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ABSTRACT

The Centers for Disease Control and Prevention (CDC) estimates that about 8,000 deaths in the
United States are caused by melanoma skin cancer each year. Melanoma has become the most
lethal skin cancer over the past three decades. Immunotherapies were introduced to Melanoma
patients in the 60’s, and Interferon Alpha (IFN o) is one of the mostly used drugs for
immunotherapy. Previous studies showed that using IFN a-2b might increase the survival rate of
patients with high-risk melanoma skin cancer. However, not all patients respond to
immunotherapies. So ECOG 1697 (E1697) trial was performed to compare the effect of patients
obtained four-week high-dose IFN-a2b and the control group. This project utilizes a subset of the
E1697 patients to search for potential immune-related genes that are associated with the
prognosis of patients with localized melanoma. Both SNP and gene level analysis were
conducted. This study has important public health significance because it identifies genetic factors
associated with prognosis of local melanoma, which may be used to guide the treatment of this

subgroup of melanoma patients in the future.
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1.0 INTRODUCTION

11 MELANOMA

1.1.1 General Introduction

According to the American Cancer Society, of all cancers, skin cancer is by far the most
common one. Melanoma is the deadliest type of skin cancer. Over the past three decades,
melanoma has the fastest growth of incidence rate among all skin cancers. The Centers for
Disease Control and Prevention (CDC) estimates that about 8,000 deaths in the United States are
caused by melanoma skin cancer each year (Plescia, Protzel Berman, & White, 2011). The
American Cancer Society estimates that in 2015, over 73,000 new melanoma cases will be
diagnosed, and nearly 10,000 people are expected to die from it in the United States (American
Cancer Society. Cancer Facts & Figures 2015).

Melanoma incidence is higher in whites than in blacks and Asians, and increases as
people age. However, it is also one of the most common cancers in young adults (Bleyer, O'leary,
Barr, & Ries, 2006), especially young women. Ultraviolet (UV) light exposure is a major risk
factor for most melanomas (Parkin, Mesher, & Sasieni, 2011). Other known risk factors include
large numbers of moles, fair skin, family or personal history of skin cancers, and a weakened

immune system. Signs of melanoma typically seen include a new spot on the skin, a spot that is



changing in size, shape, or color, and a spot that looks different from all of the other spots on

skin (known as the ugly duckling sign).

1.1.2 Immunotherapy

The treatments of melanoma include surgery, immunotherapy, targeted therapy, chemotherapy,
and radiation therapy. Early-stage melanomas are often treated with surgery, but late-stage
melanomas require advanced treatments after surgery. These advanced melanomas are difficult
to treat with radiation and chemotherapy. Over the past few years, melanoma treatment is
gradually transformed from the traditional chemotherapy and radiation therapy to
immunotherapy and targeted therapy.

The human immune system is a collection of organs, special cells, and substances that
play a protective role from infections and other diseases. Immune response has a strong impact
on melanoma prognosis (Herrera-Gonzalez, 2013). Immunotherapies stimulate a patient’s own
immune system with medicines to recognize and destroy the melanoma cancer cells.

Immunotherapies were introduced to Melanoma patients in the 60’s. One of the
commonly used drugs for immunotherapy is Interferon Alpha (IFN o). Interferon is a man-made
copy of human protein. It helps the immune system to fight viral infections. Interferon Alpha-2b
(IFN a-2b) treatment is often given as a shot under the skin. Studies showed that using IFN a-2b
might increase the survival rate of people with high-risk melanoma skin cancer (Kirkwood et al.,

2004; Kirkwood et al., 1996).



1.1.3 Clinical Biomarker for Melanoma Patients on Immunotherapy

A biomarker usually refers to a measurable substance in the body that may be associated with the
risk or prognosis of a certain disease. In melanoma immunotherapy, previous immune-based
cancer therapies have found several serum biomarkers that may play potential prognostic or
diagnostic roles for melanoma (Tartour et al., 1994; Wittke et al., 1999). However, these studies
have not completely resolved the issue as how well the patients respond to immunotherapies. As
a result, there is need to continue identifying immune biomarkers capable of predicting clinical

responses (Disis, 2011).

1.2 E1697 STUDY

E1697 (ECOG 1697) is a randomized intergroup trial aimed to compare the effect of two
treatment arms: (A) observations with no evidence of disease, (B) patients obtain four weeks
high-dose IFN-a2b with no evidence of disease. The study was terminated for futility in Oct.

2010.

13 IMMUNOCHIP

Immunochip is a customized Illumina Infinium single-nucleotide polymorphism (SNP)
microarray. It contains close to 200,000 genetic markers drawn from genomic regions possibly

associated with one or more immune-mediated disease. Deep replication of meta-genome-wide



association studies (GWASs), and fine mapping of GWAS loci were the two major goals of
Immunochip research (Parkes, Cortes, van Heel, & Brown, 2013).

Genetic association studies examine the association of genetic variants with a disease.
Immunochip is a high-density SNP array that provides cost-effective genotyping of common and
rare variants to fine-map the established immune-related loci. This is a powerful tool for
immunogenetics gene mapping in identifying large numbers of genetic loci (Cortes & Brown,

2011).

1.4  GOAL OF THE STUDY

The effects of immunotherapies have been shown in previous studies on patients with melanoma
skin cancer. However, not all patients respond to immunotherapies. This study utilizes a subset
of the E1697 patients to search for potential immune-related genes that are associated with the
prognosis of patients on either one-month high dose IFN a-2b arm or the observation arm. Our
results will provide insights for the mechanism of how the patients’ immune system affects the
prognosis of melanoma and provide potential prognostic (and predictive) biomarkers for

melanoma patients.



2.0 METHODS AND RESULTS

21 STUDY SAMPLE

This is a correlative study of E1697 (ECOG 1697), which is a phase Il randomized trial to
compare the efficacy of four weeks of treatment of high-dose IFN-a2b with the observation arm.
The current analysis aimed to discover prognostic genetic markers of melanoma patients. The
analysis set is a subset of data from E1697 trial, which contains 216 randomly selected subjects.
Blood samples were obtained at the study entry, and Immunochip was used to genotype the

patients.

2.2 DATA

2.2.1 Starting Files

The SAS file, e1697_spore_29aprill15.sas7bdat, is the clinical data I got for the subset of E1697
trail from the ECOG statistician, which contains the following variables:

Columnl: case (case number: ranges from 15080 to 36000)

Column2: trtm (treatment: A=control group, B=4-week high-dose IFN-a2b group)

Column3: sex (1=male, 2=female)



Column4: BRSLW_THICKNESS (tumor Breslow’s depth in millimeters)

Column5: CLARK_LVL (Clark’s level)

Column6: LDH_RS (Lactate dehydrogenase value)

Column7: LDH_ULN (LDH upper limit of normal)

Columna8: PIG (Pigmentation: 1= amelanotic, 2= melanotic, -1= unknown)

Column9: PS (ECOG Performance status)

Column10: ULCER_YN (Ulceration: 1=no, 2=yes, -1=unknown)

Columnl11: surv_y (survival years)

Column12: rfs (relapse free survival years)

Column13: rfs_ind (relapse free survival index: 1=event, O=censored)

Column14: surv_s (survival index: 1=event, 0=censored)

Column15: age (age at diagnosis)

ImmunoChip_GeneAnnotation.csy, is a file with gene annotation information. It contains
197076 lines (SNPs) and 8 columns:

Column 1: Name (rs number for SNP identifier)

Column 2: Chr (Chromosome number)

Column 3: Coordinate

Column 4: GeneSymbol (abbreviation of gene name)

Column 5: GeneLocation

Column 6: ExonLocation

Column 7: CodingStatus

Column 8: AminoAcidl.AminoAcid2



2.2.2 PLINK

Plink was used to perform the Quality Control of the genotype data. Plinkis an open-
source command-line network connection tool written by Simon Tatham. It is a whole genome
association analysis toolset for performing a range of basic, large-scale analyses (Purcell et al.,
2007). The PLINK program and instructions can be found at

http://pngu.mgh.harvard.edu/~purcell/plink/.

2.2.3 Binary Files

The original genotype data were in binary PED files. The BED file, Mel_IC.bed, held the actual
genotype information. It was a compressed file, which cannot be viewed with a standard text
editor as the FAM and BIM files. The FAM file, Mel_IC.fam, contained subject information. The
first six columns of BED file are:

Columnl: Family ID

Column2: Individual ID

Column3: Paternal ID

Column4: Maternal ID

Column5: Sex (1=male, 2=female)

Column6: Phenotype (-9=missing, 1=unaffected, 2=affected)

The BIM file, Mel_IC.bim, is an extended MAP file with two columns of allele names.
The order of the columns are arranged as followed:

Columnl: Chromosome

Column2: SNP Name


http://en.wikipedia.org/wiki/Free_and_open-source
http://en.wikipedia.org/wiki/Free_and_open-source
http://en.wikipedia.org/wiki/Simon_Tatham
http://pngu.mgh.harvard.edu/%7Epurcell/plink/

Column3: Cytogenetic Distance (in centimeter)
Column4: Physical Distance (bp)
Column5: Allele 1

Column6: Allele 2

2.2.4 Quality Control

In Genome-wide association studies (GWAS), the quality control (QC) procedure is a critical
element to inspect and clean data by reducing both the number of individuals and the number of
SNPs passed on to downstream analysis (Turner et al., 2011; Weale, 2010). Because hundreds of
thousands of genotypes are generated in GWAS, the occurrence of unidentified genotyping error

may lead to spurious results.

2.2.4.1 Relationship Check
Relationship check is used to identify and record discrepancies between pedigrees provided and
relatedness inferred from the genotype data by estimating the coefficients of identity by descent
(IBD) (Turner et al., 2011).

SNPs with minor allele frequency (MAF) < 0.05 (a total of 20658 SNPs) were removed
given the very limited sample size of the study, because they tend to have poorly behaved test

statistics.

./plink --bfile ../Mel_IC --maf 0.05 --genome --rel-check --genome-full

--min 0.05 --noweb --out Mel IC_relationcheck

A list of heterozygous haploid genotypes was written to Mel_IC_relationcheck.hh file.

Whole genome IBD information was written to Mel_IC_relationcheck.genome file.
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Figure 1. Relationship Check plot

Figure 1 is a plot showing the information of relative pairs of individuals. Z0 and Z1
denote the probability that individuall and individual2 in a family share 0 or 1 allele at the
marker locus. We expected to see all individual pairs on the diagonal. Figure 1 shows no specific
pattern or weird points except for the unusual point near 0.00. This is consistent with the fact that
all our subjects are not related to each other. The unusual point shares sample 1Ds as follows:

130624, 132789, 130777, 132879

2.2.4.2 Missing Data Check

We next checked the missing data by individual and by SNP.

-/plink --bfile ../Mel_IC --missing --noweb --out Mel IC_misscheck

./plink --bfile ../Mel_IC --het --noweb --out Mel IC_misscheck

Through the first command line above, missing data information by individual was
written to Mel_IC_misscheck.imiss file, and missing data information by locus was written to

Mel _IC_misscheck.Imiss file. The second command line above wrote the individual



heterozygosity information to Mel_IC_misscheck.het file to check individuals with outlying

heterozygosity rate.

T

0.04 0.05
I I

F_MISS
003
|

0.02
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0.01
I

Observed_het_rate
Figure 2. Missing data check by individual
The observed heterozygosity rate per individual is plotted on the x axis of Figure 2 and
the proportion of missing SNPs per individuals is plotted on the y axis. Figure 2 indicated two

samples (SS0016, SS0093) with high missing rate (proportion of sample missing > 0.05) at the

top of the plot.
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Figure 3. Missing data check by SNP

Figure 3 shows a histogram of the missing data rate. Most of the proportion of sample

that is missing is close to 0.00.

2.2.4.3 Population Structure Check

Population stratification is the systematic difference in allele frequencies between
subpopulations. Population stratification may introduce false positive results if not proper
controlled. Population structure check is aimed to detect subpopulation structure of the study
population using multidimensional scaling (MDS) on SNP genotype data (Turner et al., 2011).

We chose the number of dimension to be 4.
/plink --bfile ../Mel_IC --remove rm.list.txt --make-bed --noweb --out
Mel IC_removed
-/plink --bfile Mel_IC_removed --noweb --indep 50 5 1.01
./plink --bfile Mel IC removed --extract plink.prune.in --make-bed --

noweb --out Mel IC_pruned

11



./plink --bfile Mel _IC pruned --maf 0.05 --noweb --out Mel IC popustra
—genome
./plink --bfile Mel _IC pruned --maf 0.05 --noweb --out Mel IC _mds --

read-genome Mel IC_popustra.genome --cluster --mds-plot 4

The MDS plots of the 4 dimensions are shown in Figure 4. In our study, what we
expected to see is that all the plots are almost like residue plots instead of any specific structure

or pattern, so that we would not treat population structure as a confounder.

-0.04 0.00 002 004

-0.02 0.02

0.06

<005 000 005

-0.04 000 004 008

0.04

c4

0.00

-0.04

Figure 4. Population structure matrix

Figure 4 demonstrated that, overall, there is no obvious population structures, except for a
few data points. Therefore, separate population structure plots with individual IDs were made to

find those outliers.
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Figure 10. Population structure plot between C1 and C4

All of the five population structure plots above indicate the following four outliers:

130624, 130777, 132789, 132879
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According to relationship check, missing data check and population structure check
results, we finally decided to remove six samples (130624, 130777, 132789, 132879, SS0016,

SS0093) from original data set after quality control process.

2.3  CLINICAL FACTORS

2.3.1 Model Selection

Cox proportional hazard regression was used to check the important clinical factors that affect
the prognosis of the patients. The data file used in the analysis is 1697 _spore_29aprill15.csv,
which contains the final clinical data of these patients provided by the ECOG statistician.
Clinical factors investigated in the analysis included trtm, sex, age, BRSLW_THICKNESS,
CLARK_LVL, LDH_RS, LDH_ULN, PIG, PS and ULCER_YN (details listed in 2.2.1).
Relapse-free survival (RFS) was used as the endpoint of the analysis.

Purposeful selection is a considerate method to select covariates in the regression model
manually. It follows a slightly different logic to stepwise selection as proposed by Hosmer and
Lemeshow (Hosmer Jr, Lemeshow, & Sturdivant, 2013). First, univariate analysis was

performed for each covariate of interest and Wald test p-values are shown below in Table 1.

16



Table 1. Univariate model of RFS

Covariate Wald Test p-value
Treatment (A/B) 0.71
Sex (Male/Female) 0.18*
Tumor Breslow’s Thickness 0.01*
Clark’s Level 0.15*
Lactate Dehydrogenase (LDH) Value 0.51
LDH Upper Limit of Normal 0.29
Pigmentation 0.20*
Performance Status 0.79
Ulceration (Yes/No) 0.26
Age at Diagnosis 0.01*

*significant at a=0.2 level

Five covariates had significant p-values at a=0.2. Following the steps of purposeful
selection, a multivariable model with only two covariates, tumor Breslow’s thickness and age at
diagnosis, were included the final model. Table 2 lists the parameter estimates and Wald test p-

values for covariates in the final model.

Table 2. Multivariable model of RFS

Covariate Parameter Estimate | Wald Test p-value
Tumor Breslow’s Thickness 0.801 0.036
Age at Diagnosis 0.025 0.018

17



24  TEST FOR ASSOCIATION AT SNP LEVEL

The GenABEL-package was used to conduct the SNP level analysis. This package performs an
effective and powerful role in storing and handling GWAS data, as well as fast quality control
procedures, testing of association, visualization of results, and easy interfaces to standard
statistical and graphical procedures in R (Aulchenko, Ripke, Isaacs, & van Duijn, 2007).

Cox proportional hazards models were fit for RFS using the GenABEL package. Table 3
shows the results for the top 10 most significant associations, sorted by the Wald test p values.

(Top 50 most significant association results are listed in appendix.)

Table 3. Summary for top 10 most significant association results at SNP level

SNP Chr | Coordinate Gene* Location P value
rs6944473 7 14326377 DGKB INTRON 1.42E-06
rs10495124 1 | 217568816 | LYPLAL1|LOC728510 | INTERGENIC | 1.82E-05
imm_12 2178130 | 12 2178130 CACNA1C INTRON 3.96E-05
seq-rs2784110 1 | 197047009 | PTPRC|LOC100131234 | INTERGENIC | 5.50E-05
rs17591522 1 | 217600391 | LYPLAL1|LOC728510 | INTERGENIC | 5.98E-05
rs11942401 4 | 188052244 FAT|ZFP42 INTERGENIC | 6.27E-05
rs6704463 1 | 217614448 | LYPLAL1|LOC728510 | INTERGENIC | 7.18E-05
rs2095403 1 62632898 ANKRD38|USP1 INTERGENIC | 8.27E-05
rs2839235 21 | 46625020 PCNT INTRON 8.30E-05
rs3860187 10 | 49639139 WDFY4 INTRON 0.0001103

*Gene on which the SNP is located. When the SNP is located in between two genes, it is denoted as

GENE1|GENE2.

18




A Manhattan plot of the SNP level results is shown in Figure 11. A Manhattan plot is a
plot of the negative logarithm of the association p-value (-logio P) for each single nucleotide
polymorphism (SNP) against the genomic coordinates. We have one signal jumps above in
chromosome 7. It seems to be very significant. But we are worried about this. This could be a
sporadic positive or could be real because we don’t have much information around it. So this
signal needs to be checked out. Usually, a peak similar to chromosome 1 is expected to see for
detecting the signals in genetic association study. Overall, we did not find many genome-wide
significant results, which is expected for our sample size. Because the smallest p-value (the
greatest negative logarithm) shown in the Manhattan plot is on chromosome 7, and chromosome
1 also has several small p-values, we also provided the chromosome level Manhattan plots for

these two chromosomes (Figure 12) to see closely if they have some signals.

~logsg(P - value)
3

Chromosome

Figure 11. Manhattan plot
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Figure 12. Manhattan plot for Chromosome 1 and 7

A Quantile-Quantile (QQ) plot of the SNP level analysis is shown in Figure 13. It plots
the observed —log10 p-values against the expected —log10 p-values under the null model of no
association. If all points fall on the diagonal line, then there is no association. It is expected that
most of the SNPs, with the exception of a few, should be on the diagonal line. If most of the
points deviate from the diagonal line, it is an indication that the observed association is spurious
due to unknown underlying factors. In our case, no indication of inflated overall association was

found.

Observed -logid(p)

0 1 2 3 4 5
Expected -logo(p)

Figure 13. QQ plot
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LocusZoom was used to plot the association results of the most significant SNPs.
LocusZoom is a tool to plot the association results from GWAS, developed by Abecasis group. It

is available at http://locuszoom.sph.umich.edu/locuszoom/. The purpose of these plots is to

visualize nearby genes to infer the possible biological interpretation of the results.
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Figure 14. Regional plot of area surrounding interested SNPs of —log (P values) using LocusZoom

2.5 TEST FOR ASSOCIATION AT GENE LEVEL

Given the limited sample size, we also looked at the gene level analysis to improve power. Gene

level analysis utilizes all the SNPs on (or near) the gene for the association test to improve the
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power. Two methods were used for this analysis: the Sequence kernel association test (SKAT)
(Lee et al., 2012; Lin et al., 2011) and the CoxKM (Cai, Tonini, & Lin, 2011; Lee et al., 2012).
Both are kernel-based methods for gene set analysis. However, SKAT can only handle
continuous and binary phenotype while CoxKM is designed for the time-to-event phenotype. For

SKAT analysis RFS is dichotomized at 3 years.

2.5.1 SKAT

Sequence kernel association test (SKAT), is a kernel-based test method to look for the
association between variants and phenotype (Lee et al., 2012). It utilizes a kernel matrix to
aggregate individual SNP score statistics and computes p-values at gene level. Top 10 signals

(based on the p values) of the SKAT data analysis are listed in Table 4.
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Table 4. Top 10 SKAT results

GENE Chr Start Stop p value
DGKB 19 14136077 | 161585680 | 0.000147085
LOC340268 4 9834067 | 185223182 | 0.000332623
GABBR2 3 100274966 | 38086931 | 0.000336071
FBXL17 2 107045500 | 34732070 | 0.000684611
HTRA1 5) 124216620 | 30136403 | 0.000800605
DUSP10 22 219470464 | 1629929 | 0.000835814
HLX 12 219074478 | 1635423 | 0.000836453
FBLN7 12 112615980 | 32848649 | 0.000907298
CPB2 23 45527945 | 84559380 | 0.000928026
CTCFL 10 55500243 | 68295641 | 0.000944519

252 CoxKM

CoxKM-package is an R package to perform Cox kernel machine SNP-set association test for
association between SNP-set and a right-censored survival outcome. It uses the kernel machine
Cox regression framework and performs a score test to assess the overall effect of the interested
genetic markers (Lin et al., 2011). Two different kernels, the IBS and linear kernel, were used in
this analysis, and the top 10 results are listed below. The IBS kernel is a kernel function that

incorporates the IBS information. The results of these two kernels are very similar (Table 5).
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Table 5. Top 10 coxKM results using IBS and linear kernel

GENE n.marker.test | n.indiv p.IBS Q.IBS df.IBS p.linear Q.linear df.linear
HTRA1 2 205 1.00E-04 | 163.3571446 | 0.997232432 | 2.00E-04 | 318.2507069 | 1.0197953
FBX032 4 205 6.00E-04 | 51.8164787 | 3.526320773 | 4.00E-04 | 208.1382071 | 3.552179132

FGF9 6 205 9.00E-04 | 53.7839697 | 3.490050315 | 0.0023 | 321.4549365 | 3.296177478
HLX 9 205 0.0012 49.1513785 | 4.810549398 NA NA NA
DUSP10 8 205 0.0012 | 55.69015018 | 4.034794788 | 3.00E-04 | 455.078092 4.084936

SOCS6 16 205 0.0017 | 21.30837138 | 10.92939678 NA NA NA
PEMT 4 205 0.0018 | 100.3035437 | 1.479564066 | 0.0021 | 401.2141747 | 1.492598419
RAI1 4 205 0.0018 | 100.3035437 | 1.479564066 | 0.0021 | 401.2141747 | 1.492598419
LOC642278 2 205 0.0019 | 133.8361564 | 1.066328026 0.001 267.6723128 | 1.034384141

KCNK1 2 205 0.0019 | 68.19834591 | 1.636928436 NA NA NA
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26  CROSS REFERENCES OF DIFFERENT ANALYSIS RESULTS

2.6.1 Cross References of Gene Level Analysis

After getting the separated gene level analysis results by using SKAT and coxKM methods,
comparisons of the top 50 significant gene results were made to search for the overlap between
these two methods. As shown in Table 6, there are 10 overlapping genes between the SKAT and

coxKM analysis results.
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Table 6. Cross references of SKAT and coxKM analysis results

GENE Chr Start Stop n.marker.test | p.value.IBS | p.value.linear | p value.SKAT
HTRA1 5} 124216620 30136403 2 1.00E-04 2.00E-04 0.000800605
DUSP10 22 219470464 1629929 8 0.0012 3.00E-04 0.000835814

HLX 12 219074478 1635423 9 0.0012 NA 0.000836453
FBLN7 12 112615980 32848649 2 0.0042 0.0087 0.000907298
ULK4 4 41834977 92844857 7 0.0089 0.0091 0.001026475
LOC642278 4 556195 241014568 2 0.0019 0.001 0.003086166
C200rf19 17 20735221 150859452 3 0.0023 0.0024 0.003348033
C20orf74 17 20735221 150859711 3 0.0023 0.0024 0.003348033
PEMT 20 17420920 159311566 4 0.0018 0.0021 0.007846131
RAI1 18 17478733 159295042 4 0.0018 0.0021 0.007846131
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2.6.2 Cross References between Gene and SNP Level Analysis

We were also interested to see if some overlapping results would happen between the gene level

and SNP level analysis results. Comparisons between the top 50 significant gene results and top

50 SNP level results were made. There are 3 overlapping genes between coxKM and SNP level

analysis results (shown in Table 7), and only 1 overlapping gene between SKAT and SNP level

analysis results (shown in Table 8).

Table 7. Cross references of SKAT and SNP level analysis results

GENE | Chr

SNP* SNP.Coordinate

GenelLocation

p.value.SNP

p.value.SKAT

DGKB | 7

rs6944473 14326377

INTRON

1.42E-06

0.000147085

*SNP is from the SNP level analysis
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Table 8. Cross references of coxKM and SNP level analysis results

GENE Chr SNP* SNP.Coordinate | GeneLocation | p.value.SNP | n.marker | p.value. | p.value.
test IBS linear
PLEKHG5 1 rs2986738 6470257 INTRON 0.000382766 2 0.0046 | 0.005
LOC100132924 | 10 rs9629920 49629651 INTRON 0.000113517 5 0.0055 | 0.0069
LOC100131234 | 1 | seq-rs10800590 197042798 INTERGENIC | 0.000221863 231 0.0087 | 0.0066

*SNPs are from the SNP level analysis
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3.0 DISCUSSION AND FUTURE WORKS

3.1 GENERAL DISCUSSION

A total of 205 subjects passed QC and were included in the analysis. The total number of events
in these 205 subjects is 61, which is rather small given the large number of SNPs (197076)
tested. Thus, the statistical power for this analysis is extremely low. This exploratory analysis
aims to generate a top rank list of genes to be followed up by larger studies. Thus, the p-values of
the tests are not to be taken literally, rather, as a way of ranking the top hits. Different methods
are used to confirm and complement each other.

In cancer research, OS is generally a more solid endpoint than RFS. The latter is
subjected to the interval length of follow up. However, due to too few events in OS (32), we
focused on the analysis using RFS as the phenotype.

To avoid bias and improve accuracy in our analysis, we first investigated the potential
clinical factors that are associated with RFS in our study population. After model selection, two
covariates of interest, Breslow’s thickness and age at diagnosis, were left in the final. These two

factors were controlled for in all of the following analyses.
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3.2  SIGNIFICANT SIGNALS

Association tests were performed at two different levels. At SNP level, CoxPH models
implemented in GenABEL-package were used. LocusZoom plots of 4 of the top hits, rs6944473,
rs10495124, rs13221118 and rs2839235, were generated. We were not able to plot three other
SNPs of interest because they are not assigned rs-numbers. SNP rs6944473 has a strong signal.
However, the SNPs nearby do not seem to have strong association with the RFS thus we do not
observe a typical “peak” as we usually see in a positive signal of a GWAS. Therefore, it could
be a false positive. One possible cause of this could be genotype error. However, we are not able
to check this because we do not have the raw data. We plotted the RFS plot by genotype of this
SNP (Figure 15) to see if CoxPH is appropriate for the SNP. As shown in Figure 15 (1), the
hazards between different genotype groups are proportional, although, the homozygous minor
allele group has only 1 subject. We combined the subjects with minor allele together, as shown
in Figure 15 (I1), and applied log rank test. We obtained a significant p-value of 3.5E-7.
Therefore, if this SNP is correctly genotyped, then it appears to be a significant predictor of RFS

in our cohort. Further investigation of this result is needed.
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Figure 15. Kaplan-Meier curves of RFS by rs6944473 genotype
(1. by genotype number, I1. by genotype group)
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At the gene level, two different kernel-based methods were used to test for association.
CoxKM was used to test the association at gene level using the RFS as the phenotype. The
SKAT was applied to a dichotomized (at 3 year) RFS endpoint. Both are kernel-based tests, and
both in theory require much larger sample size than our study cohort. It is reassuring that when
we compared the top 50 lists of the two methods, 10 overlapped, which is what we expected,
because the phenotypes are largely correlated.

When we cross-referenced the gene and SNP level analyses, the overlaps were very
limited. DGKB showed up again in the SKAT analysis. The total number of SNPs on this gene
included in the analysis for SKAT is 12. However, it is possible that the SKAT result is mostly

driven by the one very significant SNP.

3.3 FUTURE WORKS

As discussed above, the results between the SNP and gene level analyses overlapped poorly. The
analyses combined patients from both arms of the trial given that the trial is negative. However,
at the molecular level, it is still possible that these two groups of patients responded differently.
Thus, we plan to reanalyze the data stratified by patient treatment. This will further reduce the
power of the study. However, we’ve experienced a similar situation where the subgroup analysis
gave us more consistent results.

In consulting with a geneticist, we will work with the Pl of the study and try to
understand the biological function of the top hits. A validation of the genotyping of potential
signals using a targeted platform, e.g. the Sequenome chip, will further strengthen the results of

this analysis.
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APPENDIX A: ADDITIONAL TABLES

Table 9. Summary for top 50 most significant association results at SNP level

SNP Chr | Coordinate GeneSymbol* Location P value
rs6944473 7 14326377 DGKB INTRON 1.42E-06
rs10495124 1 217568816 LYPLAL1|LOC728510 INTERGENIC 1.82E-05
imm_12 2178130 12 2178130 CACNA1C INTRON 3.96E-05
seq-rs2784110 1 197047009 PTPRC|LOC100131234 INTERGENIC 5.50E-05
rs17591522 1 217600391 LYPLAL1|LOC728510 INTERGENIC 5.98E-05
rs11942401 4 188052244 FAT|ZFP42 INTERGENIC 6.27E-05
rs6704463 1 217614448 LYPLAL1|LOC728510 INTERGENIC 7.18E-05
rs2095403 1 62632898 ANKRD38|USP1 INTERGENIC 8.27E-05
rs2839235 21 46625020 PCNT INTRON 8.30E-05
rs3860187 10 49639139 WDFY4 INTRON 0.0001103
rs9629920 10 49629651 LOC100132924 INTRON 0.000113517
imm_12 2187865 12 2187865 CACNA1C INTRON 0.000113531
rs9309074 2 41821802 SLC8A1|LDHALS3 INTERGENIC | 0.000118057
imm_16_ 31279175 | 16 31279175 ITGAX CODING 0.000147564
seg-rs10800591 1 197063314 PTPRC|LOC100131234 INTERGENIC | 0.000185575
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Table 9 Continued

seq-rs12406470 1 197062743 PTPRC|LOC100131234 INTERGENIC | 0.000185575
Seq-rs6427752 1 197062012 PTPRC|LOC100131234 INTERGENIC | 0.000185575
1kg_10_59547220 | 10 59547220 ZWINT|IPMK INTERGENIC | 0.000207381
seg-rs10800590 1 197042798 PTPRC|LOC100131234 INTERGENIC | 0.000221863
rs2226007 1 161860160 NUF2|LOC729952 INTERGENIC | 0.00026407
rs13221118 7 156493383 MNX1 INTRON 0.000289407
rs7837005 8 72161586 XKR9EYAL INTERGENIC | 0.000307944
imm_1_ 67442201 1 67442201 IL23R INTRON 0.000330605
rs10845202 12 10726132 STYK1|CSDA INTERGENIC | 0.000352037
rs270793 8 56012168 LOC100128419|XKR4 INTERGENIC | 0.000354308
rs6927768 6 170708910 TBP INTRON 0.000361202
rs2986738 1 6470257 PLEKHGS INTRON 0.000382766
imm_9_138290709 | 9 138290709 QSOX2|DKFZP434A062 | INTERGENIC | 0.000421789
rs1979302 18 55002156 SEC11C|GRP INTERGENIC | 0.000452031
rs12146041 1 173368784 TNN INTRON 0.000454158
rs1156956 8 71917592 XKRYEYAL INTERGENIC | 0.000471323
rs7845516 8 71848376 XKR9EYAL INTERGENIC | 0.000471323
seq-rs2784114 1 197037793 PTPRC|LOC100131234 INTERGENIC | 0.000486758
rs12153520 5 130446033 CHSY-2|HINT1 INTERGENIC | 0.00049527
rs9262632 6 31132787 HCG22 UTR 0.000521266
rs2332094 14 69139425 LOC100130174|KIAA0247 | INTERGENIC | 0.000540284
rs545152 1 96659092 LOC729977|LOC440595 | INTERGENIC | 0.000547392
rs990648 11 79730135 ODZ4|MGC33846 INTERGENIC | 0.000555701
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Table 9 Continued

rs6864771 5 7850291 ADCY2 INTRON 0.000560977
rs9923190 16 85014134 LOC732275|LOC283904 | INTERGENIC | 0.000570215
rs11753208 6 31113411 LOC729792 INTRON 0.000602604
rs12155783 8 72161680 XKR9EYAL INTERGENIC | 0.000608692
imm_22_38042260 | 22 38042260 RPL3 INTRON 0.000610902
imm_1_ 195577864 | 1 195577864 CRB1 INTRON 0.00063566
rs7768644 6 31110080 LOC729792 INTRON 0.000692246
rs7733977 5 130466000 CHSY-2|HINT1 INTERGENIC | 0.000712495
1kg_2_43478582 2 43478582 THADA INTRON 0.000758235
rs9283781 5 82103862 LOC92270|TMEM167 INTERGENIC | 0.000761276
imm_12_2194668 | 12 2194668 CACNAIC INTRON 0.000761736
Imm_9_138290450 | 9 138290450 QSOX2|DKFZP434A062 | INTERGENIC | 0.0008274

*Gene on which the SNP is located. When the SNP is located in between two genes, it is denoted as

GENE1|GENE2.
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Table 10.

Top 50 SKAT results

GENE Chr Start Stop p value
DGKB 19 14136077 | 161585680 | 0.000147085
LOC340268 4 9834067 | 185223182 | 0.000332623
GABBR?2 3 100274966 | 38086931 | 0.000336071
FBXL17 2 107045500 | 34732070 | 0.000684611
HTRAL 5 124216620 | 30136403 | 0.000800605
DUSP10 22 219470464 | 1629929 | 0.000835814
HLX 12 219074478 | 1635423 | 0.000836453
FBLN7 12 112615980 | 32848649 | 0.000907298
CPB2 23 45527945 | 84559380 | 0.000928026
CTCFL 10 55500243 | 68295641 | 0.000944519
ULK4 4 41834977 | 92844857 | 0.001026475
ADAMTS2 12 178485124 | 10945296 | 0.001097248
GABRAS 14 24573461 | 138614368 | 0.001109697
GRB2 3 70823779 | 52366748 | 0.001656428
DDHD1 5 52524755 | 70796945 | 0.001727406
LOC645434 5 139880112 | 24206432 | 0.002133753
KIAA0195 3 70915763 | 52191086 | 0.00217213
BMP4 11 52693414 | 70783451 | 0.002432467
LOC100131472 19 10233678 | 181965614 | 0.002537652
LOC729112 17 122598338 | 30505819 | 0.002589555
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Table 10 Continued

LOC642278 4 556195 | 241014568 | 0.003086166
FGF21 5 53951133 | 69333750 | 0.003108941
GRIK4 2 119870238 | 30923014 | 0.003142867

C200rf19 17 20735221 | 150859452 | 0.003348033
C20orf74 17 20735221 | 150859711 | 0.003348033
LOC100130010 4 12094704 | 167311824 | 0.003372483
TMEMS89 23 48633471 | 79449021 | 0.003482006
VARS?2 4 30990256 | 119147430 | 0.003965721
MTMR2 13 95208901 | 41013631 | 0.004078789
SPON1 22 13882056 | 162191705 | 0.00457111
GINS3 13 56971665 | 67130788 | 0.00472719
SH3MD4 2 108973688 | 34522053 | 0.004736383
C10orf67 14 23654346 | 141102100 | 0.0051071
SULT1A1 21 28517358 | 129249695 | 0.005224223
LOC100132354 23 43866851 | 87430929 | 0.005596336
ADRB2 5 148201190 | 22583965 | 0.006717942
SH3TC2 5 148201190 | 22583965 | 0.006717942
BCAT?2 5 53953425 | 69312471 | 0.006810132
FLJ44815 4 29723177 | 127285007 | 0.006961246
COL7Al 23 48579063 | 79458866 | 0.00724393
AKS 9 77498829 | 49458078 | 0.007419735
CCL1 4 29710751 | 127300962 | 0.007768454
C9orfl11 14 27223272 | 132113876 | 0.007777693
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Table 10 Continued

PEMT 20 17420920 | 159311566 | 0.007846131
RAI1 18 17478733 | 159295042 | 0.007846131
SEMA3A 20 83166896 | 46044577 | 0.007899354
TBX15 2 118685496 | 31104111 | 0.008055778
ZNF516 3 71278968 | 51888761 | 0.008316658
C1lorf49 23 47011024 | 80133854 | 0.008337512
LOC645000 4 60737084 | 61843768 | 0.008477575
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Table 11. Top 50 coxKM results using IBS and linear kernel

GENE n.marker.test | n.indiv p.IBS Q.IBS df.IBS p.linear Q.linear df.linear
HTRA1 2 205 1.00E-04 | 163.3571446 | 0.997232432 | 2.00E-04 | 318.2507069 1.0197953
FBX032 4 205 6.00E-04 51.8164787 | 3.526320773 | 4.00E-04 | 208.1382071 | 3.552179132
FGF9 6 205 9.00E-04 53.7839697 | 3.490050315 0.0023 321.4549365 | 3.296177478
HLX 9 205 0.0012 49.1513785 | 4.810549398 NA NA NA
DUSP10 8 205 0.0012 55.69015018 | 4.034794788 | 3.00E-04 455.078092 4.084936
SOCS6 16 205 0.0017 21.30837138 | 10.92939678 NA NA NA
PEMT 4 205 0.0018 100.3035437 | 1.479564066 0.0021 401.2141747 | 1.492598419
RAI1 4 205 0.0018 100.3035437 | 1.479564066 0.0021 401.2141747 | 1.492598419
LOC642278 2 205 0.0019 133.8361564 | 1.066328026 0.001 267.6723128 | 1.034384141
KCNK1 2 205 0.0019 68.19834591 | 1.636928436 NA NA NA
C200rf74 3 205 0.0023 78.02869894 | 1.874982136 0.0024 234.0860968 | 1.868850054
C200rf19 3 205 0.0023 78.02869894 | 1.874982136 0.0024 234.0860968 | 1.868850054
IL1F7 5 205 0.0033 45.87091418 | 1.903022303 0.0039 233.7458099 | 1.898427645
LOC729668 22 205 0.0034 52.51872205 | 2.941225234 0.0039 1151.468446 | 2.844106193
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Table 11 Continued

BACH2 207 205 0.0035 28.79968437 | 8.606043205 0.0038 5867.49402 | 9.217885776
CCDC88C 3 205 0.0036 85.93053123 | 1.205689231 0.003 251.9361541 | 1.239301028
RRM1 3 205 0.0042 43.02581801 | 2.757766733 0.004 129.077454 2.74399433
FBLNY 2 205 0.0042 67.98504669 | 2.016110267 0.0087 113.9488161 | 1.904888143
PLEKHG5 2 205 0.0046 52.66691091 | 1.779263457 0.005 105.3338218 | 1.786707106
Cl4orf181 70 205 0.005 34.29378735 | 5.221603951 0.004 2370.634724 | 5.12025002
UBLCP1 111 205 0.0051 23.36087174 | 7.906729142 0.0053 2628.336445 | 8.059648632
MAP3K8 121 205 0.0052 28.06843994 | 7.416439869 0.0039 1151.468446 | 2.844106193
CHODL 2 205 0.0053 69.87374076 | 1.844069232 0.0055 139.7474815 | 1.80580238
LOC100132924 5 205 0.0055 42.50840709 | 2.032615732 0.0069 212.5420355 | 2.034380308
IDE 10 205 0.0056 36.50485026 | 3.234346832 NA NA NA
ACTN1 62 205 0.0058 32.7955529 5.2595226 0.0053 2006.406783 | 5.162854725
LOC730134 6 205 0.0058 35.88389223 | 4.489042795 0.0065 215.3033534 | 4.380506614
LOC100131866 64 205 0.0059 34.90505968 | 4.542110238 0.0054 2223.256908 | 4.695085661
LOC100128781 56 205 0.006 40.62994815 | 3.530145757 0.0057 2269.892288 | 3.728449707
CBLNZ2 20 205 0.0062 16.17112482 | 13.3626406 0.0071 321.3913423 | 13.22349141
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Table 11 Continued

PHLDB1 45 205 0.0063 37.48481044 | 4.380171538 0.0053 1715.572943 | 4.406236761
FTHL7 12 205 0.0063 26.17782462 | 6.714230682 0.0023 321.4549365 | 3.296177478
ADRA1B 78 205 0.0064 23.196342 9.132998512 0.0038 1875.790706 | 9.257734887
MRPL36 2 205 0.007 36.04350296 | 1.093684329 0.006 75.62701289 | 1.082086459
KIR3DL2 3 205 0.0071 56.49377593 | 2.033623651 0.0079 156.7243266 | 2.016101053
CLEC2B 140 205 0.0074 16.91395194 | 12.56710791 0.0075 2374.514151 | 12.61887258
LOC728727 11 205 0.0076 31.14237744 | 5.204061415 0.0087 345.1852147 | 5.254971518
FLJ41046 8 205 0.0076 27.17208389 | 4.079984235 0.0068 217.1868471 | 4.156190183
FLJ42418 8 205 0.0076 27.17208389 | 4.079984235 0.0068 217.1868471 | 4.156190183
DLC1 6 205 0.0082 33.05230852 | 4.132508543 0.0053 205.4312161 | 4.239507095
WEDC12 3 205 0.0082 61.92950098 | 1.099297828 0.0127 169.9468802 | 0.973506929
RUNX2 2 205 0.0083 50.71762835 | 2.021478056 0.0083 101.4352567 | 1.954351493
DSCAML1 3 205 0.0084 24.35274809 | 2.550270076 0.0081 73.05824427 2.579148
DYRK2 145 205 0.0087 26.0997574 | 6.63316068 NA NA NA
DIp2C 6 205 0.0087 37.83638328 | 3.841283055 0.0089 227.0182997 | 3.852243302
LOC100131234 231 205 0.0087 19.27530844 | 9.438183814 0.0066 4473.958268 | 9.945299748
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Table 11 Continued

FzZD8 5 205 0.0089 36.69497966 | 3.091913567 0.0074 183.4748983 | 3.199695772
ULK4 7 205 0.0089 70.15212838 | 1.488121134 0.0091 485.790286 | 1.467081239

HLA-E 482 205 0.0092 28.35820247 | 5.175844034 0.0087 13783.93721 | 5.180179863
TNR 2 205 0.0093 54.69729222 | 1.953768899 NA NA NA

42




APPENDIX B: R CODE

### Quality Control ###
###1 _Relationship Check

# Relationship check
setwd(*'~/Dropbox/thesis/QC/relationcheck™)

relation <- read.table("'Mel_IC_relationcheck.genome', header = T)
head(relation)
attach(relation)

plot(z0, zZ1, col = RT, xhlim = ¢c(0, 1), ylim = c(0, 1),
main = "Relationship Check™)
with(relation, text(ZO[which(Z0 < 0.01)] + 0.05,
Z1[which(Z0 < 0.01)], 11D1[which(Z0 < 0.01)]), cex = 0.5)

s <- relation[relation$z0 < 0.1, ]
t <- s$IID1 # 130624 132789
u <- s$1iID2 # 130777 132879

###2 Missing Data Check

# Missing data check by individual
setwd(*'~/Dropbox/thesis/QC/missingcheck')

het <- read.table("'Mel _IC_misscheck._.het', header = T)
miss <- read.table("Mel _IC_misscheck.imiss™, header = T)
het_miss <- merge(het, miss, by = c(C'FID", "1ID"))

# Calculate the observed heterozygosity rate

Observed_het_rate <- (het_miss$N.NM. - het_miss$0.HOM.) / het_missSN.NM.
het.miss <- data.frame(het miss, Observed het rate)

head(het.miss)

with(het.miss, plot(Observed_het _rate, F_MISS, xlim = ¢(0.1, 0.9), main =
"Missing data check'™))

with(het_miss, text(Observed_het_rate[which(F_MISS > 0.05)] + 0.05,
F_MISS[which(F_MISS > 0.05)], IID[which(F_MISS > 0.05)]))

b <- het.miss[het.miss$F MISS > 0.01, ]
a <- b$IID # 15 sample IDs
# SS0110, SS0137, SS0016, SS0025, SS0045_Repeat, SS0054 Repeat,
SS0070_Repeat, SSO090 Repeat, SS0091 Repeat, SS0092_Repeat,
SS0134 Repeat, SS0159 Repeat, SS0199 Repeat, SS0217 Repeat, SS0093
bl <- het.miss[het.miss$F _MISS > 0.05, ]
al <- bl1s$IID # 2 sample IDs
# SS0016, SS0093
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# Missing data check by SNP
Imiss <- read.table("'Mel _IC_misscheck.Imiss"™, header = T)
dim(Imiss) # 129903 5

with(Imiss, hist(F_MISS, breaks = 100, xlim = c(0, 0.1)))
abline(v = 0.05, col = "red”, Ity = 2)
dim(Imiss[which(Imiss$F_MISS < 0.05), 1) # 129043 5

###3 .Population Structure Check

# Population structure check
setwd("'~/Dropbox/thesis/QC/popustra')

mds <- read.table("*Mel _IC_mds.mds", header = T)
head(mds)
attach(mds)

# plot matrix
plot(mds[, c(-1, -2, -3)], main = "Population structure check™)

make separate population structure plots to find outliers
C1-C2

add noise to separate overlapped points

= jitter(mds[, 4], factor = 500)

= jitter(mds[, 5], factor = 500)

H O X HHH

make population structure check plot with individual IDs
plot(x, y, main = "Population structure check", xlab = "C1", ylab = "C2")
text(x, y, labels = 1ID, pos = 4, cex = 0.8)

# C2-C3

# add noise to separate overlapped points
x1 = jitter(mds[, 5], Ffactor = 500)

yl = jitter(mds[, 6], factor = 500)

# make population structure check plot with individual IDs

plot(x1l, yl, main = "Population structure check", xlab = "'C2", ylab
IICSII)

text(x1, yl, labels = 1ID, pos = 1, cex = 0.8)

# C1-C3

# add noise to separate overlapped points
x2 = jitter(mds[, 4], factor = 500)

y2 = jitter(mds[, 6], factor = 500)

# make population structure check plot with individual IDs

plot(x2, y2, main = "Population structure check™, xlab = "C1", ylab
IIC3II)

text(x2, y2, labels = 1ID, pos = 1, cex = 0.8)

# C3-C4

# add noise to separate overlapped points
x3 = jitter(mds[, 6], Factor = 500)

y3 = jitter(mds[, 7], factor = 500)

# make population structure check plot with individual IDs

plot(x3, y3, main = "Population structure check", xlab = "C3", ylab
IIC4II)

text(x3, y3, labels = 1ID, pos = 1, cex = 0.8)

44



# C2-C4

# add noise to separate overlapped points
x4 = jitter(mds[, 5], factor = 500)

y4 = jitter(mds[, 7], factor = 500)

# make population structure check plot with individual IDs

plot(x4, y4, main = "Population structure check™, xlab = "C2", ylab
IIC4II)

text(x4, y4, labels = 1ID, pos = 3, cex = 0.8)

# Cl-C4

# add noise to separate overlapped points
x5 = jitter(mds[, 4], Ffactor = 500)

y5 = jitter(mds[, 7], factor = 500)

# make population structure check plot with individual IDs
plot(x5, y5, main = "Population structure check"™, xlab = "C1", ylab
IIC4II

text(x5, y5, labels = 11D, pos = 3, cex = 0.8)

### Model Selection ###
setwd("'~/Dropbox/thesis/4-27-15/Mel-GenABEL_Ying')

e1697 <- read.csv('el697_spore 29aprill5.csv", header=T) # 216
head(el1697)

# only include treatment A or B
ab <- el697[el697%trtm=="A"]el697$trtm=="B",] # 216 obs, since el697
only include treatment A and B

# change column names
names(ab)

colnames(ab)[13] <- "cens.RFS"
colnames(ab)[14] <- "cens.0S"
colnames(ab)[4] <- "BRSLW"
colnames(ab)[5] <- "CLARK"

# calculate OS and RFS in days
ab$0S.n <- ab$surv_y*365
ab$RFS.n <- ab$rfs*365

# dichotomize BRSLW using cutoff=2
sum(ab$BRSLW<=2) # 52
sum(ab$BRSLW>2)  #164
ab[ab$BRSLW<=2, $BRSLW <- O
ab[ab$BRSLW>2,J$BRSLW <- 1

library(survival)

surv <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ strata(trtm) + sex
+ BRSLW + CLARK + LDH_RS + LDH_ULN + PIG + PS + ULCER_YN + age, data =
pheno)

summary(surv) # p=0.02, Rsquare= 0.085

# univariable models
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surv.trtm <- survfit(Surv(time=pheno$RFS.n, event=cens.RFS) ~ trtm, data =
pheno)

plot(surv.trtm)

surv.trtm_cox <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ trtm, data
= pheno)

summary(surv.trtm.cox) # p=0.71

surv.sex <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ sex, data =
pheno)
summary(surv.sex) # p=0.18* <0.2

surv.brslw <- survfit(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW, data
= pheno)

plot(surv._brsilw)

surv.brslw.cox <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW,
data = pheno)

summary(surv.brslw.cox) # p=0.01* <0.2

surv.clark <- coxph(Surv(time=pheno$RFS.n, event=cens_.RFS) ~ CLARK, data =
pheno)
summary(surv.clark) # p=0.15* <0.2

surv.ldh <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ LDH_RS, data =
pheno)
summary(surv.1dh) # p=0.51

surv.ldhu <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ LDH_ULN, data
= pheno)
summary(surv.ldhu) # p=0.29

surv.pig <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ PIG, data =
pheno)
summary(surv.pig) # p=0.195* <0.2

surv.ps <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ PS, data =
pheno)
summary(surv.ps) # p=0.79

surv.ulcer <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ ULCER_VYN,
data = pheno)
summary(surv.ulcer) # p=0.26

surv.age <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ age, data =
pheno)
summary(surv.age) # p=0.006* <0.2

# Tit a multivariable model containing all variables significant in the
univariable analysis at p<0.2 level

# sex, BRSLW, CLARK, PIG, age

surv.multi <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ sex + BRSLW +
CLARK + PIG + age, data = pheno)

summary(surv.multi) # p=0.004

# Wald test p-values: sex=0.57, BRSLW=0.05*, CLARK=0.33, PI1G=0.12,
age=0.03*

# delete sex and refit the multivariable model

# BRSLW, CLARK, PIG, age

surv.multil <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW +
CLARK + PIG + age, data = pheno)

summary(surv.multil) # p=0.002

# Wald test p-values: BRSLW=0.05*, CLARK=0.34, PIG=0.13, age=0.017*
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# estimates of coefficients are virtually unchanged

# delete CLARK and refit the multivariable model

# BRSLW, PIG, age

surv.multi2 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + PIG
+ age, data = pheno)

summary(surv.multi2) # p=0.0013

# Wald test p-values: BRSLW=0.03*, PIG=0.12, age=0.012*

# estimates of coefficients are virtually unchanged

# delete PIG and refit the multivariable model

# BRSLW, age

surv.multi3 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + age,
data = pheno)

summary(surv.multi3) # p=0.0014

# Wald test p-values: BRSLW=0.0355*, age=0.0176*

# estimates of coefficients are virtually unchanged

# add ULCER_YN and refit the multivariable model to see if ULCER_YN
becomes significant

# BRSLW, age, ULCER_YN

surv.multi4 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + age
+ ULCER_YN, data = pheno)

summary(surv.multi4) # p=0.002

# Wald test p-values: BRSLW=0.03*, age=0.03*, ULCER_YN=0.26

# ULCER_YN 1s not significant, so no need to add it

# add LDH_ULN and refit the multivariable model to see if LDH_ULN becomes
significant

# BRSLW, age, LDH_ULN

surv.multi5 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + age
+ LDH_ULN, data = pheno)

summary(surv.multib) # p=0.003

# Wald test p-values: BRSLW=0.03*, age=0.02*, LDH_ULN=0.27

# LDH_ULN is not significant, so no need to add it

# add LDH_RS and refit the multivariable model to see if LDH_RS becomes
significant

# BRSLW, age, LDH_RS

surv.multi6 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + age
+ LDH_RS, data = pheno)

summary(surv.multi6) # p=0.003

# Wald test p-values: BRSLW=0.035*, age=0.017*, LDH RS=0.47

# LDH_RS i1s not significant, so no need to add it

# add trtm and refit the multivariable model to see if trtm becomes
significant

# BRSLW, age, trtm

surv.multi7 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + age
+ trtm, data = pheno)

summary(surv.multi?7) # p=0.004

# Wald test p-values: BRSLW=0.0364*, age=0.0175*, trtm=0.71

# trtm is not significant, so no need to add it

# add PS and refit the multivariable model to see if PS becomes
significant

# BRSLW, age, PS

surv.multi8 <- coxph(Surv(time=pheno$RFS.n, event=cens.RFS) ~ BRSLW + age
+ PS, data = pheno)

summary(surv.multid) # p=0.004
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# Wald test p-values: BRSLW=0.035*, age=0.0167*, PS=0.69
# PS is not significant, so no need to add it

### Tinal model only contains BRSLW and age

write.csv(format(ab,digits=0), "model_brsage.csv', quote=F, row.names=F)

#i# Test For Association at SNP Level ###

#Prepare for creating genotype data
library(GenABEL)

library(gdata)

library(qgman)

library(survival)

setwd(*'~/Dropbox/thesis/5-26-15/Mel-GenABEL_Ying")

# prepare for creating genotype data
ab <- read.csv('model_brsage.csv', header=T) # 216
colnames(ab)[1] <- ""SEQ_NUMBER"

Mel2013 <-

read.csv(’'10.28.13 genotype_SP_Melanoma_ Tarhini_DataSheetl.csv",
header=7T) # 299

names(Mel2013)

Mel2013 <- Mel2013[, c(1,5,39,57)]

data <- merge(ab, Mel2013, by="SEQ NUMBER™) # 215
data <- data[order(data$Xx.3), ]

head(data)

names(data)

id <- data[, c(20,18)]
write.table(id, "id.list.txt", quote=F, sep="\t', row.names=F,
col _names=F)

# after using Linux to generate .tped and .tfam files, use them to create
genotype file

convert.snp.tped(tped="Clean-Mel _IC.tped", tfam="Clean-Mel IC.tfam",
out="Clean-Mel IC.raw", strand=""u")

# create phenotype data
head(data)
names(data)

pheno <- data[, c¢(18,16,14,17,13,2:10,15)]

head(pheno) # 215 obs, 15 var

colnames(pheno)[1] <- "id"

write.table(format(pheno,digits=0), '‘pheno.txt", quote=F, sep="\t",
row.names=F)

# since pheno.txt has 215 obs, but Clean-Mel IC.raw only has 205 obs,
# pheno.txt needs to be checked line-by-line
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pheno.clean <- read.table(*'pheno-clean.txt”, header=T) # 205 obs
# SS0045, SS0054, SS0070, SS0090, SS0091, SS0092, SS0134, SS0159, SS0199,
SS0217 were removed

# count number of RFS events and 0S events

event <- pheno.clean[pheno.clean$cens_RFS == 1, ] # 61 event, 144 censor
event_0S <- pheno.clean[pheno.clean$cens.0S == 1, ] # 61 event, 144
censor

# change sex from 1/2 (1 = male, 2 = female) to 0/1 (O=female and 1=male)
pheno.clean$sex <- ifelse(pheno.clean$sex == 2, pheno.clean$sex <- 0,
pheno.clean$sex <- 1)

write._table(pheno.clean, "pheno-clean.txt", quote=F, sep="\t",
row.names=F, col_names=T)

# use GenABEL package
data <- load.gwaa.data(phe=""pheno-clean.txt', gen="Clean-Mel _IC.raw",
force=TRUE)

# run Cox proportional hazards models
CoxX.RFS <- mlreg(GASurv(RFS.n, cens.RFS) ~ 1, data)

CHR = data@gtdata@chromosome
BP = data@gtdata@map

RFS.7 <- cox.RFS@ results[which(cox.RFS@ results$ P1df < 10°N(-7)),
c(effB", 'se_effB", "chi2.1df", "P1df" )]

RFS.4 <- cox.RFS@ results[which(cox.RFS@ results$ P1df < 10°(-4)),
c(effB", "se_effB", "chi2.1df", "P1df" )]

dim(RFS.7) # 0 obs, 4 var

dim(RFS.4) # 4 obs, 4 var

RFS.all <- cox.RFS@ results[ , c(effB"”, "se_effB", "chi2.1df", "Pldf" )]
SNP = row.names(RFS.all)
RFS.all = data.frame(SNP,CHR,BP,RFS.all)

write.table(RFS.all, sep="\t", file="RFS.all._.txt"”, row.names=FALSE)

#--- QQ plot and manhattan plot ---#

#-- plot RFS --#

plot.RFS <- data.frame(CHR=data@gtdata@chromosome, BP=data@gtdata@map,
P=cox.RFS@results$P1df)

plot.RFS$CHR <- as.numeric(as.character(drop.levels(plot.RFS$CHR)))
dim(plot.RFS) # 108300 obs, 3 var

head(plot.RFS)

gqq(plot.RFS$P, main="Q-Q plot for RFS")

### Manhattan plot of cox.RFS and find the most significant association
SNPs ###

plot(cox.RFS, ylim=c(0,7), pch=19, main="Manhattan plot for RFS')

bestHits <- descriptives.scan(cox.RFS, top=50)
# Summary for top 50 most significant association results, sorted by P1df
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# adjust for BRSLW and age
cox.RFS.brsage <- mlreg(GASurv(RFS.n, cens.RFS) ~ BRSLW + age, data)

RFS.7.brsage <- cox.RFS.brsage@ results[which(cox.RFS.brsage@ results$
P1df < 10n(-7)), c(effB", 'se_effB'", 'chi2.1df", "Pldf" )]
RFS.4.brsage <- cox.RFS.brsage@ results[which(cox.RFS.brsage@ results$
P1ldf < 10°(-4)), c(effB", 'se_effB", "‘chi2.1df", "P1df" )]
dim(RFS.7.brsage) # 0, 4

dim(RFS.4.brsage) # 9, 4

RFS.brsage.all <- cox.RFS.brsage@ results[, c('effB", 'se effB",
"chi2_.1df", "P1df" )]
RFS.brsage.all = data.frame(SNP,CHR,BP,RFS._brsage.all)

write.table(RFS.brsage.all, sep="\t", file="RFS.brsage.all._txt",
row.names=FALSE)

#--- QQ plot and manhattan plot ---#

#-- plot RFS --#

plot.RFS.brsage <- data.frame(CHR=data@gtdata@chromosome,
BP=data@gtdata@map, P=cox.RFS.brsage@results$P1ldf)
plot.RFS.brsage$CHR <-
as.numeric(as.character(drop.levels(plot.RFS.brsage$CHR)))
dim(plot.RFS.brsage) # 108300 obs, 3 var
head(plot.RFS.brsage)

qq(plot.RFS_brsage$P, main="Q-Q plot for RFS._brsage")

### Manhattan plot of cox.RFS and find the most significant association
SNPs ###

plot(cox.RFS._brsage, ylim=c(0,6), pch=19, main="Manhattan plot for
RFS.brsage'™)

bestHits.brsage <- descriptives.scan(cox.RFS.brsage, top=50)
# Summary for top 50 most significant association results, sorted by Pldf

### Manhattan plot of cox.RFS but only plot Chrl and Chr7 ###
plot.RFS.brsage.1.7 <- plot.RFS.brsage[plot.RFS.brsage$CHR == 1 |
plot.RFS.brsage$CHR == 7, ] # 15799

### find gene annotation for bestHits.brsage

bestHits.brsage. <- data.frame(rownames(bestHits.brsage), bestHits.brsage)
# make row.names as a new column

colnames(bestHits.brsage.)[1] <- "Name™

anno <- read.table(ImmunoChip_GeneAnnotation.txt", header=T, fill=T) #
197076

bestHits.brsagel <- merge(anno, bestHits.brsage., by=""Name') # 50 obs,
23 var

head(bestHits.brsagel)

names(bestHits.brsagel)
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bestHits50 <- bestHits.brsagel[, c(1:5,10,18)]
head(bestHits50)
bestHits50 <- bestHits50[order(bestHits50$P1df), ]

write.csv(bestHits50, file="bestHits50.csv", row.names=FALSE)

### prepare Tile for LocusZoom

plot.RFS.brsagel <- data.frame(rownames(plot.RFS.brsage), plot.RFS.brsage)
# make row.names as a new column

colnames(plot.RFS.brsagel)[1] <- "SNP"

write.csv(plot.RFS_brsagel, file=""~/Dropbox/thesis/5-11-
15/LocusZoom/RFS_brsage.csv", row.names=FALSE)

write.table(plot.RFS.brsagel, file="~/Dropbox/thesis/5-11-
15/LocusZoom/RFS_brsage.txt", row.names=FALSE)

### Test for Association at Gene Level ###
#setwd("'~/Dropbox/thesis/5-19-15/coxKM_SKAT™)

#-- Genotype data
tped <- read.table("Clean-Mel_IC.tped™) # 108300, 414
colnames(tped)[2] <- "Name"

anno <- read.table('ImmunoChip_GeneAnnotation.txt', header=T, Fill=T) #
197076, 8

merge <- merge(anno, tped, by="Name') # 108300, 421
head(merge)
names(merge)

Interested.Gene <- merge[, c(1:5)] # 108300, 5
head(Interested.Gene)

### delete X, Y chromosomes
Interested.Gene <- Interested.Gene[lInterested.Gene$Chr 1= "X" &
Interested.Gene$Chr 1= "Y", ] # 107816

### modify INTERGENIC GeneSymbol into separated rows

INTERGENIC <- Interested.Gene[lInterested.Gene$GenelLocation ==
"INTERGENIC™, ] # 59381

NOINTERGENIC <- Interested.Gene[lnterested.Gene$GenelLocation =
"INTERGENIC"™, 1] # 48435

INTERGENI1C$GeneSymboll <- gsub("[|1-+$", "', INTERGENIC$GeneSymbol)
INTERGENI1C$GeneSymbol2 <- gsub(C'*.+[|1"", """, INTERGENIC$GeneSymbol)
INTERGEN1C$GeneSymbol <- NULL

head (INTERGENIC)

names(INTERGENIC)

Intergenicl <- INTERGENIC[, c(1,2,3,5,4)]
Intergenic2 <- INTERGENIC][, c(1,2,3,6,4)]
colnames(Intergenicl)[4] <- "GeneSymbol"
colnames(Intergenic2)[4] <- "GeneSymbol"*

Interested_Gene <- rbind(Intergenicl, Intergenic2, nolINTERGENIC)
# 167197

o1



Interested Gene <- Interested_Gene[order(Interested Gene$Coordinate), ]
Interested Gene2 <- Interested Gene[order(-Interested Gene$Coordinate), ]

#write.csv(Interested_Gene, Tile="Interested_Gene.csv", row.names=FALSE)
#write.csv(Interested Gene2, file="Interested Gene2.csv', row.names=FALSE)

# Dichotomize RFS

Dicho.RFS <- pheno$cens.RFS

Dicho.RFS[pheno$RFS.n < 3*365 & pheno$cens.RFS == 1] <- 1
Dicho.RFS[pheno$RFS.n > 3*365 & pheno$cens.RFS == 1] <- 0
Dicho.RFS[pheno$RFS.n > 3*365 & pheno$cens.RFS == 0] <- 0
Dicho.RFS[is.na(pheno$RFS.n)] <- NA

table(Dicho.RFS)

#-- Phenotype data
pheno <- read.table('pheno-clean.txt”, header = TRUE)

#-- Code genotype as (0, 1, 2)
hwe <- read.table('plink.hwe', header=T) # 324900, 9
hwe <- hwe[which(hwe$TEST == "ALL"™), ] # 108300, 9

Minor.allele <- hwe$Al
Major.allele <- hwe$A2

Code0 <- paste(Major.allele, Major.allele, sep="_"")
Codela <- paste(Major.allele, Minor.allele, sep="_")
Codelb <- paste(Minor.allele, Major.allele, sep="_")
Code2 <- paste(Minor.allele, Minor.allele, sep="_")

library(coxKMm)
library(SKAT)

time=proc.time()

Result.0S.IBS <- NULL
Result.OS.linear <- NULL
Result.RFS.IBS <- NULL
Result.RFS.linear <- NULL

uniquel <- unique(lnterested_Gene$GeneSymbol)
length(uniquel)  #12384

unique2 <- unique(lnterested_Gene2%GeneSymbol)
length(unique2) #12384

Gene.name <- NULL
Chrom <- NULL

Chr.pos <- NULL

Number .SNP <- NULL
Skat.Dicho.RFS <- NULL
Skat.Dicho.0S <- NULL

for(s in 1l:length(uniquel)){
set.seed(1)

Chr <- Interested_Gene$Chr[which_max(Interested_Gene$GeneSymbol ==

uniquel[s]D]

Start <- Interested _Gene$Coordinate[which.max(Interested Gene$GeneSymbol
== uniquel[sD]

Stop <-
Interested_Gene2$Coordinate[which.max(Interested_Gene2%GeneSymbol ==
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uniquel[sDI]
Geno <- tped[which(tped$Vl == Chr & tped$Vv4 > Start & tped$V4 < Stop), ]

if(dim(Geno)[1] ==
Result.0S.IBS <- rbind(Result.0S.IBS, c(NA, NA, 0, NA, NA))
Result.OS.linear <- rbind(Result.0S.linear, c(NA, NA, 0, NA, NA))
Result.RFS.IBS <- rbind(Result.RFS_IBS, c(NA, NA, 0, NA, NA))
Result.RFS.linear <- rbind(Result.RFS.linear, c(NA, NA, 0, NA, NA))

}

it(dim(Geno)[1] ==
Result.OS_IBS <- rbind(Result.OS_IBS, c(NA, NA, 1, NA, NA))
Result.OS.linear <- rbind(Result.0S.linear, c(NA, NA, 1, NA, NA))
Result.RFS.IBS <- rbind(Result.RFS_IBS, c(NA, NA, 1, NA, NA))
Result.RFS.linear <- rbind(Result.RFS.linear, c(NA, NA, 1, NA, NA))

}

if(dim(Geno)[1] > 1){
Gene.name <- c(Gene.name,
as.character(unique(lnterested_Gene$Name)[s]))
Chrom <- c(Chrom, Interested_Gene$Chr[s])
Chr.pos <- c(Chr.pos, Start)
Number .SNP <- c(Number.SNP, dim(Geno)[1])

= ((dim(Geno)[2]-4)/2)
genotype <- matrix(NA, nrow=dim(Geno)[1], ncol=n)
ind <- 5

for(i in 1:n){
genotype[,1] <- paste(Geno[, ind], Geno[,ind+1], sep="_"")
ind <- ind+2

}
genotype.012 <- genotype

for(i in 1l:dim(genotype)[2]){

genotype.012[which(genotypel[,i] %in% CodeO), i] <- O
genotype.012[which(genotype[,i] %in% Codela), 1] <- 1
genotype.0l12Jwhich(genotype[,i] %in% Codelb), i] <- 1
genotype.012[which(genotype|,i] %in% Code2), i] <- 2

table(genotype.012)

genotype.012 <- matrix(as.numeric(genotype.012),
ncol=dim(genotype.012)[2])

dim(genotype.012)

Z = t(genotype.012)

### Dichotomize RFS with SKAT-0

obj <- SKAT_Null_Model(Dicho.RFS ~ 1, out_type="D")

Skat.Dicho.RFS <- c(Skat.Dicho.RFS, SKAT(Z obj,
method=""optimal .adj"")$p.value)

HH# COXKM

fit <- coxkKM(Z=t(genotype.012), U=pheno$0S.n, Delta=pheno$cens.0S,
kernel="1BS™)

Result.0S.IBS <- rbind(Result.0S.IBS, unlist(fit))
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fit <- coxKM(Z=t(genotype.012), U=pheno$0S.n, Delta=pheno$cens.0S,
kernel="linear')
Result.OS.linear <- rbind(Result.0OS.linear, unlist(fit))

Z <- matrix(t(genotype.012), ncol=dim(genotype.012)[1])

fit <- coxkKM(Z=Z, U=pheno$RFS.n, Delta=pheno$cens.RFS, kernel="IBS")
Result_.RFS.IBS <- rbind(Result.RFS.IBS, unlist(fit))

fit <- coxKM(Z=Z, U=pheno$RFS.n, Delta=pheno$cens.RFS,
kernel="linear')
Result.RFS.linear <- rbind(Result.RFS.linear, unlist(fit))

}
}

rownames(Result.0S.IBS) <- uniquel
rownames(Result.0S._linear) <- uniquel
rownames(Result.RFS_IBS) <- uniquel
rownames(Result.RFS_linear) <- uniquel

Gene <- Interested _Gene[!duplicated(Interested Gene$GeneSymbol), ]
Result.0S.IBS<- cbind(Result.0S.IBS, Gene)

Result.OS.linear<- cbind(Result.0S.linear, Gene)

Result.RFS.IBS<- cbind(Result.RFS.IBS, Gene)

Result.RFS.linear<- cbind(Result.RFS.linear, Gene)

Result.Dicho.RFS<- cbind(Gene.name, Chrom, Chr.pos, Number.SNP,
Skat.Dicho.RFS)

write.table(Result.0S.IBS, "ALL Result.0S.IBS.txt')
write_table(Result.0OS_linear, "ALL_Result.OS.linear.txt')
write_table(Result_RFS.IBS, "ALL Result.RFS.IBS._txt')
write.table(Result.RFS.linear, "ALL Result.RFS.linear.txt'™)
write.table(Result.Dicho.RFS, "Result.Dicho.RFS.txt™)

total _time=(proc.time()-time)/60
total_time

### Plot survival curves for significant signal rs6944473 (DGKB) ###
setwd(*'~/Dropbox/thesis/6-16-15")
noDGKB <- read.table(*"Clean-Mel I1C_noDGKB.raw", header=T)

pheno.clean <- read.table('pheno-clean.txt", header=T) # 205 obs
colnames(pheno.clean)[1] <- "I1ID"

pheno.clean$RFS._year <- pheno.clean$RFS.n / 365

DGKB_pheno <- merge(pheno.clean, noDGKB, by="11D"")
names(DGKB_pheno)

# draw survival curve for the most significant SNP rs6944473
library(survival)

surv <- survfit(Surv(RFS.year, cens.RFS) ~ rs6944473 G, data = DGKB_pheno)
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plot(surv, col=c('blue,"red","green'™), lIty=1, xlab="Time(year)",
ylab=""Survival proportion')

legend(""topright™, legend=c('0","1","2"), col=c("’blue","red"”,"green™),
horiz=FALSE, y.intersp=0.9, bty="n", cex=0.8, Ity=1, pt.cex = 1,
title="Genotype number of minor allele:')

mtext('l", side=3, line=1l, at=3)

table(DGKB_pheno$rs6944473_G) # 0:185, 1:19, 2:1

### dichotomize rs6944473 G as 0 and 1/2 because we only have 1 subject
has 2 minor alleles

Dicho <- DGKB_pheno$rs6944473 G

Dicho[DGKB_pheno$rs6944473 G == 0] <- O

Dicho[[DGKB_pheno$rs6944473 G == 1 | DGKB_pheno$rs6944473 G == 2] <- 1
table(Dicho)

DGKB_phenol <- cbind(DGKB_pheno, Dicho) # 0:185, 1:20
survl <- survfit(Surv(RFS.year, cens.RFS) ~ Dicho, data = DGKB_phenol)

plot(survl, col=c('blue","red"), Ity=1, xlab="Time(year)", ylab="Survival
proportion™)

legend("topright™, legend=c('Minor allele carrier', "Wild type
homozygous'), col=c("blue","red"), horiz=FALSE, y.intersp=0.9, bty="n",
cex=0.8, Ity=1, pt.cex = 1, title="Genotype group:'")

mtext('11'", side=3, line=1, at=3)

# log-rank test

survdiff<-survdiff(Surv(RFS.year, cens.RFS) ~ Dicho, data=DGKB_phenol)
survdiff # p = 3.49e-07
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