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A SELF-ORGANIZING WIRELESS SENSOR NETWORK AND

DISTRIBUTED COMPUTING ENGINE FOR COMMODITY AND

FUTURE PALMTOP COMPUTERS

Haifeng Xu, PhD

University of Pittsburgh, 2015

The embedded class processors found in commodity palmtop computers continue to be-

come increasingly capable while retaining an energy-efficient footprint. Palmtop computers

themselves, including smartphones and tablets, provide a small form factor system integrat-

ing wireless communication and non-volatile storage with these energy-efficient processors.

Also, various wireless connectivity functions on mobile devices provide new opportunities in

designing more flexible, smarter wireless sensor networks (WSNs), and utilizing the com-

putation power in a way we could never imagine before. In this dissertation, I present a

WSN concept for current and future generation tablet devices. My contributions include

developments at the system level, architecture level, and collaborative design between dif-

ferent layers of the system. At the system level, I developed Ocelot, a grid-like computing

environment for palmtop computers in place of traditional workstation or server class ma-

chines to compute highly parallel light to medium-weight tasks in an energy efficient manner.

Additionally, I developed Lynx, a self-organizing wireless sensor network, which is a further

step taken in exploiting the potential of palmtop computers. At the architecture level, to

increase the storage capacity of future palmtop computers, I explore the use of a new storage

class magnetic memory, Racetrack Memory (RM), throughout the memory hierarchy. Thus,

I developed FusedCache, a naturally inclusive, dual-level private cache design for RM that

provides fast uniform access at one level, and non-uniform access at the next, which allows

RM to be effective as close to the processor as an L1 cache. For higher levels of the memory
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hierarchy such as the last level cache, I propose a Multilane Racetrack Cache (MRC), an RM

last level cache design utilizing lightweight compression combined with independent shifting.

MRCs allow cache lines mapped to the same Racetrack structure to be accessed in parallel

when compressed, mitigating potential shifting stalls in an RM cache. Finally, leveraging

the lightweight compression from MRC and the need for efficient communication in Lynx, I

present a cross-level design combining memory-level lightweight compression with network-

level packet transfer, together with a technique called Source-Aware Layout Reorganization

(SALR) to increase the compressibility of sensor data.
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1.0 INTRODUCTION

1.1 MOTIVATIONS

Over the last decade, there has been a dramatic shift in the computing market away from

stationary computers to portable palmtop computers. Fig. 1 shows the global market share

of personal computing devices by operating system from 1975 to 2012 [1]. Since the re-

lease of the first generation of iPhone in 2007 and Android operating system in 2008, the

aggregate market share of these two major palmtop platforms has dramatically climbed,

reaching 60% by the end of 2012, while the market share of desktop and laptop computers

has dropped below 40%. One thing that remains constant is the continuous availability

of computation resources that can be leveraged to solve problems. The popular distributed

computing platform, BOINC [2], has gathered enormous processing from personal computers

to help researchers in multiple areas, including astrophysics, physics, biology, and climatol-

ogy. Utilizing the increasingly large processing power of palmtop computers to do lightweight

distributed computing tasks is a promising, and even necessary approach. However, such

a computing system on mobile computers has significantly different trade-offs, particularly

related to energy/battery life.

Palmtop computers usually have smaller form factors and less processing power compared

to traditional computing devices. However, they also consume less power thanks to energy-

optimized components such as reduced instruction set computing (RISC) based low power

embedded processors [3], Lower Power DDR (LPRRD) RAM [4], non-spinning eMMC (flash)

storage, and Bluetooth Low-Energy [5], etc. Researchers have found in [6] that each core

on an Atom chip (palmtop class) could handle web search queries at half the rate of a Xeon

chip (workstation/server class) core but required just 20% of the energy per request. A

1
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Figure 1: Global Market Share of Personal Computing Platforms by Operating System from

1975 to 2012.

better per-task energy efficiency is the main goal of this work, to be achieved by distributed

computing on energy-efficient palmtop computing devices. However, the central server(s)

providing services such as database storage, web query, and task scheduling, becomes the

largest power component of the otherwise lightweight platform. Considerable benefit would

be gained by conducting the distributed computing in a pure peer-to-peer (P2P) fashion

without a server, which requires each computing node to be self-organizable in terms of data

storage, data communication, and task management.

In addition to the processing capability of the palmtop devices, on-board storage is

another limiter in processing and storing data. With the development of micro-electro-

mechanical (MEMS) sensor technology, more on-board and external sensors can be integrated

with the palmtop computers as sensor nodes to collect data at a finer granularity. However,

issues such as higher power dissipation with CMOS technology scaling limit the growth of

storage capacity of future palmtop computers. Emerging non-volatile memories (NVMs),
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such as phase change memory (PCM), spin-transfer torque MRAM (STT-MRAM), and

Racetrack Memory (RM), are promising in addressing these issues with their near-zero static

power and much higher density than traditional static random-access memory (SRAM).

Among those NVMs, RM has the highest density thanks to its unique physical structure.

However, drawbacks such as high dynamic write power and potential domain shift operations

upon each access make it less competitive both performance- and energy-wise. Lightweight

hardware compression is one method shown to be effective in mitigating these drawbacks.

Aside from data storage, data transfer is another important topic in palmtop computing.

Software compression is effective in reducing data transfer time but requires nonnegligible

compression and decompression overhead. A lightweight mechanism to increase the effi-

ciency (latency and energy) is needed to address the data transfer problem. Since hardware

algorithms leverage low dynamic ranges existing in the consecutive data blocks, it may be

possible to better organize the data structures to increase the compressibility, thus further

reducing the transfer time.

1.2 PROBLEM STATEMENT

It is desirable to leverage the capabilities and ubiquity of commodity palmtop computing to

build wireless sensor networks (WSNs) with on-board data processing capabilities. Fusion

of a WSN node and a distributed computing client provides collaborative data collection

and processing capability. Fusion of a distributed computing client and a server relaxes the

restriction of a dedicated server for better energy efficiency and fits well in the context of

P2P WSN. However, to accomplish these fusions effectively requires advancements at the

system, memory architecture, and communication levels, as pressure on data storage as well

as transmission becomes larger. The goal of this work is to create a WSN with decentralized

distributed computing capability using palmtop devices, and explore the potential advance-

ments in multiple levels of the palmtop system with emerging memory technologies and

compression.
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1.3 DISSERTATION OVERVIEW
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Figure 2: Overview of this dissertation work.

Fig. 2 illustrates different components of this dissertation, and relates these components

to system components in existing and future palmtop computers. This work incorporates

application level WSN platform implementations including Ocelot and Lynx for utilizing

the processing power and rich connectivity of existing palmtop computers, architecture level

cache designs including FusedCache and MRC for increased storage density with emerg-

ing Racetrack Memory, and cross-level memory network co-design for accelerated wireless

transfers with seamless packetization of compressed memory pages. In the remainder of this

section, I describe in detail how this work tackles the aforementioned challenges.

1.3.1 Application Level: Distributed Computing in a Wireless Sensor Network

First, the initial steps for developing a distributed mobile computing platform named Ocelot1

are presented. Ocelot can be used in scenarios where highly parallel, lightweight computa-

tional tasks are required, saving the energy resources that would normally be required by

1An ocelot is a small wild cat related to leopards. The name was selected for this system because the
relationship between an ocelot and a leopard is similar to that of an embedded processor in a tablet with
workstation-class processors.
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workstation or server machines. The Ocelot system working in such a scenario is shown in

Fig. 3. Additionally, Ocelot can be used in an application specific WSN scenario in which

it is difficult/impossible or undesirable to deploy a dedicated computational infrastructure.

Conceptually, Ocelot is modeled after the Berkeley Open Infrastructure for Network Com-

puting (BOINC) [2], an open source middle-ware system for volunteer and grid computing

on PCs and servers. However, BOINC is complex, requiring a considerable amount of com-

putational effort just to initiate and manage connections with the BOINC servers. On a

workstation, this overhead is minimal, but on a mobile platform, this overhead becomes

considerable. In contrast, Ocelot is a lightweight mechanism to deploy computation tasks on

smartphones and tablets using the Android and iOS platforms. Though mobile devices come

with embedded processing capabilities, their ubiquity can overcome this drawback through

their flexibility in development and for lightweight tasks they can often provide much better

power-efficiency.

Database
Server

Scheduling/
Web/Push 

Server

Data

Results

Tasks

Devices

Users
…

Maintenance

Manage tasks

Manage devices

Handle 
requests/feedbacks

…

Wireless sensor 
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Data

Android
Device

3
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Devices

1

Android
Device

1
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2
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3
…
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Figure 3: Overview of the Ocelot system.
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Of course, security features built into a system provides a challenge to task distribution

over an open network. Smartphone and tablet platforms such as Android and iOS restrict

the operating system features required to implement a grid style computing platform (such

as receiving external data and code to process for a workunit). These security mechanisms

are important given the nearly global access capability to avoid an attacker from using these

devices to spy on their users or to steal sensitive information. This work principally describes

the mechanism and performance of such a system with only a simple method to handle secure

operations (e.g., registering devices and physical security).

In particular, an Ocelot dashboard is used for interactive project management to evaluate

usage workloads and to monitor activity. Using a sustainable building-based study, use

cases for managing sensor data and computing life-cycle assessment algorithms are shown.

Palmtop devices with Ocelot are compared to dedicated workstations to demonstrate the

energy benefits of my approach. On average, computations on a palmtop device require 67%

less energy than on a workstation.

I also introduce Lynx 2, a self-organizing wireless sensor network research environment

based on commodity hardware/software systems. Given the proliferation of tablets, smart-

phones, and music players, there is a continually expanding platform of devices that can be

used to form a WSN. The typical smart-phone or tablet contains multiple communication

mechanisms such as Global System for Mobile communication (GSM) [7], Code Division

Multiple Access (CDMA) [8], Near Field Communication (NFC) [9], Bluetooth [10] and

WiFi [11]. Further, these devices often provide a significant number of on-board sensors

including light sensing, temperature sensors, etc., as well as the capability to connect to

various types of external sensors. These devices are battery operated, making them highly

portable and mobile.

Fig. 4 provides an overview of how the Lynx system can construct a WSN from com-

modity tablet and palmtop computing platforms. A dedicated WSN node (fixed and pre-

configured) consists of the palmtop computer running the Lynx client with one or more

sensors monitoring certain physical or environmental conditions in an area. Sensing data

can be stored locally and/or passed through wired (e.g. USB) or wireless connections (e.g.

2The name Lynx was also selected because of its similarities to ocelots and leopards.
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Ad-hoc node

Dedicated WSN node

Dashboard and server complex

Figure 4: A Lynx wireless sensor network illustration.

WiFi or Bluetooth) on the Lynx node. Transient mobile devices (such as a smart-phone

sitting in a pocket) can run the Lynx software and become an ad-hoc Lynx node. Though

not required to gather sensor data, ad hoc nodes can serve as a bridge and help to relay

data within their connection coverage and capacity. Ocelot and Lynx are then seamlessly

integrated to provide the capability of distributed computing over self-organizing wireless

sensor networks in a fully decentralized fashion.

1.3.2 Architecture Level: Cache Designs with Emerging Racetrack Memory

With the development of MEMS sensor technology, more on-board and external sensors can

be integrated with palmtop computers as sensor hubs/nodes to collect data at a much finer

granularity. Therefore, future palmtop computers may experience storage shortage at the

current technology scaling speed. Emerging storage technologies must be leveraged to relax

the storage restriction for future WSN applications. A modern consumer-grade hard disk
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drive (HDD) can accommodate terabytes of data with a single magnetic read/write head.

The mechanical movement latency, including seek and rotation, measures in milliseconds,

making HDDs at the very bottom of the memory hierarchy of computer systems. Spintronic

domain-wall “Racetrack” memory (RM), recently proposed and demonstrated by IBM [12],

is a promising candidate to overcome density limitations while retaining the static energy

benefits of STT-MRAM. RM integrates several magnetic “domains” into one nanowire or

track. In other words, each track can store multiple bits of non-volatile data with one or

more discrete access points similar to a magnetic tunnel junction (MTJ) for reads/writes to

the aligned domain as shown in Fig. 5. By applying spin-polarized current pulses, data bits

can be shifted along the track to be aligned with these access points. In this fashion, RM

resembles traditional hard disks with disk rotations aligning magnetic data with read/write

heads. However, unlike mechanical disks, shifting speed is typically similar or faster to data

access, making RM attractive for its density, speed, and non-volatility at higher memory

hierarchies such as main memory and on-chip caches. RM demonstrations of memory array

structures [13] and content addressable memories (CAMs) [14] show fabrication feasibility,

as well as great potential for density, performance, and power consumption, suggesting that

we have reached the appropriate time for circuit- and architecture-level design exploration.

Bit Line

Word Line

Source Line

Barrier Layer
Reference Layer

Free Layer

Figure 5: Planar Racetrack memory.

By leveraging shift-based writing [15], racetrack writes become competitive with SRAM,

eliminating a drawback of STT-MRAM for caches near the core (e.g. L1), due to their

relatively large incidence of unfiltered writes. However, for dedicated memory structures,

such as private L1 caches where timing predictability is crucial to maintain pipeline integrity,

non-uniform access behavior is problematic. Further, I note that accesses closer to the core

should minimize access latency while father accesses can tolerate longer latency.
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Therefore, I propose FusedCache, an RM cache that combines two logical levels of the

cache hierarchy into a single physical storage array. Area-wise, an STT-MRAM cell can be

considered equivalent to RM of length equal to one. By extending the length of the nanowire

to hold more domains, the density of the storage is increased but the physical size of the

array is not, as the CMOS access transistor still dominates a nanowire with ten or more

domains. Moreover, the domain aligned to the access point has a deterministic access time

(i.e., no shifting required). Thus, by replacing a STT-MRAM array with N-length RMs and

enforcing the property that the domains aligned with the access point are the faster level

cache (L1), the additional N-1 domains are treated as a next-level cache (L2) that tolerates

longer non-uniform access latency due to shifting. Thus, I have fused together two levels of

the memory hierarchy.

FusedCache has unique properties that make it valuable for use in the memory hierarchy

as described. Beyond an obvious advantage that the cache retains a low-latency for L1

while removing the need for a dedicated separate L2 array thus saving area and power, the

inclusion and eviction properties become naturally maintained in the structure. Consider a

miss in L1. By shifting to access the data at an L2 location, the new data location becomes

aligned with the access point and has automatically been promoted to L1, while the data

formerly in L1 is automatically evicted to L2. Thus, the cache is naturally inclusive. Further,

the tag array for both levels can be combined. In this L1/L2 case, the L2 tags are stored,

but the L1 tags can be accessed by combining the L2 tag and the Racetrack shift position.

To implement set-associativity in FusedCache, I present two designs. In the first design, the

ways of each L1 set are matched to correspond to the same ways of the L2 set to which they

belong through background swap operations. In the second design, I demonstrate a hybrid

associativity organization where the L2 may have a larger number of ways than the L1.

Fig. 6 shows a 3D Racetrack schematic with a single read/write port. Additional bits

add only to the height of the vertical structure. Thus, a much larger storage density can be

achieved over a planar structure (Figure 5). Spin-polarized current pulses are applied at one

end of the nanowire to shift data from destination domains to the one at the access port.

Including more domains on a single nanowire increases density, but without additional access

ports, inevitably resulting in longer average shift distance and correspondingly higher shift
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latency and energy. Prior proposals for RM in caches [16, 17] focus on leveraging planar,

multi-port-on-one-track (MP1T) Racetracks. However, planar structures considerably limit

the density and static power advantages of RM over STT-MRAM. In contrast, a one-port-

on-one-track (1P1T) orientation can leverage the 3D structure to dramatically increase the

density per area of RM while reducing design-time and run-time complexities at the cost

of a larger shifting overhead. In terms of energy, like most non-volatile memories (NVMs)

such as PCM and STT-MRAM, RM is dominated by dynamic power with an asymmetric

energy of writes being larger than reads. Unlike other NVMs, shifting energy tends to be a

significant, even dominant, component of the dynamic power.

Word Line
Barrier Layer
Reference Layer

Free Layer

Bit Line

Source Line

Figure 6: A schematic of Racetrack with three-dimensional structure.

To address the aforementioned issues, I propose multilane Racetrack caches (MRC), a

simple, energy efficient, RM-based last level cache (LLC) design using in-place compression

and independent shifting to reduce data access and shifting overheads. In MRC, lightweight

compression is used to reduce the cache line size in order to reduce the number of bits stored

in the cache block. Further, by allowing independent shifting at a finer granularity than

a line (e.g., byte-level), fewer tracks may require shifting to access compressed cache lines.

Finally, using skewed alignment or adjusting the starting location of compressed lines within

their cache blocks, contention for port resources may be alleviated by treating independent
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shifting as multiple Racetrack lanes that allow concurrent data access. Energy consumed by

reads, writes, and shifts can be reduced through all these methods and the reduced contention

can also lead to performance benefits. While MRC can be applied effectively to both MP1T

and 1P1T structures, compared to an isocapacity baseline 1P1T RM cache, MRC achieves

5% performance gain and 19% energy reduction.

1.3.3 Cross-Level: A Memory Network Co-design with Compression

Compression turns out to be an effective and sometimes necessary approach to improve the

usability and efficiency of both high level WSN applications and low level cache designs. I

demonstrate in Lynx that software-based compression, although it requires extra time to

compress and decompress, is able to significantly reduce data transfer time over the net-

work. I also demonstrate that hardware-based lightweight compression is effective in saving

dynamic write power and shifting energy of emerging Racetrack Memory, with minimal

latency and energy overhead.

To leverage lightweight compression for reducing data communication latency, I propose

a memory network co-design approach that compresses memory pages using low-latency

hardware compression, and uses this compressed form to packetize payloads for communi-

cation over the wireless network links. While traditional software-based compression can

outperform lightweight compression in terms of compression ratio, it requires a considerable

runtime overhead to compress the transmitted data. And although traditional lightweight

compression tends to work poorly on the traditional storage structure of sensor data across

multiple sensors, I propose to better utilize the low dynamic range existing in most data tied

to a single sensor. Thus, data storage layout is reorganized according to sensor source to

improve the data compressibility, especially for lightweight compression but also benefiting

traditional software compression approaches.

This approach is supported by the observation that sensor data from the same source

tend to have a low dynamic range. Fig. 7 shows the five number summary3 of NOAA 1981-

3A five number summary consists of the minimum, first quartile, median, third quartile, and maximum
of the dataset.
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Figure 7: Five number summary of NOAA 1981-2010 wind speed normals of select eight

U.S. stations: (a) hourly wind speed; (b) wind speed difference (absolute value) between

consecutive hours.

2010 hourly wind speed normals4 for eight arbitrarily selected U.S. stations [18]. The wind

speeds at each station tend to vary within a reasonably small range, especially for consecutive

timestamps. Similar patterns are observed in other types of data as well, including utility

consumption, climatic, financial, and potentially many other datasets. This consistency

provides an opportunity to optimize how this data is handled within WSNs with the goal of

improving their performance and efficiency.

1.4 CONTRIBUTIONS

The adoption of software and hardware compression techniques provides an opportunity to

make contributions to the areas of both high level WSN systems and low level cache/memory

architecture.

4A ”normal” of a particular variable is defined as the 30-year average.
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To create a WSN system with commodity mobile hardware, I make the fol-

lowing contributions:

• Ocelot: I provide an energy-efficient distributed computing platform with commodity

palmtop computers. Ocelot is the first attempt to utilize the growing processing power

of mobile devices, and is a lightweight implementation of an energy-efficient distributed

system, comprising clients, web/database servers, and assistive dashboards.

• Lynx: I simplify the creation of a WSN by leveraging existing infrastructure. Using

Lynx, it is possible to quickly construct a sensor network from existing devices, many

of which are already deployed by users for their more traditional purpose (e.g., smart-

phone, tablet function). Lynx can provide access to sensor data from on-board sensors

and external sensors.

• Integration: I provide a smart, fully-distributed network for mobile computing. Lynx

is designed as a platform for Ocelot. Integration of these two platforms creates a fully

distributed computing engine without any central servers or infrastructure, as all the

network communication utilizes peer-to-peer (P2P) connections. Moreover, by removing

dedicated central servers in the Ocelot system, the overall energy consumption is further

reduced.

To advance the storage capacity of palmtop systems, I make the following

architecture contributions:

• FusedCache: I demonstrate how a pseudo-sequential access structure (e.g., a Race-

track magnetic nanowire) can naturally integrate multiple memory storage levels in a

single, highly dense storage array using the idea of storage hierarchy driven shifting,

and describe a particular instantiation of storage hierarchy driven caching for various

set-associativity parameters ranging from direct-mapped to hybrid set-associativity with

different numbers of ways at each level, and support the value of the fused L1/L2 cache

through a detailed power and energy evaluation, including sensitivity studies of differ-

ent cache sizes and associativities, while also considering both iso-capacity and iso-area

SRAM cache replacements.
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• MRC: I adopt lightweight in-place compression to reduce the number of bits stored,

thus saving read and write energy of RM caches. Based on compression, I propose

independent shifting to control Racetrack movements at a finer granularity than the

cache line, to further save shift energy of compressed data in RM caches. Based on

independent shifting, I propose skewed alignment to accelerate accesses to compressed

cache lines in RM caches with independent shifting.

In the memory network co-design work, I make the following contributions:

• I propose a WSN system design that directly uses hardware/lightweight compression to

compress memory pages in-place in order to natively compress data packets and avoid

the need for software compression for improved efficiency in wireless communication.

• I propose the Source-Aware Layout Reorganization (SALR) approach to significantly in-

crease compression ratios of sensor data for hardware/lightweight-based compression ap-

proaches, and integrate it with data communication using in-place hardware/lightweight

compression and evaluate it using various types of data comparing the combined tech-

nique to using on-demand software-based compression for communication.

1.5 DISSERTATION STRUCTURE

The rest of this dissertation is organized as follows. Chapter 2 provides a comprehensive

list of prior work in related areas such as distributed computing, wireless sensor networks,

data compression in both memory and networks, as well as emerging Racetrack Memory.

Chapter 3 describes the features and implementation details of the Ocelot project, and a

dynamic life cycle assessment case study to evaluate its feasibility and effectiveness. The

Lynx project is discussed in Chapter 4, and evaluated using several approaches, including

basic data transfer, scalability tests, tests as a hardware emulation platform by swapping the

routing algorithm modules, and integration tests with Ocelot. Chapter 5 discusses Fused-

Cache, a lower level cache design to ensure uniform accesses to the latency-critical L1 cache

given RM’s non-uniform access pattern. In Chapter 6, I explain how I extend the bene-
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fits of lightweight compression from saving energy to improving performance with emerging

Racetrack Memory, which is a promising candidate as a high density memory technology on

future palmtop computer. I explain in Chapter 7 a memory network co-design for improving

the efficiency of wireless transfer with lightweight compression, as well as a data layout re-

organization technique specially designed to improve the compressibility of sensor data from

multiple sources. Finally, I conclude in Chapter 8.
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2.0 PRIOR ART

2.1 BOINC AND DISTRIBUTED COMPUTING

The Berkeley Open Infrastructure for Network Computing (BOINC) is a middle-ware sys-

tem connecting central servers and numerous distributed client computers for public-resource

computing and storage. It was originally developed for the SETI@home [19] project before

it became useful as a platform for other distributed applications in areas as diverse as mathe-

matics, medicine, molecular biology, climatology, and astrophysics. BOINC makes it possible

to accumulate the enormous processing power of the public volunteered personal comput-

ers (PCs) all around the world. For example, the pioneer project, SETI@home, performs

digital signal processing of radio telescope data from the Arecibo radio observatory to help

the Search for Extraterrestrial Intelligence (SETI). The Climateprediction.net [20] project

tries to quantify and reduce the uncertainties in long-term climate prediction, based on large

numbers of computer simulations with varying forcing scenarios and internal model param-

eters. PC owners participate in one or more of the BOINC projects as resource volunteers,

and they can specify how their resources are allocated among these projects.

BOINC is designed to support applications that have either large computation require-

ments or storage requirements, or both. The main equirement of the application is that

it be divisible into a large number (thousands or millions) of jobs that can be done inde-

pendently. Thus, it is essentially a simple form of distributed computing platform without

communications among the individual computers.

Ocelot uses principles similar to BOINC, except that it focuses on moving lightweight

tasks from less power efficient workstations onto ubiquitous palmtop computers. The number

of mobile phones per capita has reached nearly one per inhabitant worldwide [21], and
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smartphone penetration has reached over 50% in developed regions like EU5 [22] and U.S [23].

This resource can be utilized to reduce our need for workstation or server computers and

reduce energy per computation.

2.2 WIRELESS SENSOR NETWORKS AND MOBILE CONNECTIVITY

A WSN consists of spatially distributed nodes with capabilities such as sensing, wireless

communication, or even lightweight data processing. Usage scenarios range from real-time

tracking, to monitoring of environmental conditions, to ubiquitous computing environments,

to monitoring of the health of structures or equipment. Nodes within the network can often

self-organize, cooperatively passing their data through predefined protocols and providing

paths to a center collector/storage. Often they also provide a distributed computational

resource and local storage for sensor information. As such, WSNs have become an area of

significant interest and research activity including a wide variety of academic and commercial

research groups, product lines, etc.

The purpose of traditional WSN is to collect various kinds of sensor data, including tem-

perature, pressure, and sound data at different locations (e.g., different labs in an engineering

school building) through the interconnected network. Additionally, the processing power of

modern mobile electronics has become powerful enough to take on sizable tasks. With large

numbers of these devices connected, computationally complex algorithms such as signal and

image processing tasks on sensor data can be efficiently completed by partitioning tasks onto

independent mobile processors assigned from the mobile device pool.

A particular area of recent interest for WSNs is the tracking of environmental information

and resource utilization by sensing local temperature or light levels or sensing energy usage.

This interest has been accelerated by the increasing availability of palmtop computing, in

particular, smartphone and tablet devices that are highly connected using various wireless

protocols such as WiFi, Bluetooth, NFC, and optical communications such as infrared (IR).

With the rapid development of System-on-Chip (SoC) technologies, these embedded systems

continue to become more powerful computational engines while still remaining energy effi-
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cient. As a result, in-network data processing and low-to-medium effort computation has

become possible in a WSN created with commodity devices as nodes. Just as in WSNs, per-

formance is tempered with energy resources (e.g., battery life) as metrics to be considered.

However, by deploying work wisely in such a system it may be possible to avoid the need to

utilize heavy iron servers in many environments to process the sampled data in the system.

Additionally, the global availability of these devices may create a network of computational

resources that can be used much like grid computing has done in the past with idle personal

computers or workstations.

2.2.1 Physical Layer Communication

With the increasing popularity of mobile electronic devices including smartphones and tablet

computers, connectivity technologies and computation capability are rapidly evolving. Com-

modity wireless protocols such as WiFi and Bluetooth are becoming more competitive with

protocols typically designed to work with WSNs such as Zigbee [24]. For example, the de-

velopment of WiFi 802.11n, with its multiple-input and multiple-output (MIMO) antennas,

has led to support for new protocols such as WiFi-Direct [25] in tablets and smartphones.

WiFi-Direct allows a device to find nearby WiFi-Direct capable devices and form a group to

communicate over a peer-to-peer (P2P) link without wireless access points (base stations)

in the infrastructure mode. This allows real world implementations of ad-hoc routing to be

feasible and robust with commodity devices [26]. Bluetooth Low Energy (BLE) also shows

good capability for short range data transmission. It represents a trade-off between energy

consumption, latency, piconet size, and throughput [27].

2.2.2 System-level Management and Optimization

Most hardware oriented studies in the WSN field focus on infrastructure [28, 29] or routing

improvements [30, 31, 32, 33] in an attempt to improve network coverage area [34, 35] or

reduce energy consumption for communication [36, 30, 37, 38, 39, 40, 41]. There is also

a significant amount of theoretical work on improving routing algorithms and developing

more efficient low-level communication protocols. Further, some efforts explore methods for
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distributing data across the network to maximize data availability when link connectivity is

transient and unreliable, while minimizing other metrics such as system storage and energy

overheads. The goal of such research include maximizing network lifespan under a fixed

aggregate system energy storage capacity, maximizing system robustness, and to determine

best practices for network self-organization and configuration [42, 43, 39, 44, 45].

2.2.3 Self-Organizing Network

The Self-Organizing Network (SON) was originally proposed for the Long Term Evolution

(LTE) mobile technology [46]. SON configures and optimizes the increasingly large and

complex mobile networks automatically, so that manual interactions can be reduced and the

efficiency of the network can be increased. A SON generally features functionalities such

as self-configuration, self-optimization, and self-healing [47]. Adding or reducing network

nodes should be configured and managed with the least possible human intervention, and

communication workloads should also be dynamically balanced for better efficiency. When

failure happens in any of the network nodes, the network structure should be reconfigured

to reduce negative impacts.

The initial focus of SON development was to reduce operating costs in mobile radio

networks [47], but the concept is now increasingly recognized as a method for any network

to intelligently organize and manage its nodes at scale. The challenges of organizing a

peer-to-peer network on small wireless sensors such as limited power, limited radio range,

and potentially high geographical volatility, and all point to an adaptive and efficient self-

organizing solution. For example, implementing the Automatic Neighbor Relation (ANR)

detection feature in a SON helps to distributively establish the network map of a WSN.

Nodes within the radio range of each other can communicate directly; nodes out of range are

still able to communicate with the help of one or more “bridge” nodes, which sit in between.
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2.3 ARCHITECTING WITH RACETRACK MEMORY

As a descendant of STT-MRAM, RM comprises an array of magnetic nanowires arranged

vertically or horizontally on a silicon chip. A nanowire consists of many magnetic domains

separated by domain walls (DWs). Each domain has its own magnetization direction. Sim-

ilar to STT-MRAM, binary values can be represented by the magnetization direction of

each domain. For a horizontally-arranged planar strip (Figure 5), several domains share one

access point for read and write operations [48]. The DW motion is controlled by applying

a short current pulse on the head or tail of the strip in order to align different domains

with the access point. Since the storage elements and access devices in RM do not have a

one-to-one correspondence, a random access requires two steps to complete: Step 1–shift the

target magnetic domain and align it to an access transistor; Step 2–apply an appropriate

voltage/current to read or write the target bit. Intrinsically, the operations in step 2 are

the same as that used for accessing STT-MRAM. The DW motion, however, requires extra

domains at both sides of a magnetic nanowire to prevent data loss.

RM, the apparent third-generation magnetic technology, is being widely investigated.

Significant progress has been made in device physics and process development of Racetrack

memory [49, 50, 51]: For example, demonstrations in single devices and array structures

were recently presented by IBM [13], NEC [52, 53], and CNRS [54], giving evidence of its

process feasibility and great potential. Recent device-level research focuses on improving

shifting speed and the introduction of efficient pinning mechanisms [55, 56]. For example,

the calibration of torques adjusts parameters of spin-orbit torques to improve the efficiency

and controllability of DW shifting [57, 58, 59, 60]. Various forms of storage applications

based on RM have been demonstrated, such as array integration [13], lower level cache [61],

content addressable memory (CAM) design and fabrication [14, 62], reconfigurable comput-

ing memory [63], and a shift register realized by perpendicular magnetic anisotropy (PMA)

technology [48, 64]. Iyengar et al. [65] analyzed the influence of process variation and Joule

heating on DW dynamic performance for embedded memory. These efforts demonstrate fab-

rication feasibility; show great potential for density, performance, and power consumption;

and suggest the appropriate time for circuit- and architecture-level design exploration.
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The extreme high density and power efficiency of RM inspires a new approach for building

on-chip memory components across a diverse spectrum of computational platforms. On-

chip memory components, e.g., caches, network buffers and scratchpads, usually consume

a large area/power budget of the whole computing unit [66, 67, 68]. Replacing traditional

memory technologies with RM can save considerable area and power while promising further

scalability for energy-efficient computing [61, 69]. However, on-chip memory components

built with RM may sacrifice performance due to a prolonged access delay [70]. For example,

minimizing the number of access ports per nanowire can maximize the density and minimize

the leakage power; unfortunately, since each RM cell has to be shifted to an access port prior

to a read/write, fewer access ports means longer shift distances, resulting in longer access

latency.

Most existing research focuses on architectural optimizations to address the negative

impact of shifting on system performance with planar, MP1T Racetracks. It is demon-

strated that the access latency of RM caches can be impacted by shifting policies and their

relationship to access locality [61]. In the CPU-domain, RM was proposed for on-chip

caches [61, 69, 15, 71, 72]. Venkatesan et al. [16] explore different head selection and update

policies with both read/write ports and read-only ports in an RM cache design. Sun et

al. [17] swap heavily accessed cache blocks closer to the read/write ports, which distribute

across the tracks at a fixed gap. In the GPU-domain, Mao at el. [70] reschedule GPU warp

issue order based on the distances between the current data location and the access ports to

reduce shifting. A Racetrack-based cache hierarchy was also considered for GPUs, in which

different cache layers employ different RM cell designs [15], and cell pre-shifting and data

migration were used to reduce the shift overhead [73]. Adding more access ports per track

(MP1T) can reduce average shift distance but also compromises the potential storage den-

sity, which is a significant advantage and motivation of using RM compared to the similar

STT-MRAM.
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2.4 EFFICIENT DATA TRANSFER IN WSN

2.4.1 Data Compression

The popularity and demand for lightweight, battery powered computing continues to in-

crease. This is particularly true in the context of portable, palmtop computing devices,

which continue to see an ever-increasing demand for digital content from streaming music

and video to various types of data accessed from the cloud. This demand continues to push

the storage capacity and network bandwidth of these devices. As such, integrated data com-

pression has become an enabling factor of the success of this class of devices. Moreover,

these advancements can be applied in the context of WSNs.

Mathematically, compression and decompression are processes of data encoding and de-

coding, respectively. These coding specifications can be categorized as lossy or lossless,

depending on whether information is lost or not during the process. General-purpose, loss-

less compression algorithms such as GZIP [74] can be applied on any file. Lossy coding

specifications usually target special-purpose data in which a certain degree of information

loss is tolerable, such as JPEG standards [75] for image compression, MPEG2 layer III (mp3)

for audio compression [76], and the H.264 standard [77] for video compression. The level

of compression overhead ranges in these examples from moderate to extreme. Software-

based compression approaches usually achieve good compression ratios but are often domain

specific and their overhead may not be tolerable in a mobile application.

In contrast, several low-overhead approaches have been recently proposed to take advan-

tage of partial compression with the benefit of a significantly reduced overhead. Lightweight

compression takes advantage of data containing a high frequency of certain simple patterns,

which occurs in many applications [78, 79]. Pekhimenko et al. also observed that among sub-

blocks within a cache line or a memory page, values have low dynamic ranges. Thus, they

proposed base-delta-immediate (BDI) compression, which leverages this low dynamic range

to compress data [80]. The BDI approach is described in more detail in Section 7.1.1. The

same group developed an approach called linear compressed pages (LCP), which uses BDI

compression to increase capacity in the memory system [81]. BDI/LCP has the potential for
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performance or energy efficiency improvement as fewer accesses are redirected to the next

level of the memory hierarchy, which avoids cases of much higher access latency (e.g., cache

misses, page faults, etc.). However, block concatenation, addressing, and realignment caused

by value changes can lead to considerable memory management overheads in techniques like

LCP. Instead of saving space to reduce page fault rate, Memzip [82] and SOCO [83] compress

memory pages in place using lightweight compression algorithms. These approaches attempt

to address other memory system features such as memory bus contention, improved memory

reliability, and reduced energy consumption from memory accesses.

2.4.2 Compression in WSN

WSN nodes usually have smaller form factors and less processing power compared to tra-

ditional computing devices. However, with the development of embedded processor tech-

nologies and wireless connectivities, the Ocelot platform makes it feasible to deploy mobile

devices as nodes or sensor hubs in WSNs [84], given their rich on-board P2P connectivities

such as Bluetooth and WiFi-Direct. Due to the limited bandwidth of wireless P2P con-

nections, it is desirable to compress sensor data before sending it to the network, and due

to the limited processing power of WSN nodes, low-complexity compression algorithms are

generally used.

A significant element of the effort in minimizing data transfer in WSNs considers both

data availability when nodes and links can be unreliable as well as minimization of data

redundancy in the system. One approach is “distributed” compression [85], which uses

complicated coset codes to explore spatial correlation in dense networks, where Hamming

distances of data from different sources tend to be small. In-network compression, or data

aggregation in multi-hop routing scenarios, such as [86], uses a technique derived from signal

processing, named compressed sensing, to exploit the sparsity of sensory data for compres-

sion, and tries to reduce unnecessary traffic near the sink node1. Based on MapReduce [87],

a prevailing programming model in the distributed computing field, WSN researchers imple-

ment a practical service platform preprocessing sensor data by partitioning and interleaving

data sets, as transfer costs grow significantly when the network scale grows [88].

1A sink node has only incoming traffic, and is responsible for data collection, aggregation, and storage.
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In my work, instead of focusing on WSN optimization based on the organization of

the network and data duplication in the network to ensure availability, I collaboratively

improve the system by leveraging properties of the sensor data itself. As has been observed

by [89], data recorded from a single physical phenomenon tends to demonstrate a temporal

correlation between each consecutive observation of a sensor node. In Section 7.1 I describe

my proposal to leverage this to effectively utilize lightweight compression in the WSN.
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3.0 OCELOT: A WIRELESS SENSOR NETWORK AND COMPUTING

ENGINE WITH COMMODITY PALMTOP COMPUTERS

3.1 IMPLEMENTATION OVERVIEW

By developing Ocelot, I extend the idea of BOINC’s distributed computing onto commodity

palmtop devices. There are some clear similarities between a mobile device and a computer.

Above all, they both have network capability and can easily access the Internet if available.

Both have the capabilities of storing, processing and calculating data. However, palmtop

devices are equipped with less powerful processors that require significantly fewer transistors

than processors typically found in workstation or server class computers. The benefits of

leveraging these embedded processors are reduced cost, less heat, and lower power usage.

These are all traits desirable for use in light, portable, battery-powered devices. Ocelot

explores and utilizes processing power within those palmtop devices while balancing the

battery usage in the aggregate according to fixed rules. I show in Section 3.7 that by

partitioning tasks and assigning them to devices in parallel, significant speedups can be

obtained while maintaining a lower energy consumption than traditional computers. As

these palmtop devices continue to grow in popularity, this class of compute engine will

become an increasingly large resource that can be utilized through technology advancements

and sheer number of nodes.
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3.2 OCELOT BASICS

Ocelot can function in an infrastructure mode assuming access to an external network, or it

can form a self-organizing local network infrastructure. Using WiFi-Direct and Bluetooth,

Ocelot employs a basic mechanism that provides the facility to discover peers, locally main-

tains peer lists, discovers routes through recursive queries to neighbors, and sends messages

or files. Dynamic and decentralized routing algorithms such as Distance Vector can be im-

plemented on top of the basic Ocelot network infrastructure providing facilities for managing

link costs, connectivity, and local storage. Simple mechanisms for load balancing and het-

erogeneous processing capacities are currently implemented and more sophisticated ones [90]

can also be easily explored.

Similar to BOINC, each project is associated with a master URL, which also works

as the home page address of the project website. Thus a script or file address under the

website directory containing the master URL string as its prefix. A data set is referred to

as a workunit, and a compute function an application. A workunit is the smallest unit of

input/result data into which the computational task can be divided. Extensible Markup

Language (XML) was used as the data wrapper format in Ocelot. XML’s generality in

representing arbitrary data structures helps the server, the client, and a display/dashboard

to generate, communicate and identify data information in a well-organized way.

Input and result workunit examples are shown in Listing 3.1 and 3.2, respectively. An

input/result XML file may contain more than one workunit and the size is decided according

to the computation effort when generating the task. A task is the smallest unit of computa-

tion work which consists of a unique task id, creation time, project, application, application

version, input file download address, result file upload address, current status, and last sta-

tus update time. The upload process not only stores the result file on the server, but also

parses its contents and records them in the database table. After a task is finished by one

Ocelot client, the result file address is also added to that information entry together with

the account name of the contributor, usually the client device’s owner. Ocelot provides a

simple version of credits for completing a number of tasks.
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An Ocelot project can consist of one or more applications, which abstractly are indepen-

dent unique computational tasks required within the project. These applications consist of

segments of executable code that can be executed by a client on a dataset from the server

that requires processing by that application. The code is usually stored in different forms for

different platforms, and can either be integrated in the client program or later downloaded

to the client. Details are explained in Section 3.4. Tailoring the application code is the

most important part of efficiently using Ocelot. Ocelot nodes in many cases can, execute

interpreted (e.g., Java) or compiled (e.g., C) codes, and can often utilize multi-threading,

and potentially graphics-processing acceleration, but require tight memory management for

efficient operation.

<work_unit>

<electricity_usage>

2012-02-03 00:00:00,8.4,5.5,8.4,4.9,1.2,1.0,

5.3,12.7,4.7,0.0,0.0,0.0,52.0,0

</electricity_usage>

<grid_mix>

0.79,0.00,0.01,0.22,0.00,0.00

</grid_mix>

</work_unit>

Listing 3.1: An input workunit example

<work_unit>

<timestamp>2012-02-03 00:00:00</timestamp>

<EI_MCSI_LDP1>

7.287619 3.297980 0.005776 4.585421 0.012276 0.000918 0.000000 0.096997 0.021904

</EI_MCSI_LDP1>

<EI_MCSI_MLEE1>

4.771655 2.159392 0.003782 3.002359 0.008038 0.000601 0.000000 0.063510 0.014342

</EI_MCSI_MLEE1>

.

.

.

<EI_MCSI_TOTAL>

45.113823 20.416071 0.035758 28.385937 0.075994 0.005680 0.000000 0.600457 0.135594

</EI_MCSI_TOTAL>

</work_unit>

Listing 3.2: A result workunit example

By separating applications with data sets, project owners gain more flexibility in adjust-

ing task loads and assigning different applications at the same time. Potential optimization
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or additional functions can also be added to the application by simply releasing a new version

instead of modifying the whole task.

3.3 OCELOT SERVERS

As shown in Fig. 3, Ocelot servers store data, schedule computation tasks, communicate with

Ocelot clients, and provide interactive functions to both end users and system administra-

tors. Currently, the Ocelot server runs on a computing workstation. The Ocelot Dashboard

provides a tablet-based interface to the Ocelot server. A physical server can host more than

one Ocelot project as long as it can be associated with multiple master URLs and has enough

bandwidth and processing power.

3.3.1 Database Server

The database server is a core component of an Ocelot project. All project related information,

including raw data and results, is stored in the database. Additional scheduling information,

including task descriptions, accounts, and registered devices, is also stored in the database.

Ocelot server application programming interfaces (APIs) for Ocelot Client and Dashboard

have limited access privileges in order to ensure data safety.

3.3.2 Web Server

The web server provides a simple mechanism to access the data and manage the project.

It provides additional facilities for presenting project data externally, a test gateway for

developers, and even conducting surveys. File download and upload services are also handled

by the web server. A dedicated script is used to parse uploaded result data and record it in

the database. Therefore, the result is kept in both the form of database entries and physical

files, satisfying various possible needs of post production. To limit the resource usage, the

web server component is removed from Ocelot on the Lynx network.
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3.3.3 Scheduling Server

The scheduling server handles task requests from clients and dashboards, generates new tasks

from unattended data, and distributes tasks according to the device status. Details about

the device status are explained in Section 3.4.

3.3.4 Push Server

The push server utilizes push notification APIs - APNS [91] from Apple and GCM [92] from

Google - to communicate with iOS and Android devices, respectively. The push service in

Ocelot makes bidirectional communication possible and efficient by avoiding the need for the

clients to poll the server for work at particular time intervals. Instead, task assignment or

other remote operations on clients can happen immediately by pushing pre-defined messages,

reducing the consumption of battery life in clients. A private push module using P2P links

instead of commercial servers is developed for the integration of Ocelot with Lynx.

3.3.5 Additional Servers

In some cases, additional server functionality can be integrated with Ocelot. For example,

a private mail server is used in the case study as a mechanism to extract data from some

external commercial sensors who send data through emails on a daily basis. Thus, in this

manner, the mailed data is still available to be processed with mobile sensor nodes on the

Ocelot system. Additional servers are not implemented in Ocelot with Lynx.

I provide a brief overview of the main functions in Ocelot:

• register registers a mobile client node as available for use in the system based on the

client policy selected by the user. Even in the “idle” mode, this registered device can be

used to communicate traffic between nodes for greater system connectivity.

• unregister removes the client from operation in the system. Systems that become idle

for long periods of time (due to going out of range, or exhausted batteries) time out

and the system automatically unregisters them, requiring them to re-register when they

become available.
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• battStat is a function that reports the remaining battery life in the client device, and

whether it is charging.

• dataLookup is used to look up raw data, pre-processed input data, and computed results

according to specified criteria such as date, whether or when it is computed, etc.

• deviceLookup lists information about devices previously registered with the Ocelot

server (even when currently not registered). Each entry includes: a unique device id, the

platform, owner’s account, current registration status, power connection status, remain-

ing battery, and total battery capacity. Complete and regularly updated device specs

(battery capacities in particular) are necessary in order to calculate aggregate battery

and computing power available.

• taskLookup lists information of both active and finished tasks. One active task en-

try includes: a unique task id, associated project and application, creation time, input

download URL, result submission URL, last update time, status (whether it is computed

or being computed). Each finished task entry includes additional information such as

computation start and finish time, contributing device id and owner’s account, result file

location, etc.

• fileDownload downloads application code or input data files from the server.

• resultUpload submits computed results to the server. Successful uploads activate an

XML parsing script on the server.

• taskFeedback is called every time when a task is finished, so that the server can migrate

the active task entry to the finished task table, meanwhile recording relevant information.

• taskCredit records information including the number of tasks each device finishes and

number of tasks each user contributes.

• sendPush utilizes third party APIs to send notifications to registered devices. The Ocelot

server (or dashboard) uses this function to notify clients that there are tasks available

for computation.

• requestWork allows clients to spontaneously ask for tasks to compute, and is activated

in testing or client’s “Full Power” mode, which will be explained in Section 3.4.
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3.4 OCELOT CLIENT

Ocelot originates from BOINC’s idea of public-resource computing but focuses more on

building a middle-ware system with energy-efficiency and distribution-flexibility. Ocelot is

conceptually possible on most mobile platforms, and I chose the most popular of the mobile

operating systems as Ocelot’s computation platform. My current implementation supports

both Android and iOS. Fig. 8 shows the legacy Ocelot client apps running tasks on both

operating systems. Client apps on different platforms have different user interfaces (UIs)

but share similar APIs for communicating with the servers and typically execute the same

application core algorithm. In the combined system of Ocelot and Lynx, since all nodes

share the same roles like peers in a P2P network, a client can also become a server or even

a dashboard, which is described in Section 3.5. Thus, while in the legacy Ocelot system,

clients, servers, and dashboards are physically separate components, they are integrated on

all the participant devices as virtually different function modules.

Ocelot clients provide distributed computation power. However, donating a device to

operate as an Ocelot client results in Ocelot applications consuming some portion of the

device’s battery power. Thus, the limited battery capacities of mobile devices greatly restrict

the amount of work we are able to compute between charging. To provide the user some

control over this, the Ocelot client app is able to switch between different work modes

according to both power settings defined by the user and client’s power status. “Full Power”

mode continuously requests tasks from the server. This mode is only available when set

manually by the device’s owner or when the device connects to an external power supply.

“Push Task” is the most commonly used mode in which the client receives push notification

from the server and reacts according to the message content. The scheduling server notifies

the clients once there are some available tasks to complete. For a client to receive push

notifications requesting work, the client must be registered with the push server even if it

has already installed the Ocelot client. The database server keeps a record of the power

status of all clients (e.g. remaining battery life, charging status), by both sending a status

fetch push to the client pool periodically and letting the client report its power status after

finishing each task. The scheduling server looks up in the registered client pool and always
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(a) Client on Android (b) Client on iOS

Figure 8: Ocelot client apps on both Android and iOS platforms.

chooses clients either connected to the power supply or with ample remaining battery life

(above 50% in current setting). If no clients begin accepting tasks after a preset period (five

minutes in current setting), devices with less power are notified. Those with very limited

remaining power (below 20% in current setting) will not be pushed tasks. “Idle” mode is

usually set by the device owner to avoid receiving pushed tasks from the Ocelot server. This

mode allows the device to communicate on the network and potentially forward information

from node to node, but conserves power when charging is not available for a long period of

time.
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runCommand( "chmod 755 "+fileDir+appName );

runCommand( "."+fileDir+appName+" "+fileDir+inFileName+" "+fileDir+outFileName );

...

private void runCommand(String cmd) {

try {

Process process =

Runtime.getRuntime().exec(cmd);

process.waitFor();

} catch (Exception e) {

throw new RuntimeException(e);

}

}

Listing 3.3: Binary execution on Android

A common Ocelot computation procedure starts with a task request from either a client or

a dashboard. The client receives a task immediately after the request if there are unfinished

ones. If the task request is initiated by a dashboard instead of a specific client, the scheduling

server starts to work and clients in non-idle mode successively receive pushed tasks according

to their power status. Once a client receives a task, it examines whether the application code

required is available locally on the device. This is not the case if the client has not received

any task from that application before or if the application has been updated on the server.

In this case, it must download the application executable binary from the web server to

execute the application and stores it locally for future use. Input file downloading starts

next, and the computation process begins, which might take a couple of seconds or even

several minutes according to the task size. A code excerpt of binary execution on Android

is shown in Listing 3.3. The Java method “Runtime.getRuntime().exec()” is used to run

a Unix shell command at runtime on Android. Access permission to the application code

must be modified before the program can execute it as shown in the code. Smaller task sizes

are encouraged so that more parallelism can be exploited to accelerate the computation and

individual batteries are not depleted more than necessary. The resulting file is uploaded to

the server once computation completes and the client’s latest power status is reported as

well.
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3.5 OCELOT DASHBOARD

Figure 9: Ocelot dashboard.

I leverage some of the powerful features of the tablet touch interface to provide an dash-

board in the Ocelot system. The Ocelot dashboard has functions such as basic information

lookup, manual task generation, and assignment. The dashboard also provides on-demand

an interactive charting engine to display result data. Fig. 9 shows an interactive chart of

one week of result data. If result data for an application is requested to be displayed in

a chart, but that data has not yet been computed, the dashboard will start the applica-

tion to generate tasks to compute the requested display data automatically. The dashboard

user will be notified that computation is underway and once the data is ready, the chart

is displayed. Direct SQL query is supported on the Ocelot dashboard for advanced project

administrators to easily make changes to databases, and potentially destructive actions like

deleting or truncating tables are password protected.
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3.6 SECURITY AND LIMITATIONS

Security on mobile operating systems (OS) has become a particular concern, as tablets

and especially smartphones often store personal information, and emerging new features of

mobile devices give opportunity to new threats. Both Android and iOS operating systems

shield system files and resources from the user’s apps, and restrict them from accessing

files stored by other apps or from making changes to the device using a technique named

“Sandboxing”[93]. Sandboxing prevents the Ocelot Client app from malicious actions to the

system or other apps and/or from being infected by other malicious apps. Since the App

Sandbox is in the kernel, this security model extends to executing externally obtained native

code and calling OS level applications. Moreover, other special mechanisms are enforced

such as app permission requesting on Android and app code signing on iOS. All of these

steps taken by mobile OS developers ensure the healthy and long-lasting operation of the

systems. Meanwhile, the safety mechanisms also create challenges in creating the Ocelot

Client and in extending distributed computing to mobile devices. A direct effect is that

binary code execution on iOS is prohibited. Rather than jailbreaking test devices, I combined

the application code into the Client app instead of downloading it from the server like the

Android Client. Thus, with new application codes, a new Client app must be updated in

iOS.

A record of the information of all participant devices is also maintained by enforcing

registration with Ocelot server before they can accept tasks. Owner’s verified email addresses

are associated with his/her device as the unique id, as an identifier in case of suspicious

behavior. On Android devices, the owner’s Google Play Store id or primary email account

is used. However, iOS does not allow third-party apps to collect user information, so the

user provides an id in the Client app. Similar limitations are subject to change in the future

depending on the APIs released or updated by Google and Apple.
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3.7 CASE STUDY: DYNAMIC LIFE CYCLE ASSESSMENT OF A LEED

SILVER BUILDING

Life cycle assessment (LCA) is a technique for providing a comprehensive and quantitative

analysis of the environmental impacts by a process or product throughout the entire life

cycle. It is method that can be adopted to understand how a building and its occupants use

electricity, water, and other energy resources from its construction to destruction, and how

the building operation impacts on the environment. Established guidelines for performing

detailed LCAs are well documented by the Environmental Protection Agency (EPA), Society

for Environmental Toxicologists and Chemists (SETAC), the International Organization of

Standardization (ISO), and the American National Standards Institute (ANSI). And some

practitioners’ guidance on methods to conduct LCA on buildings is provided by [94]. Still,

LCA is not commonly used in building industry practice due to several possible factors,

including the perceived complexity of LCA application on buildings, or the exclusion of

internal building effects important to researchers, such as indoor environmental quality (IEQ)

and other dynamics of the building’s operating phase [95]. The latter appears to be more of a

critical challenge since researchers have demonstrated concerns that environmental impacts

of building design are dominated by the impact of operating phase of the building (e.g. energy

usage, emissions, etc.) rather than impacts from construction, or destruction [96, 97].

A dynamic LCA (DLCA) approach has been developed, which essentially performs tra-

ditional static LCA continuously using real time data collected from a building. The Uni-

versity of Pittsburgh’s Mascaro Center for Sustainable Innovation (MCSI) building, part

of the Swanson School of Engineering (SSOE), is used as the first test bed for this DLCA

approach, though the method will subsequently be extended to other buildings. A wire-

less sensor network is deployed to monitor MCSI’s internal building metrics such as indoor

environmental conditions, from indoor air contaminant concentrations to temperature and

relative humidity. Sensor data is communicated via WiFi to the Ocelot data server from

multiply locations of the MCSI building.

In the DLCA computation used as a case study of my Ocelot system, I mainly focus on

the evaluation of electricity usage. As we know, electrical power is produced by power plants
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Table 1: Major specs of devices used in the experiments

Device List CPU Memory OS Power /w

Toshiba Thrive 1G 2-core Cortex-A9 1GB Android 3.2.2 1.4

Nexus S 1G 1-core Cortex-A8 512MB Android 4.0.4 1.5

Nexus 7 1.2G 4-core Cortex-A9 1GB Android 4.1.1 2.2

iPhone 4s 0.8G 2-core Cortex-A9 512MB iOS 5.1.1 1.6

iPad 1 1G 1-core Cortex-A8 256MB DDR iOS 5.1.1 4.0

iPad 3 1G 2-core Cortex-A9 1GB DDR2 iOS 5.1.1 4.3

Mac mini (circa 2010) C2D P8600 8GB Mac OS 10.8 25.6

Mac mini (circa 2011) i5-2410M 8GB Mac OS 10.8 23.9

Custom build desktop 1 Pentium G620 8GB Ubuntu 12.04.1 57.2

Custom build desktop 2 Xeon 1230 v2 16GB Windows 7 127.0

Thinkpad W520 i7-2760QM 16GB Ubuntu 12.04.1 32.1

using various resources like coal, natural gas, nuclear fuel, etc. Thus, the production process

itself consumes electricity as well. My algorithm calculates the total electrical power needed

to generate the total electricity consumed in the building, as well as the environmental

impacts it produces (e.g. all waterborne and airborne emissions). Additional historical data

collected by some commercial meters is also used to provide enough workloads to Ocelot

clients. Within the LCA and buildings arena, electricity use is a significant component of

the building’s life cycle. Thus. I am focusing my initial efforts on better understanding of

electricity usage.

All devices used in my experiments are listed in Table 1 together with their major

specifications. All operating systems were updated to their newest versions. The client app

on mobile devices was ported to computers only for comparison in the experiments. And

to eliminate the impacts of different network environments, all devices were connected to

the same wireless router during all tests. I also developed a method to greatly reduce the

download/upload time using data compression. Both the server and the client are able to

compress and decompress data files. Compression is identified automatically by file format
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Figure 10: Average computation time per task

so no additional message needs to be passed. Each test includes 20 tasks with the same work

load in both normal XML format and compressed Zip format, and the results are presented in

average time per task. I demonstrated that by migrating distributed computation platforms

from traditional computers to palmtop computers, energy cost per task can be significantly

reduced. And with several devices working in parallel, good speedups can be achieved as

well.

3.7.1 Energy saving

As shown in Figure 10, computation time is strictly relevant to the processor speed and

memory capacity. iOS devices have the advantage of executing native compiled code rather

than having to run code on top of Dalvik—a process virtual machine—as in Android. Thus,

iOS outperformed Android devices with similar hardware specifications. The iOS equipped

iPad 3 took only one-third of the computation time that the Android equipped Nexus 7
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Figure 11: Average download/upload time per task

needed to calculate one task. Both represented the best available devices in their categories

on the market when I conducted the experiments. And quite expectedly, traditional com-

puters completely outperformed mobile devices, averaging 5 times faster. I counted data

compression/decompression time into the computation time so on average it took about 5%

longer to compute with Zip data files. But, as discussed below, data compression saves a

huge amount of communication time and thus reduces the total task time.

Network performance is related to several factors such as protocols, network adapters,

processing speeds, signal strength and other environmental impacts. As I mentioned in

previous section, my experiment setup ensured all devices were in similar network environ-

ment so the communication results were caused only by the difference of devices themselves.

Figure 11 shows average download/upload time per task. It should be noted that Zip file

transfer, on average saved about 75% of the time needed to transfer a regular data file, at

the maximum compression rate of about 80%. The advantage of transferring compressed
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Figure 12: Average total time per task

files was weakened, but still existed in the average total time per task shown in Figure 12,

considering the communication time takes only a small portion of the total time. And with

lower computation time, fast-computing computers gained better improvement over data

compression than slow-computing palmtop devices. Thus, I projected that utilizing data

compression in Ocelot projects would gain better results with increasingly fast devices.

This result might appear discouraging, though it should not be unexpected that mobile

devices require more computation time than workstations to complete one task, on average

(between 5-10 times depending on use of compression). However, workstations are optimized

for performance while sacrificing some energy efficiency. Table 1 lists all measured AC power

consumption of each device while running the LCA test. By multiplying power by time per

task, I determined energy consumption per task for each target device shown in Figure 13.

On average, mobile devices consumed 29.8J for uncompressed communication and 27.8J with

compression, while workstations consumed an average of 217.0J and 84.4J, correspondingly.

Consequently, mobile devices saved energy by 86% in contrast to a workstation using un-
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compressed files and 67% using compressed files. This is to say nothing of the idle time

spent between jobs in which the workstations require considerably higher idle power than

the palmtop devices.

3.7.2 Intra-device parallelism

Instead of increasing clock speeds, which allows applications to run faster without special

tuning, processor manufacturers have been increasing the number of cores within a single

chip. Thus, I also explored the possibility of better utilizing the power of multi-core pro-

cessors within those palmtop devices. The major computation in the DLCA algorithm is

large matrix multiplication, which can be modified into a threaded version by partitioning

the columns and rows. For example, one 16x16 matrix can be partitioned into four 8x8

matrices, or sixteen 4x4 matrices. So I slightly modified the code and added my fine-grained

multithreading implementation.
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Figure 14: Task computation time of intra-device multithreaded execution

Figure 14 shows computation time per task with different numbers of threads on three

Android devices and a quad-core laptop running Ubuntu. The threaded code adds overheads

like creating threads and passing values between threads, thus the “1 thread” (multithread-

ready but not multithreaded) code ran slower than the original code for all testing devices.

Only Nexus S smartphone gained no improvement on multithreaded code due to its single-

core processor. Other than that, both Thrive and Nexus 7 reached their best performance on

the “2 threads” code, saving 19% and 22% of their computation time, respectively, compared

to the original code. Adding additional threads showed that the overheads increase when

number of threads increase and the additional parallelism gain is outweighed by the threading

overhead. The laptop reached its best on “4 threads” code thanks in part to its better

access to data in the memory system. This effort to improve device performance using

multithreading showed positive results, and could be applied to other Ocelot projects.
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3.7.3 Inter-device parallelism

One of the most important advantages of distributed computing is the capability to have

many clients to compute in parallel. I conducted multiple tests using different number of

clients, and defined the speedup as the ratio of computation time of the fastest device in

single client test to the computation time of the slowest device in parallel test. I conducted

experiments with two heterogeneous devices, two homogeneous devices, three heterogeneous

devices, and five heterogeneous devices, respectively. Results are presented in Figure 15.

None of these four sets achieved an ideal speedup. Homogeneity does help to give a

theoretically good speedup, as in heterogeneous systems, the slower devices cannot keep up

with the faster ones. It can easily be concluded from the result comparisons that the more

diverse the device composition becomes, the less speedup would be gained. However, by

adding new members to the client pool, I saw significant savings in total task completion

time.
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4.0 LYNX: A SELF-ORGANIZING WSN PLATFORM LEVERAGING

COMMODITY HARDWARE

4.1 LYNX BASICS

There are three elements in the Lynx system: Lynx node, Lynx packet, and Lynx task. A

Lynx node integrates all useful information related to the local node such as peer map, link

map, task queue, etc., as well as relevant methods handling the information. A Lynx packet

is a data wrapper of messages or files, including the packet data type, a route that packet

should traverse, and the content. A Lynx task is a subclass of Lynx packet with additional

fields like task type, next hop address, and packet payload. Lynx tasks are generated and

pushed into a task queue in the Lynx node, which is checked and executed periodically.

Fig. 16 demonstrates how Lynx node modules self-organize and their relationship.

4.2 CONNECTIVITY CHOICE

The choice of network protocol is independent of the Lynx implementation. In my im-

plementation, I have demonstrated the self organizing concept with both WiFi-Direct and

Bluetooth. WiFi-Direct as the connection approach provides advantages due to its wider

coverage and better speed. Unfortunately, due to limits in the network stack, it was only

possible for a maximum of two devices to be connected in pairs simultaneously. Reconnecting

required unacceptably high additional recovery time (e.g. seconds), which made multi-hop

routing unstable and inefficient. Given that WiFi-Direct is relatively new, the qualities of

driver and APIs still have room to improve. Fortunately, connectivity protocols can be
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Figure 16: The structure of a Lynx node

abstracted and all functional modules can be developed upon that abstraction layer [98].

I was able to separate high level design with low level implementation in Lynx. Thus, I

demonstrated the system using Bluetooth connectivity for the current version of Lynx app

on Android. As other better link protocols are developed and become mature, Lynx will be

able to leverage them even in a hybrid multi-protocol fashion.

4.3 SENSOR INTEGRATION

Reading, recording, and sending sensor data are the most important functionalities of a

WSN node. Several prevailing commodity mobile platforms, such as iOS and Android,

provide hardware capable of doing those tasks. Wireless protocols such as WiFi, Bluetooth,

45



or NFC can be used to connect mobile devices to sensors. It is also possible to send analog

sensor data through the 3.5 mm headphone jack by modulating and demodulating the analog

signals [99]. Sensed data can be stored either in files or as database entries on the device.

By querying the node connected with the sensor, other nodes in the network can retrieve

the sensor data in real time over the established P2P network.

While exploiting the possibility of sending data through the analog link in related

projects, I made use of a commercial product named Sensordrone as the testing sensor.

It senses nice different environmental conditions, and provides Bluetooth connection APIs

to access the data with Android devices. Although it is a point-to-point connection, making

it impossible to simultaneously connect multiple devices to a sensor, the sensor data could

be read remotely by querying the connected node. This link could either be a direct link or

a multi-hop one. Details are discussed in Section 4.5.

4.4 MAINTENANCE OF PEER AND LINK STATES

Wireless application programming interfaces (APIs) typically provide functions such as dis-

covering nearby devices, remembering paired devices, connecting to/disconnecting from a

remote device, listening to a server socket for incoming connections, etc. A Bluetooth MAC

address is a unique string that identifies a device, and can be used to initiate connections to

that device. There is a 128-bit universally unique identifier (UUID) that serves to identify

radio frequency communication (RFCOMM) channels during the connection establishment.

After two devices are connected via Bluetooth, additional sockets can be created to transfer

data.

Conceptually, a similar process works for other relevant wireless protocols, including

WiFi-Direct. To achieve feasible and efficient routing, each in-network node must have a

real-time, global knowledge of the current network structure. MAC addresses are used to

uniquely identify devices. Since each device knows its nearby devices, they can tell others

their peer lists (a list of MAC addresses), and, at the same time, receive and record others’

peer lists. Peer lists form a peer map as illustrated in Fig. 17. Similarly, a link list and a
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Figure 17: A Lynx peer map illustration. MAC addresses are used in Lynx network to

uniquely identify devices.

link map are also maintained, indicating the connection status of local device and the whole

network, respectively. To maintain the two lists and two maps, Lynx provides the following

functions:

• Peer list scan: periodically scans nearby nodes and updates the peer list.

• Peer connect: periodically connects to Lynx nodes in its peer list but not in its link

list, aborts if number of failure exceeds a threshold.

• Peer list report: after each scan, broadcasts its peer list changes (if any) to connected

neighbors.

• Link state report: broadcasts its connection status changes (if any) to connected

neighbors.

• Peer/link map report: periodically broadcasts its peer/link map to connected neigh-

bors.

• Task checker: periodically check and execute if there is any available Lynx Task in the

local task queue.
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• In-network sensor connection status: broadcasts sensor connect/disconnect events

and connection information to all nodes in the same network (using multi-hop routing if

needed). Information includes the sensor name and MAC address, the node’s name and

address to/from whom the sensor connects/disconnects.

4.5 MULTI-HOP ROUTING

When two nodes are not directly linked but need to communicate with each other, it is

necessary to find an indirect route with some other nodes in between to make the connection

as shown in Fig. 4. Since I maintain in each node a global link map, I can easily find

the optimal route by modifying some classical link-state routing algorithms, in this case, a

modified Dijkstra’s algorithm. Algorithm 1 provides detailed pseudo-code. Assuming the

distance of each connected node pair is one, the shortest route found represents the route

with least number of hops.

A 4-hop message routing test is shown in Fig. 18. Four Nexus 7 tablets were connected

only to adjacent devices as shown in each tablet’s “Connected Nodes” list. “SONTester0”

(hop 0) was tasked to send a message to “Nexus 7” (hop 3). Lynx calculated the best

route (in this case, the only feasible route, SONTester0 → SONTester1 → SONTester2

→ Nexus 7) and sent the message to the destination via two “bridges”, as shown in the

“MESSAGE” record of the app window. Files can be sent in a similar fashion. The specific

routing algorithm is implemented only to show the feasibility of the Lynx WSN and to

conduct experiments. The Lynx, as a platform, has the flexibility to incorporate any routing

algorithms, either Link-state or Distance-vector, as illustrated in Fig. 16, including those

optimized for other criteria such as minimizing energy, avoiding nodes with low battery, etc.
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Algorithm 1 Find the shortest route: Modified Dijkstra’s algorithm

Require: M is the link map, N is the total number of nodes in M , dist[s, v] and route[s, v]

record the shortest distance and route from node s to node v, respectively

1: procedure ShortestRoute(s,M)

2: for all node v in M do

3: if v connects to s then

4: dist[s, v] = 1

5: route[s, v] = {s, v}

6: else

7: dist[s, v] = N + 1

8: end if

9: end for

10: M ′ = {s}

11: while M != M ′ do

12: pick a node u in M but not in M ′

13: M ′=M ′ ∪ {u};

14: for all node w not in M ′ do

15: if w connects to u then

16: if dist[s, w] > dist[s, u] + 1 then

17: dist[s, w] = dist[s, u] + 1

18: route[s, w] = route[s, u] plus w

19: end if

20: end if

21: end for

22: end while

23: end procedure
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4.6 SCALABILITY AND LIMITATIONS

Theoretically, there is no limit to the scale of the network, but the performance is likely to

degrade as size increases. As the size of the link map grows, finding the shortest route will

take more time, as the run time complexity of my modified Dijkstra algorithm is O(E +

V ∗ logV ), where E is the number of connected edges and V is the number of nodes of the

network. However, the computational time of finding a route is negligible compared to the

data transfer time. When the density of the network grows, due to the throughput limit of a

single node, transmission rate of each individual route traveling through the same node will

reduce. However, in a real world setup, the network density is likely to remain in a reasonable

range considering the physical size of devices and the limited coverage of wireless signals.

Thus, in conclusion, the Lynx network is capable of scaling, while maintaining reasonable

performance in real world applications.

4.7 EVALUATION OF LYNX

To examine the capabilities of Lynx, I created a testbed of Android palmtop computers

containing multiple Nexus 7 tablets. All were equipped with the Bluetooth 3.0 module and

running the Android 4.2.2 Operating System. Several heterogeneous setups of additional

android devices were possible. The results reported use homogeneous devices in order to

provide a more precise, apples-to-apples comparison of the results of the multi-hop routing

tests.

In order to ensure one-hop/multi-hop transfer, I manually configured connect daemon

on all devices to set up the network into 1-hop, 2-hop and 3-hop structures, with 4 different

distances from each other, ranging from 1 meter to 15 meters and separated by a wall. Due to

the limited range of Bluetooth signal coverage, 15 meters was the greatest working distance

(free of dropping connections) that could be achieved. The tested file was a common Ocelot

task input file in XML format, with a size of 189,006 bytes. A compressed ZIP file of that

particular XML file with a size of 22,610 bytes was also tested, since data compression was
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Figure 19: Average XML file transfer time

utilized to save communication time in Ocelot. A significant data compression ratio of 8.36/1

was achieved because of the orderly content in the number-based XML file.

Each final value reported is an average of the results of six tests. The transfer time is

calculated by the initiator device. The timer begins when the file starts to send, and ends

when a returned ACK signal is received. The averaged ACKing time was 348 milliseconds,

which is negligible compared to the transfer time.

4.7.1 File Transfer Time

Fig. 19 and Fig. 20 show transfer times for the XML file and ZIP file, respectively. Not

surprisingly, it took longer to transmit longer distances, especially when increased from 5

m to 10 m, and from 10 m to 15 m with an additional barrier in between. In addition,

increasing the number of hops in the route nearly proportionally increases the transfer time

in most cases. The [2-hop, 5m, XML] (a total distance of 10 m) scenario took nearly 50%

longer than [1-hop, 10m, XML] the [3-hop, 5m, XML] (a total distance of 15 m) scenario

took nearly 40% more time than [1-hop, 5m, XML], even with a wall in between. Routes
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Figure 20: Average Compressed ZIP file transfer time

with fewer hops and slower transmit rates usually outperform those with more hops and

faster rates in most scenarios. However, there is still a chance that a route with more but

faster links will outperform one with fewer but slower ones, as seen in the [2-hop, 5m, ZIP]

scenario. Data compression helped to save up to 80% of the transfer time.

4.7.2 File Transfer Energy Consumption

When conducting the file transfer tests, the electrical source energy consumed by a device

sending and receiving files was measured using a commercial metering system called Plugwise,

which basically consists of a socket measuring transient power consumption and a paired USB

stick connected to the computer recording and aggregating those values. Average sending

power Ps was 3.8 W and average receiving power Pr was 2.2 W, while simply running the

app consumes Po of 1.9 W. I also let the device calculate the total time Tz needed for

compressing the XML file and decompressing the ZIP file, which was 579 milliseconds on

average. Fig. 21 compares the energy consumption of transferring the XML file and the ZIP

file in different scenarios side by side. It is obvious that the longer transmitting range requires
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Figure 21: Average energy consumption of transferring XML and ZIP files
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Figure 22: Energy savings by data compression in different scenarios

more energy due to a slower rate, resulting in increased transfer time. And similar to the

transfer time discussed, energy consumption increases with the number of hops in a route

in most scenarios. Therefore, the route with the fewest hops is typically more efficient than

the route with shorter node-to-node distances. These results confirm that Lynx represents

a system that can realistically demonstrate trade-offs for different system configurations.

Exml = (Ps + Pr) ∗ Tt (4.1)

Ezip = (Ps + Pr) ∗ Tt + Po ∗ Tz (4.2)

An example of this can be shown in a comparison of compression overhead versus trans-

mission overhead. Fig. 22 compares energy savings in 12 different scenarios with the ideal

saving of 88% using data compression with a ratios of 8.26/1. The results vary between 65%

and 80%, demonstrating that data compression in WSN communication greatly improves not

only the network performance but the network life by saving valuable energy in distributed

sensor nodes.

55



Table 2: Energy Consumption of Miscellaneous Processes

Daemon Peer Link Peer/link state Route

discovery establishment report (per hop) calculation

Time /ms 215 167 480 86

Energy /J 0.41 0.50 1.44 0.16

4.7.3 Miscellaneous Energy Components

Besides the file transfer, as explained in Section 4.4, maintaining necessary peer and link

states requires periodically running processes which also consume energy. I measured the

average runtime of four processes including peer discovery, link establishment, and peer/link

state report, and calculated the energy consumption based on the power measurement listed

in Section 4.7.2. Peer state report has a packet size similar to link state report so the two

energy components were combined. Table 2 shows the results, all of which are negligible

compared to the file transfer energy.

4.7.4 Network Scalability

To examine how the Lynx network performs with a larger number of nodes and the impact of

transient nodes, I increased the network size from 4 nodes to 8 and 32 nodes. Figure 23 shows

the average time required to transfer a typical Ocelot input file of size 189,006 bytes. The

average transfer time of each scenario is calculated based on results of 30 tests, through 1-, 2-,

and 3-hop routes. I manually disconnected some of the ad-hoc nodes during the test so that

the shortest paths of some routes became invalid. There is a slight increase in the average

transfer time when the network becomes larger, probably due to longer time of calculating

the shortest path with larger link map. Rerouting also increases the average transfer time as

the optimal routes are invalidated. However, the overall performance degradation remains

reasonable as the network scales.
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Figure 23: Average time of transferring a 189,006 byte XML input file, with different numbers

of hops per route, w/ and w/o rerouting.

4.7.5 Lynx as a testbed

As introduced in Chapter 1, Lynx can serve as a natural platform for the study of various

WSN routing and resource management algorithms, as the algorithm module is decoupled

from the Lynx core, and is thus replaceable. The default algorithm used for multi-hop

routing in Lynx is a modified version of Dijkastra’s algorithm as explained in Section 4.5.

When the network is large enough such that there is more than one shortest path, the default

algorithm arbitrarily picks one path. However, a simple alternative is to choose the shortest

path with the largest transmission rate to the next hop (“Greedy” algorithm). The detailed

steps are described by Algorithm 2.

In this section, I demonstrate the capability of Lynx to serve as a testing platform of

different routing algorithms in WSNs. I implement the greedy routing considering QoS
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Algorithm 2 Find the shortest route considering QoS

Require: M is the link map, N is the total number of nodes in M , Q is the transmission

rate map, bestRoute becomes the optimal route after the execution of the procedure

1: procedure ShortestRouteQoS(s,M,Q)

2: candidateRouteList = ShortestRoute(s,M); . Call modified procedure defined in

Algorithm 1 which returns a list of shortest path

3: for all next hop h of route r in candidateRouteList do

4: transRate = Q.getTransRate(h)

5: if Q does not contains h or bestTransRate < transRate then

6: bestTransRate = transRate

7: bestRoute = r

8: end if

9: end for

10: end procedure

(quality of service, in this case, transmission rate), and compare its performance with the

default algorithm’s. A Lynx network of four nodes was established as shown in Fig. 24(a).

Node 1 sends data to node 4 through two-hop routes with either 2 or 3 as the bridge node.

Node 3 was placed closer to the sender (∼1m) than node 2 (∼10m) to achieve a different

(higher) transmission rate. A 189,006 byte XML file was sent every 60 seconds and the

transfer time of both routing algorithms was recorded and shown in Fig. 25. The QoS

algorithm always uses the faster route after having obtained the historical transmission rates

of both routes, while the default Dijkstra routing arbitrarily chooses one.

Another experiment was carried out to calculate the performance difference in a larger

network (Fig. 24(b)) with heavier traffic. The same XML file was sent from two sender nodes

(1 and 2), to two receiver nodes (6 and 7), every 20 seconds instead of 60 seconds, and the

average transfer time of the two concurrent transfers was recorded and shown in Fig. 26.

During the 20 second interval, the data transfer completes the first hop of each route, but

the second hop transfer is still in progress (given that the average 2-hop transfer of the same

file takes about 30 seconds). Thus, the newly initiated transfer is likely to interfere with
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Figure 24: Two network topologies used for testing the routing algorithm considering QoS.

Edges indicate established connections; arrows indicate data transfer directions

the incomplete one and contend for bandwidth if two routes go through the same bridge

node. The improved Dijkstra routing with QoS effectively avoids sustained performance

degradation experienced with the original routing algorithm. In this case study, Lynx,

serving as a testbed similar to software-based network simulators, effectively demonstrates

the performance difference of different routing algorithms.

4.8 INTEGRATION OF OCELOT WITH LYNX

Figure 4 shows how the Ocelot system can be applied into a Lynx WSN. A dedicated WSN

node (fixed and pre-configured) consists of an Ocelot client attached with one or more sen-

sors monitoring certain physical or environmental conditions in an area. Sensing data is
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Figure 26: Transfer time comparison of two routing algorithms in the 7-node network
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passed through wireless connections (e.g. WiFi, Bluetooth) on the Ocelot client instead of

connecting particular communication device with sensors. Random mobile devices registered

with the Ocelot server become an ad-hoc node and Ocelot client. Though not able to gather

sensor data, they can take tasks and contribute their computation power. In addition, all

these nodes can serve as a bridge and help to relay data within their connection coverage

and capacity.

Combining Lynx with Ocelot requires a distributed database and distributed task/re-

source management. For this approach, the SQLite database was employed for local node

storage. Task and resource management is demonstrated through connection with a dash-

board display. The dashboard node (e.g. a tablet) becomes both a Lynx and master Ocelot

node. This node determines the data required to display a result for the user and auto-

matically launches tasks for remote data collection and processing prior to aggregating the

results for display. I conducted Lynx and Ocelot system experiments of task performance on

the combined system. Similar to my previous tests, the network structures were manually

configured into different scenario combinations. The network locations of task input data

were manually configured to study the exact behaviors of communication in a controlled

environment.

Several mobile devices as well as stationary computers were used in the experiments as

listed in Table 1. As mentioned in Chapter 4, the current version of the Lynx app uses

Bluetooth radio for communication. However, I have included the result of an experiment

using WiFi-Direct as the input file transfer method to show the potential of the latest P2P

connectivity. Multi-hop routing over WiFi-Direct is too inefficient due to hardware and

API limitations, so only the 1-hop scenario was included here. For simplicity, only the 5

meter hop-to-hop distance was tested. Performances in scenarios with other distances can

be projected provided that the computation time is stable and the communication time was

presented in Section 4.7.1.

As a case study of the integrated system, I applied the same DLCA, as introduced in

Section 3.7, on the electricity usage of the University of Pittsburgh’s Mascaro Center for

Sustainable Innovation (MCSI) building [84], and focused on the evaluation of electricity

usage.
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Fig. 27 shows the average execution time per Ocelot task over the Lynx network. Each

task includes 1,000 data entries, each of which is similar to the structure of Listing 3.1. A

total of 20 tasks were evaluated in each independent test. The distributed setups utilized

the Lynx P2P network while the Ocelot-only systems [84] used an additional central server

to obtain input data and send results back to it. The time for completing a task in the Lynx

network was much longer due to the slower Bluetooth protocol, especially when the number

of hops in a route increases. Data compression helped to mitigate the file transfer time and

as such, the total time. However, in the distributed WiFi-Direct test, the faster WiFi-Direct

link also made the advantage of transferring smaller files less evident. As a result, data

compression failed to save total time because of the overhead to compress and decompress

files. When considering Ocelot alone (i.e. computing nodes connected to a central server with

legacy WiFi connection), traditional computers with more powerful processors outperform

mobile devices. Lynx widened the gap due to slower transmission speeds. However, mobile

devices consume less energy doing the same amount of work as shown in Fig. 28. Without

any powerful, yet power-hungry, central server, the fully distributed Ocelot system saved

energy by 70% even in the 3-hop BT scenario, using data compression compared to the

average computer consumption. Combining Ocelot with Lynx saved energy by 88% with

data compression and 78% without compression, according to the comparison of the [2

distributed Nexus7, 1-hop BT] scenario with the Ocelot-only [Nexus 7 w/ server] scenario.

Moreover, full distribution of Ocelot using Lynx provides the best flexibility in constructing

WSNs while also providing a computation facility, which is not typical of traditional WSNs

or traditional distributed computing systems like BOINC.
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5.0 FUSEDCACHE: A NATURALLY INCLUSIVE, RACETRACK

MEMORY, DUAL-LEVEL PRIVATE CACHE

5.1 FUSEDCACHE

5.1.1 Mapping and Addressing

An overview of the FusedCache concept is shown in Figure 29. FusedCache assumes a hybrid

structure of an SRAM tag array [Figure 29 (a)], RM data array [Figure 29 (b)], and head

position array [Figure 29 (c)], consistent with previously proposed RM cache designs that

utilize “stay-in-place” head policies [16, 72]. Within the RM data array, I define the basic

cache element as a “track bundle,” which is a collection of B simultaneously controlled

tracks [Figure 29 (d)] where B is the width of a cache line, typically 512-bits or 64-bytes.

Thus, if the Racetrack length is R, then a bundle can hold R cache lines1. Next, the

FusedCache is divided into “track groups” where, each group contains A bundles, where A

is the associativity of the cache. Logically, each track group contains a single L1 set and R

L2 sets.

The addressing of a FusedCache is shown in Figure 30(a). Excluding the cache line

“offset” bits, the lower bits of the address provide a “group id”, G, field to address each

track group. A group consists of A track bundles that form R L2 sets. The L2 set within

the group is identified by the “set id”, S, field of the address. Figure 30(b) and (c) show the

addressing of regular L1 and L2 caches, respectively. The T field of the FusedCache address

is equivalent to the regular L2 cache tag field. Essentially, the FusedCache concept embeds

1I assume each racetrack has a single access port and all track lengths refer to the lengths of valid domains
ignoring the additional cells at both ends of tracks required to prevent shifting overflow. Thus, R length
racetracks actually contain 2R− 1 domains.
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Figure 29: Overview of the FusedCache structure including an example group with param-

eters R=8, A=4. B=512.

into the L2 cache an L1 cache which is 1/R the size of the L2 cache. In other words, A of the

A∗R cache lines that are in a track group form an L1 cache set as illustrated in Figure 29(d).

These A L1 cache lines are the ones that are positioned under the access heads of the A

bundles in the group. Thus, a FusedCache can serve an L1 or L2 lookup as follows:

• L1 lookup: T concatenated with S is equivalent to an L1 tag where G is equivalent to

the regular L1 set index. This follows from the property that the data aligned with the

access points within each track group functions as an L1 set in FusedCache.

• L2 lookup: T functions as an L2 tag and S concatenated with G is equivalent to the

regular L2 set index as each track group contains R L2 sets.
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Tag  (T) Set  id  (S) Group  id  (G) Offset

(a)  Fused  L1/L2 cache  address

L1  Tag L1 Set  index Offset

(b)  Regular  L1  cache  address

L2  Tag L2  Set  index Offset

(c)  Regular  L2  cache  address

Figure 30: FusedCache addressing and indexing.

A more detailed illustration of a single track group is shown in Figure 29 (d) for a 4-way

set associative cache, where each track group contains eight sets. Ways of the same set are

mapped to different track bundles to ensure parallel access capability. In the example, four

cache lines are identified as residing in L1 indicated in gray in both the tag and data arrays.

These lines determine the alignment of the track bundle with the access point, which I refer

to as the “head position”. Thus, the L1 positions within the bundle are available in the

corresponding head position storage. The four cache lines of each L2 set are located at the

same index of each bundle. The set index S = 2 is highlighted for illustration in the figure.

Any line within the set may be stored on any bundle. Thus, elements of the same set may

be arbitrarily swapped. This is important to ensure that there are no L1 set conflicts when

storing the L2 data as I described in the following section.

In this organization, access to an L1 line happens immediately and uniformly (without

shifting), while access to an L2 cache line requires aligning (shifting) the access head to

the L2 line’s position on the bundle. Additionally, each group stores only the L2 tag array.

The L2 tag match in FusedCache is the same as a regular cache tag match. L1 tags are

constructed by concatenating the L2 tag with the head position indicator (set id) of that

bundle as shown in Fig. 30. Hence, an L1 tag match is divided into two parts: matching

T with the L2 tag stored, and matching S with the current head position. To enable the

highest possible performance, parallel cache tag and data array accesses are assumed. Thus,
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the read process starts in parallel with the tag matching process, while write operations wait

until the tag is matched.

Given that each track group contains R L2 sets, I need R LRU stacks per group for

determining which L2 cache line to evict upon a cache miss. Besides, an additional LRU

stack is needed to determine the least recently used L1 cache line in the group. I denote the

track LRU by LRUL1 for the following discussion. The details of LRUL1 maintenance are

explained along with scenarios of cache hits and misses in the following section.

5.1.2 Handling cache hits/misses

To illustrate the process of set-associative cache accesses I use an example shown in Figure 31,

which shows the structure of a track group G. The tag array for group G is represented by

τi,S (the tag corresponding to the cache line stored at set S, way i), where 0 ≤ i < A

and 0 ≤ S < R, and the positions of the A heads in group G are denoted by P0, ..., PA−1,

respectively2. If the line in bundle i at L2 set index S of group G is denoted by line (i, S),

then lines (i, Pi), (i = 0, ..., A − 1) of group G form an associative set in L1. For example,

in Figure 31, P0=1, P1=4, P2=0 and P3=6, which means that lines (0,1), (1,4), (2,0), and

(3,6), denoted by H, E, C, and Z are in L1, while the remaining lines are in L2 but not in L1.

The address of the cache line that is being accessed is represented by < T, S,G > (ignoring

the offset). Using this notation, the conditions of L1/L2 hits and misses can be expressed

as follows:

• L1 hits: T = τi,S for some i (0 ≤ i < A) and Pi = S.

• L1 misses, L2 hits: T = τi,S for some i (0 ≤ i < A) and Pi 6= S.

• L2 misses: T 6= τi,S for any i.

In the direct-mapped configuration, accessing a cache line in FusedCache is the same as

in TapeCache [16]. In this section, FusedCache’s handling of accesses in the set-associative

configuration is explained starting from a simple scenario where L1 and L2 have the same

associativity.

2The following discussions are in the context of group G. For simplicity, G is removed from the notations
when it is implicit in the context.
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5.1.2.1 L1 hits In FusedCache, L1 hits require no shifts and have constant access la-

tency. Fig. 31 shows an example of L1 hit access, in which the target L2 set id is 4. Tag

matching determines E is the target cache line, which is also at the head location, and thus in

the L1 set of this track group. Accessing E takes a single step of directly reading or writing

the cache line, and updates the LRUs accordingly. All L1 cache lines of the accessed track

group are read simultaneously with the tag match to ensure faster L1 reads, while writes

must wait until tag matching is complete.

S=0 S=1 S=2 S=3 S=4 S=5 S=6 S=7
H Bundle 0

E Bundle 1
C Bundle 2

Z Bundle 3

Target  cache  line Target  L2  cache  setL1  cache  line

Group  G

Figure 31: An L1 hit example.

5.1.2.2 L1 misses - L2 hits In this case, the requested line at address < T, S,G > is

located in the FusedCache at location (i, S) of group G with the head position of bundle i,

Pi, not pointing to set S. For example, in Figure 32(a), if line < T, 2, G > (set index S = 2)

is accessed and T matches τ1,2 (i = 1, S = 2, tag corresponding to cache line D, stored at

set 2, way 1) in group G, then the accessed line, D, which is in L2 but not L1, needs to be

promoted to L1. This process depends on which of the L1 lines is the least recently used

(indicated by LRUL1). Given the head position of Bundle 1, P1 = 4 is at cache line E, there

are two cases:

• Case 1: The line at location (i, Pi) is the least recently used L1 cache line. In other

words, (i, Pi) is the right cache line to evict from L1:

In this case, promoting the addressed line from L2 to L1 is accomplished by simply

shifting bundle i to position S. In the example of Figure 32, if E is the least recently used

L1 cache line, then replacing E with D in L1 is done by simply shifting the head for bundle

1 from position 4 to position 2, and updating the LRU stacks accordingly.
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Figure 32: An L2 hit example w/o swap. The “Shift” arrow illustrates the relative position

change of the access port. In actual RM, domains shift to the access port, which is logically

equivalent.

• Case 2: Some line at location (j, Pj), j 6= i, is the least recently used L1 cache line.

For example, Z is the right cache line to evict from L1:

In this case, promote the line at location (i, S) must be promoted to L1, while evicting

the line at location (j, Pj) to L2. This can be done by first swapping the lines at locations

(i, S) and (j, S), which is possible since they are both in the same associative set, and then

shifting bundle j so that the line at location (j, S) is promoted to L1 while the line at location

(j, Pj) is evicted from L1. In the example of Figure 33, if the line at (3,6), denoted Z, is at the

head of LRUL1, and the line at (1,3), denoted D, is accessed, then the process of promoting

D to L1 and evicting F from L1 is described as follows:

1. Shift, simultaneously, the heads of bundle 1 and bundle 3 to position 2 [Figure 33(b)]

2. Access the requested line, D [Figure 33(b)]

3. Swap lines D and F [Figure 33(c)]

4. Shift the head of bundle 1 back to position 3 [Figure 33(c)]

During this process, the LRU stack for set 2 as well as LRUL1 should be updated to

reflect the new access order. Note that although only the shift of bundle 1 and access of
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Figure 33: An L2 hit example w/ swap.

D are on the critical path of the cache access, the evaluation assumes that all the bundles

in the group are not available for subsequent accesses until the entire promotion/eviction

process completes.

5.1.2.3 L2 misses In this scenario, a new cache line is loaded into FusedCache from

higher levels of caches or memories, and replaces the least recently used line in set S of L2,

denoted as (i, S). To also place the new line in L1, the least recently used L1 cache line has

to be evicted from L1 to L2 by shifts. Similar to the previous discussion on L1 and L2 hits,

there are three cases:

• Case 1: The least recently used line of the target L2 set S is at way (bundle) i and

aligned with the head (Pi = S). In other words, (i, S) is the right cache line to evict from

L2 (also L13), and to be replaced by the new cache line, without any shift operations.

3It can be easily proved with contradiction that the least recently used L2 cache line, if it happens to be
in L1, is also the least recently used L1 cache line.
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Similar to the example shown in Fig. 31, E is the cache line at location (i, S) (in this

case, i = 1, S = 4). If E is the least recently used L2 cache line in set 4 then the access

replaces E with the newly brought-in cache line from a higher level of the memory hierarchy,

and moves the new cache line in E to the tails of both the L2 set LRU and LRUL1 stacks (E

becomes the most recently used cache line).

• Case 2: The least recently used line of the target L2 set S is at way (bundle) i and

not aligned with the head (Pi 6= S). In other words, (i, S) is the cache line to be evicted

from L2, while according to LRUL1, (i, Pi) is the cache line to be evicted from L1. In this

case, compared to case 1, an additional shift operation is needed.

Similar to the example shown in Fig. 32, D is the cache line at location (i, S) (in this

case, i = 1, S = 2). D is now the least recently used L2 cache line in set 2 instead of target

cache line, thus to evict from L2. E is the least recently used L1 cache line in the group G.

Thus, the access process includes, firstly, shifting the head of bundle 1 from E to D, then

replacing D with the new cache line. Finally, the new cache line in D is moved to the tails of

both L2 set LRU and LRUL1.

• Case 3: The least recently used line of the target L2 set S is at way (bundle) i, and

not aligned with the head (Pi 6= S), and some line at location (j, Pj), j 6= i, is the least

recently used L1 cache line. In this case, I want to evict (i, S) from L2, evict (j, Pj) from

L1, and place the new cache line in L1 at location (i, Pi).

Similar to the example shown in Fig. 33, D is the cache line at location (i, S) (in this

case, i = 1, S = 2). D is now the least recently used L2 cache line in set 2 and should be

evicted. Z is the cache line at location (j, Pj) (in this case, j = 3, Pj = 6), and is the least

recently used L1 cache line in group G and thus, is to be evicted from L1. The access process

resembles the four steps in Section 5.1.2.2 Case 2, except that in step 2, D is now replaced

by the new cache line. Finally, the new cache line in D is moved to the tails of both L2 set

LRU and LRUL1.
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5.1.3 Hybrid associativity

FusedCache is also compatible with heterogeneous L1 and L2 associativity configurations,

called hybrid associativity. For this case, mapping from virtual to physical space is slightly

different from what is discussed above. Specifically, assuming that AL1 and AL2 are the

associativities of L1 and L2, respectively, then instead of spreading ways across different

tracks, each track accommodates AL2

AL1
ways of a same set. This presumes that AL2 is an

integer multiple of AL1, which is normally the case in cache hierarchies

For example, a 4-way set associative L1 and 8-way L2 configuration is shown in Figure 34,

with track length set as 8. In this figure, SmWn represents way n in set m. Cells of the

same color are in the same L2 cache set. Each track accommodates two ways of a same set

but still has only one L1 cache line. Thus, all the cache and Racetrack operations described

for homogeneous associativity configurations may be applied with a simple modification.

As cache lines in the same set are swappable and an L2 set no longer occupies a single

track position in all track bundles, it becomes possible to conduct a swap operation between

different ways depending on the scenario. For example, to swap S1W4 with an element from

the same set in bundle 2, the cache could swap S1W2 if the L1 currently contains an element

from L2 set S0 or S1W6 if the L1 currently contains an element from sets S2 or S3.

S0W0 S0W4 S1W0 S1W4 S2W0 S2W4 S3W0 S3W4

S0W1 S0W5 S1W1 S1W5 S2W1 S2W5 S3W1 S3W5

S0W2 S0W6 S1W2 S1W6 S2W2 S2W6 S3W2 S3W6

S0W3 S0W7 S1W3 S1W7 S2W3 S2W7 S3W3 S3W7

Figure 34: An hybrid associativity mapping example.

The aforementioned swap operation requires two cache lines to be in the same set thus

the same column of the physical mapping. In hybrid asssociativity configurations, ways of

the same set can stretch across different columns and swaps can happen between two ways

in different columns. Fig. 35 illustrates an example of L2 hit in the 4-way L1 and 8-way

L2 hybrid associativity configuration. The third and fourth columns together contain eight

ways of set 1. Similar to the discussion of “Case 2” in Section 5.1.2.2, in order to access
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D, head of bundle 1 must shift from E to D, and after the access shift back to E, as E is

not supposed to be evicted from L1. The least recently used cache line Z must be evicted

instead. In this example, head of bundle 3 no longer needs to shift from Z to X because Y is

also in the same set thus swappable with D, and requires one step less shift.
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Figure 35: An L2 hit example w/ swap in a hybrid associativity configuration.

5.2 EXPERIMENTAL METHODOLOGY

The fundamental goal of my efforts is to replace traditional SRAM caches with shift-based

RM caches. Given the TapeCache proposal to use Racetrack memory for the last-level

cache, the static power of the cache hierarchy is greatly reduced and becomes dominated

by SRAM private caches near the core (e.g., L1 and L2) in spite of their relatively small

capacity compared to the LLC. Thus, I apply RM at all cache levels for the FusedCache

scheme to evaluate the effectiveness of my design. I compare my design with three schemes:

SRAM-1, SRAM-2, and TapeCache. SRAM1 and SRAM2 employ a private 32KB, 8-way

set-associative (SA) SRAM L1, while SRAM2 adds an additional 512KB, 8-way SA, SRAM
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Table 3: Latency & energy parameters

Schemes SRAM-1 SRAM-2 Tape/FusedCache (Global)

L1 L1 L2 L1/L2 LLC

Tag access latency (ns) 0.16 0.28 0.28 0.34

Data read latency (ns) 0.94 1.87 0.98 1.21

Data write latency (ns) 0.94 1.87 0.65 0.65

Read energy (pJ/access4) 6.78 54.49 19.08 61.17

Write energy (pJ/access) 3.76 21.91 7.94 7.94

Leakage power (mW) 65.66 138.49 19.40 25.98

Tag area (mm2) 0.00443 0.045 0.045 -

Data area (mm2) 0.0914 1.407 0.0491 -

Total area (mm2) 0.09583 1.452 0.0941 -

Shift latency (ns) 0.322

Shift energy (pJ/cell) 0.0617

L2. TapeCache uses a 512K 4-way SA L1 from single ported RMs, as described in previous

work [16, 72]. All schemes use a 4MB, 16-way SA shared unified TapeCache LLC. All caches

use a 64-byte line size and LRU replacement. FusedCache and TapeCache are iso-area RM

replacements of SRAM-1, and iso-capacity RM replacements of SRAM-2.

I extended the Sniper full system simulator [100] to include a Racetrack FusedCache and

a Racetrack LLC. To simulate the impact of the Racetrack structure in Sniper, the state of

every track is maintained to determine the access latency based on the actual shift latency.

This implementation models the impact of contention between temporally overlapping ac-

cesses to cache lines mapped to the same tracks and determines the accesses that can proceed

in parallel in the same subarray.

I use NVSim [101] to model the latency, power, and area parameters of SRAM caches

including both the tag array and data array, and a modified NVSim to model RM data array.

4Each access contains one line, or 512 bits/cells.
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Table 4: Data array read latency breakdown

Latency (ps) H-tree Predecoder Row decoder Bitline Sense Amp Mux

32K SRAM 363.58 63.25 146.01 154.86 139.85 72.69

512K SRAM 1150.11 81.40 231.93 174.27 139.85 93.03

512K RM 273.91 97.68 166.78 161.30 226.29 53.91

The area of one RM track is assumed to be dominated by the area of access transistors due to

its 3-D structure and adopt a cell size of 2F 2 based on previous work [102]. RM shift latency

and energy are calculated based on a size 120*720nm2 perpendicular magnetic anisotropy

(PMA) nanowire [103]. RM reads and writes faster than SRAM due to its smaller peripheral

circuitry. Rather than current-based writes, I adopt the more efficient shift-based writes

proposed in [15]. Detailed parameters for each memory type based on a 32nm technology

feature size are listed in Tables 3 and 4.

For simulation workloads, I used 10 multi-threaded (MT) parallel applications and 7

groups of single threaded applications as multi-programmed (MP) workloads drawn from

the Parsec [104] and SPEC-CPU2006 [105] benchmark suites, summarized in Table 5, which

also includes each individual application’s miss per kilo instructions (MPKI) of L1 cache.

Each MT application is executed with four threads and each MP group consists of four

applications. Characterization is started from the “region of interest” (ROI) with one billion

instructions to warm up the cache followed by one billion for evaluation. For MP workloads,

the number of instructions is the sum of all four applications within a group, which means

cores running faster applications execute more instructions during the simulation.

5.3 RESULTS

In this section, I evaluate the feasibility of replacing SRAM with RM in the entire cache

hierarchy and demonstrate FusedCache’s capability of saving energy while providing com-
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Table 5: Benchmarks (L1 MPKI)

Parsec: multi-threaded workloads

MT-1 blackscholes (0.74) MT-2 canneal (24.08)

MT-3 dedup (26.26) MT-4 facesim (25.58)

MT-5 ferret (31.15) MT-6 fluidanimate (8.40)

MT-7 freqmine (12.01) MT-8 raytrace (6.34)

MT-9 streamcluster (9.63) MT-10 vips (13.42)

SPEC-CPU2006: multi-programmed workloads

MP-1 perlbench(48.45), bzip2(40.21), gcc(26.66), bwaves(109.46)

MP-2 gamess(14.97), mcf(8.55), milc(35.03), zeusmp(38.87)

MP-3 gromacs(2.67), cactusADM(30.26), leslie3d(19.96), namd(27.84)

MP-4 gobmk(44.37), dealII(83.17), soplex(34.61), povray(51.99)

MP-5 calculix(25.15), hmmer(90.70), sjeng(87.55), GemsFDTD(5.5)

MP-6 libquantum(7.25), h264ref(21.90), tonto(17.46), lbm(58.12)

MP-7 omnetpp(29.38), astar(15.12), wrf(7.90), sphinx3(12.63)

parable performance with traditional private L1 and L2 SRAM cache systems (SRAM-2).

Compared to a private L1 SRAM cache (SRAM-1), in the same physical area FusedCache

provides a “free” private L2, which helps to improve performance and reduce energy due to

RM’s low leakage power.

5.3.1 Performance

Figure 36 shows the system IPC (higher is better) comparison of the four different cache

schemes. On average, MT applications show a greater than 5% speedup through FusedCache

compared to SRAM-1, more than 10% with MP workloads, and overall better than 7% across

all workloads. Most MT applications have low L1 miss rates (less than 10%), which limits

the value of the extra L2 cache’s performance contribution. MP workloads have larger
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Figure 36: Performance comparison of four cache schemes.

L1 miss variation. FusedCache L2 accesses can be faster than SRAM L2 (e.g., smaller

peripheral circuitry), although shift overheads from port contention can reduce the overall

access speed of cache lines in FusedCache. During these fused L2 accesses, swap operations

do not add latency directly to the critical path (Section 5.1). My simulator records the

track busy time for every shift as required by swapping. In contrast to FusedCache, the

performance of a TapeCache L1 with 512K capacity is almost indistinguishable from SRAM-

1 in spite of the capacity advantage. This is due to an 87% increase in shifting latency over

FusedCache for L1 hits. Generally, FusedCache outperforms SRAM-2 for both MT and

MP workloads. However, in certain applications (MT-6,8,9 and MP-3,4), SRAM-2 avoids

significant FusedCache shift contention. On average, shifting adds about three cycles for each

L2 access in these workloads. FusedCache is particularly beneficial for workloads MT-7, and

MP-1,6, achieving between 15-18% improvement due to relatively high L1 miss rates and

the extra fused L2 cache. Applications such as MT-1,9 and MP-2 see smaller performance

improvements as a result of already low L1 miss rates (under 5%), although nearly all L1

misses hit in the fused L2 cache.
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5.3.2 Energy

Figure 37 shows the total energy consumption comparison of all levels of caches, both leakage

and dynamic. To ensure a fair comparison, the LLC energy is also considered, as schemes

with and without private L2 caches have different LLC access behavior. In general, the

extra L2 in FusedCache and SRAM-2 helps to reduce LLC accesses. For the FusedCache,

two additional power categories, shifts and swaps, are included. All detailed values used

for calculation are listed in Table 3. SRAM-2 experiences a severe energy increase from

adding a private L2 due to the additional SRAM static power. On average, it consumes

more than twice SRAM-1’s energy to gain a 7% speedup. In contrast, while providing

a similar performance gain to SRAM-2, FusedCache reduces energy over SRAM-1 by one

third. Compared to SRAM-2, FusedCache reduces cache energy by 70% on average, and by

up to 80% with certain workloads (e.g., MT-2). Compared to SRAM-1, FusedCache reduces

energy by 28% and 41% for MT and MP workloads, respectively. Moreover, FusedCache

actually saves energy over TapeCache (6%) while outperforming SRAM-2. As shown in

Fig 38, in terms of energy-delay-product (EDP), FusedCache achieves a 39%, 70%, and 13%

improvement compared to SRAM-1, SRAM-2, and TapeCache, respectively.

Figure 39 shows the breakdown of six power components in FusedCache, where LLC is the

sum of all dynamic, leakage, and shift energies of the last level RM cache. The leakage energy

of the SRAM tag array and other peripheral circuitry in FusedCache and LLC accounts for

30% and 42% of the total energy consumption on average. Of the remaining components,

reads, writes, shifts, and swaps take up to 17%, 2%, 6%, and 3%, respectively. Amongst

all 17 workloads, MT-9 has the smallest energy saving with FusedCache and the lowest

overhead with SRAM-2 because for this workload, the read dynamic energy dominates the

overall consumption, minimizing the leakage advantage.

5.3.3 Sensitivity study

Besides the experiments with the typical settings listed in Section 5.2, I also conduct a

sensitivity study to see how FusedCache performs against the other schemes in scenarios

with different combination of cache parameters, including capacity, Racetrack length (L2/L1
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Figure 37: Energy Consumption comparison of four cache schemes.
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Figure 38: Energy Delay Product (EDP) comparison of four cache schemes.

capacity ratio) and associativity. The results are presented with the geometric mean of

normalized IPCs and energy consumption of the 17 applications listed in Table 5.

5.3.3.1 L1 capacity Three scenarios in which the L2/L1 capacity ratio were held con-

stant with different L1 capacities were tested. Note that in the FusedCache scheme, the
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sumption of the last level cache).

L2/L1 capacity ratio is determined by and equal to the Racetrack length (e.g., a 32KB L1

cache with a 16-bit long Racetrack includes a 512KB L2 cache). Figure 40 shows performance

and energy comparison of the three schemes with different L1 capacities: 16KB, 32KB, and

64KB, respectively, with a 32KB SRAM-1 scheme as the baseline. L1 capacity misses in-

crease with the smaller L1 cache (16 KB). When L1 capacity is reduced, the remaining three

schemes gain a larger performance advantage over the baseline SRAM-1. The TapeCache

configuration increases the L1 capacity, dramatically reducing the L1 miss rate sufficiently

to compensate for the shifting latency. The extra L2 capacity of SRAM-2 and FusedCache

prevent the high percentage of L1 misses from being serviced by the significantly slower

LLC. For the 64K L1, the TapeCache performs poorly due to the shifting delay per access

compared to SRAM-1. For all schemes and configurations, FusedCache shows the best per-

formance. As expected, the energy savings of FusedCache compared to two SRAM schemes

is related to the overall size of the storage with a smaller advantage for the 16KB SRAM-1

due to smaller leakage power gaps between SRAM and RM data arrays and dramatic (2X)

advantage for 64KB SRAM-1.
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Figure 40: Average IPC and energy consumption: Constant L2/L1 capacity ratio with

various L1 cache capacities.

5.3.3.2 L2/L1 capacity ratio As mentioned in Section 5.2, L2/L1 capacity ratio in

FusedCache is determined by the physical length of Racetrack. In this study I examine

the impact of changing the Racetrack length while keeping L1 size constant at 32KB. The

baseline length of 16 means that the L2 capacity is 512KB. Since the L1 capacity stays

constant, SRAM-1 offers the same performance and energy consumption across all three

scenarios, as shown in Figure 41. In the 8-bit long Racetrack scenario, the smaller L2 capacity

leads to lower L2 access latency, which helps SRAM-2 to outperform FusedCache. Moreover,

the smaller L2 results in more contention for the single access port in each RM subarray.

Leakage power of the single ported Racetrack data array does not dramatically increase when

longer tracks are used as it is dominated by the shift and access transistors rather than the

magnetic nanowire. FusedCache’s iso-capacity replacement SRAM-2, however, suffers from

significant energy increase with larger L2 caches. In the length 32 scenario, FusedCache

provides slightly better performance while consuming only a quarter of SRAM-2’s energy.
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Figure 41: Average IPC and energy consumption: constant L1 capacity and different L2/L1

capacity ratios.

5.3.3.3 Associativity This section presents result comparisons of various L1 and L2

associativity combinations, using the hybrid associativity scheme discussed in Section 5.1.3.

The result is shown in Figure 42, where m-n represents a configuration with m-way set as-

sociative L1 and n-way set associative L25. FusedCache shows its capability of handling the

hybrid associativity configuration (e.g., 4-8), and provides similar performance, although the

mapping may increase the shift overhead. For example, shifting to other sets, particularly

non-adjacent sets, can often require more shifts because multiple ways are stored in consec-

utive domains along the same track bundle. FusedCache also achieves a better performance

improvement compared to SRAM-1 in the direct mapped configuration than set associative

configurations, due to the parallel tag and data access hiding some shift overhead. Energy

consumption remains similar across all FusedCache configurations.

5For SRAM-1 and TapeCache schemes, m-n simply refers to a one-level m-way set associative cache.
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Figure 42: Average IPC and energy consumption: constant L1 capacity and L2/L1 capacity

ratios and different L1, L2 associativity combinations.
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6.0 MULTILANE RACETRACK CACHES: IMPROVING EFFICIENCY

THROUGH COMPRESSION AND INDEPENDENT SHIFTING

6.1 MRC LAST LEVEL CACHE DESIGN

To describe the proposed MRC scheme I begin with a preliminary discussion of the fun-

damental organization of the RM in MRC, which is consistent with previous work in RM

caches. My contributions are then described, and their cooperation within MRC to achieve

better performance and energy efficiency for RM cache designs is discussed.

6.1.1 Fundamental Structure

Fig. 43 illustrates the MRC structure. MRC organizes the cache in a similar hybrid organi-

zation as FusedCache using SRAM instead of RM for the tag array. First, the tag array is

more frequently accessed than the data array due to cache misses and invalidations. Using

SRAM prevents a performance degradation due to shifting during the tag lookup. Unlike

the one-to-one bit-per-storage circuit that simplifies the array-based organization of SRAM,

DRAM, or STT-MRAM, RM’s many-to-one bit-per-storage circuit adds another dimension

that complicates how logical structures are mapped to the physical structure including cache

lines and cache sets. As introduced in Section 2.3, Fig. 6 shows the smallest repeating unit

in RM, which can store tens to hundreds of bits [12], all of which share the same access

port. Thus, to avoid port contention within a single access, I adopt the same bit-interleaved

mapping of TapeCache [16], which is different the FusedCache mapping as described in

Section 5.1.
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Figure 43: Overview of the MRC structure including an example group with parameters

R=8, A=4. B=512.

The upper section of Fig. 43 illustrates the expanded view of an RM “track group”,

which contains only one “track bundle” defined in Section 5.1. Columns represent cache

lines, while rows of the track group are physical tracks. The example shows a track length

of 16 with 512 (64*8, i.e., the width of a cache line) parallel tracks in this subarray. Tracki

contains the ith bit of each of 16 cache lines stored in the subarray. For simplicity, the track

length I refer to in this dissertation refers to the number of valid bits not including auxiliary

bits required for preventing data from shift overflow.

Additionally, the area and energy overhead of SRAM tags over RM tags is relatively

small since the tag array contributes only 4.8% to the total area of a 1MB cache [16]. This

is also consistent with my modeling results summarized in Table 8.
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As discussed in prior work [16, 17], there are two typical methods for managing the

locational relationship between domains and the access port after each access:

• Return: The data stored within the nanowire is returned to its original (home) location

after each access. This policy requires no extra logic to store location information but is

likely to require more shifts.

• Stay: No shift after each access, the data remains in the shifted position until the next

access arrives. This policy requires additional logic to store the shift position relative to

the home location.
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Figure 44: Number of shifts for a 1MB 1P1T Racetrack LLC with track length of 16 (detailed

parameters from Tables 7 and 8) with Return shifting policy normalized to the same design

with Stay shifting policy.

Fig. 44 shows the comparison of number of shifts for a subset of Parsec benchmarks [104].

The Return policy results in 7x more shifts than Stay. This result is not unexpected as for

1P1T Racetrack structures the Return policy will typically require a much longer shift dis-

tance than would be the case in MP1T structures. As a result, the shift energy overhead

would be unacceptably large if the Return policy is employed as the dynamic shift energy us-

ing the Stay shift policy already approaches 20% of the overall energy (see Fig. 49). Therefore

the MRC LLC design only considers the Stay shift policy.
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Table 6: 14 compression schemes (including uncompressed) ordered by sizes after compress-

ing a 64 byte cache line

Scheme ZERO REP1 REP2 REP4 REP8

Size (B) 0 1 2 4 8

Scheme B8D1 REP16 B4D1 B8D2 REP32

Size (B) 15 16 19 22 32

Scheme B2D1 B4D2 B8D4 UNCOMPRESSED

Size (B) 33 34 36 64

6.1.2 Memory In-place Compression

As compression and decompression require energy overheads and the latter lies on the crit-

ical path of reading compressed data, I choose lightweight compression methods including

ZERO [106], Repeated Values [107], and BDI [80] over more complicated ones with better

compression ratios. Unlike previous cache compression schemes which attempt to increase

effective cache capacity [80] I use compression to save read, write, and shift energy while

accelerating accesses to the RM LLC. A compressed cache line has fewer bits to write than

the uncompressed line, and thus requires less energy to write and read. With in-place com-

pression, this energy saving is accomplished without complicating the addressing mechanism

as the storage capacity for an uncompressed line remains allocated to each cache line (64

Bytes in this case) even when only a fraction of that space is needed to store a compressed

line. Details of the compression algorithms have been explained in Section 7.1.1.

Initially, 14 effective compression schemes from the literature [106, 107, 80] were evaluated

from in-place compression. Table 6 shows a breakdown of the compression effectiveness for

subset of the benchmark applications. Zero compression applies when the data is zero. If

the data repeats every x bytes then it can be compressed by the REPx scheme. If I divide

a cache line into y-byte subblocks and all offsets between the first subblock with each of

the remaining subblocks being within a z-byte range, then the line is compressible by the
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Figure 45: Breakdown of occurrences of 14 compression schemes (including uncompressed)

in 5 applications with small input sets.

ByDz (y-byte base, z-byte delta) scheme. In many cases, a cache line may be compressed

by multiple schemes. Of the valid schemes, the results report the compression scheme with

the smallest size by prioritizing the 14 schemes by compression ratio.

Many schemes can, of course, be included to achieve the best possible overall compression

ratio without affecting the performance, as all compression units can function in parallel [80].

However, each compression/decompression scheme requires additional hardware and energy

overhead. Further, as shown in Table 6, several schemes have similar compressed sizes and

Fig. 45 indicates that several schemes are rarely applied. Thus I select the four dominating

compression schemes (ZERO, REP4, REP8, B4D2) to go with uncompressed data to be used

in the MRC cache. To store the compression mechanism and to represent the five compression

states, I add three extra bits to each element of the tag array. I modify the LLC tag structure

to accommodate the extra bits as shown in Fig. 46. The compression scheme detector selects

the most effective of the valid schemes (or leaves the data uncompressed) and generates the

compression code stored in the modified tag structure. The block aligner is added to the

flow when skewed alignment in considered.
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6.1.3 Independent Shifting

As discussed in Section 6.1.2, a cache line can require 0, 4, 8, 34, and 64 bytes for each of

the compression configurations, respectively. Thus I propose to independently shift every 16

tracks or 2 bytes (the greatest common divisor of the 4 non-zero sizes) instead of shifting the

whole block. For instance, in order to access a cache line compressed by the REP4 scheme,

I only need to shift 32 tracks (or I do not need to shift 480 tracks) to be aligned with the

access ports to read the cache line. Thus, considerable shift energy can be saved in this way

through compression combined with independent shifting.

Each shift controller implementation can be reduced to the complexity of a 4-bit adder

which consumes 39.84fJ per operation according to a LEAP adder design [108]. In my

MRC, to shift a 64 byte uncompressed cache line, 32 independent controllers are needed.

According to my evaluation with 20 applications, the average compression ratio is 32%,

thus 11 (0.32*32) controllers are used, on average, per access, making the controller energy

consumption 0.438pJ (11*39.84fJ). While each access requires an average of 467 shifts which

consumes 28.81pJ per my evaluation, the shift controllers consume a nominal overhead of

approximately 1.5% of the total shift energy.

6.1.4 Skewed Alignment

In-place compression and independent shifting are effective in saving dynamic power but do

not provide a performance improvement. As mentioned in Section 6.1.2, compressed cache

lines are placed in original storage area allocated for a full cache line. However, as compressed

cache lines reduce the number of bits to be written, it is not necessary to align them with the

beginning of the storage cell. Consider the example shown in Figure 46 when there are three

overlapping accesses to three different cache lines in the same RM subarray: way W0 of each

of the first three sets of the subarray. In TapeCache, two accesses must stall until one finishes,

as all the bits on the same track share a single port. After each access completes, the tracks

must be shifted by at least two domains to allow the next cache line to be accessed at the

port. Due to the spatial locality of access present in many applications, this contention turns

out to be very common and can result in significant performance degradation. In this same
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scenario, if the three cache lines can be compressed into the sizes of the shaded bars shown

in Fig. 46 and their alignment skewed accordingly, by leveraging independent shifting the

Set0W0 stored on Track0−15 can be accessed by Port0−15 without affecting the access to the

Set1W0 on Track32−47 or the Set2W0 on Track16−31. Shifts are still required to move them

to the access port location but their cell alignment is no longer (necessarily) overlapping thus

reducing the subarray contention and leading to both energy and performance improvement.

In such a scenario, a critical step is to determine where the compressed cache lines are

to be skewed in the storage cell. This is complicated by the need to determine the skewed

alignment when the cell is written while the most contention may be generated by reads

with a potentially significantly different access pattern. I considered two schemes, random

and round-robin. Round-robin was selected due to its simpler hardware and it turned out

to perform better than random. The top part of Fig. 46 shows the basic operational flow of

a write to the MRC LLC. The round-robin block aligner determines the skew and requires

a negligible overhead due to the limited input/output range (0, 2, 4, ..., 62) [109]. To store

the skewed alignment location, I require an additional four bits to be added to the three bits

for the compression code in the tag array. These extra bits are considered for both area and

static power overheads as described in the next section.

6.2 EXPERIMENTAL METHODOLOGY

To evaluate the effectiveness of the compression with independent shifting for Racetrack-

based LLC I extended the Sniper full system simulator [100] to include a Racetrack LLC

structure. To simulate the impact of the Racetrack structure in Sniper I modified the LLC

structure to maintain the Racetrack state and to determine the access latency based on

the actual shift latency. The implementation models the impact of contention between

temporally overlapping accesses to cache lines mapped to the same tracks and determines

the accesses that can proceed in parallel in the same subarray.

I simulated a 64-core processor with 1MB LLC for all memory models operating at a

core frequency of 3GHz. For latency, power, and area parameters I use CACTI [110] to
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Table 7: Global architecture parameters

CPU 64 cores, 3GHz, 4-dispatch width

L1 Cache 32KB I-cache, 32KB D-cache, 4-way, 64B block size, LRU replacement

L2 Cache Unified, 1MB, 8-way, 64B block size, LRU replacement

Compression 1-cycle decompression latency

9.96fJ per bit per addition/subtraction for compression/decompression unit

model SRAM, NVSim [101] to model STT-MRAM, and a modified NVSim to model RM.

I assume that the area of one RM track is dominated by the area of access transistors due

to the 3-D structure (see Figure 6 and adopt the cell size of 2F 2 [102]. RM shift latency

and energy are calculated based on a size 120*720nm2 perpendicular magnetic anisotropy

(PMA) nanowire [103]. RM reads and writes faster than STT-MRAM thanks to its smaller

peripheral circuitry. Faster shift-based writes have also been proposed for RM [15]. My

studies indicate that independent shifting is equally applicable to both shift and current

based writing strategies achieving comparable performance gains. This is because the shifts

optimized by MRC dominate the total latency of accesses. Detailed parameters for each

memory type based on a 32nm technology feature size are listed in Table 81. A LEAP adder

design [108] with energy consumption of 9.96 fJ/bit per addition operation with an assumed

1-cycle latency for each decompression operation as reported in [80] is adopted to model the

4 compression schemes. Detailed configurations are listed in Table 7.

For simulation workloads, I use 20 parallel applications drawn from the Parsec [104]

and Rodinia [111] benchmark suites. Each application is executed with 64 threads and

characterization is started from the parallel section or “region of interest” (ROI) with 1

billion instructions to warm up the cache followed by 1 billion for evaluation.

1All memory types use SRAM tag arrays for fairest possible comparisons.
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Table 8: LLC parameters of different memory technologies

Memory technology SRAM STT-MRAM RM MRC

Tag access latency (ns) 0.34

Data read latency (ns) 1.89 1.69 1.35

Data write latency (ns) 1.89 3.91 3.25

Shift latency (ns) N/A N/A 0.643

Read energy (pJ/access) 142.25 57.74 60.03

Write energy (pJ/access) 67.76 129.37 121.56

Shift energy (pJ/cell) N/A N/A 0.0617

Leakage power (mW) 166.9 15.42 8.66 9.38

Tag area (mm2) 0.12 0.12 0.12 0.14

Data area (mm2) 2.39 0.65 0.062

Total area (mm2) 2.51 0.77 0.18 0.2

6.3 RESULTS

As previous work has demonstrated, the tremendous advantages of employing RM is to

improve cache capacity and improved performance due to reduced miss rates [16, 17, 71].

MRC is compared against existing RM cache proposals (e.g., TapeCache), which utilize a

similar logical organization. Thus, I consider isocapacity replacements for comparison and

include SRAM and STT-MRAM mainly for reference. Evaluation results of a 1MB LLC are

presented both to remain consistent with conservative SRAM capacities and to ensure that

benchmark simulations do not become largely cache bound2. For both RM and MRC, track

lengths of both 16 and 32 elements are considered because they reflect the most popular

track sizes in previous work3.

2Simulations with LLC sizes of 4MB and higher often become cache bound due to the limited workset
sizes of even the larger benchmark workloads.

3The 1T1P assumption makes even longer track lengths possible which would increase track contention
and the benefits of MRC.
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6.3.1 Performance
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Figure 47: Breakdown of occurrences of 5 compression schemes (including blocks that cannot

be compressed) in executing one billion instructions in 20 different applications.

Fig. 48 (top) shows the system performance comparison of six different LLC schemes.

For most applications, SRAM outperforms RM and STT-MRAM due to the isocapacity

assumption and SRAM’s considerable write speed advantage. In cases where the writes

are essentially cache bound in the L1 (e.g., ferret, fluidanimate, streamcluster, and srad),

STT-MRAM and RM outperform SRAM due to their lower read latency. However, shifting

overheads tend to counteract the latency improvement from the smaller peripheral circuitry

of the more dense RM (e.g., pathfinder), deflecting the average performance lower than

STT-MRAM. However, by compressing cache lines and interleaving shift operations at finer

granularity, MRC is able to improve the performance of RM by more than 5% for both

16-bit and 32-bit length tracks. Thus, the performance improves by 4% and 3.5% for 16-

bit and 32-bit tracks, respectively, over SRAM. In some applications, such as dedup and

pathfinder, dramatic (i.e., over 10%) IPC improvements result from the high compression

ratios. Conversely, in applications such as raytrace and srad, MRC degrades performance

of RM because the compression/decompression overheads yield relatively low compression
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rations. As shown by the compression breakdown of the four schemes in Fig. 47, most blocks

in these two applications are uncompressed. For these rare applications with low compression

ratio, the compression/decompression logic could be bypassed to achieve similar performance

to RM.

6.3.2 Energy

Fig. 48 (bottom) shows the energy consumption results. Non-volatility helps STT-MRAM

and RM to achieve significant energy savings compared to SRAM: 7.68x on average. Com-

pression further reduces dynamic power, especially of expensive write operations. Numbers

of shifts are also greatly reduced by compression and the capability of shifting independently

in a group of 16 tracks, as partially indicated in Fig. 44. Additionally, the shorter execution

time of MRC saves leakage power. On average, more than 19% energy savings are seen for

both MRC-16 and MRC-32 compared to RM-16 and RM-32, respectively.
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Figure 49: Energy breakdown of a 1MB Racetrack LLC w/ compression (16-bit long track,

64 program threads).

The LLC energy consumption of the MRC-16 scheme is divided into five parts as pre-

sented in Fig. 49. The static energy consumed by the SRAM tag array and other peripheral
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circuitry accounts for 51.5% of the total consumption. Of the remaining energy, reads, writes

take up 20.2% and 8.5% respectively, shift operations consume 18.3%, and lightweight com-

pression/decompression consumes only 1.5%.
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7.0 IMPROVING EFFICIENCY OF WIRELESS SENSOR NETWORKS

THROUGH LIGHTWEIGHT IN-MEMORY COMPRESSION

7.1 WSN MEMORY AND NETWORK CO-DESIGN FOR

LOW-OVERHEAD COMPRESSED COMMUNICATION

In this section, the collaborative designed in-place memory compression and network inter-

face approach to reduce the overhead of software compression for communication in a WSN

are described. The next section covers the utilization of lightweight in-place compression

in memory and the following sections describe the reorganization of sensor data to be more

effectively compressed and, finally, how packets are constructed for transmission from the

compressed memory blocks.

7.1.1 Lightweight In-place Compression

In contrast to even the simplest software compression approaches, lightweight compression

can be tightly integrated in the cache or memory controller with negligible overheads [83].

However, popular lightweight compression methods, such as ZERO [106], Repeated Value [107],

and BDI [80], trade this simplicity for restrictions on what data patterns can be com-

pressed and often achieve a significantly reduced compression ratios compared to software

approaches.

For example, ZERO compression simply identifies blocks that store all ‘0’s for each bit

and typically replace it with a single ‘0’. Similarly, repeated value compression partitions

a block into smaller sub-blocks and in cases where all the sub-blocks hold identical data,

replace it with a single copy of the data. A 64-byte block compressed with REP4 contains
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8B 7B 7B 7B 7B 7B 7B 7B

8B 49B

Original

8B 8B 8B 8B 8B 8B 8B 8B

8B 56B

B8D1

Original

REP-8

Base Offset Excluding offset Saved space

1B

(a) A 64-byte REP-8 compressible block

(b) A 64-byte B8D1 compressible block

Figure 50: Before and after comparison of compression schemes: (a) REP-8 (b) B8D1.

sixteen 4-byte sub-blocks with exactly the same value. As mentioned in Section 2.4.1, BDI

compression leverages low dynamic range patterns exhibited by contiguous sub-blocks within

a data block. Like repeated value compression, BDI partitions a large block into multiple

smaller sub-blocks. However, BDI is more flexible as it encodes the original block with a

Base sub-block and multiple offsets (∆s).

Depending on the content, a block can be compressed with different schemes, including:

8-Byte Base + 2-Byte ∆ (B8D2), 8-byte Base + 1-byte ∆ (B8D1), 4-byte Base + 2-byte

∆ (B4D2), 4-byte Base + 1-byte ∆ (B4D1), etc. Additionally, both ZERO and Repeated

Value compression can be treated as special cases of BDI: ZERO is B0D0 (no Base or Offset

information is needed), while REP-n is BnD0 (only an n-byte Base is required).

Fig. 50 shows two lightweight compression schemes applied on a 64-byte data block (a

common size of a cache line): REP-8 (B8D0) [Fig. 50 (a)] and B8D1 [Fig. 50 (b)]. Recall,

REP-8 requires all eight, 8-byte sub-blocks to have the same content, such that one sub-

block (plus a compression code) can represent the whole block. B8D1 is less restrictive and

requires that the highest seven bytes of each 8-byte sub-block have the same content. Thus,

it is necessary only to store the first 8-byte sub-block intact as the base and the remaining

seven sub-blocks’ lowest byte as offsets from the base (plus a compression coding) to represent
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64B 64B 64B … 64B

… Metadata Exception region

…

Original page

LCP

In-place

Used space Saved space “Don’t care” space

Figure 51: Comparison of space saving compression with LCP with in-place compression for

a memory page.

the entire 64-byte block. The compression code may be stored in a variety of ways, such as

in a metadata block/page [81, 82], at the end of unused space of each compressed block [83]

similar to ECC parity bits in the memory, or alongside of tags in caches [72].

As illustrated in Fig. 51, compression to increase memory density (e.g., LCP) concate-

nates compressed data blocks in order to reduce the page size requirement. Blocks within

a page must be compressed using the same scheme, the incompressible blocks are placed in

the exception region and indexed by metadata. This approach introduces addressing com-

plexity and may cause significant overhead when exceptions occur. For example, if a block

is overwritten and the previous compression scheme no longer applies, the compressed block

size changes and all blocks concatenated after this one have to shift accordingly. Moreover,

if a compressed page increased from just under 1K to just over 1K, a page fault exception

is triggered to create a 2K page. In contrast, in-place compression does not concatenate

compressed data and leaves each block in its original position. As shown in Fig. 51, space

for redundant data is not eliminated, but treated as “Don’t Care” space and not utilized.

This leaves the memory addressing and offsets intact while clearly marking the critical data

for decompression. Benefits of in-place compression have been demonstrated by several prior

work as mentioned in Section 2.4.1.

In this work, lightweight compression configurations of BDI are utilized with the eighth

encoding being uncompressed. They are prioritized according to the compressed block sizes

as shown in Table 9. These seven BDI compression configurations were selected based on
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Table 9: 8 compression schemes (including uncompressed scheme) ordered by sizes after

compressing a 64-byte data block (smaller compressed sizes have higher priories).

Scheme ZERO REP-4 REP-8 B8D1

Encoding 111 110 101 100

Size (byte) 0 4 8 15

Scheme B4D1 B8D2 B4D2 UNCOMPRESSED

Encoding 011 010 001 000

Size (byte) 19 22 34 64

their relationship to the common sizes of the data primitives used in the WSN applications

(e.g., 32-bit integer and floating point, 64-bit string, etc.) and their sensor datasets. The

number of bits required to select the correct encoding scheme (i.e. three bits) is determined

by the number of compression schemes used (i.e. eight schemes). The detailed encoding

metadata organization is adopted to be consistent with the communication protocol in the

WSN. I demonstrate this for the TCP segment standard in Section 7.1.3. In the next section

I introduce another technique which can increase the compression ratio of sensor data using

lightweight BDI compression.

7.1.2 Source-Aware Layout Reorganization (SALR)

As explained in Section 2.4, we recall that data sensed from the same source often demon-

strates strong temporal correlation. In this section, I propose a technique called Source-

Aware Layout Reorganization (SALR) that leverages this correlation property to better

compress data from a collection of sensors in order to improve the transfer efficiency of

WSNs. I explain this concept in the context of a fairly typical example.

<work_unit>

<electricity_usage>

2012-08-08 13:00:00,11.0,7.4,11.8,5.8,5.2,

1.2,8.1,19.7,4.8,50.0,34.0,22.3,181.3,0

</electricity_usage>
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<grid_mix>

0.70,0.00,0.13,0.17,0.01,0.00

</grid_mix>

</work_unit>

<work_unit>

<electricity_usage>

2012-08-08 14:00:00,10.2,7.3,11.7,6.2,5.2,

1.0,8.0,19.5,4.8,51.0,32.0,22.0,179.0,0

</electricity_usage>

<grid_mix>

0.70,0.00,0.13,0.17,0.01,0.00

</grid_mix>

</work_unit>

<work_unit>

<electricity_usage>

2012-08-08 15:00:00,11.1,7.3,13.8,6.1,5.7,

1.1,7.6,20.7,4.8,50.0,32.3,22.3,182.8,0

</electricity_usage>

<grid_mix>

0.70,0.00,0.13,0.17,0.01,0.00

</grid_mix>

</work_unit>

...

Listing 7.1: An input data set example

Listing 7.1 shows the structure of an XML file correlating electrical usage and electrical

generation for a commercial building. The input data is relationally organized according to

the data and time. Data collected from different sensors at the same time is put into the

same workunit, which represents the smallest repeating unit of data sets. In this example,

data is collected hourly from 14 electricity meters in the building. The second element

“grid mix” is the national average electrical mix [112] which was used to break down the

electrical consumption from the building into its fractional generation by fuel type (coal,

petroleum, natural gas, nuclear, etc.). This breakdown is used in a dynamic life cycle

assessment (DLCA) to calculate carbon emissions along with electricity usage, since each

type of fuel releases different amounts of pollutants [95].

Fig. 52 shows how the original structure of a packet containing 16 workunits where data

is organized and correlated by time points. Each workunit contains an eight-byte string type

timestamp, 14 four-byte floating point values for electricity usage data, and six, four-byte

floating point values representing the electrical grid mix data. Fig. 53 illustrates the layout

of this packet if directly placed in contiguous memory. Each small square represents one
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Structure of a workunit 88 bytes

Timestamp 8 bytes

electricity_usage.sensor[14] 14 x 4 bytes

grid_mix.fuel[6] 6 x 4 bytes

Structure of 16 

workunits
1408 bytes

workunit[16] 16 x 88 bytes

Figure 52: Original structure of a 16 workunit structure.
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Figure 53: Original layout (byte map) of a 16 workunit packet.

byte, and each row has 64 bytes to represent a typical cache-line and page sub-block. Red

segments are timestamp strings; green segments are electricity usage data; blue segments

are grid mix data. Values of different data types have minimal correlation and as a result,

BDI lightweight compression schemes which rely on the low dynamic range of neighboring

blocks do not provide good compression results on this structure.

Sensed data from the same sensor target, such as temperature, humidity, and CO2 con-

centration of a room tend to have much better range correlation. Thus, I propose SALR to

group data from the same sensor at consecutive time points next to each other, while still

maintaining the order according to the timestamp. Fig. 54 shows the SALR-optimized data

structure and Fig. 55 shows the byte map in which each row contains the same type of data.

In the following section I demonstrate the advantage of using the SALR layout in WSN data

transfers.
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Structure of 16 workunits for 
in-place compression 1408 bytes

Timestamp[16] 16 x 8 bytes

electricity_usage.sensor[14][16] 14 x 16 x 4 bytes

grid_mix.fuel[6][16] 6 x 16 x 4 bytes

Figure 54: Reorganized structure of a 16 workunit structure.
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Figure 55: Reorganized layout (byte map) of a 16 workunit packet.

7.1.3 Memory Network Compression Co-Design

Recalling that lightweight compression can be efficiently implemented in hardware and na-

tively integrated into the memory controller with negligible overhead (see Section 7.1.1), this

natively compressed data can be sent directly from memory over the network in a WSN in

place of using software compression. In this section, the system designed to translate the

compressed data into network packets in the WSN context is explained.

Fig. 56 illustrates my proposal for integrating lightweight compression hardware in the

memory, and seamlessly wrapping compressed memory pages into reduced payload of TCP

segments. In fact, my co-design concept is hardware compression-type agnostic and is com-

patible with schemes such as SOCO, Memzip which compress to improve metrics such as

energy efficiency as well as LCP, which concatenates pages to increase effective memory
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Figure 56: Memory network co-design and work flow of compressed transfer in WSN.

capacity. In-place compression (Memzip/SOCO) help to reduce the bytes written to the

cache/memory, thus consumes less memory bandwidth or dynamic power of write oper-

ations [82, 83]. Space saving compression [81] increases the overall effective density by

utilizing smaller pages to store compressed data allowing more pages to be stored in mem-

ory.Without loss of generality, I present the design using an in-place compression approach

while mentioning the difference with a space saving approach (LCP) and evaluate both in

Section 7.2.

I explain how my co-design scheme works starting from the initial point of acquisition

and storage of sensor data into memory. Seven compression units (CUs) of the CU array
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(top right of Fig. 56) simultaneously examine the content of incoming data block, and output

whether it is compressible with the corresponding scheme, along with the compressed block.

Thanks to the low latency nature of lightweight compression, compression circuits are simple,

comprised of simple adder logic [80]. Compression scheme selection is handled with priority

encoding (combinational) logic and, as a result, encoding takes only a few cycles. This

nominal delay tends not to impact system performance as write operations are typically not

on the critical path of memory accesses. In my experiments, the impact of compression on

the overall system performance is negligible. Based on the seven outputs and the priority

order, the scheme selector picks the best available compression scheme (or “uncompressed”)

and outputs the encoding to a metadata storage location, which can be stored either in non-

addressable memory space similar to ECC [83], within a metadata space within the page [81],

or within a separate metadata page [82]. The case of non-addressable storage is shown using

the same terminology as previous work regarding a compression vector (CV) [83] (top left

of Fig. 56). This technique is easily applied to systems storing the compression metadata

within the compressed page or within a compression metadata page.

The dark gray area of data blocks in the memory page of Fig. 56 represents the useful

bytes after compression (e.g., the second block is REP-4 compressible, thus, only the lowest

four bytes are useful). For space saving compression, page sizes would be non-uniform in

size, so the operating system would have to support multiple page sizes simultaneously.

Sending data starts with a read operation loading the compression encoding (CE) from

the metadata region (e.g., CV) and the data bytes from memory pages, respectively. The

compression code is used to mask which bytes of the data block contain useful data and

concatenates them into a shorter block. For space saving compression, this is already done,

and the code along with the datasize tells the system how many subpage blocks are contained

in the compressed section.

There are 6 reserved bits in TCP segment header (bottom right of Fig. 56), which are used

to store the CE. The value is initially set to zero by default, which indicates uncompressed

data. Thus, uncompressed blocks naturally become regular TCP packets. A compressed

block is embedded into the segment as payload and wrapped with source and destination IP

addresses into a IP packet ready for transfer.
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My approach groups consecutive blocks into the same TCP packet if they share the

same compression scheme. For example, a memory page is partitioned into three payloads

(compressed with three different schemes), and are segregated into three packets, as shown

in Fig. 56. The maximum transmission unit (MTU) or largest TCP packet size of IEEE

802.11 wireless standard is 7981 byte [113], which is larger than a typical 4K page, making it

possible to transfer an entire memory page if all of its 64-byte blocks are compressible with

the same compression scheme. Of course, for a memory page where every consecutive block

has a different compression code, this can create a significant amount of overhead. However,

as illustrated in Figs. 53 and 55, my SALR approach reorganizes similar data together. As

a result, my studies found that most consecutive cache line sized data blocks were actually

compressed with the same scheme because of that.

Upon receiving a packet, the receiver node (bottom left of Fig.56) extracts and stores

the compressed payload along with its CE (again, metadata location varies across different

designs) into the contiguous memory region. A memory page is then restored after one or

more (in this case, three) packets arrive. To access the received data, the memory controller

reads CE and decompress the compressed page accordingly with simple logic as is native to

the lightweight compression scheme.

7.2 EXPERIMENTS AND RESULTS

To evaluate the impact of my proposed co-design memory and network compression, I applied

different methods of lightweight compression with and without SALR on a variety of data

logging benchmarks relevant to sensor networks including hourly and monthly temperature

and precipitation data from NOAA 1981-2010 climate normals [18] and 1976-2014 Nasdaq

composite index data [114] and an in house sensor network data as described in Section 7.1.2.

I implemented my approach using real hardware consisting of Asus/Google Nexus 7 (2012)

tablets evaluating the transfer time of seven benchmarks of data via Bluetooth and WiFi

Direct connections. I compared both lightweight in-place and space saving compression with

software (ZIP) compression applied to both original and SALR data layouts.
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7.2.1 Impact of SALR

Examining the NOAA and NASDAQ data, the original format for hourly temperature is as

shown in Fig. 57(a) and the original daily or monthly Nasdaq index data is formatted as

shown in Fig. 57(b). Considering the NOAA data, station ids, dates, and hourly readings are

represented in different data structures, and thus each field should be grouped consecutively.

When applying SALR, temperatures of different stations at the same time of day are treated

as being from the same source. Regarding the financial data, different data fields such as

daily values of opening, closing, low, and high may tend to be within a similar range, but

the volume field will destroy range locality if grouped by date rather than field. In the

remainder of this section, I examine the compressibility of seven data groups, temperature,

precipitation, and Nasdaq financial data for with both hourly and monthly data, along with

my in-house wireless sensor network data (MCSI) in both original and SALR formats, using

LCP and in-place lightweight compression, and compare them with the popular ZIP software

compression approach.

Station 

id
Date

1st hour 

data

2nd hour 

data
…

24th hour 

data

(a) NOAA hourly data.

Date Open High Low Close Volume
Adj. 

Close

(b) Nasdaq daily index data.

Figure 57: Data formats.

Fig. 58 shows the occurrence breakdown of the adopted eight lightweight schemes in seven

data groups, with the original and SALR optimized data layouts. Nearly all of the data is

originally uncompressible with the lightweight compression, due to the mixed alignment of

different data types. MCSI data is an exception because the electricity data from several

meters contains a significant number of zero readings, particularly on weekends when the

building is not in heavy use, leading to 25% of the data having some lightweight compress-
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Figure 58: Breakdown of eight lightweight compression schemes.

ibility. After realigning the elements in the original data structures according to their sources

(SALR), all of the data sets become compatible with at least one of the seven compressible

schemes.

As mentioned in Section 2.4.1, lightweight compression typically cannot compete with

traditional software-based approaches in terms of achievable compression ratio. Thus, I com-

pared the lightweight compression techniques with the popular ZIP software compression on

both original and SALR data layouts. The results are summarized in Fig. 59. Hourly

data, which tends to have less fluctuations among neighboring values (sub-blocks), has a

better compression ratios than monthly data1. While ZIP compression achieved an almost

6X compression ratio for the original data set, lightweight compression was extremely inef-

fective. SALR was extremely effective for achieving higher lightweight compression ratios,

bring space saving compression up from no compression to about 2X compression and in

place compression up to nearly 4X compression. As expected, ZIP outperforms lightweight

compression thanks to its more complicated encoding, and in-place compression outperforms

LCP thanks to its finer compression granularity. LCP, though uses the same compression

1Nasdaq data is an exception, probably due to that fact that, unlike temperature or precipitation, stock
prices do not follow certain physical laws and thus, are more random.
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Figure 59: LCP, in-place (IP) and ZIP compression ratio for original and SALR data layouts.

Compression ratio is rawSize
compressedSize

(higher is better).

algorithms (ZERO, Repeated Value, BDI), must apply the same compression scheme across

an entire page. Somewhat surprisingly, I found that SALR also helped to slightly improve

the result of ZIP compression although for MCSI and Nasdaq daily datasets it caused a

slight degradation.

7.2.2 Compressed transfer in a WSN

With the proposed design in Section 7.1.3, lightweight compression can be naturally inte-

grated in WSN packet transfers with minimal overhead. The time needed to use software

compression in the construction of packet is an overhead that is eliminated by in-memory

lightweight compression and should be considered as an overhead. My experiments added

the software compression time to the total transfer time of the ZIP compression scenarios,

determining the compression and decompression times by running them on the Nexus 7

tablet as well. Results were the average of three runs for each communication scenario. The

average values are listed in Table 10. Due to the randomness of real-world wireless transfer
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Table 10: ZIP compression and decompression time on a Nexus 7 (2012) tablet

Time (ms) MCSI temp-mly temp-hly prec-mly prec-hly nasdaq-mly nasdaq-dly

Compression Original 15.33 274.67 216.00 261.33 167.33 11.00 87.00

SALR 14.67 228.67 126.67 240.00 117.00 9.67 91.67

Decompression Original 15.67 70.67 103.00 68.33 113.00 6.33 72.00

SALR 16.33 64.00 93.33 67.67 92.33 6.67 56.00

tests, instead of getting each transfer time by individual experiment with wide variance, I

did fairly exhaustive experimentation to determine an average transfer rate used for all ex-

periments. This rate for Bluetooth was 73.2 kB/s, from which I calculated the total transfer

time for all scenarios.

Fig. 60 shows the Bluetooth transfer time of seven groups of data files with four different

“compression” and “data layout” combinations. The “LCP-original” scenario requires the

longest transfer time for all files as it produces the lowest compression ratios and serves as

my baseline. All results of the remaining combinations are normalized to this scenario. In 5

out of 7 data benchmarks, ZIP compressed transfer, even with the slight boost from SALR-

optimized layout, takes longer time than in-place compression (IP). On average, compared

to “IP-original,” “IP-SALR” reduces 70% of the transfer time thanks to the high compress-

ibility advantage from SALR. Compared to the two ZIP schemes, “IP-SALR” reduces the

transfer time by 16.3% and 7.3%, respectively, due to the savings of the compression and

decompression overheads (see Table 10).

I considered similar scenarios using the faster WiFi-Direct for point-to-point connectivity

in the mobile device constructed WSN. WiFi has a wider range and much higher transmit

rate than Bluetooth [115]. The results for Wifi-Direct are shown in Fig. 61. With the higher

transmission rate, the overhead of compression and decompression is amplified. Even though

the ZIP schemes have much smaller compressed data, their total transfer time is close to the

baseline, while SALR helps to reduce the transfer period by 12.5%. My proposed co-design

with in-place compression scheme, “IP-SALR”, achieves an impressive 65.4% transfer time

reduction compared to the “ZIP-SALR” scheme for this configuration.
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Figure 60: Bluetooth transfer time of LCP, in-place (IP), and ZIP compression, with original

and SALR layouts (normalized to LCP-original).
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Figure 61: WiFi-Direct transfer time of LCP, in-place (IP), and ZIP compression, with

original and SALR layouts (normalized to LCP-original).
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8.0 CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

In this dissertation I explore the notion of leveraging the ubiquity of palmtop computers to

build highly flexible, efficient, and capable wireless sensor network systems. To accomplish

this I develop a lightweight grid computing and self organizing communication system layer

for these devices. To improve the energy efficiency and storage capability to support this

computing and communication system layer I propose the use of next generation non-volatile

memories throughout the memory hierarchy as well as two novel approaches to optimize

these structures from the lowest level of the cache hierarchies to higher levels such as last

level caches and main memory. Finally, I create a direct link between these architectural

advancements and the communication layer with a memory/network co-design approach that

leverages lightweight compression used to improve the efficiency of the memory to improve

the communication efficiency over multiple types of wireless connections.

•Ocelot: I introduce the Ocelot system, a commodity palmtop device based, distributed

computing engine. I demonstrate in a case study a green building and in a larger context of

an integral component of my dynamic life cycle assessment work, that Ocelot is a robust and

energy efficient platform. My experiments show that Ocelot clients can save 86% of energy

comparing to traditional computers just during times when tasks are being computed, and I

still see a 67% energy saving in tests based on efficient compression in data communication.

By assigning tasks to a large amount of clients, significant speedups can be achieved.

• Lynx: I also present the Lynx system, a self-organizing wireless sensor network with

palmtop devices. The Lynx system alone provides a smarter yet reliable approach to con-

figure the wireless sensor network. The self-organizing features are great guides for me in
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designing and implementing WSNs in real world hardware, reducing human intervention in

both configuration and maintenance. As shown in the experimental results, WiFi-Direct

connection provides better speed due to the direct P2P link and higher transmitting rate.

With the shorter radio range and slower speed of Bluetooth, Lynx still achieves a reasonable

result. Combining Ocelot, it saves up to 88% of energy compared to the previous Ocelot-

only system, let alone the more power-hungry computer platform such as BOINC. The

flexibility that Lynx-Ocelot system provides in communication and distributed computing

has huge potential for applications in areas ranging from health care to big data collection

and processing. The global network map maintenance and multi-hop routing modules laid

the foundation for possible future directions such as real world testing of different routing

algorithms.

• FusedCache: I also present a lower level cache design named FusedCache, a naturally

inclusive dual-level private cache which fully utilizes RM’s storage density. While prevailing

RM research work focuses on sacrificing high density to improve performance by aligning

multiple ports along one track, I try to fully explore the feasibility of adopting a simpler

single-port track structure in low level caches. One critical challenge is to provide fast,

uniform L1 access with non-uniform access pattern. My proposed design naturally fuses two

levels of caches, with constant access latency at one level and variable latency at the next.

The experimental results demonstrate that using the best current RM cache organization

(TapeCache) is ineffective in improving performance by leveraging additional capacity. In

contrast, when compared to an iso-area SRAM cache replacement, FusedCache improves

performance by more than 7% and reduces energy by 33%. Compared to an iso-capacity

two-level SRAM cache replacement, FusedCache saves cache energy by 69% while providing

similar performance.

• MRC: I also present MRC, an energy efficient Racetrack-based LLC design using

lightweight compression with independent shifting and skewed alignment to accelerate cache

accesses. While prevailing RM research topics focus on optimizing the MP1T structure, I

attempt to fully explore the potential of the original 1P1T structure for its higher density yet

lower complexity. Two major challenges to this work include Racetrack’s energy hungry write

operations and its costly pseudo-sequential access pattern. To address these, cache lines were
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compressed using lightweight schemes, and store the compressed data in its original place

without concatenation, but realign the starting locations to reduce contention for the limited

ports. The experimental results demonstrate the effectiveness of the independent shifting

at reducing both unnecessary waiting time for port resources and energy consumption from

read, write and shift operations. Besides, the drastic on-chip cache area reduction achieved

by the 1P1T structure makes it promising to employ RM in mobile or smaller form factor

embedded systems than stationary computing platforms.

• Co-design: Compression turns out to be an effective and sometimes necessary ap-

proach to improve the usability of both high level WSN application and low level cache/mem-

ory designs. I have demonstrated that software-based compression, though takes extra time

to compress and decompress, is able to significantly reduce data transfer time over the Lynx

network. However, software compression have considerable overhead of compressing (be-

fore transfer) and decompressing (after transfer). To explore the potential of leveraging low

overhead hardware-based compression in WSN transfers, I present a network and memory

co-design combining memory-level in-place compression with network-level packet transfer.

As prior work has demonstrated that in-place compression is effective in saving bandwidth

and dynamic write power, especially for emerging memories, I extends this approach par-

ticularly to improve the efficiency of WSN transfer. By natively compressing the data in

the memory and sending reduced payload, lightweight compression outperforms traditional

software-based approach which has expensive compression and decompression overhead. Ad-

ditionally, I propose SALR, a technique specially designed to improve the compressibility of

sensor data. Experiments demonstrate that, in terms of compression ratio, SALR improves

the traditional software-based ZIP compression by 7.3%, and hardware-based lightweight

compression by 230%. The integration of these two orthogonal techniques greatly reduces

total transfer time of various types of sensor data in a WSN. Using Bluetooth connections,

my proposed scheme achieves a 7.3% reduction in transfer time compared to the second best

scheme. And this advantage grows significantly to 65.4% with faster WiFi-Direct connec-

tions.
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8.2 FUTURE WORK

8.2.1 Future Work in Environmental Impact Evaluation

Caches require about 20% of the total energy consumption of a modern processor [116],

which in a regular usage scenario, consumes about 14% of the total battery power of a typi-

cal palmtop computer [117]. On the other hand, in a typical four-core system, the proposed

RM cache designs are able to achieve an 83% cache (three-level) energy reduction, leading to

a 2.3% overall system energy saving. As described in Section 3.7, LCA provides a compre-

hensive view of the environmental impact by a process or product, including global warming

potential, acidification, and ozone depletion. With additional information on grid mix and

palmtop device market penetration, it becomes possible to evaluate the broader environ-

mental impact of my architecture-level work using LCA. Assuming that each of the 34,934

students enrolled at the University of Pittsburgh in 2014 had a palmtop device, the adoption

of my proposed cache designs would have saved a total of 17,889 kWh electricity. This can

be broken down into the 16,601 kWh that would not have been consumed by the tablets and

1,288 kWh of electricity that would have been required for the electricity generation process

to generate that 16,601 kWh that would have been required by the tablets. This correlates

to a potential reduction of 10 tons of greenhouse gas emissions (CO2 equivalent) each year.

Conducting LCA to study the broad impact of those designs on a larger population would

be a potentially interesting future direction. Moreover, in specific areas such as distributed

computing and wireless sensor data communication, the proposed Ocelot and Lynx plat-

forms, as well as the memory network co-design, can further reduce the energy consumption

of palmtop devices, the environmental impact of which can be explored similarly.

8.2.2 Future Work in WSN System Improvements

• Smart hybrid wireless communication: Lynx is independent of the low level wire-

less connectivity, and is capable of either sending data over Bluetooth, WiFi-Direct, or

other protocols available in the system. A possible future direction is smart hybrid wire-

less communication. Bluetooth is known to have a shorter signal coverage and a lower
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transfer speed than WiFi-Direct, but consumes less power, and therefore is better suited

to transfer small quantities of data. By intelligently switching between all possible con-

nectivities, it is possible to achieve a wider coverage, a reasonable transfer speed, and an

optimal energy efficiency.

• Storage reliability: The distributed database management system (DDMS) and dis-

tributed file management system (DFMS) for Ocelot task execution over Lynx networks

are implemented in a lightweight fashion to prove the concept of pure P2P distributed

computing. There is a battery of existing work on distributed database topics such as

localization of data, concurrency control, data replication, and failures, etc. A possible

future direction is to improve the data reliability in Lynx by integrating these techniques.

On the other hand, Lynx can be used as a real-world testbed for WSN evaluations of

these techniques.

• Transmission reliability: Forward error correction (FEC) is commonly used to correct

errors in data transmission by sending redundant information encoded as an error cor-

recting code (ECC). A possible future direction for lightweight in-place compression is

to improve transmission reliability in conjunction with FEC. The compressed data itself

takes less space thus shorter ECC to encode. Moreover, the saved space can be utilized

to store the code in order to save both bandwidth and transmission time.

117



BIBLIOGRAPHY

[1] M. Meeker and L. Wu, “Kpcb internet trends 2013,” in Internet Trends D11 Confer-
ence, 2013.

[2] D. P. Anderson, “Boinc: A system for public-resource computing and storage,” in Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on. IEEE,
2004, pp. 4–10.

[3] A. Van Someren and C. Atack, The ARM RISC Chip: a programmer’s guide. Addison-
Wesley, 1994.

[4] J. S. JESD209, “Low power double data rate (lpddr) sdram specification,” JEDEC
Solid State Technology Association, vol. 8, 2007.

[5] R. Heydon, Bluetooth low energy: the developer’s handbook. Prentice Hall, 2012.

[6] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Mobile processors for energy-efficient
web search,” ACM Transactions on Computer Systems (TOCS), vol. 29, no. 3, p. 9,
2011.

[7] M. Mouly, M.-B. Pautet, and T. Foreword By-Haug, The GSM system for mobile
communications. Telecom publishing, 1992.

[8] A. J. Viterbi, CDMA: principles of spread spectrum communication. Addison Wesley
Longman Publishing Co., Inc., 1995.

[9] N. R. T. Definition, “Nfc forum technical specification,” 2006.

[10] S. Bluetooth, “Specification of the bluetooth system, version 1.1,”
http://www.bluetooth.com, 2001.

[11] W. Alliance, “Wi-fi standards,” 2007.

[12] S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,”
Science, vol. 320, no. 5873, pp. 190–194, 2008.

[13] A. Annunziata, M. Gaidis, L. Thomas, C. Chien, C. Hung, P. Chevalier, E. O’Sullivan,
J. Hummel, E. Joseph, Y. Zhu, et al., “Racetrack memory cell array with integrated

118



magnetic tunnel junction readout,” in 2011 International Electron Devices Meeting,
2011.

[14] Y. Zhang, W. Zhao, J.-O. Klein, D. Ravelsona, and C. Chappert, “Ultra-high density
content addressable memory based on current induced domain wall motion in magnetic
track,” IEEE Transactions on Magnetics (TMAG), vol. 48, no. 11, pp. 3219 –3222, nov.
2012.

[15] R. Venkatesan, M. Sharad, K. Roy, and A. Raghunathan, “Dwm-tapestri-an energy
efficient all-spin cache using domain wall shift based writes,” in Proc. of DATE, 2013,
pp. 1825–1830.

[16] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy, and
A. Raghunathan, “Tapecache: a high density, energy efficient cache based on domain
wall memory,” in Proc. of ISLPED, 2012, pp. 185–190.

[17] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for ultra high density
and low power consumption,” in Proc. of DAC, 2013, pp. 53:1–53:6.

[18] NOAA, “NOAA’s 1981-2010 Climate Normals,” https://www.ncdc.noaa.
gov/data-access/land-based-station-data/land-based-datasets/climate-normals/
1981-2010-normals-data, 2013, [Online; accessed 31-May-2015].

[19] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@home: an
experiment in public-resource computing,” Commun. ACM, vol. 45, no. 11, pp. 56–61,
Nov. 2002.

[20] D. Stainforth, J. Kettleborough, A. Martin, A. Simpson, R. Gillis, A. Akkas, R. Gault,
M. Collins, D. Gavaghan, and M. Allen, “Climateprediction.net: Design principles
for public-resource modeling research,” in In 14th IASTED International Conference
Parallel and Distributed Computing and Systems, 2002, pp. 32–38.

[21] I. Statistics, “Key ict indicators for developed and developing countries and the
world (totals and penetration rates),” URL: http://www. itu. int/ITUD/ict/statistic-
s/at glance/KeyTelecom. html, vol. 29, p. 2012, 2011.

[22] A. Mohamud, “Eu5 smartphone penetration reaches 55 percent in october 2012,” com-
Score Press Release, Dec, 2012.

[23] comScore, “comscore reports september 2012 u.s. mobile subscriber mar-
ket share),” http://www.comscore.com/Insights/Press Releases/2012/11/comScore
Reports September 2012 U.S. Mobile Subscriber Market Share, [Online; accessed 31-
May-2015].

[24] Z. Alliance, “Zigbee specification,” 2006.

[25] W. Alliance, “Wifi-direct,” http://www.wi-fi.org/discover-and-learn/wi-fi-direct, [On-
line; accessed 31-May-2015].

119

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
http://www.comscore.com/Insights/Press_Releases/2012/11/comScore_Reports_September_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2012/11/comScore_Reports_September_2012_U.S._Mobile_Subscriber_Market_Share
http://www.wi-fi.org/discover-and-learn/wi-fi-direct


[26] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device to device communica-
tions with wifi direct: overview and experimentation,” IEEE Wireless Communications
Magazine, 2012.

[27] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low energy:
An emerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753,
2012.

[28] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model
for large-scale wireless sensor networks,” in Proceedings of the 8th annual international
conference on Mobile computing and networking. ACM, 2002, pp. 148–159.
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