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High-latitude regions are particularly sensitive to climate change through positive 

feedbacks linked with cryospheric processes and further exert a significant influence on 

the global climate system.  Long term records of natural climate variability are essential 

to give context to potential future climatic scenarios and to put them into perspective.  

Sediments from Harding Lake in the interior and Burial Lake in northwest Alaska were 

used to reconstruct lake-levels and paleoenvironmental conditions spanning the Last 

Glacial Maximum using a detailed analysis of core sedimentology and a multiproxy 

geochemical approach.  Relatively high lake-levels during late Marine Isotope Stage 3 

are followed by extremely arid and windy conditions evinced from very low lake-levels 

during the Last Glacial Maximum (LGM).  Ameliorating climate conditions and rising 
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lake-levels commence by 19,600 cal yr BP at Burial Lake and by 15,700 cal yr BP at 

Harding Lake.  Holocene hydroclimate conditions are broadly characterized by high and 

stable lake-levels along with variable levels of terrestrial and aquatic productivity.  Major 

climatic transitions in Alaska coincide with changes in summer insolation, Laurentide Ice 

Sheet extent, eustatic sea level, and related changes in paleogeography.  Millennial 

variations in aquatic productivity at Burial Lake occur over the last 10,000 cal yr BP, 

which are related to changes in the duration of the ice-free season and the availability of 

limiting nutrients.  Productivity variations coincide with changes in the mean-state Arctic 

Oscillation on millennial time scales, suggesting the millennial variations are driven by 

an internal forcing mechanism related to an ocean-atmosphere interaction.  Sediments 

from Cheeseman Lake in Newfoundland were used to reconstruct hydroclimate 

variability using the oxygen isotopic composition of authigenic carbonates (δ18O).  

Increasing δ18O values from 10,200 to 7,950 cal yr BP reflect warming temperatures 

that are superimposed by abrupt negative δ18O shifts at 9,700 and 8,500 cal yr BP from 

short lived cooling events.  Decreasing δ18O values after 7,950 to 1,200 cal yr BP 

indicate a cooling trend consistent with declining insolation, cooling surface 

temperatures, and a cooling trend inferred from Greenland ice cores.  The results 

highlight the sensitivity of Newfoundland climate to ocean-atmosphere interactions on 

century to orbital time scales.   
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1.0  INTRODUCTION 

Global temperatures have risen by 0.6° C over the last century (IPCC, 2007) and 

Arctic temperatures have increased by double that over the last several decades (ACIA, 

2005).  Physical observations and climate model simulations demonstrate that higher 

temperatures are directly related to rising greenhouse gas (CO2 and methane) 

concentrations primarily from fossil fuel combustion and global deforestation.  Arctic and 

sub-arctic regions are particularly sensitive to climatic change primarily through positive 

feedbacks linked with cryospheric processes (snow and ice losses or gains) and 

associated changes in surface albedo (ACIA, 2005).  Arctic warming and associated 

consequences further exert a significant influence on global climate via positive 

feedbacks that include: (1) increased absorbance of solar energy through melting of sea 

ice and snow, (2) rising sea levels and alterations in ocean circulation through melting 

ice sheets, and (3) enhanced greenhouse gas emissions from the breakdown of 

permafrost (ACIA, 2005).  Accelerated warming in the Arctic has resulted in adverse 

impacts to the hydrologic cycle, with increasing evaporation since the late 20th century 

and permafrost degradation resulting in a reduction in lake surface areas and the drying 

out and disappearance of thaw lakes in Alaska (Jepsen et al., 2013).  Alarmingly, 

average annual temperatures in the Arctic are projected to increase from 3° to 5° C by 

2100 (IPCC, 2007), with winter temperatures projected to rise even more (4° to 7° C).  



 2 

In light of the these changes and the importance of high-latitude regions to global 

climate change, long term records of natural climate variability are essential to give 

context to potential future climatic scenarios and to put them into perspective.   

Lakes and their sediments provide an excellent means to reconstruct long-term 

terrestrial climatic and paleoenvironmental change because lakes are ubiquitous 

features across Arctic and subarctic regions.  Lakes integrate changes in the 

surrounding watershed and atmosphere (Carpenter et al., 2007), and further respond 

rapidly and are sensitive to climatic change (Adrian et al., 2009).  In addition, lake 

sediments can provide continuous archives, are easily constrained with radiometric 

dating techniques, and can be analyzed for multiple indicators or proxies of 

environmental change.  This dissertation utilizes the sedimentary record from small 

lakes in Alaska and Newfoundland, combined with detailed analyses of core 

sedimentology and geochemical proxy analysis, to investigate the timing, magnitude, 

and underlying causes of natural climate variability spanning the late-Quaternary period.   

1.1 OBJECTIVE 

The main objective of my dissertation is to produce continuous, well-dated lake 

records of paleoenvironmental change using sedimentology and multiple geochemical 

proxies at high temporal resolution (decadal to centennial scale) from 1) Arctic and 

subarctic Alaska spanning the Last Glacial Maximum through to the present and from 2) 

subarctic Newfoundland, Canada since deglaciation in the Holocene.  The Alaskan 

research seeks to reconstruct hydroclimate variability, aquatic and terrestrial 
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productivity, and paleoenvironmental changes within the study lakes and surrounding 

watersheds.  The Newfoundland research seeks to investigate changes in hydroclimate 

and the isotopic composition of paleo-precipitation since regional deglaciation over the 

Holocene.  The motivation for these studies relates to the general lack of well-dated, 

high-resolution, and quantitative paleo records from these regions.  The subsequent 

sections in this dissertation are organized by the corresponding lake sites from Alaska 

and Newfoundland, with a brief overview of the late-Quaternary climatic history for each 

region and a short literature review showing important data gaps. 

1.2 ALASKA 

Paleoclimate variability during the Late-Quaternary was influenced by large 

changes in Earth’s orbital parameters and surface boundary conditions.  Specifically, 

Bartlein et al. (1991) indicate that Late-Quaternary paleoclimate variations in Alaska 

were controlled by (1) the size of the Laurentide Ice Sheet and the associated 

influences on atmospheric circulation and temperature, (2) insolation and its associated 

influences on temperature and seasonality, (3) temperature variability associated with 

atmospheric [CO2], and (4) additional feedbacks associated with cryospheric conditions 

(sea ice and snow cover) and sea surface temperatures.  The gradual and substantial 

changes in incoming solar radiation (insolation) are attributed to the combined effects of 

eccentricity, obliquity, and axial precession (Berger and Loutre, 1991).  Specifically, the 

large changes in high-latitude, northern hemisphere (65° N) summer insolation directly 

control the size of northern hemisphere ice sheets through control of ice ablation during 
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warm summers (Hays et al., 1976).  The global buildup of continental ice sheets and 

extensive alpine glaciers during the Last Glacial Maximum (LGM; 19,000 – 26,500 cal yr 

BP) (Clark et al., 2009) resulted in eustatic sea level lowering (-120 m compared to 

modern) and exposure of the shallow Bering and Chukchi continental shelves (Hopkins, 

1982).  The formation of the Bering Land Bridge enhanced the continentality of interior 

and lowland regions of Alaska by increasing the transport distance from marine 

moisture sources in the North Pacific Ocean.  As a consequence, interior and lowland 

regions of Alaska remained ice-free during the LGM with glaciers restricted to high-

elevation mountainous areas (Coulter et al., 1965; Kaufman et al., 2011).    

The broad unglaciated lowland regions in Alaska, collectively known as Eastern 

Beringia, contains numerous lakes and therefore represent one of the few regions in the 

Arctic where continuous geologic archives dating back to the LGM may be found.  To 

date, however, only a handful of lacustrine records from western Alaska that 

continuously cover the transition into the LGM through to the present have been 

reported (Ager, 2003; Kaufman et al., 2003).  In contrast, the vast majority of small, 

shallow (< 15 m deep) lakes in the interior of Alaska were dry prior to 15,000 cal yr 

(Abbott et al., 2000) and indicate substantial aridity during the LGM.  Collectively, these 

lake records provide important archives to reconstruct glacial age environments and the 

transition from glacial to interglacial conditions.  However, the use of bulk sediment 

radiocarbon dating and questionable chronological control, comparatively low-resolution 

(multi-century to millennial scale) proxy sampling, historical emphasis on pollen analysis 

to reconstruct vegetation, and general lack of detailed sedimentological analysis to 
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verify continuous deposition of sediment (eg. lack of unconformities) limits these 

paleoenvironmental interpretations.   

Numerous questions regarding the late Pleistocene paleoenvironmental history 

of Alaska remain unanswered.  For example, at what time and how did lake levels and 

environmental conditions respond to the gradual changes in insolation forcing and 

eustatic sea level lowering during the LGM onset and subsequent sea level rise during 

the Lateglacial transition?  Although evidence for millennial scale climate variability has 

been reported over the Holocene in Alaska (Hu et al., 2003), to date no evidence has 

been found of the rapid glacial age Dansgaard-Oeschger cycles found in Greenland ice 

cores (Dansgaard et al., 1993).  Were lacustrine sedimentation rates to slow to resolve 

these abrupt climate change events or alternatively has low-resolution sampling of 

proxies resulted in aliasing of paleoclimate records and hindered their discovery?  And 

lastly, several recently published marine sediment records from the North Pacific Ocean 

(Davies et al., 2011) and Bering, Chukchi, and Beaufort seas (Caissie et al., 2010; 

Darby et al., 2012; Katsuki et al., 2009; Max et al., 2012) permit critical analysis of land-

ocean feedbacks and interactions.  Were dramatic changes in arctic sea ice extent and 

sea surface temperature synchronous with changes in terrestrial climate variability?  To 

investigate these specific questions and to refine our understanding of the timing and 

magnitude of paleoenvironmental conditions preceding and during the LGM and 

subsequently during the late-glacial transition and Holocene, this dissertation uses 

sediment core analysis from Harding Lake in the interior of Alaska and Burial Lake in 

northwest Alaska. 
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1.3 NEWFOUNDLAND 

The island of Newfoundland in eastern Canada was completely covered by the 

Laurentide Ice Sheet during the LGM (Dyke and Prest, 1987).  The Newfoundland ice 

cap retreated to the interior of the island by 12,000 14C yr BP (~14,000 cal yr) and 

resulted in topographic control of residual ice, with melting of the last remnants by 

10,000 14C yr BP (~11,500 cal yr) (Shaw et al., 2006).  After deglaciation, the early 

Holocene climate of Newfoundland and eastern Canada was largely influenced by the 

residual Laurentide Ice Sheet, which cooled the adjacent region through its impact on 

surface energy balance and ocean circulation (Kaufman et al., 2004).  In addition, 

paleoclimate variability since deglaciation was influenced by the monotonic decline in 

summer insolation since peak early Holocene values (Laskar et al., 2004) and abrupt 

climate events attributed to glacial lake outburst floods and corresponding changes in 

North Atlantic Ocean overturning circulation (Alley et al., 1997; Yu et al., 2010).   

Lakes that precipitate carbonate minerals within their water column provide an 

important archive to quantitatively investigate hydroclimate variability.  Specifically, the 

oxygen isotope composition of authigenic carbonate minerals (δ18Ocal) that form in 

small, through flow lakes with short water residence times generally reflects variations in 

temperature or the isotopic composition of paleo-precipitation (Leng and Marshall, 

2004).  Terrestrial stable isotope records of paleo-precipitation spanning the Holocene 

from sub-Arctic eastern Canada are quite rare.  For example, Daley et al. (2009) 

measured the oxygen isotope (δ18O) composition of bog cellulose at Norden’s Bog 

Pond in eastern Newfoundland and interpret their isotope data to represent the isotopic 

composition of precipitation over the last 8,500 cal yr.  However, δ18O variations on the 
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order of 6.0 ‰ and stable isotope analysis of bog surface waters that indicate 

evaporation is a substantial source of water loss during summer months are 

inconsistent with these interpretations.  Additional stable isotope records of precipitation 

from Newfoundland are therefore necessary to improve our understanding of the spatial 

and temporal variability in terrestrial hydroclimate over the Holocene and to test specific 

paleoclimate-related hypothesis.  For example, how did the isotopic composition of 

paleo-precipitation over Newfoundland respond to the abrupt cooling event at 8,200 cal 

yr (Alley et al., 1997) centered in the North Atlantic region?  Given the sensitivity of 

climate conditions in Newfoundland to North Atlantic ocean-atmospheric conditions 

(Banfield and Jacobs, 1998; Hurrell, 1995), did the δ18O of precipitation in 

Newfoundland vary synchronously with the inferred temperatures from Greenland 

(Vinther et al., 2009)?  Finally, climate model simulations are increasingly using 

precipitation stable isotope data because water isotopes are useful tracers of the global 

hydrologic system (LeGrande and Schmidt, 2009).  As such, a dense network of 

paleoclimate observations are necessary to improve the predictive ability of climate 

models to simulate changes in hydroclimate conditions under future climate scenarios.  

To investigate these specific questions, this dissertation uses stable isotope analysis of 

authigenic carbonate minerals from Cheeseman Lake in west-central Newfoundland.  

1.4 THESIS FORMAT 

This doctoral thesis comprises a collection of five chapters, the first four of which 

represent individual papers to submit for publication in peer reviewed journals.   One 
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chapter has already been published (chapter 2) and another (chapter 3) is currently in 

review for publication in a peer-reviewed scientific journal.  The final chapter 

summarizes the major results and conclusions of each chapter. 
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2.0  A 31,000 YEAR RECORD OF PALEOENVIRONMENTAL AND LAKE-LEVEL 

CHANGE FROM HARDING LAKE, INTERIOR ALASKA 

Physical and geochemical proxy analyses of sediment cores from Harding Lake 

in central Alaska are used to reconstruct paleoenvironmental change and millennial 

scale fluctuations in lake level for the last ~ 31,000 years.  We analyzed a composite 

422 cm core from the lake depocenter (42.1 m water depth) and identified 4 distinct 

lithologic units based on variability in dry bulk density, organic matter, biogenic silica, 

carbon to nitrogen (C/N) atomic ratios, organic matter carbon (δ13C) isotopes, pollen, 

and elemental abundances via scanning X-ray fluorescence, with age control provided 

by 16 Accelerator Mass Spectrometry radiocarbon dates and 210Pb dating.  In addition, 

we analyzed a transect of cores from 7.1m, 10.75m, 15.91m, and 38.05m water depths 

to identify lake level fluctuations and to  characterize sediment compositional changes 

as a function  of water depth.  Organic matter content and magnetic susceptibility values 

in surface sediments from all transect cores show a strong correlation with water depth.  

Interpretation of four lithologic units with well-dated contacts produced a record of 

water-depth variations that is consistent with independent climate records from eastern 

Beringia.  Basal coarse-grained sediments (quartz pebble diamicton) were deposited 

prior to 30,700 calendar years before present (yr BP), possibly from fluvial reworking or 

deflation during a period of severe aridity.  Unit 1 sediments were deposited between 
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30,700 and 15,700 cal yr BP and are characterized by a low organic matter content, a 

high magnetic susceptibility, and low biogenic silica concentrations resulting from very 

low lake levels, low terrestrial and in-lake productivity and a high flux of clastic 

sediment.  An abrupt increase in organic matter and biogenic silica concentration marks 

the transition into Unit 2 sediments, which were deposited between 15,700 and 9,400 

cal yr BP when lake levels were higher and variable (relative to Unit 1).  The transition 

to full interglacial conditions at 9,400 cal yr BP marks the beginning of Unit 3.  Here an 

abrupt increase in the sedimentation rate, organic matter and biogenic silica 

concentration occurs (along with a corresponding decrease to low magnetic 

susceptibility).  These high values persist until 8,700 cal yr BP, signifying a rapid rise to 

higher lake levels (in comparison to Units 1 and 2).  Unit 4 sediments were deposited 

between 8,700 cal yr BP to 2010 AD and generally contain high concentrations of 

organic matter and biogenic silica with low magnetic susceptibility, suggesting that lake 

levels were relatively high and stable during the middle to late Holocene.   

2.1 INTRODUCTION 

The Tanana valley in the interior of Alaska, encompassing the broad unglaciated 

lowland of eastern Beringia (Péwé, 1975) remained ice-free during the Last Glacial 

Maximum (LGM; 26,500 to 19,000 years before present [cal yr BP]).  Regionally, 

glaciers were restricted to the Alaska Range to the south and the Yukon-Tanana 

Uplands to the north (Coulter et al., 1965).  Evidence suggests much colder, drier, and 

windier conditions than at present occurred during the LGM (Hopkins, 1982).  However, 
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these observations from interior Alaska, based on investigation of loess (Muhs et al., 

2003), frozen silt and permafrost (Hamilton et al., 1988), lake sediments (Nakao and 

Ager, 1985), and an alluvial basin (Matthews, 1974) are poorly resolved, discontinuous, 

and beset by chronological problems.  For example, pollen analysis of drilled cores from 

Harding Lake (analyzed at sub-millennial scale resolution and radiocarbon dated using 

bulk sediments) reveal an age reversal at the core bottom but suggest lacustrine 

sediments span the last 26,500 ± 400 14C years (Nakao and Ager, 1985).  Several lake 

records with basal ages of ~ 15,000 yr BP from this region (Abbott et al., 2000; Ager, 

1975, 1983; Bigelow and Edwards, 2001; Carlson and Finney, 2004) indicate 

substantial climatic change during the late glacial period with increases in temperature 

and effective moisture (precipitation minus evaporation).  Cosmogenic exposure (CE) 

dating of moraines has yielded several late Pleistocene glacial records indicating the 

LGM glacial maxima occurred between 16,000 to 17,000 yr BP on the north slope of the 

Alaska Range (Matmon et al., 2010; Young et al., 2009) and between 21,000 to 23,000 

yr BP in the Yukon-Tanana Uplands (Briner et al., 2005).  While helpful, these records 

of moraine stabilization offer only ‘snap-shot’ views of paleoclimate and are of limited 

utility in documenting paleoclimatic conditions between dated glacier advances.  Given 

the lack of continuous, well-dated paleoclimate records spanning the LGM in interior 

Alaska and the need for records against which to compare paleoclimate model 

simulations (Otto-Bliesner et al., 2006), additional work is necessary to investigate the 

timing and magnitude of late Quaternary climatic change and the resulting 

paleoenvironmental effects in central Alaska. 
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In this study, we present a ~ 31,000 year record of paleoenvironmental change 

inferred from analyses of overlapping sediment cores from Harding Lake.  We analyzed 

multiple physical and geochemical proxies (including dry bulk density, organic matter, 

biogenic silica, carbon to nitrogen (C/N) atomic ratios, bulk sediment organic matter 

carbon isotopes (δ13C), pollen, and elemental abundances via scanning X-ray 

fluorescence), using Accelerator Mass Spectrometry (AMS) radiocarbon and a surface 

210Pb profile to establish age control.  The Harding Lake sedimentary record 

continuously spans the period prior to the LGM through to the present.  In addition, we 

analyzed a depth transect of cores from 7.1 m, 10.75 m, 15.91 m, and 38.05 m water 

depths to track lake-level fluctuations and to characterize shallow water sediments.  We 

compare the Harding Lake record to other regional glacial and lacustrine records to 

examine the timing of paleoenvironmental responses to insolation forcing and the 

climatic effects of the exposure and later submergence of the Bering and Chukchi 

continental shelves during the late Pleistocene and earliest Holocene.   

2.2 STUDY SITE AND REGIONAL SETTING 

Harding Lake (64.42° N, 146.85° W; 217 m ASL) is located in the interior of 

central Alaska in the Tanana valley, approximately 60 km southeast of Fairbanks 

(Figure 2-1).  The maximum and mean water depths are 43 meters and 16 meters, 

respectively.  The lake has a surface area of 9.88 km2 and a watershed area of roughly 

20 km2 (LaPerriere, 2003).  Harding Lake is oligotrophic and usually dimictic, with 

overturning and mixing occurring in the spring and fall (LaPerriere, 2003).  Infrequently 



 13 

spring overturn events do not occur, leading to meromixis during these years.  Water 

quality data collected in March 2010 from core site D-10 (Figure 2-1) reveal thermal and 

chemical stratification of the water column (Figure 2-2).  Surface lake water had a 

temperature of 0.5° Celsius, a specific conductivity of 0.102 µS/cm, a pH of 7.13, and 

dissolved oxygen of 12.95 mg/L.  The oxygen (δ18O) and hydrogen (δD) isotopic values 

of lake water collected in July, 1996 were -12.59 ‰ and -116.91 ‰ (VSMOW), 

respectively.  Water isotope data from several lakes and rivers in the Tanana Valley 

(Wooller et al., 2012) show that Harding Lake water isotopic values plot along the 

regional evaporation line, indicating that water loss via evaporation is a considerable 

flux in the lake hydrologic budget.  
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Figure 2-1. A) Location map of Alaska and the surrounding area.  B) Shaded relief map of the Harding 

Lake area with sites mentioned in the text.  Dashed lines are major roads and solid lines are major rivers. 

C) Bathymetric map of Harding Lake showing 10 m depth contours and core sites. 
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Surface inflow to the lake periodically occurs from the outflow of Little Harding 

Lake (0.18 km2 lake surface area, 2.88 km2 watershed area) to the southwest and a 

small stream on the northeastern shore. Harding is a topographically closed-basin lake 

with respect to surface outflow.  Lake levels are primarily controlled by variations in the 

balance between evaporation and precipitation falling directly on the lake surface, 

because of the small watershed size (relative to the lake surface area) and the lack of a 

surface outflow.  Variability in lake levels have been noted in the recent past; for 

example, low lake levels in the 1930’s and early 1970’s were followed by higher lake 

levels in late 1970’s and early 1980’s (LaPerriere, 2003).  During times of low lake level, 

the shallow shelf at the northern edge of Harding Lake is exposed.  Review of historical 

aerial photos shows a relatively higher lake level in 1978 and relatively lower lake levels 

in 1996 and 2003.  Quantitative assessments of historical lake level changes are not 

available; however, frequent exposure and submergence of the shelf along the northern 

shore suggests fluctuations on the scale of a few meters. 

Harding Lake is located at the southern edge of the Yukon-Tanana Uplands 

Physiographic Province, which is characterized by rounded, gentle relief ridges and 

broad interfluves (Wahrhaftig, 1965).  Tributary streams in the southern portion flow 

south into the Tanana River, including the Salcha River located north of Harding Lake.  

Bedrock geology in the watershed consists of medium to high grade pelitic schist 

(Wilson et al., 1998) with few exposures.  The majority of the landscape and low-relief 

hills to the south and east of Harding Lake are mantled with loess (Blackwell, 1965).  

Extensive sand dune and loess deposits exist throughout the Tanana River Valley in the 

Fairbanks area (Péwé, 1975) along with discontinuous permafrost (Jorgenson et al., 
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2008).  Blackwell (1965)  attributed the origin of Harding Lake to aggradation of Tanana 

River during the Delta Glaciation (penultimate) and damming of a tributary flowing south 

from the Yukon-Tanana Uplands.  The formation of several other lakes abutting the 

Yukon-Tanana Uplands, including Birch Lake, Quartz Lake, and Chisholm Lake, are 

hypothesized to result from the same process.  Nakao et al. (1981) conducted a 

gravimetric survey from the surface of Harding and Little Harding Lake and suggested 

that a fault valley and trough exists underneath the area.  They concluded the lake 

formed as a result of tectonic activity and faulting, and the subsequent damming of a 

small tributary resulting from aggradation of the Tanana River (Nakao and Ager, 1985).   

The regional climate is classified as Interior (Sub-Arctic), with maximum summer 

temperatures above 30° C and minimum winter temperatures below -40° C (Stafford et 

al., 2000).  Climate data from Fairbanks International Airport (Figure 2-2; 64.818° N, 

146.863° W; 135 m ASL; 1948-2010 AD) reveal average winter (January-February-

March) and summer (June-July-August) temperatures of -18° C and 15.2° C, 

respectively.   The Interior is bounded by the Brooks Range to the north and Alaska 

Range to the south, which produce significant orographic barriers to moisture transport 

leading to annual precipitation values ranging from 200 to 400 mm (Stafford et al., 

2000).  Numerous studies suggest the location and strength of the Aleutian Low and 

Siberian/Beaufort High pressure cells have a strong influence on atmospheric 

circulation and temperature and precipitation patterns in interior Alaska (Cassano et al., 

2011; Mock et al., 1998).  Specifically, warmer temperatures occur when the Aleutian 

Low is strong and located over the Aleutian Islands, a scenario that produces a 

southerly air mass trajectory (Cassano et al., 2011).  Colder temperatures result when 
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low pressure systems are positioned to the southwest of the Aleutian Islands and over 

the Canadian Archipelago, along with an area of high pressure centered over eastern 

Siberia (Siberian High).  Positive precipitation anomalies (wet conditions) are associated 

with a weakened Aleutian Low positioned to the west over the Aleutian Islands.  In 

contrast, negative precipitation anomalies (dry conditions) typically occur when the 

Aleutian Low is in a more easterly position in the Gulf of Alaska, a configuration that 

produces more southerly winds and less moisture delivery across the Alaska Range into 

the interior (Streten, 1974).  The above synoptic climate controls are more important for 

winter conditions due to their association with the Aleutian Low pressure system, which 

is stronger in winter months.  In contrast, summer climate is more influenced by mid-

tropospheric variations of ridges and troughs (Streten, 1974) that control atmospheric 

circulation and the resultant trajectory of air masses travelling to the interior.  

Instrumental weather data from Fairbanks (Figure 2-2) and across interior Alaska 

indicate the majority of annual precipitation occurs during summer months, with peak 

values typically occurring in July and August.   
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Figure 2-2. Harding Lake water column physical water quality data and Fairbanks International Airport 

mean annual climate data for the period 1948 to 2010 AD. 

2.3 METHODS 

2.3.1 Sediment Coring 

Sediment cores were collected through the ice from multiple locations on Harding 

Lake in March, 2010 (Figure 2-1).  A surface core (D-10) with intact sediment-water 



 19 

interface was recovered from 42.1 m water depth using a UWITEC surface corer.  Upon 

recovery, the flocculate upper portion of the sediment was extruded in the field at 0.5 

cm intervals to a depth of 34 cm.  Multiple overlapping long cores were recovered from 

core sites A-10 and B-10 in 38.05 m water (64.422° N, 146.854° W) , and C-10, D-10, 

and E-10 in 42.1 m water (64.419° N, 146.858° W)  using a 9 cm diameter UWITEC 

percussion coring system.  Core F-10 (64.425° N, 146.857° W) was recovered from 7.1 

m water depth using a square rod Livingston corer.  To better characterize shallow and 

intermediate water depth sediments and to track lake-level fluctuations, two additional 

cores were recovered from an inflatable raft in July, 2012 (Figure 2-1).  Core A-12 

(64.425° N, 146.856° W) was recovered from 10.75 m water depth and core E-12 

(64.424° N, 146.856° W) from 15.91 m water depth using a square rod Livingston corer.  

After recovery, all long cores were sealed in plastic, capped, wrapped with duct tape, 

and transported to the Department of Geology and Planetary Science at the University 

of Pittsburgh. 

2.3.2 Geochronology 

The composite core age model was developed from 210Pb dating of surface 

sediments and AMS radiocarbon analyses of 16 terrestrial macrofossils (Table 2.1).  

Freeze dried and homogenized aliquots of the top 15 cm of surface core D-10 were 

analyzed for radioisotope (210Pb, 214Pb, 137Cs and 226Ra) activities by direct gamma 

counting using a high purity germanium detector (Canberra model BE-3825) with a 

closed-end coaxial well located in the Department of Geology and Planetary Science at 

the University of Pittsburgh.  Detector efficiency was determined by counting a 
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Canberra MGS-1 multi-gamma standard for which peak efficiencies have been 

established using a National Institute of Standards traceable standard.  Excess 210Pb 

activities were calculated by subtracting the background 214Pb activity, sourced from in-

situ decay of 226Ra within the sediment matrix, from the 210Pb activity sourced from 

direct atmospheric deposition.  Sediment ages were calculated using the Constant Rate 

of Supply (CRS) method, which accounts for variability in both the sedimentation rate 

and dry bulk density, according to the methodology of Binford (1990).  Bulk sediment 

samples were disaggregated and wet-sieved to separate terrestrial macrofossils for 

AMS radiocarbon measurement.  Organic samples were pre-treated using standard 

acid-base-acid wash techniques (Abbott and Stafford, 1996) and were combusted, 

graphitized, and measured at the W.M. Keck Carbon Cycle AMS Laboratory, University 

of California, Irvine.  Radiocarbon ages were calibrated to calendar years BP (cal yr BP; 

1950 AD) using CALIB 6.0 and the INTCAL09 calibration curve (Reimer et al., 2009).  

Radiocarbon samples from charcoal, wood, plant material, and seeds (Table 2.1) were 

analyzed from the composite core.  An age-depth model was created using point to 

point, linear interpolation with the classical age modeling (CLAM) code v2.1 for the 

statistical software R (Blaauw, 2010).  In addition, one radiocarbon sample from core A-

12 and three samples from core E-12 (Table 2.1) were analyzed to constrain the timing 

of sediment deposition and subsequent lake-level fluctuations at each core site.   
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Table 2.1. Harding Lake AMS radiocarbon dates with calibrated 2s error ranges.  Samples highlighted 

with an asterisk are rejected from the age model. 

Sample ID Core-Drive Total Depth Material Raw Age Error Calib Age (2σ)  

(UCIAMS #)   (cm)   (14C yr BP) (yr) (yr BP) 

Core C-10/E-10 Composite           

89203 C10-D1 22.5 Charcoal 380 30 319-505 

109356 C10-D1 36.5 Charcoal 1,245 25 1,082-1,267 

89204 C10-D1 46.5 Wood 1,570 40 1,375-1,541 

89205 C10-D1 65.0 Seeds 2,700 15 2,761-2,844 

89206 C10-D1 101.0 Wood 4,160 45 4,538-4,834 

89207 C10-D1 165.0 Charcoal 6,960 70 7,673-7,935 

89208 C10-D2 195.5 Charcoal 8,000 100 8,585-9,134 

89209 C10-D2 200.5 Charcoal 8,130 60 8,795-9,285 

89210 E10-D2 277.5 Charcoal 8,450 80 9,272-9,550 

89211 E10-D2 281.0 Charcoal 8,820 160 9,537-10,233 

109357 E10-D2 302.5 Charcoal 10,310 160 11,407-12,577 

109358 E10-D2 320.5 Plant material 10,690 190 12,059-13,068 

* 109359 E10-D2 351.5 Seeds 8,770 370 8,787-11,065 

89212 E10-D2 362.5 Wood 13,560 100 16,359-16,967 

* 109360 E10-D2 383.5 Plant material 10,740 310 11,643-13,285 

89213 E10-D2 412.5 Charcoal 25,900 320 29,848-31,193 

Core A-12             

131490 A12-D1 73.5 Seed 12,670 380 13,854-16,526 

Core E-12             

131489 E12-D1 93.5 Wood 8,650 100 9,468-10,119 

131489 E12-D2 118.5 Wood 11,820 300 13,093-14,841 

116879 E12-D2 120.5 Wood 12,175 35 13,872-14,174 

 1 

 

2.3.3 Lithostratigraphy 

Sediment cores were split, described, and photographed at the Department of 

Geology and Planetary Science at the University of Pittsburgh.  Notable sedimentary 

structures, grain-size, and Munsell color were characterized for each core.  A composite 

depth scale of 422 cm was created with surface core D-10, and long cores C-10 Drive 
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1, D-10 Drive 1, C-10 Drive 2, and E-10 Drive 2 based on anomaly matching proxy data 

(Figure 2-3) and visible stratigraphic markers.  Thirty, 1 cm samples (spanning the 

entirety of the composite record) were analyzed via smear-slide mineralogy and 

described according to the lacustrine sediment classification scheme of 

Schnurrenberger et al. (2003).  Dry bulk density and weight percent organic matter 

values were measured on all cores at continuous 1 cm intervals via loss-on-ignition 

(LOI) at 550° C for 4 hours (Heiri et al., 2001).  Magnetic susceptibility was measured 

on all split cores at 2 mm intervals using a Bartington MS2 Magnetic Susceptibility 

Meter.    
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Figure 2-3. Magnetic susceptibility for Harding Lake cores C-10, D-10, and E-10 showing the anomaly 

match used to construct the 422 cm composite depth scale.   

Weight percent Biogenic Silica (BSi) was measured at 2 cm intervals on 209 

samples (including 20 replicates) from the composite core using a wet-chemistry, 

alkaline extraction adapted from Mortlock and Froelich (1989).  Prior to analysis wet 

samples were freeze-dried, homogenized to a fine powder, and treated with 30% H2O2 

and 1M HCl to remove organic matter and carbonate minerals, respectively.  BSi was 

extracted with a 10% Na2CO3 solution and determined by molybdate blue 

spectrophotometry at 812 nm (Mortlock and Froelich, 1989) using a Thermo Scientific 

Evolution 60s UV-Visible Spectrophotometer.  Replicate measurements of internal 
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sediment standards from Laguna de Los Anteojos (Stansell et al., 2010) run during 

sample analysis produced an average error of 3.1 %.    

Carbon to nitrogen mass ratios (C/N) and bulk sediment organic matter stable 

isotopes of carbon (δ13C) were measured at 1 cm intervals from 0-25 cm and at 2 cm 

intervals over the remainder of the composite core at the Stable Isotope Laboratory at 

Idaho State University.  Total organic carbon (TOC), total nitrogen (TN), and organic 

matter δ13C measurements were obtained using an Elemental Combustion System 

4010 interfaced to a Delta V Advantage mass spectrometer through the ConFlo IV 

system.  Samples were treated with 1M HCl to remove carbonate minerals and 

subsequently freeze-dried and homogenized prior to analysis.  The mass ratio of TOC 

to TN (C/N) was calculated to assess organic matter sources.  Values of δ13C are 

reported as ‰ values relative to the VPDB scale.  Replicate measurements of internal 

standards yielded coefficients of variation of 1.4 % and 1.5 % for total organic carbon 

and total nitrogen, and precision better than 0.15 ‰ for the stable isotope 

measurements.   

Bulk sediment geochemistry was measured continuously at 1 cm intervals with 

60 second count times on the split composite cores using the ITRAX X-ray fluorescence 

(XRF) core scanner at the Large Lakes Observatory, University of Minnesota Duluth.  

The D-10 D1 core was not scanned because an earlier composite depth scale based on 

field measurements did not include this drive.  As a result, an 11 cm gap in XRF data 

exists in the composite depth scale (168 – 179 cm) where core D-10 D1 spans the 

overlap between core C-10 D1 and C-10 D2.  The ITRAX XRF provides a non-

destructive, high resolution and semi-quantitative record of elemental abundances 
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(Croudace et al., 2006).  Values are reported as counts per second.  We focus our 

paleoenvironmental interpretation on titanium concentrations, which are typically used 

as proxy for detrital clastic flux (Balascio and Bradley, 2012).   

Pollen analysis was carried out at approximately 20 cm intervals through the 

upper 350 cm and approximately 10 cm intervals through the basal 80 cm of the 

composite core.  We used conventional methodologies for preparation, identification, 

and counting (Faegri et al., 1989), plus heavy-liquid separation (sodium polytungstate) 

(Elias et al., 1999) and extra sieving for silt- and sand-rich samples. The pollen sum was 

typically ≥300 terrestrial pollen grains, excluding spores and aquatic taxa, but lower in 

the inorganic basal 80 cm. Pollen reference material held at the University Southampton 

was consulted when necessary.  The pollen diagram was plotted using TILIA software 

(Grimm, 1990).   

2.4 RESULTS AND INTERPRETATIONS 

2.4.1 Sediment Core Geochronology 

The composite core sedimentology and depth to age model, based on 16 AMS 

radiocarbon dates and the 210Pb profile (as well as linear sedimentation rates (cm/yr)) 

are presented in Figure 2-4.  Two samples (UCIAMS # 109359 and # 109360) produced 

stratigraphic age reversals and were excluded prior to generating the age model.  The 

first sample (UCIAMS # 109359, at 351.5 cm) was a seed that yielded an extremely 

small carbon yield (10 µg) and very large analytical uncertainty (Table 2.1). The second 
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sample (UCIAMS # 109360, at 383.5 cm) was plant material that also yielded a small 

carbon yield (17 µg) and large analytical uncertainty (Table 2.1).  Inclusion of either of 

these dates would necessitate rejecting other radiocarbon measurements from much 

larger samples with smaller analytical uncertainty.  The exact cause of these age 

discrepancies is unknown, however we hypothesize the very small Carbon yields, which 

are near the threshold limit for AMS radiocarbon analysis at UCI KCCAMS, are the most 

likely source of error.  For example, the influence of modern carbon contamination 

through sample processing (e.g. pretreatment, combustion, and graphitization) 

increases with decreasing sample size for radiocarbon analysis (Santos et al., 2010).  In 

an investigation of the effects of sample mass on radiocarbon dates from Arctic lake 

sediments, Oswald et al. (2005) found that ages for samples of > 50 µg carbon from the 

same macrofossil produced statistically indistinguishable ages.  However, ages for 

samples of < 50 µg carbon were substantially younger and had greater uncertainty, 

which they attributed to the combined effects of incomplete graphitization and a larger 

influence from background contamination.  As a result, we consider the reported ages of 

the samples at 351.5 cm and 383.5 cm (UCIAMS # 109359 and # 109360) to be too 

young given more robust, adjacent dates and therefore reject both from the age model. 
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Figure 2-4. Harding Lake composite core sedimentology, age model, and linear sedimentation rates. 

Gray squares indicate dates that were rejected from the age model.   

Sedimentation rates, calculated as sediment accumulation per unit time 

(cm/year), reveal considerable temporal variability in sediment deposition (Figure 2-4).  

Sedimentation rates were extremely low (0.004 cm/yr) from 30,700 to 16,800 cal yr BP, 

assuming the reliability of our basal AMS radiocarbon age on charcoal (UCIAMS # 

89213).  However, our proxy data from Unit 1 sediments (see discussion) suggest the 

possibility that old organic material was reworked into presumably younger sediments, 

and thus age constraints and calculated sedimentation rates prior to 16,800 cal yr BP 



 28 

may be erroneous.  Subsequently, sedimentation rates increased to 0.010 cm/yr from 

16,800 yr BP to 12,700 cal yr BP.  At 12,700 yr BP, the sedimentation rate again 

increased to 0.031 cm/yr until 12,000 cal yr BP.  Thereafter (between 12,000 and 9,400 

cal yr BP) sedimentation rates were lower, ~ 0.01 cm/yr.  At 9,400 cal yr BP, the 

sedimentation rate greatly increased to 0.225 cm/yr, a rate that was maintained until 

9,100 cal yr BP.  During this interval sediment accumulated more rapidly at Harding 

Lake than any other time during the late Quaternary (see results and discussion for 

Lithologic Unit 3).  Subsequently, sedimentation rates were lower from 9,100 to 109 cal 

yr BP, with values between ~ 0.015 to ~ 0.040 cm/yr.  Sedimentation rates for the upper 

10 cm were calculated from 210Pb ages and increase from 0.03 cm/yr to 0.2 cm/yr from 

109 to -60 cal yr BP (2010 AD), respectively. 

2.4.2 Composite Core Lithologic Units 

Paleoenvironmental interpretation of the Harding Lake record is based on 

lithologic units defined using the sediment physical and geochemical data.  We 

identified 4 lithologic units based primarily on variations in organic matter (wt %), 

biogenic silica (wt %), and magnetic susceptibility (Table 2.2; Figure 2-5; Figure 2-6) as 

well as 4 pollen zones (Table 2.3; Figure 2-7).  The lithologic unit boundaries do not 

correspond to the changes in sedimentation rate (Figure 2-4); however, this is not 

expected given these calculations are based on a linear interpolation between the 

radiocarbon and 210Pb ages.  In addition, the lithologic and pollen boundaries are 

broadly similar, but do not correspond exactly. 
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Table 2.2. Harding Lake lithologic units. 

Lithologic          
unit 

Core Depth            
(cm) 

Age Range                 
(cal yr BP) 

4 193-0 8,700-2010 AD 

3 262-193 9,400-8,700 

2 352-262 15,700-9,400 

1 422-352 30,700-15,700 

 1 

 

 

Figure 2-5. Harding Lake composite core proxy data plotted against core depth (cm).  
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Figure 2-6. Harding Lake composite core proxy data plotted against age in cal yr BP.   

 

Table 2.3. Harding Lake pollen zones.   

Pollen zone Core Depth            
(cm) 

Age Range Dominant taxa 

  (cal yr BP)  

3 200-0 9,100-present Betula, Alnus, and Picea 

2 341-200 14,600-9,100 Betula 

1 422-341 30,700-14,600 Herb 

 1 

 



 31 

 

Figure 2-7. Harding Lake percentages of major pollen and spore taxa plotted against age in cal yr BP.   

Unit 1 extends from the base of the composite core (422 cm) to 352 cm depth 

and spans the period 30,700 to 15,700 yr BP.  The basal 7 cm (422 to 416 cm) consist 

of a dusky brown (5YR 2/2), quartz pebble diamicton with abundant ostracod shells and 

a sandy silt matrix.  The upper portion (416 to 352 cm) gradually transitions to pale 

brown (5YR 5/2) to pale yellowish brown (10YR 6/2), homogenous silt and fine sand 

with occasional rusty laminae and ostracod shells at the base.  Smear-slide analysis of 

several samples shows very few diatom frustules or sponge spicules and a large 

proportion of mineral matter.  Diatoms in this unit are often fragmented and appear to 

have been partially dissolved.  Unit 1 sediments are characterized by relatively coarse 

grain size (silt to fine sand), along with high and variable magnetic susceptibility (19 ± 4 
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SI) and dry bulk density values (1.1 ± 0.1 g/cm3) (Figure 2-6).  Organic matter (4 ± 1 %) 

and biogenic silica (1 ± 0.3 %) contents are very low while titanium (6300 ± 1300 cps) 

concentrations are relatively high (Figure 2-6).  The organic matter and biogenic silica 

content in Unit 1 gradually increases and peaks at 383 cm and 380 cm, respectively, 

and subsequently decreases gradually until the Unit 2 boundary (Figure 2-6).  Organic 

matter δ13C (-27 ± 0.7 ‰) values are high and exhibit considerable variability.  C/N 

ratios are on average low (10 ± 0.9) during this interval (Figure 2-6).  Pollen zone 1 

spans the entirety of lithologic Unit 1 and is predominated by herb taxa including 

Cyperaceae, Poaceae, and Artemisia (Figure 2-7).  Salix and Betula are a minor 

component of the pollen assemblage.  Pre-Quaternary pollen and spores are present in 

low amounts, indicating possible reworking of older sediments into the lake basin. The 

aquatic taxa Myriophyllum and Pediastrum (Figure 2-7) are also consistently present.   

Unit 2 extends from 352 cm to 262 cm depth and spans the period 15,700 to 

9,400 yr BP.  The contact with Unit 1 sediments is gradual, and the lower portion (352 to 

272 cm) consists of dusky brown (5YR 2/2) to pale brown (5YR 5/2) silt, homogenous at 

the base and increasingly laminated towards 261 cm.  The upper portion (272 to 262 

cm) consists of dark yellowish brown (10YR 4/2), dusky yellowish brown (10YR 2/2), 

and dusky brown (5YR 2/2) laminated silt.  Smear slide analysis shows a higher 

proportion and increased diversity in diatom frustules and sponge spicules compared to 

Unit 1.  Unit 2 sediments are characterized by decreasing grain size (silt), along with 

intermediate magnetic susceptibility (10 ± 3 SI) and titanium (5400 ± 500 cps) values 

compared to Units 1 and 3-4 (Figure 2-6).   Dry bulk density (0.9 ± 0.9 g/cm3) abruptly 

decreases then increases at the base of Unit 2, and subsequently decreases again up 
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core (Figure 2-6).  Organic matter (7 ± 1 %) values are higher compared to Unit 1 and 

increase at the base of Unit 2 then rapidly decrease (Figure 2-6).  The organic matter 

content gradually increases up core with minor variability to 12,300 cal yr BP then 

steadily decreases to 9,400 cal yr BP, with minor variability at the top of Unit 2 (Figure 

2-6).  Biogenic silica (3 ± 1 %) values are also higher than Unit 1, and gradually 

increase and peak between 13,900 and 12,700 cal yr BP then gradually decrease to 

9,400 cal yr BP, with some variability during this interval (Figure 2-6).  Organic matter 

δ13C (-27 ± 0.4 ‰) values are similar to Unit 1 and fluctuate substantially.  C/N ratios 

(10 ± 1) initially decline and gradually increase up section through Unit 2 (Figure 2-6).  

Pollen zone 1 persists until 341 cm (14,600 cal yr BP) (Figure 2-7), and thereafter pollen 

zone 2 begins and is marked by a fourfold increase in pollen concentration (not shown).   

It is characterized by the Betula rise, a regional feature, and subsequent high Betula 

values (> 50 %).  Salix is a minor component (< 10 %) of the pollen assemblage during 

this interval.  There is a corresponding decline in herb taxa (Figure 2-7), but 

Cyperaceae values remain moderately high, possibly reflecting local vegetation 

associated with the lake basin.   

Unit 3 extends from 262 cm to 193 cm and spans the period 9,400 to 8,700 yr 

BP.  Sediments consist of dark yellowish brown (10YR 4/2), dusky yellowish brown 

(10YR 2/2), and dusky brown (5YR 2/2) laminated silt.  The contact between Unit 2 

sediments is gradational.  Smear slide analysis shows the highest proportion and 

diversity in diatom frustules and sponge spicules for the entire record.  Unit 3 sediments 

are characterized by silty sediments with an abrupt and sustained increased in organic 

matter (13 ± 3 %) and biogenic silica (7 ± 3 %) concentration, and a corresponding 



 34 

decrease in dry bulk density (0.6 ± 0.1 g/cm3) (Figure 2-6).  Biogenic silica content 

peaks and attains the highest value (13 %) for the entire Holocene at 9,200 cal yr BP.  

In addition, the organic matter content peaks (18 %) at 9,200 cal yr BP (Figure 2-6), 

reaching a level that matches late Holocene values.  Magnetic susceptibility (3 ± 2 SI), 

titanium (4300 ± 800 cps), and dry bulk density (0.6 ± 0.1 g/cm3) are much lower in 

comparison to Units 1 and 2 (Figure 2-6).  Organic matter δ13C (-28 ± 0.2 ‰) values 

abruptly decrease and are the most negative for the entire record.  C/N ratios (10 ± 0.4) 

are generally low, stable, and comparable to Unit 1 and 2 sediments, although with 

much less variability (Figure 2-6).  We suggest the abrupt and sustained decrease in 

δ13C and low C/N values is a result of increased aquatic productivity and loading of 

dissolved relatively depleted δ13C carbon to the lake from the watershed.  This interval 

overlaps with the time of highest sedimentation (0.225 cm/yr) throughout the entire 

record (Figure 2-4) and indicates a major change within the lake and the surrounding 

landscape.  Given that sedimentation rates increase through this interval and titanium 

values decrease, likely caused by dilution from organic matter, we interpret the increase 

in organic matter and biogenic silica content as a result of increased in-lake productivity.  

The main components of the pollen spectra retain the features of pollen zone 2 (Figure 

2-7).   

Unit 4 extends from 193 cm to the top of the composite core (0 cm) and spans 

the period 8,700 cal yr BP to 2010 AD.  The contact between Unit 3 sediments is 

gradational.  The lower portion (193 to 168 cm) consists of consists of dark yellowish 

brown (10YR 4/2), dusky yellowish brown (10YR 2/2), and dusky brown (5YR 2/2) 

laminated silt.  The middle portion (168 to 110 cm) consists of dark yellowish brown 
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(10YR 4/2) laminated silt with occasional dusky brown (5YR 2/2) 1 cm thick bands.  The 

upper portion consists of dark yellowish brown (10YR 4/2) to brownish black (5YR 2/1) 

homogeneous silt with occasional faint laminae and banding.  Smear slide analysis 

shows a high proportion and diversity in diatom frustules and sponge spicules 

throughout this interval.  Unit 4 sediments are characterized by fine-grained sediments 

(silt), along with moderately high and variable organic matter (13 ± 3 %) and biogenic 

silica (6 ± 2 %) concentrations with slightly different trends (Figure 2-6).  Biogenic silica 

gradually increases up section and peaks at values > 10 % between 120 to 70 cm 

(5,500 and 3,100 cal yr BP) with substantial variability (Figure 2-6).  Generally low 

values of biogenic silica are found between 70 to ~ 26 cm (3,100 to 600 cal yr BP) with 

a generally rising trend up core to ~ 10 % near the core top (Figure 2-6).  In contrast, 

organic matter steadily increases and peaks at 18 % at a depth of 91 cm (4,100 cal yr 

BP), exhibiting minimal variability.  Above this, organic matter decreases up core with 

values generally < 15 % until 23 cm (450 cal yr BP) (Figure 2-6).  Organic matter values 

increase to the highest levels of the entire record (23 %) near the core top (over last 450 

yr) with substantial variability.  Organic matter δ13C (-26 ± 0.7 ‰) gradually increases up 

core from -28 ‰ and approach values of -25 ‰ between 70 to ~ 25 cm (3,100 to 600 

cal yr BP) and near the core top at 5 cm (Figure 2-6).  C/N ratios (12 ± 1) gradually 

increase up section from the base of Unit 4 to high values (~ 14) with substantial 

variability (~ 2) from 110 to 74 cm (5,100 to 3,300 cal yr BP) (Figure 2-6).  The highest 

C/N ratios are found near the core top between 19 to 13 cm and peak at values > 15.  

Magnetic susceptibility (3 ± 1 SI), titanium (4800 ± 1000 cps), and dry bulk density (0.5 

± 0.1 g/cm3) values steadily increase and peak by 7,100 cal yr BP and gradually 
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decrease up section to the core top (Figure 2-6).  Sedimentation rates (~ 0.015 to ~ 

0.04 cm/yr) were generally stable and low throughout Unit 4 until ~ 109 yr BP and 

thereafter gradually increase towards the core top to 0.2 cm/yr, indicating stability in 

landscape and climatic conditions.  Pollen zone 3 begins about 9,100 cal yr BP (Figure 

2-7) and covers the uppermost part of the record.  High Betula (> 75 %) pollen 

predominates, and values of Picea and Alnus increase between 8,600 to 7,500 cal yr 

BP.  Isoetes predominates the aquatic taxa and Myriophyllum is absent.   

2.4.3 Core F-10 Sediments 

Core F-10 was recovered in 7.1 m water depth, is 32.5 cm in length, and spans 

the sediment-water interface (Figure 2-8).  The upper 8 cm consist of dark yellowish 

brown (10YR 4/2) to pale yellowish brown (10YR 6/2) homogenous silt to fine sand.  

The remainder of the sediment between 8 and 32.5 cm consists of grayish brown (5YR 

3/2) homogenous silt to fine sand interrupted by grayish brown sand layers.  The 

medium to coarse grained sand layers are from 13 to 15.5 cm and 20 to 20.5 cm, with 

erosive contacts and load structures immediately below the sand.  Smear slide analysis 

of select samples shows diatom frustules in the upper portion (0 to 13 cm) while the 

basal sediments consist entirely of mineral sediment with no diatoms.  Dry bulk density 

(1 ± 0.3 g/cm3) is generally high throughout and gradually decreases up core.  Organic 

matter (7 ± 3 %) is low at the core bottom and generally increases towards the core top.  

Magnetic susceptibility (49 ± 82 SI) is very high at the core bottom and gradually 

decreases towards the top.  No terrestrial macrofossils were found for radiocarbon 

dating of core F-10.   
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Figure 2-8. Harding Lake cores F-10, A-12, and E-12 proxy data plotted against depth.  Dashed lines 

indicate radiocarbon samples, reported as the calibrated 2s error range in thousands of years (ka) cal 

before present. 

2.4.4 Core A-12 Sediments 

Core A-12 was recovered in 10.75 m water depth, is 55 cm in length, and starts 

20 cm below the sediment-water interface (Figure 2-8).  The upper portion (20 to 74 cm) 

consists of dark yellowish brown (10YR 4/2) homogeneous to faintly banded silt to find 

sand and the basal 1 cm (74 to 75 cm) consists of medium sand.  Smear slide analysis 

of select samples shows diatom frustules in the upper portion (20 to 74 cm) of the 

sediments.  Dry bulk density (0.6 ± 0.2 g/cm3) values gradually decrease up core while 
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organic matter (10 ± 2 %) values generally increase towards the core top.  Magnetic 

susceptibility (14 ± 13 SI) is very high at the core bottom and gradually decreases 

towards the top.  Radiocarbon analysis of a seed at 73 to 74 cm constrains the onset of 

lacustrine sedimentation at the core site (11.48 m below modern level; BML) to 15,050 

cal yr BP (Table 2.1; 13,910 to 16,520 cal yr BP error range).  No other terrestrial 

macrofossils were found for radiocarbon dating of core A-12.   

2.4.5 Core E-12 Sediments 

Core E-12 was recovered in 15.91 m water depth, is 108 cm in length, and starts 

20 cm below the sediment-water interface (Figure 2-8).  The upper portion (20 to 110 

cm) consists of moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 

4/2) homogenous to faintly banded silt.  The middle portion (110 to 118 cm) consists of 

disturbed, moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2) silt 

to fine sand sediment with a clear erosional unconformity.  The basal sediments (118 to 

128 cm) consist of dark yellowish brown (10YR 4/2) silt and fine to medium sand with 

organic rich layers from 118 to 123 cm.  Smear slide analysis of select samples shows 

diatom frustules in the upper 90 cm (20 to 110 cm) while the basal sediments largely 

consist of mineral matter.   Dry bulk density (0.8 ± 0.3 g/cm3) values generally decrease 

up core, aside from the unconformity interval resulting from erosion and re-working 

(Figure 2-8).   Organic matter (8 ± 2 %) values generally increase and magnetic 

susceptibility (57 ± 40 SI) values generally decrease towards the core top, again aside 

from the unconformity interval (Figure 2-8).  Radiocarbon analysis was conducted on 

three samples from core E-12 (Table 2.1).  A sample of wood from 120 to 121 cm 
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constrains the onset of lacustrine sedimentation at the core site (17.11 m BML) to 

14,020 cal yr BP (13,870 to 14,170 cal yr BP error range).  An additional sample of 

wood from 118 to 119 cm has a median age of 13,720 yr BP (13,110 to 14,830 yr BP 

error range) and provides further evidence of the initial major rise in lake level.   The 

median ages of these samples are in stratigraphic order; however the calibrated error 

ranges overlap.  A sample of wood from 93 to 94 cm, located stratigraphically above the 

erosional unconformity in the E-12 core, constrains the subsequent rise in lake level 

(16.84 m BML) to before 9,660 yr BP (9,470 to 10,120 cal yr BP error range).  No other 

terrestrial macrofossils were available for radiocarbon dating of core E-12.       

2.5 DISCUSSION 

The specific climatic controls on lake level at multi-centennial to millennial 

timescales at Harding Lake are poorly understood, though must be related to changes 

in regional effective moisture (precipitation minus evaporation).  Analysis of sediment 

proxies from Harding Lake shows variability in organic matter content and magnetic 

susceptibility are coeval with many regional hydroclimate transitions evidenced from 

other paleoproxy datasets.  Scatterplot analysis of organic matter content and magnetic 

susceptibility (Figure 2-9) demonstrates clustering of the lithologic units into distinct 

groups.  Unit 1 (30,700 to 15,700 cal yr BP) sediments, characterized by the lowest 

organic matter content and highest magnetic susceptibility during the entire record, 

correspond to the interval when most small, shallow lakes in central Alaska were dry 

(Abbott et al., 2000; Ager, 1983; Bigelow and Edwards, 2001; Carlson and Finney, 
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2004; Wooller et al., 2012).  Unit 2 (15,700 to 9,400 cal yr BP) sediments, characterized 

by intermediate organic matter content and magnetic susceptibility, parallel the initial 

formation of lacustrine sediment in many lakes in central Alaska, indicating rising and 

fluctuating water levels (Abbott et al., 2000).  In contrast, Unit 3 to 4 (9,400 cal yr BP to 

present) sediments, characterized by high organic matter content and low magnetic 

susceptibility, were deposited during the Holocene when regional lake levels were rising 

and near overflow levels (Abbott et al., 2000; Ager, 1983; Bigelow and Edwards, 2001; 

Carlson and Finney, 2004; Finney et al., 2012; Wooller et al., 2012).  However, 

variability in organic matter content and magnetic susceptibility may also in part reflect 

changes in soil stabilization within Harding Lake’s watershed associated with major 

vegetation shifts.  For example, Hu et al. (1993) suggested that shrub tundra conditions 

between 12,000 – 10,500 14C yr BP (~13,900 to ~12,500 cal yr BP) at Wien Lake 

(central Alaska) were accompanied by intensive soil erosion, inferred from high 

allogenic metal and low sediment organic content.  The relatively sparse vegetative 

cover during this time likely promoted weathering and erosion of bare mineral soils in 

the surrounding watershed.  The subsequent transition to shrub and boreal forest 

beginning at 10,500 14C yr BP (~12,500 cal yr BP) was marked by lower allogenic metal 

and higher sediment organic content, which Hu et al. (1993) attributed to the buildup of 

humic compounds and stabilization of watershed soils.  Additional lake studies from 

northwestern (Hu et al., 1996) and southwestern (Hu et al., 2001) Alaska revealed 

similar vegetation-landscape development associated with the tundra to boreal forest 

transition during the late Pleistocene and early Holocene.   
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Figure 2-9. Scatterplot of organic matter content versus magnetic susceptibility for A) the Harding Lake 

composite core plotted by lithologic unit and B) surface sediments from core F-10, A-12, E-12, B-10, and 

C-10.  

 

Scatterplot analysis of organic matter content and magnetic susceptibility from 

the upper portion (10 to 20 cm) of cores collected along a depth transect (Figure 2-9) 

confirms the aforementioned relationship and provides semi-quantitative constraints on 

lake-levels.  For example, core top sediments from deep water cores B-10 and C-10 

recovered from 38.05 and 42.1 m BML, and characterized by high organic matter 

content and low magnetic susceptibility (Figure 2-9), indicate that modern deep water 

sediments are most similar to middle to late-Holocene sediments from the composite 

core.  In addition, surface sediments from shallow water cores F-10, A-12, and E-12 

recovered from 7.1, 10.75, and 15.91 m BML and characterized by intermediate organic 

matter content and magnetic susceptibility (Figure 2-9), indicate that modern shallow to 
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intermediate water sediments are most similar to late-glacial sediments.  Although a 

minor component of the down-core variability in organic matter content and magnetic 

susceptibility may be related to vegetation-landscape development (described above), 

the substantial variation in sediment properties along a water depth transect in the 

modern system suggests that vegetation-landscape changes were likely a small 

influence.  We therefore assert that water depth is the dominant control at multi-

centennial to millennial timescales on organic matter content and magnetic 

susceptibility.  The lack of fine sediment deposition in water levels shallower than 7 m 

indicates that wave base erosion occurs to this depth in the modern lake.   

Pompeani et al. (2012) used scatterplot analysis for Rantin Lake sediments in the 

Yukon (Canada) to distinguish deep versus shallow water sediment properties.  In 

addition, Edwards et al. (2000) used a similar model in their investigation of Birch Lake 

using surface sediments along a water depth transect, where trends in sediment 

properties (aquatic pollen along with organic matter and magnetic susceptibility) 

reflected similar lake-level changes as determined from transect based lake-level 

reconstructions (Abbott et al., 2000).  Edwards et al. (2000) also collected surface 

sediment samples from modern lakes in interior Alaska and used pollen analysis to 

investigate the relationship between aquatic taxa and water depth.  Notably, a higher 

diversity of aquatic taxa was found at shallower (< 5 m) water depths, with little to no 

aquatic taxa found at depths > 20 m.  Core transect data also demonstrate a substantial 

lake-level rise and fluctuating water levels occurred during the late-glacial period.  The 

basal radiocarbon age from core A-12 suggests the initial rise in lake level to < 11.5 m 

BML occurred ~ 13,900 – 16,500 cal yr BP. This sample (UCIAMS # 131490) has large 
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analytical uncertainty, and the basal radiocarbon ages from core E-12 better constrain 

the lake level rise (to < 17.1 m BML) at ~ 14,000 cal yr BP.  The erosional unconformity 

in core E-12 above the basal sediments (Figure 2-8) represents a period of non-

deposition at this core site or erosion of previously deposited sediments during a time of 

lower or fluctuating lake levels after ~ 14,000 cal yr BP.  The subsequent rise in lake-

level to < 16.8 m BML is constrained by the uppermost radiocarbon age of 9,660 cal yr 

BP from core E-12 in fine-grained lacustrine sediment located above the erosional 

unconformity.  There is no evidence that lake level dropped below the E-12 core site 

after this time.   Accordingly, we combine the organic matter to magnetic susceptibility 

conceptual model with core-transect data to infer semi-quantitative changes in lake-

level at Harding Lake (Figure 2-10) and compare these results with paleoclimate 

datasets from eastern Beringia.  We do not account for the depth of wave base erosion 

in our lake level curve (Figure 2-10) and therefore our lake level constraints are semi-

quantitative.  However, we surmise the wave base erosion depth was of a lower 

magnitude during the period of rapid lake level change (during the late glacial) when the 

lake surface area was presumably smaller. 
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Figure 2-10. A) Harding Lake relative lake-level curve compared with regional climate records including 

B) a lake-level reconstruction for Birch Lake, Alaska (Abbott et al., 2000), C) July insolation for 65° North 

(Berger and Loutre, 1991), and D) Relative sea level data (Peltier and Fairbanks, 2006) and the ice-

equivalent eustatic sea level history (smooth black line) (Waelbroeck et al., 2002). 
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2.5.1 Pre-Last Glacial Maximum (> 30,700 cal yr BP) 

The presence of coarse sediments (pebble diamicton), low concentrations of 

organic matter and biogenic silica, and high and variable magnetic susceptibility, 

titanium, and dry bulk density indicate the basal 7 cm of Unit 1 are the lake bottom 

substrate (Figure 2-6).  The lack of finer grained lacustrine sediments further indicates 

that prior to 30,700 cal yr BP the lake was either seasonally desiccated or dry for a long 

period of time, with any previously deposited sediment removed by deflation or fluvial 

reworking.  The occurrence of these coarse sediments is consistent with the 

conclusions of Blackwell (1965) that Harding Lake was formed by aggradation of 

Tanana River through deposition of braided stream sediments and subsequent 

damming of the proto Salcha River draining from the north.  Blackwell (1965) suggested 

the lake basin formed during the Delta Glaciation (penultimate), which has recently 

been dated by cosmogenic exposure ages to late Marine Isotope Stage (MIS) 4 or early 

MIS3, approximately 60,000 to 50,000 cal yr BP (Kaufman et al., 2011).  If this age 

assignment is correct, the absence of lacustrine sediments dating to this time indicates 

generally unstable and variable climatic conditions with significant aridity during MIS3 in 

central Alaska, which may have caused multiple transgression/regression events that 

eroded sediment from the basin.  Alternatively, previously deposited sediments may 

have been subsequently removed via fluvial erosion or deflation when lake levels were 

lower.   

The existence of loess deposits stratigraphically above palaeosols dating to 

32,000 to 30,000 14C yr BP (36,500 to 34,700 cal yr BP) at Halfway House, Gold Hill, 

and Birch Hill near Fairbanks (Muhs et al., 2003) indicates this was a time of extremely 



 46 

arid and windy conditions.  Pollen data from Isabella Basin demonstrate high 

percentages of Cyperaceae and Artemisia and low percentages of Alnus and Picea 

after ~ 32,000 14C yr BP until the Holocene (Matthews, 1974).  Matthews (1974) 

interpreted these data to represent arctic climatic conditions in central Alaska, similar to 

that of the present day tundra in northern Alaska.  Pollen and grain size data are 

available from a previous investigation of Harding Lake sediments (Nakao and Ager, 

1985).  While relatively coarse sediments (sand to granule) are recorded prior to 26,500 

± 460 14C yr BP (31,000 cal yr BP), pollen data are interpreted to show a vegetational 

mosaic characterized by Picea, Betula, Ericales, Cyperaceae and Sphagnum.  Nakao 

and Ager (1985) suggest these proxies represent middle Wisconsian Interstadial 

conditions and a cool, wet climate; however, the use of bulk sediment radiocarbon 

dating, the presence of an age reversal in this interval, and the use of conventional 

drilling techniques to recover sediments may compromise their interpretation.   

2.5.2 The Global Last Glacial Maximum (30,700 to 15,700 cal yr BP) 

The portion of Unit 1 stratigraphically above the coarse basal sediment is 

characterized by decreasing grain size (silt to fine sand) with high and variable dry bulk 

density and generally constant titanium content (Figure 2-6), and an extremely low 

sedimentation rate (Figure 2-4), assuming reliability of our basal radiocarbon age on 

fine (< 250 µm) charcoal.   Sediments are homogenous with occasional rusty banding, 

and there is no evidence of unconformities (eg. mud cracks, erosional surfaces, etc.) 

that would indicate discontinuous sedimentation.  We suggest these sediments were 

deposited in a nearly perennially frozen, shallow lake with a very short ice free summer 
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season.  Low organic matter and biogenic silica concentration imply that terrestrial 

vegetation was scarce in the vicinity and that in-lake productivity levels were low, due to 

cold and potentially turbid waters.  High magnetic susceptibility and low organic matter 

content, combined with the absence of glacial age sediments in cores from shallower 

water depths, suggest very shallow lake levels (Figure 2-10).  The general absence of 

terrestrial macrofossils in Unit 1 sediments further indicate the surrounding landscape 

had sparse vegetation.  The predominance of herb taxa (Cyperaceae, Poaceae, and 

Artemisia) during the LGM (Figure 2-7) suggests a tundra environment with cold and dry 

conditions relative to today. The aquatic taxa Myriophyllum and Pediastrum (Figure 2-7) 

are consistently present and together indicate shallow water conditions (Edwards et al., 

2000), which is coherent with low organic matter content and high magnetic 

susceptibility values in Unit 1 and the absence of LGM age sediments in shallow water 

cores.  The high magnetic susceptibility and titanium values resulted from a high 

concentration of fine-grained clastic-rich sediments, which likely originated from wind-

blown loess or intensive erosion of watershed soils.  Age control during this interval 

rests on the basal charcoal sample at 412.5 cm (UCIAMS # 89213) and a linear 

interpolation to the next age at 362.5 cm.  While the analytical uncertainty of the basal 

sample is generally low considering its age (Table 2.1), the question remains whether 

the organic material formed and subsequently deposited contemporaneously with the 

enclosing sediments.  We believe the charcoal sample was formed and deposited 

simultaneously with the surrounding sediments because charcoal is extremely friable 

and easily disintegrates with minimal physical erosion.  Given that Unit 1 sediments 

above the coarse basal gravel lack any convincing evidence of unconformities 
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(explained above), we infer these sediments represent temporally continuous 

sedimentation from ~ 30,700 to 15,700 cal yr BP.  Alternatively, it is possible that the 

basal charcoal material could be reworked from older sediments, and therefore the 

timing of initiation of lacustrine sedimentation may be younger than its reported 

radiocarbon age.  This scenario is consistent with the presence of only tundra type 

vegetation in Unit 1 sediments, which typify LGM conditions in interior Alaska, but 

continuous records dating the onset of tundra vegetation are lacking. 

The proxy data from Harding Lake are consistent with evidence from central 

Alaska showing extremely arid conditions during the LGM.  A revised model for loess 

deposition indicates that loess production and windiness increased during the LGM in 

central Alaska while accumulation decreased because of a lack of vegetative cover 

(Muhs et al., 2003).  AMS radiocarbon and 10Be dates from loess deposits near 

Fairbanks (Halfway House, Gold Hill, and Birch Hills) (Muhs et al., 2003) also suggest 

minimal loess deposition occurred during the global LGM because of the presence of 

sparse herb-tundra vegetation and minimal ground surface roughness.  Nakao and Ager 

(1985) report the predominance of herb taxa from Harding Lake and suggest that 

climate was extremely cold and dry between 26,500 ± 460 and 13,690 ± 500 14C yr BP 

(31,000 to 16,500 cal yr BP).  An unconformity in the sedimentary record from Burial 

Lake in northwest Alaska indicates a significant drop in lake level and a hiatus in 

deposition between 34,800 and 23,200 cal yr BP (Abbott et al., 2010).  Core transect 

data from Birch Lake in the Tanana Valley indicate lake levels were 18 m lower prior to 

15,000 cal yr BP (Figure 2-10) (Abbott et al., 2000).  Evidence from elsewhere in the 

unglaciated interior of Alaska show that most small lakes were dry prior to the late-
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glacial (15,000 cal yr BP) (Abbott et al., 2000; Ager, 1983; Bigelow and Edwards, 2001; 

Carlson and Finney, 2004; Wooller et al., 2012).   

Collectively, these proxy records demonstrate an extremely dry climate in central 

Alaska during the global LGM that is, in part, attributed to changes in atmospheric 

circulation and exposure of the Bering Land Bridge.  In climate model simulations for the 

LGM (18,000 cal yr BP), the winter jet-stream is split into a northern and southern 

component by the high-altitude dome of the Laurentide Ice Sheet (COHMAP, 1988).  

Simultaneously, an anti-cyclonic circulation (‘glacial anti-cyclone’) developed at the 

surface with enhanced easterly winds at the southern margin and southerly winds at the 

western margin of the ice sheet (Bartlein et al., 1991).  The climatic effects of changing 

circulation were spatially variable and complicated, but likely produced windy and dry 

conditions downwind of the Laurentide Ice Sheet.  Eustatic sea level lowering of -120 m 

(Figure 2-10) (Peltier and Fairbanks, 2006) resulted in exposure of the Bering and 

Chukchi continental shelves (Hopkins, 1982), forming the land bridge and increasing the 

transport distance of moisture from the North Pacific Ocean and Bering Sea to interior 

Alaska.  The substantial increase in distance from oceanic moisture sources caused the 

climate of interior regions to become even more continental and dry. 

Several recently published glacial records using cosmogenic exposure dates 

from moraines further document climatic conditions during the LGM.  Evidence from 

Ramshorn Creek valley in the Yukon-Tanana Uplands shows the LGM maxima (Salcha 

moraine) occurred between 23,000 to 21,000 cal yr BP during the northern hemisphere 

summer insolation minima (Figure 2-10), while a recessional moraine located ~ 3.5 km 

up-valley (Ramshorn moraine) dates to between 19,000 to 18,000 cal yr BP (Briner et 
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al., 2005).  A cosmogenic exposure chronology from Fish Lake valley in the northeast 

Alaska Range shows the LGM maxima may have occurred by 22,400 ± 600 cal yr BP 

(Young et al., 2009); however this age is based on only one date.  Young et al. (2009) 

report a clustering of younger ages that suggest the Fish Lake glacier remained near 

the LGM maxima until ~ 16,500 cal yr BP.  Evidence from the Delta River valley, the 

type section for late Pleistocene (Wisconsinan) glaciation in the northeast Alaska 

Range, dates the Donnelly moraine to 17,300 ± 600 cal yr BP (Matmon et al., 2010).  

These cosmogenic exposure chronologies suggest that regional glaciers persisted at or 

near their LGM maxima until near the late-glacial transition, implying that climatic 

conditions remained favorable (likely colder) for positive glacier mass balance until 

17,000 to 16,000 cal yr BP.  Glacier mass balance is controlled by both temperature 

and precipitation conditions, and while the LGM climate of interior Alaska is considered 

extremely dry (Hopkins, 1982), glacial maxima during the LGM likely resulted from 

colder temperatures.  Therefore, the timing of alpine glacier retreat during the late-

glacial (beginning around ~ 16,000 to 17,000 cal yr BP) likely indicates the initiation of 

warmer conditions. 

Although our age control is limited during the LGM, proxy data from Harding Lake 

permit critical testing of an LGM (21,000 cal yr BP) climate model simulation that 

indicate annual temperatures up to 4° C warmer than present in central Alaska (Otto-

Bliesner et al., 2006).  Likewise, these conclusions are broadly supported by a pollen 

based LGM climate reconstruction (Bartlein et al., 2011) that relies on several pollen 

records constrained with bulk sediment radiocarbon dates.  The anomalously warmer 

temperatures are hypothetically explained by the aforementioned changes in 
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atmospheric circulation associated with the increasing size and altitude of the 

Laurentide Ice Sheet (COHMAP, 1988).  Otto-Bliesner et al. (2006) suggest the strong 

pressure gradient between the high pressure cell over the Laurentide Ice Sheet 

centered near Hudson Bay and a low pressure region in the North Pacific (Aleutian low) 

resulted in stronger southerly surface winds on the western margin of the ice sheet.  

Model simulations indicate the enhanced winds produced poleward advection of warmer 

air into Alaska, especially during winter (COHMAP, 1988).  Although our age control is 

limited, evidence of very low aquatic (biogenic silica) and terrestrial (organic matter, 

absence of macrofossils) productivity throughout LGM age sediments at Harding Lake 

indicate generally dry and cold conditions with a short ice free (growing) season.   

Accordingly, proxy evidence from Harding Lake contradict the climate model simulation 

conclusions of Otto-Bliesner et al. (2006) and pollen based climate reconstructions of 

Bartlein et al. (2011).  This apparent discrepancy may result from contrasting seasonal 

influences, whereby lacustrine proxies are responding to summer, growing season 

conditions.  Mean annual temperatures in interior Alaska during the LGM, on the other 

hand, may be more influenced by winter season temperature variability.   

2.5.3 The late-Glacial and early Holocene (15,700 to 9,400 cal yr BP) 

The abrupt increase in organic matter and biogenic silica concentration at 15,700 

cal yr BP marks the transition into the late-glacial and indicates wetter conditions at 

Harding Lake.  A corresponding decrease in dry bulk density, magnetic susceptibility, 

and titanium values further suggests a decrease in windiness and ameliorating climatic 

conditions (Figure 2-6).  The intermediate organic matter and biogenic silica content of 
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Unit 2 sediments suggests that although aquatic and terrestrial productivity levels were 

higher than before, they were still lower than modern levels.  These results combined 

with a subtle increase in the sedimentation rate as well as lower magnetic susceptibility 

and titanium values imply that lake levels were higher relative to Unit 1.  Rising and high 

Betula (> 50 %) pollen and a corresponding decline in herb taxa beginning shortly 

before 14,600 cal yr BP (Figure 2-7) further suggests that climatic conditions were 

warmer and wetter compared to the LGM.  Comparison with other AMS dated lake 

records from interior Alaska show the Betula rise occurred between 13,500 to 14,000 

cal yr BP at Jan Lake (Carlson and Finney, 2004) and Birch Lake (Bigelow, 1997), and 

thus suggest the Betula rise occurred contemporaneously or slightly earlier at Harding 

Lake.  Collectively, proxy and core-transect evidence indicates a rapid lake level rise 

beginning at 15,700 cal yr BP reaching above 17 m BML by ~ 14,000 cal yr BP (Figure 

2-10).  The presence of an erosional unconformity in core E-12 demonstrates that lake 

level fluctuated or dropped after the initial rise.  Regardless, the preservation of 

lacustrine sediment above this interval provides evidence that lake-levels did not drop 

below 17 m BML again for any sustained time. 

The proxy data from Harding Lake support existing evidence for significant 

climatic change during the late-glacial in Alaska.  For example, a pollen based 

reconstruction for eastern Beringia (Viau et al., 2008) indicates rising mean annual 

temperatures beginning around 16,000 yr BP and peak late-glacial mean annual 

temperatures by 12,000 cal yr BP.  The onset of inferred warming at Harding Lake 

occurred during a time of increasing summer insolation (Figure 2-10) and rapid 

deglaciation in the Alaska Range (Young et al., 2009).  Notably, the late-glacial 
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transition at Harding Lake also corresponds to a rapid 18 m lake level rise at Birch Lake 

at ~ 15,000 cal yr BP (Figure 2-10) (Abbott et al., 2000), suggesting that climate was 

substantially wetter than before.  This assertion is supported by evidence that numerous 

small lakes began accumulating lacustrine sediment between 15,000 and 13,000 cal yr 

BP in lowland central Alaska (Ager, 1983; Bigelow and Edwards, 2001; Carlson and 

Finney, 2004) as well as evidence for deglaciation and warmer temperatures in the 

lower Fish Lake valley (located in the northeastern Alaska Range) by 15,000 to 14,000 

cal yr BP (Young et al., 2009).   

Marine sediments from the southeastern Bering Sea (HLY0502-51JPC) do not 

contain detectable amounts of C37 alkenones prior to ~ 16,700 cal yr BP (Caissie et al., 

2010), implying perennial sea ice cover during the LGM.  Alkenone derived sea surface 

temperature estimates and diatom assemblage data indicate warming sea surface 

temperatures and a transition from sea-ice to open water species during the late-glacial 

period (Caissie et al., 2010).  In general, the available evidence from Harding Lake and 

comparison with other paleoproxy records shows the late-glacial was a time of wetter 

and warmer conditions, compared to the LGM, in central Alaska.   

2.5.4 The early to mid-Holocene (9,400 to 8,700 cal yr BP) 

The abrupt increase in organic matter and biogenic silica content (Figure 2-6) 

along with the highest sedimentation rates (0.225 cm/yr) of the entire record (Figure 

2-4), and the simultaneous decline in magnetic susceptibility and titanium content 

indicate that considerable climatic and environmental changes occurred at Harding 

Lake at 9,400 cal yr BP.  We suggest the abrupt change in the sediment physical and 
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geochemical data signifies rapidly rising and much higher lake levels between 9,400 to 

8,700 cal yr BP.  This interpretation is consistent with the accumulation of lacustrine 

sediment above the erosional unconformity in core E-12 by 9,660 cal yr BP.  The 

marked increase in organic matter and biogenic silica can be attributed to a further 

increase in precipitation and rising lake levels, along with an increase in the length of 

the summer ice-free season from warmer temperatures associated with the summer 

insolation maxima (Berger and Loutre, 1991).  The increase in biogenic silica is likely 

also caused, in part, by increased availability of nutrients and autochthonous organic 

sediment flux.  Continued predominance of Betula (> 50 %) pollen, along with a 

concomitant decline in herb taxa and subtle increase in Sphagnum and Isoetes at 9,100 

cal yr BP (Figure 2-7), further demonstrate increasingly wet conditions and higher lake 

levels.  The corresponding decrease in titanium and magnetic susceptibility represents 

the final transition to interglacial climatic conditions, wherein a generally stable climate 

characteristic of the Holocene prevailed.   

The Harding Lake sediment signal at 9,400 cal yr BP is explainable in the context 

of numerous other terrestrial records from central Alaska that demonstrate an increase 

in precipitation and potentially warmer conditions.  Sedimentary evidence from Birch 

Lake shows rising lake levels to near the overflow level between 10,000 and 9,000 cal 

yr BP (Figure 2-10) (Abbott et al., 2000).  Rising lake-levels also occurred at this time at 

Marcella Lake in the southwest Yukon (Anderson et al., 2005) and after 9,500 cal yr BP 

at Dune Lake (Finney et al., 2012).  In addition, this period broadly corresponds with the 

early Holocene peak in summer insolation (Figure 2-10) as well as rising sea levels 

(Figure 2-10) and the final submergence of the Bering land bridge (Elias et al., 1996), 



 55 

which would have reduced the transport distance of warm, moist North Pacific air 

masses traveling towards interior Alaska.  Nevertheless, the gradual change in 

insolation forcing and eustatic sea level rise during this interval precludes a direct 

linkage between these forcings and the sediment anomaly.  We therefore suggest the 

rapid changes in sedimentation at Harding Lake likely reflect an abrupt (and probably 

temporary) change in atmospheric circulation, possibly associated with further retreat of 

the Laurentide Ice Sheet.   

2.5.5 The middle to late-Holocene (8,700 cal yr BP to 2010 AD) 

Proxy evidence from Harding Lake suggests that water levels were generally 

high (Figure 2-10) for the remainder of the Holocene.  The decline in sedimentation 

rates to lower and stable Holocene levels (0.015 to 0.04 cm/yr), along with the subtle 

increase and peak in magnetic susceptibility and titanium by 7,100 cal yr BP implies that 

lake levels were higher and that shoreline reworking provided a source of minerogenic 

sediments to the lake depocenter.  The remainder of Holocene sediment is 

characterized by low and declining magnetic susceptibility and titanium values.  The 

appearance of Alnus and Picea between 8,600 to 7,500 cal yr BP (Figure 2-7), and later 

increases in Alnus by 7,000 cal yr BP and Picea by 5,600 cal yr BP, respectively, 

indicate development of coniferous forest quite similar to present and further imply 

warm and wet conditions.  Isoetes predominates the aquatic taxa and Myriophyllum is 

absent, consistent with deeper water at the depocenter (Edwards et al., 2000).  The 

higher organic matter content and generally low and declining magnetic susceptibility 

(Figure 2-6) values suggest relatively high lake levels through the middle to late 
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Holocene.  Substantially lower magnetic susceptibility values suggest that sediment 

composition in this interval is relatively insensitive to further low magnitude lake-level 

changes (Figure 2-9).  A gradual trend toward higher C/N values indicates organic 

matter increasingly originated from terrestrial sources during the middle to late 

Holocene (Figure 2-6).  In addition, organic matter δ13C values gradually increase 

(Figure 2-6) becoming more enriched, and combined with higher organic matter content, 

suggest increasing levels of aquatic productivity within Harding Lake.  Notably, biogenic 

silica concentrations peak during the mid-Holocene between 5,500 and 3,100 cal yr BP 

and fluctuate at millennial time scales (Figure 2-6).  Given that magnetic susceptibility 

and titanium values are generally stable and decreasing throughout the Holocene (with 

minimal evidence of diatom dissolution), we attribute the variability in biogenic silica 

content to fluctuations in aquatic productivity.   

Unchanging to overflowing lake levels persisted from ~ 6,000 cal yr BP to the 

present at Birch Lake (Figure 2-10) (Abbott et al., 2000), suggesting the middle to late 

Holocene climate of central Alaska was generally moist and stable.  Core transect data 

from Jan Lake in the middle Tanana Valley suggest rising lake levels from 9,000 cal yr 

BP to the present, indicating a trend towards wetter conditions through the Holocene 

(Barber and Finney, 2000).  Historical observations from Harding Lake demonstrate 

lake level fluctuations on the order of several meters since the 1930’s (LaPerriere, 

2003), with periodic exposure of the shallow shelf along the northern shore.  Given the 

substantial water depth of the depocenter at Harding Lake (> 42 m), this deep core site 

appears relatively insensitive to recent low-magnitude lake level fluctuations.   
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2.6 CONCLUSIONS 

A multi-proxy geochemical investigation of sediments from Harding Lake in 

interior Alaska reveal millennial scale changes in lake level, vegetation patterns, and 

paleoclimate over the last 31,000 cal yr BP.   Detailed analysis of core sedimentology 

along with AMS radiocarbon dates on terrestrial macrofossils from a depocenter core 

(42 m water depth) collectively indicate Harding Lake persisted as a shallow, low 

productivity lake during the LGM, a known period of extreme aridity.  The general 

absence of terrestrial macrofossils for radiocarbon dating and low organic matter and 

biogenic silica content suggest sparse terrestrial vegetation in the vicinity and low in-

lake productivity.  Pollen data show a predominance of herb taxa during this time that is 

likely indicative of tundra conditions.  An increase in organic matter and biogenic silica 

content at 15,700 cal yr BP marks the transition into the late-glacial and indicates rising 

lake levels at Harding Lake and variable hydroclimatic conditions thereafter until 9,400 

cal yr BP.  Core transect data confirm a substantial lake-level rise with the onset of 

lacustrine sedimentation at 17.1 m BML by ~ 14,000 cal yr BP and lower or fluctuating 

lake-levels thereafter until 9,400 cal yr BP.  Combined with evidence for a decrease in 

windiness (lower magnetic susceptibility and titanium) and expansion of Betula forest at 

14,600 cal yr BP, the proxy data indicate wetter and potentially warmer conditions.  A 

rapid increase in sedimentation rate and rising organic matter and biogenic silica 

content with a simultaneous decline in magnetic susceptibility and titanium values 

indicate that considerable environmental changes occurred at Harding Lake between 

9,400 and 8,700 cal yr BP.  Core transect data and composite core proxy evidence 

suggests rapidly rising and much higher lake levels than at any previous time during the 
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record.  The increase in organic matter and biogenic silica is attributed to a further 

increase in the length of the summer ice-free season and high nutrient loads, while 

declining titanium and magnetic susceptibility resulted from the final transition to 

interglacial climatic conditions.  High Betula pollen and a minor component of 

Sphagnum and Isoetes indicate wetter conditions and higher lake-levels.  This period of 

rapid environmental change broadly corresponds to the submergence of the Bering land 

bridge and early Holocene maxima in summer insolation; however the abruptness of 

this transition precludes a direct linkage from insolation forcing and sea level rise.  We 

alternatively suggest the rapid changes in sedimentation at Harding Lake beginning at 

9,400 cal yr BP likely reflect an abrupt change in atmospheric circulation, possibly 

associated with further retreat of the Laurentide Ice Sheet and wetter conditions in 

interior Alaska.  A return to stable and lower sedimentation rates by 8,700 cal yr BP, 

along with higher organic matter and low magnetic susceptibility, suggest generally high 

and stable lake levels over the middle to late-Holocene with conditions similar to the 

modern lake.  Increases in Alnus by 7,000 cal yr BP and Picea by 5,600 cal yr BP, 

combined with continued predominance of Betula through the Holocene, indicate 

substantial expansion of forest around Harding Lake.   

The use of AMS radiocarbon dating of terrestrial macrofossils and higher 

resolution proxy analysis relative to a previous study of Harding Lake sediments provide 

a better understanding of both the timing and magnitude of late-Quaternary climate 

variability in interior Alaska.  Analysis of both a depocenter core and transect of cores 

from varying depths demonstrate that lake level reconstructions using a combination of 

methods are more robust than a single core approach, and provide quantitative 
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information regarding past hydroclimate variability.  Further, deep lake basins in the 

unglaciated interior of Alaska preserve older sedimentary records than small, shallow 

lakes and therefore provide an important terrestrial archive to investigate 

paleoenvironmental change across the LGM to Holocene transition.   
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3.0  A MULTI-DECADAL TO CENTENNIAL SCALE MULTI-PROXY 

RECONSTRUCTION OF ENVIRONMENTAL CHANGE FROM BURIAL LAKE, 

ARCTIC ALASKA 

Sediment cores from Burial Lake located in the western Brooks Range in Arctic 

Alaska record paleoenvironmental changes that span the last ~ 37,000 calendar years 

before present (cal yr BP).  To our knowledge, the sediment sequence represents the 

oldest continuous lacustrine record from eastern Beringia to date.  We identified four 

distinct lithologic subunits based on an analysis of physical properties (dry bulk density, 

magnetic susceptibility), sediment composition, and geochemical proxies (organic 

matter, biogenic silica, C/N, organic matter δ13C and δ15N, and elemental data from 

scanning X-ray Fluorescence).  The multi-proxy approach and relatively high temporal 

resolution (at multi-decadal to centennial time scales,) of our proxy analysis, compared 

with previous studies of intermediate water depth cores from Burial Lake, provides new 

insights into the paleoenvironmental history of the region spanning the period prior to 

the Last Glacial Maximum.  Relatively high lake-levels and gradually decreasing in-lake 

and terrestrial productivity occur during the mid-Wisconsinan interstadial between 

37,200 to ~ 29,600 cal yr BP.  The subsequent period is defined by falling and lower 

lake-levels with decreasing effective-moisture, windier conditions, and sustained and 

low levels of aquatic productivity throughout the LGM between ~ 29,600 to ~19,600 cal 
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yr BP.  The last deglaciation that commenced by ~19,600 cal yr BP is characterized by 

gradual changes in several sediment physical and geochemical proxies, including 

increasing C/N ratios and terrestrial productivity, decreasing magnetic susceptibility and 

clastic sediment flux, along with rising and relatively higher lake-levels.  A decrease in 

aeolian activity after 16,500 cal yr BP is inferred from the appearance of fine (very fine 

sandy silt) sediment, compared to coarse sediments through the LGM and last 

deglaciation. The highest levels of terrestrial productivity along with increasing and 

variable aquatic productivity occurs during the Lateglacial to early Holocene interval 

between 16,500 to 8,800 cal yr BP.  The absence of multi-proxy evidence for a climatic 

reversal during the Younger Dryas from Burial Lake sediments contrasts with other 

paleorecords showing cooler temperatures and/or dry conditions in northern Alaska at 

this time.  Peak levels of sediment organic content and terrestrial productivity at Burial 

Lake between ~ 10,500 to 9,900 cal yr BP coincide with the early Holocene summer 

insolation maxima and Holocene Thermal Maximum in the western Arctic, which likely 

represents summertime warming and an enhanced flux of watershed derived organic 

matter from permafrost degradation.  The remainder of the Holocene (since 8,800 cal yr 

BP) at Burial Lake is characterized by relatively high and stable lake levels, landscape 

stabilization, and relatively high and variable levels of aquatic productivity.   

3.1 INTRODUCTION 

Recent climate change in the Alaskan Arctic is a having a profound effect on 

aquatic and terrestrial ecosystems, the surface hydrology of lakes and ponds, and the 



 62 

stability of permafrost landscapes.  For example, warming temperatures from 1990 to 

2009 coincide with an increase in the abundance of shrubs and terrestrial productivity in 

tundra landscapes across Arctic Alaska (Swanson, 2010).  Accelerated permafrost 

degradation and thaw slumping observed in the Noatak Basin have been attributed to 

general climate warming and shifting trends in the seasonality of weather (Balser et al., 

2014).  Further, an ~ 30% decrease in pond and thaw lake surface area on the Alaskan 

north slope from 1948 to 2013 corresponded with increases in air temperature and 

permafrost active layer thickness (Andresen and Lougheed, 2015).  The drying and 

disappearance of these tundra ponds near Barrow, Alaska has been linked with 

increased evaporation from warming, permafrost degradation, and increased emergent 

vegetation.  Additional changes include a decrease in lake ice cover duration by 24 

days from 1950 to 2011 on the Alaskan North Slope (Surdu et al., 2014) and shrinking 

sea-ice cover in the adjacent Chukchi Sea (Wendler et al., 2014).  Understanding the 

significance of these terrestrial ecosystem changes and of natural climate variability in 

the Alaskan Arctic requires a longer-term perspective than is provided by instrumental 

weather records and satellite observations, so that they might be placed in an 

appropriate context. 

The late-Quaternary climatic and environmental history of the Arctic Noatak 

Basin in the western Brooks Range in Alaska, confined by the Delong Mountains to the 

north and Baird Mountains to the south, is primarily based on extensive surficial 

mapping and analysis of alluvial, lacustrine, and glacial deposits (Hamilton, 2001, 2010; 

Hamilton et al., 1987; Hamilton and Van Etten, 1984).  Alluvial deposits along Noatak 

River and tributaries show extensive aggradation during stadial periods and channel 
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incision, floodplain construction, and soil formation during interstadial periods (Hamilton, 

2001).  Glaciolacustrine and ice-contact glacial deposits are scattered throughout the 

basin and provide evidence for large proglacial lakes and periods of moraine 

construction spanning the middle Pleistocene to the Last Glacial Maximum (LGM) or 

late Wisconsinan (Hamilton et al., 1987; Hamilton and Van Etten, 1984).  For instance, 

bracketing radiocarbon ages constrain the LGM to between 35 to 13.6 ka 14C years in 

the western Noatak Basin (Hamilton, 2001).  Floodplain aggradation on Noatak River 

ended by or shortly after 13.6 ka 14C years and was followed by Holocene channel 

incision and down-cutting (Hamilton, 2001).    Further evidence for climatic and 

environmental changes in the Noatak Basin are inferred from palynological analysis of 

lake sediment cores (Anderson, 1985, 1988; Eisner and Colinvaux, 1992) and analysis 

of fossil beetle assemblages to interpret temperatures (Elias, 2000; Elias et al., 1999).  

More recently, core-transect and multi-proxy analysis (pollen, organic geochemical 

proxies, and chironomids) of intermediate water depth (7.9 m) cores from Burial Lake 

reconstructed changes in relative lake-levels, vegetational patterns, and summer 

temperatures across the last 40,000 years (Abbott et al., 2010; Kurek et al., 2009), 

however an unconformity and missing sediments spanning the LGM limited the scope of 

these studies.  Collectively, the previous studies and environmental interpretations are 

limited by the complex and discontinuous nature of surficial stratigraphic deposits (Elias, 

2000; Hamilton, 2001), bulk sediment radiocarbon dating and emphasis on pollen 

analysis to assess vegetational changes (Anderson, 1985, 1988; Eisner and Colinvaux, 

1992), and the coarse resolution of proxy analysis and missing sediments that did not 

permit continuous analysis of LGM to preceding interstadial conditions (Abbott et al., 
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2010; Kurek et al., 2009).  Further, these previous studies did not assess temporal 

trends in aquatic and terrestrial ecosystem productivity directly, through analysis of 

sedimentary biogenic silica along with Carbon and Nitrogen stable isotopes of organic 

matter. 

The primary objective of this study was to investigate climatic and environmental 

changes extending back through the LGM to the present from multi-proxy analysis of 

newly recovered Burial Lake depocenter cores (21.5 m water depth).  In this study, we 

analyze multiple physical and geochemical proxies (including dry bulk density, organic 

matter, biogenic silica, carbon to nitrogen mass ratios (C/N), stable carbon and nitrogen 

isotopes (δ13C and δ15N) of organic matter, and elemental abundances via scanning X-

ray fluorescence) along with sediment description and use Accelerator Mass 

Spectrometry (AMS) radiocarbon dating of discrete terrestrial macrofossils to establish 

age control.  Proxies in this study were analyzed at much higher temporal resolution 

than previous works at Burial Lake to investigate multi-decadal to century scale 

variations in environmental conditions extending through the LGM.  Comparison with a 

newly developed environmental magnetic record from the same sediment cores 

(Dorfman, 2013), other regional glacial and lacustrine records from northwest Alaska, 

along with nearby marine records provides an assessment and new synthesis of 

regional climatic change in the western Brooks Range during the late Quaternary. 
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3.2 SITE LOCATION AND REGIONAL SETTING 

Burial Lake (68.43°N, 159.17°W; 460 m ASL) is located in the upper Anisak River 

drainage within the Noatak Basin in the northwestern Brooks Range, Alaska (Figure 

3-1).  The lake surface is approximately circular (0.8 km2) and has a maximum water 

depth of 21.5 meters.  The lake is situated on a subtle topographic high between Setting 

Sun Creek to the west and a small tributary to the east (Figure 3-1) that drains to Anisak 

River and eventually Noatak River.  The surrounding catchment is small (3.3 km2) with 

steep (3-5 m high) slopes along much of the lake’s shoreline that transition to a low-

relief plateau.  The lake receives inflow from several ephemeral gullies along the 

northern shoreline and contains a small outlet stream at the southwest shoreline.  Burial 

Lake is oligotrophic (Abbott et al., 2010) and a hydrologically open system.  Lake 

surface water stable isotopes of δ18O (-17.58 ‰ VSMOW) and δD (-138.58 ‰ VSMOW) 

collected in July, 2010 are similar to the isotopic composition of Anisak River waters 

(δ18O = -16.83 ‰ VSMOW; δD = -136.47 ‰ VSMOW).  Both Burial Lake and Anisak 

River water isotope values plot on the Global Meteoric Water Line, demonstrating water 

loss is primarily controlled by non-fractionating pathways (surficial outflow and/or 

groundwater outseepage) with minimal evaporative effects.  Vegetation is low-arctic 

tundra, dominated by sedges, Salix, shrub-Betula, and Alnus crispa, with sparse stands 

of Populus balsamifera found in river valleys and along creek beds (Abbott et al., 2010). 

Tree-line for the nearest Picea glauca (Spruce) forest lies ~100 km to the west, and also 

encroaches on the Basin from the south.   
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Figure 3-1. A) Map of Alaska showing the location of Burial Lake.  B) Shaded relief map of the western 

Brooks Range in Alaska with sites mentioned in the text. Solid lines are major rivers.  C) Aerial 

photograph of the Upper Anisak River drainage showing Burial Lake and the surrounding area. 
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The lake is located in the Aniuk Lowland sub-province within the Noatak Lowland 

physiographic province, an irregular rolling plain that slopes gradually to the south 

(Wahrhaftig, 1965).  The Delong Mountains flank the lake and catchment to the north 

and consist of a series of rugged glaciated ridges with altitudes > 1250 m (Wahrhaftig, 

1965), while the lower altitude (> 900 m) Iggiruk Mountains are located to the south.  

Bedrock geology in the catchment consists of Mississippian age carbonate and clastic 

sedimentary rocks, consisting of limestone and subordinate shale, chert, and dolomite 

(Grybeck et al., 1977).  Surficial geology in the catchment is mapped as Itkillik I age 

(early Wisconsinan) lake deposits, Holocene to late Pleistocene age solifluction 

deposits, and silt-covered bedrock (Hamilton, 2010).  The catchment and surrounding 

region is underlain by continuous permafrost and ground ice is mapped as low or < 10% 

volume (Jorgenson et al., 2008).  During the Sagavanirktok River glaciation (middle 

Pleistocene age), alpine glaciers originating in the Delong Mountains scoured the 

landscape and dammed local drainage, forming the lake basin (Hamilton, 2003a).  

Subsequent glacier advances in the Noatak Basin were less extensive, including during 

early Wisconsinan (Itkillik I) and late Wisconsinan (Itkillik II) advances (Hamilton, 2001), 

and glaciers did not extend across the lake and adjacent terrain during the LGM. During 

middle and late Pleistocene glacial periods, alpine glaciers emanating from the Delong 

Mountains extended into the lowlands and repeatedly dammed Noatak River forming 

Glacial Lake Noatak (Hamilton, 2001; Hamilton and Van Etten, 1984).  While the lake 

was not covered by Itkillik II age (LGM) lacustrine deposits, the lower Anisak River 

valley and western Noatak Basin were inundated by Glacial Lake Noatak (Hamilton, 
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2010).  During the LGM, alpine glacial erosion resulted in outwash deposition and 

extensive floodplain aggradation in the Noatak Basin (Hamilton, 2001).   

The regional climate in Noatak Basin is characterized by long cold winters and 

short cool summers.  Bieniek et al. (2012) place the upper Noatak Basin within the 

North Slope climate division, a region defined by arid conditions (maximum precipitation 

of < 5 cm in the wettest summer month) with seasonal average temperatures ranging 

from below -25° C in winter to above 10°C in summer.  Instrumental weather records 

from the Noatak Basin are relatively short and discontinuous.  Climate normals for 

stations across northern Alaska (Kotzebue, Bettles, and Barrow) during the period 

1981-2010 indicate the majority of annual precipitation occurs during summer months, 

with peak values typically occurring in July and August (http://climate.gi.alaska.edu/).  

Summer precipitation to the interior of Alaska is primarily sourced from the North Pacific 

Ocean (Mock et al., 1998; Streten, 1974).  Climatic conditions in northern Alaska are 

further influenced by ocean-atmosphere interactions and internal modes of climate 

variability (El Niño Southern Oscillation, Pacific Decadal Oscillation, and Arctic 

Oscillation) on seasonal to multi-decadal timescales (Bieniek et al., 2012; Hartman and 

Wendler, 2005; Papineau, 2001). 
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3.3 METHODS 

3.3.1 Sediment coring 

Sediment cores were collected from an inflatable raft from the central deep basin 

in July, 2010 (Figure 3-1).  A surface core (A-10 Drive 1) with an intact sediment-water 

interface was recovered from 21.5 m water depth using a polycarbonate tube fit with a 

rubber piston.   The upper portion of the surface core was dense and therefore packed 

with floral foam and capped for transport.  Multiple overlapping long cores were 

recovered from core sites A-10 and C-10 in 21.5 m water using a square rod 

Livingstone corer.  Deeper sediments, characterized by greater density, were recovered 

by coring within the same borehole using 10 cm diameter PVC as casing.  Cased drives 

were offset by 50 cm between core sites A-10 and C-10 to ensure overlap and complete 

recovery of the sediment sequence.  All long cores were packaged in the field and 

securely transported to the Department of Geology and Planetary Science at the 

University of Pittsburgh for processing and analysis. 

3.3.2 Lithostratigraphy and geochemistry 

Sediment cores were split lengthwise and described; notable sedimentary 

structures, grain size, and Munsell color were characterized for each core.  Cores were 

subsampled using ridged plastic u-channels (2x2 cm cross-sectional area) to investigate 

environmental magnetic properties as part of a separate study (Dorfman, 2013).  

Computed Tomography (CT) scans on the u-channels were obtained at the Institut 
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national de la recherche scientifique, Centre Eau-Terre-Environnement (INRS-ETE) in 

Quebec City.  Select 1 cm samples spanning the composite depth scale were analyzed 

via smear-slide mineralogy and described according to the lacustrine sediment 

classification scheme of Schnurrenberger et al. (2003).  A total of 5 samples were 

analyzed for powder x-ray diffraction (XRD) to further characterize core mineralogy.  

Power XRD analysis was performed using a using a Philips PW3710 x-ray 

diffractometer at the University of Pittsburgh, Swanson School of Engineering and 

X’Pert Graphics and Identify® software was used to identify the major mineral 

assemblages present.  All cores were sampled at 1 cm intervals, and dry bulk density 

was calculated from dry weights of volumetric samples, and percent organic matter and 

total carbonate values were measured via loss-on-ignition (LOI) at 550° C for 4 hours 

and 1000° C for 2 hours, respectively (Heiri et al., 2001).  Magnetic susceptibility was 

measured on all split cores at 2 mm intervals using a Bartington MS2E1 high-resolution 

surface sensor.    

Samples for biogenic silica were measured at 2 to 4 cm intervals over the 

composite core (n = 256) at the Department of Geology and Planetary Science at the 

University of Pittsburgh using a wet-chemistry, alkaline extraction adapted from 

Mortlock and Froelich (1989).  Wet samples were freeze-dried, homogenized to a fine 

powder using a mortar and pestle, and treated with 30% H2O2 and 1M HCl to remove 

organic matter and carbonates.  Biogenic silica was extracted with a 5% Na2CO3 

solution and determined by molybdate blue spectrophotometry at 812 nm using a 

Thermo Scientific Evolution 60s UV-Visible Spectrophotometer.  Replicate 

measurements of unknown samples (n = 44) and an internal sediment standard from 
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Laguna de Los Anteojos (Stansell et al., 2010) run during sample analysis produced an 

average error of < 3.2 %.   

Samples for total organic carbon (TOC), total nitrogen (TN), and stable carbon 

(δ13C) and nitrogen (δ15N) isotopes of organic matter were measured at 2 to 4 cm 

intervals over the composite core (n = 222) at the Stable Isotope Laboratory at Idaho 

State University.  The elemental mass ratio of TOC to TN (C/N) was calculated to 

further assess the relative proportion of organic matter from terrestrial (C/N > 20) versus 

aquatic (C/N < 10) sources (Meyers and Teranes, 2001).  Prior to analysis, samples 

were treated with 1M HCl to ensure removal of carbonate minerals, rinsed to neutral pH 

with MilliQ water, freeze-dried and homogenized.  Measurements were obtained using 

an Elemental Combustion System 4010 interfaced to a Delta V Advantage mass 

spectrometer through the ConFlo IV system.  δ13C and δ15N values are reported as ‰ 

values relative to the VPDB and N2 scales, respectively.  Replicate measurements of 

internal standards yielded coefficients of variation of 1.61 % and 1.04 % for TOC and 

TN, and precision equal to 0.2 ‰ for the stable isotope measurements.  Surface water 

samples from Burial Lake collected in August, 1997 were analyzed for pCO2 

concentrations via the headspace equilibration technique (Kling et al., 1991) at the 

Alaska Stable Isotope Facility, University of Alaska Fairbanks. 

The split A-10 and C-10 archive cores were scanned for elemental abundances 

using the ITRAX XRF core scanner at the Large Lakes Observatory, University of 

Minnesota Duluth.  Continuous measurements were obtained at 0.5 cm intervals with 60 

second count times.  Values are reported as counts per second.  To assess controls on 

elemental abundances, we analyze trends in the incoherent to coherent scatting ratio 
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(Inc/Coh) and silicon to titanium (Si/Ti) ratio, two commonly used XRF proxies.  The 

Inc/Coh ratio provides a relative measure of the mean atomic number for elements in a 

sample and therefore is a useful proxy for total organic matter (Croudace et al., 2006).  

The Si/Ti ratio is another commonly used proxy to estimate the relative proportion of 

biogenic silica in lake sediments (Brown et al., 2007) and is based on the premise that 

titanium is sourced solely from detrital sources, while silicon is derived from both 

biogenic and detrital sources.    

3.3.3 Geochronology 

Age control of the recovered material was developed from Accelerator Mass 

Spectrometry (AMS) radiocarbon analyses of 13 terrestrial macrofossils (Table 3.1).  

Bulk sediment samples were disaggregated with dilute H2O2 (7 %), wet-sieved with a 63 

µm sieve, and terrestrial macrofossils were identified and picked under a stereographic 

microscope for AMS radiocarbon measurement.  Samples were pre-treated using 

standard acid-base-acid wash techniques (Abbott and Stafford, 1996) at the University 

of Pittsburgh and were combusted to CO2 gas, converted to filamentous graphite, 

pressed in Aluminum targets, and measured at the W.M. Keck Carbon Cycle AMS 

Laboratory, University of California, Irvine.  Radiocarbon ages were calibrated using 

CALIB 6.0 and the INTCAL09 calibration curve (Reimer et al., 2009).  An age-depth 

model was created using point to point, linear interpolation with the classical age 

modeling (CLAM) code for the statistical software R (Blaauw, 2010).  The CLAM 

analysis performed 1,000 age model iterations based on repeated sampling of the 

calibrated age distributions for each radiocarbon sample to estimate the ‘best fit’ or 
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weighted mean age for each depth.  Given the paucity of materials for radiocarbon 

dating between 219 cm to 553 cm in the A-10/C-10 composite core sequence (Table 

3.1), the linear age uncertainties from the CLAM analysis are inadequate.  To further 

account for chronological uncertainty, we apply a Monte Carlo-based approach that 

perturbs the interpolated age-depth model 10,000 times following a random draw from a 

normal distribution between the 2σ calibrated 14C ages (Marcott et al., 2013).  The 

uncertainty between the age control points is modeled as a random walk, after Huybers 

and Wunsch (2004), with chronological uncertainty assumed to be auto-correlated 

through time and modeled as a first order autoregressive (AR1) process. 
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Table 3.1. Burial Lake AMS radiocarbon dates with calibrated 2 sigma error ranges. Samples highlighted 

with an asterisk (*) are omitted from the age model with explanations in the text. 

Sample            
ID 

Core-Drive Drive 
Depth 

Total 
Depth 

Material 14C Age Error Calib 6.0                Age 

(UCIAMS #)   (cm) (cm)   (14C yr) (yr) (yr BP) 

89197 A-10 D1 45.0 45.0 plant material 2,535 30 2,493 – 2,745 

109361 A-10 D1 66.5 66.5 wood 3,635 25 3,872 – 4,074 

116878 A-10 D1 87.5 87.5 plant material 4,910 90 5,470 – 5,896 

89198 A-10 D1 111.0 111.0 plant material 6,345 25 7,174 – 7,410 

109362 A-10 D1 141.5 141.5 wood 8,850 110 9,564 – 10,205 

89199 A-10 D2 84.0 166.0 plant material 9,760 40 11,134 – 11,244 

89200 A-10 D3 54.0 173.5 seed 10,085 45 11,398 – 11,959 

89122 C-10 D3 45.0 219.0 wood 13,670 30 16,657 – 16,978 

* 109363 A-10 D5 35.5 359.5 plant material 14,590 550 16,570 – 18,903 

89201 A-10 D7 29.0 553.0 seed 25,300 510 29,173 – 31,074 

* 89123 C-10 D7 64.0 598.0 plant material 31,290 300 35,085 – 36,475 

89124 C-10 D7 72.0 606.0 wood 31,090 210 35,036 – 36,313 

89121 A-10 D8 35.5 636.5 wood 32,150 240 35,699 – 37,342 

 
 

3.4 RESULTS 

3.4.1 Composite core 

A composite 651 cm depth scale was developed from cores A-10 and C-10.  

Cores were aligned by matching physical properties data (magnetic susceptibility and 

Inc/Coh from scanning XRF) and visible stratigraphic markers common to both cores 
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(Figure 3-2).  Core A-10 was selected as the primary core due to its greater length and 

abundance of proxy data sets including radiocarbon samples.  The A-10 core 

stratigraphic section was constructed based on field measurements and subsequently 

the C-10 cores were aligned to it. No adjustments to subbottom depths in C-10 sections 

were required to achieve a satisfactory match.  The A-10/C-10 composite depth scale 

(referred to throughout as “depth”) is utilized for the production of geochemical proxy 

data and the age-depth model, in which sediment samples and radiocarbon-dated 

materials were derived primarily the A-10 cores and the C-10 cores were sampled to 

span gaps between core sections. 

 

 

Figure 3-2. Anomaly match between Burial Lake core A-10 and C-10 incoherent/coherent scattering ratio 

(Inc/Coh) plotted by drive used to develop the composite core depth scale.  Grey bars highlight features 

common to both sets of cores.   
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3.4.2 Geochronology 

The A-10/C-10 composite core age model, maximum variance between age 

control points, and linear sedimentation rates (cm/ka yr) are presented in Figure 3-3.  

Two samples (UCIAMS # 109363 and # 89123) were excluded prior to generating the 

age-depth model.  The first sample (UCIAMS # 109363) at 359.5 cm appears 

anomalously young compared with adjacent ages and, notably, had an extremely small 

CO2 yield (0.017 mg C equivalent) prior to graphitization which approaches the 

threshold limit for AMS radiocarbon analysis. We suggest this sample was 

contaminated by modern carbon during the combustion and graphitization process 

given its extremely small mass (Oswald et al., 2005; Santos et al., 2010).  In addition, 

inclusion of this date would require an abrupt increase in sedimentation rate that is not 

supported by any lithologic evidence or radiocarbon constraints.  The second sample 

(UCIAMS # 89123) at 598 cm displays a modest age reversal with the adjacent sample 

(#89124) at 606 cm depth.  The calibrated age distributions for both samples overlap 

and therefore we exclude the sample at 598 cm based on its lower carbon yield and 

slightly larger age uncertainty.   



 77 

 

Figure 3-3. Burial Lake A-10/C-10 composite core stratigraphic column showing sedimentology and the 

age-depth model developed from radiocarbon dates (open squares).  Samples designated with a red 

square are rejected from the age model.  Sedimentation rates are presented in cm/ka yr.   

3.4.3 Lithostratigraphy 

Our paleoenvironmental interpretation of the Burial Lake sediments is based on 

lithologic subunits based upon core descriptions (Figure 3-3) and sediment physical and 

geochemical data (Figure 3-4; Figure 3-5; Table 3.2).  Variations in organic matter (wt 
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%), biogenic silica (wt %), magnetic susceptibility, and the availability of terrestrial 

macrofossils for radiocarbon analysis allow identification of 4 lithologic subunits.  

Comparison of C/N ratios with organic matter δ13C (Figure 3-6) and organic matter δ13C 

against δ15N (Figure 3-6) indicates changes in the source (terrestrial versus aquatic) 

and isotopic composition of organic matter that is consistent with the identified subunits.  

Lithologic subunits broadly correspond to changes in sediment accumulation rates 

(Figure 3-3), determined by calculating the time difference between contiguous 1 cm 

intervals across the composite A-10/C-10 core sequence.  The down-core physical and 

geochemical data are presented versus age in Figure 3-7 and Figure 3-8, which allows 

us to place our paleo-environmental results in the context of time.  Subunit 1 and 2 

sediments, extending from the core bottom (651 cm) to 217 cm and spanning the mid-

Wisconsinan interstadial through the LGM, are characterized by low in-lake productivity, 

a higher proportion of mineral sediments, and relatively few organic macrofossils for 

radiocarbon dating (Figure 3-7; Figure 3-8).  In contrast, subunit 3 and 4 sediments 

extending from 217 cm to the core top and spanning the Lateglacial period through the 

Holocene, are characterized by higher and fluctuating in-lake productivity, a lower 

proportion of mineral sediments, and abundant macrofossils (Figure 3-7; Figure 3-8). 
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Figure 3-4. Burial Lake A-10/C-10 composite core physical and organic proxy data plotted against depth 

(cm) and age (cal yr BP). 

 

Figure 3-5. Burial Lake A-10/C-10 composite core elemental abundances from scanning XRF analysis 

plotted against depth (cm) and age (cal yr BP). 
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Table 3.2. Burial Lake core A-10/C-10 lithologic subunits including depth (cm) intervals and age (cal yr 

BP) ranges.  Mean values for the physical, geochemical, and elemental proxy data are reported for each 

respective lithologic subunit.   

Lithologic Core depth Age range Dry BD LOI 550 LOI 1000 Bio Si TOC TN C/N ratio 

Subunit cm cal yr BP g/cc wt % wt % wt % wt % wt %   

4 0 - 129 8,800 - 2010 AD 0.36 13.1 0 11.6 5.05 0.45 11.1 

3 129 - 217 16,500 - 8,800 0.41 15.0 0 5.8 5.43 0.50 10.8 

2b 217 - 289 19,600 - 16,500 0.68 7.6 0 1.6 2.29 0.24 9.3 

2a 289 - 540 29,600 - 19,600 0.84 7.6 0 1.5 1.80 0.20 9.1 

1 540 - 651 37,200 - 29,600 0.91 9.2 0 1.5 2.60 0.24 10.7 

          

Lithologic Core depth Age range δ15N δ13C Mag. Susc. Titanium Inc/Coh Si(norm)/Ti  

Subunit cm cal yr BP  ‰ N2  ‰ VPDB 10-5 SI cps       

4 0 - 129 8,800 - 2010 AD 2.37 -28.5 0.5 3300 4.5 0.42  

3 129 - 217 16,500 - 8,800 1.84 -28.8 0.5 3500 4.5 0.28  

2b 217 - 289 19,600 - 16,500 2.35 -28.2 1.2 5200 3.8 0.28  

2a 289 - 540 29,600 - 19,600 3.66 -27.2 1.3 5800 3.5 0.28  

1 540 - 651 37,200 - 29,600 3.22 -27.8 1.1 5700 3.5 0.28   
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Figure 3-6. Scatterplots of Burial Lake A-10/C-10 composite core proxy data by lithologic subunit 

showing distinct clustering. 

 

Figure 3-7. Burial Lake A-10/C-10 composite core physical and organic proxy data plotted against age 

(cal yr BP). 
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Figure 3-8. Burial Lake A-10/C-10 composite core elemental abundances from scanning XRF analysis 

plotted against age (cal yr BP). 

3.4.4 Scanning XRF Analysis 

Comparison of organic matter content determined from LOI 550 (wt %) against 

the Inc/Coh ratio reveal a significant positive correlation (Figure 3-9; r2 = 0.77, p < 0.01).  

Further, total organic carbon (wt %) is significantly correlated with the Inc/Coh ratio 

(Figure 3-9; r2 = 0.85, p < 0.01).  As a result, we use the Inc/Coh ratio as a high 

resolution (0.5 cm spacing) proxy for the relative proportion of organic matter in Burial 

Lake sediments.    
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Figure 3-9. Correlation of incoherent to coherent (Inc/Coh) scattering ratio from scanning XRF analysis 

against A) organic matter (wt. %) and B) total organic carbon (wt %). 

 

Scatterplots of silicon and titanium (Figure 3-10) reveal distinct clustering and 

separate populations of data.  We suspect the large difference in organic matter content 

between subunit 1 and 2 sediments with low values and subunit 3 and 4 sediments with 

higher and fluctuating values influenced the XRF counts through matrix effects 

(Löwemark et al., 2011).  To account for the substantial difference in organic matter 

content, matrix-corrected silicon counts (Silicon(norm)) were calculated by normalizing 

raw silicon counts with the Inc/Coh ratio using an empirically determined formula 

(Melles et al., 2012): 



 84 

Silicon (norm) =  

Equation 3.1. Empirically determined equation to calculate a matrix-corrected Silicon count with X-Ray 

Fluorescence derived elemental data (Melles et al., 2012).   

 

Comparison of Silicon(norm) and titanium data (Figure 3-10) indicate clustering 

between glacial (subunit 1 and 2) sediments while interglacial (subunit 3 and 4) 

sediments plot in distinct and separate space, indicating changing sources of silicon and 

titanium over time.  For example, Silicon(norm) and titanium from glacial age sediments 

(37,200 – 16,500 cal yr BP) are well-correlated (r2 = 0.52, p < 0.01), suggesting both 

metals originate from a common detrital source.  In contrast, Silicon(norm) and titanium 

from late-glacial and Holocene sediments (16,500 cal yr BP to 2010 AD) are poorly 

correlated (r2 = 0.11, p < 0.01) and indicate both detrital and biogenic contributions of 

silicon.  Correlation analysis between Si(norm)/Ti data against measured biogenic silica 

values (Figure 3-9) again show distinct clustering and two distinct statistical populations.  

The correlation between subunit 1 and 2 sediments, characterized by low and stable 

biogenic silica concentrations, is very poor (Figure 3-9; r2 = 0.01, p < 0.22).  In 

comparison, the correlation between subunit 3 and 4 sediments, characterized by rising 

and fluctuating biogenic silica concentrations, show a strong positive relationship 

(Figure 3-10; r2 = 0.71, p < 0.01) and demonstrate that Si(norm)/Ti values track changes 

in the relative proportion of biogenic silica over the last 16,500 years. 
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Figure 3-10. Scatterplots of scanning XRF data by lithologic subunit, including A) silicon (cps) against 

titanium (cps) and B) silicon normalized to Inc/Coh ratio (Melles et al., 2012) against Titanium (cps).  C) 

Correlation between Si(norm)/Ti against biogenic silica (wt. %) for lithologic subunits 1 and 2 (r2 = 0.01) and 

lithologic subunits 3 and 4 (r2 = 0.71).   
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3.4.5 Lithologic Subunit Descriptions 

Subunit 1 extends upward from the base of the composite core (651 cm) to 540 

cm and spans the interval ~37,200 to ~29,600 cal yr BP.  The basal sediments from 651 

to 618 cm consist of dark yellow brown (10YR 4/2) to grayish brown (5YR 3/2), fine to 

medium sandy argillaceous silt with occasional banding and faint laminae (Figure 3-3).  

The upper portion from 618 to 540 cm consist of dark yellow brown (10YR 4/2) to 

grayish brown (5YR 3/2), fine to medium sandy argillaceous silt and a minor proportion 

of coarse sand and granules, with occasional banding and faint laminae (Figure 3-3).    

The banding and faint laminae throughout subunit 1 presumably represent small 

variations in sediment organic matter content or subtle grain size variations.  Powder 

XRD analysis of a sample at 613-614 cm indicate quartz is the dominant mineral phase 

present (Figure 3-11).  Smear-slide analysis of several samples shows very few diatom 

frustules and a large proportion of silicate mineral matter.  Subunit 1 sediments are 

characterized by relatively high and variable dry bulk density, magnetic susceptibility, 

and titanium values (Figure 3-4; Figure 3-5; Table 3.2).  Biogenic silica is low and 

stable, and indicates minimal aquatic productivity.  Organic matter and Inc/Coh are low 

with little variability, and gradually decrease up-section towards the subunit 2 boundary.  

Organic matter δ13C values are moderate to high and exhibit considerable variability, 

while organic matter δ15N values gradually increase through subunit 1 (Figure 3-4).  C/N 

ratios are relatively low during this interval and gradually decrease up-section towards 

the Zone 2 boundary (Figure 3-4).   
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Figure 3-11. Powder x-ray diffraction (XRD) spectra for select samples from the Burial Lake composite 

core.    

 

Subunit 2 extends from 540 cm to 217 cm and spans the period ~29,600 to 

~16,500 cal yr BP.  The contact with subunit 1 sediments is gradual and sediments 

primarily consist of dark yellow brown (10YR 4/2) to grayish brown (5YR 3/2), fine to 
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medium sandy argillaceous silt and a minor proportion of coarse sand and granules 

(Figure 3-3).  Powder XRD analysis of samples at 449-450 cm, 321-32 cm, and 293-294 

cm depth indicate quartz is the dominant mineral phase present (Figure 3-11).  Smear-

slide analysis of select samples from subunit 2 shows few diatom frustules and a large 

proportion of silicate mineral matter.  Distinct layers of fine sand to granules are present 

from 489 - 489.5 cm and 264 – 264.5 cm.  The layers compositionally represent a mix of 

lithologies, including mafic to felsic crystalline rocks, gray sandstone particles, and 

quartz grains that are sub-angular to sub-rounded in shape.  The contact between the 

underlying and overlying finer sediments is horizontal and sharp.  Although direct age 

control in subunit 2 is lacking and is based on interpolation, sedimentation rates are 

apparently the highest (at ~25 cm/ka yr).  Terrestrial macrofossils > 63 µm are virtually 

absent in subunit 2 sediments, besides a small amount of grass isolated from sediment 

at 359-360 cm (UCIAMS # 109363).  Subunit 2 is divided further into subunit 2a (540 to 

289 cm) and subunit 2b (289 to 217 cm) based on subtle variability in the organic and 

inorganic geochemical proxies, many of which show a change in trend at the 2a/2b 

boundary. 

Subunit 2a extends from 540 cm to 289 cm and spans the period ~29,600 to 

~19,600 cal yr BP.  The sediments are characterized by high, variable, and gradually 

declining dry bulk density and the highest magnetic susceptibility and titanium values for 

the entire record (Figure 3-4; Figure 3-5; Table 3.2).  Biogenic silica values are 

uniformly low, stable, and similar to subunit 1 values.  Organic matter is the lowest over 

the entire record and gradually decreases up-section in subunit 2a and attains the 

lowest values between 374 and 300 cm (Figure 3-4).  Inc/Coh values are low, stable, 
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and similar to subunit 1 values.  Organic matter δ13C and δ15N values are the highest 

(most positive) throughout the entire record and display considerable variability 

throughout subunit 2a (Figure 3-4).  C/N ratios gradually decrease from the base of 

subunit 2a up-section and attain the lowest values over the entire record toward the 

subunit 2b boundary (Figure 3-4).   

Subunit 2b extends from 289 cm to 217 cm and spans the period 19,600 to 

16,500 cal yr BP.  The subunit 2b transition is marked by declining dry bulk density, 

magnetic susceptibility, and titanium values that continue towards the subunit 3 

boundary (Figure 3-4; Figure 3-5; Table 3.2).  Biogenic silica values are low, stable, and 

similar to subunit 2a values (Figure 3-4).  Organic matter, Inc/Coh, and C/N ratios 

gradually increase from their minimum values at the base of subunit 2b toward the 

subunit 3 boundary (Figure 3-4; Figure 3-5;).  In addition, organic matter δ13C and δ15N 

gradually decrease from maximum values at the base of subunit 2b and attain their 

lowest (negative) values at the subunit 3 boundary (Figure 3-4).   

Subunit 3 extends from 217 cm to 129 cm and spans the period ~16,500 to 

~8,800 cal yr BP.  The contact with subunit 2b sediments is rather abrupt (in 

comparison to the subunit 1 and 2 transition) and sediments consist of homogenous 

dark yellow brown (10YR 4/2) to pale yellowish brown (10YR 6/2), very fine argillaceous 

sandy silt (Figure 3-3).  Powder XRD analysis of a sample at 129-130 cm indicates 

quartz is the dominant mineral phase present (Figure 3-11).  Organic macrofossil rich, 

1-2 mm thick layers are present at 196.5 to 214 cm, respectively.  Smear-slide analysis 

of select samples from subunit 3 shows a substantial increase in the proportion of 

diatom frustules with no evidence of dissolution and abundant silicate mineral matter.  



 90 

The subunit 3 transition is characterized by declining and lower dry bulk density, 

titanium, magnetic susceptibility (Figure 3-4; Figure 3-5; Table 3.2), and a lower but 

variable sedimentation rate (9 to 19 cm/ka yr), in comparison with the previous (subunit 

2) interval.  An abrupt spike in magnetic susceptibility occurs at ~ 210 cm (Figure 3-4) 

and represents a brief return to higher values.  Biogenic silica values increase up-

section from the base of subunit 3, subsequently peak at 12.5 % at 186 cm, and 

fluctuate and gradually decrease up-section toward the subunit 4 transition (Figure 3-4).  

Si(norm)/Ti values track the general trends in biogenic silica through subunit 3 (Figure 

3-5).  Organic matter and Inc/Coh values increase up-section from the base of subunit 3 

and peak at the highest values over the entire record between 153 and 141 cm (10,500 

to 9,900 cal yr BP).  Organic matter δ13C values are isotopically lighter on average 

compared with subunit 1 and 2 sediments, and fluctuate substantially throughout 

subunit 3 (Figure 3-4; Table 3.2).  Similarly, organic matter δ15N values are lower but 

generally more stable compared with the previous lithologic zones.  C/N ratios are on 

average the highest throughout subunit 3 (Figure 3-4), and the record is punctuated by 

several abrupt increases. A greater abundance of terrestrial macrofossils for 

radiocarbon dating is evident in subunit 3 and sedimentations rates are relatively low 

and stable (13 cm/ka yr average).   

Subunit 4 extends from 129 cm to the core top and spans the period 8,800 cal yr 

BP to 2010 AD.  The contact with subunit 3 is gradual and sediments consist of 

homogenous grayish brown (5YR 3/2) to dusky brown (5YR 2/2), argillaceous silt 

sediment with no obvious sedimentary structures (Figure 3-3).  Smear-slide analysis of 

select samples from subunit 4 shows a general abundance and diversity of diatom 
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frustules, no obvious evidence of dissolution, and substantial variability in diatom 

proportion over intervals of 5 to 10 cm.  Further, smear-slides shows an abundance of 

silicate mineral matter.  Subunit 4 sediments are characterized by low dry bulk density, 

titanium, and magnetic susceptibility values (Figure 3-4; Figure 3-5; Table 3.2).  Organic 

matter values are generally stable and intermediate, compared to higher values in 

subunit 3 and lower values in subunits 1 and 2.  In contrast, Inc/Coh values gradually 

increase throughout subunit 4 and attain the highest values over the entire record over 

the upper 15 cm.  Organic matter δ13C values are quite variable and similar in 

magnitude while δ15N values are generally stable and more positive compared to 

subunit 3 sediments.  C/N ratios are stable and on average higher than any time 

previously.  Biogenic silica and Si(norm)/Ti values are higher than any time during the 

entire record and display substantial variability over 5 to 10 cm intervals (Figure 3-4; 

Figure 3-5; Table 3.2).  Terrestrial macrofossils are present throughout subunit 4 

sediments and sedimentation rates are low (15 cm/ka yr average) and generally stable.   

3.5 DISCUSSION 

The Burial Lake sediment record shows no evidence of major unconformities 

(e.g. mud cracks, erosional surfaces, etc.) found in intermediate water depth cores 

(Abbott et al., 2010) that would indicate discontinuous sedimentation in the lake 

depocenter.  However, the distinct 5 mm thick sand and granule layers at 264 cm and 

489 cm provide sedimentological evidence for a high energy transport process at the 

lake depocenter.  Given the lack of a surficial input, we hypothesize the sediments are 
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reworked from the shoreline during a period of lower lake levels (Abbott et al., 2010), 

when the lake surface area was much smaller and the distance from shoreline to 

depocenter was substantially reduced.  Alternatively, the coarse sediment layers could 

represent turbidity flows and re-working of shelf sediments.  However, this explanation 

is inconsistent with physical sedimentology that shows sharp underlying and above 

contacts and a lack of textural grading.  Further, the coarse layers could represent sub-

aerially exposed shoreline sediments or a lag from winnowing of fine sediments in a 

very shallow lake from wave-base erosion, both of which might result in disconformities.  

Unfortunately, radiocarbon constraints throughout lithologic subunit 2 are lacking to 

directly assess the possibility of these layers representing disconformities.  We suggest 

the nature of the coarse sediment layer contacts (i.e. horizontal and sharp) and minimal 

thickness (only 5 mm) indicate the features do not represent discontinuous 

sedimentation.  In contrast, the major unconformity present in the intermediate water 

depth cores from Burial Lake is characterized by a clear erosional and irregular contact 

(Abbott et al., 2010).  The underlying ~ 30 cm of sediment consists of sand and gravel, 

interpreted to reflect a lag-deposit formed via deflation and winnowing of fine sediments 

(Abbott et al., 2010), which is sedimentologically distinct compared with the coarse 

layers in the depocenter cores.  We therefore suggest the Burial Lake sediment record 

is continuous and spans the last 37,200 cal yr BP.  However, we acknowledge that age 

control between 219 cm and 553 cm spanning the period ~ 16,800 to ~ 30,100 cal yr BP 

(median ages) is based on a linear interpolation (Figure 3-3), and therefore the timing of 

paleoenvironmental transitions during this time are limited.   
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To our knowledge, the Burial Lake record provides the oldest continuous 

lacustrine record to date from northwest Alaska and therefore provides a unique archive 

to explore environmental changes in Arctic Alaska from the Mid-Wisconsinan 

interstadial (Marine Isotope Stage 3; MIS3) to the present.   We integrate our results 

with a complimentary environmental magnetic investigation from Burial Lake (Dorfman, 

2013) and focus our comparison on S-ratios (Figure 3-12), a sensitive indicator of dust 

input to the lake.  Higher S-ratios are interpreted to reflect periods of increased dust 

accumulation while lower values indicate periods of diminished flux (Dorfman, 2013).  

We also interpret the results from our sediment record in light of the gradual changes in 

in eustatic sea level (Figure 3-12) (Clark et al., 2009 and references therein) and July 

insolation at 65° North (Figure 3-12) (Berger and Loutre, 1991).  Further, we compare 

our paleoenvironmental interpretations with several regional lacustrine records, the 

extent of Brooks Range alpine glaciers (Figure 3-12) (Briner and Kaufman, 2008), and 

several marine sediment records from the Bering and Chukchi seas (Caissie et al., 

2010; Keigwin et al., 2006; Max et al., 2012).   
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Figure 3-12. Burial Lake A-10/C-10 composite core proxy data including A) biogenic silica, B) LOI 550, C) 

C/N ratio, D) magnetic susceptibility (SI), E) s-ratio that describes the relative proportion of low coercivity 

to high coercivity magnetic material, which is interpreted to reflect the regional input of dust into to Burial 

Lake (Dorfman, 2013), and F) Burial Lake estimated lake level (m) curve (Abbott et al., 2010). The data is 

also compared to G) 65° North July insolation (Berger and Loutre, 1991), H) relative eustatic sea level 

(Clark et al., 2009), and I) time-distance diagram of Brooks Range, Alaska alpine glacier extent (Briner 

and Kaufman, 2008). 

 

In addition, we present a relative lake-level curve (Figure 3-12) based on 

previous work of Burial Lake sediments (Abbott et al., 2010) and integrate the results 

from a chironomid-inferred temperature reconstruction (Kurek et al., 2009).  The lake-

level curve, based on core-transects and the conceptual model relating fine-grained 

organic sediments with deeper water and coarse-grained minerogenic sediments with 

shallower water, presents the major multi-millennial to orbital trends (Figure 3-12).  To 

ensure consistency, the radiocarbon and age model data are updated using the 

IntCAL09 calibration curve (Reimer et al., 2009).  We make two additional changes to 

the age to depth model presented in Abbott et al. (2010), resulting from re-

interpretations based on proxy evidence from the A-10/C-10 composite cores.  First, for 

core C-98 Abbott et al. (2010) extrapolated linearly from a radiocarbon date at 289 cm 

depth (19,880 cal yr BP) to the unconformity at 340 cm to estimate the upper age of the 

LGM lake level low stand.  Although our age control for the A-10/C-10 core is limited 

through the LGM (Figure 3-3), proxy evidence shows that very low organic matter and 

high magnetic susceptibility values persist through subunit 2 (Figure 3-4) until 19,800 

cal yr BP.  Accordingly, we assert the radiocarbon date at 289 cm in core C-98 (Table 

3.3) best constrains the resumption of lake sedimentation at this intermediate water 
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depth core site, and therefore do not extrapolate ages from this interval down to the 

unconformity.  Second, the basal age from core A-98 at 92 cm (20,060 cal yr BP) 

consisted of matted grass situated atop coarse gravel sediments (Abbott et al., 2010). 

The transition to fine-grained lake sediments occurs above the basal gravel in core A-

98.  The reported basal age from core A-98 therefore only provides a maximum limiting 

age for the major lake level transgression that inundated this shallow water core site.  

Accordingly, we utilize the updated calibration data (Table 3.3) and modified C-98 age 

model (Figure 3-13) to generate an estimated lake-level curve (Figure 3-12) and to 

integrate the results from previous investigations of Burial Lake sediments with the 

results of this study.   
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Table 3.3. AMS radiocarbon dates for Burial Lake core C-98 and A-98 with calibrated 2s error ranges 

using the IntCAL09 calibration curve. Samples highlighted with an asterisk (*) were omitted from the age 

to depth model. 

Sample            
ID 

Core-Drive Total 
Depth 

Material 14C Age Error Calib. Age                
IntCAL09 

    (cm)   (14C yr) (yr) (yr BP) 

OS-18365 GL-1 D1 20.0 Macrofossil 1,850 110 1,625-1,921 

AA-35197 C-98 D2 128.5 Macrofossil 8,390 280 9,011-9,606 

CAMS-73172  C-98 D3 216.0 Macrofossil 12,020 380 13,397-14,803 

* AA-35195  C-98 D3 220.0 Macrofossil 640 170 516-724 

OS-17700  C-98 D3 236.0 Wood 13,150 130 15,269-16,536 

OS-18367  C-98 D3 272.5 Wood 15,300 360 18,028-18,848 

CAMS-73173  C-98 D3 289.0 Macrofossil 16,740 520 19,404-20,477 

* AA-35198  C-98 D4 306.5 Macrofossil 14,660 500 17,193-18,521 

* AA-35199  C-98 D4 357.5 Macrofossil 20,330 560 23,585-24,982 

OS-18368  C-98 D4 375.5 Wood 30,300 600 34,472-36,160 

CAMS-73174  C-98 D5 407.5 Macrofossil 31,680 720 35,161-36,771 

CAMS-73175  C-98 D5 407.5 Wood 32,770 940 36,526-38,629 

OS-27279  C-98 D5 440.0 Macrofossil 32,780 560 36,669-38,427 

* OS-18369  C-98 D5 447.5 Humic extract 42,600 5,600 42,500-50,000 

AA-35196  A-98 D1 92.0 Macrofossil 16,900 270 19,438-20,959 

 1 
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Figure 3-13. Burial Lake C-98 core revised age-depth model. Samples designated with a red square 

were rejected from the age model. 

3.5.1 Interpretation of the carbon and nitrogen isotopic composition of organic 

matter 

The carbon stable isotopic composition (δ13C) of organic matter in lake 

sediments is controlled by several factors including the contribution of various sources 

(algal, terrestrial) and changes in the respective photosynthetic pathways, changes in 

aquatic productivity, and the δ13C of dissolved inorganic carbon (DIC) inputs to a lake 

(Finney et al., 2012; Meyers and Ishiwatari, 1993; Meyers and Teranes, 2001).  

Variations in Burial Lake C/N ratios, which assess the relative proportion of terrestrial 

(C/N > 20) versus aquatic (C/N < 10) source inputs (Meyers and Teranes, 2001), 
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indicate a mixed algal-terrestrial and at times primarily algal source of organic matter 

over the last 37,000 years (Figure 3-7).  Pollen analysis of Burial Lake sediments also 

document changing vegetation patterns and a shift from herb tundra conditions, during 

the late mid-Wisconsinan interstadial and LGM, to shrub tundra during the Lateglacial 

and Holocene periods (Abbott et al., 2010).  In addition to organic matter source 

changes, we hypothesize that variations in δ13C are controlled by changes in aquatic 

productivity and the δ13C of CO2 supplied to Burial Lake for algal utilization.  Increasing 

algal productivity levels correspond with higher δ13C values, and vice versa for 

decreasing productivity (Meyers and Teranes, 2001).  Variable concentrations of 

sedimentary biogenic silica attest to changing levels of algal productivity over the last 

37,000 years.  Further, changes in the δ13C of dissolved CO2 supplied to Alaskan lakes 

has been shown to influence the δ13C of sedimentary organic matter (Finney et al., 

2012).  Several Alaskan lakes have surface water pCO2 concentrations above 

atmospheric levels, due to inputs of watershed-respired CO2 from permafrost or organic 

rich soils (Kling et al., 1991).  In such lacustrine systems, increased inputs of 

watershed-respired CO2 with relatively low δ13C values typical of C3 plants (~ -27 ‰) 

results in relatively low δ13C organic matter content (Finney et al., 2012).  Two surface 

water samples from Burial Lake were pCO2 supersaturated (481 ppm, 509 ppm), 

providing evidence that inputs of watershed respiration products affect the δ13C of 

dissolved inorganic carbon inputs to the lake for phytoplankton utilization.  Therefore, 

we interpret organic matter δ13C trends in light of source changes, but also due to 

changes in productivity and from variable inputs of landscape derived and respired 

organic matter.   
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The interpretation of the nitrogen stable isotopic composition (δ15N) of organic 

matter in lake sediments is difficult because biogeochemical cycling of nitrogen is more 

complex than carbon.  The lack of modern physical and chemical limnological data 

further limit our understanding of nitrogen cycling at Burial Lake.  Variations in the δ15N 

of organic matter might reflect changing productivity and the relative sources and 

isotopic composition of nitrogen supplied to lakes (Hu et al., 2001; Meyers and Teranes, 

2001).  In addition, the δ15N of sedimentary organic matter might be controlled by 

variations in the availability of reactive nitrogen (relative supply versus demand) inputs 

arising from hydroclimate variability.  Global-scale studies have found that soil and plant 

δ15N values increase with decreasing precipitation and increasing N availability 

(Amundson et al., 2003; Craine et al., 2009), indicating that climate plays a significant 

role in N cycling.  Further, the isotopic composition of atmospheric NOx (Hastings et al., 

2005) has changed dramatically over the last 37,000 years, with relatively higher values 

during MIS3 (and the LGM) compared to the Holocene.  Thus, we interpret organic 

matter δ15N trends in the Burial Lake sediment record to reflect a combination of 

changes in productivity, the availability of reactive nitrogen driven by hydroclimate, and 

from changes in the isotopic composition of atmospheric nitrogen inputs over time.   

3.5.2 The Mid-Wisconsinan Interstadial (37,200 to 29,600 cal yr BP) 

The presence of fine-grained lacustrine sediment (fine to medium sandy silt) with 

relatively intermediate organic content at the base of lithologic subunit 1 (Figure 3-3), 

combined with core-transect data (Abbott et al., 2010), suggest lake levels remained at 

intermediate to high levels from 37,200 to 36,100 cal yr BP.  Specifically, core-transect 
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data indicate lake levels were > 12.4 m below overflow level (BOL) from 37,200 to 

33,000 cal yr BP (Abbott et al., 2010) (Figure 3-12).  An erosional unconformity in 

intermediate water depth core C-98 from Burial Lake indicates a drop in lake level below 

11.3 M water depth occurred sometime after 33,000 cal yr BP (Abbott et al., 2010).  The 

transition to coarser sediments (fine to medium sandy argillaceous silt with coarse sand 

and granules) at 36,100 cal yr BP that persists until 16,500 cal yr BP indicates a change 

in paleoenvironmental conditions relative to the preceding period at Burial Lake.  The 

lithology during this period is consistent with the process of ice-rafting over the lake 

(Smith, 2000).  Alternatively, the granules could originate from aeolian transport and 

deposition on the frozen lake surface, with subsequent melting resulting in drop stone 

deposition (Lewis et al., 2002).  Lake ice covers the modern system for 9 months a 

year, yet coarse sediments (coarse sand to granules) are absent for the last 16,500 cal 

yr BP.  Accordingly, we favor an increase in aeolian activity to explain the coarser 

sediments.  This assertion is supported by relatively high magnetic susceptibility and 

titanium concentrations over subunit 1, and the distinct magnetic signature originating 

from wind-blown (aeolian) sources (Dorfman, 2013).  Potential local sources of aeolian 

input to the lake at this time include alluvial sediments along aggrading rivers and sub-

aerially exposed glaciolacustrine sediments (Hamilton, 2001), while a far afield source 

could originate from the exposed Chukchi continental shelf (Dorfman, 2013).  Low and 

gradually declining C/N ratios and relatively heavy (positive) organic matter δ13C values 

indicate organic matter originated primarily from aquatic (in-lake) sources (Finney et al., 

2012; Meyers and Ishiwatari, 1993), though the low organic matter and biogenic silica 

values attest to low levels of aquatic productivity (Figure 3-12).  The gradual increase in 
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δ15N values through the mid-Wisconsinan interstadial (Figure 3-7) corresponds with 

increasing aridity and lower lake-levels (Abbott et al., 2010), suggesting that changes in 

δ15N reflect changing hydroclimate conditions and relatively high N availability 

(compared with demand) (Amundson et al., 2003; Craine et al., 2009).  In addition, 

increasing and relatively high δ15N values at Burial Lake could in part reflect relatively 

high atmospheric NOx levels during MIS3 (Hastings et al., 2005).  Palynological 

evidence from the C-98 core indicate a tundra landscape with cool and dry conditions 

compared with the present (Abbott et al., 2010).  Overall, proxy evidence from this study 

and core-transect data demonstrate relatively high lake levels and an interstadial 

climate with slightly drier and windy conditions compared to the present.   

Evidence from Burial Lake provides additional support for interstadial climate 

conditions > 30,000 cal yr BP in eastern Beringia with warmer and slightly wetter 

conditions compared with the LGM (Anderson and Lozhkin, 2001 and references 

therein).  In the Noatak Basin, interstadial conditions are reported between 36 to 30 ka 

14C years from organic floodplain deposits and palaeosols along Noatak River 

(Hamilton, 2001).  Additional lake records have since been reported from Zagoskin Lake 

and Arolik Lake in western Alaska, respectively that show slightly more mesic conditions 

than the following full glacial interval (Ager, 2003; Kaufman et al., 2003).  Interstadial 

conditions occur during a time of relatively high Northern Hemisphere summer 

insolation (Figure 3-12), reduced alpine glacier extent (Figure 3-12), and when eustatic 

sea levels were -80 to -60 m lower than modern conditions (Figure 3-12).  These 

intermediate sea levels would have produced a Bering Land Bridge of reduced size 

compared with the LGM lowstand.  As a result, the transport distance of moisture-laden 
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air masses from the North Pacific Ocean travelling towards Alaska would have been 

similar to that during the Lateglacial transition (14,000 to 16,000 cal yr BP) where 

notable increases in effective moisture and higher lake-levels are reported across 

interior and northern Alaska (Abbott et al., 2000; Finkenbinder et al., 2014; Gaglioti et 

al., 2014; Mann et al., 2002).   

3.5.3 The Last Glacial Maximum (29,600 to 19,600 cal yr BP) 

Burial Lake sediments and proxy data across lithologic subunit 2 indicate a two-

phase structure that corresponds to the LGM (29,600 – 19,600 cal yr BP) and the last 

deglaciation (19,600 – 16,500 cal yr BP).  The highest magnetic susceptibility values 

and relatively high titanium concentrations between 29,600 – 19,600 cal yr BP suggests 

a substantial flux of mineral sediments, which likely originated from wind-blown sources 

(Dorfman, 2013).  The lowest C/N ratios indicate organic matter was primarily sourced 

from aquatic (in-lake) sources (Meyers and Ishiwatari, 1993) during the LGM.  The 

relatively high δ13C values coincide with the period of lowest lake-levels and the 

deposition of coarse-grained mineragenic sediments.  We interpret organic matter δ13C 

trends to reflect changes driven by decreased productivity and possibly decreased 

inputs of landscape derived and respired organic matter during this period of dry (Abbott 

et al., 2010) and cold (Kurek et al., 2009) conditions.  Further, δ15N values are the 

highest at any time during the record and coincide with the period of low lake levels, 

again suggesting that aridity controls δ15N through the LGM.  Sustained low levels of 

organic matter and biogenic silica during the LGM indicate aquatic productivity was 

minimal likely due to cold conditions and a short ice free, growing season.   
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The Burial Lake proxy data support existing evidence for extremely arid and 

windy conditions during the LGM in Arctic Alaska.  Evidence for low lake levels and arid 

conditions at Burial Lake are supported internally by the presence of an erosional 

unconformity in the C-98 core (Abbott et al., 2010) with a gap in sedimentation between 

~33,000 to 24,300 cal yr BP.  Abbott et al. (2010) suggest that sedimentation resumed 

at the C-98 core site by 24,300 cal yr BP, and therefore interpret the early LGM to be 

the driest period over the entire record.  However, this age assignment is extrapolated 

from a radiocarbon date of 19,880 cal yr BP that is 51 cm above an erosional 

unconformity.  Alternatively, the transition to higher lake-levels is constrained directly to 

before 19,880 cal yr BP. Our continuous proxy data showing coarse sediments (Figure 

3-3) and relatively low organic content (Figure 3-12) are consistent with persistently dry 

conditions throughout the LGM.  Several other lake sediment records from northwest 

Alaska show evidence for lower lake levels during the LGM (Anderson, 1988; Mann et 

al., 2002; Oswald et al., 1999) when most small, shallow lakes in the interior of Alaska 

were dry (Abbott et al., 2000).  Thus, evidence from Burial Lake provides additional 

support for the west-east moisture gradient in Alaska during the LGM, which has been 

attributed to proximity to marine moisture sources (Guthrie, 2001).   The period of low 

lake levels and minimal aquatic productivity corresponds to the time when most ice 

sheets attained their maximum late-Wisconsinan extent (Clark et al., 2009) and the 

LGM sea level lowstand (Figure 3-12).  As a result, the Bering Land Bridge attained its 

greatest extent as lower sea levels exposed the shallow Bering and Chukchi continental 

shelves (Hopkins, 1982), thereby enhancing the continentality of interior regions in 

Alaska.   
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Alpine glaciers in the central Brooks Range attained their maximum extent during 

the early LGM between 27,000 to 25,500 cal yr BP and experienced a later retreat and 

re-advance to near the LGM maxima position after 23,000 cal yr BP (Figure 3-12) 

(Briner and Kaufman, 2008; Hamilton, 1982).  The relatively early LGM maximum extent 

of alpine glaciers in the Brooks Range, compared with elsewhere in Alaska (Briner and 

Kaufman, 2008), suggests a complex pattern in glacier mass balance.  Our re-

interpretation of lake-levels at Burial Lake across the LGM (Figure 3-12) and proxy data 

from this study indicates sustained low lake levels and very low effective moisture levels 

between 29,600 to ~20,000 cal yr BP.  Although our age control is limited, we suggest 

the relatively early LGM alpine glacial maxima in the central Brooks Range could have 

occurred during a time of slightly higher effective moisture levels.  Therefore, we 

hypothesize that subsequent more extensive advances were possibly precluded by 

greater aridity as the Bering Land Bridge increased in size and the distance from marine 

moisture sources increased.   

3.5.4 The Last Deglaciation (19,600 to 16,500 cal yr BP) 

Numerous proxies in the Burial Lake record gradually change in trend around 

~19,600 cal yr BP at the subunit 2b transition (Figure 3-7; Figure 3-8) consistent with 

considerable environmental change initiating at this time.  Specifically, organic matter 

concentrations and C/N ratios gradually increase up-section while magnetic 

susceptibility, titanium, and organic matter δ13C and δ15N values gradually decrease up-

section towards the subunit 3 boundary (Figure 3-7; Figure 3-8).  We interpret these 

changes to reflect a progressive increase in terrestrial organic matter flux and a 
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corresponding decrease in clastic sediment delivery to the lake.  The decrease in 

organic matter δ15N values implies an increase in terrestrial organic matter because the 

N source of land plants is atmospheric N2 (expected value of 0 ‰) (Meyers and 

Teranes, 2001).  Decreasing δ15N values corresponds with rising and higher lake levels 

at Burial Lake, consistent with increasing supply of reactive N (compared with demand) 

and the aforementioned relationship between δ15N and hydroclimate (Amundson et al., 

2003).  The trend to decreasing organic matter δ13C values, coincident with increasing 

C/N values, likely reflects increased inputs of watershed-respired CO2 from the 

catchment (Finney et al., 2012).   

We acknowledge the lack of direct age control at this time limits a precise age 

determination for this transition (Figure 3-3).  Assuming a constant sediment 

accumulation rate at Burial Lake through LGM, the estimated uncertainty in the timing of 

this transition is between 18,600 to 20,700 cal yr BP.  However, given the considerable 

climatic change that transpired in the Alaskan Arctic through the LGM (Abbott et al., 

2010; Hamilton, 2001; Kurek et al., 2009), it is very likely that sedimentation rates at 

Burial Lake were variable and the error estimates associated with this transition could 

be even greater.  Nonetheless, support for major environmental change occurring 

around this time is provided by the C-98 core, which shows rising and higher lake levels 

by 19,880 cal yr BP (Figure 3-12).  Increasingly mesic conditions beginning at 19,800 

cal yr BP inferred from palynological data (Abbott et al., 2010) also coincide with the last 

deglaciation sediment transition.   

The last deglaciation transition is broadly synchronous with gradually rising high-

latitude Northern Hemisphere summer insolation (Berger and Loutre, 1991) and retreat 
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of alpine glaciers in the Central Brooks Range between 22,000 and 18,500 cal yr BP 

(Hamilton, 1982) (Figure 3-12).  Further evidence for climatic change at this time is 

provided by a chironomid-inferred July temperature reconstruction from Burial Lake, 

which shows sustained cold temperatures through the LGM until ~ 17,400 cal yr BP 

(Kurek et al., 2009).  Reconstructed July temperatures gradually increase after ~ 17,400 

cal yr BP and reflect increasingly warmer and longer summers.  Increasing 

temperatures are broadly synchronous with rising global atmospheric CO2 levels 

beginning around ~ 17,000 cal yr BP (Monnin et al., 2001).  We therefore suggest the 

changing trend in sediment properties at ~ 19,600 cal yr BP along with corresponding 

increases in Cyperaceae and Salix (Abbott et al., 2010) are driven by increasing 

effective moisture levels coincident with rising and higher lake-levels (Figure 3-12).  

Increasing effective moisture levels at this time are possibly related to initial retreat of 

the Laurentide Ice Sheet at ~ 19,000 cal yr BP (Dyke, 2004) and a re-organization in 

atmospheric circulation across eastern Beringia.  Interestingly, a chironomid-inferred 

July temperature reconstruction from Zagoskin Lake in western Alaska shows 

progressive warming of ~3° C during the LGM to last deglaciation from 25,000 to 17,000 

cal yr BP (Kurek et al., 2009), possibly reflecting spatial variations in climatic conditions 

in western Alaska at this time.   

3.5.5 The Lateglacial and early Holocene Thermal Maximum (16,500 to 8,800 cal 

yr BP) 

The Lateglacial transition at Burial Lake beginning at ~ 16,500 cal yr BP is 

marked by an abrupt change in sedimentology, with decreasing grain size (very fine 
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sandy silt) and absence of coarse sediments (sand or granules) that characterized mid-

Wisconsinan interstadial, LGM, and the last deglaciation age sediments.  Terrestrial 

macrofossil abundance increases, suggesting more established vegetation in the 

surrounding catchment, and sedimentation rates are slower (9 to 19 cm/ka yr).  

Magnetic susceptibility and titanium values continue to gradually decrease through the 

Lateglacial, which we interpret a result of decreased windiness, stabilization of 

watershed soils, and from rising and higher lake-levels (Figure 3-12).  Rising and 

variable biogenic silica and Si(norm)/Ti (Figure 3-7; Figure 3-8), and a corresponding 

increase in the presence and diversity in diatom frustules, indicates increased in-lake 

(aquatic) productivity likely due to a longer ice-free growing season and increasing 

nutrients from autochthonous organic matter flux to the lake.  Relatively high and 

variable C/N ratios indicate a higher proportion of organic matter from terrestrial sources 

during this time.  Organic matter δ15N values attain their most negative values between 

16,500 to 11,350 cal yr BP at the same time both terrestrial and aquatic productivity 

levels are increasing or higher than any previous time.  Therefore, we interpret δ15N 

dynamics to changes in both decreased relative nitrogen availability relative to demand 

and increasing input of terrestrial organic matter to the sediment, both of which tend to 

decrease organic δ15N (Craine et al., 2009; Meyers and Teranes, 2001).  Overall, proxy 

evidence indicates the Lateglacial and Early Holocene between 16,500 to 8,800 cal yr 

BP was a time of considerable climatic change with increasing and higher levels of 

terrestrial and aquatic productivity, decreased windiness and landscape stabilization, 

and continued rising lake-levels (Figure 3-12) and increasing effective moisture. 
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The Lateglacial transition at Burial Lake beginning at 16,500 cal yr BP coincides 

with a decrease in dust accumulation inferred from decreasing and lower s-ratios 

(Figure 3-12) (Dorfman, 2013).   Changing oceanographic conditions in the Bering Sea 

also indicate broadly synchronous ocean-land responses to warmer climate conditions 

around this time.   For example, Caissie et al. (2010) report a transition from thick 

perennial pack ice to extensive sea ice with short periods of open water at Umnak 

Plateaus in the southern Bering Sea beginning at 16,900 cal yr BP.  The deglacial 

transition at 16,500 cal yr BP coincides with evidence of alpine glacier retreat from the 

range front in the central Brooks Range before ~ 16,000 to 15,000 cal yr BP, and further 

retreat into cirques by ~ 14,000 cal yr BP (Badding et al., 2013).  However, (Hamilton, 

2003b) reports evidence of a minor re-advance of alpine glaciers in the central Brooks 

Range between 15,100 to 13,000 cal yr BP, possibly related to increased effective 

moisture levels, although geomorphic evidence (moraines) for this advance are lacking.  

Further, rising eustatic sea levels (Figure 3-12) gradually flooded the Bering Land 

Bridge and reduced the transport distance of air masses to the Alaskan interior, 

effectively reducing the continentality of the Alaskan interior over time.   Complete 

submergence of the Bering Land Bridge occurred between 12,000 to 11,000 cal yr BP 

(Elias et al., 1996; Keigwin et al., 2006), establishing the approximately modern 

continental configuration of Alaska.   

The proxy evidence from Burial Lake is also consistent with other lacustrine 

records from Alaska that shows considerable and rapid environmental change initiated 

during the Lateglacial period.  For example, Mann et al. (2002) report evidence of higher 

and fluctuating lake-levels, compared with the preceding glacial period, from Lake of the 
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Pleistocene (Nikivlik Lake) (Figure 3-1).  Relatively high lake-levels and increased 

effective moisture levels occur between 12,500 – 11,000 14C yr BP and after 10,000 14C 

yr BP, while falling and lower lake-levels with decreased effective moisture occur 

between 11,000 – 10,000 14C yr BP (Mann et al., 2002).  In addition, core-transect 

based lake-level reconstructions from Birch Lake (Abbott et al., 2000) and Harding Lake 

(Finkenbinder et al., 2014) in the interior of Alaska (Figure 3-1) show relatively higher 

but variable lake-levels with increased effective moisture between ~15,000 to ~9,000 cal 

yr BP, compared with LGM conditions.  Pollen evidence from Burial Lake show a trend 

to more mesic conditions between 19,800 to 13,900 cal yr BP.  Further, an abrupt rise in 

Betula pollen at Burial Lake at 13,900 cal yr BP (Abbott et al., 2010), combined with 

regional evidence for increasing shrub abundance during the Lateglacial (Anderson and 

Brubaker, 1994; Higuera et al., 2009; Oswald et al., 1999), provide additional evidence 

for warmer and wetter conditions at this time.  The July temperature reconstruction from 

Burial Lake shows gradually rising temperatures beginning at ~17,000 cal yr BP that 

continued to rise to the highest levels over the entire record at 12,300 cal yr BP (Kurek 

et al., 2009).  

Relatively low biogenic silica content and reduced aquatic productivity at Burial 

Lake between 13,000 to 12,400 cal yr BP possibly provides additional evidence for 

climatic deterioration during the early Younger Dryas (YD) in Alaska.  However, reduced 

productivity contrasts with the midge-inferred increase and peak summer temperatures 

at Burial Lake through the early YD (Kurek et al., 2009).  This discrepancy is difficult to 

explain given that both proxies are sensitive to growing season climatic conditions.  

Further, the apparent lack of a clear YD signal in other physical, geochemical, or 
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elemental proxies (Figure 3-7; Figure 3-8) suggests the absence of a climatic reversal at 

this time.  This conclusion is consistent with the lack of evidence for YD alpine glacier 

advances in the central Brooks Range (Badding et al., 2013; Hamilton, 1982) and a 

review of paleoecological data showing similar to modern temperatures in northern 

Alaska (Kokorowski et al., 2008).  However, this contrasts with regional evidence for the 

YD in northern Alaska that include low lake-levels and decreased effective moisture at 

Lake of the Pleistocene (Gaglioti et al., 2014; Mann et al., 2002) and floodplain incision 

on the Alaskan north slope (Mann et al., 2010) from cooler and potentially drier 

conditions.  Further, evidence for colder temperatures is inferred from fossil beetle 

assemblages along Noatak River (Elias, 2000) and from a negative δ18O excursion from 

the Barrow ice wedge system (Meyer et al., 2010).  The apparently discordant evidence 

for the YD in northern Alaska could reflect seasonal differences in the sensitivity of 

proxies to environmental or climatic changes used in this study. 

The peak in organic matter and highest levels over the entire record along with 

relatively high C/N ratios at Burial Lake occurs between 10,500 to 9,900 cal yr BP.  We 

interpret this to reflect relatively high terrestrial productivity, which coincides with the 

latter part of the HTM in Alaska (Kaufman et al., 2004) and with the peak in sea surface 

temperatures in the northwest Pacific Ocean and Bering Sea (Max et al., 2012) over the 

last 15,000 years.  Regionally, high productivity also coincides with the peak in 

thermokarst lake development across the circum Arctic (Walter et al., 2007) and 

peatland initiation across Alaska (Jones and Yu, 2010).  Holocene to late Pleistocene 

age solifluction deposits mapped immediately north of Burial Lake (Hamilton, 2010) 

represent a local source of autochthonous organic matter delivered to the lake from 



 112 

permafrost degradation at this time.  Additional evidence for regional summertime 

warming and increased effective moisture from 11,500 to 9,500 cal yr BP is evinced 

from a period of floodplain aggradation and expansion of Populus balsamifera trees in 

the Arctic foothills (Mann et al., 2010).  These coincident land-ocean environmental 

changes apparently reflect broadly synchronous responses to the summer insolation 

maxima (Berger and Loutre, 1991) and enhanced methane emissions from thermokarst 

lakes (Walter et al., 2007) during the early Holocene in the western Arctic. 

3.5.6 The early Holocene to the present (2010 AD) 

Burial Lake sediments spanning the early Holocene (8,800 cal yr BP) to the 

present (2010 AD) consist of fine (silt) sediment and combined with core-transect data 

(Abbott et al., 2010), indicate high and generally stable lake-levels (Figure 3-12).  Low 

and relatively stable magnetic susceptibility and titanium content are consistent with a 

low clastic sediments flux, with minimal aeolian sedimentation (Dorfman, 2013).  

Generally stable organic matter content and low C/N ratios indicate that organic matter 

primarily originated from a mixed aquatic-terrestrial source through this interval.  

Organic matter δ15N values are generally stable and display only minor variability 

throughout the middle to late Holocene, suggesting that organic N-cycling and the 

source of reactive N for aquatic productivity remained relatively constant.  Excursions to 

relatively negative δ13C values also occur at 3,580 and 1,170 cal yr BP and likely reflect 

a variable flux of terrestrial organic matter delivered to the lake from the catchment.  

Pollen evidence from Burial Lake shows the Alnus crispa expansion occurred at 9,000 
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cal yr BP and the vegetational mosaic thereafter is moist shrub tundra (Abbott et al., 

2010).   

The proxy data from Burial Lake spanning the early to late Holocene are 

consistent with regional-wide evidence for high and generally stable lake levels (Abbott 

et al., 2000; Finkenbinder et al., 2014), soil development and stabilization (Hu et al., 

2001), and increasing and higher levels of aquatic and terrestrial productivity 

(Finkenbinder et al., 2014; Finney et al., 2012; Hu et al., 2001; Hu et al., 2003; Kaufman 

et al., 2012).  For instance, biogenic silica displays large fluctuations and varies from ~ 6 

to ~ 18 (wt. %) at multi-century to millennial time scales over the last 8,800 cal yr BP 

(Figure 3-12).  We interpret changes in biogenic silica to reflect changes in aquatic 

productivity, given the generally linear sediment accumulation rate over the Holocene 

(Figure 3-3), no evidence for diatom dissolution, and minimal variability in LOI 550 and 

TOC (Figure 3-4).  Unfortunately, the existing age model and temporal resolution of our 

biogenic silica record (average 140 yr/sample) do not allow us to address if these 

changes are related to Holocene millennial variability observed in other paleo records 

(Bond et al., 2001; Darby et al., 2012; Hu et al., 2003) or to assess the precise 

mechanism that drives aquatic productivity at Burial Lake.  Relatively low S-ratios 

indicate diminished dust accumulation at Burial Lake compared with the preceding early 

Holocene and Lateglacial (Figure 3-12).  However, increasing S-ratios after ~ 2,000 cal 

yr BP possibly reflect increasing dust accumulation at Burial Lake (Figure 3-12), which 

Dorfman (2013) suggest could result from late Holocene alpine glacier advances in the 

Brooks Range.  
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3.6 CONCLUSIONS 

A detailed investigation of a 6.51 m composite core from the central depocenter 

of Burial Lake in Arctic Alaska reveals a continuous record of sedimentation that spans 

the last ~37,000 cal yr BP.  The application of AMS radiocarbon dates on terrestrial 

macrofossils provide a chronological framework to assess changing paleoenvironmental 

conditions over the late-Quaternary.  We identify four distinct lithologic subunits based 

on an analysis of physical sedimentology and multiple physical and geochemical 

proxies analyzed at multi-decadal to centennial timescales.  Relatively high lake-levels 

and gradually decreasing in-lake and terrestrial productivity occur during the mid-

Wisconsinan interstadial between 37,200 to ~ 29,600 cal yr BP.  The subsequent period 

is defined by falling and lower lake-levels with decreasing effective-moisture, windier 

conditions, and sustained and low levels of aquatic productivity throughout the LGM 

between ~ 29,600 to ~19,600 cal yr BP.  Although our age control is limited through the 

LGM, we suggest the relatively early LGM alpine glacial maximum extent in the central 

Brooks Range could have occurred during a time of slightly higher effective moisture 

levels.  Therefore, we hypothesize that subsequent more extensive advances were 

possibly precluded by greater aridity as the Bering Land Bridge increased in size and 

the distance from marine moisture sources increased.   

The last deglaciation that commenced by ~19,600 cal yr BP is characterized by 

gradual changes in several sediment physical and geochemical proxies, including 

increasing C/N ratios and terrestrial productivity, decreasing magnetic susceptibility and 

clastic sediment flux, along with rising and relatively higher lake-levels.  The lack of 

direct age control in the Burial Lake record constraining the last deglaciation limits a 
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precise age determination for this transition.  However, support for environmental 

change occurring at this time is provided by core-transects that show rising and higher 

lake levels along with palynological data that show increasingly mesic conditions by ~ 

19,800 cal yr BP (Abbott et al., 2010).  We suggest this transition is related to initial 

retreat of the Laurentide Ice Sheet at ~ 19,000 cal yr BP and a re-organization in 

atmospheric circulation across eastern Beringia, resulting in increasing effective 

moisture levels and terrestrial productivity at Burial Lake.  A decrease in aeolian activity 

after 16,500 cal yr BP is inferred from the appearance of fine (very fine sandy silt) 

sediment, compared to coarse sediments through the LGM and last deglaciation. The 

highest levels of terrestrial productivity along with increasing and variable aquatic 

productivity occurs during the Lateglacial to early Holocene interval between 16,500 to 

8,800 cal yr BP.  The absence of multi-proxy evidence for a climatic reversal during the 

Younger Dryas from Burial Lake sediments contrasts with other paleorecords showing 

cooler temperatures and/or dry conditions in northern Alaska at this time.  Peak levels of 

sediment organic content and terrestrial productivity at Burial Lake between ~ 10,500 to 

9,900 cal yr BP coincide with the early Holocene summer insolation maxima and 

Holocene Thermal Maximum in the western Arctic, which likely represents summertime 

warming and an enhanced flux of watershed derived organic matter from permafrost 

degradation.  The remainder of the Holocene (since 8,800 cal yr BP) at Burial Lake is 

characterized by relatively high and stable lake levels, landscape stabilization, and 

relatively high and variable levels of aquatic productivity.  

The Burial Lake record provides one of the oldest lacustrine records from the 

North American Arctic to continuously span the period prior to the last glacial period 
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through to the present.  High-resolution proxy analysis at multi-decadal to centennial 

time scales provides new insights into the sensitivity of Arctic ecosystems to climatic, 

environmental, and landscape changes across glacial to interglacial timescales.  

Unfortunately, the absence of terrestrial macrofossils for radiocarbon dating across the 

LGM and last deglaciation, during the period of cold, extremely arid, and windy 

conditions, limits our ability to assess the precise timing of environmental changes at 

key times.  Further, the lack of evidence for dramatic environmental changes throughout 

the LGM and across the Younger Dryas, suggests the physical and geochemical 

proxies used in this study were possibly less sensitive to climatic changes at these 

times. Alternately, the absence of evidence for environmental changes could reflect 

seasonal differences in the sensitivity of productivity proxies (organic content, biogenic 

silica) used in this study, which primarily respond to summer growing season conditions.  

These apparent discrepancies highlight the need to carefully interpret proxy indicators 

to infer environmental changes, which by their nature respond to myriad environmental 

factors and often towards seasonal climate conditions.    
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4.0  MILLENNIAL-SCALE VARIABILITY IN HOLOCENE CLIMATE FROM BURIAL 

LAKE, ARCTIC ALASKA 

Millennial-scale fluctuations in Holocene climate conditions have been observed 

in a variety of paleoclimate archives, however relatively few observations exist from 

continental sites in high-latitude regions.  Further, the underlying mechanism that drives 

these variations, including whether they might arise from internal and intrinsic variations 

within the climate system compared with an external forcing mechanism, are still 

actively debated.  Here we present the first evidence for cyclical millennial-scale 

fluctuations in Holocene climate conditions in Arctic Alaska using sedimentological and 

geochemical analyses from Burial Lake in the western Brooks Range. We interpret 

changes in sedimentary biogenic silica (BSi) to result from variability in aquatic 

productivity, which is indirectly mediated by climate through changes in the duration of 

the ice-free growing season and the availability of limiting nutrients at this oligotrophic, 

tundra lake.  Large BSi fluctuations and related proxies at millennial timescales in Burial 

Lake occur over the last 10,000 years.  Time series analysis of the BSi record indicates 

a significant ~1,500-yr periodicity emerges by ~6,000 cal yr BP that disappears after 

~3,000 cal yr BP. Comparison of aquatic productivity against a sea-ice inferred 

reconstruction of the Arctic Oscillation (AO) (Darby et al., 2012) shows that periods of 

reduced productivity at Burial Lake coincide with positive phases of the AO.  
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Specifically, reconstructed AO+ conditions that correspond with lower summer 

temperatures and a shortened ice free season result in a decreased flux of limiting 

nutrients from permafrost degradation and lower levels of aquatic productivity at Burial 

Lake.  Further, the reconstructed aquatic productivity and the AO display similar 

millennial scale periodicities with ~1,500-yr variability during the middle Holocene that 

transitions to ~1,000-yr variability during the late Holocene.  We propose that aquatic 

productivity at Burial Lake is related to state changes in the AO and that millennial 

variability that the record exhibits is related to internal oscillations within the climate 

system.  These results shed light on the sensitivity of aquatic ecosystems in northern 

Alaska to changes in growing season temperature and Arctic Ocean sea ice extent over 

the Holocene. 

4.1 INTRODUCTION 

Millennial-scale fluctuations in Holocene climate conditions have been observed 

in a variety of paleoclimate archives (Bond et al., 2001), however the meaning of these 

variations including whether they might arise from internal or external forcing are still 

actively debated.  The 1,500-yr cycle in Holocene climate records has been attributed to 

external solar forcing (Bond et al., 2001; Hu et al., 2003), geomagnetic field intensity 

variations (St-Onge et al., 2003), internally driven changes in the strength of Atlantic 

Meridional Overturning Circulation (AMOC) and variations in the formation of North 

Atlantic Deep Water (NADW) (Bianchi and McCave, 1999; Debret et al., 2007), and to 

internal modes of climate variability (Darby et al., 2012; Sorrel et al., 2012).  Proxy 
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evidence for millennial scale variability is most clearly present in the North Atlantic 

region, but it remains unclear whether the lack of evidence from many other regions is 

the result of limited observations or an absence of expression.  Evidence for a 1,500-yr 

cycle in Holocene climate from Alaska and the North Pacific is relatively scarce with a 

few notable exceptions.  For example, Wiles et al. (2008) use glacial-geologic studies in 

Alaska that reveal multi-century to millennial-scale fluctuations in the advance and 

retreat of alpine glaciers over the late Holocene linked to solar variability.  Hu et al. 

(2003) report evidence of a prominent 950-yr cycle, and a weaker 1,500-yr cycle, in 

aquatic productivity from Arolik Lake in southwest Alaska over the Holocene, and 

suggested a direct solar irradiance control.  More recently, Darby et al. (2012) report 

evidence for a 1500-yr cycle in Arctic sea-ice drift and attribute these variations to 

changes in the mean-state of the Arctic Oscillation.   

Paleoclimate records that display millennial-scale variations are often analyzed 

for frequency patterns using classical spectral analysis, which seeks to detect significant 

periodicities within a signal.  Debret et al. (2007) demonstrated the limitations of 

conventional spectral analysis methods to detect periodic signals that evolve through 

time from reanalysis of a North Atlantic ice-rafted debris stack Bond et al. (1997).  

Wavelet analysis is an additional time series analysis technique used to explore the 

evolution of frequency patterns in climate records, which permits visualization of the 

changing statistical properties in stochastic processes with time (Torrence and Compo, 

1998).  For example, wavelet analysis of North Atlantic climate proxies and cosmogenic 

radionuclides (14C production rate, 10Be) showed that Holocene millennial variability 

consists of 1000 and 2500-yr periodicities linked to solar forcing.  In addition, the 
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analysis revealed a 1500-yr periodicity and linked these variations to internal oceanic or 

ocean-atmosphere forcings (Debret et al., 2007).  Further, wavelet analysis revealed the 

1500-yr periodicity found in global paleoclimate records was not continuous through the 

Holocene and appears by the middle to late Holocene (4,000 to 6,000 calendar years 

before present; cal yr BP) (Debret et al., 2009).  However, these wavelet analysis 

studies did not include proxy records from the North Pacific and Arctic regions, and 

further emphasized marine records with limited analysis of terrestrial climate records.  

As a result, the existence and temporal evolution of millennial-scale climate variability in 

Arctic Alaska is still uncertain.  Additional paleoclimate records from northern Alaska will 

help further understand the potential forcings and spatial patterns of millennial-scale 

climate fluctuations in the Arctic during the Holocene.   

Here we present new evidence for millennial-scale climate variations in Arctic 

Alaska from sedimentological and geochemical analyses of Burial Lake in the western 

Brooks Range.  A multiproxy approach is used to reconstruct paleoenvironmental 

changes over the last 10,000 years, which is used to hypothesize and test that algal 

productivity is sensitive to climatic conditions on millennial to orbital timescales.  We 

utilize a combination of time series methods to detect and investigate the temporal 

evolution of frequency patterns in aquatic productivity.  Last, We compare the Burial 

Lake biogenic silica (BSi) record to paleoclimate records from the North Atlantic 

(Bianchi and McCave, 1999; Hoogakker et al., 2011; Thornalley et al., 2009) and 

Alaskan region that include; a midge-inferred temperature reconstruction (Clegg et al., 

2011), sea-ice records from the Bering and Chukchi Seas (de Vernal et al., 2005; 

Katsuki et al., 2009), and a recently developed sea-ice inferred record of the Arctic 
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Oscillation (Darby et al., 2012) to investigate potential mechanisms that drive this 

variability in the Alaskan Arctic. 

4.2 SITE DESCRIPTION 

Burial Lake (68.43°N, 159.17°W; 460 m above sea level, asl) is a small (0.8 km2), 

hydrologically open, oligotrophic lake located in the Noatak River basin in northwest 

Alaska (Figure 4-1).  The surrounding catchment is small (3.3 km2) with steep (3-5 m 

high) slopes along most of the lake’s shoreline that transition to a low-relief plateau 

(Figure 4-2).  The lake receives inflow from several ephemeral gullies along the 

northern shoreline and contains a small outlet stream at the southwest shoreline.  The 

catchment and surrounding region is underlain by continuous permafrost at depths 

below 200 to 300 m (Jorgenson et al., 2008).  Vegetation surrounding the lake is 

characterized as low-arctic tundra, consisting of sedges, Salix, shrub-Betula, and Alnus 

with occasional stands of Populus balsamifera in river valleys (Abbott et al., 2010).  

Physical observations and a review of monthly Landsat satellite imagery 

(http://landsatlook.usgs.gov/) indicate that ice covers the lake for approximately 9 

months a year, resulting in a short, 3 month long ice-free growing season.   
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Figure 4-1. Map of Map of Alaska showing Burial Lake and other sites mentioned in the text.  Other sites 

include Arolik Lake (AL), Rainbow Lake (RL), Hudson Lake (HL), Moose Lake (ML), Screaming Lynx 

Lake (SL), Wolverine Lake (WL), and Takahula Lake (TL).  Marine records include core JPC16 in the 

Beaufort Sea, core GC-33 in the Bering Sea, and core B15 in the Chukchi Sea.     
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Figure 4-2. Satellite photo showing the location of Burial Lake with respect to local streams in the upper 

Anisak River drainage basin. 

 

The regional climate around Burial Lake is characterized by long cold winters and 

short cool summers.  Bieniek et al. (2012) place the upper Noatak Basin within the 

North Slope climate division, a region defined by arid conditions (maximum precipitation 

of < 5 cm in the wettest summer month) with seasonal average temperatures ranging 

from below -25° C in winter to above 10°C in summer.  Climatic conditions in Alaska are 

further influenced by ocean-atmosphere interactions and internal modes of climate 

variability on seasonal to multi-decadal timescales.  For example, variations in the El 

Niño Southern Oscillation (ENSO) correlate with cold season conditions in Alaska, with 
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the negative phase of ENSO (La Niña) associated with lower than average winter 

temperature (Bieniek et al., 2012; Papineau, 2001).  Similarly, the Pacific Decadal 

Oscillation (PDO), or dominant mode of Pacific Ocean sea surface temperatures 

northward of 20° N latitude, also influences Alaskan climates whereby colder winters 

typically occur with the cool phase of the PDO (Bieniek et al., 2012; Hartman and 

Wendler, 2005; Papineau, 2001).  The Arctic Oscillation (AO), or a leading mode of 

Northern Hemisphere sea level pressure variability that effects hemisphere-wide 

atmospheric circulation (Thompson and Wallace, 1998) impacts Alaskan weather with 

positive phase AO conditions associated with colder wintertime conditions (Bieniek et 

al., 2012).  The influence of ENSO and PDO variations on summer temperatures in 

Alaska is comparatively weak (Hartman and Wendler, 2005; Papineau, 2001), while the 

influence of the wintertime AO on temperatures persists through most of the following 

year through interannual effects with Arctic sea ice (Rigor et al., 2002).  The summer 

climate of interior and northern Alaska is primarily affected by mid-tropospheric 

variations of ridges and troughs (Edwards et al., 2001). 

4.3 MATERIALS AND METHODS 

4.3.1 Lithostratigraphy and geochemistry 

Sediment cores were collected from the deepest part of the central basin at 

Burial Lake in July, 2010.  A surface core (A-10 Drive 1) with intact sediment-water 

interface was recovered in 21.5 m water using a polycarbonate tube fit with a rubber 
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piston.   The upper portion of the surface core was packed with floral foam and capped 

for transport.  Overlapping cores were recovered from the same location in 21.5 m 

water using a modified square rod Livingstone corer (Wright et al., 1984).  Sediment 

cores were split lengthwise and described at the Department of Geology and Planetary 

Science at the University of Pittsburgh.  Notable sedimentary structures, grain-size, and 

Munsell color were characterized for each core.  Samples for dry bulk density were 

measured at continuous 1 cm intervals using a 1 cm3 piston sampler, subsequently 

dried for 48 hours in a 60° C oven, and weighed thereafter.  Magnetic susceptibility was 

measured at 2 mm intervals on the split-core surface using a Bartington MS2 Magnetic 

Susceptibility Meter.   

Sedimentary organic matter proxies are often used to evaluate changes in the 

source and production of vegetation growing in and around lacustrine systems (Meyers 

and Teranes, 2001).   Samples for total organic carbon (TOC) and total nitrogen (TN) 

were measured at 2 cm intervals using an Elemental Combustion System 4010 

interfaced to a Delta V Advantage mass spectrometer through the ConFlo IV system.  

The elemental mass ratio of TOC to TN (C/N) was calculated to further assess the 

relative proportion of organic matter from terrestrial (C/N > 20) versus aquatic (C/N < 

10) sources (Meyers and Teranes, 2001).  Prior to analysis, samples were treated with 

1M HCl to ensure removal of carbonate minerals, rinsed to neutral pH with MilliQ water, 

freeze-dried and homogenized.   

Biogenic silica (BSi) is a measure of the amorphous component of silica (SiO2) in 

sediments that has been shown to be a reliable proxy for the abundance of diatoms, or 

single celled algae that produce a siliceous frustule (Conley and Schelske, 2001).  In 
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the Arctic, diatoms are typically the most prevalent algae in lakes and sedimentary BSi 

is often used as an index of primary productivity (Douglas and Smol, 1999).  BSi content 

was measured at 1 cm intervals using a wet-chemistry, alkaline extraction adapted from 

Mortlock and Froelich (1989).  Briefly, homogenized sediment samples were treated 

with 30% H2O2 and 1M HCl to oxidize organic matter and carbonates prior to analysis.  

BSi was extracted with a 5% Na2CO3 solution and determined by molybdate blue 

spectrophotometry at 812 nm using a Thermo Scientific Evolution 60s UV-Visible 

Spectrophotometer.   

 

4.3.2 Composite core and geochronology 

A composite sediment record was developed using overlapping core segments 

based on matching magnetic susceptibility and visible stratigraphic markers.  Age 

control is based on 11 accelerator mass spectrometry 14C dates on terrestrial 

macrofossils (Table 4.1) plus a core top age assignment of 2010 AD.  Radiocarbon 

samples were pre-treated using standard acid-base-acid wash techniques (Abbott and 

Stafford, 1996) at the University of Pittsburgh and were combusted, converted to 

filamentous graphite, and measured at the W.M. Keck Carbon Cycle AMS Laboratory, 

University of California, Irvine.  Radiocarbon ages were calibrated to calendar years BP 

(1950 A.D.) using Calib 7.0 and the IntCAL13 calibration curve (Reimer et al., 2013).  

An age-depth model was created using point to point, linear interpolation with the 

classical age modeling (CLAM) code v2.2 for the statistical software R (Blaauw, 2010).  

To further account for chronological uncertainty, I apply a Monte Carlo-based approach 
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that perturbs the interpolated age-depth model 10,000 times following a random draw 

from a normal distribution between the 2σ calibrated 14C ages (Marcott et al., 2013).  

The uncertainty between the age control points is modeled as a random walk, after 

Huybers and Wunsch (2004), with chronological uncertainty assumed to be auto-

correlated through time and modeled as a first order autoregressive (AR1) process. 

 

Table 4.1. Burial Lake AMS radiocarbon dates from core A-10. 

Sample ID Depth Material 14C Age ± Calib 7.0 Age

(UCIAMS #) (cm) (yr BP) (yr) (cal yr BP)

152065 16.5 twig 950 180 562 - 1,261

89197 45.0 plant material 2,535 30 2,493 - 2,745

152066 53.5 bryophyte 3,030 60 3,042 - 3,378

109361 66.5 wood 3,635 25 3,872 - 4,074

152067 74.5 plant material 4,055 25 4,437 - 4,783

116878 87.5 plant material 4,910 90 5,470 - 5,896

152068 99.5 twig 5,765 30 6,491 - 6,651

89198 111.0 plant material 6,345 25 7,174 - 7,410

109362 141.5 wood 8,850 110 9,564 - 10,205

89199 166.0 plant material 9,760 40 11,134 - 11,244

89200 173.5 seed 10,085 45 11,398 - 11,959  
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4.4 RESULTS 

4.4.1 Geochronology 

Radiocarbon measurements (Table 4.1) indicate the Burial Lake core 

continuously spans the latest Pleistocene and Holocene epochs, although this 

investigation focuses on the upper 143 cm of the sediment sequence that spans the last 

10,000 years.  The age model indicates sedimentation rates are nearly constant, 

ranging from 0.12 to 0.19 mm/yr (Figure 4-3).  A detailed analysis of core sedimentology 

show they consist of homogenous grayish brown (5YR 3/2) to dusky brown (5YR 2/2), 

homogeneous silt with no obvious sedimentary structures.  Smear-slide analyses 

indicate a large proportion of silicate mineral matter, a general abundance and high 

diversity of diatom frustules, no obvious evidence of dissolution, and substantial 

variability in diatom proportion over intervals of 5-10 cm.   
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Figure 4-3. Burial Lake core A-10 age model developed using point to point, linear interpolation with the 

classical age modeling code.  

4.4.2 Lithostratigraphy and geochemistry 

Geochemical proxies from the Burial Lake sediment record exhibit large 

fluctuations over the last 10,000 cal yr BP (Figure 4-4).  BSi varies between 6 % to 17 % 

and displays multi-century to millennial fluctuations superimposed on a long-term orbital 

trend.  Values are relatively low during the early (10,000 to ~ 6,000 cal yr BP) and late 

(~ 2,000 to 0 cal yr BP) Holocene, while higher values occur between ~ 6,000 to ~ 2,000 

cal yr BP.  BSi and BSi flux, calculated by normalizing weight percent values with 
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sediment dry bulk density (g/cm3) and sedimentation rates (cm/yr), display a similar 

trend (Figure 4-4) and are highly correlated (r2 = 0.71; Figure 4-5).  In combination with 

a generally constant sediment accumulation rate (Figure 4-3) and no evidence for 

diatom frustule dissolution, we interpret variations in BSi to reflect relative changes in 

aquatic productivity. 

 

Figure 4-4. Proxy data from the Burial Lake core sequence for the last 10,000 cal yr BP.  The biogenic 

silica record is plotted in its entirety (grey line) and with a 3-point moving average (black line).   
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Figure 4-5. Scatter plots of Burial Lake proxy data including A) biogenic silica (wt. %) against biogenic 

silica flux (g/cm2yr), B) total organic carbon (wt. %) against nitrogen (wt. %), C) biogenic silica (wt. %) 

against C/N ratio and D) biogenic silica (wt. %) against magnetic susceptibility (SI). 

 

Sedimentary TOC and N display similar variability (Figure 4-4) and range from 

4.2 % to 7.8 % and 0.37 % to 0.7 %, respectively.  TOC and N are significantly 

correlated (r2 = 0.95; Figure 4-5) and the y-intercept from a linear regression between 

TOC and N is negative, suggesting N is derived from organic matter (Hu et al., 2001).  
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Values are relatively high at ~ 10,000 cal yr BP and decrease thereafter to lower values 

by ~ 8,000 cal yr BP.  Both TOC and N values are relatively low and stable for the 

remainder of the record (Figure 4-4), with the exception of two distinct peaks to higher 

values that are centered on 3,600 and 1,400 cal yr BP.  The mass ratio of TOC to N 

(C/N) ranges from 10.3 to 12.3 and also exhibits multi-century to millennial scale 

fluctuations (Figure 4-4).   The relatively low C/N ratios (< 12.3) support our inference 

that organic matter is primarily sourced from algal (in-lake) sources and to a lesser 

extent from terrestrial sources (Meyers and Terranes, 2001).  C/N ratios and BSi are 

negatively correlated between 6,000 to 2,000 cal yr BP (r2 = 0.38; Figure 4-5), 

suggesting that variations in the relative source of sedimentary TOC is related to 

variations in BSi.   

Magnetic susceptibility ranges from 0.04 to 0.41 x 10-5 SI and also displays multi-

century to millennial scale variations (Figure 4-4).  The variability in magnetic 

susceptibility is negatively correlated with BSi (r2 = 0.25; Figure 4-5).  This inverse 

relationship is likely reflecting the dilution of the clastic content of sediments by 

increasing BSi content. Dry bulk density ranges from 0.21 to 0.49 g/cm3 over the study 

interval (Figure 4-4).  The correlation between dry bulk density and BSi over the last 

10,000 cal yr BP is very low (r2 = 0.04; not shown), providing additional support that 

variations in BSi reflect aquatic productivity and not dilution/concentration from the flux 

of clastic sediments.   
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4.4.3 Time series analysis 

Time-series analyses were performed on the de-trended and normalized (mean 

removed) BSi record to detect if any significant periodicities occur within the data.  

Spectral analysis of the BSi record using the Lomb-Scargle periodogram with the 

REDFIT code (Schulz and Mudelsee, 2002) shows a broad peak in spectral power 

between 1300-yr to 1620-yr that is significant above the 95% confidence level (Figure 

4-6).  The mean value of the spectral peak is centered at 1500-yr.  No other significant 

periodicities on millennial time scales were detected in this analysis, although a less 

prominent peak at 1000-yr is identified above red-noise but with low (<80%) significance 

(Figure 4-6).  To investigate the temporal evolution of millennial variability at Burial 

Lake, I performed wavelet analysis on the evenly interpolated, de-trended and 

normalized BSi record (70 yr) using the Morlet function (Torrence and Compo, 1998).  

Wavelet analysis shows the 1500-yr cycle in BSi gradually appears during the middle 

Holocene by ~ 6,000 cal yr BP and later disappears by ~ 3,000 cal yr BP.  Further, the 

analysis reveals a less significant 1000-yr cycle between ~ 8,000 to ~ 6,000 cal yr BP 

and ~3,000 to ~1000 cal yr BP, consistent with the findings of spectral analysis. 
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Figure 4-6. Spectral analysis of the Burial Lake biogenic silica record for the last 10,000 cal yr BP.  A) 

Power spectrum of biogenic silica (black curve), theoretical red noise spectrum (red curve), and false 

alarm level for 95% significance (grey curve). B) Wavelet analysis of biogenic silica showing the power of 

cycles.  The triangular region denoted by the solid black line is the cone of influence and signals above 

this area may be distorted.   



 135 

4.5 DISCUSSION 

4.5.1 Interpretation of Biogenic Silica Record 

The variability in BSi indicates that cyclical changes in aquatic (diatom) 

productivity have occurred over millennial time scales during the Holocene (Figure 4-4).  

Changes in diatom productivity in lakes is controlled by light for photosynthesis, lake-

water pH, the availability of limiting nutrients (Si, N, and P), and growing season water 

temperatures (Anderson, 2000; Wetzel, 2001).  However, in High Arctic Lakes, where 

nutrients are often limited, the extent and duration of ice and snow cover is considered 

the overriding control on diatom productivity (Douglas and Smol, 1999).  Warmer 

summer temperatures result in a longer ice-free growing season, which consequently 

allows for algal production to be higher.  Warmer spring temperatures could cause 

greater nutrient delivery to Arctic lakes from accelerated snowmelt, permafrost 

degradation and active-layer thaw, and greater surface runoff from the catchment 

(Douglas and Smol, 1999).  In addition, changes in water balance (precipitation – 

evaporation) and vegetation patterns can also influence aquatic productivity in Alaskan 

lakes (Hu et al., 2001; Hu et al., 2003).  For example, the presence of the shrub Alnus 

has been linked with higher levels of aquatic productivity at Grandfather Lake in 

southwest Alaska (Hu et al., 2001), because it can fix atmospheric N2 and increase 

reactive N inputs to lakes.  Higher temperatures and increased effective moisture at 

Arolik Lake in southwest Alaska coincided with an increase in the abundance of Betula 

shrubs, a lengthened ice-free growing season, higher nutrient inputs, and increased 

aquatic productivity on centennial to millennial timescales (Hu et al., 2003).  Several 
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other studies across Alaska have demonstrated a relationship between climate and 

aquatic productivity inferred from sedimentary biogenic silica in lakes (Finney et al., 

2012; Kaufman et al., 2012; McKay et al., 2008).   

We hypothesize that changes in the duration of the ice-free growing season and 

nutrient inputs, which are ultimately mediated by climate, controls algal productivity and 

the overall concentration of sedimentary BSi at Burial Lake.  However, the specific 

mechanism(s) that controls the extent of ice-free conditions and nutrient inputs to Burial 

Lake over the Holocene are unclear.  Core-transect and palynological evidence from 

Burial Lake indicate stable and overflowing lake-levels are established by ~9,400 cal yr 

BP, coincident with the appearance of Alnus shrubs in the region (Abbott et al., 2010).  

Unfortunately, the temporal resolution of pollen analysis from Burial Lake is too coarse 

to assess the relationship between terrestrial and aquatic ecosystem variability and 

core-transect data are insensitive to further low magnitude changes in effective 

moisture.  However, proxy evidence from Wolverine Lake (Figure 4-1) in the Kobuk 

Valley and at Takahula Lake (Figure 4-1) in the central Brooks Range indicate multi-

century to millennial variability in effective moisture over the last 8,000 years.  It is 

therefore reasonable that similar patterns in effective moisture affected Burial Lake over 

this time.  Today the majority of annual precipitation at Burial Lake and across the 

interior of Alaska is received during the summer (June through September) months 

(Bieniek et al., 2012).  Increased summer precipitation would likely result in higher 

nutrient inputs to Burial Lake through runoff and erosion of permafrost and soils in the 

surrounding watershed, leading to higher levels of aquatic productivity.  Therefore, we 
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suspect that variations in aquatic productivity are also controlled in part by changes in 

effective moisture.   

 

Figure 4-7. Comparison of the Burial Lake biogenic silica record against paleo records from the Alaskan 

region.  July temperature is a composite midge-inferred record (Clegg et al., 2011).  Brooks Range alpine 

glacier moraine ages include A) lichenometry based moraine ages from Sagavinerktok River valley and 

Oolah Valley (Sikorski et al., 2009), B) 10Be ages on moraines from Kurupa River valley (Badding et al., 

2013), and C) 10Be ages on moraines from Atigun River valley (Badding et al., 2013).  Core JPC16 Fe 

grain (%) interpreted as a proxy for the Arctic Oscillation (Darby et al., 2012).  Insolation at 65° North 

latitude for July, August, and September (Laskar et al., 2004).   
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On orbital timescales, changes in high latitude (65° N) summer insolation should 

provide a first-order control on the duration of the summer growing season.  July 

insolation levels were 8 % greater than modern between 11,000 to 9,000 cal yr BP 

(Figure 4-7)  during the Holocene thermal maximum in the western Arctic, when proxy 

evidence suggests warmer than present conditions across Alaska (Kaufman et al., 

2004; Kurek et al., 2009).  The gradual decline in July insolation levels through the 

Holocene (Figure 4-7) resulted in alpine glacier advances during the Neoglacial and 

Little Ice Age in Arctic Alaska (Figure 4-7) (Badding et al., 2013; Ellis and Calkin, 1984; 

Sikorski et al., 2009), suggesting a nearly linear response to insolation forcing.  

However, a midge-inferred July temperature reconstruction from central and southern 

Alaska reveals a more complicated pattern in temperature variability (Figure 4-7) (Clegg 

et al., 2011).  Summer temperatures were lower than modern prior to ~ 5,500 cal yr BP 

(Figure 4-7), discordant with high levels in July insolation during the early Holocene, but 

consistent with a reduced summer growing season and low levels of aquatic productivity 

at Burial Lake.  The orbital trend in August and September insolation (Figure 4-7) better 

matches the long-term trend in BSi, suggesting a potential connection with changes in 

late summer insolation.  Clegg et al. (2011) suggested that summer temperatures 

responded non-linearly to (summer) insolation forcing resulting from ocean-atmosphere 

interactions and their interplay with Arctic sea ice.  For instance, dinoflagellate analysis 

from marine core B15 in the western Chukchi Sea (Figure 4-1) indicates extensive 

summer sea ice and relatively cool sea surface temperatures (SST) between ~12,000 to 

~6,000 cal yr BP (de Vernal et al., 2005).  Further, diatom analysis from marine core 

GC-33 in the Southern Bering (Sea) Continental Shelf (Figure 4-1) indicate extensive 
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sea-ice during the early Holocene before ~7,000 cal yr BP probably because of a 

weakened and split Aleutian Low pressure system over the western Bering Sea and 

Gulf of Alaska (Katsuki et al., 2009).  ENSO influences the Aleutian Low on interannual 

time scales, with La Nina-like conditions resulting in a weakened and more westerly 

Aleutian Low (Niebauer et al., 1999).  Evidence from Mt. Logan (Canada) and Laguna 

Palcacocha (Ecuador) provides support for this interpretation with weakened ENSO or 

La-Niña like conditions during the early Holocene (Fisher et al., 2008; Rodbell et al., 

1999).  Today La Niña conditions result in colder winter temperatures across Alaska 

(Bieniek et al., 2012).  Thus, low aquatic productivity at Burial Lake until ~5,500 cal yr 

BP likely resulted from cooler summer temperatures in Alaska (Clegg et al., 2011) and 

persistent La Niña-like conditions that produced extensive sea ice and relatively cool 

SST’s in the Bering Sea.    

Increasing aquatic productivity at Burial Lake coincides with a shift to higher than 

modern summer temperatures across Alaska at ~ 5,500 cal yr BP (Figure 4-7).  Higher 

temperatures likely resulted in a lengthened ice-free growing season, an increase in 

permafrost degradation and flux of limiting nutrients to the lake, and an increase in 

aquatic productivity.  The interval of greatest aquatic productivity between ~5,000 to ~ 

2,000 cal yr BP occurs as July insolation continues to decrease from peak values during 

the early Holocene, again highlighting a divergent response to insolation forcing.  

However, increasing and peak late summer insolation (August to September) at this 

time (Figure 4-7) could have lengthened the ice-free season and increased productivity 

at Burial Lake.  Specifically, August insolation levels peaked and were 6% higher than 

modern during the middle Holocene between ~6,000 to ~5,000 cal yr BP (Figure 4-7), 



 140 

which had a substantial influence on the late summer surface energy budget and likely 

extended the ice-free season in Arctic Alaska.  Changing oceanographic conditions in 

the Chukchi Sea provides support for ameliorating paleoenvironmental conditions at this 

time with a decrease in summer sea ice extent and warmer SST’s after ~ 6,000 cal yr 

BP (de Vernal et al., 2005).  Decreasing sea ice extent between ~7,000 to ~3,000 cal yr 

BP in the Southern Bering Sea from a weakened Aleutian Low (Katsuki et al., 2009) 

likely contributed to warmer conditions in the Alaskan interior.  Increasing aquatic 

productivity at Burial Lake also broadly coincides with establishment of El Niño-like 

conditions by ~5,000 cal yr BP in the tropical Pacific Ocean (Rodbell et al., 1999).  El 

Niño and neutral ENSO conditions result in warm temperature anomalies in interior 

Alaska during the winter months (Papineau, 2001) and the interaction with sea ice 

accumulation in the Bering Sea likely influenced summer climatic conditions after ~ 

5,000 cal yr BP.   

The onset of Neoglaciation during the middle to late Holocene resulted in several 

alpine glacial advances and periods of moraine construction in the Brooks Range 

(Badding et al., 2013; Ellis and Calkin, 1984; Hamilton, 1994; Sikorski et al., 2009).  The 

age of moraines in the central Brooks Range broadly corresponds with periods of 

reduced aquatic productivity at Burial Lake (Figure 4-7) during the Little Ice Age 

(Sikorski et al., 2009) and around ~2,500 (10Be) cal yr BP (Badding et al., 2013).  If this 

observation is valid, it provides additional support for the hypothesis that cool summers 

and a shorter ice-free season result in lower algal productivity at Burial Lake.  However, 

the correlation between productivity and the timing of moraine stabilization is not 

perfect.  A peak in aquatic productivity at ~4,700 cal yr BP appears synchronous with a 
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glacial advance centered at ~4,600 ± 500 (10Be) cal yr BP at the Atigun River Valley in 

the north central Brooks Range (Badding et al., 2013).  The large uncertainty in the age 

of this advance overlaps with preceding and subsequent periods of reduced productivity 

at Burial Lake, suggesting the possibility that mean 10Be ages on moraines with a 

limited number of samples (n=4) do not adequately capture the time of this glacial 

advance.  Other climatic factors (e.g. increased winter precipitation) may have 

contributed to glacial advance at this time, however evidence from Takahula Lake in the 

south-central Brooks Range indicates low effective moisture at this time (Clegg and Hu, 

2010).  Alternatively, it is likely the substantial distance between Burial Lake and the 

Atigun River Valley resulted in spatially heterogeneous climate conditions at this time.   

4.5.2 Evaluation of Millennial Variability 

The millennial variability in aquatic productivity at Burial Lake implicates a forcing 

mechanism that has operated on these time scales over the Holocene.  Previous work 

in Alaska suggested that changes in solar variability underlie multi-century to millennial 

variability in Holocene climate conditions (Hu et al., 2003; Wiles et al., 2008).  

Comparison of the Burial Lake BSi record against a 9,300-yr reconstruction of total solar 

irradiance (TSI) (Steinhilber et al., 2009) shows that BSi displays an independent 

temporal history and different millennial periodicities with respect to TSI (Figure 4-8).  

Further, the correlation between BSi (interpolated to 70-yr time steps) and TSI is very 

low (r2 = 0.003; not shown).  Wavelet analysis of the TSI reconstruction (Darby et al., 

2012; Khider et al., 2014) has shown significant spectral power around ~1000 and 

2500-yr periodicities, while the 1500-yr periodicity present in the BSi record (Figure 4-7) 
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is noticeably absent.  Therefore I conclude there is no direct solar forcing of the 1500-yr 

cycle in BSi at Burial Lake over the Holocene.  The appearance of the statistically 

significant 1500-yr cycle at Burial Lake by ~ 6,000 cal yr BP is consistent with the 

hypothesis of Debret et al. (2009) showing a strong middle Holocene transition in 

millennial variability, that is reportedly linked to internal variability within the climate 

system.   

 

Figure 4-8. Comparison of spectral properties using wavelet analysis between the Burial Lake biogenic 

silica record (top) against a reconstruction of total solar irradiance (bottom) spanning the last 9,300 cal yr 

BP (Steinhilber et al., 2009).   
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Oceanographic records from the North Atlantic region sensitive to AMOC 

variations and NADW formation changes display prominent millennial scale variations 

and a 1500-year periodicity during the Holocene (Bianchi and McCave, 1999; 

Hoogakker et al., 2011; Thornalley et al., 2009).  Further, wavelet analysis of these 

records shows the 1500-year periodicity emerges by the middle Holocene (Debret et al., 

2007; Hoogakker et al., 2011), consistent with the findings from the Burial Lake biogenic 

silica record.  To facilitate comparison of millennial variations in climate between the 

records, I bandpass filtered the Burial Lake biogenic silica and North Atlantic records at 

1250-1750 years (Figure 4-9) based on the signal processing routine employed by 

Khider et al. (2014).  Because the 1500-yr cycle at Burial Lake only exists between ~ 

6,000 to 3,000 cal yr BP, I limit discussion to this time period.  Notably, peaks in aquatic 

productivity at Burial Lake correspond with a strengthened AMOC, high flow speeds in 

NADW, and a weak sub-polar gyre circulation which contributes freshwater to the 

Atlantic inflow.  This comparison suggests the millennial variations in biogenic silica at 

Burial Lake could be related to changes in North Atlantic Ocean circulation, via a 

common forcing or through an ocean-atmosphere interaction that transmits this signal to 

Arctic Alaska.   
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Figure 4-9. Comparison of the Burial Lake productivity record against North Atlantic variability over the 

Holocene.  All records were bandpass filtered at 1250–1750 years to highlight variability on this 

timescale. 

 

Sedimentological evidence from the western Arctic Ocean reveals a similar 

pattern of Holocene millennial climate variations, potentially providing a link between the 

North Atlantic and Arctic regions.  For instance, ice-rafted debris analysis from marine 

core JPC16 in the Beaufort Sea (Figure 4-1) displays millennial variability in Arctic sea 
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ice drift, interpreted to reflect variations in the mean state of the Arctic Oscillation (AO) 

over the last 8,800 cal yr BP (Figure 4-7) (Darby et al., 2012).  Time series analysis of 

the AO proxy indicates a significant 1,500-yr periodicity in sea ice drift that is distinct 

from changes in TSI (Darby et al., 2012).  Today the AO provides an important control 

on the winter climate of Alaska, with AO+ conditions associated with cold temperature 

anomalies (Bieniek et al., 2012).  The effect of the wintertime AO persists through most 

of the subsequent year through the influence on the thickness of wintertime sea ice and 

its control on heat transfer between the Arctic Ocean and overlying atmosphere in 

summer and fall (Rigor et al., 2002).  Comparison of aquatic productivity at Burial Lake 

with the AO proxy (Figure 4-7) indicate that troughs in BSi coincide with AO+ conditions 

and colder temperatures over the last ~3,000 cal yr BP.  For example, strong AO+ 

conditions correspond with distinct minima in aquatic productivity at ~2,500 and ~1,400 

cal yr BP (Figure 4-7).  

This observation suggests a physical link exists between the mean state of the 

AO and aquatic productivity at Burial Lake on millennial time scales.  AO+ conditions 

likely result in lower (colder) summer temperatures in northern Alaska and a short ice-

free growing season, a thinner active layer in permafrost during the summer and a 

decreased flux of limiting nutrients to the lake, and reduced aquatic productivity at Burial 

Lake.  Relatively high aquatic productivity over the last ~1,000 cal yr BP coincides with 

AO- conditions, which results warmer winters in Alaska today (Bieniek et al., 2012).  

The interpretation linking the Arctic Oscillation and sea ice dynamics in the Beaufort 

Sea to climatic conditions in northern Alaska is supported by a recent analysis of 

satellite derived sea ice and weather data for the period 1979-2012.  During this time, a 
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strong decrease in sea ice concentration in the Beaufort and Chukchi Sea’s coincides 

with a mean annual temperature increase of 2.7° C in northern Alaska (Wendler et al., 

2014).  The net radiation budget at Barrow in northern Alaska is primarily controlled by 

the regional surface albedo (Wendler and Eaton, 1990).  Specifically, increased sea ice 

concentration in the Beaufort and Chukchi Sea’s results in a reduced radiation receipt 

and colder temperatures at Barrow.  In addition, the decrease of sea ice and warmer 

atmosphere resulted in a 42% increase in annual precipitation and an increase in brush 

taxa (willow and dwarf birch) in northern Alaska over the 34 year period.  Comparison of 

sea ice concentration in the Beaufort Sea with the AO index during this time shows a 

high and significant correlation (r2 = 0.49) (Wendler et al., 2014).  Therefore, it is 

apparent that sea ice dynamics directly influence temperature and precipitation 

conditions in northern Alaska and we hypothesize this physical link acted in a similar 

way over the last 10,000 years. 

Wavelet cross coherence analysis between the Burial Lake BSi record and the 

AO proxy permits analysis of the evolution of millennial variability over time (Grinsted et 

al., 2004).  The squared wavelet coherence between productivity and the AO highlights 

periodicities common to both time series in red (Figure 4-10).   Both records display 

strong ~1,500-yr variability during the middle Holocene between ~6,000 to ~3,000 cal yr 

BP and a transition to ~1,000-yr variability over the last ~3,000 cal yr BP.  The similarity 

in millennial periodic variability between productivity and the AO does not explicitly 

indicate a direct cause and effect relationship.  However, the area of significant common 

power and phase arrows over the last ~3,000 cal yr BP indicate an anti-phase 

relationship between the AO and productivity (Figure 4-10), consistent with the 
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aforementioned observation that AO+ conditions coincide with reduced productivity at 

Burial Lake.  We therefore suggest that variations in the mean state of the AO are partly 

responsible for millennial variability in aquatic productivity at Burial Lake at least over 

the late Holocene.  The anti-phase relationship between the AO and productivity is not 

consistent through time, however.  Between ~6,000 to ~3,000 cal yr BP, the phase 

arrows indicate the AO leads productivity by roughly half the millennial periodicity (1500-

yr) during this time.  This discrepancy could result from age-model inconsistencies 

between the two independently, radiocarbon dated proxy records.  Further, the 

application of a constant marine reservoir correction (ΔR = 506 yr) to correct the 

radiocarbon dated JPC16 core sequence could lead to inconsistencies between the 

records (Darby et al., 2012).  Alternatively, the apparent offset might suggest a different 

climate forcing that operates on millennial time scales that affects both the AO and 

aquatic productivity at Burial Lake.  Regardless, the similarity in the evolution of 

millennial variability between the records implicates a physical connection has existed 

between ecosystem variability in northern Alaska and ocean-atmosphere interactions in 

the western Arctic Ocean region over the Holocene.   
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Figure 4-10. Wavelet cross coherence of the Burial Lake biogenic silica record against Fe grain (%) from 

core JPC16 from the Beaufort Sea interpreted as a proxy for the Arctic Oscillation.    

4.6 CONCLUSIONS 

The Burial Lake aquatic productivity record highlights the sensitivity of aquatic 

ecosystems in northern Alaska to changes in growing season temperature and western 

Ocean-atmosphere interactions.  Spectral analysis results are consistent with the notion 

that the 1500-yr signal observed in Holocene paleoclimate records emerges during the 

middle Holocene around ~6,000 cal yr BP (Debret et al., 2007; Debret et al., 2009).  

Further, comparison of the aquatic productivity record against a reconstruction of total 

solar irradiance indicates there is no direct solar forcing of millennial climate variations 

at Burial Lake.  This result lends additional support for the hypothesis that the 1500-yr 

cycle in Holocene climate records is not a result of external forcing.  Reduced aquatic 

productivity at Burial Lake coincides with positive phases of the Arctic Oscillation, which 

result in colder summers, a shortened ice-free (summer) growing season, and a 
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reduced flux of nutrients to the lake.  We therefore propose that aquatic productivity 

variations are related to state changes in the AO and that millennial variability that the 

record exhibits is related to internal oscillations within the climate system.  This 

observation has important implications for aquatic ecosystem variability in the Alaskan 

Arctic, in light of the observed decrease in the extent and volume of Arctic sea ice 

(Stroeve et al., 2007) over the late 20th century from increasing greenhouse gas 

emissions and climate change.  Sea ice model projections from the Intergovernmental 

Panel on Climate Change 4th Assessment Report indicate a seasonally ice free Arctic 

Ocean by the mid-21st century under the business as usual emissions scenario (Zhang 

and Walsh, 2006).  The transition to a new mean state in Arctic sea ice will undoubtedly 

effect the surface energy budget and future patterns of aquatic ecosystem variability in 

Arctic Alaska.   
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5.0  HOLOCENE CLIMATE FROM NEWFOUNDLAND SENSITIVE TO NORTH 

ATLANTIC OCEAN-ATMOSPHERE INTERACTIONS ON MILLENNIAL TO ORBITAL 

TIME SCALES 

Open-basin lakes that precipitate carbonate minerals have the potential to 

provide excellent archives to reconstruct past variations in the oxygen isotopic 

composition of precipitation (δ18Oppt).  Existing δ18Oppt records from the circum North 

Atlantic region spanning the Holocene show dramatic fluctuations with rapid ice sheet 

deglaciation, followed by more stable conditions as interglacial boundary conditions 

were achieved.  However, relatively few quantitative hydroclimate records exist from the 

eastern Canadian Maritime Provinces, and therefore questions remain regarding the 

magnitude of century to millennial-scale δ18Oppt variations in precipitation over the 

Holocene.  Here we present a lacustrine oxygen isotope (δ18O) record spanning the 

period 10,200 to 1,200 calendar years before present (cal yr BP) from Cheeseman 

Lake, a small, alkaline, hydrologically open lake located in west-central Newfoundland, 

Canada.  Water stable isotope data from regional lakes, rivers, and monthly 

precipitation indicate the surface waters at Cheeseman Lake plot along the local 

meteoric water line and that the δ18O of lake water reflects the annual moisture surplus 

(precipitation - evaporation) weighted δ18Oppt.  Climate sensitivity simulations conducted 

with a lake hydrologic and isotope mass balance model further indicate that Cheeseman 
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Lake is sensitive to cold-season (October-March) temperature changes, and to a much 

lesser extent the seasonality of precipitation.  To infer past changes in the δ18Oppt, we 

measured the stable isotopic composition of fine-grained (< 63 µm) authigenic calcite 

(δ18Ocal) sampled continuously at an average temporal resolution of ~ 48 years.  A 

general trend of increasing and more positive δ18Ocal values between ~ 10,200 to ~ 

7,950 cal yr BP is interpreted to reflect warming temperatures.  This period coincides 

with melting of the Laurentide Ice Sheet, changing surface ocean δ18O from enhanced 

meltwater delivery, and rising eustatic sea levels.  The increasing trend is interrupted by 

abrupt δ18Oca anomalies to more negative values at ~ 9,700 and ~ 8,500 cal yr BP, that 

coincide with cooling events in the adjacent Labrador Sea and circum North Atlantic 

region.  After ~ 7,950 cal yr BP, δ18Ocal values decrease to gradually more negative 

values until ~ 4,300 cal yr BP, which we interpret as a cooling trend related to declining 

Boreal summer insolation and cooling sea surface temperatures in the western North 

Atlantic Ocean.  δ18Ocal values return to slightly more positive values after ~ 4,300 cal yr 

BP and thereafter remain relatively stable until ~ 1,200 cal yr BP.  The transition at 

~4,300 cal yr BP corresponds with a shift to wetter conditions in Newfoundland evinced 

from other paleo-proxy records.  The discordance between Cheeseman Lake δ18Ocal 

values and declining insolation could in part reflect warmer temperatures and/or 

changes in the seasonality of precipitation resulting from an abrupt and mean-state shift 

in atmospheric circulation.   
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5.1 INTRODUCTION 

The oxygen isotopic composition of precipitation (δ18Oppt) is an effective tracer of 

the global hydrologic cycle (Araguás-Araguás et al., 2000; Gat, 1995).  δ18Oppt is 

controlled by the initial δ18Oppt at the moisture source and isotopic fractionation 

processes that occur during the movement of water molecules through the hydrological 

cycle (Bowen and Wilkinson, 2002; Dansgaard, 1964; Rozanski et al., 1992).  As a 

result, reconstructions of paleo δ18Oppt from ice cores (Grootes and Stuiver, 1997; 

NGRIP, 2004), speleothems (Ersek et al., 2012), tree rings (Bale et al., 2010; Brienen et 

al., 2012), and lake sediments (Anderson et al., 2005; Daley et al., 2009; Edwards et al., 

1996; Steinman et al., 2014; Steinman et al., 2012) have provided invaluable 

information concerning paleohydrological and paleoclimatic conditions over the 

Holocene.  For instance, high-resolution δ18Oppt records from Greenland ice cores 

reveal substantial changes in atmospheric temperature and snowfall accumulation over 

the current interglacial (Grootes and Stuiver, 1997).  Greenland ice core records also 

show the presence of early Holocene abrupt climate events at 9,300 and 8,200 cal yr 

BP that have been linked to catastrophic drainage of proglacial lakes (Barber et al., 

1999; Clarke et al., 2004), routing of meltwater and freshening of the North Atlantic 

Ocean (Licciardi et al., 1999), a reduction or partial shut-down of North Atlantic Deep 

Water (NADW) formation (Clark et al., 2001), and abrupt but short-lived cooling events 

(Alley et al., 1997; Yu et al., 2010).  After the 8,200 cal yr BP event, Greenland ice core 

records display generally more stable and gradually decreasing δ18Oppt values towards 

the present (Grootes and Stuiver, 1997) consistent with cooling (Vinther et al., 2009) 

and the monotonic decline in 65° N summer insolation (Laskar et al., 2004).  While very 
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informative, δ18Oppt records from Greenland ice cores are restricted geographically and 

therefore much less is known concerning spatial variability in paleo- δ18Oppt over the 

Holocene.  Although the terrestrial climate signature of early Holocene abrupt climate 

events is well-expressed in the North Atlantic region (Daley et al., 2011; Marshall et al., 

2007; von Grafenstein et al., 1999), relatively few δ18Oppt records exist from the western 

North Atlantic region in eastern Canada (Daley et al., 2009).   

To date, the only reported δ18Oppt reconstruction from the island of Newfoundland 

is a bog sphagnum cellulose δ18O record from Nordan’s Pond Bog (Daley et al., 2009).  

The large range (-9.67 to -4.12 ‰) in reconstructed δ18Oppt values and the isotopic 

composition of water samples suggest the possibility that evaporative modification of 

bog waters exerts a dominant influence on the reported cellulose δ18O values, yielding a 

record of moisture balance (precipitation – evaporation) rather than meteoric 

precipitation.  Given these uncertainties, additional δ18Oppt records from the Maritime 

Provinces of eastern Canada are necessary to confirm the patterns identified by Daley 

et al. (2009) and to disentangle the relationship between atmospheric temperature and 

potential circulation variations over the Holocene.   

Here we present a lacustrine oxygen isotope (δ18O) record from a small, alkaline 

lake (Cheeseman Lake) located in west-central Newfoundland, Canada spanning the 

period 10,200 to 1,200 calendar years before present (cal yr BP).  To investigate 

hydroclimate variability and North Atlantic Ocean-land interactions over the Holocene in 

Newfoundland, we analyzed the stable isotopic composition of authigenic calcite (δ13C 

and δ18O) from the Cheeseman Lake sedimentary record at continuous 1 cm intervals 

(n = 189).  We further analyzed surface water samples for stable isotopes (δD and 
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δ18O), instrumental climate data from a proximal weather station, and monthly 

precipitation δD and δ18O data from a Canadian Network of Isotopes in Precipitation 

(CNIP) station to investigate modern lake-catchment hydrologic and water isotope 

relationships.  To provide a framework for interpreting the Cheeseman Lake δ18O 

record, we utilized a coupled lake hydrologic and water isotope mass balance model 

(Steinman et al., 2010a; Steinman et al., 2010b) to assess the sensitivity of the lake to 

hydroclimate forcing (Stansell et al., 2013; Steinman and Abbott, 2013).  Specifically, 

we performed a series of climate sensitivity tests to determine the response of lake 

water δ18O and calcite δ18O to changes in mean annual temperature (± 2° C) and the 

seasonality of precipitation (± 20% winter).  We interpret the Cheeseman Lake δ18O 

record with respect to changes in Laurentide Ice Sheet extent (Dyke and Prest, 1987), 

eustatic sea level (Clark et al., 2009), and 50° N insolation (Laskar et al., 2004).  

Further, we compare our paleoenvironmental interpretations to ice core δ18O from 

southern (Dye-3) (Daansgaard et al., 1985) and central Greenland (North Greenland Ice 

Core Project, NGRIP) (NGRIP, 2004), sea surface temperature and foraminiferal δ18O 

records from the Labrador Sea (Andrews et al., 1999; Hoffman et al., 2012) and western 

North Atlantic Ocean (Keigwin et al., 2005; Sachs, 2007), and terrestrial hydroclimate 

records from Newfoundland (Amesbury et al., 2013; Daley et al., 2009; Daley et al., 

2011) to evaluate the underlying causes of orbital to centennial scale climate variability 

during the Holocene.   
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5.2 SITE LOCATION AND REGIONAL SETTING 

Cheeseman Lake (informal name; 49.351° N, 57.603° W, 180 m asl) is a small 

(0.2 km2), alkaline, open-basin lake located near the coast of west-central 

Newfoundland (Figure 5-1; Figure 5-2).  The lake is elliptical in shape and the 

surrounding watershed is small (1.9 km2), characterized by moderately steep slopes 

along much of the lakes shoreline.  The lake receives inflow from a small stream on the 

southwest shoreline and drains to Lomond River through a small outlet stream on the 

northeast shoreline.  The lake had a maximum water depth of 4.1 m near the geometric 

center of the basin in August, 2012.  The catchment contains second-growth forests that 

are characterized by a Dryopteris-Hylocomium-Balsam Fir forest type (South, 1983).  

Balsam Fir (Abies balsamea) is the dominant forest cover, however Yellow Birch (Betula 

alleghaniensis) and Red Maple (Acer rubrum) are also common and robust in the 

Western Newfoundland ecoregion (Newfoundland, 2007).  The isotopic composition of 

lake surface waters collected in August, 2012 had δ18O and δD values of -9.02 and -

65.05 ‰ VSMOW, respectively.   
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Figure 5-1. Map of the western North Atlantic region showing modern surface ocean currents and sites 

mentioned in the text.  Ocean currents include, N.A.C. – North Atlantic Current, E.G.C. – East Greenland 

Current, I.C. – Irminger Current, and L.C. – Labrador Current.   
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Figure 5-2. Map of Newfoundland with Cheeseman Lake (informal name) and other sites mentioned in 

the text. 

 

The lake and surrounding area is located in the West Coast Calcareous Uplands 

physiographic province, characterized by hilly terrain and irregular topography (South, 

1983).  Marl ponds that precipitate carbonate minerals, similar to Cheeseman Lake, are 

a common feature of the province (South, 1983).  Bedrock geology in the catchment 

consists of Cambrian to Ordovician age limestone, dolostone, and shale (Colman-Sadd 
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et al., 2000).  Surficial geology in the immediate area is mapped as till veneer, which is 

composed of a thin (< 1.5 m) discontinuous sheet of lodgment till (Liverman and Taylor, 

1990).  The Island of Newfoundland was covered by the Laurentide Ice Sheet during the 

last glacial period (Dyke and Prest, 1987; Shaw et al., 2006).  Retreat of the Laurentide 

Ice Sheet by 13,000 14C yr BP (~ 15,200 cal yr BP) formed an isolated Newfoundland 

Ice Cap, which thereafter was increasingly topographically controlled as the ice 

retreated inland (Batterson and Catto, 2001).  The Deer Lake valley, located ~ 20 km 

southwest of Cheeseman Lake, was deglaciated by 12,000 14C yr BP (~ 13,800 cal yr 

BP) (Batterson and Catto, 2001).  Post-glacial isostatic depression resulted in higher 

relative sea level compared with the present and presumably an unstable land surface.  

A relative sea level curve for the Bay of Islands, based on radiocarbon dates on marine 

micro-fauna, indicates levels at ~ 30 m asl at 12,000 14C yr BP (~ 13,800 cal yr BP) that 

approach modern levels by 10,000 14C yr BP (~ 11,500 cal yr BP) (Batterson and Catto, 

2001).  Cheeseman Lake was not inundated by higher relative sea levels during 

deglaciation (Batterson and Catto, 2001), however the lake and catchment were 

presumably influenced by general landscape instability as isostatic adjustment was 

achieved.   

The climate of Newfoundland is principally controlled by the marine influence of 

the Gulf of St. Lawrence and Atlantic Ocean along with hemispheric-wide atmospheric 

circulation patterns (Ullah, 1992).  The island climate is influenced by the Labrador 

Current that transports cold, ex-Arctic waters along the eastern continental margin and 

the warm, northeastward flowing North Atlantic Current (Figure 5-1).  The resultant 

climate of Newfoundland is characterized by generally mild winters and cool summers 
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(Ullah, 1992).  Climate data from Deer Lake (Figure 5-3) record average winter 

(January-February-March) and summer (June-July-August) temperatures of -6.8° C and 

15.0 ° C (Figure 5-3), respectively (Canada, 2010).  Modern climate data indicate that 

precipitation is generally distributed equally over the year, with slightly lower amounts 

during the late winter/early spring but otherwise no distinct wet season (Figure 5-3).  

Climatic conditions in Newfoundland are further influenced by internal modes of climate 

variability on seasonal to multi-decadal timescales.  The North Atlantic Oscillation 

(NAO) provides an important control on the cold-season climate of the North Atlantic 

region (Hurrell, 1995) and Newfoundland specifically.  The NAO, generally defined by 

the pressure difference between the Azores high and the Icelandic low, influences the 

hemisphere-wide circulation and exerts a dominant influence on wintertime 

temperatures across the Northern Hemisphere (Hurrell and Deser, 2010).  For example, 

the positive phase of the NAO index is associated with below average (colder) winter 

temperatures across Newfoundland (Figure 5-4) (Banfield and Jacobs, 1998).  Cold-

season precipitation and the NAO index across Newfoundland display no significant 

correlation (Figure 5-4) (Banfield and Jacobs, 1998).  The influence of the NAO on the 

climate of Newfoundland is restricted to the winter months, with no significant 

relationship between the summer-time NAO index and temperature or precipitation 

(Banfield and Jacobs, 1998).   
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Figure 5-3. Climate normals for the period 1981 to 2010 for Deer Lake, Newfoundland.  Data source is 

from Environment Canada. 
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Figure 5-4. NCEP/NCAR reanalysis showing the correlation between surface air temperature (left) and 

University of Delaware v3.0 reanalysis precipitation (right) with the NAO index during the winter season 

(December-January-February) for the period 1949-2010.   

5.3 METHODS 

5.3.1 Sediment coring and sample collection 

Sediment cores were collected from the center of the lake in August, 2012.  A 

surface core (A-12 Drive 1) with an intact sediment-water interface was recovered from 

3.5 m water depth using a polycarbonate tube fit attached to a rod-driven piston corer.  

The flocculate upper 32 cm of the surface core was extruded in the field at 1 cm 

intervals into sterilized whirl-pak® bags.  Multiple overlapping long cores were 
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recovered from an adjacent core site (B-12) in 4.1 m water depth using a square rod 

Livingstone corer.  All long cores were packaged in the field and securely transported to 

the Department of Geology and Planetary Science at the University of Pittsburgh for 

processing and analysis. 

Water samples for oxygen (δ18O) and hydrogen isotope (δD) analyses were 

collected from the surface water of regional lakes and streams in August, 2012.  

Samples were collected in 30 mL polyethylene bottles after rinsing three times with 

sample water and then capping the bottle underwater.  Water samples were measured 

for stable isotopes at the University of Arizona Environmental Isotope Laboratory on a 

gas-source isotope ratio mass spectrometer (Finnigan Delta S).  For hydrogen, samples 

were reacted at 750°C with Cr metal using a Finnigan H/Device coupled to the mass 

spectrometer.  For oxygen, samples were equilibrated with CO2 gas at approximately 

15°C in an automated equilibration device coupled to the mass spectrometer.  

Standardization is based on the international reference materials Vienna Standard 

Mean Ocean Water (VSMOW) and Standard Light Antarctic Precipitation (SLAP). 

Precision is 0.9 per mil (‰) or better for δD and 0.08 ‰ or better for δ18O on the basis 

of repeated internal standard measurement.  The isotopic composition of modern 

precipitation was also used to investigate modern lake-catchment hydrologic and water isotope 

relationships.  Monthly precipitation δ18O and δD data from a Canadian Network for 

Isotopes in Precipitation (CNIP) station at Bay d’Espoir, Newfoundland (Figure 5-2) for 

the period 1997 to 2010 were analyzed to estimate the sensitivity of Cheeseman Lake 

water isotopes to hydroclimate forcing.  Surface water samples from regional lakes and 
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rivers were also collected to determine total carbonate (alkalinity) concentrations via 

H2SO4 acid titration using a Hach® Digital Titrator. 

5.3.2 Lithostratigraphy 

Sediment cores were split lengthwise and described at the Department of 

Geology and Planetary Science at the University of Pittsburgh.  Notable sedimentary 

structures, grain size, and Munsell color were characterized for each core.  All cores 

were sampled at 1 cm intervals and dry bulk density was calculated from dry weights of 

volumetric samples.  Loss-on-ignition (LOI) analysis was conducted at 550° C for 4 

hours and 1000° C for 2 hours to estimate the weight percent organic matter and total 

carbonate (Heiri et al., 2001).  A composite sediment core sequence was developed by 

matching visible stratigraphic markers between the A-12 surface core and B-12 

Livingstone cores.   

5.3.3 Geochronology 

Age control of the recovered material was developed from 210Pb dating of surface 

sediments and Accelerator Mass Spectrometry (AMS) radiocarbon analyses of 10 

terrestrial macrofossils (Table 5.1).  Freeze dried and homogenized aliquots of the top 

32 cm of surface core A-12 were analyzed for radioisotope (210Pb, 214Pb, 137Cs and 

226Ra) activities by direct gamma counting using a high purity germanium detector 

(Canberra model BE-3825) with a closed-end coaxial well located in the Department of 

Geology and Planetary Science at the University of Pittsburgh. Detector efficiency was 
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determined by counting a Canberra MGS-1 standard for which peak efficiencies have 

been established using a National Institute of Standards traceable standard. Excess 

210Pb activities were calculated by subtracting the background 214Pb activity, sourced 

from in-situ decay of 226Ra within the sediment matrix, from the 210Pb activity sourced 

from direct atmospheric deposition. Sediment ages were calculated using the Constant 

Rate of Supply (CRS) method, which accounts for variability in both the sedimentation 

rate and dry bulk density, according to the methodology of Binford (1990). Bulk 

sediment samples were disaggregated with dilute (7 %) H2O2, wet-sieved with a 150 µm 

sieve, and terrestrial macrofossils were identified and picked under a stereographic 

microscope for AMS radiocarbon measurement.  Samples were pre-treated using 

standard acid-base-acid wash techniques (Abbott and Stafford, 1996) at the University 

of Pittsburgh and were combusted to CO2 gas, converted to filamentous graphite, 

pressed in Aluminum targets, and measured at the W.M. Keck Carbon Cycle AMS 

Laboratory, University of California, Irvine.  Radiocarbon ages were calibrated using 

CALIB 7.0 and the IntCAL13 calibration curve (Reimer et al., 2013).  An age-depth 

model was created using a cubic spline interpolator with the classical age modeling 

(CLAM) code v2.2 for the statistical software R (Blaauw, 2010).  The CLAM analysis 

performed 1,000 age model iterations based on repeated sampling of the calibrated age 

distributions for each radiocarbon sample to estimate the ‘best fit’ or weighted mean age 

for each depth.   
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Table 5.1. Cheeseman Lake AMS radiocarbon dates with calibrated 2s error ranges.  The sample 

highlighted with an asterisk was rejected from the age model. 

  

UCIAMS # Core Total Material 14C age ± Calib 2σ  

    Depth (cm)   yr BP yr yr BP 

* 131491 A-12 66-67cm  66.5 plant material 1,650 70 1,389-1,711 

131491 A-12 75-76cm  75.5 plant material 1,485 40 1,301-1,518 

116881 B-12 D1 15cm 102 plant material 2,250 20 2,159-2,339 

131492 B-12 D1 35-36cm 122.5 plant material 3,520 35 3,698-3,887 

122242 B-12 D1 80-81cm 167.5 plant material 5,010 45 5,651-5,895 

122243 B-12 D2 22-23cm 191.5 plant material 5,980 70 6,660-6,993 

141393 B-12 D2 43cm 212 plant material 7,040 35 7,795-7,947 

116882 B12 D2 62-63cm 231.5 plant material 7,955 30 8,649-8,985 

141394 B-12 D2 76cm 244.5 plant material 8,680 35 9,544-9,727 

131493 B12 D2 90cm 259 plant material 8,980 150 9,614-10,491 

 
 

5.3.4 Geochemistry 

A total of 5 samples from the composite were analyzed for x-ray diffraction (XRD) 

and scanning electron microscopy (SEM) to characterize the carbonate mineralogy.  For 

XRD analysis, 2 cm thick samples were treated with dilute (7 %) H2O2 for 8 hours to 

disaggregate the sediment and to oxidize organic matter.  Samples were subsequently 

rinsed with Milli-Q™ water, frozen, lyophilized, and homogenized with an agate mortar 

and pestle.  Power XRD analysis was performed using a using a Philips PW3710 

X’Pert® x-ray diffractometer in the Materials Micro-Characterization Laboratory at the 

University of Pittsburgh, Swanson School of Engineering.  X’Pert Graphics and 
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Identify® software was used to identify the major mineral assemblages present.  For 

SEM analysis, sediment samples were smeared on a glass slide, dried in a 60° C low-

temperature Precision® oven, and coated with Palladium prior to analysis.  The 

samples were imaged using a JEOL 6610V variable pressure SEM system in the 

Materials Micro-Characterization Laboratory at the University of Pittsburgh, Swanson 

School of Engineering.   

The composite core sequence was sampled at continuous 1 cm intervals for 

carbonate stable isotope analysis of oxygen (δ18O) and carbon (δ13C).  Sediment 

samples were disaggregated for approximately 24 h in dilute (7 %) H2O2 solution and 

sieved at 63 μm to isolate fine-grained authigenic carbonate material and to minimize 

contamination from shell material. The <63 μm fraction of the sediment was settled from 

rinse water and then centrifuged, and the remaining liquid was decanted. The resulting 

fine-grained carbonate sediment was treated with a dilute (3 %) NaClO solution, rinsed 

three times with Milli-Q™ water, frozen, lyophilized, and homogenized using an agate 

mortar and pestle. Isotope ratios were measured at the Regional Stable Isotope 

Laboratory for Earth and Environmental Science at the University of Pittsburgh using a 

dual-inlet GV Instruments, Ltd. (now Isoprime, Ltd) IsoPrime™ stable isotope ratio mass 

spectrometer and MultiPrep™ inlet module.  Powdered carbonate samples were 

reacted with dehydrated phosphoric acid under vacuum at 90 °C.  Measurements were 

calibrated to the NBS-18 and NBS-19 calcite standards and values are reported in 

standard delta (δ) notation as the per mil (‰) deviation from Vienna Pee Dee Belemnite 

(VPDB).  Precision is ± 0.09 for δ18O and ± 0.03 for δ13C (1σ) based on replicate 

measurements of NBS-18 and NBS-19 standards.   
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5.4 LAKE HYDROLOGY AND ISOTOPE MODELLING 

5.4.1 Lake modelling 

To investigate the sensitivity of Cheeseman Lake δ18Olw to specific climate 

variables and to develop a quantitative basis for the interpretation of sediment δ18Ocal 

values, we conducted simulations using a coupled lake hydrologic and isotope mass 

balance model.  Similar models have been used previously to provide a quantitative 

basis for the interpretation of lacustrine δ18O records (Jones et al., 2007; Steinman and 

Abbott, 2013; Steinman et al., 2013). In this study, we utilize the model to characterize 

the δ18O values of lake water and sediment calcite from changes in atmospheric 

temperature and the seasonality of precipitation.  Given the relatively short water 

residence time in the lake and the negligible influence of evaporation, these climatic 

variables should primarily control lake geochemical responses to climate forcing.  The 

results of these sensitivity tests provide support for the interpretation of Cheeseman 

Lake sediment δ18Ocal values. 

5.4.2 Model structure 

The hydrologic and isotope mass balance model applied in this study is based on 

the lake-catchment model developed by (Steinman et al., 2010a; Steinman et al., 

2010b) and subsequently modified by Steinman et al. (2013), Steinman and Abbott 

(2013) and Stansell et al. (2013).  For the purpose of this study, the catchment 

component of the model was replaced with a lake water input algorithm that simulates 
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catchment derived surface and groundwater inflows.  Additional model adjustments 

include the application of 1) a simplified lake hypsography algorithm that assumes a 

conic lake shape and requires maximum lake depth and surface area as inputs, 2) a 

lake overflow sub-model based on maximum basin volume defined by the lake 

hypsography algorithm, and 3) an outseepage sub-model wherein lake bed outseepage 

varies exponentially as a function of offshore distance (with values decreasing toward 

the lake center).  These adjustments were necessary given the paucity of data 

concerning Cheeseman Lake catchment hydrologic characteristics.  As a result, the 

model presented in this study is meant for simulating the general isotope dynamics of a 

shallow, perennially overflowing, hydrologically open lake with a relatively short water-

residence time and located in a mid-latitude temperate climate with a more or less even 

monthly distribution of precipitation.  The model inputs are therefore meant to reflect a 

lake similar but not necessarily identical to Cheeseman Lake.   

5.4.3 Model inputs 

Model simulations utilized monthly weather data derived from weather station 

and satellite measurements, observational data, and climate model reanalysis 

experiments (Table 5.2).  Mean monthly precipitation δ18O and δD values were 

calculated from the Bay d’Espoir, Newfoundland Canadian Network of Isotopes in 

Precipitation (CNIP) station for the period AD 1997-2010.  Mean monthly temperature 

(°C) and precipitation (mm) were derived from the Deer Lake, Newfoundland 1981-2010 

Climate Normals (Canada, 2010).  Average lake water temperature is estimated to be 

+2.5 °C relative to air temperature.  Mean monthly incoming solar insolation (MJ m-2 d-
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1), relative humidity (%) and wind speed (m/s) were determined using data from the 

NOAA 20th Century Reanalysis Project version 2 using the 1981-2010 AD data (Compo 

et al., 2011).  The maximum lake depth (m) was determined in August, 2012 from field 

measurements when Cheeseman Lake was overflowing.  The lake surface area was 

calculated using high-resolution aerial imagery in ArcMAP software.   

5.4.4 Model calibration 

The lake water input algorithm defines the flux of surficial and groundwater 

inflows into the lake and therefore determines the water residence time and sensitivity 

to evaporative modification (water loss via fractionating and non-fractionating 

pathways).  Steady state simulations were conducted whereby the water input flux was 

increased from a value of 1,000 to 30,000, at which point modeled lake depth and 

δ18Olw values were similar to observations. This model configuration produced realistic 

seasonal lake water δ18O changes, given the monthly variations in precipitation δ18O 

values over the course of a year, with the most negative δ18Olw values occurring in May 

(-10.83 ‰ VSMOW) and most positive occurring in September (-9.85 ‰ VSMOW).  

Theoretical δ18Ocal values were estimated using the δ18Olw values and water 

temperature values for late summer (July and August) using the following equation for 

equilibrium precipitation of calcite (Kim and Oneil, 1997):  

1000 ln α (Calcite-H2O) = 18.03(103 T-1) – 32.42 

Equation 5.1. Equation for equilibrium precipitation of calcite based on a defined temperature (Kim and 

Oneil, 1997). 
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5.4.5 Model sensitivity tests to climate variables 

The objective of the model simulations was to assess the sensitivity of 

Cheeseman Lake δ18Olw and δ18Ocal to changes in atmospheric temperature and the 

seasonality of precipitation.  Changes in temperature modify δ18Oppt through the 

temperature-dependent transformation of water vapor to precipitation (+0.6 ‰/1° C) 

(Rozanski et al., 1992) and via the temperature-dependent fractionation of the water to 

calcite (-0.24 ‰/1° C) (Craig, 1965).  Likewise, cold-season δ18Oppt is isotopically more 

negative (lighter) compared with more positive (heavier) values for the warm-season 

(Table 5.2).  Model Simulations were conducted on a monthly time-step over 1000 

model months (83 years). In the 501st month, the tested climate variable was either 

increased or decreased by a constant amount and maintained until the end of the test. 

5.5 RESULTS 

5.5.1 Composite core and physical sedimentology 

A composite 300 cm core sequence was developed from surface core A-12 and 

long cores B-12 Drive 1, B-12 Drive 2, and B-12 Drive 3 by matching visible 

stratigraphic markers (Figure 5-5).  The basal sediments from 300 to 271 cm consist of 

moderate brown (5 YR 4/4) to pale reddish brown (10 R 5/4) clay and silty clay 

minerogenic sediment with occasional fine sand laminae.  The unit is primarily 

homogenous with occasional faint bands.  The contact at 271 cm with the overlying 
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sediments is abrupt and irregular, suggestive of an unconformable (erosion) surface or 

a disconformable hiatus.  The sediments from 271 to 263 cm consist of dusky brown (5 

YR 2/2) silt, organic and minerogenic sediment with occasional coarser clasts (sand, 

granules, and pebbles) in a matrix.  Above 263 cm, there is an abrupt transition to 

grayish orange (10 YR 7/4) to pale yellowish brown (10 YR 6/2), banded to laminated 

calcareous sediment with gastropod and bivalve shells that persists to 125 cm.  The 

sediments from 125 to 119 cm consist of dusky brown (5 YR 2/2) to grayish brown (5 

YR 3/2) homogenous organic silt with rare gastropod and bivalve shells.  The overlying 

sediments from 119 to 70 cm consist of grayish orange (10 YR 7/4) to pale yellowish 

brown (10 YR 6/2) banded to laminated calcareous sediment with gastropod and 

bivalve shells with generally increasing organic content up-section.  Above 70 cm, there 

is an abrupt transition to dusky brown (5 YR 2/2) to grayish brown (5 YR 3/2) 

homogenous organic silt with aquatic vegetation remains along with gastropod and 

bivalve shells that decrease towards the core top.   
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Figure 5-5. Stratigraphic column and age model for the Cheeseman Lake core sequence developed from 

radiocarbon and 210Pb dates.  The sample at 67.5 cm depth highlighted with a gray square is rejected 

from the age model. Weight percent organic matter and total carbonate from LOI 550 (wt. %) and LOI 

1000 (wt. %) analysis.   

5.5.2 Chronology 

The 210Pb inferred CRS age model for the surface sediments indicates the upper 

28 cm of the core dates to ~ 1890 AD (Figure 5-5).  The 1963 AD maximum 

concentration of 137Cs from above-ground thermonuclear weapons testing occurs from 

11.5 to 14.5 cm depth, broadly consistent with the CRS inferred age of this interval 

between 1959 to 1973 AD.  The uppermost radiocarbon sample (UCIAMS # 116880) at 

66-67 cm depth was excluded prior to generating the age model, based on a slight age 
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reversal between the oldest reliable 210Pb date and adjacent radiocarbon sample 

(UCIAMS # 131490).  The rejected sample appears anomalously old for its stratigraphic 

position and has a slightly larger analytical uncertainty compared to the adjacent date.  

This sample was likely an aquatic or submerged macrophyte that incorporated 14C 

depleted dissolved inorganic carbon, resulting in a dead carbon contribution and too old 

age.  This hypothesis is consistent with core sedimentology that shows the presence of 

aquatic vegetation in the upper 70 cm of the composite core (Figure 5-5).  The resulting 

age model indicates generally low and variable sedimentation rates between ~ 0.01 to ~ 

0.04 cm/yr from 28 to 259 cm depth (Figure 5-5).  Sedimentation rates increase from ~ 

0.04 cm/yr at 28 cm to ~ 0.5 cm/yr towards the core top (Figure 5-5).   

5.5.3 Modern water isotopes 

The global meteoric water line (GMWL) (Rozanski et al., 1992) and local 

meteoric water line (LMWL), developed with monthly average precipitation δD and δ18O 

data from the Bay d’Espoir CNIP station (Table 5.2) (Figure 5-6), along with regional 

lake and river water samples are presented in Figure 5-6.  Cheeseman Lake surface 

waters (δ18O = -9.02 ‰, δD = -65.05 ‰ [VSMOW]) plot along the LMWL (Figure 5-6), 

suggesting that lake waters reflect the isotopic composition of precipitation. 
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Table 5.2. Model input and meteorological station data.  A Deer Lake, Newfoundland Climate Normals 

1981-2010 (Canada, 2010), B NOAA 20th Century Gridded Re-analysis Project data (Compo et al., 2011), 

C Bay d’Espoir Precipitation Isotope data (http://www.science.uwaterloo.ca/~twdedwar/cnip/) 

Month 
Precipitationa 

(mm) 
Temperaturea     

(°C) 

Relative                   
Humidity            

(%)b 

Wind                       
Speed              
(m/s)b 

Incoming              
Solar rad.           

(MJ m-2 d-1)b 
δ18O (‰)c δD (‰)c 

Jan 109.8 -7.2 94.4 6.3 4.7 -12.5 -89.5 

Feb 83.5 -8.0 95.4 5.8 7.8 -11.6 -80.3 

Mar 71.7 -4.1 95.0 5.8 11.9 -11.5 -81.5 

Apr 70.1 1.9 93.0 5.3 15.6 -9.3 -64.0 

May 89.2 7.4 84.7 4.7 19.3 -8.1 -57.9 

Jun 88.3 12.2 80.0 4.6 21.1 -7.7 -52.2 

Jul 98.5 16.5 80.1 4.7 21.0 -6.7 -46.4 

Aug 109.9 16.4 78.6 4.7 18.4 -6.3 -39.9 

Sep 106.2 12.3 80.0 5.0 13.2 -8.0 -53.0 

Oct 105.7 6.6 85.7 5.5 7.8 -8.2 -54.5 

Nov 101.3 1.5 89.4 5.9 4.6 -8.5 -55.2 

Dec 97.3 -3.3 93.1 6.2 3.6 -11.7 -79.3 

        

 
 

 

 

Figure 5-6. (a) Surface water sample from Cheeseman Lake (black star) and surface water samples from 

regional lakes (open triangles) collected in July, 2012 in δ18O-δD (VSMOW) space.  The Cheeseman 

Lake surface water sample plots along the Local Meteoric Water Line (LMWL, black line) that parallels 

the Global Meteoric Water Line (GMWL, dashed gray line).  Regional lakes with closed-basin conditions 
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sensitive to evaporation plot along a Local Evaporation Line (LEL, solid gray line) that is oblique to the 

LMWL and GMWL.  (b) Same as in (a) but focused on the LMWL developed with a linear, best-fit line 

from monthly average precipitation δ18O and δD from the Bay d’Espoir Canadian Network of Isotopes in 

Precipitation (CNIP) station. 

 

The average weighted δ18O of precipitation, calculated by normalizing monthly 

average precipitation δ18O from the Bay d’Espoir CNIP station with the monthly 

proportion of annual precipitation from Deer Lake (Figure 5-3), is -9.10 ‰ VSMOW 

(Henderson and Shuman, 2009).  However, we hypothesize that the δ18O of lake water 

should reflect the annual moisture surplus, given precipitation losses in the summer 

months from plant interception and catchment scale evapotranspiration.  We therefore 

calculate the annual moisture surplus δ18O of precipitation using a coupled lake 

hydrologic and isotope mass balance model (see Lake Modeling section), which 

estimates precipitation losses via catchment potential evapotranspiration and lake 

surface evaporation (Valiantzas, 2006), using the Bay d’Espoir CNIP precipitation δ18O 

data and mean monthly meteorological data (Table 5.2) (Canada, 2010; Compo et al., 

2011).  Using this approach the annual moisture surplus δ18O of precipitation is -10.35 

‰ VSMOW, which is more negative than the observed δ18O of lake water.  Several 

regional lakes have isotope values that plot down and to the right of the LMWL on the 

local evaporation line (LEL) (Figure 5-6), indicating these closed-basin lacustrine 

systems are influenced by evaporative modification.   
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5.5.4 Geochemistry 

The results of XRD analysis for select samples from the composite core 

sequence are presented in Figure 5-7.  The primary carbonate mineral present in the 

cores is identified as calcite.  No other calcite polymorphs (i.e. aragonite, veterite) were 

present in the measured samples, suggesting that carbonate minerals in the core 

sequence are single phase and consist of calcite.  SEM analysis further shows the 

presence of near perfect, rhombic (euhedral) calcite crystal form (Figure 5-8) in the 

sediment samples.  Collectively, these results indicate that carbonate minerals within 

the sediment core consist of in-lake (authigenic) precipitated calcite.  Physical 

observations of Cheeseman Lake in August, 2012 showed a lack of littoral marl around 

the lake shoreline, suggesting that either carbonate precipitation and/or a lack of 

preservation preclude calcareous sedimentation over the upper 70 cm of the core 

sequence (Figure 5-5).  However, a review of monthly Landsat satellite imagery 

(http://landsatlook.usgs.gov/) appear to show ‘whiting’ events of carbonate precipitation 

during the summer months.  Accordingly, we hypothesize that modern calcareous 

sedimentation (over the upper 70 cm) is limited by calcite preservation at the A-12 and 

B-12 core sites.  Regardless of the precise mechanism, the lack of carbonate sediments 

at the core top limit stable isotope analysis to 262 to 70 cm from the composite core 

sequence (Figure 5-5) that spans the interval ~ 10,200 to ~ 1,200 cal yr BP.    
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Figure 5-7. X-ray Diffraction spectra for select sediment samples from the Cheeseman Lake core 

sequence.  Major peaks are identified as the mineral calcite.   
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Figure 5-8. Scanning electron microscope image of euhedral calcite crystal from core B-12 D2 36-38 cm.   

5.5.5 Carbonate stable isotopes 

Our paleoenvironmental interpretation of the Cheeseman Lake sedimentary 

record is based on calcite oxygen stable isotope data (Figure 5-9).  Variations in calcite 

δ18O (δ18Ocal) allow identification of 2 isotope zones.  Zone 1 begins at the transition of 

minerogenic to carbonate sediments at 262 cm and extends to 213 cm and spans the 

interval ~ 10,200 to ~ 7,950 cal yr BP.  Cheeseman δ18Ocal decreased abruptly between 

~ 10,200 to ~ 10,100 cal yr BP from -10.95 ‰ to -11.54 ‰ (Figure 5-9).  After ~ 10,100 

cal yr BP, δ18Ocal values increased from -11.54 ‰ with century-scale variability and 

reached the most positive δ18Ocal values of -9.98 ‰ at the Zone 2 boundary (~ 7,950 cal 

yr BP).  Increasing δ18Ocal values are abbreviated by rapid excursions to more negative 

δ18Ocal values beginning at ~ 9,700 and ~ 8,500 cal yr BP that persist for ~ 200 years 

(Figure 5-9).  δ18Ocal values increased rapidly after ~ 8,300 cal yr BP from -10.95 ‰ to -

9.98 ‰ by ~ 7,950 cal yr BP.  Zone 2 extends from 213 cm to 70 cm and spans the 
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interval ~ 7,950 to ~ 1,200 cal yr BP.  Cheeseman δ18Ocal values gradually decreased 

from ~ 7,950 to ~ 4,300 cal yr BP from -9.98 ‰ to -11.11 ‰ with distinct centennial 

scale variability (Figure 5-9).  Between ~ 4,300 to ~ 2,500 cal yr BP slightly more 

positive δ18Ocal values (-10.6 ‰) are apparent with increased variability.  δ18Ocal values 

generally decreased after ~ 2,500 cal yr BP and remained relatively negative (-11.0 ‰) 

with minimal variability until ~ 1,200 cal yr BP.   

 

Figure 5-9. Cheeseman Lake carbonate stable isotope data of δ13C (‰ VPDB) and δ18O (‰ VPDB). 



 180 

5.5.6 Model calibration and sensitivity test results 

The steady-state model simulation produced a theoretical δ18Ocal value of -10.71 

‰ (VPDB), which is similar to the measured δ18Ocal value of -11.04 ‰ (VPDB) at ~ 

1,200 cal yr BP.  Atmospheric temperature changes of ± 2 ° C resulted in δ18Olw 

anomalies of +1.21 ‰ and -1.26 ‰ (VSMOW) (Figure 5-10).  The same test produced 

theoretical equilibrium summer δ18Ocal anomalies of +0.78 ‰ and -0.68 ‰ VPDB 

(Figure 5-10).  Notably, the amplitude of simulated summer δ18Ocal anomalies agrees 

with the range in measured Cheeseman Lake δ18Ocal values.  Precipitation seasonality 

tests focus on changes in winter variability (herein defined as the period between 

October to March).  We emphasize precipitation seasonality changes in the cold-

season, because the annual moisture surplus weighted δ18Oppt reflects losses of 

summer precipitation due to evapotranspiration from the catchment and lake surface, 

and is therefore weighted towards cold-season values.  Winter season precipitation 

seasonality changes of ± 20% resulted in δ18Olw anomalies of -0.12 ‰ and +0.17 ‰ 

(VSMOW) (Figure 5-11).  The same test produced theoretical equilibrium summer 

δ18Ocal anomalies of -0.11 ‰ and +0.17 ‰ VPDB (Figure 5-11).   
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Figure 5-10. Simulated lake water δ18O (‰ VSMOW) and summer calcite δ18O (‰ VPDB) values from 

sensitivity tests for ± 1° C and ± 2° C annual temperature changes.   
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Figure 5-11. Simulated lake water δ18O (‰ VSMOW) and summer calcite δ18O (‰ VPDB) values from 

sensitivity tests for changes in the seasonality of cold-season (± 20% October to March) precipitation.   



 183 

5.6 DISCUSSION 

5.6.1 Interpretation of calcite oxygen isotopes 

The oxygen isotope composition of lacustrine authigenic calcite (δ18Ocal) is a 

function of the isotopic composition of lake water (δ18Olw) and the temperature of calcite 

precipitation (Gat, 1995; Kim and Oneil, 1997).  In open-basin lakes with short water 

residence times, like that of Cheeseman Lake, the δ18Olw is principally controlled by the 

oxygen isotopic composition of meteoric precipitation (δ18Oppt) (Gat, 1995; Leng and 

Marshall, 2004).  At mid to high-latitude sites, the δ18Oppt is systematically related to 

atmospheric temperature (Dansgaard, 1964), with the global relationship showing ~ 0.6 

‰ increase in δ18Oppt per 1° C (Rozanski et al., 1992).  Seasonal variations in 

temperature coincide with concomitant changes in δ18Oppt for Newfoundland (Table 5.2), 

whereby cold-season δ18Oppt values are more negative compared with more positive 

values during the warm-season (Clark and Fritz, 1997; Rozanski et al., 1992).  The 

δ18Oppt is also controlled by the rain-out history of an air mass, through the latitude, 

altitude, and continental effects that results in a progressive depletion of δ18Oppt through 

a Rayleigh-type distillation process (Dansgaard, 1964), and changes in the isotopic 

composition of and/or the oceanic moisture source (Araguás-Araguás et al., 2000). 

Cheeseman Lake surface waters plot on the LMWL (Figure 5-6), suggesting that 

evaporative modification of lake waters are negligible and that water loss is primarily 

through non-fractionating pathways (surficial outflow and groundwater outseepage).  

When combined with physical observations showing a distinct open-basin hydrology 

and δ18Olw data suggesting a short-water residence time, we interpret changes in 
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Cheeseman Lake δ18Ocal to reflect changes in the oxygen isotope composition of 

precipitation (δ18Oppt) and atmospheric temperature.  Unfortunately, the lack of 

authigenic calcite in lake surface sediments make the comparison of δ18Olw against 

δ18Ocal difficult, which is necessary to demonstrate the precipitation of calcite in isotopic 

equilibrium with lake water.  In the past, authigenic calcite precipitation at Cheeseman 

Lake likely occurred during the summer months from photosynthetically mediated 

increases in pH resulting from algal utilization of dissolved CO2, leading to saturation of 

HCO3- and carbonate precipitation (Kelts and Hsu, 1978).  This interpretation is 

supported by satellite imagery that show ‘whiting’ events of carbonate precipitation in 

the summer months from regional marl lakes.  Accordingly, Cheeseman Lake δ18Ocal 

should reflect the δ18Olw and the summer lake water temperature at the time of 

calcification.   

Model sensitivity test results provide support for the interpretation that δ18Olw and 

theoretical equilibrium Cheeseman Lake δ18Ocal are most sensitive to changes in 

atmospheric temperature.  Temperature changes of ± 2 ° C produce theoretical δ18Ocal 

values within the range of measured down-core δ18Ocal values (Figure 5-10), suggesting 

that temperature forced changes in δ18Oppt are the primary control on in δ18Olw. 

Conversely, cold-season precipitation seasonality changes of ± 20% yield theoretical 

δ18Ocal anomalies that are too low to explain the range of measured δ18Ocal values 

(Figure 5-11).  Accordingly, changes in the seasonality of precipitation must be 

considered a less important control affecting δ18Oppt and the resultant δ18Ocal over time.   

In addition, other factors affecting the δ18Oppt must be considered, including 

changes in the moisture source and temporal variability in the isotopic composition of 
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ocean source water over the Holocene.  The modern source of precipitation for 

Newfoundland is dominantly from the western Atlantic Ocean south of the island that 

originates via cyclonic or frontal activity (Milrad et al., 2010).  The influence of Arctic or 

Pacific Ocean derived-moisture to Newfoundland is presumably negligible, at least on 

centennial to millennial time scales, given the small range in Cheeseman Lake δ18Ocal 

values (~ 1.5 ‰) over the Holocene.  However, the surface ocean δ18O composition 

varied substantially during the early Holocene as a result of Laurentide Ice Sheet 

deglaciation and meltwater flux to the Labrador Sea and western Atlantic Ocean 

(Andrews et al., 1999; Hoffman et al., 2012; Keigwin et al., 2005).   

Holocene paleoclimate conditions in eastern North America were influenced by 

changes in Earth’s orbital parameters (Laskar et al., 2004) and surface boundary 

conditions (COHMAP, 1988; Dyke and Prest, 1987).  Northern hemisphere high-latitude 

(50° N) summer (July) insolation was 8% greater than modern at 10,000 cal yr BP 

(Laskar et al., 2004).  Summer insolation levels gradually decreased towards the 

present while winter (January) insolation increased, leading to decreasing Northern 

Hemisphere seasonality from the early to late Holocene.   The early Holocene climate 

was influenced by relatively lower but rapidly rising sea levels (Clarke et al., 2004) 

resulting from deglaciation (Dyke and Prest, 1987), which produced enhanced 

freshwater flux to the North Atlantic Ocean (Licciardi et al., 1999).  Isostatic depression 

of the land surface and a large meltwater flux resulted in formation of large proglacial 

lakes at the southern edge of the Laurentide Ice Sheet during deglaciation (Teller and 

Leverington, 2004; Teller et al., 2002).  Lake Agassiz was the largest proglacial lake in 

the North American interior during the last deglaciation, which formed by 11,700 14C yr 
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BP (~ 13,500 cal yr BP) and drained completely by about 7,700 14C yr BP (~ 8,450 cal 

yr BP) (Clarke et al., 2004).  Substantial changes in the extent and depth (lake-level) of 

Lake Agassiz resulted from the interaction between changes in the ice-margin position, 

isostatic rebound, and shifting outlets (Teller and Leverington, 2004) that lead to 

episodic release of large volumes of freshwater to the oceans.  Catastrophic drainage of 

Lake Agassiz and related proglacial lakes (i.e. Ojibway, Minong) from ice-dam failure or 

outlet erosion at 9,300 cal yr BP (Yu et al., 2010) and 8,450 cal yr BP (Barber et al., 

1999) lead to enhanced freshwater flux to the North Atlantic Ocean and abrupt but 

short-lived cooling events (Alley et al., 1997).  Abrupt climate change at these times is 

linked to a reduction in North Atlantic Deep Water (NADW) formation and a weakening 

or partial shut-down of the Atlantic Meridional Overturning Circulation (AMOC) (Clark et 

al., 2001).  The final drainage of Lake Agassiz, rapid disintegration of the Laurentide Ice 

Sheet after ~ 8,000 cal yr BP (Dyke, 2004), and transition from glacial to interglacial 

boundary conditions resulted in relative climate stability for the remainder of the 

Holocene (Grootes and Stuiver, 1997).  In addition, eustatic sea levels approached near 

modern levels shortly after ~ 8,000 cal yr BP (Clark et al., 2009).   

Changes in Earth’s boundary conditions before and after ~ 8,000 cal yr BP 

produced variations in Newfoundland precipitation regimes, which are recorded by δ18O 

values in Cheeseman Lake sediment.   For example, a gradually increasing trend in 

δ18Ocal from 10,200 to 7,950 cal yr BP (Figure 5-9) occurs along with ice sheet retreat 

and rising eustatic sea levels.  Generally decreasing δ18Ocal from 7,950 cal yr BP 

towards the middle to late Holocene (Figure 5-9) occurs as interglacial boundary 

conditions are achieved defined by relative Laurentide Ice Sheet extent (Dyke and 
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Prest, 1987), eustatic sea level stabilization (Clark et al., 2009), and 50° N insolation 

(Laskar et al., 2004).  Further, we compare our paleoenvironmental interpretations to ice 

core δ18O from southern (Dye-3) (Dansgaard et al., 1985) and central Greenland 

(NGRIP) (NGRIP, 2004), sea surface temperature and foraminiferal δ18O records from 

the Labrador Sea (Andrews et al., 1999; Hoffman et al., 2012) and western North 

Atlantic Ocean (Keigwin et al., 2005; Sachs, 2007), and terrestrial hydroclimate records 

from Newfoundland (Amesbury et al., 2013; Daley et al., 2009).    

5.6.2 Newfoundland regional comparison 

The Nordan’s Pond Bog δ18Oppt reconstruction (Figure 5-12) provides the only 

other quantitative precipitation isotope record for direct comparison with the Cheeseman 

Lake record.  The major difference between the records is the much larger range in 

δ18O values present in the reconstruction from Nordan’s Pond Bog, which varies 

between -9.67 to -4.12 ‰ (VSMOW), a total range of 5.55 ‰.  In contrast, the range in 

Cheeseman Lake δ18Ocal values that vary between -11.54 to -9.98 ‰ (VPDB), is much 

smaller.  While there is certainly spatial variability in δ18Oppt across eastern North 

America during the Holocene (Edwards et al., 1996; Hardt et al., 2010; Kirby et al., 

2002; Yu et al., 2010; Zhao et al., 2010), the distance between Cheeseman Lake and 

Nordan’s Pond Bog is only ~ 300 km. We therefore assert that spatial variations in 

δ18Oppt across such a short distance cannot explain the apparent discordance between 

the records.  Alternatively, we suggest that differences in the seasonality of Cheeseman 

Lake calcite precipitation and Nordan’s Pond Bog cellulose synthesis could explain the 

large differences in reconstructed δ18Oppt.  Further, evaporative modification of bog 



 188 

waters could in part explain the rather large variations in δ18Oppt at Nordan’s Pond Bog.  

This idea is supported by the isotopic composition of bog waters (n=8) collected in July 

of 2004, which Daley et al. (2009) state “are within the scatter of regional precipitation 

values.”  However, the bog water samples plot along a local evaporation line in VSMOW 

space (Daley et al., 2009), demonstrating that evaporation is a significant flux in the bog 

hydrologic system.  This apparent discrepancy suggests that the Nordan’s Pond Bog 

δ18Oppt reflects the precipitation – evaporation (P-E) or moisture balance.  Relatively 

positive δ18Oppt values are interpreted to reflect some combination of warmer 

temperatures, greater warm-season precipitation, or enhanced evaporation and 

relatively dry conditions.  Conversely, relatively negative δ18Oppt values reflect the 

opposite – namely colder temperatures, greater cold-season precipitation, and relatively 

wet conditions.  The interpretation that the Nordan’s Pond Bog δ18Oppt record reflects 

the P-E balance is supported by a testate-amoeba based water-table depth 

reconstruction (Figure 5-12) (Amesbury et al., 2013), which shows substantial shifts in 

moisture balance coincident with δ18Oppt variations.   
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Figure 5-12. Regional comparison of quantitative hydroclimate reconstructions from Newfoundland 

including (a) Cheeseman Lake carbonate δ18O (‰ VPDB), (b) Nordan’s Pond Bog δ18O (‰ VSMOW) 

(Daley et al., 2009), and (c) Nordan’s Pond Bog testate-amoeba based water-table depth reconstruction 

(Amesbury et al., 2013).   

 

The Cheeseman Lake δ18Ocal record and Nordan’s Pond Bog δ18Oppt 

reconstruction are strikingly different, yet there are a few similarities (Figure 5-12).  For 

instance, both records show anomalies to more negative δ18O values during the early 

Holocene associated with the 8,200 cal yr BP abrupt climate change event (Alley et al., 

1997; Barber et al., 1999).  The transition to more negative values at Cheeseman Lake 

occurs at ~ 8,500 cal yr BP and is characterized by a -0.38 ‰ (VPDB) excursion.  At 
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Nordan’s Pond Bog, the transition begins at ~ 8,400 cal yr BP and is characterized by 

an initial -3.79 ‰ (VSMOW) excursion.  We can convert these δ18O anomalies to 

changes in temperature, assuming that temperature is the only forcing that controls 

these variations.  We use the long-term average temperature-δ18Oppt relationship 

(Dansgaard, 1964) that accounts for interannual and longer term variations by removing 

the seasonal component (Rozanski et al., 1992), which is more relevant as it concerns 

isotope-based paleo reconstructions.  In contrast, the seasonal relationship defined by 

directly comparing monthly average δ18Oppt and temperature time-series yield 

temperature-δ18Oppt coefficients that are substantially smaller (Daley et al., 2009), 

resulting in a much greater temperature sensitivity.    

Using the globally defined temperature-δ18Oppt relationship of 0.6 ‰/°C and 

accounting for the temperature dependence of the water-calcite transformation (Craig, 

1965), these changes correspond with a 1°C cooling at Cheeseman Lake and a 6.3°C 

cooling at Nordan’s Pond Bog.  The apparent discordance in the magnitude of δ18O 

anomalies and associated shifts in temperature between these records highlights 

differences inherent to each of the reconstructions.  For instance, the Cheeseman Lake 

proxy resolution across the 8,200 cal yr BP event is ~ 50 years/sample.  Therefore, 

each δ18Ocal value integrates at least ~ 50 years or more than likely an even greater 

time period, given mixing at the sediment-water interface.  The Cheeseman Lake δ18Ocal 

record therefore reflects multi-decadal to sub-century scale variations in δ18Oppt and 

atmospheric temperature.  The Nordan’s Pond Bog δ18Oppt reconstruction has a similar 

proxy resolution during this time of ~ 40 years/sample, which should yield a similar 

anomaly.  As a result, we interpret the large differences observed between the records 
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across the 8,200 cal yr BP event (Figure 5-12) to reflect seasonal differences in the 

formation of the proxies and/or evaporative modification at Nordan’s Pond Bog.  For 

instance, the Nordan’s Pond Bog water-table depth reconstruction shows a transition 

from relatively dry to wet conditions at ~ 8,400 cal yr BP (Figure 5-12), synchronous with 

the negative shift in δ18Oppt.  Accordingly, we argue the rather large δ18Oppt excursion at 

Nordan’s Pond Bog is confounded in variations in the P-E balance and not solely 

changes in δ18Oppt.  This result has implications for climate model simulations (Daley et 

al., 2011; Tindall and Valdes, 2011) and isotope anomalies associated with the 8,200 

cal yr BP abrupt climate event, which posits that greater δ18O excursions are 

experienced proximal to the Labrador Sea.   

After the 8,200 cal yr BP event, Cheeseman Lake δ18Ocal values increase and 

attain the most positive values (-9.98 ‰ VPDB) during the entire record at ~ 7,950 cal yr 

BP (Figure 5-12).  Thereafter, Cheeseman Lake δ18Ocal values decrease and eventually 

attain minimum values (-11.11 ‰ VPDB) around ~ 4,300 cal yr BP.  We interpret these 

variations to represent the warmest conditions and/or enhanced warm-season 

precipitation at ~ 7,900 cal yr BP and gradual cooling thereafter.  In contrast, Nordan’s 

Pond Bog δ18Oppt values increase after 8,200 cal yr BP and are relatively high (~ -4 to -6 

‰) between 6,800 to 3,900 cal yr BP (Figure 5-12).  We interpret this discrepancy to 

show increased evaporation at Nordan’s Pond Bog, resulting in more positive δ18Oppt 

values, consistent with drier conditions during this time (Amesbury et al., 2013).  After 

3,900 cal yr BP, δ18Oppt values at Nordan’s Pond Bog decrease abruptly by ~ 4 ‰ and 

remain relatively low (between ~ -6 to -8 ‰) for the remainder of the Holocene (Figure 

5-12).  This transition likely reflects the onset of wetter conditions and reduced 
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evaporation of bog waters.  This interpretation is consistent with a transition to a higher 

and stable water-table depth at Nordan’s Pond Bog after ~ 4,000 cal yr BP (Figure 5-12) 

(Amesbury et al., 2013), reflecting wetter conditions.  Meanwhile, Cheeseman Lake 

δ18Ocal briefly returns to relatively higher values of -10.4 ‰ (VPDB) between ~ 3,400 to 

~ 3,000 cal yr BP and a slight trend towards more negative and generally stable values 

thereafter.     

5.6.3 North Atlantic comparison: 10,200 to 7,950 cal yr BP 

The Cheeseman Lake δ18Ocal record shows an overall trend to more positive 

values from 10,200 to 7,950 cal yr BP during the early Holocene (Figure 5-13).  The 

range in δ18Ocal values over this time is from -11.54 ‰ VPDB (at 11,100 cal yr BP) to -

9.98 ‰ VPDB (at 7,950 cal yr BP).  If the 1.56 ‰ increase in δ18Ocal values was entirely 

a result of changes in atmospheric temperature, this would imply a 4.0° C increase.  

Notably, a similar trend is found in the Dye-3 and NGRIP Greenland ice core δ18O 

records at this time (Figure 5-13), which has been interpreted to reflect rising 

temperatures during the final stages of deglaciation (Vinther et al., 2009).  Further, the 

early Holocene increase in Cheeseman Lake δ18Ocal coincides with Laurentide Ice 

Sheet retreat (Dyke, 2004), increasing eustatic sea levels (Clark et al., 2009), and 

changing oceanographic conditions in the Labrador Sea and western Atlantic Ocean.  

For example, gradually decreasing planktonic foraminiferal (N. pachyderma sinistral) 

δ18O values recorded south of Newfoundland at the Laurentian Fan (Figure 5-13) reflect 

changes in the δ18O of the surface ocean from ice sheet retreat (Keigwin et al., 2005).  

Changing surface ocean δ18O values south of Newfoundland likely influenced δ18Oppt at 
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Cheeseman Lake, given this area represents the source of atmospheric moisture.  

Increasing Cheeseman Lake δ18Ocal is interrupted by abrupt negative excursions at ~ 

9,700 cal yr BP and ~8,500 cal yr BP.  The ~ 9,700 cal yr BP feature occurs too early to 

be linked with the ~ 9,300 cal yr BP abrupt climate change event (Yu et al., 2010), 

suggesting that our δ18Ocal record is too coarsely resolved in time to detect this rather 

short-lived event.  However, the ~ 9,700 cal yr BP anomaly at Cheeseman Lake 

coincides with a shift toward colder sea surface temperatures (SSTs) and decreasing 

surface ocean δ18O (δ18Osw) from Cartwright Saddle in the western Labrador Sea 

(Figure 5-13).  Hoffman et al. (2012) interpret this shift after 9,700 cal yr BP to reflect 

enhanced meltwater flux and renewed Laurentide Ice Sheet retreat.   

 

Figure 5-13. Comparison of early Holocene climate records from the North Atlantic region, including (a) 

Cheeseman Lake carbonate δ18O (‰ VPDB) with calibrated radiocarbon ages and the 95% error bounds 
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on the left. (b) Dye-3 δ18O (grey line) and 200-yr moving average (black line) (‰ VSMOW) (Dansgaard et 

al., 1985). (c) NGRIP δ18O (grey line) and 200-yr moving average (black line) (‰ VSMOW) (NGRIP, 

2004). (d) Mg/Ca inferred calcification temperature of the planktonic foraminifer N. pachyderma sinistral 

from marine core HU87033-017 from the Cartwright Saddle in the Labrador Sea (Hoffman et al., 2012). 

(e) δ18O (‰ VSMOW) of sea water from marine core HU87033-017 (Hoffman et al., 2012). (f) N. 

pachyderma sinistral δ18O (‰ VPDB) from marine core OCE326-GGC26-25 from the Laurentian Fan 

south of Newfoundland (Keigwin et al., 2005). (g) Relative eustatic sea level (Clark et al., 2009).   

 

The 8,200 cal yr BP event (Alley et al., 1997) represents the last major abrupt 

climate change event experienced during the last glacial to interglacial transition.  The 

Cheeseman Lake δ18Ocal excursion at ~ 8,500 cal yr BP again coincides with a shift to 

colder SSTs at Cartwright Saddle (Hoffman et al., 2012) associated with the final 

drainage of Glacial Lake Agassiz (Barber et al., 1999), indicating a synchronous 

response between the ocean-atmosphere system at this time.  A similar phasing is 

found in the Nordan’s Pond Bog δ18Oppt, wherein the primary anomaly begins at ~ 8,400 

cal yr BP (Daley et al., 2009; Daley et al., 2011).  However, the δ18Ocal excursion begins 

almost ~ 300 years earlier than the observed δ18O anomaly found in Greenland ice 

cores (Figure 5-13).  Daley et al. (2011) discuss the phasing and implications of this age 

off-set in their review of stable isotope records from the circum North Atlantic region 

spanning the 8,200 cal yr BP event.  Specifically, they consider the apparent age off-set 

to result from 1) age model errors and inconsistencies between the proxies that 

confounds identification of the event as ‘synchronous’ across the Atlantic and 2) a 

delayed transmission of the event because of interactions in the ocean-atmosphere 

system (Daley et al., 2011).  The authors reject the second option, because a time-

transgressive response to the underlying forcing mechanism should result in a spatial 



 195 

pattern showing a delayed response with increasing distance from the Labrador Sea.  

As a result, Daley et al. (2011) consider the δ18O anomalies among paleoclimate 

records in the North Atlantic region to be broadly synchronous, with the age 

discrepancies linked with local climatic responses.  After ~ 8,280 cal yr BP and the 

primary negative isotope anomaly, Cheeseman Lake δ18Ocal values increase from -

10.95 ‰ (VPDB) to maximum values of -9.98 ‰ (VPDB) by ~ 7,950 cal yr BP (Figure 

5-13).  Converting this 1.07 ‰ increase in δ18Ocal values yields a temperature increase 

of 2.8° C spanning the ~ 350 year period.  However, δ18Oppt across Newfoundland at 

this time must be controlled by various factors, including changes in moisture balance 

(Amesbury et al., 2013), the seasonality of precipitation (Denton et al., 2005; Prasad et 

al., 2009; Rohling and Palike, 2005), the surface ocean δ18O (Hoffman et al., 2012; 

Keigwin et al., 2005), atmospheric circulation (Kirby et al., 2002), and temperature 

(Vinther et al., 2009), among others.  Thus, we conclude the post 8,200 cal yr BP event 

transition to the most positive δ18Ocal values reflects some combination of warmer 

temperatures, a shift back to greater warm-season precipitation, and potentially wetter 

conditions.   

5.6.4 North Atlantic comparison: 7,950 to 1,200 cal yr BP 

Evidence from the Cheeseman Lake δ18Ocal record suggests the period 

immediately after ~ 7,950 cal yr BP represents the warmest conditions spanning the 

entire record (Figure 5-14).  This result is consistent with a synthesis of temperature 

reconstructions from the North Atlantic region, which shows the warmest temperatures 

in eastern Canada between 8,000 to 6,000 cal yr BP (Kaplan and Wolfe, 2006).  
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Additional evidence for relatively warm conditions at this time comes from Greenland ice 

core δ18O records (Figure 5-14), which show the warmest temperatures of the entire 

Holocene at ~ 7,900 cal yr BP (Vinther et al., 2009).  This period of time, known as the 

Holocene Thermal Maximum (HTM), lags the early Holocene 50° N summer insolation 

maxima by 1,000 to 3,000 years in the western Atlantic Ocean sector.  The delay in 

peak temperatures with respect to insolation forcing is attributed to the close proximity 

of the residual Laurentide Ice Sheet (Kaufman et al., 2004), which still dominated 

atmospheric circulation and exerted a ‘chilling effect’ on Newfoundland, prior to ice 

sheet disintegration before the 8,200 cal yr BP event.   

 

Figure 5-14. (a) Cheeseman Lake carbonate δ18O (‰ VPDB). (b) Dye-3 δ18O (grey line) and 200-yr 

moving average (black line) (‰ VSMOW) (Dansgaard et al., 1985). (c) NGRIP δ18O (grey line) and 200-yr 

moving average (black line) (‰ VSMOW) (NGRIP, 2004). (d) N. pachyderma sinistral δ18O (‰ VPDB) 
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from marine core OCE326-GGC26-25 (Keigwin et al., 2005).  (e) Alkenone derived sea surface 

temperatures (SST) also from marine core OCE326-GGC26-25 (Keigwin et al., 2005; Sachs, 2007).  (f) 

Percent insolation difference to modern for 50° North (Laskar et al., 2004). (g) Relative eustatic sea level 

(Clark et al., 2009).   

 

Cheeseman Lake δ18Ocal gradually decreases between ~ 7,950 to ~ 4,300 cal yr 

BP (Figure 5-14) consistent with the monotonic decline in high-latitude northern 

hemisphere summer insolation (Laskar et al., 2004).  The 1.13 ‰ decrease in δ18Ocal 

values over this time period represents a 3.3° C cooling, assuming temperature is the 

only factor influencing δ18Oppt at Cheeseman Lake.  At the same time, a similar 

response is observed in the Greenland ice core δ18O records (Figure 5-14) and ice-core 

inferred temperatures (Vinther et al., 2009).  For example, a 2.74° C cooling is found 

between ~ 7,950 to ~ 4,300 cal yr BP based on temperature change in Greenland 

derived from the Agassiz and Renland ice core δ18O records (Vinther et al., 2009).  

Evidence for cooling at this time is also found in proximal oceanographic records south 

of Newfoundland at the Laurentian Fan, where planktonic foraminiferal (N. pachyderma 

sinistral) δ18O values gradually increase and alkenone-derived SSTs decrease from ~ 

8,000 cal yr BP to the resent (Keigwin et al., 2005; Sachs, 2007).  Keigwin et al. (2005) 

suggest the long term decrease in foraminiferal δ18O values and SSTs is probably 

driven by decreasing seasonality of Northern Hemisphere insolation, forced by gradually 

decreasing summer and increasing winter insolation through the Holocene (Figure 5-14) 

(Laskar et al., 2004).  More specifically, Sachs (2007) attributes cooling of continental 

slope waters at the Laurentian Fan and along the eastern seaboard of North America to 

result from declining insolation, increasing convection in the Labrador Sea, and 
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equatorward shifting of the Gulf Stream path.  Thus, the concurrent shifts in Cheeseman 

Lake δ18Ocal and inferred cooling support the notion of a coupled ocean-atmosphere 

response to insolation forcing at centennial time scales, at least between ~ 7,950 to ~ 

4,300 cal yr BP.   

The spatial pattern in reconstructed SSTs from the Laurentian Fan and across 

the Atlantic Ocean during the Holocene implicate a possible role of the North Atlantic 

Oscillation (NAO) driving the decline in temperatures.  The NAO, defined by the cold-

season pressure difference between the Azores High and Iceland Low, causes colder 

conditions in Newfoundland during the NAO+ phase (Hurrell and Deser, 2010), and vice 

versa during the NAO- phase.  Accordingly, NAO+ conditions and cooler winter 

conditions in Newfoundland should result in more negative δ18Oppt and δ18Ocal at 

Cheeseman Lake.  Based on the pattern of Atlantic wide SSTs over the Holocene, 

Sachs (2007) suggest a transition from NAO- conditions in the early Holocene gave way 

to NAO+ conditions by the late Holocene.  This interpretation is supported by excursions 

in the Transpolar Drift Stream evinced from driftwood in the Canadian Arctic 

Archipelago, driven by high-latitude atmospheric circulation patterns, which shows early 

Holocene NAO- or NAO neutral conditions and NAO+ conditions during the late 

Holocene (Tremblay et al., 1997).  If we assume the spatial pattern of NAO-type 

conditions observed during the 20th century (Figure 5-4) persisted throughout the 

Holocene, such a pattern identified by Sachs (2007) would produce gradually colder 

conditions in Newfoundland through the Holocene.  The decline in Cheeseman Lake 

δ18Ocal and inferred temperatures between ~7,950 to ~ 4,300 cal yr BP provides 

evidence to support the hypothesis set forth by Sachs (2007).  However, other 
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paleoclimate synthesis studies show the opposite, that the early Holocene was typified 

by NAO+ conditions that transitioned to NAO- conditions during the later Holocene 

(Rimbu et al., 2004).  This discrepancy highlights the need for additional paleo records 

sensitive to NAO-like variability, to refine our understanding of natural variations and 

mean-state shifts in hemisphere wide circulation patterns.   

After ~ 4,300 cal yr BP, the pattern of decreasing Cheeseman Lake δ18Ocal is 

interrupted (Figure 5-14), discordant with the continual decline in high-latitude northern 

hemisphere summer insolation (Laskar et al., 2004).  A return to slightly more positive 

and relatively stable δ18Ocal values could in part reflect slightly warmer temperatures 

and/or a decrease in cold-season or increase in warm-season precipitation (Figure 

5-10; Figure 5-11).  Alternatively, the δ18Ocal trend could be in part controlled by 

increased evaporative modification, leading to preferential loss of H216O via evaporation.  

However, this transition coincides with a shift to wet conditions between ~ 4,500 to ~ 

4,000 cal yr BP evinced from the water-table depth reconstruction at Nordan’s Pond 

Bog in eastern Newfoundland (Figure 5-12) (Amesbury et al., 2013).  Additional support 

for major environmental change at this time is seen in the δ18Oppt reconstruction from 

Nordan’s Pond Bog, which shows a ~ 4 ‰ negative shift at 3,900 cal yr BP (Figure 

5-12) (Daley et al., 2009).  Collectively, the regional proxy evidence suggests a major 

reorganization of atmospheric circulation occurred at this time across Newfoundland.   

Notably, the inflection point in Cheeseman Lake δ18Ocal and proxy evidence from 

Nordan’s Pond Bog coincides with widespread regional and global evidence for abrupt 

climate change initiating at this time (Booth et al., 2005; Liu et al., 2014).  For instance, 

Booth et al. (2005) synthesize mid-continent North American hydroclimate records and 
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report evidence for a severe drought between 4,300 to 4,100 cal yr BP.  Interestingly, 

low to middle latitude sites in North America experienced severely dry conditions at the 

same time many higher latitude sites experienced a shift to wetter conditions (Booth et 

al., 2005).  Evidence for changes in climate teleconnections and internal modes of 

variability from proxy records are reported across North America around this time.  For 

instance, variations in the Mt. Logan ice core δ18O record are interpreted to reflect 

enhanced meridional atmospheric circulation and an increase in the positive phase of 

the El Niño Southern Oscillation at 4,200 cal yr BP (Fisher et al., 2008).  In addition, 

evidence for a mean-state shift in the Pacific-North American (PNA) pattern is found in 

paleoclimate records around 4,000 cal yr BP (Liu et al., 2014).  The PNA influences 

North American weather patterns through its attendant effect on the strength and 

location of the East Asian jet stream, which determines the mode of atmospheric 

circulation (zonal vs. meridional flow) traversing the continent, primarily during the 

winter months.  Variations in the PNA are driven by internal atmospheric variability and 

external forcing.  In a synthesis of several δ18O records from across North America, Liu 

et al. (2014) report evidence for PNA negative conditions during the middle Holocene 

and a shift to PNA positive conditions after 4,000 cal yr BP.  This shift would correspond 

with a transition from zonal to greater meridional atmospheric circulation through the 

middle to late Holocene, which in turn influences the position of the winter time polar 

front, atmospheric temperature, and the δ18Oppt across North America.  Additional proxy 

evidence showing a shift in atmospheric circulation during the middle Holocene between 

~ 5,000 to ~ 4,000 cal yr BP are reported from New York State (Kirby et al., 2002) and 

southern Ontario (Edwards et al., 1996; Yu et al., 1997).  While it is uncertain what if 
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any connection exists between these large scale climate teleconnections and the 

Cheeseman Lake δ18Ocal record, existing proxy evidence from Newfoundland 

(Amesbury et al., 2013; Daley et al., 2009) provides support for major climatic change at 

this time in eastern North America. 

5.7 CONCLUSIONS 

The Cheeseman Lake δ18Ocal record provides insights into the Holocene 

evolution of δ18Oppt in eastern North America.  Lake hydrology and isotope mass 

balance model simulations support the interpretation that δ18Ocal records variations in 

the annual moisture surplus weighted δ18Oppt.  Lake model simulations further indicate 

that Cheeseman Lake is sensitive to cold-season (October-March) temperature 

changes, and to a much lesser extent the seasonality of precipitation.  Variations in 

Cheeseman Lake δ18Ocal permit identification of two distinct isotopic zones, based on 

overall differences in the trend of δ18Ocal over time, which are broadly consistent with 

the disparity in Earth’s boundary conditions before and after ~ 8,000 cal yr BP.  A 

general trend of increasing and more positive δ18Ocal values between ~ 10,200 to ~ 

7,950 cal yr BP is interpreted to reflect warming temperatures, coinciding with 

Laurentide Ice Sheet deglaciation, changing surface ocean δ18O from enhanced 

meltwater, rising eustatic sea levels, and warming temperatures inferred from 

Greenland ice cores.  The increasing trend is interrupted by abrupt δ18Ocal anomalies to 

more negative values at ~ 9,700 and ~ 8,500 cal yr BP, that coincide with cooling 

events in the adjacent Labrador Sea and circum North Atlantic region.  After ~ 7,950 cal 
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yr BP, δ18Ocal values decrease to gradually more negative values until ~ 4,300 cal yr 

BP, which we interpret as a cooling trend, consistent with declining Boreal summer 

insolation and cooling sea surface temperatures in the western North Atlantic Ocean.  

δ18Ocal values return to slightly more positive values after ~ 4,300 cal yr BP and 

thereafter remain relatively stable until ~ 1,200 cal yr BP.  The transition at ~4,300 cal yr 

BP corresponds with a shift to wetter conditions in Newfoundland evinced from other 

paleo-proxy records.  The discordance between Cheeseman Lake δ18Ocal values and 

declining insolation could in part reflect warmer temperatures and/or changes in the 

seasonality of precipitation resulting from an abrupt and mean-state shift in atmospheric 

circulation.  For instance, a transition to the positive phase of the El Niño Southern 

Oscillation, the positive phase of the Pacific-North American pattern, and regional to 

global evidence for climate change occur around ~ 4,200 cal yr BP.  Accordingly, proxy 

evidence from Cheeseman Lake and other paleo records from Newfoundland provide 

additional support for climatic change at this time from eastern North America.    
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6.0  SUMMARY AND CONCLUSIONS 

 This dissertation uses the sedimentary record from lakes combined with detailed 

analysis of physical sedimentology, geochemical proxies, and radiometric dating to 

reconstruct lake-levels, hydroclimate conditions, and paleoenvironmental changes in 

Alaska and Newfoundland spanning the late-Quaternary.  The geographic focus is on 

high-latitude regions in North America, which are climatically sensitive regions due to 

ice-albedo processes and associated positive feedbacks (ACIA, 2005).  Arctic regions 

have experienced accelerated warming over the late 20th century (Miller et al., 2010), 

resulting in adverse impacts including the drying up and disappearance of lakes from 

increased evaporation and permafrost degradation.  Lake sediment reconstructions 

provide a long-term geological perspective of past changes in hydroclimate and 

environmental conditions that allow direct comparison with the instrumental record to 

assess the natural range of climatic conditions spanning the late-Quaternary.  Further, 

paleo observations provide important constraints to validate and test the performance of 

climate model simulations that quantitatively investigate paleoclimate conditions 

(Bartlein et al., 2011), which ultimately helps to better predict the range of future climate 

scenarios.  

In the interior of Alaska, a 31,000 year record of lake-level and 

paleoenvironmental change from Harding Lake shows very low lake-levels along with 
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extremely arid and windy conditions during the global LGM until 15,700 cal yr BP.  The 

Lateglacial to early Holocene period between 15,700 to 9,400 cal yr BP is marked by 

higher and fluctuating lake-levels, a decrease in windiness, and increases in terrestrial 

and aquatic productivity.  The expansion of Betula forest at ~ 14,600 cal yr BP provides 

additional support for wetter and warmer conditions compared with the preceding glacial 

period.  A rapid increase in sedimentation rate, terrestrial and aquatic productivity, and 

rising lake lake-levels to near the overflow indicates considerable environmental change 

between 9,400 to 8,700 cal yr BP.  Generally high and stable lake-levels persist after 

8,700 cal yr BP to the present with conditions similar to the modern lake.  Increases in 

Alnus by 7,000 cal yr BP and Picea by 5,600 cal yr BP, combined with continued 

predominance of Betula through the Holocene, indicate substantial expansion of boreal 

forest during the middle Holocene at Harding Lake. 

 In northwest Arctic Alaska, a 37,000 year record of paleoenvironmental change 

from Burial Lake provides the oldest continuous lacustrine record from eastern Beringia 

to date.  Relatively high lake-levels and gradually decreasing in-lake and terrestrial 

productivity occur during the mid-Wisconsinan interstadial between 37,200 to ~ 29,600 

cal yr BP.  The subsequent period is defined by falling and lower lake-levels with 

decreasing effective-moisture, windier conditions, and sustained and low levels of 

aquatic productivity throughout the LGM between ~ 29,600 to ~19,600 cal yr BP.  

Although our age control is limited through the LGM, we suggest the relatively early 

LGM alpine glacial maximum extent in the central Brooks Range could have occurred 

during a time of slightly higher effective moisture levels.  Therefore, we hypothesize that 

subsequent more extensive advances were possibly precluded by greater aridity as the 
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Bering Land Bridge increased in size and the distance from marine moisture sources 

increased.  The last deglaciation that commenced by ~19,600 cal yr BP is characterized 

by gradual changes in several sediment physical and geochemical proxies, including 

increasing C/N ratios and terrestrial productivity, decreasing magnetic susceptibility and 

clastic sediment flux, along with rising and relatively higher lake-levels.  We suggest this 

transition is related to initial retreat of the Laurentide Ice Sheet at ~ 19,000 cal yr BP 

and a re-organization in atmospheric circulation across eastern Beringia, resulting in 

increasing effective moisture levels and terrestrial productivity at Burial Lake.  A 

decrease in aeolian activity after 16,500 cal yr BP is inferred from the appearance of 

fine (very fine sandy silt) sediment, compared to coarse sediments through the LGM 

and last deglaciation. The highest levels of terrestrial productivity along with increasing 

and variable aquatic productivity occurs during the Lateglacial to early Holocene interval 

between 16,500 to 8,800 cal yr BP.  The absence of multi-proxy evidence for a climatic 

reversal during the Younger Dryas from Burial Lake sediments contrasts with other 

paleorecords showing cooler temperatures and/or dry conditions in northern Alaska at 

this time.  Peak levels of sediment organic content and terrestrial productivity at Burial 

Lake between ~ 10,500 to 9,900 cal yr BP coincide with the early Holocene summer 

insolation maxima.   The remainder of the Holocene (since 8,800 cal yr BP) at Burial 

Lake is characterized by relatively high and stable lake levels, landscape stabilization, 

and relatively high and variable levels of aquatic productivity. 

At Burial Lake, a multiproxy approach is used to investigate the evolution of 

Holocene climate at multi-decadal to sub-century scale resolution.  In this chapter, we 

report the first evidence for cyclical and millennial scale fluctuations in climate from 
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Arctic Alaska.  Large fluctuations in biogenic silica and related proxies at millennial 

timescales in Burial Lake occur over the last 10,000 years.  We interpret changes in 

biogenic silica (BSi) to result from variability in aquatic productivity, which is indirectly 

mediated by climate through changes in the duration of the ice-free growing season and 

the availability of limiting nutrients at this oligotrophic, tundra lake.  Time series analysis 

of the BSi record indicates a significant ~1,500-yr periodicity emerges by ~6,000 cal yr 

BP that disappears after ~3,000 cal yr BP. Comparison of aquatic productivity against a 

sea-ice inferred reconstruction of the Arctic Oscillation (AO) shows that periods of 

reduced productivity at Burial Lake coincide with positive phases of the AO.  

Reconstructed AO+ conditions that correspond with lower summer temperatures and a 

shortened ice free season result in a decreased flux of limiting nutrients from permafrost 

degradation and lower levels of aquatic productivity at Burial Lake. Further, the 

reconstructed aquatic productivity and the AO display similar millennial scale 

periodicities with ~1,500-yr variability during the middle Holocene that transitions to 

~1,000-yr variability during the late Holocene. We propose that aquatic productivity at 

Burial Lake is related to state changes in the AO and that millennial variability that the 

record exhibits is related to internal oscillations within the climate system.  

In west-central Newfoundland, a record of the oxygen isotopic composition of 

lacustrine carbonate minerals (δ18Ocal) from Cheeseman Lake provides insights into the 

Holocene evolution in δ18Oppt from eastern North America.  A general trend of 

increasing and more positive δ18Ocal values between ~ 10,200 to ~ 7,950 cal yr BP is 

interpreted to reflect warming temperatures, coincides with Laurentide Ice Sheet 

deglaciation, changing surface ocean δ18O from enhanced meltwater, rising eustatic sea 
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levels, and warming temperatures inferred from Greenland ice cores. The increasing 

trend is interrupted by abrupt δ18Ocal anomalies to more negative values at ~ 9,700 and 

~ 8,500 cal yr BP, that coincide with cooling events in the adjacent Labrador Sea and 

circum North Atlantic region. After ~ 7,950 cal yr BP, δ18Ocal values decrease to 

gradually more negative values until ~ 4,300 cal yr BP, which we interpret as a cooling 

trend, consistent with declining Boreal summer insolation and cooling sea surface 

temperatures in the western North Atlantic Ocean. δ18Ocal values return to slightly more 

positive values after ~ 4,300 cal yr BP and thereafter remain relatively stable until ~ 

1,200 cal yr BP, possibly reflecting warmer temperatures and/or changes in the 

seasonality of precipitation resulting from an abrupt and mean-state shift in atmospheric 

circulation. 
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