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Advances in the fields of mathematics, physics, epidemiology, and computing have led to an 

incredibly productive period of epidemic modeling. Here I will present the findings of several 

computational studies aimed at understanding how epidemics spread across networks. I 

investigate specifically how epidemics spread across networks consisting of two weakly 

connected sub-networks (communities) with varying internal connectivities, vaccination 

probabilities, and probabilities of social distancing. I find that, on average, epidemics may spread 

across communities even for a single cross connection, that crossing over is characterized by 

multiple time delayed epidemic waves that result in increased epidemic duration. I develop a 

novel mathematical characterization of networks consisting of an arbitrary number of weakly 

connected communities and derive a relationship between the reproductive number ( ) of an 

epidemic and the Mean Squared Displacement (MSD) of the epidemic, when the spread is 

viewed as the progression of multiple forward-biased random walkers. Finally, I propose a new 

compartmental Susceptible Exposed Infected Quarantined Recovered (SEIQR) model for the 

2014 Ebola Virus Disease (EVD) outbreak based on differential equations. I extend this model to 

an immigration SEIQR (iSEIQR) model with a constant rate of immigration and demonstrate 

homologous behavior in the form of multiple infection waves between a dynamic single 

community network model with a constant immigration of possible exposed individuals and the 
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University of Pittsburgh, 2015
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two community models discussed elsewhere in this work. The applications of two community 

network models are discussed, especially in the context of understanding and mitigating regional 

and transnational epidemic spread. Pharmaceutical and non-pharmaceutical interventions, such 

as targeted vaccination, public health education (i.e. avoidance), quarantine, and travel 

restrictions are explored and some mathematical and physical applications of modeling weakly 

coupled sub-networks are described. Finally, several possible extensions to this work are listed 

and discussed. 
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1.0  INTRODUCTION 

In the real world, surfaces have friction, projectiles experience air-resistance, and no potential 

well is ever infinite. As Benoit B. Mandelbrot said in his seminal 1982 work, “Clouds are not 

spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does 

lightning travel in a straight line.” [1] Approximate models and simplifying assumptions that 

smooth out complex and chaotic systems are the foundation of all modern science. However, for 

practical applications the limitations and validity of these models are of the utmost importance. 

Models of infectious diseases, their limitations, and regions of validity are the subject of this 

thesis. I will investigate approximate models for infectious diseases, especially as they spread 

within and across networks consisting of two communities. I will also propose a mathematical 

model characterizing how infectious diseases diffuse across heterogeneous networks of an 

arbitrary number of communities in general, and I will propose several models for studying 

infectious diseases, both on networks and in the continuous case with differential equations. 

1.1 THE KERMACK-MCKENDRICK SIR MODEL 

The utility of modeling infectious diseases has been recognized since the days of Isaac Newton 

and Thomas Malthus. While Malthus proposed one of the first models of population spread, 

which bears his name, the first popular differential equation model for modeling the spread of 
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infectious diseases was one of several introduced by Kermack and McKendrick in 1927. In 

modern formulation, the Kermack-McKendrick Model (henceforth called the KM Model) is a 

compartment-based, Susceptible Infectious Recovered/Removed (SIR) model consisting of a 

system of three coupled Ordinary Differential Equations (ODEs), one equation for each 

compartment (1.1.1), where an overdot denotes a derivative with respect to time [2]. 

 

(1.1.1) 

While relatively simple, this model is nevertheless the archetype and forbearer of modern 

differential equation based infectious disease models. The KM model assumes complete 

immunity after a single infection, which occurs with a probability proportional to β, and the R 

compartment is treated as the sum of individuals who cease to be infected, either through 

recovery or death with a probability proportional to λ. The interpretation of the solutions of 

(1.1.1) is that for a given population, the size of the susceptible population S decreases when an 

individual becomes infected. The probability of infection is proportional to the product of the 

susceptible and infected populations at a given time, S and I. This makes sense intuitively, as the 

number of individuals who become infected should increase both as there are more susceptible 

individuals to infect and more infected individuals to cause infections. A schematic view of the 

compartmental flow of the population is shown in Figure 1. 
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Figure 1. Schematic representation of the flow of (1.1.1). Susceptible individuals become Infected 

individuals with a rate proportional to β and Infected individuals become Recovered/Removed with a rate 

proportional to λ . 

Once an individual is infected, they may become removed with a probability proportional 

the size of the removed population R. In a real epidemic, removed would correspond to any state 

where an infected individual is no longer infectious–i.e., recovery with permanent immunity or 

death. However, as will be discussed in later chapters for the case of Ebola, death is not a 

guarantee that an individual is no longer infectious. A typical outbreak trajectory is shown in 

Figure 2. 
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Figure 2. Typical SIR outbreak trajectories for Eq. (1.1.1). All three subpopulation sizes over time, the I-

Curve is shown in yellow. The size of the Susceptible and Recovered/Removed populations are shown in green and 

black, respectively. 

Several key assumptions went into forming (1.1.1). While each of these simplifying 

assumptions allows the KM model to be easily analyzed and understood mathematically, they are 

also what lead to its limitations as a model of real-world epidemics. The first assumption is that 

the population can be modeled continuously, i.e., there can and will be a fractional number of 

susceptible, infected, and recovered individuals at each infinitesimal time step. While this results 

in smooth and continuously differentiable equations, it is not true at the individual scale and only 

holds for large population number N. In this thesis, I will study primarily network models of 

epidemics, which contain a discrete number of individuals, so each subpopulation must have an 

integer number of individuals.  

The second assumption of the KM model is each individual is in contact with every other 

individual for all time. I will refer to this as the uniform mixing assumption. In the KM Model, 
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the uniform mixing assumption provides that every individual is equally likely to be infected by 

the infectious population, with a rate proportional to β at each time step. In network models, and 

indeed in nature, an individual can only infect individuals in their particular contact network, or 

list of individuals with which they come in contact. The consequences of the uniform mixing 

assumption are profound and cases where the assumption does not hold will be a primary topic 

of this thesis. By assuming uniform and total mixing, the KM model ignores the spatial 

component of epidemic spreads. As epidemics spread out from patient zero, or the index case, 

they form population waves [3]. Containing disease outbreaks to a particular region or nation is a 

primary concern of modern public health and has played a crucial role in international policy and 

foreign aid for outbreaks such as the 2004 SARS outbreak [4], the 2009 H1N1 pandemic 

influenza outbreak [5], and the 2015 Ebola Virus Disease (EVD) outbreak [6]. Studying the 

spatial spread of epidemics across networks and between weakly connected communities will be 

the experimental focus of this thesis. 

Another assumption of the KM model is the simplified disease progression–that is, from 

susceptible to infected to recovered or removed. This assumption greatly simplifies the biology 

of many diseases and many extensions to the KM model have been proposed that model different 

disease progressions. For example, SIS models (Susceptible Infectious Susceptible) have been 

used to model the spread of sexually transmitted diseases, which can and are often contracted 

multiple times by individuals in at-risk populations. The SEIR model, which contains an 

Exposed compartment E, will be discussed further in Chapter 3 as a means to account for a latent 

period when an individual is infected, but not yet infectious. 

The final assumption of the KM model I will discuss is homogeneity of population. 

Although outbreaks modeled by (1.1.1) are not studied spatially, there can still be heterogeneity 
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of host population susceptibility and even infectivity. Indeed, the original investigation of 

Kermack and McKendrick included variable infectivity for different ages. In fact, the KM model 

as stated in (1.1.1) is the homogenized reduction of a more complicated model proposed by 

Kermack and McKendrick that took into account the age distribution of the infected population. 

However, a vast number of extensions of the KM model have been proposed that include 

multiple populations of infected individuals [7]. One such model is the SEIQR model, which 

contains a Quarantined compartment Q and which will be discussed in further detail in  Chapter 

3 in the context of the 2015 EVD outbreak [8]. 

The KM Model has several important properties common to many other differential 

equation and network models. First, this model has a conserved quantity, which we will call 

population size  [9]. This can be seen by relabeling each compartment , such that 

, and  then from (1.1.1) we can write 

 
(1.1.2) 

where the sum is implicitly over all  compartments. Integrating, this leads to 

 
(1.1.3) 

where we have labeled the constant of integration , the total population of the system. We will 

call (1.1.3) the conservation condition. For conservative systems, N will be a conserved quantity, 
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i.e., a constant for all time, while for non-conservative systems we can write N as a function of 

time such that . 

Along with being conservative, (1.1.1) is not analytically solvable. This is a trait the KM 

model has in common with all but a few special cases of differential equation models for 

epidemics. Although not analytically solvable, the KM model can be analyzed via linearization 

and other mathematical methods, as well as being numerically solvable. Linearizing (1.1.1) leads 

to the threshold for outbreak of this  model 

 
(1.1.4) 

where it can be shown that for  no outbreak occurs and for  an outbreak occurs. 

This threshold of the KM SIR Model is identified as one of the most important and 

thoroughly researched epidemiological quantities, the basic reproductive number or basic 

reproductive rate. The basic reproductive number  can be defined as the number of new cases 

caused by a single infected individual in a virgin (i.e., unexposed) population. Although,  has 

units of , i.e. of a rate, it is more appropriately considered a constant characteristic of a 

particular outbreak that is only considered over infection durations. In the KM model  is given 

by ( ), so  serves as a threshold for the epidemic. While  is a common heuristic for 

the infectivity threshold an infectious agent must reach to be capable of an outbreak, it is strictly 
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true only for particular models, such as the KM model. The calculation of  is notoriously 

difficult for infectious agents and populations that do not obey the simplifying assumptions of 

the KM model. Some such calculations particularly on networks containing one or more 

connected communities will be the topic of much of . For real-world epidemics,  

values are often calculated using various statistical methods. Several  estimations for recent 

and historical epidemics are given in  and range from  for the case of the 

2014 EVD outbreak to  for airborne Measles. 
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Table 1. Basic Reproductive Numbers for recent and historical outbreaks. 

Disease  Range  

Measles   [10] 

Smallpox  [10] 

Polio  [10] 

HIV/AIDS  [10] 

SARS  [11] 

Influenza 

(1918 Pandemic Strain) 

 [12] 

Ebola Virus 

(2014 Outbreak) 

 [13] 

  

Finally, one trait common to analyzing the KM model and other compartmental models, 

be they differential equation models or discrete network models, is the relevant quantities 

measured. For this thesis, the Infected subpopulation will be reported throughout the outbreak 

( ) and will be referred to as the Infection Curve or I-Curve, but neither the Susceptible nor 

Recovered/Removed populations will be explicitly shown or analyzed for most cases. This 

parsimonious plotting is the result of two factors: 1) the most relevant quantity for policy makers 

and researchers alike is the strain on the healthcare system caused by the infection. This strain is 

related almost entirely to the number of afflicted individuals, rather than to the number of healthy 
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or removed individuals. And, 2) in the vast majority of compartmental models, the size of each 

subpopulation depends on the size of all of the other subpopulations, so plotting a single 

subpopulation–i.e., Infected individuals–encodes information about the individuals who are 

Susceptible and Recovered/Removed, provided information about the total population is given. 

A final useful measureable quantity that should be discussed is the proportion of individuals who 

were ever infected, or conversely who are recovered ( )),  at the end of an epidemic. 

This is called the Attack Rate (AR) of an epidemic and is a measure of the extent to which the 

epidemic affected the population.  

1.2 NETWORK MODELS OF INFECTIOUS DISEASES 

Networks analysis is a growing and powerful field that has helped advance mathematics, 

physics, biology, medicine, and many other disciplines. In this section, I will describe the basic 

properties of networks, especially those relevant to this investigation. I will also discuss how the 

KM model ( ) and other infectious disease models can be adapted to networks and some 

benefits of doing so. 

 Networks, also known as Graphs in mathematics, are structures consisting of two 

objects: edges and nodes [14]. The degree or connectivity of a node is the number of edges 

attached to that node and for simple graphs, every edge attaches exactly two nodes, precluding 

self-attachements. A network is normally indicated by the number of edges and nodes it contains, 

viz.  where  is the set of edges and  is the set of vertices or nodes. Graphs can be 
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directed, where the edges have a given direction. An example of a directed network is a 

transmission network, where each node represents an infected individual; the tail of each edge 

points to the infector and the head of the edge points to the newly infected individual. Graphs 

can also be undirected, where the edges are symmetric and indicate mutual connection. Two 

examples of an undirected network are a social network and a contact network. In both cases 

each node represents a person and each edge represents mutual social or physical contact, 

respectively. 

In this thesis, several graph structures or topologies will be used to understand the 

behavior of epidemics on real-world contact networks. Here, I will present those structures used 

throughout this work and discuss some of their limitations and advantages. Erdős-Rényi (ER) 

networks, named for Paul Erdős and Alfréd Rényi, are a class of random graph where a set of 

edges is distrubted amongst a set of nodes by randomly and independently picking to which 

nodes to attach. This random picking results in a Poissonian distribution of number of nodes with 

a given degree and the distribution tends towards a Gaussian ( ) as . Erős-Rényi 

networks is one type of random network and will be used as a control group that should closely 

model well-mixed populations. 
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Figure 3. Degree distributions for two network topologies. a) Erős-Rényi (ER) random networks. A 

Poissonian distribution. b) Barabási-Albert (BA) random networks. An approximately linear fit when plotted on a 

loglog scale. 

Barabási-Albert (BA) networks are a class of scale-free networks, which have a degree 

distribution largely independent of the individual network’s size, i.e., a scale-free degree 

distribution which is logarithmic in , the number of individuals of a given degree  ( ). 

Several real-world networks have been shown to exhibit scale-free properties, including the 

internet [15] and some social networks. Networks closely modeled by BA networks contain a 

few hubs or very well connected individuals, while the vast majority of individuals have only a 

few connections. It has been shown that scale-free networks are extremely robust to random 

attacks, cutting individual edges or vaccinating individuals, but are suceptible to attacks that 

target the hubs. The policy implication of this finding is that targeted interventions, such as 

vaccination, that focus on hubs, such as healthcare workers, can be much more efficient than 

random interventions. 

The spread of epidemics on both random (ER) and scale-free (BA) networks will be 

studied. In , epidemic spread on single community networks will be discussed to give 

a point of reference for more complex networks. Later in , epidemic spread on 
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multiple communities, as well as on vaccinated communities and communities with avoidance 

behaviors will be discussed.  will discuss characterizing networks consisting of 

multiple communities as well as calculating basic reproductive numbers on networks with 

various community structures. Finally, in  a novel SEIQR differential equation model 

for Ebola Virus Disease (EVD) will be presented, discretized, and applied to networks. 

Immigration will then be accounted for as a linearly increasing population. 
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2.0  TWO COMMUNITY SYSTEMS 

Epidemic spread on populations consisting of multiple communities of individuals is well 

studied. Indeed, the Kermack-McKendrick model of 1927 was initially proposed to study a 

population of individuals consisting of many different age groups, each of which responded 

differently to the infection, for example by making  a function of age [2]. Such systems on 

continuous epidemic models are common in the literature and closely model many real-world 

diseases [7]. However, comparably little research has been published on the subject of networks 

consisting of two heterogeneous communities [16]. Of the sparse literature that has been 

published, nearly none has investigated both random and scale-free networks along with the SIR 

extensions of vaccination or asymptomaticity and social distancing (“staying home”). Both of 

these cases are relevant to public health policy and real-world epidemics as well as interesting to 

the physical study of networks. One important example of differential vaccination across 

communities that may be weakly interacting are differential vaccination rates in different racial 

groups as well as, in keeping with the tradition of Kermack and McKendrick, in different age 

groups [17-19]. 

In this section, I will describe several novel results for an epidemic spreading on a single 

network and on a network containing two complex communities with varying average degree, 

size, and even vaccination rates. In the future, these results could be useful to understanding the 
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spread of epidemics between different age groups, racial groups, or even international 

populations. This last case will be further discussed in . 

2.1 SINGLE COMMUNITY NETWORKS 

Prior to investigating two community systems, the spread of an epidemic on a single community 

was examined. The literature is replete with examples of epidemics spreading on single 

communities. Indeed, in the study of complex networks the multiple-community perspective is 

seldom taken, so much of the literature exclusively relates to single community networks. In this 

section ( ), I will describe the results for several computational experiments carried out on 

so-called single community networks with either random (ER) or scale-free (BA) construction. 

These experiments are meant to elucidate the behavior of individual communities, to better 

understand how the two community systems discussed in the next section behave. 

 To begin, a baseline value for the average connectivity or degree  was found for both 

random (ER) and scale-free (BA) network structures. Note that unless otherwise stated, in this 

work the brackets  indicate the average value of some quantity over an ensemble. The 

infection parameters were  and the infection duration or average period . 

 shows the infection curves and attack rates for four representative values of  on 

random (ER) networks. The infection curves for  were most similar to those found for 
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SIR models, so this value was chosen for the value of  that ensured greatest correspondence 

between the network and continuous SIR models. Similar results were found for scale-free 

networks, with the same value of . For the remainder of this thesis, the value  

will be used for all networks unless otherwise stated. 

 

Figure 4. Infection curves on random (ER) networks for various values of . The infection curve for 

 most resembles that of continuous SIR models. 

A second conclusion was drawn for the case of a network containing a single community. 

The transmission network, or the directed network containing individuals who were infected 
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along with information about who infected whom was studied.  shows how the degree 

distribution for the transmission network on a random contact network closely resembles the 

structure of its parent contact network. An identical result was found for the case of scale-free 

networks. 

 

Figure 5. Histogram of degree distributions for many ER random networks constructed with . 

Relevant data: . 

These results can be qualitatively explained by noting the transmission network is a sub-

network of the contact network with added directionality. The degree distribution of this 

transmission network should tend towards higher , because those individuals with higher 

degree are more likely to be infected. However, the structure of the degree distribution, a 

Poissonian distribution in the case of , should be unaltered. These results confirm the 
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often tacit assumption that the transmission network created from a contact network resembles 

the contact network and has similar properties to its parent contact network. 

2.2 NETWORKS OF TWO COMMUNITIES 

Whereas in the last section several complex networks consisting of single communities were 

examined, in this section I will wire networks with varying properties together with a small 

number of cross connections. There is some precedent for using this method to build two-

community models, such as in [16], which identified three epidemic regimes for weakly 

connected or coupled networks: one, where the epidemic does not spread across networks (the 

Disease-Free regime), a second where the epidemic spreads across networks, but does not cause 

a second epidemic (the Mixed regime), and a third where the epidemic spreads to both networks 

(the Epidemic regime). For all three regimes, an outbreak can occur on the network containing 

the index case–community , but may not form on the second community–community . 

Additionally, [16] calculated the critical number of cross connections above which the networks 

will enter the Epidemic regime. This quantity was calculated to be 

 
where  is the average degree of ,  is the average degree of . The quantity 

 was calculated assuming both and  were random networks generated using the 

Molloy-Reed configuration model. However, for ER and BA networks the critical average cross-
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connections that distinguish strongly coupled from weakly coupled networks have not been 

determined in the literature. Additionally, in this thesis the number of cross-connections will 

always be a constant parameter of the model and not an average. Therefore, in this thesis the 

symbol  will be used to represent the number of cross-connections between two networks and 

this notation will be expanded later in this chapter and in . 

2.2.1 Methods 

In this section, I will investigate the spread of epidemics across networks consisting of two 

communities  and . In general, each community will be generated to have the same structure, 

i.e., ER for random networks and BA for scale-free networks. However, in general each network 

will contain a different number of individuals such that  and a different average 

connectivity ; in other words, these will be heterogeneous weakly connected 

communities. The smaller communities are here called small or occasionally minority 

communities, while the larger networks are called big or occasionally majority communities. A 

visualization of one of these two-community networks is shown in  where the total 

 for ease of viewing. These types of networks have not been thoroughly researched in 

the literature in a computational and network-theoretic way. 
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Figure 6. Representative heterogeneous two-community ER network with  and 

. 

For the purposes of this thesis, cross-connections were always formed randomly between 

the two communities, even in cases when the structure of each individual community was scale-

free. This choice was justified by the small number of cross-connections relative to the number 

of individuals in each community ( ) and provided the benefit of easing 

analysis. However, future studies could formulate an algorithm for forming cross-connections 

analogous to the BA and ER algorithms (See ). 

Many of the simulations in this chapter were found on a two-community BA network 

consisting of one large, weakly connected community ( , ) and one small, 

densely connected community ( , ). Infections were started by choosing a 
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random index case, either in  or , and progressing the infection forward. Unless otherwise 

stated, the following conditions held for all networks studied: 

• Each time step was considered a single  in simulation time and the infectivity was set 

constant as .  

Most simulations were run on  different networks, with  runs on each network and 

with a total population  for each run. 

• The infection model was Susceptible Infected Recovered (SIR). 

 

2.2.2 Results 

As previously mentioned, the literature on the importance of cross-connections speaks to the 

importance of the coupling strength, or number of cross connections, between two communities. 

However, there has been little if any investigation into the role of cross-connections in scale-free 

networks, such as BA networks. 

For a single cross connection ,  shows a slight but noticeable difference in 

infection duration. For all such simulations, the average outbreak duration , or burnout time, 

was shown to increase. This result is two-fold: 1) an infection crossing between populations 

causes a secondary infection wave, manifested globally as an increased burnout time, and 2) 

crossing over occurs on average for as few as a single cross connection ( ). This result 

could be further studied by quantifying the amount by which each individual cross-connection 
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increases the average outbreak duration. However, a large increase in  and the severity of the 

second peak was seen with small increases in . 

 

Figure 7. Average Infection Curve for BA network Ten runs on ten networks. ; 

; ; . Average  A small, but noticeable bump 

indicating the crossing of the infection between communities can be seen to the right of the infection curve. This is 

representative of all such trials. In this figure, the infection began on the large (majority) community. 

 

The extent to which the number of cross-connections altered the attack rate was also 

investigated and found to be anomalous ( ).  
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Figure 8. Attack Rate (AR) vs. Cross Connections for several values of . The values of  anomalously 

peak around  and .  

 

 

 

Cross Connections 

( ) 

Average Attack 

Rate 

( ) 

1 0.7111 

100 0.92393 

500 0.83207 

1 000 0.83533 

1 500 0.92929 
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The values of  are expected to increase with increasing , so the multiple peaks shown 

in the table in  are unexpected. This anomaly is likely the result of the random cross-

connection algorithm breaking down for  large as the values of  change for both networks. 

The change in  for each community can be quantified by writing the exact expression 

 

) 

where we define a measure of the change in average degree by 

 
( ) 

The results of combining  with the data in  are shown in . 
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Table 2. Summary of how various cross connections change the average degree of communities in a two-

network system. 

Cross 

Connections ( ) 

Average 

Attack Rate 

( ) 

 

 

 

%  

 

 

 

%  

  
 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

      

      

      

 

From these data it can be estimated that  for two community systems. Therefore,  values 

lower than  were used for all communities of  for the remainder of this 

thesis. 
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Figure 9. Infection curves for individual communities plotted alongside total network infection curve for 

infections originating in a) the denser population and b) the less dense population. Crossing over to the other 

population is more likely when the epidemic begins in the denser population. 

 

The effects of starting in either the denser or less dense population, as well as starting in 

the larger or smaller population were studied. It was found that starting in the denser population 

resulted in a higher likelihood of crossing over to the other community. This trend is clearly 
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demonstrated in , where the infection curves of each individual community are plotted 

along the infection curve for the total network. 

Further investigation into the nature of two-community systems with asymptomaticity 

and differential stay-home probabilities, like the investigation in , is needed (See 

). Additionally, studies into multiple community systems with these extensions along 

with the extension of differential vaccination described in this section should be conducted. 

 

Paragraph. 
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3.0  R0 ON NETWORKS OF COMMUNITIES 

The basic reproductive number plays a central role in the modern understanding of infectious 

diseases. It is often described as the most important parameter in epidemiology and the modeling 

of infectious diseases [8, 17]. The centrality of this measure is well reflected in the vastness of 

the literature on the subject. This literature can be broadly characterized as those works that 

study the value of  in a real-world epidemic and those that study the value of  on theoretical 

models. As in all theoretical and experimental research, these two classes of research critically 

depend on each other. Calculating  values for continuous compartmental disease models is 

well researched, especially in the procedure involving calculating the next-generation matrices 

found in [7]. However, little headway has been made in the literature towards calculating  

values on networks. 

In this chapter, I will attempt to expand on the work of  by investigating  on 

networks, both in general ( ) and in the case of multiple community networks 

( ). I will attempt to extend the notion of basic reproductive rate in two ways: first, by 

introducing a new technique for calculating  values on networks containing an arbitrary finite 
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number of communities, and second by drawing a novel correspondence between the spread of 

epidemics over contact networks and the Mean Squared Displacement (MSD) of the diffusion 

process. 

3.1 BASIC AND MODIFIED REPRODUCTIVE RATES ON INHOMOGENEOUS 

CONNECTED COMMUNITIES 

In this section I develop a generalized theoretical framework for describing essential properties 

of connected communities and use it to derive an expression for the basic reproductive number 

or basic reproductive rate  on networks consisting of an arbitrary number of communities. 

While continuous models consisting of two communities ([20]) and network models consisting 

of two communities ([7]) have been studied, analyses of networks containing an arbitrary 

number of communities are not found in the literature. 

We begin by considering a single network (C) consisting of j communities  

with populations  average degree , , …,  “weakly” connected with n 

edges. For the present analysis, we consider only static networks where  is a constant. 

By definition the average connectivity of the th community can be expressed in terms of 

the total connections of that community divided by the total population of that community, viz.  
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( ) 

and for reasons that will become clear shortly, define the total network population as , such 

that 

 

( ) 

Using these definitions, the network can be expressed as a  dimensional vector space formed 

with orthonormal basis vectors , , …, , each of which corresponds to a particular 

community. 

For any such network, we have the connectivity vector: 

 

( ). 

Connecting the communities with n cross-connections we have, 

 

( ) 
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where  is the contribution to the average degree of the ith community from adding n cross-

connections. Thus, 

. 

N.b., as before,  as . 

The average degree of the total network is related to the average degree of each 

community by 

 

( ) 

Introducing the weighted population vector , viz. 

 

with  we have 

 

( ) 

Connecting the communities the  cross connections yields, 

 

 31 



( ) 

where  is the contribution to the average degree of the th community from adding  cross 

connections. Thus, 

 

and, note, as before  as . 

The average degree of the total network is related to the average degree of each 

community by 

 

( ) 

Introducing the weighted population vector , viz. 

 

recognizing  this becomes 

 

using ( ) and ( ) yields 
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( ) 

Defining the cross connection vector , viz. 

 

( ) 

or 

 

Finally, we can recast the modified connectivity vector ( ) as the sum of vectors, viz. 

 

( ) 

Using this decomposition, we can calculate the Average Modified Reproductive Rate 

(AMRR)  on Nonhomogeneous Connected Communities from the canonical Basic 

Reproductive Rate (BRR)  on a single community. 
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The Basic Reproductive Rate  of an SIR infection on a single community can be 

approximated using its definition as the product of the infectious period , the infectivity , and 

the average connectivity , i.e., 

 

( ) 

However, for  connected communities where at least  of the  communities has a 

different average connectivity,  cannot be written in the canonical form. In fact, this 

heterogeneity condition can be seen as a condition that differentiates one community systems 

from many community systems. For this case, we introduce a Modified Reproductive Rate 

(MRR)  for nonhomogeneous connected communities. 

Following the convention of this section, we calculate the  value for each community 

sans cross connections and build an  vector 

 

( ) 

where  is the BRR for the th community. 
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Using the assumption that for a basic SIR model and  are invariant over different 

network topologies, the Modified Reproductive Rate (MRR) for the th community can be 

expressed as 

 

Using ( ) yields, 

 

 

( ) 

and the MRR vector can be defined as 

 

Recognizing that the MRR will be a weighted average of the BRRs the Average Basic 

Reproduction Rate (ABRR) can be calculated using the weighting vector, viz. 

 

( ) 

Therefore,  

 

and using ( ), 
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Finally, as in ( ) we can define:  and express the AMRR as 

 

( ) 

Where again  

It has been shown here that the expression for the basic reproduction rate for a network 

consisting of multiple communities ( ) can be expressed in a format nearly identical to that 

of the basic reproduction rate of a network consisting of a single community ( ).   

 

3.2 R0 AND THE MEAN SQUARED DISPLACEMENT ON TRANSMISSION 

NETWORKS 

As far back as Einstein, the Mean Squared Displacement (MSD) has been examined as a 

central quantity in understanding stochastic diffusion processes [21, 22]. In the past decade [23] 

and [24] have examined and computationally characterized the diffusion of epidemics on several 

types of complex networks, including scale-free networks, as anomalous superdiffusion. 

However to my knowledge, there has not been a published effort to draw a correspondence 

between the MSD and the value of  on networks. 
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We seek a relationship between  and , where the first expression is the MSD of 

the infection on a network at a time , where again  is the duration of the infectious state, and 

the second expression is the Basic Reproductive Number. Note that in this section alone, the  

brackets indicate a distribution average. 

For a diffusion process on a network we expect the one dimensional diffusion equation to 

hold and the MSD to be given exactly by 

 

( ) 

where ( ) is the Einstein diffusion relation for random diffusion along one dimension or 

along networks. For  ( ) describes pure diffusion, for  ( ) describes sub-

diffusion, for  ( ) describes super diffusion, finally for  ( ) describes 

ballistic diffusion. For the case of normal diffusion, , the density of the diffusive substance, 

or equivalently the probability of a single random walker occupying a given position, is given by 

a Gaussian distribution, viz. 
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where for a particle beginning at the origin  which leads to  where  is 

the standard deviation whose dependence on time has been suppressed. This yields the diffusion 

distribution 

 

Plots of how  changes with time are shown in . 

Again, in this section alone  indicates the mean value of a distribution, viz. 

 

such that the MSD is defined as 
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Figure 10. Plots of the Gaussian diffusion probability   at time steps,   and ,  

for all cases shown. The distribution  can be interpreted as representing many quantities, such as the density 

of a drop of diffusive material in a medium over time, the probability of a random walker being in a given position 

over time. 

 

 

Note, the values of  and  in ( ) are expected to be dependent only on the structure 

of the network and independent of the properties of the disease, save for the duration of the 

infection . Therefore, a relationship of the form 

 

( ) 

should be likewise independent of the infection. This leads to a possible application of this 

equation to public health. If the structure of a network is determined, such that  and  are 

known, then the  of an infection could be entirely determined given . The network-dependent 

parameters  and  could be found either from studying previous infection data, sociological 

data, or through some direct experiment. In reality, the network-dependent parameters would 

vary with dynamic network structures, for example, if individuals self-isolate or are quarantined. 

Likewise, there may be deviations from ( ) when there is an exposed compartment in the 

model (e.g. SEIR). These extensions will not be treated here. 
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 Now that some of the possible implications of ( ) have been explored, we seek the 

function explicitly. To begin, we define distance on a network. On a non-geometric network, 

distance is described as the minimum number of edges between one node and another. Two 

nodes are said to be adjacent if there exists a path between them containing only a single edge, 

i.e., if there is an edge between them. Second, we define the origin of the network coordinate 

system to be the first infected, or index, case. In this index coordinate system, the distance from 

an infected node i to the origin  goes as the number of infected individuals between i and  

inclusive, viz. 

 

( ) 

where  is the number of infected individuals along the ith trajectory. The deviation from 

equality for these individual trajectories comes from when an individual infects someone behind 

them, i.e., closer than they are to the origin, the number of infected individuals will be 

undercounted. For a sufficiently infectious disease on a random network of sufficiently high 

average degree , the number of individuals infected in front of an individual more than 

compensates for the individuals infected behind an individual. This effect comes about 

quantitatively because individuals who are already infected or recovered cannot be infected 

again, so the diffusion is biased away from the origin. However, for power-law networks with 

hubs that may be located behind the infection wave, equation (3.2.3) likely deviates significantly 

from equality. 
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Introducing an undercounting diffusion term, use ( ) to write the exact equation, viz. 

 

( ) 

where  is the number of individuals infected horizontal to or behind the distal arm of the 

th trajectory at time . This undercounting term can be exactly written as 

 

( ) 

where  is the number of horizontal transmissions along the th trajectory and  is the 

number of backward transmissions along the th trajectory. Each type of transmission should 

contribute equally to the undercounting, so each carries a factor of unity. However, we are not 

interested in the trajectories for infected individuals on the interior of the infection wave, as we 

might be interested in the particles of oil on the interior of an oil-droplet diffusing. In the case of 

an oil droplet, the amount of oil is conserved and the density of droplet particles on the interior 

consequently decreases with time. Contrastingly, an infection is a biological process that 

generates new infected individuals, without decreasing some “infection density” on the interior. 

Therefore, it is appropriate to treat the diffusion of a disease across a network as many forward 

biased random walkers with a common origin, rather than a diffusion of some fluid. 
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In the case of many random walkers, the relevant distances become those from the 

individuals on the perimeter of the infection wave to the origin. In the convention of (3.2.4), this 

can be written as 

 

( ) 

where  is the distance to the origin of an individual infected at time , i.e., a radius of 

the transmission network. Going from ( ) to ( ), it is important to note that the distance 

from a newly infected individual to the origin will be equal to the number of infected individuals 

within the infection wave. Of course, this means 

 

( ) 

However, ( ) does not imply 

 

In fact, in general 

 

( ) 

 42 



where omitting the index implies summation over all  and the equality in ( ) holds only for 

a transmission network with no branching past the index case, which we will call a ray network. 

In words, the sum over all radii of the transmission network is less than or equal to the total size 

of the transmission network. 

The deviation from equality comes when double-counting certain infected individuals. 

Introducing , the double-counting factor, ( ) can be written exactly as 

 

( ) 

This double counting factor arises when two or more nodes are infected branching off of a single 

trajectory, the distance from one of the two nodes to the origin will accurately count the number 

of interior cases along the trajectory. However, including the distance of the second node will 

double-count some of these interior case. As time goes on and the forked trajectory grows along 

both sides of the fork, the double counting will not increase, but will remain equal to the distance 

from the branching point to the origin. This double-counting parameter is central to the network 

structure. 

To the crudest, or zeroth order, approximation, set . This is tantamount to only 

treating tree-level networks without branching, which will be called ray networks. In this 

approximation 

 

( ) 
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Then, the average distance from the center can be written as 

 

( ) 

that is, as a sum over all such distances divided by the number of individuals infected at time 

, , which is the circumference of the transmission network, . Then the 

average radius of the transmission network can be written as 

 

where ( ) was used for the third equality and the fourth equality is the definition of average 

distance of newly infected individuals from the origin. Then we can write 

 

( ) 

which equates the Mean Displacement to the average radius of the transmission network. Using 

( ), we can also write the MSD as 

 

( ) 
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Recall the definition of  as the total number of infected individuals at , where  

is the infection duration, we can define  in terms of  viz., 

 

( ) 

Note ( ) is an exact definition of  and is independent of any approximation. Substituting 

( ) yields 

 

( ) 

where  is the zeroth order, or ray-level, approximation for the . Using the derivation for 

the Mean Squared Radius of the transmission network ( ), we can write 

 

therefore, recalling ( ), 

 

( ) 
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where  is the zeroth order function for MSD in terms of , which yields 

 

( ) 

as sought. 

 The derivation of ( ), the zeroth order approximation of  only holds for 

transmission networks with ray structures. We must account for a nonzero  term, the double 

counting factor, to extend this work to tree structures, random networks, and eventually complex 

networks. We expand the ray network structure first by allowing connections across rays, so long 

as they are between nodes at a further radius from the index case. When drawing a network 

including all such connections, the network will be a tree network with no horizontal 

connections, i.e., no connections between nodes at the same distance from the index case. We 

will also exclude backward diffusion from this approximation ( ). 

The  term can be easily factored into the previous derivation by combining ( ) and 

( ), which leads to 

 

( ) 
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Note, we explicitly write  as a function of time. Intuitively, this is appropriate because the 

number of branching points on the interior of a transmission network at a given time will depend 

on the random diffusion mediated by the infectivity  at each transmission. 

Squaring ( ) and dividing by the number of recently infected individuals, the 

circumference of the transmission network at time , yields 

 

splitting the fraction gives 

 

where we have identified the mean squared radius of the transmission network at , . 

Substituting ( ) and multiplying through by  yields 

 

( ) 

where we have defined the Branching Function, , such that 
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( ) 

where explicit time dependence has been omitted for the right side. A similar derivation will 

show including the complete expression for ( ) will lead to an additional higher-order 

correction and, finally, to the complete . 

We modify the basic ray network once more to allow for both backwards and horizontal 

diffusion with respect to the index case. An example of this is the infection beginning on one ray, 

traveling to a node on another ray at the same radius, and traveling back down that second ray 

towards the index case. Such hopping is the simplest possible backwards diffusion and would 

result in undercounting the number of infectious individuals by one for each step backwards and 

by one for each horizontal step. Therefore, the definition of the Undercounting Function  can 

be written as 

 

( ) 

where  and  are the number of horizontal and backward steps on that trajectory at 

time , respectively. Using a similar procedure as for the first-order case, we square ( ) at 

 to yield 
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grouping terms and substituting  yields 

 

( ) 

where the quantity , the Global Undercounting Function, has been defined as 

 

( ) 

where we have omitted explicit time dependence for the right side. 

Note that a ray network with forward, horizontal, and backwards branching and diffusion 

describes all possible network structures, thus  is the general expression for  on a 

network. This yields 

 

( ) 

or by ( ), ( ) and ( ) 
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and substituting the expression for , we finally have 

 

( ) 

This is the sought exact expression for the squared  in terms of only the MSD, the structural 

parameters of the network on which the disease is spreading, and the circumference of the 

transmission network, i.e., the number of newly infected individuals, at time . 

The relationship between the squared , the MSD and the network functions  and 

 is rich and open to futher analysis. The factors  and  should and can be calculated 

for a given network and the limiting cases of small , , and  should be explored. 

Furthermore, the dependence of the  on both , the change in the size of the infectious 

population from time  to , and , the sum distance of the those individuals to 

the index case, should be examined (See ). Each of these parameters should depend 

on both the properties of the pathogen and the properties of the contact network on which it 

spreads, so we have not succeeded in deriving a completely pathogen independent value of . 

Indeed, such a derivation is likely impossible. However, what has been accomplished is a closed 

form expression for the  value in terms of the physical properties of the network 
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( ), properties of the pathogen ( ), and properties of both the network and the 

pathogen (  and ). Estimates for the physical network parameters can be found using social 

network analysis, the literature is replete with estimates for the properties of various pathogens, 

and the mixed functions  and  can be found via simulations, or even by using a known 

value of . These are a few of the applications of this formula. 

One change that should be noted between the current investigation and that undergone by 

[23] and [24] is the definition of displacement and, correspondingly, MSD. Whereas the previous 

papers defined the displacement as (adopting to my notation) 

 

i.e., the mean displacement is defined as the displacement for every individual on the interior of 

the infected population. Contrastingly, in this investigation I have defined the mean displacement 

as ( ) and the MSD as ( ), which take the circumference of the transmission network 

 in the denominator and thus measure only the individuals infected in the last time step. As 

previously mentioned, this is analogous to taking the MSD of multiple forward biased random 

walkers, instead of the MSD of an oil drop or similar system. The advantage of this definition is 

that it relates the distance from the center of an individual on the edge of the infection wave to 

the number of infected individuals within a small sliver of the infection area. However, the 

change in convention means the conclusion of superdiffusion presented in [23] may not hold. 
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Thus, further investigation into the nature of the anomalous diffusion, i.e. the values of , for 

various network structures using these definitions is required. 
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4.0  SEIQR AND NETWORKS MODELS OF EBOLA 

In the previous three chapters I described the development of both continuous and network 

models for modeling infectious disease spread, several results for two community systems, and 

some general mathematical properties of infections spreading on networks. In this chapter I will 

analyze and present new continuous differential equation models for the 2014 Ebola Virus 

Disease (EVD) outbreak. I will then extend this model to the case of a virtual two community 

systems represented by a dynamic network with nodal immigration. Finally, I will comment on 

the importance of this model for evaluating potential disease emigration from source 

communities to new communities, whether on the local, regional, or international level. 

4.1 THE DOBSON AND MODIFIED DOBSON SEIQR MODELS 

This work has heretofore described the synthesis of compartmental models with agent based 

network models. One relevant extension to the Susceptible Infectious Recovered or SIR model 

described in  is the Susceptible Exposed Infectious Quarantined Recovered or SEIQR 

Model. Ebola Virus Disease outbreaks have been modeled using SEIR models, SEIQR models 

without the Quarantined compartment, and SEIQR models in [13] and [8].  Indeed, the spread of 

EVD in the 2014 outbreak in West Africa can be well modeled by a simple SEIR model. 
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However, SEIQR models accommodate the most common and effective intervention for halting 

the spread of EVD and are widely used in developed nations where EVD has spread. The system 

proposed by Dobson [8], here called the Dobson Model (DM) ( , is such a model. 

 

( ) 

One of the primary motivations of the Dobson Model was to estimate values of  based on 

known parameters. Rearranging ), [8] found 

 

( ) 

In the procedure of , we note ( ) is not conservative. In fact, applying the 

conservation condition ( ) for ) gives 

 

( ) 
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which is not satisfied in general. Although the  term found in ( ) is common to 

nonconservative compartmental models, it can be incorporated into the  term in the 5th Dobson 

Equation. Negating the  term, which is ubiquitous in other models, can further modify the 

Dobson Model including the SIR model. Finally, adding a contribution proportional to  to the 

5th Dobson Equation and defining  as the net removal rate yields 

 

( ) 

here referred to as the Modified Dobson Model (MDM) and schematically represented in 

. For this model the new  can be easily computed as 

 

( ) 
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Figure 11. Schematic representation of the Modified Dobson Model ( ). Circles indicate 

compartments and arrows indicate flow rates. 

 

An additional extension to the Dobson Model was formulated to account for the case 

when a virgin population is subjected to a constant immigration of exposed individuals. This 

SEIQR Immigration Model or iSEIQR Model is novel in the literature and could be applied to 

myriad situations in addition to EVD outbreaks. In the iSEIQR Model an individual may 

immigrate into the Exposed population E with a constant probability  or into the Susceptible 

population S with a probability  Immigration occurs at a constant rate . These conditions 

yield 
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( ) 

which has a nontrivial  expression and is schematically represented in . 

 

Figure 12. Schematic representation of the iSEIQR Model ( ). The two arrows pointing 

towards the  and  compartments can be thought of as flows (migrations) from an external second 

community. 

4.2 DISCRETIZATION OF COMPARTMENTAL DIFFERENTIAL EQUATION 

MODELS 

The compartmental differential equation models described in this work now include the SIR, the 

SEIR, two SEIQR, and the iSEIQR models. These are just a few of the many models proposed in 

the literature, not to mention the infinite possible extensions to these models. Due to this vast 

array of differential equation models, I will here present a new notational convention for 

describing these models and their conservation equations. This notational convention will also 
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ease the discretization of compartmental differential equation models, which is tantamount to 

writing differential equations as discrete difference equations over networks. 

The generalized compartmental recursion relation ( ) can be written to describe a 

discrete difference equation, viz. 

 

( ) 

where  is the change in the compartment during a given time step . Defining  

leads to . Without loss of generality we take  then any compartmental model of 

ordinary differential can be written as 

 

( ) 

In vector notation, ( ) can be written compactly as 

 

( ) 
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where  and . In this notation, the conservation condition 

can be written as a matrix equation, viz. 

 

( ) 

where  is the identity matrix of order . This is the generalized difference equation in vector 

form. Taking the limit  yields the vector differential equation 

 

(4.1.11) 

which is the generalized system of compartmental differential equations in vector form. For this 

case, the conservation condition can thus be written 

 

( ) 

This form of the conservation is compact and the derivation utilizes the correspondence between 

the continuous and discrete models. 

In this form we may rewrite the conservation conditions for the models mentioned 

elsewhere in this thesis. For the SIR, SEIR, and Modified Dobson SEIQR Models ( ) is the 

exact conservation expression. However, for the Dobson SEIQR Model ( ) becomes 
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and for the iSEIQR Model we can write the conservation equation as 

 

( ) 

where  is some nonzero positive constant. Of course, for  the Immigration SEIQR model 

becomes an Emmigration SEIQR model, which will not be further studied in this work. 

One noteworthy application of the Immigration Model is to the potential spread of EVD 

through the United States originating from West Africans, or those who have recently spent time 

in West Africa, especially members of the media and healthcare workers. In this case,  would 

likely be extremely small, while  would be much higher and would approximate a non-uniform 

immigration rate as a constant rate. Another application of this model is between neighboring 

countries, such as Liberia and Sierra Leone. In fact, recent reports on the spread of EVD have 

focused on the spread of the disease within and across districts of West Africa [25]. This focus 

on the spread of infections between areas on a local, regional, and even national scale is common 

in the literature. One clear application for this work would be to model the spread of EVD into a 

particular region without the need to model the region from which the disease originated 

[20].  SEIQR model             

exhibits a latent stage and because quarantine is a primary source of disease containment. One 

study found ignoring the latent, here the Exposed, stage of a disease always leads to an 

underestimation of  values [26]. 
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4.3 NETWORK ISEIQR AND TWO-COMMUNITY SEIQR MODELS 

The transnational spread of Ebola Virus Disease (EVD) was simulated and studied using the 

discretized Immigration SEIQR (iSEIQR) Model on a dynamic complex network containing a 

single community fed by a constant rate of immigration and using the Modified Dobson (SEIQR) 

Model on a two community network, like that described in . Each added 

immigrant was randomly wired to  nodes. As in , while  is sufficiently low, 

that is , this random rewiring should not significantly effect the global network 

structure of non-random networks, e.g., scale-free networks. 

The Immigration SEIQR Model was simulated on both Erdős-Rényi (ER) random 

networks and Barabási-Albert (BA) scale-free networks. Each simulation was run for  

networks each with , and . The parameters of the infection are displayed in 

 and were taken from literature values whenever possible. 
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Table 3. Infection parameters for iSEIQR Model on a network. Durations chosen as rounded average 

infection duration and recommended quarantine duration [25]. 

 

 
Infection Parameter Value 

Immigration Rate:  
 

Probability Exposed:  
 

Probability of Quarantine:  
 

Quarantine Duration:  
 

Duration of Infection:  
 

Duration of Exposure:  
 

 62 



 

Figure 13. Infection and Recovered curves for iSEIQR network simulations with the parameter values 

listed in . a) ER networks, b) BA networks. 

The results of the iSEIQR network experiments were remarkable and warrant further 

investigation. For the random (ER) networks tested, the infection duration was markedly 

increased and the average infection curve (I-curve) was dilated and exhibited noisy behavior 

( ). In contrast, the scale-free (BA) networks tested demonstrated an epidemic with 

two peaks, one visible near  and another for , with a local minimum 
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near  ( ). The second infection peak was likely the result of, on average, 

an Exposed immigrant entering the Infectious compartment and infecting a hub at some region of 

the community untouched by the epidemic. 

Examining a single simulation of this model, the Recovered curve ( ) confirms the 

oscillatory behavior of constant immigration with a probability of exposure.  

 
Figure 14. Recovered curves with respect to time for a single simulation. The periodic oscillation of 

infectious is clearly visible in both subfigures. a) zoomed, b) zoomed further. 
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The model presented here simulates a two community system, by creating a single 

community and dynamically importing individuals (“immigrants”) from some otherwise isolated 

community. Displacing these immigrants from their virtual other communities and wiring them 

into the simulated community is relevant to long-distance travel, where a contact network will 

not be preserved when an individual travels to a new region, country, or even continent. 
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DISCUSSION 

 

The problem of modeling infectious diseases, or indeed the spread of any dynamic process 

across a medium, is complex and in general unsolvable exactly. Since its early history nearly 100 

years ago with Kermack and McKendrick, modeling infectious diseases has been a field of 

applied mathematics and epidemiology that depends heavily on approximate solutions to the 

most nonlinear and complex problems. This thesis has expounded on and explored network 

analysis as one method to more exactly simulate this problem and yield solutions, which might 

lead to unexpected, but effective interventions and policies. 

In , I have reviewed and discussed the spread of some compartmental disease 

models across networks with either random (ER) or scale-free (BA) structures. In , I 

have interrogated the special case of two weakly connected communities with varying properties 

between them, such as connectivity, population size, vaccination probability, and avoidance 

rates. This investigation yielded several conclusions: 

1. Epidemic spread across two community systems is characterized by a secondary time 

delayed infection wave, which results in an increased outbreak duration (burnout time, 

). 

2. On average, as few as a single cross connection ( ) results in crossover and a 

secondary infection wave. In the convention of , this can be written as a 
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crossover occurs, on average, for a , where  was a measure of the cross 

connections. The size of the secondary infection wave increases with increased 

connectivity for random networks, but is relatively independent of cross connections for 

scale-free networks. However, in both cases the time delay is diminished, i.e. the two 

epidemic waves occur at more similar times, with increased cross connections. 

3. Increasing  far above the critical values  may alter the topology of the communities. 

An estimate of  was found for scale-free two community systems. Additionally, 

beginning the infection in a more densely connected community can increase the 

probability of the infection crossing over. 

4. On average, vaccination and/or avoidance behavior reduces the severity of the infection 

wave on the vaccinated community. A consequence of this observation is that epidemics 

are less likely to spread across communities when the initially exposed community has a 

higher rate of vaccination and/or avoidance. These data on a single community support 

the conclusion that vaccination and public health education programs are valuable for 

containing epidemics, both in underserved domestic populations and in developing 

nations. 

I have also expanded the SEIQR differential equation model of Dobson [8] to a similar 

conservative model and an immigration based SEIQR model. This Immigration SEIQR model 

(iSEIQR) was then simulated on a network with a constant immigration rate and several 

conclusions can be drawn. 

5. Infection curve homology was shown between the dynamic networks and networks of 

two communities. Importantly, multiple infection waves are not seen in the model of [8] 

or other continuous compartmental differential equation models. This is one of the 

primary benefits of network models demonstrated in this work.  

The general mathematical problem of characterizing network epidemic models on 

multiple communities was also studied. A novel and general vector form of the equations was 

formulated and used to study the magnitude of perturbation that weak cross connections had on 
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the properties of individual communities when the networks were joined. One important result of 

this work was: 

6. It was shown that a random wiring process did not significantly perturb the connectivity 

of either network for weakly connected networks–i.e. small . This finding supports the 

validity of conclusions . 

Finally: 

7. A relationship between the Mean Squared Displacement (MSD) and the  of an 

epidemic on a network was derived via decomposition of a general complex network into 

a novel ray network and then adding in corrections for horizontal and backward diffusion. 

This result demonstrates several important physical concepts: 

a. Epidemic diffusion on a network is equivalent to multiple forward biased random 

walkers with a common origin. 

b. The MSD diffusion equation, and thus the diffusion coefficient  and the 

diffusion exponent  are related to the  of epidemics on networks. 

Further, it has been shown in [26] that the 2014 Ebola Virus Disease outbreak was 

clustered and can be studied using the methods of network analysis. Therefore, the 

correspondence between  and MSD may be useful in the future to more accurately understand 

both the contact network of epidemics and the  of a given outbreak. 

This work raises many important questions for future research. There are several portions 

of this work that require further study. Some of the clearer examples of further inquiry are: 

1. The differential equation models introduced here can be used to model real world 

epidemics, such as the 1917 Influenza, the 2004 SARS, and 2014 EBV outbreaks. 

2. Basic reproductive rates for the iSEIQR model introduced should be found. 

3. As in [8], the Modified Dobson model and iSEIQR model should be solved numerically 

to characterize solutions. 

4. The relationship between in which network an epidemic originates and network 

heterogeneities should be further investigated. 
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5. The conclusions about strength of community coupling  and the properties of each 

network should be investigated and threshold values found. 

6. Values of the diffusion exponent  for various network structures and epidemic models 

should be investigated, as in [23]. 

7. The calculation for basic reproductive rate in terms of MSD should be studied, including 

the limiting cases with low branching, undercounting, and network radius. 

8. An extension to the Barabási-Albert (BA) algorithm should be formulated for adding 

cross connections between networks. 

9. Finally, and perhaps obviously, many of these conclusions should be investigated on 

other network structures such as Geometric Random Graphs and Small-World networks. 
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APPENDIX A 

TABLE OF COMMONLY USED SYMBOLS 

Table 4. Table of commonly used symbols. 

Symbol Name 

 
Basic Reproductive Number/Rate 

 
Infectious probability or inverse rate 

 
Recovery/Lethality probability or inverse rate 

 
The ith compartment 

AR Attack Rate 

 
Burnout time 

 
Degree or connectivity 

 
The total population of a network 

 
The population of the ith community 

 
The number of cross-connections 
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Defined as a measure of the change in  

caused by adding  

 cross-connections. Also, the double 

counting factor in Chapter 3.2 and a rate 

constant in the Dobson Model (4.1.1) 

 
The ith orthonormal basis vector 

corresponding to the ith community in a 

network of multiple communities 

 
The duration of the infection or the infection 

period 

 
The Mean Squared Displacement (MSD) at 

time t. 

 
The Diffusion Coefficient 

 
The Diffusion Exponent (  for pure 

diffusion) 

 
The Standard Deviation 

 
Infected individuals between the ith node and 

the origin O 

 
Distance from the ith node to the origin O on 

the transmission network 

 
Undercounting on the ith trajectory on the 

transmission network 

 
Horizontal transmissions along the ith 

trajectory 

 
Backward transmission along the ith 

trajectory 
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Distance to the origin of an individual 

infected at time , i.e. a radius of the 

transmission network 

 
The circumference of the transmission 

network, defined as the number of individuals 

infected at time  

 
The branching function defined in (3.2.20) 

 
The Global Undercounting function defined 

in (3.2.23) 

 
The probability or inverse rate of immigration 

in the iSEIQR Model of Chapter 4 

 
A constant scaling factor in the iSEIQR 

model related to the rate of immigration 

( ) 
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APPENDIX B 

SAMPLE SCRIPT IN PYTHON 

''' 

Isaac Freedman 

  

v0.0.2 

  

Community Immigration Disease SIR Model 

  

Barabasi-Albert (BA) Network 

  

Nodal States Key: 

0 = [S]uceptible, 1 = [E]xposed, 2 = [I]nfected, 3 = [I]nfected [Q]uarantined, 4 = 

[R]ecovered 

  

''' 

  

from __future__ import division 

from igraph import Graph, summary 

from numpy import array, asarray, zeros, arange, append, delete 

from numpy import ones, reshape, sqrt, floor, ceil, amax, amin 

from numpy import average, argwhere, rint, random, log, exp, linspace 
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from matplotlib import pyplot as plt 

from math import pi 

from random import shuffle 

import time 

  

def Welcome(): 

    print "Epidemic Immigration Model\n" 

    print "Barabasi-Albert Network Epidemic Model:" 

##    print "10 Realization(s) on 10 Different Networks" 

    print 

"__________________________________________________________________________

_____" 

    print "Total nodes: N =", N 

##    print "\nActual average degree of Social Networks: <k> =", 

Total_average_degree 

    print "\nInfectious period: d = 10 (days)" 

    print "Probability of infection: b =", beta 

    print "Immigration Rate: =", r 

    print "\nImmigrant Exposed Probability: I_e =", immigrant_exposed 

    print "Probability of avoidance behavior if infected and symptomatic: sh =", avoid 

    print 

"__________________________________________________________________________

______" 

    return None 

  

def startinggraphs(ngraphs, N, m): 

    G = [] 

  

    for i in range(ngraphs): 

        G.append(Graph.Erdos_Renyi(n = N, m = m)) 

    return G 
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def PlotAverages(Tm, avg_epi): 

    # Plot averages 

    plt.title("Epidemics on Connected Communities Model\nBarabasi-Albert SIR 

Disease Model with Asymptomatic Individuals\nAverage of 10 Realization on 10 Different 

Networks\nbeta = 0.1, kavg = 10, N = 10,000, v = 0.0; asymptomatic = 0.3; beta_asymp = 

0.05", fontsize = 16) 

  

    plt.plot(range(Tm), avg_epi[:Tm,2],"y", linewidth = 3) 

  

    plt.xlabel("Time (days)") 

    plt.ylabel("Proportion of Individuals") 

  

    plt.legend(["Infected"]) 

  

    plt.show() 

    return None 

  

def Connectivities(G, nruns, ngraphs): 

    # Extract degree information from the social networks 

      

    social = [] 

  

    S_ks = [] 

    S_pks = [] 

  

    # Degree information 

    for i in G: 

        social += i.degree() 

  

    S_data = {k:social.count(k) for k in set(social)} 
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    S_pk, S_k = S_data.keys(), S_data.values() 

          

    return S_k, S_pk 

  

##### INITIATE ###### 

  

# Infection Parameters 

N = 100 

  

kavg = 10       # average degree 

                           

beta = 0.1      # probability of infected infecting neighbor 

  

quarantine = 0.2 

  

immigrant_exposed = 0.2                        

exposed = 0.0 

symptomatics = [1]*N 

avoid = 0.0 

  

r = 0.2 

         

m = int(N*kavg/2) 

  

immigrants = 0 

  

# Run Parameters 

nruns = 1 

ngraphs = 1 

  

total_run_count = 0 
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max_time = 500 

  

# Histories 

tbavgs = [] 

tbmaxs = [] 

start_times = [] 

crossings = [] 

all_trans = [] 

immigration_record = [] 

  

cputimes = [] 

#   avg_epi = ones((max_time, 10)) 

  

# Random starting graphs 

G = startinggraphs(ngraphs, N+1, m) # Start the graph with N community members 

and 1 immigrant 

  

G_S_k, G_S_pk = Connectivities(G, nruns, ngraphs) 

Average_S_degree = float(sum(asarray(G_S_k) * asarray(G_S_pk)))/sum(G_S_k) 

  

##### 

  

Welcome() 

  

##### BODY ##### 

  

# Run the infection over ngraphs graphs... 

  

for graphs in range(ngraphs): 

    # Start the CPU clock...            

    start_times.append(time.time()) 
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    # Histories 

    tburn = [0]*nruns 

  

    S_hist = [[0 for x in range(nruns)] for y in range(max_time)] 

    E_hist = [[0 for x in range(nruns)] for y in range(max_time)]     

    I_hist = [[0 for x in range(nruns)] for y in range(max_time)] 

    IQ_hist = [[0 for x in range(nruns)] for y in range(max_time)] 

    R_hist = [[0 for x in range(nruns)] for y in range(max_time)] 

  

    # Run the infection nruns runs... 

    for runs in range(nruns):         

        G[graphs].vs["State"] = 0                  # 0 = Suceptible; 1 = Exposed; 

                                                   # 2 = Infected; 3 = Infected Quarantined; 

                                                   # 4 = Recovered 

                                                     

        # S = Suceptible; E = Exposed; I = Infected; IQ = Infected Quarantined; 

        # R = Removed 

          

        S = range(N) 

        E = [N] 

        I = [] 

        IQ = [] 

        R = []         

        transmissions = [] 

  

        G[graphs].vs[N-1]["State"] = 1 

          

        ### Infect 

        d = [10]*(N+1)             # Duration of Infected stage 

        epsilon = [10]*(N+1)       # Duration of Exposed stage 
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        q = [21]*(N+1)             # Duration of Quarantine 

          

        # Run infection... 

        for tm in range(max_time): 

              

            immigrants = floor((tm+1)*r)     # calculate the number of immmigrants added 

for each run by multiplying every burnout time by the rate and rounding down 

  

            S_hist[tm][runs] = len(S)/(N+immigrants) 

            E_hist[tm][runs] = len(E)/(N+immigrants)             

            I_hist[tm][runs] = len(I)/(N+immigrants) 

            IQ_hist[tm][runs] = len(IQ)/(N+immigrants) 

            R_hist[tm][runs] = len(R)/(N+immigrants) 

              

            if tm % (1/r) == 0: # if the current day is divisible by the period of 

immigration 

                new_immigrant = int(N + floor(tm*r)) 

                E += [new_immigrant]  # record a new individual as exposed 

                G[graphs].add_vertices(1)       # add an exposed individual (immigrant) 

                ### For now, exposed with constant probability. 

                ### Later, import immigrants from small population with infection running 

on it. The new infectious will be infected with a probability that depends on time. 

                if random.random() < immigrant_exposed: 

                    G[graphs].vs[new_immigrant]["State"] = 1 # The new immigrant is 

Exposed 

                else: 

                    G[graphs].vs[new_immigrant]["State"] = 0 # The new immigrant is 

Suceptible 

                d += [10] 

                epsilon += [10] 

                measured_avg_deg = sum(G[graphs].degree())/len(G[graphs].degree()) 
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                connections = [] 

                new_connections = 0 

  

                print measured_avg_deg 

  

                while new_connections < floor(measured_avg_deg): 

                    for i in G[graphs].degree(): 

                        if random.random() > i/(2*max(G[0].degree())): 

                            connections.append((new_immigrant,i)) 

                    connections = list(set(connections)) 

                    new_connections = len(connections) 

  

                print new_connections 

                  

                G[graphs].add_edges(connections) 

                        

            for ego in I: 

                # Symptomatic 

                for alter in G[graphs].neighbors(ego): 

                    if G[graphs].vs[alter]["State"] == 0 and random.random() <= beta: 

                        G[graphs].vs[alter]["State"] = 1 

                        E.append(alter) 

                        S.remove(alter) 

                        transmissions.append((ego,alter)) 

                          

                if d[ego] <= 0: 

                    G[graphs].vs[ego]["State"] = 4 

                    R.append(ego) 

                    I.remove(ego) 

                      

                if random.random() <= quarantine: 
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                    G[graphs].vs[ego]["State"] = 3 

                    I.remove(ego) 

                    IQ.append(ego) 

                      

                d[ego] -= 1 

                  

            for ego in IQ: 

                # Infected Quarantined 

                q[ego] -= 1 

                d[ego] -= 1 

  

                if q[ego] <= 0 and d[ego] <= 0: 

                      G[graphs].vs[ego]["State"] = 4 

                      IQ.remove(ego) 

                      R.append(ego) 

                elif q[ego] <= 0: 

                    G[graphs].vs[ego]["State"] = 2 

                    IQ.remove(ego) 

                    I.append(ego) 

              

            for ego in E: 

                # Exposed 

                if epsilon[ego] <= 0: 

                    G[graphs].vs[ego]["State"] = 2 

                    E.remove(ego) 

                    I.append(ego) 

                      

                epsilon[ego] -= 1 

  

            if len(I) == 0 and len(E) == 0 and len(IQ) == 0: 

                break 
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        tburn[runs] = tm 

        all_trans.append(transmissions) 

        immigration_record.append(immigrants) 

  

    tbavgs.append(sum(tburn)/nruns) 

    tbmaxs.append(max(tburn)) 

          

    print "_____________________________________________________" 

    print "Network #", graphs + 1 

    print "\nAverage burnout time: t =", tbavgs[graphs], "days." 

##    print "Crossovers =", len(crossings) 

##    if len(tcross) != 0: 

##        print "Average crossover time: t =", tcrossaverages[graphs-nocrossings], 

"days." 

    cputimes.append(time.time() - start_times[graphs]) 

    print "\nComputation time: t =", cputimes[graphs], "sec." 

  

    S_hist = asarray(S_hist) 

    E_hist = asarray(E_hist) 

    I_hist = asarray(I_hist) 

    IQ_hist = asarray(IQ_hist) 

    R_hist = asarray(R_hist) 

  

plt.plot(range(len(R_hist)), R_hist) 

plt.plot(range(len(R_hist)), IQ_hist) 

  

plt.xlabel("Time (days)") 

plt.ylabel("Proportion of Individuals") 
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plt.title("Recovered and Quarantined for ER Networks with Immigration\nQuarantine 

= 0.2; Immigration Rate = 0.2; beta = 0.1\nN = 100")                      

plt.show() 
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