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ABSTRACT 

When genome-wide association studies (GWAS) or sequencing studies are performed on family-

based datasets, the genotype data can be used to check the structure of putative pedigrees. Even 

in datasets of putatively unrelated people, close relationships can often be detected using dense 

single-nucleotide polymorphism/variant (SNP/SNV) data. 

 A number of methods for finding relationships using dense genetic data exist, but they all 

have certain limitations, including that they typically use average genetic sharing, which is only a 

subset of the available information. We present a set of approaches for classifying relationships 

in GWAS datasets or whole genome sequencing datasets. We first propose an empirical method 

for detecting identity-by-descent segments in close relative pairs using unphased dense SNP data 

and demonstrate how that information can assist in building a relationship classifier. We then 

develop a strategy to take advantage of putative pedigree information to enhance classification 

accuracy. Our methods are tested and illustrated with two SNP array datasets from two distinct 

populations. With these new techniques, we propose classification pipelines for checking and 

identifying pair-wise relationships in datasets containing a large number of small pedigrees. 
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We also explore the performance of the pipeline on a whole exome sequencing dataset. 

Although the classifier based on SNP array data does not perform well on exome sequencing 

data, it can in principle be modified using new algorithm parameters and training data in order to 

achieve better performance. 

Finally, we develop a method to reconstruct pedigrees from pair-wise relationship 

information. Our method can reconstruct core pedigrees with high accuracy and pair-wise 

relationship inferences can be further improved during this process. 

Detecting close family relationships and reconstructing pedigrees are important in both 

population-based and family-based studies. Providing precise pedigrees and hidden relatedness 

information helps increase the accuracy and power of various genetic analyses and avoids false 

positive associations, making these studies more efficient in identifying the genetic basis of 

diseases. This is a crucial step on the path to developing better treatments and interventions and 

improving public health. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

When genome-wide association studies (GWAS) or sequencing studies are performed on family-

based datasets, the genetic marker data can be used to check the structure of putative pedigrees. 

Even in datasets of putatively unrelated people, such as a large number of people from a local 

geographical region (e.g., sequenced by a regional healthcare system), close relationships can 

often be detected using dense single-nucleotide polymorphism/variant (SNP/SNV, we use SNP 

for short) data. 

It is important to test putative relationships and also test for unexpected relationships in 

genetic studies. Validity of linkage analyses depends on accurate pedigree structures. Hidden 

relatedness may cause genomic inflation and affect ancestry inferences in population-based 

studies (Patterson, Price et al. 2006). Presence of hidden close relationships may also lead to 

false associations, especially in the analysis of rare variants. In health-system datasets without 

pedigree information, pedigrees can be inferred, adding power to genetic analyses. 

An important step in relationship inference is to identify regions of identity-by-descent 

(IBD) between pairs of individuals. Shared IBD segments between individuals can be inferred by 

identical-by-state (IBS) of streaks of SNPs using dense marker data. Existing methods for 

detecting IBD segments have certain limitations: some are very time-consuming, some require 
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extra assumptions, such as independence between SNPs, and some need correctly phased 

genotypes as input. To strike a balance between computational time, accuracy, and extra 

requirements on the data, we developed an empirical method for detecting IBD segments and 

indentifying recombination events in close relative pairs. We explored combinations of different 

strategies (large sliding window vs. small fixed window; reference panel vs. no reference panel; 

windows based on physical distance vs. those based on a fixed number of SNPs) and developed a 

new algorithm that is computationally efficient and does not require knowledge of putative 

relationships. 

A common limitation of existing relationship inference methods is that most of them use 

average genetic sharing, which is only a subset of the available information. By using our 

algorithm, spatial genetic sharing information can be extracted.  We built a relationship classifier 

with information on both average and spatial genetic sharing for detecting relationships in 

datasets of putatively unrelated individuals or for checking relationships in datasets containing a 

large number of small pedigrees. 

Putative pedigrees are typically generated based on subject interviews. These pedigree 

structures often contain errors, but most of the information is still correct and useful. Putative 

relationships based on the putative pedigree structures can be used as prior knowledge to adjust 

for relationship classification (Ray and Weeks 2008). Ambiguous relationships falling on the 

boundaries of two or more categories might be pushed to the right category by taking into 

account their putative relationships. We therefore developed a strategy to take advantage of 

putative pedigree information to enhance classification accuracy. 
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Finally, we propose a method to reconstruct pedigrees with pair-wise relationship 

predictions. By reconstructing pedigrees, not only can we further improve the accuracy of pair-

wise relationship inference, but also generate the necessary input for various genetic analyses. 

This dissertation consists of 5 chapters. This first chapter is an overview and provides the 

general background as well as a literature review. Chapter 2 is a research paper covering the 

most essential parts of our work. It has minor overlap with chapter 1, but those parts were 

retained in order to make the chapter more readable as a standalone article. Chapter 3 and 

chapter 4 present two extensions of the work described in chapter 2. The last chapter provides a 

summary and discusses some possible future work. 

1.2 DENSE SNP DATA 

With the development of high-throughput genotyping technologies, the cost of dense SNP data 

has become more and more affordable for large-scale samples. We define dense as having at 

least 100,000 successfully genotyped SNPs. Two main technologies to generate dense SNP data 

are microarrays and massive parallel sequencing. 

1.2.1 SNP array 

Microarray technology allows thousands to millions of molecules to be measured simultaneously 

on a small chip for a biological sample.  A microarray is referred to as SNP array when it is 

designed for SNP genotyping. The genetic polymorphisms on a SNP array are preselected and 
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optimized to produce very accurate genotypes. As a result, with array technology, all genotyped 

individuals share a fixed set of SNPs. The selected SNPs are usually polymorphic in most 

populations and the SNP numbers for different arrays range from 100,000 to 5,000,000. 

1.2.2 Next-generation sequencing 

As automated Sanger sequencing is recognized as the first generation of sequencing technology, 

massively parallel sequencing technologies are referred to as the next-generation sequencing 

(Metzker 2010). 

Two types of next-generation sequencing can potentially generate genome-wide dense 

SNP data: one is whole genome sequencing and the other is whole exome sequencing. As 

denoted by their names, whole genome sequencing produces sequence data covering the whole 

genome, and whole exome sequencing only targets exon sequences. 

Sequencing data are essentially a collection of reads randomly distributed across the 

targeted area. Ideally such data should contain all the genetic variants in the targeted area, both 

common and rare. However, because of the randomness, there are some issues specific to 

sequencing data in practice. First, not all individuals have exactly the same set of SNPs being 

called from deep-sequencing data, so missingness is a difficult problem to deal with. Not only is 

this the case when the coverage is low or moderate, but is also true even for deep coverage. 

Secondly, the quality of genotypes called from sequencing data is often lower than that from 

SNP array data. Heterozygous genotypes are particularly inaccurate when the number of mapped 

reads is too few. Fortunately, when the sequencing depth is high enough, it always captures as 

many common SNPs without missingness and with almost as high quality as the SNP array. 
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For exome sequencing, the coverage is usually very deep. However, it is arguably not a 

genome-wide genotyping method, because there are gaps between exons. Although exons are 

quite dense and cover most of chromosomal regions, they are not distributed evenly. Therefore, 

we investigated if our methods are applicable to whole exome sequencing data and the results are 

shown in Chapter 3. 

1.3 BASICS OF PEDIGREE INFERENCE AND A LITERATURE REVIEW ON 

EXISTING METHODS 

The problem of pedigree testing and construction can be divided into three steps: segmental IBD 

detection, relationship inference, and pedigree inference. We review the background for each of 

them separately. 

1.3.1 IBD segment detection 

The first step in pedigree inference is to estimate IBD sharing between pairs of individuals. In 

principle, spatial information on genetic sharing can assist in determining relationships. For 

example, IBD states along chromosomes can be described as Markov processes with transition 

rates λ and 2λ for grandparent-grandchild and half-siblings. The process for avuncular 

relationship is non-Markov, but the transition rate is known to be 5/2λ (λ can be interpreted as 

the unit of genetic length) (Feingold 1993). In other words, the expected sojourn length between 

IBD state transition spots is different for different relationships. Accordingly, the observed times 



 

 

                                                                 6

of IBD state transition, which is a summary of the spatial IBD information, can help classify 

relationships. 

Existing popular methods for detecting IBD segments include PLINK (Purcell, Neale et 

al. 2007), BEAGLE (Browning and Browning 2011), PARENTE/PARENTE2 (Rodriguez, 

Bercovici et al. 2014) and GERMLINE (Gusev, Lowe et al. 2009). 

The IBD segment detecting algorithm embedded in PLINK is based on a hidden Markov 

model (HMM), which uses the observed IBS and overall genetic sharing between the pair. 

PLINK does not model the dependency among SNPs and requires that the input SNPs are in 

linkage equilibrium, so dense SNP data must be pruned before running PLINK. 

The fastIBD algorithm implemented in BEAGLE also employs HMM. It takes into 

account the dependency among SNPs to simultaneously phase genotypes and detect shared IBD. 

Despite “fast” is in the name of this method, it requires quite intense computation, and is roughly 

one magnitude slower than other methods. 

PARENTE and PARENTE2 employ a variant of a likelihood ratio test for the presence of 

IBD in a sliding window. While PARENTE assumes independent SNPs and requires SNP 

pruning, PARENTE2 relaxes this by accounting for linkage disequilibrium. However, both 

PARENTE and PARENTE2 need a training dataset. While PARENTE adopts a training set of 

unrelated pairs, PARENTE2 requires phased training data to empirically estimate haplotype 

frequencies. 

GERMLINE (Genetic Error-tolerant Regional Matching with Linear-time Extension) 

reduces the quadratic-time for the number of individuals to linear. It starts with phased genotype 

data and looks for the matches of haplotypes among individuals and expands them to long 

segmental sharing. However, as a trade-off it requires phased genotypes as input. 
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In general, most of the existing methods are likelihood-based. All of them have certain 

limitations: some of them require phasing the genotypes, some are very time-consuming, some 

are based on strong assumptions such as independence between genetic markers, and some 

require extra information such as training data. 

1.3.2 Pair-wise relationship inference 

The second step in pedigree inference is inference about relationships between pairs of relatives. 

Existing methods for relationship inference can be grouped into the following three classes. 

Methods for sparse genetic markers: Before the era of GWAS and whole-genome 

sequencing studies, the popular methods for inferring relationships models IBD states using 

likelihood-based methods, assuming independent markers. Examples include PREST (McPeek 

and Sun 2000) and RELPAIR (Epstein, Duren et al. 2000). These methods usually infer 

relationships based on hypothesis testing. Because they are based on a hypothesis-testing 

paradigm, they have built-in assumptions about what relationships are more likely. 

Methods for dense SNP data without using spatial genetic sharing information: When 

dense SNP data became available, many new relationship inference tools were developed to use 

genome-wide data, such as PLINK (Purcell, Neale et al. 2007), KING (Manichaikul, 

Mychaleckyj et al. 2010) and REAP (Thornton, Tang et al. 2012). PLINK makes a strong 

assumption of a homogeneous population. KING and REAP are robust in the presence of 

population structure, while REAP also works for population admixture. These methods focus on 

estimating measures of average genetic sharing, such as kinship coefficients and probabilities of 

IBD sharing between each pair of individuals. Based on estimates of these quantities, using 
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predefined inference criteria, different relationships can be separated. But many very close 

relatives, such as grandparent-grandchild, half-siblings and avuncular pairs in the second-degree 

relationship category, share the same expected values for these quantities (Table 1.1). 

 

Table 1.1 Expected IBD scores of different relationships 

Relationship Category P(IBD=0) P(IBD=1) P(IBD=2) 

Monozygotic twins 0     0     1     

Full siblings  1/4  1/2  1/4 

Parent-offspring 0     1     0     

Unrelated 1     0     0     

First cousins  3/4  1/4 0     

Grandparent-child  1/2  1/2 0     

Half siblings  1/2  1/2 0     

Avuncular pairs  1/2  1/2 0     
 

Methods for dense SNP data using spatial genetic sharing information: More recent 

methods have begun to incorporate spatial information on genetic sharing to help increase the 

inference accuracy. Stevens et al (Stevens, Heckenberg et al. 2011) developed a method to 

calculate better estimates of average IBD sharing based on observed IBS within chromosomal 

windows. Then combining with the average IBS sharing, it empirically infers the degrees of 

relationships. GRAB (genetic relationship by averaged blocks) (Li, Glusman et al. 2014) 

employs a similar approach to segment the genome into blocks to obtain average IBD sharing, 

but uses a classification tree to infer relationship degrees. Although both of these methods 

consider spatial information on genetic sharing, they do not directly use it for relationship 

classification but instead use it for better estimates of average IBD sharing. ERSA (estimation of 

recent shared ancestry) (Huff, Witherspoon et al. 2011) constructs a likelihood ratio test for any 
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relatedness utilizing the number and genetic lengths of IBD segments shared between two 

individuals. They provide a maximum-likelihood estimate for the degree of relationship if 

significant relatedness is found between the two individuals. ERSA 2.0 (Li, Glusman et al. 2014) 

achieves better performance for whole-genome sequence data by masking several irregular 

genomic regions that exhibit excess spurious IBD in sequencing data, including certain 

centromeric regions, unmappable heterochromatic regions of the genome, and regions of long-

range linkage disequilibrium. ERSA and ERSA 2.0 appear to be the only relationship inference 

tools that actually take advantage of spatial genetic sharing. With the aid of spatial genetic 

sharing information, improved accuracy has been shown for these methods. However, they still 

focus on separating degrees of relationships and none of them can effectively separate second-

degree relatives, i.e., grandparent-grandchild, half-siblings, and avuncular pairs, from each other. 

1.3.3 Pedigree reconstruction 

Pedigree reconstruction with genetic data has a long history, but until the recent availability of 

whole-genome genotype data, it was not powerful enough to be practical. Several state-of-the-art 

methods using whole-genome data have been developed recently, including MLP-ILP 

(Maximum Likelihood Pedigree reconstruction using Integer Linear Programming) (Cussens, 

Bartlett et al. 2013), COP (Constructing Outbred Pedigrees) and CIP (Constructing Inbred 

Pedigrees) (Kirkpatrick, Li et al. 2011), IPED (Inheritance Path-based Pedigree Reconstruction) 

(He, Wang et al. 2013) and IPED2, PREPARE (Pedigree Reconstruction of Extant populations 

using Partitioning of Relatives) (Shem-Tov and Halperin 2014), and PRIMUS (Pedigree 

Reconstruction and Identification of the Maximally Unrelated Set) (Staples, Qiao et al. 2014). 
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These methods work under different assumptions and are suitable for different real-life 

problems. 

Methods taking genotype data as input: MLP-ILP (Cussens, Bartlett et al. 2013) treats 

pedigrees as Bayesian networks and uses integer linear programming to search for the pedigree 

graph that maximizes the likelihood of the Bayesian network given the observed genotypes 

assuming all genetic markers are independent and the founder genotypes are in Hardy-Weinberg 

equilibrium. The advantage of this method is that it can handle inbred pedigrees and pedigrees 

with half-siblings. The downsides are that it only works for sparse and independently segregating 

genetic markers, and requires all the connecting individuals in pedigrees have fully observed 

genotype data. 

Methods taking IBD segments between each pair of individuals as input: This is the most 

popular school of methods so far. These methods attempt to reconstruct pedigrees from an 

“extant population”, which is defined as the latest generation in the population. They reconstruct 

pedigrees generation-by-generation, starting from the extant population, by grouping siblings 

among extant individuals and determining the parents of sibling group recursively. Of note, the 

extant population is assumed to be from the same generation, and only extant individuals have 

genotype data. Therefore, these methods are essentially reconstructing pedigrees by relating 

individuals with dummy parents and the dummy parents of dummy parents and so on. COP/CIP 

(Kirkpatrick, Li et al. 2011) first derives the expectation and variance of shared segment length 

between pairs of extant individuals that are related by different generations, analytically for 

outbred pedigrees (COP) and by simulation for inbred pedigrees (CIP). Then it calculates the 

observed average of shared length for each pair of individuals from the input data. With these 

quantities, tests are constructed for inferring sibling relationships in different generations. 
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Finally, COP/CIP applies a Max-Clique algorithm to identify sibling groups in each generation. 

This method does not consider pedigrees involving half-siblings, and the computation time for 

inbred pedigrees is exponential in the number of individuals. IPED (He, Wang et al. 2013) 

borrows the idea of COP/CIP and accelerated the computation for inbred pedigrees by dynamic 

programming. IPED still cannot deal with half-siblings in pedigrees. IPED2 extends the method 

to handle half-siblings. PREPARE (Shem-Tov and Halperin 2014) considers partitioning the 

relatives into maternal and paternal relatives and improves the accuracy of reconstructed 

pedigrees. It also can deal with half-siblings in pedigrees. An important shared issue with these 

methods is that they assume all the genotyped individuals are in the same generation, i.e., the 

extant population, which is rarely satisfied in reality. Also, performance of these methods relies 

on the accuracy of IBD segment inputs. Sometimes, inferring IBD segments is not trivial itself. 

Methods taking pair-wise relationship predictions as input: PRIMUS (Staples, Qiao et al. 

2014) is the most recent pedigree reconstruction method. It uses pair-wise relationship from six 

categories as the building blocks: parental, full-sibling, second-degree, third-degree, distant and 

unrelated relationships to reconstruct all possible pedigrees using relationship-likelihood vectors 

of all pair-wise relationships subject to several a priori restrictions. PRIMUS outperforms other 

current methods in most realistic settings, but it also has a few drawbacks, such as not using 

spatial information on genetic sharing (resulting in low accuracy for second-degree relationship 

predictions when the proportion of missing individuals is high) and being very slow for large 

pedigrees with a large number of missing individuals. 
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1.4 OUR METHODS 

In summary, many existing methods share some strategies with the pipeline we propose. 

However, none combines the strategies we feel are best in a single pipeline. And our pipeline 

includes novel techniques and features. Those are: 

• A fast empirical IBD algorithm 

• Use of spatial IBD information in relationship classification 

• Classification approach rather than hypothesis-testing 

• An option to use putative pedigree information or not 

• Reconstruction of pedigrees 

• Fast, convenient, and imposing few assumptions 
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2.0  A PIPELINE FOR CLASSIFYING RELATIONSHIPS USING DENSE SNP/SNV 

DATA AND PUTATIVE PEDIGREE INFORMATION 

This paper has been submitted to Genetic Epidemiology and is currently in the first round of 

revision. The co-authors include Zhen Zeng, Daniel E Weeks, Wei Chen, Nandita 

Mukhopadhyay and Eleanor Feingold. Eleanor Feingold proposed the initial ideas. I developed 

the ideas into detailed methods. Daniel E Weeks and Wei Chen provided advice and provided 

references to other relevant work. I implemented the methods, carried out simulations, and 

applied the methods to real datasets. Nandita Mukhopadhyay provided the analysis results of her 

recombination detection algorithm as a means for comparing our IBD segment detection 

algorithms. I drafted the first version of the paper. All the co-authors reviewed and contributed to 

the current version of this paper. 

2.1 ABSTRACT 

When genome-wide association studies (GWAS) or sequencing studies are performed on family-

based datasets, the genotype data can be used to check the structure of putative pedigrees. Even 

in datasets of putatively unrelated people, close relationships can often be detected using dense 

single-nucleotide polymorphism/variant (SNP/SNV) data. A number of methods for finding 
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relationships using dense genetic data exist, but they all have certain limitations, including that 

they typically use average genetic sharing, which is only a subset of the available information. 

Here we present a set of approaches for classifying relationships in GWAS datasets or large-

scale sequencing datasets. We first propose an empirical method for detecting identity-by-

descent segments in close relative pairs using un-phased dense SNP data and demonstrate how 

that information can assist in building a relationship classifier. We then develop a strategy to take 

advantage of putative pedigree information to enhance classification accuracy. Our methods are 

tested and illustrated with two datasets from two distinct populations. Finally, we propose 

classification pipelines for checking and identifying relationships in datasets containing a large 

number of small pedigrees. 

2.2 INTRODUCTION 

In genetic studies it is important to test putative relationships and also test for unexpected 

relationships. Validity of linkage analyses depends on accurate pedigree structure. Hidden 

relatedness may cause genomic inflation and affect ancestry inferences in population-based 

studies (Patterson, Price et al. 2006). Presence of hidden close relationships may also lead to 

false associations, especially in the analysis of rare variants. Also, inferring relationship pairs is 

useful in genealogical studies and forensics. 

A number of methods are available for testing relationships based on likelihoods and 

hypothesis testing, such as PREST (McPeek and Sun 2000) and RELPAIR (Epstein, Duren et al. 

2000). These methods usually require sparse and uncorrelated genetic markers. Most of the 
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existing relationship inference tools for dense single-nucleotide polymorphism/variant 

(SNP/SNV, we will use SNP for short in the rest of the paper) data as from genome-wide 

association studies (GWAS) or sequencing studies, such as PLINK (Purcell, Neale et al. 2007), 

need a strong assumption of a homogeneous population. More recent additions, KING 

(Manichaikul, Mychaleckyj et al. 2010) and REAP (Thornton, Tang et al. 2012), are robust in the 

presence of population structure and admixture. However, although these methods are powerful 

for detecting first-degree, second-degree, and third-degree relationships, none of them can 

effectively separate second-degree relatives, i.e., grandparent-grandchild, half-siblings, and 

avuncular pairs, from each other. This is due to the fact that existing algorithms focus on 

estimating measures of average genetic sharing, such as kinship coefficients and probabilities of 

identity-by-descent (IBD) sharing, and the above mentioned second-degree relatives share the 

same expected values for these quantities. 

Average genetic sharing is only part of the information available in genomic data. In 

principle, grandparent-grandchild, half-siblings, and avuncular pairs are separable if spatial 

information on genetic sharing is also considered. IBD states along chromosomes can be 

described as Markov processes with transition rates λ and 2λ for grandparent-grandchild and 

half-siblings. For avuncular relationship, the process is non-Markov, but the transition rate is 

known to be 5/2λ (λ can be interpreted as the unit of genetic length) (Feingold 1993). In other 

words, the expected sojourn length in different IBD states, a summary of the spatial IBD 

information, is different for different relationships. The observed times of transition can therefore 

help classify relationships. Several existing algorithms for detecting segmental sharing of IBD, 

such as PLINK (Purcell, Neale et al. 2007), fastIBD (Browning and Browning 2011), 

GERMLINE (Gusev, Lowe et al. 2009), PARENTE and PARENTE2 (Rodriguez, Bercovici et 
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al. 2014), can be used to generate such summary statistics of spatial information, but they all 

have certain limitations: PLINK and PARENTE do not model SNP dependency and require SNP 

pruning; fastIBD has to phase genotypes and call IBD segments simultaneously; GERMLINE 

needs correctly-phased genotype data as input; and PARENTE2 requires a phased training 

dataset. 

Another important piece of relationship information is the putative pedigree that is 

typically generated based on subject interviews. These pedigree structures often contain errors, 

but most of the information is still correct and useful. Putative relationships based on the 

assumed pedigree structures could be used as prior knowledge to adjust for relationship 

classification (Ray and Weeks 2008). Ambiguous relationships falling on the boundaries of two 

or more categories based on IBD information might be therefore pushed to the right category by 

taking into account their putative relationships. Furthermore, the recombination rate in paternal 

meiosis (i.e., spermatogenesis) is known to be much lower than in maternal meiosis (i.e., 

oogenesis). The genetic length of the female autosomal genome is estimated to be 1.65 times that 

of the male (Kong, Gudbjartsson et al. 2002). Thus, expected IBD transition rates differ even 

within the same relationship category, depending on maternal meiosis or paternal meiosis, which 

could be inferred from sexes of intervening relatives. Therefore, sexes of pertinent relatives, if 

available, could be useful for further improving classification accuracy. So far, to our knowledge 

no existing method takes advantage of putative relationships and sexes of meiosis. 

In this paper we propose a set of approaches for classifying relationship types in GWAS 

datasets or large-scale sequencing datasets. We first present a new empirical algorithm for 

finding regions of IBD in closely-related individuals using un-phased dense SNP data. A 

summary of IBD spatial information, observed recombination number (N), is generated. We then 
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demonstrate how that information can be used in principle to distinguish relationships. We also 

build a classifier and develop novel approaches taking advantage of information from putative 

pedigree structures. All the methods are tested and illustrated with two different datasets. Finally, 

we propose classification pipelines for checking and identifying relationships aimed at datasets 

containing a large number of small pedigrees. Computational tools for implementing our 

methods are provided. 

2.3 METHODS 

2.3.1 Datasets 

Our methods were applied to two datasets from two distinct populations. One dataset consists of 

a homogeneous US sample (non-Latino whites) from the Center for Oral Health Research in 

Appalachia (COHRA) Project (dbGaP accession number phs000095.v3.p1). The other consists 

of a non-homogeneous Guatemalan sample from the Gene-Environment Association Studies 

(GENEVA) Guatemala Dental Caries Project (dbGaP accession number phs000440.v1.p1). Both 

datasets were genotyped using Illumina Human610-Quadv1_B BeadChip (Illumina, Inc., San 

Diego, CA, USA), and were cleaned to have genotyping rate per individual larger than 0.9, 

genotyping rate per SNP larger than 0.9, minor allele frequency larger than 0.01, and Hardy–

Weinberg equilibrium test p-value larger than 10-4. Approximately 540,000 autosomal SNPs 

were included in each dataset. 
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Table 2.1 Sample sizes and means of observed recombination number (N) by relationship category 

for the two training datasets 

Relationship 
category 

Guatemala US 

Training 
sample size 

N* mean 
(sd) 

Training 
sample size 

N* mean 
(sd) 

PO 100 0.2 (0.6) 100 0.4 (0.8) 

GG 72 43.8 (10.1) 46 35.3 (9.5) 

GGp 15 33.5 (9.6) 12 27.4 (8.6) 

GGm 57 46.5 (8.5) 34 38.0 (8.3) 

HS 60 76.4 (12.9) 100 68.6 (14.8) 

HSp 1 65.0 (NA) 18 45.0 (5.3) 

HSm 59 76.5 (12.9) 82 73.8 (10.5) 

AV 100 82.3 (9.9) 100 75.9 (9.0) 

FC 39 65.3 (10.9) 91 59.6 (13.6) 

UN 100 7.5 (6.1) 100 1.5 (1.3) 
 

*Not adjusted by the mean of UN pairs. PO: parent-offspring, GG: grandparent-grandchild, HS: half-

siblings, AV: avuncular pair, FC: first-cousins, UN: unrelated pair, GGp and HSp: paternal-meiosis GG 

and HS, GGm and HSm: maternal-meiosis GG and HS. 

 

 Both datasets contain abundant close relationships. The pedigree files have been 

previously cleaned manually by experts. We selected a number of pairs of individuals with 

confident relationships for the following categories as the gold standard to train two separate 

classification models, one for each population: monozygotic twins (MZ), full-siblings (FS), 

parent-offspring (PO), grandparent-grandchild (GG), half-siblings (HS), avuncular pair (AV), 
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first-cousins (FC), and unrelated pair (UN). Duplicate GG pairs (a grandchild and each of the 

grandparents are duplicated pairs) and any problematic relationships identified during the current 

analyses were removed from the training data. The training data sizes by relationship categories 

are summarized in Table 2.1. 

2.3.2 Algorithms for inferring IBD segments 

 

Figure 2.1 An example illustrating the IBD segments identified by our algorithm on chromosome 1 

for a pair of individuals 

Each dot represents a SNP. Red bars indicate IBD=0 segments. Blue bars indicate IBD=1 segments. Gray 

bars indicate uncertain regions where SNPs are too sparse. In this example, the observed recombination 

number (N) is 5. 

 

Our algorithm is based on rules relating IBD and identity-by-state (IBS): assuming no 

genotyping error, in IBD=0 regions, the IBS state could be 0, 1 or 2; in IBD=1 regions, the IBS 

state could be either 1 or 2; in IBD=2 regions, the IBS state can only be 2. Under these 

assumptions, large IBD segments can be identified simply by eye (Figure 2.1). The algorithm 
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essentially automates this visual inspection process. The intuition behind the algorithm is to call 

the IBD state in small chromosomal segments and then fill any low-information gaps and filter 

out small IBD segments. We investigated eight variations on this algorithm, considering different 

ways to define chromosomal segments, whether to use a sliding window, and whether to use a 

reference panel consisting of UN pairs for calling segmental IBD states. After careful 

comparison (see Results), the final algorithm defines chromosomal segments with a fixed 

number of SNPs, and neither uses a sliding window nor a reference panel (algorithm 5 in Table 

2.2). Steps for inferring IBD segments for a unilineal pair of individuals are shown in Figure 2.2 

and described as follows. 

Step 1: Divide each of the 22 autosomes into chromosomal segments each containing 200 SNPs. 

Count the number of SNPs with IBS=0 and IBS=1 within each segment, denoted as n0 and n1. 

Step 2: Compute the P-value for IBD=1 in each chromosomal segment by 1-B(X<n0; p=0.0001, 

n=n0+n1), where B(•) is the CDF of binomial distribution and p=Pr(IBS=0|IBD=1)  is the probability of 

IBS=0 given IBD=1 resulting from genotyping errors. 

Step 3: Call IBD states in each chromosomal segment. Uncertain small gaps are then filled 

according to their flanking IBD status (Figure 2.2). For regions where SNPs are particularly sparse, 

such as centromeres, the IBD states are labeled as unknown. 
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Figure 2.2 Algorithm flowchart 

The algorithm can be described as two steps: first call IBD state within each chromosomal segment, and 

then fill the low information or uncertain gaps across the whole chromosome. 

 

Our algorithm should work for SNP array data or sequence data as long as the data are 

genome-wide and markers are evenly distributed across genome. There are two tuning 

parameters in our method: the genotyping error parameter p and the number of SNPs in each 
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chromosomal segment. These can be chosen to accommodate the data features, such as SNP 

density and frequencies. 

Distinct from most of the current IBD inference methods, our algorithm is not likelihood-

based. It does not require SNPs to be independent, and does not need to estimate average IBD 

sharing in the study population or need the genotypes to be phased. The algorithm is designed to 

tackle the scenarios where IBD states are either 0 or 1 (i.e., unilineal relatives), but MZ and FS 

can easily be identified and separated in advance using conventional methods (e.g. PLINK 

(Purcell, Neale et al. 2007)). 

2.3.3 Quantifying the accuracy of the algorithms by simulation and comparison 

To choose the best algorithm from different combinations of strategies and evaluate the accuracy 

of the final algorithm, the eight proposed algorithms (Table 2.2) were evaluated in several ways. 

Our first comparison was based on simulated data. We used the third generation Rutgers 

Combined Linkage-Physical Map of The Human Genome (Matise, Chen et al. 2007) to estimate 

the genetic position for each SNP. Assuming recombination is a Poisson process on 

chromosomes, we generated random variables from an exponential distribution with mean 100 as 

the distances between recombination events (i.e., length of IBD segments). Artificially 

synthesized IBD data were simulated by joining the IBD=0 and IBD=1 segments sampled from 

30 UN pairs and 30 PO pairs randomly selected from the US dataset. Synthesized IBD data on 

chromosome 1 for 1,000 artificial pairs were simulated. Each of the eight proposed algorithms 

was used to infer IBD for the simulated data and the results were compared with the truth to 

estimate the false negative and false positive rates. 
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Besides simulation, we also evaluated the accuracy of algorithms by quantifying the 

concordance between duplicated GG pairs that share exactly the same IBD patterns but in 

opposite phase and by comparison with a recently developed recombination detection method 

based on known relationships (unpublished). 

2.3.4 Calculating the observed recombination number 

The observed recombination number (N) for a pair of individuals was defined as the total 

number of alternations between different IBD states across 22 autosomes after editing out the 

chromosomal regions with unknown IBD state. 

2.3.5 Estimating IBD scores 

Our classifiers were based on N and IBD scores. PLINK was used to estimate IBD scores k0, k1 

and k2 (probabilities of sharing zero, one and two IBD alleles) in the US sample. Due to the 

presence of population stratification and admixture in the Guatemalan sample, an ancestrally 

informative marker pruning technique (Morrison 2013) was applied to generate correct IBD 

estimates for the Guatemalan dataset. 

2.3.6 SVM classification and cross-validation 

A support vector machine (SVM) was used to build the classifiers. Unadjusted classifiers without 

putative pedigree information were based on k0 and N only. The k1 score was not considered as a 

feature because for unilineal relatives, k1 and k0 are collinear. To adjust for systematic difference 
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in N among populations due to different population background relatedness, we subtract from N 

the mean of UN pairs in each population, and set to 0 if it becomes negative after adjustment. 

To incorporate putative relationship information, a feature-weighted SVM was adopted. 

Indicator variables were created to specify the relationship category to which each pair belongs 

(0=no; 1=yes). The number of indicator variables matched that of relationship categories. The 

indicators were then included as additional features together with k0 and N in adjusted SVM 

models. Both k0 and N were scaled in the adjusted classifiers, but not the indicators. Instead, a 

tuning parameter s was introduced to weight the indicators. Let  be the feature vector for data 

point i after scaling k0 and N,  be the weighted feature vector,  be the indicators, and 

n be the number of indicators 

 

where ,     and  

 We used a radial basis kernel function in the SVM, with parameters selected using a grid 

search. Other kernel functions were explored but none of them achieved better performance. 

1,000 iterations of 5-fold cross-validation were carried out for assessing model performance. The 

software “libsvm” (implemented in the R package “e1071”) was used to realize the SVM models 

(Chang and Lin 2011). 
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2.4 RESULTS 

2.4.1 Comparison of different strategies for the IBD detection algorithm 

Table 2.2 shows metrics of accuracy and computational time for the eight combinations of 

algorithm strategies. Algorithm 5, which uses fixed number of SNPs to define chromosomal 

segments and does not use a sliding window or a reference panel, is among the best for all 

metrics and is faster than others. Thus, algorithm 5 was chosen as our final algorithm. We 

investigated algorithm 5’s performance by examining all the IBD segments omitted or 

mistakenly identified in the simulation. 150 IBD segments were false negatives and 21 were 

false positives. We found all the false positive segments were in the same region and were from a 

single pair sampled repeatedly in the simulation. The distribution of genetic length of false 

negative segments indicates the omitted segments are usually quite short (Figure 2.3). This is 

natural because our algorithm filters out small uncertain regions. The filtering caused more false 

negatives than false positives and therefore introduced a small bias, which can be seen from the 

mean differences between inferred N and the truth in the simulation (Table 2.2). However, the 

bias is reasonably small. Also, it should be noted that the false positives were either due to 

genotyping errors within IBD=1 regions or due to population background relatedness in IBD=0 

regions, which should be prevented aggressively, while false negatives are small IBD segments 

usually due to close double-recombination. In reality, the double-recombination interference 

results in fewer small IBD segments compared to the simulation with Poisson process, so our 

algorithm should have even less bias for real data. 
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Table 2.2 Comparison of different proposed algorithm strategies 

Algorithm 

Strategies Discordance between 7 
duplicated pairs 

Discordance with a recent 
relationship-aware method on 

30 pairs 

Simulation results on 
chromosome 1 of 1,000 
pairs (2,784 simulated 
recombination events) Computational 

time for 53 
pairs (in 
seconds) 

Partitioning 
chromosomes by 

Call IBD 
with sliding 

window 

Use of 
reference 

panel 

l1 norm of 
differences in 
N over pairs 

l1 norm of 
differences in 

N over 
chromosomes 

and pairs 

l1 norm of 
differences in 
N over pairs 

l1 norm of 
differences in 

N over 
chromosomes 

and pairs 

l1 norm of 
differences 
between N 

and the truth 

Mean of 
truth minus 
mean of N 

1 physical distance No No 21 41 42 58 310 0.248 244 
2 physical distance No Yes 14 40 46 62 455 0.309 337 
3 physical distance Yes No 21 59 90 116 374 0.202 419 
4 physical distance Yes Yes 22 62 72 104 452 0.148 610 
5 number of SNPs No No 12 34 33 45 282 0.208 93 
6 number of SNPs No Yes 13 45 38 52 417 0.353 182 
7 number of SNPs Yes No 7 31 77 101 326 0.278 253 
8 number of SNPs Yes Yes 25 69 106 122 454 0.380 446 
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Figure 2.3 Genetic lengths of 150 false negative IBD segments (red) and 3,784 true segments (blue) 

2.4.2 Classifying relationships using N and k0 

 

Figure 2.4 SVM classifiers with features N and k0 for the US and Guatemalan populations 

Colored areas illustrate different relationship categories. Training data are plotted with circles. Cross 

symbols indicate the support vectors. AV and HS are grouped as one category. 
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Table 2.3 Prediction accuracy (in percentage) and associated 95% confidence interval for the US and 

Guatemalan datasets based on 1,000 5-fold cross-validation 

US Predicted True Relationship 
AV/HS FC GG PO UN 

 
AV/HS 93.8 (92.5, 95.0) 5.8 (4.4, 7.7) 15.5 (10.9, 21.7) 0 0 

 
FC 0 94.2 (92.3, 95.6) 0 0 0 

 
GG 6.2 (5.0, 7.5) 0 84.5 (78.3, 89.1) 0 0 

 
PO 0 0 0 100 (100, 100) 0 

 
UN 0 0 0 0 100 (100, 100) 

       
Guatemala Predicted True Relationship 

AV/HS FC GG PO UN 

 
AV/HS 95.5 (94.4, 96.3) 0.4 (0, 2.6) 4.8 (2.8, 5.6) 0 0 

 
FC 1.2 (0.6, 1.9) 99.6 (97.4, 100) 0 0 0 

 
GG 3.3 (3.1, 3.8) 0 95.2 (94.4, 97.2) 0 0 

 
PO 0 0 0 100 (100, 100) 0 

 
UN 0 0 0 0 100 (100, 100) 

 

 

Table 2.4 Results of cross-population prediction between the US and Guatemalan datasets 

US predicts 
Guatemala Predicted True Relationship 

AV/HS FC GG PO UN 

 
AV/HS 157 1 14 0 0 

 
FC 2 38 0 0 1 

 
GG 1 0 58 0 0 

 
PO 0 0 0 100 0 

 
UN 0 0 0 0 99 

 
Accuracy 98.1% 97.4% 80.6% 100% 99% 

       Guatemala 
predicts US Predicted True Relationship 

AV/HS FC GG PO UN 

 
AV/HS 182 14 1 0 0 

 
FC 0 76 0 0 0 

 
GG 18 0 45 0 0 

 
PO 0 0 0 100 0 

 
UN 0 1 0 0 100 

 
Accuracy 91% 83.5% 97.8% 100% 100% 
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N and k0 were used as two features to train the classifiers. Figure 2.4 shows the scatter 

plots of N and k0 for the US and Guatemala training data and visualizes the two classifiers. AV 

and HS cannot be distinguished in most cases, so these two relationships were pooled together 

and treated as one category (see Discussion). Cross-validation results are shown in Table 2.3. 

The prediction accuracy was greater than 90% for all the relationship categories, except for GG 

(84.5% in the US sample). Cross-population prediction results, i.e., using the classifier built in 

one population to predict the training data in the other population, were also satisfactory, with 

the accuracy for all relationship categories better than 80% (Table 2.4). The adjustment for N 

with the mean of UN pairs is crucial. Essentially, the two populations have very different 

background relatedness. The Guatemalan sample has inflated N compared to the US sample. In 

other words, excessive shared IBD segments were observed between Guatemalan unrelated 

individuals, probably due to background distant relatedness in the population. Therefore, in 

practice, obtaining the mean N from a set of UN pairs to adjust for N is a useful extra step to 

enhance the robustness of our classifiers. 

2.4.3 Incorporating putative relationships 

The use of putative relationship information is a double-edged sword: when the information is 

correct, it improves the classification; otherwise, the classification may be misled and may give 

worse results. Therefore, how to weight the prior pedigree information is crucial. A reasonable 

value of the tuning parameter s should be selected to take advantage of correct information while 

retaining the ability to recover from misleading wrong prior information. 

To assess the improvement in prediction accuracy, the relationship-indicator-adjusted 

classification results using correct relationship indicators were compared with the unadjusted 



 

                                                                            30 

ones. Classification accuracy of each relationship category was estimated by 1,000 time 5-fold 

cross-validation. To assess the recovery rate for different types of misspecification in putative 

pedigree information, relationships were intentionally misspecified and the modified data were 

predicted with the adjusted classifier. Recovery is defined as a prediction escaping the 

misspecified relationship: the predicted category could be the true category or any other 

category, even an incorrect one. Whenever a prediction differs from its presumed one, it will be 

classified again using the unadjusted two-feature classifier without the putative relationship 

indicators. The rationale is that if the putative relationships are specified correctly, better 

classification accuracy will be achieved; if the putative relationships are wrong, there is a good 

chance to be recovered and reclassified by the unadjusted classifier. 

 

 

Figure 2.5 Classification accuracy and recovery percentage as functions of s value in the US and 

Guatemalan populations 

The red, blue and green solid curves represent the classification accuracy based on 1,000 5-fold cross-

validation for relationship categories AV/HS, FC and GG respectively, when including relationship 

indicators as features and the putative relationships are correct. Dashed curves represent the percentage of 
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pairs being recovered when the putative relationships are misspecified as shown. Classification accuracy 

for relationship categories not shown and recovery percentage of types of misspecification not shown are 

100% across different s values. 

 

Figure 2.5 shows the improvement of classification accuracy and the decrease of 

recovery rates as s value increases in the two samples. To balance the gain and loss, a value of 

0.025 for s is recommended because the improvement is substantial (prediction accuracy > 96% 

for all relationship categories in both samples), while the recovery rates of all types of 

misspecification are above 80% except for GG being misspecified as AV/HS in the US samples. 

However, this type of misspecification is presumably rare in most cases. 

In practice, different s values can be selected by users depending on how much they 

would like to trust the putative pedigree structures. If the prior information is not reliable, a 

smaller s is recommended so that the prior information contributes less to the prediction. In 

contrast, if an investigator has good reasons to trust the collected pedigree data, a larger s is 

proper and the prior information would be weighted more to enhance the prediction. However, in 

any case, we do not recommend using an s beyond the scope of 0.01 and 0.03. 

2.4.4 Considering sex information of meiosis for GG 

The GG category was divided into two subgroups, paternal-meiosis GG (GGp) and maternal-

meiosis GG (GGm) by sex of the intervening parent. The training of SVM classifiers and the 

adjustment using putative relationships were the same as before. Better prediction accuracy was 

not observed in either dataset (data not shown). 
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2.4.5 Pipelines for classifying relationships with and without prior pedigree information 

 

Figure 2.6 Classification pipelines with or without prior pedigree information 

UN*: within-family founder pairs. AIM: ancestrally informative marker 

 

Combining our methods with existing approaches, we propose general pipelines for relationship 

classification (Figure 2.6). In general, the pipelines can be summarized into four stages. 

Stage 1: Clean genotype data and get the list of individual pairs for testing. When no prior 

pedigree information is available or detecting between-family relationships is of interest, all pair-wise 

relationships should be examined. When checking within-family putative relationships is of interest, all 

close relationships of the eight categories should be extracted. An R tool is provided for extracting 

putative relationships according to putative pedigree structures. 

Stage 2: Calculate IBD estimates. Separate MZ, FS and most of the UN pairs according to k0 and 

k1. A conservative cutoff for UN is k0>0.95. MZ or FS pairs can be arbitrarily defined as satisfying 

k0<0.5, k1<0.7, and k0+k1<0.9. IBD estimates can be generated by either PLINK (Purcell, Neale et al. 

2007) for a homogeneous population or other robust methods (Manichaikul, Mychaleckyj et al. 2010; 

Morrison 2013) for a non-homogeneous population. The remaining pairs are left for SVM classification. 
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Stage 3: Obtain N for all the remaining pairs and adjust N with the mean estimated from a 

number of UN pairs. Our R package automatically treats all pairs with k0>0.95 as UN to calculate the 

offset value. 

Stage 4: Carry out the classification with the SVM classifier (using either one of the two provided 

or a user-defined population-matched classifier). One could adjust the classifiers using prior pedigree 

information. If putative relationships are used, those predictions disagreeing with corresponding putative 

relationships should be reclassified by unadjusted classifiers. Based on the final classification results, 

corrections can be made to the pedigree file. 

2.5 DISCUSSION 

We developed a new algorithm for IBD segment detection to utilize spatial information on 

genetic sharing between individuals to facilitate relationship classification. Our classification 

models can take advantage of putative relationships as prior information to enhance classification 

accuracy. Based on these new schemes, detailed pipelines for relationship classification are 

proposed, for checking within-pedigree putative relationships or detecting unknown relationships 

in population-based studies including many small families. 

We demonstrated our methods with two real datasets, one from the US population and 

the other from the Guatemalan population. Systematic differences between the two populations 

were observed. Basically, inflated observed recombination number N’s were observed for all 

relationship categories in the Guatemalan sample (Table 2.1). The inflation indicates the 

presence of shared chromosome segments in the population, presumably due to distant 

population background relatedness. In practice, if possible, we encourage investigators to collect 

user-defined training data and build population-specific classifiers. However, as long as a 
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number of UN pairs can be obtained and their mean is used to adjust N, the cross-population 

prediction accuracy is quite satisfactory, as seen in our US and Guatemalan samples. 

We were unable to show classification improvements by considering sex of meiosis. 

Limited by training data sizes, we only attempted separate-sex classification for GG pairs. Even 

so, the training sample sizes of maternal-meiosis GG (GGm) and paternal-meiosis GG (GGp) 

were quite small. In theory, sexes of meiosis could be considered for several other relationships. 

Table 2.5 lists all the relationships that can be divided into subtypes by sexes of their pertinent 

relatives and be modeled in the same way as GG. Thus, more advanced classifiers could be built 

accordingly if there were enough data. So, despite our failure to show improvement, sex 

information still has potential to enhance the classification performance, and is worth further 

investigation in the future. It should be noted that sex information is also putative in practice, 

since it is obtained from putative pedigree information. Effects of sex misspecification should 

also be investigated. 

Two issues regarding the classification accuracy should be noted. One is the composition 

of the data to be tested. In our classifiers, some categories contain subtypes, such as GG 

(comprises GGm and GGp) and AV/HS (comprise AV and HS), and the results are combined, 

ignoring subtypes. When the prediction accuracy differs among subtypes, composition of test 

data would influence the prediction accuracy of a category. For example, GGp is inherently 

classified better than GGm (since the N of GGm is closer to AV/HS). The more paternal GG in 

the test data, the better the classification results of GG will be. The other issue is the number of 

instances of each category in the training datasets. Since parameter selection is based on the 

overall prediction accuracy, small categories will automatically sacrifice for larger ones, i.e., the 

classifier will be trained to be more accurate for classes with higher frequency in the dataset. 
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Because we do not have balanced training data sizes for all relationship categories, our classifiers 

may have a preference for the categories with larger training data size. This issue can be solved 

easily when more training data are available. We suggest using confirmed relationships as 

additional training data to build better classifiers when possible. 

Because HS and AV have the same expected k0 and similar expected N (2λ for HS and 

2.5λ for AV), our methods are not able to distinguish them. It has been shown with simulated 

segmental IBD sharing (Hill and White 2013) that if one simultaneously takes into account the 

likelihood on the observed numbers, positions and lengths of shared IBD segments, correct 

relationships for HS and AV could be assigned with a probability of 0.83. This provides an upper 

bound of classification accuracy under the assumptions that all these quantities are measured 

perfectly and their distributions are known. In reality, the measures are approximate and we do 

not know the true distributions, so HS and AV are difficult to distinguish in practice. 

Our methods were implemented in R. In terms of computational efficiency, the most 

time-consuming step is calculating N. It took 441 seconds system time to compute N for the US 

sample (546 pairs) and 378 seconds for the Guatemalan sample (488 pairs) with two quad-core 

2.93 GHz CPUs and 24 GB of memory. Basically, the computing time increases linearly with the 

number of pairs to be tested. Also, the time required to read in the genotype data is not trivial 

when the dataset is very large. Data size is proportional to both the number of individuals and the 

number of SNPs. For computational efficiency, we recommend eliminating irrelevant individuals 

from the genotype file in the data cleaning step and transforming the data to a better format 

before processing it with R. Example code is given for transforming the data with PLINK and 

shell commands and can be found in the documentation of our R package. In addition, we 

recommend removing most of the confidently unrelated pairs with a conservative k0 score to 
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reduce the number of pairs to be tested as suggested in the pipelines (Figure 2.6). Our algorithm 

can be easily parallelized by both chromosomes and individual pairs to deal with extremely large 

datasets. 

 

Table 2.5 Relationships for which the sex of pertinent relatives can be used to create subcategories 

Relationship 
Number of 

meioses 
involved 

Number of 
meioses pertinent 

to expected N 

Number of 
pertinent 
relatives 

Description of 
pertinent relatives 

Possible sexes 
of pertinent 

relatives 

Relationship 
subcategories 

GG 1 1 1 
Parent of the 

grandchild relating 
to the grandparent 

Male Paternal GG 

Female Maternal GG 

HS 2 2 1 Common parent 
Male Paternal HS 

Female Maternal HS 

AV 5 1 1 

Parent of the 
nephew/niece 
relating to the 

uncle/aunt 

Male Paternal AV 

Female Maternal AV 

FC 6 2 2 
Two siblings as the 
parents relating the 

cousins 

Male and male Paternal FC 

Female and 
female Maternal FC 

Male and 
female Mixed FC 

 

 

Our IBD transition detecting algorithm is developed for both whole-genome SNP array 

data and sequence data. However, it is unclear whether it will work for whole-exome sequence 

data, which lie in between whole-genome and targeted sequencing. We will need to examine the 

algorithm performance on such data. 

Our relationship classification pipelines focus on generating accurate pair-wise 

relationships. It is also important to reconstruct the pedigrees with individual relationship pairs. 

Of note, some relationships may conflict with each other during pedigree reconstruction, which 

implies classification errors. It might be of interest to consider modeling relationship 



 

 37 

classification and pedigree construction together so that such errors can be avoided while further 

improving the relationship classification accuracy. A recent pedigree constructing tool has made 

use of such a notion but it treated all second-degree relationships as one category (Staples, Qiao 

et al. 2014). By dividing second-degree relationships with our methods, more accurate pedigrees 

might be reconstructed. 

We implemented the putative relationship extraction tool, IBD transition detecting 

algorithm, and relationship classifiers in an R package (available 

through http://relcla.sourceforge.net/). 

http://relcla.sourceforge.net/�
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3.0  APPLYING RELATIONSHIP CLASSIFIERS TO WHOLE EXOME 

SEQUENCING DATA 

3.1 MOTIVATION 

Our proposed IBD segment detection algorithm works for dense SNP datasets as long as the data 

are genome-wide and the markers are relatively evenly distributed across the genome. In addition 

to SNP array data, whole genome deep sequencing data also can be handled by our algorithm. 

However, due to cost, most sequencing studies are currently whole exome rather than whole 

genome. We therefore want to assess the extensibility of our algorithm for whole exome 

sequencing data. 

A few practical issues should be noted when applying our algorithm to whole exome 

sequencing data. In general, exons are not equally spaced in the genome. Also, while arrays are 

designed to include a fixed set of SNPs and all individuals have the same set of SNPs being 

genotyped except for sporadic missingness, sequencing usually produces much more missing 

data even when the coverage is quite deep. Lastly, the genotyping accuracy of sequencing data is 

one or two magnitudes lower than that of array data. 

To evaluate the actual performance, we tested our algorithm on real data. We investigated 

the distribution of markers for whole exome sequencing data. Different missingness filters and 

minor allele frequency filters were used to explore their impact on the signal/noise ratio. 
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3.2 DATASET 

A family dataset of age-related macular degeneration was provided by the National Eye Institute. 

Whole exome sequence data were generated on Illumina HiSeq 2500 platform for 82 subjects. 

The average sequencing depth was more than 50X, which means the expected number of reads 

are more than 50 for any given locus across the exome. Genotype calling was performed with 

GATK (McKenna, Hanna et al. 2010). The majority of the study subjects are of European 

ancestry. 18 subjects were removed (4 due to inbreeding, 7 due to non-European ancestry and 7 

because of unknown ancestry or unknown pedigree information), resulting a total of 64 

individuals belonging to 16 families in the final analysis. 

3.3 RESULTS 

3.3.1 Distribution of SNPs 

Figure 3.1a illustrates the density of SNPs across the genome for this whole exome sequencing 

dataset before applying any filtering. We can see that although the density is not uniform, most 

chromosomal regions are covered. However, after applying SNP genotype non-missing rate 

(Nmiss) and SNP minor allele frequency (MAF) filters to the data, SNPs become too sparse to 

cover all the areas (Figure 3.1b). In contrast, the SNP density for array data is fairly uniform 

across all the chromosomal regions (Figure 3.1c). 
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a. Whole exome sequencing data without filtering 
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b. Whole exome sequencing data with filters (Nmiss=1.0 and MAF>0.01) 
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c. SNP array data (the US dataset from Chapter 2) 

Figure 3.1 Density of SNPs across the 22 autosomes 
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3.3.2 IBD score estimates 

Since the sample is homogeneous, the pair-wise IBD score estimates for the 64 individuals were 

generated using PLINK (Purcell, Neale et al. 2007). Different combinations of SNP filters were 

tried to obtain the best IBD estimates in terms of the clear separation of different relationship 

degrees in the IBD plot, and Nmiss=1.0 and MAF>0.01 were selected. According to the IBD plot 

(Figure 3.2), FS (k0<0.5, k1<0.7, and k0+k1<0.9) and MZ (k0<0.1 and k1<0.1) relationships can be 

easily identified, as well as most of the UN pairs (k0>0.95). 

 

 

Figure 3.2 IBD plot for the 64 individuals 

k0: P(IBD=0), k1: P(IBD=1). Red lines show the boundaries defining FS, MZ, and most of UN. 
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3.3.3 The effect of SNP/SNV filters on the signal/noise ratio 

We again explored the effect of different combinations of non-missing rate filters and minor 

allele frequency filters on the genotype error rate, the number of informative SNPs, and the 

signal/noise ratio. The results are shown in Figure 3.3 and Table 3.1. For PO pairs in non-inbred 

families, IBD statuses are always 1 for all SNPs, so IBS can only be 1 or 2. Therefore, SNPs 

with IBS equal 0 indicate genotyping errors. We can use the ratio between SNPs with IBS 0 and 

SNPs with IBS 1 to measure this error rate, which corresponds to the noise. On the other hand, 

for UN pairs, IBD statuses are always 0, and the ratio between SNPs with IBS 0 and SNPs with 

IBS 1 can be deemed as the signal for IBD=0 status. The higher the ratio is, the greater the signal 

is. In this way, we defined the signal/noise ratio for IBD=0 status as a metric to select the best 

SNP filters, together with the number of informative SNPs. We hope to achieve larger 

signal/noise ratios so that segments with IBD=0 status can be distinguished more easily from 

segments IBD=1 status. Figure 3.3 illustrates the signal and noise for different SNP filters using 

the IBS plots of chromosome 1 for examples of different relationship pairs: PO, UN, and AV. 
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a. Nmiss>0.5 (upper: PO pair; middle: UN pair; bottom: AV pair) 
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b. Nmiss>0.7 (upper: PO pair; middle: UN pair; bottom: AV pair) 
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c. Nmiss>0.9 (upper: PO pair; middle: UN pair; bottom: AV pair) 
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d. Nmiss=1.0 (upper: PO pair; middle: UN pair; bottom: AV pair) 
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e. Nmiss=1.0 and MAF>0.01 (upper: PO pair; middle: UN pair; bottom: AV pair) 
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f. Nmiss=1.0 and MAF>0.05 (upper: PO pair; middle: UN pair; bottom: AV pair) 
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g. Nmiss=1.0 and MAF>0.1 (upper: PO pair; middle: UN pair; bottom: AV pair) 

 

Figure 3.3 IBS plots of chromosome 1 for PO, UN, and AV pairs after applying different SNP filters 

SNPs in the plots were sorted by position. IBS were plotted against SNP index rather than physical 

position. 
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Table 3.1 Number of informative SNPs and signal/noise ratio for different SNP filters 

Filters 
Total 

Number 
of SNPs 

UN pair  PO pair Average 
Signal/Noise 

Ratio 
Number of 
SNPs with 

IBS=1 

Number of 
SNPs with 

IBS=0 

IBS=0 
/IBS=1 

 Number of 
SNPs with 

IBS=1 

Number of 
SNPs with 

IBS=0 

IBS=0 
/IBS=1 

Nmiss>0.5 422,089 69,956 19,955 0.285  56,229 8,083 0.144 1.984 

Nmiss>0.7 340,159 66,530 15,673 0.236  53,526 5,830 0.109 2.163 

Nmiss>0.9 246,706 56,399 10,046 0.178  43,026 2,759 0.064 2.778 

Nmiss=1.0 168,472 39,166 5,572 0.142  30,461 736 0.024 5.888 
Nmiss=1.0 & 
MAF>0.01 129,362 38,684 5,572 0.144  29,717 736 0.025 5.816 

Nmiss=1.0 & 
MAF>0.05 87,312 35,177 5,526 0.157  27,397 690 0.025 6.237 

Nmiss=1.0 & 
MAF>0.1 68,929 30,684 5,367 0.175  24,910 633 0.025 6.883 

 

From the IBS plots and the fraction IBS=0/IBS=1 for PO pairs we can see that the 

genotype errors are much more frequent compared with those of array data, for which the 

fraction IBS=0/IBS=1 is less than 0.001. While missing rate is strongly associated with 

genotyping quality, minor allele frequency does not affect genotyping quality and signal/noise 

ratio dramatically.  

The best IBS=0/IBS=1 for PO pairs was achieved using the most stringent missingness 

filter, i.e., excluding SNPs with any missing values. On the other hand, excluding rare variants 

can result in better signal/noise ratio, but we also lose more informative markers. To balance 

both number of informative SNPs and signal/noise ratio, we used Nmiss=1.0 as the only filter. 

3.3.4 Relationship classification results 

The fact that the noise for exome sequencing data is much higher than that for array data makes 

it harder to determine IBD status transitions. As a result, the IBD segments are no longer easily 
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determined by visual inspection, as illustrated in the IBS plots for an AV pair (Figure 3.3). By 

modifying parameters in our IBD segment detection algorithm (setting the genotyping error 

parameter p at 0.01 and the number of SNPs per segment at 300), we can still run the algorithm, 

but the observed recombination number N is severely underestimated compared to the estimates 

from SNP array data. In theory, this underestimation is not necessarily a problem, since the goal 

of the procedure is not to estimate the recombination but rather to distinguish relative types. 

 We classified the pair-wise relationships for 270 pairs with k0 estimate and N using the 

US training data. The results are shown in Table 3.2. Based on these results, the relationship 

classification accuracy is not satisfactory, so our relationship classifiers built for SNP array data 

cannot be readily used for whole exome sequencing data. The unsatisfactory relationship calls 

are primarily due to the underestimated N. There are two major reasons for the underestimated 

N. The first is the high level of noise due to more genotype errors making our algorithm 

“insensitive” to IBD status transitions. The second is the unevenly distributed SNPs. Exons are 

clustered in some chromosomal regions and are too few in some other regions. After applying 

filters, SNPs become too sparse to provide accurate IBD segment information for some regions, 

making it impossible to detect any IBD status transitions within those areas. 

 

Table 3.2 Relationship classification results for 270 pairs in the whole exome sequencing dataset 

Relationship 
Category 

Mean of N in 
Training Data 
(SNP Array) 

Mean of N* in 
Testing Data (Exome 

Sequencing) 

Number 
of True 
Pairs 

Predicted 

PO 0.4 1.9 3 3 PO 

AV/HS 72.3 28.0 5 5 GG 

FC 59.6 20.9 30 20 FC + 6 UN + 3 GG + 1 AV/HS 

UN 1.5 1.9 232 232 UN 

*Adjusted by the mean of confident UN pairs 
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3.4 DISCUSSION 

In general, based on our exploratory test results, we conclude that the relationship classifiers 

based on array data cannot be directly used for whole exome sequencing data. This does not 

depend on the sequencing coverage, considering the sequencing coverage for the test dataset is 

more than 50X, but is due to issues embedded in exome sequencing data. However, it does not 

mean our methods and pipeline are totally useless. If we have more data to build specific 

relationship classifiers for whole exome sequencing data, we may alleviate the effect of the bias 

in N estimates. It is also worthwhile to try better genotype calling methods to enhance genotype 

quality. The currently genotypes are called individually, if we called samples jointly using the 

information on linkage disequilibrium, missingness can be reduced and genotype quality may be 

improved. 

Interestingly, it has been shown recently that analyzing multiple samples together 

considering their family information can further improve the genotype call accuracy in 

sequencing studies (Chen, Li et al. 2013). However, actual relationships must be validated with 

high quality genotype data. This is a paradox in practice. Therefore, it is important for 

investigators to decide which information is more reliable and how it might be used to improve 

the information on the other side. 
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4.0  PEDIGREE RECONSTRUCTION WITH PAIR-WISE RELATIONSHIP 

INFERENCES 

4.1 MOTIVATION 

Pair-wise relationships do not provide complete pedigree information, but they provide a basis 

for reconstructing more complete pedigrees. During the process of pedigree reconstruction, some 

relationship pairs may be found that are contradictory with others, implying incorrect pair-wise 

inferences. By reconstructing pedigrees, those contradictory relationships may be corrected, 

which in turn improves the accuracy of pair-wise relationship inference. Also, reconstructing 

pedigrees is necessary for various pedigree-based analyses, such as linkage analysis, family-

based association studies, checking Mendelian errors, and estimating heritability. So, our 

ultimate goal is to develop a tool to reconstruct pedigrees with the pair-wise relationship 

predictions, similar to PRIMUS (Staples, Qiao et al. 2014). 

The major difference between our method and PRIMUS is that we focus on 

reconstructing many small pedigrees fast and accurately. Therefore, all the relationships that we 

consider are close ones. Also, we use finer relationship categories as the building blocks: the 

separation of GG from AV/HS may let our method achieve better performance. 

Since we focus on either identifying very close relationships in population-based studies 

or correcting pedigrees in family-based studies with many small pedigrees, we assume the study 
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sample only contains families with three generations at most. Also, our method allows half-

siblings, but we assume the multiple partners do not occur within the first generation (the oldest). 

In addition, we assume there are no recent inbred relationships or bilineal relationships other 

than MZ and FS in the families. As a result, there are seven relationship categories under 

consideration: MZ, FS, GG, AV/HS, PO, FC, and UN, which are all within the scope of our pair-

wise relationship classifiers. 

When all the connecting individuals in a pedigree are genotyped, the pedigree can easily 

be reconstructed using only the first-degree relationships, i.e., all MZ, FS and PO relationships. 

Because the inferences for these relationships are very accurate, the information from other pair-

wise inferences can be simply ignored. However, problems arise when some connecting 

individuals in pedigrees are missing, in which case pedigree structures cannot be determined 

only with those confident relationships. We must then take into account other pair-wise 

relationships that are not as certain. Sometimes, pedigrees can be found to fit in all the inferred 

pair-wise relationships, but sometimes conflicts exist among some inferred relationships and 

there is no pedigree consistent with all the pair-wise relationship inferences. 

Ideally, we want to identify the most likely pedigrees among all the possibilities. A way 

to construct the likelihood of pedigrees given the predicted (observed) pair-wise relationships is 

described as follows. The likelihood of pedigrees given the observed pair-wise relationships can 

be expressed as a product of a series of conditional probabilities. Assuming the probabilities of 

all possible pedigrees are equal, we have: 
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(*) Given a pedigree is equal to given all pair-wise relationships, since they provide the same information. 

(**) Given all the true relationships, each observation of relationship is mutually independent. 

Note that the “observed relationships” are not “putative relationships from putative pedigree 

information”, but are “the relationships predicted by the classifier”. 

 

Therefore, maximizing  is the same as maximizing 

 over all possible pedigrees. 

After building a relationship classifier, we can estimate the classification accuracy for 

each relationship category and the error rate for each type of misclassification using the training 

data by cross-validation. These quantities can be interpreted as the probabilities of each 

relationship inference given the truth. Therefore, with these estimates we can directly calculate 

 for any given pedigree. 

Then, the problem becomes to enumerate all the possible underlying pedigrees and search 

for the pedigrees with maximum likelihood. However, enumerating all possible underlying 

pedigrees is NP-hard. More importantly, no simple algorithm is available for automating the 

enumeration. Although the search space may be reduced by the aforementioned assumptions and 

some relationship inferences are accurate enough to rule out certain kinds of misclassification, 

the problem still cannot be easily solved. 
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We therefore developed a compromise method to reconstruct “core pedigrees” that are 

extremely accurate and capture as many pair-wise relationships as possible with the assistance of 

individual age and sex information as well as constraints imposed by the assumptions. Improved 

relationship inferences for all relative pairs are provided as a part of our algorithm. Although 

some conflicts may still exist, all the pair-wise relationships captured by the core pedigrees are 

consistent. These “core pedigrees” can then be used as an initial point to manually reconstruct 

full pedigrees combining other sources of information. 

4.2 METHODS 

4.2.1 Identify families 

Since we start with pair-wise relationship inferences, when putative pedigree information is not 

available, the first task is to identify individuals from the same family. Basically, all pair-wise 

relationships can be treated as an undirected graph with individuals being the vertices and 

relationships between relatives being the edges. Here we only focus on searching for individuals 

from the same families rather than the actual pedigree structure, so there is no need to consider 

the directions of relationships, e.g., who is the parent and who is the child in a PO pair. Then the 

problem is equivalent to finding out all the tree structures within the huge undirected graph, since 

individuals in each tree belong to a family. An algorithm for this purpose was developed using 

the idea of breadth-first search (BFS). Our algorithm starts with randomly picking an individual, 

and then searches for all the relatives of this individual. If there are any relatives, it keeps 

searching for the relatives of the relatives from the rest of the graph until no new relatives can be 
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found, i.e., the current tree is complete. When a tree is complete, it stores all its individuals, 

deletes the corresponding vertices from the graph, and starts over again until all the tree 

structures are identified in the graph. An important assumption of our method is that all the 

inferences of UN are correct, i.e., both specificity and sensitivity are 100%. This is the case in 

our training datasets, but may be unrealistic in reality. The time complexity of our algorithm is 

between O(n) and O(n2), where n is the number of individuals. 

4.2.2 Steps for reconstructing core pedigree for each family 

After isolating all families, we collect the pair-wise relationships except for UN among 

individuals within each family. We use the following steps to reconstruct the core pedigree for 

each family. 

Step 1: Build an initial pedigree with confident pair-wise relationships MZ, FS, and PO (if no 

such relationships exist, no pedigree will be constructed). With age and sex information of pertinent 

individuals, a unique pedigree can be determined, i.e., the parents and children can be figured out for PO 

pairs using ages, and fathers and mothers can be determined using sexes. Dummy individuals will be 

added when necessary. If any conflicts occur among relationships at this step, manual inspections are 

recommended. 

Step 2: Extract other relative pairs implied by the initial pedigree, i.e., GG, AV, HS, and FC. If 

any conflicts occur between the extracted relative pairs and the previously inferred pair-wise 

relationships, treat the extracted ones as correct, because the extracted ones are based on confident 

relationships. 

Step 3: Expand the initial pedigree based on a couple of constraints. One constraint is that if an 

individual is confirmed to have a grandchild in the initial pedigree, any pair-wise relationship inferences 

of GG, AV/HS, and FC involving this individual must be actually GG, otherwise the assumptions about 
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pedigrees must be violated. Also, the relationships among grandchildren of a grandparent must be FS, 

HS or FC, and any GG’s should be actually HS, since FS and FC cannot be misspecified as GG but HS 

may (table 4.1). Then, based on the relationships among grandchildren, dummy intermediate individuals 

are added to the initial pedigree when necessary to result in consistent pertinent relative pairs (Figure 

4.1). 

Step 4: Repeat step 2. For the relationships not implied by the expanded pedigree, just report the 

previous inferred pair-wise relationships. Note that conflicts may exist among these relationships. 

Step 5: Output the expanded pedigree as the final one (which is what we call core pedigree) and 

all the updated pair-wise relationships. 

 

 

Figure 4.1 Three cases of adding dummy intermediate individuals between a grandparent and 

multiple grandchildren 

Left: when two grandchildren are FS; middle: when two grandchildren are FC; right: when two 

grandchildren are HS. Shaded circles indicate added dummy individuals. Sexes are not differentiated here. 
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4.2.3 An example of reconstructing core pedigree 

 

Figure 4.2 An example of key steps in core pedigree reconstruction 

Upper: the underlying full pedigree. Only shaded individuals are observed; Middle: the initial pedigree 

built upon PO pairs; Bottom: the final core pedigree after adding the dummy intermediate individual 

(filled) based on the relationships among grandchildren. 
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Figure 4.2 illustrates how a core pedigree is reconstructed using a concrete example. In the 

example, 6 out of 13 individuals are observed (genotyped). During Step 1, an initial pedigree is 

determined by PO relationships. Note that initial pedigrees may not have one single tree 

structure, as shown in the middle panel of figure 4.2, and so may core pedigrees. During Step 3, 

an important dummy intermediate individual is added based on the relationships among 

grandchildren (in this case two FCs and one AV/HS), resulting in a larger pedigree, i.e., the final 

core pedigree. The correctness of core pedigree relies on the pair-wise relationship inference 

among grandchildren. For example, if the AV/HS is mistakenly inferred as FC, then the dummy 

intermediate individual will be added to pedigree incorrectly, causing an erroneous core 

pedigree. Also, depending on number and importance of the unobserved individuals, the core 

pedigree may not recover the whole pedigree, as shown in the bottom panel of figure 4.2. 

However, as long as the reconstructed core pedigree is a partial one of the true pedigree, we 

regard it as accurate. 

4.2.4 Simulation 

We tested our method with simulation. A fabricated pedigree of 14 subjects was used as the 

building block of the simulation (Figure 4.3). This fabricated pedigree satisfied all our 

assumptions and contained all kinds of relationships of interest. The ages and sexes of the 

pedigree members are also assumed to be known. 5,000 pedigrees were generated, all of which 

are the same. Subjects within each pedigree were randomly selected to be missing 

(ungenotyped), so the pedigrees have different pattern of missingness. Four different levels of 

missingness were considered: 0% (14 genoptyped subjects per pedigree), 21.4% (11 genotyped 

subjects per pedigree), 42.9% (8 genotyped subjects per pedigree), and 51.7% (6 genotyped 
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subjects per pedigree). Pair-wise relationship inferences were simulated based on the error rates 

estimated with the US training dataset in Chapter 2. Essentially, the true relationships were 

specified as different categories with probabilities shown in Table 4.1. After introducing 

missingness to pedigrees and simulating the pair-wise relationship inferences, we applied our 

method to identify families, reconstruct core pedigree for each family, and generate improved 

pair-wise relationship inferences. 

 

 

Figure 4.3 The fabricated pedigree for simulation 

 

Table 4.1 Pair-wise relationship inference error rates estimated by cross-validation in the US sample 

Truth 
Inferred Relationship (%) 

AV/HS FC GG 

AV/HS 93.8 0 6.2 
FC 5.8 94.2 0 
GG 15.5 0 84.5 

Note: 100% for MZ, FS, PO, and UN. 
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4.3 RESULTS 

The simulated pair-wise relationship inference results were compared with the truth before and 

after reconstructing core pedigrees. Table 4.2 summarizes the results by relationship category for 

different levels of missingness in pedigrees. The prediction accuracy of each relationship 

category was also shown in Figure 4.4. Note that two new categories, AV and HS, which were 

not separable in previous pair-wise relationship classification, were presented because they can 

be inferred using the reconstructed core pedigrees. 

 

Table 4.2 Relationship inference accuracy based on 5,000 simulated pedigrees with and without 

reconstructing core pedigrees by individual missingness 

a. 0% missing (all the 14 subjects observed in each pedigree) 

True 
Relationship 

Category 

Prediction Ignoring Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 46,863 (93.7%) 0 0 3,137 (6.3%) 0 93.7%* 

HS 4,688 (93.8%) 0 0 312 (6.2%) 0 93.8%** 

GG 7,822 (15.6%) 0 0 42,178 (84.4%) 0 84.4% 

FC 2,395 (6.0%) 0 0 0 37,605 (94.0%) 94.0% 
True 

Relationship 
Category 

Prediction Considering Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 0 50,000 (100%) 0 0 0 100%* 

HS 0 0 5,000 (100%) 0 0 100%** 

GG 0 0 0 50,000 (100%) 0 100% 

FC 0 0 0 0 40,000 (100%) 100% 
*The proportion of AV predicted as AV or AV/HS. **The proportion of HS predicted as HS or AV/HS. 
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Table 4.2 Continued 

b. 21.4% missing (11 subjects observed per pedigree) 

True 
Relationship 

Category 

Prediction Ignoring Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 28,448 (93.9%) 0 0 1,841 (6.1%) 0 93.9%* 

HS 2,845 (93.6%) 0 0 194 (6.4%) 0 93.6%** 

GG 4,757 (15.8%) 0 0 25,323 (84.2%) 0 84.2% 

FC 1,393 (5.8%) 0 0 0 22,707 (94.2%) 94.2% 
True 

Relationship 
Category 

Prediction Considering Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 171 (0.56%) 30,109 (99.41%) 0 9 (0.03%) 0 99.97%* 

HS 39 (1.28%) 0 2,996 (98.59%) 4 (0.13%) 0 99.87%** 

GG 39 (0.13%) 0 0 30,041 (99.87%) 0 99.87% 

FC 33 (0.14%) 0 6 (0.02%) 0 24,061 (99.84%) 99.84% 
*The proportion of AV predicted as AV or AV/HS. **The proportion of HS predicted as HS or AV/HS. 

 

c. 42.9% missing (8 subjects observed per pedigree) 

True 
Relationship 

Category 

Prediction Ignoring Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 14,450 (94.1%) 0 0 909 (5.9%) 0 94.1%* 

HS 1,451 (94.1%) 0 0 91 (5.9%) 0 94.1%** 

GG 2,320 (5.0%) 0 0 13,145 (85.0%) 0 85.0% 

FC 708 (5.7%) 0 0 0 11,698 (94.3%) 94.3% 

True 
Relationship 

Category 

Prediction Considering Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 2,344 (15.3%) 12,882 (83.9%) 0 133 (0.9%) 0 99.1%* 

HS 373 (24.2%) 0 1,144 (74.2%) 25 (1.6%) 0 98.4%** 

GG 389 (2.5%) 0 0 15,076 (97.5%) 0 97.5% 

FC 214 (1.7%) 0 22 (0.2%) 0 12,170 (98.1%) 98.1% 

*The proportion of AV predicted as AV or AV/HS. **The proportion of HS predicted as HS or AV/HS. 
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Table 4.2 Continued 

d. 57.1% missing (6 subjects observed per pedigree) 

True 
Relationship 

Category 

Prediction Ignoring Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 7,754 (93.9%) 0 0 504 (6.1%) 0 93.9%* 

HS 774 (93.3%) 0 0 56 (6.7%) 0 93.3%** 

GG 1,249 (15.2%) 0 0 6,966 (84.8%) 0 84.8% 

FC 379 (5.7%) 0 0 0 6,295 (94.3%) 94.3% 
True 

Relationship 
Category 

Prediction Considering Underlying Pedigrees 

AV/HS AV HS GG FC Accuracy 

AV 4,481 (54.3%) 3,542 (42.9%) 0 235 (2.8%) 0 97.2%* 

HS 458 (55.2%) 0 337 (40.6%) 35 (4.2%) 0 95.8%** 

GG 583 (7.1%) 0 0 7,632 (92.9%) 0 92.9% 

FC 227 (3.4%) 0 9 (0.1%) 0 6,438 (96.5%) 96.5% 
*The proportion of AV predicted as AV or AV/HS. **The proportion of HS predicted as HS or AV/HS. 

 

 

Figure 4.4 Prediction accuracy by relationship category as functions of individual missingness 
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When all the subjects in pedigrees were observed, relationships were inferred perfectly 

(Table 4.2a). With the increase in missingness in pedigrees, the prediction accuracy decreases for 

all relationship categories. However, even when more than half of the subjects were missing, the 

accuracy was still above 90% for all relationship categories, although the prediction accuracy of 

AV and HS to the exact relationships dropped dramatically. Most importantly, improvement was 

shown in all cases by reconstructing pedigrees for the second- and third-degree relationships. 

 

Table 4.3 Core pedigree errors and coverage* for different pedigree individual missing rates 

Observed Individuals per 
Pedigree (Among A 

Total of 14) 

Missing 
Rate 

Erroneous Core 
Pedigrees** (Among 5,000 

Simulated Pedigrees) 

Total Relative 
Pairs 

Relative Pairs 
Captured by Core 

Pedigrees 

14 0% 0 245,000 100% 
11 21.4% 4 148,125 99.4% 
8 42.9% 18 75,429 88.3% 
6 57.1% 8 40,373 69.4% 

*Defined as the percentage of relative pairs that are captured by core pedigrees. **Defined as implying 
any relative pairs not matching the truth. 
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Figure 4.5 Coverage* and errors** of reconstructed core pedigrees as functions of individual 
missingness 

*Defined as the percentage of relative pairs that are captured by core pedigrees. **Defined as implying 

any relative pairs not matching the truth. 

 

Beside pair-wise relationships, we also investigated the qualities of reconstructed core 

pedigrees. A reconstructed pedigree was deemed as erroneous if it implies any relative pairs that 

are different from the truth. Among 5,000 simulated pedigrees at each level of individual 

missingness, only very few errors were detected (Table 4.3 and Figure 4.5), and the largest error 

rate was only 0.36%. Therefore, it is safe to conclude that our core pedigrees are very accurate. 

We are also interested in the percentage of relative pairs that can be captured by core 

pedigrees, which we denote as the coverage. The more relative relationship pairs a core pedigree 

can capture, the more complete and useful it is. From Table 4.3 and Figure 4.5 we can see that 
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even if more than half individuals were missing, the reconstructed core pedigree on average is 

able to capture more than 60% of relative relationship pairs. 

4.4 DISCUSSION 

Instead of attempting to reconstruct maximum-likelihood pedigrees fitting all relative pairs, our 

method focuses on building “core pedigrees” that are highly accurate using the observed first-

degree relatives, assisted by subject sex and age information and constraints imposed by 

assumptions. The core pedigrees can then be used as an initial point for manually reconstructing 

the whole pedigrees after incorporating more external information. A byproduct of pedigree 

reconstruction is improved pair-wise relationship inferences and depending on the level of 

individual missingness in pedigrees, a great number of AV and HS may become separable. 

Our methods and results are based on a few assumptions, which should be reemphasized. 

Firstly, pedigree reconstruction is an extension of our pair-wise relationship classification 

pipeline. In general, we want to deal with the situations of a large number of small pedigrees, so 

only 7 relationship categories were considered: MZ, FS, PO, UN, GG, AV/HS, and FC. With 

these relationship categories, the possible underlying pedigrees must have three generations at 

most. Also, the pedigrees may not involve multiple spouse marriage in the first generation, and 

there should be no bilineal relatives other than MZ and FS. Secondly, we used the classification 

error rates from the US training data as the parameter to simulate pair-wise relationship 

inferences. MZ, FS, PO and UN pairs were assumed to be classified perfectly. The inference of 

MZ, FS and PO are indeed nearly perfect in reality, but it may be too optimistic for UN. If there 

are any mistakes about the UN inferences, no matter the cases of true UN being inferred as other 
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relationships or other true relative pairs being classified as UN, it will affect family identification 

at the very beginning. In this sense, our simulation results may be compromised in practice. 

Thirdly, our method requires the sex and age of subjects as input when constructing the core 

pedigrees, although in most studies such information should be available, this may not be always 

the case. 

There are a few issues that should be noted in our simulation. First, we generated pair-

wise relationship category labels instead of starting from simulating genome-wide marker data 

on the pedigree structures, and then inferring relationship labels from those data. The two 

procedures may have some differences. Also, the relationship labels were simulated 

independently, but in real data errors may be correlated. For example, a poorly genotyped 

individual may have less accurate relationships with everyone. Lastly, we randomly introduced 

missingness to pedigrees. However, the missing patterns of pedigrees in reality depend heavily 

on research aims and study populations. In general, order people are more likely to be missing. 

For some studies where only probands are collected, most individuals are not included and the 

probands are often from the same generation. 

In population- or community-based studies, relative pairs are usually sporadic, which can 

be interpreted as having very high level of individual missing rate in pedigrees. In these cases, 

there may not be enough information to build meaningful core pedigrees. However, close pair-

wise relationships are usually what we are interested in such studies anyway and pedigree 

reconstruction is more important for studies that are designed to be family-based. 
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5.0  SUMMARY AND FUTURE WORK 

Our work provided a sound pipeline to classify close family relationships using un-phased dense 

genotype data and optional putative pedigree information. We demonstrated our pipeline on SNP 

array datasets and explored the extensibility to whole exome sequencing data. With pair-wise 

relationship inferences, we also developed a method to reconstruct accurate core pedigrees for 

further improving pair-wise relationship inferences and providing a basis for manual 

reconstruction of the whole pedigrees. When the assumptions hold, our methods were shown to 

be fast and accurate. 

A few future directions may be considered to improve our work. 

Firstly, the datasets used to build the relationship classifiers have limited number of 

training datasets and the training examples are not balanced among different relationship 

categories. If more training data are collected, better classifiers may be trained and classification 

error rates may be estimated more precisely. We have showed that the classifiers built with SNP 

array data cannot be directly used for whole exome sequencing data, so it is of interest to train 

classifiers specific for whole exome sequencing data. 

Secondly, while our pedigree reconstruction method has been applied to simulated data to 

demonstrate its function and performance, it would be of interest to apply the method to real data 

before any pedigree cleaning, to compare the inferred pedigrees with the best pedigrees arrived 
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at by manual reconstruction. Also, it would be interesting to find a way to directly compare our 

method with PRIMUS. 

Another possible improvement to our work is to consider more categories in the 

relationship classifiers, e.g., “great grandparent-grandchild” and “other relationships”, which 

stands for all other distant relationships not belonging to any categories. This may enable our 

methods to deal with datasets containing large pedigrees involving more complex relationships. 

With additional relationships the assumptions of reconstructed pedigrees can be relaxed. 

In addition, instead of generating core pedigrees, a fully automated method is still 

desirable for reconstructing the maximum likelihood pedigrees, although this may be very 

challenging. A possible breakpoint is to dissect large pedigrees into small pieces and reconstruct 

the whole pedigrees in cascade. Even if it is hard to determine one single best pedigree, it will be 

informative to draw each part and indicate the relationships connecting them. 

Finally, before any actual reconstruction process for maximum likelihood pedigrees taken 

place, a more fundamental and important problem should be solved, which is to determine when 

a maximum likelihood pedigree can be found uniquely, since sometimes there are situations 

where ties for the maximum likelihood pedigree structures exist. 
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