cuboids is simply connected 

with a trivial fundamental group and a non-zero volume. At the limit, the system is multiply 

connected with a non-trivial fundamental group and a zero volume. 

 

Figure 5.6: At the limit, the limit system is a two-dimensional square and so the topology of the 

space is multiply connected, with a corresponding non-trivial fundamental group, because loops 

surrounding the hole cannot be shrunk to a point.  
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5.2 THREE TYPES OF INCOMPATIBILITIES 

Norton (2012) identifies three different situations that might arise when we compare limit 

properties and limit systems: 

1. Limit system and limit properties are compatible. (212-213) 

2. There exists no well-defined limit system. (213) 

3. Limit system and limit properties are incompatible. (213-214) 

In the context of the first case we have a justification for appealing to an idealization via the 

sound principle since when we de-idealize the property we are interested in does not disappear. 

The second is in some sense less interesting since there is no well-defined limit system, no 

idealized analogue system, which may cause problems for the sound principle. The third case 

marks the potential failure of the sound principle and it is this case that I would like to elaborate 

on. 

 Specifically, let us consider three types of incompatibilities between limit properties and 

the corresponding properties of limits systems. 

3i. Incompatibility to some degree delta 𝛿. 

3ii. Incompatibility due to a coarse-grained distinction. 

3iii. Strict incompatibility. 

All three cases of incompatibilities concern potentially problematic idealizations, but only case 

3iii is a pathological idealization that marks the failure of the sound principle. This is so since, 

for 3ii, we can alter our perspective in more of a fine-grained manner so as to demote the 

incompatibility to compatibility (as in the case of zero and non-zero volume discussed above). 
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 In the case of 3i, in which the incompatibility exists to some degree delta 𝛿―say, the 

limit property 𝑝 differs from the corresponding property of the limit system 𝑝′ such that 𝑝 =

𝑝′ + 𝛿―we can justify the appeal to the idealization instrumentally.85 That is to say, we allow 

ourselves to make use of the idealization, admitting that it is not a faithful representation of the 

states of affairs, but it is “good enough” for the context and purpose we are interested in.86 

 However, in the context of 3iii, there is no clear sense in which the limit property and the 

property of the limit system approximate one another, and it is not the case that one can bring 

about compatibility by looking to a different property (as in the zero versus non-zero volume 

case). This is further emphasized with examples in Chapter 6 (Aharonov-Bohm effect) and 

Chapter 7 (fractional quantum statistics). Thus, while idealizations, generally, are compatible 

with the sound principle, pathological ones are not. Accordingly, they ought to either be 

dispensed with, or else, future theory will show that what we thought was an idealization, in fact, 

is not (in which case, again, we have salvaged the sound principle). 

 It is worthwhile to place a particular caveat on this last statement. The sound principle 

concerns the prediction and explanation of concrete effects in the world that appear in some 

target system (or systems) of study. It is in this context that we must dispense with pathological 

idealizations. However, and first, it does not follow from this claim that non-pathological 

idealizations and abstractions cannot play an indispensable role for explanatory purposes. 

Second, nor does it follow that one cannot appeal to pathological idealizations for 

methodological and pedagogical purposes, wherein there is no appeal to a concrete target 
                                                 

85 In short, it is a combination of the techniques described in 3i and 3ii that alleviate any mystery associated with the 
conventional definition of phase transitions. 
86 Norton (2012, 213-214) considers such an example. Here the property we are interested in is the ratio of the 
surface area to volume of a sphere elongated as an ellipsoid. While the limit property is 3𝜋

4
≈ 2.35619449, the 

corresponding property of the limit system is 2. Thus, if an error ±0.4 of is admissible in some particular context 
both the limit property and the (incompatible) property of the limit system will be “good enough.” 
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system.87 As I hinted at in Chapter 3 (in the context of deciphering a representational code) and 

will argue for in Chapter 8, even with the dispensation of pathological idealizations in an 

explanatory context, there are substantive methodological and pedagogical roles for pathological 

idealizations to play in science. Moreover, I will show how the well-received taxonomies of 

idealizations discussed in the last chapter distort, rather than shed light, on the story behind the 

effects that I will be looking at and the idealization appealed to in such a context. 

5.3  CONCLUSION 

To summarize, the ubiquitous appeal to idealization, abstractions and approximations in the 

context of scientific accounts of physical phenomenon raises a host of philosophical problems. 

Most such problems can be solved―or great headway can be made in solving said problems―by 

noting that such idealizations can be, in principle, de-idealized so that they are consistent with 

the sound principle. This is the standard and most plausible justification for appealing to 

idealizations in science. Essential idealizations are interesting because they seem, on the face of 

it, to be inconsistent with the standard justification. However, this chapter shows that only 

pathological idealizations are problematic. Reflecting on the case study of first-order phase 

transitions discussed in Chapters 2 and 3, we may now identify that phase transitions concern 

non-pathological essential idealizations. That is to say, although, strictly speaking, phase 

transitions are defined only for systems with well-defined thermodynamic limits, we can think of 

                                                 

87 In McMullin’s (1985) terminology, as long as we are dealing with a construct idealization, which does not 
represent any concrete target systems in the world, but only an abstract system (existing in our mind or in a platonic 
heaven), then there is no inconsistency with the sound principle since any effect that will be predicted will concern 
the abstract system, namely, the construct idealization itself. 
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these theoretical constructs as abstract phase transitions that offer unfaithful (but sound) 

representations of concrete phase transitions that occur in the world. Appeals to the 

thermodynamic limit are justified instrumentally via 3i and 3ii (above). That is not to say that the 

thermodynamic limit plays a purely instrumental role in the discovery, study and characterization 

of phase transitions. Chapter 8 will identify its substantive value (albeit, in a different context). 

This ends our general discussion of scientific representation (Chapters 2 and 3) and 

idealizations (Chapter 4 and this chapter). I now move onto several concrete case studies and 

flesh out some implications. 
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6.0  IDEALIZATIONS IN THE AHARONOV-BOHM EFFECT 

This chapters looks at the nature of idealizations and representational structures appealed to in 

the context of the Aharonov-Bohm (AB) effect. It is suggested that interpreting the effect as 

fundamentally topological in nature commits one to an untenable view of the necessity of 

idealizations in science. An alternative account is outlined and endorsed. (Implications for the 

debate revolving around essential idealizations, asymptotic explanation, and minimal models, are 

discussed in Chapter 8.) 

6.1 INTRODUCTION 

In Chapters 4 and 5, we discussed the nature of idealizations in science and identified 

pathological idealizations, i.e., idealizations that are inconsistent with the sound principle, as 

ones that ought to be dispensed with. In this chapter I will show that the received view of the AB 

effect appeals to pathological idealizations and thus does not conform to the sound principle.  

The structure of this chapter and my argument is as follows. Section 6.2 will sketch the 

received view of the AB effect and explain in what sense the nature of idealizations appealed to 

are topological. In short, the received view holds that in order to account for the AB effect one 

must appeal to an idealized multiply connected configuration space (or a base space on the fiber 

bundle formulation). I explain in Section 6.3 that this is problematic for it deems the AB effect a 
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consequence of a pathological idealization that does not conform to the standard justification via 

the sound principle. I thus reject the standard story in Section 6.4 by presenting a non-topological 

interpretation of the effect and dissolution of the problematic pathological idealizations. I also 

consider an objection to my account based on the fiber bundle formulation of the effect (for it is 

in this context that such objections have been raised in the literature). I end the chapter with a 

short summary in Section 6.5. Technical appendices relating to the AB effect can be found at the 

end of the dissertation. 

6.2 THE RECEIVED VIEW OF THE AB EFFECT88 

When a beam of charged particles is shot from a source at a double-slit screen and then made to 

recombine at some detector-screen, an interference pattern emerges akin to the type one would 

expect to see from waves interfering with each other (see Figure 6.1). Standard (non-relativistic) 

quantum mechanics (QM) describes such states of affairs with a wave function Ψ that represents 

the (quantum) state of the system. It turns out that in the vicinity of a magnetic field produced by 

a solenoid the interference pattern is shifted (see Figure 6.2). Mathematically, this is represented 

by (the two components of) Ψ incurring an appropriate (non-trivial, relative) phase factor 𝑒𝑖𝑖 

under its natural temporal evolution governed by Schrödinger’s equation—the main dynamical 

law of QM.89 What accounts for this phenomenon? 

                                                 

88 My discussion of the AB effect brackets many technical details to a set of appendices at the end of the 
dissertation. Appendix A discusses canonical quantization for a charged particle in electromagnetic fields, and 
Appendix B presents the standard textbook account of the AB effect (such as it arises in, e.g., Ballentine (1998, 321-
325), Griffiths (2005, 368-390)). Appendix C sketches the fiber bundle formulation of the effect. 
89 A bit more precisely, we may follow Ruetsche (2011, 20-21) and identify the majority of QM theories as ones in 
which particular states of affairs are described in terms of a system’s state and observable physical magnitudes 
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Figure 6.1: (Left) An example for an interference pattern from a double-slit experiment (from 

Möllenstedt and Bayh 1962, 304). (Right) Single-electron build-up of (biprism) interference 

pattern (from Tonomura 1999, 15). (a) 8 electrons, (b) 270 electrons, (c) 2000 electrons, and (d) 

60,000 electrons. 

 

In a famous article, Aharonov and Bohm (1959) derived the inference shift by making 

use of a particular Hamiltonian that I will denote with 𝐻𝐴𝐴𝐼 .90 A Hamiltonian corresponds to the 

energy observable (i.e., a physical magnitude) pertaining to a system and is of special importance 

for it generates the temporal evolution of the system’s state. 𝐻𝐴𝐴𝐼  contains what is known as the 
                                                                                                                                                             

(where states and observables correspond to the system’s kinematics), as well as the dynamics governing temporal 
evolution. QM represents observable physical magnitudes with self-adjoint elements of a set of bounded operators 
acting on a separable Hilbert space ℋ (i.e., ℋ has a countable basis). States are represented by a set of density 
operators (positive trace-class operators of trace 1) on ℋ (i.e., states―understood as normed, positive, countably 
additive assignments of probabilities to projection operators―stand in a one-to-one correspondence with density 
operators). It then turns out that, given some plausible assumptions, which I will not elaborate on here, a wave 
function is a special case of a more generic quantum state that corresponds to a “pure” state (as opposed to a 
“mixed” state). According to the “Schrödinger picture,” the dynamics of a system in an initial state 𝑊(0)  (at time 
𝑡 = 0) are governed by 𝑊(𝑡) = 𝑒−𝑖𝑖𝑖𝑊(0)𝑒−𝑖𝑖𝑖, where 𝐻 is the Hamiltonian operator (roughly, the energy 
observable) pertaining to the system. ℋ is chosen as the space of square-integrable complex-valued functions. On 
the “Heisenberg picture,” it is the observables that evolve with time (and the state remains static): 𝐴(𝑡) =
𝑒−𝑖𝑖𝑖𝐴(0)𝑒−𝑖𝑖𝑖, where 𝐴 is an observable. Here ℋ is chosen as the space of square-summable infinite sequence of 
complex numbers. The term 𝑒−𝑖𝑖𝑖 is the time-evolution operator, where the Schrödinger equation is the special case 
of the dynamical law governing a wave function (a pure state). 
90  Aharonov and Bohm (1959, 486) used the standard Hamiltonian for a charged quantum particle in classical 
electromagnetic fields, which is appropriate for use in the region outside the solenoid (see Appendices A and B). I 
use the notation 𝐻𝐴𝐴𝐼  in order to emphasize that this is the idealized AB effect Hamiltonian. 
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electromagnetic vector potential 𝑨 (or vector potential for short), which is a mathematical entity 

from which the magnetic field 𝑩 can be derived, and is intimately connected to the phase factor 

𝑒𝑖𝑖. Said differently, 𝐻𝐴𝐴𝐼  is the representational structure that is fundamental for it allows one to 

derive the state of the system Ψ, as well as whether or not it will incur a (relative) phase 

factor 𝑒𝑖𝑖 leading to a shifted interference pattern.  

 

 

 

Figure 6.2: The AB effect. A beam of electrons Ψ is split in a region 𝑆𝑜𝑜𝑜, made to encircle a 

solenoid (that generates a magnetic field inside the region 𝑆𝑖𝑖), and then to recombine on a 

detector screen. The original interference pattern is shifted by an amount ∆𝑥. See Appendix B. 

 

The effect became known as the “Aharonov-Bohm effect.”91 It is of special interest to 

philosophers because it seems to portray a type of quantum non-locality (since the magnetic field 

                                                 

91  To be exact, this is the magnetic AB effect. There is an analogue electric AB effect, implied by Lorentz 
covariance, which arises from electric (instead of magnetic) fields. See Peshkin and Tonomura (1989) for a review 
of the effect and its experimental confirmation, along with a selective review of the debate that arose with respect to 
the reality of the effect in the physics literature. Also see Tonomura (1999, Ch. 6; 2010) for a recent overview of 
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affects the beam while being confined to a region where the beam is not) and raises a host of 

interpretive issues regarding ontology and indeterminism in classical electromagnetism and 

quantum mechanics.92 

Our interest will center on the idealizations that arise in the received account of the effect. 

We want to understand what grounds the particular choice of Hamiltonian used by Aharonov and 

Bohm (1959), beyond the fact that it allowed them to predict the AB effect, which was 

subsequently empirically confirmed.93 Roughly, 𝐻𝐴𝐴𝐼  is taken as the appropriate Hamiltonian 

with which to represent the system under heavily idealized conditions. The solenoid giving rise 

to the magnetic field is assumed to be infinitely long so that the magnetic field remains within 

the solenoid and does not leak out. It is also assumed that the solenoid is absolutely impenetrable 

so that the wave function does not penetrate the region containing the magnetic field. Together, 

such idealized assumptions can be incorporated into one: The topology of the space in which the 

AB effect manifests is multiply connected.94 More precisely, the assumption of absolute 

                                                                                                                                                             

experimental confirmations and application of the effect. Ehrenberg and Siday (1949) are usually credited with first 
noting the effect and Chambers (1960) with being the first experimental confirmation. Tonomura et al. (1982, 1986) 
is considered the first definitive confirmation of the effect. Also see Caprez et al. (2007) for recent experimental 
confirmation emphasizing the absence of a force in the manifestation of the effect (i.e., there is no unknown force, 
such as the Lorentz force, shifting the electron wave packet). 
92 See, for example, Batterman (2003), Belot (1998), Healey (2007), Leeds (1999), Lyre (2001, 2004), Maudlin 
(1998), Mattingly (2006), and Nounou (2003) for some of the philosophical literature. Most of this literature 
concerns the physical reality or unreality of the vector potential. I should emphasize that this topic, for which there is 
no “received view,” is not the subject of this chapter. 
93 As Tonomura (1999, Ch. 6) explains, the definitive confirmation of the AB effect by Tonomura et al. (1982, 
1986) did not make use of infinite and impenetrable solenoids. Instead, superconducting toroidal solenoids were 
used. Such solenoids are prepared so as to minimize magnetic field leakage and maximally shield the solenoid from 
an electron beam with a copper and niobium coating. A shift in interference pattern was observed. Although part of 
the shift could be explained in terms of the unideal conditions and other sources of error, these aspects could not 
account for the entire shift in the pattern. For example, it was calculated that the magnetic field leakage can affect 
the phase of an incident electron beam by at most 𝜋, but the observed relative phase shift was about 12 𝜋. For these 
reasons there is little doubt now that the AB effect is a real physical effect and not an artifact of idealizations. That 
being said, the conceptual foundations of the effect are not well understood in the sense that it isn’t clear what 
causes the effect. The debate in the philosophical literature (see footnote 92) revolves mostly around this last issue. 
94 Speaking more carefully, we would say that the QM formulation of the AB effect concerns a Hilbert space of 
continuous functions on a non-simply connected configuration space constituted by ℝ3 with an infinite cylinder 



 132 

impenetrability of the infinite solenoid, or absolute impenetrability for toroidal solenoids of the 

kind used in the experimental confirmation of the effect (by Tonomura et al. 1982; 1986), 

renders the configuration space available to the wave function representing the beam of 

electrons non-simply connected. For example, in the original Aharonov and Bohm (1959) paper, 

the “Discussion of Significance of Results” begins as follows: 

 

The essential result of the previous discussion is that in quantum theory, an electron (for 

example) can be influenced by the [vector] potentials even if all the field regions are 

excluded from it. In other words, in a field-free multiply-connected region of space, the 

physical properties of the system still depend on the [vector] potentials. (490; emphasis 

mine) 

 

Similarly, Peshkin and Tonomura (1989, 27) note that in order to obtain the conditions for a 

manifestation of the electric AB effect, one “requires a multiply-connected spatial geometry, so 

there can be no electric AB effect in a simply-connected region.” Ryder (1996, 102) goes so far 

as claiming that it is “an essential condition for the Bohm-Aharonov effect to occur that the 

configuration space of the vacuum is not simply connected.” 

Relatedly, ever since Wu and Yang’s (1975) influential paper on the AB effect, it has 

become common to appeal to fiber bundle formulation of classical electromagnetism to discuss 

the effect (see Table 6.1).95 In this context, electromagnetic fields are represented by the 

curvature of, and the electromagnetic vector potential is represented by a connection on, the 

                                                                                                                                                             

removed: ℝ3 ∖ 𝑆𝑖𝑖  (where ℝ is the set of real numbers). For my purposes this changes little since the problem and 
“source of ambiguity in the theory is the multiple connectedness of the domain” (Magni and Valz-Gris 1995, 179).   
95 See Healey (2007, Ch. 1-2, Appendix B) for more thorough (but philosophically friendly) introduction. Also see 
Appendix C for an overview of the essentials. 
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principal fiber bundle appropriate for the formulation of classical electromagnetism.96 The 

relative phase factor 𝑒𝑖𝑖 that gives rise to interference pattern arises as the (non-trivial) holonomy 

(or anholonomy) of a closed curve 𝐶 encircling solenoid.97 Details aside, it is standardly claimed 

that in order to get a non-trivial holonomy, the fiber bundle base space that represents physical 

space (or spacetime) must be multiply connected.  The reason is that vanishing electromagnetic 

fields around the solenoid correspond to a curvature that is zero. Zero curvature means that “the 

connection on this bundle is flat everywhere in this region” (Healey 2007, 42). Moreover, if 

“there is a nontrivial holonomy [as is the case with the AB effect] . . . and if the connection is 

flat, the base space [representing physical space] must be nonsimply connected” (Batterman 

2003, 542; original emphasis). Thus, the “ultimate ‘cause’ of the [interference] shift is the 

topology of the base manifold . . .” (Nounou 2003, 193). 

We then may summarize the received view of the nature of idealizations that arise in the 

context of the AB effect, along with the standard explanation, as follows: 

 

THE RECEIVED VIEW: In order to account for the AB effect it is necessary to idealize 

the space in which the effect manifests as topologically multiply connected. (This usually 

takes the form of a non-simply connected electron configuration space due to the dual 

idealizations of an infinite and impenetrable solenoid appealed to by the original 

Aharonov and Bohm (1959) formulation,98 or a multiply connected base space on Wu 

                                                 

96  That is to say, a principal bundle, where the base space is the spacetime manifold, and where the structure group 
is 𝑈(1)―the multiplicative group of complex numbers of modulus 1 (i.e., the group of rotations in the complex 
plane). 
97 That is to say, observable effects are produced by elements of the holonomy group determined by the connection 
on the principal fiber bundle. 
98 In the context of toridial solenoids, all that is needed is the impenetrability assumption. 
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and Yang’s (1975) fiber bundle formulation.99) It is in virtue of the non-trivial topology 

that there exists an AB effect. 

 

 Electromagnetic 
Vector Potential 

Magnetic 
Field 
Produced 
by Solenoid 

Shift In 
Interference 
Pattern (due to a 
Non-Trivial Phase 
Factor) 

Space  
or 
Spacetime 

Non-
Relativistic 
Quantum 
Mechanic 
Formulation 

 
𝑨 

 
𝑩 

 
𝑒𝑖𝑖 

 

= exp (
𝑖𝑖
ℏ
�𝑨 ∙ 𝑑𝒓
𝐶

) 

 

 
ℝ3 

Or 

 ℝ4 

Fiber Bundle 
Formulation 

Connection Curvature Non-trivial 
Holonomy 

Base 
Space 

 

Table 6.1: Comparison of terminology between non-relativistic quantum mechanics and the fiber 

bundle formulation of the AB effect. 

 

Sentiments of this sort arise in, among others, Aharonov and Bohm (1959), Batterman (2003), 

Belot (1998, 544), (Healy 2007, 42), Lyre (2001, 2004), Morandi (1992, V), Morandi and 

Menossi (1984), Nakahara (1990, 356-359), Nash and Sen (1983, 301), Nounou (2003), Peshkin 

and Tonomura (1989), Ryder (1996), Schulman (1971), and Wu and Yang (1975; 3845). 

                                                 

99 I do not think this is the position that Wu and Yang’s (1975) proposed. Rather, it seems to be the one advertised 
by various philosophers (e.g., Batterman 2003, Nounou 2003, Healey 2007). 
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6.3 THE PARADOX OF THE AB EFFECT 

The received view is untenable. To get a sense for why this is so, consider the following set of 

propositions that the standard approach aspires to embrace:100 

 

1. Real systems are simply connected.101 

2. Real systems display the AB effect. 

3. The AB effect occurs if and only if there is a non-trivial phase factor. 

4. A non-trivial phase factor arises if and only if a system is multiply connected.102 

  

While the first two propositions imply that real systems are simply connected and display the AB 

effect, the last three propositions convey that real systems are multiply connected in virtue of 

displaying the AB effect. We then have a paradox: real system are and are not multiply 

connected (or, real systems do and do not display the AB effect). In other words, something has 

gone horribly wrong. Thus, one can justifiably question the legitimacy of the idealizations 

appealed to in the context of the AB effect: 

 

It is a general attitude in physics that any mathematical model of reality should react 

“continuously” to small changes in the formulation of the problem. Accepting this 

                                                 

100 I am drawing here an analogy with the case study of phase transitions discussed in Chapter 2. Proposition 1 is 
discussed in the example of a system of cuboids discussed in Chapter 5, and proposition 4 is the one that I ultimately 
reject. 
101 Said differently, the configuration space available to the electron beam is the entirety of ℝ3 (where ℝ is the set of 
real numbers), such that loops can be continuously shrunk to a point. Proponents of the received view standardly 
admit that appeals to multiple connectedness concerns an idealization, thereby committing to proposition 1. 
102 More precisely, by “multiply connected” we mean a non-simply connected configuration space (or a non-simply 
connected base space on the fiber bundle formulation). 
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principle, as rigid a topological property as multiple connectedness should be watched 

carefully… After all, infinitely repulsive barriers do not really exist and all that is needed 

is a theory that can describe the experimental facts when the repulsive barrier is 

sufficiently high. (Magni and Valz-Gris 1995, 179-180) 

 

 Said differently, on the received view of the AB effect the idealizations appealed to in 

order to account for the effect are topological in the sense that one needs to appeal to a multiply 

connected space. However, we saw in Chapter 5 that such a topological idealization is 

pathological, for a multiply connected topology is a property of a limit system that does not 

match the corresponding limit property―any minute de-idealization renders the topology of the 

space simply connected. This is also the case for systems manifesting the AB effect: as long as 

the solenoid is finite and penetrable, the electron configuration space corresponding to the AB 

effect will be simply connected (see Figure 6.3). It is only at the limit that the property of 

multiple connectedness arises. Connectedness is a binary topological property so it makes no 

sense to talk about “approximate multiply connectedness,” or to state that the physical space 

“approximately instantiates” the structure of a non-trivial topology. Either the space is connected 

or it is not; there is no intermediate. In the same vein, multiple connectedness does not arise 

continuously in some limiting procedure. Limiting procedures already presuppose topological 

notions such as continuity. 
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Figure 6.3: A schematic illustration of why the received account of the AB effect appeals to 

topological idealizations. 

 

  Nevertheless, an objection arises. Is it not possible that some piece of fancy mathematics, 

some new technique or other, will allow for a precise formulation of an “approximately multiply 

connected” space so that my qualms about the received view will be unfounded? Maybe there is 

a way to put topologies on sets of geometries such that a multiply connected space is the limit of 

a sequence of simply connected spaces? I believe that such an objection may be evaded in two 

steps. First, note the position that I am defending, which explicates why such techniques are not 

available, is the typical one in the sense that a precise characterization of “approximately 

multiply connected” is not part and parcel of the literature on topology. Thus, I submit that the 

burden of proof (to offer such a characterization that accommodates an account of the AB effect 

interference shift) is not my own, and belongs to a defender of the received view. Second, if such 

techniques were available, then they would only support the same position that I am defending 
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here. Specifically, I claim that topological idealizations that are pathological ought to be 

avoided. If new techniques avail manners by which to account for the AB effect, by appealing to 

non-pathological topological idealizations, then so much the better. Such techniques can be 

subsumed under the alternative view that I espouse in the following subsection. What is certain is 

that such new techniques are not part of the received view. 

 In sum, if we side with the current received view we commit ourselves to an untenable 

position regarding the necessity of idealizations since we are in effect saying that certain 

properties of a limit system—that do not correspond to anything in reality—somehow account 

for the AB effect. I urge against taking such a route because a more sober approach is available. 

6.4 JUSTIFYING THE AB EFFECT: A NON-TOPOLOGICAL INTERPRETATION 

On the received view, the AB effect is accounted for by the Hamiltonian 𝐻𝐴𝐴𝐼 , which is the result 

of highly idealized conditions (namely, infinite length and absolute impenetrability), entailing an 

appeal to a multiply connected electron configuration space. The philosophical question of 

interest is whether one can justify the appeal to 𝐻𝐴𝐴𝐼  without appealing to a non-trivial topology. 

That is to say, we want to avoid appealing to properties of limit systems in accounting for the AB 

effect, and instead make use of limit properties so that we abide by the sound principle. It turns 

out that such an approach is possible, but before explicating it I wish to review the standard 

account of the AB effect in a bit more detail. 
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 To begin, the Hamiltonian that allowed Aharonov and Bohm (1959, 486) to derive the 

interference shift had the following form:103 

𝐻𝐼 =
1

2𝑚
(𝑷−

𝑞
𝑐
𝑨)2 

However, 𝐻𝐼 is not a self-adjoint or essentially self-adjoint operator on 𝐶∞(ℝ3 ∖ 𝑆𝑖𝑖) 

(i.e., it does not have a unique self-adjoint extension on the domain of smooth compactly 

supported functions on the configuration space ℝ3 ∖ 𝑆𝑖𝑖).104 This means that, as it stands, 𝐻𝐼  is 

not an observable. Furthermore, specific quantum dynamics are given by a unitary group, and we 

know from Stone’s theorem (see Reed and Simon 1980, 266-268, Theorem VIII.8) that the 

infinitesimal generator of such a unitary group must be a self-adjoint operator. If an operator is 

not self-adjoint but it is essentially self-adjoint, then we can use its unique self-adjoint extension 

(namely, its closure) to generate the dynamics. On the other hand, in the case of 𝐻𝐼 there is a 

plethora of self-adjoint extensions (de Oliveira and Pereira 2010), corresponding to different 

dynamics (i.e., different predictions for scattering experiments), and given by different possible 

boundary conditions that depend on the interaction between the particle beam and the solenoid. 

Thus, questions arise: which self-adjoint extension do we use and what is our justification for 

using a particular self-adjoint extension over another? 

On the received view of the AB effect, we declare that the AB effect set-up is 

approximately similar to an infinite and absolutely impenetrable solenoid, and so it is in virtue of 

the idealized set-up that we justify choosing boundary conditions in which wave functions in the 

domain of 𝐻𝐼 vanish at the solenoid boundary. Choosing such a boundary condition corresponds 

to choosing a particular self-adjoint extension of 𝐻𝐼 , which I denote and identify with (what we 

                                                 

103 The reason for a shift in notation from 𝐻𝐴𝐴𝐼  to 𝐻𝐼  will become evident shortly. 
104 ℝ3 ∖ 𝑆𝑖𝑖 is the space that arises when one removes the infinite cylinder from ℝ3. 
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have been calling the Aharonov-Bohm Hamiltonian) 𝐻𝐴𝐴𝐼 , and we continue to derive the 

interference shift as is done in standard textbooks (see Appendix B). However, two problems 

arise. First, I have argued that such an approach is not cogent because an appeal is being made to 

a pathological idealization: we cannot just assume that a longer and well-shielded solenoid will 

behave as, or is approximately similar to, an infinite and absolutely impenetrable solenoid. 

Second, the (pathologically idealized) assumption of impenetrability only guarantees that, for a 

continuously differentiable wave function, the electron probability current 𝑗 ≔ −𝑖(Ψ∗∇Ψ −

Ψ∇Ψ∗) must vanish at the solenoid boundary. This can be implemented using different boundary 

conditions including the Dirichlet boundary conditions (Ψ = 0) that Aharonov and Bohm (1959) 

used, Neuman boundary conditions (∇Ψ = 0), or Robin boundary conditions (∇Ψ = 𝑟Ψ, 𝑟 ∈ ℝ) 

(de Oliviera and Pereira 2010). Thus, even while appealing to absolute impenetrability we lack a 

justification for choosing a particular boundary condition, and hence for making use of 𝐻𝐴𝐴𝐼  in 

accounting for the AB effect. The received view of the AB effect is lacking in justification for 

choosing the main explanatory component, namely, 𝐻𝐴𝐴𝐼 . 

Accordingly, I am suggesting an alternative interpretation. Consider a family of realistic 

Hamiltonians �𝐻𝐿,𝑛� that are well-posed and self-adjoint on 𝐶∞(ℝ3). For instance, consider 

𝐻𝐿,𝑛 = 1
2𝑚

(𝑷− 𝑞
𝑐
𝑨𝑳)2 + 𝑛𝑛(𝑟), where  𝑷 = −𝑖ℏ∇ is the momentum operator, 𝑨𝑳 is a vector 

potential that depends on the finite length 𝐿 of the solenoid, 𝑉(𝑟) corresponds to the penetrability 

of the solenoid such that 𝑉(𝑟) = 𝑉 if 𝑟 ≤ 𝑟0, 𝑉(𝑟) = 0 if 𝑟 ≥ 𝑟0, with 𝑟0 the radius of the 

solenoid, and 𝑛 is an integer. Then show that such a family converges to 𝐻𝐴𝐴𝐼  in the limit in 

which the solenoid length and impenetrability grow. Schematically, we want the following 

equation to hold: 
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lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼       (6.1) 

 

Recent work in mathematical physics proves that the above equation indeed does hold. 

Magni & Valz-Gris (1995) show that the 𝑛 → ∞ case holds, while de Oliveira & Pereira (2008, 

2010, 2011) include both cases 𝑛 → ∞ and 𝐿 → ∞, in which it does not matter which limit is 

taken first. Specifically, de Oliveira & Pereira (2008) show that the limits exist in the strong 

resolvent sense, and that Dirichlet boundary conditions are singled out if we represent the 

assumption of infinite impenetrability with step-function potentials 𝑉𝑛,𝐿 and take the infinite limit 

𝑛 → ∞. de Oliveira & Pereira (2011) extend the result to norm resolvent convergence (wherein 

spectral and eigenfunctions convergences are guaranteed) in the case of the 𝑛 → ∞ limit. 

Moreover, Ballesteros and Weder (2009a, 2009b, 2011) show that such results hold in the 

context of experiments confirming the AB effect with toroidal magnets (e.g., Caprez et al. 

(2007), Tonomura et al. (1982, 1986)). They provide a quantitative error bound for the difference 

in norm between the exact solution and Aharonov and Bohm’s (1959) idealized wave function 

solution—what is usually called the AB effect Ansatz—thereby showing that the Aharonov-

Bohm Ansatz is a good approximation of the exact solution.105 

What is important from our perspective is that although it does not matter which 

boundary condition one uses in order to attain the interference shifts associated with the AB 

effect, still, de Oliveira & Pereira (2010) show that different boundary conditions correspond to 

different physics along with different empirically confirmable predictions for scattering 

experiments. So there is a real need to justify the appeal to the AB effect idealizations and tell a 
                                                 

105 In addition, Babiker et al. (1984) and Roy (1980) considered the infinite solenoid length limit, while Kretzschmar 
(1965) also considered the infinite potential barrier limit. An additional idealization studied by Weisskopf (1961) via 
a limiting process concerns the fact that the electromagnetic field associated with the solenoid will interact with 
surrounding particles when being turned on and off. 
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story about why the AB effect, conventionally defined on a non-simply connected configuration 

space, has anything to do with the AB effect as it is manifested in the laboratory. My point is that 

it is exactly the kind of results discussed above that give us this story.  

Furthermore, in order to emphasize the justificatory difference between the received view 

and the alternative interpretation that I am proposing it is important to make to remarks. First, 

lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼  gives a justification for using 𝐻𝐴𝐴𝐼  (with the boundary conditions chosen 

by Aharonov and Bohm (1959) in which the wave function vanishes at the solenoid boundary) 

that does not make use of an idealized infinite and absolutely impenetrable solenoid. The 

philosophical upshot is that we need not appeal to pathological idealizations in accounting for the 

AB effect. Second, a story can be told about why, in principle, one need not appeal to 𝐻𝐴𝐴𝐼  and 

talk of an idealized multiply connected space in order to account for the AB effect. Specifically, 

in virtue of lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼 , one can be confident that the AB effect interference shift 

derived from a sufficiently long and impenetrable solenoid represented by 𝐻𝐿,𝑛 is well 

approximated by the idealized treatment. But with the 𝐻𝐿,𝑛 the AB effect is manifested without 

the requirement that the electron beam never enters the region where the magnetic field is non-

zero. Consequently, it is in virtue of the facts that lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼 , that 𝐻𝐴𝐴𝐼  can be used in 

order to attain the phase shifts and interference patterns that arise in the AB effect in the first 

place. That is to say, we gain an explanatory story for why a highly idealized model 

(specifically, 𝐻𝐴𝐴𝐼 ) is still empirically adequate. See Figure 6.4 for a pictorial summary.  
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Figure 6.4: The AB effect concerns a sequence of systems of penetrable solenoids in which the 

length, and the potential barrier representing impermeability, grow to infinity. On the way to the 

limit, the (configuration) space is simply connected and the corresponding Hamiltonian faithfully 

representing the system is 𝐻𝐿,𝑛. At the limit, the (configuration) space is multiply connected, 

with a corresponding idealized Hamiltonian 𝐻𝐴𝐴𝐼 . 

  

One may attempt to object, vis-à-vis the fiber bundle formulation of the AB effect, that in 

such a context an appeal to a multiply connected space truly is necessary in order to account for 

the effect. The idea is that it follows from the fact that a non-trivial holonomy corresponds to a 

non-trivial phase factor (giving rise to an interference pattern), that the base space of the 

principal and associate fiber bundles representing a system in which the AB effect arises must be 

multiply connected. This is so because if there is a non-trivial holonomy, and if the connection is 
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flat (i.e., the electromagnetic fields are zero), then the base space has a non-trivial topology. In 

reply, it seems to me that there is a story to tell about how one may attain a non-trivial holonomy 

without appealing to a multiply connected space. Certainly, if the connection is not flat, this is 

possible. To that effect, Katanaev (2011, 2012) offers such an alternate (fiber bundle) approach 

to the AB effect. In other words, there are two options. Either the connection is flat, in which 

case the base space must be multiply connected for there to be a nontrivial holonomy. Or else, 

the connection is not flat on some bounded domain, while flat outside. It is this second case that 

is relevant to the AB effect. Moreover, if the base space representing physical space was truly 

multiply connected, it is not at all clear that nontrivial holonomies derived in such a manner 

would have anything to do with the AB effect since the effect is fundamentally dynamical in 

nature: If we carve out the region of physical space where the solenoid resides, then there is no 

solenoid, no magnetic field, and no AB effect!106  

In sum, if we think that the AB effect is fundamentally topological in nature, in the sense 

that we have to appeal to an idealized multiply connected (configuration) space, then we commit 

ourselves to the claim that a pathological idealization is essential for accounting for the AB 

effect. This is an untenable view of the necessity of idealizations in science, and in blatant 

contrast with the intuitions shared by both philosophers and physicist alike as conveyed by the 

sound principle. For these reasons I urge that we take the alternative view of idealizations 

discussed in this section. The moral may be stated generally as follows: 

 

                                                 

106 Thank you to John Earman for making this point crystal clear. 
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Hasty idealization often obstructs the application of the theory. The remedy is always the 

same: to consider the ideal system as the limit of more realistic ones, to which the theory 

can be consistently applied. (Berry 1986, 320; my emphasis) 

 

For context, it is worthwhile to note that Berry (1986) is explaining how it is the limiting 

procedures of the type I discussed in this section that justify the reality of the AB effect. Without 

such results, i.e., without appropriate justifications for appealing to idealizations, one may worry 

that the effect is an artifact of an idealization. In fact, it is exactly this type of worry that led 

Bocchieri and Loinger (1978) to claim that the AB effect has a “purely mathematical origin,” and 

gave rise to a twenty-five year controversy regarding the reality of the effect (e.g., Bocchieri and 

Loinger (1978), Bocchieri et at. (1979, 1980), Bohm and Hiley (1979), Roy (1980), Kuper 

(1980)). 

6.5 CONCLUSION 

In this chapter I have looked at the nature of some pertinent idealizations that arise in standard 

scientific accounts of the AB effect. I showed how the received view on the subject takes the 

idealizations in question to be topological. It is claimed that one must appeal to a multiply 

connected electron configuration space in order to account for the AB effect. In contrast, I have 

argued that such idealizations are pathological, for the topological properties of limit systems do 

not match the corresponding topological limit properties. The received view, then, comprises an 

unattainable position regarding the necessity of idealizations in science for it is in blatant conflict 

with the sound principle. Accordingly, I have suggested an alternative approach to the 



 146 

idealizations that arise in said effects. One looks to families of possible realistic Hamiltonians 

that faithfully represent systems in question, and uses limiting procedures in order to attain 

Hamiltonians of the same form as their idealized counterparts, which have allowed for successful 

empirical predictions. This corresponds to a match between limit properties and properties of 

limit systems with respect to the Hamiltonians representing the systems. In the following chapter 

I extended my conclusions to the case study of fractional quantum statistics allegedly manifested 

by excited states in the fractional quantum Hall effect. 
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7.0  TWO APPROACHES TO FRACTIONAL QUANTUM STATISTICS: 

PATHOLOGICAL IDEALIZATIONS AND THE CURIOUS CASE OF THE 

ANYON 

In this chapter I consider the claim that anyons, i.e., particles with so-called “fractional” or 

“intermediate” statics, are physically manifested in fractional quantum Hall effect systems. I 

identify two different approaches to fractional statistics. The standard approach, (what we may 

call) the topological approach to fractional statistics, is precise and well understood. However, I 

argue that it appeals to pathological idealizations (see Chapters 5 and 6) and thus suggest an 

alternative approach. The second alternative approach, the geometric approach, does not stem 

from a solid foundation like the topological approach, so it is not completely clear that the 

particles in questions are obeying fractional quantum statistics as conventionally defined, but it 

also does not appeal to pathological idealizations. I make some headway in identifying what kind 

of work must be done in order to develop the foundations of the geometric phase approach. 
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7.1 FRACTIONAL QUANTUM STATISTICS AND THE CURIOUS CASE OF THE 

ANYON 

Anyons are hypothetical particles that live in a two-dimensional world.107 They are distinguished 

from their well-known brethren, bosons and fermions, by the type of quantum statistics they 

manifest under particle exchange.108 That is to say, colloquially, according to non-relativistic 

quantum mechanics (QM) a system of 𝑁 identical particles is represented by a wave function 

Ψ(1,2,…,𝑁) (a quantum state) that satisfies both Schrödinger’s equation (which governs the 

dynamics of the system), as well as specific symmetry properties under particle exchange.109 In 

particular, QM tells us that if we exchange the positions of two particles, say particles 1 and 2,  

the states of the original and permuted systems can differ, at most, by a phase factor 𝑒𝑖𝑖, where 𝜃 

is called the exchange phase: 

                                                 

107 Also, anyons have “fractional charge,” “fractional spin” and can be thought of as point charged vortices (i.e. 
point particles with both electric charge and magnetic flux). 
108 I set aside the issue of what exactly one means by “statistics” in this context for Sections 7.3-7.4. Roughly, 
quantum and statistical mechanics tell us that, given a collection of non-interacting indistinguishable particles at 
thermal equilibrium, there are two possible ways that the collection might occupy a set of available discrete energy 
states. The expected number of particles in some specific energy state will depend on the type of particles at hand. 
Bosons manifest a behavior consistent with Bose-Einstein statistics, while fermions distribute themselves according 
to Fermi-Dirac statistics. Incidentally, there is a deep connection between the type of statistics that particles manifest 
and their intrinsic angular momentum (their spin). Bosons come with integer spin and fermions with half-integer 
spin, while anyons have “fractional spin.” An original systematic attempt to prove the spin-statistics relation from 
fundamental consideration was first provided by Wolfgang Pauli (1940).  Ever since then, a plethora of various 
“spin-statistics theorems” attempting to further ground and generalize such results have arisen. See Duck and 
Sudarshan (1997) and references within. For my purposes, the discussion of spin will only serve to cloud the points 
that I am attempting to make. For these reasons I will evade a discussion of spin and spin-statistics relations so far as 
it is possible. That being said, it is worthwhile to note that there are different approaches to grounding the spin-
statistics relations, and it is a matter of controversy which approaches work best, and whether such relations arise 
also in two-dimensions. Relatedly, the explanation and account for whether and why anyons have “fractional spin,” 
and what relation (if any) this has to their statistics, are all matters of controversy. 
109 This idea that the wave function satisfies certain symmetry properties under particle exchange is known as the 
symmetrization/anti-symmetrization postulate. If two identical particles are permuted, and if the two particles truly 
are identical in the sense that they share intrinsic properties such as mass and charge, then we expect both the 
original and permuted system to have the same observable consequences. Same observable consequence, in turn, 
means that the wave function describing the system can differ at most by a number of modulus 1. See Section 7.3 for 
an emphasis on the schematic nature of such reasoning and further discussion. 



 149 

 

 Ψ(2,1,…,𝑁) = 𝑒𝑖𝑖Ψ(1,2,…,𝑁) 

 

In a three-dimensional world 𝜃 can take on one of two values:  𝜃 = 0 for a system of “bosons” 

with a corresponding phase factor of +1 and 𝜃 = 𝜋 for a system of “fermions” with a 

corresponding phase factor of −1.110 Bosons and fermions are the two basic types of particles 

that exist in our world according to QM. However, in two dimensions a third possibility arises. 

The exchange phase can take any range of values.111 Particles composing such systems are aptly 

dubbed anyons112 and their quantum statistics are called “fractional statistics” or “intermediate 

statistics.”113 

 As exciting as such a theoretical construct might be, it turns out that one can conjure up 

experimental situations that are approximately two-dimensional so that anyons and their 

properties can manifest in the physical world.114 Such systems are ones in which we observe the 

fractional quantum Hall effect (FQHE), the discovery and explanation of which won Robert 

Laughlin, Horst Störmer and Daniel Tsui the Nobel prize in 1998.115 However, from a 

philosophical perspective, at least one worrisome issue arises: If, strictly speaking, anyons exist 

                                                 

110 It is also common to define a statistics parameter 𝛼 ≡ 𝜃
𝜋
  where 𝛼 = 0 for bosons, 𝛼 = 1 for fermions, and 

0 < 𝛼 < 1 for anyons (where, in principle, 𝛼 can be a rational or irrational number). 
111 𝜃 is defined mod 2𝜋. 
112 The name is due to Frank Wilczek in his (1982b). Note that anyons and fractional statistics have nothing to do 
with so-called paraparticles and parastatistics (which arise from higher dimensional representations of the 
permutation group). 
113 For standard textbook accounts and introductions to anyons and fractional statistics see Khare (2005), Lerda 
(1992), Rao (2001), Stern (2008), and Wilczek (1990). 
114 This is especially interesting because (non-abelian) anyons, such as bound states of the Mayorana Fermion, are 
the best candidates from which to build quantum computers (Nayak et al. (2008)). See Mourik et al. (2012) for 
recent experimental results and Pachos (2012) for more on anyons in the context of quantum computing. 
115 For more on the integer and fractional quantum Hall effects see Chakraborty and Pietilinen (1995), Douçot et al. 
(2004), Ezawa (2013), Prange and Grivin (1987), Stern (2008), and Yoshioka (2002). For a history and introductory 
overview see von Klitzing (2004). 
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solely in two-dimensions—that is to say, they are idealizations of sorts akin to frictionless 

planes, massless test particles, perfect triangles, and the like—how is it that they can manifest in 

the real world, which is three-dimensional? How can such idealizations play an essential role in 

accounting for an experimentally observed physical effect such as the FQHE? 

 My goal is to make some advancements in answering such questions. Specifically, after a 

short introduction to the classical and quantum Hall effects in Section 7.2, I will outline two 

approaches to fractional statistics in Sections 7.3 and 7.4. The first approach, the topological 

approach, is the standard account, but I will argue that it appeals to pathological idealizations (as 

discussed in Chapter 5) and thus ought to be avoided. The second approach, the geometric 

approach, is based on a less firm foundation than the former approach. Nevertheless, it does not 

seem to appeal to pathological idealizations and so, drawing on an analogy with my account of 

the AB effect (Chapter 6), I suggest that it is the correct approach that needs to be taken in order 

to understand fractional statistics as they are manifested in the FQHE. 

 In a bit more detail, in Section 7.3 I present the topological approach to fractional 

statistics and anyons, which is grounded in the so-called configuration space framework to 

permutation invariance in QM. Here I will explain how fractional statistics arise from a 

topological idealization. In a nutshell, on this approach anyons and fractional statistics emerge by 

considering the one-dimensional unitary representation of the fundamental group (the first 

homotopy group) of the configuration space of identical particles in two-dimensions.  This will 

be contrasted, in Section 7.4, with the manner in which fractional statistics arise in the presence 

of the FQHE, via a calculation of the geometric phase of a doubly permuted excited FQHE state 

(a quasihole/quasiparticle). The main take-home message will be that, while fractional statistics 

qua the topological approach concerns a topological idealization that is pathological, the 
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alternative approach that makes use of a geometric phase does not seem to depend essentially on 

topology (or the dimensionality of the system). 

7.2 INTRODUCTION TO THE QUANTUM HALL EFFECTS 

7.2.1 The Classical Hall Effect 

In 1879, Edwin Hall published a paper titled “On the New Action of the Magnet on Electric 

Currents” in which he quotes what he took to be a statement “contrary to the most natural 

supposition:” 

 

It must be carefully remembered, that the mechanical force which urges a conductor 

carrying a current across the lines of magnetic force, acts, not on the electric current, but 

on the conductor which carries it… if a current itself be free to choose any path through a 

fixed conductor or network of wires, then when a constant magnetic force is made to act 

on the system, the path of the current through the conductors is not permanently altered, 

but after certain transient phenomena, called induction currents, have subsided, the 

distribution of the current will be found to be the same as if no magnetic force were in 

action. The only force which acts on the electric currents is the electromotive force… [as 

quoted in (Hall 1879, 287)] 

 

The quote is taken from Maxwell’s Treatise on Electricity and Magnetism and, in fact, later 

editions would bracket this statement and add that “the statement in brackets must be regarded as 
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only approximately true” (Maxwell, 1892, 157). The reason for this includes three sets of 

experiments conducted by Hall as part of his doctoral studies at Johns Hopkins on Oct. 7-11th, 

Oct. 28th and Nov. 12th of the same year of 1879. 

 The first set of experiments, conducted Oct. 7-11th, was aimed at ascertaining whether or 

not the resistance of a current carrying conductor was affected by the introduction of a magnetic 

field, at different intensities and directions. Recall, within an intuitive fluid-model of electricity, 

a voltage difference 𝑉, which is an electric potential difference, also known as the electromotive 

force, acts as a kind of electrical pressure or tension “pushing” the fluid that is the electrical 

current 𝐼 through a body such as a conductor.116 Roughly, holding some conditions such as 

temperature fixed, the electric current is proportional to the potential—this is known as Ohm’s 

law—and the constant of proportionality between them is defined to be the resistance 𝑅 of the 

body through which the current runs: 

𝑅 =
𝑉
𝐼

 

Resistance is a quantity that depends on the material and shape of the resisting body in question.  

The question Hall attempted to answer concerns whether the resistance is also affected by an 

applied magnetic field. What he found is that “the magnet’s action caused no change in the 

resistance of the coil” (Hall 1879, 289). 

 Accordingly, with the second set of experiments, Hall investigated whether or not the 

current would be affected by the magnetic field, such that it would result in some potential 

difference along the traverse direction of a conductor. However, and this following point is 

noteworthy, the experiment failed “owing probably to the fact” that the conductor used “had 
                                                 

116 To be clear, the electric potential, or electromotive force, is neither a force nor potential energy. While the 
electric force and electric potential energy are measured in Newtons and Joules, respectively, the electric potential is 
measured in Joules per Coulomb, so it is an energy per unit charge. 
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considerable thickness” (Hall 1879, 289). Hall repeated the experiment on Oct. 28th, this time 

with a very thin gold leaf and he succeeded to show, by making use of a “Thompson 

galvanometer,” which is a type of current measuring device, that there indeed was a permanent 

deflection of the galvanometer needle. That is to say, a permanent voltage difference was being 

detected, the “Hall voltage” 𝑉𝐻, and it is this phenomenon that we call the Hall effect.  

 Hall followed this with a third set of experiments on Nov. 12th, which were meant as a 

type of quantitative confirmation of the phenomenon he observed. He was able to show that the 

product of the applied current 𝐼 and magnetic field 𝐵 were proportional to a current picked up by 

the galvanometer, and thus, via Ohm’s law, proportional to the Hall voltage: 

𝐵𝐵 ∝ 𝑉𝐻  

However, Hall emphasized that phenomenon does not arise “under all circumstances.” In 

particular, a ¼ mm thickness of the conducting body (namely, the gold leaf) was enough to 

ensure that the galvanometer failed to detect any current/Hall voltage. 

 One could reconstruct the Hall effect in a contemporary form by placing a conductor in 

the 𝑥𝑥-plane in the presence of magnetic field 𝐵𝑧 applied perpendicular to the plane, while 

applying an electric field 𝐸𝑥 along the 𝑥-axis that induces a current density 𝑗𝑥  moving at velocity 

𝑣𝑥 (also along the 𝑥-axis) (See Figure 7.1). The electrons composing the current will be deflected 

due to the Lorentz force in the 𝑦-axis direction. This, in turn, will induce an additional electric 

field 𝐸𝑦 in the 𝑦-axis direction, which is the “Hall Effect.” In particular, following standard 

textbook accounts such as Kittle (2005), we start with Newton’s second law, which governs the 

motion of the electrons in our model: 

𝑭 =
𝑑𝒑
𝑑𝑑

= 𝑚
𝑑𝒗
𝑑𝑑
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Figure 7.1: The Hall effect. A current 𝑖 runs through a thin metal conductor in the presence of a 

uniform magnetic field 𝑩. There exist a voltage drop 𝑉 that can be experimentally observed and 

varies linearly with the magnetic field. 

 

In our case, the force 𝑭 will be the Lorentz force 𝑭𝑳 = −𝑒(𝑬 + 1
𝑐
𝒗 × 𝑩), where 𝑒 is the electron 

charge, 𝑬 the electric field, 𝑐 the speed of light constant, 𝒗 the electron velocity and 𝑩 the 

applied magnetic field. However, as for rate of change of the momentum 𝒑 with respect to time 

𝑡, we make the following approximation: 

1
𝑚
𝑑𝒑
𝑑𝑑

=
𝑑𝒗
𝑑𝑑

≅
𝑑𝒗𝒅
𝑑𝑑

 

The idea is that the electrons in the conductor are not accelerated by the electric field continually. 

Rather, they undergo collisions such that the time in between collision is 𝜏 and the average 

velocity between collision is 𝒗𝒅, known as the “drift velocity:” 
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𝑣𝑑 ≡ 𝑎𝑎 =
𝑒𝑒𝑒
𝑚

 

Where 𝑎 is the acceleration of the electrons (due to the electric field 𝐸). The conductance 

associated with 𝐸𝑦  is called the “Hall conductance” and is given by, 

𝜎𝑥𝑥 =
 𝑗𝑥  
𝐸𝑦

=
𝑛𝑛𝑣𝑥
𝑣𝑥𝐵𝑧

 =
𝑛𝑛
𝐵𝑧

 

(where 𝑛 is the number density). Notice that 𝜎𝑥𝑥 varies linearly with 𝑛𝑛 𝐵𝑧⁄ . Similarly, through 

Ohm’s law 𝑅 = 𝑉/𝐼 we expect the Hall resistance 𝑅𝐻 ≔ 𝑉𝐻/𝐼 to vary linearly with the applied 

magnetic field. Thus, according to classical electromagnetism, one can see that the Hall 

conductance (or its inverse quantity the “Hall resistivity”) vary linearly (inversely) with  𝑛𝑛 𝐵𝑧⁄ . 

7.2.2 The Quantum Hall Effects 

Contrary to classical expectation though, approximately a century after Hall’s discovery, 

experiments (von Klitzing et al. 1980, Tsui et al. 1982) have shown that the Hall resistance is 

quantized (see Figure 7.2), 

𝑅𝐻 =
ℎ
𝑒2

1
𝜈

 

where ℎ is Planck’s constant, 𝑒 the electron charge and the dimensionless number 𝜈—the so-

called “filling factor”—has either integer or fractional values. Accordingly, the former case is 

known as the integral quantum Hall effect (IQHE) the latter case is known as the FQHE. 

 Systems that manifest the quantum Hall effects make use of semiconductors in strong 

magnetic fields. These are many-body electron gas systems that are dynamically two-

dimensional in the sense that, while the electrons are free to move in two dimensions, they have 
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quantized energy levels in the third dimension.117 The Hamiltonian for such systems gives rise to 

discrete eigen-energies called “Landau levels” (LL): 

 

𝐸𝑛  =  (𝑛 + ½)𝑤𝑐,   𝑛 =  0, 1, 2, … 

 

Where 𝑤𝑐 ∶=  𝑒𝑒/𝑚𝑒𝑐 is the cyclotron frequency.118 These LL are degenerate and it turns out 

that the filling factor 𝜈 is (roughly) the number of electrons per number of states in a Landau 

level. The IQHE can be understood within the context of non-interacting quantum mechanics in 

terms of single-particle orbitals of electrons in a magnetic field. Specifically, the IQHE is well 

explained by LL: as an LL is filled the resistivity increases and once an LL is completely full it 

takes a finite jump in energy to reach the next LL. The FQHE, on the other hand, is a many-body 

(electron-electron) effect, and remains mysterious in the absence of further insights. 

 Robert Laughlin (1983a, 1983b) famously proposed a wavefunction solution to the type 

of Hamiltonian governing systems in which the quantum Hall effects manifest:119 

 

Ψ𝑚 = �(𝑧𝑗 − 𝑧𝑘)𝑚𝑒(−14∑ |𝑧𝑙|2𝑁
𝑙 )

𝑁

𝑗<𝑘

 

 

                                                 

117 See Ando et al. (1982) for an overview. 
118 The cyclotron frequency is the frequency of a charged particle (in our case, the charge of the electron 𝑒) with 
mass 𝑚𝑒, moving in the presence of a perpendicular and uniform magnetic field with value 𝐵. Notice that I have 
transitioned from using 𝑚 to signify the mass to the 𝑚𝑒 notation, so as not to confuse mass with the odd integer 𝑚 
commonly used in the discussion of the FQHE in the context of fractional filling factors 𝜈 = 1

𝑚
.  

119 Laughlin’s wave function was found through a variational method in which one considers an educated guess for 
the ground state of a known Hamiltonian, dependent on various parameters, and then continues to minimize the 
energy to get a good approximation for the ground state of the system. The expression that I’m using here for 
Laughlin’s wavefunction is the one that appears in Arovas, Schrieffer, and Wilczek (1984, 282). 



 157 

where 𝑧𝑗 =  𝑥𝑗 + 𝑖𝑦𝑖 is the complex coordinate denoting the 𝑗𝑡ℎ particle’s position in the plane, 

and the magnetic length  𝑙𝐵 ≔ �ℏ𝑐/𝑒𝑒  has been set to unity.  

 

 

Figure 7.2: Hall resistance 𝑅𝐻 = 𝑅𝑥𝑥 and longitudinal resistance 𝑅𝑥𝑥 as a function of applied 

magnetic field. (From Stern 2008, 207) 

 

The wavefunction gave the right description for the fractional filling factors, and Laughlin 

(1983b) showed that excited states—the quasiparticles and quasiholes—carry fractional 

charge.120 In turn, Halperin (1984) and Arovas, Schrieffer and Wilczek (1984) argued that such 

states obey fractional statistics, i.e., statistics that are neither Bose-Einstein nor Fermi-Dirac 

statistics, and the quasiparticles (and quasiholes) were identified as anyons based on prior work 

                                                 

120 The idea is that the fractional values of the filling factor arise from a new state of matter―an incompressible 
quantum fluid. 
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by  Wilczek (1982a, 1982b).121 Supposedly, the fractional statistics of FQHE excited states have 

been confirmed empirically, e.g., Camino et al. (2005).122  

 However, as previously discussed, it is worrisome to think that excited FQHE states 

portray fractional statistics for this is the hallmark of anyons, which are theoretical constructs 

that can exist only in two dimensions. In order to illustrate this tension we’ll want to consider 

two ways in which fractional statistics may come about. The first characterization of fractional 

statistics, which we broach in the following Section 7.3, is precise, but will necessarily depend 

on a two-dimensional idealization. It is in this sense that the standard account of fractional 

statistics depends on a pathological idealization. Specifically, in analogy with the AB effect 

(Chapter 6), fractional statistics are thought to be topological effects since it is a topological 

property of a two-dimensional space―the fundamental group (the first homotopy group)―that 

will be necessary in order to give rise to fractional statistics.123 This is similar to the idea that we 

need to appeal to a multiply connected space in order to account for the AB effect, only in the 

current context we’ll see how we must appeal to the fundamental group of the configuration 

space of a two-dimensional system of identical particles in order to get fractional statistics. 

 In contrast, in Section 7.4, we discuss a second manner by which fractional statistics may 

come about. We will concentrate on the actual calculation conducted by Arovas, Schrieffer and 

Wilczek (1984), who showed that the excited FQHE states obey such “fractional” statistics. 

                                                 

121 Originally, Laughlin (1983b) postulated that excited FQHE states were bosons and Haldane (1983) thought they 
were fermions. 
122 That being said, as of yet, the issue is controversial and there is no consensus in the physics community to the 
effect that fractional statistics actually exist in nature. From my perspective, as will be made clear in Sections 7.3-
7.4, this is partially due to a lack of clarity in what is meant by fractional statistics, as well as inadequate foundations 
for the notion as it manifests in reality. 
123 A mere glance at the literature will confirm that the received view of the nature of idealizations that arises in the 
FQHE is topological. For example, Khare (2005, 5; original emphasis) states “…in two dimensions, the space is 
multiply connected which results in the possibility of … intermediate statistics” (where intermediate statistics refers 
to fractional statistics). 
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Basically, the calculation is one in which we ascertain the geometric phase gained by double 

permuting the quantum state of two quasiholes,124 and then interpret this geometric phase as the 

exchange phase relating to quantum statistics. What is noteworthy about this approach is that it is 

not at all clear that the two-dimensional idealization is necessary for the manifestation of 

fractional statistics. However, this leads to a kind of tension between to two approaches because 

there seems to be a disconnection between fractional statistics qua the first approach―the 

topological approach―and the fractional statistics qua the second approach based on the 

geometric phase. The first, but not the second, depends essentially on a topological idealization 

that is pathological. For this reason it seems to me that there ought to be an account of the 

fractional statistics manifested by FQHE excited states that does not appeal to the topological 

considerations of the pathological type. In the following two sections I fill in some details 

regarding this conjecture in order to support it and solidify my claims. 

 Before doing so, however, I would like to address a possible point of confusion regarding 

the two-dimensional nature of the idealization appealed to in the FQHE. In particular, the 

standard account takes the nature of fractional statistics to be grounded in the kind of topological 

idealizations that I have discussed, in which the two-dimensional idealization is necessary for 

fractional statistics to manifest. However, it is conceded that actual FQHE systems portraying 

fractional statistics are three-dimensional. The claim then is that the systems are “dynamically 

two-dimensional” in the sense that motion in the third-dimension is quantized. That being said, 

even dynamically, the systems are not, strictly speaking, two-dimensional. Thus, it will not do to 

                                                 

124 A similar calculation can be conducted for quasiparticles. 
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attempt to justify the topological idealization by appeals to the notion of “dynamically two-

dimensional.”125  Ando et al. (1982, 439) explains:  

 

These systems are not two-dimensional in a strict sense, both because the wave functions 

have a finite spatial extent in the third dimension and because electromagnetic fields are 

not confined to a place but spill out into the third dimension. Theoretical prediction for 

idealized two-dimensional systems must therefore be modified before they can be 

compared with experiment. 

                                                 

125 The type of “justification” that I am rejecting is a standard component of the received view (of the nature of 
idealizations that arise in the FQHE) and is regularly found in canonical textbook accounts of anyons and fractional 
statistics as can be seen by a glance at a lengthy quote from Khare (2005, 2; emphasis mine): 
 

The point is that because of the third law of thermodynamics, which states that all the degrees of freedom 
freeze out in the limit of zero temperature, it is possible to strictly confine the electrons to surfaces, or even 
to lines or points. Thus it may happen that in a strongly confining potential, or at sufficiently low 
temperature [(both such conditions are satisfied in FQHE experiments)], the excitation energy in one or 
more direction may be much higher than the average thermal energy of the particles so that those 
dimensions are effectively frozen out. An illustration might be worthwhile here. Consider a two 
dimensional electron gas… The electrons are confined to the surface of a semiconductor by a strong 
electric field, and they move more or less freely along the surface. On the other hand, the energy 𝐸 required 
to excite motion in the direction perpendicular to the surface is of the order of several milli-electron-Volt 
(𝑚𝑚𝑚). Now at a temperature of say 𝑇 = 1𝐾, the thermal energy is 𝑘𝑘, where 𝑘 is the Boltzmann constant. 
Thus if the transverse excitation energy is say 10 𝑚𝑚𝑚, the the fraction of electrons in the lowest excited 
transverse energy level is  
 

𝑒−
𝐸
𝑘𝑘 = 𝑒−100 ≈ 10−44 

 
which is zero for all practical purposes. Thus the electron gas is truly a two-dimensional gas. 

 
Clearly there is some tension―as well as confusion―regarding whether or not the dynamically two-dimensional 
system is a two-dimensional system in the strict or approximate sense. Talk of “strictly” and “truly … two-
dimensional” seem to confirm the former, while “effectively” and “for all practical purposes” confirm the latter. 
Certainly, the above calculation will not do as a justification for the idea that FQHE systems are, strictly speaking, 
dynamically two-dimensional. The fact remains that there is a non-zero probability for an excitation in the third-
dimension, and this is all that is needed to cancel out the emergence of anyons vis-à-vis the first approach to 
fractional statistics (the configuration space approach) appealed to by the received view. 
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7.3 THE TOPOLOGICAL APPROACH TO FRACTIONAL STATISTICS 

I began this chapter by alluding to the idea that there are only two types of particles in nature, 

bosons and fermions, because this is what is allowed under permutation symmetry. In other 

words, two types of particles naturally arise from the fact that the wave functions representing 

the quantum state of a system and its permuted twin can differ at most by a phase factor of 

modulus one (because the two scenarios are observationally indistinguishable). In fact, this type 

of reasoning is schematic (at best, and fallacious at worst),126 and we require a more rigorous 

framework to permutation invariance in QM that will allow for the emergence of bosons and 

fermions. There are two such frameworks in the literature. Following Landsman (2013), we will 

call the first―due to Messiah and Greenberg (1964)―the “operator framework”, and the second 

―due to (among others) Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977), and Wu 

(1984)―the “configuration space framework”.  

 On the face of it, the two frameworks are different, and Earman (2010) has argued that 

they have different verdicts regarding the structure of superselection sectors, 

paraparticles/parastatistics, and permutation symmetry. However, Landsman (2013) shows that 

in dimensions greater than two (𝑑 > 2), both approaches can be (made to be) equivalent. That 

being said, in two dimensions the equivalence fails. The operator framework does not give rise to 

anyons and fractional statistics, so we shall ignore it here.127 The configuration space framework, 

on the other hand, does give rise to anyons and fractional statistics but solely in two dimensions 

(if we follow the Schrödinger quantization scheme; Heisenberg quantization does not give rise to 

                                                 

126 See, for example, Dresden (1964) and Kaplan (1994) for an identification of the fallacy. 
127 Still, it is worthwhile to note that if the operator framework turns out to be the correct foundation for permutation 
invariance in QM, we will lack a corresponding foundation for the notion of fractional statistics. 
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fractional statistics). In short, on this approach, the type of quantum statistics available depends 

on an overall phase factor 𝑒𝑖𝑖 ≡ 𝛾 (for instance, gained by the wave function of a permuted 

system) which, as it turns out, is the one-dimensional unitary representation of the fundamental 

group (the first homotopy group 𝜋1) of said system’s configuration space. In three dimensions 

the fundamental group of the configuration space is the (finite and discrete) permutation group 

𝑆𝑁 which admits of the known one-dimensional unitary representation: 𝛾 = ±1 (+1 for bosons 

and −1 for fermions). In two-dimensions, on the other hand, the fundamental group is the 

(infinite and discrete) braid group 𝐵𝑁 with one-dimensional unitary representations giving rise to 

phase factors of the form: 𝛾(𝜃) = 𝑒𝑖𝑖where 0 ≤ 𝜃 ≤ 2𝜋 so that the exchange phase can take on a 

continuous range of factors allowing for bosons, fermions and anyons. What follows are some 

details heavily based on Leinaas and Myrheim (1977) and Morandi (1992). The main point is 

that anyons and fractional statistics, strictly speaking, depend on a topological idealization that is 

pathological. 

 

7.3.1 The Configuration Space Framework and QM on Multiply Connected Space 

 Let the configuration space of a particle in 𝑑-dimensions be ℝ𝑑 (where ℝ is the set of 

real numbers) so that the position of the particles is given by an element of the space 𝑥 ∈ ℝ𝑑. 

Consider 𝑁 such identical particles. The configuration space framework argues that the 

appropriate configuration space 𝑄 for 𝑁 identical particles is not the Cartesian product of the 

single particle spaces, ℝ𝑁𝑁 ≡ ℝ𝑑 × … × ℝ𝑑  (𝑁 times), as one would expect if the particles were 

distinguishable. Instead, since the particles are indistinguishable, configurations that differ only 
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by a permutation of particles ought to correspond to the same physical state. For the simplest 

case 𝑑 = 1 𝑁 = 2, this means that the two configurations (𝑥1, 𝑥2) = (1,2) and (𝑥1, 𝑥2) = (2,1) 

actually represent the same state, and so we must divide out such permuted configurations. In 

other words, we move from the entire space ℝ𝑁𝑁 = ℝ2∗1 = ℝ2 of the two-dimensional plane to 

consider only half the plane (see Figure 7.3). 

 

 

Figure 7.3: The configuration space 𝑄 = ℝ2

𝑆2
 of two identical particles on a line, represented by 

the non-shaded half-plane. 

 

In the context of the general case, this corresponds to considering the quotient (or identification) 

space that one attains by diving out the permutation group 𝑆𝑁: 𝑄 = ℝ𝑁𝑁/𝑆𝑁.  

 Next, we’ll want to excise the set ∆ of diagonal points in ℝ𝑁𝑁, which represents all points 

where the particles coincide. For the 𝑑 = 1 𝑁 = 2 case, this means that we must excise points of 

the sort: (𝑥1, 𝑥2) = (𝑥, 𝑥), where 𝑥1 = 𝑥2. If we do not excise coincidence points (known as 
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“singular points”) the resulting configuration space will not have a structure rich enough to 

represent fermions (or anyons). This is a somewhat ad hoc justification. Nevertheless it is given 

by some of the pioneers of the configuration space approach.128 It is sometimes peppered with a 

statement to the effect that since fermions and anyons satisfy Pauli exclusion-type principles, the 

removal of coincidence points is justified.129 Since it is not my intention to advocate one 

approach to permutation invariance over another, but only to show how the emergences of 

anyons depend on topological idealization, I’ll set the issue aside. 

 We are left with a configuration space for 𝑁 identical particles in 𝑑 dimensions, in which 

we have divided out the action of the permutation group and excluded diagonal points: (ℝ𝑁𝑁 ∖

∆)/𝑆𝑁. The exclusion of the diagonal point implies that the space in not simply connected and I 

denote this new configuration space with 𝑄� . We must now undertake QM on a multiply 

connected space. In order to do so I will follow Morandi (1992, 114-144) closely. 

 Ordinary QM (in the Schrödinger picture) on simply connected regions represents the 

states of physical systems by complex wave functions Ψ which are elements of a Hilbert space 

ℋ of square-integrable functions on the configuration space 𝑄 over the field of complex 

numbers ℂ: Ψ ∈ ℋ = 𝐿ℂ2(𝑄), where ℋ𝑁 = 𝐿ℂ2(𝑄) × … × 𝐿ℂ2(𝑄) ≅ 𝐿ℂ2(𝑄𝑁) for 𝑁 identical 

particles. In order to extend ordinary QM to multiply connected regions we need to appeal to the 

topological notion of a universal covering space 𝑄 of 𝑄� . That is to say, for any topological 

                                                 

128 For example, Laidlaw and DeWitt (1971, 1377): 
Whether or not two point particles can simultaneously occupy the same point in space is not a question that 
we wish to settle here. We are only saying that by excluding points of coincidence from the configuration 
space, the resulting topology leads to meaningful physical results. 

129 For instance, Khare (2005, 23): 
[To] calculate the configuration space of identical particles, such singular points must be excluded… We 
shall see later that this hardcore constraint is actually unnecessary since for all particles except bosons, 
there is an automatic angular momentum barrier preventing the crossing of the trajectories. On the other 
hand, for bosons there is no potential battier and the trajectories may indeed cross but that is fine since, in 
any case, the relative phase factor for the exchange of two bosons is one! 
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space, including ones that are not simply connected such as 𝑄� , we can construct a universal 

covering space 𝑄 that is simply connected (so that ordinary QM applies) with a covering 

projection map: 𝜋:𝑄 → 𝑄�  (where 𝑞 ∈ 𝑄 and 𝑞� ∈ 𝑄�).  

 Since all the physical information in QM is contained in the squared modulus of the wave 

function (i.e., the probability density) |Ψ(𝑞)|2, we will want this quantity to be projectable down 

to 𝑄�  for any 𝑞 ∈ 𝑄 in the sense that |Ψ(𝑞)|2 will depend only on a point 𝑞� = 𝜋(𝑞) in the 

multiply connected configuration space 𝑄� . If this condition is satisfied we say that we have a 

projectable quantum mechanics, and we will have succeeded in extending ordinary QM to a 

multiply connected region. To that effect, consider an arbitrary point 𝑞� ∈ 𝑄� , let 𝐶̃ be a closed 

curve beginning and ending at 𝑞�, and let [𝐶̃] be the corresponding (first) homotopy class of 

curves based at 𝑞� so that [𝐶̃]∈ 𝜋1(𝑄� ,𝑞�).130 Further, let 𝑞 = 𝜋−1(𝑞�) be any point in the fiber over 

𝑞�.131 The homotopy lifting theorem says that all curves 𝐶̃ in [𝐶̃] are lifted to a curve 𝐶 in Q 

beginning at 𝑞 and ending at some point 𝑞’ that is also in the fiber over 𝑞� (so that 𝜋(𝑞′) = 𝑞� and 

 𝑞’ ∈ 𝑄).132 Denote this result by 𝑞’ = [𝐶̃ ] ∙ 𝑞 and recall that 𝛾 represents a phase factor 

(although, as of now, we have placed no constraints on the form of 𝛾). We then have the 

following two central theorems (Morandi 1992, 119-120): 

 

Theorem 1. Projectable Quantum Mechanics are obtained if and only if the wave 

functions on the universal covering space obey the boundary conditions: 

                                                 

130 First, remember that 𝜋1 ≠ 𝜋: 𝜋1 represent the fundemantal group (the first homotopy group) and 𝜋 the covering 
projection. Second, roughly, recall that any two closed curves (loops) that can be continuously deformed into one 
another will be part of the same homotopy class. Homotopy is an equivalence relation among loops. 
131 See Appendix C for an overview of the essentials concerning fiber bundles. 
132 𝐶 is not necessarily a closed curve. If the bundle is not curved then 𝐶 is closed but if the bundle is curved then 
𝐶 is not closed. 
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Ψ��𝐶̃ � ∙ 𝑞� =  𝛾([𝐶̃])Ψ(q) for all 𝑞 ∈ 𝑄 

Where � 𝛾([𝐶̃])� = 1 for all [𝐶̃] ∈  𝜋1(𝑄�) 

 

This means that wave functions on the universal covering space at different points (e.g., 𝑞 and 

𝑞’), but on the same fiber above some point in the multiply connected configuration space (e.g., 

𝑞�), can differ at most by a phase factor of modulus 1. Moreover, since the universal covering 

space is simply connected, the wave functions must be single valued. We then get: 

 

Theorem 2. The map 𝛾: 𝜋1�𝑄�� → 𝑈(1) by �𝐶̃� →  𝛾([𝐶̃]) is a one-dimensional unitary 

representation of 𝜋1�𝑄��. 

 

 Accordingly, we get our main result: In order to ascertain what type of phase factor is 

gained by a wave function when it is permuted―with the corresponding available quantum 

statistics―we must enquire into the one-dimensional unitary representation of the fundamental 

group of the configuration space of the system. Recall that in the case of 𝑁 identical particles in 

𝑑 dimensions we have: 

𝑄� = (ℝ𝑁𝑁 ∖ ∆)/𝑆𝑁 

It has been shown by Artin (1947), Fadell and Neuwrith (1962), and Fox and Neuwrith (1962) 

that the fundamental group for the two- and three-dimensional cases are given by:133 

 

                                                 

133 See Birman and Brendle (2005) for a recent survey. 
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𝜋1 � 𝑄�� = 𝐵𝑁 for 𝑑 = 2 

𝜋1 � 𝑄�� = 𝑆𝑁 for 𝑑 = 3 

 

Where 𝑆𝑁 is the permutation group and 𝐵𝑁 is the Braid group.  Moreover, as stated previously, 

the one-dimensional representation of 𝑆𝑁 is 𝛾 = ±1, +1 for bosons and −1 for fermions, while 

the one-dimensional representation of 𝐵𝑁 is  𝛾(𝜃) = 𝑒𝑖𝑖where 0 ≤ 𝜃 ≤ 2𝜋 so that the exchange 

phase can take on a continuous range of factors allowing for bosons, fermions and anyons. 

 We see then that the emergence of anyons and fractional statistics depends essentially on 

the two-dimensional idealization. If we de-idealize, even minutely, our theory does not allow for 

anyons. This marks a failure of the sound principle and corresponds to a mismatch between a 

limit property―𝜋1 � 𝑄�� = 𝑆𝑁 and 𝛾 = ±1―and a property of a limit system―𝜋1 � 𝑄�� = 𝐵𝑁 and 

𝛾(𝜃) = 𝑒𝑖𝑖―in similar manner to the received view of AB effect (i.e., interpreted as topological 

in nature). 

 We might be able to get a better sense for why this is so by considering the simplest 

scenario of two particles 𝑁 = 2 in the 𝑑 = 2 and 𝑑 = 3 cases where: 134 

 

𝜋1 � ℝ
2∖∆
𝑆2
� = 𝜋1 (𝑅𝑃1) = 𝑍 for 𝑑 = 2 

𝜋1 � ℝ
3∖∆
𝑆2
� = 𝜋1 ( 𝑅𝑃2) = 𝑍2 for 𝑑 = 3 

 

                                                 

134 Such an illustration arises in standard introductory accounts of fractional statistics such as Khare (2005). Note 
that 𝑍 is the cyclic group of order one, i.e., the infinite group of integers under addition. 𝑍2 is the cyclic group of 
order two, i.e., it is the multiplicative group of, say, 1 and -1. 𝑅𝑃1 and 𝑅𝑃2 are the real projective one- and two-
dimensional spaces, respectively. 
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For these purposes I have added an appendix to that effect. The main idea is that by transitioning 

from three dimensions to two dimensions, we have transitioned from a doubly connected space 

to an infinitely connected space, and it is this change in topology that allows for intermediate 

statistics. 

 In short, the two-dimensional setting is essential for producing anyons and fractional 

statistics within the context of the topological approach to fractional statistics, in the same way 

that it is essential for producing more than two types of homotopy classes in the simplest case of 

two particles. This is problematic because it means that we are appealing to a pathological 

idealization when we derive anyonic statistics. Accordingly, I urge we take a different line on the 

nature fractional statistics that arise in the FQHE. In the following section I sketch the beginning 

of such an alternative approach by looking at the actual calculation done by Arovas, Schrieffer, 

and Wilczek (1984) to show that excited FQHE states indeed obey fractional statistics. 

7.4 THE GEOMETRIC APPROACH TO FRACTIONAL STATISTICS 

The purpose of this section is to support the idea that we might be able to get a notion of 

fractional statistics or approximate fractional statistics without appealing to the type of 

pathological idealization that arises in the context of the configuration space approach. I call this 

alternative approach to fractional statistics the geometric approach. 

 I will begin by presenting the idea of a geometric phase in order to highlight how such a 

notion does not depend essentially on the topology or dimensionality of a system.135 Afterward, I 

                                                 

135 In order to preempt objections to the effect that the geometric phase itself is topological in nature, I refer the 
reader to Katanaev (2012) who gives a thoroughly geometrical interpretation of the effect. 
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present some of the steps taken by Arovas, Schrieffer, and Wilczek (1984) to show that excited 

FQHE are anyons, with the goal of emphasizing that this is done through a calculation of a 

geometric phase. The upshot will be that we have good reasons to think that a non-topological 

and non-pathological account of fractional statistics can be ascertained via the geometric 

approach. Details can be found in Appendix E at the end of the paper, as well as in literature that 

I will refer the reader to. 

Berry’s (1984) original paper concerns a non-dynamical phase factor accompanying 

cyclic evolutions of non-degenerate quantum systems, but there are similar results for degenerate 

systems and for a cyclic evolution that is not necessarily adiabatic. The main result that concerns 

us is that the exchange phase gained by a system traversing in parameter space has two 

components. One component corresponds to the usual dynamical phase and the second 

component 𝜃𝐺is called the geometric phase or Berry’s phase. It can be expressed more generally 

as a quantity dependent on both the closed curve 𝐶 in parameter space and the parameters 

𝑹 = (𝑋,𝑌, … ): 

𝜃𝐺(𝐶) = 𝑖 ∮ ⟨ψ𝑛(𝑹)|∇𝑅ψ𝑛(𝑹)⟩ ∙ 𝑑𝑹𝐶     (7.1) 

Where ∇𝑅 is the gradient with respect to the parameters 𝑹 = (𝑋,𝑌, … ) (and assuming 

that 𝑹(0) = 𝑅(𝒕) so that 𝐶 forms a closed curve).  

Moreover, as Berry (1984) showed in the fifth section of his paper, we can interpret the 

AB effect as a particular instance of a geometric phase by representing an AB effect-type system 

as a charged particle in a box that is transported around an infinite and impenetrable solenoid. 

The AB effect phase factor arises as the geometric phase gained by the state of the system as it is 

transported around the solenoid. For our purposes what is worthwhile to note is that there are no 

assumptions made that depend essentially on the dimensionality (or on an idealized topology) of 
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the system in question. Specifically, one does not expect a geometric phase calculation to alter if 

there is some small motion of a system in the third dimension. This is key because the derivation 

of fractional statistics allegedly obeyed by excited FQHE states (quasiholes/quaisiparticles) is 

calculated by interpreting the geometric phase that arises (when one quasihole/quaisiparticle 

surrounds another) as the relevant phase factor corresponding to the discussed quantum statistics. 

On this geometric approach, and in stark contrast to the topological approach discussed in 

Section 7.3, it does not seem the two-dimensional idealization is necessary for characterizing the 

notion of fractional quantum statistics. This means that there are good reasons to think that the 

following conjecture holds: fractional statistics can be characterized in a manner consistent with 

the sound principle, i.e., without appeal to topological properties of limit systems that do not 

match the corresponding limit properties. 

My purpose in the rest of this section is solely to repeat some of the steps taken by 

Arovas, Schrieffer, and Wilczek (1984) to derive fractional statistics in order to emphasize the 

disconnect between this geometric approach and the topological (and pathological) approach 

discussed in Section 7.3. I refer the reader to Appendix E for details. 

Following Laughlin (1983a, 1983b) and Arovas, Schrieffer, and Wilczek’s (1984) 

closely, let us consider a FQHE system with filling factor 𝜈 = 1
𝑚

 where 𝑚 is an odd integer, and 

the applied strong magnetic field 𝑩  is in the 𝑧-axis direction corresponding to magnetic flux Φ. 

We’ll dub the Hamiltonian governing the system as 𝐻𝐹𝐹𝐹𝐹𝐼 .136 Laughlin’s (1983a, 1983b) 

celebrated wave function (from Section 7.2.2) for the ground state of 𝐻𝐹𝐹𝐹𝐹𝐼  can be used to 

calculate the state function of an excited state, as well as for a system of two excited states 

                                                 

136 I use the 𝐻𝐹𝐹𝐹𝐹𝐼 notation to emphasize that this is the idealized (I) Hamiltonian corresponding to FQHE systems. 
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(quasiholes) 𝑎 and 𝑏 located at positions 𝑧𝑎 and 𝑧𝑏 (in the plane), respectively, and is represented 

by  

Ψ𝑚
𝑧𝑎𝑧𝑏 = 𝑁𝑎𝑎 ∏ (𝑧𝑖 − 𝑧𝑎)(𝑧𝑖 − 𝑧𝑏)Ψ𝑚𝑖     (7.2) 

where Ψ𝑚 is the ground state and 𝑁𝑎𝑎 is a normalizing factor.  

We can determine the quantum statistics associated with exchanging quasiholes 𝑎 and 𝑏 

by calculating the geometric phase associated with carrying quasihole 𝑎 adiabatically around a 

closed loop 𝐶, thereby adding time dependence to 𝑧𝑎 = 𝑧𝑎(𝑡), and identifying the geometric 

phase with the exchange phase. The geometric phase 𝜃𝐺  can be calculated by plugging Equation 

7.2 into Equation 7.1. It turns out that when quasihole 𝑎 encircles quasihole 𝑏, the new doubly 

permuted wavefunction 𝜓𝑚
′ 𝑧𝑎𝑧𝑏  gains an extra geometric phase Δ𝜃𝐺 = 2𝜋𝜋. But recall from 

Section 7.1 that double permutation leads to a general phase factor with an exchange phase 𝜃: 

Ψ𝑚
′ 𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜃Ψ𝑚

𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜋𝜋Ψ𝑚
𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜋𝜋Ψ𝑚

𝑧𝑎𝑧𝑏 

Where we have introduced the “statistical parameter” defined as 𝛼 ≡ 𝜃
𝜋
. We see that 𝛼 = 𝜈 and 

recalling that 𝜈 = 1
𝑚

 where 𝑚 is an odd integer, it follows that  𝜃 = 𝜋
𝑚

 . For the m=1 case, 𝜃 = 𝜋 

corresponding to Fermi-Dirac statistics. But for other values of 𝑚, 𝜃 corresponds to anyonic 

statistics. 

 Let us recap. In the context of the AB effect we saw in Chapter 6 that one is able to start 

with a realistic Hamiltonian 𝐻𝐿,𝑛 that faithfully represents an AB effect scenario, and then 

consider a family of such Hamiltonians �𝐻𝐿,𝑛� in order to show via a limiting procedure 

lim𝑛,𝐿→∞�𝐻𝐿,𝑛� that we arrive at the AB effect Hamiltonian 𝐻𝐴𝐴𝐼 , which can account for 

experimental outcomes. That is to say, by solving Schrödinger’s equation with 𝐻𝐴𝐴𝐼  we attain the 

state function Ψ from which the relative phase factor 𝑒𝑖𝑖 corresponding to observable 
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interference patters can be extracted through a calculation of the kind conducted in Appendix B. 

We note that is in virtue of the fact that the limiting procedure lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼  holds, that 

we can use 𝐻𝐴𝐴𝐼  in accounting for the AB effect interference patterns. We summarize this 

information schematically in the following: 

 

lim
𝑛,𝐿→∞

�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼 ⟹ Ψ⟹ 𝑒𝑖𝑖 

 

Analogously, I gather that it is possible, in principle, to start with a realistic three-

dimensional Hamiltonian 𝐻(𝑳) that faithfully represents FQHE systems and depends on some 

set of parameters 𝑳 = (𝐿1, 𝐿2, …) such that the following holds: by considering a limiting 

procedure lim𝑳→∞{𝐻(𝑳)} we can attain a FQHE Hamiltonion that has the same form of 

Laughlin’s (1983a, 1983b) idealized two-dimensional Hamiltonian 𝐻𝐹𝐹𝐹𝐹𝐼 . Once this is done, the 

rest of the calculation that gives rise to fractional statistics (via a geometric phase as in this 

section) should follow as before. Specifically, we use variational methods to find the ground 

state Ψ𝑚 of 𝐻𝐹𝐹𝐹𝐹𝐼 , and the corresponding state function of two quasiholes Ψ𝑚
𝑧𝑎𝑧𝑏. We then 

calculate the extra geometric phase Δ𝜃𝐺  incurred by double permuting Ψ𝑚
𝑧𝑎𝑧𝑏, and identify the 

geometric phase with the exchange phase giving rise to fractional statistics. In short: 

 

lim
𝑳→∞

{𝐻(𝑳)} = 𝐻𝐹𝐹𝐹𝐹𝐼 ⟹ Ψ𝑚 ⟹ 𝑒𝑖Δ𝜃𝐺 

 

Moreover, this process is done without any appeal to the type of pathological idealizations 

necessary to make sense of the notion of fractional statistics that arises from the configuration 

space approach. See Figure 7.4 for a pictorial representation of these claims, where the idea is 
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that there is always a mismatch between a limit property and the property of a limit system with 

respect to the topology of AB effect and FQHE systems, but not with respect the Hamiltonians 

governing the system. 

 Whether my conjecture is correct or not, what is clear is that we need to further elucidate 

the relation between the notion of fractional statistics via the configuration space approach which 

depends on topology, on the one hand, and the informal geometric phase calculation given by 

Avoras et al. (1984) which depends on the metric in a Hilbert space of quantum state vectors, on 

the other hand. I submit that this is an issue that necessitates further study and clarification, and 

ought to have clear consequences for the philosophical understanding of idealizations in science. 
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Figure 7.4: Comparison between AB effect and FQHE cases. In the context of the AB effect, if 

we consider a sequence of solenoids that become longer, we note that as long as we are working 
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with finite solenoids with corresponding Hamiltonians 𝐻𝐿,𝑛, then we are dealing with a simply 

connected topological space. At the limit, in which the solenoid is infinite with a corresponding 

idealized Hamiltonian 𝐻𝐴𝐴𝐼 , the topology of the space is multiply connected. We have a 

mismatch between a limit property and the property of a limit system. Analogously, in the 

context of the FQHE, we first let a three-dimensional cube represent the configuration space 𝑄�  of 

𝑁 identical particles in three dimensions (in FQHE conditions), we let a two-dimensional square 

represent the configuration space 𝑄�  of 𝑁 identical particles in two dimensions (in FQHE 

conditions), and we represent the exclusion of coincidence points (singular points) by a hole. We 

then consider a sequence of cuboids in which the height becomes shorter and note that as long as 

we are working with finite heights (i.e. with cuboids) with corresponding Hamiltonians 𝐻(𝑳), 

then the topology of the space will be doubly connected and the fundamental group of the 

configuration space will be the permutation group: 𝜋1 � 𝑄�� = 𝑆𝑁. At the limit, in which the 

height is zero and we are dealing with a two-dimensional square with a corresponding idealized 

Hamiltonian 𝐻𝐹𝐹𝐹𝐹𝐼 , the topology of the space will be infinitely connected and the fundamental 

group of the configuration space will be the Braid group: 𝜋1 � 𝑄�� = 𝐵𝑁. 

7.5 CONCLUSION 

Ever since their discovery, the Quantum Hall Effects have gained considerable attention from the 

scientific community averaging at about one publication per day as of 1995 (von Klitzing 2004). 

However, to my best knowledge, both the IQHE and FQHE have been largely ignored by the 
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philosophical community.137 To that effect, I hope to have partially filled in this gap by calling 

attention to notions such as anyons and fractional statistics, and host of philosophical issues that 

arise. Accordingly, what I would like to do in this section is briefly discuss some of the issues 

that merit further study, and then end with a short summary 

 To begin, there is a wide agreement among (solid state and condensed matter) physicists 

that the FQHE brings with it various emergent phenomena, including fractional charge, 

fractional statistics, p-wave pairing, chiral edge states, and topological order (wherein attempts at 

empirically confirming these theoretical structures constitute the forefront of experimental solid 

state/condensed matter physics). Correspondingly, the philosophical literature on emergence and 

reduction might greatly gain from attending to these phenomena. Certainly, said phenomena 

emerge as novel and robust behavior (in reference to some comparison class), and so satisfy the 

general notion of emergence as articulated by Butterfield (2011). Also, while I have concentrated 

on the issue of fractional statistics, my discussion exemplifies (at best) only the tip of the iceberg. 

What is clear from Section 7.3-7.4 is that there are different notions of, and different approaches 

to, fractional statistics at play in the literature.138 Although this point has been recently 

acknowledged,139 there is need to get clear on what the exact foundations of fractional statistics 

are. This, in turn, is intimately related to what the correct approach to permutation invariance in 

QM is. My suggestion in this paper is that, without further qualification, the topological 

approach to fractional statistics, in which one appeals to topological idealizations that are 

pathological, will most likely not act as a basis for the type of fractional statistics that might arise 

in the natural world. Relatedly, it may be possible to argue that fractional statistics are a matter 

                                                 

137 One prominent exception to these states of affairs includes Earman (2010). 
138 Where some go so far as to reject the notion altogether, e.g. Shrivastava (2005). 
139 See Canright and Johnson (1994). 
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of convention. For instance, in the context of the Chern-Simons gauge theory the phenomenon of 

“statistical transmutation” makes it is possible to describe non-interacting anyons and their 

statistics as interacting bosons or fermions with conventional statistics.140 

In summary, I have looked at two different approaches to fractional statistics. The 

topological approach ― i.e., the standard account ― is a well-founded approach. It is claimed 

that one must appeal to the two-dimensional configuration space of identical particles, which 

admits of a continuous range of one-dimensional unitary representations of the fundamental 

group (the Braid group) of the configuration space, in order to account for the fractional statistics 

obeyed by excited FQHE states in the natural world. However, I have argued that such 

idealizations are pathological, since the topological properties of limit systems do not match the 

corresponding topological limit properties. The standard account, then, comprises an 

unattainable position regarding the necessity of idealizations in science for it is in blatant conflict 

with the sound principle. Accordingly, I have suggested an alternative geometric phase approach 

to the idealizations that arise in said effects. One looks to families of realistic Hamiltonians141 

that faithfully represent systems in question, and uses limiting procedures in order to attain 

Hamiltonians of the same form as their idealized counterparts which have allowed for successful 

empirical predictions. This corresponds to a match between limit properties and properties of 

limit systems with respect to the Hamiltonians representing the systems. 

 

                                                 

140 See Chen, Wilczek, Witten, and Halperin (1989), Huang (2003), Jackiw (1990) and Jackiw and Templeton 
(1981). 
141 Or whatever other mathematical structure is relevant for the theory and phenomenon at hand. 
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8.0  CAN AN IDEALIZATION BE ESSENTIAL? 

The main problem that I have been concerned with in this dissertation has been the essential 

idealization problem (EIP) (Chapter 2). In order to make headway in solving the problem, 

Chapter 3 concentrated on the representational relation between theory and world in science, 

while Chapters 4-8 argued for dispensing with pathological idealizations and for embracing the 

sound principle. However, a worry arises: If we commit to the sound principle and reject 

pathological idealization, does this mean that all idealizations are dispensable and that 

idealization plays no substantive role in science? In this chapter I will answer this question in the 

negative and outline my main positive account. 

8.1 INTRODUCTION 

The question at the center of the growing literature on “essential idealizations” (EI) is whether 

idealizations are genuinely necessary for scientific accounts of physical phenomena. A debate 

has risen between those who embrace EI (e.g., Batterman (2002, 2003, 2005), Batterman and 

Rice (2014), Bokulich (2008), Ellis (1992), Morrison (2006), Ruetsche (2011), Weisberg 



 179 

(2013)),142 and those who abhor them (e.g., Butterfield (2011), Callender (2001), Earman (2004), 

Menon and Callender (2013), Norton (2012)). Let us dub the former camp the “essentialists” and 

the latter camp the “dispensabilists.” 

 What exactly is the main source of conflict between essentialists and dispensabilists is 

itself a question with no easy answer.143 That said, I have argued in Chapter 2 that the driving 

force behind the allegedly paradoxical nature of EI is the worry that there is something 

inconsistent about such a notion insofar as it would seem that one could reduce an even 

moderately realist view of science to absurdity via an indispensability-type argument: If 

idealizations are indispensable to our best scientific theories, we ought to be committed to both 

their existence and their ontological import, i.e., to idealized objects such as fractals, 

topologically multiply connected configuration space, and non-analytic partition functions. The 

example of a non-analytic (or discontinuous) partition function (or thermodynamic potentials), 

discussed in Chapters 2-3, connects with one of the main contexts in which many battles between 

essentialists and dispensabilists are fought, in particular, scientific accounts of phase transitions 

and critical phenomena. The worry, then, might be worded as follows: “Real phase transitions 

cannot exhibit the discontinuities on pain of contradicting the atomic theory of matter, and, were 

the discontinuities established factually, the atomic theory would fall” (Norton 2012, 228).144  

 The purpose of this chapter is to show that the division between essentialists and 

dispensabilists is in fact a false dichotomy. To begin, although I have spent the majority of 

                                                 

142 It is probably more appropriate to place Ruetsche’s (2011) position midway between the essentialists and 
dispensabilists. Thus, my account here is very much an attempt to build and further her intuitions that, indeed, a 
peaceful coexistence between the two camps can exist. 
143 See Chapters 4 and 5. Claims abound as to the various puzzles that arise. For example, it may be questionable 
whether fundamental theory can account for the concrete physical phenomena observed in the world and so one 
concludes that EI (i) show how “the laws of physics lie” (e.g., Cartwright 1983), (ii) mark a failure of intertheoretic 
and ontological reduction, and act as a sign of emergence (e.g., Batterman 2002, 2003, 2005) and (iii) support an 
anti-fundamental conception of science (e.g., Morrison 2006). 
144 In this context, failure of the atomic theory of matter is taken as the consequence of a reductio. 
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dissertation arguing in favor of the sound principle, and against pathological idealizations, in 

what follows I identify substantive roles for idealizations to play in science that do not contradict 

the sound principle. In particular, I will identify three substantive roles for idealizations in 

science, including pedagogical and methodological roles in Section 8.2, and an explanatory role 

in Section 8.3. Furthermore, in Section 8.4 I propose a working characterization of essential 

idealizations based on insights offered by both camps and, in doing so, I contend that essentialist 

and dispensabilists views are importantly complementary.145 My method will be to show that 

core claims made about EI by some of the main proponents of the debate, including Batterman 

(2002, 2003, 2005) (Section 8.3), Butterfield (2011) (Section 8.4.1), Norton (2012) and Ruetsche 

(2011) (Section 8.4.2), can peacefully coexist in one unified characterization of EI. Section 8.5 

will touch on some examples not fully explored in this dissertation, and Section 8.6 ends the 

chapter with a look at the advancement made in solving the EIP. 

 In a nutshell, what I will be taking from the essentialists is the idea that many of our best 

scientific theories appeal to idealized limiting procedures in order to produce a mathematical 

structure that is used for genuine explanatory and representational purposes (by said theories), 

and I add that even pathological idealizations can have substantive pedagogical and 

methodological roles. I reject the dispensabilists’ claim that idealizations and approximations are 

just a matter of mathematical convenience. On the other hand, what I take from the 

dispensabilists is that there is nothing paradoxical or incoherent about such limiting processes. 

They are fully justified by the fact that idealized structures and systems arise as the limit of more 

realistic ones. Or, said differently, what I take from the dispensabilists is the importance of 

                                                 

145 The dialectics of this paper are inspired by Chakravartty (2010) who argues, in the context of the philosophical 
debate on scientific representation, that informational and functional theories of scientific representation are 
importantly complementary. See Chapters 1 and 3 for more details. 
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subscribing to the sound principle and, hence, rejecting pathological idealizations in explanatory 

contexts. In other words, my rejection of pathological idealizations is compatible with an 

embrace of so-called asymptotic and minimal model explanation. The conflict between 

essentialists and dispensabilists only arises if pathological idealizations are taken to be essential 

for asymptotic-minimal model explanation. 

Together, my characterization of EI and the substantive roles that idealizations play in 

science can be seen as my own attempt to solve (or make substantial headway in solving) the EIP 

posed at the start of this dissertation. 

8.2 ROLES FOR DEALIZATIONS IN SCIENCE 

If we subscribe to the sound principle, dispense with pathological idealizations, and in doing so 

also reject the received view on the nature of idealizations that arise in the context of the AB 

effect (Chapter 6) and the FQHE (Chapter 7), what role is left for idealizations? It seems to me 

that we may identify at least three different roles for idealizations corresponding to three 

different goals that one may have.  

8.2.1 Pedagogical Role 

First, one might be interested simply in understanding and explaining the mechanics of the 

scientific theory and formalism appealed to in order to account for an effect. For such purposes 

idealizations, including pathological idealizations, come in handy. For example, in their original 

1959 paper, Aharonov and Bohm had an expository challenge, as is clear from the controversy 
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that arose in the physics community regarding the reality of the effect subsequent to their 

publication.146 They had to explain to the physics community that in the context of QM, 

electromagnetic fields seem to be able to have effects in regions from which they are excluded. 

One way to flesh this point out concretely is to treat the region 𝒮𝑖𝑖 inhabited by the magnetic 

field as topologically disconnected from the region 𝒮𝑜𝑜𝑜 where the electron beam traverses. In 

fact, this is exactly how talk of “multiply connected regions” arises in the quote from Aharonov 

and Bohm (1959, 490) in Chapter 6. Thus, an appeal to a topological and pathological 

idealization in this context is made in order to explain what the AB effect purports to be in the 

first place. Without appealing to pathological idealizations in this context there is worry that 

what is traditionally identified as the AB effect may be mistaken to be a consequence of, say, the 

interaction between the magnetic field leaking out of the solenoid and the electron wave 

function. In contrast, the pathological idealization appealed to by Aharonov and Bohm (1959) 

via 𝐻𝐴𝐴𝐼  highlights the fact that the AB effect is a fundamental feature of QM: even in the highly 

idealized, possible but non-actual, scenario in which there is no local interaction between the 

magnetic field and the electron wave function, QM still predicts that the presence of the 

magnetic field will affect the wave function in an observable manner. As John Earman has 

subsequently noted, the AB effect is one manner that highlights the stark contrast between the 

quantum and classical world. 

Similarly, when introducing a physical model of anyons it is customary to follow 

Wilczek (1982a, 1982b) and do so with the so-called flux-tube model. Here an anyon is 

described by a spinless particle of charge 𝑒 in the 𝑥𝑥-plane orbiting around a very thin and long 

                                                 

146 See Peshkin and Tonomura (1989) and references therein for discussion. 
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solenoid with magnetic flux Φ, set perpendicular to the plane, in the direction of the 𝑧-axis (see 

Figure 8.1).  

 

Figure 8.1: The Flux-tube model of the anyon. A spinless charge 𝑒 particle orbiting around a thin 

and long solenoid with magnetic flux Φ. 

 

We are then asked to appeal to further idealizations: 

 

In the limit where the solenoid becomes extremely narrow and the distance between the 

solenoid and the charged particle is shrunk to zero, the system may be considered as a 

single composite object — a charged particle-flux tube composite. Furthermore, for a 

planar system, there can be no extension in the 𝑧-direction. Hence, imagine shrinking the 

solenoid along the 𝑧-directions also to a point. The composite object is now point like… 

(Rao 1992, 15) 
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Clearly, this highly idealized model serves a pedagogical purpose of introducing to the reader 

the notion of an anyon thought of as a composite particle. But, of course, we must not let too 

much depend on such idealizations, since it is not at all clear how a very long and extremely 

narrow solenoid that is shrunk to a point can give rise to any flux whatsoever. 

8.2.2 Methodological Role 

A different explanatory goal one might have has to do with identifying the different possibilities 

that may give rise to an effect. As a first methodological step in understanding a phenomenon, it 

seems prudent to attempt to map out various possibilities that might account for the 

phenomenon. An infinitely long and impenetrable solenoid, corresponding to a configuration 

space with a non-trivial topology, certainly seems to account for AB effect-type interference 

patters. Looking to the fiber bundle formulation of the AB effect, if the base space is multiply 

connected, we are guaranteed to have a non-trivial holonomy. Similarly, fractional statistics can 

be characterized by appealing to topological properties of a two-dimensional configuration 

space. These are sensible starting points. That being said, not every possibility is an actuality. 

The AB effect does not arise because of a multiply connected space, and physical manifestations 

of fractional statistics most likely are not consequences of infinitely connected two-dimensional 

configuration space. There is heuristic, pedagogical and methodological value in mapping out 

possible accounts of a phenomenon. However, such accounts are far cry from a deep and 

complete story regarding the scientific account in question. 

Rather, the point is that part and parcel of understanding and interpreting scientific theory 

includes investigating the possible structure of the theory. Recall that in Chapter 3 we discussed 

that scientific theories do not come with a code or key that tells us what structure in the theory 
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represents physical phenomena in the world. We noted that a code must be deciphered through 

empirical investigation of the world, thereby identifying the target system and phenomenon to be 

represented and explained. Moreover, it was stressed that theoretical investigation is also 

necessary in order to identify what are the representational capacities and possible structure of 

our theory. It is absolutely necessary to appeal to pathological idealizations, i.e., highly 

abstracted limit systems with properties not manifested in the world (not even approximately), in 

order to fulfill this goal of the scientific endeavor. 

Consequently, we may return to our critique of well-received taxonomies of idealization 

discussed in Chapters 4-5 and note147 that a major defect of the accounts we surveyed (e.g., 

McMullin (1985), Nowak (1980), Norton (2012), Shaffer (2012), Weisberg (2007a, 2013)) is 

their overemphasis on idealizations construed as abstract-ideal objects corresponding to some 

target system, and their neglect of idealization construed as abstract-ideal objects—that do not 

correspond to any concrete target system in the world—and are used to explore the possible 

structure and representation capacities of our scientific theories.148 For example, considering the 

pathological idealization appealed to in the context of the configuration space approach to 

fractional statistics and Weisberg’s (2007a, 2013) three-fold taxonomy of idealization we may 

ask: Is the two-dimensional idealization a Galilean idealization, a minimalist model idealization, 

                                                 

147 In accordance with recent discussion with John Earman in the context of the AB effect. 
148 McMullin’s (1985) notion of a Construct Idealization is similar to the ideal of an abstract-ideal object that doesn’t 
correspond to a target system in the world. However, he does not stress the methodological role that such an 
idealization plays in science. Similarly, Shaffer’s (2012) taxonomy is flexible and robust enough to sustain the idea 
that some abstract-ideal object to not represent anything concrete in the world, but there is no mention (as far as I 
can tell) about the need for such objects for the purposes investigating the representational capacities and possible 
structure of a theory. In the context of the AB effect, for example, Shaffer’s (2012) dichotomy between theoretical 
and non-theoretical idealization is already in tension with the Aharonov and Bohm (1959) treatment since they 
appeal to both theoretical idealization (in the form of talk of infinite and impenetrable solenoids) and non-theoretical 
idealizations (in the form of ideal boundary conditions). Thus, it is not clear what the benefit of the taxonomy is in 
the context of the examples that I have been looking at. 
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or a multiple model idealization?149 Since there is no sense in which the fundamental group of 

the configuration space of identical particles of real systems is the Braid group, not even 

approximately, it is clear that the idealization is not appealed to only to make some target system 

computational tractable, so we are not dealing with a Galilean idealization. Similarly, the two-

dimensional idealization and Braid group play no causal role in bringing about fractional 

statistics, and such a pathological idealization cannot play an explanatory role without 

contradicting the sound principle. Hence, we are not dealing with a minimalist model 

idealization. Similarly, there are no multiple models in the context of fractional statistics, only 

one. Talk of multiple models only enters in the alternative geometrical account that I outline, 

where one looks to a family of realistic Hamiltonians {𝐻(𝑳)}, which faithfully represent FQHE 

systems, and shows that in the appropriate limit all such Hamiltonians flow to the idealized 

Laughlin Hamiltonian 𝐻𝐹𝐹𝐹𝐹𝐼  used to derive fractional statistics. However, in contrast to 

Weisberg’s notion of multiple model idealization, the various Hamiltonians do not serve 

different epistemic/pragmatic goals, they all serve the same goal of allowing us to dispense with 

pathological idealization and justify the original idealized treatment in the first place. Therefore, 

viewing the story of fractional quantum statistics through the lens of well-received taxonomies of 

idealization such as Weisberg’s (2007a, 2013), seriously distorts and simplifies the state of 

affairs. 

In sum, idealizations and abstractions, including pathological idealizations, are absolutely 

essential to scientific methodology because they are necessary for mapping out the possible 

                                                 

149 Recall, from Chapter 4 and Weisberg (2007a, 2013), Galilean idealizations are distortion used to simplify and 
render computationally tractable the treatment of the target system, minimalist model idealizations are distortions 
used to expose key causal or explanatory factors in the behavior of the target system, and multiple model 
idealizations are multiple incomplete models, designed to serve different epistemic/pragmatic goals. 
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structure and representational capacities of our theories, i.e., they are needed for the purpose of 

deciphering a code, which is part and parcel of scientific theorizing and practice. 

8.3 ASYMPTOTIC EXPLANATION AND MINIMAL MODELS 

 

Over the past two decades Robert Batterman has championed the view that idealizations are 

indispensible for explanatory purposes and other philosophers have concurred.150 He dubs his 

account asymptotic explanation or (in the specific case of models) minimal model explanation, 

and it presupposes a distinction between two types of explanatory goals (2002, 23): 

 

In asking for an explanation of a given phenomenon such as the buckling of a strut, one 

must be careful to distinguish between two why-questions that might be being asked. … 

A type (i) why-question asks for an explanation of why a given instance of a pattern is 

obtained. A type (ii) why-question asks why, in general, patterns of a given type can be 

expected to obtain. 

 

The idea is that, while a type (i) why-question can be answered with a causal-mechanical or 

nomological (e.g., covering law) account of explanation, a type (ii) why-question cannot. An 

answer to a type (ii) why-question necessarily includes an identification of both features that are 

relevant for the manifestation of some pattern of interest, as well as features that are irrelevant. 

                                                 

150 E. g., Bokulich (2008), Ellis (1992), Morrison (2006), Ruetsche (2011), Weisberg (2013). 
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The former features will arise in all instances of the pattern, while the latter will not.151 

Conceptually, all this amounts to idealizing and abstracting away the irrelevant features from 

particular instances of a given pattern, and then showing how the pattern still obtains. 

 

Idealization therefore has a fundamental role in physical theory. It is an absolutely 

necessary device for conceptually isolating the natural processes which are the main 

subject matter of our inquiries. (Ellis 1992, 265) 

 

 More importantly, it is the procedure of “idealizing away” that allows us to identify what 

are the irrelevant (and relevant) features to begin with. Idealizations play a positive role by 

making available novel theoretical structures that facilitate answering type (ii) why-questions.  In 

this sense, idealizations—broadly construed—are indispensable. 

However, one might reject Batterman’s distinction by objecting that type (ii) why-

questions are reducible to type (i) why-questions: The reason that patterns of a given type can be 

expected is because it can be shown that all given instances of the pattern necessarily obtain once 

we consider the explanation of why a particular instance obtains. For example, according to 

Hempel and Oppenheim’s (1948) revered deductive-nomological (“covering law”) account of 

explanation, a given instance of a pattern obtains because it must necessarily obtain given the 

corresponding initial conditions and laws of nature relevant to the situation. In the same manner, 

a pattern obtains because all its instances in fact do obtain, or, said differently, the same effect 

holds across a wide range of initial conditions. 

                                                 

151 Assuming that said former features are necessary for a particular instance of a pattern to obtain. 
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 I believe that such an objection is what Norton (2012, 227) has in mind when he claims 

that the explanation for why “many substances manifest the same critical exponents” is “simply a 

covering law explanation:” 

 

Renormalization group methods take the theoretical framework of statistical mechanics 

as the covering law. They select as the particular conditions a broad class of 

Hamiltonians pertinent to the material. They then derive universality under conditions 

close to criticality. 

 

Now, insofar as Norton is sketching a type (i) answer, i.e., a covering law explanation, of why 

universality obtains for a broad class of Hamiltonians, then he is completely correct. But it does 

not follow from the above that Batterman’s request for a type (ii) explanation is incoherent or 

unjustified. In fact, on Norton’s own account, “the practice of explanation in science is so 

irregular as to admit no univocal account” (Norton 2012, 227). Relatedly, it certainly seems 

intuitive that requesting an answer to why an instance of a given pattern obtained is different 

from requesting an answer to why the pattern obtains in general. Furthermore, it is a brute fact 

that asymptotic methods are used ubiquitously in science for identifying how large classes of 

systems will behave in some limit regime, where a particular phenomenon of interest might be 

prevalent, and for recognizing the relative influence of the terms appearing in the equations 

governing the system. That is to say, a key essentialist insight is that idealizations play an 

indispensable explanatory role, in particular, in accounting for general behaviors and patterns. 
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 This point is emphasized in a more recent work concentrating on models by noting that 

minimal model explanations provide answers to the following questions (Batterman and Rice 

2014, 361): 

 

Q1. Why are [a set of] common features necessary for the phenomenon to occur? 

Q2. Why are the remaining heterogeneous details (those left out of or misrepresented by 

the model) irrelevant for the occurrence of the phenomenon? 

Q3. Why do very different [systems] have features […] in common?  

 

Drawing closely on an analogy with the “renormalization group” (RG) account of “universality” 

and “critical phenomena,”152 Batterman and Rice (2014, 362-363) argue that minimal model 

explanations provide answers to the above questions. Moreover, they claim that Ronald Fisher 

(1930) offers a minimal-model explanation of the widely observed large-scale pattern of the 1:1 

sex ratio in natural populations (Batterman and Rice 2014, 365-373). The general idea is that, 

first, a space of possible systems is identified. Second, a flow is induced on the space so that 

irrelevant details corresponding to the phenomenon of interest are eliminated. Last, one searches 

for “fixed points” induced by the flow in order to identify systems that are in the same 

“universality class.”153 

What I would like to argue here is that the alternative non-topological interpretation of 

the AB effect and the fractional statistics that arise in FQHE systems considered in Chapters 6-7 

is consistent with asymptotic-minimal model explanations. In particular, an asymptotic-minimal 

                                                 

152 See Kadanoff (2000). 
153 Notions such as “fixed point” and “universality class” are being used loosely here, and extended beyond their 
usual scope. One may think of universality in philosophical terms as an instance of multiple realizability. See 
Batterman (2000). 
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model explanation of AB effect-type interference patterns is given by showing that the following 

limiting procedure holds—remembering that I am using the following equation symbolically to 

represent the the type of work done in, e.g., Ballesteros and Weder (2009a, 2009b, 2011), Magni 

& Valz-Gris (1995), de Oliveira & Pereira (2008, 2010, 2011): 

 

lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼      (8.1) 

 

In the context of the FQHE this is fleshed out as follows. In order to asymptotically explain how 

many different FQHE all manifest fractional statistics, and do so without appealing to 

pathological idealization, we need to show that families of Hamiltonians that realistically 

represent FQHE converge to the Laughlin Hamiltonian from Section 7.4: 

 

lim
𝑳→∞

{𝐻(𝑳)} = 𝐻𝐹𝐹𝐹𝐹𝐼  

 

Concentrating on Batterman’s (2002) notion of asymptotic explanation, it is this limiting 

procedure of Equation 8.1 that offers an explanation of why very different AB effect apparatuses 

with different levels of solenoid permeability, lengths, radii, vector potentials and magnetic 

fields, sizes, shapes (cylindrical or torodial), etc., all give rise to similar AB effects. That is to 

say, we have an explanation for why many different instances―represented by �𝐻𝐿,𝑛� (or {𝐻(𝑳)} 

in the context of the FQHE)―will give rise to a pattern of a given type that can be theoretically 

predicted from 𝐻𝐴𝐴𝐼  (or 𝐻𝐹𝐹𝐹𝐹𝐼  in the context of the FQHE). 

 Connecting back with Batterman and Rice’s (2014) notion of minimal model explanation, 

it is the results contained in Equation 8.1 that provide answers to the above questions Q1-Q3. By 
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looking at a family of Hamiltonians �𝐻𝐿,𝑛� corresponding to many physical possibilities, and 

showing that they all “flow” to the same 𝐻𝐴𝐴𝐼  in the appropriate limit, we are in essence 

explaining: (Q1) why certain features are necessary for the AB effect to occur, (Q2) why other 

features are irrelevant, (Q3) and why very different AB effect apparatuses can give rise to an 

interference shift.154 In fact, it is the limiting procedure of Equation 8.1 that allows us to 

recognize that multiply connected electron configuration space is not a relevant feature in the 

manifestation of AB effect-type interference patterns observed in the world. 

This is not to say that the AB effect can be interpreted as an instance of universality.155 

Rather, my claim is that, in the same manner that Batterman and Rice’s (2014, 265-274) example 

from biology, involving sex ratios and populations, is analogous to the RG explanation of 

universality, so is the alternative non-topological account of the AB effect (and of the fractional 

statistics portrayed by FQHE) discussed in Chapters 6-7. I am arguing that the two explanatory 

schemes are analogous, and that they both provide asymptotic-minimal model explanations—

explanations of a structural, as opposed to a causal or covering law, kind. I am not claiming that 

the alternative account of the AB effect (and fractional statistics) that I discuss in Chapters 6-7 is 

just an instance of a RG explanation of universality, or that the RG explanatory scheme does not 

have certain features unique to it. 

Still, it may be objected that AB effect-type systems (and FQHE-type systems) are not 

different enough to admit of an asymptotic-minimal model explanation. Said differently, there is 

no interesting type (ii) why-question associated with the AB effect (or the FQHE). 156 However, I 

                                                 

154 And the same can be similarly said for the FQHE case. 
155 Strictly speaking, the AB effect is not an instance of universality as are, say, the critical exponents associated 
with continuous phase transitions (see Kadanoff 2000). There is much dissimilarity (e.g., the renormalization group 
acts on a space of Lagrangians, but I have solely discussed Hamiltonians). 
156 As Robert Batterman has kindly noted. 
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do not think that this is the case, for an AB effect-type phase factor leading to observable 

phenomena such as an interference shift, can be observed in widely different systems. For 

example, quasi-particles such as the kind that arise as excited quantum states of systems 

portraying the FQHE (as discussed in Chapter 7), manifest exotic quantum statistics in virtue of 

picking up an AB effect-type phase factor whilst encircling one another. Likewise, there is also 

reason to think that AB effect type phenomena arise in the context of gravitation (Hohensee et al. 

2012), and we know that Lorentz covariance implies a similar electric AB effect. 

More importantly, once one admits of the distinction between type (i) and type (ii) why-

questions, what is the justification for identifying universal phenomena as the kind admitting 

interesting type (ii) why-questions and rejecting the claim that the AB effect (and/or FQHE) 

admits of any interesting type (ii) why-question? It seems to me that the story of the AB effect 

(and the FQHE) calls not only for a causal or DN explanation, but also for a structural and thus 

asymptotic-minimal model explanation, and it is the type of limiting procedure that arises in 

Equation 8.1 that allows for such an explanation. See Figure 8.2 for a schematic pictorial 

analogy between the minimal model explanation of the AB effect, and the case studies discussed 

in Batterman and Rice (2014). 

Another objection157 that may be raised is that both the limiting procedure and the 

existence of the limit itself are not key to an asymptotic-minimal model explanation (i.e., a 

structural explanation). The idea here is that, even without knowing whether the limit in question 

exists, we can see from the form of the Hamiltonian and the semi-classical approximation used to 

derive the AB effect, what are the sought after common features needed for the structural 

explanation to exist for classes of solutions. In reply, it seems to me that even if a structural 

                                                 

157 As John Earman has kindly noted. 
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explanation can be given without appealing to any limiting procedures, the process of identifying 

common features in classes of solutions, many of which either do not or cannot represent any 

concrete phenomenon, already presupposes appealing to idealizations and abstractions. After all, 

unless all such solutions correspond to concrete systems in the world, some such solutions can 

only denote abstract-idealized systems. 

 Consequently, the conflict between essentialists and dispensabilists is only apparent. On 

the one hand, the dispensabilists stress that 𝐻𝐴𝐴𝐼  alone cannot justifiably account for why a 

realistic system 𝐻𝐿,𝑛 portrays the AB effect. On the other hand, the essentialist holds that no one 

realistic system 𝐻𝐿,𝑛 can explain why many diverse systems �𝐻𝐿,𝑛� portray an effect that can be 

derived from an idealized system 𝐻𝐴𝐴𝐼 . The conflict dissolves once we realize that both 

essentialists and dispensabilists require appealing to the same limiting procedures, of the kind 

arising in Equation 8.1 (lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼 ), in order to ground their views: justifying the use 

of 𝐻𝐴𝐴𝐼 , and giving an asymptotic-minimal model explanation for why many different systems in 

the family �𝐻𝐿,𝑛� portray the AB effect (respectively). In principle, a particular 𝐻𝐿,𝑛 that 

faithfully represents the states of affairs manifested in an AB effect-apparatus can be used to 

derive the effect. Thus, idealizations are not necessary in order to derive and predict the 

occurrence of the effect. However, the idealized limiting procedures, such as in lim𝑛,𝐿→∞�𝐻𝐿,𝑛�, 

are necessary in order to provide explanations to type (ii) why-questions and questions Q1-Q3, 

as well as to make available the representational structure that plays a role in such 

explanations.158 Thus: 

 

                                                 

158 Similar statements can be made about the FQHE case. 
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Idealizations are essential for the explanation and representation of phenomena; they are 

not essential for the occurrence of phenomena. 

 

 

 

Figure 8.2: The Minimal Model Explanation of the AB effect. The lower collection represents a 

class of Hamiltonians �𝐻𝐿,𝑛�, which represent realistic systems, delimited by the fact they all 

flow to the same Hamiltonian 𝐻𝐴𝐴𝐼  under the appropriate limiting procedures (via 

lim𝑛,𝐿→∞�𝐻𝐿,𝑛� = 𝐻𝐴𝐴𝐼  . 𝐻𝐿,𝑛
(−) denotes another possible system (e.g., with no magnetic field) that 

fails to flow to 𝐻𝐴𝐴𝐼  , and so is not in the same class. Instead, it flows to some Hamiltonian 𝐻(−) 

that does not give rise to an interference pattern shift. 

8.3.1 An Essentialist Objection 

An essentialist may object that what I have rejected as a pathological idealization may still play 

an important role in unifying a host of otherwise unrelated phenomena, e.g., polarization of light, 

falling cats, parallel parking, Berry’s phase (Batterman 2003), and offer an explanation of a 

holistic and global character (Nounou 2003). Broadly speaking, I am sympathetic to this line of 
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reasoning, but I still hold that pathological idealizations ought to be avoided. To that effect, it is 

important to note that there are two notions of “unification” at play here. For concreteness, I will 

concentrate on the fiber bundle formulation of the AB effect (for this is the context in which the 

above claims have been made). 

If one means by “unification” (and relatedly by “holism”) that we may use the fiber 

bundle formulation to represent, explain and make predictions about varied phenomena in which 

non-trivial holonomies arise, then my account accommodates this claim. In the context of the AB 

effect, we may take Katanaev’s (2011, 2012) approach in which the base space is simply 

connected and the connection is curved on some bounded domain (and flat outside) so that we 

attain a non-trivial holonomy. In contrast, if one means by “unification” that phenomena with a 

corresponding fiber bundle formulation in which the base space is not simply connected, are 

unified with the AB effect by considering its fiber bundle formulation and treating the base space 

(representing physical space or spacetime) as an idealized multiply connected space, then I reject 

this line of reasoning. The advantages of explanatory unification are not so great so as to justify 

“unifying” phenomena on the basis of falsities. 

Consider an example discussed in Batterman (2003, 542). The Möbius strip, as a 

candidate for fiber bundle representation of some physical phenomenon, includes a non-simply 

connected base space 𝑆1 (a circle) and a flat connection, so that it is in virtue of the non-simply 

connected base space that we can get a non-trivial holonomy (see Figure 8.3). The so-called 

Hopf (Monopole) bundle,159 on the other hand, has a simply connected base space 𝑆2 (surface of 

a sphere) and allows for a non-trivial holonomy in virtue of a non-flat connection (see Figure 

8.4). Thus, if one means by “unification” that we can use the fiber bundle formalism to talk about 
                                                 

159 See Batterman (2003, 539-545) for a description of the Hopf bundle and see Wu and Yang (1975) for the original 
treatment. 
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non-trivial holonomies, then all three cases (the Möbius strip, the Hopf bundle, and the AB 

effect) are unified. To that effect, I am in complete agreement with Batterman (2003, 542) who 

claims the situations are “strongly analogous” (his emphasis). But if one means by “unification” 

that non-trivial holonomies arise in virtue of a non-simply connected base space, then the Hopf 

bundle and the AB effect are not unified with (or analogous to) the Möbius strip in this sense—

the non-trivial holonomies appear for different reasons. 

Batterman (2003, 545) himself distinguishes between two types of anholonomies (i.e., 

non-trivial holonomies), “topological” anholonomies that arise in virtue of a multiply connected 

base space and “geometric” anholonomies that appear because of a connection that is not flat. 

Using this terminology, my claim here is that the AB effect concerns a geometric anholonomy, 

and that any advantages that one might gain by thinking about the AB effect as (in part) a 

topological anholonomy will be trumped by the disadvantage of appealing to a pathological 

idealization (namely, a multiply connected base space). 

 

 

 

Figure 8.3: Schematic examples of fiber bundles. (Left) A Möbius strip with a non-simply 

connected base space. (Right) A finite cylinder non-simply connected base space. (See Appendix 

C for more on fiber bundles.) 
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Figure 8.4: The base space of the Hopf (Monopole) bundle is the simply connected surface of a 

sphere. 

8.4 A CHARACTERIZATION 

The purpose of this section is to propose a working characterization of (non-pathological) 

essential idealizations (EI) based on insights offered by both essentialists and dispensabilists, in 

order to confirm that the idea that the debate between the two camps ultimately revolves around 

a non-issue and that a more sober midway position is possible. 

8.4.1 Emergence or Essential Idealizations? 

In a recent paper, Jeremy Butterfield has urged the philosophical community to consider thinking 

about emergence as “novel and robust behavior relative to some comparison class,” which is 
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compatible with reduction―understood as deduction a la Nagel (Butterfield 2011, 1065).160 

Two immediate worries arise. The first worry is that Butterfield’s notion of emergence fails to 

account for the historically motivated “central doctrines of emergentism” accepted by the larger 

philosophical community, such as the causal efficacy and unpredictability of emergent properties 

(Kim 1999, 20-22). In other words, Butterfield’s account misses much of what is interesting to 

philosophers about emergence. The second worry is that a commitment to traditional Nagelian 

reduction prohibits Butterfield from appealing to various mathematical methods (e.g., limiting 

procedures) in “deducing” emergent behavior. In ignoring such prohibitions, Butterfield is 

avoiding some of the most difficult challenges raised against Nagelian reduction.161 The main 

thrust of this worry is that Nagelian reduction is too crude a model to act as a successful account 

of intertheoretic reduction (although that is not to say that it is not on the right track).162 In other 

words, although Butterfield’s account of emergence captures some reoccurring features arising 

within physical theory that are philosophically interesting and merit the consideration of 

philosophers, it remains an open question whether or not his account illustrates the proper way to 

think about emergence per se. Of course, Butterfield himself is open minded to the idea that 

emergence might have various characterizations. However, one would worry that without some 

significant constraints, “emergence” will remain no more than an empty honorific. 

 My purpose here is not to tackle either of these worries directly. Instead, I want to 

suggest that by thinking about Butterfield’s (2011) alleged examples of emergent phenomena as 

cases of EI, and by drawing on insights regarding EI from Batterman (2002), Norton (2012), and 

Ruetsche (2011), we might better focus our attention on the work left to be done in order to 

                                                 

160 See Nagel (1961) for his account of reduction, and for Nagelian-type accounts see Dizadji-Bahmani et al. (2010) 
and references therein. 
161 For such challenges see Batterman (2010) and Sklar (1993). 
162 See Dizadji-Bahmani et al. (2010). 
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better understand such examples. Accordingly, I offer the following tentative characterization of 

EI based on Butterfield’s (2011) notion of emergence: 

 

Essential Idealization (first attempt) ― Novel and robust mathematical structure that 

arises on the way to and at some idealizing limit, and secludes those features that are 

relevant for soundly representing phenomena of interest.  

 

Talk of “on the way to” and “at the limit” is meant to be used in the same sense as Butterfield 

(2011, Section 3) and will be clarified with terminology from Chapter 5 in the following 

subsection, while the idea that EI seclude relevant features is elaborated on in following section. 

What I add here are further observations made in the previous chapters regarding the 

representational role of EI. The idea is that an EI “soundly represents” in the sense that it allows 

agents to make valid and sound inferences about the target of representation, but it does not 

necessarily tells us what the target is like. 

We may further amend our characterization of EI by taking into account key essentialists’ 

insight gained in the last section regarding the need of EI in the context of structural, or 

asymptotic-minimal model, explanations: 

 

Essential Idealization (second attempt) ― Novel and robust mathematical structure that 

arises on the way to and at some idealizing limit, and secludes those features that are 

relevant for soundly representing and/or asymptotically explaining phenomena of 

interest. 
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8.4.2  Idealizations, Abstractions, or Approximations? 

In this section I would like to first consider whether EI are idealizations, abstractions or 

approximations, and then continue to inquire into the relevant sense of “essentialness.” With 

respect to the first goal, Chapter 4 showed that the main accounts and taxonomies of 

idealizations largely ignore examples of EI. Instead, we must appeal to recent characterizations 

suggested by John Norton (2012) and that are discussed in Chapter 5. To see this, recall that 

although there is no unique accepted characterization of any of the three terms, there is a rough 

agreement on the following: “idealizations” are meant to introduce simplifying distortions or 

fictions into some scientific account, while “abstractions” introduce no distortions but instead 

ignore or abstract away various features of an account. “Approximations” are meant to be purely 

formal mathematical methods, which are justified within some given context, but do not pose 

any real philosophical problems.  

 However, such notions seem irrelevant to the type of case studies arising in the EI 

literature (such as the example of phase transitions and critical phenomena). For one, the limit in 

EI certainly does introduce a distortion, so it is not an abstraction, but this distortion is not 

necessarily simplifying. Rather, the limit is taken to produce the mathematical structure (e.g., 

non-analytic partition function) which is then used for representational and explanatory purposes. 

Similarly, although the limiting procedure itself might be taken to be a purely mathematical 

procedure (and indeed it is a context dependent question whether some system or property and 

its limit are “approximately” equal), it does not follow that no philosophically interesting issues 

arise. We noted that, at the very least, that there are important methodological and pedagogical 

roles for abstract mathematical structure to play, whether one dubs such structure an idealization, 

abstraction, or an approximation. Thus, although we need characterizations of the notions of 
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“idealization,” “approximation,” etc., in order to assess their putative indispensable role, I do not 

think that accounts discussed in Chapter 4 fit well with EI.  

 Instead, it seems then that the best way to think of EI is in terms of Norton’s (2012) 

recent distinction between an idealization and an approximation, for such a distinction appeals 

specifically to the type of limiting procedure arising in the context of EI. Recall from Chapter 5 

that Norton (2012, Section 3) distinguishes between a system and its limit (i.e. a limit of a 

sequence of systems)—what he calls a “limit system”—and the property of a system and its limit 

(i.e. a limit of a property of a sequence of systems)—the “limit property.” A Nortonian 

idealization concerns limit systems and a Nortonian approximation concerns limit properties.  

 Thus, an EI is an “idealization” in the sense that it is either a Nortonian idealization nor 

approximation, since both Nortonian idealizations and approximations are appealed to by 

working scientists—as Norton (2012, Section 4) identifies in the context of taking the 

thermodynamic limit. Norton’s (2012, 226) thesis that we ought to “dispense” with idealizations 

is then not a claim in general against essentialists and EI as we have been discussing here. 

Rather, the idea is that if we can avoid problems associated with an incompatibility between a 

limit system and an actual concrete target system by appealing to limit properties, then we ought 

to do so. 

 

With this uncertainty, prudence indicates that we should dispense with the idealization, 

for the approximation already tells us what we could learn from the idealization about the 

target system. Persisting with the idealization merely risks the error of attributing 

properties to the limit system that it does not bear. (Norton 2012, 226) 
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Said differently, and allowing for some interpretative and creative freedom, pathological 

idealizations, in which there is a mismatch between a limit property and a corresponding 

property of a limit system, need to be avoided when the target of a scientific account 

(explanation, representation, etc.) is a concrete system in the world. This seems like a completely 

reasonable stance for the essentialist to adopt. 

 It is worth noting though, that appealing to Nortonian idealizations could have the added 

payoff of making novel predictions and guiding the construction of future theories and models. 

That is to say, Nortonian idealizations can be used to attribute properties to a target system via a 

limit system. Such properties can be interpreted as novel predictions made by analogy, which can 

then be confirmed or disconfirmed. In either case, new models can be constructed accordingly. It 

is true that such a procedure comes with risk. Analogical inference of the sort always comes with 

an inductive risk (Norton 2011). But if the analogy holds in the sense that it is empirically 

confirmed and coheres well with a theoretical background, then we know we are on the right 

track to a future theory. In the case of phase transitions, the reason that successful accounts 

appealing to the thermodynamic limit do not overturn the atomic theory of matter is not only 

because we can take the limit as a Nortonian approximation. Rather, the vast amount of evidence 

supporting the atomic theory of matter, coupled with the fact that phase transitions qua 

discontinuity and phase transitions qua a-sufficiently-steep-but-smooth-change are virtually 

observationally indistinguishable (in the context of predictions tested for in the lab), play 

significant roles. In short, although prudence does dictate we appeal to Nortonian 
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approximations, successful appeals to Nortonian idealizations might pave the way for novel 

predictions and future theories.163 

 Next, I’d like to transition to the second goal of this section by considering the sense in 

which EI are “essential.” The claim is that the limiting methods appealed to in the context of EI 

are essential for the production of the novel and robust mathematical structure that is used for 

representational and (asymptotically) explanatory purposes. But the notion of “essential” here 

can come in two different flavors. First, it is a claim about the limiting methods used by our best 

scientific theories. The idea can be illustrated as follows. Canonical accounts of phase transitions 

characterize them as discontinuities and appeal to the thermodynamic limit to do so, full stop. As 

philosophers of science, we ought to take our best present science and its practice seriously. In 

this sense, the thermodynamic limit (Nortonian idealization or approximation) is essential for the 

representation and explanation of phase transitions. 

 A second reading takes EI to be essential in producing mathematical structures that will 

persist in the success of future theories. Moreover, the two senses need not be in conflict. They 

can mutually support one another. Laura Ruetsche (2011) summarizes the point elegantly with an 

especially illuminating example: 

 

Renormalization Group techniques devised for [quantum statistical mechanics (QSM)] 

have found application to physicists’ [quantum field theory (QFT)]. In QSM those 

techniques help explain the insensitivity of critical phenomena to the detailed 

                                                 

163 Of course, with respect to a future theory, what was taken to be an idealization may then be taken to be a faithful 
representation of the states of affairs. For example, while phase transitions are faithfully represented by a finite-
dimensional state space in the context of the atomic theory of matter, on field theoretic accounts of matter such 
representations are in fact misrepresentations. Similarly, one may argue that if we were to take quantum field theory 
seriously, phase transitions qua discontinuities (that arise in virtue of taking the thermodynamic limit) are no longer 
idealizations. 
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microphysics of the material prone to them. In physicists’ QFT, Renormalization Group 

techniques help explain how the detailed high-energy physics of exact (but unknown) 

QFTs could have renormalizable effective theories as their low energy limits. Thus, 

Renormalization Group techniques, validated by taking thermodynamics quite seriously, 

are instrumental in identifying plausible future directions for QFTs. Theoretical features 

made available by idealizations are likely to persist in future theories when those features 

function as guides for theory development. (Ruetsche 2011, 337) 

 

Incorporating such insights with Norton’s distinction we get: 

 

Essential Idealization (third attempt) ― Novel and robust mathematical structure that 

arises via a Nortonian approximation (or idealization), secludes those features that are 

relevant for soundly representing and/or asymptotically explaining phenomena of 

interest, and is essential for the success of present science and/or will underlie the 

empirical success of future theories. 

 

Last, we may add, in line with Chapters 5-7 and the previous sections in this chapter, that 

pathological idealization, which may play substantive methodological and pedagogical roles, 

ought to be avoided in the context of representing and explaining concrete target systems in the 

world. 
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8.5 CASE STUDIES 

In this section I want to emphasize that the conflict between essentialists and dispensabilists is 

only an apparent one, and illustrate how the working characterization of EI given above (third 

attempt) acts as a unified account. Constraints of space will allow for a limited number of 

examples but I submit that what follows can be applied to a wider class of case studies. 

8.5.1 The Method of Arbitrary Functions 

 To start, let us consider one of Butterfield’s (2011, 1081-1089) own examples, which 

concerns the method of arbitrary functions. In particular, we are interested in a theorem by 

Poincaré which, roughly, states that in the context of a spinning roulette wheel divided into 𝑁 

equal arcs of Red and Black, we can rightfully expect the long-run frequency of Red and Black 

to be approximately 50%. That is to say, Poincaré showed that if (𝑋, 𝜇) is a sample space 

partitioned into two subsets of R and B: 

 

For any 𝑀 ∈ ℝ, for all density functions 𝑓 with derivative bounded by 𝑀, |𝑓′| < 𝑀, as 

𝑁 = number of arcs goes to infinity: ∫𝑅𝑓𝑓𝑓 ≡ 𝑝𝑝𝑝𝑝(𝑅𝑅𝑅) → 1
2
; and ∫𝑅𝑓𝑓𝑓 ≡

𝑝𝑝𝑝𝑝(𝐵𝐵𝐵𝐵𝐵) → 1
2
. (Butterfield 2011, 1084) 

 

The fact that the probabilities of Red and Black are exactly 50%, and that this is true for any 

biasing profile, is taken to show that such probabilities are novel and robust. What I want to 
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stress is that one cannot derive the equiprobability result without appealing to the 𝑁 →  ∞ limit. 

In this sense the 𝑁 →  ∞ limit is indeed indispensable.  

 In addition, the robustness property of Poincaré’s results is highly informative. This is so 

because it is by taking the limit that we find what features of the spinning roulette wheel are 

irrelevant for the purpose of obtaining the equiprobability result. Such irrelevant features include 

varying initial positions, angular velocities, frictions present, the actual initial probability density 

function, etc. Similarly, the 𝑁 →  ∞ limit secludes the relevant features, specifically, the number 

of intervals 𝑁 (the more intervals, the closer one will get to equiprobability). Moreover, this 

information gives us an asymptotic explanation of why the general pattern—i.e., that we can 

expect the long-run frequency of Red and Black to be approximately 50%—obtains for any 

roulette wheel (assuming 𝑁 is sufficiently large).  That is not to say that one cannot, in principle, 

also give a covering-law type explanation of the situation by considering many different roulette 

wheels and their initial conditions, and showing that the above pattern must obtain. But the 

𝑁 →  ∞ limit is needed for the type of asymptotic explanation that arises through Poicaré’s 

theorem. 

 In other words, there is no conflict between the dispensabilists and essentialists here. On 

the one side, dispensabilists stress that the novel and robust behavior (the equiprobability result) 

can be mathematically derived using limiting procedures that concern a Nortonian 

approximation. On the other side, essentialists emphasize that it is exactly such a procedure that 

allows for asymptotic explanations, along with an identification of the features of the roulette 

wheel that are (and that are not) relevant for faithfully representing the behavior at hand. 
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8.5.2 Fractals, Phase Transitions, and KMS States 

As a second example, consider the nature of fractals as objects that have irregular (i.e. non-

integer) dimension, such as the Cantor set, which is, roughly, the set of points in the interval 

[0,1] that one gets by repeatedly deleting the open middle thirds, and repeating this process ad 

infinitum. If each stage of deletion is labeled 𝑁, then notice that the 𝑁 →  ∞  limit arises in the 

definition of a Cantor set, and so the limit will certainly be essential in, at the very least, 

representing the Cantor set. Moreover, for any finite 𝑁, the “finite Cantor set” will have 

dimensions of 1. In order to derive the irregular dimensions of a true Cantor set, it is necessary to 

appeal to the 𝑁 → ∞ limit. Thus, the novel, robust and informative mathematical structure that is 

the irregular dimensions of fractals, necessitates the idealized 𝑁 →  ∞  limit in the strongest 

possible sense (Butterfield 2011, 1090-1103). 

 Another example are the case phase transitions as they arise in quantum statistical 

mechanics (QSM), where one can calculate the expectation value of any physical quantity with 

the “density operator,” or “density matrix,”𝜌�, which represents the equilibrium state of a system. 

In particular, within the context of the canonical (Helmholtz Free Energy representation) 

ensemble, 𝜌� takes the following form: 

𝜌� =
𝑒−𝛽𝛽

𝑇𝑇(𝑒−𝛽𝛽)
 

Where, 𝛽 = −1
𝑘𝐵𝑇�  is the inverse temperature, 𝑘𝐵 the Boltzmann constant, 𝐻 the Hamiltonian 

associated with the system (in state 𝜌� ), and 𝜌� is called the “Gibbs state” of the system. If the 

Gibbs state exist, it is unique for any given 𝛽 and does contain enough structure to represent 

various thermodynamic phases (at some fixed temperature associated with 𝛽) as is necessitated 
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for representing phase transitions. However, there is a theorem that states that whenever 𝜌� takes 

the form above (i.e. the density matrix is the canonical equilibrium density matrix called the 

Gibbs state), it also satisfies the “KMS condition” (with respect to a given 𝛽 and 𝐻) (Emch and 

Liu 2002, 251), and such states (that satisfy the KMS condition) are called “KMS States.” 

Moreover, in the TDL, KMS states are not unique and the required mathematical structure to 

represent different thermodynamic phases, and phase transitions, emerge. 164 Thus, we see again 

that even if it is possible to demote the TDL to the status of a Nortonian approximation, it still 

seems like a matter of absolute necessity for our best theories of phase transitions to work for us 

to be able to take the limit in the first place. 

8.5.3 Spontaneous Symmetry Breaking in Quantum Field theory 

 A last example concerns the characterization of spontaneous symmetry breaking (SSB) in 

quantum field theory (QFT). SSB in QFT arises when the vacuum (ground state) state of system 

involves degeneracy. However, in the context of QFT, if the vacuum state exists, it is unique. 

Degeneracy of the vacuum state only arises when a state and its image under an automorphism 

belong to unitarily inequivalent representations (of the algebra of observables). The failure of the 

vacuum state to exhibit symmetry is implied by the fact that symmetry of the laws of motion in 

QFT is not unitarily implementable. In other words, for a symmetry (represented by an 

automorphism of the algebra) to be spontaneously broken it must be the case that it is not 

unitarily implementable or that some of the fundamental states of the system related by the 

symmetry generate unitarily inequivalent representations of the algebra of observables. However, 

                                                 

164 See Emch and Liu (2002, 346-357) and Sewell (1986, Ch. 4; 2002, 113-123) (and references therein) for the 
precise results. 
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one must appeal to the infinite volume limit in order to derive non-unitarily implementable 

symmetries and unitarily inequivalent representations. Thus the infinite volume limit is essential 

for deriving a novel, robust and informative mathematical structure that is used to characterize 

SSB in QFT (Earman 2002, 2003b, 2004; Liu and Emch 2005, Ruetsche 2011). 

8.6 CONCLUSION: AN OBJECTION AND THE EIP 

In this chapter I have suggested that the division between essentialists and dispensabilists is in 

fact a false dichotomy, and that views put forth by both camps are importantly complementary as 

can be seen through a unified (working) characterization of EI, and the substantive pedagogical, 

methodological, and explanatory roles played by idealizations in science. What I wish to do in 

this section is address a possible objection from the dispensabilist and end by reconnecting with 

the essential idealization problem (EIP) that motivated my entire study. 

8.6.1 A Dispensabilist’s Objection 

A dispensabilists might argue that, even in light of the account given here, there is no substantial 

sense in which idealizations are essential for science. The line of reasoning is as follows. A 

dispensabilists holds the following two methodological claims. (C1) Whenever an idealization 

seems essential for a scientific account of some physical phenomenon, then one ought to do 

some research to see whether the phenomenon can be derived without using idealizations. In the 

cases I discussed (e.g., phase transitions, AB effect) the research program is successful and so in 

this case the idealizations are not indispensable in any interesting sense. Moreover, (C2) if the 
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research program of type (C1) fails then at the current stage of scientific theorizing the 

idealization is indispensable. This encompasses a kind of compromise position. However, the 

ground of this compromise is unstable, for the failure of the research program shows that either 

(i) the effect at issue has been mischaracterized165 or else (ii) current theory is false.166  

I have two remarks in reply. First, I do not think that it follows from the fact that one can 

dispense with a Nortonian idealization, that “the idealizations are not indispensable in any 

interesting sense.” The limiting procedures appealed to in a (C1)-type research program can be 

interpreted as idealizations of sorts—or Nortonian approximations—which then turn out to be 

indispensable for asymptotic explanation. Moreover, we noted that even pathological 

idealizations have methodological and pedagogical roles to play. So even if a (C1)-type research 

program succeeds, it does not mean that idealizations have been dispensed with or ought to be 

dispensed. Rather, all that follows is that it is illegitimate to appeal to a pathological idealization. 

 Second, it is not at all clear to me why above mentioned compromise position is unstable. 

All scientific theories, accounts, models, etc., are necessarily idealized (and appeal to 

misrepresentations) in some sense or other since we do not have (and, presumably will not have 

any time soon) a final scientific theory of everything. This situation is, was, and will be (in the 

near future) the state of affairs. Thus, on their own, (i) and (ii) do not mark the sign of an 

unstable compromise.  

                                                 

165 And a correct characterization will allow its derivation in current theory without use of the idealization. 
166 The dispensabilists may continue: Further methodological imperatives follow. Conduct a research program to 
investigate (i). If this research program fails, conclude that (ii) is the case, and start a new research program to find a 
better theory that will explain the effect without having to use blatantly false idealizations. Failure to conduct an 
investigation by mumbling something about how idealizations are good and indispensable is going to hinder 
scientific progress. At this point, all the essentialist can do is object that actual scientific practice does not follow 
such a course and the debate is reduced to a discussion of scientific norms. 
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8.6.2 The Essential Idealization Problem Revisited 

In Chapter 2, I characterized the EIP as follows: 

 

The Essential Idealization Problem (EIP) ― We need an account of how our abstract and 

essentially idealized scientific representations correspond to the concrete systems 

observed in the world, we need a characterization of EI, and a justification for 

appealing to EI’s, i.e. an explanation of why and which EI’s are successful. 

 

I will end this chapter with noting the headway made in solving the problem. First, in Chapter 3 I 

gave a content-based account of how our “scientific representations correspond to the concrete 

systems observed in the world:” 

 

[cont.] A vehicle V is an epistemic representation of a target T if and only if V’s 

representational (semantic) contents—determined vis-à- vis a representational code that 

is adopted and deciphered by intentional agents—are about T. 

 

I also noted that in order to make further progress on the issue one must look to how 

representational content is identified and determined, and how a representational code is 

deciphered, in the context of particular case studies involving both theoretical and empirical 

investigation. Deciphering a representational code presupposes appealing to both non-

pathological and pathological idealizations in order to map out the possible structure and 

representational capacities of a theory. 
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 Next, I gave a working characterization of EI that was constructed on insights from both 

dispensabilists and essentialists:  

 

Essential Idealization (third attempt) ― Novel and robust mathematical structure that 

arises via a Nortonian approximation (or idealization), secludes those features that are 

relevant for soundly representing and/or asymptotically explaining phenomena of 

interest, and is essential for the success of present science and/or will underlie the 

empirical success of future theories. 

 

My goal was to show that both camps can maintain their core commitments in one unified and 

complimentary account of EI. Moreover, the characterization proposed can give a realist account 

for why EI work via the type of limiting procedures encompassed in Nortonian approximations, 

namely, idealizations that are products of more realistic representations. It seems to me that 

significant further work to be done includes investigating, and correspondingly amending, 

whether the characterization of EI given here can account for other celebrated cases of alleged EI 

not discussed in this dissertation, or else touched on only briefly. Similarly, it remains an open 

equation whether my characterization of EI can accommodate the motivation and core tenets of 

other essentialists, e.g., Bokulich (2008), Morrison (2012). 

 My justification for appealing to EI remains the same as the justification for appealing to 

any idealization, namely, the sound principle: 

 

EARMAN-RUETSCHE SOUND PRINCIPLE ― If a scientific account (theory, model) 

uses an idealization to predict or explain an effect which disappears when the idealization 
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is removed then either the effect is an artifact of the idealization or else (if experiment 

confirms the effect) the theory is inadequate. 

 

However, it is necessary to add that pathological idealizations ought to be avoided in the context 

of explanation and representation of target systems in the world. In other words, EI that are not 

pathological are successful because they conform to the sound principle (albeit via a non-

standard de-idealization scheme as discussed in Chapter 5), and EI that are pathological cannot 

provide successful explanation. On the other hand, my positive thesis is that even pathological 

idealizations can play substantive methodological and pedagogical roles, as long as such 

idealizations do not target any systems in the world. Pathological idealizations are essential for 

deciphering a representational code, as well as identifying and determining representational 

content, corresponding to our scientific theories and models.  
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9.0  MATHEMATICAL EXPLANATION, EASY ROAD NOMINALISM, AND 

NOMINALISTIC SCIENTIFIC REALISM 

It has been recently debated whether or not there is a so-called “easy road” to nominalism in the 

context of the realism/anti-realism debate in the philosophy of mathematics. In this chapter my 

goal is to argue that previous discussion of essential and pathological idealizations from Chapters 

4-8 has concrete implication for this debate. Specifically, I suggest that the standard topological 

approach to fractional statistics and the received view of the AB effect (discussed in Chapters 6-

7) bear negatively on Mary Leng’s account of easy road nominalism, thereby indirectly 

defending Mark Colyvan’s claim that there is no easy road to nominalism. In contrast, the 

alternative approaches to fractional statistics and the AB effect (outlined in Chapters 6-7) make 

room for easy road nominalism. 

9.1 INTRODUCTION 

Recently, several papers have discussed the feasibility of the so-called “easy road” to 

nominalism.167 The question motivating (what I will call) the easy road nominalism debate is 

whether or not it is possible to reject platonism about mathematical objects, while committing to 

                                                 

167 E.g., Colyvan (2010, 2012), Azzouni (2012), Bueno (2012), Leng (2012), Liggins (2012), and Yablo (2012). 
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some substantial form of scientific realism, but doing so without taking the “hard road” to 

nominalism.168 The hard road includes purging our best scientific theories from quantifying over 

abstract mathematical objects.169 Said differently, advocates of the hard road to nominalism 

claim that mathematical objects are not indispensable to our best scientific theories, and then 

continue to dispense with such objects. They then are not vulnerable to the Quine-Putnam 

indispensability argument, a main tenet of which is the Quinean ontic thesis, which states that we 

are committed to the existence of all the entities that we indispensably quantify over in our best 

scientific theories.170 The easy road nominalists, on the other hand, accept the thesis that 

mathematical entities are indispensable to our best scientific theories. Nevertheless, it is claimed 

that indispensability does not warrant reification (at least in the case of mathematical entities). 

 Various strategies have been exploited on behalf of the easy road.171 For instance, Melia 

(2000) discusses means by which we might quantify over objects but then deny their existence. 

That said, as Colyvan (2010) argues, such approaches can only succeed if one rejects the idea 

there are genuine mathematical explanations in science. However, many proponents of the 

debate agree that this seems unlikely.172 What I wish to do in this section is to concentrate on 

                                                 

168 What I have in mind here is some form of scientific realism substantial enough to be moved by the Quine-Putnam 
indispensability argument and the Quinean ontic thesis, with commitments varying between metaphysical, semantic, 
epistemic and axiological dimensions. Roughly, the metaphysical dimension has to do with commitment to the 
existence of a mind-independent world and/or objects within it, (possibly) along with their properties and relations. 
The semantic dimension concerns interpreting the claims of scientific theories literally, as ones satisfying truth 
conditions. The epistemic dimension regards the empirical (predictive and retrodictive) and explanatory success of 
science as evidence for the (approximate) truth of the claims of science, so that scientific claims constitute 
knowledge about the world and objects within it. The axiological dimension takes the aim of science to give 
approximately true descriptions and faithful representations of the world. See Boyd (1983, 45), Psillos (1999, xix), 
Niiniluoto (1999, 21) and Chakravartty (2011). In the following section I will discuss a specific proposal for 
scientific realism, so-called ‘nominalistic scientific realism’ (Balagaur 1998). 
169 See Field (1980) for such an attempt. 
170 See Putnam (1971) and Quine (1981), and see Colyvan (2001) for an in-depth study of the indispensability 
argument and a defense.  
171 See Azzouni (2012), Bueno (2012), Leng (2012), Liggins (2012), and Yablo (2012). 
172 Mainly because of numerous examples that do seem to provide genuine mathematical explanation, e.g., Baker 
(2005, 2009, 2012), Colyvan (2001, 2007, 2010). 
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easy road nominalism that is moved by the Quine-Putnam indispensability argument, embraces 

scientific realism, and accepts the idea that there are instances of genuine mathematical 

explanations in science. Such an approach is put forth by Mary Leng (2010, 2012), but I submit 

that the discussion here can easily be extended to cover other approaches to easy road 

nominalism. I will argue that the standard accounts of the AB effect (discussed in Chapter 6) and 

fractional quantum statistics manifested by anyons in fractional quantum Hall effect (FQHE) 

systems (discussed in Chapter 7), bears negatively on Leng’s proposal to easy road nominalism, 

and in doing so I indirectly defend Mark Colyvan’s (2010, 2012) claim that there is no easy road 

to nominalism. However, on the alternative accounts outlined and endorsed in Chapters 6-7, 

Leng’s path to easy road nominalism becomes tenable again. The point of this chapter is to 

suggest that the easy road nominalism debate can greatly benefit from taking seriously case 

studies of the sort discussed in this dissertation, all broadly subsumed under the umbrella term of 

“essential idealizations” (Batterman 2002, 2003, 2005; Ruetsche 2011; Chapters 2-8). 

 In what follows, I first introduce Leng’s (2010, 2012) approach to easy road nominalism 

in Section 9.2 and show how it depends on the idea that physical structure can “approximately 

instantiate” mathematical structure when a mathematical explanation is at hand.  Next, in Section 

9.3, I review the case study of the anyons and fractional statistics presented in Chapter 7, and 

show that there is no sense in which the mathematical structure appealed to in order to explain 

fractional statistics is “approximately instantiated” in a physical system. Section 9.4 considers a 

natural nominalistic reply: explanatory approaches that appeal to pathological idealizations ought 

to be dispensed with, and alternative approaches, which make way for easy road nominalism, 

embraced. This is where I also refer to the standard and alternative accounts of the AB effect 

discussed in Chapter 6. I conclude in Section 9.5. My hope is that it will be clear from my 
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discussion of fractional statistics and pathological idealizations that the study of such examples 

may greatly inform the debate on easy road nominalism and, more generally, the cogency of 

mathematical explanations. 

9.2 LENG’S EASY ROAD NOMINALISM 

Mary Leng’s (2010, 2012) approach to easy road nominalism takes the form of a defense of 

nominalistic scientific realism (NSR), which may be characterized as follows: 

 

The view that the nominalistic content of empirical science―that is, what empirical 

science entails about the physical world―is true (or mostly true…), while its platonistic 

content―that is, what it entails ‘about’ an abstract mathematical realm―is fictional. 

(Balagaur 1998, 131) 

 

There is a rough consensus that the plausibility of NSR depends on either excising mathematical 

explanations from science, or else illustrating “how mathematics can be expected to function 

successfully in explanatory contexts even if mathematical objects are taken to be mere fictions” 

(Leng 2012, 986). The later route, taken by Leng (2010, 2012), involves showing that 

mathematical structure plays a representational role (in the mathematical explanation of a 

physical phenomenon) such that “…our explanations work by displaying the phenomenon as 

being a consequence of the (approximate) instantiation of that structure in the empirical situation 

at hand” (Leng 2012, 990-991). 
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 In other words, we can avoid platonism but remain scientific realists (of the NSR bent) by 

showing how, in some circumstances, an explanation of a physical phenomenon is given in 

virtue of the fact that the phenomenon follows from an approximately instantiated physical 

structure that is represented by some corresponding mathematical structure. These types of 

explanations, called structural explanations by Leng, are fundamentally mathematical 

explanations. However, the fact that the physical structure approximately instantiates the 

mathematical structure allows us to gain a genuine mathematical explanation without reification. 

 

A structural explanation will explain a phenomenon by showing (a) that the phenomenon 

occurs in a physical system instantiating a general mathematical structure, and (b) the 

existence of that phenomenon is a consequence of the structure characterizing axioms 

once suitably interpreted. (Leng 2012, 989) 

 

As an example, Leng (2012, 989-990) considers the explanation of why it is impossible to 

construct a square with the same area of a circle (with only a compass and ruler). The reason is 

that 𝜋 (and thus √𝜋) is a transcendental number.173 The explanation consists of two parts. First, 

(a) a physical space approximately instantiates the structure of Euclidean space (and distance 

between points in Euclidean space approximately instantiates the real numbers structure). Second 

(b), once we define notions like rule/compass constructions and constructible points, we can 

show that it follows from the axioms of Euclidean geometry that we cannot construct 

transcendental (real) numbers. 

 
                                                 

173 A transcendental number is a number that is not a root of a (non-trivial) polynomial with rational coefficients 
(where a rational number is any number that can be expressed as a fraction of two integers). 
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Thus, the ultimate applicability of this explanation comes, not from the existence as 

abstract of any of the mathematical objects involved, but rather, from the interpretation of 

the geometrical axioms as approximately) true about the physical space of paper and 

pencil drawings… [T]he explanation is explanatory because it shows an empirical 

phenomenon (our inability to find certain ruler/compass constructions) to result from the 

general structural features of the situation. It enables us to see the relation between the 

impossibility of circle squaring and other impossible constructions, and it enables us to 

see the phenomenon as resulting from a necessity, not just from bad luck or poor 

construction. (Leng 2012, 990) 

 

In the following section I will discuss how the standard approach to fractional statistics concerns 

a genuine mathematical explanation, but there is no precise sense in which the mathematical 

structure is approximately instantiated in the physical world. 

9.3 FRACTIONAL STATISTICS AND APPROXIMATE INTANTIATION 

Recall, from Chapter 7, that on the standard configuration space approach to fractional statistics, 

the type of quantum statistics available to a system depends on the phase factor 𝑒𝑖𝑖 (for instance) 

gained by the wave function of the permuted system, which turns out to be the one-dimensional 

unitary representation of the fundamental group of said system’s configuration space. In three 

dimensions the fundamental group of the configuration space (of 𝑁 identical particles) is the 

(finite and discrete) permutation group 𝑆𝑁 which admits of the one-dimensional unitary 

representation discussed above. That is to say, 𝑆𝑁 leads to the phase factor 𝑒𝑖𝑖 = ±1, where we 
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have +1 phase factor for bosons corresponding to 𝜃 = 0, and −1 phase factor for fermions 

corresponding to 𝜃 = 𝜋. These are the conventional quantum statistics. In two dimensions, on 

the other hand, the fundamental group is the (infinite and discrete) braid group 𝐵𝑁 with one-

dimensional unitary representations corresponding to a continuous range of phase factors 

−1 ≤ 𝑒𝑖𝑖 ≤ +1, which gives rise to bosons (𝜃 = 0), fermions (𝜃 = 𝜋), and anyons (0 < 𝜃 <

𝜋).174 

 In other words, it is in virtue of the fact that the fundamental group of the configuration 

space of identical particles in two dimensions is the braid group 𝐵𝑁, and not the permutation 

group 𝑆𝑁, that we can have anyons and fractional statistics. Thus, we have here a case where we 

have to appeal to abstract mathematical structure, the fundamental group as the braid group 𝐵𝑁, 

in order to explain a physical phenomenon, specifically, fractional statistics (as they arise in 

physical FQHE systems). Moreover, the structure is essentially abstract. It is solely in two 

dimensions that the fundamental group is the braid group. In three dimensions the structure 

allowing for fractional statistics disappears.  

The explanation of fractional quantum statistics is in essence a mathematical and 

structural explanation, since it is the topological structure of the configuration space that allows 

for fractional statistics. Specifically,  connecting with Leng’s (2010, 2012) notion of structural 

explanation, we may say that (a) the configuration space of FQHE systems are approximately 

two dimensional (since there is little to no motion in the third spatial direction), and that (b) the 

existence of fractional statistics is a consequence of two facts. (i) The phase factor characterizing 

quantum statistics is the one-dimensional unitary representation of the fundamental group of a 

                                                 

174 Morahndi (1992, 114-144) offers an elegant and precise presentation of these points (where the main theorems 
that I am making use of arise on pages 119-121). See the appendix at the end of the paper. 
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system’s configuration space and (ii) in two dimensions the fundamental group is a Braid group. 

However, it is no longer clear that we can dispense with reifying the explanatory mathematical 

structure. The reason is that, although FQHE systems are approximately two-dimensional and 

manifest fractional statistics, it is not the case that the mathematical structure is approximately 

instantiated in the physical world. 

 The fundamental group of the configuration space of identical particles in approximately 

two dimensions is the same as that of three dimensions, the permutation group. In order to allow 

for fractional statistics we need the fundamental group to be the Braid group, and this can only 

occur in exactly two dimensions. However, physical systems are not exactly two dimensional. 

Thus, it cannot be said that a physical system “approximately instantiates” the structure 

associated with the Braid group and necessary for fractional statistics. 

 Said differently, and making use of the terminology and the example with cuboids 

presented in Chapter 5, we can say that a real physical system approximately instantiates the 

structure of our idealized limit system since there exist a correspondence between the limit 

property and the property of the limit system. In such a context, Leng’s (2010, 2012) talk of 

“approximately instantiated” structure makes sense. In stark contrast, on the standard topological 

approach to fractional statistics, “approximate instantiation” fails, since we are appealing to a 

pathological idealization. That is to say, it makes no sense to say that a physical system, which is 

three dimensional, “approximately instantiates” the topological structure corresponding to the 

fundamental group qua the Braid group. In three dimensions, the fundamental group is the 

permutation group  𝑆𝑁 that leads to conventional statistics of bosons and fermions. It is only in 

two dimensions that the fundamental group is the Braid group 𝐵𝑁, which makes room also for 

anyons with their fractional quantum statistics. Since there is a lack of correspondence between 
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the property of the limit system and the limit property, one can no longer talk about the 

mathematical structure being approximately instantiated by the physical structure. It is then not 

clear how, on Leng’s approach, one could dispense with reification in this context without 

undertaking the hard road to nominalism. 

9.4 NOMINALISTIC REJOINDER 

I have argued that the standard topological approach to fractional statistics contains an appeal to 

mathematical structure that both plays a genuine explanatory role, and also cannot be dispensed 

with via talk about “approximate instantiation” in the physical world. In this section I wish to 

consider an intuitive nominalistic reply, namely, that on some alternative approach to fractional 

statistics, such as the geometric approach outlined in Chapter 7, one can make sense of 

“approximate instantiation.” To be sure, the nominalist would be putting her neck on line here 

because the account of fractional statistics sketched is part of the explanatory machinery of our 

best scientific theories. Nevertheless, she may hold her ground and declare: If an alleged 

explanation of a physical phenomenon includes appeal to an abstract mathematical structure that 

cannot be approximately instantiated by a corresponding physical structure, then the explanation 

is defective. Contrary to the standard explanation of phenomena such as fractional statistics, 

there is no explanation here at all, and mumblings about indispensability will only hinder 

scientific progress. Scientists ought to conduct research into explaining the phenomenon in 

question without appealing to such abstract mathematical structure precisely because it is 

pathologically idealized. 
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The nominalist can further her cause by drawing an analogy with the Aharonov-Bohm 

effect (as I do in Chapter 6): Assume the received view of the AB effect is taken at face value.175 

We ask, what explains the AB effect phase shifts that we observe in the laboratory? The answer 

is that multiply connected fiber bundle base space is what allows for a non-trivial holonomy 

corresponding to an interference pattern shift. In other words, we have to appeal to abstract 

mathematical structure, i.e. a multiply connected topological base space, in order to explain a 

physical phenomenon, specifically, the AB effect. This then is a mathematical explanation of a 

physical phenomenon. However, since the multiply connected space concerns a pathological 

idealization, we can no longer appeal to “approximate instantiation” to purge commitment to 

abstracta. This is so because a topologically simply connected spacetime cannot approximately 

instantiate the structure associated with a multiply connected topological space (as I argued in 

Chapters 5-6). Thus, it seems that the received view of the AB effect brings with it a 

commitment to platonism a la Colyvan (2010) (or else a resolution to take the hard road). 

On the other hand, on the alternative approach discussed in Chapter 6, one could tell a 

story of the kind given by Leng (2010, 2012). We can say that physical systems in which the AB 

effect manifests approximately instantiate the fiber bundle structure associated with a non-trivial 

holonomy in virtue of a non-flat connection on some bounded region. Thus, the alternative 

approach to the nature of idealizations in the AB effect, in which one need not appeal to a non-

trivial topological base space, accommodates nominalistic scientific realism. Similarly, by 

embracing the geometric phase approach to fractional statistics (advertised in Chapter 7), we 

could take the easy road to nominalism in this particular case study. 

                                                 

175 For clarity’s sake, I’ll concentrate on the fiber bundle formulation of the received view. 
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9.5 CONCLUSION 

My main goal in this chapter was to show how there are concrete consequences for the 

realism/anti-realism debate in the philosophy of mathematics in light of what position one takes 

on the essential idealization issue discussed in this dissertation. I would like to end with some 

reflections regarding the plausibility of platonism in light of scientific case studies that seem to 

appeal essentially to idealizations and indispensable mathematical structure.176 Specifically, 

recent efforts on part of platonists to reify mathematical structure revolve around what Alan 

Baker (2005; 2009, 613) has called the Enhanced Indispensability Argument (EIA) for 

mathematical objects: 

 

(1) We ought rationally to believe in the existence of any entity that plays 

an indispensable explanatory role in our best scientific theories. 

(2) Mathematical objects play an indispensable explanatory role in 

science. 

(3) Hence, we ought rationally to believe in the existence of mathematical 

objects. 

 

It is then clear why platonists ought to be drawn to case studies from science in which 

mathematical structure used for representational and explanatory purposes arise solely in an 

essentially abstract realm. Such ostensible examples of “essential idealizations” automatically 

satisfy the premises of the EIA and thus, generally, seem to support platonism. It seems then that 

                                                 

176 Such case studies may be found in Batterman (2002, 2003, 2005), Bokulich (2008), Butterfield (2011), Ruetsche 
(2011) and throughout this dissertation. 
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nominalistic scientific realists can further their cause by showing that there exist easy road 

nominalistic manners by which to understand such phenomena. 

 Accordingly, I suggest that proponents of the debate on easy road nominalism, as well as 

the literature on mathematical explanation, may greatly benefit from paying attention to 

examples from science in which appeals to essential idealizations and indispensable 

mathematical structure arise. The feasibility of easy road nominalism and NSR depends on 

assessing whether or not the mathematical structure playing an indispensable explanatory role 

can be said to be approximately instantiated in the physical structure (which gives rise to the 

phenomenon to be explained). In order to conduct such assessment philosophers must look to 

specific case studies and to science itself.  
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10.0  CONCLUSION 

In this dissertation I have attempted to make some headway in understanding various issues that 

arise in the context of scientific representation and idealization, with a concentration on the 

essential idealization problem (EIP). My method has been to approach the received literature and 

positions with irenic sensitivity. From this perspective, it seems to me that denying the existence 

of essential idealizations and misrepresentations, or holding that all idealizations (abstractions, 

approximations and misrepresentations) that cannot be straightforwardly de-idealized must be 

excised, is somewhat rash. Setting aside the instrumental uses of idealizations, I think that a more 

faithful picture of scientific theory, theorizing and practice is one in which we can make room 

for substantive roles for idealizations, e.g., via pedagogy, methodology (code decipherment, and 

content identification and determination), explanation, representation, and guide to future theory 

and model construction.  

 That being said, the opposite extreme, which supports a wholesale rejection of the sound 

principle, and attempts to evade the subsequent foundational puzzles that arise by dubbing them 

as “ red herrings,” or appealing to ambiguous notions such as “emergence,” is untenable. The 

traditional reductionist and fundamentalist positions have been too successful in the history and 

philosophy of science to be completely abandoned. 

 Accordingly, it seems to me that “the middle way,” or a “peaceful coexistence” approach, 

recommended in this dissertation, may be the most fruitful one for both advancing our 
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understanding of science, and attaining progress in philosophy of science. It is a difficult position 

to defend for one may quickly slide down a slippery slope to one of the extreme position, e.g., 

essentialist or dispensabilist, reductionist or emergentist, etc. Nevertheless, I believe it is a 

position that is philosophically plausible, more interesting, and defendable. This dissertation 

offers such a defense. Where I have failed, I submit that, with further effort and research, a 

defense can be given, and so I urge that it be done. 
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APPENDIX A. CHARGED PARTICLES IN A MAGNETIC FIELD 

We are interested in understanding where the Hamiltonian 𝐻𝐴𝐴𝐼  used by Aharonov and Bohm 

(1959) comes from. To begin, note that in the context of classical statistical mechanics, we may 

inquire into how a system of particles evolves over time. If we represent the system by its 

configuration space (i.e., the possible positions of the particles), we may ask: from the various 

possible paths that a system might take in configuration space, what is the actual path of the 

system (i.e., the empirically adequate one)? To that effect, the principle of least action (a 

variational principle) tells us that the path that minimizes the system’s action will be the actual 

path traversed by the system. Thus, the dynamics of the system can be determined by the 

equations that minimize the action. These are the so-called Euler-Lagrange equations, which 

depend on the Lagrangian 𝐿 (roughly, the kinetic minus potential energy)177 of the system. 

 Following standard textbooks,178 we want to consider a system with charged (but 

spinless) particles in electromagnetic fields. The Lagrangian 𝐿 for a particle of mass 𝑚 and 

charge 𝑞 in the presence of electric and magnetic fields 𝑬 and 𝑩 (respectively) is as follows: 

𝐿(𝒓, 𝒓̇, 𝑡) =
𝑚𝒓̇2

2
+ 𝑞(

1
𝑐
𝑨 ∙ 𝒓̇ − 𝜙) 

                                                 

177 The Lagrangian is a function of a system’s configuration and velocity. It can be expressed as the difference 
between kinetic and potential energy when conservative forces are at play, i.e., any work done in moving the particle 
is independent of the path taken. More generally, we can think of particular form of the Lagrangian as the one that is 
needed in order to obtain the correct dynamics of the system vis-à-vis the principle of least action. For an 
introduction to Lagrangian and Hamiltonian classical mechanics see Goldstein et al. (2000). 
178 E.g., Ballentine (1998, Ch. 11), Peebles (1992, Ch. 2.19), Gasiorowicz (2003 Ch. 16). 
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Where 𝒓 is the particle’s position in Cartesian coordinates (𝒓 = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧), 𝒓̇ = 𝑑
𝑑𝑑
𝒓 is the 

velocity of the particle so that 𝒓̇2 = 𝒓̇ ∙ 𝒓̇), and 𝑐 is the constant speed of light in a vacuum. 

𝑨 = 𝑨(𝒓, 𝑡) and 𝜙 = 𝜙(𝒓, 𝑡) are the electromagnetic vector and scalar potentials (respectively) 

such that the electric and magnetic fields can be expressed in the following manner: 

𝑩 = ∇ × 𝑨 

𝑬 = −∇𝜙 −
𝜕𝑨
𝜕𝜕

 

(where ∇= ( 𝜕
𝜕𝜕

, 𝜕
𝜕𝜕

, 𝜕
𝜕𝜕

)). The classical Hamiltonian 𝐻𝐶𝐶 of the system is defined as the Legendre 

transform of the Lagrangian: 

𝐻𝐶𝐶(𝒓, 𝒓̇, 𝑡) = 𝚷 ∙ 𝒓̇ − 𝐿(𝒓, 𝒓̇, 𝑡) 

Where the canonical momentum 𝚷 is defined as: 

𝚷 =
𝜕𝜕
𝜕𝒓̇

= 𝑚𝒓̇ +
𝑞
𝑐
𝑨 

(notice the dependence on 𝑞𝑨 in addition to the regular 𝑚𝒓̇). Expressing 𝐻(𝒓, 𝒓̇, 𝑡) in terms of 

the canonical momentum we get:179 

𝐻𝐶𝐶(𝒓, 𝒓̇, 𝑡) =
1

2𝑚
(𝚷−

𝑞
𝑐
𝑨)2 + 𝑞𝑞 

 In order to transition to standard non-relativistic quantum mechanics (QM) we must 

undertake the canonical (i.e., Hamiltonian) quantization procedure by which position and the 

canonical momentum are replaced with their (symmetric) operator counterparts.180 In the 

coordinate representation (in the Schrödinger picture) this means that 𝚷 is replaced with the 

momentum operator 𝑷 = −𝑖ℏ∇ (𝑖 = √−1,  ℏ = ℎ/2𝜋, and ℎ is Planck’s constant.) The 
                                                 

179 Where Hamilton’s equations 𝑑𝒓
𝑑𝑑

= 𝜕𝜕
𝜕𝚷

;  𝑑𝚷
𝑑𝑑

= −𝜕𝜕
𝜕𝒓

 lead to the familiar Lorentz force law 𝑚𝒓̈ = 𝑞(𝑬+𝒓̇ × 𝑩), 

which can also be obtained by plugging the Lagrangian given here into the Euler-Lagrange equations 𝜕𝜕
𝜕𝒓

= 𝑑
𝑑𝑑

𝜕𝜕
𝜕𝒓̇

. 
180 Operators acting on a separable Hilbert space (i.e., with a countable basis) ℋ. 
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electromagnetic vector 𝑨 = 𝑨(𝑹, 𝑡) and scalar 𝜙 = 𝜙(𝑹, 𝑡) potentials also become operators 

because they are functions of the position operator 𝑹, where 𝑷 and 𝑹 satisfy the (Heisenberg 

form of the) canonical commutation relations: [𝑹,𝑷] ≡ 𝑹𝑹 − 𝑷𝑷 = 𝑖ℏ.181  The Hamiltonian 

operator now becomes: 

𝐻 =
1

2𝑚
(𝐏 −

𝑞
𝑐
𝑨)2 + 𝑞𝑞 

(where I have hidden the dependence on position and time for convenience). If we then set the 

scalar potential to zero, we arrive at the form of the Hamiltonians 𝐻𝐼 (which is not self-adjoint 

nor essentially self-adjoint on 𝐶∞(ℝ3 ∖ 𝑆𝑖𝑖), i.e., it does not have a unique self-adjoint extension 

on the domain of smooth compactly supported functions on the configuration space that arises 

when one removes the infinite cylinder from ℝ3) and 𝐻𝐴𝐴𝐼   (which is the particular self-adjoint 

extension of 𝐻𝐼 used by Aharonov and Bohm (1959) and picked out by Dirichlet boundary 

conditions). 

 

  

                                                 

181 And [𝑹,𝑹] = [𝑷,𝑷] = 0. As opposed to the story told here, where one starts with the action principle and the 
Lagrangian of some system, many physicists take the commutation relations as the fundamental structure upon 
which one can build a quantum theory. 
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APPENDIX B. THE RECEIVED TEXTBOOK ACCOUNT OF THE AB EFFECT 

We want to first consider a double-slit experimental situation, and subsequently extend the 

discussion to an idealized AB effect set-up wherein we add a solenoid, such as in Figure 6.2. In a 

double-slit experiment, charged particles (such as electrons) are emitted from a source and 

directed at a double-slit. The particle beam is split up as it traverses through the slits, and then 

recombines at a detector screen.  We can consider two (overlapping) regions, 1 and 2, one 

relating to the beam traversing path 1, represented by the state function Ψ1, and one 

corresponding to path 2 and Ψ2 (as in Figure 6.2). Generally, the interference pattern in a double-

slit experiment (without a solenoid) arises because the of a relative phase difference between the 

two beams. For instance, if we represent the beams by a three-dimensional plane waves, then 

they will take the following form: 

Ψ(𝒓, 𝑡) = 𝐴𝑒𝑖𝑖 

Where 𝐴 is the amplitude of the wave, 𝜃 is its phase, and Ψ is related to the intensity 𝐼 of the 

wave via: 

𝐼 = |Ψ|2 

Let 𝐼1 be the intensity at the detector screen when only the slit related to path 1 is open, 𝐼2 will 

similarly be the intensity related to the slit of path 2, and the 𝐼 will be the total intensity collected 

at the screen. We then have (for waves) the following relation for the total intensity (Zettili 

2009,23): 
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𝐼 = |Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + (Ψ1∗Ψ2 + Ψ1Ψ2∗) = 

= 𝐼1 + 𝐼2 + 2�𝐼1𝐼2 cos 𝛿 

Where * denotes the complex conjugate, and 𝛿 is the phase difference between Ψ1 and Ψ2 

responsible for the interference pattern. The condition for constructive interference is 𝛿 = 2𝜋𝜋 

(for integer 𝑛), and 𝛿 is related to the geometry of the experimental apparatus as follows: 

𝛿 ≈
2𝜋𝜋𝑑
𝜆𝜆

 

𝑥 is the distance from the axis of symmetry (the middle of the screen) where an interference 

maxima appears, 𝑙 is the distance to the screen, 𝜆 is the de Broglie wavelength of the electrons in 

the beam, 𝑑 is the slit separation, and we are considering the limit in which 𝑥 ≪ 𝑙 (as is the case 

in experiment). Thus, an interference maxima appears at 𝑥 ≈ 𝑛𝑛𝑛/𝑑. However, if we now shift to 

an AB effect experimental set-up, where a solenoid is added, the phase difference is affected by 

the total magnetic flux, so that the maxima is shifted by an amount: 

Δ𝑥 =
𝑙𝑙

2𝜋𝜋
Δ𝛿 

 

where Δ𝛿 is the novel phase difference due to the presence of the solenoid. This is the (idealized) 

physical manifestation of the AB effect. 

 Returning to the Hamiltonian 𝐻 (from Appendix A) of a charged particle in a magnetic 

field, the usual account of Δ𝛿 and its relation to the total magnetic flux runs as follows. Let 

Ψ(𝒓, 𝑡) be the solution to the time-dependent Schrödinger equation 𝐻Ψ = 𝑖ℏ 𝜕
𝜕𝜕
Ψ. In the same 

way that the electromagnetic fields are gauge invariant, it is known that Schrödinger equation  

1
2𝑚

(𝐏 −
𝑞
𝑐
𝑨)2Ψ + 𝑞𝑞Ψ = 𝑖ℏ

𝜕
𝜕𝜕
Ψ 
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is unchanged by the following gauge transformation: 

𝑨 → 𝑨′ = 𝑨 + 𝛁Λ 

𝜙 → 𝜙′ = 𝜙 −
∂Λ
𝜕𝜕

 

Ψ → Ψ′ = Ψ𝑒𝑖
𝑞
𝑐ℏΛ 

where Λ = Λ(𝐫, t) is an arbitrary scalar function. 

 Consider a current-carrying, closely wound, cylindrical solenoid with radius 𝑟0, that is 

infinitely long and absolutely impenetrable (see Figure 6.2). Infinite length and impenetrability 

imply that the constant magnetic field 𝑩 produced by the current is wholly confined to a region 

𝒮𝑖𝑖 inside the solenoid, so that particles in the region 𝒮𝑜𝑜𝑜 outside the solenoid have no contact 

with 𝑩. In particular, the assumption that the solenoid is infinite guarantees that there is no 

spillage of magnetic field into the region 𝒮𝑜𝑜𝑜 outside the solenoid. Allegedly, the consequence 

of the impenetrability assumptions is that state functions vanish Ψ = 0 at the solenoid boundary. 

However, as discussed in Chapter 6, the impenetrability assumption only guarantees that the 

electron probability current vanishes at the solenoid boundary 𝑗 ≔ −𝑖(Ψ∗∇Ψ −Ψ∇Ψ∗), but this 

can be implemented using different boundary conditions including the Dirichlet boundary 

conditions (Ψ = 0) that arise in standard textbook accounts, Neuman boundary conditions 

(∇Ψ = 0), or Robin boundary conditions (∇Ψ = 𝑟Ψ, 𝑟 ∈ ℝ) (de Oliviera and Pereira 2010). 

Setting such details aside, by picking Dirichlet boundary conditions, and given physical situation 

at hand is one that consists of both an electron beam and a magnetic field, 𝐻𝐴𝐴𝐼 = 1
2𝑚

(𝐏 − 𝑞
𝑐
𝑨)2 

becomes the appropriate Hamiltonian to use in representing the region outside the solenoid. 

The solenoid is centered at the origin and in the 𝑧-axis direction. For concreteness, notice 

that the following electromagnetic vector potential (in cylindrical coordinates (𝑟,𝜃, 𝑧)) can give 
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rise to a magnetic field inside the solenoid 𝑩 = (0,0,𝐵), which vanishes in the region outside the 

solenoid: 

𝐴𝑧 = 𝐴𝑟 = 0;𝐴𝜃 =
Φ

2𝜋𝜋
 (𝑟 ≥ 𝑟0 > 0) 

𝐴𝑧 = 𝐴𝑟 = 0;𝐴𝜃 =
Φ

2𝜋𝑟02
𝑟 (𝑟0 ≥ 𝑟 > 0) 

Where Φ = ∬ 𝑩 ∙ 𝑑𝒓𝟐𝑆 = 𝜋𝑟02𝐵 is the magnetic flux. 

 Recall that we are considering two regions 1 and 2, with state functions Ψ1 and Ψ2 

representing the beams through the two slits.  We can use the above gauge transformations to 

express the state functions as Ψ1 = Ψ1′𝑒
𝑖 𝑞𝑐ℏΛ1 and Ψ2 = Ψ2′𝑒

𝑖 𝑞𝑐ℏΛ2, where Ψ1′ and Ψ2′ are the 

zero-potential solutions (𝑨 = 0) to the time-dependent Schrödinger equation with 𝐻𝐴𝐴𝐼 . We 

choose Λ1 = ∫ 𝑨 ∙ 𝑑𝒓1  and Λ2 = ∫ 𝑨 ∙ 𝑑𝒓2 , where the line integrals are evaluated about paths 1 

and 2, respectively. The state function at the detector screen will be Ψ = 𝛹1′𝑒
𝑖 𝑞𝑐ℏ𝛬1 + Ψ2′𝑒

𝑖 𝑞𝑐ℏΛ2. 

The interference between the two beams will manifest as a pattern on the screen that depends on 

the relative phase between to two paths 𝑒𝑖
𝑞
𝑐ℏ(Λ1−Λ2), but this is equivalent to evaluating the 

integral around a closed curve 𝐶 (half of which corresponds to taking path 1, and half of which 

corresponds to taking the reverse of path 2): Λ1 − Λ2 = ∮ 𝑨(𝒓) ∙ 𝑑𝒓𝐶 . We can use Stoke’s 

theorem to get the following: 

� 𝑨(𝒓) ∙ 𝑑𝒓
𝐶=𝜕𝜕

= �(𝛁 × 𝑨)𝑑𝒓𝟐
𝑆

= �𝑩 ∙ 𝑑𝒓𝟐
𝑆

= Φ 

where the double integral is evaluated with respect to the surface area 𝑆 enclosed by curve 𝐶. 

Hence, Δ𝛿 ≡ 𝑞
𝑐ℏ

(Λ1 − Λ2) = 𝑞
𝑐ℏ
Φ and total shift in the maxima is: 

Δ𝑥 =
𝑙𝑙𝑙

2𝜋𝜋𝜋ℏ
Φ 
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APPENDIX C. FIBER BUNDLE FORMULATION OF THE AB EFFECT 

For visualization purposes it would help to consider a (finite) cylinder and also a Möbius strip as 

two examples of fiber bundle structure that I will refer to (see Figure 8.3) A (differentiable) fiber 

bundle (or bundle for short) is a five-tuple (𝐸,𝜋,𝑀,𝐹,𝐺). 𝐸, 𝑀 and 𝐹 are differentiable 

manifolds (and hence topological spaces) known as the total space, the base space, and the 

typical fiber (or fiber for short), respectively. In the context of our examples of the cylinder and 

Möbius strip, the base space is a (unit) circle 𝑀 = 𝑆1, the typical fiber is a line segment (say) 

𝐹 = 〈0,1〉, and the total space is the cylinder or the Mobius strip themselves (where the equality 

symbol “=”  between spaces represents a homeomophism). In the case of the cylinder 𝐸 = 𝑀 ×

𝐹  (where “×” denotes the Cartesian product), we say that the bundle is trivial. In contrast, the 

Möbius strip has the same structure at the cylinder locally but globally it also has a twist so that 

the bundle is non-trivial. 𝜋 is a projection map from the total space to the base space, 𝜋:𝐸 → 𝑀, 

that associates points 𝑞� ∈ 𝑀 in the base space with points 𝑞 ∈ 𝐸 in the total space 𝐸 constituting 

the fiber above 𝑞�, 𝐹𝑞�  (𝐹𝑞� ⊆ 𝐸), where 𝐹𝑞�  has the structure of the typical fiber. In other words, all 

the points in the fiber above  𝑞� in the total space get mapped to the point 𝑞� ∈ 𝑀 in the base space 

via 𝜋. 𝐺 is a group of homeomorphisms of the fiber 𝐹 (mapping every 𝐹𝑞�  onto itself) , known as 

the structure group of the fiber bundle or the gauge group (of the theory being formulated in 

terms of fiber bundles). A cross-section (or section for short) 𝜎 of 𝐸 is a continuous map from 

subsets of the base space to the total space 𝜎:𝑈 ⊆ 𝑀 → 𝐸 such that 𝜋 ∘ 𝜎 = 𝐼 is the identity map 
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(on 𝑈). We say that a section is global if 𝑈 = 𝑀, otherwise it is local. A vector bundle 

(associated with 𝐸) is a fiber bundle where the typical fiber constitutes a vector space. For 

instance, 𝐹 = ℝ (with 𝑀 = 𝑆1) corresponds to an infinite cylinder. A principal fiber bundle (or 

principal bundle for short) (associated with 𝐸) 𝑃(𝑀,𝐺) is a vector bundle in which the typical 

fiber and the structure group are the same: 𝐹 = 𝐺. A basic result is that the total space 𝐸 of the 

fiber bundle and its corresponding principal bundle 𝑃(𝑀,𝐺) are trivial if and only if 𝑃(𝑀,𝐺) has 

a global section. 

 The fiber bundle formulation of classical electromagnetism takes the base space to be the 

space (𝑀 = ℝ3; where ℝ  is the set of real numbers) or spacetime manifold (𝑀 = ℝ4), and the 

group structure to be the multiplicative group of complex numbers of modulus 1: 𝐺 = 𝑈(1). The 

corresponding principal bundle is 𝑃(ℝ4,𝑈(1)), or 𝑃 for short. The connection 𝜔 is a Lie-

algebra-valued one-form on 𝑃 that basically pairs all smooth curves [𝐶̃] through 𝑞� ∈ 𝑀 with a 

corresponding class of smooth curves [𝐶] in 𝐸, known as horizontal lifts. If 𝐶̃ is a closed curve 

based at 𝑞� ∈ 𝑀, the connection defines a horizontal lift to some curve  𝐶 in 𝐸 that begins at 𝑞 

and ends at 𝑞’ (𝑞, 𝑞′ ∈ 𝐹𝑞� ⊆ 𝐸). The concept of curvature Ω, which is a Lie-algebra-valued two-

form on 𝑃, is introduced as follows. If 𝑞 = 𝑞′ we say the curvature is flat, but if 𝑞 ≠ 𝑞′ we say 

bundle is curved. The bundle section maps Ω to another two-form 𝑖𝑖′ (on a subset of 𝑀) where 

𝐹′ can be identified with the magnetic field 𝑩 (in the purely magnetic case). (I use 𝐹’ so as not 

confuse with the typical fiber 𝐹). Similarly, the connection 𝜔 is mapped by the bundle section to 

another one-form 𝑖𝑖 (on an open set of 𝑀) where 𝐴 can be identified with the vector potential 𝑨. 

 Recall, in the context of the AB effect, observable effects such as interference shifts are 

determined by the phase factor attached to the wave function: 
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exp (
𝑖𝑖
ℏ
�𝑨 ∙ 𝑑𝒓
𝐶̃

) 

The wave function is represented by a global section of the vector bundle (𝐸,𝜋𝐸 ,ℝ4,ℂ,𝑈(1)) 

associated to the principal fiber 𝑃(ℝ4,𝑈(1)) (where 𝜋𝐸 is a projection map from the associate 

vector bundle to the base space such that each point 𝑝 ∈ 𝐸 is an equivalence class of points 

[(𝑞, 𝑐)] where 𝑞 ∈ 𝑃, 𝑐 ∈ ℂ, and 𝑝 is mapped onto the same point m that 𝑞 is mapped via 𝜋; ℂ is 

the set of complex numbers). The phase factor, then, arises naturally in the fiber bundle 

formalism as the holonomy of the curve 𝐶̃ in the following manner. The connection essentially 

maps the fiber above 𝑚 onto itself via a horizontal lift. If 𝐶̃ starts and ends at m, then the curve is 

lifted to the bundle with start and end points 𝑞, 𝑞′ ∈ 𝐹𝑞� ⊆ 𝐸 (as explained above).  It turns out 

that for classical electromagnetism the map is induced by the action of (a matrix representation 

of) an element―called the holonomy―of the structure group 𝑈(1), which is independent of 𝐶̃’s 

starting point and of the section. 
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APPENDIX D. VISUALIZING FRACTIONAL STATISTICS ON THE 

CONFIGURATION SPACE APPROACH  

The fundamental group of the configuration space of the simplest scenario of two 

particles 𝑁 = 2 in the 𝑑 = 2 and 𝑑 = 3 cases is as follows: 

𝜋1 � ℝ
2−∆
𝑆2

� = 𝜋1 (𝑅𝑃1) = 𝑍 for 𝑑 = 2 

𝜋1 � ℝ
3−∆
𝑆2

� = 𝜋1 ( 𝑅𝑃2) = 𝑍2 for 𝑑 = 3 

Where 𝑍 is the cyclic group of order one, i.e., the infinite group of integers under addition. 𝑍2 is 

the cyclic group of order two, i.e., it is the multiplicative group of, say, 1 and -1. 𝑅𝑃1 and 𝑅𝑃2 

are the real projective one- and two-dimensional spaces, respectively. 

Pictorially, for the 𝑑 = 3 case the configuration space reduces to the real projective space 

in two dimensions 𝑅𝑃2. This can be visualized as the surface of a three-dimensional sphere with 

diametrically opposite points identified (see Figure D.1). Consider three scenarios, 

corresponding to three paths 𝐴, 𝐵, and 𝐶 in configuration space including no exchange (Figure 

D.1a), exchange (Figure D.1b), and a double exchange (Figure D.1c), respectively.  

Concentrating on the no exchange case (Figure D.1a). We trace a path 𝐴 in configuration 

space in which the two particles move and return to their original positions. Path 𝐴 is a loop in 

configuration space, with the same fixed start and end points, which can be shrunk to a point. 

This corresponds to a trivial homotopy class in which the phase factor is trivial.  
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Figure D.1: The real projective space in two dimensions 𝑅𝑃2, represented by a sphere with 

diametrically opposite points identified. Cases (a), (b), and (c), correspond to no exchange, 

exchange, and double exchange, respectively. 

 

Moving onto the exchange case (Figure D.1b), we start at one end of the configuration 

space and trace a path 𝐵 to its diametrically opposite point. This represents an exchange or 

permutation between the two particles. Notice that since diametrically opposite points are 

identified (because the particle are identical), this path is actually a closed loop in configuration 

space. However, since the start and end points of Figure D.1b are fixed, the loop cannot be 

shrunk to point. This corresponds to a non-trivial homotopy class with a non-trivial phase factor. 

The double exchange (Figure D.1c) case includes tracing a path 𝐶 in configuration space 

similar to that of 𝐵, but then tracing around the sphere back to the original starting point. Path 𝐶 

is a closed loop in configuration space that can be shrunk to a point, and so it is in the same 

homotopy class of path 𝐴 with a corresponding trivial phase factor. Equivalently, we may 

visualize the paths 𝐴, 𝐵, 𝐶 on  a hemisphere with opposite points on the equator identified as in 
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Figure D.2, where paths 𝐴 and 𝐶 can be continuously deformed to a point but path B cannot 

because of the diametrically opposed  fixed start and end point on the equator. 

 

 

Figure D.2: The real projective space in two dimensions 𝑅𝑃2, represented by the northern 

hemisphere with opposite point on the equator identified. 

 

On the other hand, in the context of the 𝑑 = 2 case, we are dealing with the real 

projective space in one dimension 𝑅𝑃1. We can visualize this configuration space as a circle with 

diametrically opposite points identified (see Figure D.3). Again, consider three paths 𝐴, 𝐵, and 𝐶 

in configuration space that correspond to no exchange (Figure D.3a), exchange (Figure D.3b), 

and a double exchange (Figure D.3c), respectively. Path 𝐴 traces a closed loop in configuration 

space (where the particles move but then return to their original positions with no exchange) 

which can be continuously shrunk to a loop and has a corresponding trivial phase factor (as in 

the 𝑑 = 3 case of Figure D.1a). Next, we trace a path 𝐵 across half the circumference of the 

circle. Since diametrically opposed points are identified, this represents a particle exchange 

(Figure D.3b). Path B traces a closed loop in configuration space that cannot be continuously 
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shrunk to a loop and has a corresponding non-trivial phase factor (as in the 𝑑 = 3 case of Figure 

D.1b). 

 

Figure D.3: The real projective space in one dimension 𝑅𝑃1, represented by a circle with 

diametrically opposite points identified. Cases (a), (b), and (c), correspond to no exchange, 

exchange, and double exchange, respectively. 

 

The main difference between the 𝑑 = 3 and 𝑑 = 2 cases arises when we consider path 𝐶 

(Figure D.3c), in which the particles are permuted twice, represented by traversing the entire 

circular configuration space. Path 𝐶 is a closed loop in configuration space but, unlike the 𝑑 = 3 

case, it cannot be shrunk to a loop because the circle itself (so to say) acts as an obstructive 

barrier. Moreover, path 𝐶 cannot even be continuously deformed to overlap with path B. This 

means that, not only is the phase factor corresponding to the two paths non-trivial, but each path 

has a different phase factor for each path belongs to a different homotopy class. In fact, for every 

traversal (in configuration space) of half a circle, we get a closed loop that is in its own 

homotopy class.182 In other words, by transitioning from three dimensions to two dimensions, we 

                                                 

182 If we symbolize this by 𝜋1 ( 𝑃𝑃𝑃ℎ) we get that 𝜋1 (𝑃𝑃𝑃ℎ  𝐴) = 0 for the trivial homotopy class, but the rest of the 
paths will be elements of non-trivial homotopy classes: 𝜋1 (𝑃𝑃𝑃ℎ 𝐵) = 1,𝜋1 ( 𝑃𝑃𝑃ℎ 𝐶) = 2, … and so on, so that we 
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have transitioned from a doubly connected space to an infinitely connected space, and it is this 

change in topology that allows for fractional statistics. 

                                                                                                                                                             

generate all of the integers 𝑍. Negative integers corresponding to traversal of the circular configuration space in the 
opposite direction. 
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APPENDIX E: A GEOMETRIC APPROACH TO FRACTIONAL STATISTICS  

We follow Berry’s (1984) original paper on the non-dynamical phase factor 

accompanying cyclic evolutions of quantum systems. To begin, consider some system, such as a 

spinless electrically charged particle in a box, with a corresponding Hamiltonian 𝐻�𝑹(𝑡)� that 

depends on a set of parameters 𝑹 = (𝑋,𝑌, … ) and can be altered over time by varying said 

parameters. We can view the alteration of 𝐻�𝑹(𝑡)� as a path in parameter space. If the system 

starts at some time 𝑡 = 0, and is gradually changed over time 𝑡 so that the parameter values are 

returned to their original values 𝑹(0) = 𝑹(𝑡) then this maps out a closed curve 𝐶 in parameter 

space. According to the adiabatic theorem, if the system was originally (at time 𝑡 = 0) in the 𝑛th 

eigenstate ψ𝑛(𝑹(0)) of 𝐻�𝑹(0)�, if 𝐻�𝑹(𝑡)� is non-degenerate, and if the excursion in 

parameter space is sufficiently slow, then the system will transition (under Schrödinger 

evolution) into the 𝑛th eigenstate ψ𝑛(𝑹(𝑡)) of 𝐻�𝑹(𝑡)� (with some added overall phase 

factor).183  

The general state of the system Ψ(𝑡) evolves according to the time-dependent 

Schrödinger equation, and at any instant 𝑡 the eigenstates of the time-independent Schrödinger 

equation form a natural basis satisfying: 

𝐻�𝑹(𝑡)�ψ𝑛(𝑹(𝑡)) = 𝐸𝑛(𝑹(𝑡))ψ𝑛(𝑹(𝑡)) 

                                                 

183 The adiabatic theorem is originally due to Born and Fock (1928). See, for instance, Bransden and Joachaim 
(2000, Section 9.4) for a proof. 



 245 

According to the adiabatic approximation then, the general state of the system Ψ(𝑡) at 

some time 𝑡 can be expressed as follows:184 

Ψ(𝑡) = ψ𝑛(𝑹(𝑡))𝑒𝑖𝑖 

Where the exchange phase 𝜃 has two components 𝜃 = 𝜃𝐷 + 𝜃𝐺  such that: 

𝜃𝐷 = −1
ℏ∫ 𝐸𝑛(𝑡)𝑑𝑑𝑡

0  and 𝜃𝐺 = 𝑖 ∫ �ψ𝑛(𝑡)� 𝜕
𝜕𝜕
ψ𝑛(𝑡)� 𝑑𝑑𝑡

0    (E.1) 

𝜃𝐷 corresponds to the usual dynamical phase (accompanying the Schrödinger evolution of any 

stationary state) and 𝜃𝐺  is called the geometric phase or Berry’s phase (where I have used 

Dirac’s bra-ket notation and hid the parameter dependence for convenience). It can be expressed 

more generally as a quantity dependent on both the closed curve 𝐶 in parameter space and the 

parameters 𝑹 = (𝑋,𝑌, … ): 

𝜃𝐺(𝐶) = 𝑖 ∮ ⟨ψ𝑛(𝑹)|∇𝑅ψ𝑛(𝑹)⟩ ∙ 𝑑𝑹𝐶     (E.2) 

Where ∇𝑅 is the gradient with respect to the parameters 𝑹 = (𝑋,𝑌, … ) (and assuming 

that 𝑹(0) = 𝑅(𝒕) so that 𝐶 forms a closed curve). There are similar results for degenerate 

systems (Wilczek and Zee 1984) and for a cyclic evolution that is not necessarily adiabatic 

(Aharonov and Anandan 1987).  

Next, my goal in the rest of this appendix is solely to repeat some of the steps taken by 

Arovas, Schrieffer, and Wilczek (1984) to derive fractional statistics in order to emphasize the 

disconnect between this geometric approach and the topological (and pathological) approach 

discussed in Section 7.3. Many steps will be skipped, and I refer the reader interested in a more 

details to explicit calculations made by by Arovas (1989) in Wilczek and Shapere (1989, 284-

322) and Laughlin (1990) in Wilczek (1990, 262-303). 

                                                 

184 See, for instance, Griffiths (2005, 373) for the adiabatic approximation. Basically, we drop terms that depend on 
the time or parameter derivative of 𝐻�𝑹(𝑡)� for, by assumption, the change is minute. 
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Following Laughlin (1983a, 1983b) and Arovas, Schrieffer, and Wilczek’s (1984) 

closely, let us consider a FQHE system with filling factor 𝜈 = 1
𝑚

 where 𝑚 is an odd integer, and 

the applied strong magnetic field 𝑩  is in the 𝑧-axis direction corresponding to magnetic flux Φ. 

In such a situation, the Hamiltonian governing the system is:185 

𝐻𝐹𝐹𝐹𝐹𝐼 = �
�𝒑𝒋 − 𝑞𝑨𝒋�

2

2𝑚𝑒
+ 𝑽(𝑧𝑗)

𝑗

+ �
𝑒2

�𝑧𝑗 − 𝑧𝑘�𝑗>𝑘

 

Recall, 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑖 are in units of magnetic length 𝑙𝐵 = �ℏ𝑐 𝑒𝑒⁄ , which have been set to equal 

one, 𝑒 is the charge of the electron, and 𝑗 and 𝑘 run over 𝑁 particles. The 
�𝒑𝒋−𝑞𝑨𝒋�

2

2𝑚𝑒
 term signifies 

the kinetic energy of charged particles in a magnetic field, 𝑽(𝑧𝑗) is average background 

potential, and 𝑒2

�𝑧𝑗−𝑧𝑘�
 is the Coulomb interaction between particles. Laughlin’s (1983a, 1983b)  

celebrated wavefunction for the ground state of 𝐻𝐹𝐹𝐹𝐹𝐼  is: 

Ψ𝑚 = �(𝑧𝑗 − 𝑧𝑘)𝑚𝑒(−14∑ |𝑧𝑙|2𝑁
𝑙 )

𝑁

𝑗<𝑘

 

The state function of two excited states (quasiholes) 𝑎 and 𝑏 located at positions 𝑧𝑎 and 

𝑧𝑏, respectively,  is represented by  

Ψ𝑚
𝑧𝑎𝑧𝑏 = 𝑁𝑎𝑎 ∏ (𝑧𝑖 − 𝑧𝑎)(𝑧𝑖 − 𝑧𝑏)Ψ𝑚𝑖     (E.3) 

where 𝑁𝑎𝑎 is a normalizing factor.  

We can determine the quantum statistics associated with exchanging quasiholes 𝑎 and 𝑏 

by calculating the geometric phase associated with carrying quasihole 𝑎 adiabatically around a 

closed loop 𝐶, thereby adding time dependence to 𝑧𝑎 = 𝑧𝑎(𝑡), and identifying the geometric 

                                                 

185 I use the 𝐻𝐹𝐹𝐹𝐹𝐼 notation to emphasize that this is the idealized (I) Hamiltonian corresponding to FQHE systems. 
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phase with the exchange phase. The geometric phase 𝜃𝐺  can be calculated by plugging Equation. 

E.3 into Equation E.1 or Equation E.2 as follows: 

𝑑𝜃𝐺
𝑑𝑑

= 𝑖 �Ψ𝑚
𝑧𝑎𝑧𝑏(𝑧𝑎(𝑡), 𝑧𝑏)� 𝑑

𝑑𝑑
�Ψ𝑚

𝑧𝑎𝑧𝑏(𝑧𝑎(𝑡), 𝑧𝑏)�   (E.4) 

Denoting the mean number of electrons inside loop 𝐶 with 〈𝑛𝑒〉𝐶, it turns out that solving 

Equation E.4 leads to the following expression for the geometric phase 𝜃𝐺 = −2𝜋〈𝑛𝑒〉𝐶.186 If 

quasihole 𝑏 is outside the loop then 〈𝑛𝑒〉𝐶 is equal to 𝜈Φ
Φ0

, where 𝜈 is the filling factor, Φ is the 

magnetic flux corresponding to the strong magnetic field applied in FQHE systems, and the 

constant Φ0 = ℎ𝑐
𝑒

 is the “flux quanta,” so that 𝜃𝐺 = −2𝜋 𝜈Φ
Φ0

. However, if quasihole 𝑏 is inside 

the loop then there is a deficit in mean number of electrons by an amount –𝜈 so that 𝜃𝐺 =

−2𝜋 𝜈Φ
Φ0

+ 2𝜋𝜋. The relative difference in geometric phase between the two scenarios is Δ𝜃𝐺 =

2𝜋𝜋.  

In other words, when quasihole 𝑎 encircles quasihole 𝑏, the new doubly permuted 

wavefunction 𝜓𝑚
′ 𝑧𝑎𝑧𝑏  gains an extra geometric phase Δ𝜃𝐺 = 2𝜋𝜋: 

Ψ𝑚
′ 𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜋𝜋Ψ𝑚

𝑧𝑎𝑧𝑏 

But recall from Section 7.1 that double permutation leads to a general overall phase 

factor with an exchange phase 𝜃: 

Ψ𝑚
′ 𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜃Ψ𝑚

𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜋𝜋Ψ𝑚
𝑧𝑎𝑧𝑏 = 𝑒𝑖2𝜋𝜋Ψ𝑚

𝑧𝑎𝑧𝑏 

Where we have introduced the “statistical parameter” defined as 𝛼 = 𝜃
𝜋
. We see that 

𝛼 = 𝜈 and recalling that 𝜈 = 1
𝑚

  where 𝑚 is an odd integer, it follows that  𝜃 = 𝜋
𝑚

 . For the m=1 

                                                 

186 See Shapere and Wilczek (1989, 307-309) and Wilczek (1990, 300-301) for an explicit calculation. 



 248 

case, 𝜃 = 𝜋 corresponding to Fermi-Dirac statistics. But for other values of 𝑚, 𝜃  corresponds to 

anyonic statistics. 
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