
Clustering Service Networks with Entity, Attribute and Link Heterogeneity

Yang Zhou†, Ling Liu†, Calton Pu†, Xianqiang Bao†, Kisung Lee†, Balaji Palanisamy‡, Emre Yigitoglu†, Qi Zhang†

†Georgia Institute of Technology ‡University of Pittsburgh
yzhou@gatech.edu, lingliu@cc.gatech.edu, calton.pu@cc.gatech.edu, xbao31@cc.gatech.edu

kslee@gatech.edu, bpalan@pitt.edu, eyigitoglu@gatech.edu, qzhang90@gatech.edu

Abstract—Many popular web service networks are content-
rich in terms of heterogeneous types of entities and links,
associated with incomplete attributes. Clustering such hetero-
geneous service networks demands new clustering techniques
that can handle two heterogeneity challenges: (1) multiple types
of entities co-exist in the same service network with multiple
attributes, and (2) links between entities have diverse types
and carry different semantics. Existing heterogeneous graph
clustering techniques tend to pick initial centroids uniformly
at random, specify the number k of clusters in advance,
and fix k during the clustering process. In this paper, we
propose SERVICECLUSTER, a novel heterogeneous SERVICE
network CLUSTERing algorithm with four unique features.
First, we incorporate various types of entity, attribute and
link information into a unified distance measure. Second, we
design a Discrete Steepest Descent method to naturally produce
initial k and initial centroids simultaneously. Third, we propose
a dynamic learning method to automatically adjust the link
weights towards clustering convergence. Fourth, we develop
an effective optimization strategy to identify new suitable k
and k well-chosen centroids at each clustering iteration.

I. INTRODUCTION

Efficient web service analysis is widely recognized as
an interesting and challenging research problem, which has
received heated attention recently [2]–[12]. As more and
more people are engaged in service network analysis, we
witness many forms of heterogeneous service networks in
which entities are of different types and are interconnected
through heterogeneous types of links, representing different
kinds of semantic relations. Figure 1 presents a real service
network from IBM knowledge base. There are two kinds of
object vertices: blue “Service” vertices and grey “Provider”
nodes. Each “Service” vertex may contain three types of
properties: red, purple and green attribute vertices specify
service’s “Type”, “Category” and “Capability”, respectively.
Each “Provider” vertex may have two kinds of attributes:
red “Type” attribute and purple “Category” property. On the
other hand, there are three kinds of links: an ochre edge rep-
resents the “Provides” relationship between “Service”s and
“Provider”s; a black line specifies the structure relationship
between objects with the same type; a dashed edge denotes
the attribute edge between object and its attribute.

Analyzing and mining such heterogeneous service net-
works can provide new insights about how entities influence
and interact with each other and how ideas and opinions
propagate on service networks. For example, clustering

Complete Payroll and HR

Cloud Computing

ADP

Amazon

Datacenter

Risk Management
Provider

IT

Business

Service

Direct Deposit

Cloud SecurityBackup and Recovery

Tax Filing

Virtual Infrastructure

IBM

Paychex

HR Compliance

Business Strategy

Essential Payroll

Figure 1. A Heterogeneous Service Network from IBM Knowledge Base
online service network may help understanding consumer
segmentation for service marketing. Clustering heteroge-
neous social network becomes an interesting and challenging
research problem which has received much attention recent-
ly [13], [16], [17], [19]–[22]. However, clustering hetero-
geneous networks with multiple types of entities, attributes
and links poses a number of new challenges.
• Different types of entities co-exist in the same information

network, and each type of entities may have diverse types of
links and different sets of attributes. It is very challenging to
decide the importance of various types of entities, attributes
and links to improve the clustering quality. In Figure 1,
if we want to partition “Provider”s into clusters based on
the structure links between “Provider”s and their attribute
information, then two associated attributes of “Type” and
“Category” may have different degrees of importance. A
weight learning method for different types of links in terms
of their contribution in the clustering is a possible solution.
• Most of existing heterogeneous graph clustering method-

s [13], [16], [17], [19]–[22] require the number of clusters
to be specified in advance. It is hard to decide for inexperi-
enced users. The usual method is to compare the results of
multiple runs with different k values and choose the best
one in terms of a given criterion. However, the repeated
clustering run could be expensive for large datasets.
• The choice of initial cluster centroids have a great effect

on the clustering result. Existing studies usually choose
centroids uniformly at random from data points, which
makes it difficult to find high quality clustering results.

• None of existing literatures [16], [17], [19], [20], [22] on
weight learning methods has studied the impact of dynamic
weight assignment on the dataset. For example, the original
similarity (or distance) scores may need to be updated
due to iterative update of link weights. In addition, it is
necessary to recalculate the better k and the better centroids

with the update on similarity (or distance) scores, which
actually change the shape and scale of dataset.

With these new challenges in mind, in this paper we de-
velop an innovative dynamic clustering approach of hetero-
geneous service networks, called SERVICECLUSTER. Our
approach makes a number of original contributions.
• We propose a unified random walk distance measure

integrating various types of entities, attributes and links to
measure vertex closeness on a heterogeneous network.
• We design a Discrete Steepest Descent method to nat-

urally determine the number of clusters and generate the
corresponding centroids in a heterogeneous network.
• We propose a dynamic learning method to automatically

adjust the link weights towards the direction of clustering
convergence.
• We argue that the correct choice of k often depends on the

shape and scale of dataset. Thus we develop an effective
optimization strategy to identify new suitable k and k
well-chosen centroids upon the update on similarity scores
and weight tuning to continuously improve the clustering
quality at each clustering iteration.

• We perform extensive evaluation of ServiceCluster on
three real datasets and our experimental results show that
ServiceCluster outperforms existing representative methods
in terms of both effectiveness and efficiency.

II. RELATED WORK

Web service discovery and management has been a heated
topic in recent years [2]–[7]. Skoutas et al. [8] proposed a
methodology for ranking and clustering the relevant web
services based on the notion of dominance, which apply
multiple matching criteria without aggregating the match
scores of individual service parameters. Xiao et al. [9] pro-
posed a context modeling approach which can dynamically
handle various context types and values. Almulla et al. [10]
presented a web services selection model based on fuzzy
logic and proposed a fuzzy ranking algorithm based on
the dependencies between proposed quality attributes. Liu
et al. [11] proposed a heuristic social context-Aware trust
network discovery algorithm, H-SCAN, by adopting the K-
Best-First Search (KBFS) method and some optimization
strategies. Kumara et al. [12] proposed a hybrid web-service
clustering approach with considering both ontology learning
and IR-based term similarity.

Graph clustering and graph classification has attracted
active research in the last decade [13]–[23]. Shiga et al. [13]
presented a clustering method which integrates numerical
vectors with modularity into a spectral relaxation problem.
SCAN [14] is a structural clustering algorithm to detect
clusters, hubs and outliers in networks. SA-Cluster [16],
Inc-Cluster [17] and BAGC [19] perform clustering based
on both structural and attribute information by incorporating
attributes into an attributed graph. RankClass [18] groups ob-
jects into pre-specified classes, while generating the ranking
information for each type of object. GenClus [20] proposed

a model-based clustering method for heterogeneous graphs
with different link types and attribute types.

Some recent studies have shown the clustering quality can
be enhanced by selecting a good k or by choosing good
initial centroids. K-Means++ [24] can find a clustering that
is O(logk)-competitive to the optimal K-Means solution by
specifying a procedure to initialize the cluster centers before
proceeding with the K-Means iterations. G-Means [25] runs
K-Means with increasing k in a hierarchical fashion until
the data assigned to each K-Means center are Gaussian.

To our knowledge, this work is the first one to address
the problem of clustering heterogeneous service networks
by simultaneously refining the link weights, the k value and
the cluster centroids to progressively enhance the clustering
quality in each clustering iteration.

III. PROBLEM STATEMENT

A heterogeneous service network is denoted as G =
(V,A,E), where V =

∪N
i=1 Vi represents the set of N types

of entity vertices, such as services, providers and customers,
A =

∪M
i=1 Ai denotes the set of M kinds of associated

attribute vertices, E =
∪L

i=1 Ei specifies the set of L types
of edges among entity vertices and attribute vertices. An
attribute vertex v ∈ Ai denotes some concrete value for the
ith kind of attributes. For example, an attribute of provider
“Category” has a value of “IT”. An edge may exist between
entities with the same type (e.g., “Cloud Computing” and
“Datacenter” are similar), or between entities with different
types (e.g., “Amazon” provides a service of “Datacenter”), or
between entities and attributes (e.g., “IBM”’s “Category” is
“IT”). We denote the number of each type of entity vertices,
attribute vertices or links as ni = |Vi| (1 ≤ i ≤ N), mj =
|Aj | (1 ≤ j ≤ M), lk = |Ek| (1 ≤ k ≤ L) respectively.
The total number of entities, attributes or links is equal to
n =

∑N
i=1 ni, m =

∑M
j=1 mj , l =

∑L
k=1 lk, respectively.

Given a heterogeneous service network G, the prob-
lem of Heterogeneous Service Network Clustering (SER-
VICECLUSTER) is to partition the objective entities Vi with
the ith type into ki disjoint clusters C1, C2, . . . , Cki , where
i ∈ {1, 2, . . . , N}, Vi =

∪ki

p=1 Cp and Cp

∩
Cq = ϕ for

∀p, q, 1 ≤ p, q ≤ ki, p ̸= q, to ensure: (1) the clustering
of the objective entities has an optimal number of clusters
in terms of the shape and scale of dataset; (2) the entities
within each cluster are densely connected, while the entities
in different clusters are distant from each other; (3) the
entities within each cluster have similar interactions with
other types of entities, while the entities in different clusters
have diverse interplays with other types of entities; and (4)
the entities within clusters may have similar properties, while
the entities in different clusters have diverse attribute values.

IV. A UNIFIED WEIGHTED DISTANCE MEASURE

In a heterogeneous network with various types of entities,
attributes and links, each entity is associated with a set of
multiple types of entities through the links between entity

vertices, and a set of different kinds of attributes through the
connections between entity vertices and attribute vertices,
we propose to use a unified distance measure based on the
neighborhood random walk model to integrate various types
of link information. In the heterogeneous network, there
exists a random walk path between two entities v1, v2 ∈ Vi

if (1) v1 and v2 have the same peer entity v3 ∈ Vi; (2)
both v1 and v2 are connected to the same entity v4 ∈ Vj

with different type; or (3) v1 and v2 have the same attribute
value v5 ∈ Ak. If there are multiple paths connecting v1 and
v2, then they are close. On the other hand, if there are very
few or no paths between v1 and v2, then they are far apart.

Definition 1 (Transition Probability): Let V =
∪N

i=1 Vi

be the set of N types of entities, A =
∪M

i=1 Ai be the set of
M kinds of associated attributes, the transition probability
matrix T of a heterogeneous network G is defined below.

P =

P11 . . . P1N P1(N+1) . . . P1(N+M)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
PN1 . . . PNN PN(N+1) . . . PN(N+M)

P(N+1)1 . . . P(N+1)N P(N+1)(N+1) . . . P(N+1)(N+M)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
P(N+M)1 . . . P(N+M)N P(N+M)(N+1) . . . P(N+M)(N+M)

T = ω · P

(1)where each Pjk in P represents the transition probability
for some kind of links. Each ωjk in weight matrix ω =
[ω11, . . . , ω1(N+M); . . . ;ω(N+M)1, . . . , ω(N+M)(N+M)] sp-
ecifies the weight of Pjk. According to the types of sources
and destinations, P is divided into four parts: (1) Pjk (1 ≤
j, k ≤ N) is a nj × nk block matrix representing the
transition probability between entity vertices. Each entry
in Pjk is the original edge value between entities, e.g.,
the similar degree between two entity vertices with the
same type of “Service”, or denoting whether v ∈ Vk is
provided by u ∈ Vj when u is a “Provider” and v is a
“Service”; (2) a nj × mk−N block matrix Pjk (1 ≤ j ≤
N,N +1 ≤ k ≤ N +M) specifies the transition probability
from entities to attributes. Each element in Pjk has a binary
value of 0 or 1 specifying whether the entity holds the
attribute value, e.g., “IBM” has a “Category” of “IT”; (3)
Pjk (N+1 ≤ j ≤ N+M, 1 ≤ k ≤ N) is a mj−N×nk block
matrix denoting the transition probability from attributes to
entities. Each entry specifies whether the attribute value is
owned by the entity, e.g., a “Category” of “IT” is possessed
by “IBM”; and (4) Pjk (N + 1 ≤ j, k ≤ N + M) is a
mj−N × mk−N block matrix with all 0s since there is no
connection between attributes.

We argue that each type of links may have different
degrees of contribution in the clustering process. Thus we
assign an individual weight ωij for each kind of transition
probabilities. Notice that ωij may not be equal to ωji since
the information flow between two different types of vertices
may be bidirectional. In our current experiment setup, all
weights are initialized as 1.0. Since each row of transition
probability matrix should sum to 1, we further perform the
row-wise normalization for T .

Based on the definition of transition probability, we actu-
ally split the original transition operation into two steps: (1)
inspect the weight of source’s neighbors and choose some
kind of vertices with the largest weight; and (2) check the
original edge value between source and vertices with the
largest weight and choose some vertex with the largest edge
value as destination.

Definition 2 (Unified Neighborhood Random Walk Distance):
Let T be the transition probability of a heterogeneous
network G, l be the length that a random walk can go,
and c ∈ (0, 1) be the restart probability, the unified random
walk distance d(u, v) from u ∈ V to v ∈ V in G is defined
as follow.

d(u, v) =
∑

τ :u v
length(τ)≤l

p(τ)c(1− c)length(τ) (2)

where τ is a path from u to v whose length is length(τ)
with transition probability p(τ). d(u, v) reflects the vertex
closeness based on multiple types of link information.

The matrix form of the unified distance is given as follow.

R =

l∑
γ=1

c(1− c)γT γ (3)

V. HETEROGENEOUS SERVICE NETWORK CLUSTERING

With the unified random walk distance as an input,
ServiceCluster first identifies initial ki and initial centroids
by using a Discrete Steepest Descent method. At each inner
iteration, it follows the K-Medoids clustering method [26]:
assign vertices to their closest centroids and select the
most centrally located point in a cluster as new centroid.
At each outer iteration, the optimal weights are generated
by maximizing the clustering objective. It further splits or
merges current clusters to identify new ki and new centroids.
This process is repeated until convergence.
A. Selection of ki and Initial Centroids

We will address two main issues in the initialization step:
(1) initial ki setup and (2) cluster centroid initialization.

We argue that choosing ki randomly without prior knowl-
edge by existing heterogeneous clustering methods often
leads to incorrect clustering results. In addition, good initial
centroids are essential for the success of partitioning-based
clustering algorithms. We propose a Discrete Steepest De-
scent method (DSD) to provide a natural way to determine
the number of clusters and the initial centroids simultane-
ously. Intuitively, if we choose a local densest vertex, which
is similar to the most peer vertices, in its neighborhood
as centroids, then this will maximize the within-cluster
similarity on the group, which consists of the centroid and
its neighbors. To find such local densest vertices, we first
define the density DVi(v) of an entity v ∈ Vi on Vi in terms
of the unified distance measure below.

DVi(v) =
∑

u∈Vi,u∈ϵ−neighborhood of v,ϵ∈Z+

d(u, v) (4)

where d(u, v) is the unified random walk distance from u
to v in G. DVi(v) summarizes the similarities between v

and its ϵ-neighborhood in Vi. According to the definition
of clustering objective in Eq.(9), DVi(v) is equivalent to the
objective of cluster which takes v as centroid and consists
of v and its ϵ-neighborhood in Vi.

The Steepest Descent method (SD) is an effective first-
order optimization algorithm to find a local maximum (or
minimum) of a function. The local maximization version of
SD starts with an initial point x0, and iteratively executes
the following steps to update the current iterate xt−1 by a
step γt from x0 in the gradient direction which increases
the objective f(x) until moving to a critical point, i.e., xt =
xt−1, which is hopefully the desired local maximum.

γt = argmaxγ≥0 f(xt−1 + γf ′(xt−1))

xt = xt−1 + γtf
′(xt−1)

(5)

where γt is the steepest step to increase f(x) at the fastest
rate and therefore make the biggest change.

So far most existing first order optimization methods such
as Steepest Descent or second order optimization models
such as Newton-Raphson have assumed a continuous differ-
entiable search space. However, the search space in a graph
is not continuous but discrete, i.e., made up of individual
vertices. Thus, we propose the DSD method to find the local
maxima of DVi(v) in the heterogeneous network G.
γt = argmaxγ:vt−1→vt,vt∈ϵ−neighborhood of vt−1,ϵ∈Z+DVi(vt)

vt−1
γt−−→ vt

(6)
where the gradient D

′

Vi
(vt−1) is approximated by DVi

(vt)−
DVi(vt−1) and the steepest step is directed to the densest
vertex in the ϵ-neighborhood of vt−1. The process termi-
nates when DVi(vt) ≤ DVi(vt−1). This approach is typically
much faster than an exhaustive search when Vi is large.

Based on the DSD method, the initialization of ki and cen-
troids for the objective entities Vi is presented in Algorithm
1. Each iteration in the DSD process forms a path of steepest
descent from a starting vertex v0 to a local maximum vt−1

of density. When the DSD procedure carries out a multi-
dimensional search from an unvisited vertex vt−1 to a visited
vertex vt and DVi(vt) > DVi(vt−1), we incorporate the
current path from v0 to vt−1 and the previous path including
vt into a tree of steepest descent since v0, . . . , vt have the
same local maximum. The DSD process is repeated until
each vertex is assigned to one and only DSD path or tree.
Thus, we present a quite natural way to generate ki centroids
(local maxima) and ki clusters (paths or trees).

When the heterogeneous network is dense enough, or we
run enough random walk propagations on the heterogeneous
network, the DSD method exhibits superior performance on
the selection of ki. Assuming that each entity is at least in the
ϵ-neighborhood of one entity vertex with local maximum of
density, we can generate the following theoretical property.

Theorem 1: The lower bound of the optimal number of
clusters is ki by DSD.

Proof. Let C1 and C2 be two arbitrary clusters by DSD, c1
and c2 be the corresponding centroids respectively. We try to
prove the clustering objective will be reduced if we combine

Algorithm 1 Initialization of ki and Centroids
Input: a service network G=(V,A,E), the objective entities Vi, the
random walk distance R, a set of unvisited entities S, a set of visited
entities T .
Output: ki, centroids c1, ..., cki

.
1: S=Vi, T=ϕ and ki=0;
2: while S ̸=ϕ
3: Choose one starting vertex v0 randomly from S;
4: while DVi

(vt−1)<DVi
(vt) by DSD

5: if vt∈T and vt∈Ck(k∈{1, . . . , ki})
6: S=S−{v0, . . . , vt−1} and T=T+{v0, . . . , vt−1};
7: Ck=Ck+{v0, . . . , vt−1} and goto Step 2;
8: S=S−{v0, . . . , vt−1} and T=T+{v0, . . . , vt−1};
9: ki=ki+1, cki

=vt−1 and Cki
={v0, . . . , vt−1};

10: Return ki, c1, ..., cki
and C1, ..., Cki

.

C1 and C2 into one cluster, i.e, decrease ki. There are two
possible cases to be discussed separately: (1) if the centroid
in the new combined cluster is arbitrary one of c1 and c2,
say c1, in terms of the definition of clustering objective in
Eq.(9), then the cluster objective on ∀v ∈ C2 will be reduced
due to

∑
v∈C2

d(v, c1) ≤
∑

v∈C2
d(v, c2); and (2) if the

centroid c in the combined cluster is neither c1 nor c2, then
the cluster objective on both ∀u ∈ C1 and ∀v ∈ C2 will
be reduced due to

∑
u∈C1

d(u, c) ≤
∑

u∈C1
d(u, c1) and∑

v∈C2
d(v, c) ≤

∑
v∈C2

d(v, c2).

B. Vertex Assignment and Centroid Update
Although the DSD method can produce a good clustering

when facing a dense heterogeneous network, we may need
to further refine clusters when many entity vertices locate
outside the ϵ-neighborhood of any local maximum since
each DSD step adopts a local optimization strategy in
the range of ϵ-neighborhood of current iterate vt−1. For
example, there is a DSD path v0 → v1 → v2 where v0 is
the starting point and v2 is the local maximum. Although
v1 may be very similar to both v0 and v2, the similarity
between v0 and v2 may be quite small.

For the objective entities Vi, with ki centroids in the tth

iteration, we assign each vertex u ∈ Vi to its closest centroid
c∗ = argmaxctj∈{ct1,...,ctki

}d(u, c
t
j). When all vertices are

assigned to some cluster, the centroid will be updated with
the most centrally located vertex in each cluster. To find
such a vertex, we first compute the “average point” u of a
cluster Cj in terms of the unified distance measure as

d(u, v) =
1

|Cj |
∑

w∈Cj

d(w, v),∀v ∈ V (7)

Thus d(u, :) is the average unified distance vector for
cluster Cj . Then we find the new centroid ct+1

j in Cj as
ct+1
j = argminv∈Cj∥d(v, :)− d(u, :)∥ (8)

Therefore we find the new centroid ct+1
j in the (t+ 1)th

iteration whose unified random walk distance vector is the
closest to the cluster average.
C. Objective Function

The objective of clustering is to maximize within-cluster
similarity between centroids and member vertices.

Definition 3: [Graph Clustering Objective Function] Let
G = (V,A,E) be a heterogeneous network with N types of

Algorithm 2 Splitting and Merging of Clusters
Input: a service network G=(V,A,E), the objective entities Vi, the
random walk distance R, ki clusters C1, ..., Cki

.
Output: ki, centroids c1, ..., cki

.
1: Calculate DCj

(v) for each vertex v, ∀v∈Cj , in each cluster Cj ;
2: find all local maxima cj1, ..., cjkj

in each cluster Cj by Algorithm 1;
3: Split each cluster Cj into subclusters Cj1, ..., Cjkj

;
4: for each local maximum c
5: Compute DVi

(c) and DVi
(v), ∀v∈ϵ-neighborhood of c;

6: if DVi
(v)>DVi

(c), v=argmaxu∈ϵ−neighborhood of cDVi
(u)

7: Merge Cps and Cqt where v∈Cps, c∈Cqt, Cps ̸=Cqt;
8: Update ki;
9: Return ki, c1, ..., cki

and C1, ..., Cki
.

entity vertices and M kinds of associated attribute vertices,
ωjk(1 ≤ j, k ≤ N + M) be the weight of each kind of
links, and ki be the number of clusters for the objective
entities Vi. The goal of the heterogeneous network clustering
is to find ki partitions {Cp}ki

p=1 such that Vi =
∪ki

p=1 Cp

and Cp

∩
Cq = ϕ for ∀p, q, 1 ≤ p, q ≤ ki, p ̸= q, and the

following objective function O({Cp}ki
p=1, ω) is maximized.

O({Cp}ki
p=1, ω) =

ki∑
p=1

∑
v∈Cp

d(v, cp)

ω = [ω11; . . . ;ω1(N+M); . . . ;ω(N+M)1; . . . ;ω(N+M)(N+M)]
(9)

s.t. ωjk ≥ 0,
∑N+M

j=1

∑N+M
k=1 ωjk = (N +M)2.

The original objective is a polynomial function of ω with
non-negative coefficients. We reformulate it as follow.

O({Cp}ki
p=1, ω) =

n∑
m=1

am

N+M∏
j=1,k=1

(ωjk)
pmjk

am ≥ 0, pmjk ≥ 0, pmjk ∈ Z,
N+M∑

j=1,k=1

pmjk ≤ l

(10)

s.t. ωjk ≥ 0,
∑N+M

j=1

∑N+M
k=1 ωjk ≤ (N +M)2.

where the objective consists of n within-cluster polynomial
terms, am is the coefficient of the mth term, pmjk is the
exponent of ωjk in the mth term, and l is the length that a
random walk can go. Notice that we replace the constraints
in Eq.(9) with those in Eq.(10) since O({Cp}ki

p=1, ω) is
monotonically increasing with non-negative ω such that it
can achieve the same maximum on both constraint spaces.

For ease of presentation, we substitute ω with µ such that
their components are in one-to-one correspondence.

O({Cp}ki
p=1, µ) =

n∑
m=1

am

(N+M)2∏
j=1

µ
pmj

j , am ≥ 0, pmj ≥ 0,

pmj ∈ Z,
(N+M)2∑

j=1

pmj ≤ l, µ = [µ1; . . . ;µ(N+M)2]

(11)s.t. µj ≥ 0,
∑(N+M)2

j=1 µj ≤ (N +M)2.
where pmj is the exponent of µj in the mth term.

D. Weight Optimization
The original optimization problem is a high-dimensional

polynomial programming problem. On the other hand, the
polynomial objective contains massive variables such that
we can not directly solve the KKT system of polynomial

Algorithm 3 Heterogeneous Service Network Clustering
Input: a service network G=(V,A,E), the objective entities Vi, a length
limit l of random walk paths, a restart probability c.
Output: ki clusters C1, ..., Cki

.
1: ω=µ=1;
2: Calculate T and R;
3: ki and initial centroids c1, ..., cki

by Algorithm 1;
4: Repeat until the weight vector µ converges:
5: Repeat until the objective O({Cp}ki

p=1, µ) converges:
6: Assign each vertex v to c∗=argmaxcjd(v, cj);
7: Update cj=argminv∈Cj

∥d(v, :)−d(u, :)∥;
8: Run the SCA method to solve (O({Cp}ki

p=1, µ)) to produce ω;
9: Re-calculate T and R with the optimal ω;

10: Update ki and c1, ..., cki
by Algorithm 2;

11: Return ki clusters C1, ..., Cki
.

equations. It is very hard to perform function trend iden-
tification and estimation to determine the convexity of the
optimization problem. Thus, there may exist no verifiable
sufficient conditions for global optimality. We convert the
optimization problem in Eq.(11) to the following equivalent
problem by setting µj = eνj .

O({Cp}ki
p=1, ν) =

n∑
m=1

ameν
T pm , ν = [ν1; . . . ; ν(N+M)2], am ≥ 0,

pmj ≥ 0, pmj ∈ Z,
(N+M)2∑

j=1

pmj ≤ l, pm = [pm1; . . . ; pm((N+M)2)]

(12)
s.t.

∑(N+M)2

j=1 eνj ≤ (N +M)2.
Notice that O({Cp}ki

p=1, ν) is convex since it is a
conic combination of convex functions eν

T pm . Θ =
{ν|

∑(N+M)2

j=1 eνj ≤ (N + M)2} is convex since it has a

less-than constraint and
∑(N+M)2

j=1 eνj is convex. We utilize
the successive convex approximation method (SCA) [27] to
maximize the convex objective on the convex set.
E. Splitting and Merging of Clusters

Due to the weight adjustment after each clustering it-
eration, we need to recalculate the unified random walk
distance. This update operation essentially changes the shape
and scale of dataset. We argue that a fixed ki is no longer
applicable to the dataset with changed shape. Thus we
propose a dynamic adjustment method of ki to identify a
new suitable ki to keep improving the clustering quality.
Different from hierarchy-based clustering, our method may
make ki increase, decrease, or keep unchanged by splitting
and merging current clusters after each iteration.

The cluster adjustment algorithm is presented in Algo-
rithm 2. Instead of rediscovering local maxima of density
based on the entire graph, we update local maxima with the
prior knowledge of existing clustering result to continuously
enhancing the clustering quality. It first calculates the density
of each vertex on own cluster and find new potential local
maxima in each cluster. The algorithm then splits each
cluster into subclusters based on new DSD trees or paths.
It figures out the density of local maxima and their ϵ-
neighborhood on the entire graph. The density of vertices
in the ϵ-neighborhood of a local maximum may be larger
than the density of the local maximum due to the distance

10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

D
e
n
s
it
y

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(a) density

10 20 30 40
0

0.5

1

1.5

2

2.5

3

k
E
n
tr
o
p
y

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(b) entropy

10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

k

D
B
I

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(c) DBI
Figure 2. Cluster Quality on BSBM 10,000 Services

update. If the densest vertex in the ϵ-neighborhood has a
larger density than the local maximum, then we merge two
subclusters, where the densest vertex and the local maximum
stay in, into a new cluster until all subclusters are scanned.
F. Clustering Algorithm

By assembling different parts, our heterogeneous network
partitioning algorithm is presented in Algorithm 3. Ser-
viceCluster consists of five main tasks: (1) initialization of
ki, (2) vertex assignment, (3) centroid update, (4) weight
optimization, and (5) cluster adjustment and update of ki,
each with the goal of maximizing the clustering objective.
Tasks (2)-(3) are common to partitioning clustering algo-
rithms. The other three tasks are the novelty of this work.

VI. EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate the
performance of SERVICECLUSTER on real graph datasets.
A. Experimental Datasets

We modify the BSBM data generator [28] and create a
dataset with 246, 161 triples where “Provides” is used to
model the relationship between “Service” and “Provider”s
providing them, while an instance of “Service” has multiple
instances of properties “Capability”, “Function” and “Type”,
and an instance of “Provider” contains multiple instances of
properties “Feature” and “Type”. There are totally 10, 000
“Service” instances and 3, 628 “Provider” instances with 10
“Type” instances and 5 instances of “Capability”, “Function”
and “Feature”, respectively.

We extract the Artist-Work subset of the DBpedia data
with 40, 604 artists with five kinds of identities 1, 136, 048
works from twelve kinds of areas 2, sixteen types of links
345, and four kinds of attributes 6. We build a heterogeneous
network where entity vertices represent artists or works,
attribute vertices denote entity’s attributes, entity edges
represent the relationship between entities, attribute edges
specify the interaction between entities and attributes.

We use a subset of the DBLP bibliography data with
200, 000 highly prolific authors and associated conferences.
We build a heterogeneous network where vertices represent

1The artist type: Actor, Comedian, ComicsCreator, MusicalArtist, Writer.
2The work type: Album, Book, ComicsCharacter, FictionalCharacter,

Film, Magazine, Musical, Newspaper, Single, Song, TelevisionEpisode and
TelevisionShow.

3The link type between artists: associatedMusicalArtist, influenced, in-
fluencedBy.

4The link type between works: album, basedOn.
5The link type between artists and works: artist, author, creator, director,

editor, lyrics, musicalArtist, musicBy, producer, starring, writer.
6The attribute type: genre, literaryGenre, occupation, type.

200 400 600 800
0

0.2

0.4

0.6

0.8

1

k

D
e
n
s
it
y

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(a) density

200 400 600 800
0

1

2

3

4

k

E
n
tr
o
p
y

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(b) entropy

200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

k

D
B
I

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(c) DBI
Figure 3. Cluster Quality on DBpedia 40,604 Artists

authors and conferences, links represent the number of coau-
thor works or the number of author’s works on conference,
and two relevant attributes: prolific and primary topic.

B. Comparison Methods and Evaluation
We compare ServiceCluster with two recently developed

representative graph clustering algorithms, BAGC [19] and
Inc-Cluster [17], and one baseline clustering algorithm, W-
Cluster. ServiceCluster is our proposed algorithm which not
only incorporates multiple types of entities, attributes and
links into a unified distance model but also continuously
enhances the clustering quality by simultaneously refining
the link weights, the k value and the cluster centroids.
Other three algorithms only integrate structural and attribute
information to produce a clustering result. BAGC constructs
a probabilistic inference model to capture both structural and
attribute aspects. Inc-Cluster combines both structural and
attribute similarities in the clustering decisions by estimating
the importance of attributes. W-Cluster combines structural
and attribute similarities with the equal weighting factors.

Evaluation Measures We use three measures to evaluate
the quality of clusters {Cl}ki

l=1 generated by different meth-
ods. The definitions of the metrics are given as follows.

density({Cl}
ki
l=1) =

ki∑
j=1

|{(vp, vq)|vp, vq ∈ Cj , (vp, vq) ∈ E}|
|E|

(13)

entropy({Cl}
ki
l=1) =

M∑
p=1

ωip∑M
q=1 ωiq

ki∑
j=1

|Cj |
|Vi|

entropy(Ap, Cj) (14)

where ωip is the weight between the objective en-
tities Vi and the attribute Ap, entropy(Ap, Cj) =
−
∑mp

m=1 ppjmlog2ppjm, mp is the number of Ap’s values
and ppjm is the percentage of entities in cluster Cj which
have mth value on Ap. entropy({Cl}ki

l=1) measures the
weighted entropy from all attributes over ki clusters.

Davies-Bouldin Index (DBI) measures the uniqueness of
clusters with respect to the unified similarity measure.

DBI({Cl}
ki
l=1) =

1

ki

ki∑
p=1

maxq ̸=p
d(cp, cq)

σp + σq

(15)

where cx is the centroid of Cx, d(cp, cq) is the similarity
between cp and cq , σx is the average similarity of entities
in Cx to cx.
C. Cluster Quality Evaluation

Figures 2-4 show the quality comparison on three datasets
with different k values. To make a fair comparison among
different methods, we use a version of ServiceCluster with
fixed k to compare other methods with the same k. Figure 2
(a) shows the density comparison on BSBM 10,000 Services
by varying the number of clusters k = 10, 20, 30, 40. The

1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

k

D
e
n
s
it
y

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(a) density

1000 2000 3000 4000
0

1

2

3

4

5

k
E
n
tr
o
p
y

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(b) entropy

1000 2000 3000 4000
0

0.001

0.002

0.003

0.004

0.005

0.006

k

D
B
I

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(c) DBI
Figure 4. Cluster Quality on DBLP 200,000 Authors

density values by ServiceCluster, BAGC and Inc-Cluster
remain 0.74 or higher even when k is increasing. This
demonstrates that these methods can find densely connect-
ed components. However, ServiceCluster achieves a much
higher density than other methods since it not only utilizes
the link information between the objective entities but also
integrates the interaction among the objective entities, other
entities and relevant properties to improve the clustering
quality. The density values by W-Cluster is relatively lower,
in the range of 0.62-0.75 with increasing k, showing that the
generated clusters have a very loose intra-cluster structure.

Figure 3 (b) shows the entropy comparison on BSBM
10,000 Services with k = 10, 20, 30, 40. ServiceCluster has
the lowest entropy, while other three algorithms have a much
higher entropy, since it not only considers the interaction
between the objective entities and their associated attributes
but also the interplay between the relevant entities and their
attributes. Different from other iterative local maximization
approaches, ServiceCluster generates the near global optimal
weight assignment for each kind of links by directly solving
the maximization problem of clustering objective.

Figure 3 (c) shows the DBI comparison on BSBM 10,000
Services with different k values. ServiceCluster has the low-
est DBI of 0.003-0.018, while other methods have a much
higher DBI than ServiceCluster. This demonstrates that Ser-
viceCluster can obtain both high intra-cluster similarity and
low inter-cluster similarity. This is because ServiceCluster
incorporates multiple types of entities, attributes, and links
with the near global optimal weight assignment. It fully
utilizes the connection among the objective entities and other
relevant entities, and the interaction between the entities
and their attributes such that the generated clusters have not
only similar collaborative patterns but also similar interplay
patterns with relevant entities and associated attributes.

Similar trends are observed for the quality comparison
on other two datasets in Figures 3 and 4: ServiceCluster
achieves the highest density values (>0.66) but the lowest
entropy around 1.89-2.64, which is obviously better than
the other methods (>2.24). As k increases, the entropy
by ServiceCluster remains stable, while the density of Ser-
viceCluster decreases. In addition, ServiceCluster achieves
the lowest DBI (0.001-0.013) among different methods.

D. Clustering Efficiency Evaluation
Figures 5 (a) and (b) show the clustering time on three

real datasets respectively. ServiceCluster outperforms all
other algorithms in all experiments. We make the following

10 20 30 40
0

20

40

60

80

k

R
u

n
ti

m
e

 (
S

e
c

o
n

d
)

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(a) BSBM 10,000

200 400 600 800
0

50

100

150

200

250

k

R
u

n
ti

m
e

 (
S

e
c

o
n

d
)

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(b) DBpedia 40,604

1000 2000 3000 4000
0

1000

2000

3000

4000

5000

k

R
u

n
ti

m
e

 (
S

e
c

o
n

d
)

ServiceCluster

BAGC

Inc−Cluster

W−Cluster

(c) DBLP 200,000
Figure 5. Clustering Efficiency

observations on the runtime costs of different methods. First,
W-Cluster with a fixed weight assignment is obviously better
than other methods since it computes the random walk
distance and does graph clustering only once. After each
clustering iteration, ServiceCluster and Inc-Cluster need
to incrementally update the random walk distance matrix.
The cost of incremental distance update is relatively trivial
in comparison with recalculating the matrix from scratch.
Second, ServiceCluster is much faster than BAGC and Inc-
Cluster since it figures out the near global optimal weight
assignment by using the successive convex approximation
method. Other two local maximization methods by using
iterative probabilistic influence or majority vote strategy
often converge to a local maximum, even converge to a local
minimum or cycle between two points such that they need
more iterations to terminate the clustering process. Third,
BAGC is much slower than and Inc-Cluster when facing
large k values since it is hypersensitive to k. Although
BAGC does not need to repeatedly compute the distance
matrix, it needs to iteratively update a clustering membership
matrix with the size of n×k and lots of temporary matrices
or interim variables such as ξ̃, γ̃, µ̃, ν̃ and β̃. As a result, its
computational cost is proportional to n2k2 such that it may
not work well when facing large k values.

E. Clustering Convergence
Figures 6 (a)-(f) show the tendency of clustering con-

vergence of ServiceCluster along with the dynamic update
k at each iteration on three datasets respectively. Figure 6
(a) shows the convergence trend of k on different datasets.
The k value converges very quickly, usually in four to five
iterations. This demonstrates the efficiency of the algorithm.
Figures 6 (b) and (c) show how the clustering quality pro-
gresses along with the dynamic update k. We know that both
density and entropy may decrease with increasing k. Their
decreasing trends are highly correlated to some measure
of diffuseness such as average cluster radius (or diameter).
There may exist a critical point in the plane with k as x-
axis and average cluster radius as y-axis, i.e., the average
cluster radius decreases quickly as soon as k falls below
the critical point but drops slowly as long as k remains at or
above the critical point. When the k value arrives at or above
the critical point in enough clustering iterations, both density
and entropy finally converge to stable values. Figure 6 (d)
shows the convergence tendency of DBI along with the
k values. A low DBI value identifies a clustering with
high intra-cluster similarity and low inter-cluster similarity.

0 1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

4000

Iteration

k

DBLP200k

DBPedia40k

BSBM10k

(a) k

0 1 2 3 4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iteration

D
e
n
s
it
y

DBLP200k

DBPedia40k

BSBM10k

(b) density

0 1 2 3 4

1.4

1.6

1.8

2

2.2

2.4

Iteration

E
n
tr

o
p
y

DBLP200k

DBPedia40k

BSBM10k

(c) entropy

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

D
B

I DBLP200k

DBPedia40k

BSBM10k

(d) DBI

0 1 2 3 4
0

500

1000

1500

2000

2500

Iteration

R
u

n
ti

m
e
 (

S
e
c
o

n
d

)

DBLP200k

DBPedia40k

BSBM10k

(e) Runtime

0 1 2 3 4
0.6

0.8

1

1.2

1.4

Iteration

W
e
ig
h
t

A−A

A−C

A−P

A−T

C−C

C−P

C−T

P−T

(f) Weight
Figure 6. Clustering Convergence on Different Datasets

ServiceCluster exhibits superior performance on all datasets
in terms of the DBI measure. The convergence tendency
of DBI is consistent with the convergence trend of k on
each dataset. Figures 6 (e) shows the curve of running time
keeps relatively stable when the k value arrives at or above
the critical point. Figure 6 (f) shows the trend of weight
updates on DBLP 200,000 Authors along with the dynamic
update k where letters “A” and “C” represent two types of
entities: author and conference respectively, and letters “P”
and “T” denote two kinds of associated attributes: prolific
and primary topic respectively.

VII. CONCLUSION

We have presented SERVICECLUSTER, a novel hetero-
geneous service network clustering framework. First, we
integrate multiple types of entities, attributes and links with
different semantics into a unified random walk distance
model. Second, we design a DSD method to naturally
produce initial k and initial centroids simultaneously. Third,
a dynamic learning approach is proposed to refine the link
weights, the k value and the cluster centroids to constantly
improve the clustering quality.

ACKNOWLEDGMENT
This material is based upon work partially supported by

the National Science Foundation under Grants IIS-0905493,
CNS-1115375, IIP-1230740, and a grant from Intel ISTC on
Cloud Computing.

REFERENCES

[1] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, S. Hellmann. Dbpedia - a crystallization point
for the web of data. In Web Semantics, 7(3), 154–165, 2009.

[2] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering wsdl
documents to bootstrap the discovery of web services,” in
ICWS, 2010, pp. 147–154.

[3] M. Aznag, M. Quafafou, N. Durand, and Z. Jarir, “Multiple
representations of web services: Discovery, clustering and
recommendation,” in ICWS, 2011, pp. 748–749.

[4] S. Dasgupta, S. Bhat, and Y. Lee, “Taxonomic clustering and
query matching for efficient service discovery,” ICWS’11.

[5] H. Q. Yu, X. Zhao, S. Reiff-Marganiec, and J. Domingue,
“Linked context: A linked data approach to personalised
service provisioning,” in ICWS, 2012, pp. 376–383.

[6] Y. Zhou, L. Liu, C.-S. Perng, A. Sailer, I. Silva-Lepe, and
Z. Su, “Ranking services by service network structure and
service attributes,” in ICWS, 2013.

[7] M. Aznag, M. Quafafou, and Z. Jarir, “Leveraging Formal
Concept Analysis with Topic Correlation for Service Cluster-
ing and Discovery,” in ICWS, 2014, pp. 153–160.

[8] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking
and clustering web services using multi-criteria dominance
relationships,” TSC, 3(3), pp. 163–177, 2010.

[9] H. Xiao, Y. Zou, J. Ng, and L. Nigul, “An approach for
context-aware service discovery and recommendation,” in
ICWS, 2010, pp. 163–170.

[10] M. Almulla, K. Almatori, and H. Yahyaoui, “A qos-based
fuzzy model for ranking real world web services,” ICWS’11.

[11] G. Liu, Y. Wang, M. A. Orgun, and H. Liu, “Discovering trust
networks for the selection of trustworthy service providers in
complex contextual social networks,” in ICWS, 2012.

[12] B. Kumara, I. Paik, and W. Chen, “Web-service Cluster-
ing with a Hybrid of Ontology Learning and Information-
retrieval-based Term Similarity,” in ICWS, 2013, pp. 340–347.

[13] M. Shiga, I. Takigawa, H. Mamitsuka. A spectral clustering
approach to optimally combining numericalvectors with a
modular network. In KDD, 2007.

[14] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a
structural clustering algorithm for networks. In KDD, 2007.

[15] V. Satuluri and S. Parthasarathy. Scalable graph clustering
using stochastic flows: Applications to community discovery.
In KDD, 2009.

[16] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities. In VLDB, 718–729, 2009.

[17] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed
graphs: An efficient incremental approach. In ICDM, 2010.

[18] M. Ji, J. Han, and M. Danilevsky. Ranking-based classifica-
tion of heterogeneous information networks. In KDD, 2011.

[19] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-
based approach to attributed graph clustering. SIGMOD’12.

[20] Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-
aware clustering of heterogeneous information networks with
incomplete attributes. PVLDB, 5(5):394–405, 2012.

[21] W. Cheng, X. Zhang, Z. Guo, Y. Wu, P. Sullivan, and
W. Wang. Flexible and robust co-regularized multi-domain
graph clustering. In KDD, 2013.

[22] Y. Zhou and L. Liu. Social influence based clustering of
heterogeneous information networks. In KDD, 2013.

[23] Y. Zhou and L. Liu. Activity-edge centric multi-label classi-
fication for mining heterogeneous information networks. In
KDD, 2014.

[24] D. Arthur and S. Vassilvitskii. K-means++: The advantages
of careful seeding. In SODA, pages 1027–1035, 2007.

[25] G. Hamerly and C. Elkan. Learning the k in k-means. In
NIPS, 2003.

[26] L. Kaufman and P. J. Rousseeuw. Clustering by means of
medoids. In Statistical Data Analysis based on the L1 Norm,
405–416, 1987.

[27] F. Hillier and G. Lieberman. Introduction to Operations
Research. In McGraw-Hill College, 1995.

[28] C. Bizer and A. Schultz, “The berlin sparql benchmark,”
IJSWIS, 5(2), pp. 1–24, 2009.

[29] T. Hofmann. Probabilistic latent semantic indexing. UAI’99.

