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THE COMPLEXITY OF SPEED-SCALING

Neal Barcelo, PhD

University of Pittsburgh, 2015

It seems to be a corollary to the laws of physics that, all else being equal, higher performance

devices are necessarily less energy efficient than lower performance devices. Conceptually

there is an energy efficiency spectrum of design points, with high performance and low energy

efficiency on one end, and low performance and high energy efficiency on the other end. As

in most technologies, there is not a universal sweet spot for computer chips that is best for

all situations. For example, there are situations when there are critical tasks to be done,

when performance is more important than energy efficiency, and there are situations when

there are no critical tasks, when energy efficiency may be more important than performance.

Speed-scalable processors aim to resolve this conflict by allowing the operating system to

dynamically choose the performance to energy trade-off. The resulting optimization problems

involve scheduling jobs on such a processor and have conflicting dual objectives of quality

of service and some energy related objective. This engenders many different optimization

problems, depending on how one models the processor, the performance objective, and how

one handles the dual objectives.

In this thesis we map out a reasonably full landscape of all possible formulations, deter-

mining which assumptions drive computational tractability. Beyond identifying the individual

computational complexities, we use algorithmics as a lens to study the combinatorial structure

of such trade-off schedules. In particular, we give several general reductions which, in some

sense, reduce the number of problems that are distinct in a complexity theoretic sense. We

show that some problems, for which there are efficient algorithms on a fixed speed processor,

are NP-hard. Finally, we present several primal-dual based polynomial time algorithms.
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1.0 INTRODUCTION

It seems to be a corollary to the laws of physics that, all else being equal, higher performance

technology is necessarily less energy efficient than lower performance technology. For example,

a Ferrari sports car is less energy efficient than a Toyota Prius, and it is not possible with

current technology to get Ferrari performance with Prius fuel efficiency. Conceptually there

is an energy efficiency spectrum of design points, with high performance and low energy

efficiency on one end, and low performance and high energy efficiency on the other end. Early

in the design process a car designer has to select a sweet spot on this spectrum as a design

goal. There is seldom a uniquely defined sweet spot that is best for all situations, which is

why both sports cars and economy cars are produced.

Although information technology is no exception to this corollary, unlike other technologies,

historically the sweet spot was invariably skewed towards the high performance low energy

efficiency end of the spectrum. Energy consumption was simply not a first order concern

and computer chip designers competed primarily on performance. But about a decade ago,

due in large part to the exponentiality of Moore’s law and associated thermal and power

implications, there was a relatively abrupt shift in the design sweet spot for major chip

manufacturers towards the middle of the energy efficiency spectrum. Transistor densities had

been exponentially scaling up for over a decade and chip manufacturers could no longer scale

down the power per transistor fast enough to keep power density constant. This, combined

with the fact that allowing power density to further increase was infeasible from a thermal

standpoint brought energy to the ranks of space and time as a scarce computational resource.

With energy consumption becoming a first order concern, there was no longer a universal

sweet spot for computer chips that was best for all situations, which still holds true today.

There are situations, for example when there are critical tasks to be done, when performance
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is more important than energy efficiency, and there are situations, for example when there are

no critical tasks to be done, when energy efficiency may be more important than performance.

As such, if forcing the designer to choose the sweet spot during the design process, it is

unavoidable that this choice will be suboptimal for certain workloads. However, unlike for

cars, it is technologically and economically feasible to design computer chips with multiple

operational modes, each at a different point on the performance and energy efficiency spectrum.

So instead of statically determining the sweet spot during the design process, the decision is

passed on to the operating system to be made dynamically depending on current demands.

1.0.1 Speed-Scalable Processors

The most prevalent manifestation of this technology is a speed-scalable processor, as manu-

factured by the likes of Intel and AMD, which enables the operating system to control the

speed of the processor dynamically. In practice these processors have a discrete number of

modes, where each mode has a unique speed and power consumption, with the higher speed

modes being less energy-efficient in that they consume more energy per unit of computation.

This is achieved through a technique called dynamic voltage and frequency scaling (DVFS)

where a decrease in CPU frequency allows for a corresponding decrease in voltage yielding

potentially significant energy savings. Since the power is observed to be approximately the

voltage squared, even modest frequency reductions (and therefore voltage reductions) can lead

to orders of magnitude savings in energy. In practice the decision of which operational mode

to occupy is made using crude approximations of the current workload of the system either

at the operating system or hardware level. That is, when the system is idle the operating

system will choose a low performance high energy efficiency state and a high performance

state when there is significant workload. While such an algorithm undoubtedly offers some

balance between performance and energy efficiency, a priori it is not clear it offers the optimal

balance, however we choose to define this. In this thesis we rigorously explore how to achieve

such an optimal balance for these conflicting objectives.
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1.0.2 Research Objectives

As we will see, abstracting this optimization problem involves several modeling choices, the

appropriateness of which will depend on the underlying workload as well as the system

specifications. With this in mind, there are four primary research objectives of this thesis.

One objective, is for each setting, to determine the offline computational complexity of the

resulting optimization problem at the granularity of P vs. NP-hard. Here by offline we mean

the algorithm has access to the entire input at the beginning of its execution. Resolving the

complexity of each setting will enable practitioners to either utilize our algorithms, or in

the case of hardness results, avoid attempting to solve the problem optimally. Given that

each model is motivated by a realistically occurring system/workload, it is important we

determine this distinction in complexity across all settings.

Our second objective is to examine the complexity and structural insights gleaned from

this first objective on a broader scale through the use of the taxonomy presented in Table 2.

So while our first objective is concerned with properties of individual settings, this objective

takes a more holistic view examining the entire landscape of possible formulations. In doing

so, we hope to isolate modeling decisions that are sufficient for determining complexity and

drive structural changes. This broader context will enable theoreticians and practitioners

alike to better reason about the implications of their modeling and design decisions.

Turning to our third objective, rather than simply finding an efficient algorithm to solve

the problem at hand, we aim to use Algorithmics (that is, finding provably good algorithms)

as a lens to study the combinatorial structure of optimal schedules. When designing (not

necessarily provably good) heuristic algorithms, it is difficult to uncover and utilize optimal

structure, as it is often complicated and unintuitive. However when searching for provably

good algorithms we are forced to uncover such general structural properties if we want any

hope of reasoning about an optimal schedule on an arbitrary input. Beyond enabling this

analysis of our offline optimal algorithms, in both design and analysis of approximation and

online algorithms, utilizing structural insights is often crucial to developing provably good

algorithms. So by deepening our understanding of optimal structures, even in the case of

hardness results, this may be useful for analyzing other, not necessarily optimal, algorithms.
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Our fourth objective follows in a similar vein in that we hope to use Algorithmics to enable

us to better reason about energy as a computational resource in general. More precisely, our

fourth objective is to develop algorithmic techniques that will be useful in the analysis of a

broader class of energy related optimization problems. Doing so will entail drawing parallels

between the high-level algorithmic approaches for each individual setting. Our hope is these

will prove useful as a starting point for the design of algorithms across other energy aware

technologies.

1.1 MODELING DECISIONS

The resulting optimization problems involve scheduling jobs/tasks on a such a speed-scalable

processor and have dual objectives of quality of service and some energy related objective.

An algorithm, therefore, must specify at each time which task to assign to the processor and

at what speed. This engenders many different optimization problems, depending on how one

models the jobs, the processor, the performance objective, and how one handles the dual

objectives.

There are two competing goals in capturing such an optimization problem for theoretical

analysis. On the one hand, we want to capture reality as accurately as possible so that

practitioners may utilize our algorithms and insights with minimal modifications. On the

other hand, we must balance this with choosing models that are mathematically tractable,

which often means abstracting away many of the underlying details. As we discuss our

modeling decisions below, we make an effort to identify which end of this spectrum each

decision is skewed towards.

• Jobs: We inherit the standard model of jobs/tasks from the Operating Systems and

Scheduling literature. A job/task will consist of a release time, some amount of work, and

(perhaps) a priority. Breaking each of these down, the release time represents the first

time the processor can begin working on this task, that is, the time the job is submitted

to the system. To reason about the workload of a job, think of a single unit of work

representing an infinitesimally small instruction to be executed. Note this is not the same
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as the time required on the processor since we assume that the processor can operate at

multiple speeds. Finally, the priority of a job will be utilized in capturing the performance

objective and allows the input to specify relative importance between jobs. For example,

as alluded to before, inputs in which there are critical (high priority) jobs as well as

non-critical (low priority) jobs will likely benefit from power heterogeneous technologies.

• Processor: Modeling the processor involves deciding the set of allowable speeds, as well

deciding any restrictions on the speed to power function. In terms of allowable speeds,

perhaps best modeling reality, in the discrete setting we assume that the processor consists

of a discrete set speeds. While this model is most realistic, it is often more mathematically

convenient to assume the processor can run at any nonnegative speed. As a compromise,

we can also consider the model where the processor can run at any nonnegative speed

less than some bounded maximum speed.

In modeling the speed to power function, in the discrete setting we assume each

discrete speed has an associated discrete power. For the two continuous settings, there

is some function P that maps a speed s to a power P (s). Most commonly one assumes

P (s) = sα for some constant α, slightly generalizing the well-known cube-root rule that

the speed is approximately the cube-root of the dynamic power. We will also consider

slightly more general power functions that obey some “nice” properties (i.e. P (s) is

convex).

• Performance Objective: There are two commonly used methods of enforcing quality

of service within the scheduling literature. The first is to impose deadlines on jobs, in

some sense turning the performance objective into a constraint. For example imagine a

sensor which must collect and report data on some regimented schedule. Each collection

would represent a task and the the collection schedule would induce a set of deadlines.

However, in many cases, it is either unnatural or infeasible to formulate hard deadlines

for each task. In this case we turn to our second performance metric, flow/waiting time.

At a high level, flow/waiting measures how long a job/work is in the system. There are

two sub classification depending on whether we calculate the waiting time of each unit of

work, or the waiting time of the an entire job. In the fractional flow setting, we assume

that each infinitesimal unit of work has its own flow time, and the fractional flow of a
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job is the sum of the flow of each unit of work. This is most appropriate when the user

will benefit from partial completions. This contrasts to the integral flow setting where

the flow time is the completion time of a job minus the release time of a job. To better

understand this distinction, consider the context where jobs are flight queries to a travel

site. Aggregating over the delay of jobs is more appropriate in the context of Orbitz, as

Orbitz does not present the querier with any information until all possible flights are

available, while in the case of Kayak, aggregating over the delay of work may be more

appropriate as Kayak presents the querier with flight options as they are found.

Lastly, note that in order to incorporate the priority/weight of a job into the

performance objective, we may consider the weighted flow time of job/work, which we

calculate by multiplying the weight of a job by its flow time.

• Energy Source: In many speed scaling problems, power source assumptions are not

explicitly stated, however, as we will see in the final modeling decision, examining the

objective or constraints implicitly determines the most appropriate power source. In the

first setting, we assume the system consists of a battery with some finite stored energy,

limiting the total amount of energy the system can use. As a slight variation, we also

consider the setting where the system is equipped with technology to both harvest and

store energy from its environment. For example, a sensor that is equipped with a solar cell

and a battery. Finally, our last power source model assumes the system has an unlimited

energy supply essentially removing any energy related constraints. As we will see below,

the power source is intimately tied to how we deal with the dual objectives.

• Dual Objectives: Finally, we must make a modeling decision as to how we combine

the quality of service and energy objectives. As noted above, the dual objectives of

performance and energy efficiency are conflicting in that increasing performance decreases

energy efficiency and vice versa. When modeling an optimization problem with multiple

objectives we must decide whether to combine these into a single objective (for example

using a linear combination) or convert one into a constraint (for example limiting the

amount of energy the schedule can use). The appropriateness will depend on the power

source as well as whether knowledge regarding the desired energy performance trade-off

is known.

6



Unweighted Weighted

Jobs Jobs

Unit Arbitrary Unit Arbitrary

Sizes Sizes Sizes Sizes

Fractional
Flow

Discrete
Speeds

?

?

?

?

?

?

?

?

Continuous
Speeds

?

?

?

?

?

?

?

?

Integral
Flow

Discrete
Speeds

?

?

?

?

?

?

NP-hard [2]

NP-hard [2]

Continuous
Speeds

P [AF 07]

P [PUW 08]

?

?

?

?

NP-hard [2]

NP-hard [2]

1

Table 1: Summary of previous results in the context of full range of possible
settings. For each cell, the upper-half refers to the flow + β · energy objective
and the lower-half refers to flow minimization subject to an energy constraint.

Take the case where the system consists of a laptop powered by a battery. In this

case, the optimization problem that minimizes the quality of service objective while

ensuring the energy used is less than the total amount stored in the battery would be

most appropriate. However when the power source is unlimited and the tradeoff between

energy and performance is known a priori, it may make more sense to consider minimizing

the sum of the quality of service and energy metrics. The two optimization problems

are closely related, and foreshadowing slightly, our results will show that in many cases

providing an efficient algorithm for one immediately yields an efficient algorithm for the

other setting. Finally, note that in the case of deadline problems our quality of service

objective is cast as a constraint and we will focus on minimizing some energy related

objective.
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1.2 PREVIOUS RESULTS

We provide here a survey of the most relevant related work, segmented according to the

performance objective, flow time problems and deadline feasibility problems.

Flow Time Optimization Problems: Given the wide array of possible flow time opti-

mization problems, we utilize the following succinct notation which captures the modeling

decisions discussed in previous subsections. The format of our description is essentially a

5-tuple of the form *-****. The first entry captures the objective (Budget or Flow plus

Energy). The remaining entries are Integral or Fractional flow, Continuous or Discrete

speed, Weighted or Unweighted, and Arbitrary or Unit size. A * represents a “don’t care”

entry. See Table 1 for an overview that puts all the flow time related results into the context

of the full range of possible problems.

• B-ICUU: [31] gave a polynomial-time homotopic optimization algorithm for the problem

of minimizing integral flow (I) with continuous speeds (C) subject to an energy budget

(B) for unweighted jobs (U) of unit size (U) using the power function P (s) = sα. The

first key insight was that given that the jobs were unweighted and unit size, the optimal

schedule will complete jobs in First-In-First-Out order. Coupling this with the optimality

conditions for the natural convex program allowed them to guid their algorithm in

a homotopic fashion. Unfortunately for all cases outside of the unweighted unit size

cases, this approach breaks down as the optimal completion ordering is not necessarily

First-In-First-Out.

• FE-ICUU: [2] gave a polynomial-time dynamic programming algorithm for the problem of

minimizing integral flow (I) with continuous speeds (C) for unweighted jobs (U) of unit

size (U) and the objective of flow plus β energy (FE). So this was essentially the same as

the previous setting, only changing the assumption on the power source from a battery to

unlimited supply. Since they were still in the unweighted unit size case, they were again

able to leverage the FIFO completion ordering. With this completion ordering they are

able to compute the optimal schedule for a sequence of jobs that are “overlapping” (that

is, ci > ri+1). Finally, a dynamic programming formulation which computes the portions

of the schedule that should be overlapping yields their final algorithm.
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• *-I*WA: There is a subset of hardness results that follow from hardness results in the

classical single speed scheduling literature. Namely, [25] gave NP-hardness results for a

fixed speed processor in the setting of integral flow (I), weighted jobs (W) of arbitrary

size (A). The only observation required to extend these to the speed scaling setting is that

one can tweak the speed to power function in such a way that the optimal algorithm will

only utilize one speed. Note that these hardness results hold regardless of the assumption

on discrete versus continuous speeds, as well as the performance objective assumption.

• Approximation Results: There is a large body of work concerning approximately

computing optimal trade-off schedules, both offline and online. Since these are of little

relevance to the work presented in this thesis we consider them in minimal detail. [28]

gives PTAS’s for minimizing total flow without release times subject to an energy budget

in both the continuous and discrete speed settings. [2, 3, 7, 9, 10, 15, 18, 26] consider

online algorithms for optimal integral flow and energy, whereas [7, 10, 18] consider online

algorithms for fractional flow and energy. In particular, [10] show that there are O(1)-

competitive algorithms for all of the flow plus β energy problems that we consider (with

arbitrary power functions). For a survey on energy-efficient algorithms, see [1]. For a

fixed speed processor, all the fractional problems can be solved by running the job with

highest density (=weight/size). Turning to integral flow, if all jobs are unit size, then

always running the job of highest weight is optimal. The complexity of the problem if all

jobs have the same (not unit) size is open [11, 12]. The complexity of FE-I*WU seems at

least as hard (but perhaps not much harder) than this problem. Finally, if all jobs have

unit weight, then Shortest Remaining Processing Time is optimal for total flow.

Deadline Optimization Problems: The number of distinct settings in the deadline

optimization space is far less as jobs do not have priorities (at least not explicitly), and there

is no benefit to partially completing a task. That said, there are two additional subcategories

we consider depending on whether the power source is a battery or a solar cell.

• YDS: In the seminal work of [34] the authors consider the problem of minimizing the total

energy of a deadline feasible schedule where jobs have arbitrary release times, deadlines,

and sizes. While not explicitly assumed, this is setting is most appropriate when the

power source is a battery. They provide a simple polynomial time algorithm that is built
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on identifying intervals with the largest work to size ratio, scheduling the work in this

interval and recursing. We will see this algorithm arise in Chapter 4 as we look at a

similar deadline problem.

• Solar Cell: [8] were the first to consider a variation of this setting, in which the system

harvests energy via a solar cell which can be stored in a battery. The objective was to find

the minimum recharge rate and associated schedule such that each job completes before

its deadline and the battery is never depleted. Here, the recharge rate is the rate at which

energy is being harvested via the solar cell. So intuitively they are trying to produce the

schedule that will be feasible in the most adverse weather conditions. While they do not

give a combinatorial algorithm, they showed that the offline problem could be expressed

as a convex program and thus in principle the problem is solvable in polynomial-time.

• Approximation Results: Again, there is a significant body of results concerned with

approximately computing optimal schedules. In the solar cell setting, [8] proved that the

schedule that optimizes the total energy usage is a 2-approximation for the objective of

recharge rate. They also showed that the online algorithm BKP, which is known to be

O(1)-competitive for total energy usage [6], is also O(1)-competitive with respect to the

recharge rate. So, intuitively, the main take-away point from [8] was that schedules that

naturally arise when considering the objective of energy usage are O(1) approximate with

respect to the objective of recharge rate.

In regards to approximation results for the battery setting, there has been a stream of

improvements upon the competitiveness of the initial online algorithms proposed in [34].

See [1] for a survey of the most recent results.

Real-Time Scheduling Contributions

There is a considerable amount of work from the real-time scheduling community that

considers scheduling on speed scalable processors. All of the results discussed here assume

that tasks are subject to hard deadline constraints and the objective is to minimize energy.

Turning first to aperiodic tasks, [23] consider the setting of discrete speeds where all jobs

arrive at time 0 and must be processed by some common deadline T , showing that the optimal

algorithm will always utilize only two consecutive speeds, interpolating so that the last piece

of work is processed at time T . Building on this, [24] combines the techniques of [23, 34] to
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develop an optimal algorithm for the setting of discrete speeds and arbitrary release times. [27]

further improved on this setting, giving an algorithm with runtime of O(kn log n) where k is

the number of discrete speeds. In addition to these optimal algorithms for aperiodic tasks,

several papers consider heuristics with fixed priority scheduling algorithms motivated by the

fact that fixed priority schedulers require less overhead than optimal scheduling policies such

as EDF and are therefore often adopted in practical real-time schedulers [32, 33]. While

less relevant to this work, there is also a considerable amount of work studying the periodic

setting. In the continuous speed setting, [5] provide a heuristic which first considers the

optimal worst-case speed and subsequently adjusts the speed online to “reclaim energy”.

Slightly generalizing this result, [4] remove the assumption that each task has identical power

functions. For the discrete speed setting several approximation results are known [17, 29].

For a more comprehensive survey of the real-time scheduling communities contributions to

energy aware scheduling see [16].

Queuing Theory Contributions

There has also been considerable contributions to energy aware scheduling and power

management from the queuing theory community. Unlike the previous settings which consider

worst-case input sequences, the work discussed here assumes inputs are defined by some

probability distribution and the objective is to minimize in expectation some function of

delay or performance. Perhaps most relevant to the work presented in this thesis is the model

that allows for each server to have DVFS capabilities e.g. [14, 20]. Much like prior sections,

the resulting optimization problems vary depending on whether energy is cast a constraint or

objective. As a slight restriction on this model, there are several papers that consider the

setting in which each server can occupy one of three states, on, off or idle e.g. [19, 21, 30].

This model is not subsumed by the DVFS model as they typically assume there is some

start-up cost for switching a processor between the off and on states.
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Unweighted Weighted

Jobs Jobs

Unit Arbitrary Unit Arbitrary

Sizes Sizes Sizes Sizes

Fractional
Flow

Discrete
Speeds

P [?] ⌘

P [?]

P [?] ⌘

P [?]

P [?] ⌘

P [?]

P [?] ⌘
P [?]

Continuous
Speeds

P [?] ⌘

P [?]

P [?] ⌘

P [?]

P [?] ⌘

P [?]

P [?] ⌘

P [?]

Integral
Flow

Discrete
Speeds

P [?] ⌘

P [?]

?

NP-hard [?]

?

NP-hard [?]

NP-hard [2]

NP-hard [2]

Continuous
Speeds

P [AF 07]⌘

P [PUW 08]

?

NP-hard [?]

?

NP-hard [?]

NP-hard [2]

NP-hard [2]

1

Table 2: Summary of our results in the context of the full range of possible
settings. For each cell, the upper-half refers to the flow + β · energy objective
and the lower-half refers to flow minimization subject to an energy constraint.
The symbol [?] indicates results presented in this paper, and ≡ indicates that
two problems are computationally equivalent.

1.3 OUR CONTRIBUTIONS

In Chapters 2 and 3, we provide several results to more fully map out the landscape of

complexity and algorithmic results for the range of flow time problems reflected in Table 2.

In particular, for each setting our aim is to either give a polynomial time combinatorial

algorithm (i.e., without the use of a convex program) or show it is NP-hard. In Chapter 4,

we take a detour to the setting where quality of service is imposed via deadlines and the

power source is a solar cell. We give a brief summary of the results for each Chapter as well

as some high level intuition behind either the algorithms or hardness proofs.

1.3.1 Chapter 2

We begin in Chapter 2 with a polynomial-time algorithm for the problem of minimizing

fractional flow (F) with discrete speeds (D) for weighted jobs (W) of arbitrary size (A) and
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C1

C2

C3 s3

s2

s1

Fig. 1: The dual lines for a 4-job instance, and the associated schedule.

program. Using complementary slackness we find necessary and sufficient con-
ditions for a candidate schedule to be optimal. Reminiscent of the approach
used in the case of continuous speeds in [8], we then interpret these conditions
in the following geometric manner. Each job j is associated with a linear func-
tion D

αj

j (t), which we call a dual line. This dual line has a slope of −dj and
passes through point (rj , αj), for some αj > 0. Here t is time, αj is the dual
variable associated with the primal constraint that all the work from job j
must be completed, rj is the release time of job j, and dj is the density of job
j. Given such an αj for each job j, one can obtain an associated schedule as
follows: At every time t, the job j being processed is the one whose dual line
is the highest at that time, and the speed of the processor depends solely on
the height of this dual line at that time.

Example Schedule & Dual Lines. The left picture in Figure 1 shows the dual
lines for four different jobs on a processor with three modes. The horizontal axis
is time. The two horizontal dashed lines labeled by C2 and C3 represent the
heights where the speed will transition between the lowest speed mode and
the middle speed mode, and the middle speed mode and the highest speed
mode, respectively (these lines only depend on the speeds and powers of the
modes and not on the jobs). The right picture in Figure 1 shows the associated
schedule.

Optimality Condition. By complementary slackness, a schedule correspond-
ing to a collection of αj ’s is optimal if and only if it processes exactly pj units
of work for each job j. Thus we can reduce finding an optimal schedule to
finding values for these dual variables satisfying this property.

Algorithmic Idea. Our algorithm is a primal-dual algorithm that raises the
dual αj variables in an organized way. We iteratively consider the jobs by
decreasing density. In iteration i, we construct the optimal schedule Si for the
i most dense jobs from the optimal schedule Si−1 for the i − 1 most dense
jobs. We raise the new dual variable αi from 0 until the associated schedule
processes pi units of work from job i. At some point raising the dual variable
αi may cause the dual line for i to “affect” the dual line for a previous job j
in the sense that αj must be raised as αi is raised in order to maintain the
invariant that the right amount of work is processed on job j. Intuitively one
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Figure 1: The dual lines for a 4-job instance and the associated schedule.

the objective of flow plus β energy (FE). Given the complexity of the resulting algorithm

and analysis we devote an entire chapter to this problem.

The first step, and a recurring theme throughout this work, is to take the natural linear

programming formulation of this optimization problem and consider the complimentary

slackness conditions which characterize the structure of an optimal solution. The main insight

from these optimal conditions is that by using a geometric interpretation of these conditions

and creating a mapping between this interpretation and schedules, we reduce the original

optimization problem to finding a set of “dual lines” whose corresponding schedule is feasible.

Every job will have a “dual line” which will have two components. An initial value, which

corresponds to the value of a dual variable, and a slope, which the optimality conditions tell

us will always be −pj/wj (where pj is the size of job j and wj is the weight of job j). The

mapping between dual lines and schedules is then simply the upper envelope of the set of

dual lines. So for all times t, whichever job has the highest dual line will be the job scheduled,

and the speed will depend on the height of the dual line. See Figure 1 for an example of a

set of dual lines and the corresponding scheduling. While these optimization problems are

equivalent, the hope is that the geometric setting is easier to reason about.

We indeed show this to be true by giving a polynomial time algorithm for this geometric

interpretation of the problem. The algorithm constructs an optimal schedule job by job,

ensuring that as a new job is added, it maintains the optimality of the previously scheduled

jobs. Taking the first job as an example, we will raise the dual line of this job until the

corresponding schedule has completed the correct amount of work. As we raise the dual line

of the second job, it may “steal away” work from the first job if the two dual lines intersect
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thereby changing the upper envelope for the first job. To compensate for this, we maintain

an “affection tree” between jobs (roughly speaking a job j1 “affects” j2 if changing the “dual

line” of j1 impacts the resulting schedule of j2) and simultaneously changing the dual line of

a job and all jobs it affects. So in the case of our two job example, when the second dual

line begins to intersect the first dual line, we will now simultaneously raise both dual lines at

rates such that there is no change in the amount of work done by the first job. By continuing

to do this for each job until the resulting schedule is feasible we produce an optimal schedule.

To bound the running time we bound the number of events that cause us to recalculate

how we raise dual lines, the time required to calculate the next event of each type, and the

time required to recompute the affection tree after each event. Intuitively, the events that

cause us to recalculate are any events that change the affection tree, or change the rate at

which work is changing for a job.

1.3.2 Chapter 3

In Chapter 3 we provide a survey of hardness results and polynomial time algorithms across a

variety of settings to fill in Table 2. In addition, we give several reductions between different

settings linking their complexity, thereby reducing the number of truly distinct problems.

The results in this Chapter share the similarity that they follow from previous work or rely

on rather standard techniques. Because of this, and the sheer volume of results, we give a

compact summary and leave the technical explanations for the main body.

• Hardness Results

– B-IDUA is NP-hard: The reduction is from the subset sum problem. The basic idea

is to associate several high density and low density jobs with each number in the

subset sum instance, and show that for certain parameter settings, there are only two

possible choices for this set of jobs with the difference in energy consumption being

this number. Perhaps the most interesting aspect of this result is not the technique,

but the existence of a polynomial time algorithm for the fixed speed setting. As far

as we know, this was the first known example of such a “hard” speed scaling problem

with an “easy” fixed speed equivalent.
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– B-IDWU is NP-hard: The reduction is again from the subset sum problem but much

more technically demanding than B-IDUA. Unlike the previous result, it is currently

open whether the fixed speed equivalent is solvable in polynomial time.

• Polynomial Time Algorithms

– FE-ICUU is in P: In our first positive result, we show that [2] can be extended to

general power functions. Recall that [2] first realized the completion ordering must be

FIFO and used this to solve the special case when a sequence of jobs are overlapping.

We follow this same approach, noticing that set of equations arising from the special

case can be solved for general “nice” power functions as opposed to simply P (s) = sα.

From there a similar dynamic programming approach suffices.

– FE-IDUU is in P: Again, the algorithm highly leverages the structure of the unit size

unweighted case. The fact that speeds are discrete allows for a much simpler algorithm

than for FE-ICUU. This theme of the discrete setting allowing for simpler algorithms

will be recurring throughout.

– FE-FCWA is in P: We generalize the algorithm from Chapter 3 to continuous speeds.

Again, the main algorithmic ideas do not change, but instead the main hurdle is to

deal with a more complicated equation system at certain points in the algorithm

resulting from the generalized power function.

• Equivalence Reductions

– Reduction from B-FC** to FE-FC**: We reduce any energy budget problem with

fractional flow and continuous speeds to the corresponding flow plus β energy problem

using binary search. So this tells us that providing an algorithm for the flow plus

energy problem will immediately yield an algorithm for the equivalent energy budget

problem.

– Reduction from B-ICUU to FE-ICUU: The difficulty here stems from the fact that there

may be multiple optimal flow plus energy schedules for a β (so binary search over β

does not suffice). Again, this allows us to tie the complexity of the energy budget

problem to the flow plus energy problem.

– Reduction from *-*D** to *-*C**: We give a reduction from any discrete speed

problem to the corresponding continuous speed problem. So this tells us that the
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continuous version of a problem will always be harder, in a complexity sense, than

the discrete version of a problem.

1.3.3 Chapter 4

In the final technical Chapter, we examine a speed-scaling optimization problem where the

energy is harvested from a solar cell and quality of service is imposed via job deadlines as

opposed to the flow/waiting time. This is most appropriate in the context of some sensor

based device, many of which contain technologies enabling them to harvest energy from

their environment thereby allowing them to be left unattended for long periods of time. The

motivation of this Chapter is to consider, from an algorithmic perspective, how embedding

speed scalable processors within such devices can extend their lifetime while simultaneously

maintaining quality of service guarantees. In order to describe our results we first provide a

brief reminder of the differences in modeling assumptions:

• The device harvests energy from its environment. For simplicity we will assume that it

harvests energy at a time-invariant rate (like a solar-cell in bright sunlight).

• The device contains a battery that can store the harvested energy. For simplicity we

assume that the capacity of the battery is not a limiting factor.

• The processor must process a collection of n jobs of various sizes. Each job has an

associated time interval, representing the interval between the time the job arrives in the

system and a specified deadline.

• The objective is to determine the minimum recharge rate and schedule such that all jobs

finish by their respective deadlines without depleting the battery.

We give a polynomial-time combinatorial algorithm for this problem of minimizing the

recharge rate. Our algorithm can be viewed as a homotopic optimization algorithm that

maintains an energy optimal schedule as the recharge rate continuously decreases. The

first step is to again consider the natural linear program representation of this problem.

Interpreting the complementary slackness conditions combinatorially yields four structural

conditions that characterize and allow us to recognize an optimal schedule. The high level

intuition behind our algorithm is to first start with an energy optimal schedule (computed
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Figure 2: The energy optimal schedule and the recharge rate optimal schedule.

using [34]), and a recharge rate R such that this schedule satisfies the first three optimality

conditions. The algorithm then lowers R, while maintaining a schedule satisfying the first

three optimality conditions until the fourth condition is satisfied.

In order to build intuition on how we lower R continuously while maintaining certain

structural properties, let us consider the following simple example instance as seen in Figure 9.

The processor can be run at speed 1 with power 1, or at speed 2 with power 4. Job j1 is

released at time 0 with deadline 10 and work 9, and j2 is released at time 1 with deadline 2

and work 2. The energy optimal schedule would run job j2 at speed 2 during the time interval

[1, 2] and run job j1 at speed 1 during the time intervals [0, 1] and [2, 10]. The minimal

recharge rate at which this schedule is feasible is R = 2.5. However one can achieve a smaller

recharge rate by moving some of the processing done on j1 during the time interval [0, 1] to

the time interval [2, 10]. This trend of moving processing of work later in time to allow the

battery to recharge is the essence of how we are able to lower the recharge rate. To formalize

this intuition we need to determine how to find such paths and rates as well as determine

how long we can move work until we must recalculate.

One can discretize the continuous algorithm by calculating, given the transfer rates for

the current transfer path collection, the next structural event and then discretely transferring

enough work to reach that next event. To obtain convergence to the optimal solution and a
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polynomial bound on the runtime, we design our algorithm so as to maintain a hierarchy

of monotonicity invariants. Combining this monotonicity with a polynomial bound on the

number of structural states yields the desired polynomial bound.
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2.0 FRACTIONAL FLOW AND ENERGY TRADE-OFF SCHEDULES

In this chapter we consider how to schedule jobs on such a speed-scalable processor in order

to obtain an optimal trade-off between a natural performance measure (fractional weighted

flow) and the energy used. Using the notation introduced in Chapter 1, we give a polynomial

time algorithm for FE-FDWA. Before giving an outline for this Chapter let us review the

setting. Fully formal definitions are given in Section 2.2. We need to explain how we model

the processors, the jobs, a schedule, our performance measure, and the energy-performance

trade-off:

The Speed-Scalable Processor: We assume that the processor can operate in any of a

discrete set of modes, each with a specified speed and corresponding power consumption.

The Jobs: Each job has a release time when the job arrives in the system, a volume of work

(think of a unit of work as being an infinitesimally small instruction to be executed), and

a total importance or weight. The ratio of the weight to the volume of work specifies the

density of the job, which is the importance per unit of work of that job.

A Schedule: A schedule specifies the job that is being processed and the mode of the

processor at any point in time.

Our Performance Measure: The fractional weighted flow of a schedule is the total over

all units of work (instructions) of how much time that work had to wait from its release

time until its execution on the processor, times the weight (aggregate importance) of that

unit of work. So work with higher weight is considered to be more important. Presumably

the weights are specified by higher-level applications that have knowledge of the relative

importance of various jobs.

Optimal Trade-off Schedule: An optimal trade-off schedule minimizes the fractional

weighted flow plus the energy used by the processor (energy is just power integrated over
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time). To gain intuition, assume that at time zero a volume p of work of weight w is

released. Intuitively/Heuristically one might think that the processor should operate in

the mode i that minimizes w p
2si

+ Pi
p
si

, where si and Pi are the speed and power of mode

i respectively, until all the work is completed; In this schedule the time to finish all the

work is p
si

, the fractional weighted flow is w p
2si

, and the total energy usage is Pi
p
si

. So

the larger the weight w, the faster the mode that the processor will operate in. Thus

intuitively the application-provided weights inform the system scheduler as to which mode

to operate in so as to obtain the best trade-off between energy and performance. (The

true optimal trade-off schedule for the above instance is more complicated as the speed

will decrease as the work is completed.)

In Section 2.1 we explain the relationship of our result to related results in the literature.

Unfortunately both the design and analysis of our algorithm are complicated, so in Section 2.3

we give an overview of the main conceptual ideas before launching into details in the subsequent

sections. In Section 2.4 we present the obvious linear programming formulation of the problem,

and discuss our interpretation of information that can be gained about optimal schedules

from both the primal and dual linear programs. In Section 2.6 we use this information to

develop our algorithm. Finally in Section 2.7 we analyze the running time of our algorithm.

2.1 RELATED RESULTS

To the best of our knowledge there are three papers in the algorithmic literature that study

computing optimal energy trade-off schedules. All of these papers assume that the processor

can run at any non-negative real speed, and that the power used by the processor is some nice

function of the speed. Essentially both [2, 31] give polynomial time algorithms for the special

case of our problem where the densities of all units of work are the same. In [31], Pruhs et

al. give a homotopic optimization algorithm that, intuitively, traces out all schedules that

are Pareto-optimal with respect to energy and fractional flow, one of which must obviously

be the optimal energy trade-off schedule. [2] give a dynamic programming algorithm and

deserve credit for introducing the notion of trade-off schedules. [13] give a polynomial-time
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algorithm for recognizing an optimal schedule. They also showed that the optimal schedule

evolves continuously as a function of the importance of energy, implying that a continuous

homotopic algorithm is, at least in principle, possible. However, [13] was not able to provide

any bound, even exponential, on the time of this algorithm, nor was [13] able to provide any

way to discretize this algorithm.

To reemphasize, the prior literature [2, 13, 31] on our problem assumes that the set of

allowable speeds is continuous. Our setting of discrete speeds both more closely models the

current technology, and seems to be algorithmically more challenging. In [13] the recognition

of an optimal trade-off schedule in the continuous setting is essentially a direct consequence of

the KKT conditions of the natural convex program, as it is observed that there is essentially

only one degree of freedom for each job in any plausibly optimal schedule, and this degree of

freedom can be recovered from the candidate schedule by looking at the speed that the job is

run at. In the discrete setting, we shall see that there is again essentially only one degree of

freedom for each job. But, unfortunately, one cannot easily recover the value of this degree

of freedom by examining the candidate schedule. Thus we do not know of any simple way to

even recognize an optimal trade-off schedule in the discrete setting.

2.2 MODEL & PRELIMINARIES

We consider the problem of scheduling a set J := { 1, 2, . . . , n } of n jobs on a single processor

featuring k different speeds 0 < s1 < s2 < . . . < sk. The power consumption of the processor

while running at speed si is Pi ≥ 0. We use S := { s1, s2, . . . , sk } to denote the set of speeds

and P := {P1, P2, . . . , Pk } to denote the set of powers. While running at speed si, the

processor performs si units of work per time unit and consumes energy at a rate of Pi.

Each job j ∈ J has a release time rj, a processing volume (or work) pj, and a weight wj.

Moreover, we denote the value dj :=
wj
pj

as the density of job j. For each time t, a schedule S

must decide which job to process and at what speed. Preemption is allowed, that is, a job

may be suspended at any point in time and resumed later on. We model a schedule S by a

speed function V : R≥0 → S and a scheduling policy J : R≥0 → J . Here, V (t) denotes the
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speed at time t, and J(t) the job that is scheduled at time t. Jobs can be processed only after

they have been released. For job j let Ij = J−1(j) ∩
[
rj,∞

)
be the set of times during which

it is processed. A feasible schedule must finish the work of all jobs. That is, the inequality
∫
Ij
S(t) dt ≥ pj must hold for all jobs j.

We measure the quality of a given schedule S by means of its energy consumption and its

fractional flow. The speed function V induces a power function P : R≥0 → P , such that P (t) is

the power consumed at time t. The energy consumption of schedule S is E(S) :=
∫∞

0
P (t) dt.

The flow time (also called response time) of a job j is the difference between its completion

time and release time. If Fj denotes the flow time of job j, the weighted flow of schedule S is
∑

j∈J wjFj. However, we are interested in the fractional flow, which takes into account that

different parts of a job j finish at different times. More formally, if pj(t) denotes the work

of job j that is processed at time t (i.e., pj(t) = V (t) if J(t) = j, and pj(t) = 0 otherwise),

the fractional flow time of job j is F̃ j :=
∫∞
rj

(t− rj)pj(t)pj
dt. The fractional weighted flow of

schedule S is F̃ (S) :=
∑

j∈J wjF̃ j. The objective function is E(S) + F̃ (S). Our goal is to

find a feasible schedule that minimizes this objective.

We define s0 := 0, P0 := 0, sk+1 := sk, and Pk+1 := ∞ to simplify notation. Note that,

without loss of generality, we can assume Pi−Pi−1

si−si−1
< Pi+1−Pi

si+1−si ; Otherwise, any schedule using si

could be improved by linearly interpolating the speeds si−1 and si+1. Most of the time, our

analysis assumes all densities to be distinct. This is without loss of generality, and we explain

at the end of our analysis section (see Section 2.6.3) how the algorithm can be changed to

handle jobs of equal densities.

2.3 OVERVIEW

In this section we give an overview of our algorithm design and analysis. We first outline

how we extract geometric information from the primal-dual formulation of the problem, and

then give an example of this geometric information, providing insight into how this yields an

optimality condition. Finally, we give a first overview of how to leverage this condition when

designing our algorithm.

22



6 A. Antoniadis et al.

C1

C2

C3 s3

s2

s1

Fig. 1: The dual lines for a 4-job instance, and the associated schedule.

program. Using complementary slackness we find necessary and sufficient con-
ditions for a candidate schedule to be optimal. Reminiscent of the approach
used in the case of continuous speeds in [8], we then interpret these conditions
in the following geometric manner. Each job j is associated with a linear func-
tion D

αj

j (t), which we call a dual line. This dual line has a slope of −dj and
passes through point (rj , αj), for some αj > 0. Here t is time, αj is the dual
variable associated with the primal constraint that all the work from job j
must be completed, rj is the release time of job j, and dj is the density of job
j. Given such an αj for each job j, one can obtain an associated schedule as
follows: At every time t, the job j being processed is the one whose dual line
is the highest at that time, and the speed of the processor depends solely on
the height of this dual line at that time.

Example Schedule & Dual Lines. The left picture in Figure 1 shows the dual
lines for four different jobs on a processor with three modes. The horizontal axis
is time. The two horizontal dashed lines labeled by C2 and C3 represent the
heights where the speed will transition between the lowest speed mode and
the middle speed mode, and the middle speed mode and the highest speed
mode, respectively (these lines only depend on the speeds and powers of the
modes and not on the jobs). The right picture in Figure 1 shows the associated
schedule.

Optimality Condition. By complementary slackness, a schedule correspond-
ing to a collection of αj ’s is optimal if and only if it processes exactly pj units
of work for each job j. Thus we can reduce finding an optimal schedule to
finding values for these dual variables satisfying this property.

Algorithmic Idea. Our algorithm is a primal-dual algorithm that raises the
dual αj variables in an organized way. We iteratively consider the jobs by
decreasing density. In iteration i, we construct the optimal schedule Si for the
i most dense jobs from the optimal schedule Si−1 for the i − 1 most dense
jobs. We raise the new dual variable αi from 0 until the associated schedule
processes pi units of work from job i. At some point raising the dual variable
αi may cause the dual line for i to “affect” the dual line for a previous job j
in the sense that αj must be raised as αi is raised in order to maintain the
invariant that the right amount of work is processed on job j. Intuitively one

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 3: The dual lines for a 4-job instance, and the associated schedule.

We start by considering a natural linear programming formulation of the problem. We

then consider the dual linear program. Using complementary slackness we find necessary and

sufficient conditions for a candidate schedule to be optimal. Reminiscent of the approach used

in the case of continuous speeds in [13], we then interpret these conditions in the following

geometric manner. Each job j is associated with a linear function D
αj
j (t), which we call a

dual line. This dual line has a slope of −dj and passes through point (rj, αj), for some αj > 0.

Here t is time, αj is the dual variable associated with the primal constraint that all the work

from job j must be completed, rj is the release time of job j, and dj is the density of job j.

Given such an αj for each job j, one can obtain an associated schedule as follows: At every

time t, the job j being processed is the one whose dual line is the highest at that time, and

the speed of the processor depends solely on the height of this dual line at that time.

The left picture in Figure 9 shows the dual lines for four different jobs on a processor

with three modes. The horizontal axis is time. The two horizontal dashed lines labeled by

C2 and C3 represent the heights where the speed will transition between the lowest speed

mode and the middle speed mode, and the middle speed mode and the highest speed mode,

respectively (these lines only depend on the speeds and powers of the modes and not on the

jobs). The right picture in Figure 9 shows the associated schedule.

By complementary slackness, a schedule corresponding to a collection of αj ’s is optimal if

and only if it processes exactly pj units of work for each job j. Thus we can reduce finding

an optimal schedule to finding values for these dual variables satisfying this property.

Our algorithm is a primal-dual algorithm that raises the dual αj variables in an organized

way. We iteratively consider the jobs by decreasing density. In iteration i, we construct the
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optimal schedule Si for the i most dense jobs from the optimal schedule Si−1 for the i− 1

most dense jobs. We raise the new dual variable αi from 0 until the associated schedule

processes pi units of work from job i. At some point raising the dual variable αi may cause

the dual line for i to “affect” the dual line for a previous job j in the sense that αj must

be raised as αi is raised in order to maintain the invariant that the right amount of work is

processed on job j. Intuitively one might think of “affection” as meaning that the dual lines

intersect (this is not strictly correct, but it is a useful initial geometric interpretation to gain

intuition). More generally this affection relation can be transitive in the sense that raising

the dual variable αj may in turn affect another job, etc.

The algorithm maintains an affection tree rooted at i that describes the affection relation-

ship between jobs, and maintains for each edge in the tree a variable describing the relative

rates that the two incident jobs must be raised in order to maintain the invariant that the

proper amount of work is processed for each job. Thus this tree describes the rates that the

dual variables of previously added jobs must be raised as the new dual variable αi is raised

at a unit rate.

In order to discretize the raising of the dual lines, we define four types of events that

cause a modification to the affection tree:

• a pair of jobs either begin or cease to affect each other,

• a job either starts using a new mode or stops using some mode,

• the rightmost point on a dual line crosses the release time of another job, or

• enough work is processed on the new job i.

During an iteration, the algorithm repeatedly computes when the next such event will occur,

raises the dual lines until this event, and then computes the new affection tree. Iteration i

completes when job i has processed enough work.

Its correctness follows from the facts that (i) the affection graph is a tree, (ii) this affection

tree is correctly computed, (iii) the four aforementioned events are exactly the ones that

change the affection tree, and (iv) the next such event is correctly computed by the algorithm.

We bound the running time by bounding the number of events that can occur, the time

required to calculate the next event of each type, and the time required to recompute the

affection tree after each event.
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2.4 STRUCTURAL PROPERTIES VIA PRIMAL-DUAL FORMULATION

This section derives the structural optimality condition (Theorem 4) on which our algorithm

is based. We do so by means of an integer linear programming (ILP) description of our

problem. Before we give the ILP and derive the condition, we show how to divide time into

discrete time slots with certain properties.

Discretizing Time. We define time slots in which the processor runs at constant speed

and processes at most one job. Note that, in general, these time slots may be arbitrarily

small, yielding an ILP with many variables. At first glance, this seems problematic, as it

renders a direct solution approach less attractive. However, we are actually not interested in

solving the resulting ILP directly. Instead, we merely strive to use it and its dual in order to

obtain some simple structural properties of an optimal schedule.

To this end, consider ε > 0 and let T ∈ N be such that Tε is an upper bound on the

completion time of non-trivial1 schedules (e.g., Tε ≥ maxj(rj +
∑

j
pj/s1)). Given a fixed

problem instance, there is only a finite number of jobs and, without loss of generality, an

optimal schedule performs only a finite number of speed switches and preemptions. Thus, we

can choose ε > 0 such that

(a) any release time rj is a multiple of ε,

(b) an optimal schedule can use constant speed during
[
(t− 1)ε, tε

)
, and

(c) there is at most one job processed during
[
(t− 1)ε, tε

)
.

We refer to an interval
[
(t− 1)ε, tε

)
as the t-th time slot. By rescaling the problem instance

we can assume that time slots are of unit size (scale rj by 1/ε and scale si as well as Pi by ε).

ILP & Dual Program. Let the indicator variable xjti denote whether job j is processed in

slot t at speed si. Note that T as defined above is an upper bound on the total number of time

slots. This allows us to model our scheduling problem via the ILP given in Figure 4a. The

first set of constraints ensures that all jobs are completed, while the second set of constraints

ensures that the processor runs at constant speed and processes at most one job in each time

slot.

In order to use properties of duality, we consider the relaxation of the above ILP. It can

1A non-trivial schedule is one that never runs at speed 0 when there is work remaining.
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min
∑

j∈J

T∑

t=rj

k∑

i=1

xjti
(
Pi + sidj(t− rj + 1/2)

)

s.t.
T∑

t=rj

k∑

i=1

xjti · si ≥ pj ∀j

∑

j∈J

k∑

i=1

xjti ≤ 1 ∀t

xjti ∈ { 0, 1 } ∀j, t, i

(a) ILP formulation of our problem.

max
∑

j∈J
pjαj −

T∑

t=1

βt

s.t. βt ≥ αjsi − Pi
−sidj(t− rj + 1/2)

∀j, t, i : t ≥ rj

αj ≥ 0 ∀j

βt ≥ 0 ∀t

(b) Dual of the ILP’s relaxation.

Figure 4: Primal-dual formulation of our problem.

easily be shown that an optimal schedule can use highest density first as its scheduling policy.

Therefore, there is no advantage to scheduling partial jobs in any time slot. It follows that

by considering small enough time slots, the value of an optimal solution to the LP will be no

less than the value of the optimal solution to the ILP. After considering this relaxation and

taking the dual, we get the dual program shown in Figure 4b.

The complementary slackness conditions of our primal-dual program are

αj > 0 ⇒
T∑

t=rj

k∑

i=1

xjti · si = pj, (2.1)

βt > 0 ⇒
∑

j∈J

k∑

i=1

xjti = 1, (2.2)

xjti > 0 ⇒ βt = αjsi − Pi − sidj(t− rj + 1/2). (2.3)

By complementary slackness, any pair of feasible primal-dual solutions that fulfills these

conditions is optimal. We will use this in the following to find a simple way to characterize

optimal schedules.

Dual Lines. A simple but important observation is that we can write the last comple-

mentary slackness condition as βt = si
(
αj − dj(t− rj + 1

2
)
)
− Pi. Using the complementary
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slackness conditions, the function t 7→ αj − dj(t− rj) can be used to characterize optimal

schedules. The following definitions capture a parameterized version of these job-dependent

functions and state how they imply a corresponding (not necessarily feasible) schedule.

Definition 1 (Dual Lines & Upper Envelope). For a value a ≥ 0 and a job j we define the

linear function Da
j : [rj,∞)→ R, t 7→ a− dj(t− rj) as the dual line of j with offset a.

Given a job set H ⊆ J and corresponding dual lines D
aj
j , we define the upper envelope

of H by the upper envelope of its dual lines. That is, the upper envelope of H is the function

UEH : R≥0 → R≥0, t 7→ maxj∈H
(
D
aj
j (t), 0

)
. We omit the job set from the index if it is clear

from the context.

For technical reasons, we will have to consider the discontinuities in the upper envelope

separately.

Definition 2 (Left Upper Envelope & Discontinuity). Given a job set H ⊆ J and upper

envelope of H, UEH , we define the left upper envelope at a point t as the limit of UEH as we

approach t from the left. That is, the left upper envelope of H is the function LUEH : R≥0 →
R≥0, t 7→ limt′→t− UEH(t′). Note that an equivalent definition of the left upper envelope is

LUEH(t) = maxj∈H:rj<t

(
D
aj
j (t), 0

)
.

We say that a point t is a discontinuity if UE has a discontinuity at t. Note that this

implies that UE(t) 6= LUE(t).

For the following definition, let us denote Ci := Pi−Pi−1

si−si−1
for i ∈ [k + 1] as the i-th speed

threshold. We use it to define the speeds at which jobs are to be scheduled. It will also be

useful to define Ĉ(x) = mini∈[k+1] {Ci | Ci > x } and Č(x) = maxi∈[k+1] {Ci | Ci ≤ x }.

Definition 3 (Line Schedule). Consider dual lines D
aj
j for all jobs. The corresponding line

schedule schedules job j in all intervals I ⊆ [rj,∞) of maximal length in which j’s dual line

is on the upper envelope of all jobs (i.e., ∀t ∈ I : D
aj
j (t) = UE(t)). The speed of a job j

scheduled at time t is si, with i such that Ci = Č(D
aj
j (t)).

See Figure 9 for an example of a line schedule. Together with the complementary slackness

conditions, we can now easily characterize optimal line schedules.

Theorem 4. Consider dual lines D
aj
j for all jobs. The corresponding line schedule is optimal
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with respect to fractional weighted flow plus energy if it schedules exactly pj units of work for

each job j.

Proof. Consider the solution x to the ILP induced by the line schedule. We use the offsets aj

of the dual lines to define the dual variables αj := aj + 1
2
dj . For t ∈ N, set βt := 0 if no job is

scheduled in the t-th slot and βt := siD
αj
j (t)− Pi if job j is scheduled at speed si during slot

t. It is easy to check that x, α, and β are feasible and that they satisfy the complementary

slackness conditions. Thus, the line schedule must be optimal.

2.5 AFFECTION & RAISING PROCESS

Recall the algorithmic idea sketched in Section 2.3: We aim to develop a primal-dual algorithm

that raises dual variables in a structured fashion. Theorem 4 provides us with some motivation

for how to organize this raising. A first approach might be to raise the dual line of a new job

i, leaving the dual lines of previously scheduled jobs untouched. At some point, its dual line

will claim enough time on the upper envelope to be fully processed. However, in doing so we

may affect (i.e., reduce) the time windows of other (already scheduled) jobs. Thus, while

raising i’s dual line, we must keep track of any affected jobs and ensure that they remain

fully scheduled. This section formalizes this idea by defining affections and by structuring

them in such a way that we can efficiently keep track of them.

Notation for the Raising Process. Within iteration i of the algorithm, τ will represent

how much we have raised αi. We can think of τ as the time parameter for this iteration of the

algorithm (not time as described in the original problem description, but time with respect

to raising dual-lines). To simplify notation, we do not index variables by the current iteration

of the algorithm. In fact, note that every variable in our description of the algorithm may be

different at each iteration of the algorithm, e.g., for some job j, αj(τ) may be different at

the i-th iteration than at the (i+ 1)-st iteration. To further simplify notation, we use Dτ
j to

denote the dual line of job j with offset αj(τ). Similarly, we use UEτ to denote the upper
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envelope of all dual lines Dτ
j for j ∈ [i] and Sτi to denote the corresponding line schedule.

Prime notation generally refers to the rate of change of a variable with respect to τ . To

lighten notation further, we drop τ from variables when its value is clear from the context.

2.5.1 Affected Jobs

Let us define a relation capturing the idea of jobs affecting each other while being raised.

Definition 5 (Affection). Consider two different jobs j and j′. We say that job j affects job

j′ at time τ if raising (only) the dual line Dτ
j would decrease the processing time of j′ in the

corresponding line schedule.

We write j → j′ to indicate that j affects j′ (and refer to the parameter τ separately, if not

clear from the context). Similarly, we write j 6→ j′ to state that j does not affect j′. Before

we show how to structure the affection between different jobs, let us collect some simple

observations on when and how jobs can actually affect each other. We start with observing

that jobs can affect each other only if their dual lines intersect on the upper envelope or left

upper envelope (see Figure 5).

Observation 6. Given jobs j and j′ with j → j′, their dual lines must intersect on the upper

envelope, or on the left upper envelope at a discontinuity. That is, if t is the intersection point

of j and j′, we have either Dτ
j (t) = Dτ

j′(t) = UEτ (t), or Dτ
j (t) = Dτ

j′(t) = LUEτ (t) and t is

a discontinuity. Further there must be some ε > 0 such that j′ is run in either (t− ε, t) or

(t, t+ ε).

The following two observations are the counterpart of Observation 6. More precisely,

Observation 7 states that only the most and least dense jobs intersecting at the upper envelope

can be affected (Figure 5). Similarly, Observation 8 states that only the highest density job

intersecting at the left upper envelope can be affected (Figure 5).

Observation 7. For t ∈ R≥0 consider the maximal set Ht of jobs that intersect the upper

envelope at t and define H−t := Ht ∩ { j | rj < t }. Let ι̌ ∈ Ht denote the job of lowest density

and let ι̂ ∈ H−t denote the job of highest density in the corresponding sets (assuming the sets

are nonempty). The following hold:
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r1 r2 rι̂ t = rι̌

(a) Affections: { 1, 2, ι̂ } → { ι̌ }, { 1, 2 } →
{ ι̂ }, and { 1, 2, ι̂, ι̌ } ̸→ { 1, 2 }.

r1 rι̂ t = r3 = r4

(b) Affections: 1 → ι̂ and { 1, ι̂, 3 } ̸→ { 1, 3 }.
(Job 3 is denoted by the thick line.)

Fig. 3: Illustration of (a) Observation 3 and (b) Observation 4.

6.1 Affected Jobs

Let us define a relation capturing the idea of jobs affecting each other while
being raised.

Definition 4 (Affection) Consider two different jobs j and j′. We say that
job j affects job j′ at time τ if raising (only) the dual line Dτ

j would decrease
the processing time of j′ in the corresponding line schedule.

We write j → j′ to indicate that j affects j′ (and refer to the parameter τ
separately, if not clear from the context). Similarly, we write j ̸→ j′ to state
that j does not affect j′. Before we show how to structure the affection between
different jobs, let us collect some simple observations on when and how jobs
can actually affect each other. We start with observing that jobs can affect each
other only if their dual lines intersect on the upper envelope (Figure 3(a)) or
left upper envelope (Figure 3(b)).

Observation 2 Given jobs j and j′ with j → j′, their dual lines must inter-
sect on the upper envelope, or on the left upper envelope at a discontinuity.
That is, if t is the intersection point of j and j′, we have either Dτ

j (t) =
Dτ

j′(t) = UEτ (t), or Dτ
j (t) = Dτ

j′ (t) = LUEτ (t) and t is a discontinuity.
Further there must be some ϵ > 0 such that j′ is run in either (t − ϵ, t) or
(t, t + ϵ).

The following two observations are the counterpart of Observation 2. More
precisely, Observation 3 states that only the most and least dense jobs inter-
secting at the upper envelope can be affected (Figure 3(a)). Similarly, Obser-
vation 4 states that only the highest density job intersecting at the left upper
envelope can be affected (Figure 3(b)).

Observation 3 For t ∈ R≥0 consider the maximal set Ht of jobs that intersect
the upper envelope at t and define H−

t := Ht ∩ { j | rj < t }. Let ι̌ ∈ Ht denote
the job of lowest density and let ι̂ ∈ H−

t denote the job of highest density in
the corresponding sets (assuming the sets are nonempty). The following hold:

(a) For all j ∈ Ht \ { ι̌ } we have j → ι̌.
(b) For all j ∈ H−

t \ { ι̂ } we have j → ι̂.
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Figure 5: Illustration of Observation 7 and Observation 8.

(a) For all j ∈ Ht \ { ι̌ } we have j → ι̌.

(b) For all j ∈ H−t \ { ι̂ } we have j → ι̂.

(c) For all j ∈ Ht and j′ ∈ Ht \ { ι̌, ι̂ } we have j 6→ j′.

Observation 8. For t ∈ R≥0 consider the maximal set Ht of jobs that intersect the left upper

envelope at t where t is a discontinuity. Define H−t := Ht ∩ { j | rj < t }. Let ι̂ ∈ H−t denote

the job of highest density in H−t (assuming it is nonempty). The following hold:

(a) For all j ∈ H−t \ { ι̂ } we have j → ι̂.

(b) For all j ∈ Ht and j′ ∈ Ht \ { ι̂ } we have j 6→ j′.

The final two observations are based on the fact that once the dual lines of a higher

density job and a lower density job intersect, the higher density job is “dominated” by the

lower density job (Figure 6).

Observation 9. No job j ∈ [i− 1] can intersect a job j′ of lower density at its own release

time rj.

Observation 10. Given jobs j and j′ with dj > dj′ that intersect on the upper envelope or

left upper envelope at point t, we have that UEτ (t′) ≥ LUEτ (t′) ≥ Dτ
j′(t
′) > Dτ

j (t
′), for all

t′ > t.
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r0 r1 t2 = r3t1 r2 r4

Fig. 4: Observation 6. Both the upper envelope and the left upper envelope
cases: note that Dτ

0 (t′) < LUEτ (t′) ≤ UEτ (t′) for all t′ > t1, and Dτ
2 (t′) <

LUEτ (t′) ≤ UEτ (t′) for all t′ > t2.

(c) For all j ∈ Ht and j′ ∈ Ht \ { ι̌, ι̂ } we have j ̸→ j′.

Observation 4 For t ∈ R≥0 consider the maximal set Ht of jobs that intersect
the left upper envelope at t where t is a discontinuity. Define H−

t := Ht ∩
{ j | rj < t }. Let ι̂ ∈ H−

t denote the job of highest density in H−
t (assuming it

is nonempty). The following hold:

(a) For all j ∈ H−
t \ { ι̂ } we have j → ι̂.

(b) For all j ∈ Ht and j′ ∈ Ht \ { ι̂ } we have j ̸→ j′.

The final two observations are based on the fact that once the dual lines of a
higher density job and a lower density job intersect, the higher density job is
“dominated” by the lower density job (Figure 4).

Observation 5 No job j ∈ [i − 1] can intersect a job j′ of lower density at
its own release time rj.

Observation 6 Given jobs j and j′ with dj > dj′ that intersect on the upper
envelope or left upper envelope at point t, we have that UEτ (t′) ≥ LUEτ (t′) ≥
Dτ

j′(t′) > Dτ
j (t′), for all t′ > t.

6.2 Structuring the Affection

Equipped with these observations, we provide additional structural properties
about how different jobs can affect each other. Assume jobs to be ordered by
decreasing density and fix a job i. In the following, we study how the raising
of job i can affect the already scheduled jobs in { 1, 2, . . . , i − 1 }. We will use
our insights later to prove that the graph induced by the affection relations
forms a tree (see Lemma 6).

Define level sets L0 := { i } and Ll := { j | ∃j− ∈ Ll−1 : j− → j } \⋃l−1
l′=0 Ll′

for an integer l ≥ 1. Intuitively, a job j is in level set Ll if and only if the
shortest path from i to j in the graph induced by the affection relation is of
length l. With this notation, we are now ready to prove the following lemmas.
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Figure 6: Observation 10. Both the upper envelope and the left upper envelope
cases: note that Dτ

0(t′) < LUEτ (t′) ≤ UEτ (t′) for all t′ > t1, and Dτ
2(t′) <

LUEτ (t′) ≤ UEτ (t′) for all t′ > t2.

2.5.2 Structuring the Affection

Equipped with these observations, we provide additional structural properties about how

different jobs can affect each other. Assume jobs to be ordered by decreasing density and fix

a job i. In the following, we study how the raising of job i can affect the already scheduled

jobs in { 1, 2, . . . , i− 1 }. We will use our insights later to prove that the graph induced by

the affection relations forms a tree (see Lemma 17).

Define level sets L0 := { i } and Ll := { j | ∃j− ∈ Ll−1 : j− → j } \⋃l−1
l′=0 Ll′ for an integer

l ≥ 1. Intuitively, a job j is in level set Ll if and only if the shortest path from i to j in the

graph induced by the affection relation is of length l. With this notation, we are now ready

to prove the following lemmas.

Lemma 11. Consider two jobs j0 ∈ Ll and j+ ∈ Ll+1 with j0 → j+. Then job j+ has a

larger density than job j0. That is, dj+ > dj0.

Proof. We prove the statement of the lemma by induction. The base case l = 0 is trivial,

as i has the lowest density of all jobs and, by construction, L0 = { i }. Now consider the

case l ≥ 1 and let j− ∈ Ll−1 be such that j− → j0. By the induction hypothesis, we have

dj0 > dj− . For the sake of a contradiction, assume dj+ < dj0 . Let t1 denote the intersection

point of j0 and j−, and let t2 denote the intersection point of j0 and j+. By Observation 6,
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these intersection points lie on the upper envelope or the left upper envelope. We consider

three cases:

Case t1 > t2: Because of t1 > t2, the assumption dj0 > dj+ implies Dτ
j0

(t1) < Dτ
j+

(t1) ≤
LUEτ (t1) ≤ UEτ (t1) by Observation 10. This contradicts Observation 6.

Case t1 < t2: Because of t2 > t1, the induction hypothesis dj0 > dj− implies, by Observa-

tion 10, Dτ
j0

(t2) < Dτ
j−(t2) ≤ LUEτ (t2) ≤ UEτ (t2). This contradicts Observation 6.

Case t1 = t2: First note that this intersection point must lie on the upper envelope since

otherwise it would lie on the left upper envelope at a discontinuity and, by Observation 8,

j0 6→ j+. Further, because j0 6= i and dj0 > dj+ , Observation 9 implies rj0 < t1. Together

with dj+ < dj0 and j0 → j+, this implies that j+ has minimal density among all jobs

intersecting the upper envelope in t1 (by Observation 7). We get j− → j+ and, thus,

j+ ∈ Ll. This contradicts j+ being a level l + 1 node.

Lemma 12. Given two level l jobs j1, j2 ∈ Ll, we have j1 6→ j2 and j2 6→ j1.

Proof. The statement is trivial for l = 0, as L0 = { i }. For l ≥ 1 consider j1, j2 ∈ Ll and

assume, for the sake of a contradiction, that j1 → j2 (the case j2 → j1 is symmetrical). Let

ι1, ι2 ∈ Ll−1 with ι1 → j1 and ι2 → j2. By Lemma 11 we have dι1 < dj1 and dι2 < dj2 . Let

t0 denote the intersection point of j1 and j2, t1 the intersection point of j1 and ι1, and t2

the intersection point of j2 and ι2. Analogously to the proof of Lemma 11, one can see that

t0 = min{t1, t2} (as otherwise at least one of these intersection points would not lie on the

(left) upper envelope). We distinguish the following cases:

Case t0 = t1 < t2: First note that t1 and t0 cannot lie on the left upper envelope at a

discontinuity, since by Observation 8 either j1 6→ j2 or ι1 6→ j1. So, by Observation 6,

t0 and t1 lie on the upper envelope. Job j2 must have minimal density among all jobs

intersecting the upper envelope at t1, as otherwise its intersection point with ι2 cannot

lie on the upper envelope. But then, by Observation 7, we have ι1 → j2. Together with

Lemma 11 this implies dj2 > dι1 , contradicting the minimality of j2’s density.

Case t0 = t2 < t1: By Observation 6 j1, j2 and ι2 either lie on the left upper envelope or

the upper envelope. Assume they are on the left upper envelope. Note that since ι2 and
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j1 intersect at t0, and t1 > t0, it must be that ι1 6= ι2 and therefore l ≥ 2 in this case.

Also, since t1 > t0 is a point where j1 is on the upper envelope, it must be that j1 is less

dense than ι2. However this implies that ι2 is not on the left upper envelope or upper

envelope to the right of t0. Since it is not the root (l ≥ 2) there must be some point

t < t0 such that ι2 intersects a less dense job on the (left) upper envelope (its parent).

This contradicts ι2 being on the left upper envelope at t0. If instead j1, j2 and ι2 lie on

the upper envelope the same argument used in the first case applies.

Case t0 = t1 = t2: The same argument as in the first case shows that these points do not lie

on the left upper envelope at a discontinuity but must lie on the upper envelope. Without

loss of generality, assume dj1 > dj2 . We get rj1 < t1 (Observation 9). With dj2 > dι2 and

Observation 7 this implies ι2 6→ j2, contradicting the definition of ι2.

Lemma 13. A level l job cannot be affected by more than one job of a lower level.

Proof. The statement is trivial for l ∈ { 0, 1 }. Thus, consider a job j ∈ Ll for l ≥ 2 and let j1

and j2 be two different lower level jobs with j1 → j and j2 → j. By definition, both j1 and j2

must be level l − 1 jobs. Also, similar to previous proofs, we can see that all three jobs must

intersect at the same point t on the upper envelope or left upper envelope. Let us first assume

they intersect at the upper envelope. Observation 7 implies that j has maximal density of all

jobs intersecting the upper envelope at t (as otherwise j can be affected by neither j1 nor

j2, both having a lower density). Consider the lowest density job ι̌ intersecting the upper

envelope at t. By Observation 7, at least one among j1 and j2 must affect ι̌. Assume, without

loss of generality, it is j1. This implies that ι̌ has level l′ ≤ l. Actually, we must have l′ < l,

because otherwise dι̌ < dj1 would contradict Lemma 11. Similarly, l′ = l− 1 would contradict

Lemma 12. Thus, we have l′ ≤ l − 2. But since we have ι̌→ j, we get a contradiction to j

being a level l node.

Now assume that all three jobs intersect at a discontinuity of the left upper envelope.

Observation 8 tells us that j must be the job of highest density intersecting at t. Assume

without loss of generality that dj1 < dj2 . Then, by Observation 10, j2 is not on the (left)

upper envelope to the right of t. However, since it is not the root (l ≥ 2), there must be

33



some job ι̌ of smaller density that intersects j2 on the (left) upper envelope to the left of t

(its parent). This contradicts that j2 would be on the left upper envelope at t.

Lemma 14. Consider two nodes j1 ∈ Ll1 and j2 ∈ Ll2 with l2 − l1 ≥ 2. Then, we must have

j2 6→ j1.

Proof. For the sake of a contradiction, assume j2 → j1 and let j denote a level l2 − 1 node

with j → j2. Similarly to the previous proofs, we can see that all three jobs j1, j2, and j

must intersect the upper envelope or left upper envelope at a common intersection point t.

In the first case, assume this is on the upper envelope. Since dj2 > dj and j → j2, we get

that rj2 < t and that j2 has maximal density among all jobs intersecting the upper envelope

at t and having a release time before t (Observation 9 and Observation 7). We get j1 → j2,

contradicting j2 being of at least level l1 + 2.

In the case when they intersect at a discontinuity of the left upper envelope, Observation 8

implies either j2 6→ j1 or j 6→ j2, a contradiction.

Lemma 15. Consider two nodes j1 ∈ Ll1 and j2 ∈ Ll2 with l2 = l1 + 1, and j1 → j2. Then,

if there exists a node j3 ∈ Ll1 such that j2 → j3, it must be that j3 = j1.

Proof. For the sake of contradiction, assume there exists a node j3 6= j1 such that j3 ∈ Ll1
and j2 → j3. First, note that by Lemma 11 we have dj1 < dj2 . Let t1 be the intersection of

j1 and j2, and t2 be the intersection of j2 and j3. There are two cases to consider. In the

first case, assume t1 = t2 and note that the intersection must lie on the upper envelope: if

it were on the left upper envelope at a discontinuity, j1 → j2 and j2 → j3 would contradict

Observation 8. Since dj1 < dj2 , either j1 or j3 is the job with lowest density. Then, since

t1 = t2, by Observation 7 either j1 → j3 or j3 → j1. Both cases contradict Lemma 12 since

j1, j3 ∈ Ll1 .
In the second case, assume t1 6= t2. If t1 < t2, then, since dj1 < dj2 by Observation 10,

Dτ
j2

(t′) < LUEτ (t′) ≤ UEτ (t′) for all t′ > t1 which contradicts j2 being on the (left) upper

envelope at t2. For the case t1 > t2, a similar argument shows that j2 must be the least dense

job that intersects the upper envelope at t2, as otherwise Dτ
j2

(t1) < LUEτ (t1) ≤ UEτ (t1).

If the jobs meet on the upper envelope at t2, Observation 7 yields j3 → j2. Together with
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Fig. 5: Affection tree example, rooted at the blue job.

Lemma 6 Let Ai be the (affection) graph of Definition 5. Then Ai is a tree,
and if we root Ai at i, then for any parent and child pair (ιj , j) ∈ G it holds
that dιj < dj.

Proof Assume, for the sake of contradiction, that there exists a cycle C in G.
Let v be a node in C that belongs to the highest level set, say Ll1 . Note that
such a v is unique since otherwise there would be two nodes in the same level
with at least one having an affection to the other contradicting Lemma 2. Let
v1, v2 be the neighbors of v in C and v3 ∈ Ll1−1 be the node such that v3 → v
(note that it may be v3 = v1 or v3 = v2). Note that by Lemma 4 we also have
v1, v2 ∈ Ll1−1. By Lemma 3, either v1 ̸→ v or v2 ̸→ v. Assume without loss
of generality this is v1. Since v1 is a neighbor of v in C and v1 ̸→ v, we have
v → v1. However, this contradicts Lemma 5. ⊓%

For the remainder of the paper, we will always assume Ai(τ) is rooted at
i and use the notation (j, j′) ∈ Ai(τ) to indicate that j′ is a child of j. The
proven tree structure of the affection graph will allow us to easily compute
how fast to raise the different dual lines of jobs in Ai (as long as the connected
component does not change).

7 Computing an Optimal Schedule

In this section we describe and analyze the algorithm for computing an optimal
schedule. We introduce the necessary notation and provide a formal definition
of the algorithm in Section 7.1. In Section 7.2, we prove the correctness of the
algorithm. Finally, Section 7.3 explains how the algorithm and the analysis
need to be adapted to allow for arbitrary (not pairwise different) densities.

7.1 Preliminaries and Formal Algorithm Description

Our algorithm will use the affection tree to track the jobs affected by the raising
of the current job i and compute corresponding raising rates. The raising will
continue until job i is completely scheduled, or there is some structural change
causing us to recompute the rates at which we are raising dual lines. For
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Figure 7: Affection tree example, rooted at the blue job.

j1 → j2 and j3 6= j1, this contradicts Lemma 13. If the jobs meet on the left upper envelope

at t2, we see similarly to previous proofs that j3 is not the root, cannot be processed to the

right of t2 (since j2 is less dense), and its less dense parent muss intersect it to the left of t2.

But then, j2 cannot be on the left upper envelope at t2, a contradiction.

2.5.3 Affection Tree

We will now formally define and study the graph defined by the affection relation. Using the

lemmas from Section 2.5.2, we will show that this graph is a tree (Lemma 17).

Definition 16 (Affection Tree). Let Gi(τ) be the directed graph induced by the affection

relation on jobs 1, 2, . . . , i. The affection tree is an undirected graph Ai(τ) = (Vi(τ), Ei(τ))

where j ∈ Vi(τ) if and only if j is reachable from i in Gi(τ), and for j1, j2 ∈ Vi(τ) we have

(j1, j2) ∈ Ei(τ) if and only if j1 → j2 or j2 → j1.

See Figure 7 for an illustration of this definition.

Lemma 11 to Lemma 15 imply that, if we omit edge directions, this subgraph indeed

forms a tree rooted at i such that all children of a node j are of higher density. We state and

prove this in the next lemma.

Lemma 17. Let Ai be the (affection) graph of Definition 16. Then Ai is a tree, and if we

root Ai at i, then for any parent and child pair (ιj, j) ∈ G it holds that dιj < dj.

Proof. Assume, for the sake of contradiction, that there exists a cycle C in G. Let v be a
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node in C that belongs to the highest level set, say Ll1 . Note that such a v is unique since

otherwise there would be two nodes in the same level with at least one having an affection to

the other contradicting Lemma 12. Let v1, v2 be the neighbors of v in C and v3 ∈ Ll1−1 be

the node such that v3 → v (note that it may be v3 = v1 or v3 = v2). Note that by Lemma 14

we also have v1, v2 ∈ Ll1−1. By Lemma 13, either v1 6→ v or v2 6→ v. Assume without loss of

generality this is v1. Since v1 is a neighbor of v in C and v1 6→ v, we have v → v1. However,

this contradicts Lemma 15.

For the remainder of the paper, we will always assume Ai(τ) is rooted at i and use the

notation (j, j′) ∈ Ai(τ) to indicate that j′ is a child of j. The proven tree structure of the

affection graph will allow us to easily compute how fast to raise the different dual lines of

jobs in Ai (as long as the connected component does not change).

2.6 COMPUTING AN OPTIMAL SCHEDULE

In this section we describe and analyze the algorithm for computing an optimal schedule.

We introduce the necessary notation and provide a formal definition of the algorithm in

Section 2.6.1. In Section 2.6.2, we prove the correctness of the algorithm. Finally, Section 2.6.3

explains how the algorithm and the analysis need to be adapted to allow for arbitrary (not

pairwise different) densities.

2.6.1 Preliminaries and Formal Algorithm Description

Our algorithm will use the affection tree to track the jobs affected by the raising of the

current job i and compute corresponding raising rates. The raising will continue until job i is

completely scheduled, or there is some structural change causing us to recompute the rates

at which we are raising dual lines. For example a change in the structure of the affection tree

when new nodes are affected will cause us to pause and recompute. The intuition for each

event is comparatively simple (see Definition 18), but their formalization is quite technical,

requiring us to explicitly label the start and ending points of each single execution interval
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of each job. To do so, we introduce the following interval notation. See Figure 8 for a

corresponding illustration.

Interval Notation. Let r̂1, r̂2, . . . , r̂n denote the jobs’ release times in non-decreasing order.

We define Ψj as a set of indices with q ∈ Ψj if and only if job j is run between r̂q and r̂q+1

(or after r̂n for q = n). Job j must run in a (sub-)interval of
[
r̂q, r̂q+1

)
. Let x`,q,j denote the

left and xr,q,j denote the right border of this execution interval. Let s`,q,j denote the speed at

which j is running at the left endpoint corresponding to q and sr,q,j denote the speed j is

running at the right endpoint. Let q`,j be the smallest and qr,j be the largest indices of Ψj,

i.e., the indices of the first and last execution intervals of j.

Let the indicator variable yr,j(q) denote whether xr,q,j occurs at a release point. Similarly,

y`,j(q) = 1 if x`,q,j occurs at rj , and 0 otherwise. Lastly, χj(q) is 1 if q is not the last interval

in which j is run, and 0 otherwise.

We define ρj(q) to be the last interval of the uninterrupted block of intervals starting at

q, i.e., for all q′ ∈ { q + 1, . . . , ρj(q) }, we have that q′ ∈ Ψj and xr,q′−1,j = x`,q′,j, and either

ρj(q) + 1 6∈ Ψj or xr,ρj(q),j 6= x`,ρj(q)+1,j.

Note that, as the line schedule changes with τ , so does the set of intervals corresponding

to it. Therefore we consider variables relating to intervals to be functions of τ as well (e.g.,

Ψj(τ), x`,q,j(τ), etc.).

Events & Algorithm. Given this notation, we now define four different types of events

which intuitively represent the situations in which we must change the rate at which we are

raising the dual line. We assume that from τ until an event we raise each dual line at a constant

rate. More formally, we fix τ and for j ∈ [i] and u ≥ τ let αj(u) = αj(τ) + (u− τ)α′j(τ).

Definition 18 (Event). For τ0 > τ , we say that an event occurs at τ0 if there exists ε > 0

such that at least one of the following holds for all u ∈ (τ, τ0) and v ∈ (τ0, τ0 + ε):

• The affection tree changes, i.e., Ai(u) 6= Ai(v). This is called an affection change event.

• The speed at the border of some job’s interval changes. That is, there exists j ∈ [i] and

q ∈ Ψj(τ) such that either s`,q,j(u) 6= s`,q,j(v) or sr,q,j(u) 6= sr,q,j(v). This is called a speed

change event.

• The last interval in which job i is run changes from ending before the release time of

some other job to ending at the release time of that job. That is, there exists a j ∈ [i− 1]
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C1

C2

C3

r̂1 r̂2 r̂3xℓ,3,j xr,3,j
r̂4 xℓ,4,j xr,4,j

Fig. 6: Let j be the green job. The set Ψj := { 3, 4 } corresponds to the 2
execution intervals of j. The speeds at the border of the first execution interval,
sℓ,3,j and sr,3,j , are both equal to s2. Similarly, the border speeds in the second
execution interval, sℓ,4,j and sr,4,j, are both equal to s1. The value qℓ,j = 3
refers to the first and qr,j = 4 to the last execution interval of j. Finally, the
indicator variables for j in the depicted example have the following values:
yr,j(3) = yℓ,j(3) = 1 (borders at some release time), yr,j(4) = yℓ,j(4) = 0
(borders not at some release time), χj(3) = 1 (not j’s last execution interval),
and χj(4) = 0 (last execution interval of j).

1 for each job i from 1 to n:
2 while pi(τ) < pi: {job i not yet fully processed in current schedule}
3 for each job j ∈ Ai(τ):
4 calculate δj,i(τ) {see Equation (5)}
5 let ∆τ be the smallest ∆τ returned by any of the subroutines below:
6 (a) JobCompletion(S(τ), i, [α′

1, α′
2, . . . , α′

i]) {time to job completion}
7 (b) AffectionChange(S(τ), Ai(τ), [α′

1, α′
2, . . . , α′

i]) {time to affection change}
8 (c) SpeedChange(S(τ), [α′

1, α′
2, . . . , α′

i]) {time to speed change}
9 (d) RateChange(S(τ), i, [α′

1, α′
2, . . . , α′

i]) {time to rate change}
10 for each job j ∈ Ai(τ):
11 raise αj by ∆τ · δj,i

12 set τ = τ + ∆τ
13 update Ai(τ) if needed {only if Case (b) returns the smallest ∆τ}

Algorithm 1: The algorithm for computing an optimal schedule.

7.2 Correctness of the Algorithm

In this subsection we focus on proving the correctness of the algorithm. Through-
out this subsection, we assume that the iteration and value of τ are fixed. Recall
that we have to raise the dual lines such that the total work done for any job
j ∈ [i−1] is preserved. To calculate the work processed for j in an interval, we
must take into account the different speeds at which j is run in that interval.
Note that the intersection of j’s dual line with the i-th speed threshold Ci
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Figure 8: Let j be the green job. The set Ψj := { 3, 4 } corresponds to the
2 execution intervals of j. The speeds at the border of the first execution
interval, s`,3,j and sr,3,j , are both equal to s2. Similarly, the border speeds
in the second execution interval, s`,4,j and sr,4,j , are both equal to s1. The
value q`,j = 3 refers to the first and qr,j = 4 to the last execution interval of j.
Finally, the indicator variables for j in the depicted example have the following
values: yr,j(3) = y`,j(3) = 1 (borders at some release time), yr,j(4) = y`,j(4) = 0
(borders not at some release time), χj(3) = 1 (not j’s last execution interval),
and χj(4) = 0 (last execution interval of j).

and a q ∈ Ψi(τ) such that xr,q,i(u) < rj and xr,q,i(v) = rj. This is called a simple rate

change event.

• Job i completes enough work, i.e., pi(u) < pi < pi(v). This is called a job completion

event.

A formal description of the algorithm can be found in Algorithm 4.1.

2.6.2 Correctness of the Algorithm

In this subsection we focus on proving the correctness of the algorithm. Throughout this

subsection, we assume that the iteration and value of τ are fixed. Recall that we have to raise

the dual lines such that the total work done for any job j ∈ [i− 1] is preserved. To calculate

the work processed for j in an interval, we must take into account the different speeds at

which j is run in that interval. Note that the intersection of j’s dual line with the i-th speed
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1 for each job i from 1 to n:
2 while pi(τ) < pi: {job i not yet fully processed in current schedule}
3 for each job j ∈ Ai(τ):
4 calculate δj,i(τ) {see Equation (2.5)}
5 let ∆τ be the smallest ∆τ returned by any of the subroutines below:
6 (a) JobCompletion(S(τ), i, [α′1, α

′
2, . . . , α

′
i]) {time to job completion}

7 (b) AffectionChange(S(τ), Ai(τ), [α′1, α
′
2, . . . , α

′
i]) {time to affection change}

8 (c) SpeedChange(S(τ), [α′1, α
′
2, . . . , α

′
i]) {time to speed change}

9 (d) RateChange(S(τ), i, [α′1, α
′
2, . . . , α

′
i]) {time to rate change}

10 for each job j ∈ Ai(τ):
11 raise αj by ∆τ · δj,i
12 set τ = τ + ∆τ
13 update Ai(τ) if needed {only if Case (b) returns the smallest ∆τ}

Listing 2.1: The algorithm for computing an optimal schedule.

threshold Ci occurs at t =
αj−Ci
dj

+ rj. Therefore, the work done by a job j ∈ [i] is given by

pj =
∑

q∈Ψj

s`,q,j

(
αj − Č(Dτ

j (x`,q,j))

dj
+ rj − x`,q,j

)

+
∑

k:s`,q,j>sk>sr,q,j

sk


αj − Ck

dj
+ rj −

(
αj − Ck+1

dj
+ rj

)


+ sr,q,j


xr,q,j −

(
αj − Ĉ(Dτ

j (xr,q,j))

dj
+ rj

)
.

It follows that the change in the work of job j with respect to τ is

p′j =
∑

q∈Ψj


s`,q,j

(
α′j
dj
− x′`,q,j

)
+ sr,q,j

(
x′r,q,j −

α′j
dj

)
. (2.4)

For some child j′ of j in Ai, let qj,j′ be the index of the interval of Ψj that begins with the

completion of j′. Recall that Dτ
i is raised at a rate of 1 with respect to τ , and for a parent

39



and child (ιj, j) in the affection tree, the rate of change for αj with respect to αιj used by

the algorithm is:

δj,ιj :=

(
1 + y`,j(q`,j)

dj − dιj
dj

s`,q`,j ,j − sr,ρj(q`,j),j
sr,qr,j ,j

+
∑

(j,j′)∈Ai

(
(1− δj′,j)

dj − dιj
dj′ − dj

s`,qj,j′ ,j

sr,qr,j ,j
+
dj − dιj
dj

s`,qj,j′ ,j − sr,ρ(qj,j′ ),j

sr,qr,j ,j

))−1

.

(2.5)

We will prove in Lemma 21 that these rates are work-preserving for all jobs j ∈ [i− 1]. Note

that the algorithm actually uses δj,i which we can compute by taking the product of the δk,k′

over all edges (k, k′) on the path from j to i. Similarly we can compute δj,j′ for all j, j′ ∈ Ai.

Lemma 19. Intersection points on the upper envelope cannot move towards the right when

τ is increased.

Proof. Since, by Lemma 17, parents in the affection tree are always of lower-density than

their children, and since dual lines are monotonically decreasing, we have that διj ,j ≤ 1. This

implies the claim.

The following lemma states how fast the borders of the various intervals change with

respect to the change in τ .

Lemma 20. Consider any job j ∈ Ai whose dual line gets raised at a rate δj,i.

(a) For an interval q ∈ Ψj, if y`,j(q) = 1, then x′`,q,j = 0.

(b) For an interval q ∈ Ψj, if χj(q) = 1, then x′r,q,j = 0.

(c) Let (j, j′) be an edge in the affection tree and let qj and qj′ denote the corresponding

intervals for j and j′. Then, x′`,qj ,j = x′r,qj′ ,j′ = −α′j−α′j′
dj′−dj

. Note that this captures the case

q ∈ Ψj′ with χj′(q) = 0 and j′ 6= i.

(d) For an interval q ∈ Ψi, if χi(q) = 0, then x′r,q,i = 0 or x′r,q,i = 1/di.

Proof.

(a) Note that since y`,j(q) = 1, this implies that x`,q,r = rj. Since by Lemma 19 intersection

points can only move towards the left and by definition Dτ
j is defined in [rj,∞) the

statement follows.
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(b) Set t = xr,q,j and let us consider two subcases. In the first case, assume that there exists

an ε > 0 such that j is run in (t, t+ ε). Then, we must have that t = xr,q,j = rj′ for some

j′ 6= j, as otherwise q would not be maximal. This implies x′r,q,j = 0.

In the second subcase, assume that there does not exist any ε > 0 such that j is run in

(t, t+ ε). This implies there is some change in the upper envelope at t, which can happen

only in the following three cases:

(i) The dual line crosses 0 at t. That is, αj − dj(t− rj) = 0.

(ii) The dual line crosses a dual line of smaller slope at t.

(iii) A release time causes a discontinuity on the upper envelope at t.

Note that (i) and (ii) can only happen at the last execution interval of a job, but since

χj(q) = 1, q is not the last interval in which j is run. In (iii), since xr,q,j = rj′ at a

discontinuity, x′r,q,j = 0 and the statement holds.

(c) Note that since (j, j′) is an edge in the affection tree, by Observation 6 we have that Dτ
j′

and Dτ
j must intersect on the (left) upper envelope. Since Dτ

j′(t) = αj′ − dj′(t− rj′) and

Dτ
j (t) = αj − dj(t− rj), the dual lines for j and j′ intersect at

t =
αj′ + dj′ · rj′ − αj − dj · rj

dj′ − dj
, and its derivative is −

α′j − α′j′
dj′ − dj

.

Since j is a parent of j′, x`,qj ,j = xr,qj′ ,j′ = t and the result follows.

(d) Note that since job i has the lowest density of all jobs currently considered, its rightmost

interval can only stop at a release time of a denser job, or at a point t such that Dτ
i = 0.

In the first case x′r,q,i = 0. In the second case note that Dτ
i (t) = αi − di(t− ri) intersects

0 at t = αi/di + ri. Taking the derivative with respect to τ yields x′r,q,i = α′i/di = 1/di, as

desired.

Equation 2.4 defines a system of differential equations. In the following, we first show

how to compute a work-preserving solution for this system (in which p′j = 0 for all j ∈ [i− 1])

if α′i = 1, and then show that the corresponding τ values can be easily computed.

Lemma 21. For a parent and child (ιj, j) ∈ Ai, set α′j = δj,ιjα
′
ιj

, and for j′ 6∈ Ai set αj′ = 0.

Then p′j = 0 for j ∈ [i− 1].
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Proof. Clearly, by the definition of affection and construction of the affection tree, if j′ 6∈ Ai,
then by setting α′j′ = 0 we have that p′j′ = 0.

For a parent and child (ιj, j) ∈ Ai, we set p′j = 0 in Equation 2.4 and solve for α′j/α′ιj = δj,ιj .

Let Iq,j = { q, . . . , ρj(q) } if q ∈ Ψj and ∅ otherwise. We call Iq,j a maximal execution interval

of j if Iq−1,j∩Iq,j = ∅. Let M = { q ∈ Ψj | Iq,j is max. execution interval of j }. We have that
⋃
q∈M Iq,j = Ψj. Let p′j,S where S ⊆ Ψj be the rate of change of pj due to the rate of change

of the endpoints of the intervals in S. If j is run at its release time, then y`,j(q`,j) = 1 and by,

Observation 7, j cannot intersect any of its children at its release time, so by Lemma 20

p′j,Iq`,j ,j
= (s`,q`,j ,j − sr,ρ(q`,j),j)

(
α′j
dj

)
+ sr,ρj(q`,j),j

(
x′r,ρj(q`,j),j

)
.

For any other q ∈M (including q`,j if y`,j(q`,j) = 0), q must begin at the intersection point

of j and one of its children. That is, there exists a unique (j, j′) ∈ Ai such that q = qj,j′ .

Therefore, by Lemma 20

p′j,Iqj,j′ ,j
= (s`,qj,j′ ,j − sr,ρ(qj,j′ ),j)

(
α′j
dj

)
+ s`,qj,j′ ,j

(
α′j − α′j′
dj′ − dj

)

+ sr,ρj(qj,j′ ),j

(
x′r,ρj(qj,j′ ),j

)
.

For any q ∈ M , we have (Lemma 20) that x′r,ρ(q),j = 0 if ρ(q) 6= qr,j and x′r,qr,j ,j = −α′ιj−α
′
j

dj−dιj
.

The lemma follows by observing that p′j =
∑

q∈M p′j,Iq,j , the fact that j must intersect each of

its children exactly once on the (left) upper envelope, and that for (j, j′) ∈ Ai, we have that

αj′/αj = δj′,j.

Although it is simple to identify the next occurrence of job completion, speed change,

or simple rate change events, it is more involved to identify the next affection change event.

Therefore, we provide the following lemma to account for this case.

Lemma 22. An affection change event occurs at time τ0 if and only if at least one of the

following occurs.

(a) An intersection point t between a parent and child (j, j′) ∈ Ai becomes equal to rj. That

is, at τ0 > τ such that Dτ0
j (rj) = Dτ0

j′ (rj) = UEτ0(rj).
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(b) Two intersection points t1 and t2 on the upper envelope become equal. That is, for

(j1, j2) ∈ Ai and (j2, j3) ∈ Ai, at τ0 > τ such that there is a t with Dτ0
j1

(t) = Dτ0
j2

(t) =

Dτ0
j3

(t) = UEτ0(t).

(c) An intersection point between j and j′ meets the (left) upper envelope at the right endpoint

of an interval in which j′ was being run. Furthermore, there exists ε > 0 so that for all

τ ∈ (τ0 − ε, τ0), j′ was not in the affection tree.

Proof. It is straightforward to see that whenever (a), (b), or (c) occurs, an affection change

event has to take place. Therefore we focus the rest of the proof on showing the other

direction, i.e., any affection change event is always a consequence of one of the aforementioned

cases.

By definition, any change in the affection tree is built from a sequence of edge additions

and edge removals. We therefore will separately consider the cases where an edge is removed

or added.

Case: An edge between j and j′ is removed.

Let τ0 be a time when an edge between j and j′ is removed, and assume that j and j′

had an intersection point t. Assume furthermore, without loss of generality, that j is a

parent of j′. Therefore the affection j → j′ ceases to exist at τ0 (perhaps also j′ → j if

it existed). First note that at t, Dτ0
j (t) = Dτ0

j′ (t) must be on the upper envelope or left

upper envelope at a discontinuity, otherwise there exists some ε > 0 such that at time

τ0 − ε their intersection was not on the upper envelope or the left upper envelope but the

edge j → j′ existed, contradicting Observation 6. We handle these two cases separately.

Subcase: Dτ0
j (t) = Dτ0

j′ (t) lies on upper envelope.

By Lemma 17, we know that it must be the case that dj′ > dj. Furthermore, by

Observation 7, since now it is the first time that j 6→ j′, either rj = t (which is

covered in statement (a) of the lemma), or at least three jobs intersect at t. If this is

the case, let j′′ be the highest density job among the jobs that intersect at t. Note

that j′′ cannot be j (since dj′ > dj) and it can also not be j′ (since j 6→ j′).

By Observation 7, just before τ0, j
′ does work to the left of the intersection point

(between j and j′) and j to the right. But at τ0, j′ cannot do any work directly to
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the left of t, because of j′′. It follows that the interval of j′ has disappeared, since

to the left of t, j′′ is run and to the right of t, j is run. This case is covered in the

statement (b) of the lemma.

Subcase: Dτ0
j (t) = Dτ0

j′ (t) lies on left upper envelope at discontinuity t.

Note that since the intersection points do not move towards the right as τ increases

(by Lemma 19), the intersection of j and j′ was either at t or it was moving to the left

towards t for all times during which j → j′. However, since there is a discontinuity at

t, there is some job j′′ on the upper envelope that is not on the left upper envelope.

If the intersection was at t then j → j′ would not be possible. Therefore, there must

exist some ε > 0 such that at τ0 − ε the intersection of j and j′ was below the curve

of j′′. This contradicts Observation 6. It follows that this subcase cannot occur.

Case: A new edge is added to the affection tree.

Let τ0 be the time when a new edge is added to the affection tree. First note that, without

loss of generality, at least one new edge is between two nodes j and j′ with (a) j is in the

affection tree immediately before τ0, (b) j′ is not in the affection tree immediately before

τ0, and (c) j becomes the parent of j′ at τ0. Indeed, obviously at least one old node j

of the affection tree must be involved as a parent in one of the new edges. Note that in

the above cases “immediately before” may refer to either some interval (τ0 − ε, τ0), for

an appropriate ε > 0, or to the situation directly after some edge is removed at τ0, and

before adding the new edge.

If all new children j′ of such old nodes were in the affection tree immediately before τ0,

there would also be some edge removal at τ0 (as an additional edge would break the tree

property, contradicting Lemma 17). This would reduce this case to the previous one, i.e.,

we consider edge removals at τ0 before edge additions at τ0.

From the above we get dj < dj′ (j being a parent of j′). Moreover, by Observation 6, at

τ0 the intersection point t of j and j′ is on the (left) upper envelope and j′ is run either

to the left or right of t. Since j has a lower density, it must be run to the left of t. This

is the case covered by statement (c) of the lemma.

44



2.6.2.1 The Subroutines There are four types of events that cause the algorithm to

recalculate the rates at which it is raising the dual lines. In Lemma 22 we gave necessary and

sufficient conditions for affection change events to occur. The conditions for the remaining

event types to occur follow easily from Lemma 19 and Lemma 20. Given the rates at which

the algorithm raises the dual lines, we can easily calculate the time until the next event. This

subsection gives a formal description of these subroutines and their correctness proofs.

Job Completion Event. Job completion events, which capture when the current job i

is finished, are the easiest events to handle. As long as no other event occurs, the work of

job i is processed at a constant rate p′i, which can be computed by Equation (2.4) (using

Lemma 20 to compute x′l,q,i and x′r,q,i). With pi(τ) denoting the work of i processed at the

current time τ , we define

∆τ :=
pi − pi(τ)

∑
q∈Ψi(τ)

[
s`,q,i

(
α′i(τ)

di
− x′`,q,i(τ)

)
+ sr,q,i

(
x′r,q,i(τ)− α′i(τ)

di

)] . (2.6)

With the above discussion, we immediately get the following lemma.

Lemma 23. Assume the next event is a job completion event. Then this event occurs at

τ + ∆τ , with ∆τ as computed by our job completion subroutine via Equation 2.6.

Simple Rate Change Event. Simple rate change events are similarly easy to compute.

These occur when the right side of i’s last execution interval reaches the release time of some

job. By Lemma 20(d), this happens only when the rate at which this interval border changes

jumps from 1/di to 0. Thus, the corresponding time is computed as

∆τ := (r̂qr,i(τ)+1(τ)− xr,qr,i(τ),i(τ)) · di. (2.7)

This yields the following lemma.

Lemma 24. Assume the next event is a simple rate change event. Then this event occurs at

τ + ∆τ , with ∆τ as computed by our simple rate change subroutine via Equation 2.7.
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Speed Change Event. While the basic idea is the same as for the previous events,

computations for speed change events are a bit more tedious. For each execution interval of

each job, we have to check when the job’s dual function value at the interval borders crosses

a speed threshold. See Algorithm 2.2 for the actual computations. We prove its correctness

in Lemma 25.

Lemma 25. Assume the next event is a speed change event. Then this event occurs at

τ + ∆τ , with ∆τ as computed by our speed change subroutine shown in Algorithm 2.2.

Proof. Consider the innermost “for loop” of Algorithm 2.2. It computes the time until the

left or right border of the q-th execution interval of j reaches a speed threshold, assuming

that no other event occurs before. To see this, note that if the interval has length 0 and not

increasing in size (the else branch), no work will be done in this interval until the next event.

Thus, in this case q cannot cause the next event. Otherwise (the if branch), we know that

x′`,q,j(τ) ≤ 0 and α′j(τ) ≥ 0, and these rates remain constant until the next event. Thus, the

dual function value Dτ ′
j (x`,q,j(τ

′)) at the left border of q is always non-decreasing for τ ′ > τ

(until the next event). Thus, the speed s`,q,j at this interval border remains constant until

τ ′ > τ with Dτ ′
j (x`,q,j(τ

′)) = Ĉ(Dτ
j (x`,q,j(τ))). With ∆τ`,q,j = τ ′ − τ , we can write

Dτ ′
j (x`,q,j(τ

′)) = αj(τ
′)− dj(x`,q,j(τ ′)− rj)

= αj(τ) + ∆τ`,q,jα
′
j(τ)− dj

(
x`,q,j(τ) + ∆τ`,q,jx

′
`,q,j(τ)− rj

)

= Dτ
j (x`,q,j(τ)) + ∆τ`,q,j

(
α′j(τ)− djx′`,q,j(τ)

)
.

If we set this equal to Ĉ(Dτ
j (x`,q,j(τ))) and solve for ∆τ`,q,j , we get exactly the value computed

by Algorithm 2.2. Analogously, we see that ∆τr,q,j are computed correctly. Finally, the

algorithm set ∆τ to the first of all these computed events.

Affection Change Event. The last event type is the most involved. However, Lemma 22

gives the exact conditions for when and why an affection change event can occur. More

precisely, Lemma 22(a) and 22(b) correspond to edge removals in the affection tree, while

Lemma 22(c) corresponds to an addition of an edge. The computations of all such possible

events is formalized in Algorithm 2.3. Lemma 26 states and proves its correctness.
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1 for each job j ∈ [i]:
2 for each q ∈ Ψj(τ):
3 if xr,q,j 6= x`,q,j or x′r,q,j − x′`,q,j > 0:

4 ∆τ`,q,j =
Ĉ(Dτj (x`,q,j(τ)))−Dτj (x`,q,j(τ))

−x′`,q,j(τ)dj+α′j(τ)

5 ∆τr,q,j =
Ĉ(Dτj (xr,q,j(τ)))−Dτj (xr,q,j(τ))

−x′r,q,j(τ)dj+α′j(τ)

6 else:
7 ∆τ`,q,j = ∆τr,q,j =∞
8 ∆τ = minj∈[i],q∈Ψj(τ)(min(∆τ`,q,j ,∆τr,q,j))

9 return ∆τ

Listing 2.2: SpeedChange(S(τ), [α′1, α
′
2, . . . , α

′
i]).

Lemma 26. Assume the next event is an affection change event. Then this event occurs at

τ + ∆τ , with ∆τ as computed by our affection change subroutine shown in Algorithm 2.3.

Proof. By Lemma 22, an edge (and hence a job) is removed from the affection tree only when

a nonzero interval becomes 0. Thus for any job j in the tree and nonzero interval q of it, the

rate of change of the size of that interval is v = x′r,q,j(τ)− x′`,q,j(τ), which is negative if the

size of the interval is decreasing. The size of the interval is xr,q,j(τ)− x`,q,j(τ), thus at rate v

it will become zero at ∆τj,q.

By Lemma 22, an edge (and hence job) is added to the affection tree only when a job

j not in the affection tree intersects a job a in the affection tree at the right endpoint of a

nonzero interval of j. Since j is not in the affection tree, its endpoints do not change as τ

increases. For some interval q, the distance between Dτ
a and Dτ

j at the right endpoint of q is

Dτ
j (xr,q,j(τ))−Dτ

a(xr,q,j(τ)), and Dτ
a increases at a rate of α′a.

2.6.2.2 Completing the Correctness Proof We are now ready to prove the correctness

of the algorithm. We handle termination in Theorem 28, where we prove a polynomial running

time for our algorithm.

Theorem 27. Assuming that Algorithm 4.1 terminates, it computes an optimal schedule.
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1 {all τj,q and τj,q,a initialized with ∞}
2 for j ∈ Ai(τ): {calculate affection tree removals}
3 for q ∈ Ψj(τ):
4 if x`,q,j(τ) 6= xr,q,j(τ) and x′r,q,j(τ)− x′`,q,j(τ) < 0: {q shrinks}
5 ∆τj,q =

xr,q,j(τ)−x`,q,j(τ)
x′`,q,j(τ)−x′r,q,j(τ)

6 ∆τ1 = minj∈Ai(τ),q∈Ψj(τ)(∆τj,q)

7
8 for j ∈ [i] \Ai(τ): {calculate affection tree additions}
9 for q ∈ Ψj(τ):

10 for a ∈ Ai(τ):
11 if x`,q,j 6= xr,q,j and ra < xr,q,j :

12 ∆τj,q,a =
Dτj (xr,q,j(τ))−Dτa(xr,q,j(τ))

α′a
13
14 ∆τ2 = minj∈[i]\Ai(τ),q∈Ψj(τ),a∈Ai(τ)(∆τj,q,a)

15 ∆τ = min(∆τ1,∆τ2)
16 return ∆τ

Listing 2.3: AffectionChange(S(τ), Ai(τ), [α′1, α
′
2, . . . , α

′
i]).

Proof. The algorithm outputs a line schedule S, so by Theorem 4, S is optimal if for all jobs

j the schedule does exactly pj work on j. We now show that this is indeed the case.

For a fixed iteration i, we argue that a change in the rate at which work is increasing for

j (i.e., a change in p′j) may occur only when an event occurs. This follows from Equation 2.4,

since the rate only changes when there is a change in the rate at which the endpoints of

intervals move, when there is a change in the speed levels employed in each interval, or when

there is an affection change (and hence a change in the intervals of a job or a change in α′j).

These are exactly the events we have defined. It can be shown that the algorithm recalculates

the rates at any event (proofs deferred to the full version), and by Lemma 21 it calculates

the correct rates such that p′j(τ) = 0 for j ∈ [i− 1] and for every τ until some τ0 such that

pi(τ0) = pi, which the algorithm calculates correctly (proof also deferred to the full version).

Thus we get the invariant that after iteration i we have a line schedule for the first i jobs

that does pj work for every job j ∈ [i]. The theorem follows.
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2.6.3 A Note on Density Uniqueness

For two jobs i and j with different densities di 6= dj, the dual lines Dai
i and D

aj
j intersect in

at most one point t∗. Therefore the only time they can both be on the upper envelope (or left

upper envelope) is t∗. However, if di = dj and Dai
i and D

aj
j intersect once, then they intersect

at every time after both i and j have been released, and thus both may be on the upper

envelope for entire intervals. We resolve any ambiguity by imposing the rule that if di = dj,

ri < rj, and Dai
i and D

aj
j intersect, then i must complete all its work before j completes any

work (if ri = rj , we arbitrarily pick one to complete first). Let J = { j1, . . . , jz } be the largest

set of jobs that all have some density dj and intersect, ordered by release time. We say that

the intersection between D
aji
ji

and D
aji+1

ji+1
occurs at the time at which ji has completed pji

work, if such a time exists. For any other pair of jobs ji, j` ∈ J such that |i− `| > 1, we say

that D
aji
ji

and D
aj`
j`

do not intersect. Thus for the purpose of having a well-defined upper

envelope, we consider a job j` ∈ J to be on the upper envelope at t only when Da`
j`

is the

highest curve at t, every other job ji ∈ J with i ∈ [`− 1] has completed by t, and either j`

has not completed by t or ` = z.

To consider how the algorithm must be modified, fix an iteration i of the algorithm and a

τ . If (j, ιj) ∈ Ai with dj = dιj , we set δj,ιj = 1. All that remains is to show how the rate of

change of the intersection point between j and ιj (as defined above) can be computed, i.e.,

x′`,qj,ιj ,j
, since now Lemma 20(c) calculates a value that is not well-defined. This is calculated

such that p′j = 0. In other words, by Equation 2.4 and Lemma 20(b) we have that

x′`,qj,ιj ,j = − 1

sr,qr,j ,j


∑

q∈Ψj

(s`,q,j − sr,q,j)
α′j
dj
− s`,q,jx′`,q,j


. (2.8)

Thus if we know the rates of change of the intersection points for j and its children, we can

calculate the rate of change of j’s intersection with ιj. If (ιj, u) ∈ Ai and dιj > du, then

διj ,u will be calculated differently than shown in Equation 2.5, but the necessary change is a

simple replacement of the term (1− δj,ιj)/(dj − dιj) with the term x′`,qj,ιj ,j
/α′ιj .
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2.7 THE RUNNING TIME

The purpose of this section is analyze the running time of Algorithm 4.1 by proving the

following theorem.

Theorem 28. Algorithm 4.1 takes O
(
n4k
)

time.

We use the following approach in order to prove Theorem 28. Details follow below.

• We give upper bounds on the total number of events that can occur in Lemma 30. This is

relatively straightforward for job completion, simple rate change, and speed change events,

which can occur O(n), O
(
n2
)
, and O

(
n2k
)

times, respectively. However, bounding the

number of times an affection change event can occur is more involved: One can show that

whenever an edge is removed from the affection tree, there exists an edge which will never

again be in the affection tree. This implies that the total number of affection change

events is upper bounded by O
(
n2
)

as well.

• We show in Lemma 31 that the next event can always be calculated in O
(
n2
)

time.

• We show in Lemma 32 that the affection tree can be updated in O(n) time after each

affection change event.

The above results imply that our algorithm has a running time of O
(
n4k
)
, and therefore

Theorem 28 follows.

We start with an auxiliary lemma that will be useful for bounding the number of affection

change events in Lemma 30.

Lemma 29. Consider some time τ0 where an edge (j, j′) is removed from the affection tree.

Then, there exists some edge (u, v) that is also being removed at τ0 such that (u, v) will not be

present for all remaining iterations of the algorithm.

Proof. First note that by the definition of the affection tree, it must be that the affection

j → j′ is being removed. Since j is a parent of j′, by Lemma 17 we have dj < dj′ . Also, by

Lemma 22, this edge can be removed because either the intersection between j and j′ becomes

equal to rj or two intersection points become equal. We handle these cases separately.

In the first case we show that the affection edge j → j′ cannot be present again. To do

this, we show that the invariant of j′ not being processed on the (left) upper envelope to the
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right of rj is always maintained. This implies that the edge j → j′ is never present again. It

is clearly true for τ0 (say, in iteration i). Assume that for some iteration i′ ≥ i this invariant

is true. If j′ is not being raised the invariant will remain true since curves can only be raised

and not lowered. If j′ is being raised, since it is not the lowest density job it must intersect

some lower density job j
′′

(its parent) that is also being raised. Further, since the invariant is

true to this point, the intersection is not to the right of rj. However, while j′ is being raised,

by Lemma 19 the intersection between j′ and j
′′

moves only to the left. Since dj′′ < dj′ , j
′

will not be on the upper envelope or left upper envelope to the right of this intersection and

the result follows.

In the second case, assume that the intersection between j1 and j2 becomes equal to the

intersection between j2 and j3 and assume without loss of generality that dj1 < dj2 < dj3 .

This implies the edges (j1, j2) and (j2, j3) will be removed. We show that the edge (j2, j3)

will not be present again. First note that rj2 < rj3 since otherwise j2 would not be processed

anywhere, contradicting that the rates at which we raise curves are work-preserving. Similar

to the previous argument, we show that j2 will not be processed on the upper envelope or

left upper envelope to the right of rj3 again. This is clearly true at τ0 (say, in iteration i).

Assume for some iteration i′ ≥ i this invariant is true. Again, if j2 is not being raised the

invariant remains true. If j2 is being raised, it must intersect a lower density job (its parent)

to the left of rj3 . Since this intersection point will move only to the left the result follows.

Lemma 30. The total number of events throughout the execution of the algorithm is O
(
n2k
)
.

Proof. To show this we show that the number of events is O
(
n2k
)

for each single type.

Job completion event: Note that a job completion event occurs exactly once per iteration:

After a job completion event occurs on iteration i, we have that pi(τ) = pi and in turn

the algorithm moves to the next iteration. Therefore, the total number of job completion

events that occur is exactly n.

Simple rate change event: Consider iteration i. A simple rate change event can occur, if

and only if, the last interval of job i changes from ending before the release time of some

job to ending at the release time of the job. Note that since dual lines are never lowered

during the execution of the algorithm this can occur at most once for each release time
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and therefore at most n times. As we have n iterations the total number of simple rate

change events is O
(
n2
)

Affection change event: These events happen when an edge is either added or removed

in the tree. Note that the number of edge additions is bounded by 2 times the number of

edge removals, so it suffices to bound the number of removals. By Lemma 29, for each

(possibly temporarily) removed edge at least one edge is removed permanently. Thus, the

total number of such events is O
(
n2
)
.

Speed change event: A speed change event occurs when the right or left endpoint of an

interval for a job j crosses a speed threshold. We first show that each speed threshold

can be crossed at most twice per interval, once by the left and once by the right endpoint

of the interval. Consider an interval I for job j. If I is never removed, then each endpoint

of I can only cross each speed threshold at most once, since by Lemma 19 the endpoints

of intervals only move towards left, and furthermore no dual line is ever lowered during

the execution of the algorithm. Else, if I is removed then the left and right endpoints of

I coincide on the upper envelope at some point t (by Lemma 22) and there must be some

other job j′ of lower-density whose dual-line also intersects at t. However, by Lemma 19,

the left endpoint of j′ (in case more than two dual-lines intersect at t let j′ be the job

corresponding to such a dual line of lowest-density) will only move to the left while this

interval is not present. Therefore, even if interval I does reappear, the left and right

endpoints will not be at lower speeds.

Finally, since each job has at most n intervals and each such interval can cause at most

2k speed change events, the total number of speed change events is O
(
n2k
)

As we have a constant number of event types each occurring O
(
n2k
)

times the Lemma

follows.

Lemma 31. Calculating the next event takes O
(
n2
)

time.

Proof. We start by noting that the total number of different intervals during the execution of

the algorithm is O(n). This follows by the fact that a new interval can only be introduced

when a new job gets released, or a job completes its execution.

To calculate the next event, we look at each event type and calculate how far in the
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future the next event of this type will occur. Then we just choose the event of the type that

will happen sooner. Therefore it suffices to give bounds on the time required to calculate the

next event of each type (cf. subroutines in Section 2.6.2.1).

Affection change event: An affection change event has to be either a removal or an addition

(see Lemma 26). If it is a removal, then by the observation on the number of intervals, it

can be calculated in O(n) time. On the other hand if the next affection change event is

an addition, then again by the above observation on the number of intervals O
(
n2
)
-time

is required.

Speed change event: For any fixed interval the next speed change event can be calculated

in constant time. Therefore, by the observation on the number of intervals, we have that

the next such event over all jobs can be computed in time O(n),

Simple rate change event: O(n)-time is sufficient in order to identify qr,i and r̂qr,i+1, and

therefore also to calculate this type of event as well.

Job completion event: We have to calculate yr,j, y`,j for each of the O(n) intervals, identify

i′ and calculate δi,i′ . Therefore we can calculate the next job completion event in time

O(n).

Combining the above, we can calculate the next event in O
(
n2
)

time.

Lemma 32. Updating the affection tree takes O(n) time.

Proof. A simple way to update the affection tree is by recomputing it from scratch at each

update. By Lemma 11, jobs in the tree always have a higher density than their parents.

Further, by Observations 7 and 8, if a job j is on the upper envelope (or left upper envelope)

at some time t and has release time before t, and j′ 6= j is the highest-density job on the

upper envelope (left upper envelope) at time t, then j → j′, and for any other job j′′ 6= j′ of

higher density than j on the upper envelope (left upper envelope), j 6→ j′′. Therefore, for

any job j, its children in the affection tree are those highest-density jobs that intersect it on

the left endpoint of any of its intervals that begin after j’s release. Thus, to compute the

affection tree, we can iterate through each interval I of job i that begins afters its release, add

as i’s children the highest density jobs that intersect it at I’s left endpoint, and recursively

do the same for i’s children. By the observation that there are at most 2n intervals, this
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takes at most O(n) time.
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3.0 COMPLEXITY RESULTS FOR FLOW BASED OPTIMIZATION

In this Chapter, we provide several results to fill in Table 2. In Section 3.2, we show B-IDWU

and B-IDUA are NP-hard. In Section 3.3 we give several polynomial time algorithms. Finally,

in Section 3.4, we give reductions between budget and flow plus β energy problems.

3.1 MODEL AND NOTATION

We consider n jobs J = { 1, 2, . . . , n } to be processed on a single, speed-scalable processor.

In the continuous setting, the processor’s energy consumption is modeled by a power function

P : R≥0 → R≥0 mapping a speed s to a power P (s). We require P to be continuous,

convex, and non-decreasing. Other than that, we merely assume P to be “nice” in the

sense that we can solve basic equations involving the power function and, especially, its

derivative and inverse. In the discrete setting, the processor features only k distinct speeds

0 < s1 < s2 < · · · < sk, where a speed si consumes energy at the rate Pi ≥ 0. Even in the

discrete case, we will often use P (s) to refer to the power consumption when “running at a

speed s ∈ (si, si+1)” in between the discrete speeds. This is to be understood as interpolating

the speed s = si + γ(si+1 − si) (running for a γ fraction at speed si+1 and a 1− γ fraction

at speed si), yielding an equivalent discrete schedule. Each job j ∈ J has a release time

rj, a processing volume pj, and a weight wj. For each time t, a schedule S must decide

which job to process at what speed. Preemption is allowed, so that a job may be suspended

and resumed later on. We model a schedule S by a speed function V : R≥0 → R≥0 and a

scheduling policy J : R≥0 → J . Here, V(t) denotes the speed at time t, and J (t) the job

that is scheduled at time t. Jobs can be processed only after they have been released. For
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job j let Ij = J −1(j) ∩ [rj,∞) be the set of times during which it is processed. A feasible

schedule must finish the work of all jobs. That is, the inequality
∫
Ij
V(t)dt ≥ pj must hold

for all jobs j.

We measure the quality of a given schedule S by means of its energy consumption and its

fractional or integral flow. The energy consumption of a job j is Ej =
∫
Ij
P (V(t))dt, and the

energy consumption of schedule S is
∑

j∈J Ej. The integral flow Fj = wj(Cj − rj) of a job j

is the weighted difference between its completion time Cj and release time rj. The integral

flow of schedule S is F (S) =
∑

j∈J Fj. In contrast, the fractional flow can be seen as the

flow on a per workload basis (instead of per job). More formally, if pj(t) denotes the work

of job j that is processed at time t, the fractional flow time of job j is wj
∫∞
rj

(t− rj)pj(t)pj
dt.

Our goal is to find energy-efficient schedules that provide a good (low) flow. We consider

two different ways to combine these conflicting goals. In the budget setting, we fix an energy

budget B ≥ 0 and seek the minimal (fractional or integral) flow achievable with this energy.

In the flow plus energy setting, we want to minimize a linear combination F (S) + βE(S) of

energy and (fractional or integral) flow.

3.2 HARDNESS RESULTS

This section proves NP-hardness for the problems B-IDUA and B-IDWU. The reductions are

from the subset sum problem, where we are given n elements a1 ≥ a2 ≥ · · · ≥ an with ai ∈ N

as well as a target value A ∈ N with a1 < A <
∑n

i=1 ai. The goal is to decide whether there

is a subset L ⊆ [n] such that
∑

i∈L ai = A.

For both reductions, we define for each element ai a job set Ji such that jobs of two different

sets will not influence each other. Each Ji contains one low density job and one/several high

density jobs. Starting from a base schedule, we choose the parameters such that investing

roughly ai energy into Ji improves its flow by roughly ai. More precisely, when Ji gets ai,

additional energy can be used to decreases the flow at a rate � 1/2 per energy unit. Given

substantially more or substantially less energy, additional energy decreases the flow at a rate

of only 1/2. We achieve this by ensuring that at about ai energy, the schedule switches from
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finishing the low density after the high density jobs to finishing it before them. For an energy

budget of A, we can define a target flow that is reached if and only if there is an L ⊆ [n]

such that
∑

i∈L ai = A (corresponding to job sets that are given about ai extra energy).

We assume a processor with two speeds s1 = 1 and s2 = 2 and power consumption rates

P1 = 1 and P2 = 4. For an isolated job of weight w, this means that increasing a workload of

x from speed s1 to s2 increases the energy by x and decreases the flow by w · x
2
. For ease of

exposition, we assume that the first job of each job group Ji is released at time 0. To ensure

that jobs of different job sets do not influence each other, one can increase all release times of

the job set Ji by the total workload of all previous job sets.

3.2.1 Hardness of B-IDUA

For i ∈ [i], we define a job set Ji = { (i, 1), (i, 2) } of two unit weight jobs and set δ = 1
a1n2 .

The release time of job (i, 1) is ri1 = 0 and its size is pi1 = ai. The release time of job (i, 2) is

ri2 = ai
2

and its size is pi2 = 2δai.

Definition 33 (Base Schedule). The base schedule BSi schedules job (i, 1) at speed 1 and job

(i, 2) at speed 2. It finishes job (i, 1) after (i, 2), has energy consumption E(BSi) = ai + 4δai,

and flow F (BSi) = ai + 2δai.

Note that BSi is optimal for the energy budget E(BSi). Consider an optimal schedule S

for the jobs J =
⋃n
i=1 Ji (release times shifted such that they do not interfere) for the energy

budget B =
∑n

i=1 E(BSi) + A. Let L ⊆ [n] be such that i ∈ L if and only if Ji gets at least

E(BSi) + ai − 4δai = 2ai energy in S. We can now proof the desired hardness result.

Theorem 34. B-IDUA is NP-hard.

Proof. We show that S has flow at most F =
∑n

i=1 F (BSi) − (1
2

+ δ)A if and only if
∑

i∈L ai = A. For the first direction, given that
∑

i∈L ai = A, note that the schedule that

gives each job set Ji with i ∈ L exactly E(BSi) + ai energy and each Ji with i 6∈ L exactly

E(BSi) energy adheres to the energy budget and has flow exactly F . For the other direction,

consider i ∈ [n], let Ei be the total energy used to schedule Ji in S, and let ∆i = Ei−E(BSi)

the additional energy used with respect to the base schedule. Then, for i 6∈ L, the flow of Ji is
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F (BSi)− 1
2
∆i, yielding an average flow gain per energy unit of 1/2. For i ∈ L, the flow gain

per energy unit is 1 for the interval [2ai, 2ai + 2δai) and 1/2 otherwise. Thus, the maximum

average flow gain is achieved for Ei = 2ai+2δai, where the energy usage is E(BSi)+ai−2δai

and the flow is F (BSi)− ai/2. This yields a maximum average flow gain per energy unit of

ai/2
ai−2δai

= 1
2−4δ

. Using these observations, we now show that, if
∑

i∈L ai 6= A, the schedule has

either too much flow or uses too much energy. Let us distinguish two cases:

Case 1:
∑

i∈L ai < A: Using ai, A ∈ N and our observations, the flow decreases by at most

(wrt.
∑n

i=1 BSi)

1

2− 4δ

∑

i∈L
ai+

1

2


A−

∑

i∈L
ai


 =

1

2
A+

δ

1− 2δ

∑

i∈L
ai ≤

1

2
A+

δ

1− 2δ
(A−1) <

(
1

2
+ δ

)
A.

The last inequality follows from δ = 1
a1n2 <

1
2A

.

Case 2:
∑

i∈L ai > A: This implies
∑

i∈L ai ≥ A + 1. Note that even if all jobs (i, 2)

with i ∈ { 1, 2, . . . , n } are run at speed 1 instead of speed 2, the total energy saved

with respect to the base schedules is at most
∑n

i=1 2δai ≤ 2
n
. By this and the previous

observations, the additional energy used by S with respect to the base schedules is at

least (1− 4δ)
∑

i∈L ai − 2
n
≥∑i∈L ai − 6

n
≥ A+ 1− 6

n
> A.

3.2.2 Hardness of B-IDWU

In the following, we assume1 ai ≤ 2ai′ for any i, i′ ∈ [n]. For i ∈ [n], we define a job set

Ji = { (i, 0), (i, 1), . . . , (i, n) } of n+ 1 unit size jobs. The release time of job (i, 0) is ri0 = 0

and its weight is wi0 = ai
n

. For j ∈ [n], the release time of job (i, j) is rij = ri = 1− ai
2a21

and

its weight is wij = wi = 2na3
1.

Definition 35 (Base Schedule). The base schedule BSi schedules job (i, 0) at speed 1 and all

remaining jobs at speed 2. It finishes job (i, 0) after all other jobs. The energy consumption

of BSi is E(BSi) = 1 + 2n and its flow is F (BSi) = wi0 ·
(
1 + n

2

)
+ wi · n(n+1)

4
. Note that

this is the optimal flow for an energy budget of E(BSi).

1This can be seen by first reducing subset sum to a variant of the problem where you must take exactly n
elements by adding new elements with 0 value, and then reducing this new problem to the desired variant by
adding some large enough value to each element, and n times that value to the target value.
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Let us gather some simple observations on the structure of optimal schedules:

Observation 36. Consider an optimal schedule S for the job set Ji and a fixed energy budget

B. Then, without loss of generality, we have:

(a) If S does not finish (i, 0) last, it finishes (i, 0) not later than ri.

(b) If S finishes (i, 0) last and B ≥ E(BSi), all jobs (i, j) for j ∈ [aj] are run at speed 2.

Thus, providing the base schedule with additional energy x will reduce the flow by xwi0
2

,

until the optimal schedule switches from finishing (i, 0) last to finishing it first. It is easy to

check that this switch happens when the additional energy is xi = ai
a21
− δi with δi = nwi0

wi−wi0 .

We formalize this change and how it affects the flow gain in the following Observation.

Observation 37. Consider an optimal schedule for a fixed energy budget B. Then,

(a) If B ∈
[
E(BSi), E(BSi) + xi

)
, increasing the budget by ε > 0 decreases the flow by ε · wi0

2
.

(b) If B ∈
[
E(BSi) + xi, E(BSi) + ai

a21

)
, increasing the budget by ε > 0 decreases the flow by

ε · wi
2

.

(c) If B ∈
[
E(BSi) + ai

a21
, E(BSi) + 1

)
, increasing the budget by ε > 0 decreases the flow by

ε · wi0
2

.

Note that E(BSi) + 1 is the maximum energy we can invest into Ji (all jobs run at speed 2).

Consider an optimal schedule S for the jobs J =
⋃n
i=1 Ji (release times shifted such that

they do not interfere) that has an energy budget of B =
∑n

i=1E(BSi) + A
a21

and adheres to

the properties of Observation 36. Let L ⊆ [n] be such that i ∈ L if and only if Ji is given at

least E(BSi) + xi energy in S. We are now ready to show the main part of the reduction:

Theorem 38. B-IDWU is NP-hard.

Proof. The schedule S with energy budget B has flow at most F =
∑n

i=1 F (BSi)− A
2
− 1

8n
if

and only if
∑

i∈L ai = A.

For the first direction, given that
∑

i∈L ai = A, note that the schedule that gives each job

set Ji with i ∈ L exactly E(BSi) + ai
a21

energy and each Ji with i 6∈ L exactly E(BSi) energy
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adheres to the energy budget, and, using that a1 ≤ 2ai for all i, has flow

n∑

i=1

F (BSi)−
∑

i∈L

wi0
2

(
ai
a2

1

+ n

)
=

n∑

i=1

F (BSi)−
A

2
−
∑

i∈L

aiwi0
2a2

1

≤
n∑

i=1

F (BSi)−
A

2
−
∑

i∈L

wi0
4a1

≤
n∑

i=1

F (BSi)−
A

2
− 1

8n
= F.

For the other direction, first observe that B ≥ ∑n
i=1E(BSi). Thus, without loss of

generality, each Ji will receive at least E(BSi) energy (otherwise, taking excess energy from

a Ji′ with energy > E(BSi′) yields at least an equally good schedule). We distinguish two

cases:

Case 1:
∑

i∈L ai < A

This implies that
∑

i∈L ai ≤ A − 1. We first observe that, w.l.o.g., any Ji with i ∈ L
gets at least ai

a21
energy. This follows from B ≥ ∑n

i=1E(BSi) +
∑

i∈L
ai
a21

and Observa-

tion 37, as otherwise we can take energy from a Ji′ whose energy lies in the intervals
(
E(BSi), E(BSi) + xi

)
or
(
E(BSi) + ai

a21
, E(BSi) + 1

)
without decreasing the flow. Let

∆i = E(Ji)− ai
a21
≥ 0 be the extra energy used on Ji. The first ai

a21
energy units used after

the base schedule improve the flow of Ji by wi0
2

(
ai
a21

+ n
)

. After that, each additional

energy unit gains flow at a rate of at most wi0
2

per energy unit (Observation 37(c)).

Similarly, the energy used for Ji with i 6∈ L gain flow at a rate of at most wi0
2

per

energy unit (Observation 37(a)). With wi0 ≤ w10 for all i ∈ [n], we get that the flow

improvement with respect to the base schedules is at most

∑

i∈L

wi0
2

(
ai
a2

1

+ n

)
+
∑

i∈L
∆i
wi0
2

+


A

a2
1

−
∑

i∈L

(
ai
a2

1

+ ∆i

)
w10

2
≤
∑

i∈L

wi0n

2
+
w10

2
· A
a2

1

≤ A

2
− 1

2
+
w10

2
· A
a2

1

=
A

2
− 1

2
+

A

2na1

≤ A

2
− 1

2
+

na1

2na1

=
A

2
.

That is, the target flow is not achieved.

Case 2:
∑

i∈L ai > A

This implies
∑

i∈L
ai
a21
≥ A+1

a21
. Using that δi = nwi0

wi−wi0 <
ai
wi/2
≤ 1

na21
, we get that the

additional energy used with respect to the base schedules is at least

∑

i∈L

(
ai
a2

1

− δi
)
≥ A+ 1

a2
1

−
∑

i∈L
δi >

A+ 1

a2
1

− n 1

na2
1

=
A

a2
1

.

This is a contradiction to S adhering to the energy budget B.
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3.3 POLYNOMIAL TIME ALGORITHMS

In this section we provide polynomial time algorithms for FE-IDUU, FE-ICUU, and FE-FCWA.

The algorithm for FE-ICUU generalizes and makes slight modifications to the algorithm in [2]

to handle arbitrary power functions. We also provide a new, simple, combinatorial algorithm

for FE-IDUU. While by the results of Section 3.4.1 we could use the algorithm for FE-ICUU

to solve FE-IDUU, the algorithm we provide has the advantages of not having the numerical

qualifications of the algorithm for FE-ICUU, as well as providing some additional insight

into the open problem FE-IDUA. The algorithm for FE-FCWA generalizes and makes slight

modifications to the algorithm in Chapter 2 to handle arbitrary power functions.

3.3.1 An Algorithm for FE-IDUU

Here we give a polynomial time algorithm for FE-IDUU. We describe the algorithm for two

speeds; it is straightforward to generalize it to k speeds. The algorithm relies heavily upon the

fact that, when jobs are of unit size, the optimal completion ordering is always FIFO (since

any optimal schedule uses the SRPT scheduling policy).2 Before describing the algorithm, we

provide the necessary optimality conditions in Lemma 41. They are based on the following

definitions, capturing how jobs may affect each other.

Definition 39 (Lower Affection). For a fixed schedule, a job j1 lower affects a job j2 if there

is some ε > 0 such that decreasing the speed of j1 by any value in (0, ε] increases the flow of

j2.

Definition 40 (Upper Affection). For a fixed schedule, a job j1 upper affects a job j2 if there

is some ε > 0 such that increasing the speed of j1 by any value in (0, ε] decreases the flow of

j2.

Lemma 41. Consider an optimal schedule S and two consecutive speeds s1 and s2. Define

α = P2−P1

s2−s1 and κ = −(P1 − αs1) ≥ 0. For any job j with (interpolated) speed sj ∈ [s1, s2] in

S, we have (a) sj > s1 =⇒ j lower affects at least κ jobs, and (b) sj < s2 =⇒ j upper

2In fact, a slightly more general result yields an optimal FE-IDUA schedule given access to an optimal
completion ordering.
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affects at most κ− 1 jobs.

Proof. We start with (a). For the sake of a contradiction, assume sj > s1 but j lower affects

less than κ jobs. Thus, for any ε > 0, increasing j’s completion time by ε increases the flow

of at most κ− 1 jobs by ε. If the resulting schedule is S ′. For t = 1
sj

, the energy from S to

S ′ decreases by

tP
(

1/t
)
− (t+ ε)P

(
1/(t+ ε)

)
t
(
α/t + P1 − αs1

)
− (t+ ε)

(
α/(t+ ε) + P1 − αs1

)

= α + tP1 − tαs1 − α− (t+ ε)P1 + (t+ ε)αs1 = −ε(P1 − αs1) = κε.

Therefore, the total change in the objective function is at most (κ−1)ε−κε < 0, contradicting

the optimality of S. Statement (b) follows similarly by decreasing the completion time of j

by ε.

Observation 42. Consider two arbitrary jobs j and j′ in an arbitrary schedule S.

(a) If j upper affects j′ 6= j and j does not run at s2, j′ must run at s1.

(b) While you raise the speed of j, the number of its lower and upper affections can only

decrease.

(c) If j upper affects j′, then changing the speed of j′ will not change j’s affection on j′.

(d) Assume j runs at speed sj and upper affects m jobs. Then, in any schedule where j’s

speed is increased (and all other jobs remain unchanged), j lower affects at most m jobs.

Our algorithm GreedyAffection initializes each job with speed s1. Consider jobs in

order of release times and let j denote the current job. While j upper affects at least κ jobs

and is not running at s2, increase its speed. When this condition no longer holds, update j

to the next job (or terminate if j = n).

Theorem 43. GreedyAffection solves FE-IDUU in polynomial time.

Proof. Assume A is not optimal and let O be an optimal schedule that agrees with A for the

most consecutive job speeds (in order of release times). Let j be the first job that runs at a

different speed and let sA and sO be the job’s speeds in A and O. We consider two cases:

If sA > sO, Observation 42(a) implies that every job that is upper affected by j in O other

than j itself is run at s1. Consider the time during the execution of A when the speed of
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j was at sO. Since A continued to raise j’s speed, j upper affected at least κ jobs at this

point. Let J be this set of jobs. By Observation 42(c), j still upper affects all jobs j′ ∈ J in

O. This contradicts the optimality of O (Lemma 41). For the second case, assume sA < sO.

By Lemma 41, j upper affects less than κ jobs in A. When A stops raising j’s speed, all jobs

to the right run at s1. Observations 42(b) and (d) imply that j lower affects less than κ jobs

in O, contradicting O’s optimality (Lemma 41).

3.3.2 An Algorithm for FE-ICUU

In this subsection we show that FE-ICUU is in P. Essentially, it is possible to modify the

algorithm from [2] to work with arbitrary power functions. The main alteration needed is

that, for certain power functions that would yield differential equations too complicated for

the algorithm to solve, we use binary search to find solutions to a these equations rather than

solve the equations analytically. The only additional restriction on the power function is that

P (s)/s is convex3.

Theorem 44. There is a polynomial time algorithm for solving FE-ICUU.

We do not alter the dynamic program. Given n jobs ordered by release times r1 ≤
r2 ≤ · · · ≤ rn, an optimal schedule S can still be decomposed into non-idling subschedules

S1, S2, . . . , Sk such that:

(a) Si (exclusively) covers a time interval Ii and schedules all jobs with rj ∈ Ii,
(b) Si idles only when all its jobs have been completed.

Assume for the moment that, given the corresponding job sets, we can efficiently compute

such non-idling subschedules. Then, for two jobs j1, j2 with rj1 ≤ rj2 , the dynamic program

computes an optimal schedule for all jobs j with rj ∈ [rj1 , rj2+1) by either combining two

smaller non-idling subschedules or by computing the non-idling subschedule for the Interval

[rj1 , rj2+1) (see [2, Section 5]).

To extend this approach to arbitrary power functions, we have merely to show how to

3We require this restriction for it to be clear that the KKT conditions are sufficient for optimality in this
case. It is possible, however, that the KKT conditions are sufficient for optimality even without this restriction.
We also note that it is possible to develop a polynomial-time algorithm without the extra restriction on P
based on the lemmas from Section 3.4.1.
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compute such non-idling subschedules in this more general case. In the case when P is

simple enough (which we describe precisely below), the following lemma essentially replaces

Lemma 5.1 and Lemma 5.2 of [2].

Lemma 45. Consider n jobs with 0 = r1 ≤ r2 ≤ · · · ≤ rn that can be scheduled in time T

such that an optimal schedule does not idle before all jobs are completed. Then the speeds

used in the optimal schedule can be computed as follows:

(a) For each job j solve the following equation for sj:

P ′(sj) · sj − P (sj)− n+ i− 1− λ = 0. (3.1)

(b) By substituting sj as computed above, compute λ as the unique solution to

n∑

j=1

1

sj
− T = 0. (3.2)

Proof. Write down convex program with job speeds as variables. Solving the above equations

yields primal and dual solutions that adhere to KKT conditions.

Here, P must be differentiable at all points and such that Equation (3.1) is analytically

solvable for sj. If either of these conditions on P do not hold, it is possible to obtain a

solution to the system specified by Equations (3.1) and (3.2) by binary searching over λ, and

finding, for each job j, via binary search, sj satisfying Equation (3.1), and checking if, for

the obtained values of sj, Equation (3.2) holds.

3.3.3 An Algorithm for FE-FCWA

This subsection shows that FE-FCWA is in P. Both in Chapter 2 and in [13] we notice it is

possible to express optimal schedules as a graph of lines. Intuitively, the key step is to note

that “hypopower lines” in [13] can be treated in a way similar to “dual lines” in Chapter 2,

and that we can use the algorithm in Chapter 2 with the main change being that we binary

search for events rather than solve for them explicitly. As is noted in [13], if we know the

configuration of the optimal schedule (i.e., the order in which jobs run, as well as if each

job completes before the release of the next job run), it is possible to write down a set of
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equations (which we call work equations) for the initial hypopower of each job (i.e., the

y-intercept of the hypopower lines). The ability to solve the work equations combined with

knowledge of the configuration of the optimal schedule then translates into the ability to find

the optimal schedule.

The algorithm in Chapter 2 adds jobs to the schedule one at a time and finds the

configuration of the optimal schedule for the current set of jobs by slowly modifying the

schedule and keeping track of when the work equations change. The points at which new

work equations must be derived are essentially points at which the configuration changes,

and we call these points events. The algorithm in Chapter 2 calculates the next event by

explicitly solving differential equations derived from the work equations. For an arbitrary,

continuous power function, solving such differential equations analytically seems to be, in

general, quite challenging. Instead, we use binary search to find when the work equations

change. The result is that our modification of the algorithm in Chapter 2 is able to to find

the configuration of the optimal schedule, assuming it is possible to solve the work equations.

Theorem 46. There is a polynomial time algorithm for solving FE-FCWA.

Proof. The algorithm is as follows: Given an optimal hypopower schedule for the κ highest-

dense jobs in the instance, add the κ+ 1st highest dense job j with initial hypopower τ = 0.

Repeat the following until we obtain a schedule such that j completes pj work: Binary seach

over values of τ to find the smallest τ at which some event occurs, or j does pj total work.

For each new value of τ , solve the work equations, checking if an event has occurred. At such

a τ that an event occurs, compute a new set of work equations.

A significant part of the analysis in Chapter 2 is to bound by a polynomial the number

of times an event occurs. We now briefly describe why essentially the same analysis holds

in our case. The key technical point is Lemma 19 of Chapter 2, which says that, in any

iteration as τ increases, the intersection point of any two hypopower lines can only move

left in the hypopower graph. Although this observation is derived from the problem-specific

differential equations in Chapter 2, it is clear that the same observation can be derived from

the assumptions that P is increasing and convex, and that we consider the jobs in order of

decreasing density With this in hand, the same technical lemmas from Chapter 2 can be
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proved in our case to obtain that the described algorithm runs in polynomial time.

3.4 EQUIVALENCE REDUCTIONS

Here we provide the reductions to obtain the hardness and algorithmic results that are not

proven explicitly. First, we reduce B-ICUU to FE-ICUU. Combined with the algorithm from

Section 3.3.2, this shows that B-ICUU is in P. The second reduction is from any problem in

the discrete power setting to the corresponding continuous variant. As a result, the hardness

proofs from Section 3.2 for B-IDWU and B-IDUA imply that B-ICWU and B-ICUA are NP-hard.

Our final reduction is from B-FCWA to FE-FCWA. As a result of the algorithm in Section 3.3.3,

this shows that B-FCWA is in P.

3.4.1 Reduction from B-ICUU to FE-ICUU

We show that, given an algorithm for the flow plus energy variant, we can solve the energy

budget variant of ICUU. The basic idea is to modify the coefficient β in the flow plus energy

objective until we find a schedule that fully utilizes the energy budget B. This schedule

gives the minimum flow for B. The major technical hurdles to overcome are that the power

function P may be non-differentiable, and may lead to multiple optimal flow plus energy

schedules, each using different energies. Thus, we may not find a corresponding schedule

for the given budget, even if there is one. To overcome this, we define the affectance νj of

a job j. Intuitively, νj represents how many jobs’ flow will be affected by a speed change

of j. We show that a job’s affectance is, in contrast to its energy and speed, unique across

optimal schedules and changes continuously in β. This will imply that job speeds change

continuously in β (i.e., for small enough changes, there are two optimal schedules with speeds

arbitrarily close). We also give a continuous transformation process between any two optimal

schedules. This eventually allows us to apply binary search to find the correct β.

The remainder of this subsection is as follows. We start with some auxiliary lemmas

which shed light on how exactly affectance and job speeds are correlated. Lemma 51 shows
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that a job’s affectance does not decrease as its speed increases and vice versa. In Lemma 52,

we show that speed is continuous in affectance (all speeds resulting from a small affectance

change are close to some speed for the old affectance). In Observation 53, we note that if an

affectance maps to multiple speeds, it in fact maps to a continuous interval of speeds. And

Observation 54 captures that speeds mapping to a fixed affectance are continous in β (for a

small enough change in β, all speeds mapping to the new affectance are arbitrarily close to

one of the old speeds for that affectance). It is worth mentioning that these results hold even

in the more general setting of arbitrary weights (in contrast to the other results). Lemma 55

is another auxiliary Lemma, showing that the affectance of each job is non-increasing in

β. Given all these information about the correlation of affectance, job speeds, and the

value β, we eventually finish the proofs of the major results stated in Section 3.4.1, namely

Lemmas 56, 57, and 58 as well as Lemmas 60 and 61. Also here, it is worth mentioning that

Lemma 56 holds even in the more general setting of arbitrary sizes and weights.

Definitions & Notation: We start with some formal definitions for this section and

a small overview of what they will be used for in the remainder. Definition 49 (affectance)

will be most central to this section, as it will be shown in Lemma 56 and Corollary 59 to

characterize optimal schedules. It uses the subdifferential4 ∂P (s) to handle non-differentiable

power functions P .

Definition 47 (Total Weight of Lower and Upper Affection). In any schedule, lj and uj are

the total weight of jobs lower and upper affected by j, respectively (see Definitions 39 and 40).

Definition 48 (Job Group). A job group is a maximal subset of jobs such that each job in

the subset completes after the release of the next job. Let Ji denote the job group with the i-th

earliest release time and Wi the total weight of Ji (Ji = ∅ and Wi = 0 if Ji does not exist).

Job groups Ji and Ji+1 are consecutive if the last job in Ji ends at the release time of the

first job in Ji+1. We set the indicator ζi = 1 if and only if Ji+1 exists and Ji and Ji+1 are

consecutive.

Definition 49 (Affectance Property). The ith job group of a schedule satisfies the affectance

4Subdifferentials generalize the derivative of convex functions. ∂P (s) is the set of slopes of lines through
(s, P (s)) that lower bound P . It is closed, convex on the interior of P ’s domain, and non-decreasing if P is
increasing [22].
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property if either ζi+1 = 0 or the i+ 1st job group also satisfies the affectance property, and

there exists N i such that for all vi ∈ N i and j ∈ Ji

vi ∈ [0, ζi+1(νi+1 +Wi+1)], (3.3)

vj = vi + uj, and (3.4)

vj = sjd− P (sj) for some d ∈ ∂P (s). (3.5)

Here, νi = maxN i if job group i exists, and νi = 0 otherwise. A schedule satisfies the

affectance property if all job groups in the schedule satisfy the affectance property.

Definition 50 (Affectance of a Job). The set of speeds satisfying Equation (3.5) for vj = ν

is S(ν). For each job j in job group i satisfying the affectance property, the affectance of job

j is νj = νi + uj.

Auxiliary Results: Correlation between Affectance & Job Speeds: We now

present several auxiliary lemmas which shed light on how affectance and job speeds are

correlated.

Lemma 51. For a given problem instance, let j and k be jobs from any (possibly different)

schedules satisfying the affectance property. The following properties hold:

(a) sj < sk =⇒ νj ≤ νk, and

(b) νj < νk =⇒ sj ≤ sk.

Proof. First note that, by the definition of subdifferentials ∂P (x) for convex functions P , for

any x, y in P ’s domain and dy ∈ ∂P (y) we have xdy−P (x) ≤ ydy−P (y). By the monotonicity

property of subdifferentials for convex functions, we have for any dj ∈ ∂P (sj) and dk ∈ ∂P (sk)

the inequality (sk − sj)(dk − dj) ≥ 0. Thus, for sj < sk we have min ∂P (sk) ≥ max ∂P (sj),

yielding νj ≤ sj min ∂P (sk) − P (sj) ≤ sk min ∂P (sk) − P (sk) ≤ νk. For νj < νk, let

dj ∈ ∂P (sj) and dk ∈ ∂P (sk) satisfy Equation (3.5). We get skdj − P (sk) ≤ sjdj − P (sj) <

skdk − P (sk), which implies dj < dk. This, in turn, implies sj ≤ sk by monotonicity of

subdifferentials.

Lemma 52. For ε, ν0 > 0 with S(ν0) 6= ∅, there exists δ > 0 such that if ν ∈ [ν0 − δ, ν0 + δ]

with S(ν) 6= ∅, then maxS(ν) − minS(ν) < ε and there are s0 ∈ S(ν0), s ∈ S(ν) with

s ∈ [s0 − ε, s0 + ε].
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Proof. For the sake of a contradiction, suppose the statements do not hold. Let us start

with the second statement. So, there are ε, ν0 > 0 such that for any δ > 0 there is a

ν ∈ [ν0 − δ, ν0 + δ] with S(ν) 6= ∅ and for all s0 ∈ S(ν0) and s ∈ S(ν), s 6∈ [s0 − ε, s0 + ε]. We

assume that for all δ it is possible to choose s > maxS(ν0) + ε (the other case is symmetric).

Then we have ν > ν0. Note that, by Lemma 51, this implies that for all ν ′ > ν, we have that

s′ ≥ s > maxS(ν0) + ε for any s′ ∈ S(ν ′). Therefore, since ν ′ can be made arbitrarily close

to ν by making δ arbitrarily small, for some s̃ ∈ (maxS(ν0), s), there is no value ν̃ where

ν̃ = s̃d− P (s̃) for some d ∈ ∂P (s̃). However, by our restrictions on P , this is not possible,

and thus this case cannot occur.

Now assume the first statement does not hold. That is, there are ε, ν0 > 0 such that for

any δ > 0 there is a ν ∈ [ν0 − δ, ν0 + δ] with S(ν) 6= ∅ and maxS(ν)−minS(ν) ≥ ε. Choose

δ = 1 and let ν be the affectance satisfying our assumption. We consider the case ν > ν0 (the

case ν < ν0 is symmetric). Let δ′ = (ν − ν0)/2 and let ν ′ be the affectance corresponding

to δ′. Note that since maxS(ν ′) − minS(ν ′) ≥ ε, it must be that for any s0 ∈ S(ν0) and

s ∈ S(ν) we have s − s0 ≥ ε. Similarly, we can define δ′′ = (ν0 − ν ′)/2 to obtain ν ′′ and,

by a similar argument, we get that for any s0 ∈ S(ν0) and s′ ∈ S(ν ′) we have s′ − s0 ≥ ε.

Together this implies s− s0 > 2ε. Repeating this k times, we obtain s− s0 > kε. Thus s is

larger than any finite number, yielding S(ν) = ∅, a contradiction to our assumption.

Observation 53. Consider a fixed ν and speeds s1 < s2 such that for i ∈ { 1, 2 } there

is di ∈ ∂P (si) with ν = sidi − P (si). Then P is differentiable in all s ∈ (s1, s2) with

P ′(s) = d1 = max ∂P (s1) = d2 = min ∂P (s2).

Proof. Let s ∈ (s1, s2). To see that P is differentiable at s, note that if ∂P (s) contains more

than one point, then there is a ν ′ 6= ν such that for some d ∈ ∂P (s) we have ν ′ = sd−P (s). If

ν ′ < ν, this contradicts Lemma 51 (since s > s1). For ν ′ > ν we get a symmetric contradiction.

Similar arguments show that d1 = max ∂P (s1) and d2 = min ∂P (s2). It remains to show

that P ′(s) = d1 = d2. Let v1, v2 ∈ [s1, s2] with v1 < v2, and let c1 = max ∂P (v1) and

c2 = min ∂P (v2). Then, if c1 6= c2, the monotonicity of subdifferentials implies c1 < c2. And

by the definition of subdifferentials we have c2 ≥ P (v2)−P (v1)
v2−v1 , which implies

c2v2 − P (v2) ≥ c2v1 − P (v1) > c1v1 − P (v1).
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Since both the left- and righthand side are equal to ν, this is a contradiction.

Observation 54. For all ν, β, ε > 0 there exists δ > 0 such that for β′ ∈ [β − δ, β + δ] we

have maxS ′(ν) − minS ′(ν) < ε. Moreover, for some s ∈ S(ν) and all s′ ∈ S ′(ν) we have

|s− s′| < ε. Furthermore, s > s′ implies β ≤ β′, and s < s′ implies β ≥ β′.

Proof. For the power function βP , Equation (3.5) becomes νj = sjβd − βP (sj) (for some

d ∈ ∂P (sj)). Thus, s′ must be a solution to ν = s′β′d−β′P (s′) for some d ∈ ∂P (s′), which is

equivalent to a solution to βν/β′ = s′βd− βP (s′). Since we can make β/β′ arbitrarily close

to 1 by making δ arbitrarily small, Lemma 52 gives a δ such that maxS ′(ν)−minS ′(ν) < ε

and |s− s′| < ε. The last statement of the lemma follows from Lemma 51 (e.g., s > s′ implies

ν ≥ βν/β′).

Lemma 55. Consider two optimal flow plus energy schedules S and S ′ for β and β′, respec-

tively. Then, for every job j, β < β′ implies νj ≤ ν ′j.

Proof. For the sake of a contradiction, let j be the earliest released job for which the lemma’s

statement does not hold. Let i and i′ be the job groups of j in S and S ′, respectively. If j

is not the first job in Ji, let a be the job that completes before j. Then νa = νj + 1 and,

by Lemma 56, ν ′a ≤ ν ′j + 1, so νa > ν ′a, contradicting our choice of j. Thus j must be the

first job in Ji. Note that s′j satisfies ν ′j = s′jβ
′d− β′P (s′j) for some d ∈ ∂P (s′j). This implies

βν ′j/β
′ = s′jβd−βP (s′j) and, by νj > ν ′j > βν ′j/β

′ and Lemma 51, s′j ≤ sj . Thus, j completes

in S not later than in S ′ (it runs at least as fast immediately at its release in S). So the

second job in Ji also runs earlier in S than S ′. Moreover, since it has affectance νj − 1 in

S and ν ′j − 1 in S ′, the same argument shows that it runs not slower in S than in S ′. By

induction, we get that every job in Ji completes no later in S than in S ′. Let k be the last

job of Ji and note that νk > ν ′k. There are two cases:

Case 1: k ends at the release of the next job run in S: Let c be the job run after k in S. We

can apply the same arguments as above to find a “new k” for c’s job group. Since there

are only a finite number of jobs, this can be repeated only a finite number of times, so

that, eventually, we find a k for which the next case holds.
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Case 2: k ends before the release of the next job to run in S (or it is the last job): This

immediately yields a contradiction, since 1 = νk > ν ′k ≥ 1.

Characterizing Optimal Schedules: We first prove that the affectance property

characterizes optimal schedules. Lemma 56 shows that this property is necessary, Lemma 57

shows that affectance is unique across optimal schedules, and Corollary 59 shows that the

affectance property is sufficient for optimality.

Lemma 56. Any optimal schedule for FE-ICUU satisfies the affectance property.

Proof. We prove the stronger fact that this lemma holds for optimal schedules for FE-ICWA.

For the sake of a contradiction, suppose we have an optimal schedule that does not satisfy the

affectance property. Then for some job group, either some combination of (3.3), (3.4), and

(3.5) has no solutions, or N i has no maximum. We first show that every combination of (3.3),

(3.4), and (3.5) has some solution. We focus on showing that (3.4) and (3.5) together have

some solution, and if that is the case then (3.3), (3.4), and (3.5) together also have some

solution; It is straightforward to see that every other subset of (3.3), (3.4), and (3.5) must

have some solution.

Suppose Equations (3.4) and (3.5) cannot be simultaneously satisfied. For each job j, let

N i
j be the set of values vi for which Equations (3.4) and (3.5) are satisfied. Since ∂P (sj) is

closed and convex,

N i
j = [sj min ∂P (sj)− P (sj)− uj, sj max ∂P (sj)− P (sj)− uj].

By assumption, Equations (3.4) and (3.5) cannot be simultaneously satisfied, so there are

two jobs j, k ∈ Ji with N i
j ∩ N i

k = ∅ (otherwise vi ∈ ⋂j∈Ji N i
j 6= ∅ satisfies (3.4) and (3.5)).

Let ηj = maxN i
j and ηk = minN i

k and assume, without loss of generality, ηj < ηk. Then, we

have:

ηj + uj = sj max ∂P (sj)− Pj(sj) (3.6)

ηk + uk = sk min ∂P (sk)− Pk(sk). (3.7)

Since j and k are in the same job group, there is an ε > 0 such that, if we decrease the

running time of j by ε and increase the running time of k by ε, the flow changes by ε(uk−uj).
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For γ ≤ ε, let U(γ) be the cost change incurred by both, decreasing j’s running time and

increasing k’s running time, by γ. With p∗j = pj/sj and p∗k = pk/sk, j’s speed after the change

is pj/(p
∗
j − γ) (and similar for k). We get

U(γ) = γ(uk − uj) + (p∗j − γ)P

(
pj

p∗j − γ

)
− p∗jP (sj) + (p∗k + γ)P

(
pk

p∗k + γ

)
− p∗kP (sk).

We show that U ′↑(0) < 0 (derivative as γ increases), which contradicts the schedule’s optimality.

This derivative is given by

U ′↑(γ) = uk − uj +
pj

p∗j − γ
max ∂P

(
pj

p∗j − γ

)
− P

(
pj

p∗j − γ

)

− pk
p∗k + γ

min ∂P

(
pk

p∗k + γ

)
+ P

(
pk

p∗k + γ

)
,

which yields U ′↑(0) = uk − uj + sj max ∂P (sj)− P (sj)− sk min ∂P (sk) + P (sk). By applying

Equations (3.6) and (3.7), we obtain the desired contradiction: U ′↑(0) = ηj − ηk < 0.

Now suppose Equations (3.4) and (3.5) can be simultaneously satisfied, but not together

with Constraint (3.3). We show one useful fact first. Note that, for any job j in any schedule,

the derivative of the objective as speed increases (assuming the order in which jobs are run

remains fixed) is

V ′↑(sj) = −ujpj/s2
j + (pj max ∂P (sj))/sj − pjP (sj)/s

2
j

and the derivative of the objective as speed decreases is

V ′↓(sj) = −ljpj/s2
j + (pj min ∂P (sj))/sj − pjP (sj)/s

2
j .

Observe that if V ′↑(sj) < 0, then there exists some ε > 0 such that if we increase the speed

of j by ε, the total objective decreases. The same is true for V ′↓(sj) > 0 and decreasing the

speed. Thus, since the schedule is optimal, we have

V ′↑(sj) ≥ 0 and V ′↓(sj) ≤ 0. (3.8)

Let Mi =
⋂
j∈Ji N i

j denote the set of solutions νi to Equations (3.4) and (3.5). As a

finite intersection of closed and convex sets, Mi itself is closed and convex. Together with
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Mi∩[0, l`(i)−u`(i)] = ∅, this implies either ι = maxMi < 0 or ψ = minMi > ζi+1(νi+1+Wi+1).

In the first case, there is a job j such that ι+ uj = sj max ∂P (sj)− P (sj). This implies

V ′↑(sj) = −uj/s2
j + max ∂P (sj)/sj − P (sj)/s

2
j = ι/s2

j < 0,

a contradiction to Equation (3.8). In the second case, there is a job j such that ψ + uj =

sj min ∂P (sj)−P (sj). We consider two subcases. The easier case is ψ > l`(i)− u`(i) = lj − uj ,
because then we have

0 = −uj/s2
j+min ∂P (sj)/sj−P (sj)/s

2
j−ψ/s2

j < −lj/s2
j+min ∂P (sj)/sj−P (sj)/s

2
j = V ′↓(sj),

a contradiction to Equation (3.8). For the second subcase, suppose νi+1 + Wi+1 < ψ ≤
l`(i) − u`(i). Let κ be the smallest index of a job group such that (a) j lower affects jobs in

κ, and (b) Jκ contains k with νκ + uk = sk max ∂P (sk) − P (sk). Such a job group exists,

as otherwise νi+1 would be larger. By our choice of κ, we have νy = νy+1 + Wy+1 for all

y ∈ { i+ 1, . . . , κ− 1 } and thus νκ +
∑κ

x=i+1Wx < ψ. We have the equations

ψ + uj = sj min ∂P (sj)− Pj(sj)

νκ + uk = sk max ∂P (sk)− Pk(sk).

Note that uj = lj − (lj − uj) and, since j lower affects k, (lj − uj)− (lk − uk) =
∑κ

x=i+1Wx.

Therefore, we can write

ψ + lj −


lk − uk +

κ∑

x=i+1

Wx


 = sj min ∂P (sj)− P (sj) (3.9)

νκ + lk − (lk − uk) = sk max ∂P (sk)− P (sk). (3.10)

Since j lower affects k, there is an ε > 0 such that, if we increase the running time of j by ε

and decrease the running time of k by ε, the flow changes by ε(lj − uk). Similar to above,

we can define Ũ(γ) for γ ≤ ε to be the cost change incurred by both, decreasing j’s running

time and increasing k’s running time, by γ. With p∗j = pj/sj and p∗k = pk/sk, we once more

can compute the cost change:

Ũ(γ) = γ(lj − lk) + (p∗j + γ)P

(
pj

p∗j + γ

)
− p∗jP (sj) + (p∗k − γ)P

(
pk

p∗k − γ

)
− p∗kP (sk).
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We show that U ′↑(0) < 0 (derivative as γ increases), which contradicts the schedule’s optimality.

The derivative is given by

Ũ ′↑(γ) = lj − lk −
pj

p∗j + γ
min ∂P

(
pj

p∗j + γ

)
+ P

(
pj

p∗j + γ

)

+
pk

p∗k − γ
max ∂P

(
pk

p∗k − γ

)
− P

(
pk

p∗k − γ

)
,

which yields Ũ ′↑(0) = lj − lk − sj min ∂P (sj) + P (sj) + sk max ∂P (sk)− P (sk). By applying

Equations (3.9) and (3.10), we obtain the desired contradiction:

Ũ ′↑(0) = lj − lk − sj min ∂P (sj) + P (sj) + sk max ∂P (sk)− P (sk) = νκ +
∑

x

Wx − ψ < 0.

The fact that N i has a maximum follows from the facts that the subdifferential of a

function at any point is closed, and that there are only a finite number of jobs.

Lemma 57. Let S1 and S2 be schedules with the affectance property and let νij denote the

affectance of job j in the corresponding schedule. Then ν1
j = ν2

j for all j.

Proof. Suppose this were not the case. Let j be the job with the earliest release such that

ν1
j 6= ν2

j . Without loss of generality, assume ν1
j < ν2

j . Let k be the job that completes before

j. First note that j must be the first job in its job group in at least one of the schedules.

Otherwise, by Lemma 56, j would have affectance νij = νik − 1 in both schedules. This would

yield ν1
k 6= ν2

k , a contradiction to our choice of j. In fact, j must begin at its release time

at least in S2: Otherwise, if j begins at its release in S1 but not in S2, we have ν2
k = ν2

j + 1.

But Lemma 56 gives ν1
k ≤ ν1

j + 1, implying the contradiction ν2
j ≤ ν1

j .

So we have that j begins at its release in S2 and either at or after its release in S1. Let ι1

and ι2 be the job groups of j in the respective schedules and J = Jι1 ∩ Jι2 . By Lemma 56,

every job in J has smaller affectance in S1 than in S2. Thus, by Lemma 51, every job in J

runs in S1 not faster than in S2. Let κ be the last job of J. Then κ does not complete later

in S2 than in S1. We distinguish two cases:
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Case 1: κ completes at the same time in S1 and S2: Then, every job in J runs at the same

speed in S1 and S2. If κ does not complete at the release of another job, we have

1 = ν1
κ 6= ν2

κ = 1, a contradiction. Equations (3.4) and (3.5) will have the same set

of feasible solutions in both schedules. Thus, the only reason to have ν1
j < ν2

j is that

Constraint (3.3) forces it. Let ρ be the job run after κ. Note that in any optimal schedule

and any job group i, ζ i(νi +Wi) is the affectance of the first job run in that job group.

Therefore, since ζ ι1+1(νι1+1 +Wι1+1) in S1 is smaller than ζ ι2+1(νι2+1 +Wι2+1) in S2, we

must have ν1
ρ < ν2

ρ . We can apply the same arguments as above to find a “new κ” for

ρ’s job group. Since there are only a finite number of jobs, this can be repeated only a

finite number of times, so that, eventually, we find a κ for which the next case holds.

Case 2: κ completes later in S1 than in S2: There are two possibilities for how κ completes

in S2:

2.a: κ ends at the release of the next job run in S2: Let ρ be the next job run and note

that ρ runs after its release in S1. This implies ρ ∈ Jι1 . Also note that we have

ν2
ρ > ν1

ρ (since ν2
ρ ≥ ν2

κ − 1 > ν1
κ − 1 = ν1

ρ). Similar to above, we can iterate our

arguments for ρ until, eventually, the next case holds.

2.b: κ ends before the release of the next job in S2, or κ is the last job: In this case,

Lemma 56 gives ν2
κ = 1. Bit since we also have ν1

κ ≥ 1, this contradicts ν2
κ > ν1

κ.

Next, we show how to transform any schedule that has the affectance property into any

other such schedule without changing the flow plus energy value. Together with Lemma 56,

this immediately implies that the affectance property is sufficient for optimality (Corollary 59).

Also, Lemma 56 is a nice algorithmic tool, as it allows us to find schedules “in between” any

two optimal schedules with arbitrary precision. We will make use of that in the proof of

Theorem 62.

Lemma 58. Let S1 and S2 be schedules with the affectance property. Then S1 can be

transformed into S2 without changing its flow plus energy value. All intermediate schedules

satisfy the affectance property and we can make the speed changes between intermediate

schedules arbitrarily small.

Proof. Let S1 and S2 be two schedules with the affectance property. Define a job section to
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be a maximal set of jobs beginning at the same time in both schedules and with the property

that all but the last job in the section end after the release time of the next job run in either

S1 or S2. Note that, by Lemma 57, the affectance of each job in S1 and S2 is the same. Thus

we do not distinguish between schedules when discussing affectance. For any pair of jobs

j and j′ that are in the same job section with j′ running after j, we have νj = νj′ + 1 (by

Lemma 56 and because j and j′ are in the same job group in S1 or S2).

To prove the lemma, we repeatedly modify S1 such that, after each modification, either

one additional job runs at the same speed in both schedules or one additional job section

ends at the same time in both schedules. As there are only a finite number of jobs and job

sections, this process will terminate. So let j be the earliest released job that is run at speeds

s1
j 6= s2

j in S1 and S2, respectively. Without loss of generality, assume s1
j > s2

j . Let i be the

job section that j is in and j′ the job run after j. We consider two cases:

Case 1: Every job in i ends earlier in S1 than in S2: We modify S1 by decreasing the speed

of j until either it runs at the same speed in S1 and S2, or the job section i ends at the

same time in both S1 and S2. Note that the resulting schedule is feasible (we increase

the starting times of jobs, but the ending time of the last job in i is at most the next

job’s release time). Let s̃1
j be the new speed of j in the modified S1 schedule. Since

the last job of i ends earlier in S1, no job is run immediately after i in S1. Thus, by

Constraint (3.3) and Equation (3.4), we have νj = lj . Recall the objective change V ′↓(sj)

from the proof of Lemma 56, which is

V ′↓(sj) = −ljpj/s2
j + pj min ∂P (sj)/sj − pjP (sj)/s

2
j .

This yields V ′↓(sj) = 0 ⇐⇒ lj = νj = sj min ∂P (sj)− P (sj). By Observation 53, this

holds for all sj ∈ (s2
j , s

1
j ]. Thus, by changing the speed from s1

j to any speed in (s2
j , s

1
j),

the objective does not change.

Case 2: Some job in i ends at the same time or later in S1 than S2: Then there must be a

job in i that runs faster in S2 than in S1. Let k be the first such job. We modify S1 by

decreasing the speed of j and increasing the speed of k until either j runs at the same

speed as in S2 or k runs at the same speed as in S2. We modify the speeds such that

the completion time of j′ does not change. Thus, the number of jobs whose flows change
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is lj − lk. Since, furthermore, the times when we start jobs between j and k is only

increasing, the resulting schedule is feasible. Similar to the proof Lemma 56, U(γ) be

the cost change incurred by both, increasing j’s running time and decreasing k’s running

time, by γ. Then, the objective change rate is

U ′↑(γ) = lj − lk −
pj

p∗j + γ
min ∂P

(
pj

p∗j + γ

)
+ P

(
pj

p∗j + γ

)

+
pk

p∗k − γ
max ∂P

(
pk

p∗k − γ

)
− P

(
pk

p∗k − γ

)
,

where p∗j = pj/s
1
j and p∗k = pk/s

1
k. By Observation 53, we have for any γ with pj/(p

∗
j+γ) ∈

(s2
j , s

1
j ] and pk/(p

∗
k − γ) ∈ [s1

k, s
2
k) the identities νj =

pj
p∗j+γ

min ∂P
( pj
p∗j+γ

)
− P

( pj
p∗j+γ

)
and

νk = pk
p∗k−γ

max ∂P
(

pk
p∗k−γ

)
− P

(
pk

p∗k−γ
)
. Because of lj − lk = νj − νk, we have U ′↑(γ) = 0 for

all such γ. That is, the modification of the schedule does not change the objective.

The lemma’s last part follows immediately from this, as when we increase/decrease jobs’

running times, we can change the running time by a smaller value than we actually did above,

without changing the objective or the adherence to the affectance property.

Corollary 59. Any schedule satisfying the affectance property is optimal.

Binary Search Algorithm: We now provide the main technical result of this section, a

polynomial time algorithm for B-ICUU based on any such algorithm for FE-ICUU (Theorem 62).

In order to state the algorithm and its correctness, we need two more auxiliary lemmas.

Lemma 60 proves that the affectance of jobs is continuous in β, while Lemma 61 does the

same for job speeds.

Lemma 60. For β > 0 and ε > 0, there exists δ > 0 such that for all jobs j and β′ ∈
[β−δ, β+δ], any optimal FE-ICCU schedules S for β and S ′ for β′ adhere to ν ′j ∈ [νj−ε, νj+ε].

Proof. First note that, since there are only finitely many jobs, it is sufficient to prove the

lemma for each job separately. Now, for the sake of a contradiction, assume the statement

does not hold for a fixed job j. Then, there are β, ε > 0 such that for any δ > 0 there is a

β′ ∈ [β − δ, β + δ] with |νj − ν ′j| > ε. Let j be the first such job. We distinguish two cases,

depending on whether νj or ν ′j is larger. In the following, we show how to handle the case
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νj − ν ′j > ε; the other one is symmetric. By Lemma 55, we have β > β′. Let i and i′ be the

job groups of j in S and S ′, respectively. Note that we can choose δ small enough such that

all jobs completing before j have their affectance change by less than ε. Thus, the job that

completes before j cannot be in Ji, since otherwise, by Lemma 56, the change in affectance for

that job would be larger than ε. Additionally, by Lemma 52, we can choose δ small enough

such that j begins running in S ′ at most γ later than it does in S (γ > 0 to be chosen later).

Our goal is to find some job such that Constraint (3.3) is tight on that job, showing that it

finishes earlier in S than in S ′ (which will, eventually, lead to a contradiction). We consider

jobs in order of release time, starting with j. Let a be the job we are currently considering.

If a is not run immediately after the previous job completed, we have a contradiction since

1 = νa > ν ′a + ε = 1. There are two cases to consider:

Case 1: a is in the same job group as j: Let k be the number of jobs run after j until a

completes. This yields νa = νj − k and ν ′a = ν ′j − k. If ν ′a = s′aβ
′max ∂P (s′a) − P (s′a),

we are done (see below). Otherwise, νi
′

is not constrained by the speed of job a (i.e.,

some other job must be preventing νi
′

from being larger). For small enough δ and for

some d ∈ ∂P (s′a), we have νa > ν ′a + ε > βν ′a/β
′ = s′aβd− βP (s′a). We get sa ≥ s′a, so a

finishes in S not later than in S ′.

Case 2: a is not in the same job group as j: We have shown that νi
′

is not constrained

by Equations (3.4) and (3.5). Thus, it must be constrained by Equation (3.3), yielding

ν ′a = νi
′
. Additionally, νa ≥ νi, and thus the properties that held for j also hold for a,

so we can take a as the “new j” and repeat the same arguments.

Let b be the job such that ν ′b = s′bβ
′max ∂P (s′b) − β′P (s′b). For small enough δ we have

νb > ν ′b + ε > βν ′b/β
′ = s′bβmax ∂P (s′b)− βP (s′b) implying νb − ε > s′bβmax ∂P (s′b)− βP (s′b).

By Lemma 52, there is some s̃ ∈ (s′b, sb] which is a solution to

s′bβmax ∂P (s′b)− βP (s′b) + ε = s̃βmax ∂P (s̃)− βP (s̃).

Since sb ≥ s̃ > s′b, we have that b completes strictly earlier in S than in S ′. In a manner

similar to previous results, we now achieve a contradiction: Let c be the last job in the job

group of b in S. We consider two cases:
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Case 1: c ends at the release of the next job run in S: Let x be the job run after c in S.

Note that the same conditions hold for x as those that held for b, in that x is run at its

release and νx ≥ νc − 1 > ν ′c + ε− 1 = ν ′x. Thus we can repeat the above arguments to

find a “new b”. Since there are only a finite number of jobs, this can be repeated only a

finite number of times until c either ends before the release of the next job run in S, or c

is the last job.

Case 2: c ends before the release of the next job to run in S, or it is the last job: Here we

have reached a contradiction, since 1 = νc > ν ′c + ε ≥ 1.

Lemma 61. For β > 0 and ε > 0, there exists δ > 0 such that for all jobs j and β′ ∈
[β−δ, β+δ], any optimal FE-ICUU schedules S for β and S ′ for β′ adhere to s′j ∈ [sj−ε, sj+ε].

Proof. For the sake of a contradiction, assume the statement does not hold. That is, there

are β, ε > 0 such that for any δ > 0 there is some β′ ∈ [β − δ, β + δ] and some job j such

that there are S and S ′ with s′j 6∈ [sj − ε, sj + ε]. Let j be the first such job and let i be its

job group in S. We consider only case s′j > sj + ε, the other one is symmetric.

Note that the completion time of j decreases for any β′ satisfying our assumptions. Let

γ > 0 and k ∈ Ji released after j be such that for every job j′ ∈ Ji processed between j

and k, j′ completes at least γ earlier in S ′ than in S, and further no such γ exists for k.

We will later distinguish the cases whether k exists or not. Let p∗j be the processing time

of j in S. Note that j has the highest affectance of any job in Ji after j, and thus must

have the highest speed (Lemma 51). Thus for j, it takes the largest speed increase ∆sj

to decrease its running time by γ, which is ∆sj = pj/(p
∗
j − γ)− pj/p∗j . By Lemma 52 and

for a small enough δ1, for ν̃j ∈ [νj − δ1, νj + δ1] there is some s ∈ S(νj) such that for any

s̃ ∈ S(ν̃j), |s̃− s| < ∆sj/4. By Lemma 60, there is some δ2 such that if β̄ ∈ [β − δ2, β + δ2],

then |ν̄j − νj| < min{δ1, 1}. Additionally, by Observation 54, for any ν̃j ∈ [νj − δ1, νj + δ1]

and small enough δ3, for any β∗ ∈ [β − δ3, β + δ3] there is some s̃ ∈ S(ν̃j) such that for all

s∗ ∈ S(ν∗j ) we have |s̃− s∗| < ∆sj/4. Thus, by taking δ4 = min{δ2, δ3} we have that there is

some s ∈ S(νj) such that for all s′ ∈ S(ν ′j) we have |s− s′| < ∆sj/2.

Note that any job in Ji between j and k is lower affected by j in both S and S ′, since for

any job in Ji after j, it begins earlier in S ′, and if it ceased to be lower affected in S ′, the
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affection of j would decrease by at least 1. Let 0 < γ′ < γ. Thus, in a schedule for energy

function Pβ where jobs in Ji between j and k completed γ′ earlier, their upper affections

would not change. But then, their lower affection and upper affection must be equal, and

so their affectance would not change. Thus if all jobs in Ji between j and k complete γ′

earlier, they are running at the same speed as they do in S. There are two cases, based on

the existence of k:

Case 1: k does not exist. As we have seen, by taking δ = δ4, there is some s̄j ∈ S(νj) such

that if j runs at that speed, it completes γ′ earlier. Thus, the schedule that is idential to

S except that j runs at s̄j satisfies the affectance property But then, by Corollary 59, it

is optimal, contradicting our assumption that such a γ exists.

Case 2: k does exist. For job k, since such γ does not exist for it, we can choose δ small

enough such that it ends arbitrarily close to the same time, or later, in S ′ than S. We

will choose δ5 in a similar manner to above such that there is a speed where k takes γ′

longer to complete than it does in S. More formally, let p∗k be the processing time of k

in S. Let ∆sk be the speed decrease of k required for it to take γ′ longer to complete

than in S. By Lemma 52, for a small enough δ6, if ν̃k ∈ [νk − δ6, νk + δ6], then there

is some s ∈ S(νk) such that for any s̃ ∈ S(ν̃k), |s̃ − s| < ∆sk/4. By Lemma 60, there

is some δ7 such that if β̄ ∈ [β − δ7, β + δ7], then |ν̄k − νk| < min{δ6, 1}. Additionally,

by Observation 54, for any ν̃k ∈ [νk − δ6, νk + δ6] and small enough δ8 it holds that for

any β∗ ∈ [β − δ8, β + δ8], there is some s̃ ∈ S(ν̃k) such that for all s∗ ∈ S(ν∗k) we have

|s̃− s∗| < ∆sk/4. Thus by taking δ5 = min{δ7, δ8} we have that there is some s ∈ S(νk)

such that for all s′ ∈ S(ν ′k) we have |s− s′| < ∆sk/2. Thus, it must be that ∆sk ∈ S(νk).

By taking δ = min{δ4, δ5}, we have that there are speeds s̄j ∈ S(νj) and s̄k ∈ S(νk) such

that if we modify S such that j runs at s̄j and k runs at s̄k, j ends γ′ earlier and k ends

γ′ later, thus the schedule after k does not change, and the new schedule satisfies the

affectance property. Thus, by Corollary 59, it is optimal, contradicting our assumption

that such a γ exists.

Theorem 62. Given a polynomial time algorithm for the continuous flow plus energy problem

with unit size unit weight jobs, there is a polynomial time algorithm for the budget variant.

80



Proof. Suppose we are given an energy budget B, and an algorithm to solve FE-ICUU. As

we formally show in the proof of Theorem 64, the energy of optimal schedules increases as

β decreases (even though we are considering here integral flow rather than fractional flow).

Thus, the first step of the algorithm is to binary search over β until we find a schedule

that fully utilizes B. If we find such a β, we are done (any optimal FE-ICUU schedule must

minimize flow for the energy it consumes). Otherwise, we consider three cases:

Case 1: We find a β for which the optimal FE-ICUU schedule runs every job at the lowest

speed used by any optimal schedule and uses > B energy. Here, this lowest speed is (if

it exists) the largest speed s such that for all s′ < s we have P (s)
s
≤ P (s′)

s′ . In this case,

no solution exists, since running a job at a lower speed increases its flow but does not

decrease its energy.

Case 2: We find a β for which the optimal FE-ICUU schedule runs every job at the highest

speed used by any optimal schedule and uses ≤ B energy. Here, this highest speed is (if

it exists) the largest speed s such that for all s′ > s we have P (s′) =∞. In this case, β

yields the optimal budget solution, since running any job at a higher speed uses infinite

energy.

Case 3: There is ε > 0 such that for any β, the computed optimal FE-ICUU schedule uses at

least B + ε or at most B − ε energy. Since job speeds are continuous in β (Lemma 61)

and the energy increases as β decreases, we know that there is some β such that the

corresponding FE-ICUU solutions contain schedules using both B + ε1 energy and B − ε2
energy (ε1, ε2 > 0). Fix such a β and let S1 and S2 be the corresponding schedules using

B − ε1 and B + ε2, respectively. By Lemma 58, we can continuously change the speeds

(and, thus, energy) of S1 to obtain S2. During this process, we obtain an intermediate

optimal FE-ICUU schedule that uses exactly B energy. As described above, this schedule

is also optimal for B-ICUU.

3.4.2 Reduction from *-*D** to *-*C**

The main result of this subsection is a reduction from the discrete to the continuous setting.

Using mild computational power assumptions, Theorem 63 shows how to use an algorithm for
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the continuous variant of one of our problems (*-*C**) to solve the corresponding discrete

variant (*-*D**).

Theorem 63. Given a polynomial time algorithm for any budget or flow plus energy variant

in the continuous setting, there is a polynomial time algorithm for the corresponding discrete

variant.

Proof of Theorem 63. Consider a discrete problem with speeds s0 = 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn

and powers 0 ≤ P0 = P1 ≤ · · · ≤ Pn. Define an interpolated power function P : R≥0 → R≥0

for s ∈ [si, si+1] by P (s) = Pi + γ(Pi+1 − Pi), where γ ∈ [0, 1] such that s = si + γ(si+1 − si);
and P (s) =∞ for s > sn. For this power function, running in the continuous setting for time

T at speed s is equivalent to running in the discrete setting for time (1− γ)T at speed si and

for time γT at speed si+1. W.l.o.g., we can assume Pi+1−Pi
si+1−si >

Pi−Pi−1

si−si−1
. Otherwise, we could

save energy by interpolating si with si−1 and si+1. The resulting function P is non-decreasing,

continuous, and convex. This allows us to apply the algorithm for the continuous setting

to compute a schedule. Using interpolation, any such schedule can be transformed into an

equivalent schedule for the discrete speeds in polynomial time.

3.4.3 Reducing from B-FC** to FE-FC**

This subsection gives a reduction from the budget to the flow plus energy objective. The

reduction given in Theorem 64 is for fractional flow, assumes the most general setting

(weighted jobs of arbitrary size), and preserves unit size and unit weight jobs, making it

applicable to reduce B-FC** to FE-FC**. The key idea is that if we consider the behavior of

flow plus β energy and as we vary energy, the resulting function has a single local minimum.

Therefore, using a local search technique we will be able to converge to the energy budget

that corresponds to the minimum flow plus β energy.

Theorem 64. Given a polynomial time algorithm for the budget variant and fractional flow,

there is a polynomial time algorithm for the corresponding flow plus energy variant.

Proof. Consider an instance of the B-FCWA problem with energy budget B and assume we

are given an algorithm for the FE-FCWA problem. Note that if we can find a β such that the
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minimum flow plus β time energy schedule S returned by the FE-FCWA algorithm uses exactly

B energy, then S is optimal for the B-FCWA instance. To efficiently find such a β, we argue

that the energy of the minimum flow plus energy schedule is both decreasing and continuous

in β. The theorem’s statement then follows via binary search over β.

Continuity follows from a result in Chapter /refchp:green. To see that energy is decreasing

in β, let us assume this is not the case and derive a contradiction. So there are β1 < β2 and

two corresponding minimum flow plus energy schedules S1 and S2. Let F1 and E1 be the flow

and energy of S1. Similarly, F2 and E2 are the flow and energy of S2. By our assumption we

have E1 < E2. From the schedules’ optimality, we know that F1 + β1E1 ≤ F2 + β1E2 as well

as F2 + β2E2 ≤ F1 + β2E1. Solving each inequality for the corresponding β value yields

β2 ≤
F2 − F1

E1 − E2

≤ β1,

a contradiction to our choice of β.

3.4.4 Reducing from FE-FC** to B-FC**

We now show a reduction from FE-FC** to B-FC**. The key idea is that if we consider the

behavior of flow plus β energy and as we vary energy, the resulting function has a single local

minimum. Therefore, using a local search technique we will be able to converge to the energy

budget that corresponds to the minimum flow plus β energy.

Lemma 65. Given a polynomial time algorithm for B-FC**, there is a polynomial time

algorithm for FE-FC**.

Proof. For some fixed β let the optimal flow plus β energy schedule be S1 using flow F1 and

energy E1. We show that flow plus β energy is decreasing for optimal energy budget schedules

with B < E1 and increasing for optimal energy budget schedules with B > E1. As noted in

the proof of Theorem 64, the energy of optimal flow plus energy schedules is continuous and

decreasing in β, thus for every energy E, there is a unique β such that the the minimum flow

plus β energy schedule uses energy E, and the value of β is decreasing as energy increases.

We show that the energy is increasing for B > E1, the argument for energy increasing

for B < E1 is symmetrical. Consider some energies E3 > E2 > E1 and let S3, S2 be the
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corresponding minimum flow schedules with energy budgets E3 and E2. As noted before, this

implies there exists some β3, β2 < β1 such that the minimum flow plus β2 energy schedule is

S2 and the minimum flow plus β3 energy schedule is S3. Now let β be the value such that

F1 + βE1 = F2 + βE2

Note that for all β′ > β, F2 + β′E2 < F3 + β′E3 and for all β′ < β, F3 + β′E3 < F2 + β′E2.

This means that β < β1, otherwise S2 would not be the optimal schedule at β2 < β. However

this gives that F2 + β1E2 < F3 + β′E3 as desired.

3.4.5 Reduction from FE-ICUU to B-ICUU

We now show a reduction from FE-ICUU to B-ICUU. The proof is almost identical to that

of the previous subsection, with the only difference being that a new proof that β changes

continuously in the energy budget is required.

Lemma 66. Given a polynomial time algorithm for B-ICUU, there is a polynomial time

algorithm for FE-ICUU.

Proof. The fact that β must decrease as the energy budget increases (for budgets that map to

optimal schedules) follows from arguments similar to those in the proof of Theorem 64. We

must also show that each energy budget corresponds to an optimal flow plus energy schedule,

and that β is continuous in the energy budget. This follows from Lemmas 58 and 61, since

they together say that for any β that maps to multiple schedules, we can find a schedule

using any energy between the minimum and maximum of such schedules, and that for any

two β that are arbitrarily close, there will be optimal schedules for those values of β that are

arbitrarily close in energy usage.

The remainder of the proof follows as the proof of Lemma 65.

84



4.0 SPEED SCALING WITH A SOLAR CELL

Many devices, most notably sensors in hazardous environments, contain energy harvesting

technologies. Solar cells are probably the most common example, but some sensors also

harvest energy from ambient vibrations or electromagnetic radiation (e.g., from communication

technologies such as television transmitters). To get a rough feeling for the involved scales,

note that batteries can store on the order of a Joule of energy per cubic millimeter, while solar

cells provide several micro-Watts per square millimeter in bright sunlight, and both vibrations

and ambient radiation technologies provide on the order of nano-Watts per cubic millimeter.

This Chapter considers an algorithmic problem related with to the power management of

such devices. In particular, we study the following setting:

• The device has a speed-scalable processor that can run at any of a finite number of speeds

s1 < · · · < sk, each associated with a power consumption rate P1 < · · · < Pk. By time

multiplexing, a job may be effectively run at any speed s ∈ [0, sk].

• The device harvests energy from its environment. For simplicity, we assume that it

harvests energy at a time-invariant rate R > 0 (like a solar-cell in bright sunlight).

• The device has a battery to store harvested energy. For simplicity we assume that the

capacity of the battery isn’t a limiting factor.

The processor must process a collection of n jobs of various sizes and with associated time

intervals that represent when the job arrives and when it has to be finished.

A variation of this setting, in which the allowable speeds were the non-negative reals and

where the power was assumed to be a monomial function of the speed, was first considered

in [8]. There, the authors studied also the objective of minimizing the recharge rate (i.e., the

minimal rate at which to harvest energy in order to have sufficient energy to schedule all

jobs). They showed that the offline problem can be expressed as a convex program. Thus, in
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principle the problem is solvable in polynomial-time, and the KKT conditions can be used

to develop an algorithm that recognizes optimal solutions. Moreover, [8] also proved that

the schedule that optimizes the total energy usage is a 2-approximation for the objective

of recharge rate. Finally, they showed that the online algorithm BKP, which is known to

be O(1)-competitive for total energy usage [6], is also O(1)-competitive with respect to the

recharge rate. So, intuitively, the main take-away point from [8] was that schedules that

naturally arise when minimizing energy usage are O(1) approximate with respect to the

recharge rate. However, [8] noted that “computing the recharge-rate optimal schedule is still

seemingly much harder than computing an energy optimal schedule. . . ”. In particular, the

latter has a particularly simple structure and can easily be computed in polynomial time [34].

A relatively recent survey of speed scaling and other energy management algorithmics can be

found in [1].

While, in principle, a polynomial-time linear programming algorithm can solve this

problem, this is unsatisfying for two reasons: First, the worst-case runtime of linear program

solvers is quite large and exceeds the runtime of our combinatorial algorithm. The second

and for our purposes of gaining an understanding of the inherent problem aspects more

important reason is that the generality of a linear program solver completely obscures the

underlying structure of the problem. Since our model is only a first step towards a more

realistic energy-harvesting model (featuring, for example, online aspects, battery capacities,

and variable energy rates) it seems desirable to expose and preserve such structural aspects.

Our main result is a polynomial-time combinatorial algorithm when the processor speeds

are well-separated, meaning that for all speeds si we have Pi+1−Pi
si+1−si ≥ (1 + ε)Pi−Pi−1

si−si−1
. To

understand this condition, note that there is a strong convex relationship between the speed

and the power in CMOS-based processors Most commonly this is modeled assuming the

(dynamic) power is the speed cubed. Thus, while higher speeds give better performance, lower

speeds give significantly better energy efficiency in terms of energy used per computation

step. A chip designer generally wants to choose discrete speeds, from the continuous range of

options, that are well separated in terms of performance and energy efficiency. By simple

algebra, a sufficient and natural condition for well-separation is that the speeds selected by

the chip designer satisfy si+1 = (1 + δ)si for some positive δ, and each Pi = sαi for some
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α > 1.

Our algorithm can be viewed as a homotopic optimization algorithm that maintains an

energy optimal schedule the recharge rate is continuously decreased. One should note that

while our algorithm’s runtime (see Theorem 98) is relatively high, this stems largely from

simplifying analysis assumptions. A more careful analysis can lower the exponent significantly.

Both our algorithm design and analysis are quite involved and require significant under-

standing of the evolution of recharge rate optimal schedules. Thus, we start with an informal

overview in the next section. The full, formal model description and definitions can be found

in Sections 4.2 and 4.3. The actual algorithm description is given in Section 4.4.2.

4.1 TECHNICAL OVERVIEW

The aim of this section is to provide a high level overview of both the design and analysis of our

algorithm. We first explain how to recognize an optimal schedule, then give a simple example

to illustrate the top level algorithmic approach, then explain how to obtain a continuous

algorithm, and finally explain how to obtain a polynomial-time discrete algorithm when

speeds are well-separated.

We consider the natural linear program with indicator variables xjit denoting whether job

j is run at speed i at time t, and with a variable R denoting the recharge rate. Interpreting

the complementary slackness conditions combinatorially, we find that a schedule is optimal if

and only if it satisfies the following four conditions:

(a) Feasibility: The schedule is feasible. That is, every job is processed to the extent of its

size between its release time and deadline and there is always sufficient energy stored in

the battery.

(b) Local Energy Optimality: The subschedule within each depletion interval uses the

least possible energy. A depletion interval is the time interval between two consecutive

depletion points (times when the battery has been entirely depleted).

(c) Speed Level Relation (SLR): When two jobs i and j are both run in two depletion

intervals Ia and Ib, the difference between job i’s speed levels in Ia and Ib is the same as the
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Figure 9: The energy optimal schedule and the recharge rate optimal schedule.

difference between j’s speed levels in these intervals. If a job is run at speed s ∈ [si−1, si]

then we say that it is run at speed level i. The relative simplicity of this condition relies

on the speeds being well-separated. The fact that the speeds are well-separated is only

used in our algorithm design and analysis by application of the SLR condition.

(d) Saturated Depletion Point (SDP): There is a depletion point such that any job alive

after this point is completely processed after it.

In order to build intuition, let’s consider the following simple example instance. The

processor can be run at speed 1 with power 1, or at speed 2 with power 4. Job j1 is released

at time 0 with deadline 10 and work 9, and j2 is released at time 1 with deadline 2 and work

2. The energy optimal schedule would run job j2 at speed 2 during the time interval [1, 2] and

run job j1 at speed 1 during the time intervals [0, 1] and [2, 10]. The minimal recharge rate

at which this schedule is feasible is R = 2.5. Note that this schedule satisfies the first three

optimality conditions, but does not satisfy the SDP condition since j1 is run both before and

after the only depletion point, which is at time 2. One can achieve a smaller recharge rate by

moving some of the processing done on j1 during the time interval [0, 1] to the time interval

[2, 10] (see Figure 9).

The high level intuition behind our algorithm is that we start with an energy optimal

schedule, and a recharge rate R such that this schedule satisfies the first three optimality
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conditions. The algorithm then lowers R, while maintaining a schedule satisfying the first

three optimality conditions, until the SDP condition is satisfied. As a consequence, the

maintained schedule maximizes the energy in the battery at the time of the last deadline

subject to the constraint that the schedule is feasible for the current recharge rate.

The algorithm conceptually operates on the distribution multigraph G, in which the

vertices are the depletion intervals, and there is a directed edge (Ia, Ib) for each distinct way

in which work can be transffered from depletion interval Ia to depletion interval Ib. The

algorithm tries to find a transfer path collection, which is a collection of paths consisting of

one path from each depletion interval Ia to the rightmost depletion interval. Given such a

transfer path collection, it is relatively straight-forward to determine how to move work to

maintain the first three optimality conditions as the recharge rate decreases. There will be a

general trend of the work to move later in time, but sometimes it will be necessary to move

work earlier in time. There are three types of events that stall progress using this transfer

path collection:

• Edge Removal Event: It is no longer possible to transfer work on a particular edge

because there is no more work left on the corresponding job in the source depletion

interval.

• Speed Level Event: Further transfer of work using the transfer path collection would

cause a job to change its speed level (violating the SLR condition).

• Depletion Point Appearance Event: A new depletion point is created.

To make further progress, the algorithm first attempts to find a different transfer path

collection. If this is not possible, the algorithm updates the graph G in one of two possible

ways:

• Depletion Point Removal Update: The algorithm removes a depletion point. The

removal of the constraint that the battery must be depleted at this time allows for new

ways to transfer work.

• Cut Update: The speed levels of some jobs currently running at a discrete speed si are

updated to an adjacent speed level. This allows for new ways to transfer work without

violating the SLR condition. The jobs whose speed has reached one of the processor

speeds induce a cut in the graph G. Essentially the dual variables associated with these
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jobs are updated so as to both remove the cut and maintain the SLR condition.

Although it seems likely, we do not know how to prove that a naive implementation of this

process terminates, or converges to the optimal solution. However, we can show that if none

of these possible updates creates a multigraph in which there exist a transfer path collection,

then the SDP condition holds, and the current recharge rate is optimal.

One can discretize the continuous algorithm by calculating, given the transfer rates for

the current transfer path collection, the next edge removal or speed level event, and then

discretely transfer enough work to reach that next event.

To obtain convergence to the optimal solution, and a polynomial bound on the number of

events (and thus on the total time), we design our algorithm so as to maintain the following

hierarchy of monotonicity invariants:

• Cut Invariant: Cut updates are at the top of the hierarchy. Intuitively, the cut invariant

states that speed level increases monotonically move later in time.

• Depletion Point Removal Invariant: Depletion point removal updates occur below

cut updates in the hierarchy (and at the same level as speed level events). The depletion

point removal invariant is that once a depletion point is removed, it will not be added

again until the next cut update. The number of depletion point appearance events can

be bounded by the number of depletion point updates.

• Speed Level Invariant: Speed level events again occur below cut updates (and at the

same level as depletion point removal updates). Intuitively, the speed level invariant is

that this event causes the creation of a time interval to which no work is added until the

next cut update event.

• Edge Removal Invariant: Edge removal events occur at the bottom of the hierarchy.

The edge removal invariant is that once work from a job is transferred earlier in time, it

will not be transferred later in time until the next cut update, depletion point removal

update, or speed level event.

In order to maintain this hierarchy of monotonicity invariants, we must be careful about

the way in which two aspects of the algorithm are implemented. The first issue is that G

may be exponentially large. We fix this by changing the algorithm so that it will search for

a transfer path collection in a subgraph H of G. For every pair Ia and Ib of vertices in G,
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H only contains the “best” edge between Ia and Ib. Intuitively, the best edge is the one

that involves the most transfers of work later in time. This is sufficient to guarantee that if

there is a transfer path collection in G, then there will also be a transfer path collection in

H. The second issue is the way that a transfer path collection is selected in G. Intuitively,

the algorithm primarily prefers transfers of work later in time, and among such transfers, it

secondarily prefers shorter transfers; Conversely among transfers earlier in time, the algorithm

secondarily prefers longer transfers.

4.2 STRUCTURAL OPTIMALITY VIA PRIMAL-DUAL ANALYSIS

We model our problem as a linear program and use complimentary slackness conditions to

derive structural properties that are sufficient for optimality. These structural properties are

used in both the design and the analysis of the algorithm.

We consider the problem of scheduling a set of n jobs J := { 1, 2, . . . , n } on a single

processor that features k different speeds 0 < s1 < s2 < · · · < sk and that is equipped with

a solar-powered battery. The battery is attached to a solar cell and recharges at a rate of

R ≥ 0. The power consumption when running at speed si is Pi ≥ 0. That is, while running

at speed si work is processed at a rate of si and the battery is drained at a rate of Pi.

Each job j ∈ J comes with a release time rj, a deadline dj, and a processing volume (or

work) pj. For each time t, a schedule S must decide which job to process and at what speed.

Preemption is allowed, so that a job may be suspended at any point in time and resumed

later on. We model a schedule S by two functions S(t) (speed function) and J(t) (scheduling

policy) that map a time t ∈ R to a speed index S(t) ∈ {1, 2, . . . , k} and a job J(t) ∈ J . Jobs

can only be processed within their release-deadline interval
[
rj, dj

)
. Thus, a feasible schedule

must ensure that J−1(j) ⊆
[
rj, dj

)
holds for all jobs j. Moreover, a feasible schedule must

finish all jobs and must ensure that the energy level of the battery never falls below zero.

More formally, we require
∫
J−1(j)

sS(t) dt ≥ pj for all jobs j and
∫ t0

0
PS(t) dt ≤ Rt0 for all times

t0. Our objective is to find a feasible schedule that requires the minimum recharge rate.
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min R

s.t.
∑

t∈[rj ,dj)

∑

i

xjitsi ≥ pj ∀j

Rt−
∑

t′≤t

∑

j∈J

k∑

i=1

xjit′Pi ≥ 0 ∀t

∑

j∈J

k∑

i=1

xjit ≤ 1 ∀t

xjij ∈ { 0, 1 } ∀j, i, t
(a) ILP for our scheduling problem.

max
∑

j∈J
αjpj −

∑

t

γt

s.t. αjsi −
∑

t′≥t
βt′Pi − γt ≤ 0 ∀j, i, t

∑

t

βtt ≤ 1

αj, βt, γt ≥ 0 ∀j, t

(b) Dual program for the ILP’s relaxation.

Figure 10: Primal-dual formulation of our problem.

For the following linear programming formulation, we discretize time into equal length1

time slots t. Without loss of generality, we assume that their length is such that there is a

feasible schedule for the optimal recharge rate R that processes at most one job at at most

one discrete speed in each single time step. Our linear program uses indicator variables xjit

that state whether a given job j is processed at a speed si during time slot t. Note that not

only does this imply possibly exponentially many variables but it is not even clear how to

choose the length of the time slots. Nevertheless, this will not influence the running time

of our algorithm, since we merely use the linear program to extract sufficient structural

properties of optimal solutions.

With the variables xjit as defined above and a variable R for the recharge rate, the integer

linear program (ILP) shown in Figure 10a corresponds to our scheduling problem. The first

set of constraints ensure that each job is finished during its release-deadline interval, while

the second set of constraints ensures that the battery’s energy level does not fall below zero.

The final set of constraints ensures that the processor runs at a constant speed and processes

at most one job in each time slot.

1By rescaling the problem parameters, we can assume time slots of unit length.
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The complementary slackness constraints for the programs shown in Figure 10 give us

necessary and sufficient properties for the optimality of a pair of feasible primal and dual

solutions.

xjit > 0 ⇒ αjsi −
∑

t′≥t
βt′Pi − γt = 0, (4.1)

R > 0 ⇒
∑

t

βtt = 1, (4.2)

αj > 0 ⇒
∑

t∈[rj ,dj)

∑

i

xjit = pj, (4.3)

βt > 0 ⇒
∑

t′≤t

∑

j∈J

k∑

i=1

xjit′Pi = Rt, (4.4)

γt > 0 ⇒
∑

j∈J

k∑

i=1

xjit = 1. (4.5)

Although these conditions are only necessary and sufficient for optimal solutions of the

ILP’s relaxation, our choice of the time slots’ lengths (see above) ensures that there is an

integral solution to the relaxation. Based on these complementary slackness constraints, we

derive some purely combinatorial structural properties (not based on the linear programming

formulation) that will guarantee optimality. To this end, we will consider speed levels of

jobs in depletion intervals essentially the discrete speed a job reached in a specific depletion

interval and how they change at depletion points.

Definition 67 (Speed Level Relation). A schedule S and a recharge rate R obey the Speed

Level Relation (SLR) if there exist speed levels L(j, `) ∈ N with:

(a) job j processed at speed sj,` ∈ (si−1, si) in depletion interval I` ⇒ L(j, `) = i

(b) job j processed at speed sj,` = si in depletion interval I` ⇒ L(j, `) ∈ { i, i+ 1 }
(c) jobs j, j′ both active in depletion intervals I`1 and I`2 with `1 < `2 ⇒ L(j, `2)−L(j, `1) =

L(j′, `2)− L(j′, `1) ∈ N0

(d) job j processed in Il ⇒ L(j, l) ≥ L(j′, l) for all j′ active in Il,j = Il ∩
[
rj, dj

)
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Using this definition, we are now ready to characterize optimal schedules in terms of the

following combinatorial properties. Note for condition (b), a YDS subschedule would be

sufficient. We defer the proof to the appendix.

Theorem 68. Consider a feasible schedule S and a recharge rate R. The following properties

are necessary and sufficient for S and R to be optimal:

(a) S is feasible.

(b) The subschedule within each depletion interval uses the least possible energy.

(c) The SLR holds.

(d) There is a split depletion point: a depletion point τk such that no job with deadline greater

than τk is processed before τk.

Proof. The feasibility of S immediately gives us a set of feasible primal variables that fulfill

Equations (4.3) and (4.5) of the complementary slackness conditions. Moreover, note that by

making the time slots suitably small, the x-variables of the primal solution can be assumed to

be integral2. In the following, we show how to define a set of feasible dual variables such that

the remaining complementary slackness conditions hold. This immediately implies optimality.

Before we define the dual variables, let us define some helper variables that describe how

speed levels change at depletion points. Fix a set of speed levels that adheres to the SLR3

and consider the depletion points 0 < τ1 < τ2 < · · · < τL of S. By (d), there is at least

one depletion point τk such that no job j with dj > τk is processed in [0, τk). Without loss

of generality, let τk be the leftmost depletion point with this property. By this choice, for

any depletion point τ` with ` ∈ { 1, 2, . . . , k − 1 } there is a job j` that is active immediately

before and after τ`. The speed level of j` increases by L(j`, `+ 1)−L(j`, l) ∈ N0 from the `-th

to the `+ 1-th depletion interval. By the SLR, this increase is independent of the concrete

choice of j` (any active job’s speed level increases by the same amount from I` to I`+1). Thus,

we can define a` := L(j`, `+ 1)− L(j`, `) ∈ N0 as the increase of speed level at τ`.

We are now ready to define the dual variables. For t 6∈ { 1, 2, . . . , k − 1 } we set βt = 0.

2To see this, first note that we can normalize any (also an optimal) schedule using the EDF scheduling
policy. By choosing the time slots small enough, each job is processed alone and at a constant speed within a
slot. Note that we don’t need to know the time slots’ size for this argument, the mere existence of such time
slots is sufficient (since the resulting optimality conditions are oblivious of the time slots).

3If we can choose, we choose the smallest possible speed level.
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The remaining βt variables are defined by the (unique) solution to the following system of

linear equations:

∑

t≥τ`
βt = 2a`

∑

t≥τ`+1

βt for ` ∈ { 1, 2, . . . , k − 1 } ,

k∑

`=1

τ`βt` = 1.

(4.6)

To set αj , fix a job j and let I` be the first depletion interval in which j is processed. We set

αj = ∆L(j,`) ·
∑

t≥τ` βt. To set γt, remember that we assume time slots to be small enough

that at most one job is processed. If no job is processed, we set γt = 0. Otherwise, let j be

the job processed in t and set γt = αjsL(j,`) −
∑

t′≥t βt′PL(j,`).

By construction, these variables fulfill all the remaining complementary slackness condi-

tions (and the second dual constraint). Moreover, it is easy to see that αj ≥ 0 for any job j

and βt ≥ 0 for any time slot t. Thus, it remains to show that for all t we have γt ≥ 0 and

that for all j, i, and t we have αjsi −
∑

t′≥t βt′Pi − γt ≤ 0. For the inequality γt ≥ 0, let j

be the job processed in t (if there is no job, we have γt = 0 by definition) and let Il be the

depletion interval that contains t. Then the desired inequality follows from

γt
sL(j,`)

∑
t′≥t βt′

= ∆L(j,`) −
PL(j,`)

sL(j,`)

≥ 0 (4.7)

(the last inequality follows from the properties of the power function). Now fix a job j, a speed

index i, and a time slot t in which j is active. Let l denote the depletion interval that includes

t and let j′ be the job that is actually processed in t. We have to show αjsi−
∑

t′≥t βt′Pi ≤ γt.

This is trivial if αj = 0. Otherwise, using the definition of αj and γt and dividing by
∑

t′≥t βt′ ,

it is equivalent to

⇐⇒ ∆L(j,`)si − Pi ≤ ∆L(j′,`)sL(j′,`) − PL(j′,`)

⇐⇒ PL(j′,`) − Pi ≤ ∆L(j′,`)sL(j′,`) −∆L(j,`)si.

Since we assume YDS is used in between depletion points, we know j′ runs at least as fast in

I` as j. Thus we have sj′,` ≥ sj,` and, in particular, L(j′, `) ≥ L(j, `). Thus, it is sufficient

to show PL(j′,`) − Pi ≤ ∆L(j′,`)(sL(j′,`) − si), which follows easily from the properties of the

power function.
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4.3 NOTATION

Given a schedule S, we need a few additional notions to describe and analyze our algorithm.

Definition 69 (Power Function Slopes). For the speeds si and their powers Pi we define

∆i := Pi−Pi−1

si−si−1
.

In the simplified model, we assume ∆i = 2i−1∆1 (the constant 2 is chosen merely for

simplicity, you can think of any constant larger 1).

Let us start by formally defining depletion points and depletion intervals. As noted earlier,

depletion points represent time points where our algorithm maintains a battery level of zero

and partition the time horizon into depletion intervals. Note that these definitions depend on

the current state of the algorithm.

Definition 70 (Depletion Point). Let ES(t) denote the energy remaining at time t in schedule

S. A depletion point τi is defined such that ES(τi) = 0 and the algorithm has labeled this as a

depletion point. We let τ0 = 0 and τL+1 =∞ where L is the number of depletion points.

Definition 71 (Depletion Interval). For all ` > 0 we define a depletion interval I` = [τ`−1, τ`)

and the speeds sj,` of jobs j during I`.

While moving work between depletion intervals, our algorithm uses the jobs’ speed levels

to guide how exactly to move work around.

Definition 72 (Speed Level). For all j, ` with I` ∩ [rj, dj) 6= ∅, the speed level L(j, `) of j

in I` is such that if j is processed in I`, then sj,` ∈ [sL(j,`)−1, sL(j,`)].

The algorithm initializes the speed level for every depletion interval (even those in which

j is not run) based on the initial YDS schedule, and throughout its execution assigns speed

levels maintaining SLR.

Next, we give a definition of a slightly weaker version of the well known EDF (Earliest

Deadline First) scheduling policy. The idea is to maintain a version of EDF between depletion

intervals but, locally, allow slight deviations. For example, we forbid situations where for

depletion intervals I1, . . . , I4 some job j1 is scheduled in I1 and I3 and another job in I2 and

I4. Disallowing such instances forces the subgraph of paths taken by the algorithm to be
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laminar, which is useful throughout the analysis.

Definition 73 (first-run sequence). Assume d1 < d2 < d3 < · · · < dn. To construct the

first-run sequence (Ij` )
k
j=1 of a depletion interval I` let j`1 , . . . , j`k be the k jobs run in I`

ordered by the first time they are run within I`. Then, (Ij` ) = (`1, . . . , `k). The first-run

sequence of a schedule S is the concatenation of all depletion interval first-run sequences from

first to last.

Definition 74 (Weak EDF). We say that a schedule satisfies Weak EDF if the corresponding

first-run sequence (Sk) has the following property. For every j ∈ [n], let fj and lj be the first

and last appearances of j in (Sk). Then, for all i such that fj < i < lj, Si > j.

This next definitions denote to what extent a given schedule adheres to the structural

optimality conditions stated in Theorem 68. We distinguish between schedules that (essen-

tially) adhere to the first two optimality conditions and schedules that, additionally, have the

third optimality condition (SLR).

Definition 75 (Nice & Perfect). We say that a schedule S is nice if it is feasible, obeys YDS

between depletion points, and satisfies Weak EDF. If, additionally, S fulfills the SLR, we call

it perfect.

We now define ε-transfers, the building block for our algorithm. Intuitively, they formalize

possible ways to move work around between depletion intervals. Our definition will ensure

that moving work over ε-transfers maintains niceness throughout the algorithm’s execution.

Moreover, we also ensure that ε-transfers only affect the schedule’s speed profile at their

sources/targets.

Definition 76 (ε-transfer). (`a, ja)
s
a=0 is an ε-transfer if we can, simultaneously for all a,

move some positive workload of ja from `a−1 to `a while maintaining niceness and without

any speed in `1, . . . , `s−1 changing. `0 and j0 (resp, `s and js) are the source and source

job (resp, destination and destination job) of the ε-transfer, respectively. We say that the

ε-transfer is active if it also maintains perfectness.

Let T1 = (`1
a, j

1
a)
s1
a=0 and T2 = (`2

a, j
2
a)
s2
a=0 be two different ε-transfers with `1

0 = `2
0 and

`1
s1

= `2
s2

. Let a∗1 = arg mina{`1
a 6= `2

a} and a∗2 = arg mina{j1
a 6= j2

a}. We say that T1 is higher

priority than T2 if
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(a) `2
a∗1
< `1

a∗1−1 < `1
a∗1

, or

(b) `1
a∗1
< `2

a∗1
, and either `2

a∗1
< `1

a∗1−1 or `1
a∗1−1 < `1

a∗1
, or

(c) a∗1 does not exist and the deadline for j1
a∗2

is earlier than the deadline for j2
a∗2

.

Our algorithm compares ε-transfers based on source and destination. Once the source and

destination have been fixed, the priority comparator is used to determine which ε-transfer is

used. The following multigraph is used to keep track of legal ε-transfers.

Definition 77 (Distribution Graph). We define GD = (VD, ED) as the distribution graph

where VD is the set of depletion points and for every active ε-transfer (`a, ja)
s
a=0, there is a

corresponding edge with source `0 and destination `s.

Finally, the last additional notion we’ll be using captures when a job can move work to a

given depletion interval. This will be of particular importance when adjusting speed levels,

as we have to make sure that these remain consistent.

Definition 78 (Reachable). A depletion interval ` is reachable (resp., actively reachable)

by j if there is an ε-transfer (resp., active ε-transfer) with source job j and destination `.

4.4 ALGORITHM DESCRIPTION

This section provides a formal description of the algorithm. From a high level, the algorithm

can be broken into two pieces: (a) choosing which ε-transfers to move work along (in order

to lower the recharge rate), and (b) handling events that cause any structural changes. We

start in Section 4.4.1 by describing the structural changes our algorithm keeps track of and

by giving a short explanation of each event. Section 4.4.2 describes our algorithm.

4.4.1 Keeping Track of Structural Changes

How much work is moved along each single ε-transfer depends inherently on the structure of

the current schedule. Thus, intuitively, an event is any structural change to the distribution

graph or the corresponding schedule while we are moving work. At any such event, our
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algorithm has to update the current schedule and distribution graph. The following are the

basic structural changes our algorithm keeps track of:

• Depletion Point Appearance: For some job j, the remaining energy ES(dj) at j’s

deadline becomes zero and the rate of change of energy at dj is strictly negative. If we

were not to add this depletion point, the amount of energy available at dj would become

negative, violating the schedule’s feasibility. We can easily calculate when this happens

by examining the rate of change of R as well as as the rate of change of sj,` for all jobs j

run in the depletion interval I` containing dj.

• Edge Removal: An edge removal occurs when, for some job j, the workload of j

processed in a depletion interval I` becomes zero. In other words, all of j’s work has been

moved out of I`. Similar to before, we can easily keep track of the time when this occurs

for any job j processed in a given depletion interval, since all involved quantities change

linearly.

• Edge Inactive: An edge inactive event occurs when for some job j its speed sj,` in a

depletion interval I` becomes equal to some discrete speed si. Once more, we keep track

of when this happens for each job processed in a given depletion interval.

Note that by moving work along ε-transfers between two events e1 and e2, our algorithm

causes (a) the speed of exactly one YDS critical interval in each depletion interval to decrease

and (b) the speed of some YDS critical intervals to increase. For a single critical interval,

these speed changes are monotone over time (between two events). However, critical intervals

might merge or separate during this process (e.g., when the the speed of a decreasing interval

becomes equal to a neighbouring interval). In other words, the critical intervals of a given

depletion interval might be different at events e1 and e2. On first glance, this might seem

problematic, as a critical interval merge/separation could cause a change in the rate of change

of the critical interval’s speed, perhaps with the result that the algorithm stops for events

spuriously, or misses events it should have stopped for. However, since only neighbouring

critical intervals can merge and separate, this can be easily handled: In any depletion interval,

there are at most O(n) critical intervals at event e1. Since only neighbouring critical intervals

can merge/separate when going from e1 to e2, for each critical interval changing speed there

are at most O(n2) possible candidate critical intervals that can be part of at event e2. We
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just compute the next event caused by each of these candidates, and whether or not each

candidate event can feasibly occur. Then, the next event to be handled by our algorithm is

simply the minimum of all feasible candidates.

This is a relatively inefficient way to handle critical interval changes, but it significantly

simplifies the algorithm description. We leave the description of a more efficient way to

handle such “critical interval events” for the full version.

When we have identified the next event, we must update the distribution graph and

recalculate the rates at which we move work along the ε-transfers. Given the definition of the

distribution graph, updating the graph is fairly straightforward. However, it might be the

case that after updating the graph, there is no longer a path from every depletion interval to

the far right depletion interval. This can be seen as a cut in the distribution graph. In these

cases, to make progress, we either have to remove a depletion point or adapt the jobs’ speed

levels; If both of these fixes are not possible, our algorithm has found an optimal solution. A

detailed description of this can be found in Section 4.6.2.

4.4.2 Main Algorithm

Now that we have a description of each event type, we can formalize the main algorithm.

A formal description of the algorithm can be found in Listing 4.1. We give an informal

description of its subroutines CalculateRates, UpdateGraph, and PathFinding below.

UpdateGraph(T,GD, S): This subroutine takes an event type T , the distribution graph

GD and the current schedule S and performs the required structural changes. It suffices

to describe how to build the graph from scratch given a schedule (computing a schedule

simply involves computing a YDS schedule between each depletion point). Now the

question becomes: Given two depletion points, how do we choose the ε-transfer between

these two? While perhaps daunting at first, this can be achieved via a depth-first search

from the source depletion interval. Whenever the algorithm runs into a depletion interval

it has previously visited in the search, it chooses the higher priority ε-transfer of the two

as defined by the priority relation.

PathFinding(GD): We define PathFinding(GD) in Listing 4.2. Note the details of deter-
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1 Set R to be recharge rate that ensures YDS schedule, S, is feasible
2 Let GD = (VD, ED) be the corresponding Distribution Graph.
3 G′D = PathFinding(GD)
4 ∆, δj,`, T = CalculateRates(G′D, S)
5 while True:
6 for each job j and depletion interval `:
7 set sj,` = sj,` + ∆ · δj,`
8 set R = R−∆
9 UpdateGraph(T,G D,S)

10 if(there is a fixable cut):
11 fix cut with either a depletion point removal or SLR procedure
12 if(there is unfixable cut):
13 exit
14 G′D = PathFinding(GD)
15 ∆, δj,`, T = CalculateRates(G′D, S)

Listing 4.1: The algorithm for computing minimum recharge rate schedule.

mining the highest priority edge are omitted but the implementation is rather straightfor-

ward. The priority relation for choosing edges is: First choose the shortest right going

edge, and otherwise choose the longest left going edge. While this priority relation itself

is rather straightforward, it requires a non-trivial amount of work to show that it yields

suitable monotonicity properties to bound the runtime (see Section 4.5).

CalculateRates(G′D, S): This subroutine takes as input the set of paths from the distri-

bution graph G′D and the current schedule S. It returns for each job j and each depletion

interval `, the rate δj,` at which sj,` should change, T , the next event type, and ∆ the

amount the recharge rate should be decreased. It is straightforward to see the set of paths

chosen by the algorithm G′D can be viewed as a tree with the root being the rightmost

depletion interval. Assuming R is decreasing at a rate of 1, and working our way from

1 Let S = {vL}, where vL is rightmost vertex
2 while exists an edge e = (v1, v2) s.t. v1 ∈ S, v2 ∈ S and e is the highest priority such edge:
3 add v1 to S

Listing 4.2: The PathFinding subroutine.
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the leaves to the root, we can calculate δj,` such that the rate of change of energy at

all depletion points remains 0. With these rates, we can use the previously discussed

methods to find both T and ∆.

4.5 RUNTIME ANALYSIS

In this section we provide an analysis on the runtime and correctness of our algorithm. We

begin with some notes on how the algorithm handles certain cases, We then bound the

number of different events that can occur. Finally, we analyze the runtime of the calculations

made by our algorithm in between events.

4.5.1 Intricacies of the Algorithm

In this subsection, we describe informally some intricacies of the algorithm that, though not

vital to a high-level understanding of the algorithm, are key in its formal analysis.

The definition of ε-transfer allows for many counterintuitive ε-transfers: For example, ones

that take the same job multiple times, or enter the same critical interval multiple times. It is

easy for the depth first search that chooses ε-transfers to prune such undesirable ε-transfers.

Here we describe the set of ε-transfers pruned, and why.

• ε-transfers that take the same job multiple times, or enter the same critical

interval multiple times. It is easy to see that such ε-transfers are in some sense not

minimal, and an ε-transfer with strictly fewer edges could be obtained.

• ε-transfers violating Weak EDF. This allows us to say the subgraph of the distribution

graph taken by the algorithm has edges that are laminar, and that the algorithm never

has reason to take ε-transfers that cross each other, as well as that the edges of ε-transfers

taken by our algorithm are laminar.

• ε-transfers that take a right edge that is completely contained within a pre-

viously taken left edge. Though less intuitive, one can show that such ε-transfers can

be replaced by a series of left ε-transfers, in a manner similar to that used in the proof of
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Lemma 83 below. By disallowing such ε-transfers, we can say more about the ε-transfers

taken by the algorithm, making analysis simpler.

• ε-transfers that take work of a job in the opposite direction of previously

taken ε-transfers. This allows us to formally prove that any job’s workload moves in

two phases in between two cut events: first only right and then only left. This insight is

key to bounding the number of edge removal events.

As described, the algorithm does not stop for critical interval events. To gain some insight

into how this is accomplished, we briefly describe how to calculate the speed level event where

a critical interval’s speed becomes the upper speed of its current speed level. In a depletion

interval, there may be multiple jobs at a speed level, with different releases and deadlines,

and so multiple possible ways such a speed level event can occur. However, we know that if

this event occurs, it occurs at a critical interval whose borders are releases (or the first time

the job can be run in the depletion interval, according to SLR) or deadlines. Thus, for every

pair of releases and deadlines, we can compute which jobs must be run in that interval within

the depletion interval. If it were the case that the next event is in fact a speed level event

caused by this critical interval, we can calculate when it would occur by looking at the rate

at which just these jobs are getting work, and calculating when the resulting critical interval

speed would become the maximum for its speed level. By considering all possible critical

intervals, we can determine which speed level event will actually occur first. For other types

of events, similar calculations can be performed.

4.5.2 Bounding the Runtime

Here we show that the number of events that cause the algorithm to recalculate are bounded by

a polynomial. The idea is to first bound the number of cut events : situations, in which there

is a depletion interval without a path of ε-transfers to move work to the far right depletion

interval (see Section 4.6.2 for details). Then, we show that between any two cut events, there

are only a polynomial number of other events. While using such a hierarchical structure

to bound events may artificially increase the runtime bound, it is helpful in simplifying the

analysis. We conclude this subsection with Theorem 98, which bounds the total runtime.
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Lemma 79. The algorithm fixes a cut in the distribution graph at most kn2 times.

Proof. Observe that Property 1 (c) of Theorem 68 can be restated as follows: for each non-

degenerate depletion point i (ordered from left to right) there exists a number δi ∈ [k] ∪ {0}
such that for any job j and any depletion intervals `1 and `2, `1 < `2, in which j is active, we

have that

L(j, `2)− L(j, `2) =

`2−1∑

i=`1

δi.

The algorithm assigns speed levels to jobs in intervals in which they are not active such that

this definition is satisfied whenever j is alive.

For any intermediate schedule S produced by the algorithm, order jobs by increasing

deadline, and let δj,S = δi for the job j with smallest index whose deadline is the same as the

ith depletion point, and δj,S = 0 otherwise. Consider the following potential function:

Φ(S) =
n∑

j=1

j · δj,S

Recall that speed levels are only modified when a cut in the Transfer Graph is fixed, so this is

the only time that the δi change. For a fixed cut, let l be the index of the left depletion point

defining the cut (if it exists), and r be the index of the right depletion point defining the

cut (which always exists). It is straightforward to observe that the algorithm’s modification

of speed levels to fix a cut increases δr by 1 and, if l exists, decreases δl by 1. Thus, since

there is at most one depletion point per time, Φ increases by at least one every time a cut in

the Transfer Graph is fixed (and this is the only event that changes Φ). It is also clear that

0 ≤ Φ ≤ kn2, since for any i, δi ≤ k, and the Lemma follows.

Before we can bound the number of events that occur between cut events, we need several

auxiliary results. These form the most technical result of the paper, but turn out to provide

strong tools, such that bounding the actual events later on will be relatively straightforward.

We first provide some results about our choice of ε-transfers. The most important part will

be when we introduce isolated areas. Intuitively, we will show that during the executing of

our algorithm, some time intervals will become isolated in the sense that no workload enters
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them and any workload that leaves them can do so only in a very restricted way. This turns

out a strong monotonic property that helps to bound the number of events.

We say the source (resp., destination) is outside an interval [t1, t2] if the critical interval

the source job (resp., destination job) is running in does not intersect [t1, t2], and it is inside

otherwise.

Observation 80. When the algorithm chooses an ε-transfer T with source sT and destination

dT , there is a path of ε-transfers from the source of that ε-transfer to IL. If T is a left ε-

transfer, no previously chosen ε-transfer has source or destination within (dT , sT ]. If T is a

right ε-transfer, no previously chosen ε-transfer with source or destination within [sT , dT ) is a

left ε-transfer.

Lemma 81. If two critical intervals C1 and C2 in the same depletion interval, with C1 to

the left of C2, both have active ε-transfers to the same destination depletion interval `, then

there is an active ε-transfer from C2 with destination ` that is higher priority than all active

ε-transfers from C1 with destination `.

Proof. This follows easily from the priority definition of ε-transfers in Definition 76.

Definition 82 (ε-transfer span and crossing). For an ε-transfer T , let l be the time that the

leftmost of source and destination critical intervals of T begins, and r be the time that the

rightmost of source and destination critical intervals of T ends. Then [l, r] is the span of T .

Two ε-transfers T1 and T2 are crossing if their source and destination critical intervals are

all unique, and the intersection of their spans is nonempty.

Lemma 83. Let T1 and T2 be two ε-transfers that cross. Then there is an path of ε-transfers

T3 with source that of T1 and destination that of T2, and every intermediate destination and

source is active. Additionally, if the source of T1 is decreasable, and the destination of T2 is

increasable, then T3 is active.

Proof. We split the proof into cases, based on the directions of T1 and T2, and their sources

and destinations. Let af be the final index of depletion intervals of T2. We illustrate only

one case, as the remaining cases use essentially the same arguments.
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Case 1: T1 is a right ε-transfer and T2 is a right ε-transfer, and the source of

T1 is left of the source of T2. Let a1 be the lowest index such that `a1 of T1 is or is to the

right of the critical interval from `a2 of T2, and to the left of the critical interval of `a2+1 of

T2, which must exist since T1 and T2 are crossing. Let e be the edge from `a2 to `a2+1 in T2.

If the T1 critical interval in `a1 is the T2 critical interval in `a2 , then it is clear that we can

create T3 = (`a, j1)a1−1
a=0 ∪ (`a.ja)

af
a=a2 . Otherwise, it must be that `a1 6= `a2 , since they would

have to run in the same critical interval otherwise, as the deadline of ja2 cannot be before

`a2 + 1, and the release time of ja1 cannot be after `a2 . Note also that ja1 must have a later

deadline than ja2 , since it can move to `a1 without violating Weak EDF, and similarly, ja2

completes in or before `a1 . Let T ′ = (˜̀
a, j̃a)

k
a=0 be the longest path of ε-transfers such that

each ja has earlier deadline than ja1 , and each ja can move work into the critical interval

where ja − 1 completes. Either such a T ′ exists, or ja1 can be run in `a2+1 (in which case

we can take T ′ to be empty). Thus we obtain T3 = (`a, j1)a1−1
a=0 ∪ (`a1−1, ja1−1) ∪ T ′(`a.ja)afa=a2

(which is possibly non-minimal, but can be reduced in size).

Lemma 84. If at any event, the algorithm chooses ε-transfers T1 and T2, then T1 and T2

are not crossing.

Proof. This follows as an easy consequence of both Lemma 83 as well as the definition of

Weak EDF.

We now introduce notation and a definition that will be helpful in the coming proofs. Fix

any cut event, and let Γ = {1, . . . , τ} denote the events, in order, that the algorithm stops

for between that event and the next cut event.

Definition 85 (Isolated Area). Let γ ∈ Γ and t be some time in the schedule, and `t be the

depletion interval containing t. Then the interval [t, t′] is an isolated area, denoted by νt(γ)

if it is possible to assign speeds to jobs in `t such that they obey their releases and deadlines,

are run in earliest deadline first order, and t′ is a depletion point after t such that there is no

active ε-transfer with source inside [t, t′], and destination outside [t, t′], without crossing t in

`t (i.e., any ε-transfer with destination in `t can place work to the right of t in `t, and any

ε-transfer with destination in a depletion interval either before `t or after t′ can be split into
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two active halves: one with destination in `t to the right of t, and the other with source `t to

the left of t). Additionally, the isolated interval is maximal if t′ is the latest deplation point

satisfying this definition. `t is referred to as the exit of νt(γ).

Observation 86. For any isolated area, the ε-transfer T chosen by the algorithm whose

source is exit of the isolated area must have destination outside the isolated area. Additionally,

the path of ε-transfers to IL from any depletion interval in the isolated area must include T .

Lemma 87. For any maximal isolated area νt(γ), no ε-transfer taken by the algorithm has

source outside νt(γ) and destination inside νt(γ).

Proof. Consider any active ε-transfer T with source sT outside of νt(γ) and destination inside

νt(γ). We show that the algorithm does not choose T :

• Case 1: The source is leftmost depletion interval intersecting νt(γ). This

follows immediately from Observation 86.

• Case 2: The source is to the left of the exit of νt(γ). Let Te be the ε-transfer

with source the exit of νt(γ). By Observations 80 and 86, if the algorithm chose T , it

must have chosen Te first. If Te is a left ε-transfer, this contradicts Obersvation 80. If Te

is a right ε-transfer, by Observation 86, this contradicts Lemma 84.

• Case 3: The source is to the right of νt(γ). We show that either the algorithm

does not take T , or the right border of νt(γ) could be extended. Let Ir be the rightmost

depletion interval that can be reached by a path of active right ε-transfers from sT , and

Il be the first depletion interval to the right of νt(γ).

(a) If Ir = IL, then the algorithm would take a right ε-transfer from sT .

(b) If there does not exist an active ε-transfer with source between Il and Ir, and

destination to the left of the exit of νt(γ), then νt(γ) could extend to Ir, contradicting

the definition of νt(γ).

(c) If there exists an active ε-transfer with source between sT and Ir, and destination to

the left of the exit of νt(γ), then the longest such ε-transfer would be taken before T ,

and the path of right ε-transfers from sT would be taken rather than T .

(d) If there exists an active ε-transfer with source between Il and sT , and destination to

the left of the exit of νt(γ), then by Lemma 83, there exists an active ε-transfer from
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sT to the left of the exit of νt(γ), and this ε-transfer is higher priority than T , so the

algorithm does not take T .

Lemma 88. Let νt(γ) be an isolated area. If νt(γ) exists and is nonempty, then for any

γ′ ∈ Γ with γ′ > γ, the maximal isolated area νt(γ
′) exists and νt(γ

′) ⊇ νt(γ).

Proof. We proceed by induction on events. The base case, for event γ, follows by definition.

For the inductive step, suppose the lemma holds at event η, and we will show that the lemma

continues to hold at event η + 1. We accomplish this by showing that any depletion interval

that is part of νt(η) must be part of νt(η + 1), and thus νt(η) ⊆ νt(η + 1). We first consider

the movement of work between events, and second consider the effect of the event η + 1.

Work Movement. Assume work is moved between η and η+ 1. We (conceptually) stop

the algorithm just before enough work is moved to cause η + 1. We show that if there is an

active ε-transfer with destination outside of νt(η) at this time (for ease, we write at η + 1),

then either the destination is part of νt(η + 1), or some active ε-transfer with source inside

νt(η) and destination outside νt(η) existed at η, contradicting that νt(η) is an isolated area.

Let T = (`a, ja)
s
a=0 be an active ε-transfer with source in νt(η) and destination outside νt(η)

at η + 1, and for a = 0, . . . , s let Ca be the critical interval in `a used by that edge of the

ε-transfer.

We show that an ε-transfer R with source inside νt(η) and destination outside νt(η) must

exist at η, and then show that an ε-transfer R′ with the same properties was active at η.

We consider transfer edges i (taking work from `i to `i + 1) one at a time beginning with

s− 1 down to 0. Let Cd be the current destination critical interval for the ε-transfer we are

building, which is initially Cs. We show that, assuming there is an ε-transfer from Ci+1 to

Cd, then there is one from Ci to either Cd or some other critical interval outside νt(η) (i.e.,

we choose a new Cd).

First note that if ji was present in Ci at η, edge i must exist at η as well (since no event

happened), and thus an ε-transfer from Ci to Cd exists. Otherwise, some ε-transfer T ′ was

taken at η must have moved job j into Ci. If the source of T ′ is in νt(η), then this source has

an ε-transfer to Ci+1, and therefore an ε-transfer to Cd, thus we have found R. If the source

of T ′ is outside νt(η), then the destination of T ′ is also outside νt(η) by Lemma 87. Thus
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there is an ε-transfer from Ci to the destination of T ′, so we change Cd to be the destination

critical interval of T ′.

It remains to construct an ε-transfer R′ that is active at η. Let sR and dR be the source

and destination critical intervals of R. We first construct an ε-transfer R1 with destination

dR with a decreasible source at η. If sR is decreasible at η, then R1 = R. Otherwise, we

know sR is decreasible at η + 1, so if sR was not decreasible at η, the algorithm must have

taken some ε-transfer R′1 with destination sR at η, and the source of R′1 must be in νt(η)

by definition of isolated area. Combine R′1 and R to yield R1, an ε-transfer whose source

is decreasible. Similarly, if dR is decreasible at η, then R′ = R1. Otherwise, we know dR is

increasible at η + 1, so if dR was not increasible at η, the algorithm must have taken some

ε-transfer R′2 with source dR at η, and the destination of R′2 must be in ourside of νt(η) by

Lemma 87. Thus, combine R1 and R′2 to obtain R′

Events. We show that the event η + 1 cannot cause the isolated interval to decrease in

size or cease to exist. In each case, we show no new active ε-transfers with source inside νt(η)

and destination outside νt(η) could become available.

• Depletion Point Addition Events: For any depletion point added, the only ε-transfers

affected are those with source or destination in the depletion interval that gained the

depletion point, and whether or not those ε-transfers were active did not change.

• Depletion Point Removal Events: This even has a similar effect on ε-transfers as

depletion point addition events, except when the depletion point removed is the rightmost

depletion point of νt(η). In this latter case, let `R be the depletion interval that merged

with the rightmost depletion interval of νt(η). The fact that the depletion point was

removed means that there are now no active ε-transfers from `R to any other depletion

interval, thus at η + 1 the isolated area can be expanded to include the (now removed)

depletion interval `R.

• Edge Inactive Events: These cause ε-transfers to cease to be active, thus no new

ε-transfers can appear as a result of these events.

• Critical Interval Merge and Separation Events: Critical intervals merging and

separating can combine or split ε-transfers, but do not cause ε-transfers to become active

from inactive. Thus, the only place where merge events can cause a new active ε-transfer
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is at the exit of the isolated area; However, these new ε-transfers must cross t and thus

do not cause the isolated area to cease to exist.

• Edge Removal Events: These can only remove destinations for ε-transfers, and thus

can only enlarge the isolated area.

With these technical Lemmas we are now ready to bound the number of non cut events.

The hierarchy used assumes depletion point additions/removals and speed level events occur

at the same level, but below cuts, and that edge removals occur at the bottom of the hierarchy.

Lemma 89. There are at most O(n) depletion point addition and removal events.

Proof. We show that, between cut events, once a depletion point is removed, it never returns.

Since there are at most n depletion points in the schedule, there can be at most 2n depletion

point addition or removal events. Intuitively, the removal of a depletion point creates an

isolated area, which by Lemma 88 persists. We then argue that, since work is never removed

from the right of the old depletion point, no new depletion point can appear there.

Suppose at event γ a depletion point is removed at t, and let t′ be the time of the next

depletion point. We show that [t, t′] is an isolated area. This follows because we do not

remove a depletion point unless there is no active ε-transfer from the corresponding depletion

interval to outside of it.

Fix any depletion interval, and observe that, as work is moved by the algorithm, the total

energy available at any time point to the right of the critical interval being decreased must

be increasing, due to the fact that the recharge rate is decreasing and the next depletion

point must be maintained. Since for any γ′ > γ, by Lemma 88 νt(γ
′) exists, and by the fact

that the algorithm does not merge critical intervals that appear on both sides of t, no critical

interval to the right of t is ever the source of an ε-transfer, and thus the energy at t is always

increasing, and so t can never be a depletion point again.

Definition 90 (work barrier). For a time t, a depletion point t′ is a t work barrier if there

is no active ε-transfer with source in [t, t′] and destination to the right of t′.

Lemma 91. If t′ is a t work barrier at γ caused by a right ε-transfer as described in Lemma 90,

then for any γ′ > γ, there is some t2 ≥ t′ such that t2 is a t work barrier at γ′.
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Proof. It is easy to see that for any isolated area νt(γ), the right endpoint is a t work barrier.

We show that the isolated area νt(γ) exists, and thus the work barrier exists at γ′ as the right

endpoint of νt(γ
′).

Assume the work barrier iss caused by a right ε-transfer T taken by the algorithm, then

suppose to obtain a contradiction that [t, t′] is not an isolated area. Then there is some

active ε-transfer T ′ in [t, t′] with destination to the left of t, which is the right endpoint of

the source of T . By Lemma 83, we can create an active ε-transfer from the source of T ′ to

the destination of T , contradicting there is a work barrier at t′.

Lemma 92. There are at most O(n) speed level events.

Proof. Let γ be a lower speed level event, and t be the left border of the critical interval

causing this event. We argue that there is an isolated area νt(γ). As a result, no job that

could be placed to the right of t will ever be the source of an ε-transfer again, and thus this

critical interval will never cause itself to decrease again (which could cause it to hit a lower

speed level again, or cause it to not be at an upper speed level). Since there are at most O(n)

critical intervals, there are at most O(n) such events.

We now show that νt(γ) exists.

• Case 1: Lower Speed Level Events. Consider the ε-transfer T , with source Cs that

was taken from the critical interval causing the lower speed level event at γ − 1. Let t be

the left endpoint of Cs. There are two cases, depending on the direction of T .

– Subcase 1: T is a right ε-transfer. By Lemma 90, if t1 is the right endpoint of

Cs, there was a t1 work barrier at some depletion point t′, and thus there was no

active ε-transfer from the right of Cs to the right of t′. Since Cs hit a lower speed

level, and no other event occurred, at γ there is no active ε-transfer from the start

of Cs to the right of t′. If we can show that there is no active ε-transfer from [t, t′]

to the left of t, then we have shown that νt(γ) exists. If such an active ε-transfer

did exist, then it would have crossed T . By Lemma 83 and Lemma 81, we would

could construct a higher priority active ε-transfer to the destination of T than T ,

contradicting that the algorithm took T .

– Subcase 2: T is a left ε-transfer. Let t′ be the work barrier caused by the
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parent of T (T must have a parent, since it is left-going and there is a path from the

destination of T to `L). By the definition of work barrier, there is no active ε-transfer

in [t, t′] with destination to the right of t′. If there were an active ε-transfer between

t and t′ with destination to the left of t, then by Lemma 83 we could construct T ′

with source to the right of the source of T , and the same destination as T , and thus

T ′ would have been higher priority than T by Lemma 81, so the algorithm would

have taken it instead of, or as the parent of, T . Thus [t, t′] is an isolated area.

• Case 2: Upper Speed Level Events. Consider the longest ε-transfer T , with source

Cs and destination Cd where Cd is the critical interval causing the upper speed level event

at γ − 1. There are two cases, depending on the direction of T .

– Subcase 1: T is a right ε-transfer. Consder the first event that causes Cd to

decrease again, and let T ′ be the ε-transfer with source Cd. At this event, if T ′ is a

right ε-transfer, let t be the right endpoint of Cd. Then there is a t work barrier. If

T ′ is a left ε-transfer, then if t is the depletion point immediately to the right of Cd,

there is a t work barrier to the right of Cs. In both cases, by Lemma 91, this work

barrier persists, and thus any right ε-transfer with destination Cd must be going to

the sink of a left ε-transfer, contradicting that the algorithm would have chosen it.

– Subcase 2: T is a left ε-transfer. Let t be the left endpoint of Cd. Let t′ be the

work barrier caused by the parent of T (T must have a parent, since it is left-going

and there is a path from the destination of T to `L). By the definition of work barrier,

there is no active ε-transfer in [t, t′] with destination to the right of t′. If there were an

active ε-transfer between t and t′ with destination to the left of t, it can be composed

with T by Lemma 83 to obtain a higher priority ε-transfer than T that the algorithm

could have chosen. Thus [t, t′] is an isolated area.

Definition 93 ((j, `) (active) work barrier). Let t1 be the first time that j can be run in `

(according to the speed levels of jobs in `). A time (depletion point) t′ is a (j, `) work barrier

( (j, `) active work barrier) if no job j′ with release time after t1, and deadline before that of

j, is part of an ε-transfer (path of active right ε-transfers) crossing t′ that does not contain

an edge taking j, or some other job with earlier deadline than j and release time before t1,
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from `.

Lemma 94. Suppose the algorithm chooses an ε-transfer T that contains an edge moving j

from `1 to `2. Then there is a (j, `1) (active) work barrier somewhere to the right of `1 and

to the left of where j is run in `2 (to the right of `1).

Proof. We prove the existence of the (j, `1) work barrier first. For the sake of contradiction,

suppose this does not hold, i.e., there exists ε-transfer T ′ that takes some job j′ with release

time after the first time j can run in `1, and with deadline before j, that does not contain

an edge taking j, or some other job appropriate job, from `1. Then by Lemma 83, we can

compose the pieces of T ′ and T together to get an ε-transfer R taking j′ (eventually) to `2, to

the destination of T . We will show that R is active and higher priority than T , contradicting

that the algorithm chose T . First note that the edge of T ′ taking j′ must be right going, as

the release of j′ is within `1. Additionally, j′ must be at the same speed level as j, or else it

would not be able to cross the first time j can run in `2.

If j and j′ are in the same critical interval, then we can create an ε-transfer from the

source of T to the destination of T taking j′ instead of j at `1, which is clearly higher priority

than T , as j′ is released later and has deadline earlier than j. Otherwise, j′ is not at a lower

speed level in `1 since it must be at a higher speed than j, so we can take an ε-transfer with

j′ as the source, which is higher priority than T as long as the source of T is `1 or to the

left of `1. If the source of T is to the right of `1, then it must be before `2, since right edges

cannot be below left edges of ε-transfers. Note that the edge from T into `1 before taking j

must had source `′ to the right of the destination of the edge taking j′, or else there would

be a Weak EDF violation. However, T ′ must cross `′, since the destination of the j edge in T

is to the right of `′. Thus, by Lemma 83, there is a way to compose T and T ′ to create an

ε-transfer that does not use j or some other job with earlier deadline than j and release time

before the first run time of j in `1.

We additionally note that there must be a (j, `1) active work barrier to the right of `1.

Otherwise, we could use the active ε-transfer from such a j′ as part of a path of ε-transfers,

which would be higher priority than T .
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Lemma 95. If t′ is a (j, `) (active) work barrier at γ created from j moving work right from

`, and there is still some work of j to the left of `, then for any γ′ > γ before j begins moving

work left, the algorithm takes no ε-transfer crossing t′ at γ′.

Proof. We prove the lemma for work barriers first. Let Cl be the last critical interval that is

reachable by some job j′ with release after j can be first run in `, and deadline before j. It is

clear that j′ must be at the same speed level as j for this to be a problem. There are two

cases: either the work barrier could be removed by Cl merging with another critical interval,

or work from a job from beyond the work barrier enters Cl.

• Cl merges with another critical interval. Let T be the ε-transfer at γ causing the

work barrier. We first show that, at γ, if Cl can merge with another critical interval

Cr that would give j′ an ε-transfer over the work barrier to the destination of j in the

ε-transfer causing the work barrier, then either Cl is at an upper speed level, or Cr is

at a lower speed level. If not, Cr could be the source of an ε-transfer with destination

that of T , and source to the left of T , making which would be higher priority than T .

Additionally, we can obtain a series of ε-transfers that would be higher priority than T ,

depending on two cases

– Case 1: j′ is merged with j in `. In this case, T could use j′ instead of j and

end in Cl.

– Case 2: j′ is not merged with j in `. Then j is not at an upper speed level in

`, and j′ is not at a lower speed level in `. Thus, an active ε-transfer exists taking j′

to Cl, and T could end in `.

If Cl decreases due to j′ leaving over an edge e, then there is a j′-isolated area at the

destination of e, and all ε-transfers must go through this depletion interval, and thus an

ε-transfer crossing the work barrier would have to leave out some point other than the

destination of e, contradicting that the algorithm took that ε-transfer (see Lemma 97).

Thus it must be that Cl is not at an upper speed level, and is not decreasing, and the

critical interval it merges with is increasing. The only remaining possibility is that Cr

was at a lower speed level at γ. Note that any job j̃ in Cr that could be used when Cr

and Cl merge must have deadline after that of j, or be released after `, as otherwise the
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ε-transfer uses a job with deadline before that of j that was alive in ` when j could be

first run there, or it contradicts the location of the work barrier at γ. Note also that Cr

increasing cannot be due to the addition from the left of j or any other job with release

time before the first time j can run in ` and deadline before that of j, as this would imply

that j′ could be taken into Cl instead, contradicting the ε-transfer taking the other job

was used. Similarly, Cr increasing cannot be due to the addition from the right of j or

any other job with release time before the first time j can run in ` and deadline before

that of j, as this would create a j-isolated area, and no ε-transfer would enter it from

outside (see Lemma 97).

If Cr increasing is due to some job j̃ with deadline before that of j, it must be coming

from the right, as otherwise there would be an active ε-transfer from j′ using this job

already. The source of this ε-transfer must be to the left of `, or to the right of Cl. In the

first case, we could construct a higher priority ε-transfer with same source and destination

ending in Cl. In the second case, there is an isolated area at the right endpoint of Cl, and

thus the only way to move work out of the isolated area is through Cl, so no ε-transfer

taken would cross the work barrier.

Now suppose Cr increasing is due to some job j̃ with deadline after that of j. First

assume that this ε-transfer taking j̃ is a right ε-transfer. Note that Cr must be in the

destination of j in T . However, by the fact that Cr was not increasing at γ, the destination

of j was not the destination of T , implying there is some work barrier to the right of

this destination. However, by Lemma 91, this work barrier could not have disappeared,

contradicting that a right ε-transfer was being taken to this destination of j. On the other

hand, this ε-transfer is a left ε-transfer, there is an isolated area at the right endpoint

of Cl, and thus the only way to move work out of the isolated area is through Cl, so no

ε-transfer taken would cross the work barrier.

• Work from some job beyond the work barrier enters Cl. Let this job be j̃. First

note that j̃ must be entering Cl from the right, since it must be a higher priority job than

j as it’s running between two times when j is run, and must be released before the first

time j can run in `, or else it would not be able to go beyond the work barrier, but if

so then the work barrier definition is not concerned with ε-transfers involving such jobs.
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Thus, because the edge taking j̃ is a left edge, there is a j̃-isolated I area starting at Cl.

Any ε-transfer using j′ before j̃ would contradict the property that no ε-transfers enter

the isolated area (see Lemma 97), and thus the algorithm never takes such an ε-transfer.

The active work barrier persists via an argument identical to that of Lemma 91, as we

can again show there is an isolated area that ends at the work barrier.

Finally, we bound the number of edge removal events. We will need one Observation

regarding the algorithm’s avoidance of cycles.

Observation 96. The algorithm will never take an ε−trasfer (la, ja)
s
a=0 such that for a1 6= a2,

la1 = la2. Intuitively this tells us the algorithm will never use an ε-transfer with a cycle.

With this, we now get the following bound on the number of edge removals.

Lemma 97. The number of edge removal events between cuts is at most O(n3).

Proof. The high level idea of the proof is to show that for each job there are two phases

of the algorithm between cuts. The first phase involves moving work from this job left to

right and the second phase involves moving work right to left. To show this, we demonstrate

that whenever a job moves work from left to right there is a work barrier that persists over

time. With this work barrier, it can be seen that this job will never move work to the right

again. With this in hand, we can show that the number of edge removals for each phase is

polynomially bounded. We now formalize this below.

Let j be an arbitrary job and consider the first time there is an ε−transfer T = (la, ja)
s
a=0

chosen by the algorithm such that for some a, ja′ = j and la′−1 > la′ . That is work from j

is moved right to left. Let t1 be the time that j is run in la′ . We say that Aj = [t1, t2] is a

j-isolated area if t2 is the minimum depletion point such that for every job j′ run after the

first depletion interval in A, say IAj , either dj′ ≤ t2 and rj′ ≥ rj, or everything reachable by

j′ is currently at an upper speed level. Equivalently, this says that for any job inside the

critical interval, the only way of moving work out is through the leftmost depletion interval.

The first step is to show that initially such a j-isolated area exists. Assume by contradiction

there is some ε-transfer that leaves IAj through a depletion interval that is not the leftmost

depletion interval. There are two cases to consider. Whether the edge leaving is a left going
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edge or a right going edge.

• Case: Left going edge There are two sub cases, depending on whether the source is

inside the left edge taken by j or whether the source is outside. In both cases, we argue

that you can form a higher priority ε transfer.

Assume there is an active ε-transfer T’ such that the source of T’ is under the left edge

chosen by j, that is, Ia′ ≤ IT ′s ≤ Ia′−1, and the destination IT ′d is to the left of t1 and

further T ′ does not leave IAj through the leftmost depletion interval. We need to argue

that you can combine part of T ′ with part of the original ε-transfer T to get a new

ε-transfer T ′′ that is longer than the one chosen, contradicting our choice of T as the

longest left-going ε-transfer. Specifically, take the original ε-transfer until we get to the

edge that T uses to leave IAj and take this instead. By Lemma 83 we can combine these

to form T ′′ To argue that the algorithm would have chosen T ′′ instead of T all that

remains is to argue that the destination of T ′′ was a sink at the time T was chosen. This

is a direct consequence of Lemma 84, that the algorithm does not choose crossing edges.

In the second sub case we can use similar approach here, the only difference being that

we may need to combine several new ε-transfers to reach the same contradiction.

• Case: Right going edge We essentially just need to prove the lemma that it is not true

that for every depletion point to the right that we can move work over that depletion point

with a right going ε-transfer. Equivalently, there exists at least one depletion point to the

right of the source of j that has no active right going ε-transfers over it. If there were no

such depletion point then combining this with Lemma 84 would give us a sequence of

right going ε-transfers that can be connected to the right-most depletion interval. Again

this would contradict our choice of T as the algorithm preferences right going before left

going ε-transfers.

The next step is to show that the properties of IAj persist over time. Namely, we need

to show that the only way to exit IAj is through the left most depletion interval. There are

two things we need to verify. First, that no new work is placed in IAj , and second, that any

critical interval reachable from a job in IAj remains at an upper speed level. To show the first

claim, we consider two cases. In the first case, assume that there is some ε-transfer chosen

by the algorithm with source outside of IAj and destination inside IAj . This implies that
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when this ε-transfer is chosen, there is a path from the destination to the rightmost depletion

interval. However this results in either a crossing edge or a cycle, both of which the algorithm

forbids.

In the second case assume there is some ε-transfer that puts work of some job j′ into IAj

but neither the source nor the destination are contained in IAj . There are two sub cases to

consider. If the critical interval j′ is being placed into is at a lower speed level, then note

that since middle pieces of ε-transfers do not change speeds this will not violate any property

of IAj . In the case where j′ is not at a lower speed level, this implies that taking the portion

of the ε-transfer that starts in this critical interval and then leaves IAj is an active ε-transfer,

contradicting that all critical intervals currently reachable from IAj are at upper speed levels.

Lastly, we show that any critical interval reachable from a job in IAj remains at an upper

speed level. Assume by contradiction that some the algorithm chooses some ε-transfer with

a job j′ as the source such that j′ is part of a reachable critical interval from IAj (Indeed

this is the only way for a critical interval at an upper speed level to decrease). Note that

the destination of this ε-transfer is not an an upper speed level. However then by Lemma 83

we can combine this ε-transfer with an ε-transfer emanating from IAj contradicting that all

critical intervals from IAj are currently at upper speed levels.

The last step is to show that as a result of the existence of the j-isolated interval, j can

no longer move work to the right. Indeed assume by contradiction that at some future time

point, j is involved in an epsilon transfer (la, ja)
s
a=0 where j′s work is moved from la−1 to la

for some a such that la−1 < la. There are three cases to consider.

First consider the case when la−1 < t1 and la > t1. Note by the definition of the A, the

only way to move work out of A is using the left most depletion interval IAj . Further, by

Weak EDF, there can be no edge with source greater than la−1 and destination greater than

la or less than la−1. These together tell us that at some point the algorithm chooses another

ε−transfer with source la−1, contradicting Observation 96.

In the second case assume both la−1 and la are not contained in A. By definition of an

active ε−transfer we know that js is not at an upper speed level in ls. However we also

know that js is reachable by all pieces of j, at least one of which is contained in Aj. This

contradicts the second property of Aj, namely all jobs reachable from inside Aj are at upper

118



speed levels.

For the last case, assume that both la−1 and la are contained in A. Similar to the first

case, since we can only move work out of A from the leftmost depletion interval, at some

point the algorithm must choose another ε-transfer emanating from la−1 again contradicting

Observation 96.

Now that we have established a left and right phase for job j, we can show that there are

only polynomially man edge removals for job j.

Suppose a job j is moving out of a depletion interval along a right edge of an ε-transfer,

and the work of j is completely removed from the depletion interval. Then j never reenters

the depletion interval by a right edge of an ε-transfer.

We show that any edge that could return the work of j to the depletion interval ` must

end to the left of a work barrier, which will contradict that the algorithm chose such an

ε-transfer.

Let γ be the event when the work of j is completely removed from the depletion interval,

and T be the ε-transfer that removed j. Let `2 be the destination of j in T . Suppose that at

some later event, the algorithm takes another ε-transfer T ′ that moves work from j back into

` from the left of `. Our goal is to show that the path of ε-transfers from the destination of

T ′ must cross a work barrier, and any such ε-transfer that can do this would cause a Weak

EDF violation.

We first show that T ′ must be a right ε-transfer. To see this, first note that the edge

e taking j in T ′ is right, so it cannot come after a left edge containing it. Additionally, e

cannot come after a series of smaller left edges starting from the right of `, as j must be

runnable in the entirety of `, so whatever edge of T ′ that went left past ` must have been

able to stop in `, contradicting the algorithm took T ′. A left edge going from the right of ` to

the left of the right endpoint of e is not possible, since, by Lemma 95, from the event when

T was taken, there is a (j, `) work barrier somewhere before `2, so any job taken would have

to have deadline before j and been released before j can be first run in `, causing a weak

EDF violation if this job were taken and j were moved into `. A series of left edges going

from ` to the left of `2 is also not possible, as either the edge crossing `2 would cause a weak

EDF violation, or the algorithm could have taken a more minimal ε-transfer not including j,
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contradicting that it took T ′.

By Lemma 94, any destination of T ′ must be to the left of a (j, `) active work barrier,

which persisted by Lemma 95 from the one from the j edge in T , as any job that could cross

the work barrier would have to have deadline before j and been released before j can be

first run in `, causing a weak EDF violation if this job were taken and j were moved into `.

Thus, T ′ must go to a sink that is the source of a shorter left ε-transfer, a contradiction that

T ′ was chosen, or the path of ε-transfers from T ′ must use a job that could cross the work

barrier, and thus has to have deadline before j and been released before j can be first run in

`, causing a weak EDF violation by j being moved into `, contradicting the algorithm took

T ′

Combining all of these, we now give a Theorem bounding the total runtime of our

algorithm. Again note that this could likely be improved by removing the hierarchy at the

expense of further complicating the analysis.

Theorem 98. The runtime of Algorithm 4.1 is O(n7k2).

Proof. We first calculate an upper bound on the total times the algorithm stops for some

event. Multiplying this by the time spent in between events will give us our final bound.

Note that from Lemma 79 there at most O(kn2) cut events. Between each cut event there at

most O(n) depletion point events and O(n) speed level events. Finally, there are at most

O(n3) edge removal events between any two other events. Combining this gives us that line 5

of Algorithm 4.1 will be executed at most O(kn6) times.

To complete the analysis we need to bound lines 6−8, line 9, line 11, and line 14. Consider

first lines 6− 8. Note there are at most O(n2) unique job depletion interval pairs, and line 7

is done in time O(1). Line 8 also takes time O(1) giving us total time O(n2).

To bound line 9, the UpdateGraph procedure, recall that we recalculate both the schedule

and the graph. To calculate the schedule note there are n depletion intervals each with at

most n jobs. Since the YDS algorithm runs in time O(n log2 n) our total time to compute

the schedule is O(n2 log2 n). For computing the subgraph of the distribution graph recall

that for every depletion interval, our algorithm will use a depth first search on n vertices and

possible n2 edges giving a total runtime of nO(|E|) = O(n3).
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To bound line 11, note that checking each depletion point for possible removal takes time

O(n) and fixing speed levels takes time at most O(n2) as there are at most n different speed

levels for each job.

Finally to bound line 14 note to calculate the rates such that depletion points remain can

be done in O(n2) since there at most O(n) atomic intervals inside each depletion interval. To

calculate the next event, for edge removals takes time O(n2). For speed level events, since we

must consider the possibility that jobs merge along the way there are O(n2) calculations for

each depletion interval, and therefore takes a total of O(n3).

Combining this, we see that the runtime is O(kn6(n2 log2 n+n3 +n2 +n3)) = O(kn9).

4.6 ALGORITHM CORRECTNESS

In this section we demonstrate our algorithm correctly finds the optimal schedule. At a high

level, in we show that at all steps of the algorithm we maintain optimality conditions 1-3 and

that when the algorithm can no longer make progress it satisfies the last optimality condition.

We first consider movement of work by the algorithm, and its handling of speed level and

edge removal events. We then consider cut events.

4.6.1 Non-Cut Events

We now show that moving work and handling non-cut events does not violate any of the

optimality conditions maintained throughout the algorithm’s execution.

Theorem 99. The algorithm maintains Properties (a) to (c) of Theorem 68 when moving

work and handling non-cut events.

Proof. Clearly, when the recharge rate is initially set from the YDS schedule of the instance,

Properties (a) and (b) are maintained. Property (c) follows from the YDS property of the

schedule: First, every job is assigned the single speed level corresponding to the speeds at

which it is run when it is run; Second, if there were a time at which a job j is alive but some

other job j′ was being run, with the speed level of j′ less than the speed level of j, this would
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contradict the YDS property as j′ would have to be part of the critical interval of j and thus

have the same speed level.

Moving Work. Since the step of moving work does not change the speed levels of jobs,

and the process stops when critical intervals hit a new discrete speed (i.e., an edge becomes

inactive) or a job no longer has work to move, moving work cannot violate Property (c).

Additionally, work is moved in a work-preserving manner for each job, and the process stops

if at some new time the total amount of energy available becomes zero (i.e., a depletion point

appears), so Property (a) is maintained. Property (b) is maintained by the fact that we

have a YDS schedule between critical intervals. By the fact that at non-cut events, only new

ε-transfers are chosen, the handling of these events does not violate Properties (a) to (c).

4.6.2 Maintaining the SLR & Reaching Optimality

Consider a situation when there is a depletion interval ` for which there is no path to

L + 1 in the distribution graph. This means we are unable to move workload out of this

depletion interval and, thus, cannot lower the recharge rate without violating the SLR or

other optimality conditions. The following lemmas take a closer look at such situations. In

particular, we show that we either can fix the speed levels, adapt the set of depletion intervals,

or have found an optimal solution.

We start with the most intuitive reason for not being able to make progress: there

are jobs that could still transfer work to the rightmost depletion interval (possibly taking

several ε-transfers), but the SLR requirement renders any such path inactive. For a single

ε-transfer, we can easily change the speed levels such that using this ε-transfer will not violate

Properties (a) or (b) of the SLR. However, to handle (c) and (d), we have to take care to

adapt the speed levels of certain jobs in a compatible way. The following lemma takes care of

that.

Lemma 100. Assume there is a depletion interval `0 without a path of active ε-transfers to

L+ 1. Furthermore assume there is a path to L+ 1 utilizing at least one inactive ε-transfer.

Then we can fix the speed levels and increase the set of nodes reachable from `0.

Proof. Let `min and `max denote the minimal and maximal depletion intervals reachable from `0
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via a path of active ε-transfers. Obviously, no depletion interval in { `min, `min + 1, . . . , `max }
can reach L+ 1 via a path of active ε-transfers. In fact, by definition, no active ε-transfer

leaves the union of these depletion intervals. Now fix an arbitrary (inactive) ε-transfer

T leaving U :=
⋃`min

`=`min
Il. Let j denote the job used to move work out of U in T and

define the job set Jj of jobs that are part of some (active or inactive) ε-transfer that also

uses j. Note that either (a) any job j′ ∈ Jj is at a lower speed level in U or (b) any job

j′ ∈ Jj is at a higher speed level outside of U . If that were not true, we get two (inactive)

ε-transfers leaving U , one that can be lowered at its source (but is inactive because its

destination is at an upper speed level) and one that can be increased at its destination (but

is inactive because its source is at a lower speed level). Since both of these use ja, we can

concatenate them to get an active ε-transfer leaving U , contradicting our assumption. We

now can simultaneously fix the speed levels of alls jobs j′ ∈ Jj by either (a) decreasing their

speed levels L(j′, `) for all ` ∈ { `min, `min + 1, . . . , `max } or (b) increasing their speed levels

L(j′, `) for all ` /∈ { `min, `min + 1, . . . , `max }. We iterate this until there are no more inactive

ε-transfers leaving U .

It is easy to check that this procedure maintains Properties (a), (b), and (d) of the SLR.

For Property (c), note that the described procedure (a) does not change the speed level

difference between any two depletion intervals that are both inside or both outside of U and

(b) any job that is active in- and outside of U will be part of some ε-transfer considered by

the procedure, and thus its differences considered in Property (c) of the SLR decrease by

exactly one at the left border of U and increase by exactly one at the right border of U .

After fixing the speed levels, the set of nodes reachable from `0 has increased beyond U . This

proves the lemma’s statement.

Lemma 100 shows how to continue to make progress in some situations. However there are

still cases that don’t allow progress with the current distribution graph but are not covered

by that lemma. Also, there is a subtlety in the lemma’s proof when we decrease speed levels.

Consider a job j whose speed level in ` gets decreased. By Property (c), we have to make

sure that, for any `′ < `, the difference δ`,`′ := L(j, `)− L(j, `′) remains non-negative (note

that, by the same property, this value does not depend on j). To guarantee this, we merge
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any two depletion intervals as soon as the value δ`,`′ becomes zero.

It remains to show that if (after repairing speed levels and merging depletion intervals)

we still cannot make progress, we actually found an optimal solution. We prove this in the

following lemma.

Lemma 101. Assume there is a depletion interval `0 for which there is no path of (active or

inactive) ε-transfers to L+ 1. Then the current solution is optimal.

Proof. We show the optimality of the current solution by showing that Property (d) of

Theorem 68 holds. Together with the fact that our algorithm maintains Properties (a) to (c)

of this theorem (see Theorem 99), this implies that the current solution is optimal.

To see that Property (d) holds, first notice that any job processed at a time t ∈ I` with

deadline dj ∈ I`′ (`′ > `) implies a (possibly inactive) ε-transfer of length one from ` to `′ (by

just moving work of j). Now let `0 denote the rightmost depletion interval without a path

of ε-transfers to L + 1. Assume Property (d) is not true, so there is a job j with deadline

dj > τ`0 and j is processed before τ`0 . Let `1 ≤ `0 denote the depletion interval in which j

is processed the first time and `2 > `0 the depletion interval that contains its deadline dj.

If `1 = `0, we’re done: As noticed above, any such job would imply a (possibly inactive)

ε-transfer of length one to `2. But then, as j was chosen maximal, there is a path from `2

to L + 1. Together, these ε transfers form a path from `0 to L + 1, a contradiction. So

consider the case `1 < `0. Note that, without loss of generality, we can assume there is a job

j′ that is processed in `0 and has release time rj′ < τ`0−1. If there is no such job, we could

simply merge the depletion intervals `0 and `0− 1. Similar to the argument above, this job j′

gives us a (possibly inactive) ε-transfer of length one from `0 to the left. By iterating this

argument, we get a path of ε-transfers from `0 to `1 and, thus, to `2. As before, this yields a

contradiction.
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5.0 CONCLUSION

In this thesis, we provide a rigorous examination on the complexity of computing optimal

schedules across a wide array of settings for speed scalable processors. There were four

primary objectives of this thesis:

1: Determine the complexity across all thirty-two settings.

2: Extract broader complexity trends.

3: Develop our understanding of the combinatorial structure of optimal schedules.

4: Develop algorithmic tools to help us better reason about energy as a computational

resource.

In Section 5.1 we discuss our progress vis--vis these objectives, and in Section 5.2 we discuss

the remaining open problems as well as any insight this thesis may provide on them.

5.1 RESEARCH OBJECTIVES

5.1.1 Objective 1

The results of our first and second objective are captured in Table 2. As Table 2 shows, we

resolved the individual complexity of all but four of the possible thirty-two settings. We

discuss future approaches to resolving these remaining four settings below.

5.1.2 Objective 2

Beyond resolving individual complexities, our second objective aimed to utilize this taxonomy

to capture complexity trends on a broader scale, thereby enabling practitioners to reason
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about the implications of their modeling and design decisions. One broader observation is that

certain modeling decisions are sufficient for determining complexity. For example, any problem

involving fractional flow, or any setting with identical jobs can be solved in polynomial time.

In the former setting this generally follows from the ability to formulate the problem as a

linear program whereas in the latter, the identical jobs give rise to simplified structures that

one can leverage to yield polynomial time algorithms. On the contrary, problems involving

integral flow in general prove to be more difficult. Aside from the simplified setting of identical

jobs there are only hardness results.

Turning to the relationship between the energy budget and the flow plus energy problems,

we see for every setting for which the complexity of each is known, the complexities (in terms

of membership in P or NP-hardness) match, and furthermore we give explicit reductions

between the two settings. So the takeaway here is that while modeling the performance

objective as well as the workload can drive complexity, the decision of how we deal with the

dual objectives is less relevant from a complexity standpoint. As we discuss below, it remains

a possibility that one of the open problem will violate this general trend.

5.1.3 Objective 3

Despite improving our ability to reason about the structure of optimal schedules across

several settings, many of these insights are difficult to crystalize in a compact statement. We

provide here the insights that best capture the high level structure and that acted as guiding

principals in our algorithm design. Beginning in Chapter 3, the primary structural takeaway

is understanding how the optimal schedule for k jobs changes as a job k + 1 of lower density

is added. More precisely, the insight was understanding which of these first k jobs we need to

increase in speed as we slowly increase the processing time given to job k+ 1. This structural

insight is what allows us to build the schedule in an inductive manner.

The single most important structural insight from Chapter 4 is that when lowering the

recharge rate, work tends to flow later in time in order for the schedule to remain feasible.

Unfortunately this monotonic flow of work from left to right is not strict, which indeed is

where much of the difficulty stems from. As a guiding principal however, determining paths
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on which work can flow towards the right is what allows us to use the homotopic approach of

slowly lowering the recharge rate until reaching the optimal schedule.

5.1.4 Objective 4

Turning to our algorithmic contributions, we see that the general technique of formulating the

given optimization problem as a mathematical program, subsequently using duality conditions

to structurally characterize an optimal schedule, and finally using a homotopic approach to

search for a schedule that satisfies this characterization, is a common theme in the polynomial

time algorithms we develop. Both in Chapters 3 and 4, this general framework led us to

polynomial time algorithms, and many of the polynomial time algorithms from Chapter 2

follow as a result of these. It is our hope that this approach will prove applicable in other

energy aware optimization problems.

The second algorithmic tool, again seen both in Chapters 3 and 4, is the use of monotonicity

in bounding the runtime of our algorithms. Not surprisingly, in order to get a grasp on

bounding the number of events that force our homotopic search to pause and recompute, we

must hone in on some property that is monotonic. In Chapter 3 this is relatively straight-

forward, a result of us considering jobs in a highest density first ordering. However as we see

in Chapter 4, it was necessary to consider a nested structure of events in order to extract

monotonicity properties. While this may lead to weaker bounds, again it is our hope that

this nesting technique proves useful in more general settings.

5.2 OPEN QUESTIONS

Looking forward, there are two natural open questions from both the flow and deadline

settings.
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5.2.1 Open Problems for Flow Objective

In the flow setting, examining Table 2, we see we have resolved the complexity (in terms of

membership in P or NP-hardness) of all settings except for FE-IDUA, FE-ICUA, FE-IDWU, and

FE-ICWU. It is worth noting that given our reduction from the discrete case to the continuous

case it is likely there are only really two open problems to resolve. That is, given our reduction,

a polynomial time algorithm for the continuous case yields a polynomial time algorithm for

the discrete case, and a hardness proof for the discrete case implies a hardness result for the

continuous case. While it is possible that FE-IDUA is in P while FE-ICUA is NP-hard, this

seems unlikely given that for every other setting in Table 2, the complexity of the discrete

case and the continuous case match. We therefore examine only the discrete setting in our

discussions below.

Question 1: Is FE-IDUA NP-hard or in P?

In this setting we are looking to minimize flow plus energy with integral flow, discrete

speeds, unweighted jobs, and arbitrary sized work. The only evidence suggesting membership

in P is that the problem of minimizing integral flow with unweighted jobs and arbitrary

sized work on a single machine is in P. It is well known that the scheduling policy shortest

remaining processing time first achieves optimality. However beyond this somewhat weak

evidence, the existence of a polynomial time algorithm does not seem promising. Initial

attempts proved difficult mainly a result of the fact that the structure of the schedule is

highly sensitive to small perturbations of the instance. For example, slightly altering the

amount of work for a single job can cause the completion ordering to change drastically. This

seems to suggest that it is unlikely there are nice structural properties to guide the design

and analysis of our algorithm.

Beyond our current inability to circumvent the structural issues, stronger evidence suggests

that this problem is likely NP-hard. Looking at 2, we see that across all formulations where

the complexity has been resolved, the complexity of the flow plus energy and budget problems

are identical. This combined with the NP-hardness proof of B-IDUA suggest that if this

trend holds true for all settings then FE-IDUA is NP-hard. Unfortunately, it is not clear

how to establish a reduction from FE-IDUA to B-IDUA as we did in other settings, since
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here we will not have a FIFO completion ordering. So one insight here is that the same issue

seems to be preventing both a positive and hardness analysis. Overcoming these obstacles

will require new ideas in dealing with the fact that “similar” inputs can have vastly different

completion orderings.

Question 2: Is FE-IDWU NP-hard or in P?

In this setting we are looking to minimize flow plus energy with integral flow, discrete

speeds, weighted jobs, and unit sized work. While this setting is similar to FE-IDWU in the

NP-hardness sense, there is one major difference which strongly suggests this problem is not

in P. Whereas FE-IDUA is in P on a single machine without energy, minimizing integral flow

on a single maching for weighted jobs and unit sized work has remained an open question

for over 20 years. Since an algorithm for FE-IDWU would also yield an algorithm for the

single speed case, resolving the complexity of this problem with a polynomial time algorithm

will require new insights that have alluded researchers for the past 20 years. In terms of

NP-hardness, we are in a similar situation as the previous setting where the reduction from

the budget case does not seem to extend due to chaotic completion orderings.

5.2.2 Open Problems for Deadline Objective

Question 3: Can we find a polynomial time algorithm without the well separated

assumption?

We present two major open problems related to deadline scheduling with a solar cell

stemming from Chapter 4. One could argue the main caveat with this algorithm is the

polynomial time runtime is predicated on the speeds being “well separated”. While we

provide argumentation why this is a realistic assumption, removing this assumption would

strengthen the result and perhaps offer insight into improving the runtime.

Question 4: Can we find a polynomial time algorithm for a non-fixed recharge

rate?

A second open problem would be to consider a slight variation on the optimization

problem with a generalized recharge rate assumption. The variation is instead of minimizing

the recharge rate, the recharge rate is fixed and we are tasked with finding the minimum
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energy feasible schedule for this fixed recharge rate. It is not terribly difficult to see that our

algorithm actually solves this variation. The open problem comes by removing the assumption

that the recharge rate is constant and instead considering piece-wise linear recharge rates. So

while the former setting would be appropriate for say finding a minimum energy schedule

for a single day (where the amount of sunlight is constant), the latter generalizes to finding

optimal schedules for weather patterns emerging over a longer duration. It is not clear a

priori how to generalize the homotopic approach presented in Chapter 4 when the recharge

rate is no longer constant.
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