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ABSTRACT: The cost of discovering a new drug has doubled every 9 years since the 1950s. 

This can change by using machine learning to guide experimentation. The idea I have developed 

over the course of my PhD is that using latent factor modeling (LFM) of the drug-target 

interaction network, we can guide drug repurposable efforts to achieve transformative 

improvements. By better characterizing the drug-target interaction network, it is possible to use 

currently approved drugs to achieve therapies for diseases that currently are not optimally treated. 

These drugs might be directly used through repurposing, or they can serve as a starting point for 

new drug discovery efforts where they are optimized through medicinal chemistry methods. To 

achieve this goal, I have developed LFM-based techniques applicable to existing databases of 

drug-target interaction networks. Specifically, I have started out by establishing that probabilistic 

matrix factorization (PMF; one type of LFM algorithm) can be used as descriptors by showing 

they capture therapeutic function similarities that state-of-the-art 3D chemical similarity methods 

could not capture. Then I have shown that PMF can effectively predict unknown drug-target 

interactions. Furthermore, I have used newly developed computational techniques for discovering 

repurposable drugs for two diseases, α1 antitrypsin (1-AT) deficiency (ATD) and Huntington’s 

disease (HD) leading to successful discoveries in both. For ATD, two sets of data generated by 

the David Perlmutter and Gary Silverman laboratories have been used as input to deduce 

potential targets and repurposable drugs: (i) a high throughput screening data from a genome-

wide RNAi knockdown in a C. elegans model for studying ATZ (Z-allele of 1-AT), and (ii) 

data from Prestwick library screen for the same model. We have predicted that the antidiabetic 

drug glibenclamide would be beneficial against ATZ aggregation, and data collected to date in 

Mus musculus models are promising. We have worked on HD with the Robert Friedlander lab, 
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by examining the potential drugs and implicated pathways for 15 neuroprotective (repurposable) 

drugs that they have identified in a two-stage screening study. Based on LFM-based analysis of 

the targets of these drugs, we have developed a number of hypotheses to be tested. Among them, 

the antihypertensive drug sodium nitroprusside appears to be effective against HD based on 

neuronal cell death inhibition experiments that were conducted at the University of Pittsburgh 

Drug Discovery Institute as well as the Friedlander lab. Finally, we have built a web server, 

named BalestraWeb, for facilitating the use of PMF in repurposable drug identification by the 

broader community. BalestraWeb enables users to extract information on known and potential 

targets (or drugs) for any approved drug (or target), simply by entering the name of the query 

drug (or target). I have also laid out the framework for developing an integrated resource for 

quantitative systems pharmacology, Balestra toolkit (BalestraTK), which would take advantage 

of existing databases such as STITCH, UniProt, and PubChem.  Collectively, our results provide 

firm evidence for the potential utility of machine learning techniques for assisting in drug 

discovery. 
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1.0  INTRODUCTION 

The pharmaceutical industry is in a crisis: for every one dollar’s worth of patent-protected 

therapeutic revenue expiring, the industry can generate only 26 cents of revenue through new 

patented therapeutics [1]; bringing a new molecular entity to the market is estimated to cost 

around $1.8 billion [2]; the rate of new drug discovery per billion dollars of research and 

development spending has steadily halved every 9 years for the last 60 years giving credence to 

the so-called “Eroom’s Law” which is “Moore’s Law” read backwards [3]; and the success rate 

in the present drug discovery and development process (from beginning to end) is only 4% [2]. 

Moreover, we are witnessing a major shift in the pharmaceutical industry financial landscape, 

with major companies being driven toward mergers in order to create a larger “pipeline” of 

potential drugs to supplement the low R&D productivity with this trend having started more than 

a decade ago [4]. However even these merged giants could deliver only eleven FDA approved 

drugs out of the thirty approved in 2011 [5]. The culmination of these difficulties is that 

traditional pharma companies are reported to have lost 2% sales and 2.5% earnings in the first 

half of 2014 compared to their reported sales and earnings from one year ago [6]. 

The main causes of this crisis have been debated for a long time. The arguments put 

forward range from the perceived lack of managerial success [7] to the improper structuring of 

R&D divisions [3]. Yet, there is another set of arguments that suggest that the problem at the 

heart of the matter is more scientific than managerial: Hopkins and Overington have been 
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pioneering of the idea of multiple-target modulation and the replacement of the high affinity 

binding of a single peptide paradigm by polypharmacology paradigm for years [8-10]. Many 

other scientists have also emphasized the need for a paradigm shift, as there has been a mounting 

evidence on  the promiscuity of drugs as well as targets [11-15].  

The efficiency of drug discovery and development might be improved by adopting a 

systemic approach that takes into consideration the interaction of existing drugs and candidate 

compounds with the entire network of proteins and other biomolecules in a cell [16]. This 

approach can either be used for repurposing, or it can be used to inform de novo drug discovery. 

To give a specific example about the latter use, we can make inferences on the drugs that share a 

common therapeutic activity with other drugs and use such inferences for hit diversification. 

Alternatively, we can identify the targets that are similar in their interaction patterns with known 

drugs, despite being dissimilar in structure or sequence and uncover novel biochemical 

properties, or potentially even biological pathways. Therefore there is a multitude of ways in 

which a systematic analysis of the interactome can reveal novel, useful insights. 

The often-cited scientific justification for the paradigm shift is the observation that most 

single-target manipulations do not perturb biological systems: a pioneering work by Hillenmeyer 

et al. reports that only 34% of gene deletions result in disease or lethality, however 97% of the 

gene knockouts results in a phenotypic catastrophe when the gene deletion is combined with one 

or more small molecules under a specific environmental condition [17]. Moreover, the early 

work of Barabasi and Oltvai has established that most biological networks are essentially scale-

free [18], which further corroborates the observation that single-target modulation of biological 

networks can have limited effect due to the fact that in a scale-free network most single-target 

perturbations will have minimal effect whereas those that fall on ‘hubs’ will have too strong an 



 3   

effect which in turn would make it hard to use as a therapeutic intervention. The relatively high 

ratio of drug failures due to safety concerns, reported as accounting for more than half of all 

failed projects in one recent review [19] and accounting for 20% of all phase II failures in 

another review [20] can be arguably be attributed, among other reasons, to the toxicity impact of 

modulating the so-called hub nodes of the scale-free biological network that comprises the cell. 

Furthermore the observation that the topological organization of the biological networks strongly 

reflects the underlying functional relationships [21] also helps develop an appreciation of 

pharmacological therapy as the modulation of a biological network instead of a simple ‘lock-

and-key’ problem. Indeed, the “one gene, one drug, one disease” paradigm is now widely 

recognized to fail in describing experimental observations [8]. Many drugs act on multiple 

targets, and many targets are themselves involved in multiple pathways. For example, -lactam 

antibiotics and most antipsychotic drugs exert their effect through interactions with multiple 

proteins [10;22]. Biological networks are highly robust to single-gene knockouts, as recently 

shown for yeast where 80% of the gene knockouts did not affect cell survival [17]. Similarly, a 

recent study showed that 81% of the 1,500 genes knocked out in mice would not cause 

embryonic lethality, further corroborating the robustness of biological networks against single 

target perturbagens [23].  

These results suggest that quantitative systems pharmacology (QSP) strategies that take 

account of target (and drug) promiscuities can present attractive alternative routes to drug 

discovery.  QSP approaches take into account complex biomolecular interactions in their cellular 

context. They combine computational and experimental studies in order to develop new 

compounds [22]. This requires a systems-level understanding of the biological process of 
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interest, with detailed higher resolution modeling of the specific biochemical pathways of 

interest; along with supporting experimental data to help inform the entire effort.  

The dissertation contains work that requires a broad base of understanding in both 

computational and biological disciplines. A major contribution to the field is the adoption of 

latent factor modeling (LFM) methods for analyzing the bipartite network of drug-target 

interactions and making predictions on potential new drug-target association.  Therefore, I 

present below the background for different methods of computational drug-target interaction 

prediction. Furthermore, I also briefly present the background on two specific diseases, α-1 

antitrypsin deficiency (ATD) and Huntington’s disease (HD), which have been examined as two 

application areas of biological significance within the scope of this dissertation. 

1.1 BACKGROUND ON COMPUTATIONAL METHODS 

Recent years have seen many network-based models adopted to reduce the complexity of, and 

efficiently explore, drug-target interaction systems [10;22;24;25]. In particular, the development 

of computational methods that can efficiently assess potential new interactions became an 

important goal. Computational approaches used to predict unknown drug-target interactions can 

be divided into roughly four categories:  

I. Chemical-similarity-based methods [26-28], 

II. Integrative (both target- and chemical-similarity-based) methods [29-35], 

III. Holistic approaches [36-41], 

IV. Target-similarity-based methods [42-44]. 
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The first two posit that if two entities are chemically or structurally similar they will share 

interactions – which is an assumption that may hold in multiple cases. However it is not 

guaranteed to hold universally as dissimilar chemicals can bind to different sites on the same 

protein and/or have allosteric effects. Furthermore the utility of different methods may depend on 

the size of the dataset being analyzed, e.g. computing chemical-chemical and target-target 

similarity matrices can be problematic for large databases like STITCH [45] (STITCH v3.1 has 

210 million interactions between 2.6 million proteins and 300,000 chemicals). To overcome 

these limitations, holistic methods have been introduced, which utilize a number of different data 

sources such as gene expression perturbation [37;38] or high-throughput screening [40].  
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Figure 1: Summary categorization of current computational methods for polypharmacology predictions  

One representative study from each main category is shown, along with figure(s) from the cited work to illustrate the 

results. The bar chart for ligand-centric methods shows that the interaction between DMT and 5-HT2A predicted by 

the method has been experimentally validated [28]. The figure in the holistic methods section shows that the 

validation of the prediction that topiramate would be useful in inflammatory bowel disease [37]. On the target-

centric methods, the inset figure shows the ligand-binding site similarity between two target proteins, COMT and 

InhA, which serves as the basis for their subsequently validated prediction that comtan, an inhibitor of the COMT, 

would also inhibit InhA [42]. (see text for details). 
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1.1.1 Ligand-Centric Approaches 

Among the ligand centric methods, the most significant is the Similarity Ensemble Approach 

(SEA) [26-28]. The SEA method was introduced by the Shoichet laboratory, in an article where 

they first used the method to relate protein pairs through similarities between their known ligands 

[26]. Later, this idea was adapted to drug repurposing predictions by comparing a single query 

chemical to all the known binders of each known protein [28]. More recently, predictions made 

by this method on a side effect target set were tested in a high throughput scheme by Novartis, in 

order to provide an unbiased assessment of the capabilities of the method: about 22% of the 

experimentally tested predictions turned out to be true predictions [27]. 

The SEA method is based on the calculation of the chemical similarity between the two 

sets of ligands known to interact with two different targets. Shoichet and coworkers have used 

the MDDR database [46] to retrieve data on the chemicals and their targets. They have used the 

2D fingerprint similarity method (also known as Tanimoto similarity) to calculate the pairwise 

similarity between chemicals. This method entails the conversion of a chemical structure into a 

binary vector where each element of the vector indicates the presence/absence of a specific 

chemical feature. The similarity between two chemicals is then calculated by dividing the 

number of shared features by the total number of unique features present in both molecule 

vectors [47]. They have adapted the BLAST algorithm [48] to calculate the expectation that the 

chemical similarity between a set of chemicals and a specific query chemical of interest can be 

observed by chance. Using SEA, the authors have calculated the chemical similarity between a 

query chemical and all chemicals known to interact with a particular target. If a particular 

chemical is statistically significantly similar to all the drugs that are known to share a particular 

target, then it is predicted that this chemical would also work against that target.  
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The advantages of this method are that it can be easily applied to novel chemicals with no 

previously known interactions, and that it is rapid since it relies on chemical fingerprint based 

vector operations (which are efficient). The disadvantages are that it requires the target to have a 

large set of known and validated interaction partners (i.e. drugs).  

1.1.2 Integrative Approaches 

The methods that integrate chemical and biological information to generate polypharmacology 

predictions are termed here “integrative methods”. Encapsulating as much information as 

possible to boost performance is an attractive idea. Consequently there is a significant body of 

research that focuses on the use of integrative approaches for polypharmacology prediction. 

There are multiple such methods: the kernel regression method [29], bipartite local models [31], 

integrated bipartite graph inference [32],  SITAR [33], the unified probabilistic framework [35] 

and the Bayesian Matrix Factorization method [34].  

The bipartite graph learning method of Yamanishi et al. is a good example of an 

integrative approach since it fundamentally describes a way of mapping drugs and proteins into 

the integrated ‘pharmacological space’ to then use proximity in this space to be indicative of 

interaction [29]. Moreover, this approach has been shown to work better than related studies [41] 

and has been the foundation for further techniques.  Therefore I will discuss this method in some 

detail.  

The authors employ three methods of generating polypharmacology predictions; all 

relying on calculating the similarity among chemicals, and likewise among proteins. The 

similarity between drugs is computed using the Tanimoto score for chemical fingerprints; the 

similarity between the targets is computed as the normalized Smith-Waterman score between the 
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two sequences. The first method they describe is the nearest profile method, where they assign 

each new compound the interaction profile of the compound which has the highest similarity to 

the query. The second method is the weighted profile method where they weigh the interaction of 

each compound to compute the final interaction vector assigned to a query as the weighted sum 

of all the interaction vectors for all compounds with the weights being the similarity between the 

compounds. All the above described operations can also be applied for proteins to predict the 

drugs that would interact, since drugs and proteins are interchangeable with this methodology. 

Finally, they describe a novel method called the bipartite graph learning method, which employs 

a kernel regression model.  

The bipartite graph learning method first entails the construction of a distance matrix K 

of size N + M between all compounds and proteins, where N is the number of compounds, M is 

the number of proteins. The element Ki,j is the similarity between elements i,j if they are of the 

same type (i.e. both drugs or both proteins) or the shortest distance in the bipartite connectivity 

graph if they are of different types (i.e. one drug and the other protein, or vice versa). The matrix 

K is then decomposed into its eigenvalues and eigenvectors: 

T
UUΓΛΓΛK  2121  (1)  

where Λ  is the diagonal matrix of the  eigenvalues and the columns of matrix Γ  are the 

eigenvectors and 21
ΓΛU  . The row vectors of U are then used to represent each drug and 

protein in the training set in an integrated ‘unified feature space’. Then a weight is learned for 

each compound and protein in the training set using kernel regression model, which entails 

finding the set of weights that minimize the loss function: 

2

F

TTT
SSWWUUL   (2)  
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where S is the similarity matrix and W is the weight matrix and 
F

.  is the Frobenius norm. To 

map a new compound to the integrated space, the vector corresponding to the new compound in 

the pharmacological space must be computed. This vector is computed as follows: 

 



c

inew

n

i

cinewcinewcc ccsccf
1

,),( wu  (3)  

where 
icw  is a weight vector and  .  ,  .cs  is a chemical structure similarity score. Likewise for 

proteins,  

 



g

jnew

n

j

gjnewgjnewgg ggsggf
1

,),( wu  (4)  

where 
jgw  is a weight vector and  .  ,  .gs  is a sequence similarity score. Finally, when a drug-

target pair is queried for interaction, the drug and target are both mapped to the integrated space, 

and the dot product between their coordinate vectors in the integrated space is used as a measure 

of closeness between the query drug and target. If the drug and target are closer than a set 

threshold, they are declared to be interacting. The most important strength of this method is that 

it requires only the sequence of the proteins and just the chemical structure of the small-

molecules (both of which are always available) therefore it is broadly applicable. The method 

has been later improved upon addition of pharmacological information [32].  

The later work of Bleakley and Yamanishi treats polypharmacology predictions as a 

supervised learning problem [31]. Given a drug-target pair (di, tj), the method entails labeling all 

proteins known to interact with di as one class (labeled +1) and all other proteins as another class 

(labeled -1), with a classifier trained to distinguish the interactors from the rest based on protein 

sequence. Then this classifier is used to predict the label of tj. The same procedure is repeated to 

train a classifier that distinguishes drugs interacting with tj (labeled +1) from the rest (labeled -1) 
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based on the chemical structure of the drugs. Perlman et al. proposed to integrate many different 

similarity measures for comparing drugs and targets to define numerous features, which are then 

used to train classifiers for making polypharmacology predictions [33]. Five sources of 

information are used to compare a pair of drugs: chemical structure, side effect, perturbation of 

gene expression, ATC
1
 code and finally ligand similarity. The ligand similarity is the overlap 

between the sets of SEA-predicted targets for each chemical [28]. The proteins are compared 

using sequence similarity, proximity in a protein-protein interaction network and overlap of 

Gene Ontology annotations [49]. The features are defined as one (out of five) chemical-chemical 

comparison method and one (out of three) protein-protein comparison method, for a total of 15 

features. Then given a query drug-target pair, the similarity score of a feature is computed as: 

10 ,),(),(max),( 1

21,','  

 rttSddStdScore rr

tdtd  (5)  

                              
          

            where S1 is the feature’s drug-drug 

comparison method and S2 is the feature’s protein-protein comparison method, with r optimized 

through cross-validation. The authors then use forward-propagation feature selection (initially no 

features, most useful feature is added at each step) and backward-elimination (initially all 

features, most useless feature is dropped) to select 10 features that both techniques identified as 

useful. They then trained a logistic regression classifier on this feature set to separate the 

interacting pairs from the non-interacting ones. The authors report a classification performance 

of AUC
2
 = 0.935 for their method, SITAR; whereas the kernel regression method of [29] is 

reported to have AUC=0.884 and the bipartite local models method [31] yields AUC=0.814. 

                                                 

1
 ATC: Anatomical, Therapeutic and Chemical classification system 

2AUC: Area under the Receiver-Operator Characteristic curve; a classifier performance metric where the best 
possible classifier scores 1 and the worst possible classifier (random classification) scores 0.5. 
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SITAR is an excellent example of the utility of integrating multiple techniques for comparative 

analysis of drugs/proteins.  

In the same spirit, Swann and coworkers suggested a method for integrating many diverse 

structure- and ligand-based comparison results to predict protein-chemical interactions in a 

robust manner [35]. Their method requires knowledge of actives and decoys
3
 for each target. 

Given the actives / decoys for a target and a particular comparison technique they bin the range 

of scores computed by the method, then divide the number of actives in each bin by the total 

number of compounds (actives and decoys) in that bin to assign the probability of activity for the 

bin. They call this probability the ‘belief’ that the result from this technique is true. They assign 

such defined activity probabilities for the docking score computed by the FRED [50] and GLIDE 

[51] docking programs with four different force fields; the ECFP6 chemical fingerprint [52] 

overlap (Tanimoto score, computed as described when discussing the ligand-centric approaches) 

and ROCS three-dimensional spatial and physicochemical property overlap. They integrate the 

entire set of activity probabilities (which they term ‘beliefs’) to get the cumulative belief score as 

follows:  





N

i

iPbeliefcumulative
1

)1(1   (6)  

where    is the belief from the i
th

 technique and N is the total number of techniques used. The 

authors argue that the strength of the method is in its capability to incorporate new scoring 

functions. The orthogonality of the data sources that they integrate is a strong advantage. 

However their assignment of ‘beliefs’ is dependent on the presence on actives and decoys for a 

given target, which restricts their method only to targets that are already well-characterized.  

                                                 

3 Decoys are compounds with no known activity against the target of interest. 
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Finally, the first fully probabilistic formulation for drug-target interaction network 

inference is the Bayesian Matrix Factorization method proposed by Gonen [34]. This method 

entails projecting the drugs and proteins into the same (integrated) subspace, through the use of 

chemical and genomic kernels respectively. The study uses the same dataset as that of [29] 

described above, therefore the genomic and chemical kernels are exactly as described above: 

chemical fingerprint similarity for the chemical similarity kernel and Smith-Waterman based 

sequence similarity for the genomic kernel. The low-dimensional projections in the integrated 

space are then used to compute interaction scores between drugs and targets using a factorization 

of the interaction matrix. Any given new drug or target can be mapped to the integrated space 

through the use of the relevant kernel and once it is projected onto the integrated space, its 

interaction scores can be computed as well. This way, the interaction between a new compound 

and known targets, a new target and known drugs or a new drug and a new target can be 

estimated. For automatic complexity control, the probabilistic representation has been applied 

Bayesian treatment by the introduction of priors and therefore exact and optimal inference of the 

posterior is very hard. There are two techniques that can be applied: variational approximation or 

sampling procedures. Gonen opted to adopt variational approximation which entails using a 

factorized version of the posterior distribution of the probabilistic representation as a lower 

bound on the marginal likelihood and then optimizing that bound. The author reports better AUC 

values than those acquired earlier [32]. However an earlier study [33] reported higher AUC 

values for all four types of targets. Secondly, others have reported that sampling-based inference 

procedures have advantages over variational approximations for Bayesian matrix factorization 

[53]. Nevertheless, this work is valuable as a first fully probabilistic formulation of the 

polypharmacology prediction problem. 
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The main advantage of integrative approaches is that they can utilize drug and target 

similarity calculation methods in making predictions. This can be beneficial when making 

predictions on drugs and targets with no other previously known interactions (either newly 

synthesized chemicals, or newly characterized genes). Furthermore after learning is completed, 

making a new prediction can be quite efficient. However the reliance on the similarity 

calculation methods (chemical or genomic) is also a major disadvantage: chemical or genomic 

similarity does not necessarily imply interaction similarity. Drugs with different chemical 

moeities can bind different sites on the same protein, thus sharing the same target. Alternatively 

two targets with similar sequences can have major differences in the ligand recognition site, 

thereby having different interaction characteristics despite being highly similar in sequence.  

1.1.3 Holistic Approaches 

Holistic approaches are distinguished by their being independent from information on individual 

targets. Their advantage is that they allow for a broader assessment of the activity of a compound 

and they can be used when there is not enough data for using one of the other approaches. Most 

of these methods take advantage of the high-throughput screening (HTS) methodologies 

developed in the last two decades. The significant methods that can be categorized under this 

umbrella are the following: connectivity map (CMap) [36-38], guilt-by-association (GBA) [39], 

the Bioactivity Profile Similarity Search (BASS) [40], and PREDICT [41]. A comprehensive 

review of these methods can be found in [16]. Cancer has been highlighted as being a disease 

where these holistic methods can play a particularly important role in the development of novel 

therapies [54]. Finally, multi-scale holistic models that integrate data spanning across multiple 

levels of biological organizations have been described [55]. 
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The CMap approach is a pioneering work that established the idea of anti-correlating the 

effect of a perturbagen with the impact of a disease for predicting activity [36]. To measure the 

phenotypic response to different perturbagens and diseases, the authors used a microarray 

mRNA expression assay and computed the up/down-regulation patterns. The perturbagens that 

correlate positively mimic the effect of the disease while those that correlate negatively have the 

potential to restore the normal phenotype. The authors have studied 164 small molecule 

perturbagens in 4 cell lines (with most of their results in the breast cancer epithelial cell line 

MCF7). They showed that their method can capture the anti-estrogenic activity of fulvestrant 

because the response to this perturbagen and that to treatment with estrogen anti-correlate; 

among other success stories. This work has established the idea behind holistic approaches to 

polypharmacological predictions.  

CMap has been successfully applied to repurpose the anticonvulsant topiramate for 

inflammatory bowel disease [37] and the antiulcer drug cimetidine as a therapeutic for lung 

adenocarcinoma (LA) [38]. In these studies, the authors have downloaded gene expression 

signatures characterizing 100 diseases from the Gene Expression Omnibus [56] and then anti-

correlated these signatures with the 164 drug signatures in CMap, as described above. The two 

images in the lower part of the middle section in Figure 1 are reproduced from [37] and they 

show the clinical endoscopy of mice that were treated with TNBS to induce inflammatory bowel 

disease with and without treatment with topiramate. The therapeutic impact of topiramate can be 

clearly seen. Similarly, the authors of [38] showed that tumors treated with cimetidine shrunk in 

size. These results serve to illustrate that computational strategies are viable methods for 

assessing polypharmacology and drug repurposable possibilities. At the very least, these 

strategies give good starting points at a favorable cost/benefit ratio. The major advantage of 



 16   

CMap is that it can make clinically relevant predictions without requiring a detailed 

understanding of the mechanism. However, the major disadvantage is that it requires 

transcriptomic profiling of the entire chemical library.  

The guilt-by-association method was first introduced by Chiang and Butte [39]. 

Fundamentally this method is based on the idea that when two diseases share a therapy, then the 

therapies that are known to work for only one of them might also work for the other. With this 

starting point, the authors investigated 726 diseases and 2,022 drugs for pairs of diseases that 

share at least one therapeutic using the data in the DRUGDEX system (Thomson Healthcare, 

Greenwood Village, CO) and the Drug-Disease Knowledge Base (DrDKB). They then predicted 

that the drugs known to work for one disease but not the other, would work for both diseases. 

They found that their drug use suggestions were 12 times more likely to be undergoing clinical 

trials than a random drug-disease pair not within their suggestion set. The main disadvantage of 

this approach is the high false positive rate. 

Predicting drug-disease associations directly has been a direction that the developers of 

SITAR have also taken with their development of PREDICT [41]. PREDICT compares the drugs 

using their targets  in addition to chemical structure similarity and side effect similarity. The 

diseases are compared with the text-mining based semantic similarity of disease phenotype 

information and overlap between human phenotype ontology entries. They used a total of 593 

drugs and 313 diseases by merging data from DrugBank [57], KEGG Drug [58], Matador [59], 

OMIM [60] and UMLS [61] to create the list of drug-disease associations. Each feature consists 

of one drug-drug comparison method and one disease-disease comparison method. For a given 

drug-disease pair, the value of each feature is computed using the scoring scheme in SITAR. 

Then a logistic regression classifier is trained on these features using the known drug-disease 
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associations (from the databases listed above) as training data to classify a given drug-disease 

association as true or false (this is also highly similar to SITAR). The authors report an AUC 

performance of 0.9 in 10-fold cross-validation (i.e. 10% of the drugs are hidden, and their 

associations are predicted using a model trained on the remaining 90%; repeated 10 times each 

time hiding a different set of drugs). PREDICT compares favorably with the guilt-by-association 

[39] and CMap [36]. This method stitches together drug-target interactions and target-disease 

associations to directly make predictions on drug-disease associations. While useful for 

elucidating more practical predictions, the lack of validation, the lack of mechanistic insight and 

the use of a small dataset makes it hard to assess the utility of the method. 

Cheng et al. have developed a new direction, where they use similarity between the 

bioactivity profiles of compounds to predict unknown targets of known drugs, using a method 

called bioactivity profile similarity search [40]. Their study is based on the bioactivity data of 

4,296 compounds tested in the US National Cancer Institute 60 human tumor cell line anticancer 

drug screen (NCI-60). For each compound, a bioactivity vector of length 60 is generated, where 

the i
th

 entry corresponds to the log(GI50)
4
 value of the compound against the i

th
 cell line. Each 

drug di is compared against every other drug dj in the dataset by computing the Pearson 

coefficient between their bioactivity profile vectors. Whenever the similarity between di and dj is 

75% or higher, the targets of dj are assumed to be targeted by di as well and vice versa. The 

authors claim that 44.8% of their predictions were verified against publicly available databases. 

The one criticism of the method is that compounds with more than 75% similarity in their 

bioactivities are likely to be highly similar in chemistry and the authors do not establish that their 

                                                 

4 GI50: The concentration required for 50% growth inhibition of tumor cells. 
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similarity assessments are not easily discoverable through simple chemoinformatics methods 

(such as Tanimoto scores) that do not require expensive HTS data.  

The abundance of data, the increasingly cheaper computational resources and the success 

of the previously discussed methods have led to increasingly ambitious projects. Bai and 

Abernethy describe the use of computational data and resources to attempt new therapeutic 

discovery ranging from the small chemicals and individual biochemical reactions all the way to 

organism-level responses [55]. They describe a quintipartite (5-compartment) approach for 

determination of toxicity of drug candidates. They describe the data as being composed of 

chemicals, proteins, pathways, organs, and phenotypes where the interactions between these 

parts are in that order: chemical-protein interactions, protein-pathway associations, pathway-

organ interactions and finally organ-phenotype mapping. They unify multiple methods that have 

been used as predictors based on subcategories of this high-level approach and present it as a 

possible unified approach to predicting toxicity arguing that the integration across scales is going 

to achieve what individual models cannot.  

Finally, Du and Elemento argue that the advent of holistic systems biology approaches 

present unique opportunities for the advancement of cancer therapeutics [54]. They argue for the 

use of an integrated approach for cancer that has been recently enabled by the advent of modern 

technologies, where cancer is probed at the genomic level, protein/post-translational level and 

tissue level in an iterative and integrated manner is necessary for realizing more effective 

treatment. They argue that the interplay between the highly person-specific nature of cancer as a 

disease, the interplay between the tumor microenvironment and the disease, as well as the 

Darwinian evolution that the cancer cells undergo create unique challenges that can only be 

overcome by holistic approaches that combine all of these factors together. They argue for the 
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need to develop an approach that involves experimentally characterizing the genome, 

transcriptome, proteome and the microenvironment whose output are evaluated in a holistic 

computational model to select optimal treatment strategy as the necessary road for the future.  

1.1.4 Target-Centric Approaches 

Possibly the most straightforward way of building a target-centric, systems-wide 

polypharmacology prediction scheme is to dock all drugs to all proteins. Li and colleagues have 

attempted to do that, by collecting 252 human drug targets, 4,854 small molecule compounds 

from DrugBank and docking all-to-all [43]. They first identified 13,156 binding pockets in 678 

protein drug targets. Then they docked the known drugs for these targets into these binding 

pockets and evaluated how good the fit was. If their docking software ICM (Molsoft LLC, San 

Diego, CA) was able to recover the already-known interaction between a drug and its target, then 

the target was deemed to be ‘reliable-for-docking’ [62]. They identified 252 targets and 2,923 

binding pockets to be fit for docking. Then they docked all 4,854 drugs to each pocket and 

examined the results. They reported that they were able to correctly predict 10 of 14 known 

interactors of the protein kinase MAPK14, as well as all 4 targets of chemical BIM-8 that were 

not in the original dataset (DrugBank v1). They also gave a list of 31 interaction predictions that 

were not in DrugBank v1 but supported by literature. The major drawback of this approach is 

that it requires protein structure, which is not available for all proteins. Another is the need for 

extensive computational resources and time if rigorous simulations that take account of the 

conformational flexibility of the targets are to be carried out.  

Another target-centric polypharmacology prediction paradigm is to consider binding 

pocket similarity. The idea is that when two proteins share similar features in their binding 
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pockets, they will interact with the same ligand. One example of such an approach is the 

sequence order-independent profile-profile alignment (SOIPPA) method [44]. The idea behind 

SOIPPA is that the structure and fold might be similar between two proteins, with the same 

domains in roughly the same three-dimensional arrangement, while their order in the sequence 

might be different. Since the tertiary structure of the protein is more relevant to the ligand-

protein interaction than the primary structure, SOIPPA aims to capture these domain similarities 

irrespective of sequence properties. This method has later been used to capture binding site 

similarities and enable proteome-wide polypharmacology screens [42]. The authors first 

extracted the binding site of a drug from a known structure, then used SOIPPA to screen for 

other proteins with similar binding sites, and finally performed docking to evaluate the fit. They 

were able to demonstrate similarity between the binding sites of human catechol-O-

methyltransferase (COMT) and the M. tuberculosis enoyl-acyl carrier protein reductase (InhA). 

COMT is targeted by entacapone and tolcapone while InhA is reportedly targeted by isoniazid 

and ethionamide. The authors postulated then that entacapone would interact with InhA too –

which would mean that entacapone could treat multi-drug resistant (MDR) tuberculosis. Their 

preliminary experiments have shown that Comtan tablets (which contain entacapone as the active 

ingredient) have slowed the growth of M. tuberculosis in culture. The advantage of this method 

is the mechanistic and rational basis for the predictions. However the requirement of structural 

data limits applicability to only structurally resolved proteins. It also does not take account of the 

conformational flexibility of proteins. 

Finally, recent developments in sequencing technology have given rise to a new approach 

called phenome-wide association studies (PheWAS) where the diseases that are of interest for a 

particular genetic variant are searched in addition to the more-established genome-wide 
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association studies (GWAS) where the genes of importance for a particular disease are searched 

[63]. The central idea with these methods is to find links between genes and the diseases (or 

more broadly, phenotypes) of interest and then use the information on known drugs targeting 

these genes to make new drug repurposing predictions.  

1.2 BIOMEDICAL BACKGROUND 

1.2.1 α-1 Antitrypsin Deficiency 

1-Antitrypsin (1-AT) is a member of the serine protease inhibitor superfamily, also called 

serpins, which regulates the activity of trypsins (in the digestive system) and neutrophil elastase 

(in the lungs). AT deficiency (ATD, also known as A1AD) is an inherited autosomal co-

dominant disorder that causes lung and liver diseases. It affects 1 in 2,000 to 5,000 individuals of 

Northern European descent [64;65]. It is one of the most common genetic cause of liver disease 

in children, and causes cirrhosis and hepatic fibrosis and carcinoma in adults [66;67]. 

Furthermore the aggregation phenotype in ATD has been recognized as a model for 

conformational diseases, including many common neurodegenerative diseases such as 

Alzheimer’s disease [68]  

The primary cause for ATD is the E342K mutation in the SERPINA1 gene that encodes 

AT, which causes the production of the aggregation-prone Z variant of AT, called ATZ, that 

accumulates in the endoplasmic reticulum (ER) of the liver cells. AT/SERPINΑ1 is the 

prototypical member of the serpin superfamily and a major anti-protease in the circulation and 

extracellular fluids [69]. The function of AT is to protect tissues from collateral damage by 
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neutralizing leukocyte-derived peptidases [70;71]. A structural depiction of the work of the 

serpins, as reported in the PDB [72], is shown in Figure 2. On the left, the serpin is shown 

immediately after its interaction with the trypsin molecule, with the serpin shown in blue and the 

proteinase shown in green (PDB:1K9O) [73]. Upon cleavage by trypsin, the serpin’s recruiting 

arm quickly undergoes a structural reorganization, embedding the recruiting arm in a sheet of β-

strands; which is being shown in the structure on the right [74]. The structural reorganization 

prevents the trypsin from completing its reaction and releasing itself, thereby trapping the protein 

in a mouse-trap fashion.  

Hepatocytes are the major biosynthetic source of AT, where the protein normally enters 

the constitutive secretory pathway [75]. However, the Z-mutation delays native folding and 

impairs secretion, which leads to polymerization and aggregation of ATZ by a domain swapping 

mechanism [76]. Consequently, ATZ is retained within the endoplasmic reticulum (ER) as large 

inclusions that cause fibrosis/cirrhosis and hepatocellular carcinoma [77-79]. In ATD patients, 

therefore, a loss of serpin inhibitory activity underlies the lung disease, whereas a gain-of-toxic-

function triggers liver disease. 

ATZ aggregation induces a reduction in circulating AT, and predisposes adults to 

developing emphysema and chronic obstructive pulmonary disease [80-82] because of the lack 

of the proteinase inhibitory function in the lungs. In addition, ATD patients homozygous for the 

most common mutation, Z (E342K), are at increased risk of developing liver disease throughout 

their lifetime due to the ATZ aggregation in the hepatocytes [66;67]. Simply stated, ATZ leads to 

two major disease phenotypes (i) the gain-of-toxic-function due to ATZ aggregation causes liver 

damage; (ii) the loss-of-function due to reduced secretion of AT from the liver leads to lung 

diseases. The marked accumulation of mutant ATZ has been demonstrated in the PiZ transgenic 



 23   

mouse to lead to liver damage, closely resembling that  in human disease [83;84]. As known 

from earlier studies, only a subpopulation of ATD patients develop liver disease [85], suggesting 

that genetic and/or environmental modifiers determine the susceptibility of an ATD individual to 

liver disease [83].  
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Figure 2: The ‘mouse-trap’ mechanism of serpins 

Serpins operate as proteinase inhibitors by recruiting and trapping the proteinases as reported and shown in the 

figure above adopted from the PDB [72]. The structure on the left (PDB:1K9O) [73] shows the serpin-trypsin 

complex (serpin shown in purple, proteinase shown in green) immediately after binding; whereas the structure on 

the right (PDB:1EZX) [74] shows the trypsin after the serpin has stabilized, inactivating the serpin. Upon cleavage, 

the serpin undergoes a structural reorganization, embedding the recruiting arm in a sheet of β-strands, with this 

change preventing the proteinase from dissociation thus trapping the proteinase. 

 

1.2.2 Huntington’s Disease 

Huntington’s disease (HD) is an autosomal dominant genetic neurodegenerative disease, caused 

by an expanded CAG repeat in the huntingtin gene, that affects 4-10 out of 100,000 people in the 

western world with many others at the risk of disease [86]. Higher than 40 CAG repeats cause 

nearly full penetrance at about 65 years of age, while the average onset of disease is at the age of 

40 [87]. Disease onset usually occurs during the fourth or fifth decade in life and mean survival 
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of onset being 15 to 20 years after onset; furthermore the disease is universally fatal, and despite 

best efforts, there is currently no known cure for HD [88]. The clinical phenotypes the disease 

presents involve characteristic movement disorder (Huntington’s chorea), cognitive disorders, 

and psychiatric symptoms. The etiology of the disease is described as selective regional neuron 

loss and gliosis in striatum, cerebral cortex, thalamus, subthalamus and hippocampus [89]. 

Owing to the discovery of the causal mutation of the disease, transgenic mouse models of the 

disease have been made possible [90]. In these mice models of disease, selective regional 

neuronal loss accompanying motor symptoms has been demonstrated as observed in the human 

disease [89].  

The Friedlander lab has screened the library of the Neurodegeneration Drug Screening 

Consortium [91] in isolated mitochondria for cytochrome c release inhibition, and tested the hits 

resulting from this first screening for their neuroprotective activities in ST14A cell lines [92]. 

These were immortalized striatal cells stably expressing a mutant huntingtin fragment to serve as 

a model of HD [92].  In total they have identified 21 drugs that inhibit cytochrome c release, 15 

of which subsequently demonstrated neuronal cell death inhibition activity in ST14A HD model 

cell lines serum deprivation and heat insult assays. Among them methazolamide also showed a 

dose-dependent delay in HD progression in vivo, in a mice model of HD (specifically R6/2) [90]. 

 

1.3 SCOPE OF CONTRIBUTION  

Most computational methods for predicting drug-target interactions rely on similarity. However, 

there are multiple shortcomings with basing interaction inferences mostly on chemical and/or 
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genomic similarity; primarily that global similarity is not always a good predictor of specific 

binding behaviour. There can be proteins with highly similar sequence (and even structure) but 

with a very small, varible ligand-binding region (such as membrane-bound receptors) that give 

rise to critically different interaction patterns. Since small-molecule compounds used as drugs 

are usually much smaller, the converse is harder yet there are cases where minor modifications 

can lead to widely different physiological phenotypic differences. A good example can be found 

in steroidogenesis in humans: Testesterone and Estradiol have 74% chemical similarity based on 

the MACCS fingerprints, calculated using Pybel [93], despite having radically different 

phenotypic effects. The contribution presented in this paper is completely independent of any 

chemical/protein similarity methods and relies on the interaction network therefore bringing a 

novel and complementary approach that avoids the pitfalls of other methods relying on 

similarity.  

I have demonstrated that a latent factor based drug-target interaction prediction method 

has successful descriptive and predictive power. I have validated the predictive characteristics 

with many different cross-validation setups. I have also tested the descriptive characteristics by 

comparing the drug-drug similarities calculated by the latent variables to those calculated by 3D 

chemical similarities. Finally, I have shown that such a method can perform remarkably well in 

directing experimentation in an active learning setting. 

I performed both computational and experimental studies towards elucidating the 

mechanism of action of these drugs and designing new, more potent inhibitors or HD. 

Specifically, I helped develop a neuronal cell death inhibition assay using the Q7/Q111 striatal 

neurons derived from murine cell lines which respectively express 7- and the 111-CAG-repeat 

human huntingtin protein. I characterized the apoptotic response under heat and serum 
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deprivation induced stress conditions, and helped develop a high content screening (HCS) based 

workflow for assessing the level of neuroprotection through neuronal cell death inhibition in 

response to chemical intervention. Computationally, I have used the descriptive function of latent 

variables within the context of HD in order to discover other drugs that can work effectively. I 

developed a method for analyzing the drugs that were observed by the Friedlander lab to be 

preventing cytochrome c release from the mitochondria and/or to be neuroprotective, and 

identified other drugs that could potentially be helpful in this disease. This work has given rise to 

the discovery of a novel repurposable candidate sodium nitroprusside (SNP). SNP is traditionally 

used as an antihypertensive owing to the fact that it breaks down in circulation and releases nitric 

oxide (NO), which results in vascular smooth muscle relaxation and vessel dilation. SNP has 

been experimentally shown to be an effective inhibitor of neuronal cell death in the Q111 HD 

model cell line, initially in the experiments done in the Friedlander lab by Hossein Mousavi. This 

phenotype was later reproduced in the University of Pittsburgh Drug Discovery Institute using 

the assays developed under the guidance of Lans Taylor, Andrew Stern, Mark Schurdak and with 

the work of Celeste Reese, Laura Vollmer and myself.  

I have also analyzed the whole-genome RNAi knockdown data in a C. elegans model of 

ATD to identify the genes that significantly impact disease progression, matched those nematode 

genes to the druggable human genome, and identified the best candidate drug for modulating the 

disease, glibenclamide (traditionally used as an antidiabetic), as a potential repurposable drug 

against ATD. Building on this central idea, we identified a set of 104 known proteostasis 

network (PN) modifier genes, and mapped them onto their human orthologs using two different 

databases/compendia available for C. elegans genes: Wormbase and Ortholist [94;95]. We 

mapped the human orthologs to interacting drugs, and filtered for targets of drugs that occur in 
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the Library of Pharmaceutically Active Compounds (LOPAC™) for feasibility. There were four 

such targets: Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform 

(PIK3CA), Transthyretin (TTR), ATP-binding cassette (ABC), and Nociceptin receptor 

(OPRL1) and we tested two drugs for each of these targets identifying four that were shown to 

reduce ATZ aggregation. 

Furthermore there is a need for user-friendly tools that an experimental scientist could 

use to rapidly search for known and predicted protein/targets using as query a given drug or a 

target of interest. These tools need to be easy-to-use, accessible, efficient, yet highly robust and 

low in false positives in order to help build reasonable hypotheses for further experimentation. 

This is important because the experimental scientists are an important audience, if not the key 

audience, to which these methods are addressed to. Yet they cannot be expected to possess the 

technical expertise required to develop and implement algorithms, neither download or 

implement existing tools, and then to run the code simply to get one prediction of interest. I 

contributed a new web server, BalestraWeb, to facilitate the broad dissemination and usage of 

the PMF-based computational prediction tools developed within the scope of this doctoral 

studies where the execution of the complicated machine learning is abstracted from the user who 

simply enters the query of interest (drug and/or target) and clicks one ‘Predict’ button. Finally, 

my work on laying the foundations of BalestraTK can help other scientists conduct research 

easier by allowing them to easily integrate multiple datasources. 
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1.4 SPECIFIC AIMS 

Below is a summary of the specific aims proposed to be accomplished during the course of my 

doctoral research studies. 

 

 Specific Aim 1: Predicting drug-target interactions using probabilistic latent factor models 

and validating their use as descriptors of therapeutic effects. The drug-target interaction 

network can be used to learn probabilistic latent factor models (LFM) about drugs and targets. 

These latent factor models can be used as (i) descriptors of drugs/targets for therapeutic function 

similarity comparison, clustering, distance calculation purposes; and (ii) predictors of drug-target 

interaction likelihood.  

Sub Aim 1: Latent variables as descriptors. We will demonstrate the use of LFM as 

descriptors of drug-target interactions by showing that the LVs can capture therapeutic functional 

similarity between compounds in cases missed by state-of-the-art similarity based comparison.  

Sub Aim 2: Latent variables as predictors. We will validate the use of LFM as 

predictors by comparing them against state-of-the-art methods on benchmark datasets, in 

addition to an active learning setting where LFM directs interaction experimentation in silico.  

 

Specific Aim 2: Identification of repurposable candidates for α-1 antitrypsin deficiency and 

Huntington’s disease. New drugs that can be repurposed against ATD will be identified using 

the experimental high content screening data collected on C. elegans model of the disease. 

Furthermore I will diversify previously identified hits against Huntington’s disease to identify 

more effective neuroprotectives using latent factor modeling based methods. 
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Sub Aim 1: Predict repurposable candidates for A1AD. I will identify potential 

targets in humans using the genome-wide RNAi screen, and a chemical library screen performed 

on a C.elegans model of ATZ aggregation. The genes that significantly alter ATZ accumulation 

will be mapped to their human orthologs. The drugs interacting with the human targets will be 

reported, for experimental verification. The data from an additional chemical screen, Prestwick 

library [96], for their ATZ elimination activities will be analyzed to identify potential targets, as 

well as the common chemical patterns that led to anti-aggregation activity, toward identifying 

new repurposable candidates. 

 

Sub Aim 2: Describe mechanism of action of neuroprotective drugs. Drugs that share 

one common target with neuroprotective drugs but otherwise have as diverse a target profile as 

possible will be identified, where diversity is defined as distance within the latent variable space, 

These drugs will then be tested in a neuroprotection assay, whose development I will assist. The 

hypothesis therein is that other, more effective drugs can be identified by exploiting the 

information we have about our currently known active drugs.  

 

Specific Aim 3: Development of new tools to integrate existing data sources and enable fast, 

efficient prediction of drug-target interactions to expedite drug discovery process. The 

algorithms, software and tools developed during the course of the doctoral studies will be  made 

available to the larger community of biomedical researchers with the help of user-friendly 

interfaces.  

Sub Aim 1: Website for drug-target interaction prediction. We will build 

BalestraWeb, (http://balestra.csb.pitt.edu/) a website for latent factor based interaction 

http://balestra.csb.pitt.edu/
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predictions. The user will be able to acquire predictions for (i) a specific drug-target pair; (ii) the 

most likely interaction partners of a drug, (iii) the drugs most likely to interact with a given 

target.  

Sub Aim 2: Development of a toolkit, BalestraTK, for chemical, protein and 

interaction data integration and analysis.  We will develop a Python toolkit 

(https://github.com/mcc-/balestraTK) for interaction information access and prediction. The 

users of the toolkit will be able to integrate and easily access data stored in the public databases 

DrugBank, STITCH, UniProt, and PubChem.  

 

1.5 SUMMARY OF FINDINGS 

Within the scope of aim 1, subaim 1, I have shown that latent factor based models can accurately 

describe the interaction profiles of drugs by assessing the similarity of the drugs with known 

similar therapeutic functions in latent variable space. I have also compared the similarity of these 

molecules in latent variable space to the results acquired by using state-of-the-art 

chemoinformatic 3D chemical similarity methods and shown that latent variable methods 

actually discover therapeutic function similarity better. For aim 1, subaim 2, I have validated the 

use of LFM based methods for predictive drug-target interaction assessment in two ways: (i) I 

assessed the recapitulation rate of known interactions after randomly removing 70% of the 

interactions, (ii) de novo prediction performance by assessing the presence of direct and indirect 

evidence for predictions made after including all the available data [97].  

https://github.com/mcc-/balestraTK
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Within the scope of aim 2, subaim 1, I have analyzed the whole-genome RNAi 

knockdown data from the Perlmutter lab’s C. elegans model of ATD. Based on these data, I 

devised a logistic regression based classifier to distinguish the genes that reduce aggregation, 

mapped these genes to human drug-target orthologs using WormBase and DrugBank and thus 

identified human drugs. Selecting for maximal match performance at every step, I predicted that 

the antidiabetic glibenclamide would be effective in A1AD, and this prediction has subsequently 

been validated by the Perlmutter lab in vivo in a murine model of the disease. The same central 

idea has been applied using more data sources: OrthoList in addition to WormBase; STITCH and 

MetaCore instead of DrugBank [45;94;95]. This approach has yielded eight other predictions 

that were tested, four of which have turned out to be active [65]. Finally, I have analyzed the data 

from the chemical screening and identified three new predictions. One of these has been 

validated by our collaborators so far, with the other two to be tested. Within the scope of aim 2, 

subaim 2, I have analyzed the results of a two-stage screen previously conducted by the 

Friedlander lab [92]. After implementing a novel computational method for computationally 

selecting new compounds to test, I have identified a set of experimentally feasible compounds to 

test. Then I have participated in the experiments to build a neuroprotection assay based on the 

Q7/Q111 HD model cell lines. Our experiments suggest that the antihypertensive SNP is a 

promising potential repurposable candidate. SNP has shown statistically significantly more 

neuroprotective activity than the glaucoma medicine methazolamide, which had been shown to 

be highly neuroprotective in HD in vitro and in vivo thus being used by the Friedlander lab as a 

positive control. 

Within the scope of aim 3, subaim 1, I have built BalestraWeb [98] which is a publicly 

accessible website that allows any user to be able to access predictions made by our methods and 
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thus allows us to facilitate the dissemination of the results of our work to a wider audience. 

Making a prediction is simplified to the point that the user only needs to input the name of the 

drug and/or target of interest, and click the ‘Predict’ button. The website automatically retrieves 

the proper prediction made by our latent factor based method and then visualizes the 

prediction(s) within the context of known interactions; as well as providing the user with links to 

more information about any drug/target that is either predicted to interact or known to interact. 

Within the scope of aim 3, subaim 2, I have built BalestraTK, which is open-source and publicly 

available (https://github.com/mcc-/balestraTK). This toolkit allows the users to easily parse, 

analyze and integrate publicly available datasets for use in computational systems pharmacology 

projects. 

https://github.com/mcc-/balestraTK
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2.0  LATENT FACTOR MODELING BASED ANALYSIS OF DRUG TARGET 

INTERACTIONS 

In this section, I will describe the various methods used or developed during the course of my 

doctoral studies.  First, I describe the various latent factor based probabilistic modeling 

techniques that I have adapted to QSP studies. Secondly, I describe the computational techniques 

we used and implemented for data analysis and new predictions within the scope of the ATD 

project. Third, I present the algorithms developed for new compound identification within the 

scope of the HD project. Finally, I describe the methodology behind BalestraWeb and 

BalestraTK.  

2.1 METHODOLOGY 

2.1.1 Problem Definition 

The drug-target interaction network is a bipartite graph with two types of nodes; drugs, and 

targets (Figure 4). Each edge represents an interaction between a drug and a target. The drug-

target interaction identification problem is to determine the missing edges that are likely to exist 

given all nodes and some of the edges in the network.  
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2.1.2 Dataset 

We used DrugBank (version of September 20, 2011) as the database [99].  All drugs annotated 

therein as approved, along with their annotated targets, are included in our dataset (i.e., we 

excluded compounds annotated as withdrawn or nutraceuticals), resulting in N = 1,413 drugs and 

M = 1,050 targets with 4,731 interactions among them. The interaction network displays small-

world characteristics: many nodes have low degree and a few, very high degree, as illustrated in 

the panels b and c of Figure 4, in line with previous studies on drug-target networks [100]. On 

average, there are 3.35 interactions per drug, and 4.50 interactions per target.  

2.1.3 Probabilistic Matrix Factorization (PMF) 

PMF is a member of the LFM subtype of collaborative filtering family of machine learning 

algorithms that decomposes the connectivity matrix, RN x M, of a bipartite graph of N drugs and M 

targets as a product of two matrices of latent variables (LVs) [53;101].  RN x M is defined as: 
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The matrix RN x M is modeled as the product of two matrices U
T
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express each drug/target in terms of D LVs. Our objective is to find the best approximation for 

LVs, while avoiding over-fitting. The predicted connectivity matrix R̂ N x M is then expressed as: 
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where U
T
 and V are composed of N rows ui

T
 and M columns vj, respectively, each being D-

dimensional. The PMF adopts a probabilistic linear model with Gaussian noise to model the 

interaction. Therefore, the conditional probability over observed interactions is represented as 
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where f((x | )  is the Gaussianly distributed probability density function for x, with mean  

and variance , and Iij is the indicator function equal to 1 if the entry Rij is known, and 0 

otherwise. Therefore, p(R | U, V, 
2
) gives us a probabilistic representation of the connectivity 

matrix, R [101]. Using zero-mean, spherical Gaussian priors on LVs, we can write 
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which leads to the log-likelihood of U and V given by 
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where C is a term that does not depend on LVs; the first term on the right-hand side is the 

squared error function to be minimized; and the two summations over the square magnitudes of 

ui and vj  are regularization terms that favor simpler solutions and penalize overfitting. The above 

log-likelihood directly follows from the Bayes’ rule where R stands for data, and U and V 

represent the model. If we assume that the variance of the prior for the drugs and targets are 

equal, i.e. 
222    UU , and if we define 21    then we can write this optimization 

function with a single hyper-parameter, λ. Furthermore, maximizing this log-likelihood can be 
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shown to be equivalent to minimizing a squared-loss error function, regularized with the 

Frobenius norm of the latent variable vectors, as shown in the following equation: 
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To learn an optimal model means to find the U and V matrices, or the D-dimensional LV 

vectors, ui (1 ≤ i ≤ N) and vj  (1 ≤ j ≤ M), that maximize the log-likelihood function, together with 

the identification of the hyper-parameters (λ and D) that yield the optimal learning performance. 

To identify the best hyper-parameters, we use cross-validation. Specifically, we hid 70% of the 

data and looked at performance in recapturing the missing interactions. Figure 13 demonstrates 

the results with D = 30 and D = 50 when predicting 100 and 1000 interactions, using the active 

learner as well as the passive learner (discussed in more detail below, in the next subsection). We 

chose D=50 and λ=0.01 based on our cross-validation runs. The PMF code distributed by the 

authors of [53] can be freely downloaded at http://www.utstat.toronto.edu/~rsalakhu/BPMF.html 

whereas our code that is partially built on top of that can be freely accessed at 

http://www.csb.pitt.edu/Faculty/bahar/QSP_PMF_code/ along with all the data we used to run 

these analyses. A detailed description of the contents of the two files provided in the link to our 

files is provided in Appendix A. 

The PMF method yields the optimal ui and vj vectors corresponding to each drug, di, and 

each target tj, respectively.  The basic idea is that the model is forced towards making a ‘no-

interaction’ prediction by the regularization – i.e. there is a penalty associated with any non-zero 

value in the LV matrices. However, there is also a penalty for failing to capture known 

interactions– i.e., if the dot product of the LV vectors corresponding to an interacting drug-target 

pair is close to zero. Therefore learning a model means to optimally balance out two objectives: 

http://www.utstat.toronto.edu/~rsalakhu/BPMF.html
http://www.csb.pitt.edu/Faculty/bahar/QSP_PMF_code/
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developing a sufficiently complex model to describe the known interactions, but not overly 

complex to end up in over-fitting.  In this study, we use gradient descent for minimizing the 

objective (error) function.  The adoption of higher D values usually yields more accurate results, 

although beyond a certain limit the increase in complexity and decrease in efficiency may not 

warrant the marginal improvement, if any, in prediction accuracy. D = 50 is adopted here as an 

optimal dimensionality for prediction runs. The method is highly efficient: a 50-dimensional 

model is trained on the entire DrugBank in approximately 2 seconds using a 2.00 GHz AMD 

Opteron processor. Moreover, the computing time to learn a PMF model scales linearly with the 

number of interactions, and as such, the method can be advantageously used for much larger 

datasets.  

2.1.4 Methodology for Active Learning On Drug-Target Interactions Using PMF 

The active learning (AL) strategy adopted in the present study is, in part, motivated by the 

success reported by Warmuth et al.[102]
  
who demonstrated that hit maximization is a viable AL 

strategy applicable to predicting drug-target interactions. The AL strategy adopted here also 

prioritizes the discovery of unknown interactions. Our method differs in that we aim at capturing 

the interactions between all drugs and targets, as opposed to predicting activity against a single 

target.  

The procedure is the following: We begin with the set of N drugs and M targets, and 

known associations, schematically shown in Figure 3 by black connectors. The purpose is to 

identify new associations, indicated by red connectors. For each candidate interaction, say the 

possible interaction between di and tj, we compute the model’s estimate, by calculating the dot 

product ui 
T
vj which serves as a weight ij for the edge/connector between di and tj. Clearly, ij, 



 39   

or the likelihood of association between di and tj, is high when ui and vj have both large values of 

the same sign at the same dimension(s).  For example, a relatively large weight may originate 

from the 2
nd

 component of both ui and vj, which means that the predicted association is mainly 

due to latent variable 2. We evaluated the statistical weights ij(di, tj) for the N x M pairs of drug-

targets for two purposes: (i) benchmarking the methodology via an iterative AL scheme, and (ii) 

making de novo predictions. In the former case, the method is benchmarked by hiding 70% of 

known interactions and examining whether the top-ranking prediction is a ‘hit’, i.e., whether it 

corresponds to a known (but hidden) interaction. The outcome from this test is fed back to the 

model, to repeat the calculation for the next prediction. Therefore, the AL model is updated at 

each iteration using the newly acquired ‘hit’ or ‘miss’ data until a predetermined number (m) of 

predictions are made. The passive learner (PL) makes the m predictions simultaneously without 

updating its model.  

In the case of de novo predictions, all DrugBank data were used as input. De novo 

predictions also lend themselves to an AL scheme provided that the top-ranking prediction is 

experimentally tested and then the new hit or miss data are incorporated in the model to perform 

a new prediction, and so on, until the experimentation budget is exhausted.  
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Figure 3: Qualitative illustration of the method for identifying drug-target interactions.  

The known interactions between drugs and targets (indicated by the black lines) are used to learn the LV vectors 

(shown adjacent to each node) that describe each drug and target. The dot product ui 
T
vj of the LVs for each pair of 

drug di and target tj define the predicted statistical weight ij of corresponding connection.  Example predictions are 

shown in red. (From [97]) 
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Figure 4: Drug-target interaction network  

(a) Network representation of the drug target interaction dataset used in this study. The drugs are shown in blue, 

protein targets, in red.  Data retrieved from DrugBank [99], Cytoscape used for visualization [103] (b) Distribution 

of drugs with respect to the number of targets they interact with (i.e. as a function of the number of edges around 

each drug node). (c) The distribution of targets with respect to the number of distinct drugs they interact with. (From 

[97]) 
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2.2 RESULTS 

Below I am going to discuss the results that demonstrate the power of LFM in descriptive 

function, predictive function, and in active learning. 

2.2.1 Descriptive Power of LFM 

To assess whether the LVs provide us with a pharmacologically meaningful metric, we examined 

the clustering of drugs in the D-dimensional space of the latent vectors. The number of clusters 

was chosen to be 30 as that was the value that gave the lowest Akaike information criterion 

[104], and using as basis the drug-drug distance L1(di, dj) = k |uik  - ujk | where uik designates the 

k
th

 component of ui, and the summation is performed over D components. 

Inasmuch as our method evaluates drugs based on their interaction profiles with targets, 

which in turn refer to specific therapeutic or phenotypic actions, the similarity of a pair of drugs 

should be high when their therapeutic effects are comparable and vice versa. Thus, the method 

will tend to cluster drugs that exhibit similar patterns of interactions (with target proteins), which 

we term as functionally similar drugs. The heatmap in Figure 5a displays the resulting 

organization of drugs in 30 clusters (indicated by different colors and indices along the axes). 

Table 1 lists the dominant therapeutic action associated with each cluster. The dark regions on 

the map indicate high functional similarity. The dark blocks along the diagonal show that most 

clusters include highly similar members, except for two (clusters 29 and 30), which apparently 

combine the outliers.  

Given that (promiscuous) proteins present more than one site for ligand-binding, different 

functionalities may be modulated by chemical-structurally different drugs, depending on the 
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binding site on the target (e.g. catalysis, substrate recognition, or allosteric signaling). 

Furthermore, a shared phenotype may arise from the targeting of different proteins along a given 

pathway. In order to make a better assessment of the properties of drugs grouped in those 

clusters, we examined their 3D structural similarities. High similarities would suggest that they 

bind similar epitopes, if not similar (or identical) structural domains or proteins.  If, on the 

contrary, they are structurally dissimilar, this might indicate a different site on the same protein, 

or a different target on the same pathway, or other indirect effect due to drug-target network 

connectivity. 

The extent of 3D structure similarity between pairs of drugs was computed using a 

multitude of the OpenEye™ scientific software products as described below 

(http://www.eyesopen.com/). We chose 3D similarity because it was reported to be a better 

predictor than 2D methods for off-target interactions, and to perform equally well in on-target 

interactions [105]. However 3D methods may suffer from more noise due to the conformational 

flexibility of the small molecule therefore we generated all possible stereoisomers using 

OpenEye FLIPPER [106], and up to 200 conformers per stereoisomer using OpenEye OMEGA 

[106] for every drug. All combinations of conformers accessible to the examined pair of drugs 

were examined using OpenEye Shape [35] toolkit; and the best matching pair was adopted to 

assign a 3D similarity score. This computationally expensive task led to the heat map presented 

in panel b of Figure 5. The drugs (along the axes) are ordered as in panel a to enable visual 

comparison.  

The comparison of Figure 5 shows that some clusters of functionally similar drugs (panel 

a) also exhibit some 3D similarities (panel b), whereas others display little structural similarity. 

We examined more closely the individual clusters to see if shared therapeutic functions were 

http://www.eyesopen.com/
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captured even when 3D similarities were absent. Figure 6 illustrates the results for cluster 14. 

This cluster essentially consists of anti-anxiety drugs, the majority of which are both functionally 

(panel b) and structurally (panel c) similar. However, the cluster also includes a structurally 

dissimilar drug, ethchlorvynol (panel a), which shares the same type of phenotypic action (as a 

sedative) as the majority of the cluster membership (mostly targeting GABA receptors). The 

present approach thus detects chemically or structurally distinctive drugs that share common 

activities, which would have been missed by methods based on ligand fingerprint similarities. 

Another interesting observation concerns the cross-correlations between different clusters 

(i.e. the off-diagonal regions of the heat maps). We note for example that cluster 11 also contains 

a set of sedatives. LVs are able to capture the commonality between the clusters 11 and 14 as 

may be seen by the strong signal (dark region) at the off-diagonal region enlarged in Figure 6b. 

The 3D similarity, on the other hand, cannot recognize the functional similarity and potential 

interference/side effects between these drugs in these two clusters (Figure 6c). Figure 8 

illustrates the same behavior for another cluster, whose members are mostly antineoplastic 

agents, albeit with various 3D structures. The LVs thus provide information on drug groups that 

potentially share pathways or exhibit similar activity patterns despite their distinct 

physicochemical properties.  
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Figure 5: Comparison of pairwise similarities of drugs, based on their therapeutic targets compiled in 

DrugBank and 3D structure 

Panel a displays the 30 clusters of drugs (color-coded along the axes; see Table 1 for their dominant therapeutic 

indication) deduced from the PMF of 1,413 approved drugs and corresponding 1,050 targets compiled in DrugBank. 

By definition, drugs belonging to a given cluster share similar interaction patterns with respect to targets. Panel b 

displays their 3D similarities, with the drugs being ordered as in panel a. Dark regions indicate high similarity based 

on LVs (panel a) or 3D similarities (panel b). Comparison of the panels shows that close proximity in LV space 

(which indicates functional similarity) does not necessarily imply 3D-structure similarity. LV distances were 

distributed in the range [0, 1] whereas the 3D distances were distributed in the range [0, 2] ([0-1] from spatial 

overlap, [0-1] from physicochemical property overlap); with the distribution of values also skewed in different ways. 

To render the two sets comparable, we performed rank normalization on both the LV similarities and 3D 

similarities. Selected boxes are enlarged in Figure 6 (white), Figure 7 (yellow), and Figure 8 (green). (From [97]) 
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Figure 6: Latent variables can capture therapeutic action similarities when 3D similarity metrics cannot 

Closer examination of the similarities between the members of the cluster 14 in Table 1 (enclosed in white boxes in 

Figure 5, enlarged in panels b and c here) shows that the cluster contains a series of anti-anxiety drugs. A few 

members of this cluster (indicated by orange boxes along the abscissa of panels b and c) are displayed in panel a, to 

illustrate their shared structural features, also indicated by the panel c that reflects their 3D similarities. The same 

cluster however contains ethchlorvynol, also used as a sedative, which would have been missed if we had used 

exclusively used 3D similarity to identify functionally similar drugs. (From [97]) 
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Figure 7: Strong cross-correlations between different clusters of drugs are consistent with their similar 

therapeutic functions 

Cluster 11, color-coded cyan, is essentially composed of hypnotics and sedatives. Cluster 14 (dark gray) contains 

anti-anxiety drugs. The drugs in these two clusters are located very closely on the drug-target interaction network, as 

shown in panel a, consistent with their similar actions. The LV-derived heat maps capture the functional similarity 

between these two clusters (as indicated by strong signals, or the dark region, in panel b); the maps based on 3D 

similarity (panel c) do not. In panel a drugs are shown in blue, protein targets in red. Most drugs and targets are part 

of a single connected component. Data are retrieved from DrugBank [99]. Cytoscape is used for visualization [103]. 

(From [97]) 
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Figure 8: Latent variables capture functional similarity 

The figure illustrates how the drugs clustered based on their PMF-derived latent vectors share functional similarity, 

while their 3-dimensional (3D) structures may vary.  The cluster shown in this case is dominated by antineoplastic 

agents, and they show significant latent variable similarity. The color code in the maps varies from red (no 

similarity) to black (high similarity). The corresponding 51 drug structures and DrugBank identifiers are presented 

on the right. (From [97]) 
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Table 1: The most dominant therapeutic function in each cluster 

Cluster Number Most Dominant Therapeutic Function Number of Drugs 

1 Antineoplastic Agents 1 

2 Gastrointestinal Agents 4 

3 Nucleic Acid Synthesis Inhibitors 6 

4 Quinolones 11 

5 Calcium Channel Blockers 12 

6 Anti-Bacterial Agents 13 

7 Androgens 15 

8 Anti-Bacterial Agents 16 

9 Anti-HIV Agents 19 

10 Anti-Arrhythmia Agents 21 

11 Hypnotics and Sedatives 21 

12 Antipsychotic Agents 22 

13 Diuretics 22 

14 Anti-anxiety Agents 22 

15 Adrenergic Uptake Inhibitors 27 

16 Analgesics, Opioid 27 

17 Anti-inflammatory Agents 32 

18 Anti-Bacterial Agents 33 

19 Cyclooxygenase Inhibitors 34 

20 Antihistamines 34 

21 Adrenergic beta-Antagonists 35 

22 Sympathomimetics 39 

23 Contraceptives, Oral, Synthetic 42 

24 Anti-Bacterial Agents 49 

25 Antineoplastic Agents 51 

26 Cholinesterase Inhibitors 53 

27 Muscarinic Antagonists 55 

28 Antipsychotic Agents 59 

29 Antineoplastic Agents 201 

30 Antihypertensive Agents 258 
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2.2.2 Predictive Power of LFM 

To evaluate the performance of the method in comparison to previous work, we considered three 

important studies in this area, one recently published by Gonen [34] and two by Yamanishi et al. 

[29;32]. Gonen used a kernel based matrix factorization (KBMF) with chemical and genomic 

similarities to predict multiple targets. Yamanishi et al., on the other hand, integrated chemical, 

genomic and pharmacological data to map all drugs and targets to the same unified feature space 

where each protein-compound pair closer than a predefined threshold was predicted to interact. 

Our approach differs from both studies, in that PMF assumes an independent LV for each row 

and column with Gaussian priors; whereas KBMF employs LVs spanning all rows and columns 

with Gaussian process priors, and Yamanishi et al project drugs and targets into a 

pharmacological space based on the eigenvalue decomposition of the graph-based similarity 

matrix. 

The benchmarking procedure that we adopted is a five-fold cross-validation of drugs on 

four target classes: Enzymes, Ion channels, G-protein coupled receptors (GPCRs) and Nuclear 

Receptors. In order to achieve comparable results, we used the same protocol as that adopted 

earlier, i.e., we divided our dataset into five subsets, and each was used as a test set, and the 

others, as training sets. Due to the randomness involved in the selection of subsets, we repeated 

the cross-validation experiments 100 times with randomly selected subsets and evaluated the 

average AUC (area under the receiver operating curve) for each subset. The first four rows in 

Table 2 compare the results (columns 6-10) for the four classes, and the 5
th

 row lists the average 

performances weighted by the size of the interaction space. Our method performs best when 

applied to large datasets (e.g. enzymes and ion channels); whereas Gonen’s performs best in the 

case of GPCRs, and Yamanishi et al. (2010) exhibits the highest performance for nuclear 
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receptors, where the present method yields a relatively low (0.642) AUC value.  Examination of 

the statistical significance of our results (Figure 9 panel a) indicates that the mean AUC values 

obtained for all four sets are highly robust. Their variances vary from 2% (Enzymes and Ion 

Channels) to 11% (Nuclear Receptors). Finally, the application of the same benchmarking 

protocol to DrugBank yielded an accuracy rate of 79.4 ± 0.01% (Table 2, last row), supporting 

the utility of the method when applied to large datasets. 

In principle, it might be intrinsically harder to make accurate predictions for larger 

datasets as the size of the potential interaction space N x M grows quadratically when the number 

of drugs and targets grow linearly, particularly if the number of known interactions is small. The 

occupancy of the N x M interaction matrix is only 1.5% in the Enzyme class, which could make 

it difficult to learn an informative model. The present PMF technique, however, successfully 

learned an informative model and handled the complexity of interactions in this space of 

interactions, apparently due to the availability of a sufficiently large (absolute) number of known 

interactions (Figure 10 panel b). 

The drug class that targets ion channels has the second largest number of known 

interactions among the four. Although the size of interaction space is one order of magnitude 

smaller than Enzyme class, there are 776 known interactions leading to a percent occupancy of 

5.37% of all possible ion channel-drug associations.  The success of our method in this case may 

be attributed to both the relatively large number of known interactions and the rich annotation of 

that class of interactions. The two other classes, GPCRs and Nuclear Receptors, are significantly 

smaller in terms of their interaction space and/or occupancy of that space. Nuclear Receptors 

comprise only 27 drugs and 22 targets, and 44 interactions. A method that relies solely on 

connectivity, like ours, cannot presumably formulate an informative model when the set of 
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‘edges’ to construct the network connectivity matrix is incomplete. In those cases, the data that 

come from other sources, e.g. chemical similarity and genomic patterns, amend this lack of 

information. Consequently, methods that incorporate such features [32;34] outperform ours.  

To further examine the effect of scarcity of known interactions on the performance of the 

present method, we performed additional tests by varying the fraction of hidden interactions.  

The results are presented in Figure 10. Panels a-d show the performance on Ion Channels, 

Enzymes, GPCRs and Nuclear Receptors, respectively. These results show that the performance 

depends on the fraction of known interactions. To put the results into perspective, we indicated 

by a vertical dashed line in each panel the fraction of data (80%) used in previous studies [32;34] 

for training purposes. Consistent with the above findings, Ion Channels yield the best result: 

previous AUC values [34] (of 0.799; Table 2) are matched with about only 35% of the data. On 

the Enzyme group, we match the performance of Yamanishi et al. [32]  (AUC of 0.845) with 

roughly 70% of the data used for training. GPCRs and Nuclear Receptors yield AUC values 

lower than those previously attained, [32;34]  irrespective of the fraction of hidden interactions.  

Table 2: Properties of the examined space of proteins-drugs, and performance of the 

present method in comparison to others 

Target 
type 

# of 
known 
inter-
actions 

# of 
drugs 
(N) 

# of 
targets 
(M) 

Size of 
interaction 
space 
(N M) 

Percent 
occupancy 
of the 
space 

Yamanishi   (pred 
pharmacol effects) 

Gonen, 
2012

(a)

Present 
method 
(D = 50) 2008

(a)
2010

(a)

Enzymes 1,515 212 478 101,336 1.50% 0.821 0.845 0.832 0.861 ± 0.02 

Ion 
Channels 776 99 146 14,454 5.37% 0.692 0.731 0.799 0.904 ± 0.02 

GPCRs 314 105 84 8,820 3.56% 0.811 0.812 0.857 0.771 ± 0.04 

Nuclear 
Receptors 44 27 22 594 7.41% 0.814 0.830 0.824 0.650 ± 0.11 

All
(b)

2,649 443 730 - - 0.782 0.807 0.825 
0.859 ± 0.03  

DrugBank 4,731 1,413 1,050 1,483,650 0.32% - - - 0.794 ± 0.01 
(a)

The last four columns present the comparison with Yamanishi’s [29;32] and Gonen’s [34] for the same 

dataset. 

(b)
weighted-average mean and covariances, evaluated using the number of interactions as weights
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In summary, the PMF method is particularly suitable for screening and inferring 

repurposable drugs or potential side effects from large datasets where computational assessment 

of structure similarity kernels become prohibitively expensive. In cases where the dataset of 

known interactions is too small, on the other hand, 2D or 3D similarity metrics provide more 

accurate assessments.  
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Figure 9: Closer examination of the statistical distribution and robustness of the results obtained for four 

classes of drug-targets and for the entire DrugBank 

Five-fold cross-validation runs were repeated for 500 iterations with different selections of hidden/known subsets to 

examine the robustness of the results. Panel a displays the running averages obtained for the AUC values as we 

performed 500 iterations. Results for Enzymes (green), Ion Channels (red), as well as the entire DrugBank (blue) 

exhibit small fluctuations (see histograms on the right ordinate), GPCRs exhibit moderate fluctuations (orange); 

whereas, the nuclear receptors (black) show significant variations. The running averages converge after ~ 100 

iterations and are robustly maintained to yield values listed in Table 2 (last column). The dependence of the final 

AUC values on the number of known drug-target interactions in the examined dataset is shown in panel b. A 

correlation coefficient of 0.73 is obtained, upon logarithmic fitting of the data.  When the number of known 

interactions is sufficiently large (e.g. N x M > 500), the occupancy of the full interaction space appears to affect the 

overall performance. (From [97]) 
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Figure 10: Evaluation of method performance as a function of dataset size on DrugBank v3 data.  

We evaluated [97] the method’s performance as a function of the training dataset size, displayed for the four subsets 

of targets listed in Table 2. The fraction of the dataset used for training the model was changed from 20% to 90% 

and the resulting AUC was recorded. Since there is randomness in assigning data points to the train/test datasets, 

each step was repeated 100 times. The solid curves show the average and the dotted curves showing one standard 

deviation above/below the average.  The dashed vertical bar indicates the fraction (80%) used for generating the 

AUC values listed in Table 2. The two horizontal lines indicate the AUC values attained by Gonen (2012) (red) and 

Yamanishi et al (2010) (black). (From [97]) 
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2.2.3 LFM Based Predictive Active Learning on Drug-Target Interactions 

As a more stringent test, 3,318 (70%) of the known 4,731 interactions in DrugBank v3 were 

randomly hidden, reducing the average number of interactions per drug from 3.35 to 1. The 

resulting ‘incomplete’ interaction matrix was then used to predict the hidden interactions, one at 

a time (rank-ordered by statistical weights ij(di, tj)) as described in the methodology section. 

The outcome was checked in a simulated experiment to assess whether the predicted interaction 

is a true positive (TP) or a false positive (FP). If the prediction is an existing, but hidden, 

interaction, the result is considered a TP (or hit), otherwise a FP (or miss). Then the model is 

updated in line with our AL scheme, and this loop is repeated until the completion of m = 1,000 

predictions. At that point, the simulation is halted and the overall performance of the model, or 

the hit ratio, is evaluated. Note that this method gives us a lower bound for hit ratio because the 

predictions are labeled as hits only if they are annotated in DrugBank, although they can be true 

but not yet observed experimentally or annotated in DrugBank. 

The results are presented in Figure 11. The figure displays the number of hits as a 

function of the number of predictions, obtained with three approaches: active learning (dark blue 

curves), passive learning (dark red curves) and random (green). The approach is able to achieve, 

on average, 587 hits out of 1,000 predictions via AL, 407 hits, via PL; and the corresponding 

variances (indicated by the dashed curves) are 35 and 46, respectively. Compared to the random 

probability of 2.23 hits per 1,000 predictions, the AL result is a 263-fold improvement over 

random.  The improvement of AL over PL is 1.44 fold. The AL improvement over random was 

reported to be up to 3.19-fold in a previous SVM-based study for predicting the activity of 1,316 

drugs against a single target [102]. The same study also reported 1.59-fold improvement between 

passive and active learners. Closer examination of the results from the top 100 predictions 
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(enlarged in the inset) further shows that hit ratios of 88.0 ± 4.7% and 82.2 ± 6.4% are obtained 

by the respective AL and PL protocols. The results are obtained with D = 50, which yields 

optimal results, as can be seen from Figure 12 and Figure 13. 

These results permit us to draw two conclusions. First, a hit ratio of 88% is attainable in 

the top 100 predictions (and 59% in top 1,000) upon adopting a PMF-based AL strategy for 

identifying hidden/unknown interactions in a sparse (0.32% occupancy) dataset of about 1.5 

million potential interactions. Second, the AL method outperforms random by two orders of 

magnitude and PL by a ratio of 1.5 approximately, in support of AL strategy for predicting new 

interactions.  
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(A)  

(B)      

 
Figure 11: Active learning hidden drug-target interaction prediction performance.  

(A) The number of drug-target interactions per drug was reduced from 3.35 (average) to 1 by hiding 70% of known 

interactions, selected randomly. Simulations were repeated n = 96 times for each of the 1 < m < 1,000 predictions 

(abscissa) and the number of hits (correctly identified hidden interactions) is plotted for each run, along the ordinate. 

The dark blue and dark red solid curves refer to the average performance obtained by active learning and passive 

learning protocols, respectively, using D = 50,  = 3,  = 0.01, and  = 0.9 in the adopted PMF algorithm. Dashed 

curves show the corresponding variances (by one standard deviation) above and below the mean value. The green 

curves (practically overlapping with the abscissa) refer to results from random predictions. The inset shows a close-

up of the first 100 predictions. AL reaches an accuracy rate (hit ratio) of 88.0 ± 4.7% and 58.7± 3.5 % in the 

respective cases of m = 100 and 1,000 predictions. These results are on DrugBank v3 data. (From [97]) (B) The 

same results reproduced on DrugBank v4 [107] data.  
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Figure 12: Improvement in prediction accuracy by AL over random and over PL 

Random selection of experiments is used as a representative of the performance of the brute force strategies 

commonly employed in screening based drug discovery efforts. Improvement over random allows the comparison of 

the various active learning paradigms. Fold-improvement is based on hit ratios obtained at the end of 1,000 

predictions, using same parameters as Figure 11. The AL performance levels off at about D = 50 in panel a. The last 

bar in each panel refers to the work of Warmuth et al. (2003). (From [97]) 
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Figure 13: Comparison of the predictive performance of the active and passive learners (AL and PL), and 

random model as a function of latent variable space dimensionality 

In each plot, the ordinate shows the number of hits (accurately predicted hidden interactions) as a function of the 

number of predicted drug-target associations (abscissa). Blue, red and green solid curves refer to AL, PL, and 

random results and dashed curves indicate the standard deviation (see caption for Figure 11). The dashed orange line 

indicates the 100% performance limit for comparative purposes. 70% of the interactions were hidden/removed 

randomly at the beginning of each simulation, and computations were repeated 48 times with different selections of 

hidden associations. The upper panels display the results for the top-ranking 100 predictions, and the lower, for the 

top-ranking 1,000.  Overall the AL accuracy rate increases from 50.4% to 58.7%, as we increase the dimensionality 

from D = 30 to 50, for m = 1,000 predictions, and the respective variances are 2.7 and 3.5%. In the case of N = 100 

predictions, the AL accuracy rate increase from 70.1% to 88.0%, and the respective variances are 5.1 and 4.7%. 

(From [97]) 
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2.3 EFFICIENT & ONLINE LATENT FACTOR MODEL BASED DRUG-TARGET 

INTERACTION PREDICTIONS 

BalestraWeb is built by training a latent factor model, as described in our previous work [97], on 

approved drugs and their interactions data from DrugBank v3 [99]. To build the latent factor 

model we use the GraphLab collaborative filtering toolkit implementation [108]. We mapped all 

the known names, brand names and synonyms of the drugs and targets to the relevant latent 

factor using a precomputed hash table that allows constant time access and enables maximal 

efficiency. 

 

The server allows users to submit three types of queries: drug-target interaction, drug-

drug similarity and target-target similarity. In the former case ( Figure 14), the input is mapped to 

the corresponding drug latent vector (LV) and target LV, and the dot product of these vectors 

yields a score for the probabilistic occurrence of the queried drug-target interaction. In the 

current version, there is an update compared to the original version where this operation is 

repeated across 128 models the results of which are averaged to reach the reported final value. 

Alternatively, the user can enter a single type of input, either a drug or a target. If a single drug is 

entered, the server retrieves the LV for that drug and screens it against the entire set of LVs 

corresponding to all targets, so as to identify known and newly predicted targets reporting the 

targets with the maximal predicted interaction scores. Drug-drug and target-target similarity 

queries provide information on drugs (or targets) similar to the query drug (or target) based on 

the cosine similarity of their LVs where the average cosine similarity across all models is 

reported to the user. The use of model averaging enables robust model learning since it prevents 

the random initialization of the model training stage from playing a role in the reported results. 
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The output is an interactive graph (which can be downloaded in JSON format) and a table 

displaying both the known drug-target interactions for the query drug (target) and the top N 

predicted targets (drugs), rank-ordered by their score. This interactive graph is rendered using 

scalable vector graphics, which is a widely used tool for displaying graphics on the Web as it is 

highly efficient in terms of network bandwith use as well as being highly communicative and, if 

preferred, interactive [109-112]. It enables the transmission of the network using only about 5% 

of the bandwith that would be required to communicate a static bitmap representation of the 

same graph, while also enabling interactive use. Furthermore, users can select to view a second 

layer of interactions beyond the immediate neighbors of the query drug/target in the bipartite 

network of drugs and targets. The resulting subnet of interactions thus provides a more complete 

picture of the investigated drug/target in the context of the interactions of their known 

targets/drugs. 

In addition to providing information on the distribution of scores in general, in the 

tutorial, we provide query-specific histograms in the output files:  the distribution of predicted 

confidence score (for each member of the drug-target pairs) or the histogram of cosine 

similarities (for each member of the drug-drug or target-target pairs). These histograms facilitate 

the interpretation of the specific score released for the query pair in the context of the complete 

distribution of scores for the investigated drug/target, and help make a better assessment of the 

significance of the outputted score.   

BalestraWeb has been significantly updated as of May 7, 2015. Multiple 

updates/improvements have been made compared to the version published last year. The new 

BalestraWeb v2 uses the average of 128 models to do all calculations in order to learn a robust 

model that does not become affected by the random initialization of the latent factor learning 
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process. This is important because during the model learning stage, the optimization landscape is 

tremendous because the number of parameters to be learned is high (the exact number of 

parameters to learn are N*D+M*D; which is 1313*50 + 1455*50 = 138,400 for DrugBank v4 

[107]). Consequently the algorithms that can learn a model in a reasonable time almost always 

converge to a local optimum. Therefore depending on where in the parameter manifold the 

random initialization places the model, the converged model (i.e. the learned model) can be 

different for different initialization seeds. This creates a high variability in the model outputs, 

which is undesirable. However averaging over a very high number of models all of which have 

been randomly initiated effectively removes/minimizes this problem because the optima that are 

frequently reached are all sampled. Instead of picking a single model which yields the first but 

not necessarily the best fitness, we take the average of all the trained models to minimize 

overfitting. As it currently exists, there are 11 newly predicted drug-target associations in the 

current version of BalestraWeb with a predicted interaction score above 90%. These are 

presented in Table 3. The list of all predictions above the threshold of 70% are reported in 

Appendix B. The code and all the auxiliary files that run BalestraWeb can be downloaded at 

http://balestra.csb.pitt.edu/static/balestraweb.zip and the explanation of the contents of this file is 

provided in Appendix C. 

  

http://balestra.csb.pitt.edu/static/balestraweb.zip
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 Figure 14: BalestraWeb architecture and underlying methodology. 

 The user input (lower left) is mapped onto the latent factor vector(s) ui (for drugs) or vj (for targets), learned by 

minimizing squared error regularized by Frobenius norm  (see equation at top left). The output (right) contains  a 

score Rij representative of predicted interaction confidence along with a graphical representation of the close 

neighborhood of the query drug (red dots) and/or target (blue dots) in the drug-target association network, along 

with a table of known (grey bars) and predicted (red bars) interactions. Similar features hold for drug-drug and 

target-target similarity searches and outputs. (From [113]] 
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Table 3: The top predictions on BalestraWeb v2 

The table below shows the drug-target pairs with the highest predicted interaction likelihood scores among all 

possible BalestraWeb queries. In other words, these are the interactions that BalestraWeb considers most likely 

based on DrugBank v4. Therefore they represent the top candidates for experimental validation/ 

Drug ID Drug Name Target ID Target Name Score 

DB00116 Tetrahydrofolic acid BE0002176 Methylenetetrahydrofolate reductase 1 

DB00116 Tetrahydrofolic acid BE0000331 Serine hydroxymethyltransferase, cytosolic 1 

DB00145 Glycine BE0000331 Serine hydroxymethyltransferase, cytosolic 0.99971 

DB00116 Tetrahydrofolic acid BE0000292 Serine hydroxymethyltransferase, mitochondrial 0.99954 

DB00128 L-Aspartic Acid BE0000277 Calcium-binding mitochondrial carrier protein Aralar2 0.9993 

DB00145 Glycine BE0000292 Serine hydroxymethyltransferase, mitochondrial 0.99912 

DB00370 Mirtazapine BE0000291 5-hydroxytryptamine receptor 1A 0.92736 

DB00543 Amoxapine BE0000572 Alpha-2B adrenergic receptor 0.92068 

DB00408 Loxapine BE0000393 5-hydroxytryptamine receptor 2B 0.91003 

DB04946 Iloperidone BE0000533 5-hydroxytryptamine receptor 2C 0.9008 

DB00696 Ergotamine BE0000342 Alpha-2C adrenergic receptor 0.90057 
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2.4 METHODOLOGY FOR BUILDING EFFECTIVE MODEL-AVERAGED 

LATENT FACTOR BASED DRUG-TARGET INTERACTION PREDICTION MODELS 

In this section, I outline the steps needed to be taken in order to learn an effective LFM for 

predicting drug-target interactions, based on my experience during my PhD work.  

First, there are a multitude of different algorithms to learn LFM – even though I have 

started off with discussing PMF, it is important to realize that PMF is only one of the many 

competing latent factor learning algorithms. To mention a few, there is alternating least squares 

[114], ALS with parallel coordinate descent [115;116], stochastic gradient descent (SGD) [117], 

biased methods such as biased stochastic gradient descent [118] as well as many others published 

in the collaborative filtering literature. All of these models aim to accomplish the same objective 

at the core: to learn latent factor models that best characterize the nodes of a bipartite network 

based on their connections. ALS, SGD and PMF are highly similar in their objective functions, 

effectively minimizing squared loss regularized with the Frobenius norm of the latent variable 

vectors. The biased methods have a slight difference in that they include global and node-

specific bias terms designed to differentiate the nodes that are globally promiscuous from those 

that are not.  

The LFM learning methods have different hyperparameters that control some 

fundamental aspects of the learning process some of which we have seen above in our discussion 

of PMF. Specifically important hyperparameters are: the dimensionality of the latent variable 

space (D),  the regularization parameter governing how much to penalize complex models (λ),  

model update parameter that governs how much to update the model at each iteration (γ) whose 

larger values yield faster convergence but lower values yield more accurate convergence to local 

optima. Adaptive approaches where gamma is reduced by a certain rate at each iteration can also 
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be construed. This list is not exhaustive: depending on the type of learning algorithm, there can 

be other (or fewer) parameters to tune.  

There exist Bayesian treatments to these learning algorithms such as the Bayesian 

Probabilistic Matrix Factorization; BPMF [53] which aim to allow automatic complexity control 

by essentially integrating over all the hyperparameters. The problem is that after the Bayesian 

treatment, it is no longer possible to obtain a closed form expression of the gradient of the 

objective function, which necessitates approximating the posterior directly. This can be achieved 

through approaches such as Markov Chain Monte Carlo sampling, however sampling the 

posterior is usually computationally quite expensive, and also makes the method output harder to 

interpret.  

Therefore to build an effective non-Bayesian model, it is important to compare the 

performance of multiple hyperparameter combinations and algorithms. An example (results from 

the comparison I did on STITCH v3.1 in order to learn the LFM algorithm/ 

hyperparameterization to use for our work on HD) can be seen in Figure 15. The full list of 

results, acquired by testing each method and hyperparameter combination on 16 randomly 

partitioned train/test sets can be found in Appendix D. As best practice, I would recommend 

scanning these parameters in log-scale (i.e. 10
-12

, 10
-10

, etc) and in the following ranges: for 

latent variable dimensionality (D) the range 2
4
 to 2

7
 (which, in log-scale, is simply 4 values: 2

4
,
 

2
5
,
 
2

6
, and

 
2

7
); for λ/γ the range 10

-12
 to 10

0
 (skipping every other entry, i.e. 10

-12
 then 10

-10
 and 

so on, might be performed to minimize computational resource use).  

If a non-Bayesian algorithm is used, there is a caveat that needs to be taken into account. 

The random initialization of the parameters that are being learned (note the nomenclature 

distinction: λ/γ are hyperparameters of the learning process, whereas the actual contents of the 
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latent variable matrices are the parameters that are being learned) can effect the final converged 

model. Therefore it is often a good idea to use the average of multiple (more than 100) models. 

Here it is important to take care that only the inner product of the latent variable matrices (i.e. 

predicted matrices) should be averaged. Averaging the latent variable matrices directly across 

models is an important mistake to be avoided as it can be algebraically shown to be different 

from the average of the predictions of the individual models.  

In order to test the quality of the models, one commonly used strategy is to evaluate the 

root mean squared error (RMSE) on held-out test data. I used RMSE for evaluation of the 

algorithms and hyperparameters to be used in modeling STITCH for the HD project, as shown in 

Figure 15. It is important to remember that whenever random train/test splits are used, the entire 

operation that involves this partition must be repeated many times in order to average out the 

effect of randomness in the train/test split.  

Depending on the objective to be accomplished, different performance metrics can also 

be devised. For example, to learn the model used in the current iteration of BalestraWeb (as of 

May 7, 2015) I have used rank-based performance evaluation, where the objective maximized is 

the median rank of the true-but-hidden interactions among all the predicted interaction partners 

of each drug. It is important to clarify the following point: When evaluating different model 

learning strategies, I optimize for the model that minimizes the median rank. Once that is 

completed, I use the best-performing hyperparameters to use the optimal model learning strategy 

to build the model underlying BalestraWeb. These parameters can be found in the code provided 

online at http://balestra.csb.pitt.edu/static/balestraweb.zip the contents of which are explained in 

Appendix C. The scores in Table 3, or anywhere in BalestraWeb for that matter, come from the 

http://balestra.csb.pitt.edu/static/balestraweb.zip
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model that is learned with this optimal strategy. Hence the scores in Table 3, and the rank 

performance described here are from two entirely different approaches.  

Using a rank-based performance evaluation when training BalestraWeb makes the most 

sense because the most important aspect for the use case of BalestraWeb is to be able to rank the 

correct but unknown predictions as high as possible in the output predictions. Compared to the 

hyperparameters used to train the model used in Figure 13, the parameters identified through this 

scan achieve about 25% higher median rank for true but unknown (i.e. hidden) interactions, 

achieving a median rank of 20. This is quite impressive: 50% of the true but unknown 

interactions occur among the top 20 predictions.   
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Figure 15: Hyperparameter optimization results with four different latent factor model learning algorithms 

The figure shows results from hyperparameter optimization runs where the STITCH v3.1 is used to compare four 

LFM learning algorithms and their various hyperparameterizations. The panels (a), (b), (c), and (d) respectively 

show the results with the ALS, PMF, BiasSGD, and SGD algorithms. For the first two (i.e. ALS and PMF) the 

hyperparameters that are scanned here are the dimensionality of the latent variable space (D) and the regularization 

hyperparameter that determines how much to penalize complex models (λ). For the last two, the parameters that are 

scanned are λ as defined before, and γ which is the parameter that controls for how much to update the model at 

each iteration of the learning process. The vertical axis is always the root mean squared error (RMSE) on the held 

out test data, averaged over 16 iterations to minimize the effect of randomness in the data train/test split. ALS has 

performed the best at an RMSE of 4.7% when trained with λ=1.5 and D=100. Therefore I subsequently used ALS 

trained with these choices of parameter in our HD work to train the LFM on STITCH v3. 
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2.5 BALESTRATK: PYTHON TOOLKIT FOR DRUG TARGET INTERACTION 

DATA ACCESS AND INTEGRATION 

Programmatically accessing drug-target interaction data requires parsing and constructing data 

structures amenable for efficient storage and access. Specifically, O(1) time complexity
5
 in 

random access, O(1) name-based lookup operations, O(n) for iterations over all interactions of a 

particular protein or drug that is called by name are important requirements because these are 

commonly encountered operations when conducting computational drug repurposing research. 

Specifically, there are two main databases that I have used as the source of drug-target 

interactions in my research: DrugBank [99;107] and STITCH [45;119]. These two databases 

have different uses; DrugBank is a smaller but more richly annotated dataset of interactions with 

15,120 links between 7,740 drugs and 4,103 proteins whereas STITCH offers 4,523,609 

interactions between 141,799 drugs and 19,488 human proteins. In fact, STITCH is a superset of 

DrugBank data as it incorporates DrugBank among 14 databases in the latest version of STITCH 

(v4). Yet for the user who needs to programmatically access a set of specific drugs, the only 

method is to download these datasets in aggregate format and write purpose-specific scripts that 

access the relevant information. I have built a Python toolkit that obviates that need by collecting 

and packaging the code that I have had to write to conduct the research presented in this thesis: 

BalestraTK.  The open source code is hosted on GitHub, which is a commonly used open source 

code repository and is publicly accessible at: https://github.com/mcc-/balestraTK  

                                                 

5 O(.): The so-called big-O notation is commonly used in computer science to describe the complexity (often 
time complexity) of performing an operation in terms of the variable of interest; with constants eliminated 
from the inside of the parantheses. O(1) represents an operation that takes constant time and hence is the 
lowest time complexity that can be achieved, O(n) represents an operation that is linear in the number of 
inputs, O(n2) is quadratic, etc. 

https://github.com/mcc-/balestraTK
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The mode of operation is such that there is a single one-time cost of parsing the data in 

these databases and constructing the data structures at the very first use of the toolkit, which 

leads to constant time access in every subsequent use of the toolkit as many times as desired. The 

data structures that are built are persistent (i.e. they are saved in the disk) and therefore they are 

used from one instantiation to the other. This means that once the data structures are constructed 

all subsequent uses also instantiate rapidly.  

When using BalestraTK, the user must point the toolkit to the folder where they keep the 

data downloaded from DrugBank; or in the case of STITCH simply where they intend to keep 

the data, and the code automatically downloads the required data there. The difference between 

these databases are due to differences in their license terms: DrugBank prohibits redistribution, 

thus I require that the user visit the DrugBank website to download the data and then point the 

toolkit to where the data is stored locally on his/her machine. STITCH license enables the 

sharing and redistribution of data thus I have coded the toolkit to automatically download the 

data when the toolkit is first used, if it is not already there. What this means is that if the user 

already has the STITCH files downloaded, he/she can simply point to the appropriate folder and 

the toolkit automatically uses them whereas in the absence of one or multiple required files, the 

toolkit will download the appropriate files to the directory specified by the user.  

When using STITCH, one important limitation is that the STITCH interaction file 

contains only PubChem compound identifiers for chemicals, and Ensembl/UniProt identifiers for 

proteins. In order to perform most repurposing and/or computational drug discovery efforts the 

names of both proteins and chemicals, as well as the structures of these chemicals and the 

sequences, GO identifiers, PFAM identifiers, etc of these proteins are also useful. In recognition 

of this fact, I automatically download the necessary information and integrate it into the 
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appropriate data structures. DrugBank already contains this information embedded in its data 

representation in an integrated manner, and I make them accessible programmatically as well. 

Detailed information as well as usage examples are provided on the public source code 

repository referenced above. 
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3.0  COMPUTATIONAL DISCOVERY OF THERAPEUTIC AGENTS AGAINST 

ALPHA-1 ANTITRYPSIN DEFICIENCY (ATD) 

In the following chapter, I will discuss the results of our study towards the identification of novel 

computational therapeutic agents. The data we analyzed have been acquired from two different 

studies, and therefore the results in the chapter are organized accordingly. In the first study, we 

have analyzed the data acquired from a whole genome RNAi knockdown study performed in a 

C. elegans model of ATD [65]. In the second study, we have analyzed the results from a high 

content screen conducted with the Prestwick library of approved small molecule chemicals. 

3.1 METHODOLOGY FOR DRUG REPURPOSING BASED ON MODEL 

ORGANISM GENE KNOCKDOWN DATA 

Model organisms are useful for interrogating different diseases in multiple contexts. Here we 

present a methodology for using model organism whole genome knockdown (RNAi) data to 

inform a drug repurposing approach. This methodology has been developed specifically with the 

intent to apply it to the aim 2, subaim 1 within the context of the A1AD project.  



 75   

3.1.1 Whole Genome RNAi Knockdown Screen  

RNA interference screen was conducted to identify the genetic modulators that affect the 

accumulation of ATZ [120]. A transgenic C. elegans line expressing GFP tagged ATZ in the 

intestinal cells was derived. The intestinal cells were selected because these cells have the 

highest biological environment resemblance to the human liver cells. To simplify the 

identification of transgenic animals, the head muscle promoter myo-2 was tagged with mRFP to 

serve as co-injection marker. The successful injections led to the derivation of transgenic animals 

expressing mRFP in the head region and mGFP in the intestinal region.  

The transgenic animals were then used to knockdown each of the 16,256 known C. 

elegans genes by using RNAi fed to the worms through bacterial vector. Around 300 worms 

were exposed to each specific RNAi culture, followed by sorting them into three separate wells 

(100 worms per well) of a 96-well optical bottom plate. The worms were then anesthetized with 

4 mM Levamisole and imaged. In these images, ATZ accumulation manifests high GFP 

fluorescence and vice versa. The GFP signal is normalized with respect to the number of worms 

that are still alive – which can be quantified through the RFP signal.  

One or more plates were processed in separate batches. For every batch, two types of 

controls were setup: (i) GFP-quenching controls and (ii) empty vector feed controls. The GFP-

quenching controls (to be called GFP controls for brevity) allow for the quantification of the 

baseline signal that is measured even when there is minimal GFP fluorescence. Due to the 

instrumental variability, this minimal level of signal changes from batch to batch which is why 

these controls are important. The empty vector feed controls (to be simply called vector controls) 

are experiments where the bacterial vector was provided with no RNA. The objective of these 

controls was to determine the fluorescence readout in the absence of any alteration to the disease 
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progression. These controls allow elucidation of the impact of knocking out a particular gene on 

the disease progression.  

Knockouts that result in suppression of fluorescence intensity (i.e. ATZ accumulation) 

are called ‘suppressor knockouts’. For these types of knockouts, the signal level was similar to 

the GFP controls. If the gene knockout had no effect on ATZ accumulation, the readout was 

similar to the vector control readout. These knockouts can be termed ‘no-effect knockouts’. If the 

gene knockout caused excessive accumulation of ATZ, the fluorescence intensity was 

excessively high. These are called ‘enhancer knockouts’ and there are no controls that model 

higher than normal signal. The results of a typical experiment, along with the controls are shown 

in Figure 16a. 

Ideally, if there is ATZ accumulation in the cell (as in vector controls), the intensity of 

fluorescence should be high and if there are fluorescence quenchers present (as in GFP control 

experiments), it should be low. However the fluorescence intensity is not spread over a uniform 

range between different batches, as illustrated in Figure 16b. Therefore it became evident that the 

raw fluorescence values cannot be compared across batches. Moreover, there were some batches 

where fluorescence values were inconsistent with the controls, as illustrated in Figure 16c and 

these data were filtered out from the computational analysis.  

3.1.2 The Computational Methodology for Analyzing Whole Genome Knockdown Data 

Our computational method consists of two parts: (i) target identification based on suppressor 

knockouts, (ii) prediction of repurposable drugs inhibiting these targets. Suppressor knockouts 

identify the genes whose removal alleviates ATZ aggregation. Therefore inhibition of the 
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products of these genes by known drugs should also alleviate ATZ aggregation.  The steps in the 

procedure are enumerated and illustrated in Figure 17.  

To identify the suppressor knockouts, we made use of the observation that the GFP-

quenching controls model the readout from suppressor knockouts, while the vector controls 

model the readout of a no-effect knockout. Therefore we collected the control and gene knockout 

screen data (Step 1) and trained a logistic regression classifier (Step 2) to distinguish the gene 

knockout as suppressor knockout or not based on the reported fluorescence intensity after 

knockout. We trained a separate logistic regression classifier for each batch since only values in 

the same batch can be meaningfully compared.  

The logistic regression classifier was used to estimate the probability that a gene 

knockout was a suppressor knockout (based on the recorded fluorescence signal). If the 

probability that the gene suppresses ATZ clearance was more than 1 – 10
-6

, in other words if the 

probability of error was less than 10
-6

, the gene was classified as a suppressor (Step 3). There 

were 54 genes that were thus identified to cause ATZ accumulation (Step 4). We looked up the 

sequence of these 54 genes in the WormBase resource using the corresponding gene identifiers 

[94]. The full list of the 54 genes is provided in Appendix E. For 44 of these genes, WormBase 

delivered a known sequence (Step 5a).  

In parallel, we retrieved the sequences for the targets of all approved drugs in DrugBank 

[99], comprising step 5b in Figure 17. We then built a database using known drug target 

sequences, and compared each newly identified ATZ target against this database using the 

BLAST algorithm [121]. We used an E value cutoff of 1e-6 to select for high sequence similarity 

(Step 6). We identified three ATZ accumulating genes that were very similar (in sequence) to 

known drug targets (Step 7). These worm genes, along with the top three most similar drug 
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targets are shown in Figure 17. The list of drugs targeting these human proteins is provided in 

Table 4. The Tanimoto heatmap showing the level of similarity between these drugs is provided 

in Table 5.  
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Figure 16: Representative data samples from the RNAi knockdown data show the motivation of our batch-

specific classifier based computational workflow 

The data clearly shows that data across batches cannot be reliably compared and we have therefore analyzed each 

batch separately. (a) A typical experiment where the GFP controls model the signal of knockouts reducing ATZ 

aggregation and vector controls model the effect of no-change knockouts. (b) The range in which fluorescence 

values are distributed change significantly from one batch to another. (c) For some batches with an inherent 

measurement flaw, the control fluorescence values were distributed at a much different range than the knockout 

experiment readouts.   
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Figure 17: Visual representation of the computational workflow for whole genome knockdown data analysis 

The data used for this analysis is the whole genome RNAi knockdown data acquired on a C. elegans model of ATD 

by the Perlmutter lab. The data are initially analyzed using batch-specific machine learning tools to identify the 

important target genes in every batch, then these genes are mapped to human orthologs. These human proteins are 

then assessed to identify potential drugs that target the targets of interest. Three such drugs have been identified: 

Roxithromycin, Voacamine, and Glibenclamide. Glibenclamide has been identified as the best drug candidate 

among these three drugs because its target of interest, BSEP, is more specific (i.e. less promiscuous) than the target 

of the other two drugs, MRP1, based on the available data.  
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Table 4: Whole genome knockdown data analysis results 

Computational analysis of the human proteins with high sequence similarity to targets suppressing ATZ clearance, 

along with the structures of drugs targeting these human proteins are shown. The sequence similarity E-values are 

also reported. 

ATZ 

clearance 

suppressor 

Drug Targets 

with High 

Similarity 

Sequence 

Similarity 

(E Value) 

Targeting Drugs Drug Structure 

C05A9.1 

Multidrug 

resistance 

protein 1 

0 

Roxithromycin 

Voacamine 

Multidrug 

resistance 

protein 3 

0 – – 

Bile salt 

export pump 
0 

Glyburide (also 

called 

glibenclamide) 

T01G9.3 

Toll-like 

Receptor 9 
8e-15 

Chloroquine 

Hydroxychloroquine 

Toll-like 

Receptor 7 
3e-11 Imiquimod 

Toll-like 

Receptor 8 
2e-10 

Imiquimod Already shown 

Hydroxychloroquine Already shown 

F13D2.2 
Vasopressin 

1b Receptor 
3e-11 Desmopressin 
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Conivaptan 

 

Terlipressin 

 
Vasopressin 

1a Receptor 
9e-11 

Desmopressin Already shown 

Terlipressin Already shown 

Oxytocin 

Receptor 
3e-09 Carbetocin 

 
 

 

Table 5: The Tanimoto heatmap showing similarity between the drugs identified for ATD 

ChloroquineHydroxychloroquineImiquimodRoxithromycinVoacamineGlyburideDesmopressinTerlipressinConivaptanCarbetocin

Chloroquine 1 0.793 0.112 0.064 0.089 0.142 0.074 0.077 0.095 0.083

Hydroxychloroquine0.793 1 0.113 0.062 0.098 0.136 0.075 0.077 0.092 0.085

Imiquimod 0.112 0.113 1 0.049 0.123 0.065 0.065 0.064 0.095 0.066

Roxithromycin 0.064 0.062 0.049 1 0.126 0.068 0.097 0.09 0.07 0.114

Voacamine 0.089 0.098 0.123 0.126 1 0.098 0.11 0.11 0.118 0.126

Glyburide 0.142 0.136 0.065 0.068 0.098 1 0.101 0.092 0.137 0.123

Desmopressin 0.074 0.075 0.065 0.097 0.11 0.101 1 0.821 0.125 0.646

Terlipressin 0.077 0.077 0.064 0.09 0.11 0.092 0.821 1 0.124 0.628

Conivaptan 0.095 0.092 0.095 0.07 0.118 0.137 0.125 0.124 1 0.113

Carbetocin 0.083 0.085 0.066 0.114 0.126 0.123 0.646 0.628 0.113 1   



 83   

 

3.1.3 Integration of Drug-Target Interaction and Drug Approval Status from Multiple 

Sources 

The NCGC Pharmaceutical Collection (NPC) [122] was used to download the complete list of 

7,793 drugs approved for human use (as of 11/20/2012). Of these, 1,426 were matched using 

their PubChem Compound Identifier (CID) to the chemicals collected in the STITCH chemical-

protein interaction database (DB) [45]. STITCH DB currently contains information on 

210,169,728 interactions between more than 300,000 chemicals and 2.6 million proteins from 

1,133 organisms. These 1,426 approved drugs (represented in both NCGC and STITCH DBs) are 

reported in STITCH to act as either activators or inhibitors of 5,373 human proteins (targets).  

Sequence information for 4,022 of these targets could be found among the 205,537 human 

protein sequences downloaded from the Ensembl DB [123] (as of 11/20/2012).  

3.1.4 Mapping Between H. sapiens and C. elegans Targets 

The sequences of these 4,022 human drug targets were screened against the sequences of the 

worm proteostasis network (PN) modifiers identified in the RNAi screening experiments, using 

BLASTP [121]. 29 worm (C. elegans) orthologs were identified, which represent 29.6% of the 

initial 98 RNAi hits. Of these, 24 (83%) are reported to be orthologs in Ortholist [95] as well.  
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3.1.5 Identification of Repurposable Drugs 

Having identified the human counterparts of the worm PN modifiers we scanned STITCH to 

determine whether any known drugs that target these human proteins could be repurposed 

against ATD. We mapped each of the original RNAi hits to their human orthologs. The human 

orthologs were chosen to be the target of an approved drug. This analysis of 29 RNAi hits 

yielded an ensemble of 244 human targets with 525 corresponding approved drugs. Since the 

Perlmutter lab previously ran the LOPAC library of compounds against ATD, we focused on the 

compounds that were dissimilar to the chemicals in LOPAC. Therefore we compared each drug 

to all the chemicals in LOPAC, and filtered out those with the highest similarity compound’s 

name and similarity score. This way, we extracted 30 approved drugs that targeted a human 

ortholog of a worm PN modifier gene, which were dissimilar to any previously investigated 

compound.  

3.2 GLIBENCLAMIDE AS A NOVEL REPURPOSABLE CANDIDATE AGAINST 

ATD 

All three of the C. elegans genes identified as ATD targets (C05A9.1, T01G9.3, and F13D2.2; 

shown in Figure 17) with high similarity to known drug targets are good leads for directing 

further experimentation. Yet the objective of the computational analysis was to deliver the single 

most promising lead. Therefore we concentrated on the gene with the highest sequence similarity 

to a known drug target: C05A9.1. This gene had an E value of 0 when compared against three 

out of all the known drug targets, these targets being multi-drug resistance protein 1 (MRP1), 
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MRP3 and the bile salt export pump (BSEP). We looked up the interaction partners of these 

three proteins in DrugBank (step 8 in Figure 17) and discovered that MRP1 is annotated as a 

target of roxithromycin and voacamine.  BSEP is targeted only by glibenclamide (MRP3 was not 

annotated as the target of any approved drugs). All three of these drugs are good candidates for 

experimental testing. However, we prioritized glibenclamide over the other two since 

glibenclamide’s target, BSEP, is annotated to be involved in the transport of 26 drugs while 

MRP1 is reportedly involved in the transport of 233 drugs. This ten-fold difference in the 

number of proteins they interact with suggested that BSEP is less promiscuous among the two 

targets. Therefore we prioritized the experimental testing of the corresponding drug, 

glibenclamide.   

3.3 ADDITIONAL REPURPOSABLE CANDIDATES AGAINST ATD 

Our computational approach (described in section 3.1.5) that aims to identify potentially 

repurposable drugs started with 104 C. elegans genes that were confirmed to be PN modifiers, 85 

of these were successfully mapped to human PN modifiers using OrthoList [95] and/or 

WormBase [94], and in turn these human orthologs were mapped to drugs acting on them 

through STITCH [45] and MetaCore [124] with 12 of the PN modifier C. elegans genes  being 

mapped to 48 distinct drugs. The results of the computational analysis were made available 

through an internet-accessible interactive tree-style visualization framework (at 

www.ccbb.pitt.edu/faculty/bahar/hitanalysis/) a screenshot of which is presented in Figure 18. 

Using this interactive visualization framework, one can see that the worm gene ‘ageing alteration 

1’ (abbreviated name: AGE-1, id: B0334.8) for example, is similar to the human protein 

http://www.ccbb.pitt.edu/faculty/bahar/hitanalysis/
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phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA). The user can click on the B0334.8’s 

name, see the WormBase page corresponding to this gene, and find out that this gene is named 

AGE-1 and that it is a central component of the C. elegans insulin-like signaling pathway. 

Likewise, more information about the homologue, PIK3CA, can be retrieved by clicking the 

name. PIK3CA is targeted by three drugs, caffeine, wortmannin and theophylline, according to 

MetaCore and STITCH. Both of these compounds have been tested by the Perlmutter Lab, with 

wortmannin showing activity. As illustrated over this single example, one can use the website to 

interrogate all the experimental results, and accompanying predictions.  

Based on the examination of our PN modifier set using comparative analysis to other 

RNAi screens, pathway analysis and ortholog searches, no PN master gene set emerged with 

exception of a few known PN modifiers such as AGE-1, inositol-requiring 1 protein kinase 

related (IRE-1) and abnormal DAuer Formation transcription factor (DAF-16). Rather than 

further investigate the biologic activity of each new PN modifier, we sought to utilize the gene 

set as whole to serve as potential drug target list and search for potential compounds that would 

be effective in decreasing sGFP::ATZ accumulation. The advantage of this approach is 1) prior 

knowledge of the gene function was not required, just whether the gene functioned as a PN 

enhancer or inhibitor in order to select an agonist or antagonistic compound, respectively, 2) the 

low cost and high processivity of screening and validation in C. elegans, 3) selection of 

druggable targets from a gene set based on phenotype, 4) the identification of drugs that could be 

tested rapidly for efficacy in other types of protein misfolding disorders, and 5) acceleration of 

the drug discovery process by re-purposing of FDA-approved drugs that also prove to be 

effective in vertebrate models of misfolded protein disorders.  
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Figure 18: The screenshot of our interactive visualization 

I have built a website to visualize the results of the analysis in order to facilitate the interrogation of our results by 

other scientists. The interactive visualization shows the C. elegans genes that were identified to be significant on the 

left column, the human orthologs that these genes map to in the center column, and the drugs known to be 

interacting with them on the right-hand side column. The service is accessible over the web at: 

www.ccbb.pitt.edu/faculty/bahar/hitanalysis/ 

  

http://www.ccbb.pitt.edu/faculty/bahar/hitanalysis/
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Figure 19: Human orthologs and drug-target interaction prediction 

Panel a shows a flow chart summarizing the in silico approach used to identify human drug targets from the 104 C. 

elegans PN modifiers. Panel b shows a Venn diagram showing the overlap between human orthologs identified by 

OrthoList and WormBase. Panel c shows DAVID analysis comparing the WormBase (outer ring) and OrthoList 

(inner ring) assigned orthologs to the original C. elegans protein profile (middle ring). Finally panel d shows the 

final list of targets and interacting drugs identified using STITCH and MetaCore. (From [65]) 
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In some instances, PN modifiers had multiple (>75) predicted drug interactions. 

Conversely, we found some drugs to have multiple predicted targets. For example, midostaurin, 

a synthetic indolocarbazole kinase inhibitor, was predicted to interact with several targets 

including tyrosine-protein kinase (ABL), vascular endothelial growth factor receptor 2 

(VEGFR2), platelet-derived growth factor receptor (PDGFR), RAC-alpha serine/threonine-

protein kinase (AKT-1), phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase 10 

(MAPK10), serine/threonine-protein kinase/endoribonuclease (ERN1), receptor-type tyrosine-

protein kinase (FLT3) and AMP-activated protein kinase alpha 1 catalytic subunit (PRKAΑ1). 

To increase stringency, drugs with multiple or nonspecific target interactions were omitted from 

further analysis. Moreover, only drug-target interactions predicted by both STITCH and 

MetaCore were chosen for further investigation. Since some drugs were not readily available due 

to licensing restrictions or excessive cost, we tested only those compounds that were found in 

Library Of Pharmacologically Active Compounds (LOPAC). In total, 8 drugs targeting 4 PN 

modifiers namely, PI3K, Transthyretin (TTR), ATP-binding cassette (ABC) and opiate receptor-

like 1 (OPRL- 1) met our criteria for further investigation, as shown in Figure 19. To determine 

whether any of the 8 compounds were potentially therapeutic, sGFP::ATZ animals were treated 

for 24 hours and misfolded protein accumulation was measured using the ArrayScan VTI 

automated imaging machine. Fluphenazine was identified in a previous small molecule screen to 

reduce sGFP::ATZ accumulation and was included as a positive control [125]. Average results 

from three independent experiments showed that wortmannin, fluspirilene, fluoxetine and 

amiodarone significantly decreased sGFP::ATZ accumulation in a dosedependent fashion (12.5-

100 µM) compared to the DMSO control (Figure 200, panels A-B). Based on these findings, we 

selected one of these compounds, fluspirilene, and tested it on a mammalian cell line expressing 
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ATZ. As shown with C. elegans, fluspirilene showed a dose dependent decrease in ATZ 

accumulation in ATZ-inducible HeLa cell line, HTO/Z (Figure 200, panel C). 

We used a genetic approach to obtain insight into drug-target interactions. Wortmannin is 

a fungal steroid metabolite that inhibits mostly class I and III phosphatidylinositol 3-kinases 

(PI3Ks) [126]. In a C. elegans model of hypoxic injury, 100 µM wortmannin blocks autophagy 

by inhibition of the class III PI3K, VPS-34 [127]. Since autophagy inhibition enhances 

sGFP::ATZ accumulation, wortmannin was more likely to inhibit the class I PI3K, AGE-1, 

which would phenocopy the effects of reduced insulin/insulin-like signaling (IIS), rather than 

VPS-34 [128]. To determine whether AGE-1 was the target of wortmannin in this model, the 

Silverman lab first crossed sGFP::ATZ animals with AGE-1(hx546) mutants. As expected, the 

loss of AGE-1 activity resulted in a marked, but not complete, decrease in ATZ accumulation 

(Figure 21A). If the effects of wortmannin and AGE-1(hx546) on sGFP::ATZ accumulation 

were in the same or different pathways, then treatment of sGFP::ATZ; AGE-1(hx546) animals 

with an effective, but not maximal, dose of wortmannin (Figure 21B) would be expected to have 

no or an additive effect, respectively. No additive effect was detected (Figure 21C), despite 

GFP(RNAi) demonstrating that the sGFP::ATZ levels were not below the ArrayScan VTI level 

of detection (Figure 21B-C). Loss of AGE-1 activity, activates a downstream FOXO 

transcription factor, DAF- 16, which leads to decreased sGFP::ATZ accumulation (Figure 21A). 

Thus, if wortmannin inhibits AGE-1, a DAF-16 loss-of-function mutation should suppress the 

protective effects of the drug. This was the case as sGFP::ATZ; DAF-16(m26) animals were 

resistant to the effects of the drug, although sGFP::ATZ accumulation could still be modulated 

with GFP(RNAi) treatment (Figure 21D). Interestingly, the other three compounds isolated via 

the in silico screen, as well as the fluphenazine positive control, reduced sGFP::ATZ 
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accumulation in sGFP::ATZ; DAF-16(m26) animals (Figure 21E). Taken together, these studies 

strongly suggested that wortmannin inhibited the class I PI3K, AGE-1 and that the other 

compounds were active on other target pathways. If this were the case, than combination therapy 

between wortmannin and one of the other compounds should be feasible. To test this hypothesis, 

we treated sGFP::ATZ animals with equal amounts of wortmannin and fluphenazine at three 

different concentrations. In all cases, combination therapy decreased sGFP::ATZ accumulation 

more than either monotherapy (Figure 21F).  
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Figure 20: Experimental testing of drugs predicted against ATD 

Panel a shows the fluorescence on L4 GFP::ATZ animals that were treated with 100 µM of each drug for 24 h, and 

analyzed using the ArrayScan VTI. Panel b shows the drug dose response curves. The experiment was repeated 3 

times, and a representative experiment shown. The error bars represent the SD of 5 replicate wells (n>150 

animals/treatment). Statistical significance was determined by using a Student’s t-test (*** P < 0.001, **P < 0.01). 

Panel c shows the effect of fluspirilene on steady state levels of ATZ in a cell line model of ATZ. HeLa cells 

engineered to express ATZ (HTO/Z) were treated with DMSO, carbamazepine (CBZ) (positive control) or 

fluspirilene for 48 h. Lysates were prepared and separated into soluble and insoluble fractions. Samples were 

analyzed by immunoblotting with antibodies against AT (top), and GAPDH (middle). GAPDH is cytosolic marker 

and its absence in the insoluble fraction indicates correct fractionation. The blots were also stained with GelCode 

Blue (bottom) to demonstrate equal sample loading in each well. (From [65]) 
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Figure 21: Validating AGE-1 as the target of wortmannin action 

Panel a shows the steady state expression levels of sGFP::ATZ in the N2, AGE-1(hx546) and DAF-16(m26) 

backgrounds. Data is normalized to N2;sGFP::ATZ worms. Panels b through d show the effect of wortmannin on 

steady state levels of sGFP::ATZ. N2;sGFP::ATZ (B), sGFP::ATZ;age- 1(hx546) (C) and sGFP::ATZ;DAF-

16(m26) (D) animals were treated with wortmannin (100 µM) for 24 h and analyzed using the ArrayscanVTI. 

GFP(RNAi) treatment was included as a control to show that ATZ levels could be further reduced in each line. Note 

wortmannin reduced the sGFP::ATZ level in the wild-type N2 but not in AGE-1(hx546) or DAF-16(m26) mutant 

backgrounds. Panel e shows the effect of various drugs on sGFP::ATZ;DAF-16(m26) animals. Of the drugs known 

to decrease sGFP::ATZ levels in the N2 background, only wortmannin failed to reduce sGFP::ATZ in the DAF-

16(m26) background. Panel f shows data from ATZ::GFP animals that were treated with 5,12.5 or 50M of 

fluphenazine and wortmannin, either singly or in combination. The data was normalized to the untreated DMSO 

control within each experiment. All experiments were repeated at least 3 times with n>150 animals/treatment. Error 

bars represent SD (A-E) or SEM (F). Statistical significance was determined using the Student’s t-test. ***P < 

0.001, **P < 0.01, *P < 0.05 (From [65]) 
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3.4 METHODOLOGY FOR HIGH CONTENT SCREENING DATA ANALYSIS AND 

HIT DIVERSIFICATION  

As part of the A1AD project, the Perlmutter, Silverman and Pak labs have screened the 

Prestwick chemical library (PCL) to test the ability of these drugs to modulate ATZ aggregation 

using the transgenic C. elegans model that was developed as the model system [129;130]. The 

Prestwick library consists of 1280 drugs approved for human use and mostly off-patent provided 

in DMSO solution at 10 mM concentration hence ready for rapid screening deployment [96]. 

The effect on suppressing ATZ aggregation has been quantified using ‘B-scores’ where lower 

scores indicate aggregation suppression, and higher scores indicate increased aggregation. In 

accord with the terminology adopted in our earlier work [65] compounds that significantly 

suppress ATZ aggregation are called ‘inhibitors’ (B-score < - 2); those that increase ATZ 

aggregation are termed  ‘enhancers’ (B-score > 2). Both groups have significant effect, and are 

collectively called ‘actives’. The remaining are called ‘no-effect’ compounds.   

We analyzed the high content screening (HCS) data by a 4-step protocol: (i) chemical-

based active diversification; (ii) target-based active diversification, (iii) mapping of drugs to their 

targets and the pathways of these targets, and the identification of the targets and pathways of 

active compounds that are significantly enriched. Each of these four steps is described in detail in 

the following subsections, with the methodology employed for the mapping of drugs to 

targets/pathways and the enrichment analysis of these targets/pathways (steps (iii) and (iv)) 

described together because their analysis steps were inseparably connected. 
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3.4.1 Chemical-Based Active Diversification 

The inhibitor chemicals have the desired effect of suppressing ATZ aggregation; hence it is 

useful to discover other purchasable compounds that could potentially be better therapeutic 

agents than those found in the Prestwick screen.  

First, we decided to identify the chemical descriptors that distinguish the inhibitor 

compounds from those with no-effect and the enhancers – in other words compounds with B-

score < -2 vs the rest. We have performed this through training a logistic regression classifier that 

learns to classify a compound based on its chemical fingerprints as inhibitor or not. To extract 

fingerprints from the chemical structures we used OpenBabel’s python wrapper Pybel and 

specifically the MACCS
6
 fingerprints (of which there are 166) as calculated by Pybel [93;131]. 

The distribution of weights of this classifier, along with the chemical structures of the highest 

and lowest coefficients are shown in Figure 22. The highest coefficients represent the chemical 

features most useful for discriminating actives; while the lowest coefficients, conversely, identify 

chemical groups that are least discriminative. We used this classifier to classify all 12.8 million 

purchase-ready compounds in ZINC [132]. We identified the compounds classified as being 

potential inhibitors against ATD, then clustered them based on chemical composition, selected 

one representative from each cluster (the closest to the centroid of the cluster), and provided a 

list of 342 compounds to be tested for activity, and this list can be found in Appendix F. The 

workflow we adopted is visualized in Figure 23. 

                                                 

6 MACCS: Molecular ACCess System 
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Figure 22: Visual representation of the chemical fingerprint classifier for active identification 

The coefficients corresponding to chemical fingerprints that best classify the ATZ aggregation modulator chemicals 

have high absolute values. To extract fingerprints from the chemical structures we used OpenBabel’s python 

wrapper Pybel and specifically the MACCS fingerprints (of which there are 166) as calculated by Pybel [93;131]. 

The features with strong positive values (shown on the right hand side) select for chemicals with high activity in 

ATZ clearance. Conversely, the features with strongly negative values represent features that strongly select for 

molecules with little or inverse effect in the disease progression. Therefore the chemical has the features with high 

coefficient values (right hand side), and does not exhibit the chemical features that have low cofficient values (left 

hand side).   
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Figure 23: Visual description of the high content screening data analysis and hit diversification workflow.  

The right hand side panel shows the workflow of the computational process. Specifically, the tested drugs in the 

PCL (the distribution of the activity, as measured by the B-score, is provided on the top left) are used as input to 

identify the chemical features that distinguish the 52 actives from the remaining inactives, then these properties are 

used to search ZINC (the distribution of probability of activity is provided on the bottom left), as well as being used 

to search STITCH-target sharing compounds. The 157 results of the target based diversification are reported in 

Appendix F and the 342 results of the chemical based diversification are reported in Appendix G.  
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3.4.2 Target-Based Active Diversification 

Another approach to identify chemicals with the desirable inhibitory effects is to look for other 

drugs associated with the targets of the inhibitors.  To this end, we have identified the interaction 

partners (i.e. the proteins that are targeted) of the inhibitor compounds from the STITCH dataset 

v4 [119], then identified all the drugs that potentially interact with these targets (using STITCH), 

and then used the chemical feature based classifier we trained in the previous step to calculate 

the probability of being an inhibitor for each of these compounds. We extracted the compounds 

that were classified as actives by the classifier (based on their probability of being active 

estimated by the classifier) with molecular weight above 300 (to exclude non-drug-like 

molecules such as zinc, copper, or mercury in STITCH). There were 157 such compounds. We 

report them in Appendix G. 

3.4.3 Overlap between target-based and chemical-based active diversification 

We have reported 342 chemicals through the chemical based active diversification strategy 

(reported in Appendix F) and 157 chemicals selected through target based active diversification 

(reported in Appendix G). It is important to investigate the degree of overlap between these two 

different sets of chemicals. To evaluate if there are any compounds shared in both lists, we 

computed the Tanimoto similarity and identified that there were no compounds shared.  

We next asked if these two sets of chemicals are more similar than would be expected by 

chance. To this end, we compared the similarity between the two selected sets of compounds to 

the similarity between two sets of 1200 randomly selected (without replacement; i.e. these two 

sets are mutually exclusive) compounds from the ZINC purchase ready set library [132] . We 
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compared the resultant distributions using Kullback-Leibler (KL) divergence, which is a measure 

of the difference between two distributions as described by Baldi and Nasr {Baldi, 2010 585 

/id}, where the authors report that a typical molecule has a KL divergence of 0.003 whereas the 

atypical molecule has KL divergence of 1.075. The KL divergence between these two 

distributions (i.e. similarity of two sets of random compounds versus similarity of the 

compounds in two diversification sets) is 0.031, meaning that these two distributions are similar, 

which in turn means that the two different strategies have produced consistent compounds. The 

two histograms in Appendix H illustrate that these two sets of chemicals, the result of chemical 

based diversification (i.e. those in Appendix F) and the result of target based diversification (i.e. 

those in Appendix G) have as little similarity as to be expected in a two large randomly selected 

set of chemicals. This validates that our two diversification strategies are indeed necessary since 

they diversify and select for different compounds. 

3.4.4 Target/Pathway Identification Through Enrichment Scores  

To calculate enrichment scores, the Prestwick library of compounds were mapped to pathways in 

two ways: through STITCH [119] targets and through KEGG [133] targets. Prestwick 

compounds were mapped to the corresponding chemicals in the STITCH database [119], the 

proteins listed as their interaction partners in STITCH were identified, and these proteins were 

mapped to the corresponding proteins in KEGG [134] through ENSEMBL [135]. Finally, these 

targets and the pathways that these targets occur in were identified for each drug. 

Prestwick compounds were mapped to the corresponding drug entries in the KEGGdrug 

database [133]. The targets of these drugs, as well as the pathways of these targets were 

identified in KEGG and associated with each drug. 
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In both instances, the KEGG is used as the source of pathway information. However the 

target-to-drug mapping is more extensive in STITCH with 390,000 chemicals, 2.6M proteins and 

1 trillion interactions [119].  KEGG, on the other hand, has 10,103 drugs with no detailed 

statistics of the interactions.  Therefore, we will focus here on the enrichment scores derived 

from the STITCH, although these were also calculated for the KEGG. 

For each drug we define activity as either enhancing (B-score > 2) or suppressing (B-

score <-2) ATZ aggregate formation, which is a quantification of the disease phenotype. All 

drugs which influence a target/pathway of interest are expected to either increase or decrease 

aggregation, and conversely any drug that increases or decreases aggregation is influencing a 

pathway/target of interest. To quantitatively identify the targets/pathways of interest, we 

collected all drugs with suppressive or enhancory effect into a set of active drugs and calculated 

the enrichment score of a given target or pathway t as follows: 

     
            

     

        
     

 

where A is the set of all active drugs, D is the set of all drugs, |.| denotes the number of elements 

in a set, and   is the indicator function that is 1 if drug d targets t (t is either target or pathway 

depending on the enrichment being calculated) and 0 otherwise. In our case |A|=104, and 

|D|=966.  

We identified the pathways/targets of interest by quantifying the candidate 

pathway/target set that best separates the actives (B-score < -2 or B-score > 2) from the inactives 

(-2 < B-Score < 2). In order to achieve this goal, we calculated the reduction in Shannon’s 

entropy after splitting the drugs according to their interaction with each candidate, and computed 

the enrichment score, picking the best target/pathway recursively. Lower entropy indicates less 

disorder (higher confidence) in the respective drug activity annotation. 
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In the Prestwick library (PL), the number of active compounds are less than the inactive 

compounds. This imbalance was corrected by weighting the actives with    
         

     

such that the total weighted sum of actives equals that of the inactives. The weighted data were 

used to learn a decision tree by minimizing the entropy using the method described by Quinlan 

[136]. In our case, this method selects the target that best separates the actives from the inactives 

by choosing the target that when split accordingly minimizes the information entropy (also called 

Shannon’s entropy) defined as:                          where the probabilities are 

frequency counts of the members of the two classes (actives/inactives) weighted according to the 

weighting scheme described above. Intuitively, the method selects those targets that  separate the 

drugs into two sets: actives and inactives. The results of this procedure are shown in Table 6 and 

Table 7 for the respective datasets KEGG and Stitch. The full names of the proteins listed in 

Table 6 are as follows: dopamine receptor D2 (DRD2), calcium channel, voltage-dependent, L 

type, alpha 1C subunit (CACNA1C), 5-hydroxytryptamine (serotonin) receptor 2C, G protein-

coupled (HTR2C), angiotensin I converting enzyme (ACE), calcium channel, voltage-dependent, 

N type, alpha 1B subunit (CACNA1B), adrenoceptor alpha 2B (ADRA2B), prostaglandin-

endoperoxide synthase 2 (PTGS2), glutamate receptor, ionotropic, kainate 5 (GRIK5), adenylate 

cyclase-coupled 5-hydroxytryptamine (serotonin) receptor 7 (HTR7), protein phosphatase 3, 

catalytic subunit, alpha isozyme (PPP3CA), prostaglandin-endoperoxide synthase 1 (PTGS1), 

calcium channel, voltage-dependent, T type, alpha 1H subunit (CACNA1H), adrenoceptor alpha 

1A (ADRA1A), solute carrier family 6 (neurotransmitter transporter), member 4 (SLC6A4), and 

5-hydroxytryptamine (serotonin) receptor 1A (HTR1A). The full names of the proteins listed in 

Table 7 are as follows: v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), 

adrenoceptor alpha 1A (ADRA1A), renin (REN), calcium channel, voltage-dependent, L type, 
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alpha 1S subunit (CACNA1S), cholinergic receptor, muscarinic 1 (CHRM1), ATP-binding 

cassette, sub-family B (MDR/TAP), member 1 (ABCB1), and adrenoceptor alpha 1D 

(ADRA1D). Since the results are based on different datasets, the drugs are annotated with 

different targets based on the dataset and thus the results vary between the two tables. 

Adrenoceptors and calcium channels are common in both tables. The results are described and 

discussed in detail in section 3.5.2.  

We  also performed this entire procedure for pathways instead of targets after mapping 

each target to its KEGG pathway. The results were not appropriately high quality because we do 

not have perfect information on the (i) drug-to-target mapping, (ii) target-to-pathway mapping 

and when these two get compounded in the drug-to-target-to-pathway mapping the end result 

was that the compounded errors made it impossible to form a convincingly accurate enrichment 

analysis. Therefore we did not analyze those results further. 
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Table 6: The tree structure of the targets of active drugs based on KEGG target information 

We trained an entropy-minimization based decision tree to separate active drugs from inactive drugs using the algorithm due to Quinlan [136]. The targets of the 

drugs identified to be active in the screen were analyzed using an information entropy minimization strategy to build the following tree. The calcium channels, 

which are overrepresented are highlighted in orange. At each node, the entropy of the class labels (i.e. ‘active’ or ‘inactive’) are shown.  
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Table 7: The tree structure of the targets of active drugs based on STITCH target information 

We trained an entropy-minimization based decision tree to separate active drugs from inactive drugs using the algorithm due to Quinlan [136]. The targets of the 

drugs identified to be active in the screen were analyzed using an information entropy minimization strategy to build the following tree. The calcium channels, 

which are overrepresented are highlighted in orange. At each node, the entropy of the class labels (i.e. ‘active’ or ‘inactive’) are shown. 
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3.5 DIVERSIFICATION OF PROTECTIVE AGENTS AND PROPOSED 

MECHANISM 

The computational analysis techniques that we have described in chapter 3.4 serve different 

goals, hence our results are divided among these different goals. Specifically, for compound 

diversification the STITCH-based results offer the best predictions for three reasons: Firstly, 

STITCH-based predictions offer repurposing possibilities since the predictions can be filtered to 

select for compounds that have been approved for use in humans. This has the advantage that it 

would reduce the time and cost of therapy development significantly when compared to the 

development of a novel chemical. Secondly, as the STITCH-based  compounds are also filtered 

using the chemical structure based active/inactive classifier, the STITCH-based  compounds 

have also been selected to possess chemical structures characteristic of desired activity; in 

addition to having at least one target in common with a drug already approved. Hence the 

STITCH-based  compound predictions perform diversification of hits in both the proteomic 

space as well as the chemical space. Finally this method screens from a space of 300,000 

chemicals as opposed to the 1,200 that were experimentally tested; therefore there is an 

advantage in using this computational method as it would not be feasible to brute force 

experimentally screen such a large chemical space. For these reasons, we have prioritized our 

STITCH-based target diversification method for discovering potential new actives.  
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3.5.1 Lead Diversification 

We performed three lead diversification predictions using the methodology described above, and 

then manually  screened the results reported in Appendix G to identify the top three potential 

candidates for ATZ aggregate inhibition to have a feasible number of experimentally testable 

predictions. Among the compounds in this list, we selected only the compounds that were 

already FDA approved for human use in order to enable repurposing and a quick translation of 

the discoveries we make. After sorting the compounds based on the number of targets (since the 

number of targets are all in the order of 10
1
 we took this to indicate mostly how well studied 

these compounds are) and proceeded down the list one by one, manually analyzing the 

compounds for multiple criteria.  

For each compound, if the compound was not an approved drug, we eliminated it and 

skipped to the next compound. Then, given the compound is approved, we looked at the targets 

that each compound shares with known actives, and looked for diversity. The idea here is that we 

do not want to have three compounds all very similar to each other. For example instead of 

having two compounds both  targeting ATP binding cassette containing proteins, it is preferable 

to have one of the two target the cholesterol pathway. This way of having multitude of targets 

provides a way for each tested compound to provide information about another set of targets 

instead of testing the validity of the same targets multiple times. As such, we can interrogate a 

larger segment of the chemical/proteomic interaction landscape with fewer experiments and thus 

maximize the utility gained from the experiments. Finally we filtered out compounds that were 

already tested and shown to be protective – such as docetaxel, which ranked high in our list but it 

has already been shown to be protective in our PCL screen experiments. We selected the three 

best predictions in order to maximize the cost/benefit from a feasible number of follow-up 
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experiments. These three predictions are interesting because they represent non-overlapping 

mechanisms of actions ranging from antineoplastic to antidepressive to blood cholesterol 

lowering drugs. Likewise their targets, and hence the targets that they share with the hits of the 

Prestwick screen are also entirely different allowing them to interrogate the various cellular 

processes that can be important for protection against ATD. If any of them fails in clinical testing 

whereas the others show neuroprotective activity, this is useful in enabling us to focus on the 

specific mechanism of action that is most relevant to ATD among the many different 

alternatives.  
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Figure 24: Possible repurposable candidates against ATD.  

We show the three repurposable predictions against ATD: antineoplastic sorafenib, antidepressive duloxetine and 

anti-hyperlipidemic ezetimibe. Sorafenib is approved for use as an antineoplastic in humans against kidney cancer, 

advanced thryoid carcinoma, and finally advanced primary liver cancer. Duloxetine is approved for use in humans 

against major depressive disorder and generalized anxiety disorder. Ezetimibe is approved for use in humans to 

lower blood cholesterol levels by decreasing cholesterol absorption in the small intestine. The chemical structure of 

the drug is shown on top. The targets that are shared with drugs successful in the screen are shown in the middle as a 

graph; where the prediction drug is shown in green, the targets are shown in yellow and finally other drugs that were 

successful in the screen that share a target are shown in red. Finally, the name of the gene products of each gene 

shown in the graph is presented in the tables at the bottom of each column.  
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3.5.1.1 Sorafenib 

The drug sorafenib has been approved for use as an antineoplastic in humans against primary 

kidney cancer, advanced primary liver cancer, and advanced thyroid carcinoma [137-141]. It has 

a well-characterized interaction profile in STITCH, with 62 targets listed in human. Since 

sorafenib is an antineoplastic drug, it shares targets mainly with other antineoplastics. We have 

discovered that six of these targets are shared with drugs that are of interest based on our 

experimental data. Furthermore, sorafenib has been classified as an active based on its chemical 

structure using our classifier that was trained on the chemical structure of the active drugs; 

therefore it matches all the characteristic chemical properties of the active chemicals. The 

interaction partners that sorafenib shares with other experimentally selected drugs are shown in 

Figure 24 along with other information.  

3.5.1.2 Duloxetine 

Duloxetine has been approved for use as an antidepressant in humans against major depressive 

disorder and generalized anxiety disorder [142-146]. Duloxetine is also well-characterized in 

STITCH, having 18 reported targets. There are 9 targets that are shared with the significantly 

neuroprotective drugs, which are shown in Figure 24 along with auxiliary information on 

compound structure and target names. Where sorafenib shared antineoplastic targets, duloxetine 

shares serotonin and sodium-dependent transporter targets with the ATD-protective drugs. Since 

the chemical structure based classifier has been applied to duloxetine as well, it clearly contains 

the chemical features that are important for the recognition of activity. The known activity, and 

therefore targets of duloxetine are different from those of sorafenib; therefore it represents a 

good alternative prediction for testing. 
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3.5.1.3 Ezetimibe 

Ezetimibe is used to decrease blood cholesterol levels by decreasing absorption of cholesterol in 

the small intestines [147-149]. Ezetimibe has 16 targets reported in STITCH, two of them shared 

with simvastatin – which is also an anti-cholesterol drug, that ezetimibe is commonly co-

administered with. Simvastatin has been shown to be highly active in alleviating ATD as it has a 

experimentally reported B-score of -2.60. Since ezetimibe reportedly shares two of its 

mechanistic targets (shown in Figure 24) and ezetimibe has also passed the chemical structure 

based classifier that filters out the drugs with inactive-like chemical features; it is also a good 

candidate for further experimental validation.  

3.5.2 Mechanism Identification 

We have analyzed the targets of the drugs that showed protective activity against ATD, as well 

as the pathways that these targets occurred in, to identify the mechanism of action of the 

successful compounds. We have focused on the target analyses, and not the pathway analyses; 

the reason being that in pathways we are operating on two levels of uncertainty: there are drugs 

which have unannotated targets; likewise there are targets with unannotated involvement in 

pathways. Missing annotations from both of these compound when looking at drug-to-pathway 

results presents a significant problem; the correction of which is a database curation work. When 

considering target enrichment, however, this limitation no longer exists since we have only one 

mapping (drug-to-target) and while there might be targets missed, the confidence level of the 

targets we do know, is significantly higher.  Consequently we have found the most enriched 

pathway results to be inconsistent when evaluated with various different methods; whereas 

targets have given consistent results. Therefore we choose to focus on targets.  
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Furthermore, we wanted to focus on targets that showed a strong signal for being active 

in the mechanism. Therefore we wanted the effect to be reproducible. To ensure this, we looked 

for at least two inhibitor drugs that interact with each target in our enrichments. This ensures that 

the inhibitor effect of modulating the target is reproduced – by at least one other drug that 

interacts with this target.  

When we compared the results of target enrichment analysis using the score based 

approaches and the entropy based approaches, with both methods performed with both STITCH-

based  and KEGG-Drug based data, there was one target that always showed significance: 

calcium channel. 

3.5.2.1 Calcium channels 

The calcium channels appear high among the top ten most enriched targets when compared using 

the enrichment score defined in methods in both the STITCH-based  [119] and the KEGG-Drug 

based [133] approaches, as shown in Table 6 and Table 7. In addition, calcium channels also 

appear in the entropy minimization based decision trees that were learned on KEGG-Drug and 

STITCH data. This indicates four possibilities: (i) The direct interaction with calcium channels is 

responsible for protective effect, (ii) there is an indirect effect of interaction with calcium 

channels that leads to protection, (iii) there is a target similar to calcium channel, whose 

interactions are not captured in both of the two different databases that we used (the reason we 

used two different databases was to reduce this possibility) and that target is causing the 

response, (iv) there is no relationship between suppression of ATD and calcium channels; this is 

purely a random occurrence (the reason we used four method/database combinations was to 

reduce this possibility). 



 112   

We used multiple databases to reduce the chances that there is an unknown interaction 

that dominates the activity that is missing from both databases. However, in analyses using both 

databases the calcium channels appeared high; hence this has a low likelihood. Likewise, the 

possibility that this is due to chance alone is unlikely when considering the fact that all four 

method/database combinations indicate that calcium channels are enriched among the targets of 

the drugs that showed ATD suppressive activity. Further determination of the possibility that 

calcium channel interaction leads to protection in ATD needs to be tested experimentally to be 

fully validated. 

3.5.2.2 Adrenoceptors 

Adrenoceptors appear enriched in the results shown in Table 6 and Table 7, in addition to 

calcium channels described in the previous subsection. Specifically, adrenoceptor alpha 2B 

(ADRA2B), adrenoceptor alpha 1A (ADRA1A), and adrenoceptor alpha 1D (ADRA1D) 

subtypes appear as important distinguishing targets in both tables. As with the calcium channels 

discussed in the previous subsection, these proteins have been selected due to the impact they 

have in differentiating the drugs that were active in modulating ATD disease phenotype and 

inactive drugs with no impact on the disease progression. Future experimental studies are 

required to confirm (or refute) the role of adrenoceptors in ATD or in other protein 

conformational disease contexts. 
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4.0  COMPUTATIONAL AND EXPERIMENTAL DETERMINATION OF 

NEUROPROTECTIVE THERAPEUTICS AGAINST HUNTINGTON’S DISEASE (HD) 

In the following chapter, I will report our results on determining the mechanism of action of a 

diverse set of compounds which were found to be neuroprotective in a model of Huntington’s 

disease using the LFM methodology we described in Chapter 2, specifically section 2.2.1 where 

we validated the use of LFM as descriptors. Then I will discuss our computational work for the 

identification of novel therapeutic candidates for use against Huntington’s disease. Finally, I am 

going to report the follow up experimental work to test those predictions which I have 

participated in. Therefore the chapter is divided into three sections, with the first describing the 

mechanism identification work, the second discussing the LFM based predictive work and the 

third describing the experimental work.  

4.1 MECHANISM OF ACTION OF DIVERSE NEUROPROTECTIVES 

In order to discover new therapeutic candidates against HD, we have mapped the list of drugs 

known to be neuroprotectives to their targets in STITCH, identified their overlapping targets, and 

listed other drugs known to interact with the selected targets while having diverse activity 

profiles otherwise. The process is intended to generate target-based diversification when a small 
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number of actives are available. Figure 30 presents a schematic description of the computational 

workflow designed for this process.  

First we compiled a list of 24 known broadly neuroprotective drugs, as follows: Most of 

these drugs were reported by Wang and coworkers [92] after a two-stage screen where they first 

screened for inhibition of cytochrome c release from isolated mitochondria, and then tested the 

hits in a secondary assay for neuronal cell death inhibition. The authors tested 1040 drugs from 

the National Institute of Neurological Disorders and Stroke (NINDS) library, and found 21 drugs 

that successfully prevented the release of cytochrome c from isolated mitochondria when 

challenged with calcium and protecting neuronal cells from death. Of these 21 compounds, 15 

were found to be effectively inhibiting neuronal cell death in follow-up assays, (with 6 having 

nanomolar IC50 values, termed Group I, and 9 having micromolar IC50 values, termed Group II) 

whereas 6 were found to be ineffective (Group III). Taking this information into account, we 

used the 15 that were effective in neuronal cell death inhibition as well as the cytochrome c 

release inhibition. We also compiled a list of all the drugs that were in clinical trials due to their 

neuroprotective effect to form Group IV. The structures, names and the groups of the entire set 

of compounds discussed here are shown in Figure 25. We collectively annotated the drugs in 

Groups I, II, and IV as the set of known neuroprotectives to inform our computational 

approaches.  

The compounds in this list are traditionally annotated with a highly diverse set of 

therapeutic indications with no unifying theme:methazolamide is used for treatment of glaucoma, 

minocycline is an antibiotic, while azathioprine is used for immunosuppression. Therefore we set 

out to determine the mechanism of action of these drugs using computational methods. 

Specifically, we looked at the interaction information available about these drugs in three 
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databases: known interactions in STITCH [45] and DrugBank [99], PMF predictions made as 

described in our previous work [97] on both of these databases, and SEA predictions [28] on 

ChemBL data [150]. We analyzed the information about these drugs using three different 

methods: direct set overlap of their targets, overlap between PMF predicted targets of these 

drugs, and 3D chemical similarity based search.  

4.1.1 Overlap of Known Targets 

To assess the mechanism of action of these drugs, we pooled together information on their 

known targets from two different databases: STITCH v3 [45] and DrugBank v3 [99]
7
. Detailed 

information about our results can be found in Error! Reference source not found.. Not every 

single neuroprotective could be found in both of these databases: we could map 14 of these 24 in 

DrugBank which is a smaller database with less than 10,000 chemicals; whereas STITCH is a 

bigger database with data on about 300,000 different chemicals therefore we could identify 22 of 

the 24 drugs. The drugs that could be identified in each database were subsequently mapped to 

50 known targets in DrugBank and 175 known targets in STITCH. The numbers of overlapping 

targets between all methods (see below the descriptions of the methods) across all databases are 

shown in Figure 27. 

We looked at the overlap between these different targets, with the results shown in Figure 

26. Specifically the only overlap among the known targets in DrugBank is between drugs 

melatonin and bepridil which share calmodulin, and minocyclin and doxyclyclin which share 

                                                 

7
 Please note that despite the fact that version 4 of both of these databases are currently available and the default for 

both of these resources, they have been released in 2014 whereas we conducted this study in 2013 therefore version 

3 was the latest version available at the time. 
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30S ribosomal proteins S4 and S9 as targets. There are no other overlapping targets in 

DrugBank. 

We identified the overlap between all 731 targets in six different ways, specifically the 

overlap between (i) PMF predicted targets in DrugBank, and 3D predicted targets in DrugBank, 

(ii) the DrugBank known targets and 3D predicted targets, (iii) STITCH and SEA, (iv) DrugBank 

and SEA, (v) DrugBank and STITCH, and finally (vi) DrugBank, STITCH and SEA. The results 

are shown in Figure 28. 
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Figure 25: Neuroprotective drugs used to inform computational method 

From an NINDS library of 1040 drugs, 21 were found to be inhibitors of cytochrome c release in isolated 

mitochondria which were then tested for their ability to inhibit neuronal cell death in a HD model cell line and 6 

were found to have IC50 values in the nanomolar range (Group I), 9 were found to have IC50 values in the 

micromolar range (Group II), whereas 6 were shown not to have a significant neuroprotective effect (Group III) in 

previous work [92]. We also compiled a list of 9 neuroprotective drugs currently in clinical trials (Group IV). We 

used groups I, II, and IV (24 total) as neuroprotectives to inform the computational method.  
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Table 8: Summary results of our analysis of target data for the known neuroprotectives 

The table below summarizes the findings from our computational assessment of the data available on the targets of the 24 known neuroprotectives. Of these 24 

compounds, 14 were identified in DrugBank [99], 22 were identified in STITCH [45], and 14 were amenable for query on the Similarity Ensemble Approach 

(SEA) server [28]. 
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4.1.2 Chemical Similarity Comparison 

We performed chemical similarity comparison and looked for the targets of the compounds that 

are highly similar to the known neuroprotectives. We used the Similarity Ensemble Approach 

(SEA) to predict 158 ChemBL targets based on chemical similarity, and we also used 3D 

similarity to identify 294 targets in DrugBank. Specifically, for our 3D similarity calculation we 

compared the structures of the 22 that we successfully mapped to STITCH compounds to all the 

chemical structures in DrugBank using the ROCS 3D small molecule structural similarity 

methods developed by OpenEye™ [151]. Briefly stated, this method represents a given chemical 

structure with Gaussians that are centered on each atom. There are two different types of 

Gaussians: ‘colorless’ for simple steric overlap and ‘colored’ Gaussians where each color 

represents a different physico-chemical property (positive charge, negative charge, 

hydrophobicity, etc). The overlap among these Gaussians allows us to numerically evaluate the 

similarity between two compounds in terms of their shape as well as their electrostatic 

properties.  

For the 22 drugs that could be mapped to the STITCH database, we identified their 

chemical structures from the data in STITCH, and used those structures to search for their 

analogues in DrugBank. We identified a total of 155 drugs that were similar to these 22 chemical 

structures. These drugs in turn mapped to 294 targets, 220 of which had KEGG pathways. These 

220 KEGG pathways were replicated among them, and therefore they matched to 149 unique 

pathways.  
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4.1.3 LFM Predictions 

We used LFM in predictive function in order to discover the unknown interactions of the drugs 

that we could map to DrugBank and STITCH. The results reported in Chapter 2 demonstrate that 

the latent factor models can function remarkably as predictors of drug-target interaction. In this 

biomedical project where we have a set of drugs with largely unexplained mechanisms of action 

for their reported neuroprotective activity, it is necessary to identify any potential targets of these 

drugs that might explain this novel activity. Therefore we trained latent factor models on both 

DrugBank and STITCH, and used them to predict the unknown interactions of the drugs of 

interest. 

Our results in STITCH show that there was one target, Lysine-specific demethylase 

(PHF2), which was predicted to be the interaction partner for seven drugs: bepridil, parthelonide, 

dioxycycline, mephenytoin, N-acetyl DL Tryptophan, ubiquinone and cysteamine. PHF2 is a 

lysine demethylase that functions only after activation by PKA, acts on both histones and non-

histone proteins, and is known to form a complex with and mediate the 

methylation/demethylation of ARID5B [152]. It is important to note that the interaction between 

these seven drugs and PHF2 is predicted using the LFM we built, and now reported to be known 

therefore it would be important to experimentally validate this interaction as a first step to further 

understanding. However it is important to note that this interaction might point to a key new 

neuroprotective mechanism when it is considered that in the literature it has been reported that 

PKA has a role in preventing the induction of apoptosis in astrocytes [153], where it has been 

shown that an agent that activates the PKA pathway (octadecaneuropeptide) leads to protection 

from apoptosis. Since PHF2 activity is only possible after PKA activation, and since PKA based 
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apoptotic protection in brain cells has been previously demonstrated in the literature, this target 

overlap result serves as an interesting precursor for further study.  

Based on STITCH data, HDAC was shared as a target by compounds melatonin and N-

acetyl DL Tryptophan. This was an important finding because HDAC inhibitors have been 

previously reported to ameliorate disease phenotype [154-156], transport deficit [157], and motor 

deficit [158] in Huntington’s disease models. These publications indicate that targeting HDAC 

ameliorates disease phenotype in HD and therefore point out the potential significance of this 

predictive finding.  

4.1.4 Pathway Mapping of Targets 

We have analyzed the targets that we identified for their roles in known pathways. Specifically, 

we mapped each of the drug targets to KEGG pathways and identified the pathways with the 

highest number of drugs acting on them. Calcium signaling pathway emerged as a significant 

pathway of interest from this study owing to the multitude of known and predicted targets of the 

known neuroprotectives in this pathway, in addition to the broad literature support for the role of 

calcium in HD pathophysiology. This section is dedicated to our findings on this pathway in 

detail. 

There are two known neuroprotectives, bepridil (drug #6) and melatonin (drug #12) that 

are known to target two proteins in the calcium signaling pathway: voltage-dependent calcium 

channel subunit α1 (CaV1) which is targeted by bepridil, and calmodulin (CALM) which is 

reportedly targeted by both bepridil and melatonin. The calcium channel subunit α1 has been 

reported to be singularly sufficient to conduct Ca
2+

 transfer across the membrane [159]. More 

generally bepridil is known to be a calcium channel blocker with the latest version of DrugBank 



 122   

(v4.2) reporting interactions between bepridil and a large variety of calcium channel subunits, 

indicative of its broad calcium channel blocker activity. Traditionally calcium channel blockers 

are used for antihypertensive function in the clinic, therefore the role of bepridil in HD remains 

unclear at first, yet a deeper look reveals that this is actually a highly interesting discovery.  

The role of calcium channels in ataxia mechanistically caused by an expanded 

polyglutamine repeat have been established by previous studies: an expanded CAG repeat in 

human calcium channel subunit α1A has been reported to be the causal mutation for 

spinocerebellar ataxia type 6 (SCA6)  in humans [160]. There are multiple significant similarities 

between the two diseases. They are both late onset neurodegenerative disorders that manifest in 

uncontrolled muscle movements the characteristic chorea movement in Huntington’s disease is 

highly akin to uncontrolled movement in SCA6. Furthermore expanded polyglutamine repeats 

have been reported to be causal in multiple other late onset neurodegenerative diseases: 

spinocerebellar ataxia type 1 (SCA1) [161], spinocerebellar ataxia type 2 (SCA2) [162], 

spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) [163], spinobulbar muscular 

atrophy (SBMA) [164], dentatorubral-pollidoluysian atrophy/Haw-Rover syndrome 

(DRPLA/HRS) [165]. These results indicate that polyglutamine repeats are causal for multiple 

neurodegenerative diseases that have similar clinical presentations to HD and the further finding 

that one of those polyglutamine expansions has been localized to the calcium channel implicates 

the role of modulation of calcium. Hence the neuroprotective role of the calcium channel blocker 

bepridil to be due to its calcium channel interactions is reasonable when evaluated within the 

context of previous findings. 

Bepridil is reported to interact with calmodulin in a Ca
2+

-dependent manner [166], along 

with melatonin which is also reported to be a calmodulin inhibitor [167]. Furthermore, 
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melatonin’s activity on calmodulin is implicated in its rapid (<1 min) and transient (5-6h) effect 

of ROS generation in cells [168]. These findings implicate that the modulation of the calcium 

signaling pathway could be important for modulating Huntington’s disease.  

Furthermore, despite having only two drugs and targets implicated in the calcium 

signaling pathway, we have identified a large set of predicted interactions involving proteins in 

this pathway. This strong predicted role for calcium in the mechanism of Huntington’s disease is 

supported by previous findings reported in the literature.  

On the tissue level, researchers have discovered that in post-mortem brain specimens of 

patients who have died from Huntington’s disease there is a substantial loss of neurons 

containing the calcium-binding protein calbindin 28K [169]. These calbindin containing neurons, 

as well as the striatal component that they are located in are reported to be particularly reported 

in Huntington’s disease therefore the observed effect seems to be specific to Huntington’s 

disease instead of a general response to the neurodegenerative process.  

On the cellular level, researchers have identified that mutant huntingtin directly interacts 

with neuronal mitochondrial membranes and leads to mitochondrial membrane depolarization at 

lower calcium loads accompanied with lower membrane potential [170]. Furthermore, these 

mitochondrial calcium abnormalities have been observed months before the presentation of 

pathological or behavioral abnormalities. The researchers demonstrate that the mitochondria in 

lymphoblasts from HD patients have a significantly reduced Ca
2+

 retention capacity (on average 

64 nmol/mg protein in HD patients versus 146 nmol/mg protein in healthy control). Despite the 

fact that the exact long-term functional consequences of the mitochondrial Ca
2+

 defect are 

unknown, the fact remains that calcium related pathways are significantly defective in HD 

patients.  
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In summary, the multitude of predicted and known interactions with calcium signaling pathway 

shown in Figure 29 are grounded when considering the role of calcium widely reported in the 

literature on Huntington’s disease. 

 

Figure 26: The overlap between the known targets of the neuroprotective drugs in DrugBank 

The drugs are separated into groups and indexed as in Figure 25, with the known target information displayed in two 

ways: Panel a shows the number of targets identified for every single one of the 14 (out of 24) compounds that could 

be found in DrugBank. This panel shows which 14 of the 24 were mapped to DrugBank as well as the number of 

targets for each of them. Panel b shows the overlap between the targets of these drugs (and is therefore symmetric). 

This panel clearly shows that there is very little known target overlap in DrugBank, with only drugs 12 (melatonin) 

and 6 (bepridil) sharing one target (calmodulin), and drugs 13 (minocycline) and 11 (doxyclycline) sharing two 

targets (30S ribosomal proteins S4 and S9). There are no overlapping targets in DrugBank other than these. 

-
I II IV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

I

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

II

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IV

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

No. Targets

1 0

2 0

3 1

4 0

5 1

6 9

7 0

8 2

9 4

10 0

11 2

12 10

13 9

14 1

15 0

16 6

17 0

18 0

19 0

20 0

21 2

22 1

23 3

24 2

A B
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Figure 27: The summary visualization of the overlap between the 731 targets identified for neuroprotective drugs 

There are a total of 731 targets that were identified in the three databases that we considered using the five methods that we used to process the targets of these 

drugs. The diagonal terms on the matrix show the number of targets identified using that method, whereas the off-diagonal terms are the overlap of targets among 

the two specified method/databases (since overlap is symmetric, the matrix is also symmetric). The Venn diagrams show the overlap between the three main 

databases used, and internally the overlap between the target identification methods within STITCH and DrugBank visually.  
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Figure 28: The 731 targets of the neuroprotective drugs reported simultaneuously in multiple databases 

The targets of the neuroprotective compounds that overlap between the various databases are shown based on the overlapping resources. The targets that are 

reported in multiple data sources and/or by multiple methods are more likely to be correct targets and therefore they are more convincing in their potential to be 

of significance to neuroprotection.   
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Figure 29: The calcium signaling pathway marked with the targets of neuroprotectives 

The figure displays the calcium signaling pathway as reported in KEGG, annotated with the targets of known neuroprotectives. As reported in the legend on the 

figure, the annotations in grey boxes first report the full name of the target being highlighted with the pointer. The indices of the targeting known neuroprotective 

drugs are then reported in red if there exist any (where the indices are as in Figure 25). Then the known neuroprotectives that are predicted to interact with the 

target by any of the prediction methods (SEA or PMF) are shown in yellow. Finally, the last line reports any known inhibitors that are structurally similar to the 

known neuroprotective (i.e. the ‘query drug’). Nitric oxide synthase is highlighted in red because of its relation to our experimental findings. 
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4.2 LFM-BASED ACTIVE DIVERSIFICATION 

We mapped the drugs in Groups I, II, and IV to form a set of known neuroprotective seed 

compound set. We then mapped these 24 known neuroprotective drugs to 349 targets in humans 

in STITCH v3.1 with a 90% cutoff (STITCH lists drug-target interactions with a 0% to 99.9% 

confidence score, and annotates those above 90% as being very high confidence interactions). Of 

these 349 targets, 32 were overlapping targets of two or more drugs. These targets were sorted 

based on the number of known neuroprotectives targeting them, with the target shared by the 

highest number of known neuroprotectives ranking first. For each target on this list, all the other 

drugs interacting with it (i.e. any drug not in the original set of 24 neuroprotective drugs but 

known to interact with a target of interest) were selected and sorted for maximal difference to the 

known neuroprotectives that were used to select that target. Specifically, we have trained a latent 

variable model on the drug-target interactions in STITCH using the method described in [97]. 

The drugs were sorted for maximal distance in the latent variable space, which represents 

maximal dissimilarity in their interaction profile to the neuroprotectives. The motivation here is 

that by selecting drugs that are targeting the most frequently shared targets of the known 

neuroprotectives that are otherwise as dissimilar as possible in their interaction profile, we will 

achieve two objectives (i) diversify the known neuroprotective drugs, (ii) potentially gain an 

insight into the mechanism of action. I am going to explain both of these points in more detail. 

Among all the drugs that are known to be neuroprotectives, it is highly unlikely that 

every single one operates on a different mechanism of action. Therefore, it is quite likely that the 

contrary is true – i.e. that there are a smaller number of mechanisms, shared by a subset of the 
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drugs in our initial seed set. Therefore looking at the list of most frequently shared targets gives 

us a ranked list of the targets which are most likely to be important for the mechanisms of action. 

Operating on this shortlist, which reduces the number of likely culprits in the mechanism of 

action from the set of all targets to 32, we have a higher likelihood of identifying compounds 

with high neuroprotective activity. Looking at the drugs of these 32 targets that are as dissimilar 

as possible to the known neuroprotectives is useful in helping us spend our limited experimental 

resources on as diverse a set of neuroprotective candidates as possible.  

Testing the drugs interacting with these targets but are as diverse as possible, 

simultaneously allows us to gain an insight into the mechanism of action. If there are a multitude 

of drugs that have been identified to work as neuroprotectives, all of which have been selected 

based on their interaction with a particular target, then that target is implicated for a key role in 

achieving neuroprotective activity. The identification of targets through testing of compounds for 

activity alone is useful because it enables the use of high levels of automation in handling 

compounds and running large compound library screens to provide useful information about 

target identification, which is traditionally not as amenable to high throughput methods. Deduce 

a strong hypothesis about the mechanism of action from running compounds alone, is ground-

breaking because what is arguably the least streamlined step of the drug discovery step (target 

identification) can be done as high-throughput amenable as the screening step because our 

method enables testing mechanism of action using compounds alone.  

Specifically, if compounds that are maximally dissimilar to the known neuroprotectives, 

but otherwise share the target of interest (shared by as many neuroprotectives as possible), also 

show the desired activity then this implicates the target. Conversely, if compounds that are 

maximally similar but do not share the target of interest do not show the desired activity, this 
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further implicates the target as being integral to the mechanism of action. Hence an informed 

hypothesis about the mechanism of action can be acquired by testing compounds alone, with the 

added benefit that compounds with the desired activity of interest can be identified in the 

process. 

When performing the analysis, each subsequent drug added to the list of predictions after 

the first one was chosen to be maximally distant from the previously selected predictions as well 

as the drugs that supported the hypothesis. This adaptive strategy prevents all the tests from 

focusing on a set of highly similar compounds, and ensures that the selected compounds all 

sample diverse parts of the chemical space. The results of this method are shown in Appendix I, 

where the target selected as the hypothesis is indicated, followed by the support drugs that led to 

the selection of that target. In the following rows, each row starts with the name of the chemical 

that is the top hypothesis, then the average similarity to all the PubChem CIDs that mapped to 

the support drug with the reported name on top of the column are reported. The rightmost 

column contains the average of the similarity scores to all of the support drugs. For every 

compound that comes after the first hypothesis compound, the similarity to all the prior 

compounds are also taken into account, in order to achieve adaptive selection of compounds that 

are not too similar to each other.  

We chose 18 drugs from among all the compounds selected for 6 targets, based on 

feasibility of acquisition and experimental testing. The drugs we selected and the targets that 

informed their selection are shown visually in Figure 31. To achieve the objective of forming an 

informed hypothesis would have required much more experimentation, testing at least 10 

compounds for every target of interest. Since we were constrained by experimental feasibility 

and therefore could not conduct experiments with a satisfactory number of compounds, our 
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objective was only to identify new neuroprotectives. We followed up on the selected compounds 

with a phenotypic cell based toxicity assay for validation of their neuroprotective activity.  
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Figure 30: Computational workflow for active diversification 

The computational workflow described above was used for diversification of compounds with neuroprotective 

activity, however it is broadly applicable for any desired activity type of interest. (1) The computational workflow 

starts with known active compounds, in this case we used 15 neuronal cell death inhibitors identified by Wang et al, 

2008 and 9 compounds currently in clinical trials. (2) The STITCH interaction dataset is used to train latent variable 

(LV) model that describes each drug and target’s interaction characteristics. (3) The known targets of the drugs of 

interest are looked up from STITCH. (4,5) The target(s) that interact with the highest number of drugs of interest 

selected as the top hypothesis. (6,7) The drugs known to interact with the targets of interest are extracted from 

STITCH, these constitute the repurposable candidates of interest. (8) The candidates of interest are sorted according 

to maximal LV distance (i.e. maximum dissimilarity) to the drugs of interest that interact with the selected target of 

interest. (9,10) The top candidate(s) tested for desired activity, in this case neuronal cell death inhibition. (11) The 

successful results feedback into the algorithm, (12) the successful results are stored.  
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Figure 31: Compounds selected as neuroprotective candidates and the path to their selection.  

The drugs in the left column are the neuroprotective drugs that were used to inform the computational method. They 

are connected to the targets in the middle, shown in red, and multiple connections mean that the target is shared by 

multiple drugs as indicated. The drugs on the right hand side show the drugs that are known to influence the targets 

in the middle with very high confidence, that are otherwise dissimilar in their interaction profile to the drugs on the 

first column and that were feasibly acquired and used for experimental validation. Two of these predictions, 

thyroxine and sodium nitroprusside showed statistically significant protection; hence they are highlighted in green 

color. Thyroxine showed protection indistinguishable from the positive control drug, methazolamide at the same 

dose of 100 µM; whereas sodium nitroprusside showed statistically significantly better protection than 

methazolamide at 100 µM. 
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Table 9: The results from the LFM based neuroprotective diversification workflow 

The following table represents the LFM based neuroprotective results, specifically the results that led to the 

identification of Sodium Nitroprusside. The entire set of results are available in Appendix I. First the name of the 

target shared by the neuroprotectives is reported, i.e. the ‘hypothesis’ that this target is key for neuroprotective 

activity. In this case, that hypothesis is Caspase 3. Then the supporting neuroprotective drugs that led to the selection 

of this target are reported: Melatonin, and Minocycline in this case. Then the compounds that are selected based on 

the LFM-based workflow are listed along with the number of targets they have, their distances to the support drugs, 

and the average of those distances. It is important to keep in mind that the drugs after the first are selected based on 

their dissimilarity from not only the support drugs, but also all of the other previously selected compounds hence the 

average distance to support drugs does not indicate the order in which they were selected. 

Hypothesis 3: CASP3_HUMAN (Caspase-3 subunit p12, organism:9606) 

Support: Melatonin Minocycline 

Compounds to test hypothesis: 

Drug 
Target 
Count LV distance to support: Average: 

Sodium Nitroprusside (CID000045469) 14 5.237 5.148 5.193 

Imatinib (CID100005291) 48 5.290 5.061 5.175 

Staurosporine (CID000044259) 85 4.770 5.399 5.085 

Rxb (CID111632008) 1 4.743 4.842 4.793 

Tpck (CID000439647) 6 4.405 4.183 4.294 

Zoledronic Acid (CID100068740) 83 4.350 4.552 4.451 

P-Bromoanisole (CID000007730) 1 4.869 4.550 4.709 

Kainate (CID000010255) 69 4.318 4.652 4.485 

Nordihydroguaiaretic Acid (CID100004534) 21 4.703 4.503 4.603 

Inhibitor 65B (CID005327315) 1 4.725 4.043 4.384 

Ptf (CID100013016) 1 4.494 4.654 4.574 

Peroxynitrite (CID100104806) 21 4.461 4.515 4.488 

Gemcitabine (CID000060749) 28 3.829 4.191 4.010 

15-Deoxy-Delta12,14-Prostaglandin J2 (CID100001444) 20 4.433 4.331 4.382 

Thapsigargin (CID000446378) 84 3.754 4.319 4.036 

Chebi:400985 (CID009851134) 1 4.025 4.017 4.021 

Pyrrolidine Isatin Analogue 11F (CID111712912) 1 4.469 3.901 4.185 

Inhibitor 64B (CID005327307) 1 4.497 4.524 4.511 

Db08213 (CID100001389) 1 4.093 4.043 4.068 

3-Morpholinosydnonimine (CID100005219) 4 4.450 3.664 4.057 

Pzn (CID005289238) 1 3.724 3.933 3.828 

Ac-Devd-Cho (CID100004330) 5 3.880 4.150 4.015 

Salidroside (CID100159278) 2 4.093 3.316 3.704 

Chebi:461307 (CID111700402) 1 4.030 4.108 4.069 

Gsno (CID100003514) 5 3.782 4.016 3.899 
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4.3 EXPERIMENTAL VALIDATION 

We performed experimental testing of the 18 compounds selected from among the results of the 

computational method (Figure 31). We have identified sodium nitroprusside (SNP) to be 

significantly neuroprotective, statistically significantly outperforming the positive control 

compound methazolamide. These experiments were mainly conducted by Hossein Mousavi at 

the Friedlander Lab under the guidance of Robert Friedlander, with the results replicated in the 

University of Pittsburgh Drug Discovery Institute by Celeste Reese, Laura Vollmer, Seia Comsa 

and myself under the guidance of Lans Taylor, Andrew Stern and Mark Schurdak. We have then 

interrogated the effect of SNP on mitochondrial respiration, with these experiments conducted 

again by Hossein Mousavi in the Friedlander lab. The results are reported in detail below. 

4.3.1 Assessment of Neuronal Cell Death Inhibition for Computationally Selected 

Compounds 

We performed cell toxicity assay (LDH) using STHdh Q111/Q111 (Q111) striatal-derived cell 

lines, testing each drug at 7 different doses: doses increasing 10-fold from 1nM to 100µM, and 

an additional dose of 30µM, with a positive control of methazolamide at 100µM (see Appendix J 

for the entire set of results). The results were from an LDH screen where the readout is 

fluorescence from a reporter of LDH. LDH is a protein that occurs at a controlled level across all 

cells and it only leaks out after cell membrane impermeability is comprised, indicating cell death. 

The LDH viability assay is conducted by observing LDH separately first in the supernatant 

(indicating the released LDH from cells that have lost membrane integrity) and then in the cell 

lysate (indicating the LDH still contained in the cells). Q7 and Q111 model cell lines were grown 
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for 24 h in 96-well plates at 5000 cells/well followed by 24 h of treatment. Cells underwent 

stress conditions by being kept in non-permissive temperature (37C for the Q7 and Q111 cells) 

and serum free media for 18 hours. Cellular viability was measured Cytotoxicity Detection Kit 

(LDH) manufactured by Roche. 

In these experiments, we identified sodium nitroprusside as a significant neuroprotective. 

SNP at 50, 100 and 200 uM showed statistically significant neuroprotection against cell death (p-

values 0.02, 0.05, and 0.005 respectively) when compared to the vehicle control; with SNP at 

100µM showing statistically significantly better protection than the positive control 

methazolamide at 100µM (p-value 0.007). We next performed cell death assay using SNP in 

higher concentrations. SNP had the highest protection at 200 µM and was toxic in higher doses 

(Figure 33, panel a). To verify the results SNP in LDH assay we have performed propidium 

iodide (PI) uptake based cell death assessment. Similar results were obtained when the 

neuroprotection assay was reproduced on multiple dates and with both PI and LDH assays 

(Figure 32). These experimental findings support our in silico predictions that SNP would work 

as neuroprotective in HD.  

4.3.2 Sodium Nitroprusside Protection Does Not Impact Mitochondrial Respiration 

SNP degrades spontaneously and subsequently generates Fe
2+

, Cyanide and nitric oxide (NO). 

NO released from SNP and its role in cardiac and vascular cells has been widely explored over 

the past six decades owing to the long history of the use of SNP as an antihypertensive [171-

174]. However its potential as a neuroprotective has not been reported.  

NO has been known to be physiological modulator of mitochondria function and cyclic 

GMP pathway [175-177]. NO like carbon monoxide (CO) binds to the same site in mitochondria 
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as oxygen. It reversibly reduces the affinity of cytochrome C oxidase to oxygen, however this 

affect has been observed to be fast and more like a regulatory effect than a blocker effect, unlike 

CO. To understand whether SNP exerts its neuroprotection via releasing NO and attenuating 

mitochondrial function, we analyzed different states of mitochondrial respiration in addition of 

this compound. Glutamate/Malate and Succinate were used as substrates for mitochondrial 

complex-I and II respectively. SNP had no effect in either states of respiration (Figure 33, panels 

b & c). There was no change in mitochondrial membrane potential using SNP (Figure 33, panel 

d). These data suggest that SNP does not attenuate mitochondrial respiration via NO release in 

isolated mitochondria, and its neuroprotection effect in HD cells is unrelated to mitochondrial 

direct physiological alteration and it is more likely to be an accumulative effect rather than a 

direct and canonical effect like mitochondrial complexes blockers.   
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Figure 32: Neuroprotective effect of sodium nitroprusside is repeatedly stronger than methazolamide 

The neuroprotective effect of sodium nitroprusside observed to be statistically significantly better than the positive 

control drug, methazolamide (Appendix J), led us to subsequent experimentation with a different assay. The ordinate 

shows the percent cell death after insult on Q111 HD model cell lines, whereas the abscissa shows the concentration 

of the experimented drug. The significantly better neuroprotective effect of sodium nitroprusside reproduced over 

two different assays, LDH and PI performed on multiple dates.  
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Figure 33: Effect of SNP in Q111 cells and isolated mitochondria 

Experimental validation of our prediction based on data collected by our collaborator Hossein Mousavi in Robert 

Friedlander’s lab. (A) HD cells viability in stress condition (Serum deprivation and temperature shift to 37 C) in 

addition of SNP in different doses. (B) Effect of SNP in isolated brain mitochondria using G/M as substrate for 

complex-I. (C) Respiratory control ration (RCR) in isolated brain mitochondria with (gray) and without (black) 

SNP,. (D) Effect of SNP in isolated brain mitochondria membrane potential using TMRM. Traces are representative 

of 4 or more independent experiments. Mitochondria (Mito), sodium nitrprusside 100 µM (SNP), Glutamate/Malate 

(GM), Oligomycin (Oly), Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), tetramethyl rhodamine 

methyl ester (TMRM). 3/2 indicates state3/state2 respiration, 3/4 indicates state3/state4 respiration. (*, p<0.05, 

**,p<0.001, #, P=NS, ANOVA)  
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5.0  DISCUSSION 

We have discussed methods and results serving multiple different goals and biomedical projects. 

The LFM-based approach for predicting drug target interactions presented here proposes a 

solution to the important scientific problem of discovery of unknown interactions (Section 2.1). 

The methodologies we developed have improved upon the state-of-the-art (Section 2.2). 

BalestraWeb serves to make the solution we have developed usable by a large number of 

biomedical researchers all around the world (Section 2.3). Our work on ATD required 

computational techniques other than LFM, which we designed and then implemented to fit the 

needs of the particular project at hand with satisfactory results (Chapter 3.0 ). The data available 

on HD required the use of LFM, as well as a multitude of other methods that we developed and 

implemented with again satisfactory results, as we have managed to identify a drug, sodium 

nitroprusside, that worked better than the state-of-the-art neuroprotective (Chapter 4.0 ). Due to 

the extensive and broad implications of the work presented in this dissertation, the discussion is 

divided into sections structured according to the structure of the work presented. 

5.1 LFM APPROACHES FOR ANALYZING DRUG-TARGET INTERACTIONS 

Over the last couple of years, there have been a number of computational studies performed to 

identify targets of existing drugs and drug candidates other than those originally known/proposed 
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to be targeted.  A pioneering study is that of Roth, Shoichet and coworkers [26;28] based on 

compound chemical similarities. Dudley et al focused on inverse correlations between gene 

expression profiles in the presence of a drug and in a disease state [37]. Yamanishi and his 

colleagues represented drugs and targets in an integrated ‘pharmacological space’ [29;32]. 

Gonen used a KBMF method where chemical and genomic similarities were integrated [34]. We 

proposed a PMF-based AL methodology that can be advantageously used for large datasets.   

The applicability of the method to large datasets is worth further attention, given that we 

will increasingly have access to bigger data such as the STITCH database [45], which will be 

exploited for repurposable drug identification. The software developed here, made accessible in 

http://www.csb.pitt.edu/Faculty/bahar/files/, is readily scalable. For very large datasets, which 

typically have more known interactions, the PMF is able to construct a better model using the 

plethora of available data; whereas when the number of known interactions is limited, the use of 

chemical and genomic kernels allows KBMF to outperform PMF. The application of KBMF to 

large datasets may, however, become challenging, For example, STITCH contains on the order 

of 10
6
 proteins and 10

5
 compounds, implying that 10

12
 sequence and 10

10
 chemical similarity 

comparisons are needed to make predictions.  However, the PMF method is independent of 

chemical, structural or other similarity metrics, and its computation time scales linearly with the 

number of known interactions; and it proves to perform well on large datasets. The datasets 

reporting drug-target interactions are constantly improving in quality and quantity, and therefore 

expected to give even better results when analyzed by an efficient tool. The extension of the 

method to analyzing big data (with millions of nodes) is foreseeable in the near future. The 

GraphLab [108] or the GraphChi tool [178] can be used for optimized and parallelized model 

learning for further performance improvements. 

http://www.csb.pitt.edu/Faculty/bahar/files/
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The fact that the PMF is independent of 2D/3D shape comparison methods commonly 

employed in drug-target pair inferences implies that the derived LVs capture similarities based 

on the interaction patterns of drugs at the cellular level, even if their molecular structures are 

dissimilar (see Table 2, Figure 6, Figure 7 and Figure 8). As such, the method may be 

advantageously used for lead hopping, thus complementing those (e.g. SVM classification 

algorithms) used in conjunction with 2D or 3D pharmacophoric fingerprints as in the work of 

Saeh and coworkers [179]. Inasmuch as the currently proposed method does not require 

structural data for proteins but knowledge of drug-target interactions, it can be advantageously 

applied to membrane proteins (major drug targets) for which structural data still remain sparse.  

It can also be used to make predictions across major drug or target classification boundaries. One 

implication is that the de novo predictions are not restricted to major drug or target classification 

boundaries.  

A major utility of the developed tool is the ability to deliver testable hypotheses with 

regard to repurposable drugs, thus significantly reducing the search space for identifying potent 

applications of existing drugs (that proved to meet ADMET requirements). The number of 

experiments that can be efficiently conducted is usually limited, e.g. of the order of 10
2
 if not 10

1
 

for high-confidence assays as opposed to the complete space of ~1.5 million combinations for 

the dataset used in this study. The fact that the top-ranking predictions exhibit a hit ratio of 59% 

(for the top 1,000 predictions; or 88% for top 100 predictions) suggest that de novo predictions 

made by the presently introduced method of approach applied to increasingly large datasets are 

likely to provide useful guidance for experimentally testing, streamlining or prioritizing existing 

or investigational drugs or new compounds.  Another important by-product is the probabilistic 
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assessments on potential side effects, a topic that will become increasingly important with 

advances in personalized medicine.   

Owing to these important considerations, we have built BalestraWeb to make our work 

easily accessible to biomedical researchers. BalestraWeb provides users the ability to predict the 

most likely interaction partners of any drug or target beyond those known and compiled in 

DrugBank. The technology used to build the web server scales linearly with the number of drugs 

or targets and is therefore easily scalable to larger datasets as they become available. The 

modular architecture of the software allows us to update the web server to reflect changes as new 

data become available. Free, fast, and easy-to-use, BalestraWeb enables researchers to help 

eliminate improbable drug-target interactions and efficiently focus their limited resources on 

selected drugs.  

5.2 COMPUTATIONAL DISCOVERY OF THERAPEUTICS AGAINST ATD 

The major advantage of our study was the determination that this type of RNAi screen could be 

used to rapidly identify potential drug targets using computational approaches, even in the 

absence of extensive knowledge about target functions, other than their effects on SGFP::ATZ 

accumulation. We employed two independent, but complementary sources, STITCH and 

MetaCore, to identify chemical/drug and protein interactions [45;124]. Of the 85 human PN 

modifiers queried, a total of eight compounds (two directed against each of four targets) were 

selected as a proof-of principal for this strategy. Remarkably, one compound for each of the four 

targets showed a dose-dependent decrease sGFP::ATZ accumulation in C. elegans. Failure of the 

other four compounds to have the predicted effects in C. elegans were not investigated, but 
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might be due to differences in pharmacokinetics, pharmacodynamics or target-binding site 

homology between the C. elegans and mammalian systems. While the overall success rate of 

50% was encouraging, small numbers preclude the calculation of a meaningful positive 

predictive value. The results do, however, underscore the great potential for combining genome-

wide RNAi screens with computational drug-discovery methodologies. The demonstration that 

one of the compounds, fluspirilene, was also effective in reducing ATZ accumulation in a 

mammalian cell line lends additional support for further development of this rapid preclinical 

drug discovery/repurposable strategy. 

A second advantage of this drug-discovery strategy was the use of facile genetic 

techniques in C. elegans to determine whether the observed drug effect was due to activity 

within the predicted target pathway or to an off-target effect. Wortmannin was identified in the 

screen as a potential inhibitor of the type I PI3K kinase, AGE-1. AGE-1 functions downstream 

of the sole insulin-like receptor, DAF-2, and inhibition of this IIS pathway suppresses the 

proteotoxic effects of sGFP::ATZ in this C. elegans model, as well as other C. elegans models of 

misfolded protein accumulation [180]. However, wortmannin also inhibits the class III PI3K, 

VPS-34, which blocks autophagy in C. elegans and mammals as well [127]. Since autophagy 

was an important means of reducing sGFP:: ATZ accumulation [181], suppression of this 

pathway would be deleterious to these animals. Treatment of the animals with wortmannin 

decreased sGFP::ATZ accumulation, and this effect was neither enhanced in AGE-1 mutants nor 

effective in animals with a mutation in the downstream AGE-1 target gene, DAF-16. Taken 

together, we concluded that the effects of wortmannin at the concentrations used in these animals 

were via inhibition of AGE-1 and not VPS-34 or some off-target pathway. The large collection 

of C. elegans single gene mutants, combined with a simple quantitative readout system using 
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fluorescent fusion proteins, makes this system ideal for identifying potential drug targets or 

target pathways after phenotype-based drug screening. While this technology was not meant to 

replace target identification by the gold-standard of drug–ligand binding measurements in vitro, 

it does provide the rationale for embarking upon more detailed kinetic or structural studies with 

purified reagents or expensive development of a lead series by exploring structure–activity 

relationshipsin vitro. 

A third advantage of this drug-discovery strategy was the ability to test for the efficacy of 

combinational therapy. Due to their toxicity, drugs like wortmannin have been largely abandoned 

as therapeutics in humans. One means to lower toxicity is to use different delivery systems, such 

as microspheres, to directly deliver lower concentrations of a drug directly to the tissue of 

interest [182]. Another means to avoid toxicity is to utilize lower concentration of drug by 

combining it with other therapeutics directed at different targets or target pathways. By using the 

genetic methods outlined above, we showed that unlike wortmannin, none of the other three 

candidates exerted their effect via the IIS pathway. This observation was validated by using 

the C. elegans model to show that comparable reductions of sGFP::ATZ accumulation could be 

achieved at lower doses of wortmannin when it was combined with one of the other drugs. This 

effect underscores the ability of this experimental system to both identify and test the efficacy of 

complementary therapeutics. In conclusion, these studies showed that by utilizing the hits from a 

genome-wide RNAi screen, computational methods could be used to rapidly and strategically 

develop compounds to prime the preclinical drug-discovery pipeline for rare or neglected 

diseases lacking effective treatments. 

We have also presented two novel computational analysis methods that were designed 

specifically for the purpose of analyzing the Prestwick dataset screening results in order to 
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discover the mechanism of action of protective drugs as well as the diversification of the known 

protectives in Section 3.5. There were two goals: (i) to diversify leads, and identify other 

potential lead compounds; (ii) to identify potential mechanism of action regulators. We have 

identified sorafenib, duloxetine, and ezetimibe as the potential new hits based on the fact that 

they share chemical structure and targets with known suppressors. For the mechanism of action, 

we have identified that calcium channels are a strong candidate based on evaluation of the 

experimental data using two different databases, with two different evaluation methods. The 

hypothesis that calcium channels could be relevant to the ATZ aggregation inhibition, and the 

hypotheses that the three suggested drugs (see Figure 24) could be therapeutically useful needs to 

be tested experimentally to be validated. 

5.3 NEUROPROTECTIVE IDENTIFICATION FOR HD 

In this study, we have devised and applied a novel in silico method to perform target based hit 

diversification using previously published information and public databases. We then 

demonstrated that by testing 18 of the predictions we identified two new neuroprotective 

repurposable candidates in HD with one of them, SNP, outperforming the other compounds. The 

exact mechanism with which SNP exerts its neuroprotective effect is not known, however it has 

been first reported to be an effective antihypertensive in 1928, its potential has been clinically 

realized between 1951 and 1955, and it became commercially available as an approved 

antihypertensive for use in the United States in 1974 [171;172]. In addition to being a well 

established hypotensive agent, it has long been known to increase cGMP levels [183], inhibit 

cytosolic Ca
2+

 levels [184], and increase nitric oxide (NO) levels [173]. More recently, it has 
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been reported to be effective in prevention of apoptosis of macrophages after hydrogen peroxide 

insult by preventing activation of caspase-3 and caspase-9 with a 24 hour pretreatment before 

insult [185]. SNP has been widely reported to be an apoptosis inducer at relatively higher doses, 

but protective in lower doses: induces apoptosis in mouse C2C12 myoblast cells [186]; induces 

apoptosis in H9C2 cardiac muscle cells at doses of 2mM or higher [187]; in vascular smooth 

muscle cells, induces apoptosis at 1.5mM, while pretreatment with 30 µM or higher SNP was 

found to be protective against high dose SNP induced toxicity [188]; it was found to reduce 

staurosporine induced caspase activity and apoptosis in cardiomyocytes at doses of 100 µM 

[189]. These findings demonstrate that SNP impacts caspase activation through its multitude of 

effects on nitric oxide levels, cGMP levels, and mitochondrial activity. These are potentially 

driven by its chemical composition as SNP can create NO and cyanide through decomposition, 

with the latter disrupting mitochondrial activity. Literature also shows that it is important to keep 

SNP at low doses for safety, and thus our findings that SNP can be a neuroprotective in 

concentration ranges as low as 30 – 100 µM makes SNP a feasible therapeutic agent candidate 

for use in HD in vivo studies.  

The fact that 2 of the 18 tested predictions (thyroxine and SNP) were statistically 

significantly protective represents an 11% hit rate, which compares against the reported average 

hit rate of 1.8% hit rate in uninformed compound collection screens conducted by the NIH [122]. 

In a comprehensive study using the SEA method [27], 27.8% of all the experiments suggested by 

SEA and later executed were found to be correct interactions. However, we note that: (1) the 

computational method we developed here was mostly designed to implicate targets regulating 

neuroprotective activity, this was not a method designed purely to find more neuroprotectives but 

primarily to identify mechanism of action of neuroprotectives; (2) a significant portion of our 
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predictions have not been tested, in contrast to the fact that almost every strong prediction was 

experimentally tested in this study. Due to the low number of total compounds tested a 

reasonably strong assessment of the hit rate cannot be made without conducting significantly 

higher numbers of experiments. However this preliminary finding might be viewed an 

encouraging result demonstrating the potential of the computational analysis of publicly 

available data, combined with the previously available information, in general. There is a 

potential to form informed hypotheses in silico using the compendium of public data resources 

and this can help generate effective translational therapies by allowing the repositioning of 

known drugs against new indications with efficiency. Furthermore, considering that these 18 

drugs were not selected purely based on the method’s suggestions but instead heavily influenced 

by the feasibility of acquisition suggests that the method could potentially yield an even higher 

discovery rate.  

To summarize, in this study we have demonstrated the viability of target-based active 

diversification as a computational technique for finding therapeutic agent candidates for 

repurposable drugs against diseases with no known therapies; and that SNP or its safer 

derivatives could potentially be used in HD therapy as a neuroprotective agent. More generally, 

the computational techniques described here can be used for a diverse range of diseases. 

Specifically, the LFM based methodology described in Section 4.2 can be broadly applied to any 

disease of interest where some small set of initial hits are identified. Thus, the methodology 

described herein could be helpful in identifying the mechanism of action of any compounds of 

interest within any disease as the method is entirely independent of HD. Once the targets of 

interest are identified, the method could be used to select drugs that act on different targets thus 

create polypharmacological therapeutic strategies that target multiple different mechanisms to 
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potentially achieve synergistic effect. Furthermore, the patients could be characterized using 

genomic/transcriptomic profiling and for patients with a signifcant change in one or more of the 

targets implicated as being related to the mechanism, that information could be used to adjust the 

therapeutic strategy thereby achieveing patient stratification. Our study also invites attention to 

the importance of access to big data sources for rapid discoveries of repurposable drugs against 

myriad untreated diseases.  

5.4 CONCLUDING REMARKS 

On the broadest level, the work presented in this dissertation aims to demonstrate that 

computational analysis of experimental data can help build useful testable hypotheses. The 

importance of experimental work in generating new biomedical data is without question. 

However guiding the experimental work using both the results from previous experimental 

results and the large public datasets as appropriate can deliver improved returns. The private data 

that are acquired within the context of a specific project are important in generating models 

about the biomedical components of significance for that particular question. The public datasets, 

on the other hand, provide collections of big data that cannot be compiled by any single research 

group; therefore they present an important source to explore. The combination of those two 

datasets, and the development and implementation of computational methods designed 

specifically for the needs of the biomedical driving project at hand appear to consistently yield 

plausible hypotheses, both in ATD (as evidenced by the discovery of glibenclamide and four 

new repurposable drug candidates) and HD (as suggested by the discovery of sodium 

nitroprusside as a neuroprotective in HD). It is my hope that this work, as well as many other 
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valuable contributions to the field, will help enable the widespread use of computational 

techniques to guide biomedical assays and thus facilitate efficient use of the resources available. 

Finally, by combining and packaging the code I have written over the course of my PhD to 

handle drug-target interaction datasets in BalestraTK, I hope to facilitate any follow-up of the 

research activity described in my dissertation.  

 

5.5 FUTURE DIRECTIONS 

The work described in this dissertation ranges from machine learning (Chapter 2) to big data 

analysis (Chapters 3 and 4) to experimental validation of predictions (Chapter 4). Consequently 

the future directions are also quite diverse. For the work described in Chapter 2, it would be 

important to test the top predictions (>90% confidence) made by BalestraWeb (shown in Table 

3) experimentally to validate/refute. As these predictions are made by an average of 128 models 

which place true but unknown interactions among the top 20 predictions 50% of the time, they 

come with a good level of confidence. The researchers can always use BalestraWeb to find out 

the known and most probable interactions of specific drugs/targets that they are interested in. 

However to test BalestraWeb itself and to significantly increase its use by the community, it is 

imperative that the top predictions of BalestraWeb be systematically tested – not a subset 

selected for feasibility. 

For the ATD work, the future directions would be to test Ezetimibe, Sorafenib, and 

Duloxetine in an ATD model. There is substantial reason for thinking that these drugs can be 

active, based both on chemical models and target-based models as described in Section 3.5. If 
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proven to beactive, it would increase the likelihood of repurposing a known drug candidate 

against ATD, thus increasing the likelihood of developing an effective therapy to this disease 

that negatively affects 1 in 1600 to 2000 children. 

For the HD project, the LFM- based hypothesized compounds have not been thoroughly 

tested as originaly intended. The objective when designing the methodology was to give 100 

predictions to be tested. Hence, to continue that work in its original spirit I would recommend 

building a new LFM of STITCH v4 using the strategies I laid out in Section 2.6. In parallel, the 

set of known neuroprotective drugs shown in Figure 25 could be experimentally tested to find 

the subset of drugs that work reproducibly in an HD model (i.e. to identify a refined set of 

neuroprotectives). Then the algorithmic workflow shown in Figure 30 could be adopted with this 

improved LFM and data to build a new set of hypotheses, from which a second generation of 100 

compounds could be tested, by interrogating 10 compounds for each of the top 10 target 

hypotheses. New neuroprotectives, probably more powerful than sodium nitroprusside, will be 

discovered. Perhaps even more importantly, if there exists any target that has led to the discovery 

of multiple new neuroprotectives, this will implicate a specific mechanism of action. This is very 

important because it will provide us with a mechanistic understanding of neuroprotection with 

compound-based experimentation alone.  

In general, new machine learning based computational methods are always dependent on 

the input data being of high quality to function accurately. Therefore it is important to make sure 

that the public datasets are as comprehensive and well-curated as possible. To that end, 

integrating data available on multiple databases accurately is highly important. The construction 

of the STITCH database [45;119;190] was such an effort - in fact the name can be seen as 

referring to ‘stitching’ different data sources together. Likewise there is a recent initiative aiming 
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to bring different databases together drug-drug interactions [191]. It is with this goal that we 

have envisioned BalestraTK, where the aggregate data on drug-drug, drug-protein and protein-

protein interactions can all be potentially accessed over a single API and where a new integrator 

can be written for each new database, while conserving the foundation data access API. 

Moreover, BalestraTK provides significant time savings as it makes arbitrary data access a 

constant time, rapid operation in what are otherwise large datasets. This enables rapid access to 

data, and if its development is kept-up-to-date with the future versions (it is up-to-date with the 

most recent versions of the required databases currently available) utilizing the newest data 

sources with no code change to existing services.  

More broadly speaking, I would suggest the biomedical research community at large to 

make use of computational approaches coupled with the data available at their hand related to 

their specific project(s) to guide their experimentation. Oftentimes scientists with more 

biomedical background than computational will try to use computational tools as a ‘black box’ 

when in fact they are usually made accessible as an open source, and they should ideally be used 

in an integrated manner. For the computational scientists, my advice is that it is important to 

produce algorithmic approaches tailored to the data and questions at hand instead of trying to 

force the use of a specific approach that they have developed. My recommendation would be to 

think about the method that would make the most sense given the data and the specific problem 

under investigation and then devise the computational technique to best addresses that need. I 

think the full potential of computational methods in revolutionizing biomedical research is yet to 

be realized. 
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APPENDIX A 

THE CONTENTS OF THE ONLINE FILES FOR PMF 

The contents of active_passive_learning_code.zip are described in the table below: 

Filename Description of contents 

al.m Active learner code (Matlab) 

pl.m Passive learner code (Matlab) 

pmfchang.m PMF code (Matlab) 

rl.m Random learner code (Matlab) 

runme.m The user only needs to run this file in Matlab to execute the code and get the 

results. 

dtdata.mat The data file (Matlab) 

ReadMe.txt Instructions on running the code. 
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The contents of denovo.zip: 

Filename Description of contents 

README.txt Instructions on running the code 

runpreds.m Code for generating de novo predictions repeatedly (Matlab) 

pmfchang_d.m PMF code (Matlab) 

whole.m Code for calculating prediction results in matrix form (Matlab) 

denovo.m Code for outputting prediction results in txt file (Matlab) 

dtdata_5041.txt Dataset from DrugBank used for de novo predictions 

drug_inddict.txt Index directory for all drugs used for de novo predictions 

trgt_inddict.txt Index directory for all targets used for de novo predictions 

translate.py Code for translating the output of prediction results into interactions with 

real names (Python) 

predictionfolder Folder that stores all the prediction results when code is executed 
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APPENDIX B 

DRUG TARGET PAIRS FROM BALESTRAWEB WITH PREDICTED INTERACTION 

SCORE ABOVE 70% 

The columns represent from left to right: the DrugBank v4 ID of the drug, the name of the drug, 

the DrugBank v4 ID of the target, the name of the target, the BalestraWeb predicted interaction 

score. The interactions are sorted based on the predicted interaction score. In DrugBank v4, there 

are 1313 approved drugs, which have 1455 targets with 4860 known interactions between them. 

Among the 1,905,555 unknown interactions between these drugs and targets, the following 589 

are predicted by BalestraWeb’s LFM based engine to be top (i.e. above the 70% threshold). 

Drug ID Drug Name Target ID Target Name Score 

DB00116 Tetrahydrofolic acid BE0002176 Methylenetetrahydrofolate reductase 1 

DB00116 Tetrahydrofolic acid BE0000331 Serine hydroxymethyltransferase, cytosolic 1 

DB00145 Glycine BE0000331 Serine hydroxymethyltransferase, cytosolic 0.99971 

DB00116 Tetrahydrofolic acid BE0000292 Serine hydroxymethyltransferase, mitochondrial 0.99954 

DB00128 L-Aspartic Acid BE0000277 Calcium-binding mitochondrial carrier protein 

Aralar2 

0.9993 

DB00145 Glycine BE0000292 Serine hydroxymethyltransferase, mitochondrial 0.99912 

DB00370 Mirtazapine BE0000291 5-hydroxytryptamine receptor 1A 0.92736 

DB00543 Amoxapine BE0000572 Alpha-2B adrenergic receptor 0.92068 

DB00408 Loxapine BE0000393 5-hydroxytryptamine receptor 2B 0.91003 

DB04946 Iloperidone BE0000533 5-hydroxytryptamine receptor 2C 0.9008 

DB00696 Ergotamine BE0000342 Alpha-2C adrenergic receptor 0.90057 

DB04946 Iloperidone BE0000289 Alpha-2A adrenergic receptor 0.89727 

DB00477 Chlorpromazine BE0000560 Muscarinic acetylcholine receptor M2 0.89704 

DB00334 Olanzapine BE0000715 Alpha-1D adrenergic receptor 0.89653 

DB00363 Clozapine BE0000145 D(1B) dopamine receptor 0.89481 
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DB00246 Ziprasidone BE0000715 Alpha-1D adrenergic receptor 0.88781 

DB06148 Mianserin BE0000797 5-hydroxytryptamine receptor 1B 0.88758 

DB00543 Amoxapine BE0000342 Alpha-2C adrenergic receptor 0.88596 

DB06148 Mianserin BE0000659 5-hydroxytryptamine receptor 1D 0.88587 

DB01142 Doxepin BE0000650 5-hydroxytryptamine receptor 7 0.88378 

DB01238 Aripiprazole BE0000715 Alpha-1D adrenergic receptor 0.88376 

DB06148 Mianserin BE0000501 Alpha-1A adrenergic receptor 0.88306 

DB00988 Dopamine BE0000451 5-hydroxytryptamine receptor 2A 0.88301 

DB00726 Trimipramine BE0000342 Alpha-2C adrenergic receptor 0.88223 

DB00408 Loxapine BE0000715 Alpha-1D adrenergic receptor 0.88034 

DB06216 Asenapine BE0000145 D(1B) dopamine receptor 0.87895 

DB00363 Clozapine BE0000715 Alpha-1D adrenergic receptor 0.8786 

DB01142 Doxepin BE0000020 D(1A) dopamine receptor 0.8778 

DB00321 Amitriptyline BE0000572 Alpha-2B adrenergic receptor 0.87746 

DB00370 Mirtazapine BE0000572 Alpha-2B adrenergic receptor 0.87546 

DB06216 Asenapine BE0000575 Alpha-1B adrenergic receptor 0.87291 

DB01142 Doxepin BE0000581 D(3) dopamine receptor 0.87012 

DB00363 Clozapine BE0000393 5-hydroxytryptamine receptor 2B 0.87007 

DB00543 Amoxapine BE0000575 Alpha-1B adrenergic receptor 0.86803 

DB04946 Iloperidone BE0000572 Alpha-2B adrenergic receptor 0.86684 

DB01224 Quetiapine BE0000393 5-hydroxytryptamine receptor 2B 0.86663 

DB01238 Aripiprazole BE0000393 5-hydroxytryptamine receptor 2B 0.86338 

DB04946 Iloperidone BE0000575 Alpha-1B adrenergic receptor 0.86263 

DB00370 Mirtazapine BE0000575 Alpha-1B adrenergic receptor 0.86254 

DB00477 Chlorpromazine BE0000715 Alpha-1D adrenergic receptor 0.86204 

DB06148 Mianserin BE0000389 D(4) dopamine receptor 0.86199 

DB01142 Doxepin BE0000389 D(4) dopamine receptor 0.86155 

DB00726 Trimipramine BE0000715 Alpha-1D adrenergic receptor 0.86027 

DB00370 Mirtazapine BE0000020 D(1A) dopamine receptor 0.8602 

DB06148 Mianserin BE0000020 D(1A) dopamine receptor 0.85984 

DB00246 Ziprasidone BE0000393 5-hydroxytryptamine receptor 2B 0.8584 

DB00321 Amitriptyline BE0000342 Alpha-2C adrenergic receptor 0.85827 

DB00247 Methysergide BE0000659 5-hydroxytryptamine receptor 1D 0.85811 

DB00321 Amitriptyline BE0000311 5-hydroxytryptamine receptor 3A 0.85767 

DB01403 Methotrimeprazine BE0000291 5-hydroxytryptamine receptor 1A 0.85537 

DB01608 Propericiazine BE0000501 Alpha-1A adrenergic receptor 0.85532 

DB00543 Amoxapine BE0000659 5-hydroxytryptamine receptor 1D 0.85478 

DB00543 Amoxapine BE0004889 D(1B) dopamine receptor 0.85449 

DB00543 Amoxapine BE0000145 D(1B) dopamine receptor 0.854 

DB00696 Ergotamine BE0000581 D(3) dopamine receptor 0.85365 

DB00370 Mirtazapine BE0000389 D(4) dopamine receptor 0.8499 

DB00726 Trimipramine BE0000581 D(3) dopamine receptor 0.84813 
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DB06216 Asenapine BE0000659 5-hydroxytryptamine receptor 1D 0.84753 

DB00696 Ergotamine BE0000020 D(1A) dopamine receptor 0.84715 

DB00726 Trimipramine BE0000797 5-hydroxytryptamine receptor 1B 0.84638 

DB00321 Amitriptyline BE0000756 D(2) dopamine receptor 0.84574 

DB00734 Risperidone BE0000715 Alpha-1D adrenergic receptor 0.84545 

DB00540 Nortriptyline BE0000650 5-hydroxytryptamine receptor 7 0.84446 

DB00477 Chlorpromazine BE0000342 Alpha-2C adrenergic receptor 0.84381 

DB00988 Dopamine BE0000533 5-hydroxytryptamine receptor 2C 0.84278 

DB00734 Risperidone BE0000797 5-hydroxytryptamine receptor 1B 0.84266 

DB00477 Chlorpromazine BE0000247 Muscarinic acetylcholine receptor M5 0.84249 

DB00477 Chlorpromazine BE0000393 5-hydroxytryptamine receptor 2B 0.84201 

DB00477 Chlorpromazine BE0000405 Muscarinic acetylcholine receptor M4 0.84182 

DB00477 Chlorpromazine BE0000289 Alpha-2A adrenergic receptor 0.8412 

DB01392 Yohimbine BE0000020 D(1A) dopamine receptor 0.84103 

DB00370 Mirtazapine BE0000797 5-hydroxytryptamine receptor 1B 0.841 

DB00934 Maprotiline BE0000749 Sodium-dependent serotonin transporter 0.84065 

DB00734 Risperidone BE0000145 D(1B) dopamine receptor 0.84029 

DB08815 Lurasidone BE0000572 Alpha-2B adrenergic receptor 0.84022 

DB00726 Trimipramine BE0000020 D(1A) dopamine receptor 0.84005 

DB00508 Triflupromazine BE0000451 5-hydroxytryptamine receptor 2A 0.83931 

DB01151 Desipramine BE0000501 Alpha-1A adrenergic receptor 0.83865 

DB00193 Tramadol BE0000092 Muscarinic acetylcholine receptor M1 0.83824 

DB00726 Trimipramine BE0000650 5-hydroxytryptamine receptor 7 0.83717 

DB00458 Imipramine BE0000289 Alpha-2A adrenergic receptor 0.83601 

DB01403 Methotrimeprazine BE0000650 5-hydroxytryptamine receptor 7 0.83485 

DB00656 Trazodone BE0000756 D(2) dopamine receptor 0.83467 

DB00420 Promazine BE0000342 Alpha-2C adrenergic receptor 0.83463 

DB00508 Triflupromazine BE0000045 Muscarinic acetylcholine receptor M3 0.83372 

DB01267 Paliperidone BE0000715 Alpha-1D adrenergic receptor 0.83331 

DB00656 Trazodone BE0000572 Alpha-2B adrenergic receptor 0.83318 

DB00777 Propiomazine BE0000291 5-hydroxytryptamine receptor 1A 0.83313 

DB00734 Risperidone BE0000650 5-hydroxytryptamine receptor 7 0.83306 

DB06148 Mianserin BE0000575 Alpha-1B adrenergic receptor 0.83264 

DB00420 Promazine BE0000581 D(3) dopamine receptor 0.8319 

DB01392 Yohimbine BE0000389 D(4) dopamine receptor 0.83169 

DB00726 Trimipramine BE0000393 5-hydroxytryptamine receptor 2B 0.83139 

DB00714 Apomorphine BE0000650 5-hydroxytryptamine receptor 7 0.83129 

DB00696 Ergotamine BE0000393 5-hydroxytryptamine receptor 2B 0.83083 

DB01142 Doxepin BE0000797 5-hydroxytryptamine receptor 1B 0.82926 

DB00726 Trimipramine BE0000389 D(4) dopamine receptor 0.82833 

DB00420 Promazine BE0000291 5-hydroxytryptamine receptor 1A 0.82818 

DB00696 Ergotamine BE0000650 5-hydroxytryptamine receptor 7 0.82744 
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DB00477 Chlorpromazine BE0000572 Alpha-2B adrenergic receptor 0.82677 

DB01142 Doxepin BE0000659 5-hydroxytryptamine receptor 1D 0.82598 

DB01151 Desipramine BE0000650 5-hydroxytryptamine receptor 7 0.8257 

DB00679 Thioridazine BE0000715 Alpha-1D adrenergic receptor 0.8255 

DB00434 Cyproheptadine BE0000247 Muscarinic acetylcholine receptor M5 0.82539 

DB00458 Imipramine BE0000581 D(3) dopamine receptor 0.82529 

DB04946 Iloperidone BE0000145 D(1B) dopamine receptor 0.82485 

DB00247 Methysergide BE0000756 D(2) dopamine receptor 0.82417 

DB00777 Propiomazine BE0000342 Alpha-2C adrenergic receptor 0.82347 

DB05271 Rotigotine BE0000451 5-hydroxytryptamine receptor 2A 0.82311 

DB06216 Asenapine BE0000715 Alpha-1D adrenergic receptor 0.82294 

DB04946 Iloperidone BE0000797 5-hydroxytryptamine receptor 1B 0.82281 

DB00420 Promazine BE0000572 Alpha-2B adrenergic receptor 0.82277 

DB00540 Nortriptyline BE0000020 D(1A) dopamine receptor 0.82273 

DB01069 Promethazine BE0000575 Alpha-1B adrenergic receptor 0.82257 

DB04946 Iloperidone BE0000659 5-hydroxytryptamine receptor 1D 0.82228 

DB08815 Lurasidone BE0000501 Alpha-1A adrenergic receptor 0.82165 

DB01267 Paliperidone BE0000797 5-hydroxytryptamine receptor 1B 0.82133 

DB00370 Mirtazapine BE0000945 5-hydroxytryptamine receptor 6 0.82128 

DB00434 Cyproheptadine BE0000405 Muscarinic acetylcholine receptor M4 0.82019 

DB00420 Promazine BE0000289 Alpha-2A adrenergic receptor 0.81976 

DB04843 Mepenzolate BE0000560 Muscarinic acetylcholine receptor M2 0.81963 

DB01267 Paliperidone BE0000650 5-hydroxytryptamine receptor 7 0.81953 

DB06148 Mianserin BE0000311 5-hydroxytryptamine receptor 3A 0.81945 

DB00193 Tramadol BE0000560 Muscarinic acetylcholine receptor M2 0.81899 

DB00751 Epinastine BE0000342 Alpha-2C adrenergic receptor 0.8189 

DB00734 Risperidone BE0000393 5-hydroxytryptamine receptor 2B 0.81778 

DB00589 Lisuride BE0000650 5-hydroxytryptamine receptor 7 0.81776 

DB00458 Imipramine BE0000342 Alpha-2C adrenergic receptor 0.81758 

DB00370 Mirtazapine BE0000715 Alpha-1D adrenergic receptor 0.81683 

DB00777 Propiomazine BE0000572 Alpha-2B adrenergic receptor 0.81672 

DB00656 Trazodone BE0000575 Alpha-1B adrenergic receptor 0.81667 

DB08815 Lurasidone BE0000020 D(1A) dopamine receptor 0.81667 

DB01622 Thioproperazine BE0000715 Alpha-1D adrenergic receptor 0.81611 

DB00656 Trazodone BE0000342 Alpha-2C adrenergic receptor 0.81572 

DB04946 Iloperidone BE0000393 5-hydroxytryptamine receptor 2B 0.81479 

DB00543 Amoxapine BE0000045 Muscarinic acetylcholine receptor M3 0.81475 

DB00696 Ergotamine BE0000389 D(4) dopamine receptor 0.81449 

DB01392 Yohimbine BE0000650 5-hydroxytryptamine receptor 7 0.81424 

DB05271 Rotigotine BE0000342 Alpha-2C adrenergic receptor 0.81414 

DB00934 Maprotiline BE0000291 5-hydroxytryptamine receptor 1A 0.81351 

DB00726 Trimipramine BE0000945 5-hydroxytryptamine receptor 6 0.81342 
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DB00458 Imipramine BE0000020 D(1A) dopamine receptor 0.81299 

DB00777 Propiomazine BE0000581 D(3) dopamine receptor 0.81216 

DB00540 Nortriptyline BE0000289 Alpha-2A adrenergic receptor 0.81204 

DB00458 Imipramine BE0000389 D(4) dopamine receptor 0.81174 

DB00714 Apomorphine BE0000501 Alpha-1A adrenergic receptor 0.81007 

DB00413 Pramipexole BE0000650 5-hydroxytryptamine receptor 7 0.80998 

DB01267 Paliperidone BE0000145 D(1B) dopamine receptor 0.80994 

DB00543 Amoxapine BE0000560 Muscarinic acetylcholine receptor M2 0.80993 

DB00546 Adinazolam BE0000764 Gamma-aminobutyric acid receptor subunit alpha-6 0.80874 

DB01595 Nitrazepam BE0004797 Gamma-aminobutyric acid receptor subunit theta 0.80873 

DB00934 Maprotiline BE0000020 D(1A) dopamine receptor 0.80861 

DB01403 Methotrimeprazine BE0000659 5-hydroxytryptamine receptor 1D 0.8077 

DB01625 Isopropamide BE0000560 Muscarinic acetylcholine receptor M2 0.80749 

DB00543 Amoxapine BE0000715 Alpha-1D adrenergic receptor 0.80713 

DB00546 Adinazolam BE0000478 Gamma-aminobutyric acid receptor subunit alpha-4 0.80712 

DB00925 Phenoxybenzamine BE0000172 Beta-1 adrenergic receptor 0.80707 

DB01608 Propericiazine BE0000572 Alpha-2B adrenergic receptor 0.80667 

DB00248 Cabergoline BE0000945 5-hydroxytryptamine receptor 6 0.80663 

DB00408 Loxapine BE0000694 Beta-2 adrenergic receptor 0.8066 

DB00777 Propiomazine BE0000289 Alpha-2A adrenergic receptor 0.80646 

DB00805 Minaprine BE0000291 5-hydroxytryptamine receptor 1A 0.80642 

DB00268 Ropinirole BE0000650 5-hydroxytryptamine receptor 7 0.80634 

DB08815 Lurasidone BE0000533 5-hydroxytryptamine receptor 2C 0.80615 

DB00934 Maprotiline BE0000501 Alpha-1A adrenergic receptor 0.80549 

DB00751 Epinastine BE0000575 Alpha-1B adrenergic receptor 0.80536 

DB00458 Imipramine BE0000572 Alpha-2B adrenergic receptor 0.80526 

DB01267 Paliperidone BE0000393 5-hydroxytryptamine receptor 2B 0.80455 

DB01614 Acepromazine BE0000715 Alpha-1D adrenergic receptor 0.80403 

DB01594 Cinolazepam BE0000764 Gamma-aminobutyric acid receptor subunit alpha-6 0.80373 

DB00711 Diethylcarbamazine BE0000262 Prostaglandin G/H synthase 2 0.80317 

DB00370 Mirtazapine BE0000145 D(1B) dopamine receptor 0.80299 

DB00370 Mirtazapine BE0000146 Histamine H4 receptor 0.80296 

DB01142 Doxepin BE0004889 D(1B) dopamine receptor 0.8026 

DB00185 Cevimeline BE0000560 Muscarinic acetylcholine receptor M2 0.80259 

DB00458 Imipramine BE0000393 5-hydroxytryptamine receptor 2B 0.80254 

DB01403 Methotrimeprazine BE0000945 5-hydroxytryptamine receptor 6 0.80251 

DB00268 Ropinirole BE0000501 Alpha-1A adrenergic receptor 0.8023 

DB00797 Tolazoline BE0000575 Alpha-1B adrenergic receptor 0.80203 

DB01151 Desipramine BE0000945 5-hydroxytryptamine receptor 6 0.80197 

DB00751 Epinastine BE0000572 Alpha-2B adrenergic receptor 0.80183 

DB01142 Doxepin BE0000145 D(1B) dopamine receptor 0.80161 

DB00696 Ergotamine BE0000749 Sodium-dependent serotonin transporter 0.80143 



 160   

DB05271 Rotigotine BE0000289 Alpha-2A adrenergic receptor 0.80069 

DB00751 Epinastine BE0000756 D(2) dopamine receptor 0.80031 

DB00413 Pramipexole BE0000501 Alpha-1A adrenergic receptor 0.79947 

DB00321 Amitriptyline BE0000393 5-hydroxytryptamine receptor 2B 0.79912 

DB00540 Nortriptyline BE0000389 D(4) dopamine receptor 0.79909 

DB00934 Maprotiline BE0000945 5-hydroxytryptamine receptor 6 0.79908 

DB01392 Yohimbine BE0000145 D(1B) dopamine receptor 0.79866 

DB00540 Nortriptyline BE0000572 Alpha-2B adrenergic receptor 0.79852 

DB00424 Hyoscyamine BE0000247 Muscarinic acetylcholine receptor M5 0.79805 

DB00988 Dopamine BE0000393 5-hydroxytryptamine receptor 2B 0.79799 

DB00420 Promazine BE0000145 D(1B) dopamine receptor 0.7979 

DB06148 Mianserin BE0000145 D(1B) dopamine receptor 0.79694 

DB00321 Amitriptyline BE0000389 D(4) dopamine receptor 0.79676 

DB06216 Asenapine BE0004889 D(1B) dopamine receptor 0.7962 

DB00411 Carbachol BE0000045 Muscarinic acetylcholine receptor M3 0.79617 

DB01151 Desipramine BE0000020 D(1A) dopamine receptor 0.79601 

DB00751 Epinastine BE0000533 5-hydroxytryptamine receptor 2C 0.79573 

DB00540 Nortriptyline BE0000342 Alpha-2C adrenergic receptor 0.79531 

DB06288 Amisulpride BE0000020 D(1A) dopamine receptor 0.79522 

DB00321 Amitriptyline BE0004889 D(1B) dopamine receptor 0.79473 

DB01142 Doxepin BE0000647 Sodium-dependent dopamine transporter 0.79444 

DB01069 Promethazine BE0000020 D(1A) dopamine receptor 0.79418 

DB00589 Lisuride BE0000575 Alpha-1B adrenergic receptor 0.794 

DB08815 Lurasidone BE0000581 D(3) dopamine receptor 0.79388 

DB01403 Methotrimeprazine BE0000393 5-hydroxytryptamine receptor 2B 0.79318 

DB00714 Apomorphine BE0000575 Alpha-1B adrenergic receptor 0.79318 

DB04946 Iloperidone BE0000715 Alpha-1D adrenergic receptor 0.79275 

DB05271 Rotigotine BE0000533 5-hydroxytryptamine receptor 2C 0.79218 

DB01594 Cinolazepam BE0000478 Gamma-aminobutyric acid receptor subunit alpha-4 0.79176 

DB00589 Lisuride BE0000501 Alpha-1A adrenergic receptor 0.79172 

DB00413 Pramipexole BE0000575 Alpha-1B adrenergic receptor 0.79159 

DB06148 Mianserin BE0000715 Alpha-1D adrenergic receptor 0.79142 

DB01242 Clomipramine BE0000756 D(2) dopamine receptor 0.79139 

DB00800 Fenoldopam BE0000756 D(2) dopamine receptor 0.79107 

DB00809 Tropicamide BE0000247 Muscarinic acetylcholine receptor M5 0.79076 

DB00751 Epinastine BE0000291 5-hydroxytryptamine receptor 1A 0.79068 

DB00320 Dihydroergotamine BE0000291 5-hydroxytryptamine receptor 1A 0.79001 

DB00246 Ziprasidone BE0004889 D(1B) dopamine receptor 0.78919 

DB00805 Minaprine BE0000560 Muscarinic acetylcholine receptor M2 0.78892 

DB00696 Ergotamine BE0000145 D(1B) dopamine receptor 0.78874 

DB00477 Chlorpromazine BE0000797 5-hydroxytryptamine receptor 1B 0.78841 

DB08815 Lurasidone BE0000575 Alpha-1B adrenergic receptor 0.78801 
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DB00457 Prazosin BE0000342 Alpha-2C adrenergic receptor 0.78759 

DB00268 Ropinirole BE0000575 Alpha-1B adrenergic receptor 0.78621 

DB00363 Clozapine BE0004889 D(1B) dopamine receptor 0.78532 

DB01224 Quetiapine BE0004889 D(1B) dopamine receptor 0.78497 

DB01151 Desipramine BE0000393 5-hydroxytryptamine receptor 2B 0.78423 

DB00543 Amoxapine BE0000247 Muscarinic acetylcholine receptor M5 0.78404 

DB00988 Dopamine BE0000797 5-hydroxytryptamine receptor 1B 0.7836 

DB01224 Quetiapine BE0000146 Histamine H4 receptor 0.78347 

DB01622 Thioproperazine BE0000289 Alpha-2A adrenergic receptor 0.78308 

DB00458 Imipramine BE0000797 5-hydroxytryptamine receptor 1B 0.78289 

DB01392 Yohimbine BE0000501 Alpha-1A adrenergic receptor 0.78281 

DB00216 Eletriptan BE0000451 5-hydroxytryptamine receptor 2A 0.78176 

DB06288 Amisulpride BE0000291 5-hydroxytryptamine receptor 1A 0.78167 

DB00321 Amitriptyline BE0000581 D(3) dopamine receptor 0.78152 

DB01403 Methotrimeprazine BE0000797 5-hydroxytryptamine receptor 1B 0.78141 

DB00387 Procyclidine BE0000247 Muscarinic acetylcholine receptor M5 0.78093 

DB00458 Imipramine BE0000146 Histamine H4 receptor 0.78067 

DB00777 Propiomazine BE0000650 5-hydroxytryptamine receptor 7 0.78066 

DB00988 Dopamine BE0000501 Alpha-1A adrenergic receptor 0.7802 

DB00233 Aminosalicylic Acid BE0000017 Prostaglandin G/H synthase 1 0.77966 

DB00777 Propiomazine BE0000145 D(1B) dopamine receptor 0.77944 

DB01151 Desipramine BE0000581 D(3) dopamine receptor 0.77847 

DB01238 Aripiprazole BE0004889 D(1B) dopamine receptor 0.77845 

DB00370 Mirtazapine BE0000659 5-hydroxytryptamine receptor 1D 0.77844 

DB00656 Trazodone BE0000486 Sodium-dependent noradrenaline transporter 0.77842 

DB01608 Propericiazine BE0000715 Alpha-1D adrenergic receptor 0.77837 

DB00988 Dopamine BE0000575 Alpha-1B adrenergic receptor 0.77808 

DB00247 Methysergide BE0000581 D(3) dopamine receptor 0.77755 

DB01200 Bromocriptine BE0000945 5-hydroxytryptamine receptor 6 0.77748 

DB00540 Nortriptyline BE0004889 D(1B) dopamine receptor 0.77746 

DB00805 Minaprine BE0000501 Alpha-1A adrenergic receptor 0.77737 

DB00934 Maprotiline BE0000581 D(3) dopamine receptor 0.77708 

DB00392 Ethopropazine BE0000045 Muscarinic acetylcholine receptor M3 0.77697 

DB00477 Chlorpromazine BE0000659 5-hydroxytryptamine receptor 1D 0.77673 

DB00247 Methysergide BE0000289 Alpha-2A adrenergic receptor 0.77656 

DB00420 Promazine BE0000650 5-hydroxytryptamine receptor 7 0.77648 

DB00805 Minaprine BE0000442 Histamine H1 receptor 0.77646 

DB00726 Trimipramine BE0000145 D(1B) dopamine receptor 0.77637 

DB00540 Nortriptyline BE0000311 5-hydroxytryptamine receptor 3A 0.77609 

DB01614 Acepromazine BE0000289 Alpha-2A adrenergic receptor 0.77581 

DB00246 Ziprasidone BE0000146 Histamine H4 receptor 0.77579 

DB00247 Methysergide BE0000020 D(1A) dopamine receptor 0.77509 
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DB00656 Trazodone BE0000020 D(1A) dopamine receptor 0.77502 

DB00800 Fenoldopam BE0000389 D(4) dopamine receptor 0.77465 

DB00320 Dihydroergotamine BE0000572 Alpha-2B adrenergic receptor 0.77459 

DB01142 Doxepin BE0000311 5-hydroxytryptamine receptor 3A 0.77452 

DB01151 Desipramine BE0000575 Alpha-1B adrenergic receptor 0.77444 

DB06216 Asenapine BE0000146 Histamine H4 receptor 0.77382 

DB00543 Amoxapine BE0000405 Muscarinic acetylcholine receptor M4 0.77374 

DB00804 Dicyclomine BE0000045 Muscarinic acetylcholine receptor M3 0.77368 

DB00988 Dopamine BE0000945 5-hydroxytryptamine receptor 6 0.77261 

DB00777 Propiomazine BE0000945 5-hydroxytryptamine receptor 6 0.77242 

DB00842 Oxazepam BE0000736 Translocator protein 0.77206 

DB01628 Etoricoxib BE0000017 Prostaglandin G/H synthase 1 0.77196 

DB00216 Eletriptan BE0000533 5-hydroxytryptamine receptor 2C 0.77182 

DB01069 Promethazine BE0000533 5-hydroxytryptamine receptor 2C 0.77181 

DB00540 Nortriptyline BE0000581 D(3) dopamine receptor 0.77139 

DB01622 Thioproperazine BE0000533 5-hydroxytryptamine receptor 2C 0.77102 

DB05271 Rotigotine BE0000797 5-hydroxytryptamine receptor 1B 0.77092 

DB00449 Dipivefrin BE0000172 Beta-1 adrenergic receptor 0.77078 

DB01148 Flavoxate BE0000045 Muscarinic acetylcholine receptor M3 0.77012 

DB01238 Aripiprazole BE0000146 Histamine H4 receptor 0.76975 

DB00420 Promazine BE0000945 5-hydroxytryptamine receptor 6 0.7692 

DB00810 Biperiden BE0000560 Muscarinic acetylcholine receptor M2 0.7687 

DB00508 Triflupromazine BE0000533 5-hydroxytryptamine receptor 2C 0.76869 

DB00540 Nortriptyline BE0000659 5-hydroxytryptamine receptor 1D 0.76857 

DB00247 Methysergide BE0000389 D(4) dopamine receptor 0.76852 

DB00679 Thioridazine BE0000289 Alpha-2A adrenergic receptor 0.76836 

DB01614 Acepromazine BE0000533 5-hydroxytryptamine receptor 2C 0.76826 

DB01608 Propericiazine BE0000342 Alpha-2C adrenergic receptor 0.76781 

DB00434 Cyproheptadine BE0000756 D(2) dopamine receptor 0.76776 

DB00988 Dopamine BE0000659 5-hydroxytryptamine receptor 1D 0.76733 

DB01069 Promethazine BE0000715 Alpha-1D adrenergic receptor 0.76684 

DB00805 Minaprine BE0000045 Muscarinic acetylcholine receptor M3 0.76665 

DB00988 Dopamine BE0000342 Alpha-2C adrenergic receptor 0.76588 

DB08815 Lurasidone BE0000797 5-hydroxytryptamine receptor 1B 0.76536 

DB01151 Desipramine BE0000389 D(4) dopamine receptor 0.76473 

DB00543 Amoxapine BE0000476 5-hydroxytryptamine receptor 1E 0.76443 

DB00458 Imipramine BE0000311 5-hydroxytryptamine receptor 3A 0.76438 

DB00458 Imipramine BE0000659 5-hydroxytryptamine receptor 1D 0.76417 

DB00656 Trazodone BE0000715 Alpha-1D adrenergic receptor 0.764 

DB01594 Cinolazepam BE0003597 Gamma-aminobutyric acid receptor subunit theta 0.76386 

DB00193 Tramadol BE0000311 5-hydroxytryptamine receptor 3A 0.76331 

DB00321 Amitriptyline BE0000020 D(1A) dopamine receptor 0.76327 
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DB01625 Isopropamide BE0000092 Muscarinic acetylcholine receptor M1 0.76323 

DB01235 L-DOPA BE0000451 5-hydroxytryptamine receptor 2A 0.76281 

DB08815 Lurasidone BE0000393 5-hydroxytryptamine receptor 2B 0.76272 

DB06288 Amisulpride BE0000533 5-hydroxytryptamine receptor 2C 0.76256 

DB00734 Risperidone BE0000945 5-hydroxytryptamine receptor 6 0.76252 

DB00656 Trazodone BE0000393 5-hydroxytryptamine receptor 2B 0.76237 

DB00280 Disopyramide BE0000405 Muscarinic acetylcholine receptor M4 0.76236 

DB00247 Methysergide BE0000342 Alpha-2C adrenergic receptor 0.76218 

DB00805 Minaprine BE0000486 Sodium-dependent noradrenaline transporter 0.76196 

DB00800 Fenoldopam BE0000451 5-hydroxytryptamine receptor 2A 0.76186 

DB00988 Dopamine BE0000442 Histamine H1 receptor 0.76181 

DB06216 Asenapine BE0000476 5-hydroxytryptamine receptor 1E 0.76179 

DB00800 Fenoldopam BE0000291 5-hydroxytryptamine receptor 1A 0.76161 

DB00797 Tolazoline BE0000715 Alpha-1D adrenergic receptor 0.76148 

DB01622 Thioproperazine BE0000342 Alpha-2C adrenergic receptor 0.76143 

DB05271 Rotigotine BE0000659 5-hydroxytryptamine receptor 1D 0.76019 

DB00248 Cabergoline BE0000476 5-hydroxytryptamine receptor 1E 0.75958 

DB01614 Acepromazine BE0000342 Alpha-2C adrenergic receptor 0.75916 

DB05271 Rotigotine BE0000393 5-hydroxytryptamine receptor 2B 0.75902 

DB00696 Ergotamine BE0000945 5-hydroxytryptamine receptor 6 0.75868 

DB00805 Minaprine BE0000581 D(3) dopamine receptor 0.75863 

DB01151 Desipramine BE0000647 Sodium-dependent dopamine transporter 0.75839 

DB00800 Fenoldopam BE0000533 5-hydroxytryptamine receptor 2C 0.75809 

DB01392 Yohimbine BE0000575 Alpha-1B adrenergic receptor 0.75723 

DB00320 Dihydroergotamine BE0000342 Alpha-2C adrenergic receptor 0.75719 

DB00656 Trazodone BE0000650 5-hydroxytryptamine receptor 7 0.75697 

DB00477 Chlorpromazine BE0000749 Sodium-dependent serotonin transporter 0.75667 

DB01221 Ketamine BE0000749 Sodium-dependent serotonin transporter 0.75662 

DB00540 Nortriptyline BE0000393 5-hydroxytryptamine receptor 2B 0.75638 

DB00321 Amitriptyline BE0000145 D(1B) dopamine receptor 0.75576 

DB00458 Imipramine BE0000145 D(1B) dopamine receptor 0.75569 

DB00540 Nortriptyline BE0000647 Sodium-dependent dopamine transporter 0.75557 

DB00696 Ergotamine BE0000442 Histamine H1 receptor 0.75549 

DB00934 Maprotiline BE0000389 D(4) dopamine receptor 0.75546 

DB01100 Pimozide BE0000020 D(1A) dopamine receptor 0.75398 

DB00777 Propiomazine BE0000393 5-hydroxytryptamine receptor 2B 0.75327 

DB00477 Chlorpromazine BE0000311 5-hydroxytryptamine receptor 3A 0.75324 

DB01142 Doxepin BE0000476 5-hydroxytryptamine receptor 1E 0.75315 

DB08815 Lurasidone BE0000389 D(4) dopamine receptor 0.75271 

DB00964 Apraclonidine BE0000342 Alpha-2C adrenergic receptor 0.75244 

DB08815 Lurasidone BE0000659 5-hydroxytryptamine receptor 1D 0.7515 

DB01151 Desipramine BE0004889 D(1B) dopamine receptor 0.75144 
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DB06148 Mianserin BE0000476 5-hydroxytryptamine receptor 1E 0.75138 

DB00540 Nortriptyline BE0000797 5-hydroxytryptamine receptor 1B 0.75133 

DB00193 Tramadol BE0000405 Muscarinic acetylcholine receptor M4 0.75102 

DB00751 Epinastine BE0000020 D(1A) dopamine receptor 0.75065 

DB01242 Clomipramine BE0000291 5-hydroxytryptamine receptor 1A 0.75035 

DB01614 Acepromazine BE0000572 Alpha-2B adrenergic receptor 0.75021 

DB08801 Dimetindene BE0000092 Muscarinic acetylcholine receptor M1 0.75019 

DB00751 Epinastine BE0000715 Alpha-1D adrenergic receptor 0.75014 

DB01235 L-DOPA BE0000291 5-hydroxytryptamine receptor 1A 0.74995 

DB06216 Asenapine BE0000311 5-hydroxytryptamine receptor 3A 0.74954 

DB00934 Maprotiline BE0000575 Alpha-1B adrenergic receptor 0.74951 

DB00248 Cabergoline BE0000442 Histamine H1 receptor 0.7495 

DB01618 Molindone BE0000020 D(1A) dopamine receptor 0.74912 

DB00715 Paroxetine BE0000756 D(2) dopamine receptor 0.7488 

DB00321 Amitriptyline BE0000647 Sodium-dependent dopamine transporter 0.74879 

DB00477 Chlorpromazine BE0000476 5-hydroxytryptamine receptor 1E 0.74862 

DB04946 Iloperidone BE0004889 D(1B) dopamine receptor 0.74854 

DB00540 Nortriptyline BE0000146 Histamine H4 receptor 0.74844 

DB00546 Adinazolam BE0003597 Gamma-aminobutyric acid receptor subunit theta 0.74813 

DB00988 Dopamine BE0000289 Alpha-2A adrenergic receptor 0.74774 

DB05271 Rotigotine BE0000575 Alpha-1B adrenergic receptor 0.74764 

DB00508 Triflupromazine BE0000581 D(3) dopamine receptor 0.7476 

DB01151 Desipramine BE0000289 Alpha-2A adrenergic receptor 0.74758 

DB00319 Piperacillin BE0004290 Penicillin-binding protein 1A 0.7475 

DB01151 Desipramine BE0000715 Alpha-1D adrenergic receptor 0.74748 

DB00216 Eletriptan BE0000289 Alpha-2A adrenergic receptor 0.74746 

DB00934 Maprotiline BE0000393 5-hydroxytryptamine receptor 2B 0.74702 

DB00656 Trazodone BE0000797 5-hydroxytryptamine receptor 1B 0.74685 

DB00215 Citalopram BE0000486 Sodium-dependent noradrenaline transporter 0.74685 

DB00477 Chlorpromazine BE0000486 Sodium-dependent noradrenaline transporter 0.74672 

DB00988 Dopamine BE0000572 Alpha-2B adrenergic receptor 0.74661 

DB00800 Fenoldopam BE0000581 D(3) dopamine receptor 0.74632 

DB00540 Nortriptyline BE0000145 D(1B) dopamine receptor 0.74632 

DB04855 Dronedarone BE0000694 Beta-2 adrenergic receptor 0.74625 

DB00247 Methysergide BE0000572 Alpha-2B adrenergic receptor 0.74623 

DB00482 Celecoxib BE0000017 Prostaglandin G/H synthase 1 0.74591 

DB08801 Dimetindene BE0000045 Muscarinic acetylcholine receptor M3 0.74591 

DB01622 Thioproperazine BE0000572 Alpha-2B adrenergic receptor 0.74585 

DB01608 Propericiazine BE0000756 D(2) dopamine receptor 0.74525 

DB00715 Paroxetine BE0000442 Histamine H1 receptor 0.74491 

DB00656 Trazodone BE0000581 D(3) dopamine receptor 0.74395 

DB00280 Disopyramide BE0000247 Muscarinic acetylcholine receptor M5 0.74387 
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DB00751 Epinastine BE0000581 D(3) dopamine receptor 0.74386 

DB00193 Tramadol BE0000756 D(2) dopamine receptor 0.74357 

DB01594 Cinolazepam BE0004797 Gamma-aminobutyric acid receptor subunit theta 0.74306 

DB00508 Triflupromazine BE0000291 5-hydroxytryptamine receptor 1A 0.74305 

DB00679 Thioridazine BE0000581 D(3) dopamine receptor 0.74292 

DB01151 Desipramine BE0000797 5-hydroxytryptamine receptor 1B 0.74233 

DB01267 Paliperidone BE0000945 5-hydroxytryptamine receptor 6 0.74225 

DB01151 Desipramine BE0000311 5-hydroxytryptamine receptor 3A 0.74218 

DB00679 Thioridazine BE0000342 Alpha-2C adrenergic receptor 0.74201 

DB00546 Adinazolam BE0004797 Gamma-aminobutyric acid receptor subunit theta 0.742 

DB00321 Amitriptyline BE0000476 5-hydroxytryptamine receptor 1E 0.74193 

DB00589 Lisuride BE0000715 Alpha-1D adrenergic receptor 0.74169 

DB01403 Methotrimeprazine BE0000311 5-hydroxytryptamine receptor 3A 0.74164 

DB01595 Nitrazepam BE0000736 Translocator protein 0.74161 

DB00805 Minaprine BE0000289 Alpha-2A adrenergic receptor 0.74096 

DB00715 Paroxetine BE0000533 5-hydroxytryptamine receptor 2C 0.74085 

DB00964 Apraclonidine BE0000575 Alpha-1B adrenergic receptor 0.74067 

DB00508 Triflupromazine BE0000247 Muscarinic acetylcholine receptor M5 0.73998 

DB01625 Isopropamide BE0000247 Muscarinic acetylcholine receptor M5 0.73959 

DB00679 Thioridazine BE0000533 5-hydroxytryptamine receptor 2C 0.73944 

DB08815 Lurasidone BE0000715 Alpha-1D adrenergic receptor 0.73915 

DB01403 Methotrimeprazine BE0004889 D(1B) dopamine receptor 0.73912 

DB00653 Magnesium Sulfate BE0002359 Voltage-dependent L-type calcium channel subunit 

alpha-1D 

0.73903 

DB00420 Promazine BE0000393 5-hydroxytryptamine receptor 2B 0.73859 

DB00679 Thioridazine BE0000572 Alpha-2B adrenergic receptor 0.73813 

DB08810 Cinitapride BE0000756 D(2) dopamine receptor 0.738 

DB01200 Bromocriptine BE0000442 Histamine H1 receptor 0.73784 

DB00622 Nicardipine BE0002355 Voltage-dependent L-type calcium channel subunit 

alpha-1S 

0.73774 

DB00934 Maprotiline BE0000647 Sodium-dependent dopamine transporter 0.73747 

DB00805 Minaprine BE0000389 D(4) dopamine receptor 0.7374 

DB00216 Eletriptan BE0000756 D(2) dopamine receptor 0.73732 

DB00193 Tramadol BE0000247 Muscarinic acetylcholine receptor M5 0.73697 

DB00714 Apomorphine BE0000715 Alpha-1D adrenergic receptor 0.73645 

DB00679 Thioridazine BE0000291 5-hydroxytryptamine receptor 1A 0.73641 

DB01018 Guanfacine BE0000342 Alpha-2C adrenergic receptor 0.73622 

DB00714 Apomorphine BE0000945 5-hydroxytryptamine receptor 6 0.73617 

DB01100 Pimozide BE0000451 5-hydroxytryptamine receptor 2A 0.73616 

DB01622 Thioproperazine BE0000389 D(4) dopamine receptor 0.73611 

DB01337 Pancuronium BE0000092 Muscarinic acetylcholine receptor M1 0.73609 

DB01226 Mivacurium BE0000092 Muscarinic acetylcholine receptor M1 0.73607 

DB01622 Thioproperazine BE0000581 D(3) dopamine receptor 0.73582 

DB00215 Citalopram BE0000560 Muscarinic acetylcholine receptor M2 0.73577 
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DB00726 Trimipramine BE0000146 Histamine H4 receptor 0.73567 

DB00777 Propiomazine BE0000797 5-hydroxytryptamine receptor 1B 0.7356 

DB00413 Pramipexole BE0000715 Alpha-1D adrenergic receptor 0.73552 

DB01049 Ergoloid mesylate BE0000451 5-hydroxytryptamine receptor 2A 0.7351 

DB01200 Bromocriptine BE0004889 D(1B) dopamine receptor 0.73507 

DB00193 Tramadol BE0000442 Histamine H1 receptor 0.73493 

DB01618 Molindone BE0000533 5-hydroxytryptamine receptor 2C 0.73467 

DB01338 Pipecuronium BE0000092 Muscarinic acetylcholine receptor M1 0.73387 

DB00777 Propiomazine BE0000659 5-hydroxytryptamine receptor 1D 0.73357 

DB01235 L-DOPA BE0000533 5-hydroxytryptamine receptor 2C 0.73336 

DB01618 Molindone BE0000560 Muscarinic acetylcholine receptor M2 0.73277 

DB01069 Promethazine BE0000289 Alpha-2A adrenergic receptor 0.73209 

DB00268 Ropinirole BE0000715 Alpha-1D adrenergic receptor 0.7319 

DB00247 Methysergide BE0000145 D(1B) dopamine receptor 0.73142 

DB00247 Methysergide BE0000945 5-hydroxytryptamine receptor 6 0.73126 

DB00248 Cabergoline BE0000311 5-hydroxytryptamine receptor 3A 0.73105 

DB00502 Haloperidol BE0000291 5-hydroxytryptamine receptor 1A 0.73094 

DB05271 Rotigotine BE0000650 5-hydroxytryptamine receptor 7 0.73086 

DB00408 Loxapine BE0004863 Alpha-1D adrenergic receptor 0.73066 

DB00508 Triflupromazine BE0000389 D(4) dopamine receptor 0.73056 

DB00420 Promazine BE0000659 5-hydroxytryptamine receptor 1D 0.73044 

DB01614 Acepromazine BE0000389 D(4) dopamine receptor 0.73043 

DB00508 Triflupromazine BE0000405 Muscarinic acetylcholine receptor M4 0.73033 

DB00589 Lisuride BE0000945 5-hydroxytryptamine receptor 6 0.73 

DB01233 Metoclopramide BE0000451 5-hydroxytryptamine receptor 2A 0.72978 

DB00502 Haloperidol BE0000533 5-hydroxytryptamine receptor 2C 0.72945 

DB00805 Minaprine BE0000650 5-hydroxytryptamine receptor 7 0.72942 

DB00934 Maprotiline BE0000289 Alpha-2A adrenergic receptor 0.72935 

DB01621 Pipotiazine BE0000533 5-hydroxytryptamine receptor 2C 0.7292 

DB00656 Trazodone BE0000389 D(4) dopamine receptor 0.72905 

DB00988 Dopamine BE0000311 5-hydroxytryptamine receptor 3A 0.72896 

DB00831 Trifluoperazine BE0000575 Alpha-1B adrenergic receptor 0.72874 

DB01151 Desipramine BE0000342 Alpha-2C adrenergic receptor 0.7279 

DB00268 Ropinirole BE0000945 5-hydroxytryptamine receptor 6 0.72778 

DB01242 Clomipramine BE0000442 Histamine H1 receptor 0.72753 

DB00656 Trazodone BE0000659 5-hydroxytryptamine receptor 1D 0.72709 

DB00726 Trimipramine BE0000092 Muscarinic acetylcholine receptor M1 0.72708 

DB00589 Lisuride BE0000442 Histamine H1 receptor 0.72613 

DB01233 Metoclopramide BE0000560 Muscarinic acetylcholine receptor M2 0.72598 

DB05271 Rotigotine BE0000501 Alpha-1A adrenergic receptor 0.7259 

DB01614 Acepromazine BE0000581 D(3) dopamine receptor 0.72528 

DB00350 Minoxidil BE0000262 Prostaglandin G/H synthase 2 0.72524 
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DB00800 Fenoldopam BE0000659 5-hydroxytryptamine receptor 1D 0.72508 

DB00546 Adinazolam BE0000736 Translocator protein 0.72471 

DB00934 Maprotiline BE0004889 D(1B) dopamine receptor 0.72399 

DB00413 Pramipexole BE0000945 5-hydroxytryptamine receptor 6 0.72394 

DB00216 Eletriptan BE0000581 D(3) dopamine receptor 0.72355 

DB00652 Pentazocine BE0000420 Delta-type opioid receptor 0.72335 

DB06288 Amisulpride BE0000389 D(4) dopamine receptor 0.72303 

DB01608 Propericiazine BE0000451 5-hydroxytryptamine receptor 2A 0.72288 

DB00320 Dihydroergotamine BE0000533 5-hydroxytryptamine receptor 2C 0.72264 

DB00679 Thioridazine BE0000389 D(4) dopamine receptor 0.72262 

DB00714 Apomorphine BE0000442 Histamine H1 receptor 0.72256 

DB00248 Cabergoline BE0000146 Histamine H4 receptor 0.72239 

DB00745 Modafinil BE0000501 Alpha-1A adrenergic receptor 0.72212 

DB00462 Methylscopolamine 

bromide 

BE0000405 Muscarinic acetylcholine receptor M4 0.7217 

DB00517 Anisotropine 

Methylbromide 

BE0000405 Muscarinic acetylcholine receptor M4 0.72097 

DB00831 Trifluoperazine BE0000020 D(1A) dopamine receptor 0.72089 

DB01618 Molindone BE0000045 Muscarinic acetylcholine receptor M3 0.72058 

DB00216 Eletriptan BE0000342 Alpha-2C adrenergic receptor 0.72041 

DB01062 Oxybutynin BE0000405 Muscarinic acetylcholine receptor M4 0.72036 

DB00434 Cyproheptadine BE0000291 5-hydroxytryptamine receptor 1A 0.72031 

DB00215 Citalopram BE0000045 Muscarinic acetylcholine receptor M3 0.72023 

DB00696 Ergotamine BE0000647 Sodium-dependent dopamine transporter 0.71961 

DB00187 Esmolol BE0000694 Beta-2 adrenergic receptor 0.71893 

DB00246 Ziprasidone BE0000112 Histamine H2 receptor 0.71878 

DB00629 Guanabenz BE0000342 Alpha-2C adrenergic receptor 0.71872 

DB01594 Cinolazepam BE0000736 Translocator protein 0.71781 

DB01175 Escitalopram BE0000575 Alpha-1B adrenergic receptor 0.71748 

DB00986 Glycopyrrolate BE0000405 Muscarinic acetylcholine receptor M4 0.71741 

DB01242 Clomipramine BE0000650 5-hydroxytryptamine receptor 7 0.71674 

DB00934 Maprotiline BE0000342 Alpha-2C adrenergic receptor 0.71661 

DB00934 Maprotiline BE0000311 5-hydroxytryptamine receptor 3A 0.71654 

DB00420 Promazine BE0000797 5-hydroxytryptamine receptor 1B 0.71633 

DB01621 Pipotiazine BE0000581 D(3) dopamine receptor 0.71614 

DB00247 Methysergide BE0000501 Alpha-1A adrenergic receptor 0.71581 

DB00193 Tramadol BE0000451 5-hydroxytryptamine receptor 2A 0.71578 

DB01409 Tiotropium BE0000405 Muscarinic acetylcholine receptor M4 0.71555 

DB06204 Tapentadol BE0000647 Sodium-dependent dopamine transporter 0.71528 

DB00458 Imipramine BE0004863 Alpha-1D adrenergic receptor 0.71526 

DB00216 Eletriptan BE0000572 Alpha-2B adrenergic receptor 0.7151 

DB00543 Amoxapine BE0000112 Histamine H2 receptor 0.71469 

DB01200 Bromocriptine BE0000476 5-hydroxytryptamine receptor 1E 0.7146 

DB01255 Lisdexamfetamine BE0000501 Alpha-1A adrenergic receptor 0.71453 
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DB00568 Cinnarizine BE0002354 Voltage-dependent L-type calcium channel subunit 

beta-2 

0.71439 

DB06711 Naphazoline BE0000572 Alpha-2B adrenergic receptor 0.71436 

DB01069 Promethazine BE0000581 D(3) dopamine receptor 0.71416 

DB00568 Cinnarizine BE0000451 5-hydroxytryptamine receptor 2A 0.71411 

DB00728 Rocuronium BE0000045 Muscarinic acetylcholine receptor M3 0.71402 

DB00953 Rizatriptan BE0000291 5-hydroxytryptamine receptor 1A 0.7139 

DB01104 Sertraline BE0000486 Sodium-dependent noradrenaline transporter 0.71389 

DB00216 Eletriptan BE0000020 D(1A) dopamine receptor 0.71378 

DB00383 Oxyphencyclimine BE0000405 Muscarinic acetylcholine receptor M4 0.7136 

DB00751 Epinastine BE0000393 5-hydroxytryptamine receptor 2B 0.7135 

DB01085 Pilocarpine BE0000405 Muscarinic acetylcholine receptor M4 0.71339 

DB00656 Trazodone BE0000945 5-hydroxytryptamine receptor 6 0.71308 

DB01156 Bupropion BE0000749 Sodium-dependent serotonin transporter 0.71307 

DB01100 Pimozide BE0000501 Alpha-1A adrenergic receptor 0.71283 

DB00477 Chlorpromazine BE0000647 Sodium-dependent dopamine transporter 0.71282 

DB01403 Methotrimeprazine BE0000476 5-hydroxytryptamine receptor 1E 0.71276 

DB01175 Escitalopram BE0000045 Muscarinic acetylcholine receptor M3 0.71242 

DB00734 Risperidone BE0004889 D(1B) dopamine receptor 0.71186 

DB01233 Metoclopramide BE0000045 Muscarinic acetylcholine receptor M3 0.71165 

DB01392 Yohimbine BE0000715 Alpha-1D adrenergic receptor 0.71158 

DB00751 Epinastine BE0000945 5-hydroxytryptamine receptor 6 0.7114 

DB01175 Escitalopram BE0000560 Muscarinic acetylcholine receptor M2 0.71138 

DB00502 Haloperidol BE0000389 D(4) dopamine receptor 0.71136 

DB00964 Apraclonidine BE0000715 Alpha-1D adrenergic receptor 0.71131 

DB00490 Buspirone BE0000451 5-hydroxytryptamine receptor 2A 0.71109 

DB01151 Desipramine BE0000572 Alpha-2B adrenergic receptor 0.71082 

DB00334 Olanzapine BE0004864 Alpha-2C adrenergic receptor 0.71082 

DB01135 Doxacurium chloride BE0000045 Muscarinic acetylcholine receptor M3 0.71054 

DB04946 Iloperidone BE0000146 Histamine H4 receptor 0.7105 

DB01151 Desipramine BE0000145 D(1B) dopamine receptor 0.71039 

DB00751 Epinastine BE0000389 D(4) dopamine receptor 0.71034 

DB06216 Asenapine BE0000560 Muscarinic acetylcholine receptor M2 0.70979 

DB00726 Trimipramine BE0000560 Muscarinic acetylcholine receptor M2 0.70941 

DB06709 Methacholine BE0000560 Muscarinic acetylcholine receptor M2 0.70915 

DB00216 Eletriptan BE0000389 D(4) dopamine receptor 0.70892 

DB08815 Lurasidone BE0000145 D(1B) dopamine receptor 0.70879 

DB00363 Clozapine BE0000112 Histamine H2 receptor 0.70815 

DB08815 Lurasidone BE0000945 5-hydroxytryptamine receptor 6 0.70797 

DB00202 Succinylcholine BE0000405 Muscarinic acetylcholine receptor M4 0.70734 

DB06288 Amisulpride BE0000393 5-hydroxytryptamine receptor 2B 0.70724 

DB04946 Iloperidone BE0000476 5-hydroxytryptamine receptor 1E 0.70714 

DB01119 Diazoxide BE0000535 Carbonic anhydrase 4 0.70698 
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DB01151 Desipramine BE0000146 Histamine H4 receptor 0.70584 

DB01069 Promethazine BE0000291 5-hydroxytryptamine receptor 1A 0.70581 

DB01392 Yohimbine BE0000945 5-hydroxytryptamine receptor 6 0.70539 

DB00332 Ipratropium bromide BE0000405 Muscarinic acetylcholine receptor M4 0.70527 

DB00370 Mirtazapine BE0000112 Histamine H2 receptor 0.70469 

DB00193 Tramadol BE0000647 Sodium-dependent dopamine transporter 0.7046 

DB00904 Ondansetron BE0000659 5-hydroxytryptamine receptor 1D 0.70453 

DB01587 Ketazolam BE0000523 Gamma-aminobutyric acid receptor subunit alpha-3 0.70431 

DB00450 Droperidol BE0000575 Alpha-1B adrenergic receptor 0.70421 

DB06216 Asenapine BE0000045 Muscarinic acetylcholine receptor M3 0.70377 

DB00714 Apomorphine BE0000476 5-hydroxytryptamine receptor 1E 0.70366 

DB00934 Maprotiline BE0000146 Histamine H4 receptor 0.70365 

DB01118 Amiodarone BE0000694 Beta-2 adrenergic receptor 0.70334 

DB00715 Paroxetine BE0000647 Sodium-dependent dopamine transporter 0.70323 

DB00215 Citalopram BE0000575 Alpha-1B adrenergic receptor 0.70311 

DB08910 Pomalidomide BE0000017 Prostaglandin G/H synthase 1 0.70299 

DB01364 Ephedrine BE0000749 Sodium-dependent serotonin transporter 0.70291 

DB01622 Thioproperazine BE0000650 5-hydroxytryptamine receptor 7 0.70277 

DB01614 Acepromazine BE0000650 5-hydroxytryptamine receptor 7 0.70273 

DB06216 Asenapine BE0000247 Muscarinic acetylcholine receptor M5 0.70233 

DB00805 Minaprine BE0000247 Muscarinic acetylcholine receptor M5 0.702 

DB00805 Minaprine BE0000342 Alpha-2C adrenergic receptor 0.70184 

DB00726 Trimipramine BE0000247 Muscarinic acetylcholine receptor M5 0.7014 

DB00320 Dihydroergotamine BE0000451 5-hydroxytryptamine receptor 2A 0.70088 

DB00805 Minaprine BE0000575 Alpha-1B adrenergic receptor 0.70087 

DB00934 Maprotiline BE0000715 Alpha-1D adrenergic receptor 0.70086 

DB00413 Pramipexole BE0000442 Histamine H1 receptor 0.70055 

DB00751 Epinastine BE0000659 5-hydroxytryptamine receptor 1D 0.70036 
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APPENDIX C 

THE DESCRIPTION OF THE CONTENTS OF BALESTRAWEB.ZIP 

The code and auxiliary files to run BalestraWeb are accessible online at 

http://balestra.csb.pitt.edu/static/balestraweb.zip and the contents of this file are explained below: 

Name Description of contents 

balestraweb.py The code that runs BalestraWeb (Python) 

cabinet Contains the data files that BalestraWeb uses in Python shelve format 

html Contains the HTML files that BalestraWeb serves to the users 

static Contains the static files (i.e. the figures in the tutorial, BalestraWeb icon, 

etc) that BalestraWeb serves to the users. 

helpers Contains the code to generate BalestraWeb data. To be used as follows: 

1) Run learn_multi_model.m (Matlab) 

2) Run getDrugBank.py (Python) 

Doing the above re-generates all the files in the ‘cabinet’ folder.  

http://balestra.csb.pitt.edu/static/balestraweb.zip
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APPENDIX D 

LFM METHOD AND HYPERPARAMETER SEARCH RESULTS 

To decide on the optimal approach to build the LFM of STITCH v3 that I used in the HD project, 

I have conducted a search of the best performing method and hyperparameter combination on 

STITCH v3 data by partitioning the data 16 times into training, testing sets allocating 90% of the 

interactions for training, 10% for testing using GraphLab PowerGraph software. The RMSE over 

these 16 iterations are averaged in the ‘RMSE_mean’ column, and the standard deviation of 

these 16 iteration results are provided in the ‘RMSE_std’ column. The parameter text starts with 

the shorthand name of the method and then underscore (‘_’) character is used to delimit the 

parameters. The full list of results can be downloaded here:  

http://balestra.csb.pitt.edu/static/all_results.xlsx 

 

http://balestra.csb.pitt.edu/static/all_results.xlsx
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APPENDIX E 

TABLE OF C. ELEGANS GENES THAT CAUSE REDUCED ATZ AGGREGATION 

PHENOTYPE UPON RNA INTERFERENCE KNOCKDOWN 

Batch 

ID 

Batch 

Date 

Inhibition target genes  

1 10-27 T01G9.3,F30A10.7 

3 11-10 R06C1.6,Y53C10A.10,T09E11.9,T15D6.8 

4 11-11 Y65B4B_10.d 

5 11-19 W10D9.5,C08G5.1 

6 11-20 C16C4.11 

7 11-21 W10G11.12 

8 12-11 T12F5.3,C50F2.5,R12E2.13 

9 12-12 F33D11.9 

11 12-20 R05G9.c,C18H9.6,C18H9.7,C18H9.8,T14B4.5,F18A1.4,T05H10.4 

12 12-21 W01C9.2,ZK1321.4 

17 4-14 C16C10.3 

19 4-17 ZK1098.6,C48B4.12a,T05G5.9,C05B5.5,C05B5.6,M04D8.3,M04D8.4,

M04D8.5,T20G5.6 

20 4-19 Y119D3_456.a 

21 4-20 C45G7.6 

22 4-21 F36H12.15 

23 4-22 K02B2.6,T13A10.8,C06G3.9,C34D4.1 

24 4-23 C49H3.2,C49H3.5,C49H3.6,C49H3.7 

27 6-11 R09E12.4,R09E12.5,R09E12.7,R13D11.3 

32 6-18 ZK262.9 

35 6-21 C05A9.1,C05C9.3,F13D2.2,F08B12.1 
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APPENDIX F 

LIST OF CHEMICALS PREDICTED TO REDUCE AGGREATION OF ATZ 

THROUGH THE ALPHA-1 ANTITRYPSIN HIGH CONTENT SCREENING RESULT 

ANALYSIS CHEMICAL HIT DIVERSIFICATION METHOD 

The columns contain the following information from the left to right:  

 ZINC_ID: ZINC compound identifier 

 MWT: Molecular weight 

 LogP: Partition coefficient 

 Desolv_apolar: Apolar desolvation energy (kcal/mol) 

 Desolv_polar: Polar desolvation energy (kcal/mol) 

 HBD: Number of hydrogen bond donors 

 HBA: Number of hydrogen bond acceptors 

 tPSA: Topological polar surface area (suspected to be in Å
2
, exact specification not found 

in ZINC documentation) 

 Charge: Net charge of the molecule 

 NRB: Number of rotatable bonds 

 Cluster size: Total number of chemicals in the same cluster as this chemical 

ZINC_ID MWT LogP Desolv_apolar Desolv_polar HBD HBA tPSA Charge NRB Cluster 
Size ZINC75662250 297.707 4.24 7.85 -7.72 1 1 12 0 1 797 

ZINC67287455 445.516 3.04 7.63 -11.21 2 9 106 0 10 643 

ZINC00641264 365.433 3.77 6.3 -13.72 3 6 79 0 4 588 

ZINC20283449 438.503 3.78 7.12 -11.36 2 7 74 0 7 585 

ZINC04482400 304.346 2.93 -0.56 -8.42 2 6 76 0 6 529 

ZINC72190830 251.251 2.1 6.57 -4.16 2 1 26 0 3 521 

ZINC04625454 228.23 1.84 5.86 -9.12 2 4 56 0 1 426 

ZINC43568601 222.218 2.31 4.27 -29.6 4 3 52 1 2 426 

ZINC83664119 218.255 1.64 4.98 -36.24 3 3 42 1 1 425 
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ZINC00073782 316.401 4.25 0.41 -7.33 2 5 67 0 5 409 

ZINC20906829 396.53 3.89 9.43 -43.05 1 4 20 1 4 403 

ZINC00716297 360.366 2.26 -2.69 -10.48 2 8 95 0 5 395 

ZINC76216131 354.381 3.71 9.04 -7.71 2 5 67 0 5 374 

ZINC38276461 194.273 2.8 5.97 -39.59 3 1 28 1 1 370 

ZINC34940780 250.362 3.47 7.47 -48.25 3 1 28 1 2 357 

ZINC00041497 292.291 1.33 1.64 -11.1 3 7 97 0 4 354 

ZINC19271873 200.664 2.85 5.98 -38.34 2 1 17 1 1 350 

ZINC65516145 344.333 1.52 5.5 -16.04 1 5 51 0 5 347 

ZINC75688609 297.251 3.65 4.71 -7.02 2 2 32 0 1 346 

ZINC43669139 345.374 2.77 5.1 -13.07 3 6 79 0 5 344 

ZINC23358157 393.641 3.51 8.96 -77.07 3 4 32 2 7 340 

ZINC01430262 338.72 4.14 2.65 -14.14 2 4 56 0 3 339 

ZINC00060635 344.411 3.96 7.36 -8.96 2 6 77 0 5 337 

ZINC75961665 239.289 1.87 5.23 -39.96 2 2 20 1 1 332 

ZINC01815570 552.515 5.82 5.51 -27.97 1 5 66 0 8 331 

ZINC22765711 352.406 2.41 4.57 -11.82 1 4 42 0 5 331 

ZINC01257249 215.251 2.23 6 -34.34 4 2 52 1 2 327 

ZINC02414084 514.544 4.98 3.35 -29.47 1 6 75 0 8 323 

ZINC67803975 370.44 1 7.69 -45.47 2 7 85 1 4 322 

ZINC75644572 253.297 0.78 -1.7 -37.14 5 4 69 1 1 322 

ZINC00143298 300.365 3.62 7.67 -9.25 2 4 97 0 1 316 

ZINC36222011 252.341 3.81 9.77 -24.04 3 3 45 1 1 314 

ZINC22799364 428.578 2.07 9.7 -42.44 1 6 46 1 5 311 

ZINC12346325 393.443 2.89 -2.56 -18.54 2 7 80 0 6 310 

ZINC20560246 431.536 4.46 10.94 -9.23 2 6 71 0 7 306 

ZINC67898612 320.416 2.94 7.84 -32.61 2 4 42 1 4 305 

ZINC57992309 348.364 2.77 7.28 -45.35 3 4 46 1 6 303 

ZINC75778695 280.351 2.69 5.89 -39.41 3 4 51 1 2 301 

ZINC05342165 387.475 3.69 7.03 -41.93 3 5 67 1 5 299 

ZINC13353751 359.404 5.58 10.29 -11.31 3 4 57 0 3 293 

ZINC75688714 257.255 2.37 4.3 -3.53 1 2 21 0 1 290 

ZINC00193919 338.363 3.73 7.42 -9.31 2 6 77 0 5 289 

ZINC19952371 228.319 3.88 6.77 -28.87 4 3 52 1 2 288 

ZINC04898579 380.596 6.51 0.36 -35.47 3 2 36 1 7 287 

ZINC76216342 304.346 3.11 5.37 -9.51 2 6 77 0 6 280 

ZINC20450997 339.45 3.42 6.08 -32.95 2 3 28 1 5 279 

ZINC01426657 374.461 2.99 7.98 -43.7 3 7 81 1 7 277 

ZINC20389152 281.37 2.82 8.28 -36.71 1 2 8 1 3 271 

ZINC20213933 335.36 1.13 1.83 -11.76 2 8 93 0 6 269 

ZINC29538725 380.366 3.67 5.77 -12.77 1 5 51 0 6 267 

ZINC95076866 361.391 3.42 11.83 -40.26 1 4 35 1 4 265 

ZINC82741878 254.398 0.55 2.02 -41.38 2 4 32 1 3 263 

ZINC12345825 365.408 3.43 -1.67 -15.66 2 5 61 0 5 262 

ZINC31169347 425.598 3.73 9.01 -10.56 2 5 54 0 7 260 

ZINC57478401 407.514 4.34 9.51 -8.69 2 6 71 0 9 259 

ZINC40442615 182.218 2.16 2.76 -39.08 3 2 37 1 1 257 

ZINC12593869 424.576 4.88 13.45 -93.72 2 4 27 2 9 251 

ZINC82914685 204.253 0.97 3.61 -48.12 3 4 55 1 1 251 

ZINC72290854 320.457 2.53 7.53 -42.98 3 5 55 1 8 250 
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ZINC72292602 314.769 2.62 3.01 -9.44 3 4 61 0 4 250 

ZINC07538358 378.35 3.06 9.1 -17.6 1 5 59 0 6 249 

ZINC75739987 277.698 1.75 3.34 -6.54 2 3 41 0 4 246 

ZINC24205259 320.36 2.77 7.44 -21.77 1 8 86 0 3 245 

ZINC44256447 400.454 3.29 5.4 -20.63 4 7 91 0 7 241 

ZINC83370295 243.277 1.81 3.36 -43.67 2 3 29 1 3 240 

ZINC75340352 312.329 2.64 2.9 -14.24 4 7 99 0 3 238 

ZINC48270992 411.526 3.06 8.29 -47.88 4 7 84 1 7 234 

ZINC00709748 462.496 5.16 1.1 -14.08 2 5 59 0 4 232 

ZINC12995259 436.577 5.03 10.08 -13.16 1 5 51 0 6 229 

ZINC19911229 372.375 3.89 7.7 -11.6 1 6 69 0 5 229 

ZINC07405191 362.376 2.55 2.22 -18.7 1 5 58 0 6 227 

ZINC52095677 255.308 3.94 5.28 -5.59 1 2 21 0 3 227 

ZINC04854740 349.39 2.42 -2.7 -16.18 2 6 70 0 4 226 

ZINC58006085 386.398 3.25 8.5 -23.95 1 5 59 0 7 224 

ZINC04692860 371.452 5 11.74 -17.49 1 4 55 0 4 222 

ZINC36222030 268.34 3.41 8.61 -26.23 3 4 54 1 2 222 

ZINC05035242 369.403 4.78 11.92 -13.66 1 5 55 0 4 220 

ZINC19725286 269.343 2.17 7.3 -47.39 4 2 43 1 2 220 

ZINC36117077 536.713 6.72 16.68 -13.1 0 5 50 0 10 219 

ZINC84638394 346.452 2.42 3.8 -7.73 3 5 71 0 5 218 

ZINC75936661 274.254 0.86 5.24 -42.72 4 5 82 1 2 217 

ZINC00715242 370.352 2.95 3.05 -9.03 3 5 78 0 4 216 

ZINC85808113 409.848 5.79 9.57 -11.67 3 5 66 0 4 216 

ZINC00236831 277.388 3.35 -0.7 -36.16 1 2 7 1 3 215 

ZINC58860282 377.847 3.94 7.93 -11.36 2 5 54 0 5 215 

ZINC76004451 243.232 2.78 6.86 -7.67 0 3 31 0 2 215 

ZINC05791507 276.361 2.28 6.33 -15.35 2 4 50 0 3 214 

ZINC38050594 233.299 0.87 4.48 -48.12 5 6 94 1 2 213 

ZINC43080933 346.451 2.1 6.9 -44.97 3 6 64 1 4 213 

ZINC71799351 322.311 2.7 2.93 -12.79 3 5 71 0 6 213 

ZINC75688542 271.282 2.75 5.05 -2.85 1 2 21 0 1 213 

ZINC05512248 317.291 4.34 7.28 -9.78 1 4 51 0 4 212 

ZINC06646225 386.791 2.64 6.5 -8.32 1 7 77 0 4 212 

ZINC89873258 299.33 1.54 1.7 -18.73 3 6 79 0 5 211 

ZINC20284055 401.531 3.13 8.59 -38.19 3 7 75 1 8 210 

ZINC95985360 310.369 2.46 2.98 -14.96 3 5 71 0 5 209 

ZINC23549858 203.309 1.96 6.23 -38.64 2 2 20 1 1 208 

ZINC42872162 218.284 0.32 4.01 -31.29 5 5 81 1 3 208 

ZINC65396788 336.548 1.88 8.84 -173.28 4 5 42 3 5 207 

ZINC16137956 263.405 3.51 7.38 -33.56 2 3 37 1 1 206 

ZINC01262488 406.526 5.19 9.63 -11.58 2 5 60 0 3 205 

ZINC52267717 390.479 4 8.09 -45.2 3 6 64 1 8 205 

ZINC67689658 492.576 3.74 7.26 -10.97 2 9 92 0 8 204 

ZINC75873243 245.277 2.27 5.29 -34.87 4 3 61 1 3 204 

ZINC76236380 348.402 3.99 8.66 -12.87 2 5 67 0 3 204 

ZINC38041437 211.353 0.46 4.19 -81.04 4 3 33 2 2 202 

ZINC23372937 277.388 1.23 3.35 -41.39 2 4 37 1 4 201 

ZINC04368757 296.434 4.42 -0.98 -33.96 3 2 36 1 2 199 

ZINC04473477 383.377 3.23 6.21 -12.51 2 5 101 0 2 199 
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ZINC02086895 370.476 4.64 -1.44 -36.78 3 4 59 1 4 197 

ZINC11569834 256.304 2.56 -1 -50.02 3 3 45 1 3 195 

ZINC67898809 401.49 2.98 7.39 -43.21 2 6 65 1 5 195 

ZINC12114675 393.45 1.66 1.9 -71.4 1 8 79 1 5 193 

ZINC72021342 443.465 5.21 11.54 -17.13 1 4 48 0 7 193 

ZINC74327156 281.212 3.85 7.35 -10.19 1 3 42 0 2 193 

ZINC85559648 358.394 2.1 2.82 -13.1 3 7 89 0 6 193 

ZINC38073354 260.332 4 8.14 -40.93 2 2 26 1 4 191 

ZINC56443193 416.517 3.58 8.56 -54.03 3 6 64 1 8 191 

ZINC82507215 291.459 3.06 6.95 -41.24 2 3 29 1 5 190 

ZINC82529272 174.227 1.39 3.43 -7.83 3 3 52 0 1 188 

ZINC15836890 484.518 5.45 11.9 -25.97 2 5 67 0 5 187 

ZINC19326510 380.482 5.28 15.18 -111.17 2 2 9 2 5 187 

ZINC32905567 269.3 2.95 7.65 -20.62 1 4 55 0 4 186 

ZINC52451500 409.453 3 9.93 -44.62 1 6 52 1 11 186 

ZINC05201736 403.438 2.82 -2.81 -21.61 2 7 79 0 3 185 

ZINC00182971 342.42 3.71 -1.78 -8.49 2 5 67 0 5 184 

ZINC19838722 255.451 2.08 7.34 -34.72 1 2 8 1 2 184 

ZINC67803167 371.464 3.69 9.37 -39.56 2 5 55 1 4 184 

ZINC00720129 432.545 4.5 -0.26 -13.11 2 5 59 0 4 182 

ZINC75693137 265.259 2.78 4.43 -6.88 1 3 34 0 3 182 

ZINC83352758 224.299 2.88 5.69 -37.92 2 2 26 1 1 182 

ZINC22766897 320.438 2.65 6.23 -44.72 3 5 55 1 6 180 

ZINC19332662 429.564 3.34 9.44 -53.35 1 7 61 1 6 179 

ZINC20573365 398.487 1.07 6.09 -55.52 4 8 101 1 6 179 

ZINC62667439 275.376 0.12 2.74 -25.76 3 5 53 1 4 178 

ZINC00641398 374.128 4.48 -0.49 -8.28 2 3 41 0 2 177 

ZINC79002839 290.363 1.72 8.69 -24.47 1 5 59 0 7 175 

ZINC00710766 399.537 4.11 11.38 -16.13 1 4 55 0 4 173 

ZINC08609006 476.552 4.09 9.78 -16.54 3 7 83 0 8 173 

ZINC33009209 444.535 4.95 8.69 -18.78 3 7 83 0 6 173 

ZINC24831739 353.777 4.94 7.94 -16.08 1 3 38 0 4 172 

ZINC24839382 480.473 4.08 9.7 -16.57 2 10 129 0 11 172 

ZINC60974503 428.646 3.67 12.09 -90.67 4 5 50 2 7 172 

ZINC00727574 413.517 5.07 1.64 -11.55 1 4 47 0 3 171 

ZINC00823629 407.514 4.65 0.05 -9.02 2 6 70 0 9 171 

ZINC06051337 328.462 4.1 -2.48 -12.48 2 3 41 0 3 170 

ZINC20773830 349.498 3.58 10.79 -44.06 1 3 17 1 3 170 

ZINC45946335 220.271 1.64 5.7 -34.24 3 3 42 1 5 170 

ZINC13636088 368.452 5.77 12.71 -12.65 2 2 24 0 2 169 

ZINC43042690 197.277 1.25 2.53 -41.77 3 2 31 1 3 168 

ZINC35451500 461.585 3.94 14.59 -108.16 4 6 68 2 8 167 

ZINC95426014 344.435 1.69 5.26 -40.06 4 6 79 1 6 167 

ZINC32629276 295.378 2.58 7.05 -42.41 3 4 57 1 3 164 

ZINC76217380 343.21 4.34 7.04 -7.98 2 5 67 0 5 164 

ZINC13038176 426.542 3.51 6.72 -9.83 2 7 74 0 7 163 

ZINC19550215 402.486 2.72 5.31 -49.33 3 5 63 1 7 163 

ZINC62665393 271.315 2.55 7.06 -35.16 2 3 35 1 4 162 

ZINC04479596 343.358 2.35 -1.52 -17.49 2 6 70 0 4 161 

ZINC19334644 332.512 2.13 4.43 -34.91 2 4 31 1 5 161 
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ZINC00374241 321.323 3.86 2.68 -11.53 1 4 47 0 5 160 

ZINC83379541 249.378 2.84 5.78 -40.16 2 3 29 1 4 159 

ZINC76121475 207.321 1.08 5.42 -94.78 4 3 47 2 1 158 

ZINC39199636 336.377 4.04 9.7 -41.71 2 2 25 1 4 157 

ZINC82753682 222.243 0.95 1.48 -12.86 5 4 72 0 3 157 

ZINC00072989 284.315 2.19 -1.09 -15.44 2 5 59 0 3 156 

ZINC05164248 401.571 4.83 -2.52 -40.18 3 5 62 1 5 156 

ZINC02646442 316.748 2.47 6.6 -10.41 1 6 69 0 5 155 

ZINC09482238 354.4 4.58 1.07 -12.57 2 3 41 0 1 154 

ZINC77094259 248.371 1.54 6.22 -46.11 3 2 37 1 3 154 

ZINC31094802 342.414 3.36 7.14 -10.85 2 4 50 0 5 153 

ZINC00038297 346.385 3.9 -1.52 -41.78 3 4 59 1 4 152 

ZINC20465714 350.439 0.91 1.92 -44.58 5 7 95 1 5 152 

ZINC72190711 225.597 0.95 1.12 -5.73 3 2 46 0 2 151 

ZINC13154929 294.398 4.23 7.07 -4.52 2 3 45 0 2 150 

ZINC06738904 361.424 5.26 11.6 -16.22 1 5 55 0 3 149 

ZINC19785836 235.351 2.29 7.17 -33.06 3 3 40 1 5 149 

ZINC31912905 315.505 3.99 10.83 -104.62 4 3 46 2 5 149 

ZINC52003244 240.347 2.41 2.52 -9.73 3 4 61 0 2 149 

ZINC77403636 247.362 2.39 5.32 -43.03 2 3 29 1 2 149 

ZINC07406143 370.38 3.66 1.83 -18.56 1 6 71 0 5 148 

ZINC12522205 324.38 4.31 7.89 -12.85 2 3 41 0 2 148 

ZINC19326582 396.481 4.91 13.97 -128.43 2 3 18 2 6 148 

ZINC27579123 399.521 4.52 8.53 -50.26 2 3 29 1 6 147 

ZINC44709555 378.444 2.71 8.47 -16.27 0 6 59 0 4 146 

ZINC06529588 260.268 3.11 0.28 -11.38 2 4 50 0 4 145 

ZINC12776552 375.371 3.01 8.14 -14.78 0 5 48 0 4 145 

ZINC82869007 176.219 1.63 3.35 -5.59 2 3 37 0 3 145 

ZINC75738600 269.291 2.75 5.23 -7.97 1 3 30 0 4 143 

ZINC76217090 318.373 3.29 6.16 -9.33 2 6 77 0 6 142 

ZINC19894425 321.352 1.02 3.57 -24.58 1 6 63 0 5 141 

ZINC36446804 390.48 4.69 8.82 -11.23 1 3 32 0 4 140 

ZINC70270920 283.318 3.74 6.56 -12.11 1 3 38 0 5 140 

ZINC72305915 409.958 3.98 6.46 -5.98 3 6 74 0 4 139 

ZINC02547536 209.122 0.82 1.11 -30.17 4 3 58 1 2 138 

ZINC43193442 403.572 3.35 8.34 -44.43 3 6 58 1 8 138 

ZINC00718165 406.938 5.31 -1.46 -10.48 2 3 41 0 2 136 

ZINC65497500 244.322 0.99 5.06 -34.34 3 5 58 1 2 136 

ZINC90744993 334.322 2.52 3.67 -14.74 3 5 71 0 4 136 

ZINC16946471 193.246 3.09 5.16 -4.21 2 1 26 0 1 133 

ZINC83690790 260.317 1.12 4.12 -41.37 3 5 60 1 3 132 

ZINC15708530 420.559 0.93 5.02 -53.62 4 8 95 1 5 130 

ZINC02316333 403.529 3.26 -3.65 -18.23 4 6 93 0 6 129 

ZINC32624081 466.362 4.53 6.7 -17.1 3 6 92 0 5 129 

ZINC12496088 397.812 6.07 10.62 -12 1 4 39 0 3 128 

ZINC16940266 204.293 2.03 3.24 -40.23 3 2 37 1 1 127 

ZINC01426909 488.584 5.1 12.66 -15.22 2 5 67 0 5 126 

ZINC13033715 505.574 2.73 11.4 -48.52 2 9 99 1 7 126 

ZINC19697575 445.585 2.34 7 -13.64 1 7 71 0 7 126 

ZINC82505211 220.336 2.53 6.67 -41.15 2 2 26 1 1 126 
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ZINC83727166 225.262 1.92 3.57 -37.64 3 2 29 1 1 126 

ZINC00106521 292.697 3.85 2.28 -13.26 1 4 51 0 4 125 

ZINC06603031 411.408 3.11 -1.88 -12.37 4 6 93 0 7 125 

ZINC70636341 315.316 2.66 4.22 -9.25 2 3 49 0 5 125 

ZINC72002875 440.539 4.02 11.9 -52.52 2 6 55 1 4 125 

ZINC09464150 448.947 5.28 1.08 -17.7 1 5 58 0 7 124 

ZINC83322304 225.381 2.09 4.56 -39.85 2 2 20 1 2 124 

ZINC03626489 399.34 2.99 3.31 -13.2 2 5 75 0 6 123 

ZINC04387912 402.419 3.01 -6.63 -17.05 4 5 81 0 4 123 

ZINC67801214 285.408 3.84 5.34 -44.01 2 5 52 1 5 123 

ZINC09113497 461.558 5.47 13.38 -19.63 1 6 78 0 6 122 

ZINC20283200 424.521 3.67 9.62 -59.42 4 7 93 1 11 121 

ZINC31932998 310.421 3.95 11.61 -44.06 1 4 31 1 6 121 

ZINC62713739 303.332 2.93 8.36 -32.27 2 3 35 1 4 121 

ZINC82368377 219.283 3.05 4.83 -36.19 4 2 43 1 1 121 

ZINC02528993 253.223 4.14 1.49 -3.13 2 2 35 0 3 120 

ZINC75869391 223.295 0.16 3.83 -90.15 6 3 68 2 2 119 

ZINC76254880 299.331 2.3 6.25 -45.22 2 5 81 -1 3 119 

ZINC71506668 195.217 0.16 1.13 -57.92 4 3 57 1 1 118 

ZINC00181081 336.395 5.42 10.32 -12.32 0 6 57 0 1 117 

ZINC23359737 438.926 2.98 7.91 -36.99 3 5 55 1 9 117 

ZINC26387440 354.815 2.73 5 -20 1 6 76 0 5 116 

ZINC82795137 285.386 2.69 6.27 -49.61 3 2 31 1 2 116 

ZINC01686012 196.273 3.12 -0.5 -40.05 2 1 16 1 2 115 

ZINC07940530 366.464 2.51 -3.13 -17.76 1 6 75 0 6 115 

ZINC15734349 409.49 3.07 7.5 -14.53 2 8 81 0 3 115 

ZINC40007529 256.305 2.7 7.18 -11.72 2 4 50 0 5 115 

ZINC08672544 460.528 3.92 2.69 -48.79 1 7 64 1 7 114 

ZINC13497967 480.605 5.72 12.84 -13.4 1 5 59 0 8 114 

ZINC82729967 214.292 2.35 5.78 -31.87 3 3 43 1 2 114 

ZINC77090631 296.312 4.16 7.83 -43.84 3 2 41 1 3 113 

ZINC11570917 267.396 3.75 0.27 -39.14 2 2 20 1 2 112 

ZINC12346198 351.381 2.96 -1.6 -16.57 2 5 61 0 3 112 

ZINC20719888 393.414 3.46 9.49 -46.52 3 7 89 1 5 110 

ZINC28434156 368.477 3.99 9.92 -18.5 1 5 59 0 5 110 

ZINC35774882 217.358 0.04 0.8 -45.86 3 3 40 1 2 110 

ZINC19841532 301.863 2.71 6.18 -41.71 1 3 17 1 3 109 

ZINC55226540 413.905 4.3 8.41 -8.53 3 6 79 0 8 109 

ZINC05071760 367.412 2.73 6.73 -13.83 3 6 83 0 3 108 

ZINC32795799 290.363 2.15 7.85 -22.21 1 5 59 0 6 108 

ZINC03840100 452.511 1.37 -9.9 -26.08 7 9 153 0 7 107 

ZINC44016120 355.369 3.28 6.24 -12.5 3 6 83 0 4 107 

ZINC00058753 289.335 2.1 -0.72 -8.68 2 6 70 0 4 106 

ZINC02520974 471.548 4.39 13.87 -16.9 2 4 70 0 3 104 

ZINC04966738 398.776 3.05 -0.36 -6.78 0 7 68 0 4 104 

ZINC00184514 242.238 1.11 2.92 -9.65 2 6 76 0 1 103 

ZINC15955536 462.556 4.71 13.04 -9.41 0 4 33 0 4 103 

ZINC75848180 178.175 -1.25 0.03 -32.13 4 6 88 1 2 103 

ZINC00228756 246.313 4.19 8.08 -6.37 2 2 24 0 1 102 

ZINC02050214 437.225 4.23 1.97 -40.92 3 6 81 1 7 102 
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ZINC04479606 369.421 2.64 5.86 -18.53 2 7 80 0 6 102 

ZINC00092578 223.272 1.36 0.62 -6.01 3 4 62 0 2 101 

ZINC33009242 432.499 5.05 9.46 -18.41 3 6 73 0 5 101 

ZINC50182129 195.31 0.6 4.11 -88.21 5 3 58 2 2 101 

ZINC01060004 404.47 4.01 11.26 -14.31 2 7 85 0 6 100 

ZINC20213814 385.489 3.53 6.94 -10.14 3 6 79 0 8 97 

ZINC24926041 394.374 1.85 7.31 -14.98 1 7 85 0 6 97 

ZINC00087289 340.437 3.29 8.94 -15.99 0 6 69 0 3 96 

ZINC04373552 339.395 2.65 -1.94 -15.49 2 6 70 0 4 96 

ZINC75688453 257.279 2.17 4.45 -36.32 3 2 29 1 1 96 

ZINC95347952 257.299 4.4 7.68 -2.01 1 1 12 0 4 96 

ZINC50843460 211.191 2.25 2.84 -31.47 3 3 49 1 2 95 

ZINC10337067 433.854 3.93 11.48 -44.05 2 7 82 1 2 94 

ZINC02361911 293.482 4.81 -1.73 -9.64 1 1 12 0 0 92 

ZINC19834162 367.348 4.22 8.34 -18.07 1 6 74 0 7 92 

ZINC35526454 355.369 3.67 7.42 -10.99 3 6 83 0 6 92 

ZINC76039205 286.281 3.68 7.63 -11.91 0 3 30 0 3 92 

ZINC01126331 368.742 4.23 2.42 -17.7 1 4 50 0 4 91 

ZINC12156665 335.399 2.5 1.36 -50.33 2 5 65 1 6 90 

ZINC13220287 383.527 3.62 9.83 -16.41 4 5 69 0 5 90 

ZINC40747107 225.4 2.87 4.81 -34.79 2 2 20 1 4 90 

ZINC75486190 248.35 2.71 5.1 -27.33 4 4 61 1 3 90 

ZINC08039586 388.469 2.69 -2.13 -51.21 3 7 81 1 4 89 

ZINC10336776 440.483 4.42 11 -38.15 2 8 88 1 4 89 

ZINC18700207 335.4 4.98 9.37 -9.25 1 2 29 0 4 89 

ZINC35561767 358.463 4.09 9.09 -10.34 1 5 51 0 2 89 

ZINC02066671 514.973 7.22 -0.29 -6.9 2 2 41 0 3 88 

ZINC15017282 358.488 4.03 10.22 -9.94 2 4 50 0 5 87 

ZINC95080731 185.23 1.55 3.06 -87.35 4 3 54 2 0 87 

ZINC20371077 304.396 2.71 6.36 -14.55 2 4 58 0 2 86 

ZINC72270271 285.294 1.22 1.28 -9.52 3 5 65 0 4 86 

ZINC05783964 301.346 1.33 -3.55 -11.45 2 6 70 0 2 85 

ZINC13471085 303.314 1.27 1.49 -16.46 3 6 96 0 3 84 

ZINC04908497 353.487 1.27 5.12 -45.85 3 7 75 1 4 83 

ZINC19725288 281.379 2.06 6.62 -46.76 4 3 53 1 3 82 

ZINC75660792 243.733 2.45 5.77 -29.68 2 2 16 1 2 82 

ZINC12085435 409.461 2.69 -3.49 -17.29 2 6 71 0 2 81 

ZINC08435175 685.698 7.68 6.1 -11.32 0 6 72 0 8 80 

ZINC00083131 347.321 4.3 -2.21 -10.94 3 6 79 0 5 77 

ZINC02758246 458.602 6.38 15.41 -19.05 1 5 59 0 7 77 

ZINC26513997 212.293 1.59 3.84 -5.84 2 2 29 0 1 77 

ZINC04857304 386.61 4.35 -2.36 -45.05 3 3 28 1 6 76 

ZINC07652999 405.878 5.17 1.19 -13.24 1 4 55 0 6 76 

ZINC08788961 482.621 3.35 -0.32 -14.49 2 7 101 0 6 76 

ZINC18197292 485.462 4.26 6.62 -24.36 3 7 96 0 5 76 

ZINC27496201 337.678 4.37 6.23 -5.84 2 3 41 0 5 75 

ZINC05248322 353.731 4.25 4.35 -7.99 0 4 39 0 4 73 

ZINC20432021 431.479 5.78 10.72 -6 0 3 22 0 5 73 

ZINC35287371 331.358 5.53 6.06 -52.83 3 4 55 1 5 73 

ZINC47778114 330.408 1.44 6.05 -43.53 3 6 68 1 5 72 
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ZINC48077023 402.49 3.63 8.47 -52.63 3 6 64 1 8 70 

ZINC58277988 416.449 4.11 8.4 -15.94 2 5 67 0 7 70 

ZINC06596199 313.36 4.42 0.27 -14.25 0 4 43 0 3 66 

ZINC11932808 352.48 1.25 -0.42 -49.05 1 6 54 1 4 63 

ZINC18061181 308.337 2.42 4.04 -9.58 3 5 82 0 1 63 

ZINC09390019 374.418 3.04 -2.41 -13.27 1 7 88 0 5 62 

ZINC36042418 469.466 5.52 14.2 -8.97 0 4 68 0 4 61 

ZINC71781936 260.243 2.56 6.36 -11.33 1 3 34 0 2 61 

ZINC43544551 320.389 2.43 8.09 -19.47 1 6 68 0 6 59 

ZINC02052707 363.335 4.01 3.06 -11.06 1 4 51 0 5 58 

ZINC40106525 416.543 3.66 8.24 -15.13 1 6 76 0 7 58 

ZINC08007395 326.418 2.31 -3.8 -14.15 1 6 75 0 5 53 

ZINC05684707 252.277 0.21 -1.72 -15.43 3 5 94 0 1 52 

ZINC48341845 344.401 4.14 6.51 -42.16 4 4 58 1 3 52 

ZINC83050266 227.328 1.02 3.88 -47.92 3 4 57 1 2 52 

ZINC13010330 308.37 3.17 7.27 -15.91 1 6 68 0 4 49 

ZINC12357259 265.313 1.73 -2.87 -10.02 4 6 97 0 5 48 

ZINC71781001 258.195 1.77 3.87 -11.16 1 3 47 0 2 48 

ZINC13407933 473.366 3.92 3.55 -7.7 3 7 105 0 9 45 

ZINC00519469 277.344 2.12 -3.23 -34.16 3 5 55 1 2 44 

ZINC23182402 468.667 5.3 11.43 -12.45 2 4 31 0 8 44 

ZINC95959351 310.438 3.06 7.9 -12.26 2 5 67 0 4 44 

ZINC06738456 290.338 3.05 0.02 -20.6 1 4 50 0 3 43 

ZINC04577875 303.053 3.54 2.47 -35.28 2 1 16 1 2 42 

ZINC09283216 449.464 1.79 -4.01 -20.32 1 10 115 0 6 35 

ZINC12668089 234.299 -0.1 5.14 -7.37 2 4 58 0 0 34 

ZINC39083420 188.163 -0.15 0.03 -45.44 1 7 105 -1 2 34 

ZINC01397478 434.829 4.44 0.14 -41.83 2 6 73 1 6 31 

ZINC96008252 231.248 1.5 2.62 -9.25 0 4 47 0 2 31 

ZINC88613616 246.287 0.36 -0.8 -28.71 4 7 97 1 4 23 

ZINC19808440 436.527 3.69 13.03 -11.69 1 5 59 0 8 20 

ZINC03240785 473.401 2.31 -8.21 -23.68 4 8 127 0 5 18 

ZINC12412671 417.509 4.99 1.25 -18.41 1 6 72 0 5 10 
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APPENDIX G 

LIST OF CHEMICALS DEDUCED FROM THE ALPHA-1 ANTITRYPSIN HIGH 

CONTENT SCREENING RESULT ANALYSIS TARGET-BASED HIT 

DIVERSIFICATION METHOD 

 

The first column (from the left) represents the PubChem compound identifier (CID) of each 

compound, the second column reports the molecular weight of the compound, the third column 

reports the name of the chemical, finally the fourth column reports the number of targets in 

STITCH v4. 

Chemical ID Molecular Weight Chemical Name No of Targets 

CID00216239 464.82495 sorafenib 62 

CID00005002 383.5071 quetiapine 58 

CID00005376 371.51456 AC1L1K7T 51 

CID00060837 677.1848 irinotecan 21 

CID00003143 807.87922 Docetaxel trihydrate 20 

CID00091577 466.69514 AC1L3MCS 20 

CID00060834 333.8755 duloxetine 18 

CID00150311 409.425246 ezetimibe 16 

CID09936728 527.61104 CHEMBL91636 14 

CID00002689 334.33889 CGS 12066B 14 

CID00001238 344.90144 octoclothepin 14 

CID00017011 507.43949 Depixol 13 

CID00004609 397.29176 oxaliplatin 13 

CID00002781 343.89024 NSC293370 13 

CID00068595 934.15842 maduramicin 12 

CID00005268 379.4522 spiroxatrine 12 

CID00001224 361.51974 AC1Q7BEJ 11 

CID00004691 329.365403 AC-680 10 

CID00060662 568.550603 mibefradil 10 

CID09849669 523.66364 SR-973 10 
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CID00027991 1069.21696 DDAVP 10 

CID05311065 1069.21696 desmopressin 9 

CID00003404 318.33465 (Z) Fluvoxamine 9 

CID00037459 361.51974 butaclamol 9 

CID11653679 374.879463 CHEBI:590001 8 

CID10318916 402.41948 CHEBI:250218 8 

CID09802436 424.425 CHEMBL56837 8 

CID10319235 407.50536 SureCN4172086 8 

CID03069135 314.397123 Brn 4530212 8 

CID10150649 391.46136 CHEBI:447271 8 

CID00447475 328.38712 1o5a 8 

CID00133038 316.369943 fluorocarazolol 8 

CID11037377 429.46628 CHEBI:286771 8 

CID00445843 362.83218 1o5e 8 

CID11486446 401.901503 
4-[(1R,5S)-3-(4-chlorophenyl)-3-

hydroxy-8-azabicyclo[3.2.1]oct-8-yl]-1-
(4-fluorophenyl)butan-1-one 

7 

CID03086153 340.46574 SureCN11076489 7 

CID00005203 306.22958 Q740 7 

CID00001746 303.14269 uPA inhibitor 6 

CID09957375 494.1111 SureCN6399366 6 

CID10025307 423.37558 SureCN6731065 6 

CID00181743 339.38504 Thalictruberine 6 

CID10237550 393.43418 CHEBI:447270 6 

CID00060830 472.41628 tiotropium 6 

CID11553459 416.3944 SureCN4479393 6 

CID00127044 427.27665 CHEMBL2112942 6 

CID09905731 334.4531 CHEBI:495666 6 

CID02728531 382.3273 RH02255 6 

CID11544156 313.432203 SureCN4850678 6 

CID10335148 303.40084 CHEMBL2112912 6 

CID11501540 368.49246 CHEBI:429856 6 

CID09924938 358.3026 CHEMBL82093 6 

CID11374008 438.45158 CHEMBL58577 6 

CID10156375 376.4268 Sultam Hydroxamate 15a 6 

CID00068770 363.49432 talinolol 6 

CID00071240 408.432373 tefludazine 6 

CID11257884 393.39266 CHEBI:400792 6 

CID00068186 383.459143 spiramide 6 

CID10174078 472.6648 SureCN5209016 6 

CID11526445 518.5793 CHEMBL606904 6 

CID00154058 398.92568 solifenacin 6 

CID00060864 373.87316 AC1L1U2R 6 

CID11508116 325.40152 CHEBI:434654 6 

CID11590800 464.95413 SureCN4933186 6 

CID00065257 375.77238 PMBs 6 

CID10047100 409.349 SureCN6723167 6 

CID03052780 361.8673 SureCN10982044 5 

CID00003075 415.52578 NSC759576 5 
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CID05497171 453.461323 z-VAD-fmk 5 

CID11202065 462.58386 CHEMBL2112985 5 

CID00644185 453.461323 z-Val-Ala-Asp-fmk 5 

CID00108220 385.23997 beta-CIT 5 

CID00128564 379.45066 SC44463 5 

CID00004323 379.45066 AC1L1HWN 5 

CID00027287 624.0064 zinc protoporphyrin 5 

CID00122190 413.29313 RTI-121 5 

CID00003377 406.510726 AC1L1TJF 5 

CID09842753 378.46414 CHEMBL606963 4 

CID11690966 451.404263 SureCN1035715 4 

CID10474144 367.456443 
1-(4-fluorophenyl)-4-[(1R,5R)-3-

hydroxy-3-phenyl-8-
azabicyclo[3.2.1]oct-8-yl]butan-1-one 

4 

CID09852146 626.627863 Z-IETD-FMK 4 

CID00005567 409.417133 trifluperidol 4 

CID00122197 431.283593 FP-CIT 4 

CID10074155 486.67146 SureCN9006340 4 

CID09820163 358.43628 SureCN7554088 4 

CID00128054 315.4729 N 0734 4 

CID11441732 427.41098 L023686 4 

CID10788465 424.526006 CHEBI:299920 4 

CID00002384 366.37722 AC1L1DK5 4 

CID10409701 417.257013 MCL-301 4 

CID11603959 411.49406 CHEBI:435901 4 

CID11559589 362.48788 CHEBI:409256 4 

CID11532153 434.529023 CHEBI:593352 4 

CID05289508 661.8603 DB03005 4 

CID11620908 547.95661 3:00 PM 4 

CID00208917 375.438683 Elopiprazole 4 

CID09888555 423.57096 SureCN5507438 4 

CID09797476 328.23356 SureCN3423153 4 

CID11690910 448.52105 SureCN1034132 4 

CID09796407 302.12359 Org 12962 4 

CID11505592 644.659626 CHEBI:440657 4 

CID10598649 428.60894 CHEBI:205753 4 

CID11699469 537.69176 CHEBI:449977 4 

CID11676381 432.490003 CHEBI:593224 4 

CID11554489 464.95413 SureCN5180132 4 

CID00128918 417.89433 SR 57746A 4 

CID00005516 405.95962 AC1L1KIN 4 

CID00066004 302.41454 alniditan 4 

CID02737388 311.2494 1-(2-diphenyl)piperazine 4 

CID10131344 325.40152 CHEBI:434692 4 

CID10447533 300.36243 SureCN5996022 4 

CID09910222 424.425 CHEMBL61193 4 

CID11134191 453.587066 CHEBI:327101 4 

CID03929516 343.410226 difluorobenztropine 4 

CID11539598 446.516583 CHEBI:593418 4 
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CID11233292 346.77513 SureCN3562639 4 

CID05289507 661.8603 DB02226 4 

CID09839392 302.41278 SureCN7967298 4 

CID09821217 380.40403 CP-122721 4 

CID10024324 406.54044 CHEBI:187762 4 

CID10163178 485.938403 SureCN231072 4 

CID10024183 404.46826 SureCN6930132 4 

CID10472143 335.4427 PDSP2_001209 4 

CID10836499 432.572823 CHEMBL67024 4 

CID10184653 485.938403 afatinib 4 

CID11058664 410.31563 CHEBI:128185 4 

CID10054373 603.79136 SureCN5650667 4 

CID11006894 673.704146 CHEBI:287332 4 

CID00002386 334.37842 
bis(5-amidino-2-

benzimidazolyl)methane 
4 

CID11668034 380.478343 CHEBI:433105 4 

CID11695960 348.43816 CHEBI:430708 4 

CID09600423 525.60154 t - 87 3 

CID09998835 364.27678 
methyl (3S)-3-[4-[(Z)-2-

bromovinyl]phenyl]-8-methyl-8-
azabicyclo[3.2.1]octane-4-carboxylate 

3 

CID00131993 371.21339 N-Nor-cit 3 

CID09952054 385.23997 CTK8G8335 3 

CID09800811 395.296358 CHEMBL1214004 3 

CID11278435 313.794843 CHEMBL1812750 3 

CID10545894 351.457043 
1-(4-fluorophenyl)-4-[(1R,5S)-3-
phenyl-8-azabicyclo[3.2.1]oct-8-

yl]butan-1-one 
3 

CID11441438 416.53372 Sultam Hydroxamate 23c 3 

CID00148193 489.39578 NSC702818 3 

CID09947229 364.6945 CHEMBL87031 3 

CID10112621 416.53372 
(3S)-2-[4-(4-tert-butylphenyl)benzyl]-

1,1-diketo-thiazinane-3-
carbohydroxamic acid 

3 

CID09846169 442.296828 
Methyl (2S,3S)-8-[(E)-4-fluorobut-2-

enyl]-3-(4-iodophenyl)-8-
azabicyclo[3.2.1]octane-2-carboxylate 

3 

CID00159324 489.39578 tipifarnib 3 

CID11500578 311.37494 
methyl (1R,3S,4S,5S)-3-[4-(2-

furyl)phenyl]-8-
azabicyclo[3.2.1]octane-4-carboxylate 

3 

CID10410301 428.270248 
2-fluoranylethyl 3-[4-[(Z)-2-
iodanylethenyl]phenyl]-8-

azabicyclo[3.2.1]octane-4-carboxylate 
3 

CID05281881 434.51761 flupenthixol 3 

CID10765852 447.73819 
methyl (1S,3S,4S,5R)-8-(3-

chloropropyl)-3-(4-iodophenyl)-8-
azabicyclo[3.2.1]octane-4-carboxylate 

3 

CID11233397 350.2502 
methyl (1R,3R,4R,5S)-3-[4-[(Z)-2-

bromovinyl]phenyl]-8-
azabicyclo[3.2.1]octane-4-carboxylate 

3 

CID11371257 341.46712 CHEBI:400816 3 
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CID00115430 323.9006 AC1Q3F7T 3 

CID09800928 397.25067 
methyl 3-[4-[(Z)-2-iodovinyl]phenyl]-8-
azabicyclo[3.2.1]octane-4-carboxylate 

3 

CID10574379 425.30383 CHEMBL1945246 3 

CID09884800 350.845358 CHEMBL1214003 3 

CID11282852 472.40493 
3-(8,8-dimethyl-8-

azoniabicyclo[3.2.1]oct-3-yl)-2,2-
diphenyl-propanenitrile 

3 

CID10404382 330.425077 
methyl 8-[(E)-4-fluorobut-2-enyl]-3-(p-

tolyl)-8-azabicyclo[3.2.1]octane-4-
carboxylate 

3 

CID10363398 397.25067 CHEBI:114309 3 

CID03366356 525.60154 AC1MOB6C 3 
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APPENDIX H 

COMPARISON OF RESULTS FROM CHEMICAL AND TARGET BASED 

DIVERSIFICATION OF PRESTWICK LIBRARY SCREEN HITS 

The similarity between the chemical based diversification results shown in Appendix F and 

target based diversification results shown in Appendix G:  
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The similarity between two groups of 1278 chemicals randomly selected from the ZINC 

purchase-ready compounds library (which has 12.8 million chemicals):  

 

 

 

The similarity distributions are highly similar with a Kullback-Leibler divergence of 0.031 which 

means that the sets of chemical based and target based diversification results are as similar as 

would be expected by chance alone. This means that our diversification strategies do actually 

diversify different sets of chemicals as originally intended. 
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APPENDIX I 

RESULTS FROM COMPUTATIONAL DIVERSIFICATION ANALYSIS OF DRUGS 

WITH KNOWN NEUROPROTECTIVE ACTIVITY 

The following table shows the results of the computational analysis used for neuroprotective 

diversification and mechanism of action identification. The drugs that were selected for 

experimental follow-up are shown in yellow, and the drugs that successfully worked as 

neuroprotectives in these experiments (sodium nitroprusside and thyroxine) by showing 

statistically significant neuroprotection are shown in green. 

Adaptive Compound Selection by Maximal Distance to Support and Previously Selected Compounds 

Hypothesis 1: PRL_HUMAN (Prolactin, organism:9606) 
  

Support: 
 

Cysteamine 
Melatoni
n 

Ritanseri
n Progesterone 

Compounds to test hypothesis: 
    

Drug 
Target 
Count LV distance to support: 

Averag
e: 

Fk 33-824 (CID000047470) 3 5.705 5.107 6.317 5.925 5.763 

Estradiol Benzoate (CID100003262) 6 6.058 5.406 5.360 6.112 5.734 

Thyroxine (CID100000853) 95 5.147 4.891 5.680 4.816 5.134 

Azinphos-Methyl (CID000002268) 4 5.066 4.512 6.028 5.470 5.269 

Clomipramine (CID100002801) 22 5.069 4.628 5.570 4.844 5.028 

Metergoline (CID100004090) 26 5.447 4.619 5.729 5.385 5.295 

M-Chlorophenylpiperazine (CID100001355) 18 5.236 4.875 5.623 5.256 5.247 

Nalmefene (CID100004422) 7 5.061 4.459 5.820 4.838 5.044 

Spiperone (CID100005265) 40 5.035 4.565 5.104 4.698 4.850 

Domperidone (CID100003151) 9 5.163 4.462 5.686 4.978 5.072 

Chlorpromazine (CID000002726) 48 4.863 4.475 5.335 4.418 4.773 

Aripiprazole (CID000060795) 27 4.906 4.260 4.515 4.648 4.582 

Ergot (CID100003250) 2 5.060 4.527 4.533 5.071 4.798 

Nomifensine (CID100004528) 9 5.010 4.618 5.245 4.962 4.959 
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8-Br-Camp (CID000032014) 21 4.698 3.721 5.281 4.708 4.602 

Ici 182,780 (CID100104741) 18 4.912 4.175 5.293 4.858 4.810 

Quinpirole (CID100001257) 22 4.947 4.583 5.393 4.737 4.915 

Metyrapone (CID100004174) 15 5.100 4.255 5.687 4.974 5.004 

Perphenazine (CID000004748) 19 4.756 3.714 5.066 4.720 4.564 

Ketanserin (CID000003822) 30 4.610 4.299 4.691 4.403 4.501 

8-Br-Camp (CID100001912) 14 4.995 3.906 5.109 4.872 4.721 

Bromocriptine (CID000031100) 47 4.555 3.926 5.025 4.891 4.599 

Clomiphene Citrate (CID100002800) 8 4.744 4.289 4.773 4.818 4.656 

Ritanserin (CID100005074) 24 4.854 4.023 4.925 4.644 4.612 

Ergovaline (CID000104843) 1 4.770 4.135 5.162 4.288 4.589 

       Hypothesis 2: CALM_HUMAN (Calmodulin, organism:9606) 
  

Support: 
 

Bepridil 
Melatoni
n Mephenytoin 

 Compounds to test hypothesis: 
    

Drug 
Target 
Count LV distance to support: 

Averag
e: 

 Aprindine (CID100002218) 1 5.438 5.129 5.438 5.335   

4-Chloroaniline (CID000007812) 1 4.826 4.530 4.826 4.727   

Compound 48/80 (CID000104735) 7 4.789 4.673 4.789 4.750 
 Promethazine (CID000004927) 5 4.911 4.623 4.911 4.815   

Trifluoperazine (CID100005566) 32 4.433 4.420 4.433 4.429 
 Cgs 9343B (CID100065909) 2 4.571 4.229 4.571 4.457 
 Nifedipine (CID100004485) 35 4.916 4.465 4.916 4.765 
 Phenothiazine (CID100007108) 3 4.734 4.227 4.734 4.565 
 Ww7 (CID000005681) 6 4.395 4.466 4.395 4.419 
 Verapamil (CID000002520) 40 4.240 3.963 4.240 4.148 
 Trifluoperazine (CID000005566) 33 4.150 3.918 4.150 4.073 
 Diltiazem (CID100003075) 10 4.435 4.139 4.435 4.336 
 Nicardipine (CID100004473) 8 4.677 4.223 4.677 4.526 
 Genistein (CID005280961) 97 4.155 4.033 4.155 4.114 
 B8509-035 (CID024847739) 1 4.185 3.825 4.185 4.065 
 Ww7 (CID100005681) 5 4.339 3.911 4.339 4.197 
 Dibucaine (CID100003025) 3 4.540 4.210 4.540 4.430 
 Pimozide (CID100016362) 26 4.233 3.804 4.233 4.090 
 Loperamide (CID100003954) 82 4.257 3.977 4.257 4.163 
 Compound 48/80 (CID100104735) 7 4.029 4.073 4.029 4.043 
 Bepridil (CID100002351) 5 3.987 3.795 3.987 3.923 
 Fluphenazine (CID100003372) 9 3.989 3.709 3.989 3.895 
 Kar-2 (CID100157684) 2 3.849 3.876 3.849 3.858 
 Phenothiazine (CID000007108) 3 4.141 3.517 4.141 3.933 
 Verapamil (CID100002520) 40 4.112 3.774 4.112 4.000 
 

       Hypothesis 3: CASP3_HUMAN (Caspase-3 subunit p12, organism:9606) 
 Support: 

 
Melatonin Minocycline 

  Compounds to test hypothesis: 
    

Drug 
Target 
Count LV distance to support: Average: 

  Sodium Nitroprusside (CID000045469) 14 5.237 5.148 5.193     

Imatinib (CID100005291) 48 5.290 5.061 5.175 
  Staurosporine (CID000044259) 85 4.770 5.399 5.085     
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Rxb (CID111632008) 1 4.743 4.842 4.793 
  Tpck (CID000439647) 6 4.405 4.183 4.294 
  Zoledronic Acid (CID100068740) 83 4.350 4.552 4.451 
  P-Bromoanisole (CID000007730) 1 4.869 4.550 4.709 
  Kainate (CID000010255) 69 4.318 4.652 4.485 
  Nordihydroguaiaretic Acid (CID100004534) 21 4.703 4.503 4.603 
  Inhibitor 65B (CID005327315) 1 4.725 4.043 4.384 
  Ptf (CID100013016) 1 4.494 4.654 4.574 
  Peroxynitrite (CID100104806) 21 4.461 4.515 4.488 
  Gemcitabine (CID000060749) 28 3.829 4.191 4.010 
  15-Deoxy-Delta12,14-Prostaglandin J2 

(CID100001444) 20 4.433 4.331 4.382 
  Thapsigargin (CID000446378) 84 3.754 4.319 4.036 
  Chebi:400985 (CID009851134) 1 4.025 4.017 4.021 
  Pyrrolidine Isatin Analogue 11F (CID111712912) 1 4.469 3.901 4.185 
  Inhibitor 64B (CID005327307) 1 4.497 4.524 4.511 
  Db08213 (CID100001389) 1 4.093 4.043 4.068 
  3-Morpholinosydnonimine (CID100005219) 4 4.450 3.664 4.057 
  Pzn (CID005289238) 1 3.724 3.933 3.828 
  Ac-Devd-Cho (CID100004330) 5 3.880 4.150 4.015 
  Salidroside (CID100159278) 2 4.093 3.316 3.704 
  Chebi:461307 (CID111700402) 1 4.030 4.108 4.069 
  Gsno (CID100003514) 5 3.782 4.016 3.899 
  

       Hypothesis 3: PA21B_HUMAN (Phospholipase A2, organism:9606) 
 

Support: 
 

Cysteamine 
Calcimyci
n 

   Compounds to test hypothesis: 
    

Drug 
Target 
Count LV distance to support: Average: 

  Fpl 55712 (CID000105007) 3 5.731 5.973 5.852     

1-Acyl-Sn-Glycero-3-Phosphocholines 
(CID124798684) 68 5.454 5.299 5.377 

  A23187 (CID100001959) 33 5.600 5.478 5.539 
  Manoalide (CID006437368) 4 5.199 4.847 5.023     

Calphostin C (CID100002533) 9 5.052 5.613 5.332     

Compound 48/80 (CID000104735) 7 5.003 5.471 5.237 
  Ochnaflavone (CID105492110) 3 5.458 5.308 5.383 
  Aristolochic Acid (CID000002236) 3 4.586 5.574 5.080 
  Nordihydroguaiaretic Acid (CID100004534) 21 5.173 5.228 5.200 
  Ochnaflavone (CID005492110) 3 4.995 4.746 4.871 
  Verapamil (CID000002520) 40 4.359 4.685 4.522 
  Phosphatidic Acid (CID100447791) 18 4.605 4.992 4.798 
  Chloroquine (CID000002719) 8 4.605 4.999 4.802 
  P-Bromophenacyl Bromide (CID000007454) 3 4.469 4.895 4.682 
  Platelet-Activating Factor (CID100461545) 10 4.535 4.433 4.484 
  Heparin (CID000008784) 77 4.709 4.845 4.777 
  Compound 48/80 (CID100104735) 7 4.817 4.759 4.788 
  Diacylglycerol (CID006026790) 2 4.578 4.790 4.684 
  Verapamil (CID100002520) 40 4.371 5.014 4.693 
  P-Bromophenacyl Bromide (CID100007454) 3 4.498 4.451 4.474 
  5,8,11,14-Eicosatetraynoic Acid (CID100001780) 3 4.158 4.039 4.098 
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Phosphatidylglycerol (CID045109789) 4 4.559 4.717 4.638 
  Aristolochic Acid (CID100002236) 3 4.172 4.750 4.461 
  Calphostin C (CID000002533) 14 4.328 4.643 4.486 
  Phenidone (CID000007090) 3 4.446 4.610 4.528 
  

       Hypothesis 4: CAH2_HUMAN (Carbonic anhydrase 2, organism:9606) 
 Support: 

 
Methazolamide 

   Compounds to test hypothesis: 
    

Drug 
Target 
Count 

LV distance to 
support: Average: 

   Chebi:178579 (CID044296104) 1 6.250 6.250 
   J71 (CID046916276) 1 5.633 5.633 
   Chembl35532 (CID010915515) 2 5.829 5.829 
   Imatinib (CID100005291) 48 5.308 5.308     

 Chebi:333101 (CID010843175) 2 5.825 5.825 
   Chebi:333241 (CID105067385) 1 5.408 5.408 
   N-(3-Chloro-7-Indolyl)-1,4-Benzenedisulfonamide 

(CID000216468) 12 5.473 5.473 
   Chebi:720036 (CID046197893) 2 5.477 5.477 
   2H-Thieno[3,2-E]-1,2-Thiazine-6-Sulfonamide 1,1-

Dioxide 18 (CID019434092) 1 5.085 5.085 
   3,5-Dichlorosulfanilamide (CID100089607) 2 4.813 4.813 
   Chebi:415002 (CID144397294) 2 5.386 5.386 
   Chebi:332796 (CID010832697) 1 5.736 5.736 
   2H-Thieno[3,2-E]-1,2-Thiazine-6-Sulfonamide 1,1-

Dioxide 4 (CID019434096) 1 4.909 4.909 
   Chebi:385160 (CID010625038) 3 5.487 5.487 
   Th0 (CID112563346) 1 5.433 5.433 
   Chebi:149899 (CID104094683) 1 4.885 4.885 
   Chebi:301123 (CID110519868) 3 5.683 5.683 
   Zinc00097317 (CID000708535) 3 4.496 4.496 
   Chembl97425 (CID011269105) 1 5.117 5.117 
   Chebi:223584 (CID010430595) 4 4.934 4.934 
   Chebi:427355 (CID111696964) 4 5.100 5.100 
   Nsc402851 (CID000345312) 4 4.703 4.703 
   Subsporin C (CID100151723) 5 5.182 5.182 
   Chebi:332454 (CID010833817) 2 5.484 5.484 
   Hydroxamate 21 (CID006916013) 3 5.401 5.401 
   

       Hypothesis 4: CAH7_HUMAN (Carbonic anhydrase 7, organism:9606) 
 Support: 

 
Methazolamide 

   Compounds to test hypothesis: 
    

Drug 
Target 
Count 

LV distance to 
support: Average: 

   Indanesulfonamide Derivative 11C (CID011640067) 4 4.961 4.961 
   Indanesulfonamide Derivative 12C (CID011718391) 6 4.649 4.649 
   6-Hydrogen-2-Benzothiazolesulfonamide 

(CID100067944) 3 4.404 4.404 
   Mafenide Acetate (CID000003998) 5 4.562 4.562     

 Metolazone (CID000004170) 3 4.160 4.160 
   Methazolamide (CID100001798) 87 4.481 4.481 
   Benzolamide (CID000018794) 14 4.551 4.551 
   4-Carboxybenzenesulfonamide (CID000008739) 6 4.116 4.116 
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Topiramate (CID100005514) 18 4.306 4.306     
 Chlorthalidone (CID000002732) 6 4.402 4.402 

   2-Ethylamido-5-Sulfonamidoindane (CID011543564) 4 4.700 4.700 
   Indanesulfonamide Derivative 6 (CID011414131) 4 4.347 4.347 
   2-Aminoindane-5-Sulfonic Acid (CID044395769) 3 4.009 4.009 
   Chebi:595853 (CID042609905) 5 4.250 4.250 
   Chlorthalidone (CID100002732) 6 4.409 4.409 
   Bumetanide (CID000002471) 13 4.139 4.139 
   3Cc (CID111537386) 3 4.430 4.430 
   5-Amino-1,3,4-Thiadiazole-2-Sulfonamide 

(CID100084724) 7 4.210 4.210 
   Molport-002-472-850 (CID005172475) 7 4.344 4.344 
   667-Coumate (CID105287541) 6 3.904 3.904 
   Chebi:494255 (CID117748220) 2 4.288 4.288 
   2-Nonylamido-5-Sulfonamidoindane (CID011660633) 4 4.090 4.090 
   Dorzolamide (CID100003154) 83 3.800 3.800 
   Dichlorphenamide (CID100003038) 39 4.227 4.227 
   2-Ethylamido-5-Sulfonamidoindane (CID111543564) 4 3.654 3.654 
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APPENDIX J  

EXPERIMENTAL TESTING OF NEUROPROTECTIVE ACTIVITY OF DRUGS WITH 

PREDICTED NEUROPROTECTIVE ACTIVITY 

The following table shows the results of experimental validation of the compounds with 

predicted neuroprotective activity. The experiments were performed by Dr. Hossein Mousavi in 

the Friedlander lab.  The results are from an LDH screen therefore higher values indicate more 

cell death and vice versa for lower values. The arbitrary units of fluorescence are normalized to 

control cells at 33C (i.e. normal culture) conditions. 

 

 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.75   0.97 1.00 0.79 0.98 0.91 1.09 3.19 

37 C 2.12 1.74   2.28 2.21 1.95 1.98 2.06 2.56 3.50 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

Promethazine 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.75   1.02 0.96 0.98 0.97 0.99 0.83 1.00 

37 C 2.12 1.74   2.00 2.13 2.15 2.10 1.97 1.76 1.43 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Sodium Nitroprusside 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.78   0.84 0.79 1.03 0.78 0.85 1.29 2.35 

37 C 2.20 1.65   1.98 2.06 2.07 2.09 2.03 2.35 1.86 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Clomipramine 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.78   0.94 0.92 1.00 1.06 0.93 0.91 0.88 

37 C 2.20 1.65   2.06 1.97 2.08 2.11 2.02 2.17 2.29 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

Chloroaniline 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.78   0.98 0.92 0.97 0.91 1.19 2.65 2.53 

37 C 2.20 1.65   2.06 2.21 2.14 2.15 2.37 1.89 1.84 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Promethazine 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 0.97 0.87   0.81 0.92 0.96 0.88 0.82 0.86 1.01 

37 C 1.94 1.68   2.22 1.78 1.78 1.91 1.89 1.65 1.71 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Azinophos-Methyl 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 0.97 0.87   0.90 0.90 0.85 0.90 0.89 0.91 0.97 

37 C 1.94 1.68   2.01 1.92 1.95 1.82 1.98 2.19 2.68 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Estradiol Benzoate 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.94   0.94 0.93 1.05 1.02 1.09 0.96 0.96 

37 C 2.32 1.79   2.37 2.46 2.49 2.13 2.56 2.38 1.89 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

Thyroxine 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.94   0.99 1.02 0.91 1.01 1.04 1.01 0.94 

37 C 2.32 1.79   2.04 2.28 2.06 2.03 2.29 2.28 2.31 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Mafenide Acetate 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.06 1.08   1.05 1.00 0.98 0.88 0.88 1.05 3.44 

37 C 2.06 1.78   2.00 2.18 2.43 1.94 2.36 3.52 8.84 

0.00 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 

Aprindine 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.06 1.08   0.89 0.86 0.93 0.94 0.84 0.93 5.08 

37 C 2.06 1.78   2.21 2.32 2.12 2.23 2.54 3.76 6.98 

0.00 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

Imatinib 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 0.97 0.76   0.86 0.81 0.86 0.81 0.81 0.80 0.89 

37 C 2.13 1.74   2.00 1.94 1.93 1.84 1.89 1.97 1.85 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

Topiramate 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 0.97 0.76   0.84 0.87 0.96 0.80 0.90 0.81 0.00 

37 C 2.13 1.74   1.99 1.86 2.02 2.10 2.26 2.85 0.00 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

Ketanserin 
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 0.97 0.76   0.84 0.82 0.85 0.90 0.83 1.01 0.90 

37 C 2.13 1.74   1.89 1.84 2.33 2.04 2.24 2.02 2.29 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

FK33-824 

CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
100 
uM 

33 C 1.00 0.87   0.87 1.07 0.99 0.94 0.94 1.03 1.04 

37 C 2.32 1.74   2.19 2.62 2.35 2.37 2.24 2.42 2.06 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

Fpl 55712  
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CTRL 
Metha
zolami

de 
1 nM 10 nM 

100 
nM 

1 uM 10 uM 30 uM 
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37 C 2.32 1.74   2.38 2.57 2.81 10.25 8.89 7.84 7.17 
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37 C 2.32 1.74   2.31 2.60 3.92 8.36 9.52 9.11 9.76 
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