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Class III malocclusion is one of the dentofacial deformities that represents a challenge for 

orthodontists in terms of treatment and prognosis. Due to its complexity and aesthetic 

involvement, a lot of research have been undertaken to understand the mechanisms underlying 

the development of this growth deformity. Several studies have suggested a strong genetic 

contribution in the formation of class III malocclusion.  Previous studies have implicated a 

region on chromosome 11 (11q22.2-q22.3) that is linked with class III phenotype in a Hispanic 

cohort (Frazier-Bowers et al., 2009). To further investigate the region and find genes that might 

affect the incidence of class III malocclusion, Dr. Hartsfield and Dr. Lorri Ann Morford at the 

University of Kentucky have selected and genotyped 4 single nucleotide polymorphisms (SNPs; 

rs666723, rs578169, rs1386719 and rs12416856) within the 11q22.2-22.3 region on two multi-

generational family-based cohorts from Brazil and Colombia for multipoint linkage analysis. The 

families in each cohort had a high prevalence of class III malocclusion; and varied greatly in the 

size, structure, and number of affected individuals. Class III affected and unaffected individuals 

were diagnosed based on cephalometric measurements, models, photographs and/or oral 
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examination. Maximum maximized LOD score (MMLS) and multipoint heterogeneity LOD 

scores (HLODs) maximized over different levels of heterogeneity, and two genetic models 

(reduced penetrance dominant and recessive), were generated using SimWalk2. To estimate the 

empirical significance of these multipoint HLODs, 1000 replicates of unlinked genotype data 

based on real data pedigree structures, affection status and pattern of missing genotypes were 

simulated for the Brazilian and Colombian cohort using SLINK and SIMULATE respectively. 

These replicates were then analyzed using SimWalk2 with the original maximizing mode of 

inheritance. Power was estimated similarly for each cohort by generating 1000 replicates of 

pedigree data linked to the SNP with the highest HLOD. The corresponding cohort-specific 

mode of inheritance was used for the power simulation genetic parameters. For the Brazilian 

cohort, the MMLS was observed for rs12416856 at 191.6 cM (HLOD=1.84), under a recessive 

mode of inheritance. The empirical significance for this HLOD was a p-value <0.001 and the 

empirical type 1 error threshold for α=0.05, was an HLOD equal to 1.6. The power for 

suggestive linkage (HLOD≥2) was 80%.   

 

 For the Colombian cohort, the maximum MMLS was observed for rs578169 at 188.4 cM 

(HLOD=0.51), under a recessive mode of inheritance. The empirical significance for this HLOD 

was a p-value of 0.023 and the empirical type 1 error threshold for α=0.05, was an HLOD equal 

to 1.5. These results support potential linkage on chromosome 11. 
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1.0   INTRODUCTION 

1.1 CLASS III MALOCCLUSION 

 The malocclusion of the teeth is defined as the misalignment between the teeth of the two 

dental arches, and it is considered to be one of the most common problems encountered in the 

field of dentistry. Severe malocclusion has a huge impact on the quality of life if left untreated 

(Samsonyanova and Broukal, 2014) that may vary from social impacts to serious health impacts 

such as sleep apnea, muscle trismus, and digestive difficulties (Joshi et al., 2014).  

 
In 1890, Edward H. Angle published the first classification of malocclusion based on the 

position of the permanent mandibular first molar buccal groove relative to the mesiobuccal cusp 

of the permanent maxillary first molar (Figure 1). In class III malocclusion, the permanent 

mandibular first molar buccal groove is located anterior to the mesiobuccal cusp of the 

permanent maxillary first molar. Thus, class III malocclusion as defined by Angle may also 

reflect the forward positioning of the mandible relative to the maxilla, although Angle only 

defined it in terms of the sagittal relationship of the permanent first molars to each other. The 

purist may take umbrage at the term “skeletal” Angle Class III malocclusion, since Angle only 

based it on the dentition, and not any possible underlying skeletal relationship. The purists would 

prefer references to the skeletal relationship of the mandible anterior to the maxilla in the sagittal 
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plane or relative to the cranial base such as mandibular prognathism, or maxillary retrusion or 

hypoplasia. Still, it has generally been recognized that this Class III dental relationship is often 

observed with a corresponding skeletal relationship as well. This skeletal deformity varies in its 

degree of severity and can be affected by both environmental and genetic factors (Otero et al., 

2014). 

 
Angle’s classification of malocclusion is the most common method used, although it has 

limitations because it does not define the skeletal bases of malocclusion Skeletally, class III 

malocclusion can be classified into 3 types according to the position of the maxilla in relation to 

the mandible. True mandibular prognathism,  which characterized by overgrown mandible and 

normal maxilla. Class III malocclusion can also results from excess growth of both mandible and 

maxilla or an undergrowth maxilla “maxillary hypoplasia” . Treatment modalities are vary 

among each category (Park and Baik, 2001).   

 

The prevalence rate of the class III malocclusion varies among different ethnic groups. 

For example, the prevalence in the United States Caucasians is between 3.4-9.5%, 22.9-40% in 

Asians, and 16% in the Africans (Hartsfield et al., 2013). Although class III cases are found less 

frequently in orthodontic clinics as compared with the other types of malocclusions, they are 

most often cited as inherited traits (Frazier-Bowers et al., 2009). The genetic contribution to class 

III malocclusion has been reported in both animal and human studies (Dohmoto et al., 2002). 

Many studies have shown a genetic influence on class III traits using different modes of 

inheritance that vary from monogenic to multiple gene influence. The reported modes of 

inheritance include autosomal recessive, autosomal dominant, and autosomal dominant showing 
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incomplete penetrance (Cruz et al., 2008; El-Gheriani et al., 2003; Wolff et al., 1993). In 

different ethnic groups, these inheritance patterns may vary in both their penetrance and 

expressivity. 

 

 

 

 

 

 

 

 

 

Figure 1. -Class III Malocclusion- Maxillary permanent first molar mesial cusp “blue arrow” is 

set posteriorly in relation to the mandibular permanent first molar buccal groove “green arrow”. 

The lateral view shows a forward positioning of the mandible in relation to the maxilla in sagittal 

plane.  Reproduced with Permission from (Kasia, 2015). 
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Figure 2.  -Worldwide Prevalence of Class III Malocclusion based on geographic 

distribution and ethnic background- Eskimos, African and Asians populations have a high 

prevalence of class III phenotype. Low prevalence observed among Native American, Indians 

and Caucasians. Data From (Hartsfield et al., 2013). 
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Different loci of interest with respect to class III malocclusion have been identified in 

several chromosomes including, but not limited to: chromosome 1,3, 12 and 19 (Hartsfield et al., 

2013). Genetic studies of the Hispanic population have implicated a unique locus at human 

chromosome 11q22 (Frazier-Bowers et al., 2009).  In mice, the quantitative trait loci studies have 

shown that chromosome 11 is correlated with the mandibular prognathism (Dohmoto et al., 

2002). 

 

 Although class III phenotype shows a strong genetic contribution, the majority of the 

previous studies have focused on treatment modalities rather than genetic etiology. Identifying 

the genes that contribute to the development of class III malocclusion will provide an alternate 

beneficial diagnostic tool in the orthodontic clinic and support orthodontists when making 

decisions pertaining to early intervention in the treatment of class III malocclusion. 

 

Based on Frazier-Bowers et al findings, Dr. Hartsfield and Dr. Morford at the University 

of Kentucky have selected a region on chromosome 11q22.2-q22.3 to determine the gene on 

chromosome 11 that might affect the incidence of class III malocclusion in 17 Brazilian families 

and 15 Colombian families with a high prevalence of the class III phenotype. We conducted a 

linkage analysis and a simulation study to evaluate the performance of the linkage results. 
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1.2 BACKGROUND ON LINKAGE 

 

Genetic linkage analysis is a powerful tool that is used to determine causal genetic loci on 

a certain chromosome with the help of genetic markers whose locations are known a priori (Rao 

and Province, 2001). The basic idea of genetic linkage is that when genetic loci are located 

proximal to each other on a chromosome, they have a greater tendency to be inherited together 

during meiosis i.e. the cell division process that produces haploid gametes (Rao and Province, 

2001). This result takes advantage of an important violation of Gregor Mendel’s second law. In 

1856, Mendel started series of experiments to study heredity. Based on his observation on pea 

plants, Mendel had developed the theory of what is called particles of inheritance. Mendel had 

not used the word “genes” yet because genes dose not get invented for much longer. The theory 

stated that for every trait, parent had two such particles where the offspring get one from each 

parent. The choice of which of these two alleles is transmit to the offspring is a random draw 

(Mendel, 1901). 

 

Thomas Hunt Morgan first described linkage in 1910. At the Columbia University, he 

preformed breeding experiments with the fruit fly, Drosophila Melanogaster. (Morgan, 1910). 

Morgan’s experiments showed that genes are physically located on chromosomes and account 

for specific phenotypes. Further, his findings have violated Mendel’s second law of independent 

segregation by proving that genes on the same chromosome do not always independently assort. 

He suggested that genes located proximal to each other have a greater chance of being inherited 

together in the offspring. Likewise, when genes are far apart on the chromosome, the probability 
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of being inherited together will decrease. Thus, linkage depends on the physical distance 

between the genes: the closer the genes, the stronger the linkage. 

 

Morgan's conclusions inspired his undergraduate research student, Alfred Henry 

Sturtevant, to construct the first known genetic map in 1911 (Sturtevant, 1913). Sturtevant 

constructed the genetic map by relating crossover frequency to distance between two genes. The 

farther apart two genes lie on a chromosome; the more likely they are to be separated by 

recombination. In a genetic map, the distance between two genes on a chromosome can be 

measured by the probability of a crossover occurring between these genes. Sturtevant laid the 

groundwork for genetic map construction in other species. Genetic map construction depends on 

the recombination fraction theta (θ), which is a measure of the distance between two genes on the 

same chromosome. Theta is defined  “ as the probability that the alleles at two loci will appear in 

new combinations not observed in the parental generation” (Rao and Province, 2001). When the 

two loci lie apart from each other, it is more likely they are going to recombine during meiosis. 

In this case we say the two loci are unlinked and the expected recombination fraction is 0.5. 

Furthermore, when the two loci are close to one another on the same chromosome, the original 

combination of he parental alleles are more likely to be inherited together. In this case we say 

these two loci are linked (θ<1/2). LOD score analysis is used to tests this recombination fraction.  

 

In 1955, Newton E. Morton developed a statistical method for testing linkage. The LOD 

[logarithm (base 10) of odds of linkage] score compares the likelihood of obtaining the observed 

data, if the two given loci are linked, to the likelihood of observing the same data purely by 

chance (Rao and Province, 2001). The test procedure in his LOD score method was sequential; 
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families were added successively to the sample until it is possible to decide whether the two loci 

are linked or unlinked (Morton, 1955). Morton specified a threshold of 3 to conclude linkage and 

threshold of -2 to exclude or conclude no linkage. His justification of theses specific threshold 

was based on “the theory of sequential test” developed by (Wald 1947).  Morton showed that 

when  “ A = 1-β / α ” and “ B=β /1-α ”,  where A and B are the critical values, and α and β 

represent type 1 and type 2 error, respectively; one should continue adding families as long as 

the LOD score value is falling between A and B.  When the LOD score is larger than A, linkage 

is declared or concluded and if it its fall below B linkage is excluded.  Morton has set a low level 

of   type 1 error α = 0.001 to keep the incorrect rejection of no linkage at a low level. When α = 

0.001 and 1-β (power) = 0.99; thus, log (A) = 3 and log (B) = -2 which are the thresholds 

specified by Morton. LOD score of 3 threshold is applied only for simple Mandelian inheritance. 

Nowadays, researchers are looking at multi-factorial traits where the traditional LOD score 

method no longer applies in linkage analysis.  

 

 As mentioned above, LOD score method is a useful tool for detecting linkage when the 

mode of inheritance of a disease or trait is known and it has been successfully used in the past for 

mapping single gene disorders.  Clerget-Darpoux et al. (1986) showed that to use LOD score 

analysis to detect linkage in complex traits, LOD score function must be maximized to include 

other trait model parameters beside the recombination fraction θ. These parameters include trait 

gene frequency, trait penetrance (the probability of the trait or phenotype being expressed by 

individuals having the genotype corresponding to the trait), and trait heterogeneity (Clerget-

Darpoux et al., 1986). 

 



  

 

9 

1.3 NEED FOR EMPIRICAL THRESHOLDS IN CURRENT DAY LINKAGE 

ANALYSIS 

 

The following assumptions were proposed in the threshold specified by Morton. First, 

one family at a time is sequentially added to the test until LOD score below or above the 

threshold is achieved.  Second, all the LOD score are calculated for a single fixed theta, thus, the 

analysis in this case is a two- point not a multipoint analysis. Third, only one single genetic 

model under the condition of homogeneity can be tested. Thus, the threshold proposed by 

Morton cannot be applied on current day linkage. 

 

Linkage analysis nowadays can utilize a complete data set and maximize the likelihood 

over the space of theta θ. It is now possible to preform multipoint linkage analysis where 

multiple markers can be taken into account simultaneously. Moreover, current linkage analysis 

accounts for heterogeneity by including the heterogeneity parameter α in the likelihood i.e. 

HLOD method developed by (Smith, 1963). Finally, it takes care of unknown or uncertain 

prevalence and mode of inheritance by maximizing over several genetic model parameters e.g. 

the MMLS or maximized maximum LOD score approach (Greenberg, 1989) and the MOD or 

maximized LOD score (Clerget-Darpoux et al., 1986).  
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                                      1.4 LINKAGE ANALYSIS APPROACHES 

 

Statistical methods have been developed to test linkage in genetically heterogeneous 

complex traits such as class III malocclusion. The goal of these methods is to gather all available 

information from the pedigrees to provide linkage evidence between a trait and marker in a 

known location on a chromosome. Testing linkage one marker at a time to the trait is called two-

point linkage mapping, whereas testing linkage with two or more markers to the trait is called 

multipoint linkage mapping. Further, methods for linkage analysis can also be divided into two 

categories: parametric and nonparametric.  

 

 Parametric linkage analysis, by definition, takes into consideration the trait parameters 

and requires the specification of a genetic model including disease allele frequency and 

penetrance. Because the true trait parameters are not known in complex traits, several parametric 

methods have been developed (Figure 3). One of these approaches is the maximum-likelihood or 

LOD-score (Z) where the likelihood is maximized over θ while fixing the other trait parameters 

(Ott, 1999). Specification of the mode of inheritance is required and considered a limitation in 

this method. Another limitation is that genetic heterogeneity is not taken into account. To 

accommodate genetic heterogeneity, the heterogeneity LOD or the HLOD (Smith, 1963) takes 

into consideration the admixture parameter α and it is maximized to estimate the other genetic 

parameters. When LOD score method is based on a wrong genetic model the power to detect 

linkage tend to reduce (Clerget-Darpoux et al., 1986). To overcome this limitation investigators 

have developed what it is called the maximum maximized LOD score or the MMLS (Greenberg, 

1989). MMLS approach maximizes the HLOD over two genetic models (dominant and recessive) 
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and use the highest statistical result as a test for linkage. It has been shown that when the 

maximization considers an average mode of inheritance i.e. dominant and recessive models with 

reduced penetrance, the power to detect linkage is not affected (Greenberg, 1989). The power to 

detect linkage in this case is almost the same as what one would expect when the true mode of 

inheritance is known. Moreover, the effect of multiple testing preformed in the MMLS on type 1 

error is minimum and not of a concern (Greenberg et al., 1998).  

 

 

Figure 3. Different Statistical Approach in Testing Linkage 

LOD score method takes the recombination fracture θ into consideration. Heterogeneity 

LOD score approach includes the recombination fracture θ and the admixture parameter α in the 

likelihood. MMLS approach maximized the likelihood over incomplete dominant and recessive 

genetic models, respectively   

MMLS 

 

=   Max        θ, α (LOD) 

 

 

=   Max       (Dom HLOD, Rec HLOD) 

HLOD 

LOD        Likelihood (θ <0.5) 

       Likelihood (θ=0.5) 
= 
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Nonparametric linkage methods however, do not need the specification of genetic 

model parameters. One class of non-parametric linkage methods, namely the affected-relative 

pair class of methods detects linkage by analyzing the degree of excessive allele sharing by 

descent in affected relatives (Goheen et al., 1992; Weeks and Harby, 1995). The basic idea of the 

affected-relative pair approach is that when a marker is linked to a disease locus, the two affected 

siblings will share the same marker allele more often than expected by chance (Rao and 

Province, 2001). 
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2.0  MATERIALS AND METHODS  

2.1 DATA  

 

Subjects consist of two multi-generational family-based cohorts located in Brazil and 

Colombia with a high prevalence of class III malocclusion. Based on previous data implicating a 

region of chromosome 11 in the Class III phenotype, 4 single nucleotide polymorphisms (SNPs; 

rs666723, rs578169, rs1386719 and rs12416856) were genotyped within 17 Brazilian families 

(178 individuals) and 15 Colombian families (248 individuals). The families in each cohort 

varied greatly in the size, structure and the number of affected individuals. 

 

2.2 ASCERTAINMENT OF FAMILIES 

 

           The following universities were involved in this collaborative study: University of 

Kentucky, Lexington, KY, U.S.A. where the subjects were genotyped, Pontifica Universidad 

Javeriana, Bogota, Columbia, South America and Universidade de Brasilia, Brasilia, Brazil, 

South America where the subjects were recruited. The statistical analysis preformed at the 

University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A. 



  

 

14 

Study participation required that the subjects allowed access to their personal and family 

dental/facial information, which was used to diagnose the members of the family that exhibited 

the class III phenotype, and provide a sample of genomic DNA. Patients and relatives aged 6–70 

years were evaluated to determine their dental/facial phenotypes. Subjects who exhibited 

syndromes and pathologies such as cleft/lip palate or general physical diseases were excluded 

from the study. The affected status of subjects who had undergone surgery to correct their Class 

III malocclusion was confirmed using dental charts. A complete pedigree was constructed for 

each family that included all available subjects. 

2.3 GENOTYPING 

After obtaining informed consent, the DNA samples were collected either by peripheral 

blood via venous puncture, buccal swab collection from the inner cheek, or saliva collection in 

association with either Pontificia Universidad Javeriana or Universidade de Brasília. Subjects 

were excluded if they were unable or unwilling to supply personal and familial data related to the 

study. Genomic DNA was extracted from the buffy coat obtained after the centrifugation of 

peripheral blood using a commercial GFX™ Genomic Blood DNA Purification Kit (GE 

Healthcare Life Sciences). Genomic DNA was isolated from buccal swabs using the Puregene 

method (Gentra Systems, Minneapolis, MN). Saliva (2–4 mL) was collected using Oragene®-

DNA self-collection vials (DNA Genotek, Ottawa, Ontario, Canada) and genomic DNA was 

isolated by ethanol precipitation according to the manufacturer’s instructions. The DNA was 

resuspended in 10 mM Tris–HCl with 1 mM EDTA (pH 8.0; Fisher Scientific, Fair Lawn, NJ, 
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USA). The DNA concentrations were determined using a NanoDrop-1000 spectrophotometer 

(Thermo Fisher Scientific, Wilmington, DE, USA).  

 

The purified DNA was subjected to single nucleotide polymorphism (SNP) analysis 

using Taqman genotyping assay kits and reagents (Applied Biosystems) with a Roche 

LightCycler 480® system (Roche Applied Science, Indianapolis, IN, USA). 

2.4 TRAIT CLINICAL EVALUATION 

The Colombian population was diagnosed with class III malocclusion based on lateral 

cephalometric radiographs, dental casts, and/ or facial and intraoral photographs. A negative 

ANB angle on the lateral cephalometric radiograph was required for the diagnosis of class III 

malocclusion. For Brazilian population, examining dental casts, and/or facial and intraoral 

photographs from orthodontic records determined class III malocclusion. When no orthodontic 

records were available, Class III malocclusion in the relatives was determined by the presence of 

an edge-to edge incisor relationship, anterior crossbite, concave facial profile and visual 

inspection.  The control group included unaffected members of the same family and unrelated 

individuals without Class III malocclusion.   
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2.5 STATISTICAL ANALYSIS OF REAL DATA 

 

2.5.1 Data Cleaning 

 

We performed thorough cleaning of genotype to resolve Mendelian errors. Mendelian 

error checking within the genotyping of parent-offspring trios was conducted with PLINK 

(version 1.07) and Pedcheck (version 1.2) software (Purcell et al., 2007). Mendel (version 13.2) 

software (Lange et al., 2013) was used to estimate maximum likelihood marker allele 

frequencies separately in the 2 cohorts (Table.2). Since several studies have showed that an 

accurate genetic map has a strong impact on the power of linkage analysis (He et al., 2011), a 

population specific map was constructed based on reference genetic maps obtained from Rutgers 

using Kelvin software (Vieland et al., 2011), to account for population differences with respect 

to observed recombination frequencies (map construction and acquisition protocol was obtained 

from private communication with Dr. Veronica Vieland). 

 

2.5.2 Linkage Analysis  

 

Nonparametric linkage analysis and parametric multipoint linkage analysis were both 

preformed for the families. MERLIN (version 1.1.2) (Abecasis et al., 2002) was used for the 

nonparametric , using an allele-sharing and affected-only model to test for linkage. Both NPL-all 

and pairs statistics were used to test for excessive allele sharing among affected individuals. 

LOD scores were calculated using Kong and Cox linear model (Kong and Cox, 1997). 

 



  

 

17 

SIMWALK2 (version 2.91) software (Sobel and Lange, 1996) was used for multipoint 

linkage analysis based on either dominant or recessive mode of inheritance with grid of 

heterogeneity parameter α ranging from 0-1 in a steps of 0.5. In dominant model, the disease 

allele frequency was set on 0.03 and penetrance of 0.002, 0.5, and 0.5. For the recessive model 

the disease allele frequency was set on 0.27 and penetrance of 0.002, 0.002, and 0.5. Mega2 

(version 4.6, (Mukhopadhyay et al., 2005) was used  to prepare the formatted input files needed 

for Pedcheck, Merlin, Mendel and SimWalk2. 

 

2.6 SIMULATION: SIGNIFICANCE, TYPE 1 ERROR AND POWER 

CALCULATIONS OF PARAMETRIC LINKAGE 

 

In order to estimate the significance of the parametric linkage results observed from the 

real data, we conducted a simulation study. Type 1 error thresholds were estimated for each 

cohort by simulation of 1000 replicates of the genotype data based on real data pedigree size, 

structure, affection status and pattern of missing genotypes. Replicates were simulated 

unconditioned on disease status (assuming no linkage between the trait and the marker) using 

SLINK and SIMULATE software (Ott, 1989; Weeks D.E., 1990). HLOD thresholds were 

calculated for a type 1 error of 0.05, 0.01, and 0.001 for each population. This was done to see 

the probability of obtaining a linkage signal similar or better than the signal observed from the 

real data without simulation. 

 

Power was calculated conditionally on the disease status by generating 1000 replicates. 

Recessive model was specified based on the maximum HLOD obtained from the multipoint 
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parametric linkage analysis. As mentioned above, recessive model the disease allele frequency 

was set on 0.27 and penetrance of 0.002, 0.002, and 0.5. HLOD thresholds were calculated for 

power of 90%, 80%, and 70% for Brazilian cohort. 

 

2.7 FOLLOW UP ON CANDIDATE GENES IN SPECIFIED REGION 

 

UCSC genome browser was used in order to explore the candidate genes (Kent et al., 

2002). Region 11q22.2-22.3 was specified in the "search term" box. The UCSC Genes track was 

chosen as a display mode. This displays genes prediction based on GenBank and RefSeq. I used 

OMIM, GENECARDS and UCSC sites to check the functionality of each gene and to search for 

any potential effect on the growth of the mandible. 
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3.0  RESULTS 

3.1 DATA DESCRIPTION 

From the Brazilian cohort, 17 out of 18 families were informative for linkage with a total 

of 178 individuals documented in multi-generational pedigrees for these families and 176 of 

these individuals genotyped, 85 individuals were diagnosed with the Class III phenotype. From 

the Colombian cohort, 18 families out of 23 were informative for linkage with a total of 276 

individuals documented in multi-generational pedigrees, 153 of these individuals genotyped and 

112 individuals diagnosed with the Class III phenotype (Figure.4). 

 

 

Figure - 4 - Pedigree and Genotype Data for Colombian and Brazilian Cohorts 
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3.2 DATA CLEANING 

The minor allele frequencies for both Brazilian and Colombian cohorts examined in this 

study for each SNP are shown in (Table.1). For population specific map construction, we ended 

up using the reference map because of an insufficient number of crossovers detected due to 

marker proximity.   

 

  Table.1 SNP Position and Minor Allele Frequency for Colombian and Brazilian Cohorts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP Position (kb) 
Brazil Minor 

Allele Frequency 

Colombia Minor 

Allele Frequency 

rs666723 104,827 A 0.29 A 0.43 

rs578169 104,862 A 0.35 A 0.40 

rs1386719 109,559 G 0.28 G 0.27 

rs12416856    109,593 A 0.41 A 0.30 
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3.3 NONPARAMETRIC LINKAGE RESULTS 

Linkage was not observed using the nonparametric analysis in both Colombian and 

Brazilian cohorts. 

 

Table.2 Nonparametric results for SNPs; rs666723, rs578169, rs1386719 and rs12416856 

for Brazilian and Colombian population 

 

  
Brazil Colombia 

Marker  p-value Position Position (kb) p-value Position Position (kb) 

rs666723 0.125 104,826 104,827 0.21 104,826,604 104,827 

rs578169 0.124 104,862 104,862 0.24 104,861,643 104,862 

rs1386719 0.116 109,559 109,559 0.13 109,559,457 109,559 

rs12416856 0.117 109,593 109,593 0.14 109,593,305 109,593 
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3.4 PARAMETRIC LINKAGE RESULTS 

The Brazilian cohort was analyzed separate from the Colombian cohort due to potential 

differences in ethnic composition within each population. 

 

Observed MMLS results: For Brazilian cohort, a peak MMLS of 1.84 (empirical P-

value < 0.001) was observed for rs12416856 at 191.6 cM (Figure.5). , The maximizing model is 

a recessive mode of inheritance.  

Simulation results: The empirical type 1 error threshold for α=0.05 is HLOD equal to 

1.6 (Table.3). Other critical empirical threshold values are presented in table 3. Figure 6 shows 

the HLOD score distribution for simulated linked data for the Brazil pedigrees. The expected 

power of this set of pedigrees for an HLOD=2 is ≥80%  (Figure. 6)  

 

 

 

 

Figure 5. -Brazilian Population Parametric Linkage Analysis Results For Dominant and 

Recessive Models- LOD scores shown at SNPs; max HLOD=1.84 (SNP rs12416856) at 191.6 

cM under a recessive model.  

Position (cM) 
188.4 188.42 191.57 191.61 
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Table.3 -Brazilian Cohort Type 1 Error Results- empirically derived HLOD threshold 

values over 1000 replicates 

 

Type 1 Error HLOD 

0.05 0.5 

0.01 1.1 

0.001 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3D Surface Plots of Brazilian Cohort Power Results- At rs12416856 for 

HLOD ≥ 1.5, 2 and 3 the power was 91.6%, 83% and 68%, respectively.  
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Observed MMLS results: For Colombian cohort, a peak MMLS of 0.51 (empirical P-

value = 0.023) was observed for rs578169 at 188.4  cM (Figure.7). The maximizing model is a 

recessive mode of inheritance. 

Simulation results: The empirical type 1 error threshold for α=0.05 is HLOD equal to 

1.5 (Table.4). Other critical empirical threshold values are presented in table 4. Due to 

computational limitation, Colombian cohort power calculations have been delayed. 

 

 

 

 

 

 

 

Figure 7. Colombian Population Parametric Linkage Analysis Results For Dominant and 

Recessive Models LOD scores are shown for  (SNPs; rs666723, rs578169, rs1386719 and 

rs12416856). The max HLOD=0.51 was found on rs578169 at 188.4 cM under a recessive 

model. 

Table.4 – Colombian Cohort Type 1 Error Results- HLOD were empirically derived 

over 1000 replicates. 

Type 1 Error HLOD 

0.05 0.3 

0.01 0.84 

0.001 1.5 

Position (cM) 
188.4 188.42 191.57 191.61 
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3.5 CANDIDATE GENES IN LINKAGE REGION 

We found potential candidate genes on chromosome 11q22.2-22.3 using UCSC genome browser (Figure .8). Matrix 

metalloproteinase MMP-1 and MMP-8 are believed to have a role in bone growth and metabolism. They are also involved in 

extracellular matrix breakdown, which is a very important mechanism in embryonic development and tissue remodeling. 

 

 

 

 

 

 

 

 

Figure 8. -The Potential Candidate Genes on Chromosome 11q22.2-22.3 as shown from UCSC genome browser – MMP1 and 

MMP8 were found within the region q22.2-22.3.  
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4.0  DISCUSSION 

Despite the fact that class III malocclusion have been reported as the most inheritable 

type of malocclusion, most of the investigations have concentrated on class III phenotype 

treatment modalities and outcomes while little is being done to understand the genetic aspect of 

the trait. Many human and animal studies have shown the evidence of genetic contribution of 

developing class III phenotype. 

 

Previous genetic studies of class III in Hispanic population reported area of interest on 

chromosome11. Microsatellites, D11s1886 and D11s4204, have been implicated in linkage to 

Class III (Frazier-Bowers et al., 2009).  Therefore, the focus here was to study 11q22.2-q22.3 

chromosomal region and genotyped single nucleotide polymorphisms (SNPs) close to D11s4204 

and D11s1886 (SNPs: rs1386719, rs578169, rs666723 and rs12416856). 

 

The results from our parametric linkage analysis for both Brazilian and Colombian 

cohorts support Frazier-Bowers et al. 2009 findings. Potential genetic heterogeneity was taken 

into consideration through every step in the analysis. The heterogeneity of class III phenotype 

came from different factors. First, The skeletal aspect of class III varies from only mandibular 

prognathism, maxillary hypoplasia or a combination of both.  Second, in this study, the Brazilian 
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cohort was diagnosed based on dental history evaluation using dental charts, casts, and intraoral 

photographs. In contrast the Colombian cohort was diagnosed based on skeletal evaluation using 

cephalometric radiographs. Third, it has been shown that class III malocclusion prevalence and 

the severity of phenotype may vary according to sex and ethnicity (Hartsfield et al., 2013). Class 

III malocclusion also exhibits genetic heterogeneity with evidence of multiple modes of 

inheritance. These include autosomal recessive, autosomal dominant, and autosomal dominant 

with incomplete penetrance (Cruz et al., 2008; El-Gheriani et al., 2003; Wolff et al., 1993). In 

addition, South America is one of the most diverse regions in the world since its inhabitants 

came from different population ancestries, ethnic groups and races. All these factors account for 

difficulties during the investigation and the analysis of the trait. In order to minimize the effect of 

theses factors several steps have been done before and during the analysis. Population specific 

marker allele frequencies were estimated. Also, population specific genetic maps were 

constructed based on the data available from the pedigrees. To account for genetic heterogeneity 

of the trait, the MMLS was calculated by analyzing the data under two genetic models,  dominant 

and recessive, with incomplete penetrance (Greenberg et al., 1998). Greenberg  demonstrated 

that this approach has strong power to detect linkage for complex traits..  

 

 The MMLS results show an empirically significant linkage peaks max HLOD of 1.84 

and 0.51 for both Brazilian and Colombian cohorts respectively. The results from the two 

populations support each other since both maximized under a recessive model. Further, the two 

linkage peaks are 3 cM apart (~3 X 106 bp) and the Brazilian region of interest includes the 

Colombian peak region. Given a type 1 error HLOD threshold of 1.6 (corresponding to α=0.05), 
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the simulation showed ≥ 90% power for the Brazilian cohort, which indicates enough sample 

size to detect linkage.  

 

Due to the presence of inbreeding loops in the Colombian cohort pedigrees,  linked data 

could not be simulated to calculate power. This issue could have been addressed either by 

dropping or ignoring the multiple inbreeding or marriage loops so the likelihood estimation can 

be computed, however, this will result in loosing a lot of genetic information and therefore 

reducing the power to detect linkage. 

 

We found potential candidate genes on chromosome 11 using UCSC genome browser. 

MMP-1 and MMP-8 have been shown to influence mandibular condyle growth in animal models 

(Patil et al., 2012). Proteins of MMP family are involved in the break down of the extra cellular 

matrix. This is an essential step during many physiological processes in human body like tissue 

remodeling and embryonic development.  The protein encoded by MMP family cleaves type II 

collagen and plays a role in articular cartilage turnover (OMIM, 2015). A gene expression study 

has showed a 2.33-fold up regulation of MMP-1 in condylar cartilage of New Zealand rabbits 

when a mandibular anterior device was applied (Patil et al., 2012). Mandibular anterior device is 

used as an early intervention for undergrowth mandible in children to enhance the mandibular 

condyle growth, which result in forward positing of the mandible.  Another study showed a high 

expression of MMP-8 in condylar cartilage of juvenile pigs after the application of anterior 

mandibular displacement device (Gredes et al., 2012). 
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5.0  CONCLUSIONS  

Our results suggest evidence for linkage of class III malocclusion to 11q22.2q22.3. 

Current linkage results are based on MMLS maximized over two genetic models. We suggest 

taking the entire genetic parameter space into consideration by calculating MODs for each 

population and each pedigree. This would help in further understanding the relation between 

each pedigree MOD distribution and phenotypic reality for these families.  

 

Class III phenotype expresses itself with different skeletal patterns and severity, which 

highly affect the trait homogeneity. A strict definition of class III malocclusion is needed to 

enhance the trait homogeneity thus aid in understanding the genetic bases of class III 

malocclusion. After a clear definition of the trait, one might consider categorizing the cases 

based on severity and/or dental and skeletal features.  

 

Theses results were specific for Hispanic cohorts. It would be interesting to explore the 

genes that influence the incidence of class III trait on the same region on chromosome 11 in 

other populations and ethnicities. Further, since many genes on different chromosomes have 

been associated with class III malocclusion, future research should consider studying the relation 

between different skeletal and dental pattern of class III trait and the genes associated with them.  
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