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STUDY OF OSCILLATING LIQUID FLOW AS A THERMAL MANAGEMENT 

SOLUTION 

 

Bader Abdullah Al Nifay, M.S. 

University of Pittsburgh, 2015 

 

For many electronic devices where air cooling is the norm, heat loads continue to increase and 

are projected to soon require a transition to liquid cooling, where more efficient thermal energy 

transport is achievable due to better fluid properties. In most scenarios, a liquid cooled solution 

entails a bulk fluid motion traveling past a heated surface, but flows that oscillate back and forth 

also show promise. However, before this is realized, some fundamental performance models 

must be extended. This paper focuses on characterizing the dynamics of the flow inside a U-tube 

manometer under continuous oscillation. For oscillating flow, the dimensionless parameter of 

interest is the Womersley number (  ) or the Valensi number (  ) (one can simply be expressed 

in terms of the other), and can be used to predict velocity profiles of oscillating flow. In this 

study, an air blower is utilized to force the fluid to move inside a U-tube manometer by 

providing an oscillating pressure signal. The dynamic response is the key metric of interest in 

this work, and is characterized by experimentally measuring the resonance frequency (  ) and 

the damping ratio ( ), the latter of which is dependent on frictional losses. When the working 

fluid is under continuous oscillation, additional sources of frictional losses exist, and a non-

standard analysis is needed to adequately predict the damping. The dynamic response is 

measured for different amounts of fluid in a range of tube sizes and empirical correlations are 
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developed to better predict the observed data. Results suggest that the velocity profiles under 

continuous oscillation are not parabolic and hence quantifying the damping based on the 

theoretical damped oscillation analysis is not applicable. The results of this study are 

conceptually applied to a microchannel heat sink, where oscillating flows show promise in 

handling large heat fluxes. 

 

Keywords: Oscillating manometer, forced oscillation, damping ratio, thermal, internal flow  
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 NOMENCLATURE 

English 

A Cross section area of the tube 

D Diameter of the tube 

Dh Hydraulic Diameter of a cross section area  

g Gravitation force 

hc Height of a microchannel heat sink 

KC Keulegan-Carpenter number 

lc Length of a microchannel heat sink 

L Length of fluid inside the U-tube 

nc Number of channels in microchannel heat sink 

N Number of oscillating cycles 

P Pressure 

R Radius of the tube 

ReD Reynolds number 

Va Valensi number 

wc Width of a microchannel heat sink 

W0 Womersley number 



 xiii 

xfd,h Hydrodynamic entry length 

X Magnitude of fluid displacement 

X1 Amplitude of fluid displacement for N = 1 

XN+1 Amplitude of fluid displacement of the following cycle N 

 

Greek 

δ Logarithmic ratio between amplitudes  

δst Static displacement of fluid inside the U-tube manometer 

ζ Damping ratio 

ν Kinematic viscosity of the fluid  

ρ Density of the fluid 

ω0 Oscillating Frequency 

ωn Natural Frequency  
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 INTRODUCTION 1.0 

Although both gases and liquids can be used as working fluids across a wide range of thermal 

management techniques, liquid cooling is far superior due much higher thermal conductivity and 

specific heat. For example, the specific heat and thermal conductivity of water are      
  

    
 and 

     
 

   
, respectively, which are greater than the corresponding values for air (     

  

    
 and 

      
 

   
) [1].  

In many applications where air cooling is the standard, heat loads continue to rise 

because of increased functionality and power dissipation. In the field of electronics cooling for 

example, thermal management solutions must continually become more creative with each new 

device generation due to an increase in processing power. For many devices, heat loads are 

projected to soon require a transition to liquid cooling in order to best exploit efficient thermal 

energy transport properties of the working fluid. Various liquid-based thermal management 

solutions exist (e.g., cold plates and microchannel heat sinks), but most of them employ bulk 

fluid transport to carry away the heat. Low profile cooling (e.g., processing unit in tablets and/or 

phones) can be particularly challenging from a thermal management perspective due to the tight 

restrictions on available volume. As the required parts decrease in size, the cost of the thermal 

solution typically increases. A compromise between efficiency and cost is sought in order to 

develop an adequate thermal management solution.  
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For many of these low profile devices, natural convection is the primary thermal 

management approach. As the forecasted heat loads would require a transition from natural to 

forced convection, investigators have offered multiple potential low power solutions, including 

piezoelectric fans [2-4], synthetic jets [5-6], and ionic winds [7-8], to name a few. In this work, a 

miniature piezoelectric pump, or air blower [9], is investigated as an additional potential 

solution.  The pump produces relatively high pressure (~ 2 kPa) and low flow rates which make 

it an ideal candidate for microchannel heat sink applications [9], or any other low flow situation 

where relatively large pressure drops are expected. The high pressures generated with the low 

profile air pump could potentially be used to actuate liquid flow through a microchannel heat 

sink. Specifically, the feasibility of using this air blower to drive the liquid back and forth 

through a microchannel heat sink is investigated. As a first step in gauging its usefulness as 

thermal management solution in this fashion, it is imperative to be able to predict the dynamics 

of oscillation. 

1.1 BACKGROUND 

Oscillating flow studies have a rich history that arguably began in 1955 with Womersley, who 

developed a modeling methodology for oscillating flow in arteries [10]. In his analysis, 

Womersley modeled the artery as a circular pipe or diameter D whose fluid is incompressible 

and subject to an oscillating pressure force. Solving the equation of motion for this scenario 

yields expressions for velocity profiles and flow rates as a function of the oscillating pressure 

driving the flow. Through his analysis, Womersley identifies a non-dimensional parameter, 

which is now known as the Womersley number (  ), defined as [10]:  
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√
  

 
 (1) 

where   is the characteristic length (defined as the diameter for circular tubes),    is the 

oscillation frequency and,   is the fluid viscosity. Womersley has concluded that    for typical 

human arteries are approximately equal to that of other biological creatures such as dogs, cats, 

and rats, suggesting the similarity across these scales is adequately captured by   . Since    can 

influence the velocity profile, it also has an impact on the volumetric flow rate. For a rapid 

driving pressure gradient with constant amplitude [10, 11], the flow rate oscillates more 

frequently but at a cost of low amplitude because of high values of Womersley number     

  . Although the assumption of a Newtonian fluid is inconsistent with the application of blood 

flow, the Womersley number provides qualitative insight into the behavior and response of such 

biological systems. When Womersley conducted his analysis on oscillating flow, he considered 

the flow to be on a horizontal plane and thus the flow is independent from gravitational force, 

which can play a significant role in the dynamic response, as will be discussed in the next 

sections.    

With the advantage of modern day computing and analysis resources, additional studies 

have revealed a broader role of the Womersley number and how it impacts the nature of the flow 

regardless of the geometry. One of the studies is conducted by Loudon and Tordesillas in which 

they have summarized evidence of how the magnitude of the Womersley number influences the 

flow and the velocity profile [11]. These authors consider the simplest possible internal flow 

geometry, namely one dimensional flow between two parallel horizontal flat plates with no-slip 

conditions at the walls. It should be noted that their analysis is also independent of the 

gravitational force effect. The mathematical solution indicates that there exist relationships 

between the velocity profiles, the volumetric flow rate and the Womersley number. For    < 1, 
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the fluid maintains a parabolic velocity profile because the flow is laminar. For 1 <    < 10, the 

velocity profile of the fluid begins to deviate from the parabolic shape because of the transition 

of flow from laminar to turbulent, but the maximum velocity still occurs at the center of the 

channel or tube. For    > 10, the velocity of the fluid near the center of the channel is lower than 

that in a layer of flow near the walls and the parabolic velocity shape is completely lost. Loudon 

and Tordesillas have concluded that the abrupt change from laminar to turbulent flow is captured 

when    ≈ 5.  

 One scenario where oscillating flow is of importance is the dynamic response of U-tube 

manometers. Unlike the conditions explored by Womersley [10] and Loudon and Tordesillas 

[11] which are driven by an external pressure gradient, the oscillating flow in a U-tube 

manometer is at least partially driven by a gravitational force, and opportunities exist to exploit 

resonance conditions. The standard analysis reveals equations of motion that predict fluid 

behavior in a fashion similar to a standard second order response. The resulting analytical 

solution assumes the velocity profile as parabolic where the maximum velocity occurs at the 

farthest point from the wall (i.e. neutral of axis the tube). Experiments were conducted by Biery 

[14, 15] on Newtonian fluids to observe and examine the different behaviors of several liquids. 

Significant differences are observed between analytical and experimental results. Since the 

modeling approach relies on a standard second order dynamic response, the two parameters that 

describe this response are the damping ratio ( ) and the natural frequency (  ). Theoretically, 

the natural frequency (  ) and the damping ratio ( ) are defined according the following 

expressions [13, 18]: 

 
   √

  

 
  (2) 
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  (3) 

 where   is the gravitational force and   is the length of the liquid inside the manometer.  

Valensi [14] is the first to thoroughly examine the behavior of fluids undergoing damped 

oscillation flow. Based on his findings, the Valensi Number (  ) is defined according the 

following expression: 

    
  

 

  

 
   (4) 

It is important to note the relationship between    (Eq. (1)) and    (Eq. (4)). Although each is 

developed under different conditions, both arrive at essentially the same dimensionless number 

that describes the flow physics. In other words, the relationship between    and    is simply: 

    √    (5) 

 Many studies utilize these two dimensionless numbers interchangeably since they share the 

same parameters [11, 14-15]. The velocity profile can be expressed in terms of    or   , 

depending on one’s preference, but for oscillating manometers, in order to fully predict the 

dynamic behavior of the fluid, one must also be able to quantify the natural frequency (  ) and 

damping ratio ( ) of the system. The former is straightforward, but the latter has proven to be a 

difficult task, especially in the presence of complex fluid forces that cannot be quantified 

mathematically in the governing equations of motion.  

Biery has conducted different experimental trials regarding the damped oscillations in U-

tube manometers and has confirmed the discrepancy of the damping ratio ( ) and velocity profile 

between the analytical results that are based on parabolic laminar flow assumptions and 

empirical data [14-15]. It should be noted that Biery’s experimental results regarding the 

damping ratio ( ) are based on the log decrement method. In other words, the fluid would be 

given an initial displacement and then released, after which the oscillations damped out with 
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time. By extracting and comparing peak fluid displacements of two separate oscillation cycles, 

the damping ratio can be calculated. In his findings, Biery discovered that the damping ratio ( ) 

varied with each half cycle due to the fact that the initial velocity profile is not repeated, and for 

the first several cycles the damping ratio ( ) varies with each half cycle until the damping ratio 

( ) reaches a steady value [14]. There are other secondary effects that caused the discrepancy in 

damping ratio ( ) results which will be discussed in detail in the following sections. In order to 

match analytical results to the experimental results, Biery modified the driving force in the 

equation of motion due to secondary effects such as falling films, surface tension, and flow 

reversal effects [14-15].  

 There are numerous forces and fluid effects worth mentioning that help explain the 

discrepancies between experimental and analytical results. For example, if the contact angles 

between the liquid and the wetting manometer tube are not equal at the ascending and 

descending ends of the manometer tube, then a force due to surface tension can impact the 

results. The contact angles in Biery’s trials are 0° at the ends of the manometer and thus the force 

is zero, but the same result cannot be achieved with a non-wetting tube as the contact angles are 

non-zero [15]. Another effect worth noting is that of a falling film. A liquid film is created by the 

ascending and descending of liquid on the manometer tube walls. This film is carried by the 

ascending liquid on the return stroke. Consequently, falling films cause a reduction in the mass 

of the system for a short time and change the instantaneous equilibrium position of the 

manometer tube [14-15]. Effects due to surface tension and falling films are minimal because of 

low viscosity fluids such as water and glycerin and manometers made of soft glass tubing [15]. 

Most of the deviation between the computer-generated model and the empirical results is 

attributed to the flow reversal effect which occurs when the velocity profiles of the fluid at the 
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ends of the tube do not maintain a parabolic shape and become extremely distorted while the 

velocity profile of the main body fluid maintains its parabolic shape. During the ascending and 

descending of the fluid at the ends of the tube, the velocity profiles have to adjust to the sudden 

change of velocity caused by the driving force. This causes the stationary fluid at the ends of the 

tube to abruptly accelerate and flow along the wall into the high-velocity region in the center of 

the stream. As a result, the fluid rotates in a large toroidal shape (vortex rings) [15]. This ends up 

causing an increase in the damping ratio ( ) values [14-15]. Biery models the flow reversal effect 

as a force which is a function of an arbitrary constant, cross section area of the tube ( ), radius of 

the tube ( ), and the kinematic viscosity of the fluid ( ) [15]. This arbitrary constant is then 

modified to minimize the percentage error between the mathematical solution and empirical 

results. The general trend of the velocity profiles that are simulated by the mathematical solution 

indicated that the parabolic velocity profile assumption is invalid. Such assumption is only valid 

for highly viscous fluids and/or with manometers with small diameter (  < 2 mm) [12, 14-15]. 

In other words, the velocity profile assumption is only validated for small    (similar conclusion 

reached by Loudon and Tordesillas [11] for a non-gravity driven flow). 

Correlations between the Valensi number and the empirical damping ratio ( ) results are 

first developed by Valensi in 1947, the result of which is shown in Eq. (6)  for    < 20 [14]: 

 
  

     

  
 (6) 

Valensi has recognized three different flow regimes in the oscillatory flow based on the 

magnitude of    [14, 16]. For     < 20, the inertial term in the governing equation of motions is 

small enough such that the velocity profile can be assumed to be parabolic [16]. For values of    

between 20 and 70, the velocity profile becomes non-parabolic and complex. For values of    > 

70, a central core of the fluid exists and this core is unaffected by the viscous forces [16]. 
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Comparison of these numbers with the    transition values again illustrates the consistency 

between the two scenarios.   

In 1948, Valensi and Korman have applied the boundary layer theory to attain a solution 

[14, 16] for small damping ratio ( ) values and for 100 <    < 1000: 

 
  

 

√ √  
 (7) 

Eq. (7) is found to agree well with the analytical solution as    number approaches 1000 [14]. 

Even with Eq. (7), empirical values of damping are 20-30% higher than the predicted model. 

Chan and Baird have explained the various factors that might affect the U-tube manometer. The 

first factor is the error in measuring the amplitude due to the wetting of the tube wall which is a 

result of the fluid movement [16]. Another factor is the hydrodynamic end effect which involved 

the toroidal circulations at each end of the free surface. Another possible issue is the curvature of 

the U-tube and how it affects the flow. [16]  

In the early 1960s, an attempt to characterize the manometer problem based on the 

mechanical energy balance and an assumption of time varying parabolic velocity profile was 

conducted by Bird [20]. Bird solved his equation for    < 10 as shown below.  

   
√  

  
  (8) 

From an analytical stand point, the damping ratio ( ) and the natural frequency (  ) of 

the manometer can be determined based on the momentum balance of the system. At rest, a 

change in pressure (  ) is enforced across the columns of the manometer. The assumption of the 

flow is laminar, incompressible, and parabolic. The solution will indicate the displacement of 

fluid ( ) as a function of time. The momentum balance on the fluid inside the U-tube manometer 

from a dynamic stand point is the following [18, 19] 
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(
 

  
)  ̈  (

    

   
)  ̇    

  

  
   (9) 

rearranging the above equation to the general second order response 

  ̈         ̇    
     

        (10) 

then is it clear that    √
  

 
 and  

 
   [

  

    
]  

 

  
 (11) 

These expressions that predict damping have shown fairly good agreement for moderate 

to large values of   , but when    is small (as is the case for a potential solution for thermal 

management of electronics), the expression provided in Eq. (6) leaves much to be desired. Others 

have found the same level of apprehension [14-16], but little headway has been made. One of the 

goals of this study is to quantify the damping and develop predictive correlations for conditions 

in the expected range for thermal management applications. We consider both a damped sinusoid 

response as well as a steady driving force whose frequency is near or within the bandwidth of the 

resonance frequency of the U-tube manometer. Results are shown to drastically differ depending 

on which method in employed. Trusted correlations for damping are needed in order to truly 

assess the potential of using flow oscillations through a microchannel heat sink. 

The remainder of this thesis will proceed with three major chapters. In chapter  2.0 of the 

thesis, the central focus is on the physical assembly of the experimental setup and the procedures 

followed for data collection. Data is characterized using two different approaches to quantify the 

damping: (i) frequency response from an oscillating pressure and (ii) damped sinusoid from an 

initial displacement. Chapter  3.0  includes detailed analysis and comparison of the two types of 

damping data mentioned above, and is included in sections  3.1 and  3.2 3.1. Chapter  0 provides a 

summary which consists of the core findings in the thesis. A section of chapter   4.0 contains 
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details about the possibility and applicability of oscillating flow as a thermal management 

solution in the field of electronic and what other new parameters must be taken into 

consideration that impact the fluid flow inside the manometers.  
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 EXPERIMENTAL SETUP AND PROCEDURE   2.0 

As previously mentioned, the oscillation of liquid inside U-tube manometers is considered as a 

second order response where the natural frequency (  ) and damping ratio ( ) are defined 

according to Eq. (2) and Eq. (3), respectively [13]. Two separate testing methods are employed 

to measure the quantities of interest. First, a frequency sweep procedure is used where the 

frequency of the driving pressure signal is tested at multiple points on either side of the natural 

frequency of the U-tube. Second, the log decrement method is conducted in order to quantify the 

difference between the two approaches. The same experimental facility is used for both sets of 

experiments. It will first be described, followed by procedures for each type of test. A detailed 

discussion of experimental uncertainty is also provided.  

2.1 EXPERIMENTAL SETUP  

The data collection of the oscillation of liquid in a U-tube is achieved through the use of four 

primary components: a standard digital camera (Cannon PowerShot A700), a piezoelectric 

blower, a custom-made supporting apparatus, and a function generator (Tektronix AFG3102). 

The experimental setup is illustrated in Figure 1. The custom-made supporting apparatus consists 

of three components: a top plate, a middle plate, and two triangular legs. The top plate contains 

two holes for barbed tube fittings. The air blower is placed on one of the holes of the top plate. A 
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set of screws and nuts are used to eliminate the space between the surfaces of the blower and the 

top plate. This ensures that the liquid column only oscillates due to the pressure exerted by the 

sinusoidal pressure from the air blower. The other tube end is exposed to atmospheric pressure. 

The blower itself is provided by Murata Manufacturing Co., Ltd and makes use of a piezoelectric 

element whose actuation is provided by the function generator. The frequency of actuation is 

tuned to the second resonance mode of the piezoelectric disk. This particular blower is 

traditionally used for low profile cooling applications by directing air towards a heated target. In 

this study, the blower is essentially used as a pressurizer, which then drives the liquid flow 

through the tube. For more details on the blower, see [9]. Tube clamps are placed in the middle 

plate to maintain the U-shape for the tube. A precision ruler is placed next to the liquid column 

to measure the displacement during the oscillation of the fluid. The digital camera is placed in 

front of the custom-made supporting apparatus ready to capture the liquid column oscillation due 

to the air blower. Figure 2 illustrates a side view of the experimental setup, where the digital 

camera can record a video of the damped oscillation of the liquid column for a range of 

frequencies. This setup allows for testing different tube sizes. A digital photo of the setup is 

shown in Figure 3. The top board of the apparatus consists of two threaded holes enabling quick 

interchanging of tube fittings when testing different tube sizes. The different tube sizes that are 

used in the setup and the different fluid lengths are listed in Table 1. The fluid used in all of the 

trials is water with a kinematic viscosity (   of                at 20 °C.      
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Table 1: Tube sizing and fluid length range for experimentation  

Tube Inside Diameter, in (mm) 

0.125, 0.170, 0.1875, 0.250, and 0.375 

(3.175, 4.318, 4.762, 6.35, and 9.525) 

Fluid Length Range, in (cm) 

15.75 – 78.75 

(40 – 200) 

      

 

Figure 1: A front view of how the components of the test are oriented 
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Figure 2: A side view of how the components of the test are oriented 

 

 

 

  Digital 

Camera 
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Figure 3: Picture of Actual Setup: (a) Top View (b) Front view 

2.2 PROCEDURE FOR FREQUENCY RESPONSE TESTS 

For the frequency response testing, a sinusoidal pressure gradient is provided via the blower. The 

overall goal of the procedure is to quantify the damping of fluid flow under continuous constant 

oscillation. The standard second order response can be captured under certain conditions for a 

damped sinusoid oscillation, but it unclear from the literature whether those conditions or any 

conditions apply when employing a sinusoidal driving force. In addition to quantifying the 

damping, the tests help to assess the validity of a second order response for sinusoidal loading 

conditions. The digital camera is mounted on a tripod to capture fluid oscillation. The overall 

control of the procedure is attained through the function generator. The operating frequency of 

the air blower is set to 25.1 kHz (the structural resonance frequency of the piezoelectric disk), 
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which enabled the fluid to achieve the largest displacement from the equilibrium position. It 

should be noted that this is not the driving frequency of the fluid column. It is simply the 

resonance frequency of the piezoelectric element inside the air blower. The input voltage is set to 

a maximum of 10 V. This input voltage yields to a maximum input pressure of 1.078 kPa which 

is measured based on the maximum displacement of the fluid column. A modulated sinusoidal 

wave signal is sent to the air blower by the function generator to cause the fluid to oscillate. A 

modulated square wave is also tested initially, but found to suffer from the flow reversal effect 

considerably described earlier. The modulated sinusoidal wave helps to minimize these effects 

since there is no abrupt signal switching between on and off. The frequency range of modulation 

is between 0.1 Hz and 1.5 Hz for the fluid column oscillation. The modulation sinusoidal wave 

consists of (i) a carrier frequency and (ii) a modulation frequency. The carrier frequency is the 

25.1 kHz of the air blower while the modulation frequency is any single value from 0.1 Hz to 1.5 

Hz. For illustration purposes only, Figure 4 represents a modulated sinusoidal wave with carrier 

frequency of 5 Hz and a modulated frequency of 0.5 Hz. Table 2 summarizes the important 

operational parameters of the function generator. 

Each frequency value (   is evaluated separately, and the digital camera records the 

oscillation of the fluid. The magnitude of fluid displacement is visually measured from the 

captured video using the precision ruler in the background of the tube column as seen in Figure 

1. Fluid displacement values are recorded using a frequency sweep method. The frequency 

sweep ranges from 0.1 Hz to 1.5 Hz by increments of 0.1 Hz. At each frequency, the fluid 

oscillates continuously and a video footage is recorded via the digital camera. Since there are 

several oscillations in each video, an average fluid displacement value is determined for the 

corresponding frequency using approximately 4-5 amplitude data points. Therefore there are a 
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total of 15 fluid displacement values for each fluid length/tube size combination. Then these 15 

data points are normalized by the corresponded static displacement of the oscillating fluid of that 

trial, which is quantified by running a group of additional tests between 0.01 Hz and 0.1 Hz, 

which is well below the U-tube resonance frequency. Plots of magnitude of displacement versus 

frequency are then generated to detect the trend. The data is then gauged using the normalized 

magnitude for a second order response [18]: 
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where   is the magnitude of displacement and      is the static displacement of the oscillating 

fluid due to the static force   . The static displacement can be measured directly from the raw 

data therefore the static force is not needed to be measured. According to theoretical analysis, the 

plots of magnitude versus frequency should follow the expression in Eq. (12). The curve fit tool 

of MATLAB is used for all the trials to determine the goodness of fit when Eq. (12) is applied. 

Only the bandwidth range of every trial is supplied to the curve fit tool. Additionally the curve fit 

tool determines the values of the natural frequency and damping ratio ( ) that best fit the 

experimental data. The experimental values of the natural frequency and damping ratio ( ) are 

compared to Eq. (2) and Eq. (3) respectively to gauge the accuracy of the theoretical analysis.  

The next phase is to determine the relationship between the damping ratio ( ) and the 

Womersley number (  ). In order to achieve a correlation between the two parameters, the fluid 

level is varied between 40 cm and 200 cm for each tube size in Table 1. Each fluid length for 

every tube size corresponds to a Womersley number (  ) value found from Eq. (1). Then, 

empirical results are compared to the correlations found in Eqs. (6) - (8) [14,16,17] and the 

analytical solution. It should be noted that Eqs. (6) - (8) are based on the log-decrement 
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technique. Therefore, the analysis of the forced response data enables a gauge on the validity of 

these expressions when the driving force is nonzero. 

 

Table 2: Important operational input parameters 

Input Voltage (V) 10 

Blower Operating Frequency (kHz) 25.1 

Waveform Modulated sinusoidal 

Tested frequency Range (Hz) 0.1 – 1.5 

 

 

Figure 4: Modulated sinusoidal signal 
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2.3 PROCEDURE FOR LOG DECREMENT METHOD 

For comparison to the frequency response data as well as the expressions developed for U-tube 

damped oscillations, experiments are conducted to make use of a damped sinusoid response. A 

continuous pressure is provided for several seconds via the air blower (function generator 

voltage amplitude is set at 10 V), and causes the fluid to ascend and remain above the 

equilibrium position. Then the generator is instantly shut off while the digital camera captures 

the damped response of the oscillating fluid until it comes to a complete stop. Each trial is 

expected to have about 2 – 4 full cycles of oscillation. The magnitude of fluid displacement for 

each full cycle is visually measured from the captured video using the precision ruler in the 

background of the tube column as seen in Figure 1. Once all magnitudes of fluid displacement 

are determined, the standard logarithmic decrement technique is applied to calculate the damping 

ratio for each trial.  

The rate at which the magnitude of a free damped oscillation decreases is represented by 

the logarithmic decrement. It is defined as the natural logarithmic of the ratio of any two 

magnitudes, and is a reliable method to determine the damping ratio for an underdamped (   ) 

oscillating or vibrating system. The damping ratio ( ) is defined according to the logarithmic 

decrement method as the following [18]: 
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where   is the number of cycles between the amplitudes    and     . The number of cycles   

varies based on the fluid lengths and tube sizes, but the general trend is more cycles exist for 

large tube diameters (       mm) with short fluid lengths (     cm). Table 3 provides a 

summary of number of cycles for each trial. It must be noted that the first cycle of each trial is 

not included in the determination of the damping ratio due to the initial excessive pressure build 

up by the air blower. The effect of the first value artificially inflated the damping (in some cases 

19% higher). 

 

Table 3: Summary of number of cycles for each trial 

  D = 4.318 mm D = 4.762 mm D = 6.35 mm D = 9.525 mm 

L (cm) N N N N 

40 2.5 3 3.5 4 

45 2.5 3 3.5 4 

50 2.5 3 3.5 4 

55 2.5 2.5 3.5 3.5 

60 2.5 2.5 3 3.5 

65 2 2.5 N/A N/A 

70 2 2 3 3 

80 2 2 3 3 

90 2 2 2.5 3 

100 1.5 2 2.5 2 

110 1.5 2 2 2.5 

120 N/A N/A 2 2.5 

165 1.5 1.5 N/A N/A 

200 N/A N/A 2 2.5 
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2.4 UNCERTAINTY ANALYSIS 

All the variables that are involved in determining the natural frequency (  ), the damping ratio 

( ), and the Womersley number (  ) such as the tube inside diameter, fluid length, or the 

magnitudes of displacements of oscillating fluid are measured directly. All uncertainty analysis 

included in the experimental trials are due to digital caliper and precision ruler measurements. 

The surrounding effects are apparent when comparing different runs of the same diameter size 

and fluid length collected on different days. 

 First, an uncertainty analysis is conducted on the natural frequency (  ). This parameter 

is a function of fluid length and the gravitational force. The length of the fluid inside the U-tube 

manometer is measure via a standard tape measure with an uncertainty of ±0.50 mm. this yields 

to a maximum uncertainty of 0.44% for the natural frequency (  ). The uncertainty of the 

natural frequency is the same for the two different experimental methods conducted for this 

research. 

 The other imperative parameter is the damping ratio ( ) which is only a function of the 

parameter ( ) defined in Eq. (14) when considering the log decrement method. The main source 

of uncertainty for this method comes from the measurements of the amplitudes    and      in 

Eq. (14). The high precision ruler (see Figure 1) that is used for measuring the amplitudes in Eq. 

(14) has an error in of ±0.25 mm. Thus the damping ratio has an uncertainty of approximately 

2.68% to 6.93% for a tube diameter of 9.525 mm. The overall uncertainty in damping for a tube 

size of 6.35 mm ranges from 1.87% to 3.70%. The total uncertainty in damping for a tube size of 

4.762 mm is between 1.34% and 2.55%, while the uncertainty ranges from 1.35% to 2.10% for a 

tube size of 4.318 mm. For the smallest tube size (   3.175 mm), uncertainty is not calculated 
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since the oscillations die down to unmeasurable levels within a few cycles, thereby preventing 

experimental trials to be conducted. Overall, the average uncertainty value for all tube sizes for 

log decrement damping is 2.37%  

The uncertainty in the damping ratio analysis based on the continuous oscillation method 

is determined via the curve fit tool in MATLAB using a confidence level of 95%. This results in 

damping ratios with uncertainties between 0.71% and 2.50% for a tube size of 9.525 mm, 0.85% 

and 1.53% for a tube size of 6.35 mm, 0.76% and 1.25% for a tube size of 4.762 mm, 1.04% and 

1.54% for a tube size of 4.318 mm, and between 0.76% and 1.43% for the smallest tube size 

(   3.175 mm). Overall, the average uncertainty value for all tube sizes for damping under 

continuous oscillation is 1.24%  
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 RESULTS AND DISCUSSION 3.0 

Numerous trials of varying tube sizes and fluid lengths are conducted in order to assess the 

behavior of damping when forcing the oscillation with a sinusoidal pressure gradient as well as a 

flow driven solely by gravity (damped oscillation). The results are compared with each other and 

with theoretical solutions, where applicable.  

3.1 FREQUENCY RESPONSE SWEEP DAMPED OSCILLATION 

For each frequency considered, the steady state amplitude of oscillation is captured via video 

footage as previously discussed. Figure 5 through Figure 7 provide the magnitude response 

curves for these experimental runs for different tube sizes of 3.175 mm, 4.318 mm, and 4.762 

mm, respectively. All three have the same length of fluid (65 cm), and therefore have near 

identical resonance frequencies. Applying Eq. (12) through curve fitting tool, the empirical 

natural frequency (  ) and damping ratio ( ) are determined. This curve fit is also provided in 

this set of figures for visual reference of the quality of the fit. Table 4 summarizes the 

comparison between the analytical and empirical solutions for the natural frequency (  ) and 

damping ratio ( ), where the analytical values are found from Eqs. (3) and (11). Although 

empirical values of the natural frequency are comparable to predictions from the analytical 
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solution (less than 2% difference for each case in Table 4), much larger discrepancies exist 

between experimental and analytical results for the damping ratio. For example, while 

experimental damping is 5.5% higher than the analytical value for a tube size of 3.175 mm, this 

dramatically increases to 92% and 230% for tube sizes of 4.318 mm and 4.762 mm, respectively. 

Similar experimental trials are conducted for the remaining tube sizes with different fluid 

lengths in order cover a wide range of   . The natural frequencies for all these cases again are 

found to mimic the expectations for the analytical solution. The percent deviation for this 

parameter ranges from 0.22% to 3.08%, and is therefore considered an adequate model to predict 

resonance conditions. For the damping ratio, we seek to quantify a possible trend. Figure 8 

shows the relationship between the damping ratio ( ) and the Womersley number (  ), where 

each set of data is collected from a different tube size. The smallest tube size (3.175 mm) results 

are the most comparable to the analytical solution. But even then, the curve seems to exhibit a 

different slope, suggesting that perhaps the theoretical solution does not capture the damping 

behavior accurately. This is not entirely unexpected since one could argue the forces at play for 

forced oscillations are different than those for a damped sinusoid response, upon which the 

available analytical expressions are based.  
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Figure 5: Trial for 3.175 mm with 65 cm in fluid length 

 

 

Figure 6: Trial for 4.318 mm with 65 cm in fluid length 
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Figure 7: Trial for 4.762 mm with 65 cm in fluid length 

 

Table 4: Theoretical-Experimental        comparison   

Tube Size (mm) Length  (m) 
Theoretical                  

Eq. (11) 
Empirical   

Theoretical 

   (Hz) 

Empirical    

(Hz) 

3.175 

0.65 

0.289 0.305 

0.874 

0.876 

4.318 0.156 0.299 0.864 

4.762 0.128 0.295 0.879 

 

 

 

Another potential source of discrepancy is the assumption of parabolic flow for the 

analytical solution. The velocity profile is known to deviate from this for    near unity, which 

could result in additional damping as    increases. This helps to explain the fact that the 

analytical solution underestimates the damping ratio. Various factors such as the flow reversal 

effect, and the instantaneous change in the velocity profile would arguably serve as energy 

dissipaters, thereby impacting the damping ratio. Even for low   , the flow, under continuous 
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oscillation, might not have enough time to become fully developed, even when a parabolic 

velocity profile is expected.  It is possible to verify whether the flow inside the U-tube has 

become fully developed or not via the hydrodynamic entry length (       calculation for laminar 

internal flow [1]. Table 5 represents the summary of hydrodynamic entry length analysis. Since 

the Reynolds number (     is less than 2300 for all the combinations of fluid length ( ) and 

tube diameter ( ), the flow can be considered as laminar. The maximum change in fluid 

displacement (  ) that is attained via oscillation for all cases is significantly lower than the 

necessary entry length for the flow to become fully developed, as determined by well accepted 

correlations [1]. This confirms that even though the flow is laminar, the velocity cannot achieve 

the expected steady state profile, thus bringing into question the validity of the parabolic profile 

assumption. The primary reason for assuming fully developed parabolic flow is because of the 

simplifications to damping term. Furthermore, there are numerical solutions for internal flow 

without the fully developed flow assumption, but the friction term that is used to quantify the 

damping cannot be simplified. As a result this might leads to a complicated numerical solution.        

For the current efforts, attempts are made to characterize the behavior such that 

oscillating flows can be considered in the thermal management toolbox. To predict the natural 

frequency for forced oscillations, one can simply use the theoretical results, which compare very 

favorably with experimental values obtained in this study. In order to characterize the damping 

ratio, standard correlations are not sufficient, and we now apply power law curve fits to each of 

the data sets in Figure 8 according the following expression:  

       
     (15) 

where    and    are coefficients found from a least squares curve fit of the data. It should be 

noted that for each data set, the diameter is constant, but the length of the water column varies. 



 28 

 

 

Figure 8: Dependency of damping ratio ( ) on Womersley number (  ) 

 

Table 5: Hydrodynamic entry length summary 

D (mm) L (cm)    (mm)           (mm) 

3.175 

40 66 734 116 

65 61 532 84 

4.318 

40 58 1038 224 

65 68.5 688 149 

4.762 

40 57 1067 254 

65 64 746 178 
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Table 6: Summary of frequency response empirical correlations of   

Tube Size (mm) Metric Correlation of Damping Ratio ( )  

3.175   
     

  
     

4.318   
    

  
     

4.762   
    

  
      

6.350   
     

  
      

9.525   
      

  
      

 

The results in Table 6 indicate the power function relationship between the damping ratio 

( ) and the Womersley number (  ) for the different tested tube sizes. The constant coefficient 

decreases as the tube size becomes larger, but more importantly, the exponent also decreases in 

magnitude, suggesting the curve becomes less and less dependent over a given range of 

Womersley number. In addition, it is clear that the damping ratio does not follow the analytical 

model for the forced oscillation experiments. The second order response model seemed to 

adequately capture the dynamics of the flow, but further investigations are needed to accurately 

resolve the dependence of the damping on   . The set of correlations here provide a first step in 

achieving that goal. However, it seems possible that the analytical analysis could serve some 

purpose for extremely small tube sizes, but further work is needed in this area due to the higher 

pressure drops that result from such small channels. This is not further investigated due to the 

limitation of the available air blower. 
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Figure 9: Coefficients    and    dependency on tube diameter size 

 

The possibility is now explored to quantify the dependency of both coefficients    and    

on the tube diameter size in a possible power-law form. For reference, this data points are given 

in Figure 9. In order to remove the dimensional dependency in this relation, the Keulegan-

Carpenter number (  ) is introduced [21]. This dimensionless parameter relates the importance 

of drag forces to the inertial forces under oscillatory fluid flow conditions and was first 

developed as a result of analyzing oscillating flows past rigid bluff bodies. The Keulegan-

Carpenter number (  ) is defined as: 

 
   

     

 
 (16) 

where the theoretical static displacement (   ) is defined as: 

 
    

  

  
 (17) 
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where   is the density of the working fluid. The Keulegan-Carpenter number (  ) is now used 

in place of the diameter from Figure 9 and displayed in Figure 10. It can be shown that    and    

can be related to    based on the following expression: 

                      (18) 

The correlations for both   and    are the following: 

            
       

             
       

(19) 

(20) 

The above correlations for    and    are used to determine a predicted damping model for the 

five different tube sizes and compared to the experimentally measure values, the result of which 

is shown in see Figure 11. As can be seen in these results, the predictive tools capture the 

physical trends that exist in the experiments to a close degree. The mean and maximum absolute 

errors for this data are 1.27 % and 3.68 %, respectively. 

     

 

Figure 10: Coefficients    and    dependency on    
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Figure 11: Predicted Damping vs. Empirical Damping 

 

These results, which focus on quantifying the damping from forced oscillations, are the 

first of their kind. The dependency of the damping on the tube diameter in addition to    is 

something which has not been reported in the literature. Although the current studies are limited 

to water as the working fluid and flexible Polyvinyl chloride (PVC) as the tube material, the 

potential of understanding the flow better is easily recognized from this analysis. Obviously, 

more comprehensive studies are needed which accommodate different tube materials and 

working fluids, but the ease of collapsing all data into a set of empirical correlations shows 

promise and achieving more fundamental insight into internal oscillating flows. 
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3.2 LOG DECREMENT DAMPED OSCILLATION 

A damped sinusoid response is not necessarily applicable to the applications targeted in 

this study, but repeating the experiments here serves a two-fold purpose. First, it helps to 

compare and contrast the results with those found from a non-zero forcing function, and second, 

it helps to more completely understand the current results in the context of previous studies 

which use the same method for analysis. Results using the log decrement method to extract the 

damping ratio are provided in Figure 12, where each set of data is again organized according to 

tube diameter. The findings reveal that as the tube size decreases (       mm), the flow inside 

the U-tube approaches the theoretical solution, both quantitatively and qualitatively (i.e., slope 

and trend of data is consistent). A summary of empirical correlations are provided in Figure 12 

and Table 7. Empirical data is not collected for 3.175 mm tube size because the friction between 

the fluid and the tube is extremely high that the flow fully damped out after the first half cycle. 

When         mm, the empirical results deviate from the theoretical solution rapidly. It is 

important to recognize that previous studies do not account for the varying results from different 

tube diameters. Therefore a new mathematical model is needed to quantify this dependence. The 

Keulegan-Carpenter number (  ) is again included for this purpose. These results suggest that in 

order to approach the theoretical solution, both quantitatively and qualitatively, a combination of 

low Womersley number (    ) and high Keulegan-Carpenter number (     ) is needed. 

The former is achieved by requiring slow oscillations or a small tube diameter. The latter is 

achieved when the forcing pressure is high (i.e., a large initial displacement). Maintaining these 

conditions enables the flow to become fully developed each half cycle. Therefore, this 

conclusion comes as no surprise. Using Eq. (18) and Table 7, the coefficients of Eq. (15) are the 

following 
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(21) 

(22) 

The above correlations for    and    are used to determine a predicted damping model for the 

four different tube sizes. The comparison between predicted and measured values is shown in 

Figure 13.  The mean and maximum absolute errors for this data are 2.87 % and 9.11 %, 

respectively 

 

 

Figure 12: Dependency of   on    based on log-decrement method 
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Table 7: Summary of log-decrement empirical correlations of   

Tube Size (mm) Metric Correlation of Damping Ratio ( )  

4.318   
    

  
      

4.762   
    

  
     

6.350   
    

  
     

9.525   
    

  
     

 

 

Figure 13: Predicted Damping vs. Empirical Damping 
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 Through introducing another dimensionless parameter, the Keulegan-Carpenter number 

(  ), along with the Womersley number (  ), a non-dimensional relation between the damping 

factor ( ) and Womersley number (  ) is established. The new modified analytical solution 

encompasses the additional forces that causes an increases damping that is not accounted for in 

the previous standard theoretical solution. The modified analytical solution seems to agree well 

with experimental damping results according to Figure 13. Table 8 contains a quantitative 

comparison of the two methods of computing the damping ratio ( ) for different fluid lengths. 

 

Table 8: Summary of ( ) for different fluid lengths 

 
D = 3.175 mm D = 4.318 mm D = 4.762 mm D = 6.35 mm D = 9.525 mm 

L (cm)                                         

40 0.251 N/A 0.258 0.167 0.257 0.168 0.265 0.160 0.276 0.169 

50 0.275 N/A 0.278 0.184 0.281 0.185 0.282 0.188 0.288 0.185 

60 0.292 N/A 0.292 0.210 0.293 0.208 0.29 0.204 0.291 0.204 

70 0.318 N/A 0.303 0.228 0.303 0.225 0.301 0.217 0.294 0.215 

80 0.324 N/A 0.314 0.241 0.311 0.239 0.308 0.232 0.297 0.228 

90 0.341 N/A 0.320 0.255 0.319 0.254 0.313 0.245 0.304 0.242 

100 0.347 N/A 0.338 0.268 0.325 0.269 0.317 0.254 0.313 0.248 
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 CONCLUSION 4.0 

The analytical second order model for U-tube manometer is found to be an insufficient model to 

characterize the behavior of fluid flow under a continuous oscillation due to unappropriated 

assumptions such as laminar parabolic flow and the inability to account for additional sources of 

damping. Most of the deviation between the simulated model and the empirical results is 

attributed to the flow reversal effect. During the ascending and descending of the fluid at the 

ends of the tube, the velocity profiles have to adjust to the sudden change of velocity caused by 

the driving force which results in an increase in the damping ratio ( ) values. Empirical 

correlations are determined between the Womersley number and the damping ratio for 

continuous oscillation flow, and the tube diameter effect is accounted for by including the    

number, a common metric for a variety of oscillating flows. The natural frequency of the system 

under continuous oscillation is comparable to that of the damped oscillation, both of which agree 

well with the analytical prediction. The damped oscillation empirical trials indicate that a 

standard second order response model becomes valid as the tube diameter decreases, or as the 

driving pressure becomes large, both of which result in an increase in    number. This work and 

the predictive correlations developed represent the first step in possibly implementing an 

oscillating liquid cooled thermal management solution because in forced oscillating flow inside a 

U-tube manometer, the two most important parameters are the natural frequency (  ) and the 

damping ratio ( ). According to this study, it is possible to predict the dynamics of forced 
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oscillating flow where the natural frequency follows the analytical analysis and the damping 

ratio prediction is established according to the new developed correlations. The next step is to 

integrate the microchannel heat sink and analyze its impact on the dynamics of forced oscillating 

flow which will influence the natural frequency and damping.  

4.1 FUTURE WORK (ADDITON OF MICROCHANNEL HEAT SINK) 

In this section, discussion is made regarding the applicability of oscillating flow as a thermal 

management solution in the field of electronics cooling with the potential application of 

microchannels cooling [9]. Also, the additional parameters which should be studied are discussed 

with their potential impact on the flow behavior when a U-tube manometer is connected to a 

microchannel heat sink, as shown in Figure 14. Figure 14 does not represent the comprehensive 

thermal solution because heat carried by the liquid through microchannel will need to be 

transferred to a radiator so heat is rejected. Microchannel heat sinks with liquid cooling have 

proven to be an effective and suitable alternative cooling solution to air cooling for high heat-

dissipation devices. A microchannel heat sink consists of arrangement of channels and fins. A 

microchannel heat sink is attached directly to the electronic component via a thermal paste to 

improve the conduction of heat to the microchannel base. The cooling fluid travels through the 

channels and transports the heat via forced convection. The thickness of the thermal boundary 

layer is small in microchannel heat sinks due to microscopic nature of the channel geometry [22]. 

As a result, microchannel heat sinks have shown significant cooling rates (large convective heat 

transfer coefficients) from small volumes. To optimize the heat rejection capacity of the system, 

laminar flow has shown the best ability to achieve high cooling rates. In small confined geometries, 
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the small flow rate inside the microchannel heat sink results in smooth (laminar) flow. This means that the 

Nusselt number is constant and the convective heat transfer coefficient becomes inversely proportional to 

the hydraulic diameter of a single channel. The smaller the channels in the heat sink, the higher the 

convective heat transfer coefficient [22]. The air blower utilized in the current research can create 

reasonably high pressure with low flow rates which ideal for microchannel heat sinks, but air 

within heated microchannels is known to be problematic due to choking of the flow from 

moderate to extreme density changes within the channel. To mitigate such issues, the working 

fluid should be a liquid.  

 

 

Figure 14: A sketch of a U-tube oscillating flow system connected to a microchannel heat sink [9] 

 

The continuous oscillating flow model is able to predict the natural frequency and 

damping ratio of the system, but further analysis is needed to couple this with the behavior of 

microchannel heat sinks in combination with a U-tube manometer. Based on Figure 14, the 

 

  

q’’ 
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addition of the microchannel can have a significant impact on the dynamics of the flow. The 

presence of the microchannel heat sink introduces additional pressure losses, which show up in 

the differential equation as added damping terms. This increase in damping ratio, can ultimately 

affect the natural frequency as well, both of which can affect the overall flow rate, a key metric 

for electronics cooling applications. It is anticipated that one could accommodate the change in 

flow cross section from a large tube to multiple microchannels by included standard frictional 

losses for such geometries. This could be implemented in the governing equations providing the 

potential to even model this analytically. When properly armed with the dynamic response, one 

could then easily predict the flow rate through the microchannels, which then provides the 

metrics needed for designing a thermal management solution based on an oscillating flow. 

For the analysis, one would expect some simplifications to be warranted. Considering a 

set of microchannels that are designed to be used in the water cooling of a computer chip as 

shown in Figure 15, one could take the hydraulic diameter (  ) of the channel cross section 

according to Eq. (23).  

 
   

    

        
             (23) 

Taking the viscosity of water (             ⁄ ) and assuming a fluid column length of 60 

cm (suggesting natural frequency of 0.91 Hz or 5.7 rad/s), the Womersley number (  ), can then 

easily be calculated according to Eq. (1),    = 0.215. For the experimental data in the previous 

chapters, the smallest    encountered is around 3. For microchannels, the ability to assume a 

small    enables simplifications to be made in the analysis. For example, the velocity profile can 

be assumed to be parabolic, or at least behave according to a standard steady flow, especially if 

enough pressure is applied to exchange fluid through the entire microchannel length, which 

would suggest a high KC number is achieved. 
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Figure 15: An image of a sample microchannel and the corresponding dimensions [9] 

 

This application should be investigated more thoroughly. This includes developing a 

solution and validating through detailed experiments. Once a complete set of predictive tools is 

established for the flow behavior, efforts should turn to characterizing the thermal performance 

for oscillating flows through the microchannel heat sink.       
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APPENDIX A 

 

 

 

 

EXPERIMENTAL TRIALS OF FORCED OSCILLATION 

 

 

 

 

The remaining experimental trials for the forced oscillation are listed in this section of the paper. 

There are a total of five different tube sizes that are utilized to conduct the experimental trials. 

The tube sizes of 9.525 mm and 6.35 have a fluid length rage from 40 cm to 200 cm (see Figure 

16 -Figure 36), while the remaining tube sizes have a fluid length range from 40 cm to 165 cm 

(see Figure 37 - Figure 67 ). Also there are tables (see Table 9- Table 13 ) that summarize the 

natural frequency and damping ratio results for all the empirical trials based on the second order 

model input to the curve fit tool in MATLAB.       
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Figure 16: Trial for 9.525 mm with 40 cm in fluid length 

 

 

Figure 17: Trial for 9.525 mm with 45 cm in fluid length 
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Figure 18: Trial for 9.525 mm with 50 cm in fluid length 

 

 

Figure 19: Trial for 9.525 mm with 55 cm in fluid length 
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Figure 20: Trial for 9.525 mm with 60 cm in fluid length 

 

 

Figure 21: Trial for 9.525 mm with 70 cm in fluid length 
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Figure 22: Trial for 9.525 mm with 80 cm in fluid length  

 

 

Figure 23: Trial for 9.525 mm with 90 cm in fluid length 
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Figure 24: Trial for 9.525 mm with 100 cm in fluid length 

 

 

Figure 25: Trial for 9.525 mm with 110 cm in fluid length 
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Figure 26: Trial for 9.525 mm with 200 cm in fluid length 

 

 

Figure 27: Trial for 6.350 mm with 40 cm in fluid length 
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Figure 28: Trial for 6.350 mm with 50 cm in fluid length 

 

 

Figure 29: Trial for 6.350 mm with 55 cm in fluid length 
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Figure 30: Trial for 6.350 mm with 60 cm in fluid length 

 

 

Figure 31: Trial for 6.350 mm with 70 cm in fluid length 
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Figure 32: Trial for 6.350 mm with 80 cm in fluid length 

 

 

Figure 33: Trial for 6.350 mm with 90 cm in fluid length 



 52 

 

Figure 34: Trial for 6.350 mm with 100 cm in fluid length 

 

 

Figure 35: Trial for 6.350 mm with 110 cm in fluid length 
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Figure 36: Trial for 6.350 mm with 200 cm in fluid length 

 

 

Figure 37: Trial for 4.762 mm with 40 cm in fluid length 
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Figure 38: Trial for 4.762 mm with 45 cm in fluid length 

 

 

Figure 39: Trial for 4.762 mm with 50 cm in fluid length 
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Figure 40: Trial for 4.762 mm with 55 cm in fluid length 

 

 

Figure 41: Trial for 4.762 mm with 60 cm in fluid length 
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Figure 42: Trial for 4.762 mm with 65 cm in fluid length 

 

 

Figure 43: Trial for 4.762 mm with 70 cm in fluid length 
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Figure 44: Trial for 4.762 mm with 80 cm in fluid length 

 

 

Figure 45: Trial for 4.762 mm with 90 cm in fluid length 
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Figure 46: Trial for 4.762 mm with 100 cm in fluid length 

 

 

Figure 47: Trial for 4.762 mm with 165 cm in fluid length 
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Figure 48: Trial for 4.318 mm with 40 cm in fluid length 

 

 

Figure 49: Trial for 4.318 mm with 50 cm in fluid length 
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Figure 50: Trial for 4.318 mm with 55 cm in fluid length 

 

 

Figure 51: Trial for 4.318 mm with 60 cm in fluid length 
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Figure 52: Trial for 4.318 mm with 65 cm in fluid length 

 

 

Figure 53: Trial for 4.318 mm with 70 cm in fluid length 
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Figure 54: Trial for 4.318 mm with 80 cm in fluid length 

 

 

Figure 55: Trial for 4.318 mm with 90 cm in fluid length 
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Figure 56: Trial for 4.318 mm with 100 cm in fluid length 

 

 

Figure 57: Trial for 4.318 mm with 165 cm in fluid length 
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Figure 58: Trial for 3.175 mm with 40 cm in fluid length 

 

 

Figure 59: Trial for 3.175 mm with 50 cm in fluid length 
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Figure 60: Trial for 3.175 mm with 55 cm in fluid length 

 

 

Figure 61: Trial for 3.175 mm with 60 cm in fluid length 
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Figure 62: Trial for 3.175 mm with 65 cm in fluid length 

 

 

Figure 63: Trial for 3.175 mm with 70 cm in fluid length 
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Figure 64: Trial for 3.175 mm with 80 cm in fluid length 

 

 

Figure 65: Trial for 3.175 mm with 90 cm in fluid length 
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Figure 66: Trial for 3.175 mm with 100 cm in fluid length 

 

 

Figure 67: Trial for 3.175 mm with 165 cm in fluid length 
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Table 9: Summary of   and    for    9.525 mm 

Tube Size (mm) 9.525 

Number of Samples   (cm)   Uncertainty of   (%)    (Hz) Uncertainty of    (%) 

3 40 0.276 2.50 1.08 0.44 

3 45 0.284 2.47 1.08 0.37 

3 50 0.288 2.38 0.976 0.31 

3 55 0.290 2.25 0.960 0.27 

3 60 0.291 2.20 0.867 0.24 

3 70 0.294 1.85 0.866 0.19 

3 80 0.297 1.45 0.862 0.15 

3 90 0.304 1.38 0.784 0.13 

3 100 0.313 1.21 0.731 0.11 

3 110 0.318 1.11 0.728 0.10 

3 200 0.335 0.71 0.480 0.04 
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Table 10: Summary of   and    for    6.350 mm 

Tube Size (mm) 6.350 

Number of 

Samples 
  (cm)   Uncertainty of   (%)    (Hz) Uncertainty of    (%) 

3 40 0.265 1.53 1.09 0.42 

3 50 0.282 1.53 1.04 0.41 

3 55 0.284 1.44 0.939 0.38 

3 60 0.290 1.43 0.885 0.34 

3 70 0.301 1.31 0.878 0.29 

3 80 0.308 1.27 0.865 0.25 

3 90 0.313 1.17 0.797 0.23 

3 100 0.317 0.95 0.736 0.21 

3 110 0.319 0.91 0.731 0.20 

3 200 0.345 0.85 0.502 0.14 
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Table 11: Summary of   and    for    4.762 mm 

Tube Size (mm) 4.762 

Number of Samples   (cm)   Uncertainty of   (%)    (Hz) Uncertainty of    (%) 

3 40 0.257 1.25 1.148 0.39 

3 45 0.270 1.21 1.043 0.36 

3 50 0.281 1.17 0.964 0.33 

3 55 0.285 1.16 0.957 0.29 

3 60 0.293 1.16 0.899 0.27 

3 65 0.299 1.14 0.885 0.25 

3 70 0.303 1.10 0.878 0.22 

3 80 0.311 0.98 0.875 0.19 

3 90 0.319 0.91 0.808 0.17 

3 100 0.325 0.83 0.801 0.10 

3 165 0.363 0.76 0.518 0.05 
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Table 12: Summary of   and    for    4.318 mm 

Tube Size (mm) 4.318 

Number of Samples   (cm)   Uncertainty of   (%)    (Hz) Uncertainty of    (%) 

3 40 0.258 1.54 1.092 0.44 

3 50 0.278 1.50 1.039 0.31 

3 55 0.282 1.47 0.885 0.28 

3 60 0.292 1.43 0.883 0.26 

3 65 0.295 1.35 0.880 0.21 

3 70 0.303 1.35 0.875 0.18 

3 80 0.314 1.24 0.865 0.15 

3 90 0.320 1.18 0.864 0.13 

3 100 0.338 1.11 0.864 0.11 

3 165 0.365 1.04 0.520 0.07 
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Table 13: Summary of   and    for    3.175 mm 

Tube Size (mm) 3.175 

Number of Samples   (cm)   Uncertainty of   (%)    (Hz) Uncertainty of    (%) 

3 40 0.251 1.43 1.084 0.40 

3 50 0.275 1.38 1.049 0.33 

3 55 0.284 1.31 0.945 0.31 

3 60 0.292 1.25 0.891 0.27 

3 65 0.305 1.24 0.876 0.25 

3 70 0.318 1.19 0.870 0.24 

3 80 0.324 1.10 0.799 0.19 

3 90 0.341 0.98 0.798 0.13 

3 100 0.347 0.83 0.797 0.11 

3 165 0.401 0.76 0.543 0.05 
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