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COUPLED SURFACE AND GROUNDWATER FLOWS: QUASISTATIC
LIMIT AND A SECOND-ORDER, UNCONDITIONALLY STABLE,
PARTITIONED METHOD

Marina Moraiti, PhD

University of Pittsburgh, 2015

In this thesis we study the fully evolutionary Stokes-Darcy and Navier-Stokes/Darcy models
for the coupling of surface and groundwater flows versus the quasistatic models, in which the
groundwater flow is assumed to instantaneously adjust to equilibrium. Further, we develop
and analyze an efficient numerical method for the Stokes-Darcy problem that decouples the

sub-physics flows, and is second-order convergent, uniformly in the model parameters.

We first investigate the linear, fully evolutionary Stokes-Darcy problem and its qua-
sistatic approximation, and prove that the solution of the former converges to the solution
of the latter as the specific storage parameter converges to zero. The proof reveals that the

quasistatic problem predicts the solution accurately only under certain parameter regimes.

Next, we develop and analyze a partitioned numerical method for the evolutionary Stokes-
Darcy problem. We prove that the new method is asymptotically stable, and second-order,
uniformly convergent with respect to the model parameters. As a result, it can be used to
solve the quasistatic Stokes-Darcy problem. Several numerical tests are performed to support
the theoretical efficiency, stability, and convergence properties of the proposed method.

Finally, we consider the nonlinear Navier-Stokes/Darcy problem and its quasistatic ap-
proximation under a modified balance of forces interface condition. We show that the solution
of the fully evolutionary problem converges to the quasistatic solution as the specific stor-
age converges to zero. To prove convergence in three spatial dimensions, we assume more

regularity on the solution, or small data.
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1.0 INTRODUCTION

Groundwater constitutes the world’s most vast and valuable source of freshwater [18]. It
is essential in a wide range of everyday human activities, such as irrigation in agriculture,
industrial processes, urban development, household activities, and in many areas it serves as
the only source of drinking water. However, these same activities inevitably lead to ground-
water contamination and the deterioration of freshwater aquifers. For example, pesticides
or heavy chemical and radioactive industrial waste (Figure 1) can be transported by free
surface streams and permeate the ground, polluting groundwater. On the other hand, rising
sea levels due to the effects of climate change can potentially lead to salt-water intrusion
into freshwater aquifers. Oil extraction occasionally results in spills which also threaten to
severely pollute groundwater. Moreover, the recently adapted method of hydraulic fracturing
for the extraction of gas poses new challenges for the effective protection of the environment,
and in particular freshwater supplies. Considering the rise in population, and consequently;,
the increasing demand for fresh and clean water, and on the other hand the growing demand
for oil and natural gas, precise modeling and accurate prediction of the fluid flow in cou-
pled surface and subsurface settings are critical. This thesis addresses both modeling and
numerical solution of coupled groundwater and surface-water flows.

Modeling the interaction between groundwater and surface-water flows involves two dif-
ferent physical processes taking place in two adjacent domains: the groundwater flow region
and the surface-water flow region (Figure 1). The groundwater flow region may consist of
different porous materials, such as clay, rock or sand. In this thesis, we focus on the coupling
between incompressible Navier-Stokes or Stokes flow in the fluid region, and the groundwater
flow equation (Darcy’s law plus conservation of mass in the pores) in the porous media re-

gion. We denote the fluid and porous media domains by €2y and €2, respectively, {1/, C R4,
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Figure 1: Groundwater pollution sources and modeling of coupled surface and groundwater
flows. (Image adapted from [93] and used with permission from the NC Department of

Health and Human Services.)

d = 2 or 3, and assume they lie across an interface, I, as shown in Figure 1. Both domains
are assumed to be bounded and regular, with smooth enough boundaries, 9€;/,. We further
denote by ny,n, the unit normal vectors on ¢, €2, respectively, which satisfy ny = —n,,.
Appropriate coupling and boundary conditions are assumed at the interface and exterior
boundaries of the domains respectively. We are interested in determining the velocity field,
u and u,, in each domain, the pressure, p, in the fluid domain, and the hydraulic head,
¢, in the porous media domain (Figure 1). The evolutionary problem occurs when we are
interested in remediation or estimation of contaminated subsurface, or oil spills, for instance.

The challenges in modeling and solving the coupled (time-dependent) problem are many.

First, it is a multi-physics, multi-domain problem, and the coupling of the sub-physics pro-



cesses across the interface is exactly conservative (skew symmetric). Second, the model
parameters depend on the porous materials’ properties, and also on the degree of satura-
tion in the aquifer, and are therefore typically inhomogeneous, anisotropic, and in certain
settings, very small in value. Third, the flow in the porous media region is commonly much
slower than the surface flow, and thus multi-rate formulations, where different time steps are
assumed in each domain, are necessary. Further, because of the low permeability and thus
low hydraulic conductivity and/or low specific storage of certain confined or semi-permeable,
large aquifers, we often need to solve the evolutionary problem over long time intervals. Fi-
nally, in the case of the Navier-Stokes/Darcy model, tackling the nonlinearity adds to the
problem’s complexity. These observations further emphasize the need for numerical methods
that are efficient, stable, and uniformly convergent with respect to the model parameters.
This thesis addresses the modeling of time-dependent, coupled surface and groundwater
flows governed by the Navier-Stokes/Darcy or Stokes-Darcy systems and further involves
the development, analysis, and testing of a partitioned numerical method for the evolution-
ary Stokes-Darcy equations that allows for parallel solving of the sub-physics processes at
each times step, and that is second-order, asymptotically stable and uniformly convergent
with respect to the model parameters. In the analysis, we assume that the porous media

region is fully saturated, and that all model parameters are homogeneous.

The literature on coupled fluid and porous media flows has expanded considerably in
recent years. Since Beavers and Joseph [12] first investigated the coupling conditions between
a fluid and a porous medium experimentally, further studies have been conducted in [101,
86, 95, 67, 89, 24, 112]. The Stokes-Darcy model and its associated numerical analysis and
solution, has been studied since [33] and [82] in [33, 35, 88, 32, 36, 98, 99, 57, 37, 60, 19,
5, 91, 20, 68, 61, 30, 22, 24, 23, 42, 50, 109] for the steady case and in [115, 92, 24, 83, 21]
for the time-dependent case. The Navier-Stokes/Darcy coupling has been analyzed in, e.g.,
[32, 52, 8] for the steady case and in [1] for the time-dependent case. See [34] for an overview
of analysis and numerical methods for the Stokes-Darcy and Navier-Stokes/Darcy couplings

for surface and groundwater flows.

One common model used in, e.g., [1, 52, 25, 8], drops a term involving the time derivative

of the hydraulic head in the equation modeling the groundwater flow. The simplified model



will be referred to as the quasistatic model, because one of the two sub-physics processes in
the coupling is assumed to instantaneously adjust to equilibrium. However, due to the effect
of poroelasticity, the flow in the pores is slightly compressible, and the model adjusts slower to
equilibrium. In this thesis we investigate under which circumstances it is justified to use the
quasistatic model and drop the time-derivative term from the groundwater flow equation.
We prove that the solution of the fully evolutionary Stokes-Darcy problem converges to
the quasistatic solution as the specific storage parameter converges to zero, see also [90].
Further, we analyze the Navier-Stokes/Darcy coupling and prove that the solution of the
fully evolutionary model converges to the quasistatic solution. For the convergence in the
nonlinear case we modify the balance of normal forces coupling condition to include an
“inertia” term. To show convergence in three spatial dimensions in the nonlinear case, we
assume more regularity on the solution or small data. Several numerical tests are performed

to confirm the theoretical rate of convergence to the quasistatic solution.

One approach in the numerical solution of the coupled problem is monolithic discretiza-
tion by an implicit method and iterative solution of the resulting system by domain decom-
position. Partitioned methods, on the other hand, uncouple the two sub-physics flows and
allow for parallel solution of each sub problem, and thus require only two symmetric positive-
definite solves per time step. The decoupling is achieved by using implicit methods for the
discretization of the sub-physics flows, and explicit methods for the coupling terms. In this
thesis, we analyze a partitioned method that uses a combination of the Crank-Nicolson and
Leapfrog time-marching schemes with added stabilization terms for the temporal discretiza-

tion of the fully evolutionary Stokes-Darcy problem.

One typical limitation of partitioned methods is their conditional stability under time
step conditions that often depend on the model parameters. Since several of the physical
parameters in modeling surface and groundwater flows are small in value, this often results
in a computationally impractical time step size for stability. The first partitioned methods
for the fully evolutionary Stokes-Darcy problem were studied in [92], and were first-order
accurate. Additional partitioned methods were analyzed in [83, 102], and higher-order par-
titioned methods were studied in [85, 21]. Methods with different time steps in each domain

were studied in [103]. In [75], it was shown that the combination of Crank-Nicolson and



Leapfrog for the time discretization results in a second-order partitioned method for the
Stokes-Darcy system that is conditionally stable under a time step condition that is highly

sensitive to small values of the specific storage parameter.

The implicit-explicit combination of Crank-Nicolson and Leapfrog (CNLF), which results
in a second-order method, is widely used in the coupling of atmospheric and oceanic flows and
in climate modeling and prediction, see, e.g., [100, 7, 105, 114, 28, 27]. The method was first
analyzed in [70], and stability for systems was recently proven in [85]. The two limitations of
the method are a strong time step condition required for stability and also a weak instability
exhibited through the unstable mode of Leapfrog, (u"*'+u""1), (for which u"*'+u"~! = 0),
see, e.g., [55, 74]. In [64], we prove asymptotic stability of the unstable mode under the usual
time step condition of the method. Due to the strong time step condition, modular time
filters, such as the Robert-Asselin-Williams (RAW) filter, [100, 7, 105, 114, 63, 43, 65],
have been developed. However, even with the use of time filters like RAW, CNLF can be
too restrictive computationally. For a general theory of implicit-explicit methods, see, e.g.,

29, 108, 6, 44, 62, 4, 107, 26, 110].

In this thesis, we analyze the CNLF method first applied to a general evolution equation,
and develop a non-modular stabilization that increases accuracy while it also eliminates all
time step conditions for stability and is long-time stable, in the sense of, e.g., [73, 106, 84,
54, 83]. The stabilization is similar to tools developed in [4, 77, 40, 31]. Further, we prove
that the method is asymptotically stable in the unstable mode of Leapfrog, see also [69]. We
perform numerical tests to support asymptotic, unconditional stability and second-order,
increased accuracy of the method. We next, extend the stabilized CNLF method to the fully
evolutionary Stokes-Darcy coupling, see [76]. The resulting partitioned method eliminates
all time step conditions for stability and is asymptotically stable in the unstable mode of
Leapfrog. In addition, the method retains second-order accuracy of CNLF. We analyze the
method’s stability and convergence properties and prove unconditional, asymptotic stability
and uniform convergence with respect to the model parameters. We further perform a
series of numerical tests to demonstrate the method’s unconditional stability under small
parameter values, verify its second-order accuracy, and show its effectiveness versus fully

coupled methods by comparing computational costs.



1.1 THESIS OUTLINE

In Chapter 2 we introduce the necessary notation and analytical tools used in the analysis.
Chapter 3 introduces the fully evolutionary Stokes-Darcy (SD) model for coupled surface
and groundwater flows. We start with the conservation laws that describe each sub-physics
process and the coupling across the interface, and derive the equivalent weak formulation.
We also prove a two-domain embedding inequality that is important in the analysis.
Chapter 4 deals with the quasistatic approximation in the SD model. We prove that the
solution of the fully evolutionary SD problem converges to the solution of the quasistatic
problem as the specific storage parameter converges to zero. The proof reveals that the
quasistatic model predicts the solution accurately only under specific parameter regimes.
In Chapter 5 we develop a stabilization for the well known Crank-Nicolson Leapfrog time
stepping scheme for a general evolution equation. We prove that the resulting method is
unconditionally, asymptotically stable, while increasing accuracy.

In Chapter 6 we extend the stabilization from Chapter 5 to the fully evolutionary SD problem.
We prove that the resulting partitioned algorithm is unconditionally, asymptotically stable,
and second-order convergent, uniformly in the model parameters.

In Chapter 7 we introduce the nonlinear, fully evolutionary Navier-Stokes/Darcy (NSD)
model for coupled surface and groundwater flows, and consider its quasistatic limit. We
prove that the solution of the fully evolutionary NSD model converges to the quasistatic
solution as the specific storage converges to zero under a modified coupling condition. In
three spatial dimensions we assume higher regularity or small data.

In Chapter 8 we conduct numerical tests to support the results of Chapters 4, 5, and 6.
Finally, we present concluding remarks and discuss future research objectives in Chapter 9.
Some complementary proofs to the analysis are given in Appendix A, and the code used in

the numerical tests in Appendix B.

Remark 1. The work in Chapter 4 is based on [90], Chapter 5 on [69, 64/, and Chapter 6
on [76].



2.0 PRELIMINARIES

2.1 NOTATION

We begin by introducing the necessary notation. In the definitions below, u and v are scalar

functions, u = (uq,...,uq)” and v = (vq,...,v4)" are vector-valued functions, d € {2,3},
. d d .

and M and N are second-order tensors with elements {M;;};,_, and {Nj;}; ._, respectively.

We allow these functions to depend on both space and time. We denote the Euclidean norm

d 3
] (z w) |
=1

d
u-Vv .= E U;V;,
i=1

and the inner product of M and N by

of v by

the inner product of u and v by

d

ij=1
Further, we write u- M - v for the scalar quantity u"Mv:
d
u-M-v:=u"Mv= Z u;M,;;v;.

ij=1

Let 2 C R? be an open set, d € {2,3}. We indicate by LP(Q), 1 < p < oo, the space

/Q|U(X)|p dx < oo} |

LP(QY) := {v : Q — R, v Lebesgue-measurable function




LP(Q2) is a Banach space endowed with the norm

el = ([ ooP dx)l/p7 1<p<oo
In the special case when p = 2, L*(Q) is a Hilbert space equipped with the inner product
(u,v)2(q) := /Qu(x)v(x) dx.
We let L2(€2) be the space
L) = {v € L*(Q) ‘ /Qv(x) dx = O}.
Furthermore, we denote by L>(€2) (case p = c0) the space

L®(Q) = {U QR

inf {C' >0 :max |v(x)| < C} < oo almost everywhere in Q} )
which is equipped with the norm
|v]| ooy := inf {C' > 0 : max|v(x)| < C almost everywhere in 2} .
Here, “almost everywhere in 27 means
meas (x € Q : inf{C' >0 :max|v(x)| < C} =00) =0,

where “meas” represents the Lebesgue measure in R.

For a vector function v € (LP(Q))%, we define the corresponding norms as
d 1/p
V]l (o) = (/ Z lv; (x)]? dx) , for1<p<oo, and
=1
V|| Lo () := inf {C’ >0 : max , |v;(x)| < C almost everywhere in Q} , for p=oo.
1S
In the special case p = 2, we define the inner product of u,v € L*(Q) through

(0, V)12 = /Qu(x) -v(x) dx.



Av(x,t)
ot

We use the short notation v(x,t) := for the derivative of v with respect to time . We

indicate by “V” the gradient operator defined for a vector function as

_ Oy;
(VV)Z']' = axi’

ij=1,...,d,

and by “D(-)” the deformation tensor, defined as

(D(v));; = %{(vv)” + (V)i di=1,....d.

Further, the divergence operator for vector functions is given by

d ov;
V.V:_Zlax

)
7

and for second-order tensor functions by

d
oM,
(V-M);:=> —%, i=1,....d
= ij

In addition, “A” represents the Laplace operator

4 9
(AV)Z'I: E 83}21’ /Lzl,,d
Jj=1 ’

Next, we introduce the usual notation for Sobolev spaces. Let £ € N and 1 < p < co. The

space W*P is defined as follows:
WHhP(Q) == {v € LP(Q) : D* € L*(Q),V multi-indeces a with |a| < k},

where a = (ay,...,aq), @; € N, and |af = oy + ... + ag. D% indicates the distributional

derivative of v:
dlely
(e%] g ”
0x{" ... 0z,

In the special case when p = 2, the Sobolev space W*?2(Q) is denoted by H*(2) and stands

D% :=

for the space of functions v that belong to L*(€2) and whose distributional derivatives up to

and including order k also belong to L?(Q):

HY(Q) = {v e L*(Q) : D* € L*(R),V multi-indeces o with |ee| < k}.



H*(Q) is a Hilbert space equipped with the norm

HU||Hk(Q) = Z ||DQUH%2(Q)

lox| <k
and the inner product defined through the L? inner product as
|a|<k
Finally, we define the space H}(f2) to be the closure with respect to the H'-norm of the

space of smooth functions with compact support, that is,

HY(Q) = T ()

-1l 71 @
For simplicity, we will use the following short notation to distinguish between the various

inner products and norms over the domains {2y, €2,, the boundaries of the domains 9y,

02, and the interface I:

(u,v)pp = (usv)120,,) = / u(x) v(x) dx,

Qt/p
(W, V)i = (0, v)r2q,,) = u(x) - v(x) dx,
I/ (f/p) /f/p
(M,N)y/p := M(x) : N(x) dx,

Qy/p

(U, ) ppy1 = / u v do,
00 /00, /T

(W, V) f/p/1 = / u-v do,
0 /0 /1
10ll 10 = M0l 20y, = (/ [v(x)|* dX) :
Qs /p

1
d 2
Vil = V2, = vi(x)[* dx |,
Q

f/p i=1

d 3
Mg/ = ( > M) dX) :

Qf/p i j=1

N

1
vll,s7 = 10l gy, = (10115, + 1V0I1F )2

D=

IVllt e = IVllzy,) = (IVIF 5 + VVIF,)
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Further, we denote by
Hg,(Q) = {v € (L*())*: V-veL* )}
the Hilbert space H'-div, which is endowed with the norm
[¥lkavs := (VI3 + IV - vI3)*
Last, we let

L*(0,T;X)={v:[0,T] = X : /0 Iv()|% dt < oo},

L=(0,T;X) ={v:[0,T] = X : sup]{HV(t)Hx} < oo},

te[0,T

for any Hilbert space X, where T" > 0, with the corresponding norms respectively

1/2

([ o a)

[VllL=orx) = sup [[v(#)llx.
t€[0,T]

[Vl z20,7:x) :

11



2.2 USEFUL INEQUALITIES

Throughout this thesis we will use the results listed below.

1. Holder’s inequality, which states that for all p,q with 1 < p, ¢ < oo such that % + é =1,
there holds

| (4, 0) 2y | < Nlullze@ vl og)- (2.1)
In the special case when p = 2 we have the Cauchy-Schwarz inequality:
| (u,0) 20y | < llull2@llv]] 22 (2.2)

Furthermore, by applying Holder’s inequality twice, we also have: for all p,q,r with

1 <p,q,r <oosuchthat £ + 241 =1,

/QIUIIUIIwI dz < [Jul| Lo 0]l Loy w0l - (2.3)

2. Young’s inequality, which states that for any two non-negative numbers a, b, any € > 0,

and any p,q with 1 < p, ¢ < oo such that ]lj + é = 1, there holds

1
ab < Sa? + be. (2.4)
P QGQ/P

For p = 2 we have the elementary case of Young’s inequality:
ab < Sa? 4 41 (2.5)
-2 2¢ ’

3. The Poincaré-Friedrichs inequality [46], which holds for all v € (H{ (€ /p))d, given by

IVIl70 < Crr gl Vs /p, (2.6)

where Cprp ¢/, is a positive constant that depends on the domain Q.
4. One form of Korn’s inequality [48, 53], which states that the H' semi-norm of v €
(H'(2))" is bounded by the L*norm of the deformation tensor of v:

IVVl7a@) < CxlID™)[720), (2.7)
where C'i is a positive constant.

12



5. The standard inequality

IV - V] 120y < V||V 120 (2.8)
6. The standard trace estimate
1/2 1/2
IVllz200y,,) < Cryml VI IV, (2.9)

where Cr 5/, is a positive constant that depends on the domain 2/, see, for example,
[14, Chapter 1.6, p. 36-38].

7. The integral form of Gronwall’s lemma: assume that t € Z = [a, b], [a, ), or [a,0), a < b,
[ is a non-negative, continuous function, « is a non-negative, non-decreasing function,

and w is continuous and satisfies the integral inequality
t

u(t) < a(t) + B(s)u(s)ds, VteT.

Then .
u(t) < alt) exp ( B(S)ds) , Vtel. (2.10)

13



3.0 THE STOKES-DARCY MODEL

In this chapter we present the fully evolutionary Stokes-Darcy problem and derive its equiva-
lent weak formulation. The Stokes and the groundwater flow equations are introduced along

with appropriate coupling conditions across the interface between the two domains.

3.1 THE EVOLUTIONARY STOKES-DARCY PROBLEM

o9,

Figure 2: Fluid and porous media domains (example of a 2d cross-section).

To model the interaction between surface and groundwater flows we assume Stokes flow
in the fluid domain, €2¢, and the groundwater flow equation in the porous media domain, €2,
(Figure 2). The system of equations along with the boundary conditions and the appropriate
coupling conditions at the interface I are presented next. We denote by ny/, the outward

pointing unit normal vector on €y, respectively, where n, = —ny. The velocity, u = u(x, ),

14



and the pressure, p = p(x,t), defined in Q; x [0,T], T > 0, satisty

pu, — V -II(u,p) = £; in Qf x (0,77,

~—~~ o~ o~~~
w W
N =
—_  — ~—  ~—

w
N

V-u=90 n QfX(O,T],

@
w

u=0 in (024\I) x (0,77,

u(x,0) = uy(x) in Qy,

and the velocity, u, = u(x,t), and the hydraulic head, ¢ = ¢(x,t), defined in Q, x [0,7],

satisfy
Sope +V-q=f, in €, x (0,77, (3.5)
q=-KV¢ in Q, x (0,77, (3.6)
u, = % in Q, x (0,7], (3.7)
=0 in (02,\I) x (0,77, (3.8)
d(x,0) = ¢o(x) in €, (3.9)
where

II(u,p) = —pI + 2uD(u) is the stress tensor,

q is the specific discharge, defined as the volume of the fluid flowing per unit time through
a unit cross-sectional area normal to the direction of the flow,

Sp > 0 is the specific storage,

K = K(x) is the hydraulic conductivity tensor,

f; & f, are the body forces in 2; and the sources or sinks in €2,

iw>0& p> 0 are the dynamic viscosity and density of the fluid respectively, and

n € (0,1] is the volumetric porosity.
The hydraulic (or piezometric) head ¢ can be expressed as
— P
¢= g T %

15



where

pp is the pressure in €2,
g > 0 is the gravitational acceleration constant, and

z is the elevation head (the elevation at the bottom of a piezometer).

For simplicity, we will assume that z = 0, so that p, = pg¢. The equations describing
the incompressible Stokes flow in the fluid region are conservation of momentum (3.1) and
conservation of mass or the incompressibility condition (3.2). For a rigorous derivation of
the equations describing the surface flow (3.1)-(3.2) see, e.g., [46]. We further assume no
slip (condition (3.3)) at the exterior boundary of €2y (not including the interface I). The
equations representing the groundwater flow in the porous media region are conservation of
mass (3.5) and Darcy’s law (3.6). See [11] for a derivation of (3.5) from conservation laws
and also Remark 2 below. We assume homogeneous Dirichlet boundary conditions at the
exterior boundary of €2,. The analysis in the upcoming chapters extends to other exterior
boundary conditions as well. In the next section, we present the coupling conditions assumed

at the interface I.

3.2 COUPLING CONDITIONS

The two systems of equations, (3.1)-(3.3) and (3.5)-(3.8), describing the flow in each sub-

domain, are coupled by the following conditions across the interface I:

1. Conservation of mass:

u-ny+u,-n,=0 on [ (3.10)

2. Balance of normal forces:

— — — o ..
Let t = t (u,p) denote the Cauchy stress vector, ¢ = ny-II. Then, continuity of
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forces gives

—- A
Pp = — t (U,p) Ry
= pg<b = —flf . H(u,p) . flf
=p—2uny-D(u)-ny, on I. (3.11)

3. The Beavers-Joseph-Saffman (BJS) slip condition:
Let {‘i‘i}f_ll denote an orthonormal basis of tangent vectors on /. The Beavers-Joseph-

Saffman condition on the tangential velocity is

(@]
—2n;-D(u) - 7=———u-7;, fori=1,...,d—1, on I, 3.12
s D(u) V7. K- 1, (3.12)

which is a simplification of the original and more physically realistic Beavers-Joseph

condition, see [12]:
<—?<u,p)) = (u—w,)- 7y, fori=1,....d—1, on I. (3.13)

The latter states that the tangential component of the normal stress of the flow in the
conduit at the interface is proportional to the tangential velocity in the conduit at the
interface. In (3.12) and (3.13), @ > 0 is a dimensionless, experimentally determined con-
stant. The former condition is due to Saffman who further studied condition (3.13) and
found that the term “u,” was much smaller than the rest of the terms in the condition,
and proposed that the term be dropped [101]. For more information about the Beavers-
Joseph-Saffman condition see also [72, 95, 67]. In light of the simplified condition (3.12),
it is clear that the coupling between the two flows happens through the first two interface

conditions, (3.10) and (3.11).

17



3.3 IMPORTANT PHYSICAL PARAMETERS

Before we present the variational formulation of the Stokes-Darcy problem we take a closer
look at two physical parameters of the problem that are of particular importance in this
thesis: the specific storage and the hydraulic conductivity.

The hydraulic conductivity tensor, K, appearing in Darcy’s law, (3.6), is symmetric,

uniformly positive definite, satisfying
kmin’€|2 < € : K(X) ’ € < kmax|£‘27 (314)

for some 0 < kmin < kmax and for all & € R?. The hydraulic conductivity is a property of
porous materials such as rocks and soils that measures the ease with which a fluid (usually
water) moves through the pore spaces or fractures of the porous medium. It depends on the
intrinsic permeability of the material, the degree of saturation, as well as the density and
viscosity of the fluid. In particular, its components take the form

K. _ "rg

i )
v

where [ is the characteristic length of the pores. The hydraulic conductivity has units of
length/time. Its values are either determined experimentally through Darcy’s law (3.6) or
empirically from soil properties, like pore or particle size. Table 1, taken from [10], presents

typical values of the hydraulic conductivity for different materials.

The specific storage, Sy, represents the volume of water that a portion of a fully saturated
porous medium will release (or absorb) from storage per unit volume, per unit change in
hydraulic head, see [58, 45]. It can be defined as Sy = S/b, where S is the storativity
coefficient (dimensionless) and b is the height (or thickness) of the aquifer [113]. Therefore,
it has units 1/length. In confined aquifers', the values of Sy range from 107% or smaller for
rock to 1072 for plastic clay, see [39], while in unconfined aquifers Sy is larger. In Table 2

we give a few representative values of Sy in confined aquifers, see [38, 71, 2, 9].

LA confined aquifer is one bounded above and below by impervious formations. In a well penetrating
such an aquifer, the water level will rise above the base of the confining formation. An unconfined aquifer is
one with a water table serving as its upper boundary, see [11].
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Table 1: Hydraulic conductivity values for different materials

Material Hydraulic conductivity (m/s)
Well sorted gravel 107t — 100

Highly fractured rocks 1073 —10°

Well sorted sand or sand & gravel 107 — 1072

Oil reservoir rocks 1076 — 1074

Very fine sand, silt, loess, loam 1078 —107°

Layered clay 1078 — 10"

Fresh sandstone, limestone, dolomite, granite 10712 - 1077

Fat /unweathered clay 10712 -107°

Remark 2 (Poroelasticity and the origin of the critical term Sy¢;.). The term “Sogy” in
(3.5) arises because aquifers consist of elastic media and the porous matrix responds slowly,
but not instantaneously, to changes in the pressure of the fluid, [18, 111]. Moreover, soil
particles consolidate as pressure drops, and liquids are slightly compressible, [96]. Thus,
n=n(p,), and p = p(p,), where n is the volumetric porosity, p the density of the fluid, and

pp the pressure in the porous region. Conservation of mass in the pores gives:

%(n/)) + V- (pq) =0. (3.15)

We have

9 (np) = mup +
ot np) = mp - npy

([ On 9p, Op Opy
- <8pp ot ) o (3pp ot
opy

= p(nB. + Cv)ﬁa
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Table 2: Specific storage values for different materials

Material Specific Storage Sy (m™!)
Plastic clay 2.0x 1072 —-2.6 x 1073
Stiff clay 2.6 x 1072 -1.3x 1073
Medium hard clay 1.3x1073—-9.2x 10~*
Loose sand 1.0x 1072 —-49x 104
Dense sand 20x107* - 1.3 x 1074
Dense sandy gravel 1.0x107*—-4.9x107°
Rock, fissured jointed 6.9 x107° —3.3 x 1076
Rock, sound less than 3.3 x 1076
where

Be = Ldp 1s the compressibility of the fluid, and
p dpp

Cy 1= j—; 1s the coefficient of consolidation in soil mechanics.

The hydraulic head ¢ and pressure p, satisfy

dp 1 Op,

ot gplpy) Ot

Consequently, (3.15) becomes

0
9p°(nfB: + Cv)ﬁ—f — V- (pq) = 0.

It is common to assume, based on experimental data, that |0p/0x;| << O(1) and thus one

factor of p can be canceled. Hence, defining the specific storage to be

SO = gp(n/Bc + Cv)a

we obtain the conservation law of flow through porous media, (3.5).
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3.4 VARIATIONAL FORMULATION OF THE STOKES-DARCY
PROBLEM

In this section we derive the variational formulation of the evolutionary Stokes-Darcy problem

described by the system of equations (3.1)-(3.12). Let
Xp={veH Q) : v=0ondQ\I}, Q=L
denote the velocity and pressure spaces in {2y respectively, and let

={yp € H'(Q,) : v =00n Q\I}

denote the hydraulic head space in €2,. To arrive at the equivalent variational formulation
we first multiply the groundwater flow equation (3.5) by ¢ € X, and integrate over (2.
Using integration by parts, Darcy’s law (3.6), equation (3.7), the fact that ¢ € X, and the

coupling condition (3.10), we obtain

(fp7 w)p - (50¢t7 w)P + (v qv )

= (SOth: w)p (q7 vw) <q ’ ﬁp? w>P

= (So¢t, ¥)p + (KV@, V), + (nuy, - 1y, )
( )p + (

= (Sote, V), + (KV, Vab), — n{u - fiy, ). (3.16)

p

Next, we multiply the Stokes equation (3.1) by v € X and equation (3.2) by ¢ € )y, and

integrate over {2;:

(£r.v)y = pw, v)p — (V- 1L v)s
= P(ut, V)f + (VPa V)f - ZU(V : D(“)ﬂ V)f> (3'17)
(V-u,q)y=0. (3.18)
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Using integration by parts and the fact that (D(u), Vv) = (D(u),D(v)) for v € Xy, (3.17)

becomes

(£r,v)y =p(a, v); — (0, V- V) +(p, v -0p) + 2u(D(u), Vv); — 2u(D(u) - 0y, v) s

= p(u,v)y — (p, V- v)s + (p,v - ig)r + 20(D(w), D(v)); — 2(D(u) - iy, v);.
(3.19)

We express the test function v in terms of the orthonormal basis of R? consisting of the

normal vector ny and the tangent vectors 7;,i =1,...,d — 1:
d—1
v = (v T)Ti+ (v-ny)ny
=1
Then,

By substituting this last term into (3.19) we have
(fr,v); = p(u, v) — (p, V- v); +2u(D(u),D(v)); + (p — 2u 0y - D() -0y, v - 0ip)g

—2p» (#;-D(u) -y, v i)
Applying the interface conditions (3.11) and (3.12) we obtain

(£r.v)y = p(w, v) — (p, V- v); +2u(D(u), D(v)); + pg(d, v - 0yp)r

Dividing both sides by p, and letting v = u/p denote the kinematic viscosity, we finally have

(£r,v)y = (W, v); = (5, V - v); + 2v(D(u), D(v)); + g(¢, v - fy);

d—1

74:1<\/7-’L K 7217

+ rva

I
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where f; = f;/p and p = p/p. We now multiply (3.20) by n and (3.16) by ¢ to obtain
r=1/p P

n(fr, v); = n(w,v); —n(p, V- v); + 2n0(D(u), D(v)); + ng(e, v - iy,

9(fps¥)p = (S0, ¥)p + 9(KV, V), —ng(u - ng, ¥)r.

(3.21)

(3.22)

Finally, letting ay : Xy x Xy = R, a, : X, x X, 2 R, b: Xy xQr - R,and¢c; : Xy x X, = R

denote the bilinear forms defined respectively by

af(v,w) :=2nv(D(v),D

) —l—nl/az <mw7>l
ap(1h,§) = g(KV), VE),,

br(v,q) == —=(¢, V- v)y,

cr(v,) == ng(y,v-hp)r,

the variational formulation of the evolutionary Stokes-Darcy problem is:

Find (u,p,¢) : (0,T] = Xy x Qf x X, such that for all (v,q,9) € X§ x Qf x X

n(w, v)s +nb(v,p) + ap(u,v) + c1(v, ¢) = n(fy, v)y,
bs(u,q) =0,
9(50@7 1/));) + ap(¢7 ¢) - CI(U-a w> = g(fpa w)pa

given the initial data u(x,0) = ug(x) and ¢(x,0) = Po(x).

(3.23)

(3.24)
(3.25)
(3.26)

(3.27)
(3.28)
(3.29)

It is important to notice the exactly skew-symmetric (conservative) coupling between (3.27)

and (3.29) through the interface term cy(-,-).
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3.5 ANALYSIS OF THE VARIATIONAL FORMULATION

We now analyze the variational formulation of the Stokes-Darcy problem, (3.27)-(3.29), and

briefly discuss its well-posedness.

Lemma 1. The bilinear form bg(-,-) defined in (3.25) is continuous and satisfies
b (v, @)l < VdllalfIVvlly, (3.30)
for all g € Qs and v € Xy. It follows that the divergence-free subspace Vy of Xy,
Vy={veX;:(q,V-v);=0, Vg €Qr}, (3.31)
is a closed subspace of Xy.

Proof. The continuity bound follows by applying the Cauchy-Schwarz inequality and inequal-
ity (2.8). [

Proposition 1 (The continuous inf-sup condition). There exists a constant 5* > 0 such

that
b
wf sup VDS g g (3.32)
9€Qr veX; Vvl llall s
970 yzo

The continuous inf-sup condition (3.32), also known as the Ladyzhenskaya-Babtska-Brezzi
(LBB) condition [78], is a compatibility condition that guarantees the existence and unique-
ness of p in the Stokes problem, given the velocity u, and further, it guarantees that p is

stable.

Lemma 2. The bilinear forms ag(-,-) and a,(-,-) given in (3.23) and (3.24) respectively are

symmetric, continuous and coercive, and satisfy

las (v, w)| <nv 2+ aCrCrry 19| ]|V w] (3.33)
AR = 2\/% f I .
ar(v.v) 2 22w 4 LS /(v F? do = 22X v + Xy 22
7 N CK / kmax i=1 71 ' . CK f kmam o

(3.34)

!@p(w,é’)! < gkmax\lvaHVSHp, (3.35)

ap(, ) = ghminl V|7, (3.36)

24



forall v,w € Xy and all ¢,§ € X,,.

Proof. Let 1, € X,. Since K is positive definite, and 0 < kpin < A(K) < kpas, where
A(K) is the spectrum of K, (3.35) and (3.36) are straightforward. For v,w € Xy, and using

Ti- KT > kpin, Vi, the Cauchy-Schwarz inequality, and the trace inequality (2.9), we have

nvaCy
as(vow)l < 2099l + 2SIV 19 Il

Applying the Poincaré-Friedrichs inequality (2.6) twice we obtain

nvaCy, ;Cpp,f

V kmzn

|ag(v, w)| < 2n0([Vv|[f[Vw([f + Vvl VWi

Finally, using Korn’s inequality, (2.7), and 7; - K- 7; < kyae, Vi, we get

d—1
2nv nvo
a0/ (v.v) 2 G2V + / (v-#) do.
1

C V kmax i=

]

We next turn our attention to the interface coupling term, ¢;(-,-), which is a key quantity

in the analysis of the Stokes-Darcy problem.

Lemma 3. The bilinear form c;(-,+) is continuous and satisfies

c1(v,¥)| < ngCr.;Crp,Cil } ORIV VIV, (3.37)

forallv e Xg,9 € X,.

Proof. (3.37) follows by applying the Cauchy-Schwarz inequality and then the trace (2.9)
and the Poincaré-Friedrichs (2.6) inequalities for v and . O
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In view of Proposition 1 and Lemmas 1-3, existence and uniqueness of a solution (u, p, ¢)
to the problem (3.27)-(3.29) follow by the theory of saddle point problems found in, e.g.,
[16, 15], see also [82].

We will often use the equivalent variational formulation of the Stokes-Darcy system over
the divergence-free space Vy:

Find (u,¢) : (0,T] = Vy x X, such that for all (v,) € V§ x X,

n(u,v); +ap(u,v) + ci(v, ¢) = n(fs, v, (3.38)
9(Sode, V) + ap(d, V) — cr(u,¥) = g(fp, ¥)y, (3.39)

given the initial data u(x,0) = uy(x) and ¢(x,0) = Po(x).

3.6 A TWO-DOMAIN EMBEDDING INEQUALITY

In the upcoming chapters we will use a two-domain embedding inequality, which we prove
next in Theorems 1 and 2. It is a continuity bound on the coupling term [ ;Pu-ny do.
In Theorem 1 we obtain a bound for the integral under the assumption that there exists a
C!'—diffeomorphism between the domains Q; and €,. In Theorem 2 we show that a similar
inequality holds without any extra restrictions on {2y and €2, but assuming instead that the
interface I between the two domains is of the form x4 = f(z1,..., 24 1) for some C! —function
f (Figure 3). The resulting inequality is a standard result in the case when €, = Q; and
I = 0Qy, see, e.g., [51], or in the special case when (2, is contained in 2y and I = 0.
However, it is not known what the most general domains and shared boundaries are for the
inequality to hold. In Theorems 1 and 2 we show that the inequality holds for many special

cases without any extra assumptions or constraints on ¢ or u.

Theorem 1. Assume that there exists a C*—diffeomorphism F : Q; — Q,, so that there

exist constants Cy,Cy > 0 such that

1
< (Y, in Yy, (3.40)
|det(F)]
|F/|H2‘lb S 027 m Qf, (341)
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Figure 3: Domains €2 and €2, (example of a 2d cross-section).

where F' is the Jacobian matriz of ¥, and | - |gay denotes the Hilbert norm. Then

[y da\ < Cllallaons 9]l (3.42)
I

where the constant C' is given by C' := C; max{1l, Cs}.

Proof. We define gg :Qp =, by

(gboF)(X) , X € Qf
o(x) ,xel.

By the divergence theorem we have

/¢u-f1fda:/q3u-f1fda: qgu-flfda:/ V-(éu) do
I I 99 Q

= OV -u dx + V¢ - u dx.

Qy Qf

Thus, by the Cauchy-Schwarz inequality we obtain

] [oun, da] < [l s 3]s (3.43)
I
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Next, the change of variables theorem yields

EINE ( [ (oem 9o G dx)

N[

< ( | (60FF + V(o B)P) det(E) dx)
Qf

- ( / (of + 9.1 dn)

< (/Q (|¢|2+ |F,|%Iilb|vn¢|2) dn)

< Cymax{1, Gy} (/Q

€2,, denotes the gradient operator in §2,. The inequality now follows by combining (3.43)
and (3.44). O

N[

[NIES

N[

(6P + 1Vaol) dn) = Clloll1p, (3.44)

P

where Vi = V(,,

,,,,,

Remark 3. In the special case when the field u is divergence-free (V -u = 0) a similar

inequality holds. Assuming V -u = 0 in Qf and following the same steps as in the proof of

Theorem 1 we obtain

Jou-iy do| < clal v, 3.19)
I

where C' = C1Cy instead.

Theorem 2. If Q;,Q, C RY d =23,..., are two domains that lie across an interface I

from each other given by I = {(x1,...,1q) ERY: 29 = f(x1,...,241)}, where f : Rt = R

is a Ct—function, then

[ da\ < Cllallaons 6]l (3.46)
I

where the constant C' is given by C' =14 2sup {|fo], x € x ! ay, bi]}, and

a; == min{z; : (x1,...,2q9) € QrUQ,} € R,

b, == max{z; : (x1,...,24) € QrUQ,} €R,
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Proof. We restrict the interface I as follows, and denote the restricted interface by I:
I={(z1,...,2q9) €ERY: 1z € [ag,bi],i=1,...,d =1, zg= f(x1,...,24.1)}.
Next, we embed the two domains Qy, 2, in domains D+, D~ C R? respectively, defined as

D+ = {(ZL’l,...,Id_l) - [al,bl] X ... X [ad_l,bd_1]7f <y < f+M},

D™ = {(‘Tl,...,l’d,1) € [al,bl] X ... X [ad,l,bd,l],f - M S Tq S f},

where M := max{|zq — f(z1,...,2q-1)| : (x1,...,2q4) € QrUQ,}, as shown in Figure 4. We

y=rx+M

Figure 4: Domains DT and D~ (example of a 2d cross-section).

extend the functions u/¢ by zero on D*/~, and denote the extended functions by u/¢. Let

(21, ..., xq-1,2f(x1,...,04-1) —xq) in DT

F(xy,...,2q) =
(x1,...,24) on ODT.

The Jacobian matrix of F is given by

Tia—1) | O@—1)x1
F/

oV f| -1

29



and thus the Jacobian determinant is det (F') = —1. Defining ¢ : D* — R as ¢ = po F, we

have by the divergence theorem

/gbu nfda'—/gbu n; do

/ ou-n; do
oD+
= V- (¢u) dx

D+
:/D+ (v&-u+q3v-u> dx.

Using the Cauchy-Schwarz inequality we get

KR da‘ < /D <|Vg5||u| + |¢3||v-u|> dx
< [ (1997 +12) " (419 -ul) 7 ax

< (/D+ <|V<5|2 + |¢~5|2> dx) 1/2 (/D+ (uf + 9 - u?) dx) 1/2
- (/m <|V<5\2 + |<Z~5!2) dx) v (/Qf (a4 19 uf?) dx> 12
= etaws ([ (193 +16F) ) g

By the change of variables theorem we have

[ (1930 +168) ax= [ (V(@oB)R +1o0 ) [der®)] dx = [ (90 +1F) dn,

where V. denotes differentiation with respect to x € Dt and where n = (1,...,14) € D™.
We have

d¢ On; 9¢ I 9¢ I
(Z 8771 axl ZZ aTh 8$2 ‘ Z 8771 amd)
<_¢> 96 0f 09 6’¢3f 06, 06 0Of @)

T R R , 12t 2L
om N Ox1’ 0N Na 0xs’ Ong—1 Na Ox4—1 Ong

(2000 o 8¢>+2@<6’_fﬁ 1)
3771 8772 7877d—1’ Ongq 0xy Oz’ Owgy’ '
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If V,, denotes differentiation with respect to n € D™, then

(2800

Oxy’ Oxg’ 7 Oxg_q’

99

Nd

|vx¢>|§’<a¢ ¢ ¢ a¢)‘+2

I T TTRE T

0
< |Vad| +2’—¢’ Vi f]
Nd

< [Vpol(1+ 2|V f]).

Therefore,

[y da' < (14 20V D) [l 6l o
I
— (14 2V Dl 1l

< (14 2sup { |V f], x € x{ [as, b:] }) Jullaiv.fl|6]]1,p-

]

Remark 4. In the special case when the field u is divergence-free (V -u = 0) a similar
inequality holds. Assuming V -u = 0 in Qf and following the same steps as in the proof of

Theorem 2 we obtain

Jou-y da| < Clul 1961, (3.47
I
where C is the same constant as in Theorem 2.

Remark 5. The result in Theorem 2 can be extended to piecewise linear interfaces. If the
interface I is given by I = {(z1,...,24) € R : 24 = f(x1,...,0q-1)}, where f: R - R

1s a piecewise linear function that consists of k linear pieces, {Ii}le, given by

d—1
Ii:{(xl,...,xd)ERd: xdzﬁi—i-Zozijxj; ﬁi,aijER}, 1=1,...,k,

Jj=1

then, following the same steps as in the proof of Theorem 2 on each piece I;, we get

.....

where A; = (41, .., 04-1), 1=1,... k.
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Remark 6. [t is worth noting that in the special case when the interface I is flat (i.e., when

f is constant and Vf = 0), inequalities (3.46) and (3.47) hold with C' = 1:

’/Gﬁu -1y dd‘ < [[ullaw sl and (3.48)
1

oy da\ < [l V9l (3.49)
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4.0 THE QUASISTATIC STOKES-DARCY APPROXIMATION

In this chapter we study the validity of the quasistatic approximation in the fully evolutionary
Stokes-Darcy problem (3.1)-(3.12), which is obtained by setting Sy = 0 in (3.5). In particular,
we prove that the weak solution of the fully evolutionary Stokes-Darcy problem converges
to the weak solution of the quasistatic problem as S; — 0. We also estimate the rate of
convergence. Numerical tests confirming the rate of convergence are presented in Chapter

8, in Section 8.3.

4.1 INTRODUCTION

In the fully evolutionary Stokes-Darcy model (3.1)-(3.12), the term “Sy¢,” arises because
aquifers are poroelastic media and the space between the pores responds to changes in the
pressure of the water, as we presented in Remark 2 of Chapter 3. The effects of poroelasticity
have been extensively studied, see, e.g., [13, 111, 96]. One common model used in, e.g.,
[1, 8], is based on the assumption that the porous media pressure adjusts instantaneously,
and the term “Sy¢;” is dropped from the Stokes-Darcy equations. This is equivalent to an

inelastic assumption on the aquifer and leads to replacing (3.1)-(3.12) by the quasistatic
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approximation:

pu?s -V H(uQS,pQS) =f;
V-u¥ =0

u® =0

uQS(x, 0) = up(x)

Y qQS = fp

qQS — —KVQSQS

uQS-ﬁquufS-ﬁp:O
pg¢?” = p9° — 2u fay - D(u%) - iy,

o 5
UQS

= = *Ti,
\/Ti'K'Ti

—2 7 -DUP) . 7 =

in Qp x (0,77, (4.1)
in Q% (0,7, (4.2)
in (8Q,\I) x (0,T], (4.3)
in Q, (4.4)
in Q, x (0,7, (4.5)
in Q, x (0,T], (4.6)
in Q, x (0,7, (4.7)
in (9Q,\I) x (0,7, (4.8)
on I, (4.9)
on I, (4.10)
fori=1,...,d—1 onl, (4.11)

where (u?%, p@% ¢?%) denotes the quasistatic solution. We consider the mathematical foun-

dation for this simplification. Problems of the type “eu; + Au = 07, where ¢ small, are

treated in [87]. However, the coupled flow problem (3.1)-(3.12), with Sy small, does not fit

within the general theory in [87].

In Section 4.2 we obtain a priori bounds for the velocity and hydraulic head for both the

fully evolutionary Stokes-Darcy problem and its quasistatic approximation. In Section 4.4,

Theorems 5 and 6, we prove that the solution (u, ¢) of the fully evolutionary Stokes-Darcy

model converges to the quasistatic solution (u®?, ¢?%), as Sy — 0, with order one half or

one, under mild assumptions on the initial data and body forces. This analysis justifies the

inelastic or quasistatic approximation provided that

0 < Sy << kpin << 1.
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4.2 A PRIORI ESTIMATES

We recall from Chapter 2 the definitions of the spaces
Xy={ve(H" ()" v=0ondQ\I},
X, :={veH(Q):¢¥=0o0n0Q\I},
Qs = Lj(Qy),

Vi={veX;:(¢,V-v); =0V € Qr},

and define the norms on the dual spaces of Xy, X, respectively, by

(£,v)s

I£]| -1 := sup ,
M o vex, [V
(f. )

1l -1p == r

sup ———=—,
ovex, [Vl
where | - |4/, denotes the L? norm on Qy/,, and (-,-)f/, denotes the corresponding inner

product on y,,. We further recall

L2(0,T:X) = {v:[0,T] — X : /O V)| dt < oo},

L=(0,T;X) = {v:[0,T] = X : sup {[[v(t)[x} < oo},

te[0,7

for any Hilbert space X, and the Poincaré-Friedrichs inequality (2.6) for each domain Qy/,,

Ivlly < CrrsllVviy, (4.12)

||¢||p < CPF,pHVQme (4-13)

where Cpp s/, > 0. Finally, we denote by C* = C*(uy, ¢o, fy, f,) a positive, finite constant.
As we presented in Chapter 3, the variational formulation of the Stokes-Darcy problem

over the divergence-free space V is to find u: [0,7] — Vy, ¢ : [0,7] — X, such that

n(utu‘/)f +af(u> v)+cr(v,¢) = n(ffuv)f’ (4.14)
gSO(qbta 2zb)p + Clp(gb, ¢) - Cl(u7 77/}) = g(fp’ ¢)p7 (415)
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Vv € Vi, V¢ € X, where u(x,0) = ug(x), ¢(x,0) = ¢o(x) are given. The variational
formulation of the quasistatic approximation is obtained by setting Sy = 0 in (4.14)-(4.15):
Find u®¥ : [0, 7] = Vy, ¢99:[0,T] — X, satisfying

n(u?®,v); + ap(u?,v) + (v, 69%) = n(f;, v);, (4.16)

ap(¢QSa @D) - CI(uQS7 w) = g(fp7 w)pv (417)

Vv € V;, Vi) € X, where u®®(x,0) = ug(x) is given. ¢?%(x,0) is defined through (4.17),

by solving

a,(69%(x,0), ¥(x)) = er(wo(x), ¥ (x)) + g(f5(x,0), ¥ (x)), Y € X,,

for the unknown ¢?9(x, 0).
The difference between variational formulations (4.14)-(4.15) and (4.16)-(4.17) is the term
“9S0(¢t,1),”. Thus, convergence to the quasistatic solution will hinge on & priori bounds

on the time derivative of the hydraulic head ¢. We define

w(0) := w(x,0) := limw(x,t) =1 lim (V- I(u,p) + ),

t—07+ P 0+
u??(0) := u(x,0) := tlir(gufgs(x, t) = % tlir(g (V- II(u?, p%%) + ),
— — 1 =1 i v
¢(0) := ¢(x,0) := t1_1>151+¢t(x, t) =g t1_1>%1+( V-a+f).

In Theorem 3 Part 1 we obtain a priori bounds for the velocity and hydraulic head for both
the fully evolutionary Stokes-Darcy problem and its quasistatic approximation. The second
part of the theorem provides bounds on the time derivatives of the same quantities for each

problem.
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Theorem 3. 1. In the variational formulations (4.14)-(4.15) and (4.16)-(4.17) assume that
the initial data and body forces satisfy

up € (L))", fr € (L0, T H™H ()", fp € L*(0,T5 H7H(,)).
a. Then for u®% ¢@ given by (4.16)-(4.17) we have

s S (Loo(OaT; LQ(Qf)))da quS € (L2<07T; LQ(Qf)))dXd7
u ., € L2(0,T; L*(1)), i=1,...,d — 1, V¢? € (L*(0,T; L*(Q,)))". (4.18)

b. If in addition ¢o € L*(S2,), then foru, ¢ given by (4.14)-(4.15) it holds

u e (L2(0,T; L2 ()%, /So € L=(0,T; L*(52,)),
Vu e (L*(0,T; ()™ u-+; € L2(0,T; L*(1)), i =1,...,d — 1, (4.19)
Vo € (L*(0,T; L*(2,)))".

2. Assume that the body forces satisfy
fro € (L2(0, T HH ()", fou € L2(0, T3 HH(S,)),

where f7;, fp1 denote the derivative of £y, f, with respect to time respectively.

a. If the initial data for (4.14)-(4.15) satisfy u,(0) € (L*(Q4))¢, ¢:(0) € L*(€2,), then

w, € (L0, T; L2 ()%, /Sod: € L=(0,T; L*(£2,)),
Vu; € (L*(0,T; L*(Q)™ v, - 75 € L*(0,T; L*(1)), i =1,...,d — 1, (4.20)

Vo, € (L*(0,T; L*(Y)))".
b. If the initial data for (4.16)-(4.17) satisfy u®®(0) € (L*()), then

%€ (L(0,T5 LA(y))), Vue® € (L0, T; L*(25))) ™,
u?® ., e LX0,T; L¥(1)), i=1,...,d— 1, V¢*® e (L*(0,T; L*(,)))" (4.21)

Proof. The claims 1b, 1a, 2a, and 2b of the theorem are straightforward corollaries of Propo-

sitions 2-5, respectively, stated and proven below. O
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Proposition 2 is the first energy estimate for the Stokes-Darcy weak formulation (4.14)-
(4.15):

Proposition 2. Consider the weak formulation of the fully evolutionary Stokes-Darcy prob-
lem (4.14)-(4.15) over the divergence-free space V. Assume that the initial data and body

forces satisfy
W € (L)%, 6o € L), £ € (L0, T3 B Q) fy € L20,T: HHQ,). (4.22)

Then we have

2nv 2nvo R
sup {nHu ONIF + gSollo(®)]] }+/ { [Vu(t)]F + \/—leu ) - 7ill7

te[0,T

+gkmm||v¢<t>uz} it

TLCK

<l + gSulony + [ {2

Proof. We fix t > 0 and set v = u(t) and ¥ = ¢(t) in (4.14)-(4.15). By adding the two

OF s+ O, p de < (023)

equations together, the two coupling terms exactly cancel. Applying the coercivity estimates
(3.34) and (3.36) on the left-hand side and also Young’s inequality (2.5) on the right-hand

side we then obtain
nvo )
=—{nllu(®)||} + gSollo )2 }+ HV )7 + ZHH )7l
mazi 1

+ ghminl VO ()5

< %Hff(t)n—l,f”vu(t)nf + 9L Ol -1, DIVl

C kaTl
Tl 12+ T2 Ve +

(]

nv
< ZEIvuol} +

Rearranging and integrating over [0, ¢] for any ¢ in (0,7] and T < oo, yields

Y onw 2nva
2 2 ~ 2
nHu(t)Hf+gSoH¢(t)Hp+/O {_CK IVu(s)|l7 + mZHu -Till7

+gkmm||v¢<s>||§} s

TLCK
<l + gsullll + [ {20+ 7

1F(s )||2_1,p} ds.

mzn
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Finally, the result in (4.23) follows by taking the supremum over [0,7] and applying the
assumptions (4.22) on the right-hand side above. O

The next proposition gives the corresponding energy estimate for the quasistatic weak

formulation (4.16)-(4.17).

Proposition 3. Consider the quasistatic weak formulation (4.16)-(4.17) and assume that
the initial data and body forces satisfy

w € (L)L 8 € (L0, T H Q). fy € LO.TH(Q,). (4.24)

Then we have

te[0,T] \/ mazx
gkmmHWﬁQS(t)HZ} i

2nv 2nrvo .
n sup IIUQS(t)IIfnL/ { IVu®S ()17 + ZHHQS -Fill7
0

nC' .
<ol + [ LB IO+ A, <o

Proof. We fix t > 0 and pick v = u?9(t),¢ = ¢99(t) in (4.16)-(4.17). After adding the
equations together and canceling the coupling terms, the result follows by the assumptions

(4.24) and manipulations similar to the ones in the proof of Proposition 2. O

Propositions 4 and 5 below provide a priori bounds for the time derivatives of u and ¢

in the evolutionary Stokes-Darcy problem and the quasistatic approximation, respectively.

Proposition 4. Consider the fully evolutionary Stokes-Darcy problem (4.14)-(4.15). If the
initial data and body forces satisfy

w(0) € (L*(Qy))", ¢(0) € L*(Q),

fro € (L*(0, T3 H ()% oo € L2(0, T3 HH($,)),
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then

2nv 2nrvo
sup {nlu(t)[|7 + gSollo:(t)|I2 +/ IIVu( | g (t) - 74|
Sy Ol + o5l + tfmzt f

+ gkmmuvqﬁt(t)ui} dt

nC i
<l ) + g5l + [ L s+ s, ) <

Proof. Starting with the weak formulation (4.14)-(4.15), we take the derivative with respect

to time to get

n(wy, v) 5+ ap(u, v) +cr(v, ¢p) = n(ff,h v)s, (4.25)

950(Pet, ¥)p + ap(de, ) — cr(ug, V) = g(fp, )y (4.26)

We now fix ¢ > 0, choose v = wy(t),v = ¢ (t) in (4.25)-(4.26), and add the equations
together. The coupling terms will cancel and the rest of the proof is similar to the proof of

Proposition 2. O
Proposition 5. Consider the quasistatic weak formulation (4.16)-(4.17) and assume that
u?®(0) € (L2(929))%, £re € (L0, T H ()Y, Sy € LP(0, T3 HH(S2y)).

Then,

2nv 2nva
QS 2 ~ |12
n sup ||[uz?”(t) —|—/ “Vu®P ¢ E u? Ty
H t ( Hf 0 { H Hf /_max H HI

te[0,7]

gkmmnw?%)nﬁ} at

nC )
<o O+ [ (B O+ eI, | <

Proof. We start with the weak formulation (4.16)-(4.17) and take the derivative with respect

to time:

(u”, V)5 + ap (0@, v) + cr(v, ¢2°) = n(fr4, v)s, (4.27)
ap(¢7°,0) = er(u?® ) = g(fot, 0)p- (4.28)

By fixing ¢ > 0, choosing v = u®”(t),¢) = ¢2°(t) in (4.27)-(4.28), and adding so that the

coupling terms cancel, we obtain the result similarly as in the proof of Proposition 2. O
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In the next section we obtain & priori bounds for u and ¢ by assuming less regularity on

the body forces.

4.3 A PRIORI ESTIMATES ASSUMING LESS REGULAR BODY FORCES

In this section, we obtain & priori bounds on the velocity u and hydraulic head ¢ by assuming
less regularity on the body forces. In this case, however, we restrict the domains €2 and €2,
by assuming that either the hypotheses of Theorem 1 or those of Theorem 2 hold. That is, we
assume either that there exists a C'—diffeomorphism from Q to €, so that the bound given
in (3.45) holds, or that the interface I is of the form x4 = f(zy,...,24.1), f € CY(R%1), and
¢, Q, are any bounded, regular domains, and inequality (3.47) holds instead. In either case,
we assume that the domains €2y and €2, are such that the following bound on the coupling

integral term (¢, u - ny); holds true

(¢, u-np),] =

o, da\ < Cull; V]l (4.20)
I

where CT > 0 is either the constant from Theorem 1 or the one from Theorem 2.

Theorem 4. Assume that the initial data and body forces satisfy

wy € (L2(Q4)4,D(wg) € (L*(Q) 4 ug - 75 € L2(1),i=1,...,d— 1,
do € L*(%,), Vo(0) € (L*(2,))",
fr € (L*(0,T5 L*(2)?, f, € L*(0, T; L*(2y)),
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and that the domains ¢, €2, are such that (4.29) holds. Then we have

n

T T 2nv nrvo
— w,(t)||% dt + S/ t2dt+sup{—Vu2+—u-'f'2
2/0 [Ju ()15 9% | ()]}, Sup [Vul[; \/%H 17
gkmzn

||v¢>||2}<>

< / e O dt + 2 / 1@ dt + Sn(gCTy? / IVo(t)|2 dt

2n%g(CT)? 2 2 — nra ~ )2
4 sup [u(®)|f% + 20D (ug)|J? + / Y 4+ do
K min t€[0,7) d d ; VT Ko7

9(KV¢(0),V(0)), — 2¢1(u, ¢)(0) < C7.
Then, specifically

u, € (L0, T; L2(Q))?, /Sodr € L2(0,T; L*(9,)),

Vu € (L=(0,T; L*(Q))%u-7 € L=(0,T; L*(1)), V¢ € (L™=(0,T; L*(2,)))~.

Proof. We fix t > 0, set v = u(t),9 = ¢(t) in (4.14)-(4.15), and add together to obtain:

n(ug, W) + gSo(@e, ¢1)p + ap(u, uy) + ap(o, @) + cr(wy, ¢) — cr(u, ¢y)
= n(fr,w) s + g(fo, &1)p-

Thus,

bl + 9ol + 5 {ar(m ) +ay(0, 6)} + erlm,6) — erm )

- n(ffa ut)f + g(fp7 ¢t)P'

Using the Cauchy-Schwarz and Young’s inequalities we obtain

d
lhlld + 9ol + 5 5 Lar(ww) +ay(6,0)} + erlu, ) = exu,00)

g5
011602 + 5212
0

~ n n .~
< nllfglleluls + gll follollenlly < 5 lell7 + 11117 +
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Rearranging then gives
d
nllwlf + gSollenlly + — {as(w,w) + ap(6, 9)} + 2{er(w, 8) — er(u, é1)}
7 g
<l + 1512
0

Using
CI(ub ¢) - C[(ll, Cbt) - __CI(ua ¢) + 20[(11,5, ¢)7

the inequality becomes
d
nlwl7+ gSollél; + — fas(w,w) + ay(6,6) = 2er(u, $)}
F Y
< nllfpl7 + g lly = derur, 6). (4.30)

Now, since V - u = 0 in Q; implies that V - u; = 0 in Qy, we may use (4.29) to bound the
term —4cr(ug, ¢) on the right-hand side of (4.30) as follows:

R n
—der(uy, ¢) = —dng{@,w-hg)r < dngClllulf[Voll, < Jllull} + 8n(gCT*[[ Vol (4.31)
Using (4.31) in (4.30) and rearranging terms gives

n d
EHutch + 9Sollell; + 7 lar(wu) +ay(9, 9) — 2¢1(u, 9)}
pe g
< n|/f[lF + S—OprHﬁ +8n(gC")* || Vol[2.

Integrating this over (0, ], for t < T, gives

. / luc(s)IE ds + gSo / 166(8) 12 ds + {ay(w,u) + ay(6, 6) — 2er(u, 6)} (1)
<n / B (o) ds+ & / 1o($)]2 ds + 8n(gCTY? / IV(s)]2 ds
T {ag(w ) + ap(6, @) — 2¢1(w, 6)} (0). (4.32)

Next, we use (4.29) and Young’s inequality once more for the term —2c¢;(u, ¢) on the left-
hand side of (4.32), and estimate
2n%g(CT)?

kmin

IVol>.

—2c1(u,¢) = —2ng(¢,u-fip); > —2ngC|Jullf|Voll, > - 5

2
[ull} =

(4.33)
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Using (4.33) along with the coercivity estimates (3.34) and (3.36), yields

{ay(u,v) + ap(9, ¢) = 2¢1(u, )} (1)

2nv 2n2g(CT)?
{ Va2 + 2n7g(CT)

kmin

nvo R Gkmin
———|lu- 7] + 5 IVl —

o ||u||§} (0. (431)

With (4.34) and after rearranging, (4.32) becomes

t t
n 9 9 2nv nvo T L 9
5/0 [u:(s)[ ds+950/0 19:(s)1l, ds+{—||VUI|f %Ilu-Tllﬁ 5 IIVcbllp}(t)
2n*g(CT)?

t t
P g
< n/ 1£7(s)117 ds+—/ [FAGI= d8+8n(QCT)2/ IVo(s)l2 ds + -
0 SO 0 0 kmm

+ {ay(u,u) + ay(¢, ¢) — 2c1(u, 9)} (0),

la(t)17

for all ¢ <T. Taking the supremum over [0, 7] finally results in

n

T T
5 | s dee s, [ lodon? dee sw {2 1valg 4
2

0 0 t€[0,T)]

— a7

V m(ll‘
g’fmmuwu?} (0

n T g T
< 2 [0l a2 [0l @ sict? [ Ivel; @
P~ Jo 0Jo 0

20O a3+ { 2D+ 3 [ (e a
—=— sup |lu nv||D(u —(u-7;)° do
Ermin t€[0,T] / / =1 /I Ti K-

+9(KVo, Vo), — 2¢;(u, ¢)} (0). (4.35)

Since || - ||=1,5/p < C|| - |lg/p, for some C' > 0, it follows by (4.19) of Theorem 3 that u €
(L>(0,T; L*(Qy)))* and V¢ € (L*(0,T; L*(€,)))?. Thus, all the terms on the right-hand
side of (4.35) are bounded, and the claim of the theorem follows. O
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4.4 CONVERGENCE TO THE QUASISTATIC SOLUTION

In this section we prove that the solution of the fully evolutionary Stokes-Darcy problem,
(u, ), determined through (4.14)-(4.15), converges to the quasistatic solution, (u%®®, @),
given by (4.16)-(4.17), as Sy approaches zero. We will use the & priori estimates from the
previous sections to obtain error estimates for the velocity and hydraulic head. For the case
of less regular body forces we prove one half order convergence in Sy. For the more regular
case, we obtain first order convergence.

We denote the errors in u and ¢, respectively, by

eu(x,t) == u(x,t) — u®(x,1),

e¢<X? t) = ¢<X? t) - ¢QS(X7 t)'

By definition, e,(x,0) = 0 and e = ¢p(x) — 9% (x,0). Subtracting (4.16) from (4.14) and
(4.17) from (4.15) we find that the errors satisfy the quasistatic weak formulation (4.16)-
(4.17):

n(eus, V) + ag(ew, v) +cr(v,es) =0, (4.36)
CLP<€¢7 W - CI(QU7 1/}) = _g50(¢t7 Zb)p (437)

This can also be written in the form of the Stokes-Darcy weak formulation (4.14)-(4.15):

(eu,t7 V)f + af(elh V) + CI(V7 €¢>) = 07 (438)

gSO(€¢,t7 w>p + gap<e¢7 ¢) - CI(eu7 ¢) = _gSO( ?57 w)p (439)

In Theorem 5 below we give a result of first order convergence of the solution (u, ¢) to the

quasistatic solution (u®¥, ¢@%), as Sy converges to zero.
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Theorem 5. Consider the weak formulation (4.38)-(4.39) and assume that the initial data

and body forces satisfy
u?(0) € (L3(24))% [164(0) | -1, < 00,
70 € (L0, T5H ()", for € L2(0,T5 H 1)),
Then

2nvo

2nv
sup (neq(t 2+gSet2+/{_veu 24 ey(t) - 7|12
e {mllew(®)l7 + gSolles I} + | G IVeal®lf + 7= llew(®) - 71
+gkmmuv%<t>||§} dt

S2 Cc* S,
< gSollgo — ¢°°(0)]12 + —C* < ( ° +1) Sg-

kmzn kmin kmin

Proof. We apply the energy estimate obtained in Proposition 2 to the weak formulation for
the error (4.38)-(4.39), with f =0, f, = —Sp¢° ey replacing u and e, replacing ¢, and

have the first error estimate:

2nva

2nv
sup {nlley, 2+Set2+/{ Vea(t)||? + ——|lea(t) - 7||?
p{ lea(®)]1F + gSolles(t)]2} i IVeu()|} MH )7l

tel0,T

+gkmm||v6¢<t>r|§} dt
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< gSolldo — S5 (0)|2 + 220 / 16252, dt. (4.40)

kmzn

Using the Poincaré-Friedrichs inequality (4.13) we have
S S S
167711 < Cll6F7 [l < Crrpl| Vo, (4.41)

By (4.21) of Theorem 3 we have V¢*® € (L2(0,T; L*(Q,)))?. Inequality (4.41) then implies
that ¢°° € L*(0,T; H'(€,)). Therefore, (4.40) gives

2nv 2nvo
sup 1n|ley 2+Set2+/ {—V Lt —leu(t) - 7|7
p {nllea(t)]|7 + gSolles(t)]2} i Veu(?)]l7 rmw\l ) -7l

t€[0,T)
+gkmm||w¢<t>||§} it
C*

kmin

< gSolléo — ¢?5(0); + — S5, (4.42)
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which proves the first part of the theorem. For the last inequality, we set ¢ = 0 in (4.15) and
(4.17) and subtract the second from the first equation to obtain

990(6:(0), ), + ap(do — $9%(0),9) = 0, Y € X, (4.43)
where we used that u?%(z,0) = ug(z). We then set ¢ = ¢y — ¢?@5(0) in (4.43):
ap(do — ¢97(0), ¢o — ¥°(0)) = gSo(6:(0), $7°(0) — o).
Using the coercivity estimate (3.36) and the definition of the || - [|-; norm we have

Fminl |V (90 = 62 (01} < Soll @ (0)|-1,5[1V (G0 = 62" (0)) 1],

so that

IV(d0 = 695 (O, < 7= l164(0) |1, (4.44)

Finally, using the Poincaré-Friedrichs inequality (4.13) on the left-hand side of (4.44) yields

kmln

C’PFpSO

kmzn

160 = 62" (O)ll, < ——"=1166(0) | -1, (4.45)

The last inequality of the theorem now follows by combining (4.42) and (4.45). [

In Theorem 6 we assume less regularity on the body forces and prove one-half order
convergence of the Stokes-Darcy solution to the quasistatic solution as Sy — 0.
Theorem 6. Consider the weak formulation (4.36)-(4.37) and assume that the initial data
and body forces satisfy
up € (LQ(Qf))d’ D(UO) S (Lz(Qf))dXda ug - T; € LQ(I),Z =1,...,d—1,
do € L2(8,), Vo(0) € (L*(%,)),
fr € (L2(0,T; L*()))?, f, € L*(0, T L*(2y))-

Further, assume that the domains 2y and Q, are such that inequality (4.29) holds. Then

2ny 2nva .
n sup llea(®)|+ / { ||Veu<>||§+—||eu<t>-~r||%+gkmm||w¢<t>||§} dt

te[0,7) Vkma:r;
S C*
_,me/ (VSallon0)l,) dt < =S,
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Proof. We first apply the energy estimate obtained in Proposition 3 to the weak formulation
for the error (4.36)-(4.37), with f; = 0, f, = —Sy¢:, and with e, in place of u?% and e, in
place of ¢@5:

T (onv 2nrvo
ut2+/ “|IVea®)|* + ——==lleu(t) - T||? + gkmin||V t2}dt
n sup |lea(t)| i {CKII eu(?)| Mlle() 77 + ghminl| Ve (1) |5

t€[0,T]
Y r 2
<20 [H(Vsildly) d

o kmin

By Theorem 4 we have in addition that v/Sy¢; € L?(0,T; L*(2,)). Thus, we conclude that

T (2nv 2nva c*
n sup |leu(t 2+/ {—Veut 24 " lew(t) - 72 + ghminl| Ves(t 2}dt§ So.
Sup leu(®)]l7 Tk [Vea(®)|} MH () - 77 + gkminl|Ves@)|l, P
O

Remark 7. Theorem 6 is important because it proves convergence of the Stokes-Darcy so-
lution to the quasistatic solution as Sy converges to zero assuming less reqular body forces.
We note that the assumption on the body forces in Theorem 5 is that the time derivatives of
the body forces in Qg belong to L*(0,T; H () respectively, while the requirement in
Theorem G is that the body forces lie in L*(0,T; L*(Qy/,)). Less regular body forces occur,
for instance, in settings involving wells.

We now summarize the conclusions of Theorems 5 and 6. In each case, C' denotes the

2

constant of proportionality in the error estimate, and “~” means “proportional to”:

e Under the assumptions of Theorem 5:

[ = 0| o rize) = O(S0), €~ =
IV (u = w20 1:020,)) = O(S0), €~ Zt—,
16 — 69|l 0122200, = O(V/'S0), €~ =
IV(¢ = 69207220, = O(S),  C ~ .
e Under the assumptions of Theorem 6:
la = || o200 = O(VS0), €~ Zi—.

IV (u=u®) 20150200, = O(V ), Cr~ o—

nvkmin
IV (¢ = 69201120, = O(VSo), C~ .
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Remark 8. From the results in Theorems 5 and 6, summarized above, it is clear that drop-
ping the term “So¢y” from the fully evolutionary Stokes-Darcy equations, if So is small, is
gustified provided that Sy << {kmin,n}, that is, provided that the specific storage is smaller in
orders of magnitude than both the minimum eigenvalue of the hydraulic conductivity tensor
and the porosity. In real aquifers, it is known that Sy < n <1 and often Sy << n. However,
it is often the case that 0 < k., << So << 1, and therefore, dropping the term in those

cases should be questioned.

Remark 9. Numerical tests that verify first-order convergence to the quasistatic solution
and confirm sensitivity of the convergence to the parameter k,,;, are presented in Chapter 8,

in Section 8.3.
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5.0 A LINEAR STABILIZATION OF THE CNLF METHOD

In this chapter we present a linear stabilization of the Crank-Nicolson Leapfrog time stepping
scheme for a general evolution equation. We analyze the method for stability and consistency;,
and show that it is unconditionally stable (requiring no time step condition) while it increases
accuracy, and we further prove that it is unconditionally, asymptotically stable in both the
stable and unstable modes of Leapfrog. An extension of this method for the Stokes-Darcy

problem is the topic of Chapter 6.

5.1 INTRODUCTION AND THE CNLF-STAB METHOD

We let X, L, X' be Hilbert spaces satisfying X — L — X’. We denote by (-,-),|| - | the
inner product and norm on L respectively, and by (-, -) the duality pairing between X and

X’ which is an extension of the L-inner product. We denote the operator norm of A by

Av
|All = sup IAv] H-
oxveL ||V

For u:[0,7] = X, 0 < T < oo, we consider an evolution equation of the form

w+Au+Au=0, forte (0,7],

(5.1)
u(0) = uy,
where A : X — X'’ is a linear operator that satisfies
(Au,u) >0 VYue X, (5.2)

20



and A : L — L is a linear operator such that

L. JJAl < o0, and (5.3)
2. (Au,v) = —(u,Av), Vu,v e L. (5.4)

Under these assumptions the following fundamental stability properties hold, which must be

preserved under any discretization:

L flu@)* < fluol* ¥,
2. lu®)|® = lu|* ¥t,if A=0, and

3. |lu(®)|| = 0 as t — oo, if (Au,u) > ag||ul|* for some ap > 0 and all u € X.

We now let At > 0 denote the time step size in our discretization, and denote v¥ := v(t¥),
k=0,1,...,N, T = NAt, for any function v € X. The Crank-Nicolson Leapfrog (CNLF)
method for (5.1) is as follows:

Given u’,u! € X, find u"*! € X for n > 1 such that

n+l _ ;n—1 n+1 n—1
A % +Au" = 0. (CNLF)

The CNLF method involves three levels in time, and therefore requires approximations of
sufficient accuracy for the first two approximations, uy and uy, see, e.g., [110]. These first
approximations will affect the overall order of convergence of the scheme. As was shown in

[85], (CNLF) is stable under the time step condition

At|A] < 1. (5.5)

Proof. See Appendix A.1. O

o1



Further, under condition (5.5), (CNLF) is asymptotically stable in both the stable and
unstable modes (see Appendix A.2 for the proof and also [64]). However, energy stability of
(CNLF) under condition (5.5) is not completely descriptive of computational practice. It has
long been noted that (CNLF) is marginally stable (described in [55] as “slightly unstable”).

If the linear term includes a viscous mechanism of the form
(Au,u) > agl|ul]?, for some ap > 0 and all u € X, (5.6)

then ||u(t)|| — 0 as t — oo. In this common case, the CNLF method damps the energy
in the stable mode, ("™ +u"!), however, it often exhibits growth in the unstable mode,
(u"™! —u""1). One possible explanation is that when A is an implicitly defined operator, ||A]|
is estimated in terms of physical wave speeds or calculated under, e.g., periodic, or uniform
spatial mesh assumptions that only approximate A, leading to a possible slight violation of
the time step condition. This drawback has led to the addition of filters such as the Robert-
Asselin-Williams (RAW) time filter, see, [100, 7, 114]. However, even when time filters such
as the RAW filter are included, condition (5.5) can still be too restrictive,.

In contrast, we present next the CNLF method with an added stabilization term (CNLF-
stab), that achieves unconditional asymptotic stability for both the stable and unstable
modes and removes all time step conditions for stability, while it also increases accuracy. In
the next section we show that it contributes an additional O(A#?) consistency error which
has the opposite sign of the consistency error of Leapfrog. The CNLF-stab method is:

Given u’,u! € X, find u"*! € X for n > 1 such that

n+l _ ;yn—1 ntl n—l
u QA;]- + 6AtA*A (un+1_un—l) + A % + Aun — 0’ (CNLF—Stab)

where 3 > 1/8. The added stabilization term, BAtA*A (™! — u™ 1), is linear and symmet-
ric positive definite in the unknown u™™!. We analyze the method’s consistency and stability

in the next two sections respectively.
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5.2 CONSISTENCY ERROR ANALYSIS

In this section we analyze the (CNLF-stab) method for consistency by comparing the con-

sistency errors of the Crank-Nicolson (CN), Leapfrog (LF), and Leapfrog with stabilization

(LF-stab) methods applied to (5.1) with A = 0:
u; +Au=0, A" = —A.

The CN method for (5.7) (with time step 2At) is

n+1 _ ;yn—1 n+1 n—1
om0

while the LF-stab method is ((CNLF-stab) with A = 0)

un+1 _ qqn—1 n+1 n—1

2BALZAAN Y
oAr T 2At

- i AU=
A7 + Au 0,

and the LF method is (LF-stab) with g = 0:

un—i—l _ un—l

Au" = 0.
SAL + Au 0

(5.7)

(LF-stab)

(LF)

We denote by Tietnoa the consistency error of each method = LF-stab, LF, or CN. Substi-

tuting the true solution into (CN) and (LF-stab), we find, respectively

u(t"t —u(t" ) u(t"™) + u(t" )
N T4 7

= w(t") + s AP (t") + Au(t") + SAPAuy (") + O(AL?),

u(tn+1) _ u(tnfl)
2At

u(tn+1) _ u(tnfl)
2At

+ 2BAPA*A + Au(t")

= w(t") + s AP (t") + 28A7 A Auy (") + Au(t™) + O(ALY).

Since u; = —Au, the consistency errors are

TCN = %At2um -+ %At2Autt + O(At4),
7IFSTAB(B) = QBAtQA*Aut + %AtQUttt + O(At4),

TLF = TLFSTAB(O) = %umAt2 + O(At4)
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Table 3: Consistency errors of (CN), (LF), and (LF-stab).

Method | Leading consistency error term | Evaluated at solution u(t)
(CN) %uttt + AATtQUtt %AtQA*Aut
(LF) %Qum —%AtQA*Aut
(LFstab) A8y + 281N Au, (28 — HALA*Au,
Further, by the skew symmetry of A, we may write uy = —Au; and uyy = A2u, = —A*Au,.

Hence, the consistency errors for (CN), (LF), and (LF-stab) become

ToN = %AtQA*Aut + O(AtY),
e = —LAPA*Au, + O(AHY),
TLFSTAB(B) - (2B — é) AtQA*Allt + O(At4>

Thus, the leading terms of 71 pgrap(5) and 1o r have the same form and opposite signs. This
is consistent with the observation that the stabilization term errs by slowing waves, while
(LF) errs by accelerating waves. See, for example, [41, p. 61, Section 2.4]. This also implies
that it is possible to cancel out the leading-order term of the error by selecting f = 1/12.
The leading order terms of the consistency errors for all three methods are summarized in

Table 3. Up to O(At*) terms, we draw the following conclusions:

1. (LF) requires fewer floating point operations than (CN), while being twice as accurate
as (CN) with time step 2At, and is comparably accurate to (CN) with time step At.

2. (LF-stab) is unconditionally stable and has smaller consistency errors than (LF) for
1/8 < B < 1/6 (see Section 5.3 for stability results).

3. For 8 = 1/12, the leading-order consistency error term cancels and (LF-stab) is O(At?)
accurate. (LF-stab) with f = 1/12 is conditionally stable, and requires a time step
condition of approximately At||A]| < 1.27, which is 27% larger than (LF) (see Theorem
19 in Appendix A.3).
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5.3 STABILITY ANALYSIS

In this section we prove unconditional stability of (CNLF-stab) by tracking the discrete
energy in the method. The kinetic energy of (CNLF-stab) is:

Energy"™/? = [[u" | + [[u”||* + 26482 (| Au™|* + [|Au”?)

+ 2At(Au™tt umth.
The first step is to establish
Energy"t/2 — Energy™ /% + At(A(u™ 4+ u™ 1), u"*! + u" ) = 0. (5.8)

The term At(A(u™™ + u™ 1), u"*! +u""!) is nonnegative, so it dissipates energy, thereby
increasing stability. When A = 0, the method exactly conserves energy. This energy estimate

n+1/2

implies stability if Energy > 0 whenever u # 0. We verify this by applying the Cauchy-

Schwarz and Young inequalities to show that the term with indefinite sign, 2A¢(Au™, u™™!),

can be absorbed into the positive terms as a part of the total system energy.

Theorem 7 (Unconditional stability of (CNLF-stab) for 5 > 1/8). Consider (5.1) under
conditions (5.2) and (5.4). Then, (CNLF-stab) with 8 > 1/8 is unconditionally stable:

N—-1
Energy]\]_l/z + AtZ(A(unH + unfl)’unJrl + un*1> — Energyl/g, VN > 1, (5.9)
n=1

and  Energy"™'? > k* (Ju"™ | + |u”[]?) > 0, Vn, for u" u"#0,

where K* := (1 — %) > 0.

Proof. Taking the inner product of (CNLF-stab) with (u"™ +u""!) and multiplying by 2A¢

gives

a2 = [u" )P + 28A8 (A*A (™ —u" ) u™ 4 510
+ At <A(un+1 + un—l), un+1 + un—1> + IAL <Aun’ un+1 + un_1> _0 .
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The added stabilization term can be written as

2B8A8 (A*A (u™! —u ) u T )
=2BA(A (u"™ —u" ) AT +u" )
= 2BA8 ([[Aa™* — [[Au"T?)
= 26A¢ { (J|Auw"|* + [[Au”?) = ([|Au” ] + [Au" %)}

We define the stabilized system energy as
E"TY2 = a2 ([P 2848 ([|Aw" T + [|Aa"]?)
and let
cnrlz = <Au”, u"+1> )
Since A is skew-symmetric, we have
<Aun,un+1 n un—1> _ <Aun7un+1> _ <Aun—17un> _ n+Y2 _ om=1/2
Thus, (5.10) becomes
(E™2 4 2AtCH2) — (B2 4 288 C"2) + At (AU +ut ), ut T +u ) = 0.
This has the form of (5.8), where the total system energy is given by
Energy™t'/% .= EH1/2 4 oA Y2,

Summing the above from n =1 to N — 1 we obtain

N-1
Energy™ /% + At Z <A(un+1 +u" ), u"t! 4 u"_1> = Energy'/?, VN > 1, (5.11)

n=1

which is (5.9). Thus, stability follows provided Energy™ “1/2 5 0 for uV,uN? # 0. We have

Energy /2 = EN"12 4 2AtCN Y2 = |[u | + [|u¥ 2 (5.12)
+2BA2 ([ A |2 + [AuNH?) + 2AH{AuN T u).
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We bound the indefinite term, 2A¢(Au” !, u®), by Cauchy-Schwarz and Young as follows:

2At(Au™ " u) | = At[(Au¥ T u) — (Au u¥ Y|
< At (A ] + [JAn¥[[[[u™))

< g (™ + ™) + 2642 (JAu™| + A 2) . (5.13)

Combining (5.12) and (5.13) yields
Energy™ /% > (1 — ) (J[u|* + [[u™"|?),
which is positive definite for 5 > %, and thus stability follows. O]

Next we prove unconditional asymptotic stability of (CNLF-stab) for 5 > 1/8 when A
is a symmetric positive-definite, bounded, linear operator. We denote by ||u|l4 := /(Au, u)

the norm induced by A.

Theorem 8 (Asymptotic stability of (CNLF-stab) for 8 > 1/8). Consider (CNLF-stab)
with 5 > 1/8. If A is a symmetric, positive-definite, bounded, linear operator satisfying
(5.6), then

(W +u ) 220 and (- utl) 50, (5.14)
and thus u® === 0.

Proof. By (5.9) and (5.6), we have that the stable mode, (™! +u™™!), satisfies

N-1
Atag Z |u"*! + u"1|? < Energy'/?, VN > 1. (5.15)

n=1

n—oo

Thus, the series i [u" ™! +u""||? converges, implying (u"*! +u""') ——= 0. To complete
the proof, it remgi:rlls to derive a similar estimate for the unstable mode, (u"* —u""!), since
u” = (u"+u""?)+1(u"—u""?) for all n > 2. Taking the inner product of (CNLF-stab) with
the unstable mode, (u"*! — u"™ 1), and multiplying by 2§At with § > 0 (to be determined
later, see (5.21)), we have:

S[la™t —a" P + 2B85A (A A(u" T —u" ), u" T —u )

(5.16)
+ SAt <A(un+1 + un—l)7 un+1 _ un—1> + 26 At <Aun7 un+1 . un—1> —0.
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Using symmetry of the operator A, and letting A"*/2 := |[u"*!||4 + ||u™|%, (5.16) becomes

Slu™ —u" P + 280 A (A A(u"T —u" ), u" —u )

(5.17)
+ OAE { A2 — A T2) 26 AE (Au” uT —u" ) = 0.
Summing (5.17) from n =1,..., N — 1 results in
N-1
5 Z {Hun—i-l . un—1H2 + 2ﬁAt2HA(un+1 _ un—l)H2}
n=1
N1 (5.18)
+20A8 Y " (Aut umt —un ) 4 GALAN T = GALAM?.
n=1
Adding together (5.15) and (5.18) yields
N-1
Z {aOAt||u"+1 + un—1||2 + 5||un+1 . un—1||2 + 265At2”A<un+1 . un—l)HQ}
n=1
N1 (5.19)
+20AE Y " (Au T — w4 SALANTY? < Bnergy'/? + 0ALA'?.
n=1

The next step involves bounding and subsuming the critical term:
N—-1
20t Z (Au™ u"™t —u" ).
n=1
Let 0 < € < 1. By Cauchy-Schwarz and Young’s inequality, we have
N-1 N-1
20> (Aut,umt — Y < {deflutt — w4 SAR | Au”|P}
n=1 n=1
We now use the identity

1 1
lall* = 3 lla+ I + 5 la = bII* + 5 (llal® = 181%)

L
4

in terms of the stable and unstable modes for all n > 2:

2 un_uan
A ———
=)

o8

to express the term ||[Au"||?

. un_l_uan
JAur |2 = HA (—2 )

2

+ 3 (JAa"* = [[Aum%) .




N-1
Using this, we bound Y [[Au"||? as follows.
n=1

N-—1 N-—1
> JAur|? = ||Au1||2+i2{||f\(un A1+ A" — "))}
n=1 n=2
+ (AP + [[Au™ ) = S(JAut|? + [[Au®]]?)
-2
_ Lllz {HA<un+1 + un71)||2 + ||A(un+1 o un71)|l2}
n=1

+ (A + A7) + ([ Aut]* — [ Au’(?)

N-1 N-1
SSIAP D 4w P4 1 At —ut )
n=1 n=1

+ (A + A7) + S| Au | + [[Au®]?).

Hence, the bound on the critical term becomes

N-1 N-1
25AL Z<Aun’un+l . un71> < (SEZ Hun+1 . un71H2
n=1 =
N-1 N-1
+ %AtQHAHQ Z ||un+1 + un—1||2 + %Atz Z ||A(un+1 _ u”_1)||2
n=1 n

+ g AL (Au™ ]+ A TH?) 4+ S AP(][ A * + [ Au’l]?).

Using the above, we subsume the critical term into the positive terms in (5.19):

N-1 N-1
At (ap — ZIAPAD) D lu™ a2+ 5(1— ) Dt — w2
n=1 n=1
+5At2 _ 4L Z ||A n+l n—1)||2 + 5AtAN—1/2

< Energy"/? + 6AtAY? 4+ S AC([[Au™[* + [ Au™ (%)
+ 3 A ([[Aut]]? + [| A7)
< Energy' + LA+ L[APA(a [+ [0 )

+ 2 A (][ Au 7 + (| A7),
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By Theorem 7, the term |[u™||? + [[u¥~!||? is bounded above by (1/x*)Energy/?. Thus,

N-1 N-1
At( HAH At Z Hun—i-l +uv 1H2_|_(5 1—¢ Z Hun—H n_1”2
n=1
+ AL (2 Z A — w2 + GALAN 12 (5.20)

< (14 532 | AIPAR) Energy'? + SALAY? 4+ +- 2 AL ([Au' |2 + [[Au®|]).

The above implies asymptotic stability of the unstable mode provided

(ao — Z||A[]*At) > 0,
(1l —e€) >0,

26—+ >0.

Since 0 < € < 1and 8 > £ the second and third inequalities are true. Therefore, (CNLF-stab)
is unconditionally, asymptotically stable if the first inequality holds. Thus, if we choose

4(1,06

= SALIATE (5.21)

(5.20) implies that
N—1
3 o - < O ),
n=1

0

where C(u”, u') is a constant depending on u’, u', but independent of N. Consequently,

o
Z Hun+1 _ un71|‘2 < o0,
n=1

n+1

and hence (u"*! —u"!) 2= 0, concluding the proof. O

Remark 10. The previous conclusions imply asymptotic stability about zero. By linearity,

these results extend to nonzero forcing terms, F" = F(t"), on the right-hand side of (5.1),

provided F,, === F.., where Fo is the forcing term in the related equilibrium problem, in

the sense that the series Z |F™ — Foo||? converges. If this holds, then following the steps of
n=1

n—00

Theorems 7 and 8, we conclude that, (0" +u"1) 2225 2u,, (0! —u"*!) 2220, and

u" = ., where s solves the equilibrium problem, At + Aun = F o
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6.0 A SECOND-ORDER, UNCONDITIONALLY STABLE, PARTITIONED
METHOD FOR THE EVOLUTIONARY STOKES-DARCY PROBLEM

In this chapter we present a partitioned numerical method for the evolutionary Stokes-
Darcy problem (3.1)-(3.12) that is strongly stable and uniformly convergent with respect to
the model parameters. The method involves a stabilization of the classical Crank-Nicolson
Leapfrog (CNLF) time stepping scheme for the time discretization. We prove the method’s
unconditional stability and second-order, uniform convergence in space and time. Further,
we prove that the method controls the unstable mode of Leapfrog, by showing asymptotic
stability. Numerical tests that verify the method’s stability and convergence properties, as
well as tests illustrating its efficiency versus fully coupled methods, are presented in Chapter

8, in Section 8.2.

6.1 INTRODUCTION AND THE CNLF-STAB METHOD

In this section, in Algorithm 2, we present the stabilized CNLF (CNLF-stab) method for
the evolutionary Stokes-Darcy system. We begin with the semi-discretization of the problem
in space and then present the usual CNLF method for the discretization in time. We also
discuss CNLF’s stability and convergence properties, which motivated the development of
the CNLf-stab method. Then, in Section 6.2, we prove unconditional, asymptotic stability

of CNLF-stab, and in Section 6.3 second-order convergence in space and time.

We recall from Section 3.4 the variational formulation of the evolutionary Stokes-Darcy

problem (where 0 < T < 00):
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Find (u,p,¢) : (0,T] = Xy x Qf X X, such that for all (v,q,v¢) € X§ X Qs x X,,,

n(uy, v); +nbs(v,p) + as(u,v) + c1(v, ¢) = n(fs, v);, (6.1)

0, (6.2)
9(fp ¥)p, (6.3)

by(u,q)
g(SO¢ta w)p + ap(¢7 ¢) - C[(u, ¢)

given the initial data u(x,0) = ug(x) and ¢(x,0) = ¢o(x), where p = p/p, £ = £;/p.
To discretize the system of equations (6.1)-(6.3) in space we use the Finite Element (FE)
method. We let 7}, be a quasiuniform triangulation of €2y U€2,, and h > 0 be the maximum

triangle diameter. We choose our FE spaces based on a conforming FE triangulation,

discrete Stokes velocity space: X'} C Xy,
discrete Stokes pressure space: Q? C Qy,

discrete hydraulic head space: Xz}f C X,,
and assume that X? and Q’} satisfy the discrete inf-sup condition (LBB"), see [51, 56, 80]:

b
385> 0 suchthat inf sup L) o g (6.4)
an€Ql vieXh HVVthHQth
h#0 v 40

The LBB” condition guarantees the stability of the discrete Stokes pressure, p,. Notice that
the FE spaces X’J} and XI’} are separate and continuity is not assumed across the interface [

between the two domains. We denote by V? the discretely divergence-free space:
V]; = {Vh € X? : (qh,V . Vh)f =0 th € Ql}},

and point out that V}L is not necessarily a subspace of the divergence-free space V. The

semi-discretized formulation reads:

Find (ap, pn, ¢n) : (0, T] — X? X Q? X X;} such that for all (vy, qn,¥p) € X? X Q? X X;},

n(Why, Vi) s+ ap(un, vi) — n(pn, V - Vi) + cr(va, on) = n(Er, vi) s, (6.5)
(qn, V- up)y =0, (6.6)
9S0(Pnt, Vn)p + ap(On, Y1) — cr(an, ¥n) = g(fo, ¥n)ps (6.7)
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given the initial data uy(z,0) = ug(z) and ¢p(x,0) = po(x).

We further discretize the problem (6.5)-(6.7) in time with the CNLF-stab time-stepping
scheme (Algorithm 2 below). Before introducing the stabilized method, we present the usual
CNLF method (Algorithm 1) for discretizing the problem in time, along with its stability
and accuracy properties. (For a detailed analysis of the CNLF method for the Stokes-Darcy
system see [75].) Let t* := kAt, k =0,1,..., N, with NAt =T,0 < T < oo (if T = oo then
N = 00), and v* := v(x,t¥) for any function v(x,t). In the proof of Proposition 6 we will

use the following inverse inequality, see [14]:
WUV Wl570 < Cong ol Wl g1, Y97 € X Gy > 0. (639

Algorithm 1 (The CNLF method). The CNLF method for the evolutionary Stokes-Darcy

problem 1is:
Given (ui,ﬁﬁ,ﬁbi)a ( . 1,]55 ! 2_1) € X’} X Q? X Xg,
find (u b1 gkl k+1) eX?XQ?xXg, k=1,...,N—1,

satisfying ¥ (Vi, qn, n) € Xh X Q? X Xh :

k+1 k—1 k+1 k—1 ~k+1 ~f—1
u —u +u +p
f

At 5
‘l‘CI(Vha gbh) = n(ff,Vh)f, (69)
(0, V- w™) =0, (6.10)
¢n+1 k-1 k+1 I ¢
gSO (%,@Dh)p + Qap (T @Z)h) — C[(ui,@/)h) = g( ;57750}1)1) (611)

where (U2, ¢%) = (ug, ¢o).

CNLF involves three levels in time and therefore, to obtain the first approximation,
(u},, pi, #1), we need to apply a one-step method. The CNLF method (6.9)-(6.11) is very
efficient, in that it decouples the Stokes-Darcy system into the two sub-physics flows by
using the explicit Leapfrog method for the coupling term, ¢;(+,-). This enables us to solve
the sub-physics flows at each time step in parallel by highly optimized algorithms for each
sub-problem. One further advantage of CNLF is that it is second-order convergent in time
with optimal convergence rates in space. However, it requires a computationally restrictive

(under certain parameter regimes) time step condition for stability, given in (6.12) below.
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Proposition 6 (Conditional stability of CNLF). Consider the CNLF method (6.9)-(6.11).
Suppose
At < ngfl/p max {min {h*¢~", Son"} ,min {hg~", hSon""} } , (6.12)

where Cq,, = CT7fCT’pC-1/2 Cl2  and C1.f/ps Cinw,f/p > 0 are the constants from the trace

v, f " inv,p’

(2.9) and inverse (6.8) inequalities respectively. Then for any N > 1 we have

nad (|17 + [ay=H1F) + go” (lon115 + lon 1)
N-1

nv kmln
a0 { FEIV (o ul ) I+ S (o ) 1)

k=1

n(l[uillF + uil7) + gSo (I0nlly + 18nllz) + 24t (er(dh, w,) — cr(dh, up))

nCx 2g
+AtZ{ _”ff“217f+r|’f§"zl,p}7 (6.13)

where

of ;= min{l — At /flgCQf/pa 1 — At hingQf/p}’
o = Hlil’l{So — At hilncﬂf/lﬂ SO — At nCQf/P}’

are positive constants due to (6.12).
Proof. See Appendix A 4. m

The time step condition (6.12) involves the specific storage parameter, Sy, which we recall
from Table 2 can be very small in value. To illustrate how restrictive the CNLF method can
be, let’s assume that Sy = O(107°), n = O(107"), g = O(10'), and Cq,, = O(10"). Then,
taking h = 0.1 in CNLF forces the time step to be at most O(107?) for stability. As a result,
CNLF becomes impractical for computations, especially in cases of large aquifers with low
conductivity which require accurate calculations over long time intervals. Furthermore, the
method cannot be applied to the quasistatic Stokes-Darcy problem, where Sy = 0. The
stability condition (6.12) of CNLF does not explicitly depend on the hydraulic conductivity
parameter, K. However, in computations and in the presence of round-off error, CNLF

becomes unstable for small values of the minimum eigenvalue of K, &, (see Section 5.1 for
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more information about the unstable and stable modes of Leapfrog). In light of the small
values of k,,;, from Table 1, this can be a serious issue when using CNLF.

The CNLF-stab method (Algorithm 2) is obtained from CNLF by adding stabilization
terms to both the Stokes as well as the groundwater flow equation. The resulting method
is a partitioned numerical scheme that is unconditionally, asymptotically stable and second-
order convergent, uniformly with respect to the model parameters. Thus, CNLF-stab retains
CNLF’s second-order accuracy, while eliminating the time step restriction for stability, and

while also controlling the unstable mode due to Leapfrog.

Algorithm 2 (The CNLF-stab method). Let
0<e€e <1, and " > 1/(2€"), so that p* > 1/2. (6.14)
The CNLF-stab algorithm for the evolutionary Stokes-Darcy problem is:

Given (uf,pf,¢f), (uf "5y " ¢p ") € X x QF x X},
find (@ pE i) e X x Q x X k=1,...,N—1,

satisfying V(Vh,qh,@bh) € Xh X Qf X Xh

k+1 k—1 k+1 k+1 k—1
- uy +u;
n( 2A¢ ’Vh> ( ( ) v Vh>f+af< 2 ’Vh)

~k+1
. (W%,v : vh) +er(vi, ¢F) = (¥, vi) s, (6.15)
f
(qh,V~uZ+1) =0, (6.16)
n+1 k—1 k+1
950 (% ¢h> + a, (+¢ %) — cr(uy, ¥p)
+5° Atng® CH(V (9™ = o), Vbn)p + (05 — o tn)pl = 9(f, ¥n)ps (6.17)

where C} is the constant from inequality (3.46), and (uf, #?) = (ug, ¢o).

The stabilization terms in (6.17) are of the type studied in [4], and the added term in
(6.15) is grad-div stabilization of uy, see [94]. CNLF-stab, like CNLF, is a two-step method,
and hence we must obtain the approximation (uj}, p:,#;) by using a one-step method, for
example Backward Euler Leapfrog (BELF), [83]. The error in the approximation in this
first step will affect the overall convergence rate of the method. Also like CNLF, CNLF-stab
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decouples the two sub-physics processes, allowing for the two symmetric positive definite
sub-problems to be solved in parallel at each time step. Further, the added stabilization

terms,

( ubtl g
n|V- (—) V- Vh) in (6.15) and
2At f

B*Atng*C? [(V( P, Vi) + (anT - Z_ljw)p} in (6.17),

add a consistency error of order At? to the CNLF method. Thus, the CNLF-stab method
retains the desired accuracy and efficiency properties of CNLF, while being unconditionally,
asymptotically stable and eliminating condition (6.12). The proof of unconditional, asymp-
totic stability of the CNLF-stab method (6.15)-(6.17) is given in Section 6.2, and the proof

of second-order convergence, uniform in the model parameters, in Section 6.3.

Remark 11. The stabilization in (6.15)-(6.17) is not a direct application of the stabiliza-
tion BAtA*A (u"™'—u""') in (CNLF-stab) from Chapter 5. If we were to implement
this stabilization in the Stokes-Darcy problem, we would need to define a linear operator

A= (Ap, Ap) : X x X — X% x X)) via the Riesz representation theorem by

(Ar(w,6),v)5 + (Ap(u, 6), 1), = / u- iy do — / ov iy do.

The stabilization motivated by BAtA*A (" —u"1), that seems most natural in appear-

ance, is to add only a boundary integral term in each equation:

BAtng? /1 (opth — ¢ 1)aby, do and BAtn /I ((upt' —up™") -ny) (vi-1y) do.

The analysis as to whether this stabilization is sufficient for unconditional stability of the
method is an open problem. However, in light of inequality (3.42), the stabilizations in

(6.15)-(6.17) are closely connected.
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6.2 STABILITY ANALYSIS OF CNLF-STAB

In this section, in Theorem 9, we prove unconditional stability of CNLF-stab. We recall the

definitions of the norms on the dual spaces of Xy and X,:

(f,v)s
fll_1r= su ,
|| H 1,f 0 VEI;(J“HVVHf
(f, )
| fll-1,= sup
Y e, VY,

Theorem 9 (Unconditional stability of CNLF-stab). The CNLF-stab method (6.15)-(6.17)

1s unconditionally stable: for any N > 1, there holds

nof (luy e + lun ™ G r) + 950 (6w ll; + llén ~115)

+ a3 Ang’CE (6 117, + lon 113 ,)
Nl gk
At k+1 k—1 2 min k:+1 2
n ZkZI{—CKHWuh Ful ) 34+ SV (6 4 o) I (615

1 (1h 1 + TRl ) + 950 (1805 + llohl15)

nCK

N-—1
29
#3880 CE (1641, + I0U13,) + & 3 { SR IEHE, + 22121,
k‘:l mZ'fL

where of :=1—€*, and ab := (26" — 1/€*) are positive constants by (6.14).

Proof. We set vy, = uk+1 + uh Loy = k“ + <b in (6.15), (6.17). Then the pressure term

in (6.15) cancels by (6.16). By adding the equations together and multiplying by 2At we get

n (a3 — la A s) + 950 (lek 12 — [ler12)
+28°APng?CE (lof 13, — e 11,)
+At{ay (W it up ) o, (5T o el oY) ) (6.19)
+2At (er(upt +uf ™ 0f) — er(uf, op T+ op )

— 2A¢t { (ff, w4 b, 4 g (f ,¢k+1+¢271)p}'

If we let

CMHY2 = er(gn, wi™) — er(or ™ ),
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then we can express the interface terms in the equation above as
er(uf™ ! o) —er(uf, o ) = O O,

By applying the coercivity estimates (3.34), (3.36) on the left-hand side, and also using the
dual norms of X, X,, and Young’s inequalities on the right-hand side of (6.19), we obtain

n (a5 = a5 ) + 950 (lon ™ 112 = lloh %)
" _ 1 _1
+ 28" g CE (I6f I, — 1657 13,) + 24t { €+ — ch-i
2nv
+At{C—KHV( P G 4 Gkl |V (05T + 0 )Hi}

nCK

nv
< AtC—KHV( w7+ At ||ff||21f

£ 12,

kmin
+At92 IV (@5 + gk )||2+At

mzn

Rearranging gives

(g — I B ) + 90 (162 — k1)
+ 25 ARG CE (105 IR, — 6571 12,) + 280 {OF+E — ovt)
(6.20)

+At{ﬂnv( b1y b )ufcﬂkmi"nw L ghe )||f;}

<At—HffH2 f"‘At kaHle

We denote the energy terms by

BNV = (g + 110G ) + 950 (7 M5 + 105117)

+ ZB At2n92CT (||¢k+1||1,p + ||¢z||%,p) :

Then (6.20) becomes

kmin
Ek+1/2_Ek—1/2+At{g_:Hv( k+1+uh )||3c+g HV( k+1—i—¢ )H;%}

nC’K 2g
BRI + At £311%1,,

kmzn

—|—2At {Ck+1/2 Ck 1/2} < Af—2~
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Next, we sum up the inequality from £k =1 to N — 1 to find

N-1
EN‘1/2+AtZ{g_:HV( E ) [+ 2 (6 o) )2

k=1

N1 . ) (6.21)
_ nCg g
+2AtCN 1/2 < E1/2 + 2AtCl/2 + At g {—”ff HQ " + - Hff”%lp} .

k=1

1/2

We then apply inequality (3.46) to the interface terms involved in CV~1/2 to obtain

ler(uy’, ¢ I < ngChlluy law.sllén " llip,  and

ler(uy ™", o) < ngCilluy ™ laiw,rll o [

Thus, by the Cauchy-Schwarz and Young’s inequalities we have

At? ngC

2AtCN 2 < e ([ [ g + oy~ G ) + Sl 1, + o 15,) -

Consequently,

BN 4 2ACN2 > (1 =€) () (G + lay " G ) + 90 (len 115 + llen ™ 17)

(w - ) APng?C2 (I8N ]12, + X 2,) (6.22)

After combining (6.21) and (6.22) we have

noy ([uy G s + oy~ G r) + 980 (lon 15 + llen " 117)
+ a3 Ang?CY (loy I, + lon ' 111,)

+At2{—\|v (™ ) I+ 29 (6 o)

(6.23)
< n ([l + 1ukllz.,) + 950 (16nl5 + lonll;)

+ 2At2n92cf (||¢h||1p + ||¢0||1p) + 2At {CI b)) — cr(oy, u%)}

— [nCk 2g
T At Z { p27/ Hf]]szLf + k. Hf;l)c”zl,p} ’
k=1 min
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where af =1 —¢€* > 0,a5 =25* — 1/¢* > 0. Finally, to achieve the unconditional stability
bound (6.18), we bound the coupling terms on the right-hand side using (3.46) (with C' = C})

and Young:

2At {er(dh wy) — cr(dy, ) } < 2A8¢ngCy ([ laiv.s 0k l11.p + [hllaie. |05 ]11.5)

< n (llupllii s + 0313 ) + APng®CE (lonll3, + Il )

concluding the proof. O]

Corollary 1. Iff; =0, f, = 0 in (6.15)-(6.17), then

(W ) =50, (6 +ep) S0
Proof. The bound (6.18) implies that the series

S IV S IV6 ok

converge. Thus, ||[V(up* + u} ||, V(@™ + ¢ )|, — 0, as n — oo, and by the

Poincaré-Friedrichs inequality, [[u}*! +u} | s, [|op"" + @17, — 0 as well. O

This shows that the CNLF-stab method controls the stable mode of Leapfrog, (u"*! +
u"!). In the next subsection, we also show that CNLF-stab controls the unstable mode
of Leapfrog, (u"™! — u" 1), as well, proving therefore that CNLF-stab is unconditionally,

asymptotically stable.
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6.2.1 Unconditional, asymptotic stability of CNLF-stab

In this section, in Theorem 10, we prove that the CNLF-stab method (6.15)-(6.17) is un-
conditionally, asymptotically stable. We express u} and ¢}, for any n > 2, in terms of the

stable and unstable modes as follows:

. up+uy 2 uy uZ‘2
U =75 2
N R A e A

h 2 2

By Corollary 1, we have for the stable modes:

(uf +up~?) %0,  and (] + %) 0. (6.24)

Thus, for asymptotic stability of the CNLF-stab method it is enough to show that if f'f =0,

fp =0, then the same is true for the unstable modes:

n—o0 n—oo

(uh u; 2) — 0, and (¢Z — (bZ’z) — 0.

For the proof we will use the stability bound (6.18) from Theorem 9 and also derive a second

stability bound for the unstable modes in Proposition 7, proven next.

Proposition 7. Consider the CNLF-stab method (6.15)-(6.17) with f; = 0, f, = 0. Then
for any N > 1 there holds

N-1
5*n)\1 Z ”ui—i—l _ uh 1||dwf + 5*95«0 Z ||¢Ic+1 _ i—lHZ

k=1

— Atg
+nd > IV (a4 uf ) |\f+ AngV A i (6.25)

N-1

O APRC 165~ o 1H1p+5*m{ (I 2 + Va1 [12)
b (VN2 4+ VN 2) } <o,

where C** is a positive constant that depends on u, u), o, and @Y, N, i = 1,...,4 are

positive constants given in (6.44) below, and 6* > 0 is given in (6.43).
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Proof. From (6.18), if f'f =0, f, =0, we have

N-1

nv kmin Kk
AtZ{C—Knv(’”wu’; Y+ L o+ ok b < ey 629
k=1
0 (1 s + 1Y ug) + 038800°CE (I} 2, + 0 [2,) <0 (62)

for all N > 1, where C** is a positive constant that depends on u), uj,¢?, ¢ and the

model parameters. In (6.15)-(6.17) with f; = 0, f, = 0, we choose v, = u¥*? — uf~! and

Y, = ¢F T —¢F~t. Then, by (6.16), the pressure term in (6.15) cancels out. After multiplying

each equation by 2At, and adding together we obtain

Al = b+ gSolloh T — 62 4 28 AR Gl — ok,
+ At {a( ’““+uiilu§“—uh Yt a @+ o e — k) (6.28)

+20¢ {er(ui™ —wTh gp) —er(up, o — 97 ) =
By symmetry of the bilinear forms ay/p(-,), (6.28) becomes

nlluf =R+ gSolloft - ¢>;z—1||2 25" ARG G0k = oI,
+ At {ap(w ™ wy ) — ap (W) +ap (6 6 ) —ap(ay T gD (6.29)

+ 20t {er (0T —uf Tl of) — er(uf, ¢f T — g} = 0.

Letting

A = ap () + ag(uf, ul),

A’;+1/2 = ap( ];z+1v k+1) + ap(¢h7 Qbh)
(6.29) is equivalent to

g — w3+ SOk — U2 4 25" gt ok — ok,
A {5 A - (A +A,':—1/2>} (6:30)

+ 208 {er(w ™ —wy T gp) — er (g, 0 — 0T} =
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We multiply (6.30) by an arbitrary * > 0 (to be determined later) and sum from k£ =1 to
N —1 to get

N-1
0*n Y gt = a3, 4 079 S0 Z gt —op 12
k=1
N—-1

—|—2(5*ﬁ At2ng2CTZH¢k+l (b’]i 1H1p+5*At{AN 1/2—|-AN 1/2}

k=1
+ 20" At Z {C k+1 - uh ¢h) (uh7 Z—H - Z_l)}

— 5" At {A”Q Ay

By applying the continuity and coercivity bounds (3.33)-(3.36) to the terms A i/ A;,V_I/Q

and A}/ 2, Azl)/ ? we obtain

nz g™ — 1||dwf+5*gSoZ [

N—-1
N L I ||1p+5*At{ (Va2 + [Vl |2)
k=1
tghmin (V612 + V6N 12) } (6.31)
0 3 ol ) el o o)

< 0" A{M (V|7 + IVus[IF) + gkmas (VORI + IVERIE) }
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a 2
where M = nv (2 + %) Adding together (6.31) and (6.26) yields

N-1
o' n Y It — i |+ 5795 Z lon ™ — o717
k=1

k=1

N-1
nv gkmzn
+AEY SV (T ) [+ IV (e +on ") N1z
— Ck 2
N-—1

+ 26% 5" At2ng20TZ||gf)kH gbZ 1||1p+5*At{ (HV N||f+ ||V N— 1|| )
Fghin (IVOV 12 + [V 2) } (6.32)
N—-1
+20° ALY {er(uf T —ub T o) — e (uf, o — o))
k=1

< O A{M (Vw7 + IVURIIF) + gkmas (IVORI + IV ORI5) } + C™.

The next step involves bounding the coupling terms on the left-hand side of (6.32) and then
absorbing them into the positive terms. By Cauchy-Schwarz, (3.46) (with C' = C}), and

Young, we have, for some &*,(* > 0,

26*At2{c Py of) — er(uf, op T — oh )}
N—-1
< 26" AtngCy Y {Iup = wf law s 165 + 0 law rlor ™ — &5 s}
k=1
" o*n
< ¢ MZHuk“—uh 3w, + — 2 At QCTZHd)hHlp (6.33)
N—-1

* _ *n
+ (10" At ng O Z [0 = oIy + Z (][
k=1
We now use the identity
1 1 1
Jal = Jlla+ Bl + 5 lla =517 + 5 (lal ~ 1B?)
to express |[uy |5, ; and [|¢}|7, as follows, for all k& > 2:

1 _ 1 _
I3 = 2 Qanvﬁ—(HUiHiV,f—HuZ i)

||¢h”1p H¢h+¢2 2H1p n Hgbh Qbi 2H1p ||¢h||1p ||¢;€z_2||ip) .
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Then

N-1
||u;€1||c2hv,f = ||ul11||c2hv,f + Z ||u;€z||c2hv,f
k=1 =
112 1 k k—2]|2 1N71 k k—2]|2
= l[upllaies + 5 > g+ g lasv.s + 1 [ER [
k=2 k=2
1N_1 k112 k—2112
+ 92 . (”uthiv,f B Huh Hdiv,f)
=2
2 1 =
= ||uh||d1vf + - Z HukH +up! div,f é_l Z ”ukJrl —uy lef
k=1
1
+§<H N ! lef+|| N ? div,f B H uy, 1Vf Hu?l fliv,f)
19 2
< o Mkt e Z [P A
k=1
1 _ B 1
+ 5 (Huh (21iv,f + ||uh Ziv,f) + 5 (HU}L (Qiivf + H h d1vf> :

Furthermore, applying (2.6) and (2.8) to the first term, we obtain

N-1 N—-1
[Eh (OIZDFf +d) Y|V (| + Z [ [
k=1 k=1
+5 (HuhN‘llliv,f ) + 5 (Huthiv,f +lubll,,) - (6:39)
Similarly,
N-1 1 N-1 ,
Hgbhulp Z<CI2’F,p + 1) Z HV( iH H + 7 Z H¢k+1 ¢2_1}}1,p
k=1 k=1
1 - _
+5 (=15, + Nl 2||1,p) +5 (H¢h||1,p+ I6815,) (6.35)
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Combining (6.33), (6.34), and (6.35), yields

o &1 {elof”! ) - o - 7))
5*m N-1
<d'n < ) Z =R+ i (Chry +d) ; IV (up* + ) |3
0 22 2 - k41 k—1Y (2
+ e Mg Ol (Chr, + 1) 3 IV (37 + 017 I (6.36)

=
Il

1

+ 5*At2ngQCT2 ( *

) Z b+t — b2,

*

_ 0 - _
2C* (II e 2||§iv,f)+2_5*At2n92012 (lon I, + e 2117 )

5* o*
T e (i, =+ N[, )+Z—gAﬁngQC?(I|¢i||f,p+|l¢2||f,p)-

Next, we apply (6.36) on (6.32). After combining terms, the resulting inequality is

n(l— *

) Z I — b + 6950 Z okt — g2

5 N-1
At _ C2p 0 +d) ) V (ub 4 ub Y )2
e (80— e ey ) IV (7 k) 1
Atg 0*
+ N (kmzn - 26+ AthCT CPFp > Z ||V kH 1) ”;2:

+ 5 0ngC (2 ) Z I+ - g, (6.37)

2nv
Cx

< FA{M ([Vup |2 + [Vud12) + ghma (HV#LH2 +[Varl;) } +C
o*n
2C*

'n 0
o (kG + Rl ) + 2 ng*Cf (l6nlli, + I6hll7,) -

o {2 9+ 19 5) + ok (196813 + 19607112}

+ o (o™ G + oy =G ) + 25 ng*Cf (Il 13, + llen ~°I17,)
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In light of (6.27), (6.37), results in:

n(l— *
N-1

0
b (At = o (Chry ) SV () )

k=1

) Z Jut — w2, + 6%gS) Z b+t — g1

Atg 0*
+ (kmln - AtngCT CIQDFp ) Z HV kH 1) H;zQ:

2 26+
) Z Jok+ — b1

+ §*At*ng*Cy <2ﬁ*

2nv
AL ——
; { -

(6.38)

(Vg 17 + 1Vu 7HIF) + ghmin (1VeR 115 + 1V 05 13) } <Cv,

where C** is a positive constant depending on u),u) ol ¢% Thus, (6.38) implies stability

as long as:

1—
C
5*
A——— 2
tCK 4(*(CPF’f+d) >0

0 2 2
Kmin — 2—5*AtngCT (CPF,p + 1) >0

> 0.

28" = ¢ =

1
48+

To satisfy (6.40) and (6.41), we choose §* > 0 so that

5* < min C* 4Nty 6* 2kmzn
Cx(Chpy+d)’ > AtngCZ(Chp, +1) |

(6.39)
(6.40)
(6.41)

(6.42)

(6.43)

Since £*,¢* > 0, by (6.39) we need to have £* < 1 and by (6.42) that (* < 25*, where
B* > 1/2 is the constant in the stabilization term in (6.17). Therefore, (6.39) and (6.42) are

true for

0<¢& <1, and

1 T |
41— &) g

7



From the (*-interval, we see that for £* = 1/2 we achieve the optimal condition for stability,

p* > 1/2, derived in Theorem 9. Thus, we choose £* = 1/2, which forces 1/2 < (* <

2p* —1/2. Letting

A ::1—§*—42* >0

g = AtCLK - 45—;(01%va +d) >0

A3 := Kmin — ;—;Atnng(C%Rp +1)>0
A4 ::25*—(*—46* >0,

in (6.38) we obtain the stability bound (6.25), concluding the proof.

(6.44)

]

Theorem 10 (Unconditional asymptotic stability of CNLF-stab). Consider the CNLF-stab

method (6.15)-(6.17) with f; = 0, f, = 0. Then

n N—00 n M—00

Proof. By (6.25) we have that both
N-1 N-1
Dot = > et — e
n=1 n=1
are bounded for any N > 1. Consequently,
[ee] o
Dol = g > et = ap I < oo
n=1 n=1
which implies that both
™ =y llentt = ol 2 0,
and hence
n+l  ..n—1) N0 n+l  n—1y N7
(uy w,” ) —— 0, (¢ no) —0.

The claim of the theorem now follows by (6.46) and Corollary 1.
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6.3 ERROR ANALYSIS OF CNLF-STAB

In this section, in Theorem 11, we establish the method’s second-order accuracy in time over
long time intervals, with optimal convergence rates in space. An essential feature of the error
analysis is that no form of Gronwall’s inequality is used as a tool. The strategy for proving

the error estimate in Theorem 11 is:

1. Decompose the error into the error in the FE space plus the error of the projection of

the true solution onto the FE space.
2. Bound the error in the space by the projection error and the consistency errors.

3. Apply the triangle inequality to bound the total error by the projection and consistency

eITrors.

We assume that the FE spaces, X", XI’}, and Q’}, satisfy approximation properties of

piecewise polynomials of degree r — 1, r, and r + 1, r > 1:

inf [u—wll; < CHullgroy
up€ F

. T
u;rel)f(?Hu — w1y < O lul|greiay)

inf (16— dall, < CH™ (9]l () (6.47)

oneX

ot 16 = 6l < OW 610,

inf [lp —pully < CH bl o))
PrEQ}

Moreover, we assume that the spaces X}} and Q’} satisfy the (LBB") condition (6.4). As a

consequence, there exists a C' > 0 such that if u € V¢, then

inf |lu—v <C inf |[|Ju—x 6.48
g =il € it =, (6.48)
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(see, for example, [51, Chapter II, Proof of Theorem 1.1, Equation (1.12)]). We introduce

the following discrete norms, recalling that v* = v(x, t*), for any function v(x,t):

N
IVIlZ20rx) = Atz V¥ 1%,

[lleoirx) i= ma [V, for any space X.

For the proof of Theorem 11, we will use the consistency error bounds given next.

Lemma 4 (Consistency error bounds). The consistency errors satisfy:

N-1 k+1 k—11|2 (A 4
u u t)
Atz uf - 2At ! = 20 HutttH%Q(O,T;LQ(Qf-)) (6.49)
k=
N-1 2
¢k+1 _ ¢k71 (At)4
ary ot = || < S0l (6.50)
k=1 p
N-1 uk+l E—1\ [|2 4
+ u (At)
At V (uk ) S 3 ||utt||%2(O,T;H1(Qf)) (651)
k=1
N—1 2
¢k+1 + (bk 1 (At)4
At ‘V (Cbk < 3 H¢tt“%2(0,T;Hl(Qp)) (6.52)
k=1 P
N-1 a1\ |2 (At)*
At \V4 <u > < 20 ||VlltttH%2(0,T;L2(Qf)) (653)
k=1 f
At Z 165 = 651, < A(A8|l17 (6.54)
17p - t L2(07T;H1(QP))' :
k=1
Proof. See Appendix A.5. O]

We are now ready to prove the main result. We denote the errors by

n __ ..n n n __ n n _
ey =u"—u,, e, =0¢" —p, n=20,1,...,N.
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Theorem 11 (Second-order convergence of CNLF-stab). Consider the CNLF-stab method

(6.15)-(6.17), and assume for simplicity that B* =1 in (6.17). For any 0 <T < oo, if u, p,

and ¢ satisfy the reqularity conditions

u e (L0, T; H™2(Q)) N L=(0,T; H™(2,)) 0 HY0, T; H'(9)))“,

p € L*(0,T; H™ (), (6.55)

¢ € L*(0,T; H™2(,)) N L>=(0,T; H(Q,)) N H*(0,T; H'(Q,)),

then there exists a constant C > 0, independent of the mesh width h, time step At, and final

time T, such that

n _ _
1 g+ 1 ) + g 2+ el 12
N-1 k’
# a3 (BT 4 e + L e )
k=1

<C {h% [Hut|’%2(0,T;HT+1(Qf)) + WUW%?(O,T;HT“(QH) + |Hu”‘%"°(07T?HT“(Qf))
(6.56)

| SSS—

+At4||¢t||%2(O,T;HT+1(Qp)) + |l |¢H|%2(O,T;HT+1(QP))
+h*E? |:|||p‘|’%2(D,T;HT+1(Qp)) + ||¢t||%2(o,T;Hr+1(Qp)) + |||¢|||%°°(D,T;HT+1(QP))}
+AH {HutttHiQ(O,T;Hl(Qf)) + ||utt||iQ(O,T;H1(Qf)) + ||¢ttt||iQ(O,T;L2(Qp))
16tllE20 2380 0) + 90l 2i0mrrcany |+ leF s + llepl,

Proof. We consider the CNLF-stab method (6.15)-(6.17) over the discretely divergence-free

space V", instead of X?, so that the term ((pffl + ]52_1)/2, V- Vh) cancels out. Subtracting

(6.15) and (6.17) from the variational formulation (6.1)-(6.3) evaluated at time t* we get:

k+1 k—1 k+1 E—1

k_ Un T Wy _ (B T W _
n(ut SA7 ,Vh)f n<V ( SAT ),V Vh>f
aFtl gkt
+(lf (uk_fhavh) —n(ﬁk,V'Vh) +cr (Vhagbk_qbfz) :Oa
k+1 E—1 k+1
_ + ¢
So (df—hQThﬂﬁh) + ap (Gﬁk—Tﬂﬂh)

— Atng?CH(V (o3 = 04 ), Vibn)p + (8171 = 0", vn)p} — e (0" = uf,vn) = 0.
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Since vy, is discretely divergence-free, we have that
~J ~J k h
(p ,V-Vh)f: (p —)\h,V-Vh)f, for any A\, € Q5.

Further, (V -uf, vh) = 0. Thus, after rearranging, we get:

k+1 k—1 k+1 k—1 k41 k+1
e —e e —e e + e
f f f f f f
g J v | L— 1 vV - .
”( N ’Vh>f+”< ( N ) Vh)f*“/‘( 2 ’Vh>

k+1 k+1

u _ uk—l u _ uk—l
e () = o (=gt (9 (g ) Vo)
f f

k41 k—1
u' +u ~
—ay (uk — #,vh) —|—n(pk —Aﬁ,v-vh)f,

ek+1_ek_1 €k+1+€k—1
o (Egmri o) +ap (B ) + AT - v
p

+(€1;+1 - eﬁ‘l, Un)p} — Cr (81}7 U)

k+1 k-1 E+1 k-1
p

+ AtngQCTQ {(V(¢k+1 _ gbkfl)’ vwh)p + (¢k+1 _ (bkfl’ wh)p} )

2
k A 22 k+1 k—1
e, (V) = —950 ( P — Ta¢h) + Atng?CE{(V(¢™ = ¢"71), Vibn),
P
B ¢k+1 +¢k—1
e = 6L )} — g (cb’“ -5 ).
Next, we decompose the error terms into
el;+1 — ukt! — UIZH = (U — @) (@ - bt = "7]}+1 1 5;3“,
61;+1 — ¢k+1 . le;;—H — (¢k+1 o ggk—&-l) + (ggk—f—l _ i-{—l) — 77]!;;—‘,—1 + §£+1,
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and take u*™! € V" so that EkH € V", and ¢! e X;f. Then the error equations become:

€k+1 61;71 €k+1 €§71 €k+1 _'_61}71
< oAt h f+" v ] Vi f+“f 5V
k+1 k—1 k41 k—1
by Ny  — My Ny TNy
+CI(Vh7§p)__n<Tuvh f—n V- oAl Vv f

77’;‘“ +77f k k ~k k
—ay T’Vh _CI(Vhanp)+€f(Vh>+n(p —Ah,V'Vh)f,

E+1 _ ¢k—1 k+1 k—1
950 <%ﬂ/’h> +ap (% o ) +Atng? CE{(V(&™ = &7, Vn),

HET =& dn)p ) — er(€F )

k41 kel kel

n n n +n

= —95 <—p 5A £ @/Jh) —ay (_;; 5 £ ,@Dh) +cr(nf, vn)
p

— Atng®CF {(V (it — 0l ), V), + (0 = )} 4 eb ().

Picking v, = EkH + 51;71 € V" and vy, = 5§+1 + fjj_l € XI’} in the equations above and

adding together, we obtain:

1

N} (nHé'}“Hiw + 958 5 + Ang* I E,)

e (g + ool + AR R
[01(5’““ +EN ) — e &+ )]
[af(£k+1 € ,€k+1 5]}*1) + ap(£§+l + é*gfl’ §§+1 + 51571)]

== o | LT )+ (Ve ) Y € - )

Y
920 ( k41 k—17££+1+§§—1)p

C2A¢
- g} (Vg™ — ) VEH 4 ), + (™ - g, )
- % [ag (4L 5 €5 o (T LG )]
— ler(&F + €57 n)) - cf(n’},f’““ +&671)]
+ehETHET) Fn (B - MLV (T HET), b @ g,
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We rewrite the coupling terms on the left-hand side equivalently as follows:

(€k+1 + El;—l’ fk) _ C[(El;,fk+1 + gk—l)
= ( (€k+17§k> -G (£f7§k+1)) - (61(51;765_1) - 01(5?_1765))

k+1 k-1

= C&- CE 2 .
We denote the “€” energy terms by

k+1 2
BT = €2, + gSollEET R + AtPng?CRllEE 3,

+ €53 + 950l Il + AtPng®CRIIE N,

and also apply the coercivity estimates (3.34),(3.36) for ays/p(-,-). Then, after also multiplying
by 2At, the inequality becomes

1 _1
IANENE TNTOALIE /e TN o

2ny _ —
A (—uwsk“ E2 4 G| V(5 1 € 1||§)

<—n |- LT €T, 4 (VT ) (6 67Y)
~ oo (™ %’? LT g, + 208G O] (V0T -V 67),
+(?75+1 7]5 1’€k+1+§£fl)p}] (657)

= Aoy (g™ LT G Hap (T 4G 6]
— 2At [CI(Ek—H + sf_ 7np) - CI(nfa 5}1;:+1 + gk—l)]

20 [HEG &) 0t = XLV €T €Ty el 6]

Next, we bound each term on the right-hand side of (6.57). For the first two terms we apply
the Cauchy-Schwarz and Young’s inequalities along with the Poincaré-Friedrichs inequalities

(4.12),(4.13) and inequality (2.8):

(L € ) n (7 ()T (€ 7)),

3nC’KC'PFf H k+1 STLCKd
- vAt

i s IV (= )Hf+At HV(ﬁ'“+1 &I
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gSuln™ =i 6T G, + 288 O {(V (T — ) V(67 +67Y),

k+1 k—1 ¢#k+1 k—1
Ot et g

1590123F, 2 4,2 2 k+1 k—1)2
S T (55 4800 CE) ™ =
AT NS (=) I+ e st 4 by 2

To bound the third term, we apply the continuity bounds (3.33),(3.35) for ay/,(-,-). Letting

aC2 Cpr .
— . f .
M :=nv <2 = ) gives:

ar(mi™ + L e € + ap(n,’.f“ /R SRR
<MV +ay OIAVERT + €5 + ghmar IV + 0y DIV ET + 67D

SMZC' 5gkmar _
« OB g+ 1)

— gkml’l’l —
||V(€"3+1 &5 OI7 + IV + &5

IVt +mf I +

We bound the coupling terms on the right-hand side using (2.9), Poincaré-Friedrichs (4.12),(4.13),
and Young inequalities. Letting C' = C7;C% Cpp sCppy, this yields

(€57 + &) — e, &+ 67

< ng (€5 + €57 - dyllrlmfll + I - ﬁfufuf'fﬂ +& 7M1

< ngCrsCrp {I€5 + €512V (ER + €571 It 121wty
g+ &7 IV ET + & 1)HW|rnf\|”2uvm|r“2}

< n9Cr,1CrpCrp Crr, IV EF + €711Vl
HIVET + & DI Vabl}

=ngVC (IIVE + DIVl + IV AV ET +&7N15)

5n gC' 3ng*CC
< T ol + S

min

IV 15

— kmzn
+ e IVEE + €I+ S v + 62,
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Finally, we bound the consistency errors, 5’; and 5’;, and the pressure term by using the

Cauchy-Schwarz, Young and Poincaré-Friedrichs (4.12),(4.13) inequalities as well as (2.8):

u

k41 | gk—1 k S A S
<€++£f)__n(ut_ AL 7€++£f>f
k+1

4 + nd

(v (- ) g

2
< {nCPva Uy = k+12At - ! ‘V <Uf_uk+12+AtUk_1>Hf
-] B

k+1 k—1
u +u _
— ay (uk— —— My e 1)
—u
2

2

2 _ _
- INChp ;Cr - uftt — uf ! N Ind*Cx v (ut - uft! 4 uk!
2u 2At s 2u 2At f
OM2Cy W 1 gkl
V(ivwvw-— """ V(e 4+ —1 2
T KA (e + €I

heh+l | ch=1y _ _ ko P = i ke
ep(& +&6 ) =—95 | ¢ SAL &y &,

p

+ Atng®CF {(V (g™ = 6" 1), V(G +&7N),

+(¢k+1 o (bkfl?gngl + 5571)}7} —a, <¢k o M)ngrl + é—]l;:l)

2
e A 242 k+1 k—1
< 9 95Cprp ||9f — —a || T Atng Ci (14 Cprp) V(@™ — ¢ ),
p
B g )
ot [V (04 = S50 | IV gl
p
10953012-"F,p po QT — okt ? 10At2”2930? k41 k—1y (|2

10AE2n2 g C4C?2 10gh?
PFP||¢k+1 ¢k—1||12) Y9 vmax

kaTL kmzn

gkmm _
+ THV(E;];H +&72,

i ¢k+1+¢k—1 2
v (-,
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n (0" =M V(€T +€5Y) < nVdllpt —Aufnw’““ &5 Mlis
< Ot — NI+ e IVEE + €5

ally + 120

We now absorb all the resulting “6” terms into the left-hand side of inequality (6.57). After

also grouping together the remaining terms, the inequality becomes

1 1
B onicl B - o)

— gkmzn —
b e ZEIVET + €70+ TR + g IR)

< (At)” {Mygﬂpf” k+1 ?—1"? i %ﬂiﬁ (52 +4At4n29204) H k+1 nﬁ’lllﬁ
SnCKd HV( k+1 ,,71;:1) H?}
ot { T () 12+ O
+ e | g2+ 13€’fmjo||vfn’;||§ + OO0k e
+9nC}2;57fCK - uk+12;tuk—1 j‘F 9ndeK v (uf B uk+12;tuk;—1) i
o (o W oy
+% oF — <Z5k+12;t¢k_1 2 . 20Atl: | 30?”V(¢k+1 ¢k_1)”127
min » min

QARG CIC, 20gk>
P k+1 k—1112 g “YI Y maz
+ o™ — ", +

. ¢k+1 _{_¢k71
V(=)

2
kmm kmzn p }
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Summing up the above inequality from k£ =1,..., N — 1 yields

[un

N_1 1 1
B 7?4+ 20IC, T — B2 — 20MCE

N-1
ny _ Gk min _
+ a0 Y (GEIVE + €5+ PV + IR
k=1

s

1
s(m)lz{—?’”OKOP”H 1 _ itz g 129C0r

v 2k min

3nCKd _
0P 1 e — i) 1)
N 2 3 4
30At*n?g>C B 3M CK
Z{ DT O (o — ) 2+ IV + )2
k_: mln
5gkmax 10n%gC 6ng*CCy
T | Rt L L T
gnCPFfCK uFtl — yk1 2 9nd20K uktl gkt 2
_ e _ \V4 k_
- v ! 2At f+ v (ut 2At ) f
QMQC k+1+ k—1 2 6ndC R
O W RN T
20953C3 5, || . T —oF P 20A8n2g3CH b 2
20At2n?g3CC% 20qk2 k1 k-1 |2
+ g T PFPH¢k+1 (bk 1”2 g “YI VY max V(¢k_¢ +¢ )
ko ko 2 ’
mn m’LTL p

Next, we bound each sum on the right-hand side using norms as follows.

N—-1 N— tht1 2
I+ ?7’}‘1||§—Z / ny, dt
k=1 k=1 ||/t f
N-1 th+1
< / 2At / s> dt | dx
k=1 " s tht 7
< 4At||77f,tH%Q(O,T;Lz(ﬁf))’
N-1
™ =i~ < 4D el F20,702(0,))-
k=1
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Similarly,

N-1
|V (W?H yrs ) ch < 4Atanf,t”%Q(O,T;L2(Qf)) (6.61)
k=1
-1
IV (™t = ™) 12 < 4DVl 22070200, ) (6.62)
k=1
Inequalities (6.59) and (6.61) imply
Z {Ilnf™ =3+ IV (™ = af ) 17} < 4AtinglZa0mm @) (6.63)
For the remaining “n” terms we use Cauchy-Schwarz and the discrete norms
_ N-1
DIV i I <23 (I9m; 15+ Vi 17)
=1 k=1
N (6.64)
<4 [[Vnill; < 4(At>_lH’vnf’H%Q(O,T-LQ(Qf))
k=0
N—-1
IV (™ 0T < 4T NVl I 720,7:22(0,) (6.65)
k=1
N-1
Z IVail7 < (A Vngll172 (0,T:L2(2y)) (6.66)
N-1
IVl < (AT V122072200, (6.67)
k=1

ZHN’“ Mll7 <

(At)~ 1”’27 Ah’HLQ(OTLQ(Qf)) (6.68)
We now apply the bounds (6.59)-(6.68), (6.49)-(6.54), and (6.22) from the stability proof, in
(6.58). After absorbing all the constants into C > 0, we obtain
n _ -

o (€5 v, + €5 WGiv.r) + 9S0(li& 17 + Nl&5115)

N-1

— gkmln
F oy BV + €I+

k=1

V(e + g 1>||2)

<G {||nf,t||L2(0,T;H1(Qf)) + an,tH%%o,T;L?(Qp)) + At4‘|vnPtHZL2(OTL2( )

(6.69)
2
9B 0200, + 19l 207,220, + AL (Il 20010,

2 2
Fllweel2 0.7, m1.0))) T 90t 1200 75220,)) T ||¢t||%2(O,T,H1(Qp))

2 ~ 1/2 1/2
oulamiman ) + 15 = Mllornpy | + B+ 2080
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The final step of the proof involves applying the triangle inequality to the error terms e}v =

u¥ —ulf =0 + &7 and ¢ = ¢ — ¢ =) + &
n _ QSO
™+ X ) + 22 2+ e )
N—-1 g/{: 4
# a3 (GecViEl + el + L v+ )2
k=1
n _ _
< PO W + 1D ) + 91NN + Y12
N-—1 gk)
Fary (FEIVET + €+ TR + g IR)
k=1
n _ _
§<an s + 17 )+ 9ol 12 + 1)

— nv gkmzn -
8 S (2wt gl + v+ gl
k=1

Now, we have

10717 < Mn sl orizz@ps Il < Mol Ze o222,y s
and thus [|n}(|%, ; < dllIn]l7 o (0,T5H1(@))) VT Applying this, along with the previous bounds
on the “n” terms and (6.69), and also absorbing all constants into 62 > (, results in

n - 950
Z(HeNfH?iiv,f + [lef .5 + —(||6’N||2 + [le) M)

N-1
_ gkmm —
#a 3 (GecVEs + e I + L v+ )
k=1

< G {Ims Mo mnncapy + Mol a0z, + ALVl a2y
+|||V77f|H2L2(O,T;L2(Qf)) + |||vnp‘||%2(O,T;L2(QP)) (6.70)
+AL (HutttHiQ(O,T;Hl(Qf)) + Hutt’|i2(o,T;H1(Qf)) + ”¢tttHiQ(0,T;L2(QP))
6oy + 10l ) + 15 = Mllsoamyy
Jr|||77f|||%oo(o,T;HI(Qf)) + |an|“%°°(0,T;L2(Qp))} +n (€515 + €515 5)
+ gSo(lIEZ + IEDIE) + g CRIEIR, + E2I3,) + 2A0C”

Using (3.46) and Young, we bound the coupling term on the right-hand side as follows:

ngC’Jr (

c 1€ 2. + €125 + 1E0113, + 11EL112,.) - (6.71)
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Inequality (6.70) holds for any u € V", \;, € Q’}, and ¢ € X;}. By taking the infimum over
v Q?, and X]'}, using (6.48) to bound the infimum over V" by the infimum over X%, and

using the bound (6.71), we have:

n _ _
S (e llgiv.s + ey ™ i) + 9So(lley 15+ lley 1)

N—-1
nv — gkmhl —
# 803 (GEIVIel el + ST+ )
k=1

< (s {ﬁien)% [”nf,tH%?(O,T;Hl(Qf)) + |HV”7f|H%2(o,T;L2(Qf))

1751 ooy + 1€y + 1

. ~ 2 . 2
+A}}T€1£? 11z /\h|||L2(o,T;L2(Qf)) +£§£ [Hﬁp,t||L2(o,T;L2(Qp))

+At4anp7tH%Q(O,T;LQ(QP)) + Hlvnp’H%?(O,T;L?(Qp)) + |H77P|H%°°(O,T;L2(Qp))

2 2
g, + €003, | + A { el o016,y + 20 22000

2 2
+ Pl 2070200, + Iell7200.7:201 2,y + ||¢tt||L2(o,T;H1(Qp))} } ;

where all constants were absorbed into a 63 > (. The claim of the theorem now immediately

follows by applying the approximation assumptions (6.47). O

We conclude this section with a corollary about the growth rate of the errors in the

CNLF-stab method.

Corollary 2. Under the same reqularity conditions as (6.55) of Theorem 11, the temporal

growth of the error satisfies

el ey ll, = O(VT).

Proof. For any function v : [0,00) — X and any spatial norm || - ||x we have

T
Léuwm&ﬁgTwmﬂwﬁp

for any 0 < T < oo. Similarly, the discrete norms satisfy

N N
ALY VM < ALVITw o) D11 = TV 0 sei)-

k=1 k=1
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The claim of the corollary follows by applying the above bound to the terms on the right-hand
side of (6.56). O

Remark 12. Numerical tests verifying unconditional stability and uniform, second-order
convergence of the CNLF-stab method, as well as tests that illustrate the method’s effective-

ness over fully coupled methods, are presented in Chapter 8, in Section 8.2.

92



7.0 THE QUASISTATIC NAVIER-STOKES/DARCY APPROXIMATION

In this chapter, we introduce the fully evolutionary Navier-Stokes/Darcy problem and its
quasistatic approximation. We modify the previously used ‘balance of normal forces’ coupling
condition across the interface, (3.11), to include an “inertia” term, (7.13). This addition,
like others for the nonlinear problem, has deficits which are discussed in Remark 13, in
Section 7.1. We obtain first-order convergence of the solution of the fully evolutionary
Navier-Stokes/Darcy problem to the quasistatic solution in both two (Theorem 13) and
three (Theorem 14) spatial dimensions, as the specific storage approaches zero. In three
dimensions, convergence holds under a regularity assumption on the velocity. Finally, in
Theorem 16, in Section 7.4, we prove convergence to the quasistatic solution in three spatial

dimensions under a small-data condition, and no extra regularity assumed on the solution.

7.1 THE EVOLUTIONARY NAVIER-STOKES/DARCY PROBLEM AND
ITS QUASISTATIC APPROXIMATION

We begin this chapter by introducing the continuous, fully evolutionary, Navier-Stokes/Darcy
problem. All operators, variables, and problem parameters are the same as defined in Chap-
ters 3 and 4, and we recall from Chapters 2-4 the definitions of the spaces

Xyi={ve(H ()" v=0o0ndQ\},

X, :={veH(Q):¢¥=0o0n0Q\I},

Qs = Ly(y),

Vy={veX;:(¢,V-v)=0VqeQr},
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and the norms on the dual spaces of X; and X,

(f,v)s
[£]l-1s:= sup ,
orvex, Vv
(fa 77Z))P
[fll-1p = sup 1=
" orvex, VYL,
where || - |7/, denotes the L? norm on Qg/,, and (-,)s/, denotes the corresponding inner

product on €2¢,,. We further recall that
T
PO.TX) = {0:[0.7) 5 X ¢ [ oo de < oc),
0
L0, T; X)=4{v:[0,T] = X : sup {||v(t)||x} < oo},
te[0,7
for any space X, and also the Poincaré-Friedrichs inequality (2.6) for each domain €2y,

[Vllzzp) < Crrll Ve, (7.1)
191l 22(0,) < CrrpllVllL2(0,), (7.2)
where Cpp s/, > 0.

We assume that the velocity, u = u(x,t), and the pressure, p = p(x,t), defined in
Qp x [0,T], T > 0, satisfy the Navier-Stokes equations

p(ug+u-Vu)— V- -I(u,p)=f in Q x (0,7], (7.3)
Vou=0 in Q x (0,7, (7.4)

u=0 in (9Q\I) x (0, T, (7.5)

u(x,0) =up(x)  in Q, (7.6)

and the velocity, u, = u(x,t), and the hydraulic head, ¢ = ¢(x,t), defined in €, x [0,7],

satisfy the groundwater flow equations, as before

Sope +V-q=fp in €2, x (0,77, (7.7)
q=-KV¢ in Q x(0,7], (7.8)

u, = % in €, x (0,77, (7.9)

O = in (0Q,\I) x (0,77, (7.10)

d(x,0) = ¢o(x) in €, (7.11)
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where the boundary and initial conditions for each sub-domain above are the same as in
Chapter 3. The two systems of equations are coupled through the following interface condi-
tions, namely conservation of mass, balance of normal forces (plus an “intertia” term), and

the Beavers-Joseph-Saffman condition across I:

u-n;+u,-n,=0 onl, (7.12)
pgP =p — 24 ﬁf-D(u)-ﬁf+g(u-u) on I, (7.13)
—2n;-D(u)-7; = c u-7;, fori=1,..., d-1 on I. (7.14)

Remark 13. The addition of the “inertia” term in (7.13) was considered in the analysis of
the Navier-Stokes/Darcy coupling in [1, 52]. The basic issue is that without the “inertia”
term, the energy of the coupled problem for large data cannot be bounded by the energy input
from body-force flow interactions. The cause for this is an extra term in the energy equation.
The “inertia” term (with the exact constant coefficient “p/2”) is chosen to exactly cancel this
inconvenience. However, it can also be criticized since the resulting model violates Galilean
invariance, see [81], and since the term does not arise from any physical process or law.
Thus, the mechanically correct coupling conditions are still an open problem. We base our
analysis on the term’s inclusion because analysis (in the large) cannot begin without an energy

balance.

The only differences between the evolutionary Stokes-Darcy problem (3.1)-(3.12) and
the Navier-Stokes/Darcy problem (7.3)-(7.14) are the nonlinear term “u-Vu” appearing in
(7.3) and the “inertia” term “f(u-u)” appearing in (7.13). The variational formulation of
the Navier-Stokes/Darcy problem is thus easily obtained by using the steps in deriving the
corresponding weak formulation of the Stokes-Darcy problem from Chapter 3, Section 3.4,
with the addition of two nonlinear terms, underlined below. It reads:

Find (u,p,¢) : (0,T] = Xy x Qs x X, such that for all (v,q,v) € X¢ X Q¢ x X,

n(u,v)r+b(u,u,v) — g(u ‘u, V- Ay)g

) (7.15)
+nbs(v,p) + ap(u,v) +ci(v,9) =n(fr, v)y,
b(u,q) =0, (7.16)
9(S09s, V)p + ap(d, ) — cr(u, ) = g(fp, )y, (7.17)
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gien the initial data u(x,0) = uy(x) and ¢(x,0) = ¢o(x), where b: Xy x Xy x Xy — R is

the trilinear form
b(u,v,w) :=n(u-Vv,w)y, (7.18)

and where f'f =1f¢/p,p=p/p as before, where p is the fluid density. The well-posedness of
the Navier-Stokes/Darcy problem given in (7.15)-(7.17) was established in [1, 52].
The trilinear form b(-, -, -) is continuous in the space X; x (H'(Q;))? x X;:

b(a, v, w)| < n Gl Vul IOV IVl Vwv,w) € Xy x (HY(Q)) x X;, (7.19)

where (e.g., [47])
1Q1/2/2, for d=2

C. =
2V/2|QY/6/3,  for d = 3.

Moreover, the following estimate holds in dimensions d = 2, 3, see, e.g., [80]:
b, v, w)| < nCylull [Vl 9V 4 VW, (7.20)
for all u,v,w € Xy, where C} is a positive constant. Also, by the identity
V-(uv-w))=(v-w)(V-u)+u-Vv-w+u-Vw-v,
if we assume that u € Xy is such that V - u = 0, then we have by the divergence theorem:
(u-Vv,w)y = /Q V-(uv-w)) dx—(u-Vw,v);
s
=(u-ns;,v-w);—(u-Vw,v);.
Therefore,
b(u,v,w) =n(u-nsv-w); —blu,w,v), (7.21)

and, as a consequence,

b(u,v,v) = 2(u-fy, [v|?), (7.22)
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for all u,v € Xy with V-u = 0. In the upcoming sections, we will consider the weak

formulation over the divergence-free space, Vy,
Vi={veX;:(q,V-v)=0Vq € Qs},

where the pressure term in the fluid region is eliminated:

Findu: (0,T] = Vg, ¢:(0,T] — X, such that for all (v,¢) € V§ x X,,,

n(u, v)s+b(u,u,v) — g(u cw,v-ng)+ap(u,v) +e(v, ) = n(f'f,v)f, (7.23)

g(SOtha ¢)p + ap(¢7 ¢) - Cl(uv ¢) = g(fpv ¢>p’ (7'24)

giwen the initial data u(x,0) = ug(x) and ¢(x,0) = Po(x).

The continuous quasistatic Navier-Stokes/Darcy model is obtained by setting Sp = 0 in
(7.3)-(7.14). We denote its solution by (u®% p?°, ¢?%). Therefore, the weak formulation of
the quasistatic Navier-Stokes/Darcy problem over the divergence-free space Vy is given by:

Find u?% : (0,T] = Vg, 95 : (0, T] — X, such that for all (v,v) € V; x X,

n(thS,V)f + b(uQS, uQS,V) — E(uQS cu® v ng);
2 ) (7.25)
+af(uQS,v) +¢q(v, gf)QS) = n(ff,v)s,

ay(99%,0) — cr(u?,¥) = g(f, ¥)p, (7.26)

given the initial data u?°(x,0) = ug(x). ¢9°(x,0) is determined through (7.26) by solving

a,(99°(x,0), ¥ (x)) = c1(uo(x), 9 (x)) + g(f5(x,0), ¥(x))p, V¥ € X,

for the unknown ¢%°(x,0).

Convergence to the quasistatic solution in the nonlinear Navier-Stokes/Darcy problem
will rely on a-priori bounds on the time derivative of the hydraulic head, ¢;. In addition,
because of the nonlinearity, convergence will depend upon appropriate bounds on the nonlin-
ear term. As we will see in Theorem 14, in three spatial dimensions, we will need to assume
extra regularity on the velocity in order to prove convergence. The a-priori estimates and a
result of first-order convergence to the quasistatic solution are given in the next two sections,

respectively.
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7.2 A-PRIORI ESTIMATES

In this section we derive a-priori estimates for both the solution (u,¢) of the evolution-
ary Navier-Stokes/Darcy problem and the solution (u%®®,¢%?%) of the quasistatic Navier-
Stokes/Darcy problem. We define

w,(0) = w(x,0) = limu,(x,t) = lim (—u-vu+,§[v-n(u,p)+ff]),

t—0t t—0t

u??(0) := u?(x,0) := lim u?®(x,t) = lim (—uQS - Vu®s 4 % [V - TI(u®®, p9%) + ff}) ,

t—0+ t—0+

3u(0) = 6u(x,0) == limau(x,t) = & lim (~V-q+ ).

We begin by stating the main result of this section.

Theorem 12. 1. In the variational formulations (7.23)-(7.24) and (7.25)-(7.26) assume
that the initial data and body forces satisfy

wy € (L*(Qy))", fr € (L0, T3 H ()", f € L*(0, T3 H™ ().
a. Then for u®% ¢@ given by (7.25)-(7.26) we have

u?? € (L=(0, T3 L*()))", Vu € (L*(0,T; L*(Qy))) ™,

(7.27)
u? ., € L2(0,T; (D)), i=1,...,d—1, V¢ € (L*(0,T; L*(Q,)))".
b. If, in addition, ¢g € L*(Q,) then for u, ¢ given by (7.23)-(7.24) it holds
u € (L0, T; L*(2)))%, \/Sog € L=(0,T; L*(£,)),
Vu e (L2(0,T; L*(2)™ u -+, € L2(0,T; L*(1)), i=1,..., d—1, (7.28)

Vo € (L*(0,T5 L*(%,)))"
2. Assume that the body forces satisfy
fr, € (L*(0, T H7Y ()Y, foe € L2(0, T H'(<Y)),
where f54, fpr denote the derivatives of £y, f,, with respect to time.
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a. If w,(0) € (L*(Q))4, ¢4(0) € L*(K2,), then for u, ¢ given by (7.23)-(7.24), we have

w, € (L0, T; L*(Q0)%, v/ Sod: € L=(0,T; L*(£2,)),
Vu, € (L*(0,T; L* ()™, w, - 7 € L*(0,T; L*(1)), i =1,..., d— 1, (7.29)
Vr € (L0, T L2($,)))".

b. If u?®(0) € (L2(2))4, then u®s, ¢ given by (7.25)-(7.26) satisfy

S e (L=(0,T; LA(Q))%, Vul® € (L0, T; L*(9)))) 4, 730
u?® e LX0,T; LA(D), i=1,...,d—1, V¢ e (L*(0,T; L*(,)))%.

Proof. The conclusions of the theorem, parts 1b, 1la, 2a, and 2b, are direct consequences of

Propositions 8, 9, 10, and 11, respectively, given next. O

We denote by C; = Cf(ug, ¢o, ff, fp), ¢ = 1,..., 5, positive constants that depend on the
initial data and body forces. In Proposition 8 we derive a first energy estimate for the weak

formulation (7.23)-(7.24).

Proposition 8. Consider the weak formulation of the fully evolutionary Navier-Stokes/Darcy
problem over the divergence-free space Vg, given in (7.23)-(7.24). Assume that the initial
data and body forces satisfy

uy € (L*(Q))% do € L2(), £y € (L0, Ts H7H () f € L2(0, T HH (). (7.31)

Then we have

d—1
2nv 2nvo
su nllu + g5 +/ Vu 2 u(t) - 72
te[o}:}]{ la(®)|17 + gSollo(®)]12} { [Vua(t)|} + \/EZII (t) - 7all7

+ gkmmHqu(t)Hf,} dt (7.32)

T (nC .
<l + asulnll + [ LB 017+ TR0, | s Ch
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Proof. In the equations (7.23)-(7.24), we fix t > 0 and set v = u(t) and ¢ = ¢(t). By adding

the two equations together, the two coupling terms exactly cancel, and we have:
1d 9 2 n .
5 )3 + gSolo(®) 12} + [buww) = 2w i) ] + agu,w) + a(0,0)
- n(ffa u)f + g(fp7 ¢)p

Now, applying (7.22), we obtain for the term in brackets:

b(u,u,u) — 2(u-u,u-f1f>1 = g(u-u,u~ﬁf)1— g(u-u,u-ﬁf>1 = 0. (7.33)

Using this along with the coercivity estimates (3.34) and (3.36) on the left hand side and

Young’s inequality (2.5) on the right hand side, we obtain

1d _nva R
o7 {nllu@®)[|7 + gSollo(t) |12} + HVU )G+ Hu Fl17 A+ Ghminl | Vo)
mCL{E ’L 1
n
< ;Hff(t)H—l,vau(t)Hf + gl N1,V @)

nCK gkmzn

nv
< Zelvulol+

1%, + VoI, + 57— — 50t [y

Rearranging and integrating over [0, ¢] for any ¢ in (0,7] and T < oo, yields

m

t ony 2nva R
nHU(t)er+950H¢(t)H§+/0 {C—KHVU( |7+ ZHU )7l
ar =1
+gkmmuv¢<s>r|,%} s

TLCK
< nlluoll2 + gSollfoll2 + / {
0

(5205 + 2 s >||2_1,p} s

Finally, the result in (7.32) follows by taking the supremum over [0,7] and applying the
assumptions (7.31) on the right hand side above. O

In Proposition 9 we derive the corresponding energy estimate for the quasistatic weak

formulation (7.25)-(7.26).
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Proposition 9. Consider the quasistatic Navier-Stokes/Darcy weak formulation (7.25)-
(7.26) and assume that the initial data and body forces satisfy

wy € (L2(Qy))" £; € (L2(0, T H7H ()", f, € L*(0,T; H(y))- (7.34)

Then we have

te[0,T \% kmaaz i=1
gkmmuw@%n\z} i

d—1
2nv 2nrvo .
n sup IIHQS(t>II?+/ {—IIV ()7 + > () - 77
0

nC N
< nfluoll? + /{ MK ey (02 + ||fp<>||2_1,p} it < C.

Proof. We fix t > 0 and pick v = u®9(t),¢ = ¢?3(¢) in (7.25)-(7.26) so that the nonlinear
terms cancel out according to (7.33). After adding the equations together, the coupling
terms cancel out as well. Thus, the claim of the proposition follows by manipulations similar

to the ones in the proof of Proposition 8 and the assumptions (7.34). O

In the next two propositions, 10 and 11, we obtain additional estimates for the weak
formulations (7.23)-(7.24) and (7.25)-(7.26) that result in a-priori estimates for the time

derivatives of u, u®®, ¢, and ¢<9°.

Proposition 10. Consider the fully evolutionary Navier-Stokes/Darcy weak formulation

(7.23)-(7.24). If the initial data and body forces satisfy

u(0) € (L*(Qy))", ¢(0) € L*(Q),

fre € (L*(0,T; H7' ()%, for € L2(0,T; HTH(,)),

then

2nv 2nvo .
sup {nlla( )|!fc+gSoH¢>t(t)!|§}+/o { IVu, (t) |7 + > ll(t) - 7ll7

te[0,T

+gkmmuv¢t<t>ui} at

TLCK

T
<nlw )} + 9ol O + [ {
0

O+ >||2_1,p} it < C.
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Proof. Starting with the weak formulation (7.23)-(7.24), we take the derivative with respect

to time to get

d n R ~
n(uy, v)r + — |b(u,u,v) — E(u -u,v-ng) | +ap(u, v)+cr(v, o) =nfre, v)e,  (7.35)

dt
950(¢tt7¢)p + ap(¢t, 77/)) - C[(uta @D) = 9(fp,t>¢)p- (7-36)

We now fix ¢ > 0, choose v = u(t), 1) = ¢:(t) in (7.35)-(7.36), so that the term in brackets
vanishes by (7.33). Then, by adding the equations together the coupling terms cancel out,

and the rest of the proof is similar to the proof of Proposition 8. O

Proposition 11. Consider the quasistatic Navier-Stokes/Darcy weak formulation (7.25)-
(7.26) and assume that

u?(0) € (L2(2)" £ € (L30T H-H(Q))) fye € LP(0, T HH(SY,).

Then,

d—1
2nv 2nrva
QS 2 ~ 112
n sup ||lu” (¢ +/ — u - T
[ (@)1 i { IVuf ()7 + Tmi | 7

t€[0,T7]

+gkmm||v¢?5<t>||§} p

r nCK %
< a1+ [ { 5S04 I, ) < C

Proof. We take the derivative with respect to time in (7.25)-(7.26) to get:

d
(ugs, V)f + . [b(uQS7 uQS7 V) - 2<LIQS : uQS7 V : ﬁf> +af<thS7 V) + CI(V7 ¢§2S)
dt 2 (7.37)
= n(ff,t>v)f7
a, (6% ) — cr(u®% ) = g(for, ), (7.38)

By fixing ¢ > 0 and choosing v = u ( ), = ¢ ( ) in (7.37)-(7.38), the nonlinear term in
brackets vanishes according to (7.33). By adding the equations together the coupling terms
cancel out, and we obtain the claim by following the steps from the proof of Proposition

8. O
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7.3 CONVERGENCE TO THE QUASISTATIC SOLUTION

In this section, in Theorem 13 for the 2d case and Theorem 16 for the 3d case, we derive esti-
mates for the error between the solution (u, ¢) of the fully evolutionary Navier-Stokes/Darcy
problem, (7.23)-(7.24), and the solution (u?®, ) of the corresponding quasistatic problem,
(7.25)-(7.26), and prove convergence to the quasistatic solution as Sy converges to zero. For
both cases, the order of convergence is one, and in the case of three spatial dimensions, the
convergence result holds under a regularity assumption on the velocity.

Let the errors in u and ¢ be denoted respectively by

eu(x,t) == u(x,t) — u®(x,1),

ep(X, 1) = p(x,t) — #9%(x,1).

Then eyu(x,0) = 0 and ey(x,0) = ¢o(x) — p95(x,0).

7.3.1 Convergence to the quasistatic solution in 2d

Before stating the main result of this subsection, we recall an improved bound on the trilinear

form “(u-Vv,w);”, which holds in two spatial dimensions.

Proposition 12. For u,v,w € Xy, we have
1/2 1/2 1/2 1/2
(- Vv, w) < VRl [Vl Vw2 Vw2 for d=2. (7.39)

Proof. First, we apply Holder’s inequality, (2.3), on (u- Vv, w); with ¢ = 2,p = r = 4 to
get
(- Vv, w)g| < lulls@p IVVIllwllize,). (7.40)

Then the inequality follows by combining (7.40) with the Ladyzhenskaya inequality, [79]:
[ullzaq,y < 2Y4u)?|Val{?,  for d=2. (7.41)
[
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Theorem 13. Assume that the initial data and body forces satisfy

wp € (L)% u25(0) € (L)% [60)]|1, < oo,
fr € (L0, T H Q) fp € L0.T: H (D),
fr0 € (L0, T H Q) fro € L2(0,T5 H ().

Then

t€[0,T) i—1

T 2nv onva A
a(t)]I7 t)ll; / ——IVeu(®)|]] u(t) - 7ill7
sup {n[leq(t)[|7 + gSolles(®)|2} + i {CK [Veu ()|} + MZHG (t) - 7illy

+ Gkmin||Vegs(t) ||12)} dt

953Ctr, S8Chrs e 27 [CRG5)°
< (S0P, + e | T [EE| ) < cost

exp (v 4n"2)

where C'p is a positive constant with Cp ~ =55

Proof. We first subtract the quasistatic weak formulation (7.25)-(7.26) from the Navier-
Stokes/Darcy weak formulation (7.23)-(7.24) and obtain

n

n(ews, v)r+ [b(u, u,v) — b(uQS, u®’, V)] ~3 {(u ‘u, Vg — <uQS cu? v flf)]}
+as(ey,v) +cr(v,ey) =0, (7.42)
9S0(€s,)p + aples, ¥) — cr(en, ) = —gSo(7%, ¥),. (7.43)

Next, we fix t > 0, choose v = e,(t) and ¢ = ey(t) in (7.42)-(7.43), and add the equations
together. The coupling terms cancel out and we get

1d
2di
+ [b(u, 1, eq) — b, u® e,)] — g {(u-u ey fy) — (U2 u e, -ny),}  (7.44)

{nllea®)lF + gSollea()7} + ar(eu, en) + ay(es, €4)

= _gSO(Cb?Sa e¢>)p'

Now, we express the nonlinear terms appearing in the left-hand side of (7.44) as follows:

[b(u7 u, eu) - b(uQsa uQS7 eu)} - g {(11 U, €y - rA1f>I - <uQS ’ ust €u - ﬁf>[}

; (7.45)

n R R
= b(ey, U, ey) + b(u? ey, ey) — §<eu ‘U, ey - Ny); — §<uQS €y, €y - Ny)g.
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Then, we use (7.21) for the term “b(ey, u, e,)”, and (7.45) becomes, after also simplifying:

[b(ua u, eu) - b(ust uQS’ eu)} - g {<11 U, €y - flf>1 - <uQS ’ uQS7 €y - ﬁf>l}

=n(ey-u,ey-Ny5); — bley, ey, 1) + b(uQS, €u, €y)

n 3 n .
— §<eu ‘u,ey - Nf)y — §<uQS €y, €y - Nf)g

g<eu ‘u, ey -Nyp)r — bey, ey, u) + b(uQS, €u,€ey) — g<uQS ey, €y - Nf)g
g<eu ‘€, Cy - ﬁf>[ - b<eU7 €y, u) + b(uQS’ €y, eu)
g<eu €y, €y ﬁf>[ - b<eU7 €y, eu) - b<eU7 €y, uQS) + b(uQsa €y, eu)

(7.22)

=7 —b(ey, eq, u??) +b(u? ey, e,). (7.46)

Using (7.46) as well as the coercivity estimates (3.34)-(3.36) on the left-hand side of (7.44),

we obtain after rearranging:

1d nvo
57 {nlea®lF + gSolles ()15} + !Vequ \/—Z lew - 7ill7 + ghmin | Vesl;
< b(ew, €q, %) — b ey, en) — 9S0(67°, e4)p. (7.47)

We then bound the last term on the right-hand side as follows, using Young’s inequality:

el °

S S S
1950(6¢”, e0)pl < gSoll6e% -1 plleslly < 5 %—'HQS? 21,

Thus, (7.47) becomes

1d nvo mzn
ST {nllea(®)I} + gSolles ()12 }+ ||V eul|F + mZHeu 7l + Vel

< blew, eu, u%) = b(u?” ey, eq) + H<b 12, (7.48)

2kmzn

105



To bound the trilinear terms on the right-hand side of (7.48), we apply (7.39) along with

Young’s inequality (2.4), with p = %, q=4,and € = ;g}”{:

bley, ey, u?”) — b(u? ey, ey) = n{ eu - Vey, u?%) — (u. Veu,eu)}
< 2v2 nllea {2 Veul 2 Veull s [u@® ||| Va2

= (IVeull®) (2V2 nlleall* 0% 21 7u )

< 2 el + 2 () eulFO TS
Therefore, (7.48) becomes
1d ) 5 ny 5  NrQ = o Gkmin 9
3 (1Ol oSolesI} + Tl + 23 lew- il + L Vel
< 2T (%Y feul S o + S g, @)

We now multiply by 2 and integrate with respect to time over [0,¢], t > 0:

2nv 2nvo
nl|leu(t 2—|—Set2+/ Veu(s eu(s) - 7|7
leu(®)[l5 + gSolles (D)1, i || ()17 + M;II 17

+ gk:mmHVqu(s)H;} ds
21 (C
< osilleao)z + T ()’ / leul)IHm ()17 () ds

/ 1695(s)IP, ds
mln

where we used that e,(0) = 0. Next, we use Gronwall’s lemma (2.10) with

(7.51)

u(t) = nllea(t)
59 =5 () WS EBIVa @[, and

52
o(t) = gSolles(0)] + L0 / 1695(s)|12, ds
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This yields:

2ny 2nva
nllea(t)||% + gSo|les(t 2+/ Veu(s eu(s) - 77
lea(®)l7 + gSolles (D)1l ; || ()17 + %;II 17

+ gkmmHV%(S)Hﬁ} ds

< (ssuleatolz + 25 [ s, as)-
2
e (7 Gy / S (5) 3V ()] ds>.

After taking the supremum over [0, 7], we obtain

(7.52)

te[0,T

2nv 2nva
2 2 )
sup 17|/€eu + gSolleq(t +/ Veu E eu - T
{ H ( )”f H ¢>( )Hp} 0 H ||f /_am ” ”I

+ gk‘mm ||V€¢(t) ||12)} dt

§<gSoHe¢(0>II§ 952/ l62 @12, dt)'

k min

27 (Cx\* [T
exp (7 () [ e opivesor dt>.

From Proposition 9 we have that

(7.53)

C3 CrCy
||uQS||%°°(O,T;L2(Qf)) < 72, and HquS“%?(O,T;LQ(Qf)) > 2

(7.54)

2nv

Moreover, since

T T T
/0 1695()[21, dt < Crpy / 1652 dt < Cp, / V625 ()2 dt,

by Proposition 11 we also have that

3

r QS 2 CPF,p *
; o @)1=, dtfg Cy. (7.55)

kmin

Furthermore, by setting ¢ = 0 in (7.24) and (7.26) and then subtracting (7.26) from (7.24)
we get

950(0:(0), ¢)p + ap(eqb(o)a V) =0,
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and thus, picking ¢ = e4(0) above results in

ap(€4(0), €5(0)) = —g50(0+(0), €4(0)),-

By using the coercivity estimate (3.36), along with the definition of the || - ||-; , norm and

the Poincaré-Friedrichs inequality, we obtain

Fmin|| Ve (0)]l, < SoH@( )-10Ves (0) [,

= [Ves(0)]l, < k ~[|6:(0)] -1,5-
S C
= [les (0], < (}f =L 1(0)]-1.- (7.56)

Finally, by applying (7.54), (7.55), and (7.56) on the right-hand side of (7.53), we get

2nv 2nva
sup {nlleq(t)]|? + gSo|leqs(t)]? +/ Ve, eu(t) 73
te[m{ lea()[17 + gSolles(t)]2} || )7 + @;H t) - 7illz

+ Gkmin||Vegs(t) H;} dt

S3C2 S3C3 27 [C2.037
< (Lo, + PFg’cz)exp<—7 {CKCQDSCBSO%

(kmm) (kmzn) 4 1/27’L

since also ||¢:(0)]|-1, < 0o, where Cg ~ e"p(}c”;f*;‘;z’), concluding the proof. O

In summary, under the assumptions of Theorem 13,

exp (v—4n—2))1/2
lu — u®s ||L<><>0TL2(Qf) O(So), O ~ e "n7) /7

(So) b
IV(a—u®) || 20m50200,) = O(S), C ~ %‘—knmjl))m7
I — %% || L (o,1:22(0,)) = O0H/Sy), C~ W7
(

exp (v—4n—2))1/2
So). O~ G

IV (¢ = 69| 20,7220, = O

b

where C' denotes the constant in the error estimate, and “~” means “proportional to”. We
conclude that the quasistatic approximation in the Navier-Stokes/Darcy problem in two

spatial dimensions is justified provided 0 < Sy << kpin << 1.
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7.3.2 Convergence to the quasistatic solution in 3d

In the case of three spatial dimensions, we assume more regularity on the solution in order

to prove convergence to the quasistatic solution.

Theorem 14. Assume that the initial data and body forces satisfy

ui?(0) € (L*(29))%, [164(0)]| -1, < 00,
ffvt S (L2<07T; H_I(Qf>>>d7 fp,t € L2(07T; H_I(Qp))'

Further, assume that

||V11QS||L4(O7T;L2(QJ,)) < Cu, 0< Ou < Q. (757)

Then

2ny 2nvo .
sup {nHeu()Ilfr+gSo||6<z>(t)||§}+/0 { IVeu(t)[ + Zl\eu ) - 7ill7

t€[0,7) m

+ gkmm\|ve¢(t)|y§} dt

95302 L S8Ckry (.. 27 o [Cxc ]

where Cg is a positive constant with Cg ~ e?;f (%’_)z)'

Proof. Following the same steps as in the proof of Theorem 13, we arrive at

1d nvo mzn
ST {nllea(®)I} + gSolles ()12 }+ ||V eul|F + mZHeu 7l + Vel

< blew, eu, u%) = b(u?” ey, eq) + H<b 12, (7.58)

2kmzn
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To bound the trilinear forms above, we use (7.20) along with Young’s inequality (2.4) with

Inv .,
3Ck*

pz%,q:4,ande:

bley, ey, u?”) — b(u? ey, ey) = n{ ey - Vey, u?%) — (u. Veu,eu)}
< 2Cylleul|;* | Veull { *l| Veull |V
= (IVeul ) (2ncbueu||”2||VuQS||f)

nv Ck s
< 2wl + 20t (D) Jeul 1Tl (7,59

(7.59) and (7.58) then give

d—1
1d ny nvo Gkmin
s {nllea®)l7 + gSolles )2} + = VeulF + = _ llew- 77 + IVeslls
2dt CK kmax i=1 2
271 4 (Ck ’ 2 QS|4 953 QS|(2
< 203 () eulBITu} + 0 o 2, (7.60)

Next we integrate with respect to time over [0,¢], ¢ > 0, and get

i=1

2nv 2nrvo
nl|lea(t 2—|—Set2+/ Ve, eu(s) - 7|7
leu(®)[l5 + gSolles ()], i H ()7 + @ZII 17
+gk:mm||Ve¢(s)||§} ds

(7.61)

2 27 4 CK - 2 QS 4
< 950lleg(O)lly + 5 Gy | == ||eu(s)||f||Vu (s)[ly ds

/ 1695(s) ||21,,
ml’n

By applying Gronwall’s lemma (2.10) to (7.61) with

u(t) = nllea(®)l[7,

o9 = et (%) eus ol ana

a(t) = gSolles(O)]% + / 1695 ()2, ds
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we obtain

2nv 2nrvo
nllea(t)||? + gSo||les(t 2+/ Veu(s eu(s) - 7|7
leu(®)]l7 olles ()1l i H (s)]IF + \/%;H i

+ Gkminl|Ves(s) ||§} ds

(7.62)
< (asillea@ I+ 28 [ o2 e)1e, ds)
2
- exp (gC’f (%) /0 HVuQS(s)H‘} ds).
Taking the supremum over [0, 7] results in
2nv nva e
tyww%m@g&m|u+/{ Y |Veu(d)l; + 23 lealt) 7l
€[0 mar ;_q
+ gkmmHVe(z,(t)Hf,} dt
(7.63)

§<gso||e¢(o)||§ 952/ of? ()Ilg_l,pdt)'

kmzn
27 C r
-exp( Cy ( VK) / IVa®? ()]} dt).
0

Finally, using (7.55) and (7.56) from the proof of Theorem 13, and also the regularity as-

sumption (7.57), we conclude that

2nv 2nva
2 2 A 112
sup 17n|/€q + gSol|eq(t +/ Vey E eu - T
{ H ( )Hf OH ¢( )Hp} 0 H Hf /_max H HI

t€[0,T)]

+ Gkmin||Vey(t) ||§} dt

4SEC2 S2C%, C
< (Lm0, + B2 ) e Sqﬂg]q < o2,

where Cp > 0 is such that Cg ~ ez{lf (,.,—)z). O
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To summarize, under the assumptions of Theorem 14, and the extra regularity condition

(7.57), we have

O )Y

HU—UQ HLOO 0,T5L2(S2y)) = O(So Skmin

?

)
« 1/2
||V<u—u )||L2(OTL2 Qf))—o SO), CN((E\I}T(TTM)Z”’

(
(

¢ — qbQ HLOO 0,7:L2(%,)) =0(/S), C~ M,
(

kmln
exp (v3))1/2
IV(6 — 69%) |l 207022 = O(S0), € ~ E2L2)

(kmin)3/2

7

where C' denotes the constant in the error estimate, and “~” means “proportional to”, as

before. Thus, we conclude that the quasistatic approximation in the Navier-Stokes/Darcy

problem in three spatial dimensions (assuming more regularity) is justified provided 0 <

So << kpin << 1.
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7.4 CONVERGENCE TO THE QUASISTATIC SOLUTION IN 3D UNDER
SMALL DATA

In this section, in Theorem 16, we obtain first-order convergence of the evolutionary Navier-
Stokes/Darcy solution in three spatial dimensions to the quasistatic solution, as Sy — 0,
under a small-data condition. To show convergence under small data, we first derive in
Theorem 15 a set of additional a-priori estimates, which hold under a small-data condition.
We utilize the interface inequality obtained in Chapter 2. To this end, we restrict the domains
2y and Q, so that either the hypotheses of Theorem 1 or those of Theorem 2 hold. That is,
we assume either that there exists a C'—diffeomorphism from Q; to §2,, so that (3.45) holds,
or that I is of the form z4 = f(z1,...,24-1), f € CY(R¥1), and Q;,Q, are any bounded,

regular domains, and (3.47) holds instead. In either case, we assume that

(¢, u-np),] =

[ouny da| <l v, 760
I

where CT > 0 is either the constant from Theorem 1 or Theorem 2.

Theorem 15. Assume that the initial data and body forces of (7.23)-(7.24) and (7.25)-(7.26)
satisfy

u, u?%(0) € (L*(2)))?, D(wy) € (L2, wg -+ € LX), i=1,..., d—1,
) €

(L2(2,))",
£ € (L0, T: Q) f, € L0, T H(Q,)), (7.65)

V¢?(0) €
fre € (L0, T3 H™ Q)% foe € L0, Ty H™H()),
and that the domains 2y, Q, are such that (7.64) holds. Further, assume that the initial data

and body forces satisfy the small-data condition

2

nC . 2nv
nlluoll2 + /{ MK e 02 + ||fp<>u2_1,p} dt < C; < (7.66)

C2CCp )
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where C is the constant from Proposition 9. Then we have

T
n / W@ @3 dt + 20y sup [VuS @I

te[0,T]

nro “ gkmin
+ sup { ZHuQS(t>-nH?+THV¢QS<t>HZ}

tE[O T] \/kma:r i=1
2n 2 ! 2 12 g QS 2
< 7 ||ff( )G dt+g i 1fp(DNIZ1, dt + 8n(gC") i Vo= (1), dt

T
g / IVE IR dt + 2nC,CY2, / IVu®S (1) dt

2n2g(CT)?
4 2ICE G s (o)
min te[0,T

d—1
nro
+ 2nv||D(up)||% + /—u-%ﬂda’
H ( O)Hf ; Im( 0 )

+ g(KV¢?%(0), Vo(0)), — 2¢1(uo, 6°(0))

kmzn mwn 14

+ ZRICPO [ 2+ 0 (11000 (O )?) [ IO

S (o SO / £ ()1, 5 dt
2vp% \ kumin v 0 FE\U -1, f
1/2
9 1 GCprsCk
" kmin (kmzn T v “fpt( )H%Lp dt

d—1
nro .
+ 27“/||D(110)||3: + ZZI /I \/ﬁ(uo . Ti)Q do
+ g(KV¢2%(0), V$?%(0)), — 2¢1(up, $9°(0)) < Ci,

ny?—C3 /2 o2
2 CanbCCPFfC > 0 by (7.66). Then, specifically

where v :=

T e (LP(0,T; LA(9y)))?, Vu € (L>(0,T; LA($)) ™,

u? -, € L0, T; L(1)), i=1,..., d—1, V¢ € (L>=(0,T; L*(Q,)))".
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10n%g(CT)? 1 CyCp Ok 2n
< — Ml +n{—+ 25 lu?®(0 )Hf+—p / £ (6117 dt

dt

(7.67)



Proof. We consider the quasistatic Navier-Stokes/Darcy weak formulation (7.25)-(7.26). We
fix t > 0 and choose v = u,?s(t) and ¢ = ¢?S(t). Adding the resulting equations together
yields:

S n S S
nfluP®l? + b, u? uP®) — (@ @ ng) 4 apu? ul®) + a,(69°, 67°%)

2
t+er(u®, 9%) — ¢ (u?, ¢7%) = 0l u?®) s + g(f, 670 (7.68)
Using
d
Cf<u?57 ¢QS) - c[(uQS> ?S) —EC[(UQS’ ¢QS) + 261(“?57 ¢QS)7
(7.68) can be rewritten as
1d

S5+ b u u) — TS ) 2 a0 ) 4 (6%, 6%)

~2¢;(u, ¢QS>} = n(fr, u?) s + 9(F, 67y — 2010, %), (7.69)
Using (7.22), we rewrite

—g<uQS cu?’, u?s ‘Np) = —b(u?s, u?’, uQS),

so that (7.69) becomes

1d
a2 + Qa{af U u%) 4, (69, 69%) — 2, (u, 69%)} = b(u®, u u)

= b(u?®,u?,0®) +n(f, w4 g 677), — 2er(u?, 6%, (7.70)

Next, we bound each term on the right-hand side of (7.70):
For the trilinear form we use inequality (7.20) and then apply the Poincaré-Friedrichs in-

equality (7.1) and Young’s inequality to get

b(uP®, u?, u®) — b(u, u, uf®) < nCyllul® || VuP® || Vu|| | Vud|
1/2 1/2
+nCy[[u?® ||| Va8 Vu®|| | Vu®
1 2
< 2mCy,C | Vud® | [ Va2

<nG O {IVu I3 + vt} (7
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For the interface term, and since V-thS = 0, we use inequality (7.64) and Young’s inequality

to obtain
—2¢;(uf”, $9%) < 2ngCH|[uf||;| VoI, < —Hu 113 + dn(gC)2|| V697 |12. (7.72)

Last, we obtain bounds for the terms involving the body forces by applying the Cauchy-

Schwarz and Young inequalities:

n(fr,u?®); < ol sl < Hu Hf+anfo——Hu 115 + —QHffoc, (7.73)

90 870 < gl Foll-1n V62 5 < SIS + 1A 12 e (7.74)

Now we apply the bounds (7.71)-(7.74) to the right-hand side of (7.70) and we have, after

absorbing terms on the left-hand side,

n
I+ 5 T {059 09) + a,(675,6) — 26,(u%, 6%)}
n g
p—||ff||f ||fp||31,,,+4n<go*>2||V¢QS||,%+—||V¢?S||3c (7.75)

12
+nCiCE  {Ival |3 + [vu?®f}

Multiplying (7.75) by 2 and integrating over [0,¢], 0 <t < T, gives:

t
w [ IS ds + fasu®,u%) + 0,(69%,6%%) — 2er(u®, 0%%)} (1

0

2n (1 2 t 2 )2 ' QS 2

< i 17 ()7 ds + g i 1fp($)IZ1, ds + 8n(gC") ||v¢ (s)[|2 ds

t

+g/ V625 (5)[1? ds + 2nC, }Jﬁf/ [Vu®s(s) Hf ds (7.76)
+2nC, }J;f/ [V u@ (s)||4 ds

+{ap (9%, u%) + a,(99%, 69%) — 2¢,(u?%, 69%) } (0).
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Finally, by applying the coercivity estimates (3.34)-(3.36) as well as inequality (7.64) and

Young’s inequality, we bound the term on the left-hand side as follows:

{ar (", u%) +a,(69%, ¢9%) — 2¢,(u?”, ¢¥° )} (t)

2nv nro R
>—||VuQS @17 + ZHUQS Tl + GEmin | V625 (1))

V mam
2n g(C )

km’L’I’L

g min
— L 525 1) - S (@)

2nv nvo ki
_ Q5 (¢ Q5 (1) . 4|2 min QS (112
= |Ivu (OIIF + mZHu Tl + =5 Ve (@15

L ICUNCETS (7.77)

kmin

By using (7.77) on the left-hand side of (7.76) and after rearranging we obtain:

t 2nv nrvo
Qs QS QS .2
n urs(s)||s ds +— Vu E u T
/(; H s ( )Hf H Hf /_max H lHI

+ L 05 1) 2

on [* ) ¢ )
< 7/ £ (s)|I7 ds + g i 1 fp(S)IZ1, ds

+sn(oC [ V62 () ds (7.78)

t
Iy / IV695(s)|2 ds + 20C,CH2, / Va2 (s)]% ds

2
r 20Oy [ IVl ds+ A s

TI’LZTZ

nvo R
+ 271VHD(110)||? + Z/Jﬁ(uo . Ti>2 do
i=1 ¢ i

+ g(KV§9%(0), V6%(0)), — 2¢1(u, 69%(0)).
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Finally, by taking the supremum over [0, 7] for ¢ in (7.78), yields

T
2nv nvo
QS 2 QS QS 12
no e ()7 dt + sup ¢ S—[[Vu®(t)]|F + [u™> () - 7|
/0 t ! ] Cx f /T Ko Z I

tel0,T
g min V QS ¢ 2
+ L5 7695 (1) 2

m T T
<2 [0 g [ 101, o+ satee? [ Ive @
T
o [ IV 01 -+ 2000, [ I ol a (779

T on2a(CH)?2
L oGO, / Ve @)t de+ 29 G uSoe
" Jo Ermin t€[0,T)]
! nro
+ 20| D (up) || + /— )2 d
nw/[[D(wo)llz ; TR ) de
T KV (0), V25 (0)), — 2e1(uo, 625(0)).

Next, we bound the term “fOT [Vu®S(t)[|$ dt” that appears in the right-hand side of (7.79)

as follows:

T T
[ Iwues o a < s [ [ ivues o (7.50)

0

We then apply (7.80) to the right-hand side of (7.79) and obtain

m

T
2nv nrvo
QS 2 QS QS A 12
n w7 ()% dt + sup < —||Vu g u ST
/0 [Rha )||f o] { Cr | ||f - 1 ill7

Phoin 76050}

m T T
<z Hff( )7 dt+g/0 £ (1%, dt + SH(QCT)Q/O IV (@)]I; dt
T
g/o IVo )5 dt+2anC}/ﬁ,f/0 IVai ()7 dt (7.81)

T 2 2
2ncg(C
+ 20 sup [Va O [ 19O e+ 2 A0 sy (o)

t€[0,T] Kmin te[0,T]

d—1
nro
+ 2nv||D(ug) || + /—u.ﬁ?da
|| ( O)Hf ; Im( 0 )

+ g(KV§9(0), V6%(0)), — 2¢1(uo, 69%(0)).
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After subtracting this new term from both sides of (7.81), it becomes

T T
n/ [u® ()] dt + 2n {C_ Chy ]lg/lfvf/ [Vu®® (t)[|3 dt} sup [|[Vu®* ()|}
0 0 te[0,T]

1
gkmzn QS 2
+ sup S 2 4 v ;
[]{rmZ il + =5 Ve <>||p}
2n ) T ) . T o 2
< 2/ Hff( Ny dt+g ; (D21, dt + 8n(gCT) 0 VoS (1) dt

T
g / V625 (1) dt + 2nCyCl2, / O

2n2g(CT)?
+ 2T Gy (o)
min t€[0,T]

d—1
T 2| Do) 2 + Zl/w%mo ) do
+ g(KV¢?%(0), V¢?5(0)), — 2¢1(ug, $9°(0)).

By Proposition 9 we have that

2nv [T nCk .
2 [ vl de <t + [ {ESE 01 + L0, b i<
(7.82)
By combining (7.82) with the assumption (7.66) we then get
2 T 2ny?
22 IVu @3t < 0 < ——— . (7.83)
Ck Jo C%CyCp
Consequently,
y Y L. 2m? — C5CCp CF
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Thus,

T
" / @S @)% df + 2y sup [[VuS ()2
0

te[o T]

nrva A Gkmin QS 2
+ sup g u@o(t) - 7 |F + | V@S (¢
te[OT]{m p || ( ) HI 92 ” ( )”p
2n

T T
S Hff( )7 dt+g/0 1fo(®)1%s, dt + SH(QCT)Q/0 IV (D)7 dt

T
+g /0 VoS (t)]|2 dt + 2nCyCy /0 IVuPs ()% dt (7.85)

2n2g(CT)?
N (Gl
min te[0,7

d—1
2 nroa - \2
+ 2nl/||D(uo)||f + Zz:; /1 \/ﬁ(uo . Tz) do
+ 9(KV¢2%(0), Vo?*(0)), — 2¢r (o, 99%(0)),

which proves the first part of (7.67). For the second part, observe that under the assumptions
(7.65) of Theorem 15, we have from Propositions 9 and 11 (recall that ||f;||_1 f < C||ff||):

T 8n2g(Ch)?
sn(oC? [ IV 1 de < ML
min (7.86)
4n2g(CT2C T
# 2CTC [Pt 02, i+ snoC oi® [ 15,1,
T
g [ VAL de < )
0 n2CK . min . . (787)
2 2
g [ s dt s [0l
T nCyCHp ;O
GOy [ IVaf @) de < " s o))
0 C,CY2 2 T Y2 ¢ (7:88)
nCy b K9
PO [ ol e+ S [Ty oy
g (C1)? g (C)?
— Sup [u@ (@17 < TH“OH?
min t€[0,T] min (7 89)
n2g(CT2C '
+ IOV [t vt 2ntoC b [ 1501,

The last part of Theorem 15 now follows by substituting the bounds (7.86)-(7.89) into (7.85),
concluding the proof. O
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We now prove convergence to the quasistatic solution as Sy — 0 under a small-data

condition.

Theorem 16. Assume that the initial data and body forces of (7.23)-(7.24) and (7.25)-(7.26)
satisfy

u, u?®(0) € (L2(2))4, D(ug) € (L3 ()™, wg -7 € LA(I), i=1,..., d—1,
Vo3 (0) € (L*(2))7 [l¢e(0)]| -1, < o0,
fr € (L*(0,T; L2()))?, f, € L*(0,T; H (), (7.90)
fro € (L0, T; H (), for € L2(0,T5 H1(y)),

and that the domains Qy,Q, are such that (7.64) holds. Further, assume that the initial data

and body forces satisfy the small-data conditions

2nu?

C2CCpp
2nv2y
(CKCb>QCPF,f ’

*

2 <
(7.91)
C: <

where C3 is the constant from Proposition 9, C¥ the one from Theorem 15, and vy is defined

in Theorem 15. Then we have

T
sup {nllew(®) + gSollea(t)]2} + dnc / IVeu(®)]2 dt

te[0,7
T 2nva < gkmi 7.92
ORI Ve (1)]2 p dt (7.92)
+ [ {m;new A+ E ey (1)
SCDSga

v=CrCey| 5 .
where € := ———+—= >0, by (7.91), and Cp > 0 is a constant such that Cp ~

1
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Proof. From the proof of Theorem 13, inequality (7.48), we have

1d nvo mzn
—{nllea®)7 + gSolles @), }+ ||V eul|F + Z lew - 7ll7 + Vel
ar ;_q

2dt VEmaz

< blew, eu, u%) = b(u?” ey, eq) + H¢ "2, (7.93)

2kmm
We bound the trilinear terms using (7.19):
b(ews u, U%5) — (U, ey, e4) < nCy| Veulls [ Veul V2],
+nCe[Vu®| [ Veul s Veul s
= 2nC.||Veu|}Vu??||;

< 2nC, sup {||[Vu(1)|;} | Veu|}.
te[0,7

Thus, after rearranging terms, (7.93) becomes

1d v
ST {nllea®)]|7 + gSolles(®)|12} +2n | 5= — C. sup {[Vu@*@)|I;}| [Veul}
2 dt Ck t€[0,7]
o (7.94)
+ ZHeu'ﬁ‘H? mmHV ol < % 1621121,

b= kazn

We next multiply (7.94) by 2 and integrate over [0,¢], 0 <t < T"

{nllea(®)|? + gSolles(t)]12} + 4n

t
v
-~ Cesup {HVuQS(t)Hf}]/ IVeu(s)[} ds
K t€[0,T] 0

2nva R Gkmin
+ [ { Zueu )l + 2 HV%(S)Hi} s

m

< gSolls O + 220 [ 6P,

Finally, we take the supremum over [0, T7:

sup {nllea(t)|7 + gSolles(®)];}
t€[0,T]

+4n

CK — C, sup {HVuQS Hf}]/ [Veu(t Hfdt

t[O]

2nrvao N Gkmin
[ { mZHeu )7l + £ va)uz} d

955
< gSulleaO) + 5 [ a0y, i

(7.95)
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By Theorem 15, we have that
2”’YHV‘1QSH%oo(o,T;B(Qf)) < (5. (7.96)
Thus, assumption (7.91) of Theorem 16, together with (7.96) give that

C* V= CKC 2'rL

v

- C. Sup {|IVu®(t) Hf}>——C =€e>0.
te Ck

CK 271’)/ CK

Therefore, (7.95) becomes
T
sup {nllew()}-+ gSollea(0)} + dne [ Ve (o) d

t€[0,T
2nva 12 gkmm 9 797
\/—§ leu(t) - 7ill7 + [Ves(D)]l, ¢ dt (7.97)

952
< gSleoO) + g [ a0, i

Furthermore, from (7.56) of the proof of Theorem 13 we have

SoCpryp

kmin

les (0], < 166 (011,

and also from (7.55) that

3

g QS 2 CPF,P *
625 ()|, di < —FE2Cy.
0 g

min

Hence, (7.97) becomes

T
sup {nfleu(t)[7 + gSolles(t) }+4n6/0 IVeu(t)|[7 dt

t€[0,T
T oppa &4 gk:

+ u(t) - 7l ey (8)||2 b dt 7.98
/ {m;nem 2 4+ Lo <>||p} (7.98)

gSgC%Fp 2 S(Q)C?)chz 2

0 0 ———— < (CpS,

= (kmin)Q ||¢t( )||—1,p+ Q(kmzn)2 = Y D#®q>
where Cp > 0 is a constant such that Cp ~ ﬁ Thus, the claim of the theorem

follows. O
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To summarize, under the assumptions of Theorem 16, we have that

u—u L>°(0,T;L2(Q))
| 5| s
IV (u—u® )||L2 0,T;L2(Qy)) =

I — % || Lo 0,7522(0)

IV (¢ — 69| 1200:22(0,)) =

where C' denotes the constant in the error estimate, and “~

0(50)7 C~ \/7km1n e~V
O(/Sy), Cr

08y, €~ gt

( min

b

means “proportional to”.

We

conclude that the quasistatic approximation in the Navier-Stokes/Darcy problem in three

spatial dimensions (under small data) is justified provided 0 < Sy << ki << 1.
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8.0 NUMERICAL TESTS

In this chapter we confirm the theoretical results obtained in Chapters 4, 5, and 6 with
numerical tests. In Section 8.1 we introduce the test problems that will be used in the
numerical tests for verification of the results from Chapters 6 and 4, given respectively in
Sections 8.2 and 8.3. In Section 8.4 we present numerical tests in support of the results

obtained in Chapter 5.

8.1 TEST PROBLEMS AND ASSUMPTIONS

We verify the results obtained in Chapters 4 and 6 through two test problems for which
the true solutions are known. For simplicity, we will assume that d = 2, so that we are in
two dimensions in space, and that the stress and hydraulic conductivity tensors are given

respectively by:

ITI =—pl+ pVu,
K= kmme kmin > 0.

We discretize the Stokes-Darcy problem (3.27)-(3.29) in space using the finite element
method and in time using the CNLF-stab method (Algorithm 2) with 5* = 1. (See Chapter
6, Section 6.1, for a detailed presentation of the discretization in space and time). In all
tests, we use Taylor-Hood elements (P2-P1) (see, e.g., [97]) for the velocity-pressure pair
in the Stokes problem and piecewise quadratics (P2) for the hydraulic head in the Darcy

problem.
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Figure 5: Mesh examples of computational domain Qy U Q, = (0,1) x (0,2) with 8 nodes
(left) and 16 nodes (right) per sub-domain side.

The true solutions in each test problem below are chosen so that the interface conditions
(3.10)-(3.12), as well as the incompressibility condition (3.2), are exactly satisfied. Then,
the non-homogeneous Dirichlet boundary conditions at the exterior boundaries, as well as
the forcing terms f¢, f, and the initial conditions ug, ¢y are determined by the true solutions.
In both problems, the Stokes domain is given by €y = (0,1) x (1,2), the Darcy domain
by Q, = (0,1) x (0,1), and the interface by I = {(z,1) : € (0,1)}. The computational

domains, and a couple of mesh examples, are depicted in Figure 5.

8.1.1 Test problem 1

In the first test problem, taken from [92], all physical parameters, except Sy, are set equal

to one:



The true solution is given by

u(z,y,t) = ([z*(y — 1)* + y] cost, [~ 2z(y — 1)° + 2 — wsin (7z)] cost) ,
p(z,y,t) = [2 — msin (7z)]sin (Fy) cost,

¢(z,y,t) = [2 — wsin (mx)][1 — y — cos (7wy)] cos t.
To match the true solution, we solve the system (3.1)-(3.12) with

fr(z,y,1) == (—[2°(y — 1)* + y|sint — [7° cos (7z) sin (Zy) + 2{(y — 1)* + 2*}] cost,
[22(y — 1) — 2+ 7sin (7z)] sint
+ [%{2 — msin (mz)} cos (%y) — 73 sin (rx) + 4z (y — 1)] coS t) ,

folw,y,t) == —Sp[2 — msin (72)][1 — y — cos (7y)]sint — 72 [z sin (72)(1 — y — cos (7y))

+(2 — 7sin (72)) cos (my)] cost, (Test problem 1)
wo(z, ) = u(,y,0) = (*(y — 1)” +y, ~2a(y — 1° +2 — wsin (x2)
¢o(z,y) == ¢(x,y,0) = [2 — msin (72)][1 — y — cos (my)],
ui=u(z,y,t), ond\I x (0,T),
¢ = d(z,y.t), on dQ\I x (0,T).

The true velocity field and true pressure contours at ¢ = 1 for Test problem 1 are depicted

in Figure 6.

8.1.2 Test problem 2

In the second test problem, taken from [92], all physical parameters can vary. The true

solution is given by

u(z,y,t) = ((y — 1)*cost, [#* — z] cost),

p(z,y,t) = 2u(z +y — 1) + F¥-] cost,
o(z,y,t)

~dr(l—a)(y—D+3y° -y +y} + %"x] cost.

mzn
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is depicted in Figure 7.

Vec Value

To match the true solution, we solve the system (3.1)-(3.12) with

= (—p(y — 1)*sint, —p(z* — x)sint),

ﬁ {e(1—2)(u—-1)+ 3" =" +y} + %”x] sint,

IsoValue

Figure 6: Test problem 1: true velocity field (left) and true pressure contours (right) at

= ((y-1%2" —a), (Test problem 2)

on 8Qf\I>< (0,77,
on 0Q\I x (0,T7.
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Figure 7: Test problem 2: true velocity field (left) and true pressure contours (right) at ¢t = 1

with £,,;, = 0.01 and all other parameters equal to one.

8.2 NUMERICAL TESTS FOR THE CNLF-STAB METHOD IN THE
STOKES-DARCY MODEL

In this section, we perform numerical tests to verify that the CNLF-stab method given in
Algorithm 2 is: unconditionally, asymptotically stable (Theorem 10), second-order conver-
gent in time with optimal rates in space, uniformly in the model parameters (Theorem 11),

and computationally efficient when compared to fully coupled methods.

1. Second-order convergence

We use the CNLF-stab method to solve Test problem 1, where all model parameters are
equal to one. For simplicity, we take 8* = 1 in Algorithm 2. We solve the problem over

the time interval [0, 1], so that "= 1, with N nodes per sub-domain side and At = 1/N.
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We check accuracy and convergence rates with the following discrete norms

e(u) == [[Ju —wpll| e 0,151, (0
e(p) :== |||p_ph|HL°°(O,T;L2(Qf))a

e(9) == 1o — dnlllLeo,r:L2(2,))

where

IV =villz=orx) = max, IV = villx, for X = L*(Qp),v = u,p, ¢,

which are the analogs of the continuous norms

(Qf)) = Ssup ||Ll(t> - uQS(t)||div,f7

[u— UQSHLOO(O,T;Hj1
te[0,7]

iv

Ip — p9|| Lo 20,y = sup [p(t) — p25 ()],
te[0,7)

16 — 69| 10,120, = sup [|6(t) — 997 (1) I,
te[0,7)

respectively. We let 74,4, denote the calculated order of convergence, given by r

log,(e(N)/e(2N)), where e(/N) denotes the error for each variable when using N nodes

per sub-domain side. Tables 4 and 5 present the errors of CNLF (Algorithm 1) and

CNLF-stab respectively, demonstrating that CNLF-stab retains CNLF’s second-order

accuracy, as expected.

Table 4: Test problem 1: second-order convergence of CNLF.

At =1/N e(u) Tu e(p) p e(9) e
1/4 0.0877749 - 1.02465 - 0.0531155 -
1/8 0.0166945 2.39 | 0.260102 1.98 0.0112083 2.24

1/16 0.00347098 | 2.27 | 0.0622061 | 2.06 | 0.00220589 | 2.35
1/32 0.000949118 | 1.87 | 0.0149412 | 2.06 | 0.000546633 | 2.01
1/64 0.000243123 | 1.97 | 0.00357819 | 2.06 | 0.000136159 | 2.01
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Table 5: Test problem 1: second-order convergence of CNLF-stab.

At =1/N e(u) Ta e(p) p e(9) e
1/4 0.0304013 - 1.10942 - 0.130579 -
1/8 0.0048835 2.64 | 0.272517 | 2.03 0.0347465 1.91

1/16 0.00105315 | 2.21 | 0.0649257 | 2.07 | 0.00878685 | 1.98
1/32 0.000264613 | 1.99 | 0.0163038 | 1.99 | 0.00220226 | 2.00
1/64 0.000064201 | 2.04 | 0.00453213 | 1.85 | 0.000550882 | 2.00

Next, we use CNLF-stab to solve Test problem 2, where all model parameters may vary,
and take Sy = 1074, kpin = 107!, and all other parameters equal to one. Like before,
we solve the problem over the time interval [0, 1], so that 7' = 1, with N nodes per sub-
domain side and At = 1/N. The errors are shown in Table 6, confirming second-order
accuracy of CNLF-stab once again. We observe, however, that due to the smaller values
of the parameters, we need to solve the problem on finer meshes in space and time to

attain second-order accuracy.

Table 6: Test problem 2 (Sy = 1074, ki = 1071): second-order convergence of CNLF-stab.

At =1/N e(u) ru e(p) "p e(9) re

1/8 0.00163737 - 0.214387 - 0.0819758 -
1/16 0.000464456 | 1.82 | 0.0700264 | 1.61 | 0.0264185 | 1.63
1/32 0.000115658 | 2.01 | 0.0187149 | 1.90 | 0.00691258 | 1.93
1/64 0.000029022 | 2.00 | 0.00486284 | 1.94 | 0.00174539 | 1.99
1/128 0.00000726908 | 2.00 | 0.00126994 | 1.94 | 0.000437368 | 2.00

Note 1. The Freefem++ [59] code for the convergence tests for CNLF and CNLF-stab

can be found in Section B.1.
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2. Unconditional stability

To confirm unconditional, asymptotic stability of the CNLF-stab method we solve Test
problem 2 and set the body forces and source terms, f; and f,, equal to zero, and
also force homogeneous Dirichlet boundary conditions at the exterior boundaries of the
domains (not including the interface), so that the true solution decays rapidly to zero
as t — oo. Thus, any growth in the approximate solution implies instability of the
numerical method. We set At = 1/N = 1/16, where N is the number of nodes per
sub-domain side in the FE discretization. We run tests with varying k,,;,, and Sy, and
all other parameters equal to one. In each test, we calculate the discrete energy of the

method, given by

Energy(t"~'/?) := Energy (") + Energy(t" )

= a7+ a3+ So (onllp + on~115) -

The results for CNLF-stab and CNLF are presented in Figures 8 and 9 respectively. The
final time, T, is shown on each graph. Unconditional, asymptotic stability over long
time intervals is confirmed for CNLF-stab for any pair of values of k,,;, and Sy, while
CNLF is unstable in all cases. Notice that for these parameter values, the time-step
condition of CNLF, (6.12), is violated (we estimate Cq,, ~ 12 in (6.12)), so instability
is expected. Further, we observe that as k;, becomes smaller (and Sy is O(1)), the
growth in energy of CNLF happens sooner and is more rapid, and at the same time the
energy of CNLF-stab decays to zero slower. This is because of the true solution of Test
problem 2, which has large initial energy when k,,;, is small and Sy = 1.

Finally, we compute the final energy of CNLF-stab,
Final Energy := Energy(7") + Energy (7T — At), where T = 20,

for Test problem 2, with zero forcing terms and homogeneous Dirichlet boundary con-
ditions at the exterior boundaries. This time, we vary At = 27¢/100, i = 0,1,2,3,4,
kmin and Sy, and fix the number of nodes per sub-domain side, N = 16. In each case,

the initial energy, “Energy(0) + Energy(At)”, is O(10). The results are shown in Figure
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10. Once again, CNLF-stab exhibits asymptotic, unconditional stability over long time

intervals in all cases.

Note 2. The Freefem++ [59] code for the stability tests for CNLF and CNLF-stab can
be found in Section B.2.

. Efficiency

We illustrate the efficiency of CNLF-stab versus fully coupled methods, by comparing the
computational time required for CNLF-stab versus that for the fully implicit Backward
Euler (BE) method applied to (6.5)-(6.7).

Algorithm 3 (BE method). The BE method for the evolutionary Stokes-Darcy problem

15 as follows:

Given (uy,py, ¢p) € X} x Qf x X/,
find (Wi P opt) e XEx QF x XP k=0,...,N -1,

satisfying ¥ (Vi qn, Un) € X? X Q}} X X;} :
u];’;H - uliCL k+1 ~k+1 E+1 fk+1
n(—Lt——=="vy) +ar(ui,vp) —n (@, V- Vh) +cr(vh, &) = n(ff7, vi)y,
f

(an. V- u; ™) =0, (8.1)

f

¢n+1 ¢
( Y h @Dh) +ap (5 vn) — cr(w ™ n) = g(f5 vn)p

where (uy,, ¢,) = (W, ¢o).

We solve Test problem 1 with varying N (nodes per sub-domain side) and At = 1/N
over the interval [0,1] (7" = 1), and compute the average computational time per time
step solve for each method, and each NN, and also the error in u. The computational
time comparison is given in Figure 11 and the errors in Figure 12. From the results, the
efficiency of CNLF-stab when compared to BE is evident, both from the computational
time perspective as well as in view of the smaller errors for fixed N and fastest (second-
order) convergence. This, in combination with the method’s asymptotic, unconditional
stability makes CNLF-stab a very attractive choice for problems that require solutions

computed over long time intervals, with small parameters, and/or on finer meshes.
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Note 3. The Freefem++ [59] code for the Backward Euler method for the evolutionary

Stokes-Darcy problem is given in Section B.S3.

8.3 NUMERICAL TESTS FOR THE QUASISTATIC APPROXIMATION
IN THE STOKES-DARCY MODEL

In this section we present numerical tests for the convergence of the Stokes-Darcy solu-
tion (u,p,¢), that solves the system of equations (3.1)-(3.12), to the quasistatic solution
(u@% p?5, $%) that solves the same system with Sy = 0 in (3.5), as Sy — 0 (Chapter 4,
Theorem 5). We verify first-order convergence as Sy — 0 with respect to the discrete analogs
of the norms
u — u| 013220,y = sup [lu(t) —u® (@),
te[0,7

1P — P9 Lo, rsr20,) = sup [lp(t) — p*° ()],
t€[0,T
16 — 6%% || L (0,r;22(0,)) = sup [|o(t) — 695 (1)]|p,
t€[0,T
given by

k
error(v) := |||[v — v9|| z=orx) = max [|[vF —v@||x, for X = L*(Q;,), v =u,p,o.

0<k<N

We denote the approximate order of convergence by 1y/,/4 for u,p, ¢, respectively, given

by r = logy(e(So)/e(So/2)). In both test problems, the evolutionary Stokes-Darcy and

quasistatic models are solved over the time interval [0, 1], so that 7' = 1. In each numerical
test, the mesh size, h, and the step size, At, are taken to be h = At = 1/32.

For Test problem 1, the calculated norms of the errors for u, p, and ¢, for each value of

Sp, are shown in Table 7. The calculated order of convergence is getting closer to one as S

approaches zero, which is in agreement with the results of Theorem 5. To investigate how

the convergence is affected by the hydraulic conductivity, we use Test problem 2 where we

vary kmnin, and set all other parameters equal to one:



In the first run, we take k,,;,, = 1, and we get similar errors in Table 8 as for the first test
problem. Next, we let k,,;, vary, kn;, = 0.1,0.01,0.001, and 0.0001. The corresponding
results for each case can be found in Tables 9, 10, 11, and 12, respectively. The errors for
the velocity from Tables 8-12 are summarized in Figure 13. We observe the expected first-
order convergence, and also that as k,,;, gets small compared to Sy, the errors for fixed Sy
get bigger. This is expected in view of the main result of Theorem 5, where k,,;, appears
in the denominator of the constant in the error estimate, confirming that the quasistatic

approximation should be used if 0 < Sy << kypin << 1.

Note 4. The Freefem++ [59] code for the numerical tests of this section is given in B.J.

8.4 NUMERICAL TESTS FOR THE LINEAR STABILIZATION IN THE
CNLF METHOD

In this last section, we perform numerical tests to confirm the consistency and stability prop-
erties of the (CNLF-stab) method for (5.1), analyzed in Chapter 5. We verify the consistency
results obtained in Section 5.2 by comparing the errors of (CNLF-stab) with varying 5 > 0
and (CNLF) (which is (CNLF-stab) with 8 = 0), and also confirm unconditional stability
of (CNLF-stab) for 5 > 1/8, as well as the optimal time-step conditions for § = 1/12 and
£ = 0, obtained in Section 5.3.

We solve (5.1) for u(t) := (uy(t),us(t))" : [0,1] — R?, given u(0) = (0,1)", with

A= , A=w , w € R.

The true solution is given by
u(t) = (exp(—t)sin(wt), exp(—t) cos(wt)) ', t € [0,1], w € R.
We denote by u the approximate solution using (CNLF-stab) with varying g > 0, and by
e = [[a -2y
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the L%-error over [0, 1]. We use the true solution for the approximation of u(At).

Figure 14 shows the error of (CNLF) (5 = 0) and (CNLF-stab) (with varying g > 0).
Here, we take w = 40 and At within [278/50,1/50], so that the time-step condition (5.5) of
(CNLF) is always satisfied. While all methods exhibit second-order accuracy, the error is
smallest for (CNLF-stab) with 8 = 1/12, where the leading-order consistency error of (LF)
vanishes. The error of (CNLF-stab) with 8 = 1/6 is equal to that of (CNLF), and slightly
bigger than (CNLF-stab) with § = 1/8, matching the analysis in Section 5.2.

In order to confirm the unconditional (Theorem 7) and conditional (Theorems 17 and
19) stability of (CNLF) and (CNLF-stab) with varying /3, we plot the computed error using
fixed At = 1/100 and w € [40,160]. This implies 0.4 < At w < 1.6. Figure 15 shows
the unconditional stability of (CNLF-stab) for 5 > 1/8, as predicted by Theorem 7. For
A = I, as is the case in this numerical test, Theorem 7 reveals that (CNLF-stab) is also
unconditionally stable for 3 = 1/8 in L?(0,T), which is shown here. On the other hand, the
improved time-step condition, (A.17): At||A]] < 1.27, is confirmed for (CNLF-stab) with

8=1/12.

Note 5. The Matlab code for the numerical tests of this section is given in B.5.1 and B.5.2.
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Figure 8: Unconditional stability of CNLF-stab for Test problem 2 with N =16 = 1/At.
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per sub-domain side, N.

139



error(u)

6.00E-04

5.00E-04

4.00E-04

3.00E-04

2.00E-04

1.00E-04

0.00E+00

16

32

64

128

—#—CNLF-stab
BE

Figure 12: [[|u — ws |||z (0,1:22(2;)) of CNLF-stab and BE versus N.

Table 7: Test problem 1: first-order convergence to the quasistatic solution as Sy — 0, where

h=At=1/32and T = 1.

So error(u) | 1y | error(p) | rp | error(¢) | 71y
0.01 4.11E-06 - 2.93E-03 - 8.18E-05 -
0.05 2.28E-06 | 0.850 | 1.61E-03 | 0.861 | 4.45E-05 | 0.878
0.025 1.20E-06 | 0.922 | 8.47E-04 | 0.927 | 2.32E-05 | 0.938
0.0125 6.19E-07 | 0.958 | 4.35E-04 | 0.962 | 1.19E-05 | 0.968
0.00625 | 3.15E-07 | 0.976 | 2.20E-04 | 0.981 | 6.00E-06 | 0.983
3.13E-03 | 1.59E-07 | 0.990 | 1.11E-04 | 0.990 | 3.02E-06 | 0.990
1.56E-04 | 7.96E-08 | 0.994 | 5.56E-05 | 0.996 | 1.52E-06 | 0.995
7.81E-05 | 4.00E-08 | 0.993 | 2.79E-05 | 0.996 | 7.60E-07 | 0.997
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Table 8: Test problem 2 with k,,;, = 1.0: first-order convergence to the quasistatic solution

as Sp — 0, where h = At =1/32, and T' = 1.

So error(u) | r, | error(p) r, | error(¢) | 1

0.01 1.19E-07 - 8.44E-05 - 2.30E-06 -

0.05 6.56E-08 | 0.860 | 4.62E-05 | 0.869 | 1.25E-06 | 0.886
0.025 3.46E-08 | 0.921 | 2.43E-05 | 0.931 | 6.49E-07 | 0.941
0.0125 1.78E-08 | 0.957 | 1.24E-05 | 0.964 | 3.33E-07 | 0.963
0.00625 | 9.06E-09 | 0.978 | 6.29E-06 | 0.982 | 1.69E-07 | 0.981
3.13E-03 | 4.56E-09 | 0.989 | 3.16E-06 | 0.991 | 8.50E-08 | 0.990
1.56E-04 | 2.29E-09 | 0.995 | 1.59E-06 | 0.989 | 4.26E-08 | 0.995
7.81E-05 | 1.15E-09 | 0.997 | 7.97E-07 | 1.00 | 2.13E-08 | 0.997

Table 9: Test problem 2 with k,,;,, = 0.1: first-order convergence to the quasistatic solution

as Sy — 0, where h = At =1/32, and T = 1.

So error(u) Tu error(p) Tp error(¢) T¢

0.01 2.15E-06 - 4.00E-04 - 9.90E-05 -

0.05 1.15E-06 | 0.910 | 2.25E-04 | 0.831 | 5.30E-05 | 0.900
0.025 5.93E-07 | 0.951 | 1.20E-04 | 0.902 | 2.75E-05 | 0.946
0.0125 3.02E-07 | 0.975 | 6.25E-05 | 0.964 | 1.40E-05 | 0.973
0.00625 | 1.52E-07 | 0.987 | 3.19E-05 | 0.972 | 7.07E-06 | 0.986
3.13E-03 | 7.65E-08 | 0.994 | 1.61E-05 | 0.985 | 3.55E-06 | 0.993
1.56E-04 | 3.83E-08 | 0.997 | 8.09E-06 | 0.992 | 1.78E-06 | 0.997
7.81E-05 | 1.92E-08 | 0.998 | 4.06E-06 | 0.996 | 8.91E-07 | 0.998
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Table 10: Test problem 2 with k,,,;, = 0.01: first-order convergence to the quasistatic solution

as Sp — 0, where h = At =1/32, and T' = 1.

So error(u) ra | error(p) T error(¢) T

0.01 0.000302506 - 2.88E-02 - 0.0354523 -

0.05 1.55E-04 6.560 | 3.02E-02 | 7.042 | 1.82E-02 | 7.094
0.025 7.84E-05 | 0.984 | 1.54E-02 | 0.976 | 9.20E-03 | 0.981
0.0125 3.94E-05 0.993 | 7.74E-03 | 0.988 | 4.63E-03 | 0.991
0.00625 1.98E-05 0.994 | 3.89E-03 | 0.994 | 2.32E-03 | 0.996
3.13E-03 9.92E-06 0.997 | 1.95E-03 | 0.997 | 1.16E-03 | 0.998
1.56E-04 4.96E-06 0.998 | 9.75E-04 | 0.999 | 5.82E-04 | 0.999
7.81E-05 2.48E-06 0.999 | 4.88E-04 | 0.999 | 2.91E-04 | 0.999

Table 11: Test problem 2 with k,,;,, = 0.001: first-order convergence to the quasistatic solu-
tion as Sop — 0, where h = At =1/32, and 7' = 1.

So error(u) Tu error(p) Tp error(¢) T¢

0.01 1.46E-02 - 3.98E400 - 2.48E+00 -

0.05 8.09E-03 | 0.851 | 2.21E+00 | 0.847 | 1.40E+00 | 0.830
0.025 4.28E-03 | 0.919 | 1.17E+00 | 0.916 | 7.44E-01 | 0.907
0.0125 2.20E-03 | 0.958 | 6.05E-01 | 0.956 | 3.85E-01 | 0.951
0.00625 | 1.12E-03 | 0.978 | 3.07E-01 | 0.977 | 1.96E-01 | 0.975
3.13E-03 | 5.64E-04 | 0.989 | 1.55E-01 | 0.989 | 9.87E-02 | 0.987
1.56E-04 | 2.83E-04 | 0.994 | 7.77E-02 | 0.994 | 4.96E-02 | 0.994
7.81E-05 | 1.42E-04 | 0.997 | 3.89E-02 | 0.997 | 2.49E-02 | 0.997
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Table 12: Test problem 2 with k,,;, = 0.0001: first-order convergence to the quasistatic

solution as Sy — 0, where h = At =1/32, and T' = 1.

So error(u) Tu error(p) T error(¢) e
0.01 1.81E-01 - 5.16E4-01 - 3.19E+401 -
0.05 1.02E-01 | 0.825 | 2.91E+01 | 0.826 | 1.83E+01 | 0.806
0.025 5.47E-02 | 0.903 | 1.56E+01 | 0.903 | 9.84E+00 | 0.892
0.0125 2.83E-02 | 0.949 | 8.06E+00 | 0.948 | 5.12E+00 | 0.943
0.00625 | 1.44E-02 | 0.973 | 4.11E+00 | 0.973 | 2.61E+00 | 0.971
3.13E-03 | 7.28E-03 | 0.987 | 2.07E400 | 0.987 | 1.32E+00 | 0.985
1.56E-04 | 3.66E-03 | 0.993 | 1.04E+00 | 0.993 | 6.64E-01 | 0.992
7.81E-05 | 1.83E-03 | 0.997 | 5.22E-01 | 0.997 | 3.33E-01 | 0.996
1.00E+00
1.00E-01 T—
\\
10002 \ —+=—kmin = 0.0001
1.00€-03 kmin = 0.001
g 1.00E-04 —— —w=kmin = 0.01
% 1.00E-05 \\ —elmin=0.4
1.00E-06 — T
1.00E-07 e \\
1.00€-08 \ \
1.00E-09 \

1.0E-02 5.0E-03 2.5E-03 1.3E-03 6.3E-04

So

3.1E-04 1.6E-04 7.8E-05

Figure 13: Test problem 2: first-order convergence to quasistatic solution with varying k.
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Figure 14: Second-order accuracy of (CNLF-stab) with varying 8 > 0.
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Figure 15: Unconditional stability of (CNLF-stab) for 8 > 1/8 and conditional for § = 1/12
and 5 = 0.
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9.0 CONCLUSIONS

In this thesis, we studied the fully evolutionary Navier-Stokes/Darcy and Stokes-Darcy mod-
els for the interaction between surface and groundwater flows. We investigated the problems
versus their corresponding quasistatic approximations, in which it is assumed that the hy-
draulic head in the groundwater flow equation adjusts instantaneously to equilibrium.

We conclude that the solution of the fully evolutionary Stokes-Darcy problem converges
with order one to the quasistatic solution, as the specific storage, Sy, approaches zero, under
mild assumptions on the initial data and body forces. The proof of convergence revealed
that the quasistatic model is accurate in predicting the solution provided that Sy is small
and also smaller in orders of magnitude than the minimum eigenvalue of the hydraulic
conductivity tensor, k,;,. Under these assumptions, the term “Sy¢;” can be dropped from
the evolutionary Stokes-Darcy equations. Numerical tests confirmed first-order convergence
of the solution to the quasistatic solution, and also that the error between the two systems
grows when Sy is not small compared to k,;,.

In the case of the nonlinear Navier-Stokes/Darcy coupling, we analyzed the problem
under a modified balance of forces coupling condition, and added an “inertia” term in order
to get an energy estimate. Under mild assumptions on the body forces and initial conditions,
we proved that the solution of the fully evolutionary, two-dimensional, Navier-Stokes/Darcy
model converges to the solution of the quasistatic model as Sy — 0. In three dimensions in
space, the proof of convergence required either a small-data condition or higher regularity
assumed on the fluid velocity field. The analysis showed that convergence is sensitive to
kmin, and thus, the quasistatic model should be assumed if Sy is small and smaller in orders
of magnitude than k,,;,.

We then developed and analyzed a non-modular stabilization of the implicit-explicit
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Crank-Nicolson Leapfrog (CNLF) time-stepping scheme for the solution of a general evo-
lution equation. The CNLF method without added stabilization or modular time filters is
known to have two issues: a very restrictive time step condition and slight instability exhib-
ited in the unstable mode of Leapfrog. In contrast, we proved that the proposed stabilized
CNLF method requires no time step condition for stability, is asymptotically stable, and at
the same time more accurate. The claims about the stability and accuracy properties of the
method were verified through numerical tests.

The stabilized CNLF method was then extended to an efficient partitioned method for the
evolutionary Stokes-Darcy coupling. We proved that the added stabilization terms corrected
both shortcomings of the original CNLF method for the Stokes-Darcy problem, namely the
conditional stability and the instability in the unstable mode of Leapfrog, while retaining
second-order accuracy, uniformly in the model parameters. In particular, we showed that the
proposed partitioned method is unconditionally, asymptotically stable and uniformly, second-
order convergent. To support the theoretical findings, several numerical tests were performed,
confirming the method’s stability and convergence properties under any parameter regime.
As a result, the method can also be applied to the quasistatic Stokes-Darcy model just by
setting Sy = 0. Additional numerical tests were performed to show the method’s effectiveness

when compared to fully coupled methods.

9.1 FUTURE RESEARCH

The error estimates of Theorems 5, 6, 13, 14, and 16 have an implicit dependence on the final
time, T', in the constant on the right-hand side. Since we often need to solve the evolutionary
Navier-Stokes/Darcy or Stokes-Darcy problems over long-time intervals due to the large size
of the computational domain and the low permeability, a first objective is to extend the
analysis to long-time intervals. A second objective is evaluation of relaxation times, and also
non-dimensionalization of the equations to evaluate the relative sizes of the Navier-Stokes
and Darcy relaxation times.

A different modeling approach for the coupled surface and groundwater flows is the
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time-dependent, one-domain Brinkman equation, which interpolates between the Stokes and
Darcy flows [17, 49, 11, 3, 66, 104], when modeling faster flows. The case when the term
“So¢:” is not dropped in the limit when obtaining Darcy’s law from the Brinkman equation
and the flow in the porous media is slightly compressible, is an open problem.

The stabilization of the Crank-Nicolson Leapfrog (CNLF) method developed in Chapter
5 for a general evolution equation (5.1) is restricted to semi-positive definite, symmetric
operators A and autonomous, skew-symmetric operators A. It is an open problem to develop
a stabilization of CNLF for the most general form of A and also for the non-autonomous
case, A = A(t).

A further goal is to adapt the stabilized CNLF method developed in Algorithm 2 to the
fully evolutionary Navier-Stokes/Darcy coupling with different rates for the time step in the
fluid and porous media regions to account for the difference in flow rates (fast/slow).

Finally, the next step in the analysis is the coupling of fully evolutionary Stokes-Darcy or
Navier /Stokes-Darcy systems with the transport equation and the development of numerical
schemes for the transport equation to track the concentration of contaminants. For the
transport scheme, variants of the space-time discontinuous Galerkin method would be used
that are compatible with the flow discretization schemes and that incorporate penalized

jumps in both the diffusive flux and the concentration of the contaminant across the interface.
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APPENDIX A

COMPLEMENTARY PROOFS

A.1 CONDITIONAL STABILITY OF CNLF FOR A GENERAL
EVOLUTION EQUATION

Theorem 17 (Conditional stability of CNLF). Consider the (CNLF) method under (5.2)
and (5.4), and let ||ul|4 := \/(Au,u) be the norm induced by A. Assume

At|A] < 1.

Then, for all N > 1,

N-1
AP P A Y et

n=1

< (L+ AALD {la'* + a1} (A1)
where \* :=1 — At||A|| > 0.

Proof. We first take the inner product of (CNLF) with (u™™! +u""!). After multiplying the
equation by 2At we have:
Hun+1H2 _ Hun71H2 + At<A(un+1 4 unfl)7 un+1 4 un71> 4 2At(Au", un+1 4 un71> =0.
(A.2)
We denote

e LA
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and

C«n—l—l/? — <Alln, un+1>.
Then, using skew symmetry of A we write
2At{(Au", 0" + u" ) = 2A¢ {{(Au™, 0" + (Au", ut ) }

= 2At {{(Au”, u"*") — (Au" ', u")}
— Cm-‘rl/Q _ Cm—l/2'

Hence, after also applying the positivity condition (5.6) for the operator A, (A.2) becomes

En+1/2 . En71/2 + AtHunJrl + unlei +2At {Cn+1/2 . Cmfl/Q} <0.

By summing up this last inequality from n =1 to N — 1, we obtain

N-1
EN_1/2+2AtCN_1/2+At un+1+un—1 2 S E1/2+2At01/2
A

n=1

(A.3)

Next, we bound the indefinite term CV~/2 using Cauchy-Schwarz and Young’s inequalities:

OAL|CN 2] = oAt (AuY, uN Y|
< 2A¢[J A [o¥][[{lu™
< ALA] (o] + o))

— At|A[|ENV2,

After applying (A.4) to (A.3), we arrive at

N-1
(L= ALANEY Y2 4 Ay flu™ + w5 < (1+ Af|A)EY?,
n=1
or equivalently,
N-1
(1= ALAN (™ ]P + [P+ Ay
n=1

< L+ AAD {lu'* + u*}, YN > 1

(A.5)

In light of (A.5), we conclude that the CNLF method applied to (5.1) is stable provided

(1— AtA]) > 0 At|A] < 1.
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A.2 THE UNSTABLE MODE OF CNLF IS STABLE UNDER CNLF’S
TIME-STEP CONDITION

Theorem 18. Consider the (CNLF) method under (5.2) and (5.4), and assume that the
time step condition (5.5) holds. Then, both the stable and unstable modes of CNLF are
asymptotically stable,

n—0o0

(un—H + un—l) oo, 0’ (un—I—l _ un—l) 7H_O°> 0’

and thus,

n M—00 0

Proof. Let ||u]|l4 := /(Au,u) be the norm induced by A. By Theorem 17 we have that

N—-1
ALY "t ur R < Cul ), YN > 1 (A.6)

n=1
: o N-1 _
where C'(u',u’) is a positive constant that depends on u',u’. Thus, > "7 [[u"™ +u" %

is bounded for all N > 1, and hence it converges. It follows that [[u™*! 4+ u" |4 —> 0

and therefore the stable mode is asymptotically stable, (u"* +u”"') 2= 0, which proves
the first claim of the theorem.

To prove the second claim, we derive a second energy estimate for the CNLF method.
We take the inner product of (CNLF) with (u”*! —u"~') and multiply by 2At5 where 6 > 0

(to be determined later, see (A.16)). This gives

5||un+1 o un—1||2 + AtS<A(un+1 + un—l)’ un+1 o un—1>
- (A.7)
+ 20At{(Au", u"t! —u" ) = 0.

We decompose the operator A into its symmetric and skew-symmetric parts, A .= A, + A,.
Then, since ||v||% = (Asv, V), we have

<A(un+1 + un—l)7 un+1 - un—1>

— <As(un+1 + unfl)7 un+1 - un71> + <Ass(un+l 4 un71>’ un+1 - un71>

— <A511n+1, un+l> o <A5u”_1, un—l> =+ <Ass<un+1 + un—l)’ un+l - un—1>

= [um L = A+ (A (™ ), —at ),
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Letting

AP = [ 4
(A.7) becomes

g“un—&—l _ un—1||2 + SAtAn—}—l/Q _ SAtAn—1/2

+ 0AH{ Ay (u™ + u ), u T — w4 20AH(AU, U — u ) = 0.

Summing this from n =1 to N — 1 gives

N-1 N-1
SZ ||un+1 _ un—1||2 + SAtAN—l/Q + gAt Z<Ass(un+1 + un—l)’ un+1 . un—1>
n=1 n=1
o ~ (A8)
+20AL Y (Au" ut —un ) = 0ALAY,
n=1

The next step is adding together (A.6) and (A.8):

-1 N-1
S ||un+1 . un—1”2 + Atz ||un+1 + un—1||2A + SAtAN_I/Q
1 n=1
~ N-1
+ AL Z(ASS(U”H +u" ), u"tt — ) (A.9)
n=1
N-1

+20AL Y (Au", ! —u ) < C(u' u’) + 0ALAY,

n=1

=2

n

We now bound the last two terms on the left-hand side of (A.9). For the first term we apply

Cauchy-Schwarz and Young’s inequality with € > 0:

‘<Ass<un+1 +un71>7un+1 o unflﬂ < HASS||Hun+1 +un71||Hun+1 . un—lu
! n n— € n e
< ozl +um P + Sl Ao = un
2€ 2
and thus
~ N-1
OALY (A" 4 u" ) u ! —u" )
n=1
- i (A.10)
0At <« n+1 n—1/2 0Ate - n+1 n—112
< YIIASSIIH;Hu U 4 HASSII;IIu —u"
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For the second term, we first decompose u” into the stable and unstable modes, and apply

Cauchy-Schwarz and Young’s inequality (with € > 0). Then, for all n > 2:
1
’(Aun7 un+1 o un—1>’ — ‘§<A(un o un—Z)’ un-‘rl o un—1> + _<A<un + un—2)’ un+1 o un—1>
1 n n— n n— 1 n n— n n—
< SlIAll[u" ~u [l = wm | + SIAlllu" +u ™ —am |
1 1 1
< ST (Gl = a2 et -

1 1
A0 (Gl w2 S ).

Then,
LN - o N-l
20At > (Aut, um —u" )| < 20AE [(Au' u® — )|+ 20A¢ Y [(Au" ut — un |
n=1 n=2
- 5 N— 1
< 20 At Alfflut(* + QAtHAHHu2 w’|? + 20A¢ Z —IIAH ( [u — a2

1 — ¢
n+l n 1112 n—2 2 n+1 n—1|2
+5 ] I ) +20At E —HAH ( L L )

N—-2
— S AMIA|[u'? + SALA] u? — O + SAAL S furt! - P

n=2

0 - 5AtHAH wet | ey OAAN S e
+ AL Al — a2 Zn oy 1||2+Tz||u g2

. - — 5At||A||
< 2BALA] a7+ FAUAY S s — w2+ Z [ w2

n=1

ESALI|A| =
n € 2” H Z ||un+1 o un71H2

-\ N-1
—QSAt A 112 SAt A 1 € n+l _  .n—1 2 5Atl|AH n+1 a L2
= 1AW + 0ALIAI {1+ 5 > u u" "+ E [u I°.
n=1

(A.11)
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We now apply (A.10) and (A.11) to the left-hand side of (A.9). After collecting terms, we

have

IN Ate € - +1 112 N N-1
=" . ~ n _n— -1/2
5(1 5 4l = AtlA] (1+2)> ;:1: [ — w4 0ALA

N-1

n ne 0 n -
+ At w0+ w1 = = ([[Asll + [[A]]D Ju™ ™ 4+ ™1
2€

n=1

(A.12)

< C(u',u®) + 6ALAY? + 26 At||Al|][u!]]? < C(u', u®),

where C'(u!, u°) is a new positive constant that depends on u', u® and is independent of N.

Thus, (A.12) implies asymptotic stability of the unstable mode provided

Até é
(1 - TEHASSH — At||A|] (1 + %)) >0 (A.13)
— S n n— n n—
{IIU”+1 +ut T oz Assll + [[A[]) Ju T tu 1||2} >0. for u",u""'£0. (A.14)

(A.13) is equivalent to

2(1— AtjAl)
AL (IAT+ 1A,)

€<

(A.15)

Since € > 0 is arbitrary, and At||A]] < 1 holds, we can choose € so that (A.15) is satisfied.
For (A.14) to be true, it suffices that

S < 26)\min (As)

< e (A.16)
| Ass|] + JA]

where Apin(As) > 0 is the minimum eigenvalue of A;. Since 5>0is arbitrary, we can choose

it so that (A.16) is satisfied. Therefore, we conclude from (A.12) that

N—-1
Z ||un+1 _ un—1||2
n=1

n—oo

is bounded for all N > 1, and thus convergent. It follows that (u"™ — u"™!) 0,

concluding the proof. O
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A.3 CONDITIONAL STABILITY OF CNLF-STAB WITH 5 =1/12 FOR A
GENERAL EVOLUTION EQUATION

Theorem 19 (Conditional stability of the CNLF-stab method with 8 = 1/12). (CNLF-stab)
with B = 1/12 is stable under the time step condition:

At||A]] < 1.268. (A.17)

Proof. We rewrite the stabilization parameter as = y—(y— /) where vy > 1/8 and y— 5 > 0.
Following the steps of the proof of Theorem 7, the system energy is

Energy™ /2 =[lu |2 + [[u” | + 29 A3 ([ Au™|* + || Au”||?)

+ 2At(Au", u ) — 2(y — B)AL([[Au? + [|Au"|?).
Since 7y > 1/8, Theorem 7 gives

™+ fa P + 29 A ([ Au™ [+ [JAu” () + 248 (A", u™ )

> (1= &) ("2 + [la"]?) -
Hence,

Energy™™/2 > (1 — &) lu™"!|* = 2(y — B)A¢* [ Au"*!|?

+ (1= g)lla"[* = 2(y — )AL [ Au™|%.

The bound above implies stability provided

B 1/2
1= & =20y - HALIAIR > 0 = AU < (25)

For § = 1/12, the maximum value of this quantity (for v > 1/12) is attained at v = 0.19717,
and thus
At||A] < V1.6077 = 1.268.
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A.4 CONDITIONAL STABILITY OF CNLF IN THE STOKES-DARCY
MODEL

Proof of Proposition 6:

Proof. In (6.9)-(6.11), we choose v;, = uj™ +uf™ ¢, = ¢ + ¢y ~'. Then the pressure
term in (6.9) cancels by (6.10). By adding together the equations and multiplying by 2At

we get

n (o IF = a3 + 9So (1o 12— [ler12)
+ At {as (u By gkl gty ke Y 4 a,( B4y ghol ghtl | ke o)
+ 2At (¢7(u VU wh op) — er(uy, of T+ ) ))

:2At{ n(ff, uftt +uf T+ g (5, 0f T + gzs;j‘l)p}.

We let

CMY2 = er(gn, wi™) — er(or ™ ),

and express the interface terms above as
1 1
cr(u™ +w T o) — er(uy, gt 97 = CFF - CF e

By the coercivity estimates (3.34), (3.36), the dual norms of X, X, and Young’s inequality,

we obtain

n (™% = b %) + 9o (e 12 = 95 ~112) +2a¢ {Cr+d — ch=i

2nv _
+At{—HV( a1+ Ghninl|V (0 + 0F )H,%}

nCK

<At IIV( W) I+ A1

gkmm _ 2g
+ At IV (o5 + o) !\§+Atf!|f§\|31,p

km’LTL
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Rearranging gives

— _ 1 _1
n (0% = b %) + 9o (o™ 12 = lof " 12) + 24 {Cr+d — cr-3]

nvr gkmm
+At{—||V( HERES 1) 1% + ; IV (5" + ¢ )||§} (A.18)

nC’K
<At—\|f,’f|!21f+At L=

We denote the energy terms by

M2 = (a5 + ) + o (105715 + l6n17)

Then (A.18) becomes

nv kmm
gt e 2 (oo + mf ’ nv<k+l+¢ )1z}
F2AL{CHH2 — ok 1/2}<At \lffH21f+At [ £ 1121

Next, we sum up this inequality from £ =1 to N — 1 to find

N-1
7 nv 9k min
EN‘MA+At§j{E§MV( AR e e N AR H@}

k=1 o (A.19)
— ’rLCK 2 29 2
+ 2AtCN 12 §E1/2+2At01/2+AtZ{ I1£5]12 - ||f 174 }
k=1

We then apply the trace (2.9), and inverse (6.8) inequalities to bound the interface terms in

CN=1/2 45 follows:
/¢N RUARS ¥ do"

< nglluyllrlléy Ml = nglluy iz, 167~ z2(00,)

ler(uy, ¢ 1) = ng

1/2 1/2 _ _
< ngCrsCrypllal |21V | 26N 12 Vo =12

< ngCr s Crph ™ Col (O I £ l6n .

1nv,f inv,p

Letting Cq,, = Cr, fCT@Ciln/VQ’ fCiln/V%p > 0, and applying Young’s inequality we have

_ h~'ngCq _
ler(uy, oy )] < Tﬁ (117 + llon H12)

h~*ngCq ngCq
or es(u), 67| < 2w I} + =20y
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and, similarly,

h~ ngCQf/p (

ler(uy ™" o] < o =1 + llon117)

hi gCQf/p

orfex(ul ™ o)) < =

a1 + PR g 2
Thus,
2AtCN 2] < At B 'ngC,, (lap' (17 + ey = 1 + o115+ llon12)
or [2AtCNTV2 < At B ngCaq,, (Il (17 + lay 17) + At ngCay,,, (lr 112+ lln 112) -
Consequently,
EN-2 f oAt ON-2 > [1 — At h*lgCgf/p} (ag l1F + lhwy = IF)

(A.20)
g[S —ath7nCa,,, | (X112 + 16)12)

or ENTV2 L oAtV > [1 _ At h—ngQf/p} (|1 + ad=12)
+9|So— At nCay, | (I67I2 + 6y 12)

After combining (A.19) with (A.20) or with (A.21), we obtain

(A.21)

n [1 — At hilgcﬂf/p} (a1 + g = H1%) + g [SO — At hilncﬂf/p} (o 115+ llen —112)

— [ nv 9kmin
+AtZ{C—KHV () I+ 29 (o o) 1
k=1

< n(l[upll7 + uill7) + 980 (18nll; + 1 Gnllp) + 248 (cr(¢h, ws) — cr(dy, )

nCg 29
+At2{ B+ A }

or

n[1— 8t h 2oy, ] (I + el 13) +9 [So— At nCa,, ] (1613 + 1o~ 12)
N—-1

nv — kmm
# a0 3{ FEIV () I+ S (6 ) 1)

k=1

n(l[upllF + [upl7) + 950 (10nll; + 18nllz) + 24t (er(dh, wy) — cr(¢n, up))

N-1 nC’ 29
-
+AtZ{—V e ufm%l,,,}.

k=1 man
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From these, we have stability if

1 - At h_lgCQf/p >0 and Sy— At h_anQf/p > 0

or 1—At h_QQOQf/p >0 and Sy— At nC’Qf/p > 0,
which are equivalent to (6.12). Thus, if we let

o’ = min

1= Ath7gCa,, 1= At h7%Cq,, } >0, and

{
o := min {

So = At h™'nCa, . S~ At nCa,, } >0,

we obtain the stability bound (6.13) conditional on (6.12), concluding the proof.

A.5 CONSISTENCY ERROR BOUNDS

Proof of Lemma 4:

Proof. First we prove (6.49). By applying integration by parts twice, we have

uf — = (" = %) uf — (0 = by (- ) W (b -k h)

tk:+1 tk

— 1 _ 4k+1 _ 4k—1
= oAt (/tk (t t ) Uyt dt + /tk—l(t t ) Uy dt

1 thtt (t _ tk+1)2 tk (t _ tk71)2
= — —_ dt —_ dt | .
2t ( /tk y Mt /tk_l g
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Thus, by Cauchy-Schwarz we obtain

" uktl — gkt 2
b
— 2At 7
N-1 thtl k+1\2 th k—1)2 2
1 (t — o) (t — t+1)
= — oy dt — wy dt| d
A(A1) /Qf £ / ; 2 e G0 /tk_l 2 tt *
1 N—-1 tk+1 tk:+1 2 th (t B tk—l)? 2
< Q(A / / —— Uyt dt| + /Ic T Uyt dt dx
o tht
N—1 tk+1 t B tk+1 tk+1
S 2( / / dt/ |um|2 dt
Qf p=1 t

tk k—1\4 tk
t—1
+/ g dt/ |uttt|2 dt} dx
tk—l 4 tk—l

tk+l
2
— dt » d
40 Qf k= 1 {/1 e } B
At At)?
< |uttt|2 dt dx ( 20) el L20.1:22(02))-
Qs

The proofs of (6.50) and (6.53) are similar. Next, we prove (6.51). By applying integration

by parts we have

k1 k=1 1

\Y <u - —;u > =5 ((Vu* — vu* ') — (Vu"*! — vuh))
1 tk tk+1
2 tk—1 tk

tk+l

1
S <_/ (t —t"1)Vuy dt +/ (t — ") Vuy dt) .
2 tk—l tk
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By Cauchy-Schwarz we then have

N-1 - 9
v (uk B uk+1_;_uk 1)
k=1 f
1 N-1 tk ) 2
=—/)z:—/ @—ﬁ*ﬁmuﬁ+/ (t — t: ) Vuy, dt| dx
4o i tht th
1 N-1 th Rl 2
< —/ / (t —t"HVuy dt| + / (t — ") Vuy dt dx
2 Qf k=1 tht tk
1 N-1 tk e (b
< 5/ {/ (t — tk71>2 dt/ ]Vutt]2 dt +/ (t — tk+1)2 dt/
Qf p=1 th=1 th—1 tk ik
At 3 N-—1 tk+1
_ &) / Z/ Vuy|? dt dx
6 Q £ 1 _

\VuttP dt dX< ( )

”uttHL2(o,T;H1(Qf))-
Qy

The bound (6.52) is proved similarly. Finally, for (6.54), we have

N-1

>0t - ) = Z / (/jm@dt)de
[
/QX:QAt/tk+1

o2 dt dx
F k=1

tk
§2At/ 22/ ¢? dt dx
Qf 1 tkfl

= 4At||¢t”%2(07T;L2(

1+l

o2 dt dx
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APPENDIX B

CODE

B.1 FREEFEM++ CODE FOR CONVERGENCE OF CNLF-STAB
(STOKES-DARCY)

/x

Solves the Stokes—Darcy problem

1. wusing the three level Crank—Nicolson LeapFrog (CNLF) method

2. using CNLF with added grad—div stabilization in the Stokes equation and 2nd
order difference terms in the groundwater flow equation (CNLF-stab).

[To pick CNLF or CNLF-stab replace and (un)comment accordingly:

i. string ster CNLF <—> CNLFstab
it. pick method: right after Solve for [ul,u2], p, phi

To pick Test Problem 1 or 2 replace and un(comment) accordingly:

i. string ster TestProbl <—> TestProb2
1. pick test problem: right after true solutions and body forces

/

Includes tests for convergence.

Marina Moraiti, October 2014
*/

// Initialize timer

real startTime = clock ();
real initTime, compTime;
real totalTime = 0.0;

string ster = ?CNLFstabBetaConvergence_TestProbl_L2erroru”; // CNLF or
CNLFstab, TestProbl or TestProb2
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int showplots = 0; // set equal to 1 to show plots
verbosity = 0;

// Directories for saving data

string plotdir = 7plots/”;
string datadir = ”data/”;
string reportdir = "reports/”;

// Create directories

exec ("mkdir.—p.” + plotdir);
exec ("mkdir.—p.” + datadir);
exec (?mkdir.—p.” + reportdir);

real beta = 0.49; // stabilization constant in CNLF-stab
for (int 1=0;1<2;14+4){
if (1==1){

beta = 0.51;

}

Ve The Mesh */

for (int N=2;N<65;N=Nx2){ // loop owver boundary nodes per side
//int N=64;

border D1(t=0.0,1.0){x=t;y=0.0;}; // Darcy’s bottom

border D2(t=0.0,1.0){x=1.0;y=t;}; // Darcy’s right

border D3(t=0.0,1.0){x=1.0—-t;y=1.0;}; // Darcy’s top (interface traced <——)
border D4(t=0.0,1.0){x=0.0;y=1.0—t;}; // Darcy’s left

border S1(t=0.0,1.0){x=t;y=1.0;}; // Stokes’ bottom (interface traced ——>)
border S2(t=1.0,2.0){x=1.0;y=t;}; // Stokes’ right

border S3(t=0.0,1.0){x=1.0—-t;y=2.0;}; // Stokes’ top

border S4(t=0.0,1.0){x=0.0;y=2.0—t;}; // Stokes’ left

mesh Omegaf=buildmesh (S1(N)+S2(N)+S3(N)+S4(N));

(N
mesh Omegap=buildmesh (D1(N)4+D2(N)+D3(N)+D4(N) ) ;

if (showplots = 1){
plot (Omegaf,Omegap, wait=1);
}

savemesh (Omegaf, datadir + ster + "_N_.” + N + 7 _Omega_f.msh”);
savemesh (Omegap, datadir + ster + "_N_.” + N + ”_Omega_p.msh”);

/x FEM Spaces */

fespace Xf(Omegaf,P2); //FEM space for Stokes wvelocity
fespace Qf(Omegaf,P1l); //FEM space for Stokes pressure
fespace Xp(Omegap,P2); //FEM space for Darcy pressure (hydraulic head)

Ve Velocity , Pressure, Hydraulic Head x/
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Xf ul, u2, ulold, u2o0ld, ulold2, u20ld2, vl, v2, ultemp, u2temp, ulT, u2T;

Qf p, pold, pold2, q, ptemp, ptempold2, pT;

Xp phi, phiold, phiold2, psi, phitemp, upl, up2, upltemp, up2temp, uplold,
uplold2, up2o0ld, up20ld2, phiT, uplT, up2T, pp, ppT;

Ve Problem Parameters */

real pressurepenalty=1.0e—8; // pressure stabilization

real rtho = 1.0; // fluid density

real nu = 1.0; // kinematic viscosity of fluid

real g = 1.0; // gravitational acceleration constant

real So = 1.0; // specific storage

real kmin = 1.0; // minimum eigenvalue of the hydraulic conductivity tensor
real alpha = 1.0; // slip coefficient in BJS interface condition

real Cfp = 1.0; // interface inequality constant

real n = 1.0; // volumetric porosity

//for(real So=0.1;50>0.000001;50=S0/10.0){ // loop over So values
//for(real kmin=1.0;kmin>0.000001;kmin=kmin/10.0){ // loop over kmin values

Ve Body Forces x/
//Test Problem 1

func real fl(real t) {return — sin(t)x( x"2 = (y—1.)"2 +y )
— 2. % cos(t) = ( x"2 + (y—1.)
9 )
— pi"2 % cos(pi*x) % sin(pixy
/(2.)) = cos(t) ;}
(y=1.)"3 / (3.) + 2. — pi =

*

func real f2(real t) {return — sin(t)=*( —2. * x
sin (pixx) )
— ( pi”"3 x sin(pixx) * cos(t)
+ 4. x x % (l.—y) * cos(t)
)
+ (2. — pi x sin(pixx)) * (pi
/(2.)) * cos(pixy/(2.)) *
cos(t) ;}
func real fp(real t) {return — So * sin(t) * (2. — pi * sin(pi*x)) * (1. —y —
cos(pi*y) )
— pi”"3 x sin(pixx) x (1
cos (pixy)) * cos(t)
— pi"2 x cos(pixy) * (2. — pi
x sin (pixx)) * cos(t

//Test Problem 2
/x

func real f1(real t) {return — rho x (y — 1. )2 % sin(t) ;}

func real f2(real t) {return — rho *x ( z°2 — z ) % sin(t) ;}

func real fp(real t) {return — So * sin(t) = ( (n / kmin ) x (z x (1. — x )
« (y— 1. ) +y 3/ 3 —y2+y )+ 2 xnuxz /g ) ;}

*/

Ve True Solution */
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//Test Problem 1

func real ultrue(real t) {return ( x"2 % (y—1.)"2 +y ) * cos(t) ;}

func real u2true(real t) {return ( —2. = x * (y—1.)"3 / (3.) + 2. — pi * sin(
pi*x) ) * cos(t) ;}

func real phitrue(real t) {return ( 2. — pi x sin(pi*x) ) * (1. — y — cos(pixy
)) * cos(t) ;}

func real ptrue(real t) {return ( 2. — pi * sin(pi*x) ) * sin(pixy/(2.)) * cos
(t) 3}

func real upltrue(real t) {return ( pi"2 % cos(pi*x) * (1. — y — cos(pixy)) =*
cos(t) ) 3}

func real up2true(real t) {return ( (2. — pi * sin(pi*x)) * ( 1. — pi * sin(pi

¥y)) * cos(t) ) ;}

//Test Problem 2

/x

func real wltrue(real t) {return ( y"2 — 2. = y + 1. ) x cos(t) ;}

func real uw2true(real t) {return ( z°2 — z ) % cos(t) ;}

func real phitrue(real t) {return ( (n / kmin ) x (z x (1. —x ) x (y— 1.
) +y 3/ 3 —y2+y )+ 2 xnu=xzxz /g )* cos(t) ;}

func real ptrue(real t) {return rho x ( 2. * nu x (¢ +y— 1. ) +¢g xn / (
3. % kmin ) ) % cos(t) ;}

func real upltrue(real t) {return — ( ( 1. — 2. x z ) x ((y— 1. ) + 2. % kmin
x nu / (nx g ) ) x cos(t) ;}

func real up2true(real t) {return — (z % (1. — 2z ) +y"2— 2. x y+ 1. ) x
cos(t) ;}

*/

/x Macros */

macro dot(ul,u2,vl,v2) (ulxvl + u2xv2) //

macro div(vl,v2) (dx(vl)+dy(v2)) //

macro dotgrad(ul,u2,vl,v2) (dx(ul)xdx(vl) + dy(ul)xdy(vl) 4+ dx(u2)*dx(v2) + dy
(u2)xdy(v2)) //

/* Time Stepping Loop */

real dt = 1.0/N; // time step size for convergence tests (h=dt)

//real dt = 1.0/10;

int itmax = 1.0/dt; // T =1 for convergence tests

real T = itmaxxdt; // final time T

int itmaxtemp = itmax — 1; // number of CNLF(stab) iterations (3 level method)

real tnminusl = 0.0; // t_0

real tn = dt; // t_1
real tnplusl = 2.0xdt; // ¢_2

/x

Initialize w, p, and phi for 1st CNLF(Stab) iteration */

ulold2 = ultrue(tnminusl);
ulold = ultrue(tn);
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u2o0ld2 = u2true(tnminusl);
u2old = u2true(tn);

phiold2 = phitrue (tnminusl);
phiold = phitrue (tn);

uplold2 = upltrue(tnminusl);
uplold = upltrue(tn);

up2o0ld2 = up2true(tnminusl);
up2o0ld = up2true(tn);

pold2 = ptrue (tnminusl);
pold = ptrue(tn);

if (showplots = 1){
plot ([ulold2 ,u20ld2] ,[uplold2,up20ld2] ,cmm="True_.velocity.field at_t.=
~:."+tnminusl |, wait=1);
plot ([ulold ,u20ld] ,[uplold ,up2old] ,cmm="True_velocity_field _at_ t_=_:_
+tn , wait=1);

7

}
/%

Initialize maz error mnorms for w, p and phi (convergence )—————x/

real uLinftyHdiverrorcurr 0.0;

real uLinftyHdiverror = 0.0;

real uLinftyL2errorcurr = 0.0;
real uLinftyL2error = 0.0;

real pLinftyL2errorcurr = 0.0;
real pLinftyL2error = 0.0;

real phiLinftyL2errorcurr = 0.0;
real phiLinftyL2error = 0.0;

/% Begin time stepping loop */
for (int i=1;i<itmax;i++){

// body forces and BC functions for convergence tests:

func f1 f1(tn);

func f2 = f2(tn);
func fp = fp(tn);

func Ul = ultrue(tnplusl);
func U2 = u2true(tnplusl);
func PHI = phitrue (tnplusl);

/% Stokes CNLF-stab Problem */

problem StokesCNLFstab ([ul,u2,p],[vl,v2,q],solver=LU) =
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int2d (Omegaf) ( ( 0.5 / dt ) * ( dot(ul,u2,vl,v2) + div(ul,u2) * div(vl
,v2) ) + 0.5 % nu x dotgrad(ul,u2,vl,v2) //level n+1
— 0.5 % p x div(vl,v2) + q * div(ul,u2) + p * q *
pressurepenalty ) //level n+1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) * ul % vl )
//level n+l1
+ intld (Omegaf,S1)( g * phiold * (—=1.0) * v2 )
//level n (coupling term)
+ int2d (Omegaf) ( ( —0.5 / dt) * ( dot(ulold2,u20ld2,vl,v2) + div(
ulold2 ,u20ld2) * div(vl,v2) ) ) //level n—1
+ int2d (Omegaf) ( 0.5 * nu * dotgrad(ulold2,u20ld2,vl,v2) — 0.5 % pold2
x div(vl,v2) )//+ 0.5 % pold2 x q x pressurepenalty ) //level n—1
+ intld (Omegaf,S1)( 0.5 * ( alpha / sqrt(kmin) ) % ulold2 * vl )
// level n—1
— int2d (Omegaf) ( dot (fl,f2,vl,v2) )
//RHS Stokes (level n)
+ on(S2,83,54, ul =Ul, u2 = U2 ); //Dirichlet BC on exzterior
boundary of Omegaf

Stokes CNLF Problem */

StokesCNLF ([ul ,u2,p],[vl,v2,q],solver=LU) =
int2d (Omegaf) ( ( 0.5 / dt ) % ( dot(ul,u2,vl,v2) ) + 0.5 % nu x
dotgrad (ul,u2,vl,v2) //level n+1
— 0.5 % p x div(vl,v2) + q * div(ul,u2) + p * q *
pressurepenalty ) //level n+1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ul * vl )
//level n+1
+ intld (Omegaf,S1)( g * phiold * (—=1.0) * v2 )
//level n (coupling term)
+ int2d (Omegaf) ( ( —=0.5 / dt) * ( dot(ulold2,u20ld2,vl,v2) ) ) //

+ int2d (Omegaf) ( 0.5 * nu x dotgrad(ulold2,u20ld2,vl,v2) — 0.5 % pold2
x div(vl,v2) )//+ 0.5 % pold2 x q x pressurepenalty ) //level n—1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ulold2 % vl )

— int2d (Omegaf) ( dot (fl,f2,vl,v2) )

//RHS Stokes (level n)
+ on(S2,83,84, ul =Ul, u2 = U2 ); //Dirichlet BC on exterior

Darcy CNLF-stab Problem %/

/x
problem
level n—1
// level n—1
boundary of Omegaf
Ve
problem

DarcyCNLFstab (phi, psi, solver=LU) =
int2d (Omegap)( ( 0.5 / dt ) % g * So * phi % psi + 0.5 x g % kmin * (
dx(phi) % dx(psi) + dy(phi) * dy(psi) ) //level n+1
+ beta x dt x g2 % (Cfp)"2 % ( dx(phi) * dx(psi) + dy(phi) x
dy(psi) + phi * psi ) )
//level n+l
— int1d (Omegap,D3)( g * psi *x (—1.0) * u2o0ld )
//level n (coupling term)
+ int2d (Omegap)( ( — 0.5 / dt ) * g % So * phiold2 * psi + 0.5 * g x
kmin % ( dx(phiold2) * dx(psi) + dy(phiold2) x dy(psi) ) //level

n—1
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— beta x dt x g2 % (Cfp)"2 % ( dx(phiold2) * dx(psi) + dy(
phiold2) =% dy(psi) + phiold2 % psi ) )
//level n—1
— int2d (Omegap)( g * fp * psi )
//RHS Darcy (level n)
+ on(D1,D2,D4, phi = PHI ); //Dircichlet BC on exterior
boundary of Omegap

/% Darcy CNLF Problem */

problem DarcyCNLF (phi, psi,solver=LU) =
int2d (Omegap)( ( 0.5 / dt ) % g * So * phi % psi + 0.5 x g % kmin * (
dx(phi) % dx(psi) + dy(phi) * dy(psi) ) )
//level n+1
— int1d (Omegap,D3)( g * psi * (—1.0) * u2o0ld )
//level n (coupling term)
+ int2d (Omegap)( ( — 0.5 / dt ) * g * So * phiold2 x psi + 0.5 * g x
kmin % ( dx(phiold2) * dx(psi) + dy(phiold2) % dy(psi) ) )
//level n—1
— int2d (Omegap)( g * fp * psi )
//RHS Darcy (level n)
+ on(D1,D2,D4, phi = PHI ); //Dircichlet BC on exzterior
boundary of Omegap

initTime = clock () ;

Ve Solve for [ul,u2], p, phi */
startTime = clock ();

StokesCNLFstab ;
DarcyCNLFstab;

//StokesCNLF ;
//DarcyCNLF;

compTime = clock () ;
totalTime = totalTime + compTime — startTime;

b2

cout << 7 _Time_.=." << compTime — startTime << endl;
ultemp = ultrue(tnplusl);

u2temp = u2true(tnplusl);

ptemp = ptrue(tnplusl);

ptempold2 = ptrue(tnminusl);

phitemp = phitrue (tnplusl);

upl = — kmin * dx(phi) / n;
up2 = — kmin x dy(phi) / n;

pp = rho % g x phi;
upltemp = — kmin * dx(phitemp) / n;

up2temp = —kmin * dy(phitemp) / n;
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if (showplots = 1){

plot ([ultemp,u2temp| ,[upltemp ,up2temp] ,cmm="True_u_and_up_at_t.—=_:."+
tnplusl , wait=1);

plot ([ul,u2],[upl,up2],cnm=" Approximate_u.and_.up.at.t.=_:."+tnplusl,
wait=1);

}

/x Calculation of maxr error norms */

uLinftyHdiverrorcurr = ( int2d (Omegaf)( ( ul — ultemp )"2 + ( u2 — u2temp )"2
+ ( dx(ul) — dx(ultemp) + dy(u2) — dy(u2temp) )"2 ) ) (0.5);
if (uLinftyHdiverrorcurr > uLinftyHdiverror){

uLinftyHdiverror = uLinftyHdiverrorcurr;
}
uLinftyL2errorcurr = ( int2d (Omegaf)( ( ul — ultemp )"2 + ( u2 — u2temp )"2 )

) " (0.5);
if (uLinftyL2errorcurr > uLinftyL2error){
uLinftyL2error = uLinftyL2errorcurr;

}

pLinftyL2errorcurr = ( int2d (Omegaf)( ( p — ptemp )"2 ) )" (0.5);
if (pLinftyL2errorcurr > pLinftyL2error){
pLinftyL2error = pLinftyL2errorcurr;

}

phiLinftyL2errorcurr = ( int2d (Omegap)( ( phi — phitemp )"2 ) )"(0.5);
if (phiLinftyL2errorcurr > phiLinftyL2error){
phiLinftyL2error = phiLinftyL2errorcurr;

}

Ve Update Time and Functions */

ulold2 = ulold;
ulold = ul;

u2o0ld2 = u2o0ld;
u2o0ld = u2;

phiold2 = phiold;
phiold = phi;

pold2 = pold;
pold = p;

tnminusl = tn;
tn = tnplusl;
tnplusl = tnplusl + dt;

cout << ”Completed_iteration.” << i << 7_of.” << itmaxtemp << endl;

Y // end time stepping loop
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cout << "N_.=_" << N << endl;
cout << "dt.=." << dt << endl;
cout << ”iterations.=."” << itmaxtemp << endl;

cout << ”LinftyHdiv—error._of_u.=."<< ulLinftyHdiverror << endl;
cout << ”LinftyL2—error_.of_u.=."<< ulLinftyL2error << endl;
cout << 7 LinftyL2—error_of_p_.=_"<< pLinftyL2error << endl;
cout << ”LinftyL2—error_of_phi_=."<< phiLinftyL2error << endl;

cout << ”"Total_time.=.” << totalTime << endl;

string prefix = ster + ".N_.” + N+ 7?_T_.” 4+ tn 4+ 7 _.dt.” + dt + 7_So.” + So + 7
_kmin_” + kmin 4+ ” _beta_” + beta;

exec ("mkdir_.—p.” + prefix);
ofstream report(prefix4+”/"+prefix4+” _report.txt”);

report << 7 7 + ster + 7 7 << endl;
report << ”_.Boundary.nodes._per.side: N.=.” << N << endl;

report << ”._Step.size:._dt.=." << dt << endl;

report << 7_Iterations._=." << itmaxtemp << endl;

report << ”_Final_time: T.=.” << tn << endl;

report << ”_Pressure._penalty._=." << pressurepenalty << endl;
report << ”_.Physical_parameters:.” << endl;

report << ”"_Fluid.density:.rho.=.” << rho << endl;

report << ”_Fluid_kinematic_viscosity:_nu.=." << nu << endl;
report << ”_Gravitational_acceleration:_g.=." << g << endl;

report << ”_Hydraulic.conductivity:_kmin.=.” << kmin << endl;
report << ”._Specific_storage:_.So.=." << So << endl;

report << ”7.Volumetric.porosity:.n.=.” << n << endl;

report << ”"_Slip.coefficent._.in_.BJS:_alpha.=." << alpha << endl;
report << ”_Interface_inequality._constant:_Cfp.=." << Cfp << endl;

report << 7_L.infinity._norms:.” << endl;

report << ”7_LinftyHdiv—error.of_.u.=."” << uLinftyHdiverror << endl;
report << ”_LinftyL2—error_of_.u.=." << ulLinftyL2error << endl;
report << ”7_LinftyL2—error_of_p.=." << pLinftyL2error << endl;
report << ”_LinftyL2—error_of_phi_.=." << phiLinftyL2error << endl;

report << ”_Total_time.in_.seconds.=." << totalTime << endl;

{

ofstream file (prefix+”/” + prefix + ”_approx_ul.txt”);
file << ul[] << endl;

ofstream file (prefix+”/” + prefix 4+ 7 _approx_u2.txt”);
file << u2[] << endl;

ofstream file (prefix+”/” + prefix 4+ 7 _approx_p.txt”);
file << p[] << endl;
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ofstream file (prefix+”/” + prefix + 7 _approx_phi.txt”);
file << phi[] << endl;
}

ulT = ultrue(tn); // True Stokes z—wvelocity at final time T
u2T = u2true(tn); // True Stokes y—wvelocity at final time T
pT = ptrue(tn); // True Stokes pressure at final time T
uplT = upltrue(tn); // True Darcy z—velocity at final time T
up2T = up2true(tn); // True Darcy y—velocity at final time T
phiT = phitrue(tn); // True hydraulic head at final time T
ppT = rho x g % phiT; // True Darcy pressure at final time T

plot (Omegaf, Omegap ,cmm="Mesh_with.” + N + ”_.nodes.per_side” ,ps=prefix+’/7+
prefix4+” mesh.eps”);

plot ([ul,u2],[upl,up2],value=1,coef=0.1,cmm=" Approximate_velocity._field _at_t="
+tn , ps=prefix+” /"+prefix+” _ApproxVelocity . T_.” + tn + ?_.N_.” + N + ? _dt_." +
dt + 7_S0.” + So + 7_kmin_” + kmin + 7 .eps”);

plot ([ulT,u2T] ,[uplT,up2T],value=1,coef=0.1,cmm="True_velocity._field at_t="+tn
,ps=prefix+” /"+prefix4+” _TrueVelocity . T_.” 4+ tn + 7 .N_.” + N + 7 _dt_.” + dt +
7 So.” + So + ” _kmin_” + kmin + 7 .eps”);

plot (p,pp,value=1, fill =1 ,conm="Contour_of_approximate_pressures.(p-and_.p-p).at.
t=" 4+ tn,ps=prefix+’/’+prefix+’ _ApproxPressures_T_” + tn + "_.N_.” + N + 7
dt.” + dt + ?_So.” + So + 7 _kmin_.” + kmin + 7 .eps”);

plot (pT,ppT, value=1,fill =1,cmm=" Contour_.of_true.pressures.(p.and_p_p).at_t=" +
tn,ps=prefix+”/"+prefix+” TruePressures . T_” + tn + " .N.” + N+ 7 _dt_.” +
dt + 7 _So.” + So + ” _kmin.” + kmin + 7 .eps”);

//Y // end kmin values loop

//Y // end So wvalues loop

Y // end N wvalues loop

Y // end beta wvalues loop

B.2 FREEFEM-++ CODE FOR STABILITY OF CNLF-STAB
(STOKES-DARCY)

/x

Solves the Stokes—Darcy problem

1. wusing the three level Crank—Nicolson LeapFrog (CNLF) method

2. using CNLF with added grad—div stabilization in the Stokes equation and 2nd
order difference terms in the groundwater flow equation (CNLF-stab).

[To pick CNLF or CNLF-stab replace and (un)comment accordingly :

i. string ster CNLF <—> CNLFstab
ii. pick method: right after Solve for [ul,u2], p, phi

To pick Test Problem 1 or 2 replace and un(comment) accordingly:

i. string ster TestProbl <—> TestProb2
ii. pick test problem: right after true solutions and body forces
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/

Includes tests for stability.

Marina Moraiti, November 2014

*/
/x Initialize timer %/
real startTime = clock();

real initTime, compTime;
real totalTime = 0.0;

string ster = "CNLFstabStability_TestProb2.”; // CNLF or CNLFstab, TestProbl
or TestProb?2

verbosity = 0;

real beta =1.0;

/* The Mesh: */

J/for(int N=2;N<65;N=Nx2){ // loop over boundary nodes per side
int N=16;

border D1(t=0.0,1.0){x=t;y O,} // Darcy’s bottom

border D2(t=0.0,1.0){x=1.0;y=t;}; // Darcy’s right

border D3(t=0.0,1.0){x=1.0—t;y=1.0;}; // Darcy’s top (interface traced <——)
border D4(t=0.0,1.0){x=0.0;y=1.0—t;}; // Darcy’s left

border S1(t=0.0,1.0){x=t;y 0;}; // Stokes’ bottom (interface traced ——>)
border S2(t=1.0,2.0){x=1.0;y=t;}; // Stokes’ right

border S3(t=0.0,1.0){x=1.0—t;y=2.0;}; // Stokes’ top

border S4(t=0.0,1.0){x=0.0;y=2.0—t;}; // Stokes’ left

mesh Omegaf=buildmesh (S1(N)4+S2(N)+S3(N)+S4(N));

(
mesh Omegap=buildmesh (D1(N)+D2(N)+D3(N)+D4(N) ) ;

Ve FEM Spaces */

fespace Xf(Omegaf,P2); //FEM space for Stokes welocity
fespace Qf(Omegaf,Pl); //FEM space for Stokes pressure
fespace Xp(Omegap,P2); //FEM space for Darcy pressure (hydraulic head)

Ve Velocity , Pressure, Hydraulic Head */

Xf ul, u2, ulold, u2o0ld, ulold2, u20ld2, vl, v2, ultemp, u2temp, gradxp,
gradyp, gradxptemp, gradyptemp, ulT, u2T;

Qf p, pold, pold2, q, ptemp, ptempold2, pT;

Xp phi, phiold, phiold2, psi, phitemp, upl, up2, upltemp, up2temp, uplold,
uplold2, up2o0ld, up20ld2, phiT, uplT, up2T, pp, ppT;

/% Problem Parameters */
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real pressurepenalty=1.0e—8; // pressure stabilization
real rho = 1.0; // fluid density
real nu = 1.0; // kinematic viscosity of fluid

real g = 1.0; // gravitational acceleration constant
real So = 0.01; // specific storage
real kmin = 1.0; // minimum eigenvalue of the hydraulic conductivity tensor

real alpha = 1.0; // slip coefficient in BJS interface condition
real Cfp = 1.0; // interface inequality constant
real n = 1.0; // volumetric porosity

//for(real So=0.1;50>0.000001;S0=S0/10.0){ // loop over So walues
//for(real kmin=1.0;kmin>0.000001;kmin=kmin/10.0){ // loop over kmin values

/x Body Forces */

//Test Problem 1
Ve
func real fi1(real t) {return — sin(t)x( z°2 % (y—1.)"2 +y )
— 2. % cos(t) x ((x°2 + (y—1.)
2 )
— pi 2 x cos(pixx) * sin(pixy

/(2.)) % cos(t) ;}

func real f2(real t) {return — sin(t)x( —2. x x x (y—1.)°8 / (8.) + 2. — pi *
sin(pixz) )
— ( pi’8 x sin(pixx) * cos(t)
+ 4. % x % (1.—y) x cos(t)
)
+ (2. — pi x sin(pixz)) x (pi

/(2)) s costriny/(2)) -
cos(t) ;
func real fp(real t) {return — So % sin(t) = (2. — pi * sin(pixz)) * (1. — y —
cos(pixy) )
— pi"8 x sin(pixx) x (1. — y —
cos(pixy)) * cos(t)
— pi’2 x cos(pixy) *x (2. — pi
x sin(pixz)) x cos(t) ;}

*/

//Test Problem 2

func real fl(real t) {return — rho * ( y — 1. )"2 % sin(t) ;}

func real f2(real t) {return — rho * ( x"2 — x ) * sin(t) ;}

func real fp(real t) {return — So % sin(t) * ( (n / kmin ) * ( x x ( 1. — x )
* (y — 1. ) +y3 /3. —y2+y )+ 2 xnux*xx/g) ;}

/x True Solutions */

//Test Problem 1

/x

func real wltrue(real t) {return ( z°2 % (y—1.)"2 +
func real u2true(real t) {return ( —2. % z % (y—1.)

pixz) ) * cos(t) ;}

y ) *x cos(t) ;}
"3/ (8.) + 2. — pi x sin(
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func real phitrue(real t) {return ( 2. — pi % sin(pixz) ) x (1. — y — cos(pixy
)) * cos(t) ;}

func real ptrue(real t) {return ( 2. — pi % sin(pixz) ) x sin(pixy/(2.)) * cos
(t) ;}

func real upltrue(real t) {return ( pi’2 % cos(pixz) *x (1. — y — cos(pixy)) x*
cos(t) ) ;}

func real up2true(real t) {return ( (2. — pi % sin(pixz)) x ( 1. — pi % sin(pi
xy)) x cos(t) ) ;}

*/

//Test Problem 2

func real ultrue(real t) {return ( y

func real u2true(real t) {return ( x

func real phitrue(real t) {return ( (
) +y3 /3. —y'24+y )+ 2 *nu

func real ptrue(real t) {return rho % ( 2. % nu *x ( x +
3. x kmin ) ) * cos(t) ;}

func real upltrue(real t) {return — ( ( 1. — 2. * x ) = (y — 1. ) + 2. % kmin
xnu / (n*xg ) ) * cos(t) ;}

func real up2true(real t) {return — ( x * ( 1. — x ) +y"2 — 2. xy + 1. ) x

cos(t) ;}

/x Macros */

macro dot(ul,u2,vl,v2) (ulxvl + u2xv2) //

macro div(vl,v2) (dx(vl)+dy(v2)) //

macro dotgrad(ul,u2,vl,v2) (dx(ul)*dx(vl) + dy(ul)xdy(vl) 4+ dx(u2)*dx(v2) + dy
(u2)xdy(v2)) //

/* Time Stepping Loop */

//real dt = 1.0/N; // time step size for convergence tests (h=dt)

real dt = 1.0/16; //

int itmax = 20.0/dt; //

real T = itmaxxdt; // final time T

int itmaxtemp = itmax — 1; // number of CNLF(stab) iterations (3 level method)

real tnminusl = 0.0; // t_0
real tn = dt; // t_1
real tnplusl = 2.0xdt; // ¢_2

Jx——————1Initialize u, p, and phi for 1st CNLF(stab) iteration ————x/

ulold2 = ultrue(tnminusl);
ulold = ultrue(tn);

u20ld2 = u2true(tnminusl);
u2o0ld = u2true(tn);

phiold2 = phitrue (tnminusl);
phiold = phitrue(tn);
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uplold2 = upltrue(tnminusl);
uplold = upltrue(tn);

up2o0ld2 = up2true(tnminusl);
up2old = up2true(tn);

pold2 = ptrue(tnminusl);
pold = ptrue(tn);

Ve Energy and Modes */

real Energyzeroplusone = int2d(Omegaf)( (ulold2)"2 + (u20ld2)"2 4+ (ulold)"2 +
(u2o0ld)"2) + g * So % int2d (Omegap) ( (phiold2)"2 + (phiold) "2

real [int] Energy(itmax);

real [int] uUnstable(itmax); // unstable mode of wu

real [int] uStable(itmax); // stable mode of wu

[int ]
nt]
real [int] phiUnstable(itmax); // unstable mode of phi
[int ]
[int ]
[int]

real [int] phiStable (itmax); // stable mode of phi
real [int] UnstableMode (itmax);
real [int] StableMode (itmax);

Energy [0] = int2d (Omegaf) ( (ulold2)"2 + (u20ld2)"2 + (ulold)"2 4+ (u2o0ld)"2) +

g * So * int2d (Omegap)( (phiold2)"2 + (phiold) "2);

Ve Begin time stepping loop
for (int i=1;i<itmax;i++){

// body forces and BC functions for stability tests:

func f1 = 0.0;
func f2 = 0.0;
func fp = 0.0;
func Ul = 0.0;
func U2 = 0.0;

func PHI = 0.0;

*/

Ve Stokes CNLF-stab Problem

problem StokesCNLFstab ([ul,u2,p],[vl,v2,q],solver=LU) =

*/

int2d (Omegaf)( ( 0.5 / dt ) % ( dot(ul,u2,vl,v2) + div(ul,u2) * div(vl

,v2) ) + 0.5 % nu x dotgrad(ul,u2,vl,v2) //level n+1
— 0.5 x p * div(vl,v2) 4+ q * div(ul,u2) + p * q *

pressurepenalty ) //level n+1

+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ul * vl )

//level n+1
+ intld (Omegaf,S1)( g * phiold * (—=1.0) % v2 )
//level n (coupling term)
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+ int2d (Omegaf) ( ( —0.5 / dt) * ( dot(ulold2,u20ld2,vl,v2) + div(
ulold2,u20ld2) * div(vl,v2) ) ) //level n—1
+ int2d (Omegaf) ( 0.5 * nu * dotgrad(ulold2,u2o0ld2,vl,v2) — 0.5 % pold2
x div(vl,v2) )//+ 0.5 % pold2 x q %= pressurepenalty ) //level n—1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) x ulold2 % vl )
// level n—1
— int2d (Omegaf) ( dot (fl,f2,vl,v2) )
//RHS Stokes (level n)
+ on(S2,83,54, ul = Ul, u2 = U2 ); //Dirichlet BC on exterior
boundary of Omegaf

Stokes CNLF Problem */

StokesCNLF ([ul,u2,p],[vl,v2,q],solver=LU) =
int2d (Omegaf) ( ( 0.5 / dt ) * ( dot(ul,u2,vl,v2) ) + 0.5 % nu =*
dotgrad (ul,u2,vl,v2) //level n+1
— 0.5 x p * div(vl,v2) + q * div(ul,u2) + p * q *
pressurepenalty ) //level n+1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) x ul % vl )
//level n+1
+ intld (Omegaf,S1)( g * phiold * (—1.0) * v2 )
//level n (coupling term)
+ int2d (Omegaf) ( ( —0.5 / dt) % ( dot(ulold2,u20ld2,vl,v2) ) ) //

+ int2d (Omegaf) ( 0.5 % nu * dotgrad(ulold2,u20ld2,vl,v2) — 0.5 % pold2
x div(vl,v2) )//+ 0.5 % pold2 * q x pressurepenalty ) //level n—1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ulold2 x vl )

— int2d (Omegaf) ( dot (fl,f2,vl,v2) )
//RHS Stokes (level n)
+ on(S2,83,54, ul = Ul, u2 = U2 ); //Dirichlet BC on exterior

Darcy CNLF-stab Problem */

Ve
problem
level n—1
// level n—1
boundary of Omegaf
/x
problem

DarcyCNLFstab (phi, psi,solver=LU) =

int2d (Omegap) ( ( 0.5 / dt ) % g % So x phi % psi + 0.5 x g * kmin x (
dx(phi) % dx(psi) + dy(phi) * dy(psi) ) //level n+1

+ beta x dt x g2 % (Cfp)"2 x ( dx(phi) * dx(psi) + dy(phi) =
dy(psi) + phi % psi ) )
//level n+1
— int1d (Omegap,D3)( g * psi * (—1.0) * u2o0ld )
//level n (coupling term)

+ int2d (Omegap)( ( — 0.5 / dt ) * g % So * phiold2 x psi + 0.5 * g x
kmin % ( dx(phiold2) * dx(psi) + dy(phiold2) x dy(psi) ) //level
n—1

— beta x dt * g"2 % (Cfp)"2 x ( dx(phiold2) x dx(psi) + dy(
phiold2) % dy(psi) + phiold2 % psi ) )
//level n—1
— int2d (Omegap) ( g * fp * psi )
//RHS Darcy (level n)

+ on(D1,D2,D4, phi = PHI ); //Dircichlet BC on exterior

boundary of Omegap
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Ve

problem

initTime

Darcy CNLF Problem */

DarcyCNLF (phi, psi, solver=LU) =
int2d (Omegap)( ( 0.5 / dt ) * g * So * phi % psi + 0.5 x g % kmin * (
dx(phi) % dx(psi) + dy(phi) * dy(psi) ) )
//level n+l
— int1d (Omegap,D3)( g * psi *x (—1.0) * u2o0ld )
//level n (coupling term)
+ int2d (Omegap)( ( — 0.5 / dt ) * g % So * phiold2 * psi + 0.5 * g x
kmin % ( dx(phiold2) * dx(psi) 4+ dy(phiold2) % dy(psi) ) )
//level n—1
— int2d (Omegap) ( g * fp * psi )
//RHS Darcy (level n)
+ on(D1,D2,D4, phi = PHI ); //Dircichlet BC on exterior
boundary of Omegap

= clock () ;

Solve for [ul,u2], p, phi */

/x

startTime = clock () ;

StokesCNLFstab;
DarcyCNLFstab;

//StokesCNLF ;
//DarcyCNLF;

compTime = clock ();
totalTime = totalTime + compTime — startTime;

cout << 7 _Time.=." << compTime — startTime << endl;

Calculate Energy, Stable, Unstable Modes */

Energy[i] = int2d (Omegaf) ((ul)"2 + (u2)°2)+ g * So * int2d (Omegap) ((
phi)“2) + int2d (Omegaf) ((ulold) "2 4+ (u2o0ld)"2) +
g * So x int2d (Omegap) ((phiold) "2);

uUnstable[i] = (1./2) * int2d (Omegaf)( (ul — ulold2)"2 + (u2 — u2o0ld2)
20);

uStable[i] = (1./2) #* int2d (Omegaf)( (ul 4+ ulold2)"2 + (u2 + u2o0ld2)"2
);

phiUnstable[i] = (1./2) x int2d(Omegap)( (phi — phiold2)°2 );

phiStable[i]= (1./2) * int2d (Omegap)( (phi + phiold2)"2 );

UnstableMode [i] = uUnstable[i] + phiUnstable[i]; // Unstable Mode

StableMode[i] = uStable[i] + phiStable[i]; // Stable Mode

ultemp = ultrue(tnplusl);
u2temp = u2true(tnplusl);
ptemp = ptrue(tnplusl);
ptempold2 = ptrue(tnminusl);
phitemp = phitrue (tnplusl);

Update Time and Functions */
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ulold2 = ulold;
ulold = ul;

u2o0ld2 = u2o0ld;
u2o0ld = u2;

phiold2 = phiold;
phiold = phi;

pold2 = pold;
pold = p;

tnminusl = tn;
tn = tnplusl;
tnplusl = tnplusl + dt;

cout << ”Completed_iteration.” << i << 7_of.” << itmaxtemp << endl;
} //end time stepping loop
cout << "N.=."7 << N << endl;
cout << 7dt.=." << dt << endl;
cout << ”iterations.=."” << itmaxtemp << endl;
cout << ”"Total_time_=.” << totalTime << endl;
string prefix = ster + ".N_.” + N+ 7. T_.” 4+ tn 4+ 7 _.dt.” + dt + 7_So.” + So + 7
_kmin_” + kmin;

exec (?mkdir.—p.” + prefix);
ofstream report(prefix+”/"+prefix+” _report.txt”);

report << 7 7+ ster + 7 V<<
endl;

report << ”_.Boundary._.nodes._per.side: _N_.=.” << N << endl;

report << ”._.Step.size:_dt.=." << dt << endl;

report << ”"_lIterations.=." << itmaxtemp << endl;

report << ”_Final_time:_T_=.” << tn << endl;

report << ”_Pressure_penalty_=."” << pressurepenalty << endl;

report << ”_Physical_parameters:.” << endl;

report << ”7_Fluid.density:._.rho.=." << rho << endl;

report << ”_Fluid_kinematic.viscosity:.nu.=." << nu << endl;

report << ”_Gravitational_acceleration:_g.=." << g << endl;

report << ”_Hydraulic.conductivity:_.kmin.=.” << kmin << endl;

report << ”"_Specific_storage:_So_.=." << So << endl;

report << ”_Volumetric_.porosity:.n.=." << n << endl;

report << ”_Slip.coefficent._.in_.BJS:_alpha.=.” << alpha << endl;

report << ”_.Interface.inequality._constant:_Cfp.=." << Cfp << endl;

report << ”_.Total_.time_in.seconds.=.” << totalTime << endl;
report << "E"1_4+_.E"0_=" << Energyzeroplusone << endl;

{

ofstream file (prefix+”/” + prefix + 7 _Energy.txt”);
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file << Energy << endl;

}

{
ofstream file (prefix+”/” + prefix 4+ ”_uUnstableMode.txt”);
file << uUnstable << endl;

}

{
ofstream file (prefix+”/” + prefix 4+ 7 _uStableMode.txt”);
file << uStable << endl;

}

{
ofstream file (prefix+”/” + prefix + ”_phiUnstableMode.txt”);
file << phiUnstable << endl;

}

{
ofstream file (prefix+”/” + prefix + ”_phiStableMode.txt”);
file << phiStable << endl;

}

{
ofstream file (prefix+”/” + prefix 4+ 7 _UnstableMode.txt”);
file << UnstableMode << endl;

}

{
ofstream file (prefix+”/” + prefix 4+ 7 _StableMode.txt”);
file << StableMode << endl;

}

//Y // end kmin values loop

//} // end So walues loop
//Y // end N values loop

B.3 FREEFEM++ CODE FOR BACKWARD EULER (STOKES-DARCY)

/x

Solves the evolutionary Stokes—Darcy problem with the Backward Euler method.

Marina Moraiti, October 2014

*/

verbosity =0;

Ve Initialize timer */
real startTime = clock ();

real initTime, compTime;
real totalTime = 0.0;

for (int N=16;N<129;N=Nx%2) {

/x The Mesh x/

border D1(t=0.0,1.0){x=t;y=0.0;}; // Darcy’s bottom
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border D2(t=0. .0){x=1.0;y=t;}; // Darcy’s right

border D4(t=0. .0){x=0.0;y=1.0—t;}; // Darcy’s left

border S2(t=1.0,2.0){x=1.0;y=t;}; // Stokes’ right

border S3(t=0.0,1.0){x=1.0—t;y=2.0;}; // Stokes’ top

border S4(t=0.0,1.0){x=0.0;y=2.0—t;}; // Stokes’ left

border I1(t=0.0,1.0){x=t;y=1.0;}; // Stokes’ bottom (xx interface xx)

mesh Omega = buildmesh (S2(N)+S3 (N)+S4 (N)+D4(N)+D1(N)+D2(N)+I1(N) ) ;

Ve

fespace Xh(Omega,P2);
fespace Qh(Omega,P1);

FE Spaces */

// FEM space for Stokes welocity and Darcy pressure
// FEM space for Stokes pressure

fespace Ch(Omega,P0);
/x

Ch reg=region;

// space for characteristic function

Characteristic Function

*/

int nupper = reg(0.5,1.5); // can be replaced by any point in Stokes region

Ch

chi =

(region=—nupper) ;

when = in Darcy region

// chi =

1.0 when z in Stokes region and chi =

0.0

Ve Velocity , Pressure, Hydraulic Head */

Xh ul, u2, ulold, u2o0ld, vl, v2, phi, phiold, psi, upl, up2, uplold, up2old,
ultemp, u2temp, phitemp, upltemp, up2temp;

Qh p, pold, q, ptemp;

Problem Parameters

/x

*/

real pressurepenalty=1.0e—38;

real rho = 1.0; // fluid density

real nu = 1.0; // kinematic viscosity of fluid

real g = 1.0; // gravitational acceleration constant

real So = 1.0; // specific storage

real kmin = 1 // minimum eigenvalue of hydraulic conductivity tensor
real alpha = 1 i // slip coefficient in BJS interface condition

real Cfp = 1.0, / interface inequality constant

real n = 1.0; // porosity

True Solution

/x

func real ultrue(real t) {return ( y"2 — x y + 1. ) % cos(t) ;}

func real u2true(real t) {return x x ( x — 1. ) % cos(t) ;

func real phitrue(real t) {return ( (n / kmin ) * ((x % ( 1. —x ) = (y — 1
)+ y3/ (3.)—y24+y )+ 2 xnu=*xx/g ) x cos(t) ;}

func real ptrue(real t) {return ( 2. * nu * ( x+y — 1. )+ g*n / ( 3. %

kmin ) ) % cos(t) ;}
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func real upltrue(real t) {return — ( ( 1. — 2. * x ) % (y — 1. ) + 2 % kmin

xnu / (nxg ) ) x cos(t) ;}
func real up2true(real t) {return — ( x — x"2 + y"2 — 2. x y + 1. ) % cos(t)

i}

Ve Body Forces x/

func real f1(real t)
func real f2(real t)
func real fp(real t)

* (y— 1. ) +y

{return — ( y"2 — 2. * y + 1. ) % sin(t) ;}
{return — ( x"2 — x

{return So * ( — 1 *
"3/ (3.) —y2+4+y )+ 2 xnu=xx/g)

/x Macros */

macro dot(ul,u2,vl,v2) (ulsvl + u2xv2) //

macro div(vl,v2) (dx(vl)+dy(v2)) //

macro dotgrad(ul,u2,vl,v2) (dx(ul)*dx(vl) + dy(ul)xdy(vl) 4+ dx(u2)*dx(v2) + dy
(u2)xdy(v2)) //

/x Time Stepping Loop */
real dt = 1.0/N; // time step size for convergence tests (h=dt)

int itmax = 1.0/dt; // Iterations (Final Time = 1)
real T = itmaxxdt; // Final Time T (T=1)

string ster = "SD_BE _TestProb2_Efficiency”;
// Report for convergence tests (uncomment for convergence tests):

ofstream report(ster + 7. N.” + N4+ ".T.” + T+ 7 _dt_.” + dt + ?_So.” + So + 7
kmin_” + kmin + 7. txt”);

report << "———BE._convergence._report ,_Marina_.Moraiti

report << ”_.Boundary._.nodes._per.side: _N_.=." << N << endl;

report << 7 ._.Step.Size:._dt.=." << dt << endl;

report << "_BE_Iterations._=.” << itmax << endl;

report << ”_Final_Time: T_=.” << T << endl;

report << ”7_Pressure_.Penalty_=."” << pressurepenalty << endl;

7 << endl;

real tn = 0.0; // t_0
real tnplusl = dt; // t_1

J+————————1Initialize u, p, and phi for 1st iteration */

ulold = ultrue(tn);
u2o0ld = u2true(tn);

pold = ptrue(tn);

phiold = phitrue (tn);

Ve Initialize max error norms for w, p and phi x/
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real
real

real
real

real
real

Ve

uLinftyL2errorcurr = 0.0;
uLinftyL2error = 0.0;

pLinftyL2errorcurr =
pLinftyL2error = 0.0;

0.0;

phiLinftyL2errorcurr = 0.0;
phiLinftyL2error = 0.0;

Begin time stepping loop x/

for (int i=1;i<itmax;i++){

/%

Body forces and BCG */

func f1 = f1(tnplusl);
func f2 = f2(tnplusl);
func fp = fp(tuplusl);

func Ul = ultrue(tnplusl);
func U2 = u2true(tnplusl);
func PHI = phitrue (tnplusl);

/x

BE Stokes—Darcy problem */

problem StokesDarcyBE ([ul,u2,p,phi],[vl,v2,q,psi],solver=GMRES, eps=1.0e-38,
nbiter =40000) =
int2d (Omega) ( chi = ( 1. / dt ) % ( ul * vl + u2 % v2 ) + chi x nu x

dotgrad (ul,u2,v1l,v2) ) // terms 1 and 3

+ intld (Omega,I1)( ( alpha / sqrt(kmin) ) % ul % vl ) // term 4

— int2d (Omega)( chi % ( 1. / rho ) % p x div(vl,v2) ) // term &5

+ intld (Omega,I1)( g * phi x ( —=1. ) = v2 ) // term 6

+ int2d (Omega) ( chi x q * div(ul,u2) ) // term 8

— int2d (Omega)( chi * ( 1. / dt ) * ( ulold % vl + u20ld x v2 ) ) //
term 2

— int2d (Omega)( chi % p % q * pressurepenalty ) // pressure penalty
term

— int2d (Omega)( chi * ( 1. / tho ) % ( f1 % vl + f2 % v2 ) ) // term 7

+ int2d (Omega)( ( 1. — chi ) % g * So x (1. / dt ) * phi x psi + (
1. — chi ) % g % kmin x ( dx(phi) * dx(psi) + dy(phi) % dy(psi) )
) // terms 9 & 11

— intld (Omega,I1)( g * psi * ( —1. ) % u2 ) // term 12

— int2d (Omega)( ( 1. — chi ) = g * So = ( 1. / dt ) % phiold * psi )
// term 10

— int2d (Omega)( ( 1. — chi) % fp % psi ) // term 13

+ on(S2,83,84,ul=U1,u2=02)

+ on(D1,D2,D4, phi=PHI) ;

Solve for [ul,u2], p, phi x/
initTime = clock () ;

startTime = clock () ;

181



StokesDarcyBE;

compTime = clock () ;
totalTime = totalTime + compTime — startTime;
cout << 7 _Time.=." << compTime — startTime << endl;

report << 7 ._.Time_.=." << compTime — startTime << endl;

ultemp = ultrue(tnplusl);
u2temp = u2true(tnplusl);
ptemp = ptrue(tnplusl);
phitemp = phitrue(tnplusl);

/* Calculation of mazx error */

ulLinftyL2errorcurr = ( int2d (Omega)( ( chi % ul — chi * ultemp )"2 4+ ( chi x
u2 — chi % u2temp )°2 ) )"(0.5);
if (uLinftyL2errorcurr > uLinftyL2error){
ulLinftyL2error = ulLinftyL2errorcurr;

}

pLinftyL2errorcurr = ( int2d (Omega)( ( chi * p — chi % ptemp )"2 ) )" (0.5);
if (pLinftyL2errorcurr > pLinftyL2error){
pLinftyL2error = pLinftyL2errorcurr;

}

phiLinftyL2errorcurr = ( int2d (Omega)( ( ( 1. — chi ) = phi — ( 1. — chi ) =x
phitemp )"2 ) )"(0.5);
if (phiLinftyL2errorcurr > phiLinftyL2error){
phiLinftyL2error = phiLinftyL2errorcurr;

}
/x Update Time and Functions */
ulold = ul;
u2o0ld = u2;
phiold = phi;

pold = p;

tn = tnplusl;
tnplusl = tnplusl + dt;

cout << ”Completed_iteration.” << i << ”_of.” << itmax << endl;

Y // end time stepping loop

cout << "N_.=_" << N << endl;

cout << "dt.=." << dt << endl;

cout << 7iterations.=.” << itmax << endl;

cout << ”LinftyL2—error_of_.u.=."<< ulLinftyL2error << endl;
cout << ”LinftyL2—error_.of_.p.=."<< pLinftyL2error << endl;
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cout << ”LinftyL2—error_of_phi_.=."<< phiLinftyL2error << endl;
cout << "Total_time_.=." << totalTime << endl;

report << 7._LinftyL2—error_of_.u.=." << ulLinftyL2error << endl;
report << ”7_LinftyL2—error_of_.p.=." << pLinftyL2error << endl;
report << ”_LinftyL2—error_of_phi.=.” << phiLinftyL2error << endl;
report << ”_.Total_.time_in.seconds.=.” << totalTime << endl;

Y // end loop over N

B.4 FREEFEM++ CODE FOR CONVERGENCE TO QUASISTATIC
STOKES-DARCY SOLUTION

/x

Solves the evolutionary Stokes—Darcy (SD) and quasistatic Stokes—Darcy (qsSD)
problems for wvarying So to check the rate of convergence of the SD
solution to the ¢sSD solution as So converges to 0.

Discretization in time: stabilized Crank—Nicolson Leapfrog (CNLE-stab)

Marina Moraiti, October 201/
*/

verbosity =0;

/% Mesh */
int N=32;

border D1(t=0.0,1.0){x=t;y=0.0;}; // Darcy’s bottom

border D2(t=0.0,1.0){x=1.0;y=t;}; // Darcy’s right

border D3(t=0.0,1.0){x=1.0—t;y=1.0;}; // Darcy’s top (interface traced <——)
border D4(t=0.0,1.0){x=0.0;y=1.0—t;}; // Darcy’s left

border S1(t=0.0,1.0){x=t;y=1.0;}; // Stokes’ bottom (interface traced ——>)
border S2(t=1.0,2.0){x=1.0;y=t;}; // Stokes’ right

border S3(t=0.0,1.0){x=1.0—t;y=2.0;}; // Stokes’ top

border S4(t=0.0,1.0){x=0.0;y=2.0—t;}; // Stokes’ left

mesh Omegaf=buildmesh (S1(N)+S2(N)+S3(N)+S4(N));

mesh Omegap=buildmesh (D1(N)+D2(N)+D3(N)+D4(N));

/% FE Spaces %/
fespace Xf(Omegaf,P2); // FE space for Stokes wvelocity
fespace Qf(Omegaf,Pl); // FE space for Stokes pressure
fespace Xp(Omegap,P2); // FE space for Darcy pressure

Ja+————————Velocity, Pressure, Hydraulic Head */
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Xf ul, u2, ulold, u2o0ld, ulold2, u20ld2, vl, v2, ulQS, u2QS, ulQSold, u2QSold,
ulQSold2, u2QSold2;

Qf p, pold, pold2, q, pQS, pQSold, pQSold2;
Xp phi, phiold, phiold2, psi, phiQS, phiQSold, phiQSold2;

Ve Problem Parameters */
real pressurepenalty=1.0e—8; // pressure stabilization
// all physical parameters equal to 1 (except for So, kmin)

real rho = 1.0; // density of fluid

real nu = 1.0; // kinematic viscosity of fluid

real g = 1.0; // gravitational acceleration constant

real kmin = 0.0001; // minimum eigenvalue of the hydraulic conductivity tensor
real alpha = 1.0; // slip coefficient in BJS interface condition

real Cfp = 1.0; // interface inequality constant

real n = 1.0; // volumetric porosity

for (real S0=0.01;S0>0.000078124;S0=0.5%So){ // loop over So wvalues

Ve Body Forces */

// Test Problem 1

Ve

func real f1(real t) {return — sin(t)x( z°2 % (y—1.)"2 +y ) — 2. % cos(t) * (
z°2 + (y—1.)°2 ) — pi’2 % cos(pixx) * sin(pixy/(2.)) * cos(t) ;}

func real f2(real t) {return — sin(t)x( —2. x x x (y—1.)°8 / (8.) + 2. — pi *
sin(pixzx) ) — ( pi’8 % sin(pixx) x cos(t) + 4. x x x (l.—y) % cos(t) ) +
(2. — pi x sin(pixzx)) * (pi/(2.)) % cos(pixy/(2.)) * cos(t) ;}

func real fpQS(real t) {return — pi”°3 % sin(pixz) x ( 1. — y — cos(pixy) ) *
cos(t) — pi"2 % cos(pixy) = ( 2. — pi *x sin(pixzx) ) x cos(t) ;}

func real fp(real t) {return — So % sin(t) *= ( 2. — pi x sin(pixx) ) *x ( 1. —
y — cos(pixy) ) — pi"8 x sin(pixz) x ( 1. — y — cos(pixy) ) x cos(t) — pi
"2 x cos(pixy) * ( 2. — pi x sin(pixx) ) *x cos(t) ;}

*/

// Test Problem 2

func real fl(real t) {return — rho * ( y
func real f2(real t) {return — rho * ( x
func real fpQS(real t) {return 0.0 ;}
func real fp(real t) {return — So * sin(t) * ( ( n / kmin ) =x
* (y—1.)4+y3 /3. —y2+y )+ 2 snusxxx/g) ;}

/x True Solutions * /

// Test Problem 1

Ve
func real wltrue(real t) {return ( z°2 % (y—1.)"2 +
func real u2true(real t) {return ( —2. % =z % (y—1.)

pixz) ) * cos(t) ;}

y ) x cos(t) ;}
"3/ (8.) + 2. — pi x sin(

184



func real phitrue(real t) {return ( 2. — pi % sin(pixz) ) x (1. — y — cos(pixy
)) * cos(t) ;}

func real ptrue(real t) {return ( 2. — pi % sin(pixz) ) x sin(pixy/(2.)) * cos
(1) }

func real upltrue(real t) {return ( pi’2 % cos(pixz) *x (1. — y — cos(pixy)) )
x cos(t) ;}

func real up2true(real t) {return ( (2. — pi % sin(pixz)) x ( 1. — pi % sin(pi

xy)) * cos(t) ) ;}
*/

// Test Problem 2

func real ultrue(real t) {return ( y

func real u2true(real t) {return ( x

func real phitrue(real t) {return ( (
) +y3 /3. —y'24+y )+ 2 x*nu

func real ptrue(real t) {return rho % ( 2. % nu *x ( x +
3. % kmin ) ) * cos(t) ;}

func real upltrue(real t) {return — ( ( 1. — 2. * x ) * (y — 1. ) + 2. % kmin

*nu / (n*xg ) ) * cos(t) ;}
func real up2true(real t) {return — ( x * ( 1. —x ) +y"2 — 2. xy + 1. ) x

cos(t) ;}

/x Macros */

1. ) +g=x*n/ (

macro dot(ul,u2,vl,v2) (ulsvl + u2xv2) //

macro div(vl,v2) (dx(vl)+dy(v2)) //

macro dotgrad(ul,u2,vl,v2) (dx(ul)*dx(vl) + dy(ul)xdy(vl) 4+ dx(u2)=*dx(v2) + dy
(u2)xdy(v2)) //

/* Time Stepping Loop */

real dt = 1.0/N; // time step size for convergence tests (h=dt)

int itmax = 1.0/dt;
real T = itmaxxdt;

int itmaxtemp = itmax — 1; // CNLF-stab iterations (8 level method)
string ster = "QSSD_Convergence_CNLFstab_TestProblem2” ;
// Report for convergence tests:

ofstream report(ster + "_N_.” + N4+ ?_T.” + T 4+ 7 _dt.” + dt + "_So.” + So + ”
kmin_” + kmin + 7. txt”);

report << "———qsSD_CNLFstab_convergence._report ,_Marina_.Moraiti 7 << endl;
report << ”_.Boundary.nodes._per.side: N.=.” << N << endl;

report << 7.Step.Size:._dt.=." << dt << endl;

report << 7_CNLFt+stab_Iterations.=." << itmaxtemp << endl;

report << ”7_Final_Time: T.=.” << T << endl;

»”

report << ”7_.Pressure.Penalty_=.” << pressurepenalty << endl;

real tnminusl = 0.0; // t_0
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real tn = dt; // t_1
real tnplusl = 2.0xdt; // t_2

/x

ulold2 = ultrue(tnminusl);
ulold = ultrue(tn);

u20ld2 = u2true (tnminusl);
u2old = u2true(tn);

phiold2 = phitrue (tnminusl);
phiold = phitrue (tn);

pold2

= ptrue (tnminusl);

pold = ptrue(tn);

/x

ulQSold2 = ultrue(tnminusl);
ulQSold = ultrue(tn);

u2QSold2 = u2true(tnminusl);
u2QSold = u2true(tn);

phiQSold2 = phitrue (tnminusl);
phiQSold = phitrue(tn);

pQSold2 = ptrue(tnminusl);
pQSold = ptrue(tn);

Ve

real
real

real
real

real
real

Ve

uLinftyL2errorcurr = 0.0;
uLinftyL2error = 0.0;

pLinftyL2errorcurr = 0.0;
pLinftyL2error = 0.0;

phiLinftyL2errorcurr = 0.0;
phiLinftyL2error = 0.0;

Begin time stepping loop

for (int i=1;i<itmax;i++){

// body forces and BC

func f1 = f1(tn);
func f2 = f2(tn);
func fp = fp(tn);
func fpQS = fpQS(tn);

func Ul = ultrue(tnplusl);

Initialize w, p, and phi for 1st CNLF-stab iteration (SD)

Initialize w, p, and phi for 1st CNLF-stab iteration (qsSD)————

Initialize mazx error morms for w, p and phi (SD —> QSSD)
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/x

func U2 = u2true(tnplusl);
func PHI = phitrue(tnplusl);

Stokes CNLF-stab problem * /

problem

StokesCNLFstab ([ul ,u2,p],[vl,v2,q],solver=LU) =
int2d (Omegaf) ( ( 0.5 / dt ) * ( dot(ul,u2,vl,v2) + div(ul,u2) * div(vl
,v2) ) + 0.5 % nu x dotgrad(ul,u2,vl,v2) // level n+l
— 0.5 % p x div(vl,v2) + q * div(ul,u2) + p * q =
pressurepenalty ) // level n+1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ul % vl )
// level n+1
+ intld (Omegaf,S1)( g * phiold * (—=1.0) % v2 )
// level n (coupling term)
+ int2d (Omegaf) ( ( —0.5 / dt) * ( dot(ulold2,u20ld2,vl,v2) + div(
ulold2,u20ld2) * div(vl,v2) ) ) // level n—1
+ int2d (Omegaf) ( 0.5 * nu x dotgrad(ulold2,u20ld2,vl,v2) — 0.5 % pold2
x div(vl,v2) ) // level n—1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ulold2 % vl )
// level n—1
— int2d (Omegaf) ( dot (fl,f2,vl,v2) )
// RHS Stokes (level n)
+ on(S2,83,84, ul =Ul, u2 =02 ); // Dirichlet BC on exterior
boundary of Omegaf

Ve

problem

Ve

qs Stokes CNLF-stab problem * /

QSStokesCNLFstab ([ulQS,u2QS,pQS] ,[vl,v2,q],solver=LU) =
int2d (Omegaf) ( ( 0.5 / dt ) * ( dot(ulQS,u2QS,vl,v2) + div(ulQS,u2QS)
x div(vl,v2) ) + 0.5 % nu % dotgrad (ulQS,u2QS,vl,v2) // level n+l
— 0.5 % pQS x div(vl,v2) 4+ q * div(ulQS,u2QS) + pQS * q x
pressurepenalty ) // level n+1
+ intld (Omegaf,S1)( 0.5 * ( alpha / sqrt(kmin) ) % ul@QS % vl )
// level n+1
+ intld (Omegaf,S1)( g * phiQSold * (—1.0) % v2 )
// level n (coupling term)
+ int2d (Omegaf) ( ( —0.5 / dt) * ( dot(ulQSold2,u2QSold2,vl,v2) + div(
ulQSold2,u2QSo0ld2) = div(vl,v2) ) ) // level n—1
+ int2d (Omegaf) ( 0.5 * nu x dotgrad(ulQSold2,u2QSold2,vl,v2) — 0.5
pQSold2 x div(vl,v2) ) // level n—1
+ intld (Omegaf,S1)( 0.5 % ( alpha / sqrt(kmin) ) % ulQSold2 * vl )
// level n—1
— int2d (Omegaf) ( dot (fl,f2,vl,v2) )
// RHS Stokes (level n)
+ on(S2,S3,S4, ulQS = Ul, u2QS = U2 ); // Dirichlet BC on exterior
boundary of Omegaf

Darcy CNLF-stab problem %/

problem

DarcyCNLFstab (phi, psi,solver=LU) =
int2d (Omegap)( ( 0.5 / dt ) % g * So % phi % psi + 0.5 % g % kmin * (
dx(phi) % dx(psi) + dy(phi) * dy(psi) ) // level n+1
+ dt * g°2 x (Cfp)"2 % ( dx(phi) * dx(psi) + dy(phi) * dy(psi)
+ phi * psi ) ) // level
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n+1

— int1d (Omegap,D3)( g * psi *x (—1.0) * u2o0ld )

// level n (coupling term)

+ int2d (Omegap)( ( — 0.5 / dt ) * g % So * phiold2 * psi + 0.5 * g x
kmin % ( dx(phiold2) % dx(psi) + dy(phiold2) % dy(psi) ) //
level n—1

—dt % g°2 x (Cfp)"2 % ( dx(phiold2) % dx(psi) + dy(phiold2) =
dy(psi) + phiold2 * psi ) ) // level
n—1
— int2d (Omegap)( g * fp * psi )
// RHS Darcy (level n)

+ on(D1,D2,D4, phi = PHI ); // Dircichlet BC on exterior

boundary of Omegap

/* gs Darcy CNLF-stab problem */

problem QSDarcyCNLFstab (phiQS, psi, solver=LU) =
int2d (Omegap)( ( 0.5 / dt ) * g % 0.0 * phiQS % psi + 0.5 x g x kmin x
( dx(phiQS) * dx(psi) + dy(phiQS) x dy(psi) ) // level n+1
+ dt * g"2 % (Cfp)"2 x ( dx(phiQS) % dx(psi) + dy(phiQS) = dy(
psi) + phiQS * psi ) )
// level n+l
— intld (Omegap,D3)( g * psi *x (—1.0) * u2QSold )
// level n (coupling term)
+ int2d (Omegap)( ( — 0.5 / dt ) * g * 0.0 * phiQSold2 * psi + 0.5 x g
* kmin * ( dx(phiQSold2) % dx(psi) + dy(phiQSold2) * dy(psi) )
// level n—1
—dt % g°2 x (Cfp)"2 % ( dx(phiQSold2) * dx(psi) + dy(
phiQSold2) x dy(psi) + phiQSold2 x psi ) )
// level n—1
— int2d (Omegap) ( g * fpQS * psi )
// RHS Darcy (level n)
+ on(D1,D2,D4, phiQS = PHI ); // Dircichlet BC on ezterior
boundary of Omegap

Jx—————Solve for [ul,u2], p, phi, [ulQs, u2QS], pQS, phiQS————x/

StokesCNLFstab ;
DarcyCNLFstab;
QSStokesCNLFstab ;
QSDarcyCNLFstab ;

Jx+————————Calculation of max error norms */

uLinftyL2errorcurr = ( int2d (Omegaf)( ( ul — ulQS )"2 + ( u2 — u2QS )"2 ) )
“(0.5);
if (uLinftyL2errorcurr > ulLinftyL2error){
uLinftyL2error = uLinftyL2errorcurr;

}

pLinftyL2errorcurr = ( int2d (Omegaf)( ( p — pQS )2 ) ) "(0.5);
if (pLinftyL2errorcurr > pLinftyL2error){

188



pLinftyL2error = pLinftyL2errorcurr;

}

phiLinftyL2errorcurr = ( int2d (Omegap)( ( phi — phiQS )"2 ) )"(0.5);

if (phiLinftyL2errorcurr > phiLinftyL2error){
phiLinftyL2error = phiLinftyL2errorcurr;

}

Update time and functions

ulold2 = ulold;
ulold = ul;

u2o0ld2 = u2o0ld;
u2old = u2;

phiold2 = phiold;
phiold = phi;

pold2 = pold;
pold = p;

ulQSold2 = ulQSold;
ulQSold = ulQS;

u2QSold2 = u2QSold;
u2QSold = u2QS;

phiQSold2 = phiQSold;
phiQSold = phiQS;

pQSold2 = pQSold;
pQSold = pQS;

tnminusl = tn;

tn = tnplusl;

tnplusl = tnplusl + dt;

cout << ”Completed_iteration.” << i << 7_of.” << itmaxtemp << endl;

Y // end time stepping loop

cout << "N.=." << N << endl;

cout << 7dt.=." << dt << endl;

cout << ”iterations.=."” << itmaxtemp << endl;

cout << ”LinftyL2-—mnorm.of_u.—_uQS.=."<< ulLinftyL2error << endl;

cout << ”LinftyL2—norm.of_p.—_QS.=."<< pLinftyL2error << endl;

cout << ”LinftyL2-—norm.of_phi_—_phiQS_=."<< phiLinftyL2error << endl;
report << ”_LinftyL2-mnorm_of _u.—_uQS.=.” << ulLinftyL2error << endl;

report << 7._LinftyL2—norm.of_p.—_pQS.=." << pLinftyL2error << endl;
report << ”7_LinftyL2-norm.of_phi_—_phiQS.=.” << philLinftyL2error << endl;
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Y // end loop over So wvalues

B.5 MATLAB CODE FOR CNLF-STAB (EVOLUTION EQUATION)

B.5.1 Consistency of CNLF-stab

function epsilon = CNLFstabConsistency

%Solves the problem u_t+AutLu=0, u=(u-1,u-2), A=I, Lu=omega(—u2,ul), over

%(0,1], u(0)=(0,1), with the CNLF-stab method: (u"{n+1}—u"{n—-1})/(2xdt)+

Y%betaxdt*L " *L(u"{n+1}—u " {n—1})+A(u" {n+1}+u"{n—-1})/2 + Lu"n = 0, beta>=0.

%True solution: u(t)=exp(—t)(sin(omegaxt),cos(omegaxt))

%Calculates the error, epsilon, between the true and approximate solution for
fixed omega and varying dt.

%Marina Moraiti, November 2014

omega = 40;

epsilon = zeros(9,5);
beta = [1,0,1/6,1/8,1/12];
for k=1:5
for i=1:9
dt = 2°(1-1)/50;
N = 1/dt + 1;
t = 0:dt:1;
u = zeros (2,N);
utrue = zeros (2,N);
utrue (1,:) = exp(—t).+sin (omegaxt);
utrue (2,:) = exp(—t).*xcos(omegaxt);
u(l,1) = 0;
w(2,1) = 1;
u(l,2) = utrue(1,2);
u(2,2) = utrue(2,2);
for j=2:N-1
u(l,j+1) = 2xdtxomegaxu(2,j)/(1+2xbeta(k)*(dt) "2+ (omega) "2+dt)
+ (142«beta(k)*(dt) "2«(omega) "2—dt)*u(l,j—1)/(1+2«beta(k)
x(dt) "2*(omega) "24+dt) ;
u(2,j+1) = —2«xdtxomegaxu(1,j)/(1+2«beta(k)«(dt) "2x(omega) 2+dt
) + (1+2xbeta(k)*(dt) " 2«(omega) " 2—dt)*u(2,j—1)/(1+2xbeta(k
)x(dt) "2x(omega) "2+dt) ;
end
epsilon (i,k) = sqrt(dt)*norm(u(:,3:N)—utrue (:,3:N));

end
end

B.5.2 Stability of CNLF-stab

function epsilon = CNLFstabStability

%Solves the problem u_t+AutLu=0, u=(u-1,u-2), A=I, Lu=omega(—u2,ul), over
%(0,1], u(0)=(0,1), with the CNLF-stab method: (u"{n+1}—u"{n—-1})/(2xdt)+
%betaxdt*+L +L(u" {n+1}—u " {n—1})4+A(u " {n+1}+u"{n—1})/2 + Lu'n = 0 True
%solution: u(t)=exp(—t)(sin (omegaxt),cos(omegaxt)).
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%Calculates the error, epsilon,
fixed dt and varying omega.

%Marina Moraiti, November 2014

epsilon = zeros (25,5);

beta = [1,0,1/6,1/8,1/12];

dt = 0.01;

t = 0:dt:1;

N=1/dt + 1;

omega = 40:5:160;

u = zeros (2,N);

utrue = zeros (2,N);

u(l,1) = 0;

u(2,1) = 1;

for k=1:5

for i=1:25
utrue (1,:) = exp(—t
utrue (2,:) = exp(—t
u(l,2) = utrue(1,2)
u(2,2) = utrue(2,2)
for j=2:N-1

)

between the

true and approximate solution for

) .xsin (omega(1i)xt);
) .*xcos(omega(i)*t);

u(l,j+1) = 2«dtxomega(i)*u(2,j)/(1+2xbeta(k)=*(dt) 2x(omega(i))
“24+4dt) + (142«beta(k)*(dt) 2x(omega(i)) " 2—dt)*u(l,j—1)
/(142xbeta (k) *(dt) "2« (omega(i)) 2+dt);

u(2,j+1) = —2xdtxomega(i)*u(l,j)/(1+2xbeta(k)«(dt) " 2x(omega(i)
) 24dt) + (1+42«beta(k)*(dt) "2x(omega(i)) " 2—dt)*u(2,j—1)
/(14+2xbeta(k)*(dt) "2x«(omega(i)) 2+dt);

end

epsilon (i,k) = sqrt(dt)*norm(u(:,3:N)—utrue (:,3:N));

end
end
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