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ALK1, a TGF-β type I receptor serine/threonine kinase, is critical for proper vascular 

development.  Heterozygous loss of ALK1 results in the vascular disorder, hereditary 

hemorrhagic telangiectasia type 2 (HHT2), which is characterized by the development of 

arteriovenous malformations (AVMs) and affects 1:8000 people worldwide.  alk1-/- zebrafish 

develop embryonic lethal AVMs which form via a two-step mechanism.  First, loss of alk1 

results in an increase in endothelial cell number in cranial arteries, which results in increased 

vessel caliber.  In the second step, normally transient connections between arteries and veins are 

maintained as an adaptive mechanism to cope with an increased hemodynamic load.  Using 

zebrafish as a tool to study the AVM formation due to loss of Alk1 signaling, I have found that 

Alk1 is required for directed arterial endothelial cell migration in opposition to blood flow.  

Embryos lacking alk1 experience a redistribution of cells, with endothelial cells failing to 

efficiently migrate against the direction of blood flow and accumulating in more distal regions of 

alk1-dependent arteries. This altered cellular distribution causes an increase in arterial caliber 

and consequent retention of downstream arteriovenous connections, resulting in fatal AVMs. 
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Notch and ALK1 have been implicated in arterial specification and loss of function of 

either pathway causes AVMs. Furthermore, ALK1 can cooperate with Notch to upregulate 

expression of Notch target genes in cultured endothelial cells.  These findings have led to the 

hypothesis that Notch and ALK1 collaboratively program arterial identity and prevent AVMs.  I 

modulated Notch and Alk1 activities in zebrafish embryos and examined effects on Notch target 

gene expression and vascular morphology.  Results demonstrate that control of Notch targets is 

context-dependent, with gene-specific and region-specific requirements for Notch and Alk1.  

Although loss of alk1 increases expression of dll4, which encodes a Notch ligand, and enhanced 

Notch signaling causes AVMs, AVMs in alk1 mutants could neither be phenocopied by Notch 

activation nor rescued by Notch inhibition.  In conclusion, Alk1 is dispensable for acquisition 

and maintenance of arterial identity, and perturbations in Notch signaling cannot account or 

AVM development in alk1 mutants. 
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1.0  INTRODUCTION 

1.1 VERTEBRATE VASCULAR DEVELOPMENT 

1.1.1 Origins of the primitive vasculature 

The circulatory system is one of the first organ systems to form in development and is 

responsible for the transport of gases, nutrients, hormones and metabolites throughout the 

embryo.  In all vertebrate embryos, the first blood vessels arise via the process of vasculogenesis, 

the de novo formation of blood vessels from endothelial precursor cells known as angioblasts.  

The molecular mechanisms involved in angioblast differentiation are highly conserved among 

vertebrate species: members of the ETS and FOX transcription factor families are important for 

specifying endothelial cell lineages within mesoderm in fish, mice and humans [1].  

Extraembryonically, blood islands arise within the yolk sac mesoderm of developing 

mammals and avians: the outer cells differentiate into endothelial cells, cells that line the 

vascular lumen, whereas the inner cells differentiate into red blood cells [2, 3]. 

In the embryo proper, cells within the posterior lateral plate mesoderm (PLPM) give rise 

to angioblasts that arrange into clusters by embryonic day (E)7.0 in mice [2], by the 10-somite 

stage in zebrafish [4] , and by the 1-somite stage in quail [5]. These cells migrate individually or 

as groups towards the midline, where they coalesce into cords and lumenize to form the trunk 

axial blood vessels [2, 4, 5]. 
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Cranial vessels develop from anterior lateral plate mesoderm (ALPM) via a hybrid 

vasculogenic and angiogenic process.  Instead of migrating to the midline, angioblasts migrate as 

discrete groups of cells to form large clusters; cells within these clusters proliferate and migrate 

via an angiogenesis-like sprouting mechanism to shape the cranial vessels.  Specifically, within 

the developing zebrafish embryo, two sets of bilateral angioblast clusters form adjacent to the 

midbrain and the most rostral point of the ALPM.  Sprouting from these clusters gives rise to the 

majority of cranial vessels [6].  A similar hybrid vasculogenic/angiogenic mechanism is involved 

in the formation of the pharyngeal arch arteries of mice and zebrafish: individual angiogenic 

clusters (one per arch artery) differentiate in the pharyngeal mesoderm and sprout dorsally to 

connect to the already patent dorsal aorta(e), and ventrally to give rise to the ventral aorta [7-9].  

The ventral aorta connects directly to the outflow tract of the heart, thereby completing the initial 

primitive vascular loop. 

1.1.2 Lumen Formation 

Once a cord of endothelial cells has formed, it must hollow out to carry blood flow. While there 

is some evidence suggesting that cell hollowing (intracellular vacuole formation and fusion) may 

be involved in the formation of vessel lumens in vivo [10], a majority of the evidence now 

indicates that cord hollowing is the predominant mechanism by which vessels lumenize [11-13].  

In the cord hollowing mechanism, apicobasal polarity is established via a Par3-mediated 

redistribution of junctional complexes away from the future apical surface and towards the 

periphery of endothelial cells within a cord [14].  Once polarity has been established, 

podocalyxin (PODXL) and CD34 are recruited to the apical surface [13].  These proteins, which 
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are members of the CD34-sialomucin family of proteins, are cell surface transmembrane proteins 

that mediate de-adhesion [15].  Additionally, PODXL/CD34 recruit moesin, which binds to F-

actin, creating a network of actin filaments along the apical surface of the vessel and allowing 

further separation of apical surfaces via myosin-mediated contraction.  Fluid passively enters the 

luminal space through paracellular gaps that are later resolved, resulting in an enclosed lumen 

[13].   

1.1.3 Elaboration and remodeling of the primitive vasculature 

Angiogenesis is the process by which the basic vessel architecture laid down during 

vasculogenesis is remodeled and expanded. Angiogenesis includes remodeling of capillary 

plexuses into hierarchical structures (Figure 1); sprouting of new vessels from existing vessels; 

and splitting of single vessels into multiple vessels (intussusception) [16].  

During the activation phase of angiogenesis, basal lamina is degraded, mural cells detach 

and there is an increase in endothelial cell proliferation and migration. Vascular endothelial 

growth factor (VEGF) signaling is a critical regulator of angiogenesis and is required for nearly 

all aspects of vascular development.  Signaling induces endothelial cell proliferation, migration 

and supports endothelial cell survival [17, 18].  There are five ligands in the VEGF family, 

VEGFA, VEGFB, VEGFC, VEGFD and placenta growth factor (PlGF), and three VEGF 

receptors, VEGFR1 (also known as FLT1), VEGFR2 (also known as FLK1 and KDRL), and 

VEGFR3 (FLT4).  VEGFR2 and VEGFR3 are tyrosine kinases and ligand binding results in 

receptor dimerization and phosphorylation.  VEGFA binding to VEGFR2 acts as the primary 

positive regulator of angiogenesis.   Phosphorylation of VEGFR2 activates a complex network of 
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intracellular signal transduction pathways including phospholipase C gamma (PLCγ), mitogen-

activated protein kinase (MAPK), protein kinase B (PKB or AKT), focal adhesion kinase (FAK), 

and nitric oxide (NO) signaling [17, 19, 20].  In mice, heterozygous loss of either Vegfa or 

Vegfr2 is embryonic lethal due to decreased vascular density [21].  VEGFC and D interact with 

VEGFR3, and signaling through this receptor is critically important for lymphatic development 

and is involved in early venous specification [22, 23].  VEGFR1 has limited kinase activity [24] 

and acts primarily as a competitive inhibitor of VEGFR2 signaling by binding to VEGFA and 

VEGFB and acting as a ligand sink [25].  Vegfr1-/- mice die embryonically due to a 

hypervascular phenotype [26].   

VEGF ligands and receptors are regulated by a wide variety of mechanisms.  Hypoxia-

inducible factor-1α (HIF-1α) upregulates VEGF signaling in response to tissue hypoxia, resulting 

in increased angiogenesis during tissue growth, development and wound repair [27].  ETS 

transcription factors (involved in angioblast specification as discussed above) can induce the 

expression of VEGF ligands and receptors [28].  Also Notch signaling is critical for regulating 

and restricting expression of specific VEGF receptors during sprouting angiogenesis [29-34]. 

An angiogenic sprout is composed of two different cell types, the tip cell and the stalk 

cell (Figure 2).  Tip cells extend their filopodia towards an angiogenic stimulus and lead the 

sprout, while the stalk cells trail the tip cell and maintain a connection to the parent vessel and 

establish a vessel lumen [35, 36].  Microarray analysis of individual tip and stalk cells isolated by 

laser capture microdissection has revealed cohorts of genes that are differentially expressed in 

the two cell types [37]. VEGFR2 is highly expressed in tip cells and permits cells to migrate 

towards VEGFA, which is expressed in nearby tissues in a morphogenetic gradient.  Delta-like 

ligand 4 (DLL4), a membrane-bound ligand of the Notch pathway, is also preferentially 
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expressed in the tip cell and binds to Notch receptors in the neighboring stalk cell to active Notch 

signaling.  Notch signaling represses expression of VEGFR2 in stalk cells, thereby decreasing 

responsiveness to VEGFA [34, 38-41].  Cells with higher levels of VEGF signaling and lower 

levels of Notch signaling are found in the tip position [29].  However, tip and stalk cells do not 

have a fixed identity in an angiogenic sprout.  Additional genetic interactions between Notch and 

VEGF signaling result in a transient induction of DLL4 mRNA by VEGF [29, 42].  This tight 

regulation of DLL4 results in fluctuating levels of VEGFR2 expression.  This results in a 

dynamic competition between overlapping cells within sprouts for the tip cell position [29, 43]. 
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Figure 1: Arterial and venous differentiation and the formation of AVMs 

 

Arteries (in red) are specified by Vegf-induced activation of Notch signaling, resulting in the expression of hey1, 

hey2, hes1 and ephrinb2. Notch/Dll4 signaling also represses the expression of ephb4 (a venous marker) in the 

arterial endothelium. Veins (in blue) express Coup-TFII, which represses Notch signaling in the venous endothelium 

and vice versa.  High flow arteries have thick walls lined with vascular smooth muscle cells (brown cells) and flow 

into smaller caliber arterioles and finally into capillaries (purple), the location of oxygen and nutrient exchange (blue 

dots).  Venules and then veins receive low magnitude flow and have valves to prevent backflow.  AVMs are direct 

connections between arteries and veins, lacking an intervening capillary bed.  These high flow shunts decrease 

oxygen and nutrient exchange.  Also, veins that are downstream of these high flow shunts are enlarged.  Impaired 

arterial venous specification has been implicated in AVM formation. 
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1.1.4 Vessel stabilization 

During the resolution phase of angiogenesis, endothelial cells cease to migrate and proliferate 

and vessels are stabilized through the deposition of basal lamina and the recruitment of vascular 

smooth muscle cells (vSMCs) and pericytes, a type of vascular support cell [44].  Vascular mural 

cells function to support the endothelial cell layer and are able to contract and regulate vascular 

tone in response to environmental cues [45].  A number of signaling pathways are important for 

the resolution phase of angiogenesis.  Platelet derived growth factor (PDGF) produced by 

endothelial cells attracts PDGFR-expressing pericytes and induces mural cell proliferation [46].  

Additionally, sphingosine-1 phosphate (S1P)/S1P receptor 1 (S1PR1), angiopoetin1/Tie2 and 

Transforming growth factor β (TGFβ) signaling all contribute to vascular maturation through 

pericyte recruitment and/or extracellular matrix deposition [45].  

1.1.5 Arterial and Venous Specification 

Arteries and veins are genetically distinct prior to the onset of blood flow. Shortly after 

angioblasts are specified as endothelial cells they take on an arterial or venous (A/V) identity.  In 

the trunk, sonic hedgehog (shh) expressed in the notochord induces the expression of vegf in the 

somites [47-49].  Vegf signaling induces dll4 expression and Notch activation in the endothelium 

(Figure 1) [49].  It is thought that venous identity is the default identity, while Notch signaling 

confers an arterial identity through the regulation of hey1, hey2 and hes genes [30, 50].   

Additionally, Notch has been shown to regulate ephrinB2 [30].  EphrinB2 is a ligand for 

the EphB4 receptor.  EphrinB2/EphB4 are transmembrane proteins that signal through cell-cell 
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contact and label arterial and venous cells, respectively [51-53].  While Notch signaling induces 

ephrinB2 expression in arterial endothelial cells, loss of Notch signaling results in the ectopic 

expression of ephB4 in these same cells [30].   

 

 

Figure 2: Angiogenic sprouts are composed of tip and stalk cells 

 

Cells leading the way in a sprouting vessel extend filopodia as they migrate toward an angiogenic environmental cue 

(purple dots).  Tips cells (cool colored cells) express high levels of dll4 and vegfr2 in relation to stalk cells (warm 

colored cells), which express notch and vegfr1.  Stalk cells trail the tip cells, maintaining a connection to the parent 

vessel and forming a lumen. Interactions been Notch and Vegf pathways result in a dynamic competition between 

overlapping tip cells. 
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In addition to ephB4 expression in venous endothelial cells, chicken ovalbumin upstream 

promoter transcription factor II (Coup-TFII), also known as nuclear receptor subfamily 2, group 

F, member 2 (Nr2f2) is an orphan nuclear receptor that is cell autonomously involved in 

determining venous identity [54].  Coup-TFII functions to downregulate Notch signaling in 

veins, and ectopic overexpression of coup-TFII in endothelial cells results in the fusion of 

arteries and veins [55, 56].   While it is thought that Coup-TFII functions to inhibit Notch 

signaling and repress arterial specification, Notch signaling has also been shown to block Coup-

TFII expression during arterial differentiation (Figure 1), underscoring the complicated 

interactions involved in determining A/V identity that are not yet fully understood [57, 58].   

While the identity of endothelial cells is genetically determined before the onset of blood 

flow, arterial and venous identity is reversible and highly plastic.  In quail/chick grafting 

experiments, donor arterial or venous cells populate either type of vessel in a host embryo and 

take on the genetic identity of the host vessel [59, 60].  Additionally, time-lapse imaging of chick 

vessel development nicely demonstrates the plastic nature of vessel identity.  As the vascular 

network remodels and arterial sprouts let go of a parent artery and reconnect to the venous 

plexus, they take on a distinct venous identity [61].    Hemodynamic forces also influence vessel 

identity.  Arterial ligation in a chick embryo results in an arterial-to-venous identity change [61].  

These results suggest that vessel identity is first determined through genetic mechanisms, but can 

be altered after the onset of circulation in response to blood flow as the vascular network 

remodels.   
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1.2 BLOOD FLOW AND MECHANOTRANSDUCTION 

1.2.1 Hemodynamic forces in blood vessels 

Prior to the onset of blood flow, vessel development is governed by local paracrine factors. Upon 

the onset of circulation, mechanical forces and endocrine factors influence vessel morphology, 

endothelial cell behavior and maintenance of arterial-venous identity. 

There are three mechanical forces sensed by vessels: shear stress, cyclic strain, and 

hydrostatic pressure.  Shear stress is a frictional force that acts directly on luminal surface of 

endothelial cells, parallel to the surface of the vessel.  It is proportional to the flow rate and 

viscosity of the blood and inversely proportional to the vessel radius.  Cyclic strain results in 

circumferential stretching of the vessel wall, whereas hydrostatic pressure acts perpendicular to 

and pushes outward on the vessel wall.  Whereas shear stress is directly sensed only by 

endothelial cells, cyclic strain and hydrostatic pressure can be sensed by all cells in the vessel 

[62].  Of these forces, shear stress is the best studied.  Vessels attempt to maintain normalized 

forces.  In the face of increased blood flow rate (increased cardiac output) or viscosity, vessels 

will increase their radius to decrease the total shear forces experienced by the endothelial cells.  

Likewise, decreased shear forces result in decreased vessel caliber and in some cases, vessel 

regression [63-67].  

 Different types of shear stress have been shown to result in different biochemical 

responses.  Straight vessels experience pulsatile laminar shear stress associated with high 

magnitude shear forces.  Branched and curved vessels experience disturbed flow and low shear 

stress [62].  These different types of flow have different effects on gene expression and 
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endothelial cell behavior [68].  High pulsatile laminar shear stress activates Krüppel-like factor 2 

(KLF2), a flow regulated transcription factor that favors vessel quiescence [69-71], while 

disturbed flow activates nuclear factor kappa B (NF-κB), resulting in an activated inflammatory 

response [72].  KLF2 inhibits the expression of NF-κB responsive genes, suggesting a 

mechanism by which an inflammatory response is silenced as the endothelium establishes a 

laminar shear flow pattern and the vessels become quiescent [73]. To accomplish these changes, 

the vessels need to be able to sense these different flow patterns and mechanical forces and then 

translate them into a biochemical response.    

1.2.2 Mechanosensation of shear stress 

It is not yet fully understood how shear stress is sensed nor how sensation is transduced to 

changes in gene expression and cell behavior. However, the primary cilium, cell-cell adhesion 

dynamics, the glycocalyx and nuclear hydrodynamic drag have all been implicated in vascular 

mechanosensation of shear stress (Figure 3) [62, 74].  

1.2.2.1 Primary cilia  

Primary cilia (Figure 3) are composed of microtubules arranged in a 9+0 pattern.  They are 

nonmotile and reside on the apical surface of a cell.  In endothelial cells, cilial bending results in 

a transient calcium influx that ultimately results in the production of NO, a potent vasodilator 

[75].  However it is unlikely that this is the primary means of mechanosensation.  In regions of 

disturbed flow, some endothelial cells have a primary cilium [76, 77], whereas cells experiencing 

high physiological levels of shear stress dismantle their primary cilium [78-80].  Additionally, 
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while this mechanism would relay flow magnitude to the cell, it is unclear how the calcium 

influx could translate directional information [74].   

1.2.2.2 Glycocalyx 

The endothelial glycocalyx (Figure 3) consists of sulfated proteoglycans, hyaluronan and 

glycoproteins creating a gel-like layer that covers the apical membrane of endothelial cells [81].  

The glycocalyx serves many functions including regulating vascular permeability and the 

formation of docking sites for plasma-derived molecules, creating microenvironments of growth 

factors and atheroprotective proteins [82].   In relation to mechanotransduction, it is thought that 

the glycocalyx is displaced in the direction of flow and transduces mechanical forces to the actin 

cytoskeleton via adherens junctions [83]. 

1.2.2.3 Adherens complex 

Platelet endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial cadherin 

(VECAD) are endothelial-specific proteins that localize to adherens junctions.  Along with 

VEGFR2, these cadherins have been implicated in a flow-sensing complex that is critical in 

transducing shear stress into a biochemical response (Figure 3).  PECAM-1 is thought to act as a 

direct mechanosensor because cultured endothelial cells incubated with PECAM-1 antibody-

coated magnetic beads exhibit rapid PECAM-1 phosphorylation upon application of magnetic 

force, similar to that seen upon application of fluid shear stress. [84].  Through a mechanism that 

is not yet fully understood, shear stress leads to an accumulation of VEGFR2 at adherens 

junctions, and shear stress-induced phosphorylation of PECAM-1 results in ligand-independent 

phosphorylation of VEGFR2.  With VECAD acting as a scaffolding protein, VEGFR2 initiates a 
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series of molecular events beginning with the activation of phosphatidylinositol-3-kinase (PI3K) 

and Akt [85].   Akt activation enhances NO production [86, 87], and increases activation of 

integrins [85], resulting in a cascade of molecular pathways that result in an endothelial cell 

response to flow. 

1.2.2.4 Hemodynamic drag  

In response to shear stress, endothelial cells become planar polarized, with the golgi apparatus 

and the microtubule organizing center positioned upstream of the nucleus with respect to the 

direction of flow (Figure 3).  This arrangement has been shown to be dependent on PECAM-

1/VEGFR2/VECAD mechanosensing complex [85]; however a direct mechanical push on the 

nucleus may also be a major factor in this polarization [74].  The bulge of the nucleus slightly 

protrudes into the lumen of the vessel and hydrodynamic drag pushes the nucleus downstream.  

The nuclear envelope, which is attached to the actin cytoskeleton, gradually rearranges as the 

location of the nucleus shifts.  If the actin cytoskeleton is weakened by latrunculin treatment, 

there is less resistance to the downstream nuclear shift, and the endothelial cells polarize faster in 

the presence of flow [74].  In support of this model, a Nesprin-mediated link between the actin 

cytoskeleton and the nuclear envelope is necessary for shear stress induced endothelial cell 

polarization [88].  
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Figure 3: Mechanosensation of shear stress, four possible mechanisms 

 

1: Primary cilia are displaced by blood flow resulting in a calcium influx, resulting in the production of NO.  2: The glycocalyx on the surface of endothelial cells 

bends in the direction of flow, transducing mechanical forces to the actin cytoskeleton via adherens junctions.  3: Shear stress activated PECAM-1 

phosphorylates VEGFR2 and together with VECAD initiates signaling cascades that alter gene expression and cell behavior.  4: The nucleus bulges into the 

lumen of the vessel, experiencing hemodynamic drag, and orients itself downstream of the golgi apparatus and the microtubule organizing center, relaying both 

direction and strength of force to the actin cytoskeleton 
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1.3 ARTERIOVENOUS MALFORMATIONS 

1.3.1 Anatomical and functional differences between different types of blood vessels 

Arteries and veins (Figure 1) have developed structural features that reflect differences in the 

hemodynamic factors that each vessel type encounters.  Arteries carry blood away from the heart 

and are designed to cope with high hemodynamic forces (pressure, shear stress, stretch): they 

have thick walls composed of several layers of smooth muscle and elastic fibers [16, 62]. 

Arteries lead to smaller caliber arterioles, which then ramify into a complex network of thin-

walled capillaries [16]. Capillaries are sparsely supported by pericytes and serve as the site of 

nutrient and oxygen exchange [45]. As blood flows though the highly branched capillary bed, 

velocity decreases dramatically, and thus veins experience much lower magnitudes of 

hemodynamic force [89]. Accordingly, veins have thin walls and valves, which function to 

prevent back flow of blood.  

1.3.2 Anatomy of AVMS 

Arteriovenous malformations (AVMs) are direct, high flow connections between thick walled 

arteries and thin walled veins, lacking an intervening capillary bed. Over time, these connections 

become increasingly complex and tortuous, forming a tangled web of enlarged vessels, or nidus, 

which leads to a grossly enlarged draining vein. These malformations acquire a thick smooth 

muscle coat, thereby barring gas exchange (Figure 1) [90, 91]. Although the etiology of AVMs is 
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unclear, there is evidence to suggest that in some cases they arise due to failed regression of 

normally transient arterial/venous connections, or failed repulsion between arteries and veins due 

to improper arterial/venous (A/V) specification [53, 92].   

1.3.3 Clinical consequences of AVMs 

The clinical consequences of an AVM will depend on the location and size of the lesion. 

Generally, AVMs decrease gas exchange and cause localized ischemia, and these malformations 

may rupture due to the inability of veins to handle high magnitudes of mechanical forces [91]. 

Specifically, cerebral AVMs may cause localized ischemia or hemorrhagic stroke; pulmonary 

AVMs rarely rupture but can lead to cyanosis, brain abscess, transient ischemic attacks, and 

embolic stroke; and very high flow hepatic AVMs can lead to high output cardiac failure [93]. 

AVMs connecting small, mucocutaneous vessels are known as telangiectasias. Dermal 

telangiectasias may bleed but are primarily a cosmetic issue, whereas bleeding from GI and nasal 

telangiectasias can cause anemia and severe hemorrhage [94]. 

1.3.4 Genetic basis for AVMs 

A majority of AVMs are sporadic, however, a subset of these vascular lesions is caused by 

genetic mutations. Capillary malformation-arteriovenous malformation (CM-AVM) is caused by 

heterozygous mutations in Rasa1, which encodes RAS p21 protein activator 1, and is 

characterized by multiple small capillary malformations [95].  Hypotrichosis-lymphedema-

telangiectasia syndrome (HLTS) results from mutations in Sox18, a known regulator of Dll4, and 
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results in telangiectasias, lymphatic defects and renal failure [96].  Ataxia-Telangiectasia is an 

autosomal recessive mutation in Ataxia-telangiectasia mutated (ATM) gene.  ATM is a 

serine/threonine protein kinase and is critical for normal repair of double stranded DNA breaks.  

As such, patients harboring mutations in this gene suffer from a wide array of symptoms 

including compromised immune systems, gonadal dysgenesis and telangiectasias [97].  

Mutations in genes involved in the TGFβ signaling pathway are linked to the vascular dysplasia 

hereditary hemorrhagic telangiectasia (HHT) [98], the disease that is the main focus of my 

research.   

1.3.5 Hereditary Hemorrhagic Telangiectasia 

HHT, also known as Osler-Rendu-Weber syndrome, is a genetic disorder characterized by a 

predisposition to telangiectasias and AVMs. HHT is estimated to affect approximately 1:8000 

individuals. However, due to the nonspecific symptoms (e.g. frequent nosebleeds) and variability 

in expressivity and age of onset of this disease, HHT is thought to be significantly 

underdiagnosed [98].  

1.3.6 Genotype/phenotype correlations in HHT 

Heterozygous mutations in members of the TGF-β signaling pathway are causally related to 

HHT.  Mutations in Endoglin (ENG), a co-receptor in the pathway, result in HHT1 [99].  

Mutations in ACVRL1, which encodes the TGF-β type I receptor, ALK1, result in HHT2 [100].  

Additionally, mutations in SMAD4, a critical intracellular signal mediator within this pathway, 
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result in a combined juvenile polyposis-HHT syndrome [101].  Two additional loci on 

chromosomes 5q31.3-32 and 7p14 have been linked to HHT; however, the responsible genes 

within these loci have not yet been identified [102, 103].  HHT1 and HHT2 present with 

different phenotypic severity and location.  HHT1 patients tend to experience more severe 

symptoms with an earlier age of onset.  49-75% of HHT1 patients present with pulmonary 

AVMs (PAVMs), 15-20% with cerebral AVMs (CAVMs) and 2-8% with hepatic AVMs 

(HAVMs).  Between 60-72% of HHT1 patients have GI telangiectasias with approximately 18% 

of these patients experiencing bleeding [104-106].  HHT2 patients are typically diagnosed 

around the age of 40 and, compared to HHT1 patients, present with similar incidences of GI 

(gastrointestinal) telangiectasias/bleeding and lower incidences of PAVMS and CAVMs (5-44% 

and 0-2%).  However, the incidence of HAVMs is between 28-84% in these patients [104-106].  

The reason for the differences in the phenotypic severity and presentation between the two HHT 

sub-groups is unknown but may reflect differential tissue distribution or function of Endoglin 

and Alk1 [107].   

1.3.6.1 ALK1 signaling  

Overview of TGF-β family signaling 

  In TGF-β signaling, dimeric ligand binds to a heterotetrameric complex of type I and type II 

receptors.  Upon ligand binding, the type II receptor phosphorylates the type I receptor.  The type 

I receptor then phosphorylates Smad transcription factors.  Once activated, Smad proteins bind to 

the common partner Smad, Smad4, and translocate into the nucleus to regulate the transcription 

of target genes (Figure 4).  TGF-β superfamily signaling involves seven type I receptors (ALK1-
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ALK7) and five type II receptors (ActRIIA, ActRIIB, BMPRII, TGFβII and AMHRII), all of 

which are serine/threonine kinases.  Ligand binding to a heterotetrameric complex of type I and 

type II receptors can be facilitated by a type III receptor, ENG, which does not have enzymatic 

activity [108].  The family of TGF-β ligands is large and can be divided into multiple sub-

families. Ligands in the TGF-β and activin subfamilies bind to receptor complexes that 

phosphorylate Smad2 and Smad3.  Bone morphogenetic protein (BMP) ligands bind to different 

receptor complexes that phosphorylate Smad1, Smad5 and Smad9 [109]. 

Alk1 in vascular development 

ALK1 is a transmembrane protein containing an extracellular N-terminal domain that binds 

ligand, a short, single pass transmembrane domain and a large intracellular domain.  The 

intracellular domain contains three main motifs: a GS domain, a serine/threonine kinase domain 

and a cytoplasmic tail.  The GS domain is phosphorylated by the type II receptor and contains a 

highly conserved TTSGSGSG motif [110, 111].  To date, 434 mutants in Alk1 have been 

identified, of which 50% have been found to be pathogenic 

(http://www.arup.utah.edu/database/hht/).  Of these, 46% are missense mutations.  Limited in 

vitro analysis of HHT2-associated ALK1 mutations suggests that the majority of mutant proteins 

are localized to the cell surface and are able to bind to BMP9 (except for mutants in the 

extracellular domain), and that mutant protein does not affect activity of wild type protein [112, 

113]. These data indicate that these mutations do not act as a dominant negative and suggest 

instead that phenotypes result from a haploinsufficiency [112].   

 

 



20 

 

 

 

Figure 4: BMP/Alk1 signaling 

 

Circulating Bmp9 or Bmp10 bind to a heterotetrameric complex consisting of two type I 

receptors (Alk1), two type II receptors (ActRIIA, ActRIIB or BMPRII) and the type III 

accessory receptor, Endoglin.  Activated Alk1 phosphorylates Smad1/5/9, releasing it from an 

auto-inhibitory fold and allowing it to complex with Smad4, the common partner Smad.  The 

activated Smad complex translocates to the nucleus where it binds DNA and affects the 

transcription of target genes.     
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Alk1 null mice are embryonic lethal at E11.5 due to enlarged vessels, impaired vascular 

remodeling, decreased vascular support cell coverage and AVMs [114, 115].  Heterozygous 

adults exhibit age-related dilated vessels, hemorrhage and bleeding within the GI tract [116].  

Endothelial-specific deletion of Alk1 during embryogenesis results in AVMs and is lethal by 

postnatal day 5 [117, 118].  Endothelial-specific deletion in adulthood is also lethal within 10-14 

days of deletion due to vascular defects, mostly within the GI tract.  However, development of 

dermal telangiectasias in these mice requires wounding. These data suggest that active 

angiogenesis is required for AVM and telangiectasia development in the absence of Alk1. [119, 

120].   

Zebrafish lacking alk1 develop cranial AVMs in 100% of embryos by 36 hours post 

fertilization (hpf) and die by 5 days post fertilization (5 dpf). Heterozygous embryos have no 

phenotype and adults appear to be indistinguishable from their wild type siblings [92, 121].  

While no apparent vascular phenotype has been observed in alk1 heterozygous adults, the 

condition has not been studied thoroughly.   

Endoglin in vascular development    

ENG is an integral membrane protein that functions as a homodimer in conjunction with type I 

and type II TGFβ receptors to facilitate ligand binding [122].  BMP9 and BMP10 have been 

shown to bind directly to ENG [123, 124].  Homozygous mutant Eng mice die between E10.5-

11.5 due to cardiac and vascular defects including enlarged vessels, impaired vascular 

remodeling and a decrease in vascular support cells [125-128].  However, these mice do not 

develop severe AVMs, as would be expected based on HHT1 patients.  This is most likely due to 

cardiac defects resulting in early lethality. In support of this idea, neonatal endothelial-specific 
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deletion of Eng results in AVMs in a high percentage of mice  [129], and adult mice harboring a 

single Eng mutation tend to develop age-related HHT-like phenotypes including nosebleeds, 

enlarged vessels and telangiectasias [126, 130, 131].   

ALK1 Ligands, BMP9 and BMP10 

BMP9 and BMP10 have recently been identified as the physiologically relevant ligands for 

ALK1 signaling and vascular development [112, 132-135].  BMP9 and BMP10 are highly 

related proteins, sharing 65% sequence identity at the protein level.  Both proteins undergo very 

similar biosynthesis [112, 136].  Pre-pro-proteins are cleaved by convertase enzymes such as 

furin into a prodomain and mature peptide.  After secretion, the prodomain remains associated 

with the mature peptide through non-covalent interactions.  BMP9 is active when associated with 

the prodomain and able to bind to ALK1 and induce Smad1/5 phosphorylation [136].  However, 

BMP10 is latent until the prodomain is removed [137].  Although the metalloproteinase BMP-1 

(unrelated to BMP ligands) can cleave the BMP10 prodomain in vitro [137], the mechanism by 

which BMP10 is activated in vivo is not understood. Perhaps mechanical forces, interactions 

with the extracellular matrix or accessory receptors are required to dissociate the prodomain 

from the BMP10 mature peptide in a physiologic setting.  

In humans, BMP9 is expressed in the liver (hepatocytes, biliary epithelial cells) and 

circulates in its biologically active form at 110 pg/ml in serum [133, 138, 139].  In mice, Bmp9 is 

also expressed in liver as early as E9.75 and is simultaneously detectable in serum.  Bmp9 null 

mice have no vascular defect and are viable [140]. BMP10 is produced by the heart [141], 

specifically within the ventricular cardiomyocytes  as early as E8.5 then restricted to the atrial 

cardiomyocytes by E16.5 in mice [140], and is also detectable in mouse and human serum [112, 
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142], though in an inactive prodomain-bound complex [112].  BMP10 null mice die at E10.0 

from failed trabeculation and AVMs.  Interestingly, vascular but not cardiac defects in these 

mice could be rescued by the insertion of Bmp9 into the Bmp10 locus [140].  Together, these 

data suggest that BMP9 and BMP10 are endocrine ALK1 ligands, and that BMP9 can 

functionally compensate for BMP10 in the vasculature if expressed in a BMP10-like 

spatiotemporal pattern.  

In zebrafish, morpholino oligonucleotide mediated knockdown of bmp9 is not lethal but 

results in a failure of the caudal vein to properly remodel [143].  These embryos do not develop 

enlarged cranial shunts similar to those observed in alk1 mutants [92, 121].  Like in mice, bmp10  

is expressed earlier than bmp9 and concomitant knockdown of bmp10 and bmp10-like (a 

zebrafish bmp10 paralog) results in large cranial shunts and is embryonic lethal [135].  Together 

with the data from the mouse models, these results suggest that in early development, BMP10 is 

necessary for embryonic vascular development and BMP9 and BMP10 ultimately function 

redundantly to maintain normal vasculature.   

Type II receptors that complex with ALK1 

Ligand binds to a heterotetrameric complex of type I and type II receptors.  Type II receptors are 

thought to be constitutively active and phosphorylate the type I receptors when they are brought 

into a complex together by ligand binding.  BMPs have been shown to preferentially interact 

with ActRIIA, ActRIIB or BMPRII [109].   
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1.4 ZEBRAFISH AS A MODEL SYSTEM FOR STUDYING HHT-ASSOCIATED 

AVMS AND ALK1 SIGNALING 

1.4.1 General attributes of the zebrafish model 

 Zebrafish are an excellent model system for the study of vertebrate development.  

External fertilization, small size, and optical clarity allow for the observation of development 

from the 1-cell stage.  Development occurs rapidly, with gastrulation occurring at 6 hpf, 

heartbeat beginning at 24 hpf and circulation through the head and tail of the embryo by 27 hpf 

[144].  Furthermore, using confocal or two-photon microscopy, development or particular organ 

systems can be monitored with high spatiotemporal resolution in live transgenic embryos 

expressing fluorescent proteins under the control of cell type-specific promoters.  

Zebrafish are also amenable to genetic manipulation.  DNA and RNA can be injected 

easily into 1-cell stage zebrafish embryos to ectopically express genes in a tissue-specific manner 

or globally, respectively. In addition, genes of interest can be knocked down transiently using 

morpholino-modified antisense oligonucleotides.  These short (~25 bases) oligos are highly 

stable and contain a morpholine ring in place of the deoxyribose ring and non-ionic 

phosphorodiamidate group in place of the anionic phosphodiester linkages between bases [145].  

They are designed to target specific mRNA sequences and through steric inhibition block either 

translation of the message or proper mRNA splicing [146, 147].   

Forward genetic screens using N-ethyl-N-nitrosourea (ENU) mutagenesis, viral insertion 

mutagenesis or transposon-mediated gene disruption have generated thousands of genetic 

mutants that are used to study gene functions and signaling cascades important for embryonic 
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and larval development [148].  More recent advances in reverse genetics have allowed for the 

targeted disruption of genes using TALEN and CRISPR/Cas9 technology [149, 150]. 

In addition to genetic approaches, zebrafish are easily manipulated using 

pharmacological approaches.  Addition of soluble small molecules to the water in which the 

embryos are reared allows researchers to perturb specific biochemical pathways using previously 

characterized drugs, and to perform large scale, medium throughput chemical screens to identify 

novel small molecules that perturb particular signaling pathways or developmental processes. 

[148].  Together, these attributes make zebrafish an extremely powerful system for the study of 

vertebrate vascular development in a physiologically relevant in vivo setting.   

 

1.4.2 Zebrafish alk1 mutants develop cranial AVMs 

1.4.2.1 Zebrafish cranial blood vessel development:  

Embryonic zebrafish vascular morphology has been studied in great detail, first through the use 

of confocal microangiography and then through live time-lapse imaging of transgenic embryos 

expressing fluorescent proteins under the control of endothelial-specific promoters [6, 144].  

Microangiography specifically highlights vessels that are lumenized and carrying plasma/blood 

flow, while imaging of transgenics allows assessment of development both prior to and 

subsequent to lumen formation.  By utilizing both techniques, a complete understanding of 

vessel formation and maturation can be gained.  .   
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1.4.2.2 alk1-/- AVMs arise via a two-step process 

The spatial and temporal predictability of shunt formation in alk1-/- zebrafish embryos make 

them an ideal model for studying the molecular and cellular missteps that lead to AVM 

formation.  In the absence of Alk1 signaling, zebrafish embryos develop grossly enlarged cranial 

arteries that contain supernumerary endothelial cells: alk1-/- embryos have a 1.2-fold increase in 

the number of endothelial cells in the BCA/PCS beginning at 32 hpf and a 1.8-fold increase by 

48 hpf [92, 121, 135]. By 40 hpf, AVMs form downstream of these arteries, between the BCA 

and PMBC (anterior shunt) and/or the BA and PHBC (posterior shunt) [92].  Thus, arterial 

enlargement precedes shunt formation. Time-lapse confocal microscopy has revealed that AVMs 

are the result of failed regression of one or more transient BCA/PMBC or BA/PHBC 

connections.  These connections are retained in alk1 mutants only in the presence of blood flow, 

suggesting that the increased shear stress caused by cranial arterial enlargement triggers an 

adaptive response aimed at normalizing hemodynamic force [92]. In sum, these data support the 

idea that AVM development in alk1 mutants is not genetically determined but instead represents 

a two-step process that involves genetically programmed arterial enlargement followed by an 

Alk1-independent response to changes in the hemodynamic environment [92].  

1.4.3 alk1 expression is regulated by blood flow 

Alk1 is expressed in arteries that are proximal to the heart in zebrafish embryos.  Beginning at 26 

hpf, alk1 expression can be observed in the AA1 and the LDA, vessels that are a part of the 

initial circulatory loop.  Shortly thereafter, expression within the ICA can be detected followed 

by CaDI and BCA expression at 30 hpf.  It is interesting to note that alk1 is not expressed in the 



27 

 

PCS or BA, and is restricted in the cranial arterial endothelium to arteries that are proximal to the 

heart and experience the highest magnitude of hemodynamic forces [92, 121].  In silent heart 

(sih) embryos, which lack heartbeat and therefore blood flow, overall vascular patterning is 

normal; however, alk1 is not expressed, indicating that flow is required for alk1 expression.  

Additionally, pharmacological inhibition of heartbeat also inhibits alk1 expression [92].  

Maintenance of alk1 expression is also highly dependent on flow.  In experiments where flow 

was stopped after alk1 expression had been initiated, expression quickly faded in a distal-to-

proximal pattern. Upon restoration of heartbeat, alk1 expression was detectable within an hour in 

the AA1 and completely restored by 8 hours (Jim Donovan, unpublished data).  In gata1 mutant 

embryos, which lack erythrocytes, alk1 expression is unaffected, indicating that expression is not 

dependent on endothelial-cell/red blood cell interaction [92].  

1.4.3.1 Alk1 lies downstream of blood flow in phosphorylation of Smad1/5/9  

Alk1 activity within the vascular endothelium can be assayed by assessing pSmad1/5 [110, 133, 

134], which is absent in alk1 mutants and in sih morphant embryos lacking blood flow (and 

therefore also lacking alk1 expression) [135].  Stable transgenic expression of alk1 driven by a 

flow-independent vascular endothelial promoter is able to rescue pSmad1/5 in alk1 mutants but 

not sih morphants, suggesting that flow is necessary for Alk1 activity as well as expression 

[135]. Accordingly, injection of recombinant human BMP10 protein directly into the base of the 

CaDI of flow-deprived embryos ectopically expressing alk1 was able to restore pSmad1/5, 

suggesting that blood flow is required to activate Alk1 signaling by circulating Bmp10, which is 

produced in the heart [135] (Figure 5).  
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Figure 5: Blood Flow/BMP10/Alk1 Schematic 

BMP10 is a circulating angiogenic factor and is delivered to the Alk1 receptor upon the onset of flow.  This results 

in the activation of Alk1, Alk1-dependent phosphorylation of Smads 1/5/9 in the arterial endothelium, and increased 

expression of alk1 and edn1 and the repression of cxcr4a. 

 

 

1.4.3.2 Alk1 lies downstream of blood flow in expression of some shear stress responsive 

genes 

A subset of genes that is known to be regulated by shear stress is dysregulated in alk1-/- embryos.  

Endothelin-1 (Edn1), a vasoactive peptide expressed within the vascular endothelium and/or 

vascular smooth muscle, has been shown to be negatively regulated by laminar shear stress and 

positively regulated by cyclic strain [151-153].  Interestingly, vascular edn1 expression is 

restricted to alk1-positive arteries in the developing zebrafish.  In the absence of Alk1 signaling 
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or blood flow, edn1 expression is lost, indicating that alk1 is either directly or indirectly required 

for edn1 expression.  Cxcr4a is a promigratory chemokine receptor and has been shown to be 

negatively regulated by laminar shear stress [154].  cxcr4a expression is increased in alk1-

postive arteries in the absence of Alk1 or blood flow (Figure 5).   

Not all flow responsive genes are dysregulated in alk1-/- embryos.  klf2a, a transcription 

factor known to integrate shear stress-responsive pathways, is positively regulated by shear stress 

[70, 151] and expression is completely lost in zebrafish embryos lacking blood flow [92].  

However, klf2a expression is unaffected in alk1-/- embryos [92].  These results suggest that Alk1 

signaling may act upstream of edn1 and cxcr4a in a klf2a-independent flow responsive pathway 

required to limit endothelial caliber upon the onset of flow.   In support of this hypothesis, 

BMP10 protein injection coupled with transgenic, flow-independent alk1 expression restored 

cxcr4a and edn1 expression and endothelial cell number to wild type levels in the absence of 

blood flow [135] (Figure 5).  

1.5 NOTCH SIGNALING AND AVMS 

With its membrane bound ligand and receptors, Notch signaling allows communication between 

neighboring cells.  It is a fundamentally conserved signaling pathway that is used reiteratively in 

the development of many different tissues and has been shown to regulate proliferation, 

apoptosis, self-renewal and differentiation.  Notch signaling is highly context specific and 

therefore it is unwise to make generalized predictions on how Notch signaling will influence the 

development of one cell type based on results of another [155]. Throughout much of the 
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introduction, I have touched on Notch signaling and its key roles in angiogenesis, specifically in 

tip and stalk cell determination, regulation of VEGF signaling and arterial-venous identity. Notch 

signaling is implicated in the formation of AVMs, and there is also a large amount of evidence 

suggesting that a Notch and Alk1 interaction is important for proper vascular development. 

1.5.1 Notch pathway summary 

Notch receptors are single-pass transmembrane proteins that contain an extracellular ligand 

binding domain and an intracellular domain critical for Notch signal transduction.  Notch ligands 

are transmembrane proteins from the Delta-like ligand (Dll) and Jagged families.  Of these, Dll4 

has the most prominent role in vascular development. The notch intracellular domain (NICD) is 

processed upon ligand binding by ADAM metalloproteases [156], which activate the receptor, 

and then further cleaved by γ-secretase enzymes that release the activated NICD into the cell 

[157].  The intracellular domain of the Notch receptor binds to CSL (Cp-binding factor 1 (CBF-

1), Suppressor of hairless [Su(h)], and Lag-1), also known as recombination signal sequence-

binding protein-J kappa (RBPJκ) [158].  In the absence of NICD, RBPJκ acts as a transcriptional 

repressor.  Binding of NICD to RBPJκ converts the complex to a co-activator and results in the 

transcription of Notch target genes, including the hairy and enhancer of split-1 (HES1) family 

[155, 159].   
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1.5.2 Perturbation of Notch signaling results in AVMs 

Arterial/venous specification and its role in AVM prevention are evidenced by Notch 

perturbations resulting in these vascular malformations in zebrafish and mice.  In zebrafish, 

mutations in the mindbomb (mib), a regulator of Notch ligand endocytosis, results in the 

formation of AVMs as well as impaired arterial/venous specification [30, 160]. While mutations 

in hey2 results in defects in dorsal aorta due to altered arterial/venous identity [160, 161].   

Similarly in mice, decreased expression of the Notch ligand, dll4 or endothelial specific deletion 

of RBPJκ results in loss of arterial specification and AVMs that are small in caliber and appear 

atretic [162, 163].  Ectopic activation of Notch signaling also results in improper A/V 

specification and vascular abnormalities.  Zebrafish ectopically overexpressing the NICD in the 

vascular endothelium have enlarged vessels and decreased expression of venous ephB4 [164, 

165], and expression of a constitutively active Notch4 (Notch4CA) in the mouse endothelium 

results in venous expression of arterial markers and AVMs in the liver, uterus, skin, brain and 

lung of adult mice [166-169].  Brain AVMs that result from inducible transient expression of 

Notch4CA are reversible: when the transgene is turned off, vessels shrink back to normal size 

and A/V marker expression is restored [170].  While AVMs resulting from decreased Notch 

signaling are small in caliber, Notch overexpression AVMs are large and contain an increased 

number of endothelial cells [31, 166, 168, 171, 172]. 
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1.5.3 Evidence for Notch/Alk1 interactions 

Evidence from cultured endothelial cells demonstrates that Smad1/5 can bind to the promoters of 

the canonical notch target genes, hey1, hey2 and hes1 and enhance expression [173], and Alk1 

activation increases expression of some Notch targets [32, 174, 175], In addition, Notch target 

gene expression is synergistically increased by simultaneous Notch and Alk1 pathway activation 

[175].  BMP9/ALK1 effects were found to be independent of RBPJκ suggesting that Alk1 

signaling through Smad1/5 may function to reinforce arterial identity independent of NICD/ 

RBPJκ [175].  Phenotypic evidence of an interaction between Notch and Alk1 signaling is less 

convincing.  While inhibition of both pathways separately has been shown to enhance VEGF-

stimulated angiogenesis both in cell culture and in vivo, combined inhibition does not appear to 

have an additive effect [175].  Similarly, constitutively active Notch or Alk1 has been shown to 

inhibit sprouting with no increased effects of combined pathway activation [174].  And lastly, the 

inhibition of either pathway does not alter phenotypic effects of activation of the other [174].  A 

better understanding of how each of these pathways function and interact is required to 

understand why an apparent genetic synergy does not translate into a phenotypic synergy.   

1.6 SUMMARY AND DISSERTATION AIMS 

Patients with HHT2 develop AVMs due to a mutation in ALK1 [91, 112, 113], but the function 

of ALK1 in endothelial cells and the natural history of AVMs is unknown. Zebrafish alk1 mutant 

embryos develop enlarged arteries containing supernumerary endothelial cells, causing a change 
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in hemodynamic environment that leads to AVMs [92, 121, 135].  The source of the additional 

endothelial cells has been thought to be a result of increased proliferation and/or migration, 

supporting the hypothesis that Alk1 signaling is antiangiogenic and contributes to vessel 

stabilization [132, 176].  Here, I show that the increase in endothelial cell number in the cranial 

arterial endothelium is due to an improper distribution of cells.  Arteries proximal to the heart 

experience a decrease in cell number due to an accumulation of cells in the more distal arteries.  

These data suggest that Alk1 is required for directed endothelial cell migration towards the heart 

and in opposition to blood flow. 

In addition, an interaction between Alk1 and Notch signaling pathways has been thought 

to be important for proper vascular development and AVM prevention [175, 177].  Here I 

demonstrate that Alk1 and Notch signaling have context specific interactions in the regulation of 

the expression of some Notch target genes, but there are only weak phenotypic interactions 

between the two pathways in vivo.   
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2.0  ALK1 ALLOWS ARTERIAL ENDOTHELIAL CELLS TO RESIST MIGRATION 

IN THE DIRECTION OF BLOOD FLOW  

ALK1, a TGF-β type I receptor serine/threonine kinase, is critical for proper vascular 

development.  Heterozygous loss of ALK1 results in the vascular disorder, hereditary 

hemorrhagic telangiectasia type 2 (HHT2), which is characterized by the development of 

arteriovenous malformations (AVMs) and affects 1:8000 people worldwide.  alk1-/- zebrafish 

develop embryonic lethal AVMs which form via a two-step mechanism.  First, loss of alk1 

results in an increase in endothelial cell number in cranial arteries, which results in increased 

vessel caliber.  In the second step, normally transient connections between arteries and veins are 

maintained as an adaptive mechanism to cope with an increased hemodynamic load.  Using 

zebrafish as a tool to study the AVM formation due to loss of Alk1 signaling, I have found that 

Alk1 is required for directed arterial endothelial cell migration in opposition to blood flow.  

Embryos lacking alk1 experience a redistribution of cells, with endothelial cells failing to 

efficiently migrate against the direction of blood flow and accumulating in more distal regions of 

alk1-dependent arteries. This altered cellular distribution causes an increase in arterial caliber 

and consequent retention of downstream arteriovenous connections, resulting in fatal AVMs. 
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2.1 INTRODUCTION 

Hereditary hemorrhagic telangiectasia (HHT) is a haploinsufficiency characterized by a 

predisposition to development of arteriovenous malformations (AVMs). These fragile, direct 

connections between arteries and veins can lead to hemorrhage or stroke. HHT is caused by 

defects in transforming growth factor-beta (TGF-β) superfamily signaling. Specifically, 

mutations in the type III accessory receptor, endoglin (ENG), cause HHT1; mutations in the type 

I receptor serine threonine kinase, activin receptor-like kinase 1 (ACVRL1, or ALK1), cause 

HHT2; and mutations in the signaling mediator, SMAD4, cause a combined syndrome of juvenile 

polyposis with HHT [99-101]. Together, mutations in these three genes account for 

approximately 85% of HHT. Despite the fact that these gene products all participate in TGF-β 

signaling, whether mutations affect one or more discrete pathways and how these pathways 

function to prevent AVMs remain poorly understood. 

Based on histological observation of cutaneous AVMs (telangiectasias) from HHT 

patients, it has been postulated that the first step in AVM development is focal dilation of a 

postcapillary venule, followed by arteriole dilation and subsequent loss of intervening capillaries 

[90]. However, these conclusions were reached from static observations of independent lesions 

and not from longitudinal analysis. In Alk1- and Eng-deleted adult mice, wound-induced 

subdermal AVMs develop via angiogenic elongation of both arteries and veins, with de novo 

arterial-venous connections developing prior to vessel dilation [117, 120].  Although these 

findings represent a longitudinal analysis, imaging of vascular growth was performed only once 

per day and was not at cellular resolution. Therefore, the aberrant cell behaviors that lead to 

AVMs could not be elucidated. 
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Zebrafish are an excellent model for the study of both normal and pathological vascular 

development because signaling pathways that control endothelial cell differentiation and vessel 

patterning are conserved from fish to mammals, and because optically transparent transgenic 

zebrafish embryos allow real-time imaging of vessel development at cellular resolution. 

Zebrafish alk1 mutants develop AVMs at a predictable time (approximately 40 hours post-

fertilization, hpf) in a predictable location (beneath the midbrain or hindbrain) and therefore 

serve as an excellent model for exploring the cellular basis of HHT-associated AVM 

development [92, 121, 135].  

In zebrafish, alk1 is expressed after the onset of blood flow in cranial arterial endothelial 

cells closest to the heart, including (in ordered series) the outflow tract and first aortic arch 

(AA1), internal carotid artery (ICA), caudal division of the internal carotid artery (CaDI), and 

basal communicating artery (BCA). We previously reported increases in arterial endothelial cell 

number in and diameter of the contiguous CaDI, BCA, and posterior communicating segments 

(PCS) in alk1 loss-of-function mutants as early as 32 hpf [92, 135]. Between 32-40 hpf, 

BCA/PCS endothelial cell number increases similarly in the absence of alk1 function or in the 

absence of blood flow, and blood flow is required for alk1 expression [92]. These data suggest 

that Alk1 transmits a flow-based signal that limits arterial caliber. In alk1 mutants, high-flow 

shunts develop by 40 hpf downstream of enlarged arteries, connecting either the BCA to the 

primordial midbrain channel (PMBC) or the downstream alk1-negative basilar artery (BA) to the 

primordial hindbrain channel (PHBC). These shunts represent aberrant retention of normally 

transient arteriovenous connections that initiate development of and serve as early drainage for 

the nascent arterial system [92, 121].  In alk1 mutants, late increases in endothelial cell number 

(40-48 hpf) and AVM development require blood flow [92], suggesting that these effects are 
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secondary to enlargement of alk1-positive cranial arteries closest to the heart and represent an 

adaptive response of downstream vessels to altered hemodynamics. Therefore, I focused this 

study on defining the primary role of Alk1 in arterial endothelium in limiting arterial caliber. 

Results demonstrate a defect in arterial endothelial cell distribution within lumenized 

vessels as the primary effect of loss of Alk1 function. With the onset of blood flow, wild type 

cranial arterial endothelial cells in the lumenized AA1, ICA, and CaDI migrate in a distal-to-

proximal fashion towards the heart, against the direction of blood flow. Some cells originally 

located in AA1 or the ICA enter the heart and incorporate into ventricular endocardium. In 

contrast, cells distal to the ICA/CaDI junction generally remain in place after the onset of blood 

flow, and there is little to no mixing of arterial cells derived from different sprouts or angioblast 

pools. In alk1 mutants, endothelial cell distribution is altered, with decreased cranial arterial 

endothelial cell contribution to endocardium, increased distal migration of endothelial cells, and 

increased mixing of arterial endothelial cells derived from different sprouts or angioblast pools.  

Together, these data suggest that loss of alk1 results in enhanced movement of arterial 

endothelial cells in the direction of blood flow, resulting in accumulation of cells in and 

enlargement of cranial arteries distal to the heart.  
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2.2 ORIGIN AND PATTERNING OF ALK1-POSITIVE ZEBRAFISH CRANIAL 

ARTERIES 

Basic development of the cranial vascular system has been described previously [6]. I focus here 

on a more detailed analysis of the development of the alk1-positive cranial arteries. Angioblasts 

differentiate in the anterior lateral plate mesoderm at the 1-somite stage (~10.5 hpf) and coalesce 

into two pairs of bilateral clusters by the 7-somite stage (~12.5 hpf). Between the 14 and 18-

somite stage (~16 hpf), a pair of ventral, caudally-directed sprouts emerge from the paired rostral 

clusters (rostral organizing centers, ROCs) and meet with rostrally-directed sprouts from the 

paired caudal clusters (midbrain organizing centers, MOCs) to form the ICAs. Both ROC- and 

MOC-derived ICA sprouts dive medially and form a transient left-right connection directly 

below the forming CaDI.  The ROCs also launch dorso-posteriorly directed sprouts around this 

time navigate around the hypothalamus to form the bilateral CaDIs, which meet at the midline at 

~23 hpf. Finally, cells from the MOCs migrate medially around the 20-somite stage (~19 hpf) to 

form the first aortic arches (AA1), which connect the outflow tract of the heart to the lateral 

dorsal aortae and ICA. Although this cranial arterial system is in place by 24 hpf, flow does not 

commence in these vessels until around 26 hpf, when primordial midbrain channel (PMBC)-

derived sprouts connect to the apex of the CaDI and allow drainage (see Chapter 3). At this 

point, the apex of the CaDI compacts along the anterior-posterior axis and elongates along the 

left-right axis to become the BCA. The outflow tract, AA1, ICA, CaDI, and BCA become alk1-

positive with the onset of blood flow [92], and there are no patterning defects in this cranial 

arterial system in alk1 mutants. 

 



39 

 

 

 

Figure 6: Zebrafish cranial blood vessel development 

By 12 somites, 2 bilateral clusters of angioblasts referred to as the midbrain organizing center (MOC) and rostral organizing center (ROC) have formed.  By 18 

somites, the MOC has begun to sprout anteriorly and posteriorly, with the more dorsal cells giving rise to the cranial veins and the more ventral cells contributing 

to the first aortic arch (AA1), lateral dorsal aortae (LDA) and the internal carotid arteries (ICA).  The ROC has also begun to sprout and form the cranial division 

of the internal carotid artery (CrDI), the optic artery (OA), the caudal division of the internal carotid artery (CaDI) and the ICA.  By 24 hpf, the heart has begun 

to beat and the final cranial connections are being made in anticipation of circulation.  At 30 hpf, transient connections between the basal communicating artery 

(BCA) and the primordial midbrain channel (PMBC) are carrying flow and providing the only circulatory outlet until the connections between the metencephalic 

arteries (MtA), posterior communicating segments (PCS) and the basilar artery (BA) become patent at ~36 hpf
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2.3 PROXIMAL AND DISTAL ARTERIAL ENDOTHELIAL CELL NUMBERS ARE 

DIFFERENTIALLY AFFECTED IN ALK1 MUTANTS 

Our laboratory previously reported an increase in endothelial cell number in alk1 mutant 

embryos compared to wild type embryos in the combined BCA/PCS [92, 121, 135] and CaDI 

[135]. Increases in BCA/PCS cell number were significant from 32-48 hpf, whereas CaDI cell 

number was examined only at 36 hpf. To better understand the origin of these increases in cell 

number, I investigated the development of and endothelial cell number in (from proximal to 

distal, with respect to the heart) AA1, ICA, CaDI, and BCA between 24 and 36 hpf. Because 

these vessels form a contiguous arterial system, I defined the boundaries of each based on their 

parent vessels, according to the diagrams in Figure 7 and Figure 11.  

In wild type embryos, the number of endothelial cells in the proximal regions of AA1 

(shaded in gray in Figure 6) decreased steadily between 24 hpf and 36 hpf (15.3± .6 to 12.0± 1.2 

cells, mean ± SEM, Students T test, p<0.05 Figure 7A, C).  Over this same period of time, AA1 

diameters increased slightly, by approximately 5 m (Figure 7B).  Endothelial cell number in 

the ICA also decreased over this time period in wild type embryos (35.8± 1.3 to 22± .91 cells, 

mean ± SEM, Students T test, p<0.05 Figure 7A, C)  

In alk1 mutant embryos, AA1 endothelial cell number also decreased over time and was 

indistinguishable from wild type siblings at 24-28 hpf, but was decreased compared to wild type 

by 30-36 hpf  (16± .46 to 9± .55 cells, mean ± SEM, Students T test, p<0.05  Figure 7A,C).  The 

morphology of AA1 was dynamic and variable in alk1 mutant embryos: the paired vessels often 
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developed asymmetrically, with one side dramatically decreasing in diameter (Figure 7A) and in 

rare cases seemingly disconnecting from the heart outflow tract. In contrast to wild type 

embryos, in which mean AA1 diameters increased slightly over time, the mean AA1 diameter 

did not change between 24 and 36 hpf in alk1 mutants, though variability was very high (Figure 

7B). In the ICA, endothelial cell number was not different from wild type at 24-26 hpf but failed 

to decrease, as in wild type, at later times, resulting in a significant increase in cell number 

compared to wild type between 28 and 36 hpf (31.9± 1.7 to 34± 1.4 cells, mean ± SEM, Students 

T test, p<0.05 Figure 7A,C).  

In contrast to the steady decrease in endothelial cell number in AA1 and the ICA, 

endothelial cell number in the more distal CaDI and BCA increased steadily over time in wild 

type embryos (CaDI: 14.5± .5 to 25.4± .6 cells, PCS: 0± 0 to 7.9± .7 cells mean ± SEM, Students 

T test, p<0.05 Figure 8). Endothelial cell number in the CaDI and BCA was significantly 

increased in alk1 mutants compared to wild type siblings from 30-36 hpf (CaDI: 15.3± .7 to 

36.6± .5 cells, PCS: 0± 0 to 7± .5 cells mean ± SEM, Students T test, p<0.05 Figure 8). These 

data demonstrate that endothelial cell number in alk1 mutants is decreased in AA1, the artery 

most proximal to the heart, but increased in more distal arteries, including ICA, CaDI and BCA.  
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Figure 7: Proximal arteries have altered endothelial cell distribution and vessel morphology in alk1 mutants 

Endothelial cell (EC) number decreases in AA1 between 24-36 hpf and this decrease is significantly higher in 

alk1y6/y6 embryos beginning at 30 hpf.  The number of ECs decreases in the ICA over time in wt embryos and fails to 

decrease compared to wt siblings beginning at 28 hpf in alk1y6/y6 embryos.  A, wire diagrams of the dorso-frontal 

view of the ventral cranial arterial system between 24-36 hpf of wt and an alk1y6/y6 sibling.  The boundaries for each 

vessel are shaded in gray (AA1) and maroon (ICA) and correlate with data presented in C.  Colored numbers in A 

represent the average number of cells ± SEM in the AA1 or ICA at each time point.  B, The change in AA1 diameter 

between 24 and 36 hpf is increased by 5 μm on average in wt embryos and is highly variable in alk1y6/y6 embryos.  

C, Values are mean ± SEM, significance was determined by Students T test, *p<0.05 for individual comparisons. 
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2.4 ARTERIAL ENDOTHELIAL CELL NUMBER CHANGES IN ALK1 MUTANTS 

DO NOT RESULT FROM CHANGES IN PROLIFERATION OR APOPTOSIS  

alk1 mutants have fewer arterial endothelial cells in AA1 but more in the ICA and CaDI. 

Because all of these endothelial cells are alk1 positive, it seems unlikely that these changes could 

be caused by enhanced apoptosis in AA1 and increased proliferation or decreased apoptosis in 

the ICA and CaDI. In support of this reasoning, no differences in apoptosis or proliferation were 

identified in these vessels in alk1 mutants versus wild type siblings by time-lapse (having 

analyzed 8 wt/control morpholino time-lapse movies and 12 alk1y6/alk1 morpholino time-lapse 

movies). In fact, we detected almost no proliferation or apoptosis in this vessel system regardless 

of genotype. These data suggest that a fixed number of differentiated endothelial cells distribute 

themselves over time in a stereotypical way within these contiguous arteries, and that this 

distribution is altered in alk1 mutants. 
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Figure 8: Distal cranial arteries have increased endothelial cell number in alk1 mutants 

The CaDI (red) and the BCA (blue) have an increased number of endothelial cells beginning at 28 hpf in the BCA 

and 30 hpf in the CaDI in alk1y6 embryos compared to wt siblings.  Values are mean ± SEM, significance was 

determined by Student’s T- test, *p<0.05 for individual comparisons. Boundaries for the CaDI and BCA are shaded 

in red and blue, respectively, in the wire diagrams (frontal views, anterior bottom), 24 to 36 hpf.  Colored numbers 

in the wire diagrams represent the mean number of cells SEM at each time point.  Opaque colors (first bar in pair), 

wild type; transparent colors (second bar in pair), alk1 mutants. 
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2.5 ARTERIAL ENDOTHELIAL CELLS PROXIMAL TO THE OUTFLOW TRACT 

MIGRATE TOWARD THE HEART, AGAINST THE DIRECTION OF BLOOD FLOW 

The lack of proliferation or apoptosis in the developing cranial arterial system suggested that cell 

number changes in wild type cranial arteries from 24-36 hpf (decreased cell number in AA1 and 

ICA, increased cell number in CaDI) resulted from a redistribution of endothelial cells. To better 

appreciate the cell movements that generate the cranial arterial system, I performed time-lapse 

two-photon microscopy of Tg(fli1a:negfp)y7;Tg(fli1a.ep:mRFP-CAAX)pt504 embryos, which 

express GFP in endothelial cell nuclei and mRFP in endothelial cell membranes. Imaging 

between 23 and 33 hpf revealed a striking net movement of AA1 endothelial cells toward the 

heart beginning at approximately 24-25 hpf, just after the onset of heartbeat and blood flow 

(Figure 9A-B).  Tracking of individual endothelial cells (Figure 9B-B’) demonstrated that on 

average 6-10 cells entered the heart from AA1 (red arrows), 3-6 cells entered AA1 from the 

ICA/LDA (blue arrows) and the rest of the cells remained in AA1 while migrating towards the 

heart (black arrows) during this window of development.   

To confirm this observation, I performed fate mapping using 

Tg(fli1a:GAL4FF;UAS:kaede) embryos which expresses a photoconvertible fluorescent protein 

in the vascular endothelium. All cells in either the left or right AA1 were photoconverted from 

green to red at 24 hpf using a 405 nm laser, and photoconverted cell locations were recorded at 

48 hpf (Figure 10).  Nearly all embryos showed photoconverted cells in the outflow tract and 

heart, with approximately 60% of embryos having photoconverted cells within the proximal 

portion of the ventricle, adjacent to the atrioventricular canal. Approximately 20% of embryos 

had photoconverted cells remaining in AA1 but no embryos had photoconverted cells more distal  
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Figure 9: AA1 EC migration towards the heart is impaired in alk1 morphants. 

Time-lapse analysis of tg(fli1a.ep:neGFP)y7;(fli1a.ep:mRFP-CAAX) pt504 embryos injected with either a control MO 

or Alk1 MO.  The AA1 and where it intersects with the LDA/ICA and the heart is outlined in white dashed lines.  

Control MO: A-A’’, alk1 MO 1: C-C’’ and alk1 MO 2: E-E’’.  Individual cells were manually tracked over a 12 

hour time period, with the cell paths labeled every 2 hours (B, D, and F).  The net migration, representing the 

distance between the initial and final position of each cell is charted in B’, D’ and F’.  In control MO embryos (A), 

cells steadily march towards the heart, with cells that were originally proximal to the heart entering over the 12 

hours.  Cells from the ICA/LDA enter the AA1 as the vessel decreases in length, maintaining normal vessel caliber 

and morphology.  In alk1 MO embryos, the migration patterns are highly variable and result in abnormal AA1 

morphology.  In alk1 MO1 (C), cells demonstrate a less steady migration towards the heart.  No new cells enter the 

vessel over the 12 hour time period and the vessel caliber decreases significantly.  In alk1 MO 2 (E), cells on one 

side of the AA1 quickly migrate either towards the heart or the ICA/LDA and no new cells enter the vessel.  On the 

other side, cells demonstrate a slower migration towards the heart, and one cell enters from the ICA/LDA region.  

This results in the thinning of one side of the vessel and an enlargement of the caliber of the other side of the vessel.   
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Figure 10: Photoconverted cells in AA1 enter the heart and this migration is altered in alk1 mutants and 

embryos lacking blood flow 

 One side of AA1 (A), ICA or base of the CaDI was converted from green to red at 24 hpf in 

tg(fli1:gal4FF)ubs4;(uas:Kaede)rk8 embryos injected with either a control, alk1 MO or tnnt2a MO using the 405 laser.  

The location of the photoconverted cells was imaged at 48 hpf, with the 488 laser exciting the green Kaede cells and 

the 516 laser exciting the red Kaede cells.  In control embryos, the majority of photoconverted cells were located in 

the heart.  In alk1 MO embryos, photoconverted cells were often observed in the AA1 (white arrow head) and the 
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heart.    Images at 24 hpf are single z-stacks, dorsal, anterior down.  48 hpf are two-dimensional confocal 

projections, frontal with dorsal up. B. The cranial vasculature was divided into regions demarcated on the wire 

diagram. Cells were converted on one side of AA1, ICA or CaDI at 24 hpf and the location of the converted cells 

was scored at 48 hpf and the percentage of embryos with cells in each vessel region was calculated and graphed (C).  

The distribution of cells is shifted away from the heart in alk1 and tnnt2a morphants.  Numbers in the top right hand 

corner of each graph represents the number of embryos assayed for each condition. 

 

 

 

than the middle (loop) region of AA1 (Figure 10). Additional photoconversion experiments 

revealed that cells in the ICA at 24 hpf either remain in the ICA or have moved toward the heart, 

against the direction of blood flow, by 48 hpf. However, ICA cells reach only distal regions of 

the ventricle (22% of embryos). Endothelial cells at the base of the CaDI also move toward the 

heart and contribute to the ICA in nearly all cases (90% of embryos) but only rarely to more 

proximal arteries (10-18% of embryos) and never to the heart. Together, these data demonstrate 

that endothelial cells initially residing in lumenized arteries most proximal to the heart migrate 

towards the heart, against the direction of blood flow, in wild type embryos. 

In tnnt2a morphants, which lack a heartbeat and blood flow, converted cells within one 

half of AA1 at 24 hpf did not migrate efficiently into the heart by 48 hpf (Figure 10).  The 

location of these converted cells were shifted more distally when compared to the control 

morpholino embryos, with only 30% of embryos having cells located in the most distal region of 

the ventricle (versus 90%), ~90% in the outflow tract and 10% of embryos with cells located as 

distally as the CaDI.  Photoconversion of the ICA and base of the CaDI revealed similar trends, 

with embryos having photoconverted cells present in more distal vessels at 48 hpf when 
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compared to control morpholino siblings.  These results indicate that blood flow triggers the 

migration of endothelial cells towards the heart between 24 and 48 hpf.   

In alk1 morphants, which completely phenocopy alk1 mutants, there was high variability 

in the migratory behavior of AA1 endothelial cells.  In the Alk1 MO1 example (Figure 9C-D), 3 

cells entered the heart from AA1, only 1 cell entered AA1 from distal vessels, and in general the 

migration was less directed.  In the Alk1 MO2 example (Figure 9E-F), 6 cells entered the heart, 2 

cells exited AA1 toward distal vessels, (migrating in the direction of blood flow) and no new 

cells entered AA1 from the LDA/ICA.  These trends are also observed in additional experiments 

(n=6 for control morpholino and 8 for alk1 morpholino).  Additionally, in kaede conversion 

experiments, the distribution of arterial endothelial cells was shifted distally compared to control 

siblings: a lower percentage of embryos showed AA1-derived photoconverted cells in the 

proximal ventricle (10% versus 60%), and a higher percentage showed photoconverted cells 

remaining in proximal (62% versus 21%) and distal (30% versus 0%) regions of AA1. Arterial 

endothelial cells residing at 24 hpf in the ICA and CaDI were also shifted distally in alk1 

morphants compared to control siblings at 48 hpf (Figure 10). Together, with proliferation and 

apoptosis data, these data demonstrate that 1) the loss of arterial endothelial cells from wild type 

AA1 and ICA over time is due to proximal migration of these cells into the heart; and 2) the 

changes in arterial endothelial cell number in alk1 mutants (decreased in AA1, increased in ICA 

and CaDI) are likely due to decreased proximal migration (against the direction of blood flow) 

and/or increased distal migration (with the direction of blood flow). 

To directly determine whether increased distal migration contributes to increased 

endothelial cell number in the CaDI in alk1 morphants, I performed time-lapse two-photon 

microscopy to image endothelial cell contributions to this vessel in Tg(fli1a:negfp) embryos, 24-



50 

 

36 hpf. In 24 hpf control embryos, the ROC-derived bilateral CaDIs (red nuclei) have surrounded 

the hypothalamus and connected dorsally, and the PMBC-derived sprouts (dark blue nuclei) are 

connecting to the apex of the CaDI (Figure 11A). The arterial CaDI-derived cells become the 

anterior portion of the BCA, whereas the venous PMBC-derived cells become the posterior 

portion of the BCA. By 27-28 hpf, bilateral metencephalic artery-derived sprouts (pink nuclei) 

have connected to the PMBC-derived cells, and by 31-32 hpf, these cells migrate posteriorly to 

form the posterior communicating segments (PCS). The PCSs meet at the midline and drain into 

the developing primordial hindbrain channel-derived basilar artery (BA) [178] by approximately 

36 hpf. Thus, this elegant cranial arterial system is derived from two arterial sources (ROC, 

MtA) and two venous sources (PMBC, PHBC) and there is little to no mixing of these cells once 

connections have been made. Between 24 and 36 hpf, an average of 3 cells entered the CaDI 

from the ICA but remain at the base of these vessels, most likely reflective of the changing 

morphology of the vessels and supporting the idea of limited net migration in the direction of 

blood flow (Figure 11A, B).  

In alk1 morphants, timing of development and basic patterning of this cranial arterial 

system is unchanged, but more cells enter the CaDI from the ICA and more distally, supporting 

the idea that increased distal migration is responsible for CaDI enlargement in these embryos 

(Figure 11). Furthermore, although the number of cells contributing to the developing arterial 

system from the PMBC and MtA is not different in alk1 morphants compared to controls, there 

is aberrant mixing of arterial- and venous-derived cells, with CaDI-derived cells reaching into 

territory normally occupied by PMBC-derived cells, and PMBC-derived cells reaching into 

territory normally occupied by MtA-derived cells. In summary, enhanced distal migration of 

alk1-dependent cells results in increased endothelial cell number in and caliber of the CaDI and 
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disrupts the “boundaries” between venous-derived and arterial-derived endothelial cells. The 

increased arterial caliber alters the hemodynamic load within the vasculature and precipitates 

flow-dependent shunt formation. 

 

 

 

Figure 11: Endothelial cell migration in the distal cranial vasculature 

 A. Time-lapse analysis of Tg(fli1a.ep:neGFP)y7 injected with either control or alk1 MO between 24-36 hpf.  Red 

cells originate from the ICA (originally the ROC), blue cells from the PMBC, pink cells from the MtA and light blue 

cells from the PHBC.  Maroon cells are cells that have entered the CaDI from the ICA after the start of the movie.  

Wire diagrams were created from two dimensional confocal projections and pseudo-colored in Photoshop.  B. 

Quantification of the number of cells that have entered the cranial arterial system from the ICA, PMBC and the MtA 

over the course of the movie.  The increase in cell number in alk1 MO embryos can be attributed to an increase in 

the number of cells entering from the ICA.   
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2.6 ARTERIAL ENDOTHELIAL CELLS REPRESENT A NOVEL SOURCE OF 

ENDOCARDIAL CELLS  

The contribution of arterial endothelial cells to the heart has not previously been reported. To 

determine which cardiac cell type these AA1-derived endothelial cells become, I performed 

double immunofluorescence on Tg(alk1e5:egfp) embryos for EGFP and MF20.  EGFP 

expression in Tg(alk1e5:egfp) embryos marks alk1-positive endothelial cells in AA1 at 24 hpf 

but is not detectable in the heart at 48 hpf.  MF20 marks sarcomeric myosin heavy chain and 

only labels the myocardium [179]. Preliminary analysis indicates that these cells do not 

contribute to myocardium and are likely therefore endocardial, as would be expected by their 

endothelial origin (Figure 12).  Future work is required to clearly identify the fate of these cells. 

 

 

 

Figure 12: Endothelial cells migrating into the heart appear to become a part of the endocardium 

Tg(alk1e5:egfp)pt517 marks alk1-positive endothelial cells with gfp, but is to faint to visualize without antibody 

staining before ~32 hpf.  MF20 labels sarcomeric myosin heavy chain and will specifically label myocardium.  

EGFP expressing (green) cells do not colocalize with MF20 (red) but are present inside the myocardium, indicating 

these cells are in the endocardium.  Images are 2D confocal projections of 30 µM cryosections, dorsal view, anterior 

downward.  Scale bar, 50 µm.             
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2.7 DISCUSSION  

Alk1 signaling functions to transmit a flow-based signal that is required to limit arterial 

endothelial cell number and vessel caliber [92].  Here I demonstrate that upon the onset of flow, 

endothelial cells within the first aortic arch (AA1) migrate in opposition to flow and enter the 

heart, likely contributing to the endocardium.  The cranial arterial system is derived from cells of 

both arterial and venous origins.  Due to the carefully coordinated timing of the migration of 

these cells to their final destination, there is rarely any cell mixing and these cells generally cease 

to migrate after the onset of flow.  In the absence of alk1, endothelial cell distribution is altered, 

with fewer cells in AA1 and more cells in the more distal ICA, CaDI and BCA.  Because there 

was no observed endothelial cell apoptosis or differences in proliferation, these data suggest that 

the primary defect in alk1 mutants is due to aberrant migration and allocation of a fixed number 

of arterial endothelial cells.  Arterial endothelial cells proximal to the heart fail to migrate in 

opposition to flow and/or migrate with flow, resulting in an accumulation of cells in distal cranial 

arteries.   

We have previously reported that alk1 mutant zebrafish embryos develop AVMs via a 

two-step mechanism.  The first step occurs independent of blood flow and results in an increased 

number of endothelial cells in the CaDI, resulting in an increased vessel caliber.  In the second 

flow-dependent step, transient connections between arteries and veins are maintained as an 

adaptive response to the increased flow through the system due to the increased CaDI caliber 

[92, 135].  In this work, I have demonstrated that the increase in endothelial cell number that is 

central to the first step in AVM development occurs due to aberrant endothelial cell migration in 

what are normally alk1-positive arteries.  Furthermore, I show through time-lapse analysis that 
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Alk1 signaling does not influence endothelial cell proliferation and increased proliferation does 

not account for the increase in arterial cell number in alk1 mutants (data not shown), as has been 

previously speculated [176, 180].  However, EDU and TUNEL staining are required to confirm 

proliferation and apoptosis time-lapse observations.    



55 

 

3.0  CONTEXT-SPECIFIC INTERACTIONS BETWEEN NOTCH AND ALK1 

CANNOT EXPLAIN ALK1-ASSOCIATED ARTERIOVENOUS MALFORMATIONS  

Notch and activin receptor-like kinase 1 (ALK1) have been implicated in arterial specification, 

angiogenic tip/stalk cell differentiation, and development of arteriovenous malformations 

(AVMs), and ALK1 can cooperate with Notch to upregulate expression of Notch target genes in 

cultured endothelial cells. These findings suggest that Notch and ALK1 might collaboratively 

program arterial identity and prevent AVMs. I therefore sought to investigate the interaction 

between Notch and Alk1 signaling in the developing vertebrate vasculature.  I modulated Notch 

and Alk1 activities in zebrafish embryos and examined effects on Notch target gene expression 

and vascular morphology. Although Alk1 is not necessary for expression of Notch target genes 

in arterial endothelium, loss of Notch signaling unmasks a role for Alk1 in supporting hey2 and 

ephrinb2a expression in the dorsal aorta. In contrast, Notch and Alk1 play opposing roles in hey2 

expression in cranial arteries and dll4 expression in all arterial endothelium, with Notch inducing 

and Alk1 repressing these genes. Although alk1 loss increases expression of dll4, AVMs in alk1 

mutants could neither be phenocopied by Notch activation nor rescued by Dll4/Notch inhibition.  

Control of Notch targets in arterial endothelium is context-dependent, with gene-specific and 

region-specific requirements for Notch and Alk1. Alk1 is not required for arterial identity, and 

perturbations in Notch signaling cannot account for alk1 mutant-associated AVMs. These data 
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suggest that AVMs in HHT patients are not caused by defective arterial specification or altered 

Notch signaling.  

3.1 INTRODUCTION 

Notch signaling is critical for cell fate determination in many tissues. When activated by 

transmembrane ligands of the Delta and Jagged families, the Notch intracellular domain (NICD) 

is cleaved, translocates to the nucleus, binds to the DNA binding protein, recombination signal 

binding protein for immunoglobulin kappa J (RBPJ), and induces target gene expression [181]. 

In the vasculature, delta-like ligand 4 (Dll4)/Notch signaling controls arterial specification and 

angiogenic tip/stalk cell selection [30, 33, 38, 182], and in mouse and zebrafish models, 

decreased Dll4/Notch function leads to direct connections between arteries and veins, or 

arteriovenous malformations (AVMs) [30, 162, 166, 172, 183].  Because Dll4/Notch signaling 

transcriptionally upregulates the arterial endothelial marker, ephrinb2 (Efnb2) [184], and 

decreased Dll4/Notch signaling results in loss of Efnb2 and ectopic arterial expression of the 

venous marker, Ephb4 [30, 31, 162, 166, 171, 174, 183, 184], AVMs resulting from decreased 

Dll4/Notch signaling are generally attributed to disruption of arterial-venous identity. Notch loss-

of-function (Notchlof) generates small caliber AVMs that are associated with thin, nearly atretic 

arteries [162, 183, 185].  Notch gain-of-function (Notchgof), which enhances Efnb2 and represses 

Ephb4, also results in AVMs in mice [30, 31, 162, 166, 171, 174, 183, 184], and human brain 

AVMs exhibit increased Notch signaling [168, 186]. AVMs associated with Notchgof involve 

enlarged arteries containing supernumerary endothelial cells [31, 166, 167, 171, 172], suggesting 



57 

 

that failed repulsion mediated by EfnB2/EphB4, which is required for segregation of venous and 

arterial cells in developing vessels [187, 188], may be responsible for these AVMs. Thus, both 

Notchlof and Notchgof result in AVMs associated with disrupted arterial-venous identity, but the 

morphological characteristics of these AVMs are distinct, with low flow, small caliber shunts 

associated with Notchlof and high flow, large caliber shunts associated with Notchgof.  

Similar to Notch signaling, bone morphogenetic protein (BMP) signaling has also been 

implicated in AVM prevention. BMP ligands bind to a heterotetrameric complex of type I and 

type II serine/threonine kinase receptors; non-signaling type III receptors facilitate ligand 

binding. Upon complex formation, type II receptors phosphorylate type I receptors, which in turn 

phosphorylate Smad1, Smad5, and/or Smad9. Phosphorylated Smads bind to Smad4, translocate 

to the nucleus, and bind to DNA to regulate gene expression [189]. In humans, heterozygous loss 

of endoglin (ENG, encoding a type III receptor), activin receptor-like kinase 1 (ACVRL1 or 

ALK1, encoding a type I receptor), or SMAD4 results in hereditary hemorrhagic telangiectasia 

(HHT), a disease characterized by a predisposition to development of telangiectasias and AVMs 

[98, 101, 190, 191]. Alk1 mutant mice exhibit decreased Efnb2 expression in the dorsal aorta 

(DA) [192], and BMP9/ALK1 transcriptionally induces EFNB2 in cultured human umbilical 

artery endothelial cells [174], suggesting that ALK1, similar to Notch, is required for arterial 

identity. Also like Notch, ALK1 has been implicated in maintenance of stalk cell identity [175]. 

Because both Notch and ALK1 are required for arterial differentiation, stalk cell fate 

determination, and prevention of AVMs, ALK1 and Notch might function in a common pathway 

to control arterial and/or stalk cell identity and prevent AVMs. 

Several lines of evidence suggest that Notch and ALK1 interact in endothelial cells. 

Activation of either DLL4/Notch or BMP9/ALK1 in cultured endothelial cells enhances 
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expression of canonical Notch targets HEY1, HEY2, and HES1,[32, 174, 175] and simultaneous 

activation of these pathways synergistically increases expression of HEY1 and HEY2 [175]. A 

less dramatic effect on HEY2 expression is observed in response to combined stimulation by 

constitutively active forms of Notch (NICD) and ALK1 (ALK1CA) [184]. Induction of HEY1 and 

HEY2 by BMP9/ALK1 requires SMAD4 but not RBPJ [175], and BMP9 induces SMAD1/5 

binding to HEY1, HEY2, and HES1 promoters in cultured human umbilical vein endothelial cells 

(HUVECs) [193]. These findings suggest that BMP9/ALK1 directly stimulates canonical Notch 

targets by a SMAD-dependent and NICD/RBPJ-independent pathway. Notch and ALK1 

additively induce VEGFR1, a stalk cell marker, and inhibit APELIN, a tip cell marker, and 

mosaic sprouting assays demonstrate that endothelial cells lacking ALK1, SMAD4, or HEY2 are 

more likely to be in the tip position [175]. Together, these results suggest that 

BMP9/ALK1/SMAD signaling induces canonical Notch targets independently of NICD/RBPJ 

and reinforces Notch-mediated acquisition of arterial identity and maintenance of stalk cell fate.  

Although Notch and ALK1 exhibit synergistic interactions with respect to Notch target 

gene expression in cultured endothelial cells, evidence for synergy is less compelling for 

phenotypic endpoints. Both NICD and ALK1CA dampen endothelial cell sprouting, but 

simultaneous pathway activation shows no further effects, and inhibition of one pathway does 

not inhibit effects of activation of the other pathway [174]. Similarly, both ALK1 and Notch 

inhibition enhance VEGF-stimulated tube formation in HUVECs and increase vascular area in 

the postnatal retina; however, combined inhibition of these pathways shows less than additive 

effects [175]. Thus, the synergy between Notch and ALK1 in controlling gene expression may 

not directly translate to synergistic effects on endothelial cell behavior. 
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To better understand the interaction between Notch and Alk1 in arterial endothelium, I 

assayed expression of Notch target genes and vascular phenotype in zebrafish embryos with 

altered Notch and/or Alk1 activity. Abrogation of Alk1 signaling did not decrease arterial 

endothelial expression of Notch targets, demonstrating that Alk1 is not necessary for 

maintenance of Notch target gene expression or arterial identity in vivo. However, concomitant 

inhibition of Notch and Alk1 revealed context-dependent interactions, with these two pathways 

cooperatively maintaining hey2 and efnb2a in the DA, yet exhibiting opposing roles in 

controlling hey2 expression and no role in controlling efnb2a expression in cranial arteries. In 

addition, I observed increased dll4 expression in both trunk and cranial arterial endothelium in 

the absence of Alk1 signaling, in contrast to the dramatic loss of expression observed with Notch 

inhibition. These molecular data suggested that AVMs in alk1 mutants might arise due to Notch 

gain-of-function; however, ectopic Notch activation failed to phenocopy and Notch inhibition 

failed to rescue AVMs associated with loss of alk1. Taken together, these data demonstrate that 

Notch and Alk1 exhibit context-specific and target-specific interactions in controlling Notch 

target gene expression in vivo, and that AVMs associated with Alk1 deficiency do not result 

from perturbations in Notch activity. 

3.2 NOTCH IS ACTIVE CONCOMITANT WITH ALK1 IN CRANIAL ARTERIAL 

ENDOTHELIUM 

Because my goal was to determine whether Alk1 and Notch signaling interact during vascular 

development, and because alk1 plays a critical role in zebrafish cranial arterial development [92, 



60 

 

121, 135], I first assessed Notch activity in cranial endothelium using a double transgenic line, 

Tg(tp1:egfp)um14;Tg(fli1a.ep:mRFP-CAAX)pt504. These fish report Notch activity, as visualized by 

EGFP expression [194], on a background of mRFP-labeled endothelial cells.  Embryos were 

imaged at 36 hpf, a time point when Alk1 is active in cranial arterial endothelium [135].  Notch 

activity was weak to moderate in cranial arteries, including the first aortic arch (AA1), internal 

carotid artery (ICA), caudal division of the internal carotid artery (CaDI), optic artery (OA), and 

basal communicating artery (BCA) [Figure 13A]. All of these arteries are alk1-positive at 36 hpf 

[92]. Notch activity was also detected in the alk1-negative posterior communicating segments 

(PCS) and metencephalic arteries (MtA), but was absent in cranial veins (Figure 13A).   These 

data demonstrate that cranial vascular Notch activity is arterial-specific, and that all alk1-positive 

arteries have active Notch signaling. 

Next, I assayed cranial vessel expression of endogenous Notch targets. Hairy and 

enhancer of split (HES)-related proteins are transcriptional repressors that are induced by 

NICD/RBPJ [195], and the HES-related genes HES1, HEY1, and HEY2 are upregulated by 

BMP9/ALK1 in cultured endothelial cells [175, 184, 193]. The zebrafish genome contains two 

hes1 paralogs, her6 and her9 [196].  However, neither these genes nor hey1 were detectable in 

endothelium at 24-36 hpf (data not shown). In contrast, hey2 was expressed in all alk1-positive 

cranial arteries at 36 hpf (Figure 13B). efnb2a, another Notch target [184], as well as dll4, which 

encodes a Notch ligand that is positively regulated by Notch signaling [42, 197, 198], were also 

expressed in all alk1-positive cranial arteries at 36 hpf (Figure 13B). dll4 was additionally 

expressed in the alk1-negative PCS and MtA. These data demonstrate that Notch targets hey2, 

efnb2a, and dll4 are expressed in cranial arterial endothelium concomitant with active Alk1 

signaling and are good candidates for cooperative regulation by Notch and Alk1. 
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Figure 13: Notch is active concomitant with Alk1 in cranial arterial endothelium 

A, Notch activity is detectable in cranial arterial but not venous endothelium (“v”) at 36 hpf.  Two-dimensional 

confocal projections of Tg(tp1:egfp)um14 (green in merge) and Tg(fli1a.ep:mRFP-CAAX) pt504 (magenta in merge). 

alk1-positive arteries: AA1, aortic arch 1; ICA, internal carotid artery; LDA, lateral dorsal aorta; CaDI, caudal 

division of internal carotid artery; OA, optic artery; BCA, basal communicating artery. alk1-negative arteries: PCS, 

posterior communicating segment; MtA, metencephalic artery. Images represent N = 20 embryos. Lateral and dorsal 

views, anterior leftward; frontal view, anterior up. Scale bar, 50 μm.  B, Wiring diagrams (arteries black, veins gray) 

and representative whole mount in situ hybridization for alk1, hey2, efnb2a, and dll4 at 36 hpf.  Expression of Notch 
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targets is detected in the alk1-positive AA1 (white arrow), ICA (blue arrowhead), LDA (white asterisk), CaDI 

(white arrowhead), OA (blue asterisk), and BCA (blue arrow).  dll4 is also expressed in the alk1-negative PCS 

(black asterisk) and MtA (black arrowhead).  Plane of focus of dll4, frontal view, is deeper than other frontal images 

because of interfering dll4 brain expression. Images represent N > 63 embryos. Lateral and dorsal views, anterior 

leftward; frontal view, anterior up.  Scale bar, 100 μm. 

 

3.3 NOTCH AND ALK1 COOPERATIVELY REGULATE HEY2 AND EFNB2A BUT 

OPPOSITELY REGULATE DLL4 IN THE DORSAL AORTA 

To investigate the interaction between Notch and Alk1 in the regulation of Notch targets in vivo, 

I assayed tp1:egfp, hey2, efnb2a, and dll4 in embryos with impaired Notch and/or Alk1 

signaling. To inhibit Notch signaling, I treated embryos with 10 µmol/L LY411575, a gamma-

secretase inhibitor, between 23 and 36 hpf. This time period brackets the critical time period of 

Alk1 function: alk1 is first detectable around 26 hpf, and alk1 mutation results in enlargement of 

cranial arteries by 32 hpf [92]. LY411575 treatment had no effect on heartbeat or blood flow but 

resulted in severe trunk curvature (data not shown) as expected in Notch-inhibited embryos [30, 

33, 199]. 

Notch signaling is active in the zebrafish DA throughout embryonic development [30, 

161, 182], and despite no obvious requirement for Alk1, alk1 is indeed expressed in the DA as 

early as 26 hpf [92]. LY411575 treatment resulted in complete loss of DA tp1:egfp expression 

(Figure 14A), demonstrating effective abrogation of NICD/RBPJ-mediated transcription. 

However, the effect of Notch inhibition on expression of endogenous Notch targets was variable. 
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LY411575 treatment had no effect on hey2, moderately decreased efnb2a, and completely 

abolished dll4 (Figure 14A). These observations agree with published data [30, 34] and suggest 

that among these DA genes, dll4 is most sensitive to perturbation of Notch signaling, whereas 

other pathways maintain hey2 and efnb2a in the absence of Notch. 

Next, I examined Notch target gene expression in the DA in alk1ft09e mutants (Figure 

14A). alk1 mutation had no effect on expression of tp1:egfp, hey2, or efnb2a in the DA (Figure 

14A), demonstrating that Alk1 is not necessary for expression of these arterial-specific Notch 

targets or for acquisition of arterial identity. In contrast, dll4 expression was upregulated in the 

DA in alk1ft09e mutants (Figure 14A). This observation was confirmed in alk1y6 and alk1s407 

mutants and in alk1 morphants (Figure 15). Furthermore, endothelial-specific expression of 

alk1CA (fli1a.ebs:alk1CA-mCherry) dramatically repressed dll4 (Figure 15). These data suggest 

that Alk1 opposes Notch in dll4 regulation in the DA.  

Compared to Notch inhibition alone, combined alk1ft09e mutation and Notch inhibition 

had no effect on tp1:egfp or dll4 expression (Figure 14A), supporting the idea that Notch is 

required for expression of these genes. In contrast, concomitant abrogation of Alk1 and Notch 

signaling decreased hey2 and nearly eliminated efnb2a (Figure 14A). hey2 results, originally 

obtained in LY411575-treated alk1ft09e embryos, were recapitulated in DAPT-treated alk1y6 

mutants and LY411575-treated alk1 morphants (data not shown). These findings suggest 

cooperative support of hey2 and efnb2a expression by Notch and Alk1 in the DA and agree with 

published data suggesting that both genes are regulated independently via NICD/RBPJ and 

ALK1/Smad1, 5 [30, 174, 175, 193].  
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Figure 14: Notch- and Alk1-mediated control of Notch target gene expression is gene-specific and context-

dependent 

Whole mount in situ hybridization for tp1:egfp, hey2, efnb2a, dll4, and cdh5 in 36 hpf wild type (wt) and alk1ft09e 

embryos treated with 1% DMSO or 10 μmol/L LY411575, 23-36 hpf. A, Trunk. Lateral view, anterior leftwards.  B, 

Head. AA1, white arrow; ICA, blue arrowhead; LDA, white asterisk; CaDI, white arrowheads; OA, blue asterisks; 

MtA, black arrowheads. tp1:egfp, efnb2a, cdh5: frontal views, anterior up. hey2, dll4: lateral views, anterior left. 

Numbers in upper right corners indicate number of embryos with similar phenotype/total number of embryos 

assayed. Scale bars, 100 μm.   
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Figure 15: dll4 is negatively regulated by Alk1 signaling 

Whole mount in situ hybridization for dll4 in alk1y6/y6 (36 hpf), alk1s407/s407 (32 hpf) and alk1 morphants (MO) (36 

hpf) in the trunk (A) and head (C). In the absence of alk1, dll4 expression is increased in the dorsal aorta (trunk), 

aortic arch 1 (white arrow), internal carotid artery (blue arrowhead), lateral dorsal aorta (white asterisks), and 

metencephalic artery (black arrowhead) when compared to wild type (wt) or control MO siblings. 

Tg(fli1a.ebs:alk1CA-mcherry) embryos show no vascular dll4 expression at 36 hpf in the trunk (B) or head (D). 

Expression of collagen type IV alpha1 (col4a1), a pan-endothelial marker, demonstrates the presence of vessels in 

Tg(fli1a.ebs:alk1CA-mcherry) embryos.  Numbers in lower right corners indicate number of embryos with similar 

phenotype/total number of embryos assayed. Lateral views, anterior left.  Scale bar, 200 μm.   
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3.4 NOTCH AND ALK1 EXHIBIT GENE-SPECIFIC ANTAGONISTIC 

INTERACTIONS IN REGULATION OF CRANIAL ARTERIAL ENDOTHELIAL 

GENE EXPRESSION  

I next examined regulation of Notch target genes in cranial arteries, which enlarge upstream of 

AVMs in alk1 mutants. LY411575 treatment abrogated tp1:egfp expression in cranial arterial 

endothelium and neural domains (Figure 14B and Figure 16), as expected. However, whereas 

Notch inhibition dramatically decreased hey2 in cranial arterial endothelium, efnb2a was 

refractory to this treatment (Figure 14B and Figure 16). These effects were different from those 

observed in the DA (Figure 14A), suggesting context-specific gene regulation. LY411575 

treatment eliminated arterial dll4 expression in cranial arteries, similar to the DA, but increased 

dll4 in neural tissues (Figure 14B and Figure 16). These observations support the idea of a 

positive feedback loop specific to arterial endothelial cells in which Notch signaling directly 

regulates DLL4 expression [34, 42, 197, 198].  As in the DA, in cranial arteries tp1:egfp, hey2, 

and efnb2a were unaffected by alk1 mutation or knockdown, whereas dll4 was markedly 

upregulated, and a fli1a.ebs:alk1CA-mCherry transgene dramatically repressed dll4 (Figure 14B, 

Figure 15C-D, and Figure 16). Also similar to the DA, loss of alk1 failed to rescue abrogation of 

tp1:egfp or dll4 expression induced by LY411575 treatment (Figure 14B and Figure 16). In 

contrast, hey2 and efnb2a behaved differently in the absence of both Notch and Alk1 signaling in 

trunk versus cranial arterial endothelial domains. In cranial arteries, efnb2a expression proved 

refractory to combined loss of Notch and Alk1 signaling, whereas this same treatment increased 

hey2 expression compared to Notch inhibition alone (Figure 14B and Figure 16). hey2 results, 

originally obtained in LY411575-treated alk1ft09e embryos, were recapitulated in DAPT-treated 
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alk1y6 mutants and LY411575-treated alk1 morphants (Figure 17). These results suggest that 

neither Notch nor Alk1 is necessary for cranial arterial efnb2a expression, whereas Notch 

activates and Alk1 dampens hey2 expression in cranial arteries, with Alk1 acting either 

downstream of NICD or independently of Notch. These data support the notion that region-

specific regulatory networks control arterial expression of Notch target genes. Effects of Notch 

and Alk1 manipulation on Notch target gene expression are summarized in Table 1. 

 

Table 1: Qualitative changes in arterial gene expression in response to altered Notch and/or Alk1 signaling 

* Embryos were treated with 1% DMSO or 10 μmol/L LY411575, 23-36 hpf, and analyzed by in 

situ hybridization at 36 hpf. Table indicates increased (up arrows), decreased (down arrows; 

number of arrows indicates qualitative strength of response), or no change (NC) in expression 

compared to DMSO-treated wild type embryos. 

 

 

 Dorsal Aorta  Cranial Arteries 
wild type alk1 mutant/morphant wild type alk1 mutant/morphant 

LY411575 DMSO LY411575  LY411575 DMSO LY411575 
tp1:egfp ↓↓↓ NC ↓↓↓ ↓↓↓ NC ↓↓↓ 
hey2 ↓↓ NC ↓  ↓↓ NC NC 
efnb2a ↓↓ NC ↓↓↓  NC NC NC 
dll4 ↓↓↓ ↑ ↓↓↓  ↓↓↓ ↑ ↓↓↓ 
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Figure 16: Notch targets are differentially regulated by Alk1 and Notch signaling in cranial arterial 

endothelium 

Transverse cranial vibratome sections (50 µm) of 36 hpf control morpholino- and alk1 morpholino-injected embryos 

treated with 10 μmol/L LY411575 or 1% DMSO, 23-36 hpf.  Embryos were subjected to whole mount in situ 

hybridization for Notch-regulated egfp, hey2, efnb2a, dll4 and cdh5 prior to sectioning. Arrowheads, caudal 

divisions of the internal carotid artery.  N = 12-20 embryos per treatment. Frontal views, dorsal up. Scale bar, 40 

μm. 

 

 



69 

 

 

Figure 17: Opposing roles of Alk1 and Notch signaling in cranial arterial hey2 expression 

Whole mount in situ hybridization for hey2 in 48 hpf wild type (wt) and alk1y6 mutant embryos treated with 50 

μmol/L DAPT, 23-48 hpf (A), and 36 hpf control morphant and alk1 morphant embryos treated with 10 μmol/L 

LY411575, 23-36 hpf (B). hey2 expression in the first aortic arch (white arrow), internal carotid artery (blue 

arrowhead), and lateral dorsal aorta (white asterisk) is decreased with Notch inhibition, unaffected by alk1 loss-of-

function, but returned to control levels by concomitant Notch inhibition and alk1 mutation or knockdown. Numbers 

in lower right corners indicate number of embryos with similar phenotype/total number of embryos assayed. Lateral 

views, anterior left.  Scale bar, 200 μm.   
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3.5 NOTCHGOF AND ALK1LOF GENERATE VASCULAR MORPHOLOGI ES WITH 

SOME PHENOTYPIC OVERLAP BUT WITH INDEPENDENT ETIOLOGIES 

My in vivo gene expression studies demonstrated that loss of alk1 is associated with increased 

endothelial dll4 expression. Therefore, I reasoned that enhanced Dll4/Notch signaling might 

phenocopy cranial AVMs in alk1 mutants. To investigate this possibility, I compared cranial 

vascular development in wild type embryos, Tg(fli1a:GAL4FF)ubs3;Tg(5xUAS-E1b:6xMYC-

notch1a)kca3 embryos [which ectopically express Notch1a ICD in all endothelial cells; hereafter 

referred to as Tg(endo:N1ICD)], and alk1 morphant embryos. 

In wild type embryos, single sprouts emerged from the most posterior aspect of each 

bilateral venous primordial midbrain channel (PMBC) ~22 hpf and migrated medially to connect 

to a sprout emanating from the apex of the paired CaDIs by ~ 26 hpf, forming the BCA.  These 

transient BCA/PMBC connections serve as the primary drainage for the CaDI/BCA between 26-

36 hpf but regress thereafter as downstream arteries develop [92]. 

In Tg(endo:N1ICD) embryos, the CaDIs developed and lumenized normally, but 

sprouting from the PMBC was impaired, with BCA/PMBC connections delayed up to 8 hours 

compared to wild type [Figure 18, compare A-E, WT to F-J, Tg(endo:N1ICD)]. Vascular 

morphology was variable in 36 hpf Tg(endo:N1ICD) embryos, with establishment of early 

alternative drainage connections (for example, BCA to PCS/MtA, Figure 18G-H) associated with 

relatively normal caliber vessels, and establishment of late connections associated with 

CaDI/BCA engorgement and enlargement (Figure 18P,Q).  Regardless of 36 hpf phenotype, 

BCA area was not significantly increased compared to control at 48 hpf (Figure 18S), but all 
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Tg(endo:N1ICD) embryos maintained at least one BCA/PMBC connection, resulting in a small 

caliber AVM (Figure 18P’,Q’,T). 

Although the Tg(endo:N1ICD) phenotype bears some resemblance to the alk1 mutant 

phenotype, these phenotypes originate and progress differently. In Tg(endo:N1ICD) embryos, 

delayed venous sprouting compromises early cranial arterial drainage, resulting in variable 

changes in CaDI/BCA calibers and small AVMs stemming from persistent BCA/PMBC 

connections (Figure 18F-J, Q, Q’). In alk1 mutants, venous-derived angiogenic sprouting is not 

delayed, and all vessel connections develop normally (Figure 18K-O). However, increased 

endothelial cell number in the CaDI leads to increased caliber and altered hemodynamics, 

causing downstream vessels to adapt by maintaining normally transient arterial-venous 

connections (Figure 18T), most often between the BCA and PMBC [92, 121, 135].  Although the 

Tg(endo:N1ICD) phenotype decreases in severity over time (Figure 18Q, Q’), the alk1 mutant 

phenotype exacerbates over time (Figure 18R, R’), with progressive increases in vessel caliber 

both upstream and downstream of the AVM. 
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Figure 18: notchgof and alk1lof cranial AVMs have independent etiologies 

(A-J) Time-lapse analysis of cranial arterial development in wild type (A-E), Tg(endo:N1ICD) (F-J), and alk1 

morphant (K-O) embryos, 28-36 hpf. See also Supplemental material online, Movies S4, 5, 6. In Tg(endo:N1ICD) 

embryos (F-J), PMBC-derived sprouts (yellow arrowheads) are delayed, compromising CaDI/BCA drainage. In 
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alk1 morphant embryos (K-O), all connections form normally, but BCA enlargement is evident as early as 30 hpf. 

Two-dimensional projections of Z-stacks from two photon/confocal time-lapse imaging, frontal views, anterior up.  

Images represent N = 8 WT, 6 Tg(endo:N1ICD), 10 alk1 MO. Endothelial transgenes imaged: WT and 

Tg(endo:N1ICD), Tg(fli1a:GAL4FF;UAS:kaede); alk1 MO, Tg(fli1a:mrfp-caax)pt504. (P-R’) Two-photon imaging of 

WT (P, P’), Tg(endo:N1ICD) (Q, Q’), and alk1y6 mutant (R, R’) embryos at 36 and 48 hpf. Tg(endo:N1ICD) 

embryos show phenotypic overlap with alk1 mutants, with variable enlargement of the CaDI at 36 hpf and 

consistent retention of BCA/PMBC connections at 48 hpf. Two-dimensional projections of Z-stacks, dorsal views, 

anterior up. Images represent N = 10 WT, 8 Tg(endo:N1ICD), and 8 alk1y6 mutants.  Imaged transgene is 

Tg(kdrl:gfp)la116. (A-R) Pseudocoloring: PMBC, blue; arteries, red; BCA/PMBC connection, purple. Scale bars, 50 

μm. (S) BCA area is significantly increased in alk1 mutants but not Tg(endo:NICD) at 48 hpf. N = 6-9 for each 

condition; lines represent mean ± SEM. One-way ANOVA followed by Tukey’s post-hoc test, ***P<0.001, ****P 

< 0.0001. (T) Presence of shunts at 48 hpf. 
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Figure 19: dll4 expression is not required for AVM development in alk1 mutants 

Embryos from an alk1y6/+;Tg(kdrl:gfp)la116 incross were injected at the 1 to 4-cell stage with 15 ng dll4 MO or 5-bp 

mismatch control MO, imaged at 36 (A-D) or 48 (E-H) hpf, and genotyped. Two-dimensional projections of two-

photon Z-stacks. Pseudo-coloring: PMBC (blue), arteries (red), and BCA/PMBC connection (purple). Dorsal views, 

anterior up. Images represent N = 7-41 embryos per condition. Scale bars, 50 μm. (I) dll4 knockdown failed to 

rescue increased BCA area in alk1y6 mutants at 36 hpf. Lines represent mean ± SEM, N = 6-21 embryos per 

condition. One-way ANOVA followed by Tukey’s post-hoc test, * P<0.05; ****P<0.0001. (J) dll4 knockdown 

failed to rescue cranial shunt formation in alk1y6 mutants at 48 hpf. 
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Figure 20: dll4 morpholino validation 

(A) RT-PCR following injection of dll4 MO or 5-bp mismatch control MO (15 ng) using primers flanking the MO 

binding site. In 3 dpf control morphant cDNA, a single 345 bp band was detected. In 3 dpf dll4 MO cDNA, dll4 

wild type product was decreased to 37% of control and an additional exon 3-deleted product (287 bp) was detected. 

Band intensities were normalized to -actin and identities were confirmed by sequencing of gel-extracted bands. 

(B) Injection of dll4 MO but not 5-bp mismatch control MO (15 ng) caused hypersprouting (arrowheads) in trunk 

intersegmental vessels, 3 dpf, in wild type and alk1y6 mutant embryos. Two-dimensional confocal projections, 

Tg(fli1a:mrfp-caax)pt504, anterior left. Scale bar, 50 µm (C) Hypersprouting was present in 63% of dll4 MO-injected 

embryos, with similar representation in wild type and alk1 mutant embryos. 
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3.6 NOTCH ACTIVITY IS NOT REQUIRED FOR AVM DEVELOPMENT IN ALK1 

MUTANTS 

To further explore the role of enhanced Dll4/Notch in AVM development in the absence of Alk1 

function, I inhibited Notch activity in alk1 mutants and assessed cranial vascular phenotype. 

First, I injected a splice-blocking dll4 morpholino[33] into alk1y6 mutants. The morpholino 

generated an aberrant splice product that eliminated exon 3, decreased wild type transcript to 

approximately 37% of control, and resulted in intersegmental vessel hypersprouting [33, 34] in 

60% of embryos (Figure 20). Wild type dll4 morphants exhibited a small but significant increase 

in BCA area at 36 hpf (Figure 19A, B, I) but normal cranial vessel morphology, with no AVMs, 

at 48 hpf (Figure 19E, F, J). dll4 knockdown failed to rescue increased BCA area (36 hpf) or 

cranial AVMs (48 hpf) in alk1y6 mutants (Figure 19C, D, G, H, I, J).   

Because I could not achieve complete knockdown of dll4, I treated alk1 mutants with 

LY411575 (beginning at 23 hpf) to eliminate Notch activity and assessed cranial vascular 

phenotype at 36 and 48 hpf (Figure 21). In DMSO-treated wild type embryos, the anterior central 

arteries (CtAs) [200] sprouted as the BCA/PMBC connection regressed: one or two sprouts 

emerged from more anterior aspects of each PMBC and migrated medially, with sprouts 

interacting ipsilaterally but not contralaterally and ultimately connecting to the BCA by 36 hpf 

(Figure 21A). Notch inhibition in wild type embryos had no effect on the CaDI/BCA but caused 

hypersprouting in the PMBC-derived CtAs at 36 hpf, with significant increases in number of 

PMBC-derived sprouts, connections to the BCA, branch points, and contralateral sprout 

connections (Figure 21B, Figure 22A-B’, E-H).  
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In contrast to Notch-inhibited embryos, DMSO-treated alk1 mutants exhibited enlarged 

CaDIs/BCAs at 36 hpf, as previously reported [92, 121, 135], but PMBC-derived CtAs were 

unaffected (Figure 21C, Figure 22C-D’, E-H). Notch-inhibited alk1 mutants were 

indistinguishable from DMSO-treated alk1 mutants in terms of increased BCA caliber at 36 hpf 

(Figure 21C, D, I). At 48 hpf, LY411575 treatment decreased PCS caliber in both wild type and 

alk1 mutant embryos but failed to rescue alk1 mutant AVMs (Figure 21E-H, J). Furthermore, 

despite enhanced dll4 expression, Notch signaling, as quantified by mean BCA EGFP 

fluorescence intensity in Tg(tp1:egfp)um14 embryos, was unchanged in alk1 morphants compared 

to control (Figure 23). These data support dll4 morphant data and suggest that enhanced 

Dll4/Notch signaling does not underlie AVM development in the absence of alk1. 

Although Notch inhibition failed to rescue the alk1 mutant phenotype, alk1 mutation 

dampened Notch inhibitor-induced effects on CtAs, decreasing number of PMBC-derived 

sprouts, number of connections to the BCA, and CtA branch points to levels between wild type 

DMSO-treated and wild type LY411575-treated embryos (Figure 21A-D and Figure 22). 

However, effects did not achieve statistical significance. Further studies are required to 

determine whether this result reflects a genetic interaction between Alk1 and Notch pathways or 

an effect of altered vascular hemodynamics. 
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Figure 21: Notch activity is not required for AVM development in alk1 mutants 

Embryos from an alk1y6/+;Tg(kdrl:gfp)la116 incross were treated with 1% DMSO or 10 μmol/L LY411575 at 23 hpf 

and cranial vasculature imaged at 36 (A-D) and 48 (E-H) hpf. Two-dimensional projections of two-photon Z-stacks; 

in (E-H), dorsal planes were removed to highlight BCA/PCS. Pseudo-coloring: PMBC (blue), CtA (cyan); 

CaDI/BCA/PCS/BA (red), and BCA/PMBC shunt (purple). Dorsal views, anterior up. Scale bars, 50 μm (36 hpf) 

and 100 μm (48 hpf). (I) Notch inhibition failed to rescue increased BCA area in alk1y6 mutants at 36 hpf. Lines 

represent mean ± SEM, N = 4-7 embryos per condition. One-way ANOVA followed by Tukey’s post-hoc test, 

*P<0.05; ***P<0.001. (J) Notch inhibition failed to rescue cranial shunt formation in alk1y6 mutants at 48 hpf. 
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Figure 22: The Notchlof hypersprouting phenotype in midbrain and forebrain central arteries is partially 

rescued by alk1 mutation 

Embryos from an alk1y6/+; Tg(kdrl:gfp)la116 incross were treated with 1% DMSO or 10 μmol/L LY411575, 23-36 

hpf. Two-dimensional two-photon projections of the 36 hpf vasculature (A-D) were traced to generate wiring 

diagrams (A’-D’) of the midbrain and forebrain central arteries (CtA). Blue dots: connections to the primordial 

midbrain channel (PMBC); red dots: connections to the basal communicating artery (BCA); green dots: branch 

points. Frontal views, dorso-anterior up. Scale bar, 50 µm. Graphs quantify the number of PMBC-derived sprouts 

(E), CtA/BCA connections (F), CtA branch points (G), and CtA contralateral connections (H). N= 4-7 for each 

condition; lines represent mean ± SEM. One-way ANOVA followed by Tukey’s post-hoc test, *P<0.05, 

***P<0.001. 
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Figure 23: Notch signaling output is unaffected by alk1 knockdown 

(A) A single Z-plane through the center of the BCA of 36 hpf Tg(tp1:egfp)um14;Tg(fli1a.ep:mRFP-CAAX)pt504 control 

morphant (MO) and alk1 MO embryos.  NICD/RBPJ-driven EGFP is green, endothelial cell membranes are 

magenta.  Dorsal views, anterior up. Scale bar, 50 μm.  (B) The mRFP channel was used to create a mask of the 

endothelial cell membrane, and the average EGFP intensity of the BCA was measured. N = 10-12 for each 

condition; lines represent mean ± SEM. Student’s t-test: not significant. 
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Figure 24: Cranial vessel architecture resulting from Alk1 and/or Notch manipulation 

alk1 mutants develop enlarged cranial arteries (red) that drain through an aberrantly-retained connection (purple) to 

major primitive drainage veins (blue). Although this phenotype is associated with increased arterial dll4, notchgof 

fails to phenocopy and notchlof fails to rescue this defect. notchgof causes impaired venous-derived sprouting (black), 

whereas Notchlof causes enhanced venous-derived sprouting. 48 hpf, dorsal views, anterior up. 

 

3.7 DISCUSSION 

My results in zebrafish embryos demonstrate context-specific effects of Notch signaling on 

arterial endothelial gene expression. Although Notch inhibition abrogated transcription of a 

synthetic Notch reporter and endogenous dll4 in both trunk and cranial arteries, other arterial 

Notch targets were less sensitive to Notch inhibition, suggesting that additional control elements 
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sustain expression of these genes in the absence of Notch. Furthermore, Notch sensitivity of 

particular genes showed regional variation, suggesting unique regulatory mechanisms in 

different vascular beds. These data suggest that context-specific regulation, which may be lost or 

dampened in cultured endothelial cells, plays an important role in the control of Notch target 

gene expression in vivo. 

Based on published work demonstrating cooperative interactions between DLL4/Notch 

and BMP9/ALK1 in enhancing arterial Notch target gene expression in cultured endothelial cells 

[175], I had anticipated that combined Notch and Alk1 inhibition might additively if not 

synergistically decrease Notch target gene expression and impair arterial specification. However, 

abrogation of Alk1 signaling failed to decrease expression of Notch targets or disrupt arterial 

(hey2, efnb2a, dll4) or venous (data not shown) identity, and I uncovered only minor cooperative 

interactions between Alk1 and Notch, with both contributing to maintenance of efnb2a and hey2 

expression in trunk but not cranial arteries. Furthermore, I uncovered opposing roles of Notch 

and Alk1 in expression of the Notch target and arterial marker, dll4. Although dll4 is upregulated 

in the zebrafish DA in the absence of blood flow [201], lack of blood flow cannot account for 

increased dll4 in alk1 mutants: blood flow remains strong in alk1 mutants at 36 hpf, with only a 

subtle redistribution of flow towards cranial vessels [92]. Together with previous data 

demonstrating increased cxcr4a and decreased edn1 in the absence of blood flow or alk1 

expression [92], these data support the idea that Alk1 mediates a flow-based signal that controls 

expression of a subset of arterial genes. It is also possible that dll4 upregulation in the absence of 

alk1 might be attributed to the loss of the Smad1/5 target, id1. In the DA, id1 is downregulated in 

the absence of alk1 or blood flow (data not shown), and ID1 stabilizes HES1 (Her6 in zebrafish), 

which in turn represses DLL4 [177, 202]. Therefore, decreased Id1 might decrease Her6, thereby 
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resulting in increased dll4. However, I was unable to detect her6 in zebrafish arterial endothelial 

cells by in situ hybridization. 

In addition to the unanticipated opposing effects of Notch and Alk1 on dll4 expression, I 

demonstrated a paradoxical interaction with respect to cranial arterial hey2 regulation, with loss 

of alk1 restoring hey2 to near control levels in Notch-inhibited embryos. This finding suggests 

that Alk1 may repress hey2 in cranial arterial endothelial cells either downstream of NICD 

cleavage or via an independent mechanism. Although it is possible that enhanced blood flow 

through enlarged, alk1-dependent vessels might increase hey2 expression, this seems unlikely 

given that hey2 expression is unchanged in alk1 mutants with intact Notch signaling (Table 1) or 

in the absence of blood flow (data not shown). Further studies are required to untangle the 

relationship between Notch and Alk1 in cranial arterial hey2 regulation. 

Dll4 is a critical arterial endothelial Notch ligand [182, 184] and Notchgof and in 

particular Dll4 overexpression results in large caliber arteries and AVMs similar in morphology 

to AVMs in Alk1 knockout mice [31, 166, 167, 171, 172]. Therefore, my finding that Alk1 

inhibited dll4 expression initially suggested to us that increased Notch signaling might contribute 

to AVMs in alk1 mutants. However, multiple lines of evidence fail to support this hypothesis. 

First, although ectopic endothelial expression of N1ICD results in small cranial AVMs involving 

the same vessels as in alk1 mutants, the origin and progression of these AVMs differs 

dramatically. The primary defect leading to AVMs in N1ICD-expressing embryos is delayed 

venous-derived sprouting, whereas the primary defect in alk1 mutants is increased endothelial 

cell number in and caliber of upstream arteries [92].  Differences in the spatiotemporal 

expression of fli1a-driven N1ICD versus alk1 limit the utility of my approach; however, I would 

expect that earlier N1ICD expression would cause an even more pronounced arterial phenotype 
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if enhanced arterial Notch signaling could serve as a proxy for arterial alk1 loss. Second, neither 

dll4 knockdown nor Notch inhibition rescues alk1 mutant AVMs. Third, despite increased dll4 

expression, I failed to detect increased canonical Notch activity in alk1 mutants. Together, these 

results suggest that AVMs arise independently in Notchgof and Alk1lof embryos.  

Although AVMs initiate via independent mechanisms in Notchgof and Alk1lof embryos, 

both represent retention of normally transient BCA/PMBC connections. In alk1 mutants, 

maintenance of BCA/PMBC connections occurs as an adaptive response to increased shear stress 

caused by enlargement of upstream arteries [92]. In Notchgof embryos, impaired venous-derived 

sprouting delays CaDI/BCA drainage, which likely alters cranial vascular hemodynamics and 

affects remodeling. Thus, an adaptive response to altered hemodynamics, downstream of 

independent primary molecular and cellular defects, may be a unifying factor in development of 

Notchgof and Alk1lof AVMs. 

Although I failed to rescue vascular defects in alk1 mutants via Notch inhibition, I 

partially rescued CtA hypersprouting defects in Notch-inhibited embryos via alk1 mutation, 

suggesting some interaction between Notch and Alk1 in the cranial vasculature. It is possible that 

restored hey2 expression in the absence of both Notch and Alk1 signaling might contribute to 

this phenomenon, as knockdown of HEY2 enhances sprouting in cultured HUVECs [175]. 

However, whether these observations represent a true genetic interaction or a response to 

changes in vascular hemodynamics remains to be determined. 

In summary, my in vivo analysis of Notch and Alk1 signaling demonstrates gene-specific 

and context-specific interactions, with examples of both cooperative and antagonistic control of 

gene expression. However, results fail to support the idea that these pathways interact 

synergistically to control Notch target genes, program arterial identity, and prevent AVMs.  
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4.0  CONCLUSIONS AND FUTURE DIRECTIONS 

The work presented in this thesis provides insight into the role of Alk1 signaling in endothelial 

cell migration and presents a model for AVM formation caused by pathway disruption.  Previous 

work in the lab had demonstrated that AVMs form via a two-step mechanism upon loss of alk1.  

In the first step, endothelial cell number increases in cranial arteries and this increase is 

independent of blood flow [92, 121, 135].  As an adaptive response to increased flow, transient 

connections are maintained forming flow dependent arteriovenous shunts [92].  My work has 

focused on furthering the understanding of how loss of alk1 results in an increase in endothelial 

cell number in cranial arteries in the zebrafish embryo.  I show that Alk1 is necessary for 

directed endothelial cell migration upon the onset of blood flow and that alk1 mutant AVMs do 

not form as a result of defects in arterial/venous identity.  I have also contributed to the general 

knowledge of vascular development by describing in detail the formation of the cranial vascular 

system between 24 and 36 hpf, a key developmental period when cranial circulation begins.  To 

this end, I have found that endothelial cells migrate in opposition to flow and contribute to the 

endocardium, described the sources of the endothelial cells that contribute to the cranial arterial 

system, and described how the timing of sprouting is key to forming a normal mature vascular 

system.  
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There are many unresolved questions.  Whether Alk1 functions as a 

mechanosensor/transducer is not clear.  Alk1-positive arteries do not appear to have primary cilia 

(B. Roman, unpublished), and the expression of vegfr and vecad is unaffected in alk1 mutants 

(data not shown).  However, Alk1 may regulate vegf or vecad at the translational or post-

translational level and experiments testing the role of Alk1 signaling on the localization of 

Vegfr2 and Vecad protein in the presence of flow would be informative.  Based on the 

observation that endothelial cells are defective in directed endothelial cell migration, it is 

possible that Alk1 is involved in endothelial cell polarization.  In the presence of high magnitude 

flow endothelial cells polarize with the nucleus downstream of the microtubule organizing center 

and the golgi apparatus [74].  In preliminary experiments, I was able to inject a GFP tagged 

centrin construct (centrin is a key protein of the centrosomes) into zebrafish embryos and 

visualize endothelial cell centrin in AA1 (data not shown).  I hope to determine if endothelial cell 

polarization is affected in alk1 mutant embryos and in ALK1-depleted cultured endothelial cells 

exposed to shear stress.   

Angiogenesis is often viewed as a binary process.  A vessel is either actively undergoing 

angiogenesis (endothelial cell proliferation, migration and degradation of the ECM) or is 

quiescent (no proliferation or migration and vessels are stabilized through ECM deposition and 

smooth muscle recruitment).  A long standing model in the field suggested that TGFβ1 activation 

of Alk1 and Alk5 induced activation or stabilization, respectively, and that the relative activation 

of the two pathways determined the activation state of the endothelium [176, 180, 203, 204].  

AVMs were thought to arise due to a disruption in this balance causing aberrant angiogenesis 

[203, 205].  This model was shown to be inaccurate because in mice and zebrafish, Alk1 and 

Alk5 are not coexpressed in the vascular endothelium and Alk5 is not required in endothelial 
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cells for normal vascular development [118, 206, 207].  Subsequent work has postulated that 

AVMs form in HHT models due to defects in arterial venous identity (as evidenced by decreased 

ephrinB2 expression in the DA of mouse alk1 mutants [114, 121]) or due to focal capillary 

regression [90].   

It is my hope that the work I present in this document provides a more nuanced 

understanding of angiogenesis and AVM development.  ALK1 signaling is neither pro- nor anti-

angiogenic, and AVM formation is not the result of  “too much” or “too little” angiogenesis. 

Instead, AVM development involves defects in post-angiogenic endothelial cell behaviors and 

force-dependent remodeling. Alk1 is important upon the onset of flow to provide a means for 

endothelial cells to migrate towards the heart in the vessels that experience the highest 

hemodynamic load.  Without this signal, arterial endothelial cells are not able to respond 

appropriately and while the immediate result is somewhat variable, the final result is a decrease 

in cells proximal to the heart and an accumulation of cells in downstream arteries.  My work has 

also demonstrated that while Alk1 is not necessary for determining or maintaining arterial 

identity, there is still much to be understood regarding the relationship and interactions between 

Alk1, Notch and blood flow. 

4.1 CURRENT HHT TREATMENTS 

Current HHT treatments focus on treating symptoms. Large PAVMs or BAVMs may be coil-

embolized or surgically resected, but these procedures are invasive and risky.  The observation 

that wounding is necessary for adult endothelial-targeted Eng (Eng-iKOe) [120] and inducible 
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knockout Alk1 (Alk1-iKOe) mice [117] to develop AVMs has led to the hypothesis that sites of 

active angiogenesis are more susceptible to AVM formation in HHT patients.  To this end, anti-

angiogenic treatments have been shown to greatly improve Eng-iKOe and Alk1-iKOe mouse 

vascular phenotypes.  Specifically treatment with antibodies designed to block VEGF have 

reversed vascular abnormalities in these mice and restored levels of key angiogenic factors that 

had been dysregulated in affected tissues [208, 209].  In addition, HHT patients treated with 

similar therapies have experience significant improvement in nose bleeds, GI bleeding and liver 

complications [210-213].  Given that VEGF does not appear to be involved in Eng-iKOe and 

Alk1-iKOe mouse disease pathology, the mechanism by which anti-VEGF treatment improves 

HHT symptoms is not understood [107].  In light of my research, I suggest that AVMs develop 

in immature vessels because of aberrant distribution of arterial endothelial cells that causes 

arterial enlargement, which results in an altered hemodynamic load and consequent downstream 

AVM formation to normalize hemodynamic forces.  Inhibiting angiogenesis prevents the 

initiation of a sequence of events that would lead to improper endothelial cell migration and 

distribution.   
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5.0  MATERIAL AND METHODS 

5.1 ZEBRAFISH LINES AND MAINTENANCE 

Adult zebrafish (Danio rerio) were maintained according to standard protocols [214]. Embryos 

were grown at 28.5°C in 30% Danieau [17 mM NaCl, 2 mM KCl, 0.12 mM MgSO4, 1.8 mM 

Ca(NO3)2, 1.5 mM HEPES]. For imaging, embryo medium was supplemented with 0.003% 

phenylthiourea (Sigma, St. Louis, MO, USA) at ~8 hpf hours post-fertilization (hpf) to prevent 

melanin synthesis. Mutant lines alk1ft09e (p.Y88X), alk1y6 (p.L240F), alk1s407 (g.IVS8-2A>T), 

alk1 splice-blocking morpholino, and alk1y6 genotyping assay have been described [92, 121, 

215].  Line alk1ft09e was genotyped by dCAPs assay [216] using primers 5’-

GTGCTACGTACCTGCTATTCCTGGAGTCTA-3’ and 5’-CGAACAACCCAGAAACGAG-

3’. The forward primer contains a single mismatch (underlined) that creates an XbaI site in the 

mutant allele. Line alk1s407 was genotyped using PCR primers 5’-

GACAATTTCCAGTCATCCTC-3’ and 5’-CTGGGCCTGTGCTGGTC-3’ followed by 

restriction digest with DdeI (cuts wild type only). Transgenic lines Tg(fli1a:GAL4FF)ubs3, 

Tg(UAS:Kaede)rk8  and Tg(kdrl:GFP)la116 have been described [217-219]. Two new transgenic 

lines were created by Gateway cloning (Invitrogen/Life Technologies, Carlsbad, CA, USA) into 

tol2 transposon arm-flanked vectors followed by injection into one-cell stage embryos [220-222]. 

Tg(fli1a.ep:mRFP-CAAX)pt504 has mRFP-labeled endothelial cell membranes. 
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Tg(fli1a.ebs:alk1CA-mCherry) expresses constitutively active alk1 [121] fused to mCherry in all 

endothelial cells. This transgene is embryonic lethal; therefore, F1 embryos were analyzed from 

mosaic P0 founders. A previously described troponin T type 2a (tnnt2a) morpholino [223] was 

used to prevent heartbeat and blood flow.  A full list and description of transgenic zebrafish used 

in this work can be found in Table 2.   

 

Table 2: Transgenic zebrafish used in this work 

Transgenics Allele Description 

alk1e5:egfp pt517 
Expresses gfp under the control of an alk1 
enhancer element 

cmlc2:ndsred2 f2 Expresses dsred in myocardial nuclei 

fli1ebs:alk1ca-mcherry - 

Ectopically expresses a constitutively active 
mcherry tagged alk1 in the vascular 
endothelium 

fli1:gff ubs4 
A gal4 variant: drives uas expression in the 
vascular endothelium 

fli1ep:mRFP-CAAX pt504 
Expresses mRFP in endothelial cell 
membranes 

fli1:nEGFP y7 Expresses gfp in endothelial cell nuclei 
flk1:GFP la116 Expresses gfp in endothelial cell cytoplasm 
flk1:nls-mcherry is4 Expresses mcherry in endothelial cell nuclei 
gata1:dsred sd2 Expresses dsred in erythrocytes 

tp-1MmHb5:eGFP um14 
Expresses gfp under the control of a Notch 
enhancer element 

uas:kaede rkr8 
Expresses a photoconvertible cytoplasmic 
protein in the presence of gal4 

uas:myc-N1ICD kca3 
Expresses a myc tagged  intracellular domain 
of Notch1 in the presence of gal4 
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5.2 MORPHOLINOS AND MORPHOLINO VALIDATION 

Morpholinos were purchased from GeneTools, Philomath, OR, USA.  Morpholinos used in this 

study are listed in Table 3.    Splice blooking morpholinos are denoted as SB and translation 

blocking is denoted byTB.  The control morpholino was injected at the same concentration as the 

experimental morpholino for each experiment. Dll4 MO was validated by RT-PCR using primers 

listed in Table 4 according to the published protocol [33].    

 

Table 3: Morpholino sequences used in this study 

    
Morpholinos Sequence   
alk1 5’-ATCGGTTTCACTCACCAACACACTC-3’  2.5 ng SB 
tnnt2a  5’-CATGTTTCGTCTGATCTGACACGCA-3’  4 ng TB 
dll4 5'-CGAATCTTACCTACAGGTAGATCCG-3' 15 ng SB 
dll4 5-mismatch 
control 5'-CGAATgTTAgCTAgAGcTAcATCCG-3' 15 ng   
Control 5’-CCTCTTACCTCAGTTACAATTTATA-3’     

 

5.3 CONFOCAL AND TWO-PHOTON IMAGING 

For live imaging, up to 12 embryos were anesthetized in 160 mg/ml tricaine (Sigma) and 

embedded in 0.5% low melting temperature NuSieve GTG Agarose (Lonza, Rockland, ME, 

USA)/30% Danieau. Z-series (1.48 mm steps) were collected using a TCS SP5 

multiphoton/confocal microscope (Leica Microsystems, Wetzlar, Germany) outfitted with a 

custom motorized stage (Scientifica, Uckfield, East Sussex, UK), an APO L 20x/1.00 water 
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immersion objective or an HCX IRAPO L 25x/0.95 water immersion objective, non-descanned 

detectors, and spectral detectors, with a 1.7X zoom. EGFP was excited with a Mai Tai DeepSee 

Ti:Sapphire laser (Newport/Spectra Physics, Santa Clara, CA, USA) at 900 nm, whereas 

mCherry and dsRed were excited with a 561 nm diode. Sequential frame scanning was 

performed using a resonant scanner with unidirectional (8000 Hz) or bidirectional (1600 Hz) 

scanning and 16x or 32x line averaging. For time lapse experiments, (X,Y) coordinates were set 

using the LAS AF “Mark and Find” function, and images were collected every 18-23 minutes, 

with z-stack parameters redefined for each (X,Y) coordinate. Images were analyzed using LAS 

AF (version 3.0.0 build 834) and Adobe Photoshop CS6. Confocal time series were converted to 

QuickTime (.mov) files using LAS AF and annotated using Final Cut Pro and iMovie.  

5.4 ENDOTHELIAL CELL TRACKING 

Maximum projection z-stacks were compiled using the Leica ASF-AF software and each time 

point was saved as an individual tiff.  Tiffs were imported into an Adobe Photoshop file, with 

each time point occupying a single layer.  Individual cells were labeled in Photoshop using the 

paint tool and tracked over each layer.  3D projections were referenced in the Leica ASF-AF 

software when it became difficult to track an individual cell with certainty.   
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Table 4: Primers and Assayes used for genotyping and morpholino validation 

Allele Forward Primer 5'-3' Reverse Primer 5'-3' Digest Assay 
alk1y6 cacggtccaactaaggcatgaaaacacctt atggacagagaagtgtaagtaagaaat BsaJ1 dCAPS; Cuts wt 
alk1ft09e gtgctacgtacctgctattcctggagtcta cgaacaacccagaaacgag Xba1 dCAPS; cuts mutant 
alk1s407 gacaatttccagtcatcctc ctgggcctgtgctggtc DdeI RFLP; cuts WT 
sihtc300b tatggcctttatgaatttgtctgtaac gaacataagacttaccctcctgctctc Xba1 dCAPS; Cuts wt 
     
Transgenics         
gfp tggtgcccatcctggtcgagctgg aagtcgtgctgcttcatgtg n/a 1 band for +GFP 
fli1ep:gffubs4 ctccgctgactagggcacat gacggcatctttattcacattatc n/a 1 band for +gff (200 bp).  
mCherry cctgtcccctcagttcatgt cccatggtcttcttctgcat n/a 1 band for +mcherry 
uas:Kaederk8 ttgggagcgaagcctgatgt caccctcctgcctagatttgtaag n/a 1 band for +Kaede 
uas:notch1ICDkca3 cgtgagtcagtgagttacagct gtggaggagctcaaagtga n/a 1 band for NotchICD -350 bp 
     
Dll4 MO 
validation         

dll4   cgtgtctccaggtgactgtatcttt gaacaactgtcgccgtagtaat n/a 
1 band at 345 bp in control, exon 3 
excluded in MO injected resulting in 287 
bp product 

actinb2 cgtgctgtcttcccatcca tcaccaacgtagctgtctttctg n/a 1 band ~100 bp 
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5.5 KAEDE PHOTOCONVERSION 

Up to 12 embryos were embedded in 0.5% low melt agarose at 24 hpf.  The Leica “Frap Wizard” 

software was used for imaging and bleaching.  An initial scan was captured with the argon laser 

set to 28% power, with the 488 nm line at 25%; the 561 nm diode at 25% and the 405 nm laser at 

0%, 600Hz laser speed (3x line average) and a 2x zoom.   Using this image, a region of interest 

(ROI) was drawn around the section of vessel that was to be photoconverted.  For bleaching all 

parameters remained the same, with the exception of the 405 laser, which was set to 20%.  The 

“set background to zero” and “use laser settings for all ROIs” options were selected.  The 

bleaching time course consisted of 2 pre-bleach scans, 5 bleach scans, and 2 post-bleach scans.  

Embryos were removed from the agarose and placed in a 12-well plate and incubated at 28.5°C 

in the dark until 48 hpf.  Embryos were then embedded again and imaged using the 488 nm and 

516 nm wavelengths to determine the location of the converted cells.   

To quantify the location of photoconverted cells, I divided the vessels into anatomical 

sections and scored whether or not an individual embryo had a converted cell in that specific 

region.  The data represents the percentage of embryos that had at least one photoconverted cell 

in each vessel region. 
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5.6 CRYOSECTIONS AND IMMUNOFLUORESCENCE 

Embryos were fixed overnight in 4% paraformaldehyde at 4°C.  Embryos were then washed into 

a 15% and 30% sucrose/PBS solution before being embedded in Tissue Freezing Medium (TFM, 

Triangle Biomedical Sciences) and stored at -80°C.  Cryosectioning was performed on a Leica 

CM 1850 and 30 µM sections were immediately placed on a Shandon Superfrost Plus positively 

charged slide (Thermo Scientific), dried at 37°C for 30 minutes and stored at -20°C overnight.  

Immunohistochemistry was performed using primary antibodies mouse anti-MF20 at 1:500 

(sarcomeric myosin, Developmental Studies Hybridoma Bank, Iowa City, IA, USA) or rabbit 

anti-GFP at 1:500 (Invitrogen, A-11122) and secondary antibodies goat-anti-rabbit Alexa Fluor 

488 at 1:1000, and goat-anti-mouse Alexa Fluor 568 at 1:1000. Embryos were washed in a 

PBS/0.1% triton X-100/0.1% DMSO (PBDT) solution and blocked in 5% goat serum in PBDT.  

Sections were mounted with Vectashield Fluorescent mounting medium (Vector) and imaged 

with an Olympus Fluoview 1000 confocal microscope outfitted with a UPFLN 20x oil 

immersion objective. Two-dimensional projections were generated from Z-series (1 µm steps) 

using ImageJ 1.45s (National Institutes of Health, USA).   

5.7 IN SITU HYBRIDIZATION  

All embryos were collected at 36 hpf, fixed in 4% paraformaldehyde/PBS for approximately 36 

hours at 4°C, dehydrated in methanol, and stored at -20°C for in situ hybridization. Digoxigenin-

labeled riboprobes were generated according to the manufacturer’s protocol (Roche, 
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Indianapolis, IN, USA). cdh5 plasmid [92], dll4 plasmid [33], and efnb2a plasmid [30] have 

been described. hey2 was amplified from zebrafish cDNA and cloned into PCRII-TOPO 

(Invitrogen/Life Technologies). egfp was amplified from plasmid DNA and cloned into pCRII-

TOPO. collagen type IV alpha 1 (col4a1) was amplified from zebrafish cDNA using primers 

appended with T3 (sense) and T7 (antisense) polymerase sites, and the PCR product was column 

purified (Qiaquick PCR Purification Kit) and used for riboprobe synthesis. Whole mount in situ 

hybridization was performed in an InSituPro VSi liquid handler (Intavis Inc, Chicago, IL, USA). 

Briefly, 36 hpf embryos were rehydrated to PBS/0.1% tween-20 (PBT), permeabilized with 50 

mg/ml proteinase K for 15 minutes, and the permeabilization terminated with 0.2% glycine/PBT, 

5 minutes. Embryos were then  post-fixed for 20 minutes with 4% paraformaldehyde/PBS and 

hybridized at 65°C for 12 hr with riboprobe diluted 1:500 in hybridization buffer (50% 

formamide, 5x SSC, 5 mg/mL yeast tRNA, 50 mg/ml heparin, 0.1% tween-20). Embryos were 

then washed with 50% formamide/2x SSC/0.1% tween-20 (2 x 30 minutes, 65°C), 2x SSC/0.1% 

tween-20 (15 minutes, 65°C), and 0.2x SSC/0.1% tween-20 (2 x 30 mintues, room temperature). 

Specimens were then blocked with 5% sheep serum (Sigma)/PBT and incubated with embryo-

adsorbed anti-digoxigenin-AP, Fab fragments (Roche), 1:5000 in 5% sheep serum/PBT. 

Embryos were then washed 6 x 15 minutes followed by overnight in PBT, transferred to 6-well 

plates containing NTMT (100 mmol/L NaCl, 100 mmol/L Tris-HCl, pH 9.5, 50 mmol/L MgCl2, 

1% tween-20), and incubated in NBT/BCIP (340 mg/ml nitro blue tetrazolium; 350 µg/ml 5-

bromo-4-chloro-3-indolyly phosphate in NTMT) for color development. Embryos were 

photographed using an MVX-10 MacroView microscope and DP71 camera (Olympus America, 

Center Valley, PA, USA), scored for expression pattern and relative staining intensity, and then 

processed for genotyping (Table 4). Stained embryos were embedded in 4% NuSieve GTG 
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agarose (Lonza, Rockland, ME, USA), sectioned at 50 mm with a VT1000S vibratome (Leica 

Microsystems, Buffalo Grove, IL, USA), and photographed using a BX51 compound microscope 

with UPLFLN 20x/0.5 objective and DP71 camera (Olympus). All figures represent embryos 

that were simultaneously processed for fixation and staining.  

5.8 CENTRAL ARTERY SPROUT QUANTIFICATION 

Manual tracing (Adobe Photoshop CS6) of maximum projections generated from confocal Z-

stacks was used to generate simplified wiring diagrams of the forebrain and midbrain central 

arteries, which originate from the primordial midbrain channels. From these wiring diagrams, I 

counted: sprouts emerging from the primordial midbrain channel, sprout connections to the basal 

communicating artery, branch points, and contralateral connections (midline crossings). Each 

parameter was averaged within treatment groups and values are presented as mean ± SEM. 

5.9 BCA AREA QUANTIFICATION 

Approximate basal communicating area measurements were achieved by creating a region of 

interest on a two dimensional maximal projection around the basal communicating artery.  Using 

the analyze tool in the LAS AF (version 3.0.0 build 8134) software, the area within the ROI was 

calculated.  Areas were averaged within treatment groups and values are presented as mean ± 

SEM. 
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5.10 FLUORESCENCE INTENSITY MEASUREMENTS OF NOTCH REPORTER 

EMBRYOS 

Fluorescence intensity of cranial arterial EGFP in Tg(tp1:egfp)um14;Tg(fli1a.ep:mRFP-CAAX)pt504 

embryos was quantified using the LAS AF Version 3.0.0 build 8134 software. An ROI was 

created based on the mRFP channel (threshold, 55; background, 30), and GFP intensity within 

the masked ROI was measured and averaged over a single z plane, yielding a mean intensity of 

GFP fluorescence within the ROI.  Mean intensities were averaged across samples (n=10 control 

morphants, 12 alk1 morphants), and values expressed as mean ± SEM.  Results were verified by 

manually drawing ROIs over the basal communicating artery, using the mRFP channel as a 

guide, and averaging the colocalized GFP intensity across an entire stack for two embryos per 

treatment.  This method gave similar results to the automated method. 
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