MODERATING EFFECTS OF OCCUPATIONAL HEALTH EXPOSURES AND MEDICATION ADHERENCE: MODELS FOR IMPROVED ADHERENCE

by

Shannon Marie Kearney

BS, University of Pittsburgh, 2005

MPH, University of Pittsburgh, 2010

Submitted to the Graduate Faculty of

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Doctor of Public Health

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This dissertation was presented

by

Shannon Marie Kearney

It was defended on

September 4, 2015

and approved by

Committee Chair: Bruce Pitt, PhD, Professor and Department Chair, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh

Thesis Advisor: James Peterson, PhD, Associate Professor, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh

Arnie P. Aldridge, PhD, Health Economist, Behavioral Health Economics Program, RTI, International, Research Triangle Park, North Carolina

Nicholas G. Castle, PhD, Professor, Department of Health Policy and Management, Graduate School of Public Health, University of Pittsburgh

Linda L. Pearce, PhD, Assistant Professor, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh

Janice L. Pringle, PhD, Associate Professor, Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh Copyright © by Kearney

2015

Bruce Pitt, PhD

MODERATING EFFECTS OF OCCUPATIONAL HEALTH EXPOSURES AND MEDICATION ADHERENCE: MODELS FOR IMPROVED ADHERENCE

Shannon M. Kearney, DrPH

University of Pittsburgh, 2015

ABSTRACT

Medication adherence is of great public health importance as medication non-adherence greatly affects chronic disease burden and total healthcare spending. This prospective research study hypothesizes the relationship between occupational factors and health behaviors by examining the theoretical link between medication adherence and job strain as characterized by an individual's physical and psychological stressors. Such physical and psychological stressors can impact a worker's confidence in his/her ability to exert control over his/her own motivation, behavior, and social environment (viz., self-efficacy) – factors that ultimately impact medication adherence. The study examines the association between job type and medication adherence in a population of individuals with diabetes and cardiovascular disease (CVD). Participants with a new or existing prescription for oral medications to treat diabetes or hyperlipidemia were enrolled into a randomized controlled trial at 34 national chain drugstores in Tennessee. Participants received standard care or a Screening and Brief Intervention (SBI) and a pillbox at the initial prescription fill, and at each additional refill, provided by a pharmacist. Medication adherence, health care utilization, psychosocial assessment, chronic disease status, and occupational health history data were obtained from the participants. Participants were then

Bruce Pitt, PhD

stratified by job class and job strain. Job class was classically defined, while the Karasek demand-control model was used to characterize job strain. The Karasek model describes two components of working life that influence job strain. The first is the psychological demands of the job and the second is a worker's ability to use skills or authority to address those demands. Understanding this relationship can provide insight into the development of workplace disease prevention and wellness programs that target employees who are at increased risk for poor medication adherence as well as provide new insight to healthcare providers on the risk factors for poor adherence. Additionally, developing occupation-specific interventions to improve medication adherence may ultimately lead to a reduction in total healthcare spending.

TABLE OF CONTENTS

AC	KNO	WLEDGEMENTSXI		
DE	DICA	TIONXIII		
AB	BREV	VIATIONSXIV		
1.0		INTRODUCTION		
	1.1	CHRONIC DISEASE1		
		1.1.1 Resultant Healthcare Costs of Chronic Disease		
	1.2	WORKPLACE WELLNESS		
	1.3	MEDICATION ADHERENCE 4		
	1.4	DISSERTATION OBJECTIVES 4		
2.0		THEORETICAL MODEL		
	2.1	JOB STRAIN12		
	2.2	PHYSICAL AND PSYCHOLOGICAL STRESS 13		
	2.3	SELF-EFFICACY15		
3.0		METHODS 17		
	3.1	STUDY DESIGN 17		
	3.2	OCCUPATIONAL HEALTH QUESTIONNAIRE		
	3.3	CHARACTERIZATION OF OCCUPATIONAL FACTORS 19		
	3.4	THE INTERVENTION 19		

	3.5	Ν	MEASUREMENT OF ADHERENCE: PDC	
	3.6	S	STATISTICAL ANALYSIS	
		3.6.1	Data Collection	
		3.6.2	Covariates	
		3.6.3	Generalized Linear Mixed Models	
4.0		RESU	JLTS	
	4.1	S	SAMPLE SELECTION	
	4.2	Ι	DESCRIPTIVE STATISTICS	
	4.3	F	PRE-INTERVENTION MODELS	
		4.3.1	Pre-Intervention Models for Job Class	
		4.3.2	Pre-Intervention Models for Job Strain	
	4.4	Ι	NTERVENTION MODERATOR MODELS	41
		4.4.1	Intervention Moderator Models for Job Class	42
		4.4.2	Intervention Moderator Models for Job Strain	43
5.0		DISC	USSION	46
	5.1	F	PRE-INTERVENTION MODELS	47
	5.2	Ι	NTERVENTION MODERATOR MODELS	49
6.0		SUM	MARY	
	6.1	Ι	LIMITATIONS	
	6.2	S	STRENGTHS	
	6.3	N	NEXT STEPS	53
API	PENI	DIX A:	OCCUPATIONAL HEALTH QUESTIONNAIRE	55
API	PENI	DIX B:	INSTITUTIONAL REVIEW BOARD APPROVAL	

APPENDIX	C:	OCCUPATIONAL	DISTRIBUTION	OF	PSYCHOSOCIAL	JOB
CHARACTE	RIST	TICS		•••••		59
APPENDIX I	D: PA	AIRWISE T-TESTS B	SY JOB CLASS AN	D JOB	STRAIN	61
BIBLIOGRA	РНУ			•••••		66

LIST OF TABLES

Table 1. Pre-Intervention Model Variables	23
Table 2. Intervention Moderator Model Variables	25
Table 3. Sample Characteristics	33
Table 4. Correlations between the Study Variables	37
Table 5. Baseline PDC as a Function of Job Class	38
Table 6. Baseline PDC as a Function of Job Strain	40
Table 7. Moderating Effects of Job Class on Impact of Intervention	42
Table 8. Moderating Effects of Job Strain on Impact of Intervention	44
Table 9. Main Findings	46
Table 10. Pairwise T-Tests by Job Class and Job Strain	61

LIST OF FIGURES

Figure 1. Theoretical Model	7
Figure 2. Pre-Intervention Theoretical Model	10
Figure 3. Intervention Moderator Theoretical Model	11
Figure 4. Study Sample	32
Figure 5. Baseline PDC as a Function of Job Class	39
Figure 6. Baseline PDC as a Function of Job Strain	41
Figure 7. Moderating Effects of Job Class on Impact of Intervention	43
Figure 8. Moderating Effects of Job Strain on Impact of Intervention	45

ACKNOWLEDGEMENTS

First, I would like to thank my academic advisor, James Peterson, for his continued support and for affording me the latitude to develop a research concept blending pharmaceutical science with environmental and occupational health.

I am very appreciative to committee members Nicholas Castle, Linda Pearce, and Bruce Pitt for their input into my dissertation research.

I would also like to thank committee member Janice Pringle for her expert guidance and willingness to allow the use of her randomized clinical trial as a means to explore pharmaceutical science and environmental and occupational health.

I am forever grateful to committee member Arnie Aldridge for his mentorship and scientific prowess.

I would like to recognize the following people for their assistance in making my research possible: Newell McElwee, Andi Clark, and Kim Grasso.

I would like to thank my husband, Jim, for his encouragement.

I would also like to thank my sister, Erin, for her support and editorial assistance.

I would especially like to thank my son; for the news of his impending arrival has inspired me in so many ways, especially in completing this academic endeavor.

xi

Lastly and most importantly, I would like to thank my parents, Michael and Elisa, for instilling the importance of education. I am eternally grateful for their love and support, and to my Mom for the many science classes you enrolled me in as a kid.

DEDICATION

To my earliest educators,

Orlando DiSaia, Michael Kearney, Sr., Elizabeth Kearney,

and my parents,

Michael and Elisa Kearney

ABBREVIATIONS

BB	Beta Blockers
ССВ	Calcium Channel Blockers
CVD	Cardiovascular Disease
ECO-PHIL	Effect of Community Pharmacist Intervention on adherence to Long-term
	medications
GLMM	Generalized Linear Mixed Models
MI	Motivational Interviewing
NIOSH	National Institute for Occupational Safety and Health
PDC	Proportion of Days Covered
PDC80	Proportion Days Covered >80%
РМРМ	Per Member Per Month
PQA	Pharmacy Quality Alliance
QES	Quality of Employment Surveys
RASA	Renin Angiotensin System Antagonists
RCT	Randomized Controlled Trial
ROI	Return on Investment
SBI	Screening and Brief Intervention
SQL	Structured Query Language

1.0 INTRODUCTION

1.1 CHRONIC DISEASE

Chronic diseases such as cardiovascular disease (CVD) and diabetes are among the leading causes of death and disability in the United States, greatly affecting quality of life and healthcare costs (Bodenheimer, Chen, & Bennett, 2009; Kotecha et al., 2013; Schram, Baan, & Pouwer, 2009). Additionally, chronic disease was once thought to be a public health problem associated mainly with older age groups, however there has been a shift towards onset in the working-age population. This shift to a younger age group creates an economic burden resulting from illness-related loss of productivity due to absence from work (absenteeism) and reduced performance while at work (presenteeism) (Mattke et al., 2013). As a result, workplace wellness programs have increased in popularity via the Patient Protection and Affordable Care Act by providing health promotion and disease management programs to reduce healthcare spending (Mattke, Schnyer, & Van Busum, 2012). One important component of disease management is medication adherence – an individual's ability to comply with his or her prescribed medication regimen (Osterberg & Blaschke, 2005). Given the emerging relationship between chronic disease, work performance, and medication adherence, this dissertation will examine job class and job strain and their effect on medication adherence. Examining occupational factors may prove beneficial in developing workplace interventions that improve medication adherence,

leading to a reduction in total healthcare spending and a longer living, healthier population (Roebuck, Liberman, Gemmill-Toyama, & Brennan, 2011).

1.1.1 Resultant Healthcare Costs of Chronic Disease

As of 2012, approximately half (117 million) of US adults had one or more chronic diseases (Ward, Schiller, & Goodman, 2014). Additionally, a study by the Milken Institute calculated that seven chronic conditions (cancer, heart disease, hypertension, mental disorders, diabetes, pulmonary conditions, and stroke) are costing the US economy \$1 trillion per year. Anticipated growth rates for the aforementioned conditions are expected to yield an illness burden of \$4 trillion per year by 2023 (DeVol et al., 2007). The American Heart Association estimated total costs of heart disease and stroke in 2010 to be \$315.4 billion (Go et al., 2014), while the total estimated cost of diagnosed diabetes in 2012 was \$245 billion, including \$176 billion in direct medical costs and \$69 billion in decreased productivity (e.g. absenteeism, presenteeism) (American Diabetes Association, 2013). As chronic disease prevalence continues to increase, it is important to note that these diseases are often preventable and can be managed via early detection, improved diet, exercise, and disease management strategies such as medication adherence.

1.2 WORKPLACE WELLNESS

Employers have invested in workplace wellness programs to combat the chronic disease epidemic, causing workplace wellness to have increased to a \$6 billion dollar industry in the United States. In 2012, half of all employers with at least 50 employees offered workplace wellness programs, and nearly half of employers without a program indicated that they intended to introduce one (Mattke et al., 2013). Additionally, more than 60% of Americans obtain health insurance coverage through an employment-based plan, allowing them access to a workplace wellness program (Baicker, Cutler, & Song, 2010). Workplace wellness programs typically have two components: a lifestyle management program and a disease management program. The lifestyle management component focuses on employees with health risks, such as smoking and obesity, and providing support in reducing those risks to prevent the development of chronic disease. The disease management component is designed to help employees with a chronic disease to take better care of themselves via support mechanisms, such as reminding the employee to take their prescribed medications or communicating gaps in care such as missed laboratory tests, to their physicians (Mattke et al., 2013).

Applying improvement strategies to the disease management component of workplace wellness programs can result in a return on investment (ROI). The Rand Corporation found that both lifestyle and disease management programs reduced the employer's average health care costs by about \$30 per member per month (PMPM) (Caloyeras, Liu, Exum, Broderick, & Mattke, 2014; Mattke et al., 2013). However, the disease management program alone was responsible for 87% of those savings. Employees participating in the disease management program generated a savings of \$136 PMPM, largely due to a 30% reduction in hospital admissions. While a smaller percentage of employees may participate in a disease management program, the ROI is far greater than those employees that participate in a lifestyle management program. Strategizing approaches to improve medication adherence within the workforce can

provide a successful way to reach individuals that are not adherent and further improve the effectiveness of disease management (Carls et al., 2012; Loeppke et al., 2011).

1.3 MEDICATION ADHERENCE

Medication adherence, the compliance with a medication regimen, is generally defined as the extent to which individuals take medications as prescribed by their health care providers. Improving medication adherence is critical as medication non-adherence is a major problem in the management of chronic diseases. Approximately, 20% – 50% of individuals do not take their medications as prescribed (Kripalani, Yao, & Haynes, 2007) and inadequate adherence has been estimated to contribute to \$290 billion in unnecessary healthcare costs (Network for Excellence in Health Innovation, 2011). Furthermore, there is no single intervention strategy shown to be effective across all individuals, conditions, and settings (World Health Organization, 2010). Therefore, strategies that improve medication adherence should be tailored to each individual as medication adherence ultimately reduces total annual health care spending (Dimatteo, Giordani, Lepper, & Croghan, 2002; Goetzel et al., 2004; Iuga & McGuire, 2014; Roebuck et al., 2011; Sokol, McGuigan, Verbrugge, & Epstein, 2005).

1.4 DISSERTATION OBJECTIVES

This study hypothesizes for the first time the relationship between occupational factors and health behaviors by examining the theoretical link between job type and medication adherence as characterized by an individual's job strain and physical and psychological stressors. Such physical and psychological stressors can impact confidence in the ability to exert control over one's own motivation, behavior, and social environment (viz., self-efficacy) – factors that ultimately determine medication adherence (Kobau & DiIorio, 2003; Luszczynska, Sarkar, & Knoll, 2007).

Chapter 1 introduces the relationship between chronic diseases, healthcare costs, workplace wellness, and medication adherence.

Chapter 2 describes the hypothesized theoretical model, examining the influence of occupational factors (e.g. job class and job strain), physical and psychological stress, and self-efficacy on the relationship between job type and medication adherence.

Chapter 3 reviews the rigorous methodology involved with this prospective research study. The study design is presented, along with the occupational questionnaire, characterization of occupational factors (e.g. job class and job strain), the intervention (Screening and Brief Intervention (SBI) + pillbox) utilized to improve medication adherence, and the measurement, proportion days covered (PDC), used to evaluate medication adherence. Lastly, the statistical methods are presented and encompass data collection, covariates used in each model, and the modeling method, Generalized Linear Mixed Models (GLMM).

In Chapter 4, the results are presented as pre-intervention models (i.e. baseline results) and intervention moderator models (i.e. models that characterize the intervention's effect on medication adherence) using GLMM. GLMM, controlling for demographics, marital status, education, employment status, income, and baseline measures of health were used to conclude that occupational factors such as job strain moderate medication adherence.

Chapter 5 provides a discussion of the pre-intervention and the intervention moderator model results.

Lastly, Chapter 6 summarizes the overall scientific contribution of this research study to the field of public health with proposed actions for further research.

By examining the effects of occupational history on medication adherence in a population of individuals with diabetes and CVD, a theoretical link between job type and medication adherence might be associated with occupational factors (e.g. job class and job strain). Understanding this relationship can provide insight into the development of workplace disease prevention and wellness programs that target employees who are at increased risk for poor medication adherence. Thus, leading to slower disease progression, reduced mortality, and decreased healthcare costs.

2.0 THEORETICAL MODEL

This study hypothesizes the relationship between job type and medication adherence by examining occupational factors (e.g. job class and job strain) associated with medication adherence. This relationship is characterized by Figure 1.

Figure 1. Theoretical Model

Job class and job strain are used to characterize job type. Job class is classically defined as manual (blue-collar), nonmanual (white-collar), or not working (retired, disabled, and unemployed). Job strain is characterized by Karasek's demand-control model, where strain is defined as either active (high psychological demand, high decision latitude), high strain (high psychological demand, low decision latitude), low strain (low psychological demand, high decision latitude), passive (low psychological demand, low decision latitude), or noncontributing (unemployed, disabled, and retired). In Figure 1, both job class and job strain serve as mediator variables in the relationship between job type and medication adherence (Baron & Job class and job strain are considered mediating variables as they are Kenny, 1986). determinants that explain why a particular effect occurs between two variables (e.g. job type and medication adherence). Both strain and class can explain how external factors such as job stress influence psychological associations such as adherence to a prescribed medication regimen (Baron & Kenny, 1986; Diestel & Schmidt, 2009). Psychological factors including job autonomy, self-efficacy, an individual's belief in his or her capacity to execute behaviors necessary to produce specific performance attainments, and learned helplessness, when an individual lacks the requisite controlling response in a situation but believes this response is available to others, can affect an individual's performance in achieving a desired health outcome (Bandura, 1977, 1986, 1997; Strecher, DeVellis, Becker, & Rosenstock, 1986).

The *Theoretical Model* can be further expounded to the hypothesized *Pre-Intervention Theoretical Model* depicted in Figure 2. Physical/psychological stress and self-efficacy are additional determinants that should be considered in the relationship between job type and medication adherence. It is hypothesized that stress may have a direct mediational effect on adherence, which does not operate through self-efficacy as illustrated by Figure 2. As a mediator, physical/psychological stress can directly affect the relationship between job type and an individual's ability to perform a health behavior such as medication adherence (Bijl, Van Zessen, Ravelli, De Rijk, & Langendoen, 1998; Diestel & Schmidt, 2009). As a moderator, physical/psychological stress can influence the strength of the relationship between job type and self-efficacy in relation to medication adherence (Baron & Kenny, 1986). In essence, physical/psychological stress can serve as both a mediator, to explain why there is a relationship, and a moderator, to discern the extent of the influencing effect of this relationship.

Figure 2. Pre-Intervention Theoretical Model

Figure 3, *Intervention Moderator Theoretical Model* applies the intervention (SBI + pill box), illustrating the hypothesis examined in this dissertation where occupational factors are moderators of the intervention effect on medication adherence. Job class and job strain are considered moderators in this model since their interaction with physical/psychological stress and self-efficacy may explain the degree of adherence in relation to the intervention.

Figure 3. Intervention Moderator Theoretical Model

Occupational factors such as job class and job strain, physical and psychological stress, and self-efficacy will be further described in the subsequent sections of this chapter. Each determinant plays a specific role in understanding the relationship between job type and medication adherence.

2.1 JOB STRAIN

The job strain model first postulated by Robert A. Karasek, Jr. has become a widely accepted and applied model (Belkic, Landsbergis, Schnall, & Baker, 2004; De Lange, Taris, Kompier, Houtman, & Bongers, 2003; Goldberg, Gueguen, Schmaus, Nakache, & Goldberg, 2001; Häusser, Mojzisch, Niesel, & Schulz-Hardt, 2010; Hellerstedt & Jeffery, 1997; Houtman et al., 1999; R. A. Karasek et al., 1988; Kivimäki et al., 2012; Lerner, Levine, Malspeis, & D'Agostino, 1994; Pelfrene et al., 2001; Schnall, Landsbergis, & Baker, 1994; Törnroos et al., 2015). The job strain model, often referred to as the demand-control model, proposes that job strain is not attributed to a single aspect of the work environment, but from the joint effects of the demands of a work situation and the range of decision-making freedom or discretion available to the worker facing those demands (i.e. job autonomy) (Karasek Jr, 1979). These two aspects of an occupation represent, respectively, action (work load demands, conflicts or other stressors which place the individual in a motivated or energized state of "stress") and the constraints on the alternative resulting actions (Karasek Jr, 1979). The individual's job decision latitude is the constraint which modulates the release or transformation of "stress" potential energy into the energy of action (Karasek Jr, 1979).

While Karasek's job strain model has been applied to a number of studies, the model is often attributed to CVD research and demonstrates that job strain has an impact on cardiovascular health (Collins, Karasek, & Costas, 2005; Hellerstedt & Jeffery, 1997; R. Karasek, Baker, Marxer, Ahlbom, & Theorell, 1981; R. Karasek, Collins, Clays, Bortkiewicz, & Ferrario, 2010; Landsbergis, Schnall, Schwartz, Warren, & Pickering, 1995; Schnall et al., 1994; Schnall et al., 1990; Steenland et al., 2000; Theorell & Karasek, 1996). High strain (high

12

psychological demand, low decision latitude) job types have been found to be negatively associated with health, while active (high psychological demand, high decision latitude) and low strain (low psychological demand, high decision latitude) job types are positively associated with health (Lerner et al., 1994). Passive (low psychological demand, low decision latitude) job types fall within the spectrum. Not only does the addition of job strain to the hypothesized models allow the use of a widely accepted tool for characterizing job type, but the job strain model is also appropriate as the prospective research study presented in this dissertation examines a population of individuals with CVD and diabetes.

Job strain acts as a mediator in the *Pre-Intervention Theoretical Model* accounting for the relation between job type and medication adherence. Job strain characterizes job type in terms of physical/psychological factors which can impact an individual outside of the workplace. As a mediating variable, job strain explains how external factors such as job stress can cause a particular effect to occur (i.e. adherence to a prescribed medication regimen) (Baron & Kenny, 1986; Diestel & Schmidt, 2009). In the *Intervention Moderator Theoretical Model*, job strain becomes a moderator of the relationship between job type and medication adherence, affecting the magnitude of the intervention's effect on medication adherence. Ultimately, job strain is hypothesized to be a key determinant in the relationship between job type and medication adherence.

2.2 PHYSICAL AND PSYCHOLOGICAL STRESS

The National Institute for Occupational Safety and Health (NIOSH) states that job stress can be defined as the harmful physical and emotional responses that occur when the requirements of the job do not match the capabilities, resources, or needs of the worker (Sauter et al.). Exposure to stressful working conditions or job stressors can directly affect a worker's safety and health. These factors are presented in both the *Pre-Intervention Theoretical Model* and *Intervention Moderator Theoretical Model*.

Physical and psychological stressors have been shown to evoke biological responses that cause a predisposition to disease or poor health outcomes by a variety of mechanisms via the nervous, cardiovascular, endocrine, and immune systems (Schneiderman, Ironson, & Siegel, 2005). Studies have shown both acute and chronic biological responses to stress. For example, increased cortisol levels (Schulz, Kirschbaum, Prüßner, & Hellhammer, 1998), activation of cellular responses by the immune system (Dhabhar & Mcewen, 1997), and cardiovascular responses such as increased blood pressure (Vrijkotte, Van Doornen, & De Geus, 2000). Psychosocial stressors have also been extensively studied and linked to disease. For example, psychosocial stressors, such as job strain, anxiety, and stress have been linked to CVD (Houtman et al., 1999; R. Karasek et al., 1981; R. A. Karasek et al., 1988; Kivimäki et al., 2012; Rozanski, Blumenthal, & Kaplan, 1999).

Physical/psychological stress serves as a mediator in the relationship between job type and medication adherence in that physical and psychological stressors can have a direct impact on an individual's ability to adhere to their prescribed medication regimen. Self-efficacy, an individual's confidence in his/her ability to exert control over his/her own motivation, behavior, and social environment, affects an individual's self-regulation of disease prevention and management (Clark & Dodge, 1999). Physical/psychological stress can act as a moderator of self-efficacy in the relationship between job type and medication adherence in that it moderates an individual's ability to perform a health behavior such as compliance to their prescribed medication regimen (Grau, Salanova, & Peiro, 2001). Additionally, physical/psychological stress are impacted by job strain and can affect an individual's ability to perform a desired health behavior (Jex & Bliese, 1999; Jex & Gudanowski, 1992).

It is also important to note that a reciprocal relationship exists between physical and psychological stress. For example, physical stressors may cause a proclivity to psychological stressors (e.g. lack of autonomy may cause disengagement by an employee yielding anxiety) and psychological stressors may manifest as physical stressors (e.g. anxiety due to work overload can result in exhaustion) (Cohen, Janicki-Deverts, & Miller, 2007; Cohen, Kessler, & Gordon, 1995). Physical/psychological stress is hypothesized as a key determinant in both the pre-intervention and intervention moderator theoretical models as it can play a role, respectively or mutually, in the relationship between job type and health behaviors (i.e. medication adherence) (Blair, Jacobs Jr, & Powell, 1985; Cooper & Cartwright, 1994; DeLongis, Folkman, & Lazarus, 1988; Ng & Jeffery, 2003).

2.3 SELF-EFFICACY

Self-efficacy refers to an individual's belief in his or her capacity to execute behaviors necessary to produce specific performance attainments (Bandura, 1977, 1986, 1997). Often analyzed as a determinant of health behavior change (AbuSABHA & Achterberg, 1997; Bandura, 1990; DiClemente, Fairhurst, & Piotrowski, 1995; Kelly, Zyzanski, & Alemagno, 1991; O'Leary, 1985; Strecher et al., 1986), self-efficacy is the result of the interaction of personal, behavioral and environmental factors (Clark & Dodge, 1999). In Figures 2 and 3, *Pre-Intervention Theoretical Model* and *Intervention Moderator Theoretical Model*, respectively, it is hypothesized that self-efficacy mediates the relationship between job type and medication adherence (Brown & Bussell, 2011; Judge & Bono, 2001; Schaubroeck & Merritt, 1997). Additionally, self-efficacy has become a key construct in developing interventions to improve chronic disease outcomes (e.g. interventions that improve medication adherence) (Herrick, Stone, & Mettler, 1997; Marks & Allegrante, 2005). Therefore, self-efficacy is hypothesized as a key determinant in the relationship between job type and medication adherence, in that it can affect physical/psychological stress.

3.0 METHODS

3.1 STUDY DESIGN

The participants in this study were participants of the randomized controlled trial (RCT), *Effect of Community Pharmacist Intervention on adherence to Long-term medications*, (ECO-PHIL) study. Individuals with a new or existing prescription for oral medications and a diagnosis of diabetes or hyperlipidemia were enrolled into the trial at one of 34 drugstores of a national pharmacy chain in Tennessee.

Participants were randomized via permuted block design into one of two groups; standard care treatment group and intervention treatment group. The standard care treatment group received care as usual by the pharmacist. The intervention treatment group (SBI + pillbox) received both a Screening and Brief Intervention (SBI) and a pillbox based upon motivational interviewing principles at the initial prescription fill, and at each additional refill. Additional inclusion criteria required that participants be 30 - 85 years of age, comfortable speaking English, not institutionalized, and not diagnosed with psychosis or dementia. Medication adherence, occupational health history, health care utilization, psychosocial assessment, and chronic disease status data from participants were obtained. Medication adherence data were drawn from pharmacy claims data, covering a period of one year before each participant's

enrollment date into the study and at the conclusion of their involvement with the study. Occupational health history was collected through a self-report questionnaire (Appendix A).

Participants were then stratified by job class and job strain. Lastly, GLMM, controlling for demographics, marital status, education, employment status, income, and baseline measures of health were used to conclude that occupational factors exhibit a moderating effect on medication adherence.

3.2 OCCUPATIONAL HEALTH QUESTIONNAIRE

Participants (n=506) were administered an occupational health questionnaire (Appendix A) devised from the Economic Form 90, an instrument used to assess economic outcomes, and tailored to this study population (Bray et al., 2007). The University of Pittsburgh Institutional Review Board provided approval and oversight of this study, IRB# MOD12050040-03/PRO12050040, *Prospective Study on a Pharmacist-led Intervention to Improve Medication Adherence* (Appendix B). Participants were asked to report via self-addressed stamped envelope or telephonic interview: 1) their job title or most recent job title if they were not currently working; 2) their job setting or most recent job setting if they were not currently working; and 3) their current income range or prior income range if they were not currently working. The reported job title and job setting were used to characterize each participant's job type by job class and job strain.

3.3 CHARACTERIZATION OF OCCUPATIONAL FACTORS

Participants were stratified by job class and job strain. Job class was classically defined and divided into three categories: manual (blue-collar), nonmanual (white-collar), and not working (retired, disabled, and unemployed). Job strain was characterized by Karasek's demand-control model. This model describes two dimensions of working life that influence job strain: the psychological demands of the job and the worker's ability to use skills or authority to address those demands (i.e. decision latitude) (Hellerstedt & Jeffery, 1997).

Job strain was divided into five categories. The first four categories are based on the Karasek model: active (high psychological demand, high decision latitude), high strain (high psychological demand, low decision latitude), low strain (low psychological demand, high decision latitude), and passive (low psychological demand, low decision latitude). A fifth category was created and termed 'non-contributing', containing a combination of unemployed, disabled, and retired participants. The participant's job type was matched to the appropriate job strain using the *Occupational Distribution of Psychosocial Job Characteristics* (Appendix C) created from the US Department of Labor Quality of Employment Surveys (QES) of the full work force in 1969, 1972, and 1977 (R. A. Karasek et al., 1988).

3.4 THE INTERVENTION

Participants randomized into the intervention group (SBI + pillbox) received both a pillbox and a Screening and Brief Intervention (SBI) based upon motivational interviewing principles at the initial prescription fill, and at each subsequent refill. The pillbox served as a

passive reminder for the participant to adhere to their medication regimen. The SBI served as the active approach.

The SBI is a brief 2 – 5 minute conversation led by the pharmacist using motivational interviewing (MI) principles to address specific issues that may affect an individual's initial and continued use of their prescribed medication regimen. MI employs the use of open-ended questions, appropriate affirmations, and reflective listening, as an individual is guided through a process where they can explore and understand the barriers to changing their behavior and identify strategies to help them overcome those barriers (Miller & Rollnick, 2002). MI has been used to address a number of other health behaviors including tobacco cessation, diet and exercise, diabetes self-management, oral health (Martins & McNeil, 2009), mental health (Rollnick, Miller, & Butler, 2008), sexual health (Petersen, Albright, Garrett, & Curtis, 2007), and chronic pain (Rau, Ehlebracht-König, & Petermann, 2008).

The RCT utilized a paradigm developed by the study's Principal Investigator called POLAR*STM. POLAR*S is an acronym for the following application of motivational interviewing: Permission (P), Open-ended questions (O), Reflective Listening (L), Affirmation (A), Roll with Resistance (R), and Summary (S). Pharmacists were trained in the use of the adherence-focused brief intervention designed for a typical community pharmacy setting. The paradigm has been reported to be helpful in both initiating and completing an SBI with any given individual (Pringle, Boyer, Conklin, McCullough, & Aldridge, 2014).

3.5 MEASUREMENT OF ADHERENCE: PDC

Medication adherence was measured as proportion of days covered (PDC) using the Pharmacy Quality Alliance's (PQA) convention which includes a set of National Drug Codes (NDCs) for five classes of chronic disease medications: beta blockers (BB), calcium channel blockers (CCB), diabetes, renin angiotensin system antagonists (RASA), and statins. PDC is calculated as the total number of days an individual is supplied a medication during an interval divided by the total number of days during that interval (Iuga & McGuire, 2014). Most participants enrolled in the study were taking more than one of the specified medication classes. Therefore, in addition to each individual class, variables were constructed based on these five classes to measure different aspects of a participant's overall behavior (e.g. their average adherence across all relevant classes). Adherence measures were constructed from pharmacy claims data provided by the national drugstore chain. PDC and PDC80, a benchmark measurement for >80% of days covered, were estimated as continuous variables. For example, binary PDC80 outcomes were estimated as a linear probability model.

3.6 STATISTICAL ANALYSIS

3.6.1 Data Collection

Participant enrollment began July 2, 2012 and concluded on April 27, 2013. Upon enrollment, participants were asked to complete a baseline interview conducted by research personnel for the collection of chronic disease status, health care utilization, and psychosocial assessment data. Follow-up interviews were also conducted at six and nine month intervals, respectively, for the collection of occupational health data in addition to baseline information. Medication adherence data via administrative claims data was obtained for a time period of one year prior to the participant's enrollment date in the RCT through the final nine month follow-up interview.

Performance metrics were developed for various study activities including the completion of participant interviews, ascertainment of medical records, and entry of the data collected. To ensure fidelity of the SBIs for those participants randomized into the intervention treatment group, pharmacists completed standard forms to document their SBI with participants each time they presented at the pharmacy for a prescription refill. This documentation was then sent to the research team and added to the study file for each participant. Weekly quality improvement meetings were held among research staff to address any obstacles in reaching the established data metrics. Participant enrollment forms and study questionnaires were checked for completeness and accuracy. Discrepant or missing data were resolved using several techniques, including the review of other study documents that contained similar information, communicating with the pharmacy that enrolled the participant, or communicating with the participant directly.

A data review was conducted monthly by research personnel on a 10% random sample of the data collected. The established quality metric of 98% data accuracy (a comparison of data being entered into the Structured Query Language (SQL) database against the original data source) was reached continually for each data domain. If data were found to be discrepant against the data source, verified data changes were entered into the SQL database with appropriate documentation. Systemic issues (such as conventions for determining dates) that

22
may have resulted in data entry errors were addressed in the weekly quality improvement meetings and process changes were made to resolve these errors.

3.6.2 Covariates

To examine the associations with medication adherence, analyses controlled for demographics, marital status, education status, employment status, income, and baseline measures of health. Baseline measures of health included diabetes diagnosis, cholesterol diagnosis, heart disease diagnosis, hypertension diagnosis, stroke diagnosis, depression diagnosis, and an indicator for any other chronic disease diagnosis. Employment status was characterized as full-time, part-time, retired, disabled, and unemployed. Current and prior income was classified by the following ranges and treated as a continuous variable: \$0 – \$15,000, \$15,001 – \$30,000, \$30,001 – \$50,000, \$50,001 – \$75,000, \$75,001 – \$100,000, and more than \$100,000. Covariates were used in one of two models. The first model or pre-intervention model analyzes PDC at baseline for job class and job strain. The second model or intervention moderator model estimates how job class and job strain influence the intervention's effect on PDC. Table 1 summarizes the covariates used in the pre-intervention models, while Table 2 presents the covariates used in the intervention moderator models. Pairwise t-tests are included for key variables by job class and job strain in Appendix D.

Variable	Description
disease	Proportion of individuals with Diabetes, indicator variable (0 if not present, 1 if present)
pdc	Proportion Days Covered (PDC), continuous variable
pdcmbb0	Proportion Days Covered (PDC) for beta blockers (BB) medication class pre-intervention, continuous variable
pdcmccb0	Proportion Days Covered (PDC) for calcium channel blockers (CCB) medication class pre-intervention, continuous variable
pdcmdiab0	Proportion Days Covered (PDC) for diabetes medication class

Table 1. Pre-Intervention Model Variables

Table 1 continued

Variable	Description				
	pre-intervention, continuous variable				
	Proportion Days Covered (PDC) for renin angiotensin system				
pdcmrasa0	antagonists (RASA) medication class pre-intervention,				
	continuous variable				
ndamatat	Proportion Days Covered (PDC) for statins medication class,				
pucinistato	pre-intervention, continuous variable				
	Proportion Days Covered >80% (PDC80) for beta blockers				
pdc80bb0	(BB) medication class pre-intervention, indicator variable (0 if				
	not present, 1 if present)				
	Proportion Days Covered >80% (PDC80) for calcium channel				
pdc80ccb0	blockers (CCB) medication class pre-intervention, indicator				
	variable (0 if not present, 1 if present)				
	Proportion Days Covered >80% (PDC80) for diabetes				
pdc80diab0	medication class pre-intervention, indicator variable (0 if not				
	present, 1 if present)				
	Proportion Days Covered >80% (PDC80) for renin angiotensin				
pdc80raas0	system antagonists (RASA) medication class pre-intervention,				
	indicator variable (0 if not present, 1 if present)				
	Proportion Days Covered >80% (PDC80) for statins				
pdc80stat0	medication class pre-intervention, indicator variable (0 if not				
	present, 1 if present)				
mdage	Age, continuous variable				
mdf	Female, indicator variable (0 if not present, 1 if present)				
mdnonwh	Non-white, indicator variable (0 if not present, 1 if present)				
mdedm1	Individual has less than a high school degree, indicator				
	variable (0 if not present, 1 if present)				
mdedm?	Individual has a high school degree, indicator variable (0 if not				
	present, 1 if present)				
mdedm3	Individual has a four-year degree, indicator variable (0 if not				
	present, 1 if present)				
mdedm4	Individual has a professional/graduate level degree, indicator				
	variable (0 if not present, 1 if present)				
mdmarpar	Individual is married/partnered, indicator variable (0 if not				
	present, 1 if present)				
mdlivhom	Independent living, indicator variable (0 if not present, 1 if				
	present)				
mdemp1	Employed full-time, indicator variable (0 if not present, 1 if				
	present)				
mdemp?	Employed part-time, indicator variable (0 if not present, 1 if				
	present)				
mdemp3	Retired, indicator variable (0 if not present, 1 if present)				
mdemp4	Disabled, indicator variable (0 if not present, 1 if present)				
mdemp5	Not employed, indicator variable (0 if not present, 1 if present)				
incc1	Current income between \$0 - \$15,000, continuous variable				
incc2	Current income between \$15,001 - \$30,000, continuous				
	variable				
incc3	Current income between \$30,001 - \$50,000, continuous				
	variable				
incc4	Current income between \$50,001-\$75,000, continuous variable				
incc5	Current income between \$75,001-\$100,000, continuous				
	variable				
incc6	Current income is more than \$100,000, continuous variable				
incp1	Prior income is between \$0 - \$15,000, continuous variable				
incp?	Prior income is between \$15,001 - \$30,000, continuous				
	variable				
incp3	Prior income is between \$30,001 - \$50,000, continuous				
	variable				
inent	Prior income is between \$50,001 - \$75,000, continuous				
IIICh+	variable				

Variable	Description					
incp5	Prior income is between \$75,001 - \$100,000, continuous					
	variable					
incp6	Prior income is more than \$100,000, continuous variable					
mdbins1	Insured via individual plan, indicator variable (0 if not present,					
	1 if present)					
mdbins2	Insured via group plan, indicator variable (0 if not present, 1 if					
	present)					
mdbins3	Insured via military/government, indicator variable (0 if not					
	present, 1 if present)					
mdbins4	Insured via Medicaid, indicator variable (0 if not present, 1 if					
	present)					
mdbins5	Insured via Medicare, indicator variable (0 if not present, 1 if					
mdhing6	Net insured indicator variable (0 if not present, 1 if present)					
	Dishetee diagnosis indicator variable (0 if not present, 1 if					
mddxdiab	Diabetes diagnosis, indicator variable (0 if not present, 1 if					
	Chalastanal diagnosis indicator variable (0 if not present 1 if					
mddxchol	cholesterol diagnosis, indicator variable (0 ii not present, 1 ii					
	Heart disease diagnosis indicator variable (0 if not present 1 if					
mddxhrtd	present)					
	Hypertension diagnosis indicator variable (0 if not present 1					
mddxbp	if present)					
	Stroke diagnosis, indicator variable (0 if not present, 1 if					
mddxstrk	present)					
	Depression diagnosis, indicator variable (0 if not present, 1 if					
mddxdepr	present)					
11 4	Other chronic disease diagnosis, indicator variable (0 if not					
mddxothe	present, 1 if present)					
	When you visit your doctor, how often do you prepare a list of					
mddrqs1	questions for your doctor?, continuous variable $(1 = never to 6)$					
	= always)					
	When you visit your doctor, how often do you ask questions					
mddrqs2	about the things you don't understand about your treatment?,					
	continuous variable $(1 = never to 6 = always)$					
	When you visit your doctor, how often do you discuss any					
mddrqs3	personal problems that may be related to your illness?,					
	continuous variable $(1 = never to 6 = always)$					
mdhealth	In general, you would say your health is?, continuous variable					
	(1 = excellent to 5 = poor)					

Table 1 continued

Table 2. Intervention Moderator Model Variables

Variable	Description
disease	Proportion of individuals with Diabetes, indicator variable (0 if
disease	not present, 1 if present)
pdc	Proportion Days Covered (PDC), continuous variable
ndamhh0	Proportion Days Covered (PDC) for beta blockers (BB)
pacinobo	medication class pre-intervention, continuous variable
ndamhh1	Proportion Days Covered (PDC) for beta blockers (BB)
pacifio01	medication class post-intervention, continuous variable
ndamaah0	Proportion Days Covered (PDC) for calcium channel blockers
pucificebo	(CCB) medication class pre-intervention, continuous variable
ndamaah 1	Proportion Days Covered (PDC) for calcium channel blockers
puchicebi	(CCB) medication class post-intervention, continuous variable
ndamdiah()	Proportion Days Covered (PDC) for diabetes medication class
pucificiado	pre-intervention, continuous variable
pdcmdiab1	Proportion Days Covered (PDC) for diabetes medication class

Table 2 continued

Variable	Description			
	post-intervention, continuous variable			
	Proportion Days Covered (PDC) for renin angiotensin system			
pdcmrasa0	antagonists (RASA) medication class pre-intervention,			
	continuous variable			
	Proportion Days Covered (PDC) for renin angiotensin system			
ndcmraas1	antagonists (RASA) medication class post-intervention			
puennuusi	continuous variable			
	Proportion Days Covered (PDC) for stating medication class			
pdcmstat0	pre-intervention continuous variable			
	Propartian Days Covered (PDC) for stating medication class			
pdcmstat1	post intervention continuous variable			
	Propertion Dava Covered > 80% (DDC80) for beta blockers			
nda90hh0	(PD) madiantian along pro-intervention indianter variable (0 if			
pucoobo	(BB) medication class pre-intervention, indicator variable (0 in			
	not present, 1 il present)			
1 0011 1	Proportion Days Covered >80% (PDC80) for beta blockers			
paceobbl	(BB) medication class post-intervention, indicator variable (0			
	if not present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for calcium channel			
pdc80ccb0	blockers (CCB) medication class pre-intervention, indicator			
	variable (0 if not present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for calcium channel			
pdc80ccb1	blockers (CCB) medication class post-intervention, indicator			
	variable (0 if not present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for diabetes			
pdc80diab0	medication class pre-intervention, indicator variable (0 if not			
	present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for diabetes			
pdc80diab1	medication class pre-intervention, indicator variable (0 if not			
	present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for renin angiotensin			
pdc80raas0	system antagonists (RASA) medication class pre-intervention,			
	indicator variable (0 if not present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for renin angiotensin			
pdc80raas1	system antagonists (RASA) medication class post-intervention,			
	indicator variable (0 if not present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for statins			
pdc80stat0	medication class pre-intervention, indicator variable (0 if not			
	present, 1 if present)			
	Proportion Days Covered >80% (PDC80) for statins			
pdc80stat1	medication class post-intervention, indicator variable (0 if not			
	present, 1 if present)			
mdage	Age, continuous variable			
mdf	Female, indicator variable (0 if not present, 1 if present)			
mdnonwh	Non-white, indicator variable (0 if not present, 1 if present)			
	Individual has less than a high school degree, indicator			
mdedm1	variable (0 if not present, 1 if present)			
	Individual has a high school degree indicator variable (0 if not			
mdedm2	present 1 if present)			
	Individual has a four-year degree indicator variable (0 if not			
mdedm3	nesent 1 if present)			
	Individual has a professional/graduate level degree indicator			
mdedm4	variable (0 if not present 1 if present)			
	Individual is married/martnered indicator variable (0 if not			
mdmarpar	mulvidual is married/partnered, indicator variable (0 if not			
	Indemendent living indicator weight (0 if not arrest 1 if			
mdlivhom	independent living, indicator variable (0 if not present, 1 if			
	present)			
mdemp1	Employed full-time, indicator variable (0 if not present, 1 if			
	present)			
mdemp2	Employed part-time, indicator variable (0 if not present, 1 if			

Variable	Description				
	present)				
mdemp3	Retired, indicator variable (0 if not present, 1 if present)				
mdemp4	Disabled, indicator variable (0 if not present, 1 if present)				
mdemp5	Not employed, indicator variable (0 if not present, 1 if present)				
incc1	Current income between \$0 - \$15,000, continuous variable				
incc2	Current income between \$15,001 - \$30,000, continuous variable				
incc3	Current income between \$30,001 - \$50,000, continuous variable				
incc4	Current income between \$50,001-\$75,000, continuous variable				
incc5	Current income between \$75,001-\$100,000, continuous variable				
incc6	Current income is more than \$100,000, continuous variable				
incp1	Prior income is between \$0 - \$15,000, continuous variable				
incp2	Prior income is between \$15,001 - \$30,000, continuous variable				
incp3	Prior income is between \$30,001 - \$50,000, continuous variable				
incp4	Prior income is between \$50,001 - \$75,000, continuous variable				
incp5	Prior income is between \$75,001 - \$100,000, continuous variable				
incp6	Prior income is more than \$100,000, continuous variable				
mdbins1	Insured via individual plan, indicator variable (0 if not present, 1 if present)				
mdbins2	Insured via group plan, indicator variable (0 if not present, 1 if present)				
mdbins3	Insured via military/government, indicator variable (0 if not present 1 if present)				
mdbins4	Insured via Medicaid, indicator variable (0 if not present, 1 if present)				
mdbins5	Insured via Medicare, indicator variable (0 if not present, 1 if present)				
mdbins6	Not insured, indicator variable (0 if not present, 1 if present)				
mddxdiab	Diabetes diagnosis, indicator variable (0 if not present, 1 if present)				
mddxchol	Cholesterol diagnosis, indicator variable (0 if not present, 1 if present)				
mddxhrtd	Heart disease diagnosis, indicator variable (0 if not present, 1 if present)				
mddxbp	Hypertension diagnosis, indicator variable (0 if not present, 1 if present)				
mddxstrk	Stroke diagnosis, indicator variable (0 if not present, 1 if present)				
mddxdepr	Depression diagnosis, indicator variable (0 if not present, 1 if present)				
mddxothe	Other chronic disease diagnosis, indicator variable (0 if not present, 1 if present)				
mddrqs1	When you visit your doctor, how often do you prepare a list of questions for your doctor?, continuous variable (1 = never to 6 = always)				
mddrqs2	When you visit your doctor, how often do you ask questions about the things you don't understand about your treatment?, continuous variable $(1 = never to 6 = always)$				
mddrqs3	When you visit your doctor, how often do you discuss any personal problems that may be related to your illness?, continuous variable $(1 = never to 6 = always)$				
mdhealth	In general, you would say your health is?, continuous variable $(1 = \text{excellent to } 5 = \text{poor})$				

Table 2 continued

3.6.3 Generalized Linear Mixed Models

Multivariate statistics were examined using GLMM. GLMM allow response variables from different distributions, such as binary responses and includes both fixed and random effects, hence mixed models. The general linear form of the model, in matrix notation, is shown in equation 1:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon},$$
(1)

where X is the fixed effects or covariates and Z is the random effects or individuals nested within pharmacies.

Models were created for PDC as a function of job class and job strain, respectively, and are presented in the following equations for pre-intervention and intervention moderator models.

The pre-intervention model depicting PDC at baseline for job class is shown in equation 2:

PDC_{*i*, *m*} =
$$\beta_0 + \beta_1$$
JOB CLASS_{*i*} + **X**_{*i*} $\beta_2 + \varepsilon_p + \varepsilon_i$

(2)

where PDC_{*i*, *m*} is the proportion days covered by individual (*i*) and medication class (*m*), β_0 is the intercept, β_1 is the set of coefficients for each of the job class indicator variables, JOB CLASS_{*i*} is a set of indicator variables classified as manual (blue-collar), nonmanual (white-collar), or not working (retired, disabled, and unemployed) by individual (*i*), X_{*i*} represents all other covariates in the model at the individual (*i*) level, β_2 is the set of coefficients for the covariates, ε_p is the model prediction error by pharmacy (*p*) and ε_i is the model prediction error by individual (*i*).

The pre-intervention model representing PDC at baseline for job strain is shown in equation 3:

PDC_{*i*, *m*} =
$$\beta_0 + \beta_1$$
JOB STRAIN_{*i*} + **X**_{*i*} $\beta_2 + \varepsilon_p + \varepsilon_i$,

(3)

where PDC_{*i*, *m*} is the proportion days covered by individual (*i*) and medication class (*m*), β_0 is the intercept, β_1 is the set of coefficients for each of the job strain indicator variables, JOB STRAIN_{*i*} is a set of indicator variables classified as active, high strain, low strain, passive, and noncontributing by individual (*i*), X_{*i*} represents all other covariates in the model at the individual (*i*) level, β_2 is the set of coefficients for the covariates, ε_p is the model prediction error by pharmacy (*p*) and ε_i is the model prediction error by individual (*i*).

The intervention moderator model demonstrating the intervention's effect on PDC in relation to job class is shown in equation 4:

$PDC_{i} = \beta_{0} + \beta_{1} \text{ JOB CLASS}_{i} + \beta_{2} \text{INTERVENTION} + \beta_{3} \text{JOB}$ $CLASS*INTERVENTION + X_{i}\beta_{4} + \varepsilon_{p} + \varepsilon_{i},$

(4)

where PDC_{*i*} is the proportion days covered by individual, β_0 is the intercept, β_1 is a set of coefficients for each of the job class indicator variables, JOB CLASS_{*i*} is an indicator variable classified as manual (blue-collar), nonmanual (white-collar), or not working (retired, disabled, and unemployed) by individual (*i*), β_2 is the coefficient for the main effect of the intervention, INTERVENTION is the effect of SBI + pillbox, β_3 is the main coefficient of interest for this analysis and represents the moderating effect of job class on the intervention, JOB CLASS*INTERVENTION is the interaction term between each of the job class indicators and

the intervention indicator, X_i represents all other covariates in the model at the individual (*i*) level, β_4 is the set of coefficients for the covariates, ε_p is the model prediction error by pharmacy (*p*) and ε_i is the model prediction error by individual (*i*).

The intervention moderator model demonstrating the intervention's effect on PDC in relation to job strain is shown in equation 5:

$PDC_i = \beta_0 + \beta_1 JOB STRAIN_i + \beta_2 INTERVENTION + \beta_3 JOB STRAIN*INTERVENTION$

+ $X_i\beta_4 + \varepsilon_p + \varepsilon_i$,

where PDC_{*i*} is the proportion days covered by individual, β_0 is the intercept, β_1 is a set of coefficients for each of the job strain indicator variables, JOB STRAIN_{*i*} is an indicator variable classified as active, high strain, low strain, passive, and non-contributing by individual (*i*), β_2 is the coefficient for the main effect of the intervention, INTERVENTION is the effect of SBI + pillbox, β_3 is the main coefficient of interest for this analysis and represents the moderating effect of job strain on the intervention, JOB STRAIN*INTERVENTION is the interaction term between each of the job strain indicators and the intervention indicator, X_i represents all other covariates in the model at the individual (*i*) level, β_4 is the set of coefficients for the covariates, ε_p is the model prediction error by pharmacy (*p*) and ε_i is the model prediction error by individual (*i*).

GLMM allowed for each outcome to be measured independently even though the study involved multiple data sources, data collection methods, and different analysis samples that emerged for any given outcome of interest (e.g. the sample of participants with PDC adherence measures, though overlapping, was distinct from participants with healthcare utilization data).

⁽⁵⁾

Covariates across multiple data sets were utilized when available. The GLMM efficiently modeled repeated measures within individual participants and pharmacies for fixed/random effects and clustering (McCulloch & Neuhaus, 2005). Moreover, within the GLMM framework, hypotheses were explored on multiple levels. Pairwise comparisons of job class and job strain utilized a reference category. Post-estimation f-tests were used to compare between job class and job strain that were not specified as the reference category. STATA (version 13, StataCorp, College Station, TX) software was used for the analyses.

4.0 **RESULTS**

4.1 SAMPLE SELECTION

The occupational health questionnaire was administered to all participants (n=506) with a sample of n=210 completing the questionnaire (response rate of 41.5%). A final sample of n=189 was used for the analysis as pharmacy claims data was provided for these participants. Figure 4 depicts the sample of participants. Non-response to the survey did not appear to vary substantially by store, study treatment group, gender or age.

Figure 4. Study Sample

4.2 DESCRIPTIVE STATISTICS

Descriptive statistics of all relevant sample characteristics are tabulated and presented by job strain and job class in Table 3. Continuous covariate outcomes are presented as means and standard errors. Categorical covariates are described as percentages. Covariates that were found to be related to medication adherence are noted within Table 3.

Approximately, half of all individuals were enrolled in the RCT with a primary diagnosis of diabetes. The average participant age was 61 and roughly half of the study population was female. Sixty-one percent were married or had a partner. Less than 20% of the sample failed to complete high school. Thirty-one percent were employed full-time and 59% were retired, disabled, or not employed. Most participants had individual insurance plans (84.4%). Participants had a baseline PDC of 62.8%. Lastly, job class and job strain had equivalent baseline characteristics across a variety of measures of health and health behaviors.

					Job St	rain			Job Class	
		Total Sample	Active	High Strain	Low Strain	Passive	Non- Contributing	Manual	Nonmanual	Not Working
Ν		189	64	35	33	42	15	50	120	19
Standard C	are (%)		19%	11%	7.4%	12.2%	4%	14%	35%	5%
SBI + pillb	ox (%)		15%	7.4%	10%	10%	4%	13%	28%	5%
Dishatas D	ronantion	0.524	0.531	0.514	0.515	0.548	0.467	0.480	0.558	0.421
Diabetes P	горогноп	(0.036)	(0.063)	(0.086)	(0.088)	(0.078)	(0.133)	(0.071)	(0.046)	(0.116)
DD C		0.628	0.675	0.611	0.735	0.599	0.581	0.666	0.652	0.578
PDC		(0.035)	(0.059)	(0.082)	(0.077)	(0.076)	(0.127)	(0.067)	(0.043)	(0.113)
PDC										
DD	Pre	0.657	0.667	0.659	0.742	0.566	0.646	0.608	0.686	0.662
DD	Post	(0.038)	(0.066)	(0.088)	(0.057)	(0.09)	(0.18)	(0.061)	(0.05)	(0.153)
CCD	Pre	0.789	0.708	0.859	0.840	0.779	0.897	0.795	0.768	0.897
ССВ	Post	(0.031)	(0.064)	(0.052)	(0.057)	(0.072)	(0.084)	(0.051)	(0.044)	(0.071)
Dishotas	Pre	0.657	0.656	0.663	0.719	0.682	0.528	0.754	0.643	0.553
Diabetes	Post	(0.043)	(0.076)	(0.069)	(0.127)	(0.11)	(0.154)	(0.071)	(0.056)	(0.13)

Table 3. Sample Characteristics

Table 3 continued

					Job St	Job Class				
		Total		High	Low		Non-			Not
	D	Sample	Active	Strain	Strain	Passive	Contributing	Manual	Nonmanual	Working
RASA	Pre	0.718	0.755	0.575	0.910	0.719	0.701	0.818	0.094	(0.127)
	Post	(0.04)	(0.058)	(0.109)	(0.031)	(0.12)	(0.121)	(0.06)	(0.054)	(0.127)
Statins	Pre	0.696	0.763	0.639	0./13	0.654	0.609	0.626	0.737	0.606
DD C00	Post	(0.029)	(0.042)	(0.072)	(0.06)	(0.076)	(0.109)	(0.064)	(0.034)	(0.097)
PDC80	D	0.500	0.620	0.522	0.500	0.420	0.000	0.005	0.651	0.667
BB	Pre	0.560	0.630	0.533	0.500	0.429	0.800	0.385	0.651	0.667
	Post	(0.058)	(0.095)	(0.133)	(0.139)	(0.137)	(0.2)	(0.097)	(0.074)	(0.211)
ССВ	Pre	0.727	0.692	0.813	0.714	0.667	0.833	0.704	0.721	0.857
	Post	(0.051)	(0.092)	(0.101)	(0.125)	(0.126)	(0.167)	(0.09)	(0.069)	(0.143)
Diabetes	Pre	0.581	0.727	0.313	0.875	0.556	0.429	0.625	0.595	0.444
	Post	(0.063)	(0.097)	(0.12)	(0.125)	(0.176)	(0.202)	(0.125)	(0.082)	(0.176)
RASA	Pre	0.672	0.593	0.667	0.900	0.750	0.571	0.750	0.650	0.625
10.011	Post	(0.059)	(0.096)	(0.142)	(0.1)	(0.164)	(0.202)	(0.112)	(0.076)	(0.183)
Stating	Pre	0.550	0.615	0.450	0.450	0.652	0.444	0.464	0.597	0.455
Statins	Post	(0.047)	(0.079)	(0.114)	(0.114)	(0.102)	(0.176)	(0.096)	(0.058)	(0.157)
Age		61	61	60	60	59	65	60	60	66
Age		(0.786)	(1.319)	(1.855)	(1.770)	(1.782)	(2.805)	(1.488)	(0.989)	(2.433)
Famala		0.543	0.578	0.853	0.273	0.405	0.667	0.280	0.625	0.722
remate		(0.036)	(0.062)	(0.062)	(0.079)	(0.077)	(0.126)	(0.064)	(0.044)	(0.109)
Non white		0.128	0.143	0.143	0.152	0.048	0.200	0.080	0.143	0.158
Non-winte		(0.024)	(0.044)	(0.060)	(0.063)	(0.033)	(0.107)	(0.039)	(0.032)	(0.086)
Less than I	ligh	0.176	0.048	0.314	0.061	0.214	0.533	0.300	0.076	0.474
School De	gree	(0.028)	(0.027)	(0.080)	(0.042)	(0.064)	(0.133)	(0.065)	(0.024)	(0.118)
II. 1 C 1	1.D	0.277	0.143	0.286	0.364	0.429	0.200	0.500	0.185	0.263
High Scho	of Degree	(0.033)	(0.044)	(0.077)	(0.085)	(0.077)	(0.107)	(0.071)	(0.036)	(0.104)
F		0.282	0.254	0.314	0.333	0.262	0.267	0.120	0.353	0.263
Four-year	Degree	(0.033)	(0.055)	(0.080)	(0.083)	(0.069)	(0.118)	(0.046)	(0.044)	(0.104)
Profession	al/Graduate	0.266	0.556	0.086	0.242	0.095	0.000	0.080	0.387	0.000
Level Degr	ree	(0.032)	(0.063)	(0.048)	(0.076)	(0.046)	(0.000)	(0.039)	(0.045)	(0.000)
		0.612	0.730	0.514	0.636	0.619	0.267	0.560	0.681	0.316
Married/Pa	rtnered	(0.036)	(0.056)	(0.086)	(0.085)	(0.076)	(0.118)	(0.071)	(0.043)	(0.110)
		0.926	0.968	0.943	0.939	0.881	0.800	0.960	0.924	0.842
Independer	nt Living	(0.019)	(0.022)	(0.040)	(0.042)	(0.051)	(0.107)	(0.028)	(0.024)	(0.086)
		0.314	0.413	0.171	0.455	0.286	0.000	0.240	0.395	0.000
Employed	Full-time	(0.034)	(0.063)	(0.065)	(0.088)	(0.071)	(0.000)	(0.061)	(0.045)	(0.000)
		0.096	0.063	0.086	0.121	0.167	0.000	0.080	0.109	0.053
Employed	Part-time	(0.022)	(0.031)	(0.048)	(0.058)	(0.058)	(0.000)	(0.039)	(0.029)	(0.053)
		0.356	0.444	0.286	0.333	0.262	0.467	0.340	0.361	0.368
Retired		(0.035)	(0.063)	(0.077)	(0.083)	(0.069)	(0.133)	(0.068)	(0.044)	(0.114)
Disabled		0.170	0.048	0.314	0.061	0.190	0.533	0.260	0.084	0.474

Table 3 continued

		Job Strain Job Cla				Job Class	s		
	Total Sample	Active	High Strain	Low Strain	Passive	Non- Contributing	Manual	Nonmanual	Not Working
	(0.027)	(0.027)	(0.080)	(0.042)	(0.061)	(0.133)	(0.063)	(0.026)	(0.118)
Not Employed	0.064	0.032	0.143	0.030	0.095	0.000	0.080	0.050	0.105
The Employed	(0.018)	(0.022)	(0.060)	(0.030)	(0.046)	(0.000)	(0.039)	(0.020)	(0.072)
Current Income									
\$0 - \$15,000	0.240	0.129	0.324	0.133	0.310	0.636	0.271	0.190	0.533
\$15,0001 - \$30,000	(0.032)	(0.043)	(0.081)	(0.063)	(0.072)	(0.152)	(0.065)	(0.037)	(0.133)
\$15,0001 \$30,000	0.285	0.161	0.382	0.367	0.310	0.364	0.354	0.241	0.400
\$15,0001 - \$50,000	(0.034)	(0.047)	(0.085)	(0.089)	(0.072)	(0.152)	(0.070)	(0.040)	(0.131)
\$30,001 \$50,000	0.201	0.226	0.147	0.233	0.238	0.000	0.188	0.233	0.000
\$30,001 - \$30,000	(0.030)	(0.054)	(0.062)	(0.079)	(0.067)	(0.000)	(0.057)	(0.039)	(0.000)
\$50,001 \$75,000	0.145	0.210	0.147	0.200	0.048	0.000	0.167	0.147	0.067
\$50,001 - \$75,000	(0.026)	(0.052)	(0.062)	(0.074)	(0.033)	(0.000)	(0.054)	(0.033)	(0.067)
\$75.001 \$100.000	0.067	0.129	0.000	0.067	0.048	0.000	0.000	0.103	0.000
\$75,001 - \$100,000	(0.019)	(0.043)	(0.000)	(0.046)	(0.033)	(0.000)	(0.000)	(0.028)	(0.000)
> \$100.000	0.061	0.145	0.000	0.000	0.048	0.000	0.021	0.086	0.000
>\$100,000	(0.018)	(0.045)	(0.000)	(0.000)	(0.033)	(0.000)	(0.021)	(0.026)	(0.000)
Prior Income									
¢0 ¢15 000	0.217	0.119	0.286	0.150	0.304	0.429	0.250	0.167	0.500
\$0 - \$15,000	(0.038)	(0.051)	(0.087)	(0.082)	(0.098)	(0.202)	(0.078)	(0.042)	(0.167)
\$15,0001 \$30,000	0.192	0.071	0.321	0.200	0.174	0.429	0.219	0.167	0.300
\$15,0001 - \$50,000	(0.036)	(0.040)	(0.090)	(0.092)	(0.081)	(0.202)	(0.074)	(0.042)	(0.153)
\$20,001 \$50,000	0.200	0.190	0.107	0.300	0.261	0.143	0.188	0.218	0.100
\$30,001 - \$30,000	(0.037)	(0.061)	(0.060)	(0.105)	(0.094)	(0.143)	(0.070)	(0.047)	(0.100)
\$50.001 \$75.000	0.208	0.167	0.214	0.300	0.261	0.000	0.281	0.205	0.000
\$50,001 - \$75,000	(0.037)	(0.058)	(0.079)	(0.105)	(0.094)	(0.000)	(0.081)	(0.046)	(0.000)
\$75 001 \$100 000	0.058	0.143	0.036	0.000	0.000	0.000	0.000	0.090	0.000
\$75,001 - \$100,000	(0.021)	(0.055)	(0.036)	(0.000)	(0.000)	(0.000)	(0.000)	(0.033)	(0.000)
> ¢100.000	0.125	0.310	0.036	0.050	0.000	0.000	0.063	0.154	0.100
>\$100,000	(0.030)	(0.072)	(0.036)	(0.050)	(0.000)	(0.000)	(0.043)	(0.041)	(0.100)
In dissi da al Dian	0.840	0.859	0.853	0.818	0.810	0.867	0.840	0.833	0.889
	(0.027)	(0.044)	(0.062)	(0.068)	(0.061)	(0.091)	(0.052)	(0.034)	(0.076)
Crear Diar	0.074	0.109	0.088	0.061	0.048	0.000	0.040	0.100	0.000
Group Plan	(0.019)	(0.039)	(0.049)	(0.042)	(0.033)	(0.000)	(0.028)	(0.028)	(0.000)
Military/Commencent	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mintary/Government	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	0.005	0.000	0.000	0.000	0.024	0.000	0.020	0.000	0.000
wiedicald	(0.005)	(0.000)	(0.000)	(0.000)	(0.024)	(0.000)	(0.020)	(0.000)	(0.000)
Madiaara	0.064	0.016	0.029	0.091	0.119	0.133	0.100	0.042	0.111
wiedicare	(0.018)	(0.016)	(0.029)	(0.051)	(0.051)	(0.091)	(0.043)	(0.018)	(0.076)
Not Insured	0.016	0.016	0.029	0.030	0.000	0.000	0.000	0.025	0.000

				Job St	rain			Job Class		
	Total		High	Low		Non-			Not	
	Sample	Active	Strain	Strain	Passive	Contributing	Manual	Nonmanual	Working	
	(0.009)	(0.016)	(0.029)	(0.030)	(0.000)	(0.000)	(0.000)	(0.014)	(0.000)	
DX Diabetes	0.633	0.641	0.588	0.636	0.619	0.733	0.600	0.650	0.611	
Dir Diasetes	(0.035)	(0.060)	(0.086)	(0.085)	(0.076)	(0.118)	(0.070)	(0.044)	(0.118)	
DX Cholesterol	0.888	0.875	0.853	0.970	0.857	0.933	0.880	0.883	0.944	
DA Cholesteror	(0.023)	(0.042)	(0.062)	(0.030)	(0.055)	(0.067)	(0.046)	(0.029)	(0.056)	
DX Heart Disease	0.266	0.281	0.265	0.152	0.310	0.333	0.320	0.242	0.278	
DA Heart Disease	(0.032)	(0.057)	(0.077)	(0.063)	(0.072)	(0.126)	(0.067)	(0.039)	(0.109)	
DY Hypertension	0.771	0.750	0.824	0.727	0.762	0.867	0.840	0.733	0.833	
DA Hypertension	(0.031)	(0.055)	(0.066)	(0.079)	(0.067)	(0.091)	(0.052)	(0.041)	(0.090)	
DV Stroke	0.080	0.094	0.088	0.030	0.095	0.067	0.100	0.075	0.056	
DA Suoke	(0.020)	(0.037)	(0.049)	(0.030)	(0.046)	(0.067)	(0.043)	(0.024)	(0.056)	
DY Depression	0.266	0.250	0.235	0.182	0.333	0.400	0.200	0.283	0.333	
DA Depression	(0.032)	(0.055)	(0.074)	(0.068)	(0.074)	(0.131)	(0.057)	(0.041)	(0.114)	
DX Other Chronic	0.410	0.375	0.471	0.455	0.429	0.267	0.340	0.458	0.278	
Disease	(0.036)	(0.061)	(0.087)	(0.088)	(0.077)	(0.118)	(0.068)	(0.046)	(0.109)	
How Often Prepare	3.250	3.266	2.794	3.182	3.524	3.600	2.800	3.350	3.833	
MD (1-6)	(0.120)	(0.208)	(0.242)	(0.293)	(0.260)	(0.456)	(0.221)	(0.149)	(0.406)	
How Often Ask MD	4.293	4.484	4.206	4.121	4.333	3.933	3.880	4.492	4.111	
to Understand Treatment (1-6)	(0.119)	(0.199)	(0.283)	(0.298)	(0.254)	(0.408)	(0.230)	(0.147)	(0.378)	
How Often Discuss	3.489	3.563	3.882	3.000	3.405	3.600	3.160	3.575	3.833	
Personal Problems with MD Related to Illness (1-6)	(0.127)	(0.224)	(0.289)	(0.320)	(0.273)	(0.335)	(0.227)	(0.167)	(0.336)	
Health (1-5; Lower is	3.080	2.969	3.029	2.939	3.310	3.333	3.360	2.950	3.167	
Better)	(0.068)	(0.126)	(0.166)	(0.123)	(0.134)	(0.270)	(0.124)	(0.084)	(0.246)	
Robust standard errors in parentheses										

Table 3 continued

Correlations between the study variables, specifically job strain and PDC for diabetes and statins are shown in Table 4. Correlation coefficients show that females are less likely to have a low strain job. Active strain is positively correlated with income and education. Individuals in high strain jobs have low adherence to statins. Lastly, statin adherence is positively correlated with adherence to diabetes medications.

								Job Strai	in		PD	С
		Female	Education	Current Income	Previous Income	Active	High Strain	Low Strain	Passive	Non-Contributing	Diabetes	Statins
Female		1										
Educati	on	-0.04	1									
Current	Income	-0.10	0.47*	1								
Previou	is Income	-0.12	0.30*	0.30*	1							
	Active	0.05	0.46*	0.39*	0.31*	1						
	High Strain	0.29*	-0.21*	-0.17*	-0.03	-0.34*	1					
Job Strain	Low Strain	-0.25*	0.05	-0.04	-0.05	-0.33*	-0.22*	1				
Strain	Passive	-0.15*	-0.20*	-0.08	-0.17*	-0.38*	-0.25*	-0.25*	1			
	Non-Contributing	0.07	-0.25*	-0.26*	-0.17*	-0.21*	-0.14	-0.14	-0.16*	1		
DDC	Diabetes	-0.01	0.12	0.05	0.09	0.16	-0.09	0.03	-0.07	-0.08	1	
PDC	Statins	-0.12	-0.07	0.06	0.10	0.10	-0.18*	0.07	-0.02	0.02	0.49*	1
*p<0.0	5											

Table 4. Correlations between the Study Variables

4.3 **PRE-INTERVENTION MODELS**

The pre-intervention models depicting PDC at baseline for job class and job strain are presented by medication class.

4.3.1 Pre-Intervention Models for Job Class

Table 5 shows baseline PDC as a function of job class with the manual job class as the reference category. The results show significance, although minimal, on adherence for both nonmanual workers taking BBs (0.168; p=0.096) and participants prescribed CCBs who are not working (-0.307; p=0.096) as compared to the manual job class. Figure 5 illustrates baseline PDC as a function of job class with the manual job class as the reference category as presented in Table 5.

			Baseline Prop	ortion Days Covered	(PDC) by Medicatio	n Class					
Refere	ence Category: Manual	Beta Blockers (BB)	Calcium Channel Blockers (CCB)	Diabetes	Renin Angiotensin System Antagonists (RASA)	Statins	Combined PDC across All Medication Classes				
	Ν	80	68	114	121	163	187				
	Nonmonuol	0.168*	-0.152	0.107	0.028	-0.038	0.011				
Job	Nonmanual	(0.01)	(0.13)	(0.09)	(0.09)	(0.08)	(0.060)				
Class	NI / XX 1 1	-0.11	-0.307*	-0.076	-0.192	-0.118	-0.098				
	Not working	(0.156)	(0.181)	(0.127)	(0.124)	(0.111)	(0.086)				
Robust *p<0.	Robust standard errors in parentheses *p<0.1										
Other of Disease Emplo	Other covariates not presented here are Age, Female, Nonwhite, Married/Partnered, Diabetes Diagnosis, Cholesterol Diagnosis, Heart Disease Diagnosis, Hypertension Diagnosis, Stroke Diagnosis, Depression Diagnosis, Other Diagnosis, Full-time Employment, Part-time Employment, Retired, Disabled, Not Employed, Current Income & Prior Income.										

Table 5. Baseline PDC as a Function of Job Class

Figure 5. Baseline PDC as a Function of Job Class

4.3.2 **Pre-Intervention Models for Job Strain**

Table 6 presents baseline PDC as a function of job strain with the reference category as the active strain. The results demonstrate that the non-contributing group has lower adherence measured by PDC than the active strain across all medication classes. In all models post estimation calculations were made to compare coefficients to one and other. Comparing across job strain coefficients for the medication class RASA, the low strain (0.174) job type had a higher PDC than the non-contributing group (-0.264; p=0.004). Participants prescribed RASA

also showed that the passive strain (-0.082) had a lower PDC than participants with a low strain (0.174; p=0.017) job type. High strain participants (-0.143) had a significantly lower PDC than participants with a low strain (0.053; p=0.053) job type for the statin medication class. Figure 6 illustrates baseline PDC as a function of job strain with the active job strain as the reference category as presented in Table 6. The results suggest that job strain is strongly associated with medication adherence.

		Baseline Proportion Days Covered (PDC) by Medication Class						
Reference Category: Active Strain		Beta Blockers (BB)	Calcium Channel Blockers (CCB)	Diabetes	Renin Angiotensin System Antagonists (RASA)	Statins	Combined PDC across All Medication Classes	
Ν		80	68	114	121	163	187	
	High Strain	0.036	-0.033	-0.086	0.049	-0.143*	-0.099	
	High Strain	(-0.132)	(0.159)	(0.106)	(0.107)	(0.089)	(0.071)	
	Low Strain	0.083	-0.007	-0.04	0.174*	0.053*	0.052	
Job Strain		(0.136)	(0.173)	(0.108)	(0.104)	(0.09)	(0.071)	
	Passive	-0.094	0.024	-0.103	-0.082	-0.041	-0.049	
		(0.131)	(0.177)	(0.096)	(0.097)	(0.085)	(0.068)	
	Non- Contributing	-0.145	-0.156	-0.228*	-0.264***	-0.096	-0.119	
		(0.194)	(0.197)	(0.141)	(0.144)	(0.126)	(0.097)	
Robust ***p<0	standard errors in 0.01, *p<0.1	parentheses						
Other c	ovariates not prese	ented here are Ag	ge, Female, Nonw	white, Married/Part	nered, Diabetes Di	agnosis, Choleste	erol Diagnosis,	
Heart D	Disease Diagnosis,	Hypertension Di	iagnosis, Stroke I	Diagnosis, Depress	ion Diagnosis, Oth	er Diagnosis, Ful	l-time	

Employment, Part-time Employment, Retired, Disabled, Not Employed, Current Income & Prior Income.

Table 6. Baseline PDC as a Function of Job Strain

Figure 6. Baseline PDC as a Function of Job Strain

4.4 INTERVENTION MODERATOR MODELS

The intervention moderator models are used to estimate how job class and job strain influence the intervention's effect on PDC. The intervention moderator tables present the results of five models that show different specifications for covariates as more control variables are included. The models are noted in each subsequent table with Model 5 being the most robust specification (i.e. containing all covariates).

4.4.1 Intervention Moderator Models for Job Class

Table 7 shows that job class does not have an impact on the intervention. Negative effects are consistently seen in all models relative to the manual job class (reference category). Figure 7 illustrates the moderating effect of job class on the impact of the intervention with the manual job class as the reference category as presented in Table 7.

Reference Category: Manual		Adjusted Δ in Proportion Days Covered (PDC)					
		Model 1	Model 2	Model 3	Model 4	Model 5	
	Normonuel	-0.123	-0.135	-0.111	-0.081	-0.072	
Job Class	Nonmanual	(0.083)	(0.084)	(0.085)	(0.084)	(0.087)	
	Not Working	-0.12	-0.124	-0.118	-0.16	-0.189	
		(0.146)	(0.146)	(0.147)	(0.152)	(0.157)	
Robust standard errors in parentheses							
Model 1: Study Group, Job Strain, Baseline PDC;							
Model 2: Model 1 + Age, Female, Nonwhite, Married/Partnered;							
Model 3: Model 2 + High School Degree, Four-year Degree, Professional/Graduate Level Degree, Part-Time Employment,							
Retired, Disabled, Unemployment, Current and Prior Income, Diabetes Diagnosis, Cholesterol Diagnosis, Heart Disease							
Diagnosis, Hypertension Diagnosis, Stroke Diagnosis, Depression Diagnosis, Other Diagnosis;							
Model 4 : Model 3 + Group Insurance, Military/Government Insurance, Medicaid Insurance, Health (1-5; Lower is Better),							
Health limited physical activities (1-5; Lower is Better), Bothered by emotional problems (1-5; Lower is Better), Limited							
work in and out of home (1-5; Lower is Better), Interfered with normal social activities (1-5; Lower is Better);							
Model 5: Model 4 + How Often Prepare List of Questions for MD (1-6), How Often Ask MD to Understand Treatment (1-							
6), How Often Discuss Personal Problems with MD Related to Illness (1-6).							

Table 7. Moderating Effects of Job Class on Impact of Intervention

Figure 7. Moderating Effects of Job Class on Impact of Intervention

4.4.2 Intervention Moderator Models for Job Strain

Changes in PDC in response to the intervention are positively moderated by all job strains, except non-contributing, relative to the active strain as shown in Table 8. The low strain job type has the largest moderating effect of the intervention (p<0.01) with an effect estimate range from 0.169 (p<0.01) to 0.202 (p<0.01). Additionally, the moderating effect for the high strain job type in Model 4 is positive and significant (0.172; p<0.1). Model five, the most robust specification, yields a 0.181 adjusted change in PDC or 18.1 percentage point increase in PDC

for the low strain job type. Figure 8 illustrates the moderating effect of job strain on the impact of the intervention with the active job strain as the reference category as presented in Table 8. The results of the intervention moderator models demonstrate that job strain is associated with the impact of the intervention.

Reference Category: Active Strain		Adjusted Δ in Proportion Days Covered (PDC)					
		Model 1	Model 2	Model 3	Model 4	Model 5	
		0.114	0.111	0.125	0.172*	0.141	
	High Strain	(0.082)	(0.087)	(0.093)	(0.096)	(0.097)	
	Low Strain	0.179***	0.169***	0.202***	0.178***	0.181***	
		(0.062)	(0.06)	(0.052)	(0.054)	(0.051)	
JOD Strain	Passive	0.144	0.146	0.134	0.135	0.147	
		(0.108)	(0.109)	(0.111)	(0.098)	(0.101)	
	New Centributine	0.063	0.075	0.059	-0.028	-0.021	
	Non-Contributing	(0.154)	(0.152)	(0.156)	(0.193)	(0.191)	
Robust standar ***p<0.01, *p	rd errors in parentheses <0.1						
Model 1: Stud	y Group, Job Strain, Baselin	e PDC:					

Table 8. Moderating	g Effects of Job	Strain on	Impact of	Intervention
---------------------	------------------	-----------	-----------	--------------

Model 2: Model 1 + Age, Female, Nonwhite, Married/Partnered;

Model 3: Model 2 + High School Degree, Four-year Degree, Professional/Graduate Level Degree, Part-Time Employment, Retired, Disabled, Unemployment, Current and Prior Income, Diabetes Diagnosis, Cholesterol Diagnosis, Heart Disease Diagnosis, Hypertension Diagnosis, Stroke Diagnosis, Depression Diagnosis, Other Diagnosis;

Model 4: Model 3 + Group Insurance, Military/Government Insurance, Medicaid Insurance, Health (1-5; Lower is Better), Health limited physical activities (1-5; Lower is Better), Bothered by emotional problems (1-5; Lower is Better), Limited work in and out of home (1-5; Lower is Better), Interfered with normal social activities (1-5; Lower is Better); Model 5: Model 4 + How Often Prepare List of Questions for MD (1-6), How Often Ask MD to Understand Treatment (1-6), How Often Discuss Personal Problems with MD Related to Illness (1-6).

Figure 8. Moderating Effects of Job Strain on Impact of Intervention

5.0 **DISCUSSION**

Table 9 summarizes the main findings of this research study and these findings are presented in the subsequent sections of this discussion section.

Pre-Interver	ntion Models	Intervention Moderator Models		
Job Class	Job Strain	Job Class	Job Strain	
• Minimal significance on adherence improvement for nonmanual workers taking BBs (0.168; p<0.1)	Non-contributing group has lower adherence measured by PDC than the active strain across all medication classes	• Job class does not have an impact on the intervention	• Low strain has the largest moderating effect of the intervention with an effect estimate range from 0.169 to 0.202	
• Minimal significance on adherence improvement for participants not working and prescribed CCBs (-0.307; p<0.1)	 Comparing across job strain coefficients for the medication class RASA, the low strain (0.174) job type had a higher PDC than the passive (-0.082) job type followed by the non-contributing group (-0.264; p=0.004) High strain (-0.143) job type had a significantly lower PDC than the low strain job type (0.053; p=0.053) for the statin medication class 		 (p<0.01) Model five, the most robust specification, yields an 18.1 percentage point increase in PDC for low strain (p<0.01) Moderating effect for high strain in Model 4 is positive and significant (0.172; p<0.1) 	

Table 9. Main Findings

5.1 **PRE-INTERVENTION MODELS**

The pre-intervention models of the association of PDC at baseline revealed that job strain is correlated with medication adherence, while job class, classically defined as manual (bluecollar), nonmanual (white-collar), and not working (retired, disabled, and unemployed), does not have a strong association with medication adherence. Comparing across post-hoc testing for job strain in the RASA and statin medication classes, the low strain job type has a more positive association with PDC then both the high strain job type and passive job type, followed by the non-contributing group.

Based on other literature, individuals in the high strain classification have the poorest health, where demands are high, but the employee's ability to use skill or authority to address these demands are low (Amick III et al., 1998; de Jonge, Dollard, Dormann, Le Blanc, & Houtman, 2000; Lerner et al., 1994; Lewchuk, Clarke, & De Wolff, 2008; Stansfeld & Candy, 2006; Theorell et al., 1988; Vermeulen & Mustard, 2000). The results of the present study are consistent with this literature and add to it by providing evidence that health behaviors, in this case medication adherence, may be a key factor in deteriorating health.

The results imply several possible hypotheses. Individuals in a high strain job type have very little autonomy and so perhaps over time they are being conditioned to be passive participants in their health. If such a hypothesis were true, then providing an intervention tailored to high strain occupations may help people manage their health behaviors, specifically improving their adherence to a prescribed medication regimen. Such hypotheses also recommend innovative strategies to be explored. For example, an employer might offer rotations through different job activities in an effort to foster job autonomy. However, it must be noted

47

that hypotheses based on these results alone face a major challenge from selection bias. Given that the results are cross-sectional, it cannot be ruled out that unobserved individual characteristics resulting from an individual's life experiences may lead to both high strain occupations and lower adherence. Such a scenario reduces the impact of the intervention described above. Regardless of selection bias, though, the finding of high strain occupations as a risk factor for low adherence still remains viable.

Individuals of the non-contributing group are people who, even after controlling for education and income, have potential unobserved characteristic(s) that lead to poor adherence and not being active members of the labor market. In terms of public health significance, a lack of job status or a certain type of job status could be a key indicator for developing an alternative intervention.

An alternative to this logic may be that job stress or job strain leads to low medication adherence. For example, an individual in the non-contributing group (retired, disabled, or not working) may have stress in their daily life, which causes extreme anxiety. This anxiety may lead to the individual not working and consequently, an inability to obtain their prescribed medication regimen. Perhaps the non-contributing group produces stress factors that are not explicit, however these factors fit the model, indicating that stress is a predictor of low medication adherence. Additional analyses can attempt to discern whether it is the unobserved part of an individual or the lack of engagement in the labor market that causes low medication adherence. The latter may be ameliorated by interventions focusing on physical and psychological stressors.

The positive association with adherence for low strain job types (low psychological demand, high decision latitude) seems to allow participants with this job strain the capability to

48

modify their health behavior. Traditionally, low strain occupations have been characterized as "healthier" job types (Lerner et al., 1994). Characterized by the *Occupational Distribution of Psychosocial Job Characteristics*, examples of low strain job types are a dentist, lineman, natural scientist, and architect (Appendix C). In addition to low psychological demand and high decision latitude or high job control, low strain occupations may provide a fairly secure work schedule, decreased physical stress, and decreased psychological stress.

In summary, job class is not correlated with medication adherence. However, job strain is constructed in a manner that more accurately correlates occupation with medication adherence. Individuals with a low strain job type adhere to their medication regimen, while the high strain, passive, and non-contributing groups are most at risk for poor medication adherence. Further analysis of these job types with respect to tailored interventions may reveal ways to improve medication adherence and other health behaviors.

5.2 INTERVENTION MODERATOR MODELS

The intervention moderator models demonstrate how job class and job strain influence the intervention effect (SBI + pillbox) on PDC. Model estimates show that job class does not have an effect on the intervention. However, job strain influences the intervention effect on PDC and the effect is different across job strains.

The low strain job type demonstrates a substantially high response on the intervention effect across all models. Model five, the most robust specification, yields a 0.181 adjusted change in PDC or 18.1 percentage point increase in PDC. This increase reveals a strong association between job strain and medication adherence. It can be interpreted that individuals in

low strain occupations have the ability to process information as a result of an intervention and positively adhere to health behaviors that promote their wellness.

High strain job types demonstrate a significant effect on the intervention in Model 4, which includes specifications on insurance and other health behaviors. In this instance, high strain job types are similar to low strain job types in health behaviors with respect to the following: health limited physical activities, bothered by emotional problems, limited work in and out of home, interfered with normal social activities.

One of the challenges in examining medication adherence is that a ceiling effect exists. That is if an individual has 0.9 PDC, they can only improve 10 percentage points or by 0.1 PDC. Whereas if someone has 0.3 PDC, they can undergo a greater improvement of 0.7 PDC. The results presented in Table 8 indicate that the high strain job type has overall low adherence, and therefore can undergo a large improvement in their adherence with respect to the intervention. The low strain job type exhibited high PDC, yet the low strain job type improved by 0.18 PDC. This strengthens the interpretation that low job strain indeed produces a moderating effect and the effect is not an artifact of the mathematics in determining PDC.

6.0 SUMMARY

The objective of this dissertation was to examine the relationship between occupational factors and health behaviors. The primary new finding is job strain is correlated with medication adherence. A positive association exists between adherence and low strain job types, which offer low psychological demand with high decision latitude or high job control and provide a fairly stable work schedule, decreased physical stress, and decreased psychological stress. Several possible hypotheses implied by these results are that such occupational conditions reinforce job autonomy in participants and allow the mental aptitude needed to modify their health behaviors. Therefore, a stable psychological well-being may lead to the promotion of an individual's self-efficacy in performing positive health behaviors (i.e. medication adherence).

6.1 LIMITATIONS

A challenge to such hypotheses is selection bias. Individuals with certain characteristics (e.g. high self-efficacy) may simply choose both low-strain occupations and have a propensity for high adherence. The second part of this study avoids some of the challenge of selection bias since it looked at participants over time and in conjunction with an intervention. Both the preintervention models and intervention moderator models reveal that job class is not correlated with medication adherence. However, the pre-intervention models and intervention moderator models demonstrate a strong association between job strain and medication adherence.

Additionally, sample selection was also a limitation in the study design. The RCT provided a convenient sample of individuals presenting with certain criteria at community pharmacies. Among those who received the occupational health questionnaire, approximately 50% of the sample responded and had other data sources available to be matched to them, respectively. The sample responding to the questionnaire did not differ from the RCT sample by age, gender, pharmacy, or study treatment groups. However, it is likely that unobserved characteristics exist for participants who responded to the questionnaire versus those who did not. For example, participants that responded might be healthier, more educated and higher functioning. Overall, this represents a threat to the external validity of the study results. Nonetheless, this is a prospective research study that has utilized a unique and difficult to obtain data set, describing characteristics about job type and health behaviors such as adherence. This study sample brings to light new information on the relationship between occupational history and medication adherence. Ideally, future work should be continued to build on the results of this study by assessing more representative samples to corroborate and expand this new knowledge.

6.2 STRENGTHS

This study also had several important strengths in its design. First, this is an innovative study that analyzes job class and job strain and its effect on medication adherence.

Administrative insurance claims data were used, which is considered an established approach in assessing medication adherence.

Additionally, GLMM was used to efficiently model repeated measures within individual participants and clustering within pharmacies. This statistical framework was able to successfully handle any abnormalities in the distribution of the dependent variable (PDC). Ultimately, treating the dependent variable as linear or continuous was the best fit for the distribution of the data.

Lastly, a well-established model was utilized in discerning job strain for various selfreported job types. The Karasek demand-control model is a widely accepted model used to measure the psychological demands of a job and the worker's ability to use skills or authority to address those demands (i.e. decision latitude). The model has been found to predict several adverse health outcomes, specifically CVD.

6.3 NEXT STEPS

The results of this study reveal that job strain should be considered in strategizing occupation-specific interventions for improving medication adherence. By examining an established and widely accepted model in characterizing job strain, employers can utilize this methodology in assessing their own workplace population. This information can then be used to develop occupation-specific interventions using passive (e.g. pillbox) and active approaches (e.g. SBI, interactive module, web-based application) for implementation into a disease management component of a workplace wellness program. A return on investment analysis can then be conducted to assess healthcare costs. Development of occupation-specific interventions

designed to improve medication adherence in individuals with chronic disease can contribute to a new body of knowledge aimed at reducing healthcare costs.

Additionally, the results of this study recommend new areas of targeted research on interventions and health behaviors. Future studies should aim to evaluate data on health behaviors. For example, based on job type, to what extent does an individual's involvement in their healthcare (e.g. how often an individual prepares a list of questions for the physician) influence their ability to successfully perform health behaviors (e.g. medication adherence) to reach a desired health outcome. This information would serve to enhance the relationship between occupational factors and medication adherence.

APPENDIX A: OCCUPATIONAL HEALTH QUESTIONNAIRE

Dear Participant,

We appreciate your participation in the Eco-Phil study. The purpose of this mailing is to request that you provide answers to additional questions that will help to determine if occupational history effects the ability to take medication.

Your voluntary completion of these questions and subsequent mailing back to the University of Pittsburgh indicates your agreement to provide this information. This information is very important to the results of the study. Your responses will only be linked to the code number on this letter, so in order to protect your privacy, <u>please do not put your name on this letter</u>. A return postage-stamped envelope is provided to further secure your privacy.

- 1. What is your Job Title (Occupation) OR if not working, what was your most recent Job Title?
- 2. What is your Job setting (work location) OR if not working, what was your most recent setting?
- 3. What is your current approximate gross annual household income AND your prior annual household income if unemployed, disabled, or retired)? Please include ALL household members and ALL income sources (wages, child support, alimony, income from assets, disability, unemployment compensation, public assistance, and pensions, social security and other retirement income).

CURRENT INCOME

- O \$0 15,000
- O \$15,001 \$30,000
- O \$30,001 \$50,000
- O \$50,001 \$75,000
- O \$75,001 \$100,000
- O more than \$100,000

PRIOR INCOME

(if unemployed, disabled, or retired)

- O \$0 15,000
- O \$15,001 \$30,000
- O \$30,001 \$50,000
- O \$50,001 \$75,000
- O \$75,001 \$100,000
- O more than \$100,000
- O Not Applicable

APPENDIX B: INSTITUTIONAL REVIEW BOARD APPROVAL

University of Pittsburgh

Institutional Review Board

3500 Fifth Avenue Ground Level Pittsburgh, PA 15213 (412) 383-1480 (412) 383-1508 (fax) http://www.irb.pitt.edu

Memorandum

To:	Janice Pringle
From:	Christopher Ryan Vice Chair
Date:	10/2/2013
IRB#:	<u>MOD12050040-03</u> / PRO12050040
Subject:	Prospective Study on a Pharmacist-led Intervention to Improve Medication Adherence

The University of Pittsburgh Institutional Review Board reviewed and approved the requested modifications by expedited review procedure authorized under 45 CFR 46.110 and 21 CFR 56.110.

The IRB has approved the waiver for the requirement to obtain a written informed consent.

Modification Approval Date:	10/2/2013
Expiration Date:	4/1/2014

For studies being conducted in UPMC facilities, no clinical activities that are impacted by the modifications can be undertaken by investigators until they have received approval from the UPMC Fiscal Review Office.

Please note that it is the investigator's responsibility to report to the IRB any unanticipated problems involving risks to subjects or others [see 45 CFR 46.103(b)(5) and 21 CFR 56.108(b)]. Refer to the IRB Policy and Procedure Manual regarding the reporting requirements for unanticipated problems which include, but are not limited to, adverse events. If you have any questions about this process, please contact the Adverse Events Coordinator at 412-383-1480 to.

The protocol and consent forms, along with a brief progress report must be resubmitted at least one month prior to the renewal date noted above as required by FWA00006790 (University of Pittsburgh), FWA00006735 (University of Pittsburgh Medical Center), FWA00000600 (Children's Hospital of Pittsburgh), FWA00003567 (Magee-Womens Health Corporation), FWA00003338 (University of Pittsburgh Medical Center Cancer Institute).

Please be advised that your research study may be audited periodically by the University of Pittsburgh Research Conduct and Compliance Office.
APPENDIX C: OCCUPATIONAL DISTRIBUTION OF PSYCHOSOCIAL JOB

CHARACTERISTICS

summary measures were computed across the age groups, the estimated odds were 2.48 (chi-square MH = 6.32 n =

the estimated odds were 2.48 (chi-square MH = 6.32, p = .012) and 3.28 (chi-square MH = 10.18, p = .001), respectively, for the HES and HANES. Using the overall rate of "high strain" and the estimates of the underlying odds, the

estimated attributable risk is .25 and .33, respectively, for the HES and the HANES. While this analysis fails to control for many important factors in myocardial infarction (e.g., race, blood pressure, cholesterol and smoking status), it is striking that controlling for age alone, "job strain" accounts for

APPENDIX D: PAIRWISE T-TESTS BY JOB CLASS AND JOB STRAIN

		Significant Observations (p<0.05), (p<0.1)	
Variable	Description	Job Class	Job Strain
pdcmbb1	Proportion Days Covered (PDC) for beta blockers (BB) medication class post- intervention		• Low Strain (.9156) vs. High Strain (.5731); p=0.0230
pdcmraas0	Proportion Days Covered (PDC) for renin angiotensin system antagonists (RASA) medication class pre- intervention		 Low Strain (.8668) vs. Active (.6435); p=0.0076 Low Strain (.8668) vs. Passive (.5629); p=0.0020 Low Strain (.8668) vs. Non- Contributing (.5071); p=0.0003
pdcmstat0	Proportion Days Covered (PDC) for statins medication class pre-intervention		 Active (.6452) vs. High Strain (.4681); p=0.0230 Low Strain (.6555) vs. High Strain (.4681); p=0.0534
pdc80bb0	Proportion Days Covered >80% (PDC80) for beta blockers (BB) medication class pre-intervention	• Nonmanual (.6512) vs Manual (.3846); p=0.0312	
pdc80ccb0	Proportion Days Covered >80% (PDC80) for calcium channel blockers (CCB) medication class pre- intervention		 Active (.7273) vs. High Strain (.3125); p=0.0102 Low Strain (.875) vs. High Strain (.3125); p=0.0077
pdc80raas0	Proportion Days Covered >80% (PDC80) for renin angiotensin system antagonists (RASA) medication class pre- intervention		• Low Strain (.75) vs. Non- Contributing (.3); p=0.0168
mdage	Age	 Not Working (65.78) vs. Manual (60.26); p=0.0596 Not Working (65.78) vs. Nonmanual (59.99); p=0.0354 	
mdf	Female	 Nonmanual (.625) vs. Manual (.28); p=0.0000 Not Working (.7222) vs. Manual (.28); p=0.0008 	 High Strain (.8529) vs. Active (.5781); p=0.0054 Active (.5781) vs. Low Strain (.2727); p=0.0040 High Strain (.8529) vs. Low Strain (.2727); p=0.0000 High Strain (.8529) vs. Passive (.4047); p=0.0000 Non-contributing (.6667) vs. Low Strain (.2727); p=0.0089
mdedm1	Individual has less than a high school degree	 Manual (.3) vs. Nonmanual (.0756); p=0.0001 Not Working (.4737) vs. Nonmanual (.0756); p=0.0000 	 High Strain (.3143) vs. Active (.0476); p=0.0002 Passive (.2143) vs. Active (.0476); p=0.0082 Non-Contributing (.5333) vs. Active (.0476); p=0.0000 High Strain (.3143) vs. Low Strain (.0606); p=0.0073 Non-Contributing (.5333)

Table 10. Pairwise T-Tests by Job Class and Job Strain

Table 10 continued

		Significant Observations (p<0.05), (p<0.1)	
Variable	Description	Job Class	Job Strain
			 vs. Low Strain (.0606); p=0.0001 Non-Contributing (.5333) vs. Passive (.2143); p=0.0201
mdedm2	Individual has a high school degree	• Manual (.5) vs. Nonmanual (.1849); p=0.0000	 Low Strain (.3636) vs. Active (.1429); p=0.0126 Passive (.4286) vs. Active (.1429); p=0.0009
mdedm3	Individual has a four-year degree	• Nonmanual (.3529) vs. Manual (.12); p=0.0020	
mdedm4	Individual has a professional/graduate level degree	 Active (.5556) vs. High Strain (.0857); p=0.0000 Active (.5556) vs. Low Strain (.2424); p=0.0031 Active (.5556) vs. Passive (.0952); p=0.0000 Active (.5556) vs. Non- Contributing (0); p=0.0001 Low Strain (.2424) vs. Non- Contributing (0); p=0.0373 	 Nonmanual (.3866) vs. Manual (.08); p=0.0001 Nonmanual (.3866) vs. Not Working (0); p=0.0008
mdmarpar	Individual is married/partnered	• Nonmanual (.6807) vs. Not Working (.3158); p=0.0020	 Active (.7302) vs. High Strain (.5149); p=0.0316 Active(.7302) vs. Non- Contributing (.2667); p=0.0006 Low Strain (.6364) vs. Non- Contributing (.2667); p=0.0170 Passive (.6191) vs. Non- Contributing (.2667); p=0.0186
mdlivhom	Independent living		 Active (.9683) vs. Passive (.8809); p=0.0803 Active (.9683) vs. Non- Contributing (.8); p=0.0165
mdemp1	Employed full-time	 Nonmanual (.3949) vs. Manual (.24); p=0.0542 Manual (.24) vs. Not Working (0); p=0.0185 Nonmanual (.3949) vs. Not Working (0); p=0.0006 	 Active (.4127) vs. High Strain (.1714); p=0.0144 Active (.4127) vs. Non- Contributing (0); p=0.0020 Low Strain (.4545) vs. High Strain (.1714); p=0.0111 Low Strain (.4545) vs. Non- Contributing (0); p=0.0012 Passive (.2857) vs. Non- Contributing (0); p=0.0195
mdemp3	Retired		• Active (.4444) vs. Passive (.2619); p=0.0587
mdemp4	Disabled	 Manual (.26) vs. Nonmanual (.0840); p=0.0022 Not working (.4737) vs. Nonmanual (.0840); p=0.0000 	 High Strain (.3142)vs. Active (.0476); p=0.0002 Passive (.1904) vs. Active (.0476); p=0.0190 Non-Contributing (.5333) vs. Active (.0476); p=0.0000 High Strain (.3143) vs. Low

Table 10 continued

		Significant Observations (p<0.05), (p<0.1)	
Variable	Description	Job Class	Job Strain
			Strain (.0606); p=0.0073
			• Non-Contributing (.5333)
			vs. Low Strain (.0606);
			p=0.0001
			• Non-Contributing (.5333)
			vs. Passive (.1905);
			p=0.0106
mdemn5	Not employed		• High Strain (.1429) vs.
indemp5	Not employed		Active (.0317); p=0.0411
		• Not Working (.5333) vs.	• High Strain (.3235) vs.
		Nonmanual (.1897); p=0.0027	Active (.1290); p=0.0221
			• Passive (.3095) vs. Active
			.1290); p=0.0244
			• Non-Contributing (.6364)
	Current income between \$0 -		vs. Active (.1290);
incel	\$15,000		p=0.0001
			• Non-Contributing (.6364)
			vs. Low Strain (.1333);
			• Non-Contributing (.6364)
			v_{s} . Passive (.5095);
			p = 0.0470 High Strain (2024) was
	Current income between		• Figh Strain $(.5824)$ vs.
incc2	\$15 001 - \$30 000		Active (.1013), p=0.0130
	\$13,001 - \$30,000		 Low Strain (.5007) vs. Active (1613): p=0.0278
	Current income between	• Nonmanual (2228) vs. Not	Active (.1013), p=0.0278
incc3	\$30.001 - \$50.000	Working (0): p=0.0362	
	Current income between \$50,001-\$75,000	3007	• Active (.2097) vs. Passive
			(.0476); p=0.0209
incc4			• Low Strain (.2) vs. Passive
			(.0476); p=0.0431
:	Current income between	• Nonmanual (.1034) vs.	• Active (.1290) vs. High
Inces	\$75,001-\$100,000	Manual (0); p=0.0206	Strain (0); p=0.0288
			• Active (.0451) vs. High
image	Prior income is more than \$100,000		Strain (0); p=0.0194
Incco			• Active (.0451) vs. Low
			Strain (0); p=0.0281
	Prior income is between \$0 - \$15,000	• Not Working (.5) vs.	• Non-Contributing (.4285)
incp1		Nonmanual (.1667);	vs. Active (.1190);
		p=0.0136	p=0.0410
incp2	Prior income is between \$15,001 - \$30,000		• High Strain (.3214) vs.
			Active (.0714); p=0.0061
			• Non-Contributing (.4286)
			vs. Active (.0714);
			p=0.0069
incp5	Prior income is between		• Active $(.1429)$ vs. Passive
-	\$73,001 - \$100,000		(0); p=0.0584
incp6	Prior income is more than \$100,000		• High Strain (.0357) vs.
			Active (.3095); p=0.0045
			• Active (.3095) vs. Low Stroip (.05): ==0.0222
			Strain (.05); $p=0.0222$
			• Active (.5095) VS. Passive $(0): p=0.0024$
			(0), p=0.0024
mdbins5	Insured via Medicare		• Passive $(.1190)$ vs. Active $(.0156)$; p=0.0242
			(.0150), p=0.0242 Non-Contributing (1222)
1			 NOII-COILITOULIIIg (.1555)

Table 10 continued

		Significant Observations (p<0.05), (p<0.1)	
Variable	Description	Job Class	Job Strain
			vs. Active (.0156); p=0.0320
mddrqs1	When you visit your doctor, how often do you prepare a list of questions for your doctor?	 Nonmanual (3.35) vs. Manual (2.8); p=0.0439 Not Working (3.833) vs. Manual (2.8); p=0.0224 	• Passive (3.524) vs. High Strain (2.794); p=0.0474
mddrqs2	When you visit your doctor, how often do you ask questions about the things you don't understand about your treatment?	• Nonmanual (4.492) vs. Manual (3.88); p=0.0256	
mddrqs3	When you visit your doctor, how often do you discuss any personal problems that may be related to your illness?		• High Strain (3.882) vs. Low Strain (3); p=0.0443
mdhealth	In general, you would say your health is?	• Manual (3.36) vs. Nonmanual (2.95); p=0.0078	• Passive (3.309) vs. Low Strain (2.939); p=0.0508

BIBLIOGRAPHY

- AbuSabha, R., & Achterberg, C. (1997). Review of self-efficacy and locus of control for nutrition-and health-related behavior. *Journal of the American Dietetic Association*, 97(10), 1122-1132.
- Amick III, B. C., Kawachi, I., Coakley, E. H., Lerner, D., Levine, S., & Colditz, G. A. (1998). Relationship of job strain and iso-strain to health status in a cohort of women in the United States. *Scandinavian journal of work, environment & health*, 54-61.
- Baicker, K., Cutler, D., & Song, Z. (2010). Workplace wellness programs can generate savings. *Health Affairs*, 10.1377/hlthaff. 2009.0626.
- Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. *Psychological review*, 84(2), 191.
- Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory: Prentice-Hall, Inc.
- Bandura, A. (1990). Perceived self-efficacy in the exercise of control over AIDS infection. *Evaluation and program planning*, *13*(1), 9-17.
- Bandura, A. (1997). Self-efficacy: The exercise of control: Macmillan.
- Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *Journal of* personality and social psychology, 51(6), 1173.
- Belkic, K. L., Landsbergis, P. A., Schnall, P. L., & Baker, D. (2004). Is job strain a major source of cardiovascular disease risk? *Scandinavian journal of work, environment & health*, 85-128.
- Bijl, R., Van Zessen, G., Ravelli, A., De Rijk, C., & Langendoen, Y. (1998). The Netherlands mental health survey and incidence study (NEMESIS): objectives and design. *Social* psychiatry and psychiatric epidemiology, 33(12), 581-586.
- Blair, S. N., Jacobs Jr, D. R., & Powell, K. E. (1985). Relationships between exercise or physical activity and other health behaviors. *Public health reports*, *100*(2), 172.
- Bodenheimer, T., Chen, E., & Bennett, H. D. (2009). Confronting the growing burden of chronic disease: can the US health care workforce do the job? *Health Affairs*, 28(1), 64-74.
- Bray, J. W., Zarkin, G. A., Miller, W. R., Mitra, D., Kivlahan, D. R., Martin, D. J., . . . Cisler, R. A. (2007). Measuring Economic Outcomes of Alcohol Treatment Using the Economic Form 90*. *Journal of studies on alcohol and drugs*, 68(2), 248-255.
- Brown, M. T., & Bussell, J. K. (2011). *Medication adherence: WHO cares?* Paper presented at the Mayo Clinic Proceedings.

- Caloyeras, J. P., Liu, H., Exum, E., Broderick, M., & Mattke, S. (2014). Managing manifest diseases, but not health risks, saved PepsiCo money over seven years. *Health Affairs*, 33(1), 124-131.
- Carls, G. S., Roebuck, M. C., Brennan, T. A., Slezak, J. A., Matlin, O. S., & Gibson, T. B. (2012). Impact of medication adherence on absenteeism and short-term disability for five chronic diseases. *Journal of Occupational and Environmental Medicine*, 54(7), 792-805.
- Clark, N. M., & Dodge, J. A. (1999). Exploring self-efficacy as a predictor of disease management. *Health Education & Behavior*, 26(1), 72-89.
- Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007). Psychological stress and disease. Jama, 298(14), 1685-1687.
- Cohen, S., Kessler, R. C., & Gordon, L. U. (1995). Strategies for measuring stress in studies of psychiatric and physical disorders. *Measuring stress: A guide for health and social scientists*, 3-26.
- Collins, S. M., Karasek, R. A., & Costas, K. (2005). Job strain and autonomic indices of cardiovascular disease risk. *American journal of industrial medicine*, 48(3), 182-193.
- Cooper, C. L., & Cartwright, S. (1994). Healthy mind; healthy organization—A proactive approach to occupational stress. *Human relations*, 47(4), 455-471.
- de Jonge, J., Dollard, M. F., Dormann, C., Le Blanc, P. M., & Houtman, I. L. (2000). The demand-control model: Specific demands, specific control, and well-defined groups. *International Journal of Stress Management*, 7(4), 269-287.
- De Lange, A. H., Taris, T. W., Kompier, M. A., Houtman, I. L., & Bongers, P. M. (2003). "The very best of the millennium": longitudinal research and the demand-control-(support) model. *Journal of occupational health psychology*, 8(4), 282.
- DeLongis, A., Folkman, S., & Lazarus, R. S. (1988). The impact of daily stress on health and mood: psychological and social resources as mediators. *Journal of personality and social psychology*, 54(3), 486.
- Dhabhar, F. S., & Mcewen, B. S. (1997). Acute stress enhances while chronic stress suppresses cell-mediated immunity vivo: A potential role for leukocyte trafficking. *Brain, behavior, and immunity, 11*(4), 286-306.
- DiClemente, C. C., Fairhurst, S. K., & Piotrowski, N. A. (1995). Self-efficacy and addictive behaviors *Self-efficacy, adaptation, and adjustment* (pp. 109-141): Springer.
- Diestel, S., & Schmidt, K.-H. (2009). Mediator and moderator effects of demands on self-control in the relationship between work load and indicators of job strain. *Work & Stress*, 23(1), 60-79.
- Dimatteo, M. R., Giordani, P. J., Lepper, H. S., & Croghan, T. W. (2002). Patient adherence and medical treatment outcomes: a meta-analysis. *Medical care*, 40(9), 794-811.
- Goetzel, R. Z., Long, S. R., Ozminkowski, R. J., Hawkins, K., Wang, S., & Lynch, W. (2004). Health, absence, disability, and presenteeism cost estimates of certain physical and mental health conditions affecting US employers. *Journal of Occupational and Environmental Medicine*, 46(4), 398-412.
- Goldberg, P., Gueguen, A., Schmaus, A., Nakache, J., & Goldberg, M. (2001). Longitudinal study of associations between perceived health status and self reported diseases in the French Gazel cohort. *Journal of Epidemiology and Community Health*, 55(4), 233-238.
- Grau, R., Salanova, M., & Peiro, J. M. (2001). Moderator effects of self-efficacy on occupational stress. *Psychology in Spain*, 5(1), 63-74.

- Häusser, J. A., Mojzisch, A., Niesel, M., & Schulz-Hardt, S. (2010). Ten years on: A review of recent research on the Job demand–control (-Support) model and psychological wellbeing. Work & Stress, 24(1), 1-35.
- Hellerstedt, W. L., & Jeffery, R. W. (1997). The association of job strain and health behaviours in men and women. *International Journal of Epidemiology*, 26(3), 575-583.
- Herrick, A. B., Stone, W. J., & Mettler, M. M. (1997). Stages of change, decisional balance, and self-efficacy across four health behaviors in a worksite environment. *American Journal of Health Promotion*, 12(1), 49-56.
- Houtman, I., Kornitzer, M., De Smet, P., Koyuncu, R., De Backer, G., Pelfrene, E., . . . Origgi, G. (1999). Job stress, absenteeism and coronary heart disease European cooperative study (the JACE study): design of a multicentre prospective study. *The European Journal of Public Health*, 9(1), 52-57.
- Iuga, A. O., & McGuire, M. J. (2014). Adherence and health care costs. *Risk management and healthcare policy*, 7, 35.
- Jex, S. M., & Bliese, P. D. (1999). Efficacy beliefs as a moderator of the impact of work-related stressors: a multilevel study. *Journal of applied Psychology*, 84(3), 349.
- Jex, S. M., & Gudanowski, D. M. (1992). Efficacy beliefs and work stress: An exploratory study. *Journal of Organizational Behavior*, 13(5), 509-517.
- Judge, T. A., & Bono, J. E. (2001). Relationship of core self-evaluations traits—self-esteem, generalized self-efficacy, locus of control, and emotional stability—with job satisfaction and job performance: A meta-analysis. *Journal of applied Psychology*, *86*(1), 80.
- Karasek Jr, R. A. (1979). Job demands, job decision latitude, and mental strain: Implications for job redesign. *Administrative science quarterly*, 285-308.
- Karasek, R., Baker, D., Marxer, F., Ahlbom, A., & Theorell, T. (1981). Job decision latitude, job demands, and cardiovascular disease: a prospective study of Swedish men. *American journal of public health*, *71*(7), 694-705.
- Karasek, R., Collins, S., Clays, E., Bortkiewicz, A., & Ferrario, M. (2010). Description of a large-scale study design to assess work-stress-disease associations for cardiovascular disease. *International journal of occupational medicine and environmental health*, 23(3), 293-312.
- Karasek, R. A., Theorell, T., Schwartz, J. E., Schnall, P. L., Pieper, C. F., & Michela, J. L. (1988). Job characteristics in relation to the prevalence of myocardial infarction in the US Health Examination Survey (HES) and the Health and Nutrition Examination Survey (HANES). *American journal of public health*, 78(8), 910-918.
- Kelly, R. B., Zyzanski, S. J., & Alemagno, S. A. (1991). Prediction of motivation and behavior change following health promotion: Role of health beliefs, social support, and selfefficacy. *Social science & medicine*, 32(3), 311-320.
- Kivimäki, M., Nyberg, S. T., Batty, G. D., Fransson, E. I., Heikkilä, K., Alfredsson, L., . . . Casini, A. (2012). Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. *The Lancet*, *380*(9852), 1491-1497.
- Kobau, R., & DiIorio, C. (2003). Epilepsy self-management: a comparison of self-efficacy and outcome expectancy for medication adherence and lifestyle behaviors among people with epilepsy. *Epilepsy & Behavior*, 4(3), 217-225.
- Kotecha, D., Manzano, L., Altman, D. G., Krum, H., Erdem, G., Williams, N., & Flather, M. D. (2013). Individual patient data meta-analysis of beta-blockers in heart failure: rationale and design. *Systematic reviews*, 2(1), 1-10.

- Kripalani, S., Yao, X., & Haynes, R. B. (2007). Interventions to enhance medication adherence in chronic medical conditions: a systematic review. *Archives of internal medicine*, 167(6), 540-549.
- Landsbergis, P. A., Schnall, P. L., Schwartz, J. E., Warren, K., & Pickering, T. G. (1995). Job strain, hypertension, and cardiovascular disease: Empirical evidence, methodological issues, and recommendations for further research.
- Lerner, D. J., Levine, S., Malspeis, S., & D'Agostino, R. B. (1994). Job strain and health-related quality of life in a national sample. *American journal of public health*, 84(10), 1580-1585.
- Lewchuk, W., Clarke, M., & De Wolff, A. (2008). Working without commitments: precarious employment and health. *Work, Employment & Society*, 22(3), 387-406.
- Loeppke, R., Haufle, V., Jinnett, K., Parry, T., Zhu, J., Hymel, P., & Konicki, D. (2011). Medication adherence, comorbidities, and health risk impacts on workforce absence and job performance. *Journal of Occupational and Environmental Medicine*, 53(6), 595-604.
- Luszczynska, A., Sarkar, Y., & Knoll, N. (2007). Received social support, self-efficacy, and finding benefits in disease as predictors of physical functioning and adherence to antiretroviral therapy. *Patient Education and Counseling*, 66(1), 37-42.
- Marks, R., & Allegrante, J. P. (2005). A review and synthesis of research evidence for selfefficacy-enhancing interventions for reducing chronic disability: implications for health education practice (part II). *Health promotion practice*, 6(2), 148-156.
- Martins, R. K., & McNeil, D. W. (2009). Review of motivational interviewing in promoting health behaviors. *Clin Psychol Rev*, 29(4), 283-293.
- Mattke, S., Liu, H., Caloyeras, J., Huang, C. Y., Van Busum, K. R., Khodyakov, D., & Shier, V. (2013). Workplace wellness programs study. *Rand Corporation*.
- Mattke, S., Schnyer, C., & Van Busum, K. (2012). A review of the US workplace wellness market: Rand Health.
- McCulloch, C. E., & Neuhaus, J. M. (2005). Generalized Linear Mixed Models *Encyclopedia of Biostatistics*: John Wiley & Sons, Ltd.
- Miller, W. R., & Rollnick, S. (2002). *Motivational interviewing : preparing people for change* (2nd ed.). New York: Guilford Press.
- Network for Excellence in Health Innovation. (2011). Bend the Curve: Health Care Leader's Guide to High Value Health Care.
- Ng, D. M., & Jeffery, R. W. (2003). Relationships between perceived stress and health behaviors in a sample of working adults. *Health Psychology*, 22(6), 638.
- O'Leary, A. (1985). Self-efficacy and health. Behaviour research and therapy, 23(4), 437-451.
- Osterberg, L., & Blaschke, T. (2005). Adherence to Medication. New England Journal of Medicine, 353(5), 487-497. doi: doi:10.1056/NEJMra050100
- Pelfrene, E., Vlerick, P., Mak, R. P., De Smet, P., Kornitzer, M., & De Backer, G. (2001). Scale reliability and validity of the Karasek'Job Demand-Control-Support'model in the Belstress study. *Work & Stress*, *15*(4), 297-313.
- Petersen, R., Albright, J., Garrett, J. M., & Curtis, K. M. (2007). Pregnancy and STD prevention counseling using an adaptation of motivational interviewing: a randomized controlled trial. *Perspect Sex Reprod Health*, 39(1), 21-28.
- Pringle, J. L., Boyer, A., Conklin, M. H., McCullough, J. W., & Aldridge, A. (2014). The Pennsylvania Project: pharmacist intervention improved medication adherence and reduced health care costs. *Health Affairs*, 33(8), 1444-1452.

- Rau, J., Ehlebracht-König, I., & Petermann, F. (2008). Impact of a motivational intervention on coping with chronic pain: results of a controlled efficacy study. *Schmerz (Berlin, Germany)*, 22(5), 575-578, 580-575.
- Roebuck, M. C., Liberman, J. N., Gemmill-Toyama, M., & Brennan, T. A. (2011). Medication adherence leads to lower health care use and costs despite increased drug spending. *Health Affairs*, 30(1), 91-99.
- Rollnick, S., Miller, W. R., & Butler, C. (2008). *Motivational Interviewing in Health Care: Helping Patients Change Behavior*: Guilford Press.
- Rozanski, A., Blumenthal, J. A., & Kaplan, J. (1999). Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. *Circulation*, 99(16), 2192-2217.
- Sauter, S., Murphy, L., Colligan, M., Swanson, N., Joseph Hurrell, J., Frederick Scharf, J., . . . Tisdale, J. Stress at Work: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.
- Schaubroeck, J., & Merritt, D. E. (1997). Divergent effects of job control on coping with work stressors: The key role of self-efficacy. Academy of Management Journal, 40(3), 738-754.
- Schnall, P. L., Landsbergis, P. A., & Baker, D. (1994). Job strain and cardiovascular disease. *Annual review of public health*, 15(1), 381-411.
- Schnall, P. L., Pieper, C., Schwartz, J. E., Karasek, R. A., Schlussel, Y., Devereux, R. B., . . . Pickering, T. G. (1990). The relationship between'job strain, workplace diastolic blood pressure, and left ventricular mass index: results of a case-control study. *Jama*, 263(14), 1929-1935.
- Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. *Annual Review of Clinical Psychology*, 1, 607.
- Schram, M. T., Baan, C. A., & Pouwer, F. (2009). Depression and quality of life in patients with diabetes: a systematic review from the European depression in diabetes (EDID) research consortium. *Current diabetes reviews*, 5(2), 112.
- Schulz, P., Kirschbaum, C., Prüßner, J., & Hellhammer, D. (1998). Increased free cortisol secretion after awakening in chronically stressed individuals due to work overload. *Stress* and Health, 14(2), 91-97.
- Sokol, M. C., McGuigan, K. A., Verbrugge, R. R., & Epstein, R. S. (2005). Impact of medication adherence on hospitalization risk and healthcare cost. *Medical care*, 43(6), 521-530.
- Stansfeld, S., & Candy, B. (2006). Psychosocial work environment and mental health—a metaanalytic review. *Scandinavian journal of work, environment & health*, 443-462.
- Steenland, K., Fine, L., Belkić, K., Landsbergis, P., Schnall, P., Baker, D., . . . Karasek, R. (2000). Research findings linking workplace factors to CVD outcomes. *Occupational medicine (Philadelphia, Pa.)*, 15(1), 7.
- Strecher, V. J., DeVellis, B. M., Becker, M. H., & Rosenstock, I. M. (1986). The role of selfefficacy in achieving health behavior change. *Health Education & Behavior*, 13(1), 73-92.
- Theorell, T., & Karasek, R. A. (1996). Current issues relating to psychosocial job strain and cardiovascular disease research. *Journal of occupational health psychology*, *1*(1), 9.

- Theorell, T., Perski, A., Åkerstedt, T., Sigala, F., Ahlberg-Hultén, G., Svensson, J., & Eneroth, P. (1988). Changes in job strain in relation to changes in physiological state: a longitudinal study. *Scandinavian journal of work, environment & health*, 189-196.
- Törnroos, M., Elovainio, M., Keltikangas-Järvinen, L., Hintsa, T., Pulkki-Råback, L., Hakulinen, C., ... Raitakari, O. T. (2015). Is There a Two-Way Relationship Between Cynicism and Job Strain? Evidence From a Prospective Population-Based Study. *Journal of Occupational and Environmental Medicine*, 57(5), 479-484.
- Vermeulen, M., & Mustard, C. (2000). Gender differences in job strain, social support at work, and psychological distress. *Journal of occupational health psychology*, 5(4), 428.
- Vrijkotte, T. G., Van Doornen, L. J., & De Geus, E. J. (2000). Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. *Hypertension*, 35(4), 880-886.