Bursten, Julia
(2015)
Surfaces, Scales, and Synthesis: Scientific Reasoning at the Nanoscale.
Doctoral Dissertation, University of Pittsburgh.
(Unpublished)
Abstract
Philosophers interested in scientific methodology have focused largely on physics, biology, and cognitive science. They have paid considerably less attention to sciences such as chemistry and nanoscience, where not only are the subjects distinct, but the very aims differ: chemistry and nanoscience center around synthesis. Methods associated with synthesis do not fit well with description, explanation, and prediction that so dominate aims in philosophers’ paradigm sciences. In order to synthesize a substance or material, scientists need different kinds of information than they need to predict, explain, or describe. Consequently, they need different kinds of models and theories. Specifically, chemists need additional models of how reactions will proceed. In practice, this means chemists must model surface structure and behavior, because reactions occur on the surfaces of materials.
Physics, and by extension much of philosophy of science, ignores the structure and behavior of surfaces, modeling surfaces only as “boundary conditions” with virtually no influence on material behavior. Such boundary conditions are not seen as part of the physical laws that govern material behavior, so little consideration has been given to their roles in improving scientists’ understanding of materials and aiding synthesis. But especially for theories that are used in synthesis, such neglect can lead to catastrophic modeling failures. In fact, as one moves down toward the nanoscale, the very concept of a material surface changes, with the consequence that nanomaterials behave differently than macroscopic materials made up of the same ele- ments. They conduct electricity differently, they appear differently colored, and they can play different roles in chemical reactions. This dissertation develops new philosophical tools to deal with these changes and give an account of theory and model use in the synthetic sciences. Particularly, it addresses the question of how models of materials at the nanoscale fit together with models of those very same materials at scales many orders of magnitude larger. To answer this and related questions, strict attention needs to be paid to the ways boundaries, surfaces, concepts, models, and even laws change as scales change.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
11 September 2015 |
Date Type: |
Publication |
Defense Date: |
9 April 2015 |
Approval Date: |
11 September 2015 |
Submission Date: |
11 May 2015 |
Access Restriction: |
No restriction; Release the ETD for access worldwide immediately. |
Number of Pages: |
138 |
Institution: |
University of Pittsburgh |
Schools and Programs: |
Dietrich School of Arts and Sciences > History and Philosophy of Science |
Degree: |
PhD - Doctor of Philosophy |
Thesis Type: |
Doctoral Dissertation |
Refereed: |
Yes |
Uncontrolled Keywords: |
philosophy of science, philosophy of physics, philosophy of chemistry, explanation, nanoscience, synthesis, models, theories, kinds |
Date Deposited: |
11 Sep 2015 17:03 |
Last Modified: |
15 Nov 2016 14:28 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/25193 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
 |
View Item |