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ABSTRACT
The proliferation of available datasets from digital social media and
networks has lead to a surge of analytical studies that aim into under-
standing topics such as the way people create ties, or the way that they
influence each other. Despite this large body of literature, little - if
any - attention has been given in the network dynamics of the context
associated with the user-generated content (e.g., tweets). In partic-
ular, the context of a tweet can be captured from the hashtags used
by the user who generated it. Existing studies have focused on var-
ious characteristics of hashtags individually. In this paper, however,
we examine to what extent the coupling of hashtags help capture ad-
ditional contextual information. We define and thoroughly study the
properties of a network structure between hashtags, which we call the
co-tweet hashtag network. Vertices in this network are hashtags and
an edge between hashtags exists if they have appeared in the same
tweet. After analyzing the properties of this structure, we turn our
attention on its possible applications. In particular, we examine the
hypothesis that accounting for the context of the generated content
can further improve applications such as event detection, which have
primarily exploited the volume of the content. Our preliminary re-
sults in this work further support this hypothesis.

1. INTRODUCTION
Online social media have provided us with an unprecedented amount

of information on various aspects of human life and behavior. Peo-
ple create “social” ties and generate content. While doing so they
leave behind digital traces that can be used to further understand sub-
tle topics such as friendship formation [1], peer influence and social
selection [7, 2, 26] etc. These “digital breadcrumbs”, as they are
commonly referred to as, have also found novel applications in stock
market prediction [4], natural disaster detection [10, 20] and flu epi-
demic tracking [3] to name just a few.

While there is a significant body of work that utilizes the immedi-
ate network structures defined by the connections of the users, or the
actual generated content itself, there is very little attention given to
the context of the latter. With the term context we refer to the broader
setting in which the content was produced. For example, consider
the tweet “Such a bad day...”. While it is clear that the user who
tweeted this was upset for some reason, we do not know the exact
setting. It could be a bad day at the office, a bad day because his
favorite team lost and so on. Automatic extraction of the context is
still an open problem in natural language processing. However, on-
line social media platforms have introduced features that allow users
to give a brief description of the context of their content. The most
prevalent one, and the one that we will use in our study, is that of
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hashtags. Hashtags are short keywords that act as metadata for the
content generated. Hence, they essentially provide information for
the context of the content. For instance, the above tweet using the
hashtag #rainyday, could be “Such a bad #rainyday...”, which
would make clear the broader setting of the tweet.

Studies that analyze the properties of hashtags have appeared in
the literature but they are mainly focused on properties of individual
hashtags as we further elaborate on in Section 5. Some very recent
work [5, 12] examines the co-occurrence of hashtags in tweets. In
our work, we are interested in studying the network dynamics under-
lying these co-occurrences and examining potential applications. In
particular, users are not limited to one hashtag per “generated con-
tent”1 but can have multiple tags. This implicitly defines a network
structure of the context of the information present in the users’ con-
tent/tweets. In brief, we quantitatively analyze the spatio-temporal
changes in the co-tweet hashtag network, where hashtags are the ver-
tices and an edge between two hashtags exists if the two hashtags
have appeared in the same tweet.

Using a large corpus of geo-tagged tweets we analyze the proper-
ties of this structure. While it exhibits trends observed in other net-
work structures, such as right-skewed degree distribution, we identify
some differences. In particular, while a giant component exists, this
covers much smaller fraction of the vertices (≈ 0.50) as compared to
other networks in the literature (e.g., ≈ 0.9). Moreover, it does not
exhibit significant transitivity.

Furthermore, we are interested in applications of this network struc-
ture. Our research hypothesis is that information context and its dy-
namics can provide additional evidence that can be exploited for a
variety of applications such as the extraction of emergency events
from social media data. To examine the hypothesis, in this prelimi-
nary work, we focus on (abnormal) event detection and we examine
the benefits we can obtain when monitoring structural changes of the
co-tweet hashtag network over time on top of the activity volume.
We would like to emphasize here that event detection is not the focus
of our study, but we are using it to study the above hypothesis.

The main contributions of our work can be summarized in the fol-
lowing: (a) quantitative, in-depth analysis of the dynamics of the net-
work structure defined between co-tweeted hashtags and, (b) provi-
sion of concrete evidence for the applicability of the co-tweet hashtag
network in one of possible applications.

Roadmap: In Section 2 we describe the dataset we used for our
study and we provide definitions and notations. Section 3 presents the
analysis of the co-tweet hashtag network, while Section 4 presents
some preliminary findings when we explore the applicability of this
network structure to event detection. Finally, Section 5 discusses re-
lated to our study literature, while Section 6 forms our conclusions.

1While the content can refer to image, video, or text, for the rest of
the paper we will focus on text and in particular on tweets.
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hibits the typical heavy tail.
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Figure 3: The local clustering coefficient
drops (on average) with an increase in the ver-
tex degree.
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Figure 4: The degree distribution is
heavy-tailed for individual cities as
well.
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Figure 5: The small component size
distribution is similar across cities.
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Figure 6: Local clustering coefficient drops
faster in individual cities compared to aggre-
gate.

City Users Tweets Unique hashtags
Atlanta 34,783 278,320 117,963
Boston 35,766 398,118 164,356
Chicago 47,616 476,132 187,680
Detroit 23,194 301,325 121,657
Los Angeles 80,678 718,407 306,685
Miami 34,027 273,789 127,715

Table 1: Number of users, tweets and unique hashtags observed
in three months in each city.

2. PRELIMINARIES
Dataset and Analysis Set-Up: Our dataset of 20, 472, 557 geo-

tagged tweets was generated from 1, 311, 181 users and collected in
the the period from 3/1/2013 to 5/31/2013. All the tweets in our
dataset have been generated within the United States and contain at
least one hashtag. We extract the hashtags of each tweet and our fi-
nal dataset has the following tuple-format <tweetId, userId,
time, longitude, latitude, hashtags>. The total num-
ber of unique hashtags in our dataset is 3, 953, 890.

We further obtain smaller datasets, based on the city that each
tweet was generated, that we will use to study the spatial dynamics of
the co-tweet hashtag network (to be formally introduced later in this
section). In particular, we focus on 6 big cities from different parts of
the US, namely Los Angeles, Detroit, Miami, Atlanta, Chicago and
Boston. Consequently for each of the above datasets we obtain all
tweets with coordinates falling within 50 km from the corresponding
city centers. Table 1 summarizes the data in each city.

Definitions and Notations: We will now formally define the co-
tweet hashtag network G = (V,E). The set of vertices V is the set
of observed hashtags, that is, v ∈ V is a hashtag observed in at least
one tweet. An undirected edge eij between two hashtags, vi, vj ∈ V
exists iff vi and vj have appeared in common to at least one tweet. We
further define a weighted version of the above network, by annotating
each edge eij ∈ E with the number of tweets in which vi and vj
appear together.

3. HASHTAG NETWORK ANALYSIS
We initially perform a static analysis, considering all tweets gen-

erated during the three months period of our dataset. Then we focus
on specific cities and we further analyze the corresponding network
structures, essentially capturing their spatial properties.

Static analysis: When considering all the tweets in aggregate,
both in space and time, the corresponding network consists of
3, 953, 890 vertices and 12, 858, 285 edges. The empirical PDF of
the degree distribution pk is shown in Figure 1 in log-log scale. As we
can see, the distribution is heavily right-skewed and can be approxi-
mated by a power law with exponent α = 1.9. Furthermore, there is
one large connected component containing 1, 990, 651 vertices. The
fraction S of vertices in this component is approximately 0.5. Note
that this is significantly less than the typical cases of social, informa-
tion, technological and biological networks (Table 8.1 [17]); infor-
mation context appears to be less “connected”. The small component
sizes range from 1 (singleton vertices) to 45. The number of single-
ton vertices is 1, 714, 479, that is, p0 = 0.43. The large number of
singleton vertices can be explained from the fact that many hashtags
are used/created by only a few users and they do not become popular
(e.g., #SheWalksTooFast) or they are never co-tweeted with any
other hashtag, at least within our dataset (e.g., #votemeup). This
also leads to lower value of S as mentioned above. The distribution
of the small component sizes is shown in Figure 2.

Next we examine the transitivity of the network. In particular we
calculate the global clustering coefficient of the network cg , which
is 0.03. However, this number alone is not informative. We need to
compare it with the expected clustering coefficient of an appropriate
random graph model. When we control for the degree distribution
(i.e., the configuration model), the expected clustering coefficient of
the random network with n vertices is given by [17]:

1

n

[< k2 > − < k >]2

< k >3
(1)

where < km > is the m-th moment of the degree distribution of the
graph. In our case the above expression gives 0.15, which is higher
than cg . This means the co-tweet hashtag network is less transitive
compared to a random network with the same degree distribution!
The possible explanation is that hashtags can be co-tweeted only if
they can form a linked context, so the two facts that hashtag A was
co-tweeted with hashtag B and hashtag A was also co-tweeted with
hashtag C may not affect the probability of hashtags B and C be-
ing co-tweeted. For example, the two pairs #love #arsenal and
#love #seafood are popular, but #arsenal and #seafood
are very rarely co-tweeted.
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We further compute the local clustering coefficient of every vertex
in the network. Figure 3 shows the relationship between the average
local clustering coefficient and vertex degree. This relationship fol-
lows the typical decreasing trend, that is, high degree vertices have
on average lower clustering coefficient.

Given the length limit of tweets, shorter hashtags tend to be more
popular. This was confirmed in [8]. We further want to test whether
there is a correlation between the length of co-tweeted hashtags and
the number of hashtags being co-tweeted with. We annotate every
vertex/hashtag with an attribute that captures the length l (in alphanu-
meric characters) of the hashtag. We then calculate the correlation
coefficient rl,k between the length l and the degree k of the hashtags.
The obtained correlation of−0.04, (p-value < 10−15), even though
significant, does not indicate any strong correlation.

We also examine the assortativity mixing in the network with re-
spect to the hashtag degree (rk) and length (rl). Degree assortativity
and hashtag length assortativity are −0.09 and 0.10 respectively.

Hashtag networks in different cities: Since the co-tweeted hash-
tag network captures the inter-related contexts behind the content
generated by users, one question can be asked is that will the hashtag
network generated by users in different cities exhibit different char-
acteristics? In other words, will this kind of network structure reflect
any city-specific trend of user generated content, or it will remain
stable across cities? In effort to answer that question, we further an-
alyze the co-tweet hashtag networks that we obtain when we focus
on specific cities by computing the same statistics as above. Table 2
summarizes the results, which indicate that despite the differences in
the absolute values of the statistics, the networks obtained in differ-
ent cities exhibit similar characteristics. In particular, they all appear
to (i) be sparse (small edge density ρ), (ii) exhibit degree distribu-
tion with heavy tail, (iii) exhibit little or no transitivity and (iv) not
have significant mixing with respect to the hashtag degree or length.
More specific the degree distributions of the city-level networks are
presented in Figure 4. Comparing them to the degree distribution of
the whole US network (shown in pink color), the maximum degrees
in city networks are orders of magnitude smaller as one might have
expected. The giant component in these networks is also at the same
level as compared to the giant component of the aggregate network.
Figure 5 further shows that the distributions of small component sizes
for the city-level networks are similar to each other. Finally, Figure
6 depicts the average local clustering coefficient for vertices with the
same degree for all the networks. Despite the discrepancies observed
between the city networks and the aggregate one, we still observe the
typical decreasing trend.

In summary, we observed that the overall characteristics of the
hashtag networks as captured by vertex degree distribution, connected
component sizes and local clustering coefficients are stable across
cities and are also aligned with the characteristics of the country-level
hashtag network.

4. EVENT DETECTION WITH CO-TWEET
HASHTAG NETWORK

In this section we focus on our hypothesis that the network dy-
namics of the information context can provide additional features for
the design of a variety of applications. To support this hypothesis we
focus on the applicability of the hashtag network on event detection.

4.1 Hashtag network during events
In Section 3 we analyzed the network by considering the aggregate

time. However, for an application such as event detection the tempo-
ral evolution of the network is of crucial importance. We focus our
preliminary work on the Boston marathon bombing event [24] that
is part of our dataset. We begin by examining the number of hash-
tags that are included in tweets that were generated between April
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Figure 7: The number of tweets with two hashtags increases in
Boston after bombing (marked by vertical dashed line). Tweets
with three or more hashtags are often advertisements and appear
with temporal periodicity.

15 and April 17, 2013. Figure 7 presents the results, where we have
further used a sliding window of 4 hours and focused on tweets in
Boston. The time-series for tweets with more than 2 hashtags ex-
hibit three peaks at 4pm (GMT time) every day. After inspecting
the corresponding tweets, we found that almost all of them (espe-
cially those with more than three hashtags) are advertisements. For
example, “#Banking #Job alert: Asst Branch Manager | Citizens |
#Providence , RI http://t.co/xB5kjozuSC #cfgjobs!”. Interestingly,
most of the tweets with two hashtags are not related to advertise-
ment. Instead, people were tweeting about the bombing event (e.g.
“This country, this WORLD, is one constant tragedy after another.
#prayforboston #prayforlife”) Especially for the first hour after the
bombing above 80% of the tweets containing 2 hashtags were related
to the event. The fact that tweets generated by spammers tend to
contain more hashtags than tweets from normal users was confirmed
by McCord et al. [16]. However we will try to further delve into
the details as part of our future investigations to fully understand the
reasons behind our observation.

Hashtag co-existence is the building block of the co-tweet hashtag
network. Hence, based on the above result one might expect changes
in the network structure during the event. Figure 8 visualizes the net-
work in Boston at different times; three hours before event, one hour
after event and three hours after event. To make it more visible, only
vertices corresponding to the 15 most tweeted hashtags (based on the
number of users) are labeled. We can observe that before the event
happened, the hashtag network had only a few edges. However, after
the event the hashtag network quickly became denser. Furthermore, a
few hashtags became central hubs connecting with many other hash-
tags. We would like to emphasize here that central hubs appear also
with daily periodicity (i.e., without the presence of an event). How-
ever, as we can see these periodic patterns are not as pronounced as
when there is an event. Furthermore, and most importantly, we can
detect these periodic hubs and avoid misclassifying them as events
(see Section 4.2).

To quantify the changes in the hashtag network under events, we
study a variety of network metrics, such as edge density, giant com-
ponent fraction, maximum/average degree etc. We find that the Gini
coefficient of the degree distribution (denoted as gk) exhibits the
best reflection of events. Visually during events, the hashtag net-
work roughly consists of “hub-and-spoke” sub topologies; there are
common hashtags describing the event (e.g., #bostonmarathon) and
“satellites” (e.g., #explosion), which serve as sub-topics. This leads
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City |V | |E| ρ α p0 S cg random cg rl,k rk rl
Atlanta 117,963 250,241 3.60 ×10−5 2.23 0.39 0.49 0.04 0.07 -0.10 -0.04 0.14
Boston 164,356 286,166 2.12 ×10−5 2.19 0.42 0.45 0.03 0.09 -0.09 -0.03 0.14
Chicago 187,680 372,077 2.11 ×10−5 2.14 0.42 0.46 0.02 0.14 -0.08 -0.03 0.13
Detroit 121,657 187,831 2.54 ×10−5 2.23 0.46 0.42 0.05 0.04 -0.12 -0.03 0.17
Los Angeles 306,685 1,108,213 2.36 ×10−5 2.01 0.32 0.59 0.04 0.12 -0.09 -0.07 0.11
Miami 127,715 465,643 5.71 ×10−5 2.09 0.31 0.60 0.03 0.26 -0.08 -0.05 0.13

Table 2: Statistics from hashtag networks in different cities.
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Figure 8: Temporal evolution of the hashtag network in Boston during event day. The bombing happened at 18:49 GMT on 4/15/13.
After the event a few hashtags become hubs connecting to many other hashtags.

to an imbalance of the vertex degree distribution, which can be quan-
tified by the Gini coefficient [25]. The latter is a measure of the sta-
tistical dispersion of a distribution. It ranges from 0 to 1, where 0 rep-
resents a fair distribution and 1 represents a distribution of maximal
inequality (e.g., a highly skewed one). In our case, gk represents how
the degree distribution among non-isolated vertices is imbalanced.
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Figure 9: After an event, gk appears to quickly and noticeably
increase deviating from its daily periodicity. The dashed lines
mark the Boston bombing event and the two subsequent events:
shooting at MIT and manhunt in Watertown.

Based on our previous results we expect during and after the event
to observe a shift of gk to higher values, since there are central hubs
that emerge in the network and concentrate the majority of edges.
Figure 9 depicts gk over time for Boston. The vertical dashed lines
mark three important moments related with the event: when the first
bomb exploded, when the two suspects shot a policeman at MIT and
when the firefight and tracing began. As one can observe the Boston
hashtag network changed quickly and gk followed quickly and in-
creased. To reiterate, we can also observe the daily periodicity of gk,
which essentially follows the sleep-wake patterns of the population.
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Figure 10: There is a significant trend between gk and the dis-
tance from the event’s location.

We further want to delve into the details of the the spatial depen-
dency of gk. Figure 10 depicts gk three hours after the event for dif-
ferent cities as a function of distance from the location of the event.
(Note that we expand to even more cities than in Table 1.) As ex-
pected, the effect of the event on the co-tweet hashtag network fades
out as we move farther away from event center. Furthermore, this
trend is both strong (correlation coefficient is −0.54) and significant
(p-value = 0.03).
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Figure 11: Jaccard similarity between vertices in other cities’
co-tweet hashtag networks and Boston’s network. There is an in-
crease shortly after the event and in cities near the event location.

The above observations show that the observed effect of the event
on the structure of hashtag network (as captured by gk) changes over
time and space. We then ask how the set of contexts captured by
the hashtag network changes over time and space. So we examine
the vertex similarity, σ(GBoston,Gc), between the vertices in the net-
work in Boston and in another city c using the Jaccard similarity mea-
sure (i.e., fraction of common vertices over total vertices). Figure 11
depicts the results for different cities c at different times (5pm, 7pm,
11pm GMT on the day of event and one week before/after event).
We can see that the line corresponding to 11pm on April 15 is higher
than other red lines (for the same day but different hours), which
shows that right after the event, users in other cities also adopt the
same hashtags as users in Boston. That dotted red line also exhibits a
decreasing trend as we move further from Boston, in alignment with
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the results in Figure 10. Note that the solid blue has a peak at Chicago
which corresponds to another event - Earth day.

4.2 Event detection
Based on the above analysis we have built a preliminary event de-

tection algorithm that operates on the live tweet stream using a sliding
window of widthW and step ∆. We currently useW = 4hours and
∆ = 1hours.

Building a baseline: The main idea in our algorithm is to track
and detect abnormality in the value of gk. The first step of our pre-
liminary algorithm aims into building a baseline θgk to compare with
our current value of gk. It is computed as the maximum value of
gk observed during the last two weeks (if we have detected an event
during that period we ignore the corresponding data).

We further identify regular hashtags, that is, hashtags which ap-
pear periodically in the network and hence, are not associated with
specific events. To do that we use the tweets in the last two weeks and
compute the auto-correlation of the occurrence time-series of every
hashtag h. The time-bin for this time-series is 5 minutes (i.e., every
time-series reading provides us with the number of occurrences of h
during the last 5 minutes). If we identify significant daily or weekly
periodicity we label h as a regular hashtag. Examples of identified
regular hashtags are #np, #ff, #oomf, etc.

Real-time analysis: Given the set of regular hashtags R, at each
time t we analyze the tweet stream in [t −W, t]. If Ht is the set of
hashtags observed during this period, we build the co-tweet hashtag
network G, using hashtags inHt. We calculate the Gini coefficient of
the degree distribution of the observed network, gkt and we compare
it with θgk . If gkt > θgk , an event is detected.

Every time an event is detected, our algorithm further reports the
top-3 hashtags which do not belong to R. Those hashtags should
capture the nature of the event.

Table 3 shows the results for April in Boston. Note that among the
identified events is also the NCAA men’s basketball final-4 tourna-
ment. This event did not take place in Boston (tournament was held
in Atlanta, GA and the champion was from Louisville, KY), neither
any of the teams participating was from a Boston-based university,
but due to the high popularity of the game the event was still de-
tectable in Boston. Also, the last two lines from Table 3 show the
two hashtags #eb2013 and #earthday which are related to the Exper-
imental Biology Conference and Earthday events respectively. These
could have been big events of the day but given the huge impact of
the bombing event, they now became inferior.

While our prototype is by no means a full-fledged event detection
system, it showcases the applicability of co-tweet hashtag network
dynamics to such problems. In the future we plan to further explore
and design a full-fledged event detection system based on the network
dynamics of information context.

5. RELATED WORK
Twitter hashtag analysis: The creation and use of hashtags have

been studied in [8] with a linguistic approach. The authors show the
similarity between forming a new hashtag and forming a new term in
normal languages. For example, one of the findings is that popular
hashtags are often shorter. Also looking at the formation of hash-
tags, Tsur et al. [21] found a relationship between the appearance
(e.g., capitalization) and the status (e.g., number of the tweet author’s
followers) of a hashtag with its popularity. Recently, Kamath et al.
[14, 13] studied the spatio-temporal dynamics of hashtags and used
them to predict when and where a hashtag will be popular. Further-
more, the diffusion mechanisms of hashtags is studied in [19] where
it is found that repeated exposure increase a tag’s adoption. Hashtags
were also exploited in predicting user’s location [6, 11], tweet’s topics
[15] and tweet’s sentiment [9]. Note here that our study is comple-

mentary to the above literature. The latter examines individual hash-
tags while we are focused on studying and exploiting their network
dynamics as obtained through their co-appearances in tweets. Some
recent work also examined the co-occurrence of hashtags. Carley et
al. [5] incorporated the hashtag-to-hashtag network into their set of
tools to help analysts follow the changes in tweet stream and extract
important topic being discussed. Jussila et al. [12] used the network
of hashtags in analyzing tweets related to organizing of a conference.
By visualizing the network, the author was able to detect the incon-
sistent use of hashtags to refer to the same paper presentation. Our
work is quite different in that we do not rely on human visual exam-
ination but use analytical tool to automatically process the hashtag
network. This allows us to analyze not only a static snapshot but also
keep track of the spatio-temporal dynamics of that network.

Event detection using content of tweets: Studies in this line of
research can be divided into two types. The first one focuses on spe-
cific classes of events (e.g., sports), while the other deals with all
events. For example, using a dataset of tweets about soccer games,
Nichols et al. [18] provide a scheme to extract the events of the game
and the later’s summary. Similarly, by monitoring the number of
tweets containing words related to earthquake, Earle et al. [10] built
a simple system to detect earthquakes. On the same problem, Sakaki
et al. [20] use supervised learning and probabilistic models to clas-
sify tweets as earthquake related or not and detect the time and the
location of an earthquake. In a similar way, Aramaki et al. [3] also
use supervised learning and NLP to detect influenza outbreak events.
The second type of work is more general, without any assumption on
event class.For example, Weng et al. [23] do not focus on specific
types of events and apply wavelet transform to detect peaks of words
in a tweet stream. Once such words are identified they use spectral
clustering to identify related words that can represent events. Taking
a different approach, Vallkanas [22] first extract the mood from the
tweets, and then detect peaks in one of moods as indicators for events.
To reiterate, our work is not particularly focused on event detection.
We use the latter as an example application to study the applicability
and importance of the co-tweet hashtag network.

Time (GMT) Top hashtags Event
April 09 5am #louisville #michigan #goblue NCAA tournament
April 09 7am #louisville #marchmadness #ncaachamp NCAA tournament
April 15 4pm #bostonmarathon #marathonmonday #boston Boston marathon
April 15 8pm #bostonmarathon #prayforboston #marathonmonday Boston marathon
April 15 9pm #prayforboston #bostonmarathon #boston Boston bombing
April 19 4pm #bostonstrong #boston #prayforboston Boston bombing
April 19 5pm #bostonstrong #boston #watertown Boston bombing
April 19 9pm #boston #bostonstrong #lockdown Boston bombing
April 20 2pm #bostonstrong #boston #eb2013 Boston bombing
April 22 4pm #bostonstrong #boston #earthday Boston bombing

Table 3: Example of detected event-related hashtags.

6. CONCLUSION
In this paper we focus on the network structure defined between

hashtags present in tweets. This structure captures in essence the dy-
namics of information context in user generated data in social media.
After analyzing the static properties of the co-tweet hashtag network,
we further study the research hypothesis that such structures can fa-
cilitate a variety of applications. We propose using Gini coefficient
as one of the metric to analyze the dynamics of such network struc-
ture. In particular, we explore its temporal evolution under abnormal
events and we build a preliminary event detection system that exploits
its dynamics. In the future, we plan on developing a full-fledged event
detection scheme utilizing this network structure.
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