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Abstract

This study investigated the use of Bayesian Networks (BNs) for left ventricular assist device (LVAD) therapy; a treatment for
end-stage heart failure that has been steadily growing in popularity over the past decade. Despite this growth, the number
of LVAD implants performed annually remains a small fraction of the estimated population of patients who might benefit
from this treatment. We believe that this demonstrates a need for an accurate stratification tool that can help identify LVAD
candidates at the most appropriate point in the course of their disease. We derived BNs to predict mortality at five
endpoints utilizing the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) database:
containing over 12,000 total enrolled patients from 153 hospital sites, collected since 2006 to the present day, and
consisting of approximately 230 pre-implant clinical variables. Synthetic minority oversampling technique (SMOTE) was
employed to address the uneven proportion of patients with negative outcomes and to improve the performance of the
models. The resulting accuracy and area under the ROC curve (%) for predicted mortality were 30 day: 94.9 and 92.5; 90 day:
84.2 and 73.9; 6 month: 78.2 and 70.6; 1 year: 73.1 and 70.6; and 2 years: 71.4 and 70.8. To foster the translation of these
models to clinical practice, they have been incorporated into a web-based application, the Cardiac Health Risk Stratification
System (CHRiSS). As clinical experience with LVAD therapy continues to grow, and additional data is collected, we aim to
continually update these BN models to improve their accuracy and maintain their relevance. Ongoing work also aims to
extend the BN models to predict the risk of adverse events post-LVAD implant as additional factors for consideration in
decision making.
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Introduction

Cardiac transplantation currently represents the most definitive

treatment for end-stage heart failure (ESHF) with 90% 1-year

survival and a 70% 5-year survival. However, there is a need for

alternate therapies due to the limited supply of donor organs. For

those ineligible for a heart transplant, or unable to wait, an

alternative life-sparing therapy is to implant a left ventricular assist

devices (LVAD). These devices have been used for nearly 25 years

to support ESHF patients while awaiting transplant and have been

consistently shown to improve mortality. The technology has now

progressed to the point where they are offered as permanent or so-

called Destination Therapy (DT). According to current estimates,

the number of ESHF patients who may benefit from LVAD

therapy is between 80,000 and 200,000 annually. [1]

LVAD Risk Scores
Optimal and responsible use of LVAD therapy requires a

procedure for selecting patients who are most likely to benefit, and

less likely to suffer adverse complications. In general, as a patient’s

disease progresses, the probability of poor outcomes increases. It is

therefore important to identify candidates early in the progression

of their disease so as not to miss the optimal window of

opportunity [2,3]. The window is considered between INTER-

MACS level 7 and 3, where 7 is clinically stable but history of

previous decompensation and 3 is stable but Inotrope dependent

[4]. This has motivated the development of risk scores to stratify

patients based on the factors that have historically been associated

with outcomes, such as patient characteristics, advances in

mechanical circulatory support technology and surgical experi-

ence.

The most commonly cited score is the Lietz-Miller Destination

Therapy Risk Score (DTRS), which was derived from a patient
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cohort with first generation pumps [5]. The first generation

LVADs were pulsatile flow pumps, which attempted to mimic the

physiological conditions. One-year survival in subjects undergoing

the first generation pulsatile flow HeartMate XVE implantation

for DT in the Randomized Evaluation of Mechanical Assistance

for the Treatment of Congestive Heart failure (REMATCH) trial

was 52% [6]. Enrollment criteria of initial studies emphasized

hemodynamic variables. The DTRS analyzed 45 baseline

parameters and outcomes in 280 DT patients in the post-

REMATCH era. The most important determinants of in-hospital

mortality were poor nutrition, hematological abnormalities,

markers of end-organ and RV dysfunction and lack of inotropic

support. Patients were stratified into low, medium, high and very

high risk based on a score calculated from these predictors to

correspond with 1-year survival [5]. The DTRS, however, has

many limitations. The majority of patients in the derivation cohort

were ambulatory, older men with large body surface area. Co-

morbidities such as diabetes, cardiac cachexia or obesity were

under-represented, while psychosocial factors or echocardiograph-

ic parameters were not considered.

Since the DTRS was derived, there has been major advances in

the technology. In particular, second generation (continuous flow)

pumps have become available that are smaller in size, have simpler

technique for implantation, longer durability and present reduced

risk of thromboembolism, infection and malfunction. Consequent-

ly, the frequency of adverse events has diminished, which has

further expanded the candidacy pool for LVAD therapy. This has

rendered the DTRS less accurate [7]. Other risk scores have been

introduced, but are limited for a variety of reasons, such as limited

independent variables or limited training data (e.g. from a single

center.) For example, a recently introduced HeartMate II Risk

Score (HMRS) relies on only five preoperative variables for

predicting 90 day survival; the long-term (1 year) model only

contained two: age and implant center experience [8].

Clinical Decision Support Systems
The transition from paper to electronic medical records

provides both a challenge and great opportunity for clinical

decision making. On the one hand, the ever increasing quantity of

information collected on a typical LVAD patient can overwhelm a

clinical team, and arguably may introduce more uncertainty due

to data incompleteness and noisiness. On the other hand, the

wealth of information embedded in these data are ideal for

computer-based Clinical Decision Support Systems (CDSS) [9,10].

This is the motivation for developing the Cardiac Health Risk

Stratification System (CHRiSS). CHRiSS is a web-enabled

decision support tool that provides patient-specific predictions of

mortality at 5 endpoints post-implant: 30 day, 90 day, 6 month, 1

year and 2 year. It offers several advantages over traditional

LVAD risk scores. Since it is based on a Bayesian machine

learning algorithm, it can better represent the influence of large

sets of interrelated variables as compared to traditional Cox model

multivariate predictors [11,12]. Unlike most risk scores which

compute survival at one time point, CHRiSS provides predictions

of both short-term and long-term mortality. Since CHRiSS is

implemented as an interactive software application, it also permits

the user to explore various ‘‘what if’’ scenarios.

The purpose of this study is to evaluate the accuracy and

sensitivity of the Bayesian Networks (BNs) in the CHRiSS tool.

Accuracy is evaluated both in terms of True Negative (ability to

predict survival) and True Positive (ability to predict mortality),

which is also depicted by the receiver operating characteristics

(ROC) curve. Sensitivity analysis was performed to identify the

strongest predictive variables that are associated with either

increased or decreased chance of survival post-LVAD.

Methods

This study was conducted with a comprehensive dataset, known

as the Interagency Registry for Mechanically Assisted Circulatory

Support (INTERMACS). This is the largest national registry for

U.S. Food and Drug Administration (FDA) approved mechanical

circulatory support devices that is jointly sponsored by the

National Heart, Lung, and Blood Institute (NHLBI), Centers for

Medicare and Medicaid Services (CMS), FDA and industry. The

registry has over 12,000 total enrolled patients (over 8,000

continuous flow LVADs) from 153 hospital sitesand has been

collecting data since 2006 to the present day. The dataset consists

of over 300 pre-implant clinical variables, subdivided into six main

categories: demographics, co-morbidities and limitations from

transplant listing, laboratory values, hemodynamics, medications

and quality of life questionnaires and surveys. A co-morbidity in

this context is defined as a medical condition or disease that exists

simultaneously with another condition or disease. They can either

be independent or related conditions or diseases.

Patient Cohort
Institutional Review Board approval was obtained through

hospitals participating within INTERMACS. The study described

in this submission was approved by the INTERMACS Data,

Access, Analysis, and Publication Committee (DAAP). Written

informed consent was acquired from participants before being

enrolled in INTERMACS. The Data Coordinating Center at

University of Alabama at Birmingham provided us the data once it

was de-identified. The data used in the present study was

anonymized and de-identified prior to analysis. Inclusion criteria

for this study was: use of a continuous flow LVAD as the primary

implant and age.19, thus excluding pediatric patients. Patients

who ultimately received an Right Ventricular Assist Device

(RVAD) were included as long as the initial implant was an

LVAD and an RVAD was placed thereafter. The specific type of

RVAD was not considered. Total Artificial Heart recipients were

excluded from this study. This translated to 8,050 patients from

year 2006 to 2013 in the initial dataset. Data from patients whose

LVAD was electively removed (e.g., due to transplantation or

recovery) were censored at the time of event (See Table 1).

Pre-processing
The raw data from the registry was pre-processed to transform

continuous data into discrete bins (required by the Bayesian

algorithm) and to fill in missing data, described below.

Discretization. Discretization was done based on a balance

of equal frequency binning and published upper and lower limits

of clinically normal values [13,14]. Table S1 provides the list of

variables with their respective formats and input values. Clinical

scenarios and outcomes, such as events during hospitalization,

adverse events prior to implant and interventions within 48 hours

of implant, were defined using the INTERMACS definitions.

Missing data. The patient records provided by the INTER-

MACS data set were found to be routinely incomplete (see Table

S1 for percentages missing). Missing data was separated into two

categories: missing at random (MAR), and missing not at random
(MNAR) [15]. Missing demographics and lab values, for example,

were considered to be either MAR, in which case we assumed the

most probable values (i.e. BMI between 24–27 since it is

considered normal). The method of using normal values has been

cited in previous studies to produce superior results compared to

Bayesian Clinical Decision Support System for LVAD Therapy
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listwise deletion and other methods [16]. Missing co-morbidities,

on the other hand were considered MNAR, in which case we

assumed that it was not a concern for that patient. This is standard

procedure for handling MNAR data in medical datasets. For

example, if a patient has no record of a chest x-ray then the doctor

probably did not feel the need to order one. In these cases, it is

common to assume a ‘‘normal’’ value, which in the case of the x-

ray would be not ordered as opposed to unknown, or simply

missing. Additional data in the MAR category were missing

laboratory and hemodynamic values were designated as not
ordered. Missing medication data was considered MNAR, in

which we assumed that no such medication was prescribed.

Finally, missing quality of life metrics were considered MNAR,

and designated as unknown. This was justified based on voluntary

and sporadic participation in the two quality of life surveys, the

EuroQoL [17] (offered since the beginning of the registry)and the

Kansas City Cardiomyopathy Questionnaire (KCCQ) [18]

implemented after 2012.

Synthetic Minority Oversampling Technique (SMOTE)
A common challenge in data mining that inhibits the predictive

ability of the model, is an uneven distribution of the outcome

(survival post-LVAD). In medicine, there is often a larger portion

of the cohort that are free of death or adverse event as compared

to the number of events. The 30-day mortality rate in

INTERMACS is 4.8%, compared to a 95.2% survival rate. With

such a discrepancy, the model will always predict the majority

class (survival) if uncertain how to classify a new patient. This will

pose a setback clinically, as it is most important to identify the

high-risk patients (early mortality).

One of the most frequently cited methods for addressing this

bias is SMOTE [19], which is used when the minority class is

increased by creating synthetic examples rather than by over-

sampling with replacement. The minority class (mortality) is over-

sampled by taking each minority class sample and introducing

synthetic examples along the line segments joining any or all of the

k minority class nearest neighbors. For this study we increased the

minority class by 100%, which would essentially double the

mortality number at each endpoint, while the survival number

remained unchanged. The 100% was identified by incrementally

increasing the percentage from 0% to 100% and identifying the

best performing percentage. We set the cut off at 100% to ensure

there would be at least an even number of actual and synthetic

cases, as opposed to more synthetic compared to actual cases.

Synthetic samples are generated by taking the difference between

the instance (or patient) under consideration and its nearest

neighbor. This difference was multiplied by a random number

between 0 and 1, and added to the feature vector under

consideration. (This causes the selection of a random point along

the line segment between two specific features.) SMOTE

effectively forces the decision region of the minority class to

become more general. Table 1 juxtaposes the dataset before and

after application of SMOTE.

Bayesian Networks
The machine learning methods used for the present study were

built upon Bayesian techniques used previously by our group for

multiple decision support studies, including: optimal VAD

weaning [20], the need for right ventricular support due to right

ventricular failure [21–23] and a two-center study to predict 90-

day survival for continuous flow LVADs [24,25]. Bayesian

networks (BNs) [26] are acyclic directed graphs in which nodes

represent random variables and directed arcs (represented as

arrows) between pairs of variables represent influences between

them. In addition to the graph structure, a BN is equipped with

conditional probability tables (CPT), associated with each node,

and describes the probability distribution over the variable’s values

conditional on all combinations of values of its immediate

predecessors (parents) in the graph. A BN is a representation of

a factorization of the joint probability distribution over its

variables. Independence between a pair of variables is represented

by absence of a directed arrow between these variables. Explicit

representation of independences results in significant savings in the

number of parameters necessary to represent the complete joint

probability distribution, making BNs highly practical even in very

complex domains.

The joint probability distribution represented by a BN can be

updated in the light of new evidence by means of Bayes theorem.

Efficient algorithms exist that given observed values of some of the

variables, produce the new joint (conditional) probability distri-

bution over the remaining variables. While the quality of the

results rests on the quality of the underlying representation of the

joint probability distribution, BNs have been shown to be very

robust to precision of their parameters [27] and there are

indications that possible errors in structure (i.e., incorrect

independences) have also limited influence on the quality of the

results [28].

To illustrate, one may consider a simple BN model in Figure S1,

modeling risk factors related to LVAD survival. The network

models the joint probability distribution over the four factors and

the survival variable. Not all variables need to be known. For

example, we could derive from the network the average survival

probability for a center with limited LVAD experience.

For this study, we evaluated four BNs: Näıve Bayes, Tree-
Augmented Näıve Bayes, Bayesian Search and the Greedy Thick
Thinning Algorithm [29]. We ultimately chose the Greedy Thick
Thinning Algorithm as the final model based on a tradeoff

between complexity and accuracy. The model starts with an

empty graph and iteratively adds and removes arcs as it builds the

Table 1. Mortality statistics, censored for explant and transplant.

Endpoint Survival No. (%) Death No. (%) Total Survival SMOTE No. (%) Death SMOTE No. (%) Total SMOTE No. (%)

30 Day 7620 (95.2) 387 (4.8) 8007 7620 (90.8) 774 (9.2) 8394

90 Day 7024 (90.5) 737 (9.5) 7761 7024 (82.6) 1474 (17.3) 8498

6 Month 6245 (86.1) 1007 (13.9) 7252 6245 (75.6) 2014 (24.4) 8259

1 Year 5241 (79.7) 1334 (20.3) 6575 5241 (66.2) 2668 (33.7) 7909

2 Year 4432 (72.7) 1667 (27.3) 6099 4432 (57.1) 3334 (42.9) 7766

SMOTE: synthetic minority oversampling technique.
doi:10.1371/journal.pone.0111264.t001
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network, incrementally increasing the Bayesian scoring metric: in

this case, the K2 prior distribution over the parameters [30].

Markov Blanket
We applied the Markov Blanket to simplify the network and

reduce the likelihood of over-fitting the model to the dataset (i.e.

performs well only on the training data, but unable to generalize to

other datasets). It has been shown in previous studies that using the

Markov Blanket is one of the most effective and efficient methods

of feature selection [31]. The Markov Blanket for each of the BN

models was comprised of the class node and the family of nodes

that make it conditionally independent of all other nodes in the

network. This includes the parents, the children and the parents of

the children, or spouses [26].

Evaluation
Ten-fold cross validation was the vehicle for model derivation

and optimization. The BN classifiers were evaluated on an

independent testing/holdout dataset comprised of a training set of

approximately 90% of the data records and a testing set from the

remaining approximate 10%. The models were derived, built and

implemented using two open-source machine learning software

libraries: The GeNIe modeling environment developed by the

Decision Systems Laboratory of the University of Pittsburgh [32]

and the machine learning library WEKA (Waikato Environment

for Knowledge Analysis) [33]. Performance metrics included:

Accuracy, True Positive, True Negative and area under the ROC

curve (AUC). A sensitivity analysis was also performed, where all

variables are kept constant and a single parameter is changed to

observe the direct affects. This is then expanded to change

additional parameters to visualize their additive affects.

Results

The optimized BNs can be seen in Figures 1–5, and a summary

of their performance can be found in Table 2. Accuracy was

greatest for the 30 day model with 95% and lowest for the 2 year

model with 71%. The True Positive (proportion of patients who

were correctly predicted to not survive) was greatest for the 2 year

at 65% and lowest for the 90 day model at 23%. The True

Negative (proportion of patients who were correctly predicted to

survive past the endpoint) was greatest for the 30 day model at

nearly 100% and lowest for the 2 year model at 76%. The ROC

% was greatest for the 30 day model at 93% and lowest for the 6

month, 1 year and 2 year models (all 71%).

30 Day Model
The 30-day mortality model consisted of 44 nodes and 93 arcs.

There are four parent nodes for 30 day mortality: whether or not a

patient completed the EuroQoL survey, a history of HIV, implant

year, and left ventricular end diastolic dimension (LVEDD), an

indicator of dilated cardiomyopathy. Positive HIV was the

strongest predictive node, followed by the implant year. When a

Figure 1. 30 Day Bayesian Model. Node colors: red = class, blue = parent, purple = child. Question marks identify nodes that do not have specific
evidence set and use the population distribution as the prior distribution. LVEDD = left ventricle end diastolic diameter, ALT = alanine transaminase,
BP = blood pressure, mRAP = mean right atrial pressure, PCWP = pulmonary capillary wedge pressure, VAS = visual analog scale, BNP = B-type
natriuretic peptide, WBC = white blood cell, NYHA = New York Heart Association functional class, RVEF = right ventricle ejection fraction, INR =
international normalized ratio, BMI = body mass index, ECG = Electrocardiography, QOL = quality of life, hx HIV = history of human
immunodeficiency virus.
doi:10.1371/journal.pone.0111264.g001
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patient is indicated to have a history of HIV, then the baseline

likelihood of survival drops from 95% (when no patient-specific

evidence is specified) to 53% and drops further to 43% chance of

survival when the LVEDD is above 75 mm. The children nodes

includes a combination of laboratory values (sodium, BNP and

platelets), hemodynamics (mean right arterial pressure, diastolic

blood pressure and ECG rhythm), demographics (age and gender)

and pre-implant medication (beta blockers, aldosterone and

amiodarone). This model was the one exception to using the

Markov Blanket, as it would approach nearly 150 nodes with the

inclusion of the spousal nodes and would be more prone to over-

fitting the dataset. For the model, we simply used the parents and

children nodes, which put it at a comparable size as the other

endpoint Bayesian models.

90 Day Model
The 90-day model consisted of 30 nodes and 56 arcs. There are

four parent nodes: gender, co-morbidity of HIV, cholesterol and

pulmonary capillary wedge pressure. History of HIV decreased

90-day chance of survival from 87% to 52% and, when combined

with elevated cholesterol (above 150 mg/dL), further decreases to

47%. The chance of survival increases (as compared to the

baseline) to 91% if a patient’s cholesterol is below 110 mg/dL and

they do not have HIV. The children nodes include variables such

as mitral regurgitation, right ventricular ejection fraction and work

income. Spouse nodes include tricuspid and aortic regurgitation,

pre-implant beta blockers, pre-implant ace inhibitors, and left

ventricular ejection fraction.

6 Month Model
The 6-month model consisted of 34 nodes and 70 arcs. There

are five parent nodes: limitation for transplant due to thoracic

aortic disease, creatinine, number of cardiac hospitalizations

within the 12 months prior to LVAD implant, cholesterol and

HIV. Compared to the baseline chance of survival at 6 months of

76%, the limitation for transplant reduces to 48%, and when

combined with creatinine levels below 1.1 mg/dL further reduces

to 37%. The children nodes include variables such as BMI, work

income and angiotensin. Spouse nodes include presence of an

implantable cardioverter defibrillator (ICD), admission reason

before implant, history of gastrointestinal bleeding, limitation for

transplant listing due to advanced age, and the INTERMACS

profile (from level 1 critical cardiogenic shock to level 7 resting

heart failure symptoms but stable).

1 Year Model
The 1-year model consisted of 39 nodes and 76 arcs. There are

six parent nodes: co-morbidity of HIV, limitation for transplant

Figure 2. 90 Day Bayesian Model. Node colors: red = class, blue = parent, purple = child, yellow = spouse. Question marks identify nodes that do
not have specific evidence set and use the population distribution as the prior distribution. LVEDD = left ventricle end diastolic diameter, PCWP =
pulmonary capillary wedge pressure, RVEF = right ventricle ejection fraction, LVEF = left ventricle ejection fraction, hx HIV = history of human
immunodeficiency virus, ICD = implantable cardioverter defibrillator, Lim tx = limitation for transplant listing, GI = gastrointestinal, IV = intravenous.
doi:10.1371/journal.pone.0111264.g002
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listing due to thoracic aortic disease, gender, implant year,

limitation for transplant listing due to pulmonary hypertension

and cholesterol. The baseline chance of survival at 1 year post-

implant is 75%, and more recent implants (2013) have higher

chances of survival (86%) compared to implants done between

2008–2010 (64–66%). Although this is likely due to shorter follow

up times for the more recent implants, it may also reflect advances

in implant techniques and changes in the patient post-VAD

management. Similar to the other models, both a history of HIV

and thoracic aortic disease have major impacts on the chance of 1

year survival. The children nodes include age, right ventricular

ejection fraction, BMI, ace inhibitors and diastolic blood pressure.

Spouse nodes include admission reason, systolic blood pressure,

the INTERMACS profile, temporary mechanical circulatory

device, current ICD and co-morbidity due to cachexia (malnutri-

tion).

2 Year Model
The model for 2-year mortality consisted of 45 nodes and 78

arcs. There are eight parent nodes: pro-BNP, BNP, co-morbidity

of solid organ cancer, implant year, gender, limitation for

transplant listing due to limited social support, patient refusal for

transplant listing, and limitation for transplant listing due to large

BMI. The baseline 2-year chance of survival is 69%, which

increases by 5% if the patient’s BNP levels are below 540 pg/dL

and increases further to 84% if the implant was done more

recently. The chance of survival falls below the baseline (to 62%) if

BNP is elevated above 1200 pg/dL, drops further to 58% if the

patient declines transplant listing and drops even further to 50% if

the patient also has limited social support. The children nodes

included age, trail making time (a neuro-psychological test of

visual attention and task switching), co-morbidity due to a history

of illicit drug use and blood type. Spousal nodes included

limitation for transplant listing due to peripheral vascular disease,

the INTERMACS profile, being a so-called frequent flyer (patients

who are repeatedly in and out of the hospital emergency room),

the IV inotrope therapy agent and age.

HMRS
The HMRS was derived and validated for 90-day and 1-year

mortality and identifies patients as either low risk (4–8%

mortality), medium risk (11–16% mortality) or high risk (25–

29% mortality). When applied to the INTERMACS database,

93.1% of patients were predicted as low risk with a 9% morality

rate, 4.4% were predicted as medium risk with a 16% mortality

rate, and 2.3% were predicted as high risk with a 14.6% mortality

rate. The ROC for the 90-day HMRS score was 60.3% compared

to 73.9% for the 90-day CHRiSS model and the 1-year HMRS

score 57.4% compred to 70.9% for the 1-year CHRiSS model.

Discussion

The decision to refer a patient for LVAD therapy entails

processing numerous, dynamically evolving and inter-related

Figure 3. 6 Month Bayesian Model. Node colors: red = class, blue = parent, purple = child, yellow = spouse. Question marks identify nodes that
do not have specific evidence set and use the population distribution as the prior distribution. LVEDD = left ventricle end diastolic diameter, RVEF =
right ventricle ejection fraction, LVEF = left ventricle ejection fraction, hx HIV = history of human immunodeficiency virus, BMI = body mass index,
ICD = implantable cardioverter defibrillator, Lim tx = limitation for transplant listing, GI = gastrointestinal, IV = intravenous.
doi:10.1371/journal.pone.0111264.g003
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clinical variables, which is a complex task filled with uncertainty.

The trajectory by which a patient may be offered the option to

receive a LVAD involves multiple specialties and decision points.

The extensive volume of information and data that must be

considered (demographics, labs, history, family support, insurance,

etc.) is at odds with the rapidity with which some decisions must be

made. Deferring a decision to implant an LVAD, may allow the

severity of ESHF to progress thereby increasing the likelihood of

an adverse event. Lietz and Miller describe an ‘‘optimal window’’

for LVAD implantation, beyond which the operative risk may

deem the intervention futile. However, the key to successful and

timely implementation of LVAD therapy is the proper identifica-

tion of the patient who will benefit from this type of therapy:

before clinical instability occurs, which has a major impact on the

downstream morbidity and mortality with this intervention.

The advanced heart failure team must evaluate risk in terms of

both immediate complications as well as likelihood of repeated

readmissions due to longer-term complications. Hence there is a

need for a CDSS to aid the physicians in pre-LVAD candidate

assessment, by providing personalized risk predictions to ultimate-

ly encourage earlier intervention in the appropriate patients. We

envision two steps (with iteration) when using CHRiSS: the

clinician would first input the variables available for that patient

and calculate their initial risk and then adjust actionable variables

to perform the ‘‘what if’’ scenarios. For example, a clinician

assessing a patient who is initially malnourished (has lower levels of

albumin), could then adjust the albumin to the normal range and

see if the prognosis improves and by how much.

Such a dynamic CDSS does not exist for advanced HF patients

and the BNs offer several advantages over the traditional statistical

methods used to derive risk scores such as the HMRS or DTRS.

Current risk scores are limited by their: (1) simplistic four to nine

variable summed scoring system; (2) inability to co-evolve with the

changing HF risk factors and emerging treatment options; and (3)

requirement to know a fixed set of variables and inability to be

computed when any are missing. BNs address these limitations, as

they are able to: (1) account for hundreds of inter-related variables

in a single model; (2) dynamically update as risk factors change

and different drugs are created; and (3) compute predictions with

missing values by using the prior probabilities encoded within each

variable node. The current study demonstrated the potential for

developing advanced CDSS based on these models in the domain

of HF, as well as other medical applications.

For example, in the absence of any decision tool, expert

judgment resulted in the correct prognosis of survival at 1 year

79.7% (n = 5241 patients) of the time (true survival rate, see

Table 1). This translates to 20.3% (n = 1334 patients) frequency of

incorrect judgment of survival. (Presuming that the decision to

implant an LVAD in these patients was predicated on positive 1-

year survival prognosis.) With the added contribution of CHRiSS

in decision-making, 85.3% (see True Negative in Table 2) of these

79.7% (actual survival from Table 1) would be corroborated by

the prognostic model. Thereby denying an LVAD from 14.7% of

these patients who would have survived, had the physician

followed CHRiSS recommendation. On the other hand, the

expert incorrectly predicted survival in 20.3% (n = 1334, mortality

Figure 4. 1 Year Bayesian Model. Node colors: red = class, blue = parent, purple = child, yellow = spouse. Question marks identify nodes that do
not have specific evidence set and use the population distribution as the prior distribution. LVEDD = left ventricle end diastolic diameter, RVEF =
right ventricle ejection fraction, BMI = body mass index, lim tx PH = limitation for transplant listing due to pulmonary hypertension, IV = intravenous,
ICD = implantable cardioverter defibrillator, CV = cardiovascular, GI = gastrointestinal, BP = blood pressure, hx HIV = history of human
immunodeficiency virus, MCS = mechanical circulatory support.
doi:10.1371/journal.pone.0111264.g004
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% from Table 1). CHRiSS would have predicted almost half of

these patients, hence sparing 667 patients from a suboptimal

outcome. Although there is no way of knowing, retrospectively,

how long these LVAD patients would have survived if they did not

receive a LVAD, the additional insight provided by CHRiSS

would assist the patient and physician in weighing the risks and

benefits of the various courses of treatment. For example, these

patients may be prioritized for cardiac transplantation, thereby

making better use of limited organ supply for those who would not

otherwise survive on a LVAD (in exchange for a transplant patient

who would have done just as well on a LVAD.)

The 2-year CHRiSS model correctly identified 65% of patients

who would not survive past the endpoint, which would be very

important to know for DT patients to decide if they wish to accept

this risk considering chance of surviving (and thriving) for many

years with this end of life treatment. Following the same logic for

predicting short-term outcomes, CHRiSS would spare half of the

387 patients from undergoing a major surgery who would do very

poorly during the recovery post-implant. The 30-day model could

aid in vetting potential high risk DT and bridge to transplant

(BTT) candidates. Paradoxically, the performance of the 90-day

and 6-month models were not as good as the 30-day, 1-year, and

2-year models. This may be attributable to the heterogeneity in

causes of death, which may confound the Bayesian Network to

identify specific predictive variables.

Figure 5. 2 Year Bayesian Model. Node colors: red = class, blue = parent, purple = child, yellow = spouse. Question marks identify nodes that do
not have specific evidence set and use the population distribution as the prior distribution. LVEDD = left ventricle end diastolic diameter, BNP = B-
type natriuretic peptide, LVEF = left ventricle ejection fraction, GI = gastrointestinal, IV = intravenous, ICD = implantable cardioverter defibrillator,
PVD = peripheral vascular disease, hx HIV = history of human immunodeficiency virus, BMI = body mass index, MCS = mechanical circulatory
support, CV = cardiovascular.
doi:10.1371/journal.pone.0111264.g005

Table 2. Summary of Bayesian Model Performance.

Endpoint Accuracy (%) True Positive (Dead) (%) True Negative (Alive) (%) ROC (%)

30 Day 94.9 51.0 99.4 92.5

90 Day 84.2 22.9 97.1 73.9

6 Month 78.2 30.3 93.7 70.6

1 Year 73.1 49.1 85.3 70.6

2 Year 71.4 65.0 76.2 70.8

ROC = receiver operating characteristic curve.
doi:10.1371/journal.pone.0111264.t002
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We had also conducted a sensitivity analysis to observe the

direct effects of each variable on the outcome, as well as the

additive effects of several variables. The variables that created the

greatest effect on the outcome were presented in the results section

for each model. For the short-term outcome, positive HIV

increased likelihood of mortality by 42% at 30-days and 35% at

90-days. Each of these percentages were further increase by 5–

10% when adding an enlarged LVEDD (dilated cardiomyopathy)

or elevated cholesterol, respectively. When considering long-term

predictors (2-year model), one of the parent nodes was BNP, which

had bi-modal effects: normal levels lead to reduced chance of

mortality by 5% and elevated levels increased mortality by 7%.

The use and acceptance of Bayesian methodology are becoming

increasingly prevalent in the medical community (see, for example

[34–42]). For example, in 2010, the FDA released a guidance for

the use of Bayesian statistics in medical device clinical trials [43].

In 2013, the United Network for Organ Sharing (UNOS)

proposed the adoption of a new Bayesian methodology to better

identify those transplant programs that may be underperforming

in the area of patient and graft survival.

Although the methods described in this study are more

advanced than the current risk scores used in HF prognosis, the

results are far from perfect. There are several limitations that may

adversely affect performance, including inherent retrospective

bias, imbalance of the outcome variable, and extensive missing

data. We aim to address these limitations in our ongoing

prospective studies. It is also important to clarify that the CHRiSS

models are able to discern likelihood of mortality for patients

receiving an LVAD and does not allude to any predictions for

patients not receiving the device. We plan to perform a follow up

study that will derive BN models based on both INTERMACS

data, as well as a HF cohort for those who do not receive an

LVAD. Nevertheless, the current models are able to provide

decision support to the HF clinicians regarding potential future

LVAD recipients.

This study was the first application of the Bayesian Network

algorithm to a cohort of LVAD recipients. Although the current

models outperform the current LVAD risk scores, there is an

opportunity to improve them yet further as additional prospective

data is collected, and additional risk factors are added to the

model. Most certainly, the Bayesian models better represent the

complex inter-variable relationships between clinical variables,

better emulating human logic, which in turn makes them more

appealing to end users.
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risk factors related to LVAD survival.
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Table S1 Many = not all format options listed, DT =
destination therapy, BTT = bridge to transplant, BTR =
bridge to recovery, CPB = cardiopulmonary bypass,
MI = myocardial infarction, ECMO = extracorporeal
membrane oxygenator, CABG = coronary artery bypass
graft, IABP = intra-aortic balloon pump, INR = interna-
tional normalized ratio, ICD = implantable cardioverter
defibrillator, BNP = B-type natriuretic peptide, WBC =
white blood cell, ALT = alanine transaminase, AST =
aspartate aminotransferase, CRP = C-Reactive Protein,
LVEF = left ventricle ejection fraction, LVEDD = left
ventricle end diastolic diameter, RVEF = right ventricle
ejection fraction, PCWP = pulmonary capillary wedge
pressure, NYHA = New York Heart Association func-
tional class, HF = heart failure, GI = gastrointestinal,
HIV = human immunodeficiency virus.
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