
 

ALTERNATIVES TO RELATIONAL DATABASES IN PRECISION MEDICINE: 
COMPARISON OF NOSQL APPROACHES FOR BIG DATA STORAGE USING 

SUPERCOMPUTERS 
 
 
 
 
 
 
 

by 

Enrique Israel Velazquez 

MS, University of Pittsburgh, 2011 

MPH, University of Pittsburgh, 2011 

MD, University of Nuevo Leon Medical School, Mexico, 2005 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Department of Human Genetics 

Graduate School of Public Health in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 

 
 
 

 

University of Pittsburgh 

2015 



 ii 

UNIVERSITY OF PITTSBURGH 

Graduate School of Public Health 
 

This dissertation was presented 
 

by 
 

Enrique Israel Velazquez 
 

It was defended on 

June 29, 2015 

and approved by 

Dissertation Advisor: 
Michael Barmada, Ph.D., Associate Professor, Department of Human Genetics, Graduate School of 

Public Health; Associate Professor, Department of Biomedical Informatics; Director, Center for 
Computational Genetics, Graduate School of Public Health; Associate Director, Center for Simulation 

and Modeling, University of Pittsburgh; Co-Director, Informatics Resource Center, Institute for 
Personalized Medicine, University of Pittsburgh Schools of the Health Sciences and University of 

Pittsburgh Medical Center (UPMC) 
 
 

Committee Members: 
Eleonor Feingold, Ph.D., Professor, Department of Human Genetics; Professor, Department of 

Biostatistics; Associate Dean for Education, Office of the Dean; Senior Associate Dean, Office of the 
Dean, Graduate School of Public Health, University of Pittsburgh 

 
 

Harry Hochheiser, Ph.D., Assistant Professor, Department of Biomedical Informatics, School of 
Medicine, University of Pittsburgh 

 
 

Alexandros Labrinidis, Ph.D., Associate Professor, Department of Computer Science; Co-Director, 
Advanced Data Management Technologies Laboratory, University of Pittsburgh; Adjunct Associate 

Professor, Computer Science Department, Carnegie Mellon University 
 
 
Ryan Minster, Ph.D., Assistant Professor, Department of Human Genetics, Graduate School of Public 

Health, University of Pittsburgh 
 
 
 

 

 

 



 iii 

  

Copyright © by Enrique Israel Velazquez 

2015 



 iv 

ABSTRACT 

Improvements in medical and genomic technologies have dramatically increased the production 

of electronic data over the last decade. As a result, data management is rapidly becoming a major 

determinant, and urgent challenge, for the development of Precision Medicine. Although 

successful data management is achievable using Relational Database Management Systems 

(RDBMS), exponential data growth is a significant contributor to failure scenarios. Growing 

amounts of data can also be observed in other sectors, such as economics and business, which, 

together with the previous facts, suggests that alternate database approaches (NoSQL) may soon 

be required for efficient storage and management of big databases. However, this hypothesis has 

been difficult to test in the Precision Medicine field since alternate database architectures are 

complex to assess and means to integrate heterogeneous electronic health records (EHR) with 

dynamic genomic data are not easily available. 

In this dissertation, we present a novel set of experiments for identifying NoSQL 

database approaches that enable effective data storage and management in Precision Medicine 

using patients’ clinical and genomic information from the cancer genome atlas (TCGA). The first 

experiment draws on performance and scalability from biologically meaningful queries with 

differing complexity and database sizes. The second experiment measures performance and 

Michael Barmada, Ph.D. 
 
 

ALTERNATIVES TO RELATIONAL DATABASES IN PRECISION MEDICINE: 
COMPARISON OF NOSQL APPROACHES FOR BIG DATA STORAGE USING 

SUPERCOMPUTERS 
 

Enrique Israel Velazquez, PhD 

University of Pittsburgh, 2015

 



 v 

scalability in database updates without schema changes. The third experiment assesses 

performance and scalability in database updates with schema modifications due dynamic data. 

We have identified two NoSQL approach, based on Cassandra and Redis, which seems to be the 

ideal database management systems for our precision medicine queries in terms of performance 

and scalability. We present NoSQL approaches and show how they can be used to manage 

clinical and genomic big data. Our research is relevant to the public health since we are focusing 

on one of the main challenges to the development of Precision Medicine and, consequently, 

investigating a potential solution to the progressively increasing demands on health care. 

 

 



 vi 

TABLE OF CONTENTS 

PREFACE ............................................................................................................................... XXII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 THE INFORMATION AGE .............................................................................. 3 

1.2 EVOLUTION OF MEDICINE: PRECISION MEDICINE ............................ 4 

1.2.1 Genetic Markers .............................................................................................. 6 

1.2.2 DNA microarray and gene expression studies .............................................. 7 

1.2.3 Genetic linkage studies .................................................................................... 8 

1.2.4 Genome wide association studies.................................................................... 9 

1.2.5 DNA sequencing ............................................................................................. 10 

1.2.6 Sanger sequencing ......................................................................................... 11 

1.2.7 Next generation sequencing (NGS) .............................................................. 11 

1.2.8 Exome sequencing.......................................................................................... 12 

1.3 THE POST-GENOMIC AGE .......................................................................... 13 

1.3.1 The Human Genome Project ........................................................................ 13 

1.3.2 HAPMAP Project .......................................................................................... 14 

1.3.3 1000 Genome Project ..................................................................................... 16 

1.3.4 ENCODE Project ........................................................................................... 16 

1.3.5 GeneBank Project .......................................................................................... 18 



 vii 

1.3.6 INSDC Project ............................................................................................... 18 

1.3.7 The Cancer Genome Atlas (TCGA) ............................................................. 19 

1.3.8 Personal Genome Projects ............................................................................ 20 

1.3.8.1 Venter genome project ........................................................................ 20 

1.3.8.2 Watson genome project ...................................................................... 21 

1.3.8.3 African genome project ...................................................................... 21 

1.3.8.4 Asian genome projects ........................................................................ 22 

1.3.9 Clinical Genome Projects .............................................................................. 23 

1.3.9.1 Charcot-Marie-Tooth neuropathy clinical sequencing case ........... 24 

1.3.9.2 Crohn-like disease clinical sequencing case ...................................... 24 

1.3.9.3 Hypercholesterolemia clinical sequencing case ................................ 25 

1.3.9.4 Dopa-responsive dystonia clinical sequencing case.......................... 26 

1.4 EVOLUTION OF DATABASE MANAGEMENT SYSTEMS ..................... 27 

1.5 COMPARISON BETWEEN SQL AND NOSQL ........................................... 31 

1.5.1 ACID versus BASE transactions .................................................................. 33 

1.5.2 NoSQL Approaches ....................................................................................... 35 

1.5.2.1 Document model .................................................................................. 35 

1.5.2.2 Key-Value model ................................................................................. 37 

1.5.2.3 Column model ..................................................................................... 39 

1.5.2.4 Graph model ........................................................................................ 40 

1.5.3 MapReduce programming model ................................................................ 41 

1.6 BIG DATA CHALLENGES FOR CLINICAL AND GENOMIC 

INFORMATION ................................................................................................................ 42 



 viii 

1.7 DATA SIZE ........................................................................................................ 43 

1.8 DATA RATE ...................................................................................................... 44 

1.9 COMPUTATIONAL COMPLEXITY ............................................................ 44 

1.10 DATA SHARING .............................................................................................. 45 

1.11 ORGANIZATION OF THIS DISSERTATION ............................................. 46 

2.0 BACKGROUND ........................................................................................................ 48 

2.1 DATA STORAGE AND MANAGEMENT..................................................... 48 

2.2 PERFORMANCE .............................................................................................. 50 

2.2.1 Query time ...................................................................................................... 50 

2.3 SCALABILITY .................................................................................................. 51 

2.4 SIGNIFICANCE ................................................................................................ 52 

2.5 PUBLIC HEALTH RELEVANCE .................................................................. 55 

2.6 INSTRUMENTATION ..................................................................................... 56 

2.6.1 Hardware instrumentation ........................................................................... 56 

2.6.2 Software instrumentation ............................................................................. 58 

2.6.2.1 Database Settings ................................................................................ 58 

2.7 DATA SOURCES .............................................................................................. 60 

3.0 DATA MANAGEMENT ........................................................................................... 62 

3.1 ANNOTATION, TRANSFORMATION, IMPORTING AND DATA 

MANIPULATION PROCESS .......................................................................................... 62 

3.1.1 Database building process............................................................................. 62 

3.1.1.1 Pre-computed clinical files ................................................................. 62 

3.1.1.2 Genomic pre-computed files .............................................................. 63 



 ix 

3.1.2 Database transformation process ................................................................. 64 

3.2 DESCRIPTION OF QUERIES ........................................................................ 65 

3.2.1 Static queries .................................................................................................. 67 

3.2.2 Dynamic queries ............................................................................................ 68 

4.0 PERFORMANCE AND SCALABILITY ON QUERIES OF GRADUALLY 

INCREASING COMPLEXITY AND DATABASE SIZE ...................................................... 71 

4.1 INTRODUCTION ............................................................................................. 71 

4.2 EXPERIMENT 1: COMPARING PERFORMANCE AND SCALABILITY 

ON QUERIES OF GRADUALLY INCREASING COMPLEXITY AND DATABASE 

SIZE  ............................................................................................................................. 73 

4.2.1 Experimental results...................................................................................... 76 

4.2.1.1 Query time results for queries of varying complexity in databases of 

different sizes ...................................................................................................... 76 

4.2.1.2 Summary .............................................................................................. 88 

5.0 SCALABILITY ON UPDATING WITHOUT SCHEMA CHANGES ................ 99 

5.1 INTRODUCTION ............................................................................................. 99 

5.2 EXPERIMENT 2: COMPARING SCALABILITY ON UPDATING 

WITHOUT SCHEMA CHANGES ................................................................................. 100 

5.2.1 Experimental results.................................................................................... 101 

5.2.1.1 Query time results for queries of varying complexity in databases of 

different sizes .................................................................................................... 102 

5.2.1.2 Summary ............................................................................................ 113 

6.0 SCALABILITY ON UPDATING WITH SCHEMA CHANGES ....................... 124 



 x 

6.1 INTRODUCTION ........................................................................................... 124 

6.2 EXPERIMENT 3: COMPARING SCALABILITY ON UPDATING WITH 

SCHEMA CHANGES ...................................................................................................... 125 

6.2.1 Experimental Results .................................................................................. 127 

6.2.1.1 Query time results for queries of varying complexity and for 

different database sizes .................................................................................... 128 

6.2.1.2 Summary ............................................................................................ 139 

7.0 CONCLUSIONS AND FUTURE WORK ............................................................. 150 

7.1 CONTRIBUTIONS ......................................................................................... 151 

7.2 CONCLUSIONS .............................................................................................. 153 

7.3 LIMITATIONS ................................................................................................ 179 

7.4 FUTURE RESEARCH DIRECTIONS ......................................................... 181 

7.5 DISCUSSION ................................................................................................... 183 

APPENDIX: DATA FEATURES ............................................................................................ 190 

BIBLIOGRAPHY ..................................................................................................................... 196 



 xi 

 LIST OF TABLES 

 

Table 1. Example of a pre-computed clinical file. ........................................................................ 63 

Table 2. Example of a pre-computed genomic file. ...................................................................... 64 

Table 3. Query performance of experiment 1: query 1. ................................................................ 83 

Table 4. Query performance of experiment 1: query 2. ................................................................ 83 

Table 5. Query performance of experiment 1: query 3. ................................................................ 83 

Table 6. Query performance of experiment 1: query 4. ................................................................ 84 

Table 7. Query performance of experiment 1: query 5. ................................................................ 84 

Table 8. Query performance of experiment 1 in larger databases: query 1. ................................. 84 

Table 9. Query performance of experiment 1 in larger databases: query 2. ................................. 85 

Table 10. Query performance of experiment 1 in larger databases: query 3. ............................... 85 

Table 11. Query performance of experiment 1 in larger databases: query 4. ............................... 86 

Table 12. Query performance of experiment 1 in larger databases: query 5. ............................... 86 

Table 13. Query performance of experiment 2: query 1. ............................................................ 108 

Table 14. Query performance of experiment 2: query 2. ............................................................ 108 

Table 15. Query performance of experiment 2: query 3. ............................................................ 108 

Table 16. Query performance of experiment 2: query 4. ............................................................ 109 

Table 17. Query performance of experiment 2: query 5. ............................................................ 109 



 xii 

Table 18. Query performance of experiment 2 in larger databases: query 1. ............................. 109 

Table 19. Query performance of experiment 2 in larger databases: query 2. ............................. 110 

Table 20. Query performance of experiment 2 in larger databases: query 3. ............................. 110 

Table 21. Query performance of experiment 2 in larger databases: query 4. ............................. 111 

Table 22. Query performance of experiment 2 in larger databases: query 5. ............................. 111 

Table 23. Query performance of experiment 3: query 1. ............................................................ 134 

Table 24. Query performance of experiment 3: query 2. ............................................................ 134 

Table 25. Query performance of experiment 3: query 3. ............................................................ 134 

Table 26. Query performance of experiment 3: query 4. ............................................................ 135 

Table 27. Query performance of experiment 3: query 5. ............................................................ 135 

Table 28. Query performance of experiment 3 in larger databases: query 1. ............................. 135 

Table 29. Query performance of experiment 3 in larger databases: query 2. ............................. 136 

Table 30. Query performance of experiment 3 in larger databases: query 3. ............................. 136 

Table 31. Query performance of experiment 3 in larger databases: query 4. ............................. 137 

Table 32. Query performance of experiment 3 in larger databases: query 5. ............................. 137 

Table 33. DBMSs with the lowest query times according to different database size and complex 

queries using standard computing resources............................................................................... 154 

Table 34. DBMSs with the lowest query times according to different database size and complex 

queries using supercomputing resources. ................................................................................... 155 

Table 35. Descriptions of database files, Query outputs and setup database effort using 

MongoDB in Experiment 1. ........................................................................................................ 173 

Table 36. Descriptions of database files, Query outputs and setup database effort using Redis in 

Experiment 1. .............................................................................................................................. 174 



 xiii 

Table 37. Descriptions of database files, Query outputs and setup database effort using 

Cassandra in Experiment 1. ........................................................................................................ 174 

Table 38. Descriptions of database files, Query outputs and setup database effort using MySQL 

in Experiment 1. .......................................................................................................................... 175 

Table 39. Descriptions of database files, Query outputs and setup database effort using 

MongoDB in Experiment 2. ........................................................................................................ 175 

Table 40. Descriptions of database files, Query outputs and setup database effort using Redis in 

Experiment 2. .............................................................................................................................. 176 

Table 41. Descriptions of database files, Query outputs and setup database effort using 

Cassandra in Experiment 2. ........................................................................................................ 176 

Table 42. Descriptions of database files, Query outputs and setup database effort using MySQL 

in Experiment 2. .......................................................................................................................... 177 

Table 43. Descriptions of database files, Query outputs and setup database effort using 

MongoDB in Experiment 3. ........................................................................................................ 177 

Table 44. Descriptions of database files, Query outputs and setup database effort using Redis in 

Experiment 3. .............................................................................................................................. 178 

Table 45. Descriptions of database files, Query outputs and setup database effort using 

Cassandra in Experiment 3. ........................................................................................................ 178 

Table 46. Descriptions of database files, Query outputs and setup database effort using MySQL 

in Experiment 3. .......................................................................................................................... 179 

Table 47. Attributes of data models and NoSQL technologies used in this project. .................. 190 

Table 48. Benefits and limitations using NoSQL Databases. ..................................................... 191 



 xiv 

LIST OF FIGURES 

 

Figure 1. Timeline of database management systems and big data challenges in Precision 

Medicine. ...................................................................................................................................... 28 

Figure 2. Example of a suitable database management system for Active Laboratories that 

include patients’ demographic, clinical and genomic characteristics. .......................................... 31 

Figure 3. Software architectures developed on the DXC. ............................................................ 57 

Figure 4. BRCA2 variants identified as European founder mutations. ........................................ 68 

Figure 5. Workflow of Experiment 1. ........................................................................................... 75 

Figure 6. Variation in query time (base-10 log scale) of experiment 1: query 1. ......................... 89 

Figure 7. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: 

query 1. ......................................................................................................................................... 89 

Figure 8. Variation in query time (base-10 log scale) of experiment 1: query 2. ......................... 90 

Figure 9. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: 

query 2. ......................................................................................................................................... 90 

Figure 10. Variation in query time (base-10 log scale) of experiment 1: query 3. ....................... 91 

Figure 11. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1: query 3. ..................................................................................................................................... 91 

Figure 12. Variation in query time (base-10 log scale) of experiment 1: query 4. ....................... 92 



 xv 

Figure 13. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1: query 4. ..................................................................................................................................... 92 

Figure 14. Variation in query time (base-10 log scale) of experiment 1: query 5. ....................... 93 

Figure 15. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1: query 5. ..................................................................................................................................... 93 

Figure 16. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 

1..................................................................................................................................................... 94 

Figure 17. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1 in larger databases: query 1. ....................................................................................................... 94 

Figure 18. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 

2..................................................................................................................................................... 95 

Figure 19. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1 in larger databases: query 2. ....................................................................................................... 95 

Figure 20. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 

3..................................................................................................................................................... 96 

Figure 21. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1 in larger databases: query 3. ....................................................................................................... 96 

Figure 22. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 

4..................................................................................................................................................... 97 

Figure 23. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1 in larger databases: query 4. ....................................................................................................... 97 

Figure 24. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 

5..................................................................................................................................................... 98 



 xvi 

Figure 25. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

1 in larger databases: query 5. ....................................................................................................... 98 

Figure 26. Workflow of Experiment 2. ....................................................................................... 101 

Figure 27. Variation in query time (base-10 log scale) of experiment 2: query 1. ..................... 114 

Figure 28. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2: query 1. ................................................................................................................................... 114 

Figure 29.Variation in query time (base-10 log scale) of experiment 2: query 2. ...................... 115 

Figure 30. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2: query 2. ................................................................................................................................... 115 

Figure 31. Variation in query time (base-10 log scale) of experiment 2: query 3. ..................... 116 

Figure 32. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2: query 3. ................................................................................................................................... 116 

Figure 33. Variation in query time (base-10 log scale) of experiment 2: query 4. ..................... 117 

Figure 34. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2: query 4. ................................................................................................................................... 117 

Figure 35. Variation in query time (base-10 log scale) of experiment 2: query 5. ..................... 118 

Figure 36. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2: query 5. ................................................................................................................................... 118 

Figure 37. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 

1................................................................................................................................................... 119 

Figure 38. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2 in larger databases: query 1. ..................................................................................................... 119 



 xvii 

Figure 39.Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 

2................................................................................................................................................... 120 

Figure 40. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2 in larger databases: query 2. ..................................................................................................... 120 

Figure 41. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 

3................................................................................................................................................... 121 

Figure 42. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2 in larger databases: query 3. ..................................................................................................... 121 

Figure 43. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 

4................................................................................................................................................... 122 

Figure 44. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2 in larger databases: query 4. ..................................................................................................... 122 

Figure 45. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 

5................................................................................................................................................... 123 

Figure 46. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

2 in larger databases: query 5. ..................................................................................................... 123 

Figure 47. Workflow of Experiment 3. ....................................................................................... 127 

Figure 48. Variation in query time (base-10 log scale) of experiment 3: query 1. ..................... 140 

Figure 49. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3: query 1. ................................................................................................................................... 140 

Figure 50. Variation in query time (base-10 log scale) of experiment 3: query 2. ..................... 141 

Figure 51. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3: query 2. ................................................................................................................................... 141 



 xviii 

Figure 52. Variation in query time (base-10 log scale) of experiment 3: query 3. ..................... 142 

Figure 53. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3: query 3. ................................................................................................................................... 142 

Figure 54. Variation in query time (base-10 log scale) of experiment 3: query 4. ..................... 143 

Figure 55. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3: query 4. ................................................................................................................................... 143 

Figure 56. Variation in query time (base-10 log scale) of experiment 3: query 5. ..................... 144 

Figure 57. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3: query 5. ................................................................................................................................... 144 

Figure 58. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 

1................................................................................................................................................... 145 

Figure 59. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3 in larger databases: query 1. ..................................................................................................... 145 

Figure 60. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 

2................................................................................................................................................... 146 

Figure 61. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3 in larger databases: query 2. ..................................................................................................... 146 

Figure 62. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 

3................................................................................................................................................... 147 

Figure 63. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3 in larger databases: query 3. ..................................................................................................... 147 

Figure 64. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 

4................................................................................................................................................... 148 



 xix 

Figure 65. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3 in larger databases: query 4. ..................................................................................................... 148 

Figure 66. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 

5................................................................................................................................................... 149 

Figure 67. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 

3 in larger databases: query 5. ..................................................................................................... 149 

Figure 68. Variation in query time of experiment 1: query 1. .................................................... 158 

Figure 69. Variation in query time of experiment 1: query 2. .................................................... 159 

Figure 70. Variation in query time of experiment 1: query 3. .................................................... 159 

Figure 71. Variation in query time of experiment 1: query 4. .................................................... 160 

Figure 72. Variation in query time of experiment 1: query 5. .................................................... 160 

Figure 73. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 

1................................................................................................................................................... 161 

Figure 74. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 

2................................................................................................................................................... 161 

Figure 75. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 

3................................................................................................................................................... 162 

Figure 76. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 

4................................................................................................................................................... 162 

Figure 77. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 

5................................................................................................................................................... 163 

Figure 78. Variation in query time of experiment 2: query 1. .................................................... 163 

Figure 79. Variation in query time of experiment 2: query 2. .................................................... 164 



 xx 

Figure 80. Variation in query time of experiment 2: query 3. .................................................... 164 

Figure 81. Variation in query time of experiment 2: query 4. .................................................... 165 

Figure 82. Variation in query time of experiment 2: query 5. .................................................... 165 

Figure 83. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 

1................................................................................................................................................... 166 

Figure 84. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 

2................................................................................................................................................... 166 

Figure 85. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 

3................................................................................................................................................... 167 

Figure 86. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 

4................................................................................................................................................... 167 

Figure 87. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 

5................................................................................................................................................... 168 

Figure 88. Variation in query time of experiment 3: query 1. .................................................... 168 

Figure 89. Variation in query time of experiment 3: query 2. .................................................... 169 

Figure 90. Variation in query time of experiment 3: query 3. .................................................... 169 

Figure 91. Variation in query time of experiment 3: query 4. .................................................... 170 

Figure 92. Variation in query time of experiment 3: query 5. .................................................... 170 

Figure 93. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 

1................................................................................................................................................... 171 

Figure 94. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 

2................................................................................................................................................... 171 



 xxi 

Figure 95. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 

3................................................................................................................................................... 172 

Figure 96. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 

4................................................................................................................................................... 172 

Figure 97. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 

5................................................................................................................................................... 173 

Figure 98. Data structure of Document store for MongoDB. ..................................................... 192 

Figure 99. Data structure of Key-Value store for Redis. ............................................................ 193 

Figure 100. Data structure of Column store for Cassandra. ....................................................... 194 

Figure 101. Data structure of Table store for MySQL. ............................................................... 195 



 xxii 

PREFACE 

Finishing a Doctorate program can be a lonely process. I have been lucky enough to have the 

advice of many people. This section is my attempt to identify those who have made this 

dissertation possible. 

I would like to thank, first and foremost, my wife Martha, who has encouraged me to 

pursue my interest and never fails to support me in any endeavor. Without her, along with my 

daughter Victoria and my family, I would not be the person I am today. Thanks to Vicka, Brenda 

and Abu for their support. I also offer thanks to my aunt Alma Elisa for her confidence in me. 

Thanks to Michael Barmada, my advisor, for sticking with me to the end, even through 

times when health issues made work even more challenging. Despite his busy schedule, the 

advice Michael provided was always accurate, and his well-timed words kept me going to 

complete the whole Ph.D. 

Thanks to my committee members -- Eleonor Feingold, Harry Hochheiser, Alexandros 

Labrinidis and Ryan Minster -- for their patient advising during the doctorate process. Their 

input on my dissertation has been invaluable. 

Thanks to Nick Nystrom, Philip Blood and Bryon Gill from the Pittsburgh 

Supercomputing Center, Extreme Science and Engineering Discovery Environment (XSEDE), 

Data Exacell (DXC) pilot project and BRIDGES Pittsburgh Supercomputing Resource center at 



 xxiii 

the Carnegie Mellon University/University of Pittsburgh for their assistance and support. They 

provided me with the hardware and software resources to perform my big data experiments.  

I would also like to thank Illyas Kamboh and all the members of his lab for giving me the 

opportunity to collaborate on their research projects that provided me training in the area of 

statistical and computational genetics. 

Thanks to Ronald LaPorte, my research advisor during my first two years of the graduate 

school. He has been unfailingly supportive, and he championed my Ph.D candidacy even when I 

was no longer his student. Thanks also to Etienne Sibille for his encouragement, for always 

speaking well of me, and for his excellent support while my statistical genetic project. 

I am grateful to Socrates Rizzo Garcia, Juan Enriquez Cabot, Julio Frenk Mora, Jesus 

Ancer Rodriguez and Luis Eugenio Todd Perez for their six years of excellent support and 

advice in the fields of Medicine, Genetics, Genomics, Public Health and Global Health. Without 

them this dissertation would not have been possible. 

Special thanks to different laboratories that let me present my research and obtain 

invaluable feedback from them: Thanks to George M. Church at the Department of Human 

Genetics at Harvard Medical School and his laboratory members. Thanks to Daniel Salomon at 

the Department of Molecular and Experimental Research at the Scripps Research Institute 

(TSRI) campus La Jolla CA and all his laboratory members. Thanks to Andrew Su and his 

laboratory members, also at the TSRI. Thanks to Cecilia Lo at the Department of Developmental 

Biology, Children’s Hospital UPMC, University of Pittsburgh and her laboratory members. 

Thanks to the Department of Genomic Medicine at the Georgia Regents University and all their 

laboratory members. 



 xxiv 

Thanks to colleagues of various institutions where I have discussed my research project: 

Human Longevity Institute in La Jolla CA, Illumina in La Jolla CA, The Sanger Institute at 

Cambridge United Kingdom, AbbVie Pharmaceutical Research in Germany, University of 

California in Riverside CA and Harvard School of Public Health in Boston MA. 

I also offer thanks to all the friends and colleagues who simply made my life better over 

the course of this project: Professors, students and staff from the Department of Human Genetics, 

Department of Epidemiology, Multidisciplinary Master of Public Health Program and Center of 

Global Health at the Graduate School of Public Health, University of Pittsburgh. 



 1 

1.0  INTRODUCTION 

While medical databases have been created to collect related data since ancient times, anywhere 

from the late 1950s to the late 1970s the Digital revolution began; databases progressively 

evolved to digital formats, allowing for data collection at unprecedented speeds?.  In fact, 

recently, with the governmental electronic health record initiative and the completion of the 

human genome sequence which made possible the beginning of Precision Medicine, medical and 

genomic databases have experienced a continuous, unsustainable growth. On average, 80 

megabytes of data per person is added every year to individuals’ electronic health records (EHR) 

in hospitals that have adopted this technology, and experts expect that this rate will increase as 

the amount of genetic data expands over time.1 Moreover, GeneBank (NIH’s genetic sequence 

database) - one of the most influential databases used to analyze genetic data - is doubling its 

information content every eighteen months.2; 3 As a result, data management is rapidly becoming 

a major determinant, and urgent challenge, for the development of Precision Medicine. 

Today, although successful data management is achievable using popular database 

systems (SQL), exponential data growth is a significant contributor to failure scenarios related to 

problems with complex queries on heterogeneous data, increasing database size, and frequent 

data updates that include database schema changes. 

Growing data can also be observed in other sectors such as economics and business, 

suggesting that across the board alternate database approaches may be required to efficiently 



 2 

store and manage big databases.4; 5 However, this hypothesis has been difficult to test in the 

Precision Medicine field since alternate database architectures are complex to assess4 and means 

to integrate heterogeneous electronic health records (EHR) with dynamic genomic data are not 

easily available.6  

Today, few efforts have been focused on addressing the exponential growth in clinical 

and genomic data: only seven translational platforms from the literature that allow the 

management and exploration of clinical and omics data have been identiifed;7 scientists have 

already explored concerns and tasks facing health information technology (HIT) developers 

regarding ethical, genetics and technological considerations, pointing out that HIT developers are 

key in the development of Precision Medicine.8 However, different studies have just focused on 

clinical data, bringing interesting big data solutions.  Studies have also measured the 

performance of data manipulation of big databases.9 Researchers have summarized the state-of-

the-art efforts in management of clinical big data, using the MapReduce programming 

framework and Hadoop platform to process huge volumes of clinical data.10 However, few 

studies have developed methods to study alternatives (other than SQL-based options) in database 

management systems, such as NoSQL databases. One study did evaluate the suitability of 

NoSQL databases for structured clinical data by studying their performance, scalability, 

flexibility and extensibility, and it concluded that NoSQL systems have the potential to become a 

key database technology for clinical data management in the next years.11 

In this dissertation, we identify the most suitable NoSQL databases for effective data 

management in Precision Medicine. In particular, we present novel experiments that focus on 

evaluating performance and scalability of integrated clinical and genomic databases from 

patients diagnosed with breast cancer. 



 3 

Comparing SQL and NoSQL systems in terms of performance and scalability to 

effectively manage big data has always been a painstaking and subtle process, but several factors 

(i.e., complex queries, increasing database size and frequent data updates, including database 

schema changes) related to big clinical-genomic databases interact to make it even more difficult 

today. In the following sections, we describe these factors in detail. 

1.1 THE INFORMATION AGE 

The Digital revolution of the late 1950s, when analog changed over to digital technology, was 

succeeded by the current Information Age (also known as the Computer Age, Digital Age and 

New Media Age) . At this point in time, databases are rely mostly on computerization of 

information. Today, societies are globalized and dependent on digital databases and software to 

manipulate and analyze their data. However this dependence on digital formats is growing 

considerably, resulting in challenges to data storage capabilities. This challenge is made evident 

by the growth in data storage needs in the past three decades.  In 1986, humankind was able to 

store, optimally compressed, 2.6 exabytes. This amount grew subsequently to 15.8 exabytes in 

1993, 54.5 exabytes in 2000, and 295 exabytes in 2007, with an increase in globally stored 

information of 23% per year.12 Thus, in these 21 years the information stored increased by 113- 

fold. In the US, it is estimated that by 2009, almost all US companies had stored an average of 

200 terabytes (double the size of the US Wal-Mart's data warehouse in 1999).13 

Specifically, in the health care field, electronic health records, email and social media 

have renovated the medical and scientific environment, facilitating information exchange.14 This 

renovation is creating big data, challenging that presents challenges to the data storage, 



 4 

processing, and analysis.15 It is hardly estimated that the global size of Big Data in healthcare 

was approximately 150 exabytes in 2011, with an increasing yearly rate between 1.2 and 2.4 

exabytes.16 This rate is already challenging data manipulation but will urge effective data 

management in the coming years. 

The use of big data generated in the current Information Age is extremely valuable for 

US health care. In 2011, a study estimated that efficiently using big data in the US healthcare 

industry would generate $300 billion in value every year.13 Big data creates value in varous 

broad ways: unlocking significant health data by exposing transparent health information and 

using it on a higher frequency basis, such as registering which medications are more successful 

than others; collecting detailed health information on everything, from EHR to medical 

inventories, leading to better health care management decisions, such as those that increase the 

population health levels and decrease total spending levels; tailoring healthcare needs to patients, 

such as specific medical specialists and treatments in specific populations; and developing novel 

services and products such as preventive tests, diagnostic exams and treatments. However the 

recently generated genomic information that will soon be integrated with healthcare will 

exponentially increase the value of big data still more, but with a high cost: exponentially 

increasing the already overly-burdensome healthcare data. 

1.2 EVOLUTION OF MEDICINE: PRECISION MEDICINE 

It is through the creation of standards that medical practice is shaped. Since prehistoric times, 

humans have classified plants to treat diseases. In ancient times, Egyptians, Babylonians, Indians 

and Chinese standardized poisons, creams, herbs and teas to treat ailments. Ancient Greeks 



 5 

developed a medical system based on the classification of human fluids to cure patients. With the 

birth of modern medicine, new knowledge obtained from relevant scientific events updated 

traditional standards in the medical practice; for example, the invention of the microscope 

advanced research into microorganisms, while the discovery of X-rays modernized diagnostic 

procedures. Important scientific events generate new knowledge to update standards that 

successively shape medical practice. 

In the last 60 years we have observed notable scientific events in the genomics field17. 

These extend from the discovery of the structure of DNA18, published in 1953, to the publication 

of the human genome project19 (HGP) in 2003. This recently generated knowledge will 

eventually impact current medical practice standards, giving rise to Personalized Medicine or 

Precision Medicine. 

Today, Personalized Medicine is related to the use of individual genetic information to 

prevent, diagnose and treat diseases; however, this term has evolved.20 Some papers use 

Personalized Medicine to refer to the best treatment for an individual, such as those publications 

in 197121, 199022 and 199923 that, according to PUBMED, were the first times someone 

mentioned this term. Other papers have referenced personalized medicine, but linked it to the use 

of an individual’s genetic information. These more recent papers, mostly published after the 

publication of the human genome project (HGP), introduced the current definition of 

Personalized Medicine; thus now it is common to find in the scientific literature the term 

Personalized Medicine or Precision Medicine referring to individualized prevention, diagnosis 

and treatment due to the use of the genetic information from each particular individual. 

In the same way that the HGP impacted the definition of the term “Precision Medicine,” 

introducing the human genome concept, this and other relevant scientific events have generated 



 6 

new knowledge to not only update medical terms, but to reshape current medicine into Precision 

Medicine. The inclusion of genetic characteristics from each individual has been possible due to 

the advent of fast, accurate genotyping and whole genome sequencing technologies. Many of 

these resources and techniques, listed below, have contributed to our understanding of the 

function and organization of our genomes, lending better understanding of how changes in the 

sequence could impact clinical treatment. 

1.2.1 Genetic Markers 

A genetic marker is a specific DNA sequence or locus, often related to a recognizable trait. The 

identification of specific DNA sequences was possible as a result of the development of several 

biological molecular methods. Some of the first genetic markers described belong to a class 

known as Restriction Fragment Length Polymorphisms (RFLP), which are genetic variants that 

change the pattern of restriction fragments seen after digestion of DNA with a restriction enzyme 

and separation of the resulting fragments by gel electrophoresis. These markers were first 

described in 1974 and were used five years later in humans to study a particular sequence of 

DNA in the globin gene cluster. From 1974 to 1989, different genetic markers were used to 

detect DNA-level variation; these genetic markers were developed as a result of a new 

methodology that replaced the conventional hybridization-based assay methodology, namely the 

Polymerase Chain Reaction (PCR). During the period 1990-1993, the ongoing discovery of new 

genetic markers led to several advances in the molecular genetic field, such as recognition of 

micro-satellites or Single Sequence Repeats (SSRs) – tandem arrays of repeated sequences of 2-6 

base-pairs of DNA that occur throughout genomes of all eukaryotic organisms. Microsatellite 

genetic markers quickly became the markers of choice among the genome mapping community 



 7 

since they were common and distributed across the whole genome, and these repeated motifs 

offered a foothold for particular amplification using PCR. From 1994 until today many markers 

have improved the identification of genomic variation. New genetic markers have been identified 

because of the technology spillover from various genome projects. For example, today there is an 

array of molecular markers that have been identified due to the use of the high-throughput 

automated mode of DNA variants detection. Detection of DNA variants has helped further the 

development of Precision Medicine.8; 9 

1.2.2 DNA microarray and gene expression studies 

This tool let scientists detect DNA sequences, analyze gene expressions, determine genetic risks 

and identify genes that share the same expression pattern. A DNA microarray is a laboratory 

instrument that consists of microscopic DNA spots containing specific DNA sequences known as 

probes embedded in a solid surface. DNA microarrays were originally developed from an 

existing method -- Southern Blotting24 -- and adapted to be used in molecular biology to detect 

DNA sequences. In 1982, DNA microarrays were first reported as a novel approach to analyze 

gene expression in a study of human colonic tumors and normal tissues11. The study showed one 

of the mains advantage of this method: the ability to measure expressions of large numbers of 

genes simultaneously. By 1987, DNA microarray had been used in multiple samples25 –more 

than 4,000 human sequences– and four years later, it was found that DNA microarrays could 

assist in determining the genetic risk of colonic tissues.26 Beyond its capacity to measure gene 

expression, DNA microarrays have also been found to be useful for identifying genes that shared 

the same expression pattern. In 1987, different genes –where their expression are modulated by 

interferon– were identified using a collection of DNA arrays for expression.27 In 1995 was 



 8 

reported the first use of miniaturized microarrays for gene expression28 that two years later make 

possible the microarray expression analysis of a complete eukaryotic genome (Saccharomyces 

cerevisiae),29 giving rise to the advent of gene expression studies. 

Gene expression studies allow? the determination of the synthesis of functional gene 

products (proteins and RNA) and the regulation of gene expression. These studies focus on the 

control of gene expression that allows cells to produce essential gene products Some examples 

are control of the expression of insulin, which regulates blood glucose levels; the inactivation of 

the X chromosome in females, which prevents the expression of other genes it comprises, and 

control of the expression of cyclin, which influences the progression of the eukaryotic cell cycle. 

These studies have also generated information about gene expression related with interactions 

between specific molecules.30; 31 The study of how molecular interaction affects the transcription 

of DNA, post-translational modification of a protein RNA splicing and translation of RNA32; 33 

opens the door to a better understanding of how genes function in the organism. 

1.2.3 Genetic linkage studies 

These particular studies updated the analysis of inheritance patterns in families by studying 

single gene disorders. These studies focus on the inheritance patterns of genetic markers, 

generally in large families that share a common condition. In other words, these studies are based 

in the increased tendency of neighborhood genes in a chromosome to be inherited together. Thus 

by studying genetic markers near targeted genes in a chromosome, the inheritance of those genes 

of interest can be determined. Genetic linkage studies were the primary method of investigation 

by the year 2000 and were used to detect highly penetrant genetic variants of large effects. A 

characteristic of these studies is that they perform a type of analysis that has been shown to be 



 9 

very helpful in single gene disorders34 such as Huntington’s disease35 (HTT gene) or cystic 

fibrosis36 (CFTR gene). However, it is tough to reproduce genetic linkage studies in complex 

diseases;37; 38 more recent analytic approaches have facilitated the study of this type of diseases. 

1.2.4 Genome wide association studies 

Genome-wide association studies (GWA or GWAS) or whole genome association studies (WGA 

or WGAS) have updated the information about the heritability of many diseases and traits. 

Through the identification of causal variants (SNPs) in genes, these studies bring information 

about the genetic risks for targeted diseases. GWAS focus on the differences in allele frequencies 

of a genetic variant between people with the phenotype of interest (i.e. specific disease) and 

those without that phenotype (apparently healthy individuals). GWAS consist of the comparison 

of genetic variants in people with a specific disease (cases) to apparently healthy individuals 

(controls); those genetic variants that are more highly represented in people with the targeted 

disease are reported to be “associated with” the disease. The first published GWAS study in 2005 

found a significant allele frequency in two SNPs from patients with age-related macular 

degeneration compared with healthy individuals,39 and subsequent studies got the same results 

but for other diseases, such as Crohn’s Disease40 (2005), myocardial infarction41 (2005), 

inflammatory bowel disease42 (2006) and type 2 diabetes43 (2007). Moreover, when more 

patients and controls are added, GWAS can generate even more interesting results. For example, 

in 2007, a study including 14,000 cases of seven common diseases and 3,000 controls identified 

a previously implicated risk loci in those seven common diseases, including bipolar disorder, 

coronary artery disease, Crohn's disease, hypertension, rheumatoid arthritis, type 1 diabetes, and 

type 2 diabetes.  The results of another GWAS that used over 34,000 case-control individuals 



 10 

were able to explain the 80% genetic variation in type 1 diabetes, offering a list of 40 type 1 

diabetes-risk associated loci.44 Furthermore in 2010, by gathering 41,000 case-control 

individuals, a GWAS identified 10 significant SNPs related with autoimmune diseases such as 

rheumatoid arthritis, Crohn's disease, systemic lupus erythematosis, and type 1 diabetes.45 

GWAS discoveries, when taken together, have contributed to the understanding of many 

disease mechanisms. For example when looking at the results of these studies in tandem, it is 

suggested that the CFH gene and other complement pathway genes contribute to macular 

degeneration,39 the autophagy pathway involved in inflammatory bowel disease,46-48 and cancer 

issues such as the 8q24 “gene desert” region associated with bladder, breast, colon, ovarian, and 

prostate cancers.49 Beyond the identification of risk factors, GWAS also have offered 

information about the heritability of some quantitative traits and pleiotropy – genetic 

phenomenon where one gene influences multiple traits. In 2010, for example, a GWAS meta-

analysis identified a group of ~200 loci that explain ~14% of height variation.50 In 2007, another 

GWAS discovered a loci associated with multiple diseases, loci JAZF1 and TCF2 (or HNF1β), 

that are associated with Type 2 Diabetes and with prostate cancer;51 TCF2 variants were 

protective against Type 2 Diabetes, but were a risk factor for prostate cancer. In summary, 

GWAS update genomic knowledge by providing novel information about the human genome; 

however, new technologies involving DNA sequencing have been able to perform more 

advanced analyses of the human genome. 

1.2.5 DNA sequencing 

DNA sequencing is a promising approach to studying the human genome and as such, is causing 

extreme optimism about the effective practice of Precision Medicine. DNA sequencing is a 



 11 

technique that focuses on studying the exact order of the DNA nucleotides. Currently there are 

many DNA sequencing techniques, among them we find Sanger sequencing, next generation 

sequencing and exome sequencing. 

1.2.6 Sanger sequencing 

Sanger sequencing was developed in 1977 and has been widely used by the scientific community 

for over 38 years. It has stimulated the design of many important research projects such as the 

HGP, which has provided transformative information about the human genome. Sanger 

sequencing is a DNA sequencing technique based on the sequencing of one DNA nucleotide at a 

time,52 making it a slow but precise process. Because of these qualities Sanger sequencing is 

considered the “gold standard” of DNA sequencing. It has been recognized as an excellent 

method in the context small-scale projects that require a short portion (low-throughput 

sequencing) of a DNA sequence. Newer methods have been designed for projects that require 

large amounts of DNA sequencing. 

1.2.7 Next generation sequencing (NGS) 

NGS accelerated the generation of human genome knowledge and the arrival of Precision 

Medicine by allowing researchers to achieve greater knowledge of the human genome than 

previously believed possible. NGS is a DNA sequencing method that produces massive amounts 

of accurate DNA sequence data by using a parallel sequence process – sequencing groups of 

DNA strands at the same time – thereby generating thousands or millions of sequences at once. 

Those millions of DNA sequences fragments are then rebuilt using computational methods to 



 12 

generate a genomic sequence. This relatively recent method was introduced in 2005 and has been 

recognized as an excellent option for large-scale projects that require long portions (high-

throughput sequencing) of a DNA sequence. NGS has made possible large scale projects, 

including metagenomics studies, which compare individual variability, disease stages and 

disease models.53 NGS is highly sensitive to determining genetic information for individuals. 

This technique is able to show a considerable amount of genetic variation between people, 

including mutations and risk factors. 

As part of an inherent effort to develop the practice of Precision Medicine, several 

medical fields have adopted the use of NGS to provide genomic data for research proposes. One 

of the most representative medical branches that has used NGS is the pharmaceutical field. Using 

NGS, different pharmaceutical labs have observed the possibility of generating genomic data for 

drug discovery, investigating the molecular basis of drug resistance, planning antimicrobial 

regimens for infectious diseases, developing vaccines, and even diagnosing diseases.53 

1.2.8 Exome sequencing 

This technique has contributed to the discovery of genetic causes of rare and complex diseases. 

Exome sequencing focuses on sequencing just the coding regions, or  exomes, of the genome 

instead of every single base; in other words, it just sequences the DNA portions that are 

translated into a protein. Exome sequencing has become an important approach in medical 

genomic research since it is now known that the protein coding regions comprise around 85% of 

human disease-causing mutations. Also, this method has been shown to be a potential option in 

clinical diagnosis due to the increases in our understanding of sequence variation.54 Exome 

sequencing is a relatively faster and cheaper methodology than NGS and Sanger sequencing 



 13 

because exome regions just comprise 1% of the human genome. Since there is no long wait to 

get results, exome sequencing is the possible best option for clinical sequencing. 

These DNA sequencing methods have led to different ways in which to to explore the 

human genome. These approaches have given rise to different genome projects such as The 

HGP, the first landmark project in the history of genome projects; the ENCODE project; the 

HapMap project; the 1000 genome project; GenBank, The International Nucleotide Sequence 

Database Collaboration (INSDC), and The Cancer Genome Atlas (TCGA). 

1.3 THE POST-GENOMIC AGE 

The Post-Genomic Age began after the sequencing of the human genome was completed in April 

14th 2003. This extraordinary international scientific achievement, a result of the Human 

Genome Project, initiated a revolution in the genetic field and in almost all fields of knowledge. 

However, it also launched the production of electronic data on an unimaginable scale.55 

1.3.1 The Human Genome Project 

The Human Genome Project offered transformative information about the human genome. This 

large scientific effort revealed the inheritance code for all humankind, bringing hope that new 

ways to find cures for thousands of diseases that afflict humans around the world could be 

found.56 The human genome project was an international scientific research project that 

sequenced the entire genome of one specific person. This thirteen-year project used the Sanger 

sequencing method. It was estimated that each nucleotide of the 3 billion that comprise DNA 



 14 

cost ~USD $0.75 (the total cost of the HGP was ~USD $2,700 millions).  Many research projects 

use this HGP as a human genome reference to compare to other human genomes. The HGP 

helped to estimate that the total number of genes in a human is 30,000 genes, which code for a 

variety of cellular functions. Those cellular functions are believed to play a central role in disease 

processes.56 

Data volume and management challenges have increased since the Human Genome 

project because of the drop in cost in sequencing a human genome. While the HGP cost trillions 

of dollars, currently the human genome is accessible to anyone for a few thousand dollars, and it 

is expected that in 3 years, people will be able to get their genomes for a few hundred.57 This 

accessibility of personal genomes will produce 100 gigabytes of data per person which, 

calculated in millions of personal genomes, would constitute hundreds of petabytes of data.57 

This means that unimaginable data volume and manipulation challenges will need to be met if 

millions more people want their DNA sequence to be treated with Precision Medicine. 

Since the end of the Human Genome Project, many projects have emerged that are 

making attempts to understand the structure and functions of the human genome. Among them 

we find the Hapmap, 1000 genome, ENCODE and ClinVar projects. These projects keep 

generating data and so have saturated their databases. Other publicly available websites, such as 

GenBank, have experienced an exponential growth in their databases since the complete 

sequencing of the human genome. 

1.3.2 HAPMAP Project 

The International Haplotype Map (Hapmap) project revealed the variation of DNA among 

populations, pointing to the variants responsible for many genetic diseases. The International 



 15 

HapMap Project was designed to create a catalogue of all the common variants in the human 

population. This project, begun a year before the HGP, was finished in 2002. The HapMap 

project highlighted the importance of finding DNA variants –also known as single nucleotide 

polymorphisms or SNPs– because of their role in making some populations more susceptible to 

specific diseases than others.58 

This project has been used to determine allele risk factors, allele frequency and allele 

associations among neighborhood SNPs. Scientists use this information as their main resource 

when looking for susceptible DNA variants in different human genomes. For example if a 

clinician would like to know the risk alleles of a particular patient, a scientist would look for all 

the allele risks in the patient’s genome, and those that match would explain the patients 

susceptibility for certain diseases. The HapMap project produced more than one million SNPs, 

and, in order to create an SNP map, it re-sequenced millions more SNPs. In the end, it finally 

compiled more than ten million SNPs, which were released in 2006 in a public database named 

“dbSNP.” This project also allows scientists to study where mutations occur in the human 

genome, determine the allele risk factors in an individual, understand the impact of different 

SNPs in an organism, and even more surprisingly, offers the possibility of studying the human 

evolution. 

The HapMap project has increased the amount of data being stored in the international 

Genetic research community. Currently, The HapMap project version Phase III Release 3 is 11.8 

Gigabytes. However, since its launch, it has been downloaded over 500,000 times by researchers 

in more than 100 countries.59 



 16 

1.3.3 1000 Genome Project 

This project, launched in 2008, generated new knowledge in human genetics similar to the 

HapMap project, but at the level of the individual (not in a population base). The 1000 genome 

project provided an overview of human genetic variation that has contributed to the 

understanding of many diseases. This project consisted of sequencing at least 1000 individuals 

(1092 individuals) to scan 3 x 1012 DNA base pairs. With this project scientist and clinicians 

have one more base of comparison, for example, they can compare the genetic variation in 

patients against the genetic variation in these 1092 individuals. In other words where clinicians 

would like to find causal-disease variants in a specific patient, scientists could also match the 

genome of this specific patient with the variants found in these 1092 individuals and find the 

causal-disease variants that are the same between the patient and the 1092 individuals.60; 61 

The 1000 genome project’s data is continuously growing. In 2013 it was calculated to be 

464 Terabytes62 for the more than 1000 genomes. However, it is expected to sequence 2500 

individuals eventually, including low coverage whole genome sequencing and exome 

sequencing,63 at least doubling this size calculated two years ago. 

1.3.4 ENCODE Project 

The Encyclopedia of DNA Elements (ENCODE) elucidates the role of genes in different cellular 

mechanisms. This project was designed to elicit knowledge about the structural and functional 

elements of the human genome. In other words, this effort is studying the structure and grammar 

of the DNA as an instruction book. The US National Human Genome Research Institute 

(NHGRI) launched this project in 2003. With results from this project, scientists are now more 



 17 

confident about how sections of the genome interact with the cellular environment and how 

genetic regions are involved in different cellular functions. In the clinical field, if a physician is 

interested in identifying harmful genes and target treatments for a specific patient, scientists can 

match in the patient’s genome the harmful genes (obtained by the ENCODE project) and study 

the functionality of those genes (cell cycles predisposed) to recommend a therapeutic according 

to those cellular pathways affected in this particular patient. As expected, the ENCODE project 

has shown striking initial results, consequently alerting the scientific community and the world 

that of the practice of Precision Medicine is not that far away. Last year, when publishing its first 

results, the ENCODE project revealed that 60% of the noncoding DNA region remains 

unknown.64 Moreover, it mentioned that a great quantity of this functional noncoding DNA plays 

a role in the regulation of gene expression.65 In other words, much of the regulatory sites from 

different parts of the DNA, those which regulate the expression of each gene, remain a mystery. 

This valuable information highlights how far we are from completely understanding human 

genome information in order to be able to put it into practice; in other words, their results alert us 

that more research about DNA functionality is needed as we are only halfway to establishing 

precision medicine as a practical medical field.66; 67 

Encode is another growing big data project. This global scientific effort, which was 

started after the end of the Human Genome project, scaled up in 2007, generating 15 terabytes of 

raw data. One of the project leaders commented about the growing database : “My head explodes 

at the amount of data.”68 Moreover, using new-generation sequencing machines could make this 

data explosion even bigger. 



 18 

1.3.5 GeneBank Project 

GeneBank is a public database of nucleotide sequences submitted from laboratories around the 

world. Even though GeneBank2 started before the Human Genome Project (in ???), its data grew 

exponentially in size after the human genome project was begun. Currently, it includes 

sequences from over 300,000 species.  This database is managed by the National Center for 

Biotechnology Information (NCBI), in collaboration with the EMBL European Nucleotide 

Archive (ENA), the DNA Data Bank of Japan (DDBJ) and the International Nucleotide 

Sequence Database Collaboration (INSDC) among other institutes, to provide genomic sequence 

availability worldwide. 

GeneBank is growing tremendously annually. In the last year of 2014 GeneBank had 

accumulated 43.6% more sequences than the previous year of 2013. Specifically, the whole 

genome shotgun data increased 54.7% in one year. In August 2014 the whole genomes data was 

7.74x1011 sequences and all of the GeneBank sequences equalled 9.39x1011. This amount 

requires around 653 GB of disk storage distributed in 2093 files.69  

1.3.6 INSDC Project 

The INSDC is a global effort that has offered nucleotide sequence information publicly for 30 

years. However, because, like GeneBank, this database was built before the Human Genome 

project,  it experienced large data growth after the publication of the whole human genome.70 

The INSDC experienced a ~ 2-fold growth in terms of the number of bases in 2012. In August 

2012, it accumulated 1.56 x106 sequences and 1.44 x1011 nucleotides, which represent almost 



 19 

one and a half the number of bases of the previous year. This number would occupy slightly 

more than 100 GB.71 

1.3.7 The Cancer Genome Atlas (TCGA) 

TCGA is a large project managed by the National Cancer Institute (NCI) and the National 

Human Genome Research Institute (NHGRI).  This effort has been growing since its inception in 

2005 using genome sequencing from tissue and bioinformatics resources. It focuses on the 

identification of genetic mutations involved in the growth of cancers, with the goal of improving 

our ability to treat cancer through elucidating the genetic etiology of the disease. This funded 

project was founded on tissue from 27 different tumors.72 Tumor types were obtained from 

resection prior to adjunct therapy. The samples were included based on their availability, 

meaning the more common the tumor, the more samples of that type are accessible to the study. 

The amount of information generated from tumor samples has limited the standard 

models for big databases. The TCGA database has generated near 2.5 PB of data.73 Storing this 

volume is estimated to cost approximately US$2 million. Managing the TCGA could be also 

problematic because of prolonged downloading time. It would last approximately 23 days at 10 

GB per second to download the whole TCGA. It is expected that the limitation of successful data 

storage and management in this big database could worsen even more by adding more data 

through new cancer samples. Thus, in order to keep this project functioning and continuing the 

fight against cancer, data management and storage have become a priority. 

Beyond the relevance and accumulation of data from the projects above, it seems that the 

data management challenges began when people performed personal genome projects choosing 

to take advantage of genome sequencing in their health care. 



 20 

1.3.8 Personal Genome Projects 

In general, the human genome project has inspired new approaches to identify the genetic 

variation in people, such as the study of individual genetic characteristics for particular non-

anonymous individuals. It is expected that this approach will eventually be realized for any 

individual that wants to obtain his or her personal genome. Unfortunately, while this expectation 

will require  the study of effective data management for millions of human personal genomes 

may need to be sequenced and analyzed, currently, the analysis of just a single individual is 

already a big data challenge. Some examples of personal genome projects are described below. 

1.3.8.1 Venter genome project 

This project raced against the international Human Genome Project to assemble the first human 

genome sequence in the early 2000s. The Venter genome project highlighted the genetic 

variation between the genome of a particular individual and the genome from the HGP. The 

Venter genome project revealed novel genetic variants compared to the HGP and genes 

associated with traits and diseases. The Venter Genome Project consists of the DNA sequencing 

of J. Craig Venter (JCV). This personal genome project was published in 2007 and released 

fascinating results. It reported 1.2 million novel genetic variants and disclosed seven genes 

associated with traits and diseases like blood group and Zellweger syndrome, respectively. 

Moreover, it revealed that JCV was heterozygous for variants in genes related to cardiovascular 

diseases, such as coronary artery disease, hypertension, and myocardial infarction; correlating 

these cardiovascular related results with his family history, researchers found positively that 

JCV’s familiars had antecedents of cardiovascular diseases.  He also showed heterozygous for 

the GSTM1 gene, which is involved in detoxification and metabolism of xenobiotics, and was 



 21 

correlated with his antecedents of skin cancer and other probable affectations caused by different 

chemicals such as antibiotics and hormones found in foods and environmental pollutants. The 

results of this project have inspired posterior personal genome projects.74. 

Large storage disks are used for this kind of study, which includes multiple analyses 

since it produces big data. This study used a total of 100 terabytes of disk storage, and requires 

extra storage in the network from different systems across the environment.75 

1.3.8.2 Watson genome project 

This project provides additional information about genetic variation. It consists of the diploid 

DNA sequence of the genome of James D. Watson. Results from this project were published one 

year after those of the Venter genome project. Among its fascinating results, this project shows 

32 genetic variants associated with diseases such as retinitis pigmentosa and congenital nephrotic 

syndrome. The Watson genome project also generated information beyond the identification of 

SNPs; specifically, it showed small indels (insertions and deletions) and Copy Number Variation 

(CNV, abnormal number of copies of one or more sections of the DNA).  Furthermore, it found 

CNVs in the olfactory receptor gene clusters, though the meaning of these first-time results is 

still unclear. The Dr. Watson genome required around 10 GB of data storage and was saved on 

two DVDs, ~4.7 GB per DVD.76 

The Venter and Watson genome projects motivated personal genome projects beyond 

America as well. 

1.3.8.3 African genome project 

This project demonstrates the contrasting genetic variability among different human genomes. 

Initially the African genome project started with the DNA sequencing of an individual from the 



 22 

Yoruban ethnic group in West Africa; posteriorly it included more individuals. This project, 

launched in 2008, attached to the HapMap project effort to collect common patterns from the 

human genetic variation. The African genome revealed that the Yoruban individual possessed a 

greater proportion of heterozygous SNPs and some homozygous SNPs associated with 

pharmacogenic traits such as susceptibility to cancer. Like the Watson genome, the African 

project detected that SNPs, indels and CNV affected different genes. For example, it recognized 

2,241 genes affected by indels. By adding more African genomes from different locations the 

African project revealed variants in the gene (SLC24A5) related to skin color and increased 

melanin production; homozygote alleles linked with physiological traits such as bone mineral 

density (VDR allele); increased muscle power performance and sprint (ACTN3); and fixed 

variants for phenylthiocarbamide (PTC) tasting (these ethnic groups usually taste plants which 

are sometimes toxic as an inherent activity). 

It is estimated that in this project an individual genome is over a gigabyte. 

1.3.8.4 Asian genome projects 

This project also emphasizes the genomic variation that exists among individuals. Practically 

speaking, there were actually two Asian genome projects: the YH genome project77 launched in 

2007, which consisted of the DNA sequence of a Han Chinese individual (donor Dr. Yang 

Huanming's), and the SJK genome78 project launched in 2008, which consisted of the DNA 

sequence of a Korean individual (donor Dr. Seong-Jin Kim). Both genomes showed distinct 

genomic characteristics. The YH genome revealed different medical related outcomes; among 

them was found deletions in 33 genes, a heterozygous mutation in the GJB2 gene (responsible 

for autosomal recessive deafness), and alleles associated with tobacco addiction and Alzheimer 

disease (AD). Interestingly, Dr. Huanming seems to have been a heavy smoker. The SJK genome 



 23 

showed distinct information as well. This project found 1,348 novel SNPs, 773 SNPs related to 

different diseases such as specific types of cancer, diabetes and AD; and 504 more SNPs 

associated with mendelian traits such as dry earwax –apparently frequent in Koreans– and drug 

metabolism variants. The promising results from both projects seems to have motivated the study 

of multiple genomes -- the YH project has already sequenced the genome of one hundred 

Chinese individuals. 

It is estimated that each genome requires 117 GB (Calculating that 1 Gigabase is 

approximately 1 Gigabyte) for the YH genome project79 and 82.73 Gb for the SJK genome 

project.80 

Beyond sequencing apparently healthy individuals, another scientific approach is to relay 

with the study of genomics in medicine,81 meaning to study the genome in individuals with 

distinct or undiagnosed disease. 

1.3.9 Clinical Genome Projects 

Personal genome projects have focused on the use of a genetic profile in the clinical field. The 

use of genomic information in clinics has stimulated the development of Clinical Genome 

Projects. These projects offer relevant clinical information such as structural and disease 

causative genes. Like the personal genome projects, they have also developed a large amount of 

data in sequencing and analyzing just a few patients. Four representative clinical genome 

projects are described below. 



 24 

1.3.9.1 Charcot-Marie-Tooth neuropathy clinical sequencing case 

This clinical case project identified gene variants that segregated a particular disease82. This 

project, published in 2010, involved determining the DNA sequence of a patient with Charcot-

Marie-Tooth neuropathy (CMT1). Among its results, disease-causative alleles and variants that 

segregate the disease in the SH3TC2 gene were identified. However it genetic variants related to 

drug induced cholestasis, warfarin sensitivity, cocaine syndrome, erythropoietic protorphyria, 

Refsum disease were also found, as well as variants putting an individual at risk for many types 

of cancer. Other interesting findings were the identification of the ABCD1 gene responsible for 

X-linked adrenoleukodystrophy (though the patient did not present this disease)  and mutations 

related with neuropathies such as carpal tunnel syndrome. Though it was one of the first 

documented cases of clinical sequencing, it moved the practice of personal medicine a step 

forward. 

This project obtained 89.6 GB of sequence data from the DNA’s proband.82 Specifically, 

the sequencing of DNA samples obtained from the proband produced a mappable yield of 89.6 

Gb of sequence data, representing an average depth of coverage of approximately 30 times per 

base. The data from sequential machine runs consisted of 8.3 Gb of 35-bp fragment sequence 

reads (one run), 30.3 Gb of 25-bp mate-pair sequence reads (two runs), and 51.0 Gb of 50-bp 

mate-pair sequence reads (one run). 

1.3.9.2 Crohn-like disease clinical sequencing case 

This project83; 84 turned an intractable clinical case into one with successful patient recovery. 

Launched in 2011, this project consisted of the use of DNA sequencing for a young individual 

with aggressive inflammatory bowel disease –Crohn like phenotype– that showed itself to be 

refractory to any treatment. Clinicians asked for a DNA sequencing of this patient because it was 



 25 

an intractable case that was causing disability and suffering for the patient, and, as with other 

clinical sequencing cases, they found unexpected results. The DNA sequencing identified a 

XIAP gene and loss of a signaling of NOD2 protein where it was implicated in the Crohn disease 

pathway. In addition the study identified a mutation in the XIAP gene that was causing a 

deficiency of XIAP protein function in the patient. Even more interesting, results from the DNA 

sequencing led to diagnosis and treatment. That it, the resulting genome data shifted the 

presumed diagnosis to hemophagocytic lymphohistiocytosis (HLA), which has a higher a 

mortality risk. Given this information, clinicians were able to tailor the treatment to this specific 

case, and they decided to perform a transplantation. Five months post-, the patient was stable, 

without any need for more transfusions and with no clinical evidence of gastro-intestinal disease. 

This clinical case highlights the advantages of clinical sequencing in the individualization of 

diagnosis and treatment. 

With respect to data, this project produced around 30 MB of information83 after 

sequencing around 1% of the human genome (180,000 exomes). 

1.3.9.3 Hypercholesterolemia clinical sequencing case 

This study clarified the causes of a particular inconclusive case of hypercholesterolemia.85 

Launched in 2010, the study sequenced the genome of an 11- month-old breast-fed girl with 

xantomas and very high plasma cholesterol levels and the sequence of both parents. The 

sequencing of these three individuals showed interesting results. The study identified 3.29 

million SNPs, including 502,000 indels. Other variants identified included a compound 

heterozygous non-sense mutation in the ABCG5 gene of the patient’s genome. The mother was 

found to be a carrier for a novel mutation p.Q16X and the father heterozygous for a mutation in 

the p.R446X reported as a cause of sitosterolemia. These results led clinicians to identify the 



 26 

cause of the girl’s hypercholesterolemia and enabled them to tailor a diagnosis accordingly. 

Through a rigorous search, scientist concluded that breast-feeding and her minimal dietary 

consumption of plant sterols was altering her plasma cholesterol levels. This led clinicians to opt 

to control the plasma cholesterol levels by using a sterol absorption inhibitor together with a low-

cholesterol and low-plant sterol diet. Again this example of real personalized practice led 

clinicians to the best treatment for a particular patient. 

Here, using whole genome sequencing, they produced ~ 3 GB of data in the proband.85 

1.3.9.4 Dopa-responsive dystonia clinical sequencing case 

This project helped to elucidate a better treatment in a specific group of patients.86 Published in 

2011, this study used DNA sequencing in 2 sets of twins with dopa-responsive dystonia (DRD) 

disease. After examining the sequencing results, scientist found, as expected, that identical twins 

share many genetic variations. From 2.50 million SNPs found in one pair of twins and 2.42 

million SNPs in the other pair, each twin shared more than half, or 1.63 million of them. 

Focusing on the cause of disease, scientist found in the 4 patients 9,531 common SNPs, 

including 4,605 non-synonymous SNPs. By mapping these results, they found the SRP gene 

(sepiapterin reductase), a gene associated with DRD, and two mutations (p.R150G and p.K251X) 

compound heterozygous for the SPR gene. These results suggested that the function of the SPR 

gene might be the cause of DRD because this gene is involved in the synthesis of 

tetrahydrobiopterin (BH4) – a direct cofactor for tyrosine hydroxylase and tryptophan 

hydroxylase and indirect cofactor for the synthesis of serotonin. These suggestions led to an 

adjustment in the treatment by including supplemental therapy with adjuvant 5-hydroxy-

tryptophan (5HTP) and selective serotonin reuptake inhibitors (SSRIs) to the L-Dopa therapeutic 

already prescribed. This adjustment compensated for the synthesis of serotonin, which resulted in 



 27 

a clinical improvement, This sequencing clearly allowedclinicians to offer a better and further 

optimized treatment for both pairs of twins. 

In all, this study produced 356.8 GB of sequence data (178.4 giga–base pairs (Gbp) of 

sequence data).86 

In summary, results from clinical sequencing point to Precision Medicine as the 

imminent future of current medical practice; these studies highlight the advantagesPrecision 

Medicine with respect to providing individualized diagnosis and therapeutics through the 

identification of medical actionable variants using mainly DNA sequencing. However, given the 

amounts of date generated just by the few sequencing studies already done, to translate these 

clinical benefits to multiple individuals represents future challenges in data management. 

1.4 EVOLUTION OF DATABASE MANAGEMENT SYSTEMS 

In the 1960s and 1970s, Edgar R. Codd worked on the relational model for database 

management, organizing data into tables or relations of rows and columns (Figure 1). This 

database model brought many benefits to the computer industry. Among the benefits, this model 

looks for persistence of the data and it manages concurrency for transactions, as any other 

DBMS. The relational model led to the development and release of a default standard query 

language (SQL) for databases. Organizations at that time integrated this model into their 

applications because of its data consistency. However, even though the relational model was a 

very influential achievement, it showed some problems. The most obvious troubles were called 

impedance mismatch problems, meaning it was difficult to translate document models to a 

relational model (Table model). This problem led to an extra step being necessary to save a 



 28 

document in a relational database: needing to assemble structures and objects in memory, often 

in terms of cohesive data. Thus, scientists decided to create a model with individual rows and 

tuples, a single useful structure in an interface that could be processed in memory and distribute 

in a lot of tuples. To this purpose, in the mid-90’s there was a rise in object-oriented databases. 

Object databases would take in memory structures and save documents directly to the database 

disk without mapping between the two different models (documents and relational models). It 

was thought that this technology would replace the relational database. However, most probably 

because relational databases were already integrated into many commercial applications, object 

databases did not fulfill their potential and the relational model became the standard database 

management system worldwide. 

 
Figure 1. Timeline of database management systems and big data challenges in Precision Medicine. 



 29 

After 40 years of the complete dominance of the relational database model, it was 

unlikely that another technology could come into the database management field. However, the 

rise of the Internet and websites that have enormous traffic, such as Google and Amazon, 

changed the rules in the production and storage of dynamic data. The saturation of traffic into 

web data led to scaling issues in databases that support websites. One solution was to scale up, 

meaning buy a bigger computer to store all the data; however, this solution presented many 

problems, most predominantly cost. It was very expensive to acquire a large enough computer to 

support huge SQL databases. SQL databases were designed to run in a single large computer and 

do not perform as expected with multiple computers. 

Therefore, the Internet changed the standards of database management. The burgeoning 

traffic on websites and the SQL database problem with working on multiple computers drove the 

development of new models into the database field. Data managers realized that new database 

management systems, based on different data models, could advantage the use of multiple 

computers to manage data. Thus, instead of scaling up, they found another solution to database 

management: scaling out, that is, building database systems designed to be used across multiple 

computers. This also represents a less expensive option since multiple small computers are 

cheaper than one big machine.  

A couple of organizations understood the need to effectively manage big databases and 

evolved the database management field. Google and Amazon developed from scratch their own 

database management systems that differ quite a bit from traditional SQL databases. Both novel 

database systems were discussed in two papers. Big Table of Google and Dynamo of Amazon 

were published in 200687 and 200788, respectively. These technologies became successful in 

commercial terms and inspired a new movement of databases called “NoSQL” (Not Only SQL). 



 30 

While this term is hard to define in positive terms, it refers to all database systems that do not 

follow the relational model. By 2012, many NoSQL systems had appeared, inspired by one of 

four common data models: Document-based, Key-Value, Graph and Column, this last not 

necessarily different from the relational model; this will be explained in section 1.5.2.3. Among 

the most popular technologies considered NoSQL databases we find two inspired in the 

documents model: Mongodb and Couchdb; two designed from the Key-Value model: Redis and 

Riak; two designed from the Column model: Cassandra and Hbase; and two built from the Graph 

model: Neo4j and Allegro Graph. 

Theoretically, NoSQL databases have the potential to manipulate heterogeneous data 

such as those found in Precision Medicine. With these databases, the ability to create ideal active 

laboratories from hospital database systems for Precision Medicine purposes, as shown in Figure 

2, could be around the corner.89 



 31 

 

Figure 2. Example of a suitable database management system for Active Laboratories that include patients’ 

demographic, clinical and genomic characteristics. 

1.5 COMPARISON BETWEEN SQL AND NOSQL 

In the past decade, not only has data volume increased tremendously, but it  has also become 

dynamic, meaning it changes more rapidly and is more structurally varied. NoSQL databases 

were developed to address these data features (Table 48).90 

It is well known that SQL databases are not the best way to manage big databases. They 

were designed based on a standard query language using the relational data model, which 



 32 

identifies all possible answers to any request before displaying a correct solution. This aspect of 

the data model decreases performance when managing large datasets. Moreover, in SQL 

databases, the query execution times increase according to size and number of tables and 

columns. Also, query responses slow down as the number of joins (combining records from 

multiple tables) grows, a phenomenon commonly referred to as “join pain.” NoSQL databases 

are designed to avoid joins and consequently “join pains” as a solution to this issue. 

Beyond big data production, the data structures themselves are becoming more dynamic. 

There is a high rate of data changing (structure) overtime. This metric rate is called velocity. A 

high rate of data change, together with large volumes of data, slows queries in a relational data 

model. Then, we have to consider data traffic, which means many requests for the same data. 

Large amounts of data traffic produce internal and external changes in a system so that the 

database also must handle time peaks. For example, in genomics it is common found that 

specific information become popular for data analysis. In other words, the database where this 

information is experienced an increased number of requests from multiple users. All this features 

are also handle by NoSQL databases. 

NoSQL databases are also designed to manage database schema changes, even if the 

velocity is high such as at a peak time. They tolerate structural changes in any data element, even 

if these changes affect the overall structure of the data. These characteristics are commonly 

required for rapid-moving data such as Business Dynamics and Precision Medicine. For 

example, in Precision Medicine, clinical and, especially large genomic, data require frequent 

updates because every day there are new scientific findings, which are frequently non-predefined 

in a database that consequently requires schema changes. These types of features are difficult for 

SQL databases to address since managing high write loads and schema flexibility are very 



 33 

expensive in terms of processing and operational spends, and making changes to the database 

after implementing these features can further increase costs. 

In summary, scalability and dynamic structural change (updating process) features are 

key aspects in NoSQL databases that may advantage in the manipulation of big and dynamic 

structural data over SQL systems. 

1.5.1 ACID versus BASE transactions 

SQL and NoSQL databases have different data and query models (Consistency models). NoSQL 

databases use consistency features that support certain advantages over SQL in big data such as 

being able to handle huge data volume and changing schema structure. The consistency features 

provide a reliable environment during data transactions (single logical operations on the data).91 

ACID (Atomicity, Consistency, Isolation, Durability) transactions are inherent features 

used by SQL databases that guarantee safe database transactions. These properties make 

transactions complete, consistent and permanent on disk.  

Atomicity, as its name implies, indicates “indivisible”, meaning that transactions succeed 

completely or every operation is turned back. In other words, if a section of the transaction fails, 

all the transaction is rolled back. Thus, the transaction is protected from internal or external 

issues such as power failures, errors and crashes. 

Consistency ensures that on transaction completion, the database does not get left in an 

unstable state. This means that any requested data will bring the database from one valid state to 

another structurally sound state. 

Isolation guarantees that each transaction runs one at the time. This means that the 

transactions do not contend with one another; in other words, they run sequentially. Isolation 



 34 

provides concurrency control that is the final goal of this property, that is, it does not allow the 

effect of incomplete transactions to interrupt other transactions. 

The durability property of SQLs warrants that the result from a transaction will be 

permanent, even in the event of database failures due to events such as power loss, crashes, or 

errors. Thus, this property defends transactions from the effects of failures by storing the results 

in a non-temporal memory. 

NoSQL databases, on the other hand, have BASE (Basic Availability, Soft-state, 

Eventual consistency) transactions (Table 47). In terms of big databases, these properties seems 

to be more ‘modern’ than those from SQL databases, or, put another way, in these times of high 

volume data, BASE transactions seem to offer a better strategy for storage than the ACID 

transactions. 

Basic availability ensures that the database works most of the time. In other words, the 

system does not guarantee availability of data but does guarantee a response to any query. 

However, sometimes the response will be a failure, or inconsistent data. 

Soft-state means that stores do not have to be write-consistent or mutually consistent all 

the time. In other words, the state of the system could change over time. Moreover, in the event 

of updates, there may be changes going on behind the scene to the point of eventual consistency. 

Eventual consistency guarantees high availability at some point in time. In other words, if 

the database item is not updated, that data will show eventual consistency to the last updated 

value. This means that the database converges or achieves replica convergence at some later 

point.92 

BASE transactions exhibit limitations when compared to the ACID ones, mainly because 

BASE does not guarantee data consistency. However, BASE does provide data availability that 



 35 

is needed in big data management. Thus, database managers and developers should be aware of 

BASE constraints and become familiar with NoSQL behaviors to increase their availability 

property to manage big databases. 

1.5.2 NoSQL Approaches 

There are numerous NoSQL technologies that have become popular. According to the data 

model in use , these technologies can be classified into four categories:, Document model, Key-

Value model, Column model, and Graph model. Each category presents distinct data model 

characteristics, operational aspects, drivers for adoption and functional capabilities. 

Nonfunctional requirements may also influence managers’ choice of NoSQL database category. 

 

1.5.2.1 Document model 

Document databases store data in documents, acting like an electronic bookcase. Developers can 

easily familiarize themselves with this category since these databases hierarchically order 

documents, much like web sites. Document models use portable and platform independent data 

formats such as JSON, BSON and XML. These formats are both human readable and suitable for 

machine processing. Moreover, unlike in SQL databases, where  data must be mapped into tables 

and columns, data that are commonly stored in documents can be preserved in a state 

representative of their true form (document form).  This feature enables more simplified big data 

management for data that are commonly stored in documents. Another advantage of these 

formats is their interoperability with other systems. Data formats from Document stores are very 

similar to XML schemas. In the health sector, systems such as the Health Level 7 Clinical 



 36 

Document Architecture (HL7-CDA) use XML document formats to enable clinical data 

integration with minimal development effort. Thus, data portability is a clear advantage of 

Document databases.11 

In functional terms, Document databases rely on IDs to store and retrieve information. As 

a result, Document databases generally use multiple indexes to facilitate data access. For 

example, in an Electronic Health Record (EHR), we might use indexes to represent distinct 

therapeutic procedures that can be offered according to the patient’s genome variation. 

Document databases use indexes to request documents to be used in applications, such as those 

using decision trees for medical applications. 

Performance in Document databases is enhanced by using indexes for big datasets. As in 

SQL databases, indexes enable better performance. Using indexes could become costly in terms 

of query times because of the need to maintain them, where queries should check for indexes 

before checking the rest of the data. However, in big databases, having to scan a few records to 

find pertinent data can be much less time-consuming  than having to make a full search of the 

database. In big databases, it is important to bear in mind the importance of using indexes as 

wisely as possible, however, because using large amounts of irrelevant indexes in queries can 

make them much slower. 

Document databases also offer useful operational characteristics. Document databases 

scale out (horizontally) by using mutually independent records at write time, with no contended 

state. In other words, records should not be mapped in a specific framework. In addition, data do 

not need to make transactions across replicas. Thus, these useful operational characteristics make 

document databases a strong candidate for big database management. 



 37 

1.5.2.2 Key-Value model 

Key-Value models are modeled after Amazon’s Dynamo database. This data model works as a 

distributed hashmap data structure, storing and requesting values by their assigned key (domain-

specific identifier). The key is related to numerous units of data on the database. Each unit of 

data can be transferred into several secondary storages (machines) at a single operation for 

continuous operation reasons.   

A particularity of this database is the fault-tolerance design introduced by Amazon. Fault-

tolerant systems operate properly even in the presence of one or more failures of its components. 

Compared to SQL databases, where a small failure can potentially bring down the whole system, 

NoSQL databases using this model can tolerate even severe failures. However, severe failures 

could decrease its quality of operation.  

The fault-tolerant design is a valuable feature for big data management since it 

guarantees data availability in the event of frequently occurring system failures such as hardware 

and software problems. For example, it would be advantageous to have a clinical/genomic 

database with continuous operability, where the whole system is not stopped due to failures. 

Key-Value databases are not complicated to use. Clients store units of data and retrieve 

them with their key. The hash function is designed to distribute the information across the 

available machines in a uniform way; no single machine stores most of the information. In 

addition, clients have the option to assign information to a specific machine using their keys.  

Any applications wishing to store data need only know the corresponding key. Key sets 

are usually the most important data elements in a database. For example in a healthcare database, 

the key could be a Social Security number, phone number, electronic or physical address; or, in 

the case of a clinical/genetic database, a  patient ID. In theory, a sensibly designated Key-Value 



 38 

database increases the chance to not lose data when there is a logical mapping to the assigned 

key and low response time to retrieve information. 

At this point, Key-Value models seem similar to the Document model. Both have domain 

specific identifiers and similarly retrieve the information requested. However, a big difference is 

related to the level of insight. Key-Value databases appear to be oblivious to the data contained. 

In other words, they are not aware about the interrelation of the information contained. This 

feature makes Key-value focus only on efficient storage and retrieval of data. It seems that 

theoretically they do not display structured stored data like JSON, BSON or XML. However, as 

technology keeps moving, new features in some Key-Value databases have been introduced 

allowing visibility of structured data, creating some overlap between the document and key-

value stores. But the reality is that, in general, Key-Value databases offer data insight that is 

more limited than that of Document databases. 

Related to Amazon’s Dynamo database, Key-Value databases are designed mainly to provide 

high-availability, high-performance, high scalability and non-redundancy (no need of backup). 

For example this design could be important in genomics when the data and data model keep 

changing with added functionality and genomic updates; especially when it is needed evolving 

schema to support these changes without having database downtime. Moreover, using these 

databases could afford denormalizing data for performance reasons and get faster responses 

when writing operations. Overall, this design provides to Key-Value databases essential 

characteristics to the successful management of big data. 



 39 

1.5.2.3 Column model 

Column models come from Google’s Big Table model. This data model works with columns that 

are inside rows from a sparsely populated table. This innovative design provides natural indexing 

due to the idiosyncratic classification of columns.  

Columns are classified into four types of column storage according to their complexity. A 

name-value pair constitutes the simplest Column. The combination of different name-value pairs 

builds a Super Column, which gives a name to a set of columns. The combination of columns 

stored in a row is called a Column family. Finally, when the columns stored in rows are Super 

Columns they build a Super Column Family. This last type consists of a Row Key where inside 

the row we would find Super Columns and Columns. 

Individual level rows are essential in the structure of Column databases. The function of 

rows in Column models is to provide a map structure to order the data. For example in a 

supercolumn family, regarding clinical/genetic data, the name of the patient in the Row Key 

would be the patient ID, a simple Column would be the DOB (with one value), and a Super 

Column would consist of types of personal details as the Super Column name and the values 

themselves as Columns.  For example,  nationality could be a Column name with one value and 

email a Column name with one value; another Super Column might have genomic information as 

the Super column name and the values could be chromosome, location, and function with one 

merged value. 

Column databases provide some insight into the data. Specifically, Column stores 

provide more awareness about what is stored in their data than Key-Value databases, but less 

insight than Document databases. Rows in Column databases represent a particular broad entity; 

they are sort of described by the content of the columns they contain, and successively, Column 



 40 

names are related entities. Thus, at some point the data is naturally ordered in a more hierarchical 

way than Key-Value databases; however, this order does not describe as complete their entities 

(Row Names) as the structural order of Document Databases. Interestingly, by turning a Column 

database 90 degrees, we change from being row-oriented to being column-oriented, with a whole 

view of entities (Row Names and Column Names). 

In operational terms, Column databases are also designed for high-availability (failover), 

high-performance, high-scalability, and non-redundancy. In addition, because Column databases 

use several storage engines that enable high write loads, they can support peaks of high data 

traffic. . Thus, at a point in time where a big clinical/genomic database is being saturated with 

requests about a particular set of data, it can be expected to operate competently. 

Overall, Document, Key-Value, and Column databases have the highlighted similarities 

and differences. All three have essential features to the successful management of big datasets. 

1.5.2.4 Graph model 

Graph data models are used in online database management systems. This type of model is 

designed to deal with highly connected data, similar to RDBMS. It is used to understand how 

data are connected. It uses transactional (OLTP) systems and Create, Read, Update, and Delete 

(CRUD) methods. 

Structurally, Graph databases comprise nodes and relationships. The nodes contain 

properties (Key-value pairs). Relationships have a name and are connected to other relationships. 

Relationships are always assigned to a start and end node. In addition, Relationships can also be 

allocated properties. 

Some Graph databases can use native graph storage to advantage for data storing and 

managing. Native graph storage allows the serialization of graph data into SQL or object-



 41 

oriented databases. The use of native graph storage means databases do not have to depend 

heavily on indexes. The Graph model by itself provides an adjacency index because one node is 

related to a number of nodes of interest. For example, in a clinical/genomic database, a node 

called Gene Function is related to a number of nodes of interest called genetic variants where, 

from the biological perspective, one is a consequence of the other. This feature of Graph 

databases allows the understanding of information that is highly related. 

Graph databases largely involve related nodes of information, using node location as a 

functional parameter. This model can interrelate millions of nodes per second. Therefore, the 

performance of interrelated data is theoretically faster than if using indexes on aggregate 

databases (Document, Key-Value and Column databases) of highly related data.90 

1.5.3 MapReduce programming model 

Document, Key-Value, and Column databases typically require the use of an external processing 

infrastructure for querying big data. MapReduce, an infrastructure developed by Google and 

publicly available from Apache Hadoop, is a commonly used technique for retrieving 

information across records. 

Map Reduce is a parallel functional programming model that distributes data and works 

on it in parallel, then clusters and aggregates results until it can identify the requested 

information. For example, if we want to identify how many variants (previously scientifically-

identified) are related to breast cancer in Hispanic patients in a clinical/genomic database, we 

would extract all female patients’ records and discard the non-Hispanic patients in the map 

phase, and then process the remaining records in the reduce function. 



 42 

MapReduce operates efficiently, working with numerous machines and a fast network 

infrastructure. Commonly, data managers use database features to point to the specific data they 

are interested in and then use MapReduce on that already focused data to obtain the precise 

information they are looking for. 

MapReduce works with aggregate databases (Document, Key-Value, and Column 

databases). These databases are not designed to work with highly connected data. Aggregate 

databases are not ideal to deal with problems that require a deep understanding about how data is 

connected. Graph databases deal with highly connected data. Thus, it is not expected that 

MapReduce could be used in Graphs models. 

1.6 BIG DATA CHALLENGES FOR CLINICAL AND GENOMIC INFORMATION 

As medical? technology advances, especially with the onset of Next Generation Sequencing 

(NGS), modern clinical and genomic information is producing exponentially bigger and more 

complex data that require breakthrough algorithmic and computational solutions. In 2012 a US 

Federal investment addressing the issue of big data generated from digital information called the 

“Big Data Research and Development Initiative” was announced.   It is focused on improving the 

ability to manage large amounts of data and excerpt new knowledge. However, this initiative is 

just the beginning in addressing the management challenges presented by the huge volumes of 

digital data produced daily. Thus, future work will need to aim at making dramatic advances in 

data management systems, together with the development of tools and techniques needed to 

store, analyze, organize, access and assemble massive collections of digital information. Below 

are described some key challenges in big data management that need to be addressed. 



 43 

1.7 DATA SIZE 

Big data refers to the huge size datasets, in terms of terabytes. The size of the input set of 

clinical/genomic data is possibly one of the largest data sets ever acquired. As previously 

mentioned, mainly personal information, clinical notes, multiple laboratory results, imaging 

studies and, tremendously large genomic sequencing data are all needed to accurately shape the 

high personalized health information required for Precision Medicine. Thus, the data on a single 

patient easily requires tens of gigabytes to store clinical, surgical and laboratory results, tens of 

gigabytes to store imaging data and tens of terabytes to store multiple genomic sequences and 

data resulting from their analyses. For this last, for example,in a patient with cancer, it is 

common that each biopsy be sequenced for Whole Genome Resequencing, Targeted 

Resequencing,93 DeNovo Sequencing,94 Exomics, Gene Expression,95 and RNA Structure 

Ozsolak.96 In addition, relatively new genomic techniques that produce large amount of output 

such as Chromatin Immuno-precipitation Sequencing (ChIP-Seq) (66-9), Methylation Analysis,97 

Whole Transcriptome Analysis,98 Small RNA Analysis,99 and Metagenomics100 are becoming 

increasingly popular for studying certain diseases. More recent genomic studies have also 

generated tons of data. Proteomics, Metabolomics and Metabonomics have created expectative 

in the clinical field and keep generating tons of data. Clearly, the growing amounts of data 

required to highly personalize health information in thousands and perhaps millions of people is 

definitively a big data challenge for the development of Precision Medicine. 



 44 

1.8 DATA RATE 

Most of the data generated in Precision Medicine comes from genomic data. Routinely, millions 

of sequences are generated using high-throughput genome sequencing or NGS.101; 102 Current 

NGS sequencers from Solexa-Illumina103, 454 Sequencing,104 and Applied BioSystems-SoliD105 

produce tens of terabytes of data daily. Just this last sequencer produces in one run, 

approximately 7 days, more than 4 TB of data. The data generated for a single sequencer 

increase even more during its analysis. A single analysis, lasting one to four weeks depending on 

hardware infrastructure and type of analysis, requires storage of the last reference genome and of 

high throughput data results. This is the genomic data rate generated for a single patient; it is 

hard to estimate the genomic data generated by a healthcare system for millions of persons were 

Precision Medicine to be offered across the board. It is clear that, like data size, rhe constantly 

growing data rate could present a challenge to simply accessing the data. 

1.9 COMPUTATIONAL COMPLEXITY 

Besides storing and accessing big data, another challenge for big data is the discovery of new 

knowledge. Running algorithms usually generates smaller outputs than the original input of big 

data. However, intense computing and effective data management systems are necessary to 

correlate the information in various big databases. For example, a computational problem would 

be to correlate people of the same age, sex, and/or diagnostic with potential cancer risks in their 

genomes (risk alleles). Furthermore, algorithms that select a subset of input data and then 



 45 

compute a query based on big samples also require effective data management systems. Thus, 

future work in database management is also crucial in discovering new biological knowledge. 

1.10 DATA SHARING 

In the scientific field, data sharing is a common practice. However, the transfer of big data is a 

challenge requiring improvement not only in database architecture but also in technological 

infrastructure. Today, using a commercially optical fiber connection data can be transferred at a 

rate of approximately 300 megabits per second. At this rate, if someone would like to share 2 

petabytes of data, it would take almost 2 years to transfer all the information. Thus, this 

limitation allows just one option in sharing big data: transferring information by physically 

carrying out mass-storage hard disks. This data sharing challenge could represent another 

obstacle to Precision Medicine as well because of the need to physically transport highly 

personal information. 

In summary, big data challenges are urgent issues for the nascent field of Precision 

Medicine. New technologies, hardware and software, must be generated to address these 

problems. Fortunately, there are potentially many avenues from commercial companies such as 

NoSQL technologies and compression approaches for genome data that present alternatives to 

current technologies to test existing hypotheses and generate new ones regarding database 

management systems. 



 46 

1.11 ORGANIZATION OF THIS DISSERTATION 

This dissertation is organized as follows: 

In Chapter 2, we bring an overview of the fundamentals of performance and scalability 

measurement, and we outline a clinical/genomic framework for understanding different types of 

measurement and different types of data models. We then describe the instrumentation used in 

terms of hardware and software. Finally we summarize previous work in performance and 

scalability measurement in the context of this framework, and we summarize the limitations of 

existing experiments. 

In Chapter 3, we give a detailed description of data management methodology. These 

methods include data annotation, transformation, importing and manipulation processes. These 

processes take highly personal information data and arrange it in four different data models. We 

then describe the queries that retrieve common-logical Precision Medicine information useful to 

select patients with similar clinical and molecular information. 

In Chapter 4, we introduce experiments for measuring performance and scalability on 

queries of gradually increasing complexity, showing how these can be used for databases of 

different sizes. To jump-start this experiment, we grounded our approach in already available 

techniques that measure databases systems with large clinical and governmental data. We then 

describe the architecture of the different database models and detail the results of retrieving data 

using different queries in growing database sizes. 

In Chapters 5 and 6, we combine the ideas in Chapter 4 to adaptively measure time 

responses on updating process that either requires or does not require schema changes. To 

motivate these experiments, we describe the importance of updating process in the Precision 

Medicine. We then describe scientific efforts that have aimed to address this important and 



 47 

complex process in database systems. Also, we summarize different approaches already being 

used to solve this common problem in data management. 

Finally, in Chapter 7, we summarize our approaches in this dissertation and present the 

conclusions we have arrived at based on our results. We then describe future work needed to 

enable successful data management for Precision Medicine. 



 48 

2.0  BACKGROUND 

Improvements in medical and genomic technologies have dramatically increased the production 

of electronic data over the last decade. As a result, data management is rapidly becoming a major 

determinant, and urgent challenge, for the development of Precision Medicine (Fig.1). 

2.1 DATA STORAGE AND MANAGEMENT 

One of the central problems in Precision Medicine is data storage and management. Clinical and 

genomic data are voluminous and complex in nature.93 Probably this type of data is one of the 

most valuable but complicated types to analyze. This complication led scientists to look for 

alternatives database management systems that could support heterogeneous94 data structures and 

query performance and offer the scalability to facilitate effective data analysis. 

Since Precision Medicine is relatively new, research about data management in this area 

is scarce. However, the literature does contain some proposed models for medical data storage. 

Most of these use the relational model, which is not surprising given its predominance, even 

though they are not efficient or flexible enough for use with medical data. However, there are 

other alternatives to the relational model that look for efficient medical data storage and 

management. Similar to Column data, Row modeling has been suggested to arrange clinical 

data.106 Such as Key-Values, a Knowledge discovery model has been proposed for management 



 49 

of data according to relationships between concepts and properties.107 Similar to Document 

models, it was suggested a model to relate medical data according to their contexts.108 Most of 

these models need future research to realize their advantages for big medical data management. 

Scientists have been looking for a better approach than the predominant but inefficient 

relational model to manage medical data. At this point in time, NoSQLs, with their potential to 

deal with large, heterogeneous and even dynamic data databases, are gaining attention. As 

mentioned above, NoSQL databases were originally created by web developers to revolutionize 

the management of real-time data, with which SQL databases had many problems managing. 

The use of NoSQL has become popular because, unlike SQL, NoSQL does not require strict 

schemas and keys.  

NoSQL databases propose the use of data models different than the relational model. 

Specifically, NoSQL data models use mainly Key-Value, Column, Document, and Graph 

models.109 These models have been successful in managing business data. Similar to medical 

data, Web data is large, heterogeneous and dynamic because it is frequently produced and 

updated.  This similarity has motivated the use of NoSQL in medical data, although it is difficult 

to use NoSQL in the Precision Medicine field. NoSQLs present alternate database architectures 

that are complex to assess4 and means to integrate heterogeneous electronic health records with 

dynamic genomic data are not easily available.6 

Minimal progress has been made in determining the advantages of NoSQL approaches 

for clinical and genomic data management. Probably, this is because a relatively small number of 

software developers are familiar with NoSQL approaches; most developers are in areas other 

than bioinformatics (i.e., social media and web applications).4 Another downside of NoSQL 

approaches is the lack of standardization among them. Each NoSQL approach works differently 



 50 

from the others and has its own programming language for defining, inserting, updating and 

retrieving information. Thus, with these complexities, plus the multidisciplinary skills (clinical 

medicine, genomics and bioinformatics) required in Precision Medicine,110 it is not surprising 

find few works using NoSQL approaches in Precision Medicine,111; 112 and no works detailing 

how NoSQL could be used to advantage in the storage and management of clinical and genomic 

data to facilitate the development of Precision Medicine. However, given their capabilities, it is 

imperative to determine the advantages of NoSQL data model approaches (document, key-value, 

column and graph stores) for performance and scalability outcomes.  Then we can identify the 

most suitable NoSQL approach (and the associated advantages of every NoSQL data model) for 

effective data management in Precision Medicine. 

2.2 PERFORMANCE 

Computer performance is mainly dependent on the computer resources available, amount of data 

being processed, organization of that data and algorithms used. High computer performance for a 

database could be partially defined as a short query time or response time to process a particular 

amount of data.113 

2.2.1 Query time 

Performance in database management systems can be measured by using the response time to 

retrieve the desired data. The performance of different systems can be compared by requesting 

the same information using the same database and system resources. This is a feasible way to 



 51 

determine how well a system is doing a task compared to another system.114 Faster query times 

are expected in database systems that efficiently manage big data. 

2.3 SCALABILITY 

Beyond measuring response time, performance can also be measured using other aspects such as 

scalability. In the database management system context, scalability is the ability of a system to 

adapt to 1) manage a growing volume of data, or 2) enlarge itself to handle that growth. For 

example, NoSQL databases are considered scalable systems due to their ability to increase total 

functionality by distributing a high volume of data across multiple systems. NoSQLs are capable 

of allocating other resources, such as hardware (nodes), to accommodate the growth of databases 

for more efficient management. This last is an example of scaling horizontally or scaling out. 

This property highlights the greater efficiency of NoSQL systems in managing Big Precision 

Medicine data over SQL systems, where resources must be added to a single node. 

High database scalability is associated with efficient data management in cases of high 

data volume and supports an increasing rate of transactions per second. This computational 

feature means information is partitioned across the system and processed on separate database 

allocations. The scalability in NoSQL systems has made them popular because their power to 

coordinate distributed transactions among their systems. New proposals in database systems, 

such as Google's massively distributed Spanner technology, which has the potential to replace 

Google’s BigTable, are aimed at creating such new distributed data models in order to manage 

ever-increasing amounts of data.115 

 



 52 

In database management systems, another way to measure performance in terms of 

scalability is to examine the size scalability of a system. Size scalability is the maximum number 

of nodes to which a database system can allocate information.116 Different numbers of processors 

to check for performance when comparing different database systems. This other way to study 

performance is important to select database management systems that better handle large amount 

of data. 

A database system with that has a shorter query time and higher scalability will perform 

data management more efficiently. An efficient system allows the allocation of multiple types of 

data, such as genomic and clinical concepts. However, the input of multiple types of information 

causes a database to grow exponentially and consume meaningfully computational resources 

such as memory and data storage. To be effective, therefore, a system must reduce the potential 

for problems related with administration and maintenance of databases. The development of such 

efficient and effective systems for Precision Medicine data could potentially accelerate the 

generation of new knowledge. 

2.4 SIGNIFICANCE 

As mentioned earlier, on average, 80 megabytes of data per person is added every year to their 

electronic health records (EHR) in hospitals that have adopted this technology, and experts 

expect that this rate will increase as genetic data expands over time.1 Currently, more than 80 

percent of hospitals in the U.S. have adopted some type of EHR technology.117 EHR adoption by 

U.S. hospitals is expected to increase even more since current government requirements (Health 

IT initiative) specifies incentivized payments for the use of certified EHR technologies.118; 119 



 53 

Moreover, the amount of genomic data has increased exponentially since 1995, and genomic 

data growth is expected to keep increasing as technological improvements continue to lower the 

cost of sequencing.120 As those in the medical field focus on the production and storage of 

clinical and genomic data, leaders in Data Base Management Systems (DBMS) such as RDBMS 

experts, report possible solutions to the challenges resulting from these increases in big data. For 

example, a recent report from the President’s Council of Advisors on Science and Technology 

(PCAST) highlights the use of new commercial DBMS, specifically NoSQL technologies, to 

address big database challenges such as those faced in Precision Medicine.121 But, important 

challenges face NoSQL database approaches research. Minimum progress has been made in 

determining the advantages of NoSQL approaches for managing clinical and genomic data. This 

is because a relatively small number of software developers are familiar with NoSQL 

approaches; most of them are in areas (i.e., social media and web applications) other than 

bioinformatics.4 Another downside to NoSQL approaches is the lack of standardization among 

them. 

Here at the University of Pittsburgh and Carnegie Mellon University, collaborating with 

the Institute of Precision Medicine 122 and Pittsburgh Supercomputer Center, and having access 

to The Cancer Genome Atlas123 (TCGA) through the Pittsburgh Genome Resource Repository 

(PGRR), we will perform parallel performance11 and scaling9 studies to identify “suitable 

database approaches” enabling effective data storage and management in Precision Medicine. 

The goal is to identify database approaches (and associated data structure and system 

requirements) for effective data storage and management, so that we can suggest the most 

suitable database approach (or approaches) for Precision Medicine, choose the best data structure 

and request ideal system resources to prevent or delay failure scenarios. Our quest for effective 



 54 

data storage and management is based on the observation that growing data coincides with 

challenging issues in Precision Medicine.6; 124; 125 We recognize the “dynamic nature” of clinical 

data, in that it consists of frequently updated, sporadic and heterogeneous data,11 and we believe 

genomic data is similar in nature to clinical data. Both types of data require special attention in 

the design of database schema because of their distinct features.11 These inherent features also 

are associated with failure scenarios; this is mainly because of the predominant use of relational 

database management systems (SQL). Specifically, the continuous clinical and genomic data 

modifications that must be made because clinical and genomic data are frequently updated,126; 127  

can potentially change the database schema. These modifications make using SQL systems 

difficult as they require pre-design of the exact field structures of the data(to ensure data 

consistency)  prior to building the database128; 129. However, NoSQL approaches do not deal with 

fixed schemas,90; 130-132 and some are designed to support concurrent transactions.132 

Theoretically, NoSQL approaches in a database used 24 hours a day make it more feasible that 

researchers and data managers can be simultaneously requesting and updating data without any 

potential failure.132 Furthermore, NoSQL approaches appear to have promising features for 

clinical11 and genomic data management because they are suited for large, heterogeneous, and 

dynamic data, with a high rate of missing data—which are features frequently seen in biological 

data. This suitability means both high performance and scalability –ability to handle a growing 

amount of information in a capable manner– this last making them even more feasible (or less 

expensive) than SQL systems for data management.4 For instance, it is cheaper to add nodes (i.e. 

new computers) to a system as with a NoSQL, rather than adding resources to a single node133; 

134 (i.e. buying a powerful large machine that fits all growing clinical and genomic information) 



 55 

as required by an SQL. These facts point to NoSQL as a key database technology for clinical and 

genomic data management as future technology (exponentially producing data) advances. 

2.5 PUBLIC HEALTH RELEVANCE 

Currently, with the trend of ever-increasing costs in health care and the gradual retirement of the 

“baby boom” generation, we are witnessing an increase in demands on the health care system.135 

The need for new strategies concerning both access and quality of healthcare.136 Precision 

Medicine has been proposed by the President's Council of Advisors on Science and Technology 

as an option that combines improved patient outcomes with reduced costs.135 However, the 

development of Precision Medicine 137 is hindered in part by the lack of tools for the efficient 

management of clinical & genomic data.138; 139 Our proposal has a wider public health impact 

since we are focusing on one of the main challenges to the development of Precision Medicine 

and, consequently, addressing a possible solution to the everyday increasing demands of health 

care. Thus, by investigating determining which NoSQL technology is the most suited to the 

storage and management of clinical and genomic data, we will be contributing to the 

development of Precision Medicine and facilitating the introduction into the health care of a 

promising class of new diagnostic tests, medications and treatments, among others. These 

products will also contribute to the development and application of successful population-based 

prevention programs, which are essential for decreasing the public and global burden of disease. 



 56 

2.6 INSTRUMENTATION 

2.6.1 Hardware instrumentation 

Four database approaches were developed, respectively, to implement the selected databases 

concerned in the project. The systems were built using the supercomputer components from the 

Data Exacell (DXC) pilot project from the National Advanced Cyberinfrastructure Ecosystem at 

the Pittsburgh Supercomputer Center, University of Pittsburgh and Carnegie Mellon University 

and a personal computer.  The Data Exacell (DXC) is a pilot project funded by the NSF Data 

Infrastructure Building Blocks (DIBBs) award #ACI-1261721 to create, deploy, and test 

software and hardware building blocks to enable data analytics in scientific research. Our project 

used these resources because diverse data analytic requirements were necessary to motivate, test, 

and demonstrate the DXC’s capabilities. The components of the DXC, which is shown in Figure 

3, are described below: 

– Crucible: innovative, disk-based near-line storage system featuring low latency, high 

bandwidth, and high reliability for large-scale datasets 

– Blacklight: the world’s largest shared-memory supercomputer, capable of running Java 

and applications of 1-2048 threads using up to 16TB. 

– Sherlock: a unique system for hardware- and software-optimized graph analytics, using 

either RDF/SPARQL for productivity or threaded C++ for very broad applicability. 

– Hadoop and Spark: a cluster of nodes for the Hadoop ecosystem. 

– Application, Database, and Web Server Nodes: cutting-edge technologies enable the 

development of powerful new application architectures. 



 57 

We mostly used DSXCDB, Sherlock and Blacklight to store and manipulate our data. 

Blacklight is an SGI UV 1000cc-NUMA shared-memory system containing 256 blades. Each 

blade has 2 Intel Xeon X7560 (Nehalem) eight-core processors. In total, this machine holds a 

total of 4096 cores, where each one has a clock rate of 2.27 GHz, supports two hardware threads 

and can perform 9 Gflops. In local memory terms, the two eight core processors per blade share 

128 Gigabytes. In addition, 16 Terabytes of shared memory can be used in running jobs.140 We 

topped our resources at 256 GB memory running queries using the DXC from a Virtual Machine 

(VM) that included default hosting for DBMSs such as MongoDB, Redis, Cassandra and 

MySQL. 

We also use standard computing resources to run the four DB technologies. These 

resources consisted in a personal computer equipped with a 2.66 GHz Intel Core i7 CPU and an 

8.00 GB 1067 MHz DDR3. 

 
Figure 3. Software architectures developed on the DXC. 



 58 

2.6.2 Software instrumentation 

In general, the DXC components, including Blacklight, use the Linux operating system, a special 

version of the SuSE. As a note, the machine had Intel C, C++ and Fortran compilers and Gnu 

Fortran, C and C++ compilers installed. These installations allow users to run threaded, MPI and 

hybrid threaded and MPI programs. The machine support OpenMP programs had available UPC, 

Java and a list of software and DBMS packages, including MongoDB, Redis, Cassandra and 

MySQL.140 The operating system of the personal computer was OSX version 10.9.5 

2.6.2.1 Database Settings 

We use four database management systems: Mongo DB, Cassandra, Redis and MySQL. 

MongoDB 

We used version 2.6.7 of this document-based open source system with its JavaScript shell for 

database administration and data manipulation. Mongo DB was downloaded from its official site 

(http://www.mongodb.org/downloads) and decompressed. We use the pre-installed default 

settings and the started a server (“mongod” executable file) to manipulate the system. We also 

used an HTTP server set up by mongod that listens on a port 1,000 higher than the main port to 

get some administration information about our database. The server was used for performing 

administrative functions and inspecting running instances. We also use a standalone MongoDB 

Client to be connected to the MongoDB server. Specifically, the client allowed us to connect our 

database to a global variable “db” that is the primary access point to the MongoDB server 

through the shell, allowing us to manipulate our database. 

 



 59 

Cassandra 

We used Apache Cassandra version 2.1.3 (the most stable version). It was installed from its 

official website (http://cassandra.apache.org/download/) and included the core server, the 

nodetool administration command-line interface, and a development shell (cqlsh and the old 

cassandra-cli). We used the default configuration found in the conf directory. We used the 

interactive command line interface for Cassandra (cqlsh) to execute CQL (Cassandra Query 

Language) to manage our databases (define schemas, insert data, execute queries). 

Redis 

We used this data structure server version 2.8.19, implemented as Key-Value store. Redis open 

source was downloaded from its official site (http://redis.io/download). 

Redis was compiled using a Compiler (GCC). The test suite was enabled using Tcl 8.5. 

Using the default settings, we manipulated our files using Redis’s command-line client (redis-cli 

command), a fully featured interactive client. We used redis-cli to connect to a local or remote 

host Redis server for performing administrative functions.  

MySQL 

We used version 5.6.23 of this open source relational database. MySQL was downloaded from 

its official website (http://dev.mysql.com/downloads/), and its default configuration was used. 

We managed MySQL through the MySQL client program (terminal monitor) to connect our 

database to a MySQL server and create/manipulate data. Specifically we used MySQL in batch 

mode to execute queries from files. 



 60 

2.7 DATA SOURCES 

The Cancer Genome Atlas (TCGA) 

Our resource for clinical and genomic information was The Cancer Genome Atlas (TCGA)123 

data from the Pittsburgh Genome Resource Repository (PGRR).123 PGRR is a framework for 

accessing de-identified national big data datasets relevant for Precision Medicine like TCGA.123 

PGRR allowed us to use this data easily with tools and resources provided by the Simulation and 

Modeling Center (SaM) and the Pittsburgh Supercomputer Center (PSC). TCGA is defined as 

the “comprehensive and coordinated effort to accelerate the understanding of the molecular basis 

of cancer through the application of genome analysis technologies, including large-scale genome 

sequencing”.123 The National Cancer Institute funds TCGA. From PGRR we had (as of October 

24, 2014) access to 10,822 clinical and genomic records classified in 32 varieties of cancers and 

one group of controls. We used mainly the clinical and genomic information; for this last we 

used DNA and RNA sequencing. Externally, this genome sequencing was annotated using 

ClinVar to identify the clinically significant variants. 

ClinVar 

ClinVar was used to identify the clinically significant variants from TCGA patient information. 

ClinVar is an open source database used to annotate human genome variations according to the 

needs of the medical genetics community.141 ClinVar documents the relationships among human 

variations and phenotypes, including observed health status. This publicly available archive was 

made from collections of patients with reported variants. The reported variants are related with 

their clinical significance using intermediate knowledge data such as observational or 

experimental studies. The interpreted variants are mapped to the human genome to report the 



 61 

location of each variant and its associated phenotype. ClinVar can be used in many applications 

and bioinformatics algorithms to annotate the clinical significance of the genetic variation.142 

Data architecture 

Clinical and genomic information from TCGA patients and their corresponding ClinVar 

annotation were transformed into four different data architectures (Figures 98-101): Document, 

Key-Value, Column, and Table stores. 



 62 

3.0  DATA MANAGEMENT 

3.1 ANNOTATION, TRANSFORMATION, IMPORTING AND DATA 

MANIPULATION PROCESS 

3.1.1 Database building process 

To build our clinical and genomic database, we first selected patients with a diagnosis of breast 

cancer from TCGA that have specific demographic, clinical, surgical, pharmacological and 

structural and functional genomic information, these last two including Whole Genome 

Sequencing (WGS) and RNA sequencing (RNAseq). Because we were interested in integrating 

specific clinical and genomic data prior to building our database, we conducted pre-computed 

operations to create files that facilitated the combination of each patient’s clinical and genomic 

information.  

3.1.1.1 Pre-computed clinical files 

We created each patient’s clinical files by manually curating the clinical information stored in 

the TCGA data. Posteriorly, we selected specific data to build our pre-computed clinical files. 

This specific data consisted of storage data values from the following patient information: ID, 

gender, race, vital status, days to last follow-up, age at diagnosis, staging by Tumor-Node-

Metastasis (TNM) classification to define breast cancer, anatomical site affected, surgical 



 63 

procedures, drugs prescribed, and radiation types applied for treatment. An example of these files 

is shown in Table 1. 

Table 1. Example of a pre-computed clinical file. 

 

3.1.1.2 Genomic pre-computed files 

To integrate the DNA and RNA sequencing files, we first annotated the DNA sequencing data 

from Variant Call Format (vcf) files using ClinVar. Then, the annotated clinically significant 

genomic variants were filtered from those located on chromosome 13 due to our specific queries 

explained in the next section. Those clinically significant variants set in chromosome 13, where 

BRCA2 is located, were selected and stored using their genomic location, i.e., chromosomal 

position. Posteriorly, to identify if the previously selected genomic variants were expressed we 

selected those variants that had Reads Per Kilobase per Million (RPKM) values in their RNA 

sequencing files. The resulting expressed variants were stored using, again, their genomic 



 64 

location. Finally, the resulting structural (DNA) and functional (RNA) genomic files were 

merged using their patient ID. An example of these files is shown in Table 2. 

Table 2. Example of a pre-computed genomic file. 

 

3.1.2 Database transformation process 

We transformed our original clinical and genomic database into each of the four specific data 

models required by our previously selected database technologies. For the Document model, our 

original database was transformed into JavaScript Object Notation syntax (JSON) files. For the 

Key-Value model, we transformed our database into dictionary approaches, lines of headers and 

values and saved it as as simple text files. For the Column model, our database was transformed 

into structured simple text files compatible with Cassandra Query Language input options. 

Finally, for the Relational model, we saved our data in tables where attributes represent clinical 

and genomic information and rows represent patient IDs. The transformation process was 

performed using a combination of unix scripts to successfully upload files into each database 

technology. The transformation process was the key step performed prior to beginning to 

measure query times in each selected database technology. Clinical and genomic information 



 65 

from TCGA-PGRR was written in four data models: Document (JSON files), Key-Value, 

Column and Table stores. 

3.2 DESCRIPTION OF QUERIES 

In order to assess each database systems suitability for managing clinical and genomic data for 

Precision Medicine, we built a series of typical biomarker selection queries based on meaningful 

biological questions.143 These queries varied in complexity and focused on detecting individuals 

with clinically relevant genetic variants for cancer prevention and early detection. In other 

words, with the queries, we aimed to detect individuals who had a higher number of risk factors 

for breast cancer and were more likely to have a successful prognosis, such as aged females with 

strong environmental and genetic risk factors. Age is the most important risk factor for women’s 

breast cancer. It is estimated that more than 3% of American females over 55 years old will be 

diagnosed with breast cancer during the next 10 years. In addition, women who carry genetic 

mutations, such as mutations in the BRCA2 gene, have a higher risk of breast cancer than 

women who do not carry such mutations. However, these genetic mutations are estimated to 

account for less than 10% for all breast cancers;144 different populations have shown different 

prevalence, such as in European populations.145 Current evidence about founder mutations in 

these specific populations have summarized their impact in breast cancer management.145 These 

type of queries could potentially impact the development of Precision Medicine in breast cancer, 

since they have the potential to identify people at molecular level risk to make genetic testing 

more affordable and cost-effective, positively influencing the healthcare system regarding 

attention to breast cancer. 



 66 

The following Precision Medicine queries act as a filter for subgroup populations by 

identifying highly specific information of patients with breast cancer.146 For example, by running 

a less specific query we identified a large group of individuals with similar demographic 

characteristics. However, by running the most specific query, we identified one patient, with ID  

TCGA-A2-AOEM, clinically described as a white and alive female that has survived with breast 

cancer for more than 30 months and listed as StageIA with a TNM classification of T1, N0i-, 

M0. The query also indicates that this patient underwent to conventional therapy including 

Lumpectomy, hormone therapy (Tamoxifen) and external beam radiotherapy. Genetically she 

carries a pathogenic European founder mutation identified in Swedish populations at 

Chromosome 13 location 32912750 that is expressed since the mutation is located in the range of 

the exon located at chr13:32910402-32915333, with normalized RPKM value of 

0.208929385980881. Thus, these queries have the potential to filter and identify individuals with 

similar clinical and genetic characteristics and to identify individuals to test relevant biological 

questions.  This filtration process could be used to compare not just individuals but groups of 

people to identify the efficacy of cancer therapies such as it is tested in Wang et al.147 that query 

people with similar clinical and genomic information to discover gene expression patterns that 

affect response therapies on specific groups of people. 

In order to measure the functionality of the databases approaches we created two sets of 

queries: “Static queries” and “Dynamic queries”. 



 67 

3.2.1 Static queries 

Static queries were used in experiment 1 and 2. We called them “Static queries” since they 

retrieve only pre-defined information stated in the first schema designed for each database 

implementation. The retrieved information from each static query is described below. 

Query 1: Request for white female patients with more than 55 years who have survived 

longer than 30 months. 

Query 2: Request for white female patients with more than 55 years who have survived 

longer than 30 months with any cancer stage I, when breast cancer can be effectively treated, 

with TNM values including any T, N>1 and M=0. 

Query 3: Request for white female patients with more than 55 years who have survived 

longer than 30 months with any cancer stage I, when breast cancer can be effectively treated, 

with TNM values including any T, N>1 and M=0. Also including therapies in accordance with 

those described by the American Cancer Society (ACS) for the selected cancer stage, including: 

'SurgicalResection'; Chemotheraphy: trastuzumab, pertuzumab; and 'Adjuvant hormone therapy': 

Tamoxifen, Toremifene, Fulvestrant. 

Query 4: Request for white female patients with more than 55 years who have survived 

longer than 30 months with any cancer stage I, when breast cancer can be effectively treated, 

with TNM values including any T, N>1 and M=0. Including the following therapy: 

'SurgicalResection'; Chemotheraphy: trastuzumab, pertuzumab; and adjuvant hormone therapy: 

Tamoxifen, Toremifene, Fulvestrant. Including clinically relevant BRCA2 variants identified as 

European founder mutations, as shown in Figure 4. 

Query 5: Request for white female patients with more than 55 years who have survived 

longer than 30 months with any cancer stage I, when breast cancer can be effectively treated, 



 68 

with TNM values including any T, N>1 and M=0. Including the following therapy: 

'SurgicalResection'; Chemotheraphy: trastuzumab, pertuzumab; and adjuvant hormone therapy: 

Tamoxifen, Toremifene, Fulvestrant. Including clinically relevant BRCA2 variants identified as 

European founder mutations at any genetic expression level. 

 

Figure 4. BRCA2 variants identified as European founder mutations. 

3.2.2 Dynamic queries 

In order to assess experiment 3, described below in section 6.2, we modified our queries to 

retrieve new information, non-predefined data (new header) in the initial database schema. The 

modification consisted of the fact that all queries also requested “Population” information. This 

data was obtained from the European ancestry and founder mutation study, described in section 

3.1.1.2. Specifically these dynamic queries will retrieve the hypothetical Population from which 

each patient comes. For example, they ask if people are from one of the following populations: 

AshkenaziJews, Austrian, Slovenian, Italian, French, Spanish, Portuguese, Belgian, Dutch, 

German, Czech, Hungarian, Greek, Cypriot, Danish, Swedish, Finnish, Iceland, British, Irish, 

Polish, Latvian, Lithuanian, Belarusian or Russian. As a note, this information did not come 



 69 

from TCGA project. We add this new information just to measure database performance and 

scalability toward updating processes that include schema modifications. The information 

retrieved from each dynamic query is described below. 

Query 1: Request for white female patients with more than 55 years who have survived 

longer than 30 months from a specific European population. 

Query 2: Request for white female patients with more than 55 years who have survived 

longer than 30 months, from a specific European population, with any cancer stage I, when 

breast cancer can be effectively treated, with TNM values including any T, N>1 and M=0. 

Query 3: Request for white female patients with more than 55 years who have survived 

longer than 30 months, from a specific European population, with any cancer stage I, when 

breast cancer can be effectively treated, with TNM values including any T, N>1 and M=0. Also 

including therapies described by the American Cancer Society (ACS) according to the selected 

cancer stage, including: 'SurgicalResection'; Chemotheraphy: trastuzumab, pertuzumab; and 

'Adjuvant hormone therapy': Tamoxifen, Toremifene, Fulvestrant. 

Query 4: Request for white female patients with more than 55 years who have survived 

longer than 30 months, from a specific European population, with any cancer stage I, when 

breast cancer can be effectively treated, with TNM values including any T, N>1 and M=0. 

Including the following therapy: 'SurgicalResection'; Chemotheraphy: trastuzumab, pertuzumab; 

and adjuvant hormone therapy: Tamoxifen, Toremifene, Fulvestrant. Including clinically 

relevant BRCA2 variants identified as European founder mutations, as shown in Figure 4. 

Query 5: Request for white female patients with more than 55 years who have survived 

longer than 30 months, from a specific European population, with any cancer stage I, when 

breast cancer can be effectively treated, with TNM values including any T, N>1 and M=0. 



 70 

Including the following therapy: 'SurgicalResection'; Chemotheraphy: trastuzumab, pertuzumab; 

and adjuvant hormone therapy: Tamoxifen, Toremifene, Fulvestrant. Including clinically 

relevant BRCA2 variants identified as European founder mutations ay any genetic expression 

level.  



 71 

4.0  PERFORMANCE AND SCALABILITY ON QUERIES OF GRADUALLY 

INCREASING COMPLEXITY AND DATABASE SIZE 

4.1 INTRODUCTION 

DBMS that successfully cope with characteristics of clinical and genomic data should display 

high performance and scalability. As discussed on §2, the burgeoning growth in the amount of 

clinical and genomic data that are highly heterogeneous and dynamic –constantly updated–

requires database approaches suitable for successful data management.142 Clinical and genomic 

data show unique characteristics that require special attention when designing a database 

management system. The unique characteristics are due to the current technologies that 

massively produce heterogeneous data. This is because recent technological advances seem to be 

more sensitive to generating any imaginable kind of data. For example, Next Generation 

sequencing machines can generate structural and functional data at an impressive rate. Thus, it 

appears essential to choose a recent database technology inherently designed to cope with current 

data challenges with respect to storage and management issues. In fact, it is more likely that 

newer database systems display higher performance and scalability than non-recent technologies. 

However, today, clinical and genomic data are managed with a database system that has 

been pre-dominate for more than three decades – a relational database (SQL). As a result of its 

age, this technology displays many limitations with respect to manipulating recently generated 



 72 

clinical and genomic data. While the relational database (SQL) is a universal approach to data 

management,148 it was not designed to deal with today’s current high volume of generated data, 

like clinical and genomic data. SQL was not built to handle large databases and presents many 

problems, such as the need to pre-design schema for data consistency.148 Furthermore, SQL 

systems present complications to managing heterogeneous data, especially the types of data that 

remains unused due to the nature of the data but nonetheless still need to be stored. These 

drawbacks cause SQL systems to produce failures in their management of big and mercurial 

clinical and genomic data, resulting in inefficient storage and poor performance.  

One logical way to address current database system complications is to use more recent 

database systems that have been designed to handle currently generated data, data similar in 

nature to clinical and genomic data. These recent database technologies are termed “NoSQL”. 

NoSQL technologies are designed to cope with current generated data.147 As described in §2, 

NoSQL technologies have advantages over SQL systems such as data models can typically 

maintain data in group order. This is just one of the many characteristics that gives them the 

ability to handle massively generated data. Big firms in the computational industry have 

achieved success using NoSQL technologies, demonstrating the value of NoSQL systems for 

data management in the business field.  

However, as there is not one specific NoSQL technology designed to cope with the 

uniqueness of clinical and genomic data most effectively, we translated the use of these 

successful business technologies to the Precision Medicine field, which appears to have data 

similar to some of these business data but more heterogeneous. Thus, as a first approach we 

attempt to use four recent database technologies designed to cope with the characteristics of 

recently produced data such as clinical and genomic data. 



 73 

A successful database system should display higher performance –lower query times and 

higher scalability –lower query times even through increasing data. To determine a suitable 

database approach for clinical and genomic data, three NoSQL technologies are compared in this 

experiment as well as one SQL approach as a reference. The NoSQL database approaches were 

based on Document store-MongoDB, Key-Value store-Redis, and Column store-Cassandra, and 

the SQL approach was the Relational Model-MySQL. The comparisons were made regarding 

query performance and scalability. The databases were populated with real clinical and genomic 

patient information obtained from the publicly available TCGA database. 

In the following section we describe the details of our experiment in comparing 

performance and scalability on queries that gradually increase in complexity and database size. 

In sub-section 4.1 we briefly present the performance results from the experiment. We 

summarize the results in our conclusion. 

4.2 EXPERIMENT 1: COMPARING PERFORMANCE AND SCALABILITY ON 

QUERIES OF GRADUALLY INCREASING COMPLEXITY AND DATABASE SIZE 

To identify the database approaches with higher performance in making queries with different 

complexity and using different database sizes, we measure performance by adapting the 

methodology used in Lee, et al.11 but using Precision Medicine data instead of just clinical data. 

To identify the fastest NoSQL approach in querying clinical and genomic data, we used standard 

computing resources in four databases sizes (1,000, 5,000, 10,000 and 50,000 records) and four 

database approaches (Mongo, Redis, Cassandra and MySQL) and measured the query times for 

five different types of queries of varying complexity, as described in §3.2. Each query was run 3 



 74 

times to calculate the mean query time and the standard deviation. Once query times were 

obtained, we created tables to graph the results, facilitating comparisons among database 

approaches. The approach with the highest performance for each of the queries and database 

sizes was the database approach that had the lowest query time for each set, as described in the 

experiment 1 workflow shown in Figure 5. All of these calculations are described in section 

§4.2.1.1 Timing Performance. To identify the database approach with the highest scalability we 

used the query times obtained above from measuring performance, but calculating, for each 

database approach, the difference in query times that resulted from the largest database minus the 

smallest database query times, and selecting the database approach with the lowest query time. 

All of these calculations are described in section §4.2.1.1 Timing Scalability. In addition, to 

better visualize the database approach with highest scalability in the different database sizes, we 

display the scalability results as shown in the “Scaling the database size” experiment in 

Labrinidis et al.9 Specifically, we display the query times adjusted by scale factors. These factors 

represent the number in which the smaller database (1000 records) is scaled or multiplied toward 

the different databases sizes (1,000, 5,000, 10,000, 50,000 records). We calculated the scaling 

factors according to the following equation:  

y=Cx 

Where C is the scale factor (coefficient) for x, x represents our smaller database and y 

represents one of our four different database sizes. As a comment, C is also called the constant of 

proportionality of y to x. 

Thus, our four different scaling factors are as follows: 

 1, which corresponds to 1,000 patients records 

 5, which corresponds to 5,000 patients records 



 75 

 10, which corresponds to 10,000 patients records 

 50, which corresponds to 50,000 patients records 

This experiment 1 was repeated, but using supercomputing resources and even larger 

databases. These databases consisted of 1,000, 5,000, 10,000, 50,000, 100,000, 1 million, 10 

millions and 100 millions records, respectively. We used the same four database technologies: 

MongoDB, Redis, Cassandra and MySQL. Performance and Scalability results are annotated in 

Tables and Graphs, and described in section §4.2.1.1 Timing Performance and Timing 

Scalability, respectively. 

 
Figure 5. Workflow of Experiment 1. 



 76 

4.2.1 Experimental results 

The query time for each of the four DBMS was evaluated by making five different queries, as 

described above, of gradually increasing complexity using databases of different sizes, as shown 

in Figure 5. The variation in query time in the database updating process was also studied. For 

each of the four database approaches, the time taken to make the queries of varying complexity, 

as described above, was measured with databases containing 1000, 5000, 10,000 and 50,000 

patients’ records. In addition, using the same methodology but with supercomputing resources 

the query time of the four DBMS was measured using the same and even larger databases, ones 

with 100,000, 1,000,000, 10,000,000 and 100,000,000 patient’s records, respectively, as shown 

in Figure 5. For each of the database sizes mentioned above, each query was made 3 times in 

order to calculate the average query time and the standard deviation (SD).  The query times are 

given in Tables 3-17. 

4.2.1.1 Query time results for queries of varying complexity in databases of different sizes 

Timing Performance 

The timing performances for the simplest query are given in Table 3. For query 1 in the DB size 

of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, Cassandra 

and Redis obtained results more than 5 and 7 times faster than MySQL and MongoDB, 

respectively. In the 5,000-record database, again Cassandra and Redis showed very similar query 

times. In this DB size, Cassandra and Redis were almost 2 and 3 times faster than MySQL and 

MongoDB, respectively. In the 10,000-record database, Cassandra and Redis again had almost 

the same query times, and both technologies were again almost 2 and 3 times faster than MySQL 



 77 

and MongoDB, respectively. Finally, in the 50,000-record database, Cassandra and Redis had 

similar query times. In this DB size, Cassandra and Redis were two and more than two times 

faster than MySQL and MongoDB, respectively.  

The timing performances for query 2 are given in Table 4. For query 2 in the 1000-record 

DB, Cassandra and Redis had similar times, Cassandra and Redis were more than two and seven 

times faster than MySQL and MongoDB, respectively. In the 5,000-record DB, the results were 

somewhat different than those previous.  Cassandra, Redis and MySQL showed similar results. 

For this size DB, these three technologies were around 3 times faster than MongoDB. In the 

10,000-records DB, the same three technologies  -- Cassandra, Redis and MySQL -- again had 

similar results. They were around two times faster than MongoDB. In the 50,000-record DB, 

Cassandra and Redis were the faster technologies. Both technologies were slightly faster than 

MySQL and around 2 times faster than MongoDB.  

The timing performances for query 3 are given in Table 5. For query 3, in the DB size of 

1,000 records Cassandra and Redis showed the smallest query times. They were almost 3 and 87 

times faster than MySQL and MongoDB, respectively. In the 5,000 record DB, Cassandra and 

Redis were the fastest technologies. They were slightly faster than MySQL and almost 19 times 

faster than MongoDB. In the 10,000 record DB, Cassandra and Redis returned the smallest query 

times. Again, their results were slightly faster than those of MySQL and more than 11 times 

faster than those of MongoDB. Finally, in the 50,000-record DB, Cassandra store was the fastest 

technology. This technology was slightly faster than the Redis and MySQL, and almost 5 times 

faster than MongoDB. 

The timing performances for query 4 are given in Table 6. For query 4, in the DB of 

1,000 records, Cassandra had the lowest query time. It was almost 2 times faster than Redis and 



 78 

MySQL and more than 129 times faster than MongoDB. In the 5,000-recordDB, Cassandra was 

the fastest technology. It was slightly faster than the MySQL and Redis, and more than 27 times 

faster than MongoDB. In the 10,000-record DB, Cassandra had the smallest query time. This was 

almost two times faster than the MySQL and Redis and almost 17 times faster than MongoDB. 

In the 50,000-record DB, again, Cassandra was the fastest technology. Its query time was almost 

2 times faster than MySQL and Redis and 5.39 times faster than MongoDB. 

The timing performances for the more complex query are given in Table 7. For query 5, 

in the DB of 1,000 records, Cassandra was the fastest technology. It was 2 times faster than 

Redis, more than 3 times faster than MySQL, and almost 150 times faster than MongoDB. In the 

5,000-record DB, Cassandra showed the lowest query time. It was around 2 times faster than the 

Redis and MySQL, and more than 31 times faster than MongoDB. In the 10,000-record DB, 

Cassandra was the fastest technology. It was more than 2 times faster than the Redis and 

MySQL, and almost 19 times faster than MongoDB. Finally, in the 50,000-record DB, Cassandra 

had the smallest query time. It was almost 2 times faster than MySQL, more than two times 

faster than Redis, and almost 6 times faster than MongoDB. 

The query times for the larger databases are given in Tables 8-12. We studied the same 

four DBMS technologies but using supercomputing resources, making the five varied complex 

queries in the same and even larger databases (100,000, 1,000,000, 10,000,000 and 100,000,000 

records).  

The timing performances for the simplest query are given in Table 8. For query 1 in the 

database size of 1,000 records, Cassandra and Redis showed almost the same query times. In 

fact, Cassandra and Redis obtained results more than 8 and 13 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 



 79 

fastest technologies. In this database size, Cassandra and Redis were more than 6 and 8 times 

faster than MySQL and MongoDB, respectively. In the 10,000-record database, Cassandra and 

Redis again had almost the same query times, and both technologies were more than 5 and 8 

times faster than MySQL and MongoDB, respectively. Finally, in the 50,000-record database, 

Cassandra and Redis had similar query times, respectively. In this database size, Cassandra and 

Redis were more than 5 and 8 times faster than MySQL and MongoDB, respectively. In the 

100,000 records, Cassandra and Redis were the fastest technologies. In fact, they were more than 

4 and 6 times faster than MySQL and MongoDB, respectively. In the 1-million records database, 

again Cassandra and Redis were the fastest technologies. For this database size, they were more 

than 7 and 8 times faster than MySQL and MongoDB. In the 10 million-records, Cassandra and 

Redis again were the fastest technologies. Both technologies were again more than 7 times faster 

than MySQL and MongoDB. In 100 million records, Cassandra and Redis were the fastest 

technologies. In fact, they were more than 7 and 23 times faster than MySQL and MongoDB, 

respectively. 

The timing performances for query 2 are given in Table 9. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results more than 3 and 16 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were more than 2 and 5 times 

faster than MySQL and MongoDB, respectively. In the 10,000-record database, Cassandra and 

Redis again had almost the same query times, and both technologies were more than 2 and 5 

times faster than MySQL and MongoDB, respectively. Finally, in the 50,000-record database, 

Cassandra and Redis had similar query times, respectively. In this database size, Cassandra and 



 80 

Redis were more than 2 and 4 times faster than MySQL and MongoDB, respectively. In 100,000 

records, Cassandra and Redis were the fastest technologies. In fact, they were slightly faster than 

MySQL and more than 3 times faster than MongoDB, respectively. In the 1-million records 

database, again Cassandra and Redis were the fastest technologies. For this database size, they 

were more than 3 and 4 times faster than MySQL and MongoDB. In 10 million-records, 

Cassandra and Redis again were the fastest technologies. Both technologies were again more 

than 3 and 4 times faster than MySQL and MongoDB. In 100 million records, Cassandra and 

Redis were the fastest technologies. In fact, they were more than 3 and 10 times faster than 

MySQL and MongoDB, respectively. 

The timing performances for query 3 are given in Table 10. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results more than 2 and 510 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were slightly faster than MySQL 

and more than 104 times faster than MongoDB, respectively. In the 10,000-record database, 

Cassandra and Redis again had almost the same query times, and both technologies were slightly 

faster than MySQL and more than 52 times faster than MongoDB, respectively. Finally, in the 

50,000-record database, Cassandra and Redis had similar query times, respectively. In this 

database size, Cassandra and Redis were slightly faster than MySQL and more than 14 times 

faster than MongoDB, respectively. In 100,000 records, Cassandra and Redis were the fastest 

technologies. In fact, they were slightly faster than MySQL and more than 8 times faster than 

MongoDB, respectively. In the 1-million records database, again Cassandra and Redis were the 

fastest technologies. For this database size, they were more than 2 and 5 times faster than 



 81 

MySQL and MongoDB. In 10 million-records, Cassandra and Redis again were the fastest 

technologies. Both technologies were again more than 2 and 4 times faster than MySQL and 

MongoDB. In 100 million records, Cassandra and Redis were the fastest technologies. In fact, 

they were more than 2 and 8 times faster than MySQL and MongoDB, respectively. 

The timing performances for query 4 are given in Table 11. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results slightly faster than MySQL and 318 times faster than 

MongoDB. In the 5,000-record database, again Cassandra and Redis were the fastest 

technologies. In this database size, Cassandra and Redis were slightly faster than MySQL and 

more than 108 times faster than MongoDB. In the 10,000-record database, Cassandra and Redis 

again had almost the same query times, and both technologies were slightly faster than MySQL 

and more than 52 times faster than MongoDB. Finally, in the 50,000-record database, Cassandra 

and Redis had similar query times. In this database size, Cassandra and Redis were slightly faster 

than MySQL and more than 12 times faster than MongoDB. In 100,000 records, Cassandra and 

Redis were the fastest technologies. In fact, they were slightly faster than MySQL and more than 

6 times faster than MongoDB. In the 1-million records database, again Cassandra and Redis were 

the fastest technologies. For this database size, they were slightly faster than MySQL and 3 times 

faster than MongoDB. In 10 million-records, Cassandra and Redis again were the fastest 

technologies. Both technologies were again slightly higher than MySQL and 6 times faster than 

MongoDB. In 100 million records, Cassandra and Redis were the fastest technologies. In fact, 

they were slightly faster than MySQL and more than 4 times faster than MongoDB. 

The timing performances for query 5 are given in Table 12. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 



 82 

Cassandra and Redis obtained results slightly faster than MySQL and 521 times faster than 

MongoDB. In the 5,000-record database, again Cassandra and Redis were the fastest 

technologies. In this database size, Cassandra and Redis were slightly faster than MySQL and 

more than 106 times faster than MongoDB. In the 10,000-record database, Cassandra and Redis 

again had almost the same query times, and both technologies were slightly faster than MySQL 

and more than 54 times faster than MongoDB. Finally, in the 50,000-record database, Cassandra, 

Redis and MySQL had similar query times. In this database size, they were more than 11 times 

faster than MongoDB. In 100,000 records, MySQL were the fastest technology. In fact, it was 

slightly faster than Cassandra and Redis and more than 6 times faster than MongoDB. In the 1-

million records database, Cassandra and Redis were the fastest technologies. For this database 

size, they were slightly faster than MySQL and 2 times faster than MongoDB. In 10 million-

records, Cassandra and Redis again were the fastest technologies. Both technologies were again 

slightly higher than MySQL and MongoDB. In 100 million records, Cassandra and Redis were 

the fastest technologies. In fact, they were slightly faster than MySQL and more than 3 times 

faster than MongoDB. 



 83 

Table 3. Query performance of experiment 1: query 1. 

 
Table 4. Query performance of experiment 1: query 2. 

 

Table 5. Query performance of experiment 1: query 3. 

 



 84 

Table 6. Query performance of experiment 1: query 4. 

 

Table 7. Query performance of experiment 1: query 5. 

 

Table 8. Query performance of experiment 1 in larger databases: query 1. 

 



 85 

Table 9. Query performance of experiment 1 in larger databases: query 2. 

 

Table 10. Query performance of experiment 1 in larger databases: query 3. 

 



 86 

Table 11. Query performance of experiment 1 in larger databases: query 4. 

 

Table 12. Query performance of experiment 1 in larger databases: query 5. 

 

 

 

 



 87 

Timing Scalability 

The scalability of the database approaches, allowing more patient records to be processed in a 

smaller amount of time as expected, is described per query number in Figures 6-15. 

As shown in Figures 6 and 7, in query 1, Cassandra and Redis took the least time to scale 

from 1,000 to 50,000 records. Specifically, in around 42 ms, they scaled to the largest database, 

which is almost 2 times faster than the second fastest technology. As shown in Figures 8 and 9, 

in query 2, Cassandra and Redis too the least time to scale to the largest database. Specifically, it 

took 57.72ms to scale from 1,000 to 50,000 records, which was slightly faster than Cassandra, 

which needed 66.19ms. As shown in Figures 10 and 11, in query 3, Cassandra was the fastest 

technology to scale to the largest number of records. It needed 73.78ms to scale to 50,000 

records, making it slightly faster than Redis at 79.18ms. As shown in Figures 12 and 13, in query 

4, Cassandra store was the fastest technology to reach the largest database; it took 81.32ms, 

slightly higher than MySQL and Redis, which took 129.59ms and 138.83ms, respectively. 

Finally, as shown in Figures 14 and 15, in query 5, Cassandra store was again the fastest 

technology to scale from 10,000 to 50,000 records. It took 86.75ms to scale to the largest 

database, making it slightly faster than Redis and MySQL, which took 199.44ms and 154.85ms. 

As shown in Figures 16 and 17, in query 1, Cassandra and Redis took the least time to 

scale from 1,000 to 100,000,000 records. Specifically they took 19493.22 ms and 19381.14 ms, 

to scale to the largest database. As shown in Figures 18 and 19, in query 2, Cassandra and Redis 

took the least time to scale to the largest database. Specifically, they took 45066.44 and 44971.98 

ms, respectively, to scale from 1,000 to 100,000,000 records. As shown in Figures 20 and 21, in 

query 3, Cassandra and Redis were the fastest technology to scale to the largest number of 

records. They needed 70502.22 and 70438.18 ms to scale from 1,000 to 100,000,000 records. As 



 88 

shown in Figures 22 and 23, in query 4, Cassandra and Redis were the fastest technology to 

reach the largest database; they took 129659.4 and 120709.64 ms, respectively. Finally, as shown 

in Figure 24 and 25, in query 5, Cassandra and Redis were again the fastest technology to scale 

from 1,000 to 100,000,000 records. They took 196951.19 and 195720.36 ms, respectively, to 

scale to the largest database. 

4.2.1.2 Summary 

Using standard computing resources in four DBMS, the query speed for the MongoDB was 

slower for all queries and database sizes as expected. Figures 6-15 reveal that, for the simple 

queries, the performances of Cassandra, Redis and MySQL were similar when the size of the 

database was small but results diverged significantly as the number of records increased to 

10,000 records and beyond, where the query speed of Cassandra and Redis became highlighted. 

Similar results were obtained by using supercomputing resources (Figures 16-25), Cassandra and 

Redis, showed the lowest query times in most of the queries tested, showing high performance in 

larger databases, specially those that had 100 million patients. These two technologies also 

display high scalability from 1,000 to 100 million patients, requiring less query time than the 

other two technologies. 

The performance of Cassandra and Redis was significantly faster than MongoDB for 

large databases. The timing among these three NoSQL approaches was similar for more complex 

queries; using standard computing resources, the query time of Cassandra and Redis for the 

50,000-record database and the most complex query was at least 2 times faster than MongoDB 

(Document NoSQL approach) and almost 2 times faster than MySQL (SQL approach). 

Comparably, using supercomputing resources, the query time of Cassandra and Redis for the 100 

million-record database and the most complex query was more than 3 times faster than the 



 89 

MongoDB and slightly faster than MySQL, even though both, Cassandra and Redis had 

significantly more keys to process because of its default design. This is probably because recent 

database technologies (NoSQL approaches) have been developed to handle a higher number of 

keys to filter and find specific information from large amounts of data. 

 
Figure 6. Variation in query time (base-10 log scale) of experiment 1: query 1. 

 
Figure 7. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 1. 



 90 

 

Figure 8. Variation in query time (base-10 log scale) of experiment 1: query 2. 

 

 

Figure 9. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 2. 



 91 

 

Figure 10. Variation in query time (base-10 log scale) of experiment 1: query 3. 

 

 

Figure 11. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 3. 



 92 

 

Figure 12. Variation in query time (base-10 log scale) of experiment 1: query 4. 

 

 

Figure 13. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 4. 



 93 

 

Figure 14. Variation in query time (base-10 log scale) of experiment 1: query 5. 

 

 

Figure 15. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 5. 



 94 

 

Figure 16. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 1. 

 

 

Figure 17. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger 

databases: query 1. 



 95 

 
Figure 18. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 2. 

 

 

Figure 19. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger 

databases: query 2. 



 96 

 
Figure 20. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 3. 

 

 

Figure 21. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger 

databases: query 3. 



 97 

 

Figure 22. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 4. 

 

 

Figure 23. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger 

databases: query 4. 



 98 

 

Figure 24. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 5. 

 

 

Figure 25. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger 

databases: query 5. 

 



 99 

5.0  SCALABILITY ON UPDATING WITHOUT SCHEMA CHANGES 

5.1 INTRODUCTION 

Precision Medicine is characterized by its continuous updating of information. Clinical and 

genomic data are one such type of information. As genomic analyses are based on traditional 

public databases that are changing every time new knowledge is produced, an efficient database 

management system for this type of data should be able to handle update processes easily. 

NoSQL technologies are characterized by their design to easily handle volatile data and 

frequently updated information. One way to study these features and how well NoSQL 

technologies handle update processes is to design experiments where we can keep database sizes 

constant, but vary update processes, and measure their query performance and scalability. 

In the following experiment, we study the scalability of our previously selected database 

approaches to identify the one that can best adapt itself to the challenges in managing clinical 

and genomic data. 

In the following sub-sections we describe the details of our experiment comparing 

performance and scalability using our previous queries with varied complexity and an updating 

process that does not modify the database schema. In sub-section 5.2.1 we briefly present the 

results of the experiment for performance and scalability. Also, we describe the resulted 

scalability followed by a summary with our conclusions. 



 100 

5.2 EXPERIMENT 2: COMPARING SCALABILITY ON UPDATING WITHOUT 

SCHEMA CHANGES 

To identify the database approaches with higher scalability in database updates (modifications 

without changing the schema), we adapted the experiment used in Labrinidis et al. “Scaling the 

maintenance workload.” In uploading new data, the databases were updated in 10% of the 

records, with all records corresponding to the same headers or already predefined information. 

Updates consisted of specific modifications of the database (updating demographic, diagnostic, 

treatment and genomic patient’s information). The updating process modified the database size. 

However, it did not modify the number of records of each pre-designed database, since we were 

not adding new patients, just modifying the information of patients who were already included. 

We ran each query in a manner similar to the last experiment, but using the updated databases. 

Once query times were obtained, we created tables that laid out the results, thereby facilitating 

comparisons among database approaches. To identify the approaches with higher performance in 

the updated database for each of the queries and databases of each size, we selected the database 

approach that resulted in the lowest query time for each set, as described in workflow experiment 

2 shown in Figure 26. All of these calculations are described in section §5.2.1.1 Timing 

Performance. To identify the database approach with highest scalability in the updated database, 

we used the query times obtained above from measuring performance, but calculating, for each 

database approach, the difference in query times for the 50,000-record database minus query 

times from the 1,000-record database, selecting the database approach with the lowest resulting 

query time. All these calculations are described in section §5.2.1.1 Timing Scalability. 

Experiment 2 was repeated but in even larger databases. These databases consisted of 

1,000, 5,000, 10,000, 50,000, 100,000, 1 million, 10 millions and 100 millions records. For 



 101 

experiment 2, we used the same four database technologies: Document-MongoDB, Key-Value-

Redis, Column-Cassandra and Table-MySQL. Performance and Scalability results are annotated 

in Tables and Graphs, and described in section §5.2.1.1, Timing Performance and Timing 

Scalability, respectively. 

 
Figure 26. Workflow of Experiment 2. 

5.2.1 Experimental results 

Query times for the four DBMS were evaluated by making five different queries with varied 

complexity of the updated databases of different sizes, as shown in Figure 26. The variation in 

query time in the database updating process was also studied. For each of the four database 



 102 

approaches, the time taken to make the queries with varying complexity, as described above, was 

measured in databases containing 1000, 5000, 10,000 and 50,000 patient records. In addition, 

using the same methodology but supercomputing resources, the query times of the four DBMS 

were measured for the same and even larger databases, with 100,000, 1,000,000 and 10,000,000 

and 100,000,000 patient records, as shown in Figure 26. Finally, for each of the database sizes 

mentioned above, each query was made 3 times to calculate the average query time and the 

standard deviation (SD).  The query times are given in Tables 13-22. 

5.2.1.1 Query time results for queries of varying complexity in databases of different sizes 

Timing Performance 

The timing performances of the simplest query are given in Table 13. For query 1 in the 1,000-

record DB, the Cassandra and Redis offered the smallest query times. They were almost two 

times faster than MySQL and more than six times faster than MongoDB. In the 5,000-record DB, 

Cassandra and Redis were the fastest technologies. Both technologies were around 2 times faster 

than MySQL and around 3 to 4 times faster than MongoDB. In the 10,000-record DB, the 

Cassandra and Redis offered the smallest query time. They were around two times faster than the 

MySQL and MongoDB. Finally, in the 50,000-record DB, the Cassandra was fastest technology. 

It was slightly faster than Redis and almost 2 times faster than MySQL and almost 3 times faster 

than MongoDB. 

The timing performances for query 2 are given in Table 14. For query 2, in the 1,000-

record database, Cassandra, Redis and MySQL came back with similar query times. They were 

around 7 to 9 times faster than MongoDB. In the 5,000-record DB, Redis had the smallest query 

time. It was slightly faster than the Cassandra and MySQL, and almost 4 times faster than 



 103 

MongoDB. In the 10,000-record DB, Cassandra and Redis were the faster technologies. They 

were slightly faster than MySQL and around three times faster than MongoDB. In the 50,000-

record DB, the Cassandra and Redis were fastest technologies. They were slightly faster than 

MySQL and more than two times faster than MySQL. 

The timing performances for query 3 are given in Table 15. For query 3, in the 1,000-

record DB, Cassandra and Redis resulted in the smallest query times. They were slightly faster 

than MySQL and 96 to 107 times faster than MongoDB. In the 5,000-record DB, the Cassandra 

and Redis were the fastest technologies. They were slightly faster than MySQL and around 21 to 

23 times faster than MongoDB. In the 10,000-record DB, Cassandra and Redis were the fastest 

technologies. They were slightly faster than MySQL and around 12 times faster than MongoDB. 

In the 50,000-record DB, Cassandra offered the fastest time. It was slightly faster than the Redis 

and MySQL and more than 4 times faster than MongoDB. 

The timing performances for query 4 are given in Table 16. For query 4, in the 1,000-

record DB, Cassandra was the fastest technology. It was slightly faster than the Redis and 

MySQL, and 134 times faster than MongoDB. In the 5,000-record DB, Cassandra had the 

smallest query time. It was slightly faster than Redis, almost 2 times faster than MySQL and 

almost 29 times faster than MongoDB. In the 10,000-record DB, Cassandra resulted in the 

smallest query time. It was slightly faster than Redis and MySQL and more than 17 times faster 

than MongoDB. In the 50,000-record DB, Cassandra was the fastest technology. It was almost 2 

times faster than Redis and MySQL and more than 5 times faster than MongoDB. 

The timing performances for query 5 are given in Table 17. For query 5, in the 1,000-

record DB, Cassandra had the smallest query time. It was almost 2 times faster than Redis and 

MySQL and more than 147 times faster than MongoDB. In the 5,000-record DB, Cassandra was 



 104 

the fastest technology. It was slightly faster than the Redis and MySQL and more than 24 times 

faster than MongoDB. In the 10,000-record DB, Cassandra resulted in the smallest query time. It 

was more than two times faster than MySQL and Redis and more than 19 times faster than 

MongoDB. In the 50,000-record DB, Cassandra was the fastest technology. It was around two 

times faster than MySQL and Redis and more than 5 times faster than MongoDB. 

The timing performances for the simplest query are given in Table 18. For query 1 in the 

database size of 1,000 records, Cassandra and Redis showed almost the same query times. In 

fact, Cassandra and Redis obtained results more than 7 and 16 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were more than 5 and 8 times 

faster than MySQL and MongoDB, respectively. In the 10,000-record database, Cassandra and 

Redis again had almost the same query times, and both technologies were more than 5 and 7 

times faster than MySQL and MongoDB, respectively. In the 50,000-record database, Cassandra 

and Redis had similar query times, respectively. In this database size, Cassandra and Redis were 

more than 5 and 8 times faster than MySQL and MongoDB, respectively. In the 100,000 records, 

Cassandra and Redis were the fastest technologies. In fact, they were more than 5 and 7 times 

faster than MySQL and MongoDB, respectively. In the 1-million records database, again 

Cassandra and Redis were the fastest technologies. For this database size, they were more than 6 

and 7 times faster than MySQL and MongoDB. In the 10 million-records, Cassandra and Redis 

again were the fastest technologies. Both technologies were again more than 8 and 6 times faster 

than MySQL and MongoDB. In 100 million records, Cassandra and Redis were the fastest 

technologies. In fact, they were more than 5 and 19 times faster than MySQL and MongoDB, 

respectively. 



 105 

The timing performances for query 2 are given in Table 19. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results more than 3 and 16 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were more than 2 and 5 times 

faster than MySQL and MongoDB, respectively. In the 10,000-record database, Cassandra and 

Redis again had almost the same query times, and both technologies were more than 2 and 4 

times faster than MySQL and MongoDB, respectively. In the 50,000-record database, Cassandra 

and Redis had similar query times, respectively. In this database size, Cassandra and Redis were 

more than 2 and 4 times faster than MySQ and MongoDB, respectively. In 100,000 records, 

Cassandra and Redis were the fastest technologies. In fact, they were slightly faster than MySQL 

and more than 3 times faster than MongoDB, respectively. In the 1-million records database, 

again Cassandra and Redis were the fastest technologies. For this database size, they were more 

than 2 and 4 times faster than MySQL and MongoDB. In 10 million-records, Cassandra and 

Redis again were the fastest technologies. Both technologies were again more than 6 and 10 

times faster than MySQL and MongoDB. In 100 million records, Cassandra and Redis were the 

fastest technologies. In fact, they were more than 2 and 9 times faster than MySQL and 

MongoDB, respectively. 

The timing performances for query 3 are given in Table 20. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results more than 2 and 543 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were slightly faster than MySQL 



 106 

and more than 105 times faster than MongoDB, respectively. In the 10,000-record database, 

Cassandra and Redis again had almost the same query times, and both technologies were slightly 

faster than MySQL and more than 55 times faster than MongoDB, respectively. Finally, in the 

50,000-record database, Cassandra and Redis had similar query times, respectively. In this 

database size, Cassandra and Redis were slightly faster than MySQL and more than 14 times 

faster than MongoDB, respectively. In 100,000 records, Cassandra and Redis were the fastest 

technologies. In fact, they were slightly faster than MySQL and more than 7 times faster than 

MongoDB, respectively. In the 1-million records database, again Cassandra and Redis were the 

fastest technologies. For this database size, they were more than 2 and 5 times faster than 

MySQL and MongoDB. In 10 million-records, Cassandra and Redis again were the fastest 

technologies. Both technologies were again more than 2 and 5 times faster than MySQL and 

MongoDB. In 100 million records, Cassandra and Redis were the fastest technologies. In fact, 

they were slightly faster than MySQL and 6 times faster than MongoDB. 

The timing performances for query 4 are given in Table 21. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results 2 and 532 times faster than MySQL and MongoDB. In the 

5,000-record database, again Cassandra and Redis were the fastest technologies. In this database 

size, Cassandra and Redis were slightly faster than MySQL and more than 116 times faster than 

MongoDB. In the 10,000-record database, Cassandra and Redis again had almost the same query 

times, and both technologies were slightly faster than MySQL and more than 51 times faster than 

MongoDB. Finally, in the 50,000-record database, Cassandra and Redis had similar query times. 

In this database size, Cassandra and Redis were slightly faster than MySQL and more than 12 

times faster than MongoDB. In 100,000 records, Cassandra and Redis were the fastest 



 107 

technologies. In fact, they were slightly faster than MySQL and more than 6 times faster than 

MongoDB. In the 1-million records database, again Cassandra and Redis were the fastest 

technologies. For this database size, they were slightly faster than MySQL and 3 times faster 

than MongoDB. In 10 million-records, Cassandra and Redis again were the fastest technologies. 

Both technologies were again slightly higher than MySQL and 3 times faster than MongoDB. In 

100 million records, Cassandra and Redis were the fastest technologies. In fact, they were 

slightly faster than MySQL and more than 4 times faster than MongoDB. 

The timing performances for query 5 are given in Table 22. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results 2 and 524 times faster than MySQL and MongoDB. In the 

5,000-record database, again Cassandra and Redis were the fastest technologies. In this database 

size, Cassandra and Redis were slightly faster than MySQL and more than 110 times faster than 

MongoDB. In the 10,000-record database, Cassandra and Redis again had almost the same query 

times, and both technologies were slightly faster than MySQL and more than 57 times faster than 

MongoDB. Finally, in the 50,000-record database, Cassandra, Redis and MySQL had similar 

query times. In this database size, they were more than 12 times faster than MongoDB. In 

100,000 records, MySQL were the fastest technology. In fact, it was slightly faster than 

Cassandra and Redis and more than 6 times faster than MongoDB. In the 1-million records 

database, Cassandra and Redis were the fastest technologies. For this database size, they were 

slightly faster than MySQL and 2 times faster than MongoDB. In 10 million-records, Cassandra 

and Redis again were the fastest technologies. Both technologies were again slightly higher than 

MySQL and 2 times faster than MongoDB. In 100 million records, Cassandra and Redis were 



 108 

the fastest technologies. In fact, they were slightly faster than MySQL and more than 2 times 

faster than MongoDB. 

Table 13. Query performance of experiment 2: query 1.  

 

Table 14. Query performance of experiment 2: query 2. 

 

Table 15. Query performance of experiment 2: query 3. 

 



 109 

Table 16. Query performance of experiment 2: query 4. 

 

Table 17. Query performance of experiment 2: query 5. 

 

Table 18. Query performance of experiment 2 in larger databases: query 1. 

 



 110 

Table 19. Query performance of experiment 2 in larger databases: query 2. 

 

Table 20. Query performance of experiment 2 in larger databases: query 3. 

 



 111 

Table 21. Query performance of experiment 2 in larger databases: query 4. 

 

Table 22. Query performance of experiment 2 in larger databases: query 5. 

 

 

 

 



 112 

Timing Scalability 

The scalability of the database approaches, allowing more patient records to be examined the in 

least amount of time, are described per query number in Figures 27-36. 

As shown in Figures 27 and 28, in query 1, Cassandra had the lowest query times to scale from 

1,000 to 50,000 records. It scaled to the largest database in 38.77ms, slightly faster than Redis, 

which needed 42.91ms, and more than 2 times faster than the MySQL. As shown in Figures 29 

and 30, in query 2, Redis took the least time to scale to the largest database, being slightly faster 

than Cassandra. As shown in Figures 31 and 32, in query 3, Cassandra was the technology to 

scale to the largest number of records the fastest, being slightly faster than Redis. As shown in 

Figure 33 and 34, in query 4, Cassandra was the fastest technology; it took 81.27ms, a slightly 

lower time than the MySQL AND Redis. Finally, as shown in Figure 35 and 36, in query 5, 

scaling from 10,000 to 50,000 records, Cassandra again was the fastest technology. It took 

86.71ms to scale to the largest database, half the time than Redis and MySQL that took 

199.06ms and 166.96ms respectively. 

As shown in Figures 37 and 38, in query 1, Cassandra and Redis took the least time to 

scale from 1,000 to 100,000,000 records. Specifically they took 23345.24 and 23200.68 ms, to 

scale to the largest database. As shown in Figures 39 and 40, in query 2, Cassandra and Redis 

took the least time to scale to the largest database. Specifically, they took 50529.74 and 50396.93 

ms, respectively, to scale from 1,000 to 100,000,000 records. As shown in Figures 41 and 42, in 

query 3, Cassandra and Redis were the fastest technology to scale to the largest number of 

records. They needed 87188.74 and 85349.59 ms to scale from 1,000 to 100,000,000 records. As 

shown in Figure 43 and 44, in query 4, Cassandra and Redis were the fastest technology to reach 

the largest database; they took 139243.89 and 125738.96 ms, respectively. Finally, as shown in 



 113 

Figure 45 and 46, in query 5, Cassandra and Redis were again the fastest technology to scale 

from 1,000 to 100,000,000 records. They took 218097.7 and 209357.69 ms, respectively, to scale 

to the largest database. 

5.2.1.2 Summary 

In this experiment, MongoDB also resulted in larger query times, as expected for all queries and 

database sizes. As shown in Figures 27-36, and similar to the last experiment, for the simple 

queries, the performances of Cassandra, Redis and MySQL were similar when the size of the 

database was small, but performances diverged significantly as the number of records was 

increased to 10,000 records and beyond. 

Similar to the previous experiment, the performance of Cassandra and Redis was 

significantly better than MongoDB (the other NoSQL approach) for large number of records. 

The timing was notoriously lower for more complex queries and large database than the other 

technologies; using standard computer resources, the query time of Cassandra for the largest 

database and most complex query was more than 2 times faster than the other NoSQL 

approaches and almost 2 times faster than the SQL approach as well. By using supercomputing 

resources (Figures 37-46), the query time of Cassandra and Redis for the 100 million-record 

database and the most complex query was almost 3 times faster than MongoDB and slightly 

faster than MySQL, even though both, Cassandra and Redis had significantly more keys to 

process because of its default architecture. This is probably because recent NoSQL approaches 

have been designed to handle higher update process and a large number of keys to filter and find 

specific information from a large amount of data. 



 114 

 
Figure 27. Variation in query time (base-10 log scale) of experiment 2: query 1.  

 

 

Figure 28. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 1. 



 115 

 

Figure 29.Variation in query time (base-10 log scale) of experiment 2: query 2. 

 

 

Figure 30. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 2. 



 116 

 

Figure 31. Variation in query time (base-10 log scale) of experiment 2: query 3. 

 

 

Figure 32. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 3. 



 117 

 

Figure 33. Variation in query time (base-10 log scale) of experiment 2: query 4. 

 

 

Figure 34. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 4. 



 118 

 

Figure 35. Variation in query time (base-10 log scale) of experiment 2: query 5. 

 

 

Figure 36. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 5. 



 119 

 

Figure 37. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 1. 

 

 

Figure 38. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger 

databases: query 1. 



 120 

 
Figure 39.Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 2. 

 

 

Figure 40. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger 

databases: query 2. 



 121 

 

Figure 41. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 3. 

 

 

Figure 42. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger 

databases: query 3. 



 122 

 

Figure 43. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 4. 

 

 

Figure 44. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger 

databases: query 4. 



 123 

 

Figure 45. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 5. 

 

 

Figure 46. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger 

databases: query 5. 

 



 124 

6.0  SCALABILITY ON UPDATING WITH SCHEMA CHANGES 

6.1 INTRODUCTION 

In the Precision Medicine field, it is common find new discoveries because of technological 

advances. New discoveries challenge databases because they include novel information that is 

non-predefined for the database schema. At the same time, the availability of databases which 

contain novel data derived from recent discoveries is essential for researchers. In SQL systems it 

is problematic to include novel information in new table headers since the database schema 

needs to be redesigned entirely. NoSQL systems, on the other hand, facilitate the updating 

process, even if it requires including non-predefined information such as new headers or 

collections. NoSQL are schema-free. 

Updating information is a challenging issue in big databases, whether SQL or NoSQL. 

The inclusion of new information increases the volume of data and forces users to modify 

queries to retrieve recently included information. These changes affect query times. Thus, for 

successful data management, database systems should adapt themselves in parallel with the new 

information, maintaining higher scalability by showing lower query times. For example if recent 

publications highlight the relevance of including a new variable such as “Population” in the 

database to detect breast cancer and this new information collected from patients needs to be 

included in a database, suitable DBMS should make this process easy. 



 125 

In the following experiment, we studied the scalability of our previously selected 

database approaches to identify the one that can best adapt itself to this potential challenge in the 

management of clinical and genomic data. 

In the following sub-sections we describe the details of our experiment in comparing 

performance and scalability using the previously described queries of varying complexity and an 

updating process that modified the database schema. In sub-section 6.2.1 we briefly present the 

performance and scalability results from the experiment. Also, we describe the results in a 

summary with our conclusions. 

6.2 EXPERIMENT 3: COMPARING SCALABILITY ON UPDATING WITH 

SCHEMA CHANGES 

To identify the database approach with highest scalability on updates with schema changes, we 

adapted the experiment used in Labrinidis et al. “Effect on queries: Schema changes.” We first 

updated the database with schema modifications by uploading non-predefined information 

(another column named “Population”) on the databases’ schema. In order to ask for the new 

information added, we made a new set of queries (Dynamic queries, explained in sub-section 

3.2). These queries included a request for the new information that had been added to each 

patient’s record. We ran the dynamic queries and once the query times were obtained; we created 

tables to lay out the results, facilitating comparisons of query complexity and database size 

among the four database approaches. As a note, Table stores were completely redesigned and 

reloaded with a new schema since SQL technology has a rigid schema that does not easily accept 

changes. To identify the approach with the best performance in the updating process (schema 



 126 

change) for each of the queries and database sizes, we selected the database approach that 

showed the lowest query time for each set, as described below in the experiment 3 workflow. All 

these calculations are described in section §6.2.1.1 Timing Performance. To identify the database 

approach with the best scalability in the updating process (schema change), we used the query 

times obtained above from measuring performance, but calculating for each database approach 

the difference in the query times from the 50,000-record DB minus the query times from the 

1,000-record DB, and selecting the database approach with the lowest query time. All these 

calculations are described in section §6.2.1.1 Timing Scalability. 

Experiment 3 was then repeated, but using supercomputing resources and even larger 

databases. These databases consisted of 1,000, 5,000, 10,000, 50,000, 100,000, 1 million, 10 

millions and 100 millions records. To this purpose we used the same four database technologies: 

Document-MongoDB, Key-Value-Redis, Column-Cassandra and Table-MySQL. Performance 

and scalability results are annotated in Tables and Graphs, and described in section §6.2.1.1 

Timing Performance and Timing Scalability, respectively. 



 127 

 

Figure 47. Workflow of Experiment 3. 

6.2.1 Experimental Results 

The query times of the four DBMS were evaluated by making five different queries with varying 

complexity and a instituting a database updating process (adding a new header: “Population”) 

that included schema change, as shown in Figure 47. The variation in query time in the database 

updating process was also studied. For each of the four database approaches, the time taken to 

make the queries with varying complexity, as described above, was measured with databases 

containing 1000, 5000, 10,000 and 50,000 patient records. In addition, using the same 

methodology but with supercomputer resources, the query time the four DBMS was measured 



 128 

using the same number of records in databases and even larger databases -- with 100,000, 

1,000,000, 10,000,000 and 100,000,000 patient records -- also shown in Figure 47. For each of 

the database sizes mentioned above, each query was made 3 times to calculate the average query 

time and the standard deviation (SD).  The query times are given in Tables 23-32. 

6.2.1.1 Query time results for queries of varying complexity and for different database sizes 

Timing Performance 

The timing performances for the simplest query are given in Table 23. For query 1 in the DB 

with 1,000 records, Cassandra resulted in the smallest query time. It was slightly faster than the 

MySQL and Redis, and more than 4 times faster than MongoDB. In the 5,000-record DB, 

Cassandra and MySQL were the fastest technologies. They were slightly faster than Redis and 

more than 2 times faster than MongoDB. In the 10,000-record DB, Cassandra had the shortest 

query time. It was slightly faster than MySQL and Redis and more than two times faster than 

MongoDB. Finally, in the 50,000-record DB, Cassandra was the fastest technology. It was 

slightly faster than the MySQL and Redis and almost two times faster than MongoDB. 

The timing performances for the simplest query are given in Table 24. For query 2 in the 

DB with 1,000 records, MySQL and Cassandra had the smallest query times. They were slightly 

faster than Rdis and around 8 times faster than MongoDB. In the 5,000-record DB, Cassandra 

and MySQL were the fastest technologies. They were slightly faster than Redis and around 3 

times faster than MongoDB. In the 10,000-record DB, Cassandra had the smallest query time. It 

was slightly faster than MySQL, almost two times faster than Redis and more than 3 times faster 

than MySQL. In the 50,000-record DB, Cassandra was the fastest technology. Its times were 

slightly faster than MySQL and Redis and more than 2 times faster than MongoDB. 



 129 

The timing performances for the simplest query are given in Table 25. For query 3 in the 

DB with 1,000 records, Cassandra had the smallest query time. It was slightly faster than the 

MySQL and Redis and more than 104 times faster than MongoDB. In the 5,000-record DB, 

Cassandra was again the fastest technology. It was slightly faster than Redis and more than 23 

times faster than MongoDB. In the 10,000-records DB, Cassandra again had the smallest query 

time. It was slightly faster than the MySQL and Redis stores and more than 13 times faster than 

MongoDB. In the 50,000-record DB, Cassandra was the fastest technology. It was slightly faster 

than MySQL and Redis and almost 5 times faster than MongoDB. 

The timing performances for the simplest query are given in Table 26. For query 4 in the 

DB with 1,000 records, Cassandra had the smallest query time. It was around 2 times faster than 

the MySQL and Redis and almost 150 times faster than MongoDB. In the 5,000-record DB, 

Cassandra was the fastest technology. It was slightly faster than Redis and more than 31 times 

faster than MongoDB. In the 10,000-record DB, Cassandra had the smallest query time. It was 

around two times faster than the MySQL and Redis stores and more than 31 times faster than 

MongoDB. In the 50,000-record DB, Cassandra was again the fastest technology. Its results were 

around 2 times faster than the MySQL and Redis and more than 5 times faster than MongoDB. 

The timing performances for the simplest query are given in Table 27. For query 5 in the 

DB with 1,000 records, Cassandra had the smallest query time. It was around 3 times faster than 

MySQL and Redis and more than 157 times faster than MongoDB. In the 5,000-record DB, 

Cassandra was the fastest technology as well. It was more than 2 times faster than MySQL and 

Redis and more than 33 times faster than MongoDB. In the 10,000-record DB, Cassandra had the 

smallest query times. It was around 2 times faster than the MySQL and Redis and 16 times faster 



 130 

than MongoDB. In the 50,000-record DB, Cassandra was the fastest technology. It was around 2 

times faster than the MySQL and Redis and almost 5 times faster than MongoDB. 

The timing performances for the simplest query are given in Table 28. For query 1 in the 

database size of 1,000 records, Cassandra and Redis showed almost the same query times. In 

fact, Cassandra and Redis obtained results more than 7 and 20 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were more than 5 and 8 times 

faster than MySQL and MongoDB, respectively. In the 10,000-record database, Cassandra and 

Redis again had almost the same query times, and both technologies were more than 5 and 8 

times faster than MySQL and MongoDB, respectively. Finally, in the 50,000-record database, 

Cassandra and Redis had similar query times, respectively. In this database size, Cassandra and 

Redis were more than 4 and 7 times faster than MySQL and MongoDB, respectively. In the 

100,000 records, Cassandra and Redis were the fastest technologies. In fact, they were more than 

3 and 6 times faster than MySQL and MongoDB, respectively. In the 1-million records database, 

again Cassandra and Redis were the fastest technologies. For this database size, they were more 

than 5 and 6 times faster than MySQL and MongoDB. In the 10 million-records, Cassandra and 

Redis again were the fastest technologies. Both technologies were 6 and 7 times faster than 

MySQL and MongoDB, respectively. In 100 million records, Cassandra and Redis were the 

fastest technologies. In fact, they were more than 4 and 17 times faster than MySQL and 

MongoDB, respectively. 

The timing performances for query 2 are given in Table 29. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results more than 2 and 15 times faster than MySQL and 



 131 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were slightly higher than MySQL 

and 4 times faster than MongoDB. In the 10,000-record database, Cassandra and Redis again had 

almost the same query times, and both technologies were slightly faster than MySQL and 4 times 

faster than MongoDB. Finally, in the 50,000-record database, Cassandra and Redis had similar 

query times, respectively. In this database size, Cassandra and Redis were slightly faster than 

MySQL and 3 times faster than MongoDB. In 100,000 records, Cassandra and Redis were the 

fastest technologies. In fact, they were slightly faster than MySQL and more than 3 times faster 

than MongoDB, respectively. In the 1-million records database, again Cassandra and Redis were 

the fastest technologies. For this database size, they were more than 2 and 3 times faster than 

MySQL and MongoDB. In 10 million-records, Cassandra and Redis again were the fastest 

technologies. Both technologies were again more than 2 and 3 times faster than MySQL and 

MongoDB. In 100 million records, Cassandra and Redis were the fastest technologies. In fact, 

they were more than 2 and 7 times faster than MySQL and MongoDB, respectively. 

The timing performances for query 3 are given in Table 30. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results more than 2 and 492 times faster than MySQL and 

MongoDB, respectively. In the 5,000-record database, again Cassandra and Redis were the 

fastest technologies. In this database size, Cassandra and Redis were slightly faster than MySQL 

and more than 98 times faster than MongoDB, respectively. In the 10,000-record database, 

Cassandra and Redis again had almost the same query times, and both technologies were slightly 

faster than MySQL and more than 51 times faster than MongoDB, respectively. Finally, in the 

50,000-record database, Cassandra and Redis had similar query times. In this database size, 



 132 

Cassandra and Redis were slightly faster than MySQL and more than 13 times faster than 

MongoDB, respectively. In 100,000 records, Cassandra and Redis were the fastest technologies. 

In fact, they were slightly faster than MySQL and more than 7 times faster than MongoDB, 

respectively. In the 1-million records database, again Cassandra and Redis were the fastest 

technologies. For this database size, they were slightly faster than MySQL and 4 times faster 

than MongoDB. In 10 million-records, Cassandra and Redis again were the fastest technologies. 

Both technologies were again more slightly higher than MySQL and 4 times faster than 

MongoDB. Finally, in 100 million records, Cassandra and Redis were the fastest technologies. In 

fact, they were slightly faster than MySQL and 6 times faster than MongoDB. 

The timing performances for query 4 are given in Table 31. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results 2 and 497 times faster than MySQL and MongoDB. In the 

5,000-record database, again Cassandra and Redis were the fastest technologies. In this database 

size, Cassandra and Redis were slightly faster than MySQL and more than 130 times faster than 

MongoDB. In the 10,000-record database, Cassandra and Redis again had almost the same query 

times, and both technologies were slightly faster than MySQL and more than 53 times faster than 

MongoDB. In the 50,000-record database, Cassandra and Redis had similar query times. In this 

database size, Cassandra and Redis were slightly faster than MySQL and more than 12 times 

faster than MongoDB. In 100,000 records, Cassandra and Redis were the fastest technologies. In 

fact, they were slightly faster than MySQL and more than 5 times faster than MongoDB. In the 

1-million records database, again Cassandra and Redis were the fastest technologies. For this 

database size, they were slightly faster than MySQL and 2 times faster than MongoDB. In 10 

million-records, Cassandra and Redis again were the fastest technologies. Both technologies 



 133 

were again slightly higher than MySQL and 2 times faster than MongoDB. Finally, in 100 

million records, Cassandra and Redis were the fastest technologies. In fact, they were slightly 

faster than MySQL and more than 4 times faster than MongoDB. 

The timing performances for query 5 are given in Table 32. For this query in the database 

size of 1,000 records, Cassandra and Redis showed almost the same query times. In fact, 

Cassandra and Redis obtained results 2 and 529 times faster than MySQL and MongoDB. In the 

5,000-record database, again Cassandra and Redis were the fastest technologies. In this database 

size, Cassandra and Redis were slightly faster than MySQL and more than 115 times faster than 

MongoDB. In the 10,000-record database, Cassandra and Redis again had almost the same query 

times, and both technologies were slightly faster than MySQL and more than 52 times faster than 

MongoDB. Finally, in the 50,000-record database, Cassandra, Redis and MySQL had similar 

query times. In this database size, they were more than 12 times faster than MongoDB. In 

100,000 records, MySQL, Cassandra and Redis were the fastest technologies. In fact, they were 

more than 7 times faster than MongoDB. In the 1-million records database, Cassandra and Redis 

were the fastest technologies. For this database size, they were slightly faster than MySQL and 2 

times faster than MongoDB. In 10 million-records, Cassandra and Redis again were the fastest 

technologies. Both technologies were again slightly higher than MySQL and MongoDB. In 100 

million records, Cassandra and Redis were the fastest technologies. In fact, they were slightly 

faster than MySQL and more than 2 times faster than MongoDB. 



 134 

Table 23. Query performance of experiment 3: query 1. 

 

Table 24. Query performance of experiment 3: query 2. 

 

Table 25. Query performance of experiment 3: query 3. 

 



 135 

Table 26. Query performance of experiment 3: query 4. 

 

Table 27. Query performance of experiment 3: query 5. 

 

Table 28. Query performance of experiment 3 in larger databases: query 1. 

 



 136 

Table 29. Query performance of experiment 3 in larger databases: query 2. 

 

Table 30. Query performance of experiment 3 in larger databases: query 3. 

 



 137 

Table 31. Query performance of experiment 3 in larger databases: query 4. 

 

Table 32. Query performance of experiment 3 in larger databases: query 5. 

 
 

 

 



 138 

Timing Scalability 

The scalability of the database approaches, allowing querying of more patient records in a lesser 

amount of time, is described per query number in Figures 48-57. 

As shown in Figures 48 and 49, in query 1, Cassandra had the lowest query time scaling 

from 1,000 to 50,000 records. In around 59.74ms it scaled to the largest database, 10.48ms less 

than the second fastest technology, MySQL. As shown in Figure 50 and 51, in query 2, 

Cassandra also had the lowest query time to scale to the largest database. It took 66.63ms to 

scale from 1,000 to 50,000 records, making it slightly faster than MySQL, which needed 

79.07ms. As shown in Figure 52 and 53, in query 3, Cassandra was the fastest technology to 

scale to the largest number of records. It needed 73.99ms to scale to 50,000 records, making it 

again slightly faster than MySQL, which took 104.19ms. As shown in Figures 54 and 55, in 

query 4, Cassandra was the fastest technology to reach the larger database as well; it took 88ms, 

slightly faster than MySQL and Redis, which took 133.27ms and 191.02ms, respectively. 

Finally, as shown in Figures 56 and 57, in query 5, Cassandra was again the fastest technology to 

scale from 10,000 to 50,000 records. It took 105.3ms to scale to the largest database, slightly 

higher than Redis and MySQL, which took 253ms and 164.35ms, respectively. 

As shown in Figures 58 and 59, in query 1, Cassandra and Redis took the least time to 

scale from 1,000 to 100,000,000 records. Specifically they took 26826.06 and 25984.73 ms, 

respectively, to scale to the largest database. As shown in Figures 60 and 61, in query 2, 

Cassandra and Redis took the least time to scale to the largest database. Specifically, they took 

66054.77 and 65183.52 ms, respectively, to scale from 1,000 to 100,000,000 records. As shown 

in Figures 62 and 63, in query 3, Cassandra and Redis were the fastest technology to scale to the 

largest number of records. They needed 98090.85 and 95358.83 ms, respectively, to scale from 



 139 

1,000 to 100,000,000 records. As shown in Figures 64 and 65, in query 4, Cassandra and Redis 

were the fastest technology to reach the largest database; they took 147654.18 and 137847.79 

ms, respectively. Finally, as shown in Figures 66 and 67, in query 5, Cassandra and Redis were 

again the fastest technology to scale from 1,000 to 100,000,000 records. They took 206927.98 

and 205911.76 ms, respectively, to scale to the largest database. 

6.2.1.2 Summary 

As in to the two previous experimental sections, MongoDB had larger query times, as expected 

for all queries and database sizes. As shown in Figures 48-57, similar to the last experiment, for 

the simple queries, the performances of Cassandra and Redis and MySQL stores were similar 

when the size of the database was smaller but diverged significantly as the number of records 

increased to 10,000 records and beyond, highlighting the query speed of Cassandra and Redis 

In this experiment, the performance of Cassandra and Redis was significantly faster than 

MongoDB for a large number of records. Using standard computing resources, the timing was 

remarkable for more complex queries and large databases, with the query time of Cassandra 

store for the largest database and most complex query being at least 2 times faster than the other 

NoSQL approaches and almost 2 times faster than the SQL approach as well. By using 

supercomputing resources (Figures 58-67), the query time of Cassandra and Redis for the 100 

million-record database and the most complex query was almost 3 times faster than the 

MongoDB (NoSQL approach) and slightly faster than MySQL (SQL approach), even though the 

Cassandra and Redis had significantly more keys to process the updated non-predefined 

information because of its default design. These results are probably because NoSQL 

approaches, such as those based on Cassandra and Redis, have been built to manipulate large 

amounts of new information that include new headers. This is in contrast to SQL database 



 140 

technologies that, even if they have been fully optimized, hardly ever deal with schema changes 

and, consequently, with large new-header updated data. 

 

Figure 48. Variation in query time (base-10 log scale) of experiment 3: query 1. 

 

 

Figure 49. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 1. 



 141 

 

 

Figure 50. Variation in query time (base-10 log scale) of experiment 3: query 2. 

 

Figure 51. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 2. 



 142 

 

Figure 52. Variation in query time (base-10 log scale) of experiment 3: query 3. 

 

 

Figure 53. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 3. 



 143 

 

Figure 54. Variation in query time (base-10 log scale) of experiment 3: query 4. 

 

 

Figure 55. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 4. 



 144 

 

Figure 56. Variation in query time (base-10 log scale) of experiment 3: query 5. 

 

 

Figure 57. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 5. 



 145 

 

Figure 58. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 1. 

 

 

Figure 59. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger 

databases: query 1. 



 146 

 

Figure 60. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 2. 

 

 

Figure 61. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger 

databases: query 2. 



 147 

 
Figure 62. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 3. 

 

 

Figure 63. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger 

databases: query 3. 



 148 

 
Figure 64. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 4. 

 

 

Figure 65. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger 

databases: query 4. 



 149 

 
Figure 66. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 5. 

 

 

Figure 67. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger 

databases: query 5. 

 



 150 

7.0  CONCLUSIONS AND FUTURE WORK 

NoSQL database management systems appear to be are designed to handle the heterogeneous 

and dynamic data used in Precision Medicine. The goal of this work was to identify the most 

suitable database management system for the growing big data coming mostly from clinical and 

genomic information. In this process, we detailed needed measures that guided our decisions 

around the obstacles implied in recent technologies.  

To understand performance and scalability even more clearly, experiments like those 

presented will continue to be necessary. We have presented three experiments for performance 

and scalability using database management systems that had not been applied in the way we 

applied them, to the Precision Medicine domain. Our experiments detail and evaluate database 

management system (NoSQL and SQL) characteristics to analyze their performance and 

scalability. Our experiments were able to measure performance with different updating 

processes, including database schema changes and non-schema changes, frequently occurring in 

Precision Medicine. Finally, we concluded which was the fastest DBMS and pointed out how its 

data orientation explains its advantage in handling big clinical and genomic data.  

In this section, we present a brief overview of the key contributions, limitations and work 

presented in this dissertation. We then conclude with a summary of potential future research 

work that could stem from this project. 



 151 

7.1 CONTRIBUTIONS 

The main contributions of this dissertation are as follows: 

Scalable measurements. We present novel experiments to measure different dimensions 

of performance and scalability (data size, system size). These methods draw on performance and 

scalability measurements of big databases, response times for querying different data that is 

growing in size. Results show that systems adapt invariantly toward upward database sizes. 

Combined approaches. We combine novel performance and scalability methodologies 

with updating processes (with and without schema changes) to understand the adaptation of 

database systems to imminent computational procedures in biology, specifically in the clinical 

and genomic field. These methods take into account performance and scalability measurements 

of big databases and response times for querying different data with active updating processes. 

Query times from the used systems resulted invariant regarding growing database sizes. 

Conglomerated definition. We present a combined concept of Precision Medicine based 

on available data. Databases included highly personal information from demographic, clinical 

and genomic data to indicate a set of suggested data in Precision Medicine to use in the future in 

Healthcare. This concept is based on a broad definition of the structure of human populations, 

medical information contained in the EHR, and genome sequencing. 

Data structured method. We arranged the Precision Medicine data, specifically PGRR-

TCGA information, into five different data models (document, key-value, column, graph and 

table store) through a series of text mapping and manipulating processes. These novel structures 

address the lack of semantic interoperability for EHR and genomic data, since in the U. S. it 

seems that there are no standards for semantic interoperability of health care data, nor for 

demographic, clinical or genomic data (our proposed Precision Medicine data concept); there are 



 152 

only syntactic standards in clinical data (such as the HL7 v3 RIM). In other words, there is no 

standard format that has a definition for Precision Medicine data. Thus, our proposal addresses 

this fundamental issue in Precision Medicine. 

Potential standardization. Results from these studies have the potential to identify the 

NoSQL approach most suited to the available Precision Medicine data (data size) and system 

resources (system size). This feature makes our experiments worth using to further evaluate the 

performance and scalability of any type of data. 

Broad availability. We have integrated our novel designs and concepts to allow further 

comparisons of our approaches to other NoSQL technologies (i.e., Riak, CouchDB, among 

others) using our conglomerated definition of Precision Medicine. In other words, scientists will 

be able to use our methodology to evaluate nascent NoSQL systems and suggest new systems 

that can better adapt themselves for management of the growing big data in Precision Medicine. 

Public Health Relevance. Our project has a wider public health impact since we are 

addressing a possible solution, using NoSQL technologies such as Column and Key-Value stores 

(Cassandra and Redis), to the effective management of Precision Medicine data. This solution is 

an attempt to decrease the high demands on the Healthcare system by bringing us closer to cures 

to diseases such as cancer. Our results promote the integration of data, including science, 

genomic, biotechnology, and medical records, which integration is the basic aim of the new 

Precision Medicine initiative attempting to revolutionize the US Healthcare system. 



 153 

7.2 CONCLUSIONS 

A review of this dissertation based on the evaluation of performance, scalability and updating 

processes in different data management systems indicates that NoSQL Cassandra and Redis are 

viable alternate to the relational database approach as they provide better query performance, 

scalability and flexibility in updating processes, qualities needed for the intense data filtration 

and schema modification required in the Precision Medicine field. Meanwhile, the use of 

MongoDB databases is a promising solution to handle big clinical and genomic data because of 

its portability that allow data sharing and accessing (human readable) easily; however, more 

work is needed to deal with performance issues so as to accelerate its functionality (query 

performance and scalability) in big data management.  

The performance and scalability of NoSQL databases were here evaluated using real 

clinical and genomic data from real patients under the TCGA project. We conclude that the use 

of NoSQL technologies such as Cassandra and Redis is advantageous, given their lack of need 

for a schema and updating processes (without worrying about a table mapping framework). 

NoSQL approaches, especially Cassandra and Redis (Tables 33-34), provide better query 

performance, scalability and updating flexibility than other DBMS, enabling effective data 

management in Precision Medicine. In general, MySQL were found to be flexible for handling 

clinical and genomic data but fell short in terms of performance and scalability comparing to 

NoSQL based on Cassandra and Redis; they also experienced difficulties dealing with updating 

processes, which are common procedures in Precision Medicine. 



 154 

Table 33. DBMSs with the lowest query times according to different database size and complex queries using 

standard computing resources. 

 



 155 

Table 34. DBMSs with the lowest query times according to different database size and complex queries using 

supercomputing resources. 

 

 



 156 

We found that we could anticipate the most suitable DBMS in performance and 

scalability terms by knowing the filtration process for finding patients with a specific pattern. It 

seems that by knowing in advance the expected results from queries, we could select an 

appropriate DBMS for specific patients’ matching process. For example, by using 1,000 to 

50,000 records, in queries that match less than 10 data patterns (i.e., demographic and clinical 

characteristics) with a high number of matching records expected (i.e., 7 in every 25 records) 

(Tables 35-46), Redis seems to be the technology that could show the lowest query times by 

using standard computing resources and Cassandra the one by using supercomputing resources. 

However, in the same range of patients but with a more stringent filtration process (complex 

queries) with a lower number of matching records expected, Cassandra seems to be the best 

technology to deal with these higher filtration process using standard computing resources and 

Cassandra and Redis by using supercomputing resources. In summary, it appears that Redis can 

slightly handle a higher amount of record’s matches than Cassandra using standard computing 

resources, highlighting it as the ideal choice for simple queries; however, both technologies are 

ideal to handle large quantity of matches using supercomputing resources. On the other hand, 

Cassandra seems to be ideal for high levels of filtration processes (complex queries) that are 

expected to return a fewer number of matches using both, standard computing and 

supercomputing resources. Overall, Cassandra seems to deal better with lower amounts of 

matched data than Redis. 

In general, we noticed that Cassandra increases query performance by reducing the 

number of requests as a result of its data storage orientation. This column design appears to 

advantage in performance and scalability compared to other NoSQL approaches in managing 

clinical and genomic data because of its capacity to seek small data components placed in 



 157 

columns as opposed to reading simply row by row like Redis. Thus, at some point clinical and 

genomic information can be placed in columns so that we can take advantage of using this 

column-oriented design. In addition, as this technology is used in data warehouses, it seems this 

technology is more likely to effectively handle big clinical and genomic data used in Precision 

Medicine, as shown in Figures 68-97. 

We identify that MongoDB stores reduce the time to input clinical and genomic 

information from patients into to a database, especially when JSON files are structured 

accordingly. It shows to advantage when handling hierarchically complex information such as 

clinical and genomic data. MongoDB display higher portability since they are human readable. 

Thus, they are worth considering in the future, once their performance issues are resolved 

because its characteristics that allows effective storage and management of clinical and genomic 

data. In summary, though MongoDB shares characteristics similar to the other two NoSQL 

approaches, they fall short in terms of query performance and scalability, as shown in Figures 

68-97. 

We found that making queries using MongoDB is less effective compared to using the 

MySQL since the relational model used by big corporations is already integrated among systems 

and applications but undergone thorough optimization throughout the years. As MongoDB are 

recent technologies, more work is needed in the design of large databases. The future use of this 

specific NoSQL approach is hindered by the familiarity of current database managers with most 

popular SQL approaches. 

This dissertation attempts to evaluate the currently available NoSQL approaches using 

most of the available data models. We focused on clinical and genomic information from 

patients with cancer, retrieving biological sense data relevant for the oncology field. The 



 158 

feasibility of using NoSQL approaches in other medical fields, such as immunology, could be 

tested by looking at performance and scalability in retrieving different clinical and genomic 

information. Finally, the recent versions of NoSQL databases could also affect database 

performance since in the future performance needs may be detected and improved by particular 

NoSQL developers. 

 

Figure 68. Variation in query time of experiment 1: query 1. 



 159 

 

Figure 69. Variation in query time of experiment 1: query 2. 

 

 

Figure 70. Variation in query time of experiment 1: query 3. 



 160 

 

Figure 71. Variation in query time of experiment 1: query 4. 

 

 

Figure 72. Variation in query time of experiment 1: query 5. 



 161 

 
Figure 73. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 1. 

 

Figure 74. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 2. 



 162 

 

Figure 75. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 3. 

 

 

Figure 76. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 4. 



 163 

 

Figure 77. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 5. 

 

 

Figure 78. Variation in query time of experiment 2: query 1. 



 164 

 

Figure 79. Variation in query time of experiment 2: query 2. 

 

Figure 80. Variation in query time of experiment 2: query 3. 



 165 

 

Figure 81. Variation in query time of experiment 2: query 4. 

 

 

Figure 82. Variation in query time of experiment 2: query 5. 



 166 

 

Figure 83. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 1. 

 

Figure 84. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 2. 



 167 

 

Figure 85. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 3. 

 

Figure 86. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 4. 



 168 

 

Figure 87. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 5. 

 

Figure 88. Variation in query time of experiment 3: query 1. 



 169 

 

Figure 89. Variation in query time of experiment 3: query 2. 

 

Figure 90. Variation in query time of experiment 3: query 3. 



 170 

 

Figure 91. Variation in query time of experiment 3: query 4. 

 

Figure 92. Variation in query time of experiment 3: query 5. 



 171 

 

Figure 93. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 1. 

 

Figure 94. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 2. 



 172 

 

Figure 95. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 3. 

 

Figure 96. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 4. 



 173 

 

Figure 97. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 5. 

Table 35. Descriptions of database files, Query outputs and setup database effort using MongoDB in Experiment 1. 

 



 174 

Table 36. Descriptions of database files, Query outputs and setup database effort using Redis in Experiment 1. 

 

Table 37. Descriptions of database files, Query outputs and setup database effort using Cassandra in Experiment 1. 

 



 175 

Table 38. Descriptions of database files, Query outputs and setup database effort using MySQL in Experiment 1. 

 

Table 39. Descriptions of database files, Query outputs and setup database effort using MongoDB in Experiment 2. 

 



 176 

Table 40. Descriptions of database files, Query outputs and setup database effort using Redis in Experiment 2. 

 

Table 41. Descriptions of database files, Query outputs and setup database effort using Cassandra in Experiment 2. 

 



 177 

Table 42. Descriptions of database files, Query outputs and setup database effort using MySQL in Experiment 2. 

 

Table 43. Descriptions of database files, Query outputs and setup database effort using MongoDB in Experiment 3. 

 



 178 

Table 44. Descriptions of database files, Query outputs and setup database effort using Redis in Experiment 3. 

 

Table 45. Descriptions of database files, Query outputs and setup database effort using Cassandra in Experiment 3. 

 



 179 

Table 46. Descriptions of database files, Query outputs and setup database effort using MySQL in Experiment 3. 

 

7.3 LIMITATIONS 

System storage is always an issue when we deal with big data. Storage limitations forced us to 

run one database approach at the time. Thus, the importing process had to be repeated each time 

we shifted from one database approach to another, making our work more time consuming and 

elaborate than was expected. Further projects could focus on comparing fewer technologies (i.e. 

two technologies) with larger databases than handling more technologies in order to avoid long 

hours spent importing data. 

We found that each NoSQL database approach showed different results. However, by 

looking in the literature, it appears that within each data model (i.e., Document store) different 



 180 

technologies can show different results. For example MongoDB uses Document stores but could 

have different performance and scalability than CouchDB, which uses the same data model. 

Thus, our results are likely not reflective of the database model itself as a solution to managing 

the Precision Medicine data, but of the database technology used (in this case MongoDB). 

However, overall there are few studies that have examined this issue, and our methods will be 

available to be used in the future for measuring other database technologies that use the same 

data model. As a note, we selected our database approaches according to the most popular 

NoSQL approaches registered on a LinkedIn skill index (as of September 2014), having tracked 

mentions of NoSQL databases in its member profiles. Future studies can use another resource to 

select the most popular NoSQL databases in order to study their performance and scalability 

using clinical and genomic data. 

The issue about aware of the frequent updating processes from PGRR to TCGA was 

solved by saving the portion of data of interest at a particular point in time and running the 

queries consequently. This solution saved us time in actively having to import data from PGRR 

every time we needed to shift to a different database approach and allowed us to avoid the 

possibility of bias in our comparison results since we would be using different patients’ 

information. In addition we also avoided having to annotate the updates realized by the PGRR 

and having to report the database size each time we make the importing process. 

A serious limitation of this work was the use of a non-curated source of data that 

prevented us from building algorithms to accurately extract data to posteriorly use in the 

different database technologies. The TCGA clinical information offered data that was poor in 

quality in terms of accommodation and syntax. By accessing the data through the command line, 

the TCGA information appeared incomplete: many blank spaces, words with incorrect spelling, 



 181 

extra spaces, conglomerated adjacent information, and even misplaced data appeared with 

different headers. This poor data quality forced us to manually curate the information, which also 

consumed more time than expected. This limitation forced us to include less information and to 

model the rest of information needed. Future projects should include publicly available data but 

of acceptable clinical data quality. As the shared data culture grow and the field of Precision 

Medicine develops, it is more likely that upcoming publicly available information that is highly 

sensitive but anonymous will be more easily accessible to improve the design of this type of 

database project in data source terms. 

7.4 FUTURE RESEARCH DIRECTIONS 

The work in this dissertation involved a wider evaluation of NoSQL database management 

systems, and we hope that it will eventually encourage the wider use of NoSQL systems in the 

integration of clinical and genomic data. We believe there is a substantial body of future research 

in the area of NoSQL databases regarding performance and scalability since the data is growing, 

new NoSQL database updates are forthcoming and new NoSQL approaches are being developed. 

Future work includes the use of NoSQL databases that work with the same data model, 

such as MongoDB and CouchDB, to develop NoSQL-Document-model databases with clinical 

and genomic data and evaluate performance and scalability. This work will give more 

comprehensive results on the performance and scalability of NoSQL approaches. 

Prospect work also includes the mixture of different models in a database since probably 

specific clinical or genomic information are better stored and managed in a particular data 

model. To this purpose, more emphasis should be placed in the characteristics of the data and the 



 182 

database functionality. Thus, works focused in the study of all models but in each model 

requested a specific either clinical or genomic information could provide novel information 

about which data model is more suitable to a specific source of data. In other words, new studies 

should elaborate queries just focus in either clinical or genomic information to bring new 

information that provide confidence for the use of different data models in a database, 

contributing in the finding of suitable databases in Precision Medicine. 

Since data can be managed in either ways online or offline forms, we focused on online 

databases but upcoming studies should probably be more detailed in this form in order to point 

more accurately the most suitable data model in manipulating data in real time context. Online 

form is important in Precision Medicine since hospital systems would need real time analytics to 

integrate continuously generated clinical and genomic information from patients that probably 

need to be compared to other patients with similar or different treatments. Technically, new 

studies should report the lowest systems query latency that better support user’s requests. Also in 

online way, future studies should focus on multiple users and data availability using different 

data models. This information would provide evidence to select suitable databases for modern 

applications in Personalized Medicine. 

Since data production is growing exponentially, our project could be continued by 

running it in larger databases, multiple databases or big hospital databases. This means using 

complete sets of clinical and genomic information for more than 100 million patients to study the 

performance and scalability of NoSQL approaches. 

This project can be extended by including and requesting another type of genomic data 

representative of Precision Medicine, for example, including and requesting data from epigenetic 

analysis using DNA methylation (i.e., Methyl-Seq) and Histone modifications (i.e., ChIP-Seq). 



 183 

The information retrieved would provide relevant information on the effective data management 

of multiple genomic information using NoSQL approaches. Our results indicate that NoSQL 

approaches potentially enable the integration of a variety of genomic data, inspiring this line of 

research. In functional genetics our studied NoSQL approaches could be used to manage data, 

such as proteomic, transcriptomic, and metabolomics, providing a better understanding of 

successful data integration and, consequently, the genetic basis of diseases. 

In the area of clinical data, this project could be extended to include a variety of clinical 

data terms. Beyond using written clinical data, imaging data could also be stored using NoSQL 

technologies, as it is already used in the movie industry. Thus, the inclusion of clinical images, 

such as MRI, fMRI, TC, and Echography among others, would provide better integration of 

clinical and genomic data. 

The successful integration of clinical and genomic data shown in our project, offering the 

capability of accessing and analyzing heterogeneous clinical and genomic data, could inspire the 

development of cognitive programming in Precision Medicine. 

7.5 DISCUSSION 

Our results show that NoSQL approaches, especially Cassandra and Redis, outperform MySQL 

(SQL) approach in terms of performance and scalability, and have the advantage in updating 

processes, as we originally hypothesized. These results were based on performances of queries 

that requested specific clinical and genomic information. 

In terms of performance and scalability, we used very specific queries that had the 

function of filtering relevant information for Precision Medicine. Some technologies had faster 



 184 

query times than others for specific queries and database sizes. We believe that we could predict 

the most suitable technology based on the query complexity (increased filtering process) and 

database size. For example, in our simplest query 1, using standard computing resources, 

Cassandra and Redis were the technologies with the lowest query times; the function of this 

query was to filter simple demographic characteristics of the patients’ records. In our query 2, 

also using databases with 1000 to 50,000 records, Redis store showed the lowest query time; 

query 2 requires a more complex filtration process than query 1: it filtered patients with similar 

demographic and clinical characteristics. Finally, in the more complex queries 3, 4 and 5, using 

databases with 1000 to 50,000 records, Cassandra was the fastest technology; these last queries 

filter demographic, clinical, treatment, structural and functional genomic characteristics. Thus, 

using the mentioned database sizes, we can predict that for more complex queries (higher levels 

of filtration), the most suitable technology would be Cassandra and for more simple queries 

(lower levels of filtration) the most suitable technology would be Redis store. In larger database 

sizes, 100,000 to 10 million, using supercomputing resources, for either simple or complex 

queries, Cassandra and Redis seems to be the most suitable technology in terms of performance. 

Thus, it seems that large computational resources increase the suitability of these two 

technologies, based in two different data models, to successfully manipulate Precision Medicine 

data. 

We implemented MySQL as one big table in order to compete in performance and 

scalability issues with NoSQL technologies. We also could have chosen to split information into 

different tables, which would have significantly reduced its performance in contrast to NoSQL 

technologies. Thus, we demonstrate that by fitting all information in one table, this SQL 

approach could be compared at some point to NoSQL approaches in terms of performance and 



 185 

scalability. In general, using standard computing resources, MySQL showed similar lower query 

times than Cassandra in simpler queries during experiment 3. However, using supercomputing 

resources, MySQL showed slightly lower query times when using 100,000 records and the 

complex query than the other NoSQL approaches, with the exception of experiment 2 where 

Cassandra was the fastest technology. Overall, it seems that the MySQL does not reach the level 

of performance and scalability than NoSQL technologies such as Cassandra, when using large 

computational resources, as required in Precision Medicine. Moreover, using Tables could not be 

practical given ever increasing supercomputer resources. In reality, Table store would operate 

using multiple tables with joins, which would decrease the performance and scalability of this 

technology, supporting the idea of using of NoSQL approaches to manage big data bases using 

large computational resources. 

We found different functionality in DBMS to measure query performance. SQL queries 

have a very well integrated function to measure query times, as well as to detect slow queries, for 

each query we made. In contrast, with NoSQL technologies, we had to invoke functions from 

each technology in order to measure the query time. In MongoDB we programmed the difference 

of two created variables to obtain the query time in milliseconds –execution_mills = after - 

before–. One of these variables was created before making each query –var before = new Date()–

, and the second was created after making the query –var after = new Date()–. In Redis, we used 

a more direct method to calculate the query times; here, we customized the configuration of slow 

log to lower than 5 microseconds –config set slowlog-log-slower-than 5–. In Cassandra, we also 

use a direct method to calculate query times; this technology has a tracing function that can be 

turned on and off before and after each query is made to obtain query times in microseconds. The 

way we calculated the query times in milliseconds on MongoDB could have influenced the 



 186 

results for this specific technology because it is not a direct way to calculate query times in 

contrast to MySQL and even to Redis and Cassandra, which, though they lack an automated way 

to measure query times, have functions that allow us to measure query times without the need to 

make extra programming lines. Overall, the lack of a robust time-measuring system in NoSQL 

approaches, in contrast to SQL approaches, could have made these technologies consume extra 

time and computational resources to assess query performance and scalability. Thus, future 

developmental work is necessary in NoSQL approaches regarding this time-measuring issue. 

We also observed that the natural indexing found in the Cassandra model offers an 

advantage in performance and scalability. In fact, to make a query with a filtration function, the 

cqlsh requires that all requested headers be the primary key and that the function named “allow 

filtering” be invoked together with the query. Thus, it seems that the design of this technology 

help to run queries with filtering functions. This design could be a reason for the resulting fastest 

query times from this technology. In summary, our conclusions comprise a complex filtering 

process used in the Precision Medicine field using a technology where its data model design 

includes an integrated filtering process based on natural indexing. This natural indexing property 

provides a natural structure to order the data, resulting in interesting performance and scalability 

scores, which could allow it to successfully filter clinical and genomic patients’ data. 

We further observe that the Redis model is merely a database that requests values from 

their keys. In fact, it seems this technology do not allow the use of regular expressions at all. Our 

queries were created in a way that we can use this technology to query our results. However it 

was challenging to request information for ranges of values since in the query you must include 

all possible results you could possible obtain. For example, in order to find people in a range of 

age, we had to include all the possible years included in the range we were looking for. Thus, for 



 187 

queries where regular expressions are essential to retrieve specific information, this technology 

would require the support of object-oriented programs. However, using intermediate programs 

could reduce the performance of this technology since the amount of information resulting from 

millions of Keys and Values can easily saturate the memory of such intermediate programs used 

from the import to process the information. Thus, this important limitation, querying just keys 

and values, could make this technology difficult to use for requesting more complex data 

(filtering processes), such as requesting specific structural and functional genomic information 

with extremely large ranges of values. Since Precision Medicine requires the study of patients 

with similar specific clinical and genomic characteristics, future developments in the querying 

process are necessary to make this technology a stronger candidate for manipulating this type of 

data. 

With respect to MongoDB, we observe that it provides advantages in database 

implementation and portability. Using MongoDB reduced the time needed to create and populate 

a database in comparison to the other NoSQL approaches. Minimal time was required to start the 

data importing process. This technology is well designed to easily implement a database since 

the documents are hierarchically ordered based on JSON files. Moreover, as already mentioned 

in the literature, this data format is human readable. Thus, information extracted from this data 

can be read without the use of intermediate software, adding a portability data feature to this 

technology. Once performance and scalability issues are addressed by developers, the attractive 

characteristics of this technology could make it a potential candidate for future management of 

clinical and genomic information. 

About our experience in DBMS implementation, although we did not measure the time of 

each specific process during the database implementation such as the load time, update time, and 



 188 

programming time, we subjectively measure the overall time taken to database implementation 

and the approximate number of lines written to set up each database. We spent contrasting time 

and wrote dissimilar number of programming lines to set up each database technology as shown 

on Tables 33-46. MongoDB and MySQL were technologies that required less time to be 

implemented, contrasting to Cassandra and Redis that were the technologies that took us longer 

to implement. In fact, MongoDB and MySQL were 3 and 9 times faster than Cassandra and 

Redis in their implementation process, subsequently. MongoDB required less programming lines 

than any other NoSQL technology, following by Cassandra and MySQL. Redis needed 40 times 

more programming lines than MongoDB to be implemented. Overall, we required less effort to 

implement MongoDB and MySQL than Cassandra and Redis. 

We devised a series of clinical-genomic filtering queries based on relevant biological 

questions to identify patients that share similar information and grouping them. Results from 

these queries could be used by 1) physicians to aware about the prognosis of a typical treatment 

in a specific group of patients, and 2) researchers to identify structural and functional genomic 

information such as gene expression patterns that affect the efficacy among typical cancer 

therapies. In addition, these queries could be useful in public health research, especially in 

randomized clinical trials to group people with specific clinical and molecular characteristics to 

test new cancer treatments. In overall, we believe these type of queries, beyond answer scientific 

questions, could be a basic filtering process for Precision Medicine since they have the potential 

to cluster patients in order to find better ways to prevent, screen for, diagnose, or treat cancer. 

We use pre-computed files since this is the trend of different companies in the genomic 

field to accelerate the computational processes. The creation of clinical and genomic pre-

computed files helped us to optimize the storage process. For example, instead of storage a 



 189 

whole variant calling file from each patient, we were able to identify and merge specific 

chromosomal information together with its genomic location that were relevant for the queries 

we would use in posterior steps of the project. We believe that this trend in creating multiple pre-

computed files prior to populating a database is an effective way to save computational resources 

and manipulate big Precision Medicine data. A limitation of the pre-computed files is that they 

require the proper clinical and genomic knowledge from the database manager administrator. 

Clearly, it is important that people understand this very sensitive information prior to its being 

pre-processed and implemented in a database. The use of pre-computed files provided greater 

confidentiality for the information stored in our databases. We believed that these files have the 

potential to promote the use of clinical-genomic cognitive programming because of the insight of 

the data they provide to their developers. 

The Precision Medicine field requires the use of automated algorithms that run on a 

robust database with higher performance and scalability. These database characteristics are 

important since algorithms can include trillions of queries. Thus, if one DB system is slower than 

another, even in one query by seconds or milliseconds, the proportion of delays in time is 

exponential when we talk about quantities in the range of trillions. Overall, the most suitable 

database system for Precision Medicine will be as fast as possible for the most frequent queries 

used in this field. In this dissertation, we studied and identified suitable technologies to 

manipulate big Precision Medicine data by developing five different queries with different 

complexities based on the definition of Precision Medicine, clustering patients with similar 

demographic, clinical and genomic information. 



 190 

APPENDIX: DATA FEATURES 

A. ETHICAL AND SAFETY CONSIDERATIONS 

The ethical and safety considerations were already addressed by PGRR. Thus, it is expected that 

this managed environment instance already met the information security and regulatory 

requirements for using TCGA data (d.1). In addition, it is expected that PGRR already dealt with 

regulatory acts such as The Institutional Review Board (IRB), The Health Insurance Portability 

and Accountability Act (HIPPA) –privacy rule’s right of access and health information 

technology, and The Genetic Information Nondiscrimination Act (GINA). 

B. CHARACTERISTICS OF NOSQL DATABASES 

Table 47. Attributes of data models and NoSQL technologies used in this project. 

 



 191 

Table 48. Benefits and limitations using NoSQL Databases. 

 

 



 192 

C. FIGURES OF DATA STRUCTURE USING DIFFERENT DATA MODELS 

 
Figure 98. Data structure of Document store for MongoDB. 



 193 

 
Figure 99. Data structure of Key-Value store for Redis. 



 194 

 
Figure 100. Data structure of Column store for Cassandra. 



 195 

 
Figure 101. Data structure of Table store for MySQL. 



 196 

BIBLIOGRAPHY 

1. PCAST. (2010). Executive Office of the President President’s Council of Advisors on Science 
and Technology. Report to the President Realizing the Full Potential of Health 
Information Technology to Improve Healthcare for Americans: The Path Forward. 
[Accessed on August 20, 2014. Available at: 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf ]. 

 
2. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. (2009). 

GenBank. Nucleic acids research 37, D26-31. 
 
3. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler, D.L. (2008). 

GenBank. Nucleic acids research 36, D25-30. 
 
4. Stein, L. (2013). Creating databases for biological information: an introduction. Curr Protoc 

Bioinformatics Chapter 9, Unit9.1. 
 
5. Bellazzi, R. (2014). Big data and biomedical informatics: a challenging opportunity. Yearbook 

of medical informatics 9, 8-13. 
 
6. Overby, C.L., and Tarczy-Hornoch, P. (2013). Personalized medicine: challenges and 

opportunities for translational bioinformatics. Personalized medicine 10, 453-462. 
 
7. Canuel, V., Rance, B., Avillach, P., Degoulet, P., and Burgun, A. (2015). Translational 

research platforms integrating clinical and omics data: a review of publicly available 
solutions. Briefings in bioinformatics 16, 280-290. 

 
8. Shoenbill, K., Fost, N., Tachinardi, U., and Mendonca, E.A. (2014). Genetic data and 

electronic health records: a discussion of ethical, logistical and technological 
considerations. Journal of the American Medical Informatics Association : JAMIA 21, 
171-180. 

 
9. Alexandros Labrinidis, N.R. A Performance Evaluation of Online Warehouse Update 

Algorithms. Technical Research report in in the CSHCN series for The Center for 
Satellite and Hybrid Communication Networks, NASA-sponsored Commercial Space 
Center, Department of Defense (DOD), University of Maryland and the Institute for 
Systems Research. [Accessed August 20, 2014. Available at 
http://drum.lib.umd.edu/bitstream/1903/5988/1/TR_98-63.pdf]. 

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf
http://drum.lib.umd.edu/bitstream/1903/5988/1/TR_98-63.pdf


 197 

 
10. Mohammed, E.A., Far, B.H., and Naugler, C. (2014). Applications of the MapReduce 

programming framework to clinical big data analysis: current landscape and future 
trends. BioData mining 7, 22. 

 
11. Lee, K.K., Tang, W.C., and Choi, K.S. (2013). Alternatives to relational database: 

comparison of NoSQL and XML approaches for clinical data storage. Computer methods 
and programs in biomedicine 110, 99-109. 

 
12. Hilbert, M., and Lopez, P. (2011). The world's technological capacity to store, communicate, 

and compute information. Science (New York, NY) 332, 60-65. 
 
13. Company, M. (2011). Big data: The next frontier for innovation, competition, and 

productivity. [Accessed on August 20, 2014. Available at: 
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_
innovation ]. 

 
14. Kavoussi, S.C., Huang, J.J., Tsai, J.C., and Kempton, J.E. (2014). HIPAA for physicians in 

the information age. Connecticut medicine 78, 425-427. 
 
15. Wang, W., and Krishnan, E. (2014). Big data and clinicians: a review on the state of the 

science. JMIR medical informatics 2, e1. 
 
16. SAS. (2011). How big is 'big data' in healthcare? [Accessed on April 04, 2015. Available at: 

http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-healthcare/ ]. 
 
17. Pasche, B., and Absher, D. (2011). Whole-genome sequencing: a step closer to personalized 

medicine. JAMA 305, 1596-1597. 
 
18. Watson, J.D., and Crick, F.H. (1953). Molecular structure of nucleic acids; a structure for 

deoxyribose nucleic acid. Nature 171, 737-738. 
 
19. (2004). Finishing the euchromatic sequence of the human genome. Nature 431, 931-945. 
 
20. Goodman, D.M., Lynm, C., and Livingston, E.H. (2013). JAMA patient page. Genomic 

medicine. JAMA 309, 1544. 
 
21. Gibson, W.M. (1971). Can personalized medicine survive? Can Fam Physician 17, 29-88. 
 
22. Arnold, R.M., and Forrow, L. (1990). Rewarding medicine: good doctors and good behavior. 

Ann Intern Med 113, 794-798. 
 
23. Langreth, R., and Waldholz, M. (1999). New era of personalized medicine: targeting drugs 

for each unique genetic profile. Oncologist 4, 426-427. 
 

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-data-in-healthcare/


 198 

24. Maskos, U., and Southern, E.M. (1992). Oligonucleotide hybridizations on glass supports: a 
novel linker for oligonucleotide synthesis and hybridization properties of 
oligonucleotides synthesised in situ. Nucleic Acids Res 20, 1679-1684. 

 
25. Augenlicht, L.H., Wahrman, M.Z., Halsey, H., Anderson, L., Taylor, J., and Lipkin, M. 

(1987). Expression of cloned sequences in biopsies of human colonic tissue and in 
colonic carcinoma cells induced to differentiate in vitro. Cancer Res 47, 6017-6021. 

 
26. Augenlicht, L.H., Taylor, J., Anderson, L., and Lipkin, M. (1991). Patterns of gene 

expression that characterize the colonic mucosa in patients at genetic risk for colonic 
cancer. Proc Natl Acad Sci U S A 88, 3286-3289. 

 
27. Kulesh, D.A., Clive, D.R., Zarlenga, D.S., and Greene, J.J. (1987). Identification of 

interferon-modulated proliferation-related cDNA sequences. Proc Natl Acad Sci U S A 
84, 8453-8457. 

 
28. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of 

gene expression patterns with a complementary DNA microarray. Science 270, 467-470. 
 
29. Lashkari, D.A., DeRisi, J.L., McCusker, J.H., Namath, A.F., Gentile, C., Hwang, S.Y., 

Brown, P.O., and Davis, R.W. (1997). Yeast microarrays for genome wide parallel 
genetic and gene expression analysis. Proc Natl Acad Sci U S A 94, 13057-13062. 

 
30. Zaidi, S.K., Young, D.W., Choi, J.Y., Pratap, J., Javed, A., Montecino, M., Stein, J.L., Lian, 

J.B., van Wijnen, A.J., and Stein, G.S. (2004). Intranuclear trafficking: organization and 
assembly of regulatory machinery for combinatorial biological control. J Biol Chem 279, 
43363-43366. 

 
31. Mattick, J.S., Amaral, P.P., Dinger, M.E., Mercer, T.R., and Mehler, M.F. (2009). RNA 

regulation of epigenetic processes. Bioessays 31, 51-59. 
 
32. Martinez, N.J., and Walhout, A.J. (2009). The interplay between transcription factors and 

microRNAs in genome-scale regulatory networks. Bioessays 31, 435-445. 
 
33. Tomilin, N.V. (2008). Regulation of mammalian gene expression by retroelements and non-

coding tandem repeats. Bioessays 30, 338-348. 
 
34. Online Mendelian Inheritance in Man. [Accessed on March 15. Available at: 

http://www.omim.org/ ].  
 
35. Gusella, J.F., Wexler, N.S., Conneally, P.M., Naylor, S.L., Anderson, M.A., Tanzi, R.E., 

Watkins, P.C., Ottina, K., Wallace, M.R., Sakaguchi, A.Y., et al. (1983). A polymorphic 
DNA marker genetically linked to Huntington's disease. Nature 306, 234-238. 

 

http://www.omim.org/


 199 

36. Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, 
J., Lok, S., Plavsic, N., Chou, J.L., et al. (1989). Identification of the cystic fibrosis gene: 
cloning and characterization of complementary DNA. Science 245, 1066-1073. 

 
37. Strachan T, R.A. (2010). Human Molecular Genetics. 
 
38. Altmuller, J., Palmer, L.J., Fischer, G., Scherb, H., and Wjst, M. (2001). Genomewide scans 

of complex human diseases: true linkage is hard to find. Am J Hum Genet 69, 936-950. 
 
39. Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.Y., Sackler, R.S., Haynes, C., Henning, A.K., 

SanGiovanni, J.P., Mane, S.M., Mayne, S.T., et al. (2005). Complement factor H 
polymorphism in age-related macular degeneration. Science 308, 385-389. 

 
40. Yamazaki, K., McGovern, D., Ragoussis, J., Paolucci, M., Butler, H., Jewell, D., Cardon, L., 

Takazoe, M., Tanaka, T., Ichimori, T., et al. (2005). Single nucleotide polymorphisms in 
TNFSF15 confer susceptibility to Crohn's disease. Hum Mol Genet 14, 3499-3506. 

 
41. Ozaki, K., and Tanaka, T. (2005). Genome-wide association study to identify SNPs 

conferring risk of myocardial infarction and their functional analyses. Cell Mol Life Sci 
62, 1804-1813. 

 
42. Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., Steinhart, 

A.H., Abraham, C., Regueiro, M., Griffiths, A., et al. (2006). A genome-wide association 
study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461-1463. 

 
43. Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., Boutin, P., Vincent, D., 

Belisle, A., Hadjadj, S., et al. (2007). A genome-wide association study identifies novel 
risk loci for type 2 diabetes. Nature 445, 881-885. 

 
44. Barrett, J.C., Hansoul, S., Nicolae, D.L., Cho, J.H., Duerr, R.H., Rioux, J.D., Brant, S.R., 

Silverberg, M.S., Taylor, K.D., Barmada, M.M., et al. (2008). Genome-wide association 
defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40, 955-
962. 

 
45. Stahl, E.A., Raychaudhuri, S., Remmers, E.F., Xie, G., Eyre, S., Thomson, B.P., Li, Y., 

Kurreeman, F.A., Zhernakova, A., Hinks, A., et al. (2010). Genome-wide association 
study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42, 
508-514. 

 
46. Rioux, J.D., Xavier, R.J., Taylor, K.D., Silverberg, M.S., Goyette, P., Huett, A., Green, T., 

Kuballa, P., Barmada, M.M., Datta, L.W., et al. (2007). Genome-wide association study 
identifies new susceptibility loci for Crohn disease and implicates autophagy in disease 
pathogenesis. Nat Genet 39, 596-604. 

 



 200 

47. Cho, H.S., Byun, T.J., Ahn, S.B., Kim, T.Y., Eun, C.S., Jeon, Y.C., Kim, Y.S., and Han, D.S. 
(2008). [A case of familial Crohn's disease observed in a parent and his offspring]. 
Korean J Gastroenterol 52, 247-250. 

 
48. Mathew, C.G. (2008). New links to the pathogenesis of Crohn disease provided by genome-

wide association scans. Nat Rev Genet 9, 9-14. 
 
49. Ghoussaini, M., Song, H., Koessler, T., Al Olama, A.A., Kote-Jarai, Z., Driver, K.E., Pooley, 

K.A., Ramus, S.J., Kjaer, S.K., Hogdall, E., et al. (2008). Multiple loci with different 
cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 100, 962-966. 

 
50. Lango Allen, H., Estrada, K., Lettre, G., Berndt, S.I., Weedon, M.N., Rivadeneira, F., Willer, 

C.J., Jackson, A.U., Vedantam, S., Raychaudhuri, S., et al. (2010). Hundreds of variants 
clustered in genomic loci and biological pathways affect human height. Nature 467, 832-
838. 

 
51. Gudmundsson, J., Sulem, P., Steinthorsdottir, V., Bergthorsson, J.T., Thorleifsson, G., 

Manolescu, A., Rafnar, T., Gudbjartsson, D., Agnarsson, B.A., Baker, A., et al. (2007). 
Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 
protects against type 2 diabetes. Nat Genet 39, 977-983. 

 
52. Illumina, next generation sequencing. [Accessed on March 15. Available at: 

http://www.illumina.com/Documents/products/Illumina_Sequencing_Introduction.pdf ].  
 
53. SMI, next-generation sequencing. [Accessed on March 15. Available at: http://www.smi-

online.co.uk/pharmaceuticals/uk/next-generation-sequencing?utm_source=P-
075&utm_medium=Bentham Science&utm_campaign=WebBanner ].  

 
54. Choi, M., Scholl, U.I., Ji, W., Liu, T., Tikhonova, I.R., Zumbo, P., Nayir, A., Bakkaloglu, A., 

Ozen, S., Sanjad, S., et al. (2009). Genetic diagnosis by whole exome capture and 
massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106, 19096-19101. 

 
55. Thorisson, G.A., Muilu, J., and Brookes, A.J. (2009). Genotype-phenotype databases: 

challenges and solutions for the post-genomic era. Nature reviews Genetics 10, 9-18. 
 
56. NIH. (2015). The Human Genome Project. [Accessed on April 28, 2015. Available at: 

http://ghr.nlm.nih.gov/handbook/hgp?show=all ]. 
 
57. FORBES. (2012). How Cloud and Big Data are Impacting the Human Genome - Touching 7 

Billion Lives. [Accessed on August 20, 2014. Available at: 
http://www.forbes.com/sites/sap/2012/04/16/how-cloud-and-big-data-are-impacting-the-
human-genome-touching-7-billion-lives/ ]. 

 
58. Thorisson, G.A., Smith, A.V., Krishnan, L., and Stein, L.D. (2005). The International 

HapMap Project Web site. Genome research 15, 1592-1593. 
 

http://www.illumina.com/Documents/products/Illumina_Sequencing_Introduction.pdf
http://www.smi-online.co.uk/pharmaceuticals/uk/next-generation-sequencing?utm_source=P-075&utm_medium=Bentham%20Science&utm_campaign=WebBanner
http://www.smi-online.co.uk/pharmaceuticals/uk/next-generation-sequencing?utm_source=P-075&utm_medium=Bentham%20Science&utm_campaign=WebBanner
http://www.smi-online.co.uk/pharmaceuticals/uk/next-generation-sequencing?utm_source=P-075&utm_medium=Bentham%20Science&utm_campaign=WebBanner
http://ghr.nlm.nih.gov/handbook/hgp?show=all
http://www.forbes.com/sites/sap/2012/04/16/how-cloud-and-big-data-are-impacting-the-human-genome-touching-7-billion-lives/
http://www.forbes.com/sites/sap/2012/04/16/how-cloud-and-big-data-are-impacting-the-human-genome-touching-7-billion-lives/


 201 

59. Consortium, T.I.H. (2013). International HapMap Project. [Accessed on August 20, 2014. 
Available at: http://hapmap.ncbi.nlm.nih.gov ]. 

 
60. Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., 

Kang, H.M., Marth, G.T., and McVean, G.A. (2012). An integrated map of genetic 
variation from 1,092 human genomes. Nature 491, 56-65. 

 
61. consortium, G. (2015). 1000 Genomes A Deep Catalog of Human Genetic Variation. 

[Accessed on April 04, 2015. Available at: http://www.1000genomes.org ]. 
 
62. Genomes. (2015). How much disk space is used by the 1000 genomes project? [Accessed on 

April 04, 2015. Available at: http://www.1000genomes.org/faq/how-much-disk-space-
used-1000-genomes-project ]. 

 
63. consortium, G.p. (2015). Statistics - 1000 Genomes A Deep Catalog of Human Genetic 

Variation. [Accessed on April 04, 2015. Available at: 
http://www.1000genomes.org/category/statistics ]. 

 
64. Arstechnica. (2015). Most of what you read was wrong: how press releases rewrote scientific 

history. [Accessed on April 04, 2015. Available at: 
http://arstechnica.com/staff/2012/09/10/most-of-what-you-read-was-wrong-how-press-
releases-rewrote-scientific-history/ ]. 

 
65. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-

74. 
 
66. (2011). A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS biology 9, 

e1001046. 
 
67. Raney, B.J., Cline, M.S., Rosenbloom, K.R., Dreszer, T.R., Learned, K., Barber, G.P., 

Meyer, L.R., Sloan, C.A., Malladi, V.S., Roskin, K.M., et al. (2011). ENCODE whole-
genome data in the UCSC genome browser (2011 update). Nucleic acids research 39, 
D871-875. 

 
68. Space, I. (2013). ENCODE: Big Data, the Human Genome, and Non-Profit Global 

Enterprise. [Accessed on April 04, 2015. Available at: 
http://infospace.ischool.syr.edu/2013/01/24/encode-big-data-the-human-genome-and-
non-profit-global-enterprise/ ]. 

 
69. NCBI. (2015). GenBank Overview. [Accessed on April 04, 2015. Available at: 

http://www.ncbi.nlm.nih.gov/genbank/ ]. 
 
70. Nakamura, Y., Cochrane, G., and Karsch-Mizrachi, I. (2013). The International Nucleotide 

Sequence Database Collaboration. Nucleic acids research 41, D21-24. 
 

http://hapmap.ncbi.nlm.nih.gov/
http://www.1000genomes.org/
http://www.1000genomes.org/faq/how-much-disk-space-used-1000-genomes-project
http://www.1000genomes.org/faq/how-much-disk-space-used-1000-genomes-project
http://www.1000genomes.org/category/statistics
http://arstechnica.com/staff/2012/09/10/most-of-what-you-read-was-wrong-how-press-releases-rewrote-scientific-history/
http://arstechnica.com/staff/2012/09/10/most-of-what-you-read-was-wrong-how-press-releases-rewrote-scientific-history/
http://infospace.ischool.syr.edu/2013/01/24/encode-big-data-the-human-genome-and-non-profit-global-enterprise/
http://infospace.ischool.syr.edu/2013/01/24/encode-big-data-the-human-genome-and-non-profit-global-enterprise/
http://www.ncbi.nlm.nih.gov/genbank/


 202 

71. Cochrane, G., Karsch-Mizrachi, I., and Nakamura, Y. (2011). The International Nucleotide 
Sequence Database Collaboration. Nucleic acids research 39, D15-18. 

 
72. National Cancer Institute. National Human Genome Research Institute. The Cancer Genome 

Atlas, Data Portal. [Accessed on August 20, 2014. Available at: https://tcga-
data.nci.nih.gov/datareports/codeTablesReport.htm ]. 

 
73. Program, N.C.I. (2014). Cancer Genomics Cloud Pilots Concept Briefing to the NCAB/BSA. 

[Accessed on April 04, 2015. Available at: 
http://deainfo.nci.nih.gov/advisory/ncab/165_0613/Komatsoulis.pdf ]. 

 
74. Levy, S., Sutton, G., Ng, P.C., Feuk, L., Halpern, A.L., Walenz, B.P., Axelrod, N., Huang, J., 

Kirkness, E.F., Denisov, G., et al. (2007). The diploid genome sequence of an individual 
human. PLoS biology 5, e254. 

 
75. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., 

Yandell, M., Evans, C.A., Holt, R.A., et al. (2001). The sequence of the human genome. 
Science (New York, NY) 291, 1304-1351. 

 
76. Times, T.N.Y. (2007). Genome of DNA Discoverer Is Deciphered. [Accessed on April 04, 

2015. Available at: 
http://www.nytimes.com/2007/06/01/science/01gene.html?_r=2&oref=slogin& ]. 

 
77. YanHuang, the first asian diploid genome. [accessed on March 15. Available at: 

http://yh.genomics.org.cn/ ].  
 
78. The Korean Genome Project. [accessed on March 15. Available at: 

http://koreangenome.org/index.php/Main_Page ].  
 
79. BGI. (2015). YanHuang - The First Asian Diploid Genome. [Accessed on April 04, 2015. 

Available at: http://yh.genomics.org.cn ]. 
 
80. Ahn, S.M., Kim, T.H., Lee, S., Kim, D., Ghang, H., Kim, D.S., Kim, B.C., Kim, S.Y., Kim, 

W.Y., Kim, C., et al. (2009). The first Korean genome sequence and analysis: full 
genome sequencing for a socio-ethnic group. Genome research 19, 1622-1629. 

 
81. Feero, W.G. (2013). Genomics in medicine: maturation, but not maturity. JAMA 309, 1522-

1524. 
 
82. Lupski, J.R., Reid, J.G., Gonzaga-Jauregui, C., Rio Deiros, D., Chen, D.C., Nazareth, L., 

Bainbridge, M., Dinh, H., Jing, C., Wheeler, D.A., et al. (2010). Whole-genome 
sequencing in a patient with Charcot-Marie-Tooth neuropathy. The New England journal 
of medicine 362, 1181-1191. 

 
83. Worthey, E.A., Mayer, A.N., Syverson, G.D., Helbling, D., Bonacci, B.B., Decker, B., Serpe, 

J.M., Dasu, T., Tschannen, M.R., Veith, R.L., et al. (2011). Making a definitive 

http://deainfo.nci.nih.gov/advisory/ncab/165_0613/Komatsoulis.pdf
http://www.nytimes.com/2007/06/01/science/01gene.html?_r=2&oref=slogin&
http://yh.genomics.org.cn/
http://koreangenome.org/index.php/Main_Page
http://yh.genomics.org.cn/


 203 

diagnosis: successful clinical application of whole exome sequencing in a child with 
intractable inflammatory bowel disease. Genetics in medicine : official journal of the 
American College of Medical Genetics 13, 255-262. 

 
84. Mayer, A.N., Dimmock, D.P., Arca, M.J., Bick, D.P., Verbsky, J.W., Worthey, E.A., Jacob, 

H.J., and Margolis, D.A. (2011). A timely arrival for genomic medicine. Genet Med 13, 
195-196. 

 
85. Rios, J., Stein, E., Shendure, J., Hobbs, H.H., and Cohen, J.C. (2010). Identification by 

whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. 
Human molecular genetics 19, 4313-4318. 

 
86. Bainbridge, M.N., Wiszniewski, W., Murdock, D.R., Friedman, J., Gonzaga-Jauregui, C., 

Newsham, I., Reid, J.G., Fink, J.K., Morgan, M.B., Gingras, M.C., et al. (2011). Whole-
genome sequencing for optimized patient management. Science translational medicine 3, 
87re83. 

 
87. Fay Chang, J.D., Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, 

Tushar Chandra, Andrew Fikes, Robert E. Gruber. (2006). Bigtable: A Distributed 
Storage System for Structured Data. [Accessed on April 04, 2015. Available at: 
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-
osdi06.pdf ]. 

 
88. Giuseppe DeCandia, D.H., Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, 

Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels. (2007). 
Dynamo: Amazon’s Highly Available Key-value Store. [Accessed on April 04, 2015. 
Available at: http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf ]. 

 
89. Cameron, D. (2014). Transforming “Big Data” into Knowledge. [Accessed on April 04,2015. 

Availabe at: http://hms.harvard.edu/news/transforming-big-data-knowledge%5D. 
 
90. Ian Robinson, J.W.E.E. (2013). Graph Databases.(O’REILLY). 
 
91. Haerder T, e.a. (1983). Principles of transaction-oriented database recovery. ACM 

Computing Surveys (CSUR) 15, 287-317  
 
92. W., V. (2009). Eventually consistent. Communications of the ACM - Rural engineering 

development 52, 40-44. 
 
93. Cios, K.J., and Moore, G.W. (2002). Uniqueness of medical data mining. Artificial 

intelligence in medicine 26, 1-24. 
 
94. al., B.S.e. (1999). Semantic integration of semistructured and structured data sources. ACM 

Sigmod Record 28, 54-59. 
 

http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://hms.harvard.edu/news/transforming-big-data-knowledge%5d


 204 

95. Jain, M. (2012). Next-generation sequencing technologies for gene expression profiling in 
plants. Briefings in functional genomics 11, 63-70. 

 
96. Ozsolak, F., and Milos, P.M. (2011). RNA sequencing: advances, challenges and 

opportunities. Nature reviews Genetics 12, 87-98. 
 
97. Levenson, V.V., and Melnikov, A.A. (2012). DNA methylation as clinically useful 

biomarkers-light at the end of the tunnel. Pharmaceuticals (Basel, Switzerland) 5, 94-113. 
 
98. Moya, A., Huisman, L., Ball, E.E., Hayward, D.C., Grasso, L.C., Chua, C.M., Woo, H.N., 

Gattuso, J.P., Foret, S., and Miller, D.J. (2012). Whole transcriptome analysis of the coral 
Acropora millepora reveals complex responses to CO(2)-driven acidification during the 
initiation of calcification. Molecular ecology 21, 2440-2454. 

 
99. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. 

(2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. 
Science (New York, NY) 320, 1344-1349. 

 
100. D, M. (2011). Metagenomics: Current Innovations and Future Trends. 
 
101. Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiology. 

The Journal of experimental biology 210, 1518-1525. 
 
102. Church, G.M. (2006). Genomes for all. Scientific American 294, 46-54. 
 
103. Illumina. (2015). Illumina. [Accessed on April 04, 2015. Available at: 

http://www.illumina.com/ ]. 
 
104. Corporation, R.D. (2015). 454 sequencing. [Accessed on April 04, 2015. Available at: 

http://454.com ]. 
 
105. Technologies, L. (2015). Applied Biosystems. [Accessed on April 04, 2015. Available at: 

http://www.appliedbiosystems.com ]. 
 
106. Los, R.K., van Ginneken, A.M., de Wilde, M., and van der Lei, J. (2004). OpenSDE: Row 

modeling applied to generic structured data entry. Journal of the American Medical 
Informatics Association : JAMIA 11, 162-165. 

 
107. Prather, J.C., Lobach, D.F., Goodwin, L.K., Hales, J.W., Hage, M.L., and Hammond, W.E. 

(1997). Medical data mining: knowledge discovery in a clinical data warehouse. 
Proceedings : a conference of the American Medical Informatics Association /  AMIA 
Annual Fall Symposium AMIA Fall Symposium, 101-105. 

 
108. Rector AL, e.a. (1991). Foundations for an Electronic Medical Record. Published in 

Methods of Information in Medicine 30, 179-186. 
 

http://www.illumina.com/
http://454.com/
http://www.appliedbiosystems.com/


 205 

109. B.M.e. (2014). Clinical Database: RDBMS v/s newer technologies (NoSQL and XML 
database); why look beyond RDBMS and Consider the newer. International Journal of 
Computer Engineering and Technology (IJCET) 5, 73-83. 

 
110. Williams, M.S. (2014). Genomic medicine implementation: learning by example. American 

journal of medical genetics Part C, Seminars in medical genetics 166c, 8-14. 
 
111. Hasso Plattner, M.-P.S. (2014). High-Performance In-Memory Genome Data Analysis, 

How In-Memory Database Technology Accelerates Personalized Medicine.(Springer). 
 
112. Kasabov, N. (2014). Springer Handbook of Bio-/Neuro-Informatics.(Springer). 
 
113. R., J. (1991). The Art of Computer Systems Performance Analysis: Techniques for 

Experimental Design, Measurement, Simulation, and Modeling. .(WILEY). 
 
114. Wescott, B. (2013). The Every Computer Performance Book, Chapter 3: Useful laws. 

CreateSpace. 
 
115. J., C. (2013). Spanner: Google’s Globally Distributed Database. ACM Transactions on 

Computer Systems (TOCS) 31. 
 
116. Hesham El-Rewini, M.A.-E.-B. (2005). Advanced Computer Architecture and Parallel 

Processing. 
 
117. (2014). The National Law Review (The Analysis Group, Inc.). Big Data in Health Care. 

[Accessed on October 20, 2014. Available at: http://www.natlawreview.com/article/big-
data-health-care ]. 

 
118. Centers for Medicare & Medicaid Services. EHR Incentive Programs. [Accessed on August 

20, 2014. Available at: https://http://www.cms.gov/ehrincentiveprograms ]. 
 
119. Office of the National Coordinator for Health Information Technology. Achieve 

Meaningful Use. [Accessed on August 20, 2014. Available at: 
https://http://www.healthit.gov/providers-professionals ]. 

 
120. National Human Genome Research Institute. DNA Sequencing Costs. Data from the 

NHGRI Genome Sequencing Program (GSP). [Accessed on August 20, 2014. Available 
at: http://www.genome.gov/sequencingcosts/%5D. 

 
121. PCAST. (2014). Executive Office of the President President’s Council of Advisors on 

Science and Technology. Report to the President: Big Data and privacy: A technological 
Perspective. [Accessed on August 20, 2014. Available at: 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_an
d_privacy_-_may_2014.pdf. ]. 

 

http://www.natlawreview.com/article/big-data-health-care
http://www.natlawreview.com/article/big-data-health-care
http://www.cms.gov/ehrincentiveprograms
http://www.healthit.gov/providers-professionals
http://www.genome.gov/sequencingcosts/%5d
http://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_and_privacy_-_may_2014.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_and_privacy_-_may_2014.pdf


 206 

122. PGRR. Pittsburgh Genome Resource Repository. Institute for Personalized Medicine. 
University of Pittsburgh. [Accessed on August 20, 2014. Available at: 
http://www.pgrr.pitt.edu ]. 

 
123. PGRR. (2014). TCGA. Pittsburgh Genome Resource Repository. Institute for Personalized 

Medicine. University of Pittsburgh. [Accessed on August 20, 2014. Available at: 
http://www.pgrr.pitt.edu/tcga ]. 

 
124. Labrinidis A., D.A. (2011). Challenges and Opportunities with Big Data. In  Purdue e-pubs. 

[Accessed on August 20, 2014. Available at: http://docs.lib.purdue.edu/cctech/1/ ]. 
 
125. Horwitz, R.I., Cullen, M.R., Abell, J., and Christian, J.B. (2013). Medicine. 

(De)personalized medicine. Science (New York, NY) 339, 1155-1156. 
 
126. Sharan, R. (2014). Research in Computational Molecular Biology, 18th Annual 

International Conference, RECOMB 2014, Pittsburgh, PA, USA, Proceedings.(Springer). 
 
127. Christopher J.O. Baker, G.B., Igor Jurisica. (2013). Data Integration in the Life Sciences, 

9th International Conference, DILS 2013, Montreal, QC, Canada, 
Proceedings.(Springer). 

 
128. Sunderraman, R. (2008). Oracle 10g Programming.(PEARSON, Addison Wesley). 
 
129. Navathe, E. (2011). Fundamentals of Database Systems.(PEARSON, Addison Wesley). 
 
130. Chodorow, K. (2013). MongoDB, The Definitive Guide, Powerful and Scalable Data 

Storage.(O’REILLY). 
 
131. Tiago Macedo, F.O. (2011). Redis Cookbook, Practical techniques for Fast Data 

Manipulation.(O’REILLY). 
 
132. Hewitt, E. (2011). Cassandra, The Definitive Guide, Distributed Data at Web 

Scale.(O’REILLY). 
 
133. Mendes, C.L.a.R., D. A. . (1998). Integrated compilation and scalability analysis for parallel 

systems. In  In International Conference on Parallel Architectures and Compilation 
Techniques. (Paris, France), pp pages 385–392. 

 
134. Mendes, C.L.a.R., D. A. . (2004). Monitoring large systems via statistical sampling. . 

International Journal of High Performance Computing Applications 18(2):267–277. 
 
135. PCAST. (2008). President’s Council of Advisors on Science and Technology. Priorities for 

Personalized Medicine. [Accessed on August 20, 2014. Available at: 
http://www.whitehouse.gov/files/documents/ostp/PCAST/pcast_report_v2.pdf ]. 

 

http://www.pgrr.pitt.edu/
http://www.pgrr.pitt.edu/tcga
http://docs.lib.purdue.edu/cctech/1/
http://www.whitehouse.gov/files/documents/ostp/PCAST/pcast_report_v2.pdf


 207 

136. Wade, J.E., Ledbetter, D.H., and Williams, M.S. (2014). Implementation of genomic 
medicine in a health care delivery system: a value proposition? American journal of 
medical genetics Part C, Seminars in medical genetics 166c, 112-116. 

 
137. Whitcomb, D.C. (2012). What is personalized medicine and what should it replace? Nature 

reviews Gastroenterology & hepatology 9, 418-424. 
 
138. (2014). Standards for clinical use of genetic variants. Nature genetics 46, 93. 
 
139. Biesecker, L.G., and Green, R.C. (2014). Diagnostic clinical genome and exome 

sequencing. The New England journal of medicine 370, 2418-2425. 
 
140. (PSC), P.S.C. (2015). PSC's Computational Resources. [Accessed on April 04, 2015. 

Available at: http://www.psc.edu/index.php/computing-resources/ ]. 
 
141. NCBI. (2015). ClinVar. [Accessed on April 04, 2015. Available at: 

http://www.ncbi.nlm.nih.gov/clinvar/intro/ ]. 
 
142. Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church, D.M., and 

Maglott, D.R. (2014). ClinVar: public archive of relationships among sequence variation 
and human phenotype. Nucleic acids research 42, D980-985. 

 
143. Society, A.C. (2015). What are the risk factors for breast cancer? [Accessed on April 04, 

2015. Available at: http://www.cancer.org/cancer/breastcancer/detailedguide/breast-
cancer-risk-factors ]. 

 
144. Institute, N.N.C. (2015). Breast Cancer Risk in American Women. [Accessed on August 20, 

2014. Available at: http://www.cancer.gov/types/breast/risk-fact-sheet ]. 
 
145. Janavičius, R. (2010). Founder BRCA1/2 mutations in the Europe: implications for 

hereditary breast-ovarian cancer prevention and control. The EPMA Journal 1, 397-412. 
 
146. Popovici, V., Chen, W., Gallas, B.G., Hatzis, C., Shi, W., Samuelson, F.W., Nikolsky, Y., 

Tsyganova, M., Ishkin, A., Nikolskaya, T., et al. (2010). Effect of training-sample size 
and classification difficulty on the accuracy of genomic predictors. Breast cancer research 
: BCR 12, R5. 

 
147. Wang, S., Pandis, I., Wu, C., He, S., Johnson, D., Emam, I., Guitton, F., and Guo, Y. 

(2014). High dimensional biological data retrieval optimization with NoSQL technology. 
BMC genomics 15 Suppl 8, S3. 

 
148. Kent, W.J. (1982). IBM Technical Report: A Simple Guide to Five Normal Forms in 

Relational Database Theory. [Accessed on April 04, 2015. Available at: 
http://www.bkent.net/Doc/simple5.htm ]. 

 

 

http://www.psc.edu/index.php/computing-resources/
http://www.ncbi.nlm.nih.gov/clinvar/intro/
http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-risk-factors
http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-risk-factors
http://www.cancer.gov/types/breast/risk-fact-sheet
http://www.bkent.net/Doc/simple5.htm

	TITLE PAGE
	COMMITTEE MEMBERS
	ABSTRACT
	TABLE OF CONTENTS
	 LIST OF TABLES
	LIST OF FIGURES
	1.0  INTRODUCTION
	1.1 THE INFORMATION AGE
	1.2 EVOLUTION OF MEDICINE: PRECISION MEDICINE
	1.2.1 Genetic Markers
	1.2.2 DNA microarray and gene expression studies
	1.2.3 Genetic linkage studies
	1.2.4 Genome wide association studies
	1.2.5 DNA sequencing
	1.2.6 Sanger sequencing
	1.2.7 Next generation sequencing (NGS)
	1.2.8 Exome sequencing

	1.3 THE POST-GENOMIC AGE
	1.3.1 The Human Genome Project
	1.3.2 HAPMAP Project
	1.3.3 1000 Genome Project
	1.3.4 ENCODE Project
	1.3.5 GeneBank Project
	1.3.6 INSDC Project
	1.3.7 The Cancer Genome Atlas (TCGA)
	1.3.8 Personal Genome Projects
	1.3.8.1 Venter genome project
	1.3.8.2 Watson genome project
	1.3.8.3 African genome project
	1.3.8.4 Asian genome projects

	1.3.9 Clinical Genome Projects
	1.3.9.1 Charcot-Marie-Tooth neuropathy clinical sequencing case
	1.3.9.2 Crohn-like disease clinical sequencing case
	1.3.9.3 Hypercholesterolemia clinical sequencing case
	1.3.9.4 Dopa-responsive dystonia clinical sequencing case


	1.4 EVOLUTION OF DATABASE MANAGEMENT SYSTEMS
	Figure 1. Timeline of database management systems and big data challenges in Precision Medicine.
	Figure 2. Example of a suitable database management system for Active Laboratories that include patients’ demographic, clinical and genomic characteristics.

	1.5 COMPARISON BETWEEN SQL AND NOSQL
	1.5.1 ACID versus BASE transactions
	1.5.2 NoSQL Approaches
	1.5.2.1 Document model
	1.5.2.2 Key-Value model
	1.5.2.3 Column model
	1.5.2.4 Graph model

	1.5.3 MapReduce programming model

	1.6 BIG DATA CHALLENGES FOR CLINICAL AND GENOMIC INFORMATION
	1.7 DATA SIZE
	1.8 DATA RATE
	1.9 COMPUTATIONAL COMPLEXITY
	1.10 DATA SHARING
	1.11 ORGANIZATION OF THIS DISSERTATION

	2.0  BACKGROUND
	2.1 DATA STORAGE AND MANAGEMENT
	2.2 PERFORMANCE
	2.2.1 Query time

	2.3 SCALABILITY
	2.4 SIGNIFICANCE
	2.5 PUBLIC HEALTH RELEVANCE
	2.6 INSTRUMENTATION
	2.6.1 Hardware instrumentation
	Figure 3. Software architectures developed on the DXC.

	2.6.2 Software instrumentation
	2.6.2.1 Database Settings
	MongoDB
	Cassandra
	Redis
	MySQL



	2.7 DATA SOURCES
	The Cancer Genome Atlas (TCGA)
	ClinVar
	Data architecture


	3.0  DATA MANAGEMENT
	3.1 ANNOTATION, TRANSFORMATION, IMPORTING AND DATA MANIPULATION PROCESS
	3.1.1 Database building process
	3.1.1.1 Pre-computed clinical files
	Table 1. Example of a pre-computed clinical file.
	3.1.1.2 Genomic pre-computed files
	Table 2. Example of a pre-computed genomic file.

	3.1.2 Database transformation process

	3.2 DESCRIPTION OF QUERIES
	3.2.1 Static queries
	Figure 4. BRCA2 variants identified as European founder mutations.

	3.2.2 Dynamic queries


	4.0  PERFORMANCE AND SCALABILITY ON QUERIES OF GRADUALLY INCREASING COMPLEXITY AND DATABASE SIZE
	4.1 INTRODUCTION
	4.2 EXPERIMENT 1: COMPARING PERFORMANCE AND SCALABILITY ON QUERIES OF GRADUALLY INCREASING COMPLEXITY AND DATABASE SIZE
	Figure 5. Workflow of Experiment 1.
	4.2.1 Experimental results
	4.2.1.1 Query time results for queries of varying complexity in databases of different sizes
	Timing Performance

	Table 3. Query performance of experiment 1: query 1.
	Table 4. Query performance of experiment 1: query 2.
	Table 5. Query performance of experiment 1: query 3.
	Table 6. Query performance of experiment 1: query 4.
	Table 7. Query performance of experiment 1: query 5.
	Table 8. Query performance of experiment 1 in larger databases: query 1.
	Table 9. Query performance of experiment 1 in larger databases: query 2.
	Table 10. Query performance of experiment 1 in larger databases: query 3.
	Table 11. Query performance of experiment 1 in larger databases: query 4.
	Table 12. Query performance of experiment 1 in larger databases: query 5.
	Timing Scalability

	4.2.1.2 Summary
	Figure 6. Variation in query time (base-10 log scale) of experiment 1: query 1.
	Figure 7. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 1.
	Figure 8. Variation in query time (base-10 log scale) of experiment 1: query 2.
	Figure 9. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 2.
	Figure 10. Variation in query time (base-10 log scale) of experiment 1: query 3.
	Figure 11. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 3.
	Figure 12. Variation in query time (base-10 log scale) of experiment 1: query 4.
	Figure 13. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 4.
	Figure 14. Variation in query time (base-10 log scale) of experiment 1: query 5.
	Figure 15. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1: query 5.
	Figure 16. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 1.
	Figure 17. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger databases: query 1.
	Figure 18. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 2.
	Figure 19. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger databases: query 2.
	Figure 20. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 3.
	Figure 21. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger databases: query 3.
	Figure 22. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 4.
	Figure 23. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger databases: query 4.
	Figure 24. Variation in query time (base-10 log scale) of experiment 1 in larger databases: query 5.
	Figure 25. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 1 in larger databases: query 5.



	5.0  SCALABILITY ON UPDATING WITHOUT SCHEMA CHANGES
	5.1 INTRODUCTION
	5.2 EXPERIMENT 2: COMPARING SCALABILITY ON UPDATING WITHOUT SCHEMA CHANGES
	Figure 26. Workflow of Experiment 2.
	5.2.1 Experimental results
	5.2.1.1 Query time results for queries of varying complexity in databases of different sizes
	Timing Performance

	Table 13. Query performance of experiment 2: query 1. 
	Table 14. Query performance of experiment 2: query 2.
	Table 15. Query performance of experiment 2: query 3.
	Table 16. Query performance of experiment 2: query 4.
	Table 17. Query performance of experiment 2: query 5.
	Table 18. Query performance of experiment 2 in larger databases: query 1.
	Table 19. Query performance of experiment 2 in larger databases: query 2.
	Table 20. Query performance of experiment 2 in larger databases: query 3.
	Table 21. Query performance of experiment 2 in larger databases: query 4.
	Table 22. Query performance of experiment 2 in larger databases: query 5.
	Timing Scalability

	5.2.1.2 Summary
	Figure 27. Variation in query time (base-10 log scale) of experiment 2: query 1. 
	Figure 28. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 1.
	Figure 29.Variation in query time (base-10 log scale) of experiment 2: query 2.
	Figure 30. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 2.
	Figure 31. Variation in query time (base-10 log scale) of experiment 2: query 3.
	Figure 32. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 3.
	Figure 33. Variation in query time (base-10 log scale) of experiment 2: query 4.
	Figure 34. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 4.
	Figure 35. Variation in query time (base-10 log scale) of experiment 2: query 5.
	Figure 36. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2: query 5.
	Figure 37. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 1.
	Figure 38. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger databases: query 1.
	Figure 39.Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 2.
	Figure 40. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger databases: query 2.
	Figure 41. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 3.
	Figure 42. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger databases: query 3.
	Figure 43. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 4.
	Figure 44. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger databases: query 4.
	Figure 45. Variation in query time (base-10 log scale) of experiment 2 in larger databases: query 5.
	Figure 46. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 2 in larger databases: query 5.



	6.0  SCALABILITY ON UPDATING WITH SCHEMA CHANGES
	6.1 INTRODUCTION
	6.2 EXPERIMENT 3: COMPARING SCALABILITY ON UPDATING WITH SCHEMA CHANGES
	Figure 47. Workflow of Experiment 3.
	6.2.1 Experimental Results
	6.2.1.1 Query time results for queries of varying complexity and for different database sizes
	Timing Performance

	Table 23. Query performance of experiment 3: query 1.
	Table 24. Query performance of experiment 3: query 2.
	Table 25. Query performance of experiment 3: query 3.
	Table 26. Query performance of experiment 3: query 4.
	Table 27. Query performance of experiment 3: query 5.
	Table 28. Query performance of experiment 3 in larger databases: query 1.
	Table 29. Query performance of experiment 3 in larger databases: query 2.
	Table 30. Query performance of experiment 3 in larger databases: query 3.
	Table 31. Query performance of experiment 3 in larger databases: query 4.
	Table 32. Query performance of experiment 3 in larger databases: query 5.
	6.2.1.2 Summary
	Figure 48. Variation in query time (base-10 log scale) of experiment 3: query 1.
	Figure 49. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 1.
	Figure 50. Variation in query time (base-10 log scale) of experiment 3: query 2.
	Figure 51. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 2.
	Figure 52. Variation in query time (base-10 log scale) of experiment 3: query 3.
	Figure 53. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 3.
	Figure 54. Variation in query time (base-10 log scale) of experiment 3: query 4.
	Figure 55. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 4.
	Figure 56. Variation in query time (base-10 log scale) of experiment 3: query 5.
	Figure 57. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3: query 5.
	Figure 58. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 1.
	Figure 59. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger databases: query 1.
	Figure 60. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 2.
	Figure 61. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger databases: query 2.
	Figure 62. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 3.
	Figure 63. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger databases: query 3.
	Figure 64. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 4.
	Figure 65. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger databases: query 4.
	Figure 66. Variation in query time (base-10 log scale) of experiment 3 in larger databases: query 5.
	Figure 67. 2-D line graph showing the variation in query time (base-10 log scale) of experiment 3 in larger databases: query 5.



	7.0  CONCLUSIONS AND FUTURE WORK
	7.1 CONTRIBUTIONS
	7.2 CONCLUSIONS
	Table 33. DBMSs with the lowest query times according to different database size and complex queries using standard computing resources.
	Table 34. DBMSs with the lowest query times according to different database size and complex queries using supercomputing resources.
	Figure 68. Variation in query time of experiment 1: query 1.
	Figure 69. Variation in query time of experiment 1: query 2.
	Figure 70. Variation in query time of experiment 1: query 3.
	Figure 71. Variation in query time of experiment 1: query 4.
	Figure 72. Variation in query time of experiment 1: query 5.
	Figure 73. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 1.
	Figure 74. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 2.
	Figure 75. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 3.
	Figure 76. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 4.
	Figure 77. Variation in query time (base-10 log scale) of experiment 1 on larger databases: query 5.
	Figure 78. Variation in query time of experiment 2: query 1.
	Figure 79. Variation in query time of experiment 2: query 2.
	Figure 80. Variation in query time of experiment 2: query 3.
	Figure 81. Variation in query time of experiment 2: query 4.
	Figure 82. Variation in query time of experiment 2: query 5.
	Figure 83. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 1.
	Figure 84. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 2.
	Figure 85. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 3.
	Figure 86. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 4.
	Figure 87. Variation in query time (base-10 log scale) of experiment 2 on larger databases: query 5.
	Figure 88. Variation in query time of experiment 3: query 1.
	Figure 89. Variation in query time of experiment 3: query 2.
	Figure 90. Variation in query time of experiment 3: query 3.
	Figure 91. Variation in query time of experiment 3: query 4.
	Figure 92. Variation in query time of experiment 3: query 5.
	Figure 93. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 1.
	Figure 94. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 2.
	Figure 95. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 3.
	Figure 96. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 4.
	Figure 97. Variation in query time (base-10 log scale) of experiment 3 on larger databases: query 5.
	Table 35. Descriptions of database files, Query outputs and setup database effort using MongoDB in Experiment 1.
	Table 36. Descriptions of database files, Query outputs and setup database effort using Redis in Experiment 1.
	Table 37. Descriptions of database files, Query outputs and setup database effort using Cassandra in Experiment 1.
	Table 38. Descriptions of database files, Query outputs and setup database effort using MySQL in Experiment 1.
	Table 39. Descriptions of database files, Query outputs and setup database effort using MongoDB in Experiment 2.
	Table 40. Descriptions of database files, Query outputs and setup database effort using Redis in Experiment 2.
	Table 41. Descriptions of database files, Query outputs and setup database effort using Cassandra in Experiment 2.
	Table 42. Descriptions of database files, Query outputs and setup database effort using MySQL in Experiment 2.
	Table 43. Descriptions of database files, Query outputs and setup database effort using MongoDB in Experiment 3.
	Table 44. Descriptions of database files, Query outputs and setup database effort using Redis in Experiment 3.
	Table 45. Descriptions of database files, Query outputs and setup database effort using Cassandra in Experiment 3.
	Table 46. Descriptions of database files, Query outputs and setup database effort using MySQL in Experiment 3.

	7.3 LIMITATIONS
	7.4 FUTURE RESEARCH DIRECTIONS
	7.5 DISCUSSION
	Table 47. Attributes of data models and NoSQL technologies used in this project.
	Table 48. Benefits and limitations using NoSQL Databases.


	APPENDIX: DATA FEATURES
	Table 47. Attributes of data models and NoSQL technologies used in this project.
	Table 48. Benefits and limitations using NoSQL Databases.
	Figure 98. Data structure of Document store for MongoDB.
	Figure 99. Data structure of Key-Value store for Redis.
	Figure 100. Data structure of Column store for Cassandra.
	Figure 101. Data structure of Table store for MySQL

	BIBLIOGRAPHY

