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William R. Barone, PhD 

University of Pittsburgh, 2015 
 
 
 

Pelvic organ prolapse (POP) is characterized by the abnormal descent of the pelvic organs into 

the vaginal canal. POP is associated with urinary, defecatory, and sexual dysfunction, in addition 

to psychological disorders including depression. Prolapse is quite common, with ~50% of 

women over the age of 50 exhibiting some degree of prolapse, and over 200,000 surgical repairs 

in the United States annually. During surgical repair, a graft is used to restore support to the 

vagina, re-approximating the normal anatomy. Given the high failure rate of native tissue repair, 

use of polypropylene mesh has become widespread. Despite the prevalence of synthetic mesh, 

complication rates are ~20%, with little known about its behavior following implantation. 

Therefore, this dissertation aims to rigorously characterize the mechanical behavior of synthetic 

mesh, with the goal of optimizing device design for use in restoring support to the vagina. 

First, micro- and macro-level deformation of mesh was assessed in response to 

mechanical loads using uniaxial testing and 3D reconstruction. Upon loading, mesh pores 

significantly deformed, yielding textile dimensions that are consistent with a heightened foreign 

body response. In addition, point loads significantly wrinkled the mesh surface, further reducing 

mesh dimensions and producing configurations consistent with those found clinically.  

Next, a finite element model for synthetic mesh was developed, using a novel method to 

allow for textile properties to be measured in-silico. This model was validated using a custom 

testing apparatus to simultaneously load and image transvaginal mesh. Evaluation of mesh 
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deformation found experimental and computational results to be similar, demonstrating the 

predictive capabilities of this model. The validated model was then used to examine the 

sensitivity of mesh behavior to variable loading conditions. Here the magnitude and orientation 

of tensile forces were significantly correlated with undesired deformations. 

Finally, computational mesh models were combined with MRI reconstructions of patient 

specific anatomy to simulate prolapse development and mesh repair. Again, mesh pores 

significantly deformed upon anatomical fixation, corresponding with clinical sites of exposure 

and pain. In total, this dissertation provides a tool for the evaluation and optimization of 

synthetic mesh devices prior to implantation and pre-surgical evaluation of mesh procedures.  
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1.0  INTRODUCTION 

Pelvic floor disorders are prevalent among women, affecting one-third of all premenopausal 

women and one-half of all postmenopausal women (1). These disorders include pelvic organ 

prolapse, urinary incontinence, fecal incontinence, voiding dysfunction, defecatory dysfunction, 

and sexual dysfunction, though it is not uncommon to exhibit multiple conditions concomitantly. 

In a majority of these cases, dysfunction results from the loss of structural support to the pelvic 

organs, altering their positioning and the mechanisms required for proper voiding and sexual 

function. As such, surgical treatment of pelvic floor disorders aims to restore the support to the 

pelvic organs, often using biomaterials to reconstruct the native or non-symptomatic anatomy in 

order to restore proper function (2).  

Unfortunately, our current knowledge of the female pelvic floor is severely limited, 

especially in regards to the mechanisms responsible for pelvic floor support. Given our poor 

understanding of such a complex mechanical environment, it is unsurprising that surgical 

treatment of these disorders has been met with a wide range of results since its inception. The 

wide range clinical outcomes associated with synthetic mesh for prolapse repair, the main focus 

of this dissertation, is perhaps the greatest indication that our grasp of the anatomy and the 

supportive mechanisms is insufficient. As with many other fields of study, such as 
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cardiovascular and orthopedic disciplines, reliable treatments for pelvic floor disorders first 

requires a thorough understanding of the anatomic structures and the functional mechanics of 

these tissues. In this section, a brief summary of the pelvic floor anatomy will be presented as it 

relates to pelvic floor support. In addition, the primary disorder studied in this dissertation, pelvic 

organ prolapse, will be discussed in along with current clinical treatments for this disorder.  

1.1 PELVIC FLOOR ANATOMY 

The female pelvic floor is a highly complex, interdependent network of soft tissues and bony 

structures that support several organs and contribute to proper voiding and sexual functions. In 

turn, the vagina provides support to a number of other pelvic organs. Though the current 

discussion will focus on the nulliparous anatomy and changes that result in dysfunction, it should 

be noted that pelvic floor anatomy is subject to change throughout a woman’s lifetime, 

particularly in response to gestation, birthing, and aging processes. In a majority of women, these 

alterations do not result in dysfunction, however such changes are confounding factors in 

understanding the development of disorders.  

1.1.1 Bony Pelvis 

In general the viscera of the pelvic floor are contained within the bony pelvis, which serves as 

the base of attachment for the musculature and connective tissues that support these organs. 
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Articulations and the dimensions of the bony pelvis appear to play a critical role in pelvic floor 

function, as skeletal abnormalities are highly associated with pelvic floor disorders. For instance, 

nearly 100% of women with a wide transverse outlet, short anterior-posterior diameter, and 

absent pubic symphysis develop pelvic organ prolapse (3). While one may expect dysfunction in 

dramatically malformed geometries, even subtle changes in pelvic diameter carry an increased 

risk for developing prolapse (4). 

 

 

Figure 1. The bony pelvis encloses the pelvic floor and provides attachments for a majority of the 

musculature and connective tissues that support the pelvic viscera. The coxal, or pelvic bone, articulates with the 

sacrum at the iliosacral joint, while the coccyx is fused to the inferior sacrum. Each bilateral coxal bone is a fusion 

of 3 bones, the ilium, ischium, and pubic bones. The two pubic bones articulate at the pubic symphysis. 
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The bony pelvis is comprised of the coxal bones (also known as the hip bones), sacrum, 

and coccyx (Figure 1). Each coxal bone is the fusion of three bones, with the ilium superiorly, 

the ischium inferiorly and posteriorly, and the pubis inferiorly and anteriorly. The two inferior 

bones form the acetabulum, a concave surface that articulates with the head of the femur. In 

addition, the two coxal bones articulate anteriorly at the pubic symphysis, a cartilaginous joint 

located at the pelvic midline. Finally, the sacrum consists of five fused vertebral bones that 

articulate bilaterally with the posterior ilium at the sacroiliac joint, and inferiorly to the coccyx. 

When standing, the superior inlet plane of the normal female pelvis is tilted anteriorly, 

approximately 60-65° from the horizontal plane (4).  

1.1.2 Musculature  

Whereas the superior outlet of the bony pelvis is open to the abdominal cavity, inferiorly it is 

largely closed by the pelvic floor musculature. Located anteriorly are a group skeletal muscles, 

including the obturator internus, that originate from the pubic ramus and function to stabilize and 

rotate the femur. Posteriorly, the performis muscles originate on the anterior sacrum, extending 

through the greater sciatic notch and act to externally rotate the thigh. Inferiorly is a group of 

muscles referred to as the pelvic diaphragm. The pelvic diaphragm is believed to play a large 

role in pelvic floor support and consists of the levator ani muscles and coccygeus muscles in 

addition to connective fascia. Often the pelvic diaphragm is described as a “hammock-like“ or 

“U-shaped” structure, stretching between the pubis and coccyx with attachments along the lateral 

walls of the bony pelvis (4, 5). The area contained within this U-shaped region is referred to as 
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the urogenital hiatus, a space that contains the urethra, vagina, and rectum (Figure 2). The levator 

ani fan outward with broad attachments and create the posterior and lateral pelvic floor. Given 

the broad insertions of the levator ani, it is further divided into three parts according to their 

points of attachment. From medial to lateral, the components of the levator ani are the 

puborectalis, pubococcygeus, and iliococcygeus. Many texts portray the pelvic diaphragm as a 

simple hammock structure lying in the horizontal plane, closing the inferior pelvic floor and 

providing a surface for the pelvic viscera to rest upon (4). However, given the horizontal offset 

of the bony pelvis and the basal tone of these muscles, their function appears more complex. 

Indeed, it is often acknowledged that the resting tone of the pelvic floor muscles actively pull the 

distal vagina towards the pubic symphysis, providing a unique change of angle along the long 

axis of the vagina. 

 The appropriate orientation of the pelvic diaphragm can be observed upon MRI 

segmentation of the pelvic floor muscles. Specifically, segmentation performed in our lab 

exhibits a noticeable horizontal offset for these muscles, with a nearly vertical orientation. Such 

positioning is better suited to actively pull the pelvic viscera anteriorly towards the pubic 

symphysis. Portrayal of the pelvic floor musculature in this manner more readily illustrates the 

importance of this muscle group in positioning the organs in this space. 

 

  5 



 

 

Figure 2. The musculature of the pelvic floor closes the inferior aspect of the bony pelvis and provides 

support to the pelvic organs. The pelvic diaphragm, which is believed to be critical to pelvic floor support, consists 

of the levator ani and coccygeus muscles. 

 

Increased vertical positioning of the pelvic diaphragm is also consistent with the 

observation of a change in vaginal orientation along its length. In the nulliparous anatomy, the 

vagina does not form a straight line from the introitus to the sacrum, but rather the distal vagina 

is pulled anteriorly with its long axis in a predominately vertical orientation. Conversely, the 

proximal vagina is directed towards the sacrum, more in-line with the horizontal axis. As such, 

weakening of these muscles or defects in these structures may manifest as a more posterior 

positioning of the vagina or alters the angle between the proximal and distal vagina. This change 

would then effect the positioning of other pelvic viscera, potentially placing them in a less 
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optimal position, directly over the vaginal introitus. While this hypothetical scenario may or may 

not be related to pelvic floor disorders, this example readily demonstrates the integral behavior 

of pelvic floor structures and the impact of this musculature on viscera positioning.  

1.1.3 Connective Tissues 

Perhaps the least understood components of pelvic floor support are the connective tissues. The 

connective tissues of the pelvic floor arise from the fascial layers of the musculature and viscera 

and form a continuous web that covers and mechanically supports the vagina and the pelvic 

organs. These connective tissues suspend the organs of the pelvic floor through attachments to 

the pelvic sidewall. This support system is quite complex, as the composition, thickness, and 

strength of the connective tissues vary significantly based on their location.  

 Conceptually, the connective tissue support of the pelvic floor is classified using a level-

based approach, dividing connective tissues based on their location of attachment to the vagina 

(6). In total, three levels are considered, with levels I, II, and III representing support for the 

proximal, middle, and distal portions of the vagina, respectively (Figure 3). Level I consists of 

the cardinal and uterosacral ligaments and provides support to the uterus and upper vagina. It 

should be noted that these ligaments are quite dissimilar from other ligamentous structures 

throughout the body. As opposed to the dense, fibrous bundles that connect bones and consist 

primarily of collagen I, the ligaments of the pelvic floor are complex connective tissue structures 

that envelope neurovascular structures and attach the vagina to the bony pelvis. The composition 

of the uterosacral ligament varies along its length, ranging from fat and loose connective tissue at 
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its attachment to the sacrum, to dense connective tissue in the mid-region, to predominately 

smooth muscle at the cervical attachment. The primary structural protein of the uterosacral 

ligament is collagen III, providing a combination of flexibility and strength (7). The paired 

uterosacral ligaments direct the vagina superiorly and posteriorly, again providing support to the 

cervix and upper vagina (6). In its course to the sacrum, the uterosacral ligament fans out and 

attaches at sacral segments ranging from S1 to S4. Lateral stability of the vagina is maintained 

by the cardinal ligaments, which also insert along the paracervical ring, combining with the 

urterosacral ligaments. Similarly, the cardinal ligaments also have a fan-like appearance, 

extending along to proximal third of the vagina and running laterally with broad attachments to 

the pelvic sidewall. Distal to Level I support, Level II provides additional lateral stabilization of 

the vagina. Level II consists of anterior and posterior portions of the endopelvic fascia, a loose 

connective tissue extending from the mid-vagina to the pelvic sidewall and inserting into the 

acrus tendineous fascia pelvis. Finally, Level III support arises from the fusion of the endopelvic 

fascia at the pubic symphysis (anterior) and perineal body (posterior) (Figure 3). 

 Additional connective tissue structures in the pelvic floor include the arcus tendineus 

levator ani (ATLA) and arcus tendineus fascia pelvis (ATFP), which are lateral condensations of 

fascia with increased collagen content and organization relative to the neighboring endopelvic 

fascia (4). The ATLA inserts at the pubic rami anteriorly and runs posteriorly to the ischial spine, 

providing an anchor for the pubococcygeus and iliococcygeus muscles of the levator ani. 

Running parallel to the ATLA, the ATFP inserts at the pubic rami, just anterior to the ATLA and 

inserts posteriorly at the ischial spine. The ATFP is formed from the condensation of the parietal 
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fascias, overlying the obturator internus and levator ani, and serves as the lateral attachment for 

the vagina anchoring the anterior vagina to the pelvic sidewall (8). Importantly, the ATFP 

provides bilateral support, maintaining vaginal positioning. The ATFP is comprised of roughly 

84% collagen, 13% elastin, and 3% smooth muscle. Collagen content is dominated by type III at 

84%, while type I and type V are approximately 13% and 5%, respectively (8). Given this 

composition, the ATFP is a fairly flexible structure, distending in response to increases in 

intrabdominal pressure. The ATFP is thought to be a significant contributor to pelvic floor 

support, providing necessary mechanisms by which the vagina can resist the downward pressure 

applied via the bladder and urethra. 

 

 

Figure 3. Connective tissue support of the vagina is comprised of 3 distinct levels. Level I provides apical 

support and consists of the cardinal and uterosacral ligaments, Level II is comprised of the anterior and posterior 

portions of the endopelvic fascia, inserting into the arcus, and Level III support arises from the fusion of the 

endopelvic fascia at the pubic symphysis. 
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1.1.4 Pelvic Floor Viscera  

The pelvic floor contains several viscera, including part of the lower urinary and alimentary 

tracts (Figure 4). Urinary tract structures found within the pelvis include the ureters, bladder, and 

urethra. The ureters are approximately 12-15cm within the pelvis (in addition to the 12-15cm in 

the abdomen) and attach to the peritoneum of the lateral pelvic wall prior to inserting into the 

superior aspect of the bladder. The bladder, a muscular organ that serves as a reservoir for the 

urinary system, is quite distensible, ranging from a flat shape when empty to globular when full. 

Along the base of the bladder is the bladder neck, a structure that prevents the flow of urine and 

is opened via musculature (pubovesical muscle) during voiding. Extending from the bladder 

neck is the urethra, a muscular tube that is central to urinary continence. In the female anatomy, 

the urethra is embedded in the adventitia of the anterior vaginal wall and has an external orifice 

just distal to the vaginal opening. 

 The vagina, a hollow fibromuscular organ that extends from the perineum to the uterine 

cervix, is central to pelvic organ support. The vagina is composed of 4 distinct layers, consisting 

of a nonkeratinized stratified squamous epithelium, subepithelium (lamina propia), muscularis, 

and adventitia (9). The appearance of the epithelium is highly dependent on the level of cycling 

hormones, becoming thinner when estrogen levels are low, and thicker when levels are restored 

(10, 11). In general, the thickness of the epithelium is variable resulting in the presence of 

longitudinal rugae, which run the entire length of the vagina. The subepithelium and muscularis 

provide much of the mechanical integrity of the vaginal wall, as the subepithelium contains 
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dense connective tissue, while the muscularis contains predominately smooth muscle. The 

muscularis itself is considered a fibromuscular layer, containing circumferentially oriented 

smooth muscle at the inner region and longitudinally oriented smooth muscle at the outer region, 

interspersed with fibrous tissue (collagen and elastin). Smooth muscle governs the active 

mechanics of the vagina, allowing this organ to rapidly change its diameter. While the specific 

function of vaginal smooth muscle is uncertain, this constituent likely plays a significant role in 

events such as intercourse and childbirth (12). In addition, smooth muscle is believed to be vital 

for tissue homeostasis, creating the folding rugae present in the vaginal lumen and maintaining 

vaginal tone. Recent studies have found that apoptotic rates of smooth muscles cells, loss of 

innervation, and disorganization of the muscularis are associated with disorders such as pelvic 

organ prolapse, highlighting the importance of vaginal smooth muscle in maintaining proper 

function of the pelvic floor (13-15). Conversely, the adventitia is primarily loose connective 

tissue, with interspersed smooth muscle bundles, nerves, and blood vessels. The vaginal 

adventitia is shared with the bladder anteriorly and the rectum posteriorly. 

In general, the collagen of the vagina has been found to have a whorled appearance and 

consists predominately of collagen III, though the expression of proteins varies from layer to 

layer (16). Grossly, the anterior and posterior walls of the vagina are in contact with each other 

except near the uterine cervix. Further, the lumen of the vagina has a distinctive cross section 

along the long axis, ranging from a diamond shape near the introitus, to an “h” or butterfly shape 
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at the midsection, to an oval shape near the cervix. Anteriorly the vaginal wall is contiguous with 

the bladder base, and provides support for the urethra. Posteriorly, the vagina neighbors the 

rectum and perineal body. 

 

 

Figure 4. The organs of the pelvic floor include the bladder, urethra, vagina, and rectum (from anterior to 

posterior). While each organ is associated with supportive fascia, it is the attachments of these organs to the vagina 

that are most critical for maintaining the anatomy and function of the pelvic floor.  

 

Anatomically, the vagina is a crucial structure for pelvic floor support, providing a stable 

base on which the pelvic organs passively rest. Notably, the vagina provides a sling-like base 

upon which the urethra sits, providing a surface upon which the bladder neck and urethra can be 

compressed against by surrounding musculature. This positioning is critical for urinary 

continence.  In order to maintain this anatomy, the vagina is supported bilaterally and apically by 

the aforementioned connective tissues and musculature. In a non-pathological state, the lower 
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one-third of the vagina is approximately 45 degrees from the horizontal (17). However, just 

above this, the vaginal angle is noticeably altered, and the proximal two-thirds of the vagina is 

nearly horizontal with the vaginal apex directed towards S2 (sacral bone). The angle between 

these two vaginal axes has been found to be ~145 degrees for the non-pathological anatomy (17).  

1.2 PELVIC ORGAN PROLAPSE 

1.2.1 Clinical Presentation 

Pelvic organ prolapse (POP), or prolapse, is characterized by the abnormal descent of the pelvic 

viscera into the vaginal canal. POP results from a lack of support to the vagina, allowing the 

walls of the vagina, the cervix, or other viscera to bulge into the vaginal lumen and may even 

lead to eversion of the vagina. Symptoms of POP include urinary incontinence, voiding difficulty 

(urinary and defecatory), sensation of a bulge in the vagina, pelvic pressure or pain, and sexual 

dysfunction (5). In addition, POP is associated with several psychological disorders including 

depression (18). Being the central structure of pelvic floor of location and support, it is not 

surprising that vaginal support defects lead to prolapse, or that prolapse often presents with 

additional forms of pelvic floor dysfunction.  
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Figure 5. Pelvic organ prolapse is characterized by the descent of the pelvic organs into the vaginal canal, 

resulting in bulging of the vaginal walls. There are 4 stages of prolapse, with increasing severity as defined by the 

measurements taken during a POPQ exam. Shown here is an example of Stage 3 prolapse. 

 

While prolapse is broadly defined as the descent of the pelvic organs, the specific 

location at which prolapse occurs varies from patient to patient. Commonly a patient may exhibit 

prolapse of the anterior vaginal wall (cystocele), the posterior vaginal wall (rectocele), or vaginal 

apex (vaginal vault). Prolapse of the anterior and posterior vaginal wall are characterized by 

bulging of the respective wall into the vaginal canal, while apical prolapse is characterized by 

movement of the cervix, or top of the vagina after a hysterectomy, distally towards and 

potentially beyond the hymen. In addition to its variable appearance, the severity of prolapse is 

described using a scale of 4 stages. Classification of prolapse is determined using the pelvic 

organ prolapse quantification (POPQ) system. The POPQ system scores the severity of prolapse 

by measuring 9 points on vagina and perineum using an ordinal staging system. Positions of 

these anatomical points are measured relative to the hymen. Stage 0 indicates ideal support, 
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while stage IV signifies severe prolapse with complete eversion of the vagina. Of those suffering 

from prolapse, the majority have stage I and II, while only 3-9% have stage III or IV (4). 

Evaluation of prolapse using the POPQ staging system is crucial before reconstructive surgery, 

as it allows clinicians to select procedures that address each patients’ specific deficiencies in 

support (19). 

 The primary risk factors for development of POP are childbirth and aging as these 

processes are thought to degenerate or alter supportive structures (Figure 6). During pregnancy, 

stretching of connective tissues and laceration of the pelvic floor muscles may impair vaginal 

support. In addition, others speculate that tearing of pelvic fascia and the perineum during 

vaginal delivery may destabilize vaginal support and initiate these weaknesses (5). However, it is 

unclear whether pregnancy alone is permissive or if vaginal delivery is requisite for the 

development of POP (20-22). Unfortunately, these mechanisms and their relation to POP are 

poorly understood as prolapse often develops years or decades after injury or insult do to 

childbirth. Regardless, studies report a 10% increase in POP occurrence for each birth, while 

others suggest a 4-fold increase in risk with just 1 pregnancy and an 8-fold increase with a 2nd 

pregnancy (23). Aging has also been shown to greatly influence the development of POP, with 

an increased incidence of 30-50% for each 10 years of age, eventually plateauing at age 70 (4). 

Again, the impact of aging is virtually impossible to distinguish from the independent impact of 

menopause. Until recently the impact of menopause on the tissues of the pelvic floor was largely 

unknown. 
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Figure 6. A mid-sagittal cross-section of the female pelvis (shown here via MRI), depicts alterations in 

vaginal positioning resulting from pregnancy and prolapse. In a nulliparous patient (left), the vagina is properly 

supported with a distinct change in angle at the mid-vagina, as the apex is directed towards the sacrum. Though the 

parous vagina (middle) does not necessarily include the characteristic change in angle, the walls of the vagina 

remain supported. The appearance of the vagina is markedly different in women with prolapse (right). Here the 

anterior vaginal wall noticeably protrudes outside of the body, and the entire vagina rests in a more distal location 

relative to the pubic bone (PB). 

 

Recent studies have begun to focus on the impact of menopause on the connective 

tissues, with several significant findings. Specifically, Moalli et al. examined the impact of 

menopause on collagen of the arcus tendineous fascia pelvis (ATFP), as separation of the vagina 

from the ATFP (a paravaginal defect) is the most common cause of anterior wall prolapse (24). 

Arcus biopsies from premenopausal and postmenopausal women were examined, in addition to 

postmenopausal women who were receiving hormone therapy. Postmenopausal women were 

found to have decreases in both collagen I levels and the ratio of collagen I / (III+V) compared to 
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both premenopausal women and postmenopausal women receiving hormone therapy. These 

findings suggest that the ATFP is a weaker structure following menopause, with increased 

flexibility, as even small changes in collagen subtypes can alter the tensile strength of tissues 

(25). Such remodeling of collagen subtypes may also result from mechanical stretch associated 

with childbirth or increases in intra-abdominal pressure associated with a women's lifestyle, 

though it remains clear that postmenopausal tissues have inferior mechanical properties relative 

to premenopausal tissues. 

Regardless, the absence of hormones following menopause greatly impacts the response 

of soft tissues to mechanical loading. Zong et al. found that hormone treatment returned 

collagenase activity to control levels, significantly lower than mechanically stimulated tissues 

without hormones (26). From these data, it appears as though hormones regulate the tissues 

response to biomechanical forces, preventing maladaptive remodeling or degradation.  

 Additional risk factors of note include hysterectomy and lifestyle, though data regarding 

the impact of hysterectomy on the development of POP is unclear. Hysterectomy is generally 

believed to impact apical support of the vagina by disrupting the uterosacral and cardinal 

ligaments, though the incidence of prolapse between those women who have undergone 

hysterectomy and the general population is similar (27-29). Of lifestyle considerations, it appears 

that high-impact activities greatly increase the risk for developing prolapse. Specifically, this 

includes occupations during which women repeatedly lift or carry heavy objects. For example, a 

study of female nursing assistants, whose duties included regular lifting of equipment, were 60% 

more likely to have prolapse relative to the general population (28). In addition, prolapse rates 
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among nulliparous paratroopers, women who regularly lift heavy equipment and experience high 

impact forces while landing, are significantly higher than the general population (30). Intuitively, 

these occupations lead to sustained and repetitive increases in intrabdominal pressure, which has 

been linked to increased POP among obese patients (29). Given these results, it appears that 

increased loading of the pelvic floor may be detrimental to pelvic floor support.  

Despite the knowledge of these main risk factors, the underlying cause of prolapse 

remains unclear. To better understand this pathology several studies have examined the 

morphology and composition of the vagina and its supportive structures in women with and 

without prolapse. Utilizing full thickness biopsies from the vaginal apex, women with prolapse 

were found to have significant increases in total collagen content, with amounts 49% greater than 

control levels (16). Interestingly, postmenopausal controls receiving hormone supplements were 

similar to premenopausal controls, driven by a 37% rise in collagen III, the predominant collagen 

subtype of the vagina. In addition, women with prolapse were found to have a 28% increase in 

active MMP-9 levels. Elevated active MMP-9 suggests that the vagina is actively remodeling in 

response to biomechanical stresses associated with prolapse rather than a cause of prolapse per se 

(31, 32). Previously, increased MMP-9 has been associated with remodeling in soft tissues such 

as the coronary artery and dermis (33, 34). One should note that these data regarding collagen 

content and MMP-9 were obtained using full thickness biopsies, whereas many studies do not 

consider the histology of the vagina (35-37). Unfortunately, much of the literature regarding 

vaginal tissue does not indicate which layers are contained in a sample, likely contributing to the 

variability of data in this area.  
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Similar to the vagina, collagen III was found to be increased in the uterosacral ligament 

of women with prolapse (7). Once again, it is unclear whether these changes in collagen content 

and collagenase activity are the cause of prolapse or the result of remodeling to prolapse 

conditions. Regardless, such increases in collagen content have the potential to significantly 

impact the mechanical behavior of the pelvic floor tissues. However, despite the increases in 

stiffness likely obtained by increased collagen, support to the pelvic floor remains compromised.  

1.2.2 Surgical Treatment  

Pelvic organ prolapse is a common disorder among women, as it is estimated to impact 50% of 

women over the age of 50 (38-41). Despite the prevalence of POP, the lifetime risk for having a 

single repair procedure for pelvic organ prolapse is roughly 7%, as the severity of prolapse does 

not warrant the risks of surgical intervention in most cases (27). Still, there are ~300,000 

prolapse surgeries in the United States annually, resulting in a societal cost of over $1 billion (27, 

42). Given the aging population, it is anticipated that these figures will substantially increase in 

the near future.  

In general, surgical treatment of POP utilizes a graft material, or mesh, to provide 

mechanical support to the vagina, and restoring the anatomical positioning of the vagina and 

other pelvic viscera. Reconstruction of pelvic floor support is accomplished by attaching mesh to 

the vagina and then anchoring mesh into the pelvic sidewall or sacrum. Two of the most 

common procedures for prolapse repair are transvaginal mesh repair and sacrocolpopexy (a 

transabdominal approach). Procedure selection is patient specific, dependent on the site of 
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prolapse and identified support defects; however, surgeon preferences do play a significant role 

in the method of repair. Historically, transvaginal procedures are widely used to repair anterior 

and posterior wall prolapse, known as a cystocele and rectocele, respectively; while 

sacrocolpopexy is most often used to repair apical (vaginal vault) prolapse. Aside from the 

considerations of prolapse site, transvaginal mesh procedures are less invasive and technically 

easier for clinicians to perform. 

 

 

Figure 7. During an abdominal sacrocolpopexy, a graft (purple) is fixed to the anterior and/or posterior 

surface of the vagina, tensioned posteriorly, and then fixed to the sacrum (a). For a transvaginal procedure, a graft is 

fixed to the anterior and/or posterior surface of the vagina, and subsequently tensioned to the pelvic sidewall (b). 

Typically, anchor locations in the pelvic sidewall include the sacrospinous ligaments and obturators.   
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During an abdominal sacrocolpopexy, a graft is attached to the anterior and/or posterior 

surface of the vagina via an abdominal approach using laparoscopy or robotics (Figure 7). 

Following fixation to the vagina, the graft is directed and anchored to the sacrum between S1-S3. 

Further, tension is applied to the mesh in order to remove bulging of the vagina wall. Using these 

attachments, an abdominal sacrocolpopexy provides supports the vaginal along its longitudinal 

axis. Procedures similar to an abdominal sacrocolpopexy repair date to the early 1900’s when the 

vaginal apex was fixed to the abdominal wall with fascia (43). Over the next 50 years fixation 

continually migrated posteriorly until the sacrum was determined to best mimic the normal 

vaginal angle. Moreover, posterior attachment is believed to re-approximate the uterosacral 

ligaments, the primary apical support to the vagina.  

For transvaginal procedures, an incision is made and the underlying defect is exposed 

through a full thickness vaginal dissection. Next, the graft is passed through the incision and the 

body of the graft is fixed underneath the bulging viscera, while the arms of the graft are then 

anchored to, or pulled through, structures in the pelvic sidewall and placed with tension (Figure 

7). The tensioning of the graft arms removes the vaginal bulge. Sidewall attachments include the 

arcus tendineous fasciae pelvis and sacrospinous ligament. These attachments allow for 

transvaginal repair to provide lateral support to the anterior and/or posterior vaginal wall as well 

as the vaginal apex to prevent bulging. As previously mentioned, many consider transvaginal 

mesh placement to be a technically easier procedure relative to an abdominal approach. In 

addition, the transvaginal approach is minimally invasive, promoting quicker patient recovery. 

The perceived benefits of this approach are reflected in current clinical practice as roughly 75% 
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of all mesh procedures for POP repair are performed transvaginally (42). Interestingly, several 

studies have shown that abdominal approaches yield twice as many “ideal” outcomes, citing 

better efficacy, though risk for surgical complications remains high due to the location of graft 

fixation (43). The disparity in patient outcomes between sacrocolpopexy and transvaginal 

procedures highlights the need to consider the impact of surgical technique and route of mesh 

implantation. For instance, the full thickness vaginal dissection performed during a transvaginal 

procedure would induce an additional healing response at the incision through the vagina that 

may alter the host response to mesh implantation. Alternatively, the reduced surgical difficulty of 

transvaginal repairs may lead to mesh implantation by surgeons whom are relatively 

inexperienced in mesh repair. As such, the surgical technique used in these procedures may not 

reflect best practices used by experienced pelvic floor reconstructive surgeons. 

1.2.3 Graft Materials  

Historically, grafts for repair of POP have included both biologic and synthetic materials. 

Originally reconstruction using autologous fascia repairs was standard, though issues such as 

poor tissue quality, increased surgical time, and donor site morbidity were quickly realized as 

limitations for such repairs. To address these shortcomings, autologous fascia tissues obtained 

from cadavers were introduced (44). In order to reduce the risk for disease transmission and 

ensure adequate graft supply, harvested allografts are “processed” and often freeze-dried (44). 

Though processing manufacturers aim to eliminate infectious materials such as cells, bacteria, 

myobacteria, viruses, fungi, and spores. Generally, tissue processing is not standardized and 
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varies from company to company, often with each company utilizing a unique procedure. 

Further, many tissue processing protocols, in addition to freeze-drying and rehydration, are 

believed to degrade the mechanical properties of allografts (45). While the complication rates for 

autologous and allogeneic tissues are low, theses grafts are extremely susceptible to failure. 

Recent studies have found that 40% of women undergoing prolapse repair with their own tissues 

will fail within 2 years and up to 1/3 will undergo a repeat surgery within 5 years (27, 46). 

Outcomes for frozen allograft fascia are even worse, with failure occurring in 83% of women 

within 17 months (47). Currently, the high failure rate of biological tissue repair is thought to be 

a result poor graft quality, though it is unknown whether tissue deficiencies arise from 

pathogenic native tissue, tissue processing, or the fact that allograft fascia is often obtained from 

elderly cadavers. Regardless, the perceived inferiority of tissue and high failure rates associated 

with native tissue repair, have led to the dominance of synthetic meshes across all prolapse repair 

procedures (14, 16, 48-51).  

Most recently, in response to complications with synthetic mesh, and the shortcomings of 

both autograft and allograft repairs, a number of studies have focused on the use of xenografts 

for POP repair. Xenografts, often consist of extracellular matrix (ECM) derived from porcine 

dermis, small intestinal submucosa (SIS), or urinary bladder matrix (UBM) (52). Additional 

sources for xenograft devices include bovine pericardium and dermis, though these tissues are 

typically not used in pelvic floor procedures (52). Xenograft tissue is decellularized, similar to 
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allografts, in order to remove genetic material while preserving the 3-D structure of the 

extracellular matrix proteins. Another common treatment of xenografts is chemical crosslinking; 

creating two classes of biomaterials, chemically crosslinked and non-crosslinked.  

Non-crosslinked devices permit cellular infiltration allowing the implanted matrix to 

readily undergo a rapid remodeling response (53-55). For POP repair, these products have 

experienced low rates of erosion and infection (1.2% and 1.3% respectively), though objective 

recurrence rates are often increased relative to synthetic meshes, at 14.5% (56). Given that non-

crosslinked grafts degrade over a relatively short time-frame, much of the response to these 

materials, including complications, likely results from a rapid remodeling response. The rapid 

remodeling of non-crosslinked grafts is believed to be disadvantageous as the mechanical 

integrity of the graft is quickly compromised, allowing for recurrence of prolapse. To slow the 

degradation of mechanical properties, chemical crosslinking was introduced to these products. 

Unlike non-crosslinked devices, the structure of cross-linked biologics is altered by 

chemically bonding collagen fibrils, typically using carbodiimide. The addition of these bonds 

effectively slows the rate of degradation of the implanted matrix. Several studies have shown 

that chemical cross-linking decreases the amount of cellular infiltration into the implanted matrix 

and increases the stiffness of a graft (55, 57-60). The increased stiffness of the matrix is believed 

to affect the differentiation of infiltrating cells; thereby, altering the subsequent remodeling of 

the biologic scaffold material. Despite enhanced mechanical properties, there appears to be a 

noticeable foreign body reaction to cross-linked materials as these grafts are often encapsulated 

following implantation (57). Clinically, cross-linked biologics for POP repair have experienced 
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worse outcomes relative to non-crosslinked counterparts. Most strikingly, the incidence of 

erosion, pain, and objective recurrence rates are noticeably increased relative to non-crosslinked 

products, occurring in 6.2%, 21.6% and 24% of cases, respectively (56). Further, crosslinked 

grafts repairs are associated with a nontrivial incidence of seroma formation, likely related to 

residual foreign material in the product. 

 

 

Figure 8. Polypropylene mesh has become the dominant graft material for surgical repair of prolapse. 

Gynemesh PS, shown here, is currently considered the gold standard of polypropylene mesh repair. Further, 

Gynemesh PS highlights the recent industry trend of utilizing large pore devices. 

 

In response to the high failure rate and variability of biological materials, synthetic 

materials have gained prominence for POP repair (Figure 8). The dominance of synthetic devices 

was highlighted in a recent FDA release, stating that of the ~300,000 annual surgical repairs for 

POP in the United States, 100,000 utilized mesh (61). Synthetic grafts for prolapse repair are 
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directly derived from synthetic mesh products introduced into the market for hernia repair. In 

fact, it is common for the same device to be marketed for both hernia and prolapse repair. One 

example is Ethicon’s Prolene Soft hernia mesh, which was remarketed for sacrocolpopexy as the 

prototype prolapse mesh Gynemesh PS. In addition, nearly all data mesh vendors and researchers 

cite as “ideal” mesh behavior, is derived from mesh studies performed in the abdominal wall. As 

such, current and previous generations prolapse mesh have been “optimized” for the abdominal 

wall environment and hernia repair, rather than functioning as a prolapse repair device.  

Overall, synthetic mesh has demonstrated superior efficacy over biologic grafts, with 

objective anatomic cure rates consistently greater than 85% (52, 56). Still, complications and 

surgical concerns have resulted in significant changes in the materials and design of prolapse 

meshes over the last two decades. Ultimately, the introduction of the tension free vaginal tape 

(TVT) in 1996, and its subsequent success for SUI repair, led to Type 1 polypropylene mesh to 

become the material of choice for prolapse meshes. Additionally, Type 1 polypropylene mesh is 

often reported to have cure rates greater than 90% in sacrocolpopexy, showing greater 

consistency and efficacy than other synthetic mesh materials and biologics (39, 52, 56). Still, 

polypropylene devices were initially heavier in terms of mesh weight (g/m2) relative to 

contemporary mesh products. The shift towards lower weight mesh was found through clinical 

trial and error as surgeons noted lower rates of complication for such meshes. Despite the overall 

success and improved outcomes relative to biologics, the reception of synthetic meshes for 

prolapse repair has been tempered by the common occurrence of mesh related complications. 
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1.2.4 Complications  

Following the introduction of the technically easier transvaginal application of prolapse mesh, 

synthetic mesh use in reconstructive pelvic surgeries escalated between 2005 and 2011. 

Unfortunately, as mesh use increased, the number of mesh related complications dramatically 

rose, prompting the FDA to issue two public health notifications.  The first, issued in 2008, 

warned physicians and patients of potential complications associated with the transvaginal 

application of mesh and a second, issued in 2011, warned that these complications are not rare 

events (61, 62). Currently it is unclear if the act of introducing a device through the vaginal wall 

alone is a risk, or if the specificity of transvaginal mesh complications is simply due to the 

increased use of these procedures over the past decade, bringing to question the role of 

implantation method and surgical technique. 

 The most widely reported complications following mesh implantation include mesh 

exposure, mesh erosion, infection, dyspareunia, and pain (63-65). Mesh exposure is 

characterized by the visualization of the mesh through the vaginal epithelium (Figure 9). Mesh 

erosion is characterized by perforation of the mesh into adjacent structures (the bladder, rectum, 

etc.). Complications such as erosion and exposure are extremely detrimental as they deteriorate 

native structures and severely hinder a women’s quality of life. It is also common for these 

complications to be accompanied by contraction and bunching of the mesh. Contraction, or 

shrinkage of the mesh implant area, is likely caused by two potential mechanisms, either 

mechanical loading or fibroblast-induced contraction as part of the foreign body response. Both 
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mechanisms are likely related to the geometry of the mesh and the loading environment in which 

the mesh is placed, as well as mesh characteristics such as pore size. Women with mesh 

complications may complain of vaginal discharge, pain, and dyspareunia.. 

 

 

Figure 9. Exposure is characterized by the degradation of vaginal tissue in contact with synthetic mesh. 

Here, exposure is visible on the luminal surface of the vagina following vaginal explantation from an animal model 

(a). Clinically, exposure is visualized and palpable during a gynecological examination (b). Often, mesh is excised 

in areas of exposure to relieve symptoms, including pain or vaginal discharge (c). Typically, excised mesh appears 

bunched and folded upon itself, as shown here. 

 

To date, no prolapse mesh has successfully reduced complication rates to levels observed 

for other elective surgical procedures, as 20% of women who undergo mesh surgery require a 

repeat surgery for recurrent symptoms or complications (52, 56, 66-68). Further, mesh exposure 

is quite common, occurring in up to 15% of transvaginal repairs and 10.5% of sacrocolpopexies  
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(62, 64, 69-71). In most cases, exposure requires the mesh to be removed surgically in order to 

manage pain, discharge, odor, and dyspareunia; however, there are many reports that symptoms 

may persist even after mesh has been removed (61, 72-74).  

1.3 HOST RESPONSE TO PROLAPSE MESH 

1.3.1 Impact of Mesh on Vaginal Tissue  

To date, few have considered the response of the host tissue as a causative variable in prolapse 

mesh outcomes, despite the host response playing a key role in patient outcomes in virtually all 

other applications of biomaterials. The lack of knowledge regarding the cause of mesh related 

complications (erosion, exposure, infection, dyspareunia, and pain) is concerning as it provides 

little design and usage criteria for synthetic meshes. Recent studies have begun to highlight the 

impact of mesh on the vagina, examine the morphology, composition, and biomechanical 

behavior of the vagina. Such information is required in order to improve patient outcomes 

following mesh implantation.  

In a rhesus macaque model, Liang et al. compared the host response to a heavier weight, 

lower porosity, higher stiffness mesh, Gynemesh PS, to two lower weight, higher porosity, lower 

stiffness meshes, UltraPro (aka Prolift plus M or Artisyn) and Restorelle following implantation 

by sacrocolpopexy after a hysterectomy. After 3 months, Gynemesh PS, the stiffest mesh, 

dramatically altered the histological appearance and functional behavior of the vagina. While all 
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mesh implants in this study were found to disrupt the organization of vaginal tissue, Gynemesh 

PS induced atrophy of the smooth muscle layer, decreasing the thickness of the muscularis by 

55% relative to Sham operated controls (75) (Figure 10). Further, Gynemesh PS significantly 

increased the number of apoptotic cells in the sub-epithelium and adventitia layers, rising from 

0.43% and 1.56% of cells to 7.22% and 32.49% compared to Sham. The impact of mesh was 

apparent, as a majority of apoptotic cells were located around the individual mesh fibers. 

Interestingly, alterations in vaginal morphology and apoptosis were less pronounced for the 

lower stiffness meshes UltraPro and Restorelle. 

  Additionally, Gynemesh PS implantation negatively impacted the composition of the 

extracellular matrix, as collagen and elastin content were decreased 20% and 43%, respectively. 

Though UltraPro and Restorelle did not alter collagen content, UltraPro resulted in a 49% 

decrease in elastin content. Sulfated glycosaminoglycan (GAG) content, a marker of tissue 

injury, was increased by 20% relative to Sham samples, while collagenase activity increased by 

135% following Gynemesh PS implantation (75). These findings are consistent with acute soft 

tissue injury and tissue turnover (76).  Overall, it is clear that the vagina undergoes a maladaptive 

remodeling response following mesh implantation, and heavier, lower porosity, higher stiffness 

meshes elicit the most detrimental changes. The degenerative response observed with stiff 

synthetic grafts is consistent with a phenomenon referred to as stress shielding, a 

mechanosensitive phenomenon in biological tissues, which results in a degenerative remodeling 

response in tissues associated with a prosthesis. Alternatively, the degradation associated with  
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mesh implantation could result from chronic inflammation, a response associated with the 

foreign body response. Regardless of the mechanism, these findings demonstrate that mesh 

implantation results in degradation of the vagina, predisposing this tissue to mesh exposure. 

 

 

Figure 10. Immunofluorescent labeling (bottom) demonstrates the effect of synthetic mesh products (top) 

on vaginal tissue. Here, the red signal represents positive staining of alpha-smooth muscle actin, the green signal 

represents apoptotic cells, and the blue signal represents nuclei. Gynemesh PS was found to significantly reduce the 

thickness of the smooth muscle layer (S) and increase apoptosis in tissue surrounding the mesh (M).  

 

In terms of tissue function, mesh implantation has been shown to deteriorate both the 

active and passive mechanical properties of the underlying and associated vagina (77). In 

agreement with morphological findings, Feola et al. reported that Gynemesh PS eliminated 

nearly all smooth muscle contractility relative to Sham (75, 77). UltraPro and Restorelle also 

interfered with smooth muscle contractility, however such negative effects were much less than 

that observed with Gynemesh PS. Passive properties, representing the mechanical integrity of 

fibrillar extracellular matrix proteins (collagen and elastin), were evaluated via ball burst testing, 
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as typical planar mechanical tests are invalid for composite mesh-tissue structures of these 

dimensions. Accounting for the combined stiffness of both mesh and tissue, Gynemesh PS 

significantly reduced the passive mechanical integrity of the tissue, decreasing the estimated 

stiffness of the vagina by an order of magnitude, with values approaching 0 N/mm (77). These 

results suggest that Gynemesh implantation nearly abolishes the mechanical integrity of the 

underlying and associated vagina, in agreement with the aforementioned decreases in total 

collagen and elastin content (75). As with histological and biochemical outcomes, mesh 

implantation is detrimental to the mechanical properties of the vagina, particularly with the 

higher weight, lower porosity, higher stiffness devices. This is of great concern as degradation of 

vaginal smooth muscle, collagen and elastin (key constituents of vaginal tissue) are already 

thought to be compromised in women with prolapse (14). Ideally, graft implantation would 

enhance, or at minimum, maintain the supportive capabilities of the vagina, though current 

synthetic mesh products only have the potential to damage native vaginal tissue. 

1.3.2 Factors Influencing the Host Response  

Much of our understanding of urogynecological mesh products is from the hernia mesh 

literature, which is not surprising given that the current generation of prolapse meshes were 

originally developed for hernia repair (78). As such, a majority of the data regarding prolapse 

mesh devices in the literature, as well as vendor marketing pamphlets, use legacy methods to 

demonstrate biocompatibility by simply implanting synthetic mesh in the abdominal wall. While 

there is great utility in such studies, namely verifying a lack of outright host rejection, the 
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abdominal wall and pelvic floor are quite dissimilar in regards to the biological environment and 

the mechanical demands placed on a mesh implant. As evident by the large volume of 

complications associated with vaginal mesh, the assumption that the abdominal and pelvic floor 

environments are similar is quite flawed. Compatibility and function of mesh for abdominal 

hernia repair does not guarantee similar outcomes when used in the pelvic floor. Thus, 

abdominal mesh and current urogynecological mesh serve as a prototype device rather than an 

optimal one. Still studying success concepts for mesh design in the abdominal wall are of great 

value when examining the behavior and outcomes of prolapse mesh. Perhaps the most important 

concepts learned from the hernia literature are material type, filament type, and pore size 

1.3.2.1 Material 

Since the introduction of the first synthetic nylon SUI sling in the 1950’s, pelvic floor grafts have 

been constructed from a variety of materials, resulting in a wide range of outcomes (5). Previous 

mesh materials include polyethylene terephthalate (Mersilene), polypropylene (Marlex), 

polytetrafluoroethylene (Teflon), and expanded polytetrafluoroethylene (Gore-Tex) (Figure 7) 

(78). Though the material chosen for mesh construction likely plays a role in dictating the host 

response, additional textile features have confounded the impact of many graft materials. 

 For instance, prolapse meshes constructed from Teflon and Gore-tex experienced 

disastrous clinical results. The response to these materials was characterized by poor tissue 

integration, and while the ease of removal was initially touted as a benefit, Gore-tex was plagued 

with numerous complications of alarming severity (4). Gore-tex SUI slings were reported to have 
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a removal rate of at least 35%, with a significant number of sinus tract formations (10%), in 

addition to infections and reports of vaginal exposures (79). Similarly, in a large prospective 

multi-center trial, Gore-tex was found to be a risk factor for mesh exposure into the vagina 

following sacrocolpopexy (71, 80). Another material that has been linked to poor clinical 

outcomes is polyethylene terephthalate, a polyester polymer. This polymer was used in a woven, 

multifilament prolapse mesh and manufactured as Mersilene. Despite high rates of exposure and 

infection relative to other meshes, surgeons continued to use Mersilene until recently.  

Contemporary reports reasoned that the materials themselves, Gore-tex and polyethylene 

terephthalate, were the factor responsible for poor clinical outcomes. However, our current 

understanding of host response to mesh suggests that the adverse host response to these products 

was likely related to the pore size and interstices inherent in the construction of these mesh 

products. Rather than the chemical or surface properties of Gore-tex, it now seems likely that the 

failure of Gore-tex was due to its small pore size (<10µm). Similarly, the woven construction of 

Mersilene creates small interstices (<1µm). It is thought that such spaces harbor bacteria and can 

lead to chronic infection, inflammation, mesh exposure, erosion, and fistula formation. 

Therefore, the complications resulting from these products arise from geometric factors rather 

than the use of Gore-tex or polyethylene terephthalate per se.  

In recent decades, polypropylene has become the primary material for synthetic mesh 

used in incontinence and prolapse surgeries. Unlike the woven construction used for 

polyethylene terephthalate, polypropylene mesh is often knitted. Initial, studies found 

polypropylene to elicit a strong inflammatory response, including the formation of fibrotic tissue 
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and multinucleated giant cells (i.e. foreign body response) around mesh filaments (81). However, 

polypropylene mesh was found to encourage tissue ingrowth, providing a scaffold into which 

tissue could penetrate. Clinically, polypropylene grafts were found to have low complication 

rates relative to other material types, though it was not until the overwhelming the success of 

tension-free vaginal tape (TVT) that polypropylene became the dominant material for mesh 

construction (82). As with previous materials, the outcomes associated with polypropylene may 

be attributed to structural features such as knit construction and large pore sizes, rather than 

specific properties of polypropylene. While polypropylene grafts have significantly improved 

outcomes, the publication of large case series and other clinical trials (eCARE), highlight the 

relatively high rates of complication for both the transvaginal and transabdominal insertion of 

polypropylene grafts (83). Given that the current generation of mesh products are almost 

exclusively comprised of polypropylene, the variable success of synthetic grafts suggests that 

factors other than material selection are responsible dictating the host response. 

1.3.2.2 Filament Type 

Often materials used to construct synthetic mesh are extremely stiff relative to biological tissue, 

making them unsuitable for implantation on soft, low stiffness tissues such as the vagina. For 

instance the tangent modulus of polypropylene is 1.5-2 GPa, over a 1000 times greater than that 

of most soft tissues in the body. To reduce the device stiffness and provide flexibility to synthetic 

grafts, materials such as polypropylene are extruded into a thin diameter thread or filament. 

Filaments are classified as either mono- or multifilament, where multifilament fibers are braided 
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or interwoven. Studies have found that multifilament meshes have significantly higher bacterial 

presence, believed to arise from the increased surface area of ~1.57 relative to monofilament 

fibers (84). The increased amount of surface area is thought to provide more space for bacteria 

adhesion and, in turn, greater bacterial proliferation (84). In addition, multifilament fibers 

contain spaces between individual filaments that are typically less than 10µm in diameter. Such 

diameters allow for the passage of bacteria, yet macrophages are unable to infiltrate these areas, 

providing a harbor for bacterial proliferation (78).  

1.3.2.3 Pore Geometry 

In addition to filament type, the geometric arrangement of filaments has also been linked to the 

host response to synthetic materials. Two common textile methods for constructing synthetic 

grafts are knitting and weaving. Weaving is characterized by a simple interlacing technique, with 

two perpendicular filament orientations. Styles of weaving include plain, twill, and satin. Woven 

meshes provide superior mechanical strength and shape memory, however, these devices fray 

when cut and are unable to conform to the complex geometries of the pelvic floor due to their 

increased bending stiffness (85). Further, woven meshes such as Mersilene have been associated 

with increased infection rates. 

Unlike woven mesh, knitted mesh is constructed by looping individual filaments. Knit 

techniques include warp-lock, interlock, and circular knit, though the latter is uncommon for 

urogynecological meshes. Knitted grafts are flexible and can easily be manipulated to conform to 

the anatomical structures. Most notably, knitted devices have a significantly lower number of 
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mesh related complications relative to woven mesh. The impact of the construction method is 

illustrated by comparing Marlex, a heavyweight (~95 g/m2), woven polypropylene mesh, and 

Prolene, a heavyweight (~85 g/m2), knitted polypropylene mesh. Despite similar mesh weight 

and identical construction materials, Marlex exposure rates were nearly 44%, while Prolene 

exposure rates were minimal (<5%) for abdominal hernia repair (85).   

1.3.2.4 Pore size 

Another characteristic of mesh believed to impact the host response to mesh is porosity. Porosity 

is defined as a ratio of the void, or empty space, in a mesh to the area of occupied by the mesh 

(void area in meters / total area in meters). A porosity of 0 signifies a solid piece of material (no 

pores), while a theoretical porosity of 1 indicates that no material is present. It is generally 

accepted that high porosity meshes reduce complication rates, a belief that is reflected in the 

movement towards lower weight meshes. Porosity provides a simple, two-dimensional measure 

of the amount of mesh material in a given area, however this value is subject to change with 

mechanical loading, as will be discussed below.  

Though recent products have sought to increase mesh porosity, recent studies suggest that 

pore size, not porosity, is the most important factor for improving the host response to mesh. In 

the hernia literature, the impact of pore size has been well characterized, specifically for 

polypropylene mesh. Larger pores have been shown to improve the mechanical integrity of the 

resulting mesh-tissue complex, increasing both strength and collagen deposition relative to those 

resulting from grafts with smaller pore dimensions. Smaller pores restrict and reduce tissue 
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ingrowth relative to larger pore structures, yielding mesh-tissue constructs with limited vascular 

growth and less mature collagen (86, 87). Further, the foreign body response is greatly reduced 

with increasing pore size (88-90). Importantly, pores with dimensions less than 10µm allow for 

the passage of bacteria, yet are too small for macrophages and neutrophils to pass through, 

providing regions for bacterial proliferation and persistent infection (91). 

While bacterial proliferation is dependent on the dimensions of individual mesh pores, 

each individual mesh fiber is subject to a foreign body response regardless of size, with the 

surface of each fiber becoming encased by a granuloma (92-94). Decreasing pore size reduces 

the distance between these peri-fiber inflammatory reactions and once sufficiently close, fibrous 

granulations can join with neighboring fibrous granulations, leading to “bridging fibrosis”. 

Bridging fibrosis results in the formation of a continuous scar plate, sealing the graft from the 

body and preventing tissue ingrowth (88, 95). Further, Klinge et al. have found that the foreign 

body response to fibers is dependent on the hypdrophobicity of the polymer used to extrude the 

filaments (96). As such, differing materials have dissimilar pore dimensions at which bridging 

fibrosis will occur. Specifically, it has been shown that effective tissue in-growth for 

polypropylene mesh, occurs in mesh pores with a diameter of 1000µm or greater (97), where 

effective tissue in-growth is defined by the quality of the tissue which forms around mesh fibers, 

with no bridging fibrosis. For polypropylene grafts, pore sizes less then 1000µm elicit greatly 

enhanced inflammatory and fibrotic responses (98, 99). Once again, it should be noted that 

studies regarding pore size were performed in an abdominal wall model. While these findings 

have proven useful in guiding synthetic graft design for abdominal wall and vaginal meshes, 
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extrapolation of such data requires the assumption that the environmental conditions between 

these sites are similar. The appropriateness of this assumption is questionable. Still, there is 

likely a critical pore diameter for urogynecological meshes to minimize scar plate formation, 

though it may be distinct from that found in abdominal wall studies even for the same material. 

Given the importance of pore size, it is not surprising that this design feature is often 

considered the primary method for mesh characterization, originally outlined by Amid et al. in 

the late 1990’s (91). The Amid classification divides meshes into four classes (100); 

Type I: macroporous, with pore sizes are greater than 75µm in diameter 

Type II: microporous, with pore sizes less than 75µm,  

Type III: predominately macroporous with microporous components (ex. Mersilene and 

polytetrafluoroethylene),  

Type IV: submicroscopic pore size (<1µm).  

In light of the previous discussion on pore diameter, it is not surprising that type II, type III, and 

type IV meshes have been met with poor clinical outcomes citing little tissue formation and no 

adhesion to surrounding tissues, in addition to high infection rates (4, 79, 100). While the Amid 

classification was useful for past mesh devices, nearly all contemporary products are 

characterized as Type I, rendering this characterization ineffective for distinguishing products. 

With nearly all contemporary meshes classified has Type I, the Amid classification must be 

supplemented to guide mesh selection and graft design. 
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Figure 11. Masson’s trichrome staining of vaginal tissue with mesh embedded, demonstrates the fibrous 

encapsulation associated with individual mesh filaments (a). Here, * represents mesh filaments and FBR represents 

the foreign body response. While each filament is encased in fibrotic tissue, large pore sizes allow for tissue to grow 

in between separate FBR’s (b). If filaments become too close to one another, the FBR from individual filaments 

fuse, resulting in bridging fibrosis (c).  

 

1.3.2.5 Mesh Burden 

Finally, it should be mentioned that the area density of the mesh, referred to as mesh weight, is 

not a significant factor in dictating the host response. Often, heavyweight meshes (>1g/cm2) are 

constructed to have small pore sizes, thereby increasing their mesh weight, while lower-weight 

meshes (< 1g/cm2) are often constructed with a large range of pore sizes. Thus, the negative 

effects of heavyweight meshes are likely due to small pore dimensions rather than the specific 

gravity of the device. Wehye et al. demonstrated the concept that pore size, rather than mesh 

weight, is more predictive of the host response as a lightweight, microporous mesh was found to 
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provoke a more intense foreign body response with poor tissue integration compared to 

heavyweight meshes with larger pore sizes (98). Given these results it appears that the relative 

density or spatial distribution of material has a greater impact on the host response, than the total 

amount of material implanted. The spatial distribution, or mesh per unit volume, of a device is 

defined by the term mesh burden. Mesh burden is directly derived from the concept that mesh 

fibers are encapsulated by fibrous granulations, which may form bridging fibrosis if mesh fibers 

are sufficiently close. Increases in mesh burden imply that mesh filaments are being brought 

closer together in three-dimensional space, increasing the likelihood of scar plate formation. Data 

regarding this characteristic is limited, though it may prove useful in guiding future mesh 

designs. 

1.3.3 Considerations for Mesh Use in Prolapse Repair 

Much of the advancement in prolapse mesh can be attributed to knowledge gained from hernia 

mesh studies. Yet, this criterion is merely a starting point, as optimization of grafts for the vagina 

requires a greater understanding of the environment in which these devices are placed and the 

function they are being asked to perform. Relative to the abdominal wall, the environment of the 

vagina is much more complicated from a biological and mechanical perspective, requiring 

reconsideration of the role of the implant in this anatomic location. As such the requirements for 

mesh repair will vary not just from the abdomen to the vagina, but from patient to patient as well. 

 While hernia meshes are only in contact with the abdominal fascia, urogynecological 

mesh is placed in an environment with a variety of soft tissues, ranging from muscle to 
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connective tissue and specialized organs. Importantly, synthetic meshes are directly fixed to the 

vagina; an organ that is heavily colonized with bacteria, creating a clean-contaminated surgical 

field for transvaginal procedures. Further, the vagina and its supportive tissues are metabolically 

active, as their tissue compositions dramatically change with normal aging, and during hormone 

driven events such as pregnancy, menstrual cycle, and menopause (8, 16). The activity of these 

tissues is an important consideration for implantable devices.  

Several studies have found mesh implantation to elicit a markedly different host response 

in the vagina as compared to the abdominal wall. Using a rabbit model, Pierce et al. found that 

implanted polypropylene mesh elicited no mesh exposures abdominally, yet vaginal exposure 

rates for the were 27% for the same mesh (101). In addition, the author’s state that the graft 

length was often decreased upon explanation from the vagina, while histological analysis 

revealed increased inflammation and fibroblast proliferation scores for vaginal implant samples 

relative to the abdominal site.  

Further emphasizing the increased metabolic activity in the vagina, Pierce et al. examined 

the outcomes of cross-linked collagen grafts in these two environments. Cross-linked grafts were 

noticeably degraded in 37% of abdominal implants, while 70% of grafts implanted on the vagina 

were degraded. Degradation at the vaginal site was so dramatic that nearly half of all grafts were 

found to be missing upon sample harvesting (101). Similarly, using a sheep model, Manodoro et 

al. found no exposures in the abdominal wall, while 30% of vaginal implants resulted in 

exposures (102). Interestingly Manodoro et al. reported increased folding and nearly twice the  
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amount of mesh “contraction” in vaginally placed mesh samples. It is important to note that in 

each of the aforementioned studies, mesh was simply sutured to the vagina, and not tensioned as 

is done for prolapse and incontinence surgeries utilizing mesh.  

Overall, the vagina is a harsher biological environment for mesh implantation compared 

to the abdomen. The failure to acknowledge the biologic environment in the pelvic floor has 

likely resulted in high complication rates of polypropylene mesh. Still, while recent studies have 

examined the impact of mesh on vaginal tissue, few have acknowledged the mechanical 

environment of the pelvic floor or the mechanical role of synthetic mesh in this support system. 

Failure to address the primary function of synthetic mesh devices is a significant oversight in 

graft design.  

1.3.4 Gap in Knowledge 

Importantly, previous studies have begun to characterize the host response to synthetic mesh and 

elucidate which design features of synthetic mesh products impact the host response. While this 

information is invaluable, rarely have previous studies considered the implications of mechanical 

loading on these design features. Clearly prolapse mesh functions in a load bearing capacity, as it 

is implanted to restore vaginal position and resist prolapse upon application of in-vivo loads. As 

such, studies examining the in-vivo mechanical role of prolapse mesh and the impact of such 

mechanical loading on its deformation behavior are of the utmost importance.  

To understand the cause of current mesh related complications and provide insight into 

why some meshes succeed, others fail, and still others vary from patient to patient, a thorough 
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mechanical analysis of synthetic mesh devices is required. This characterization in conjunction 

with changes in textile characteristics can vastly improve clinical outcomes and guide future 

product design. Such rigorous biomechanical analysis, though currently lacking in the area of 

female pelvic health, has significantly enhanced our understanding of anatomical and device 

function in other fields of research, including cardiovascular and orthopedics (103-106). The 

benefit of accurate computational modeling in these areas cannot be understated as it allowed for 

rapid development and assessment of devices in these areas.  

Though a handful of studies have modeled polypropylene meshes (107), these models are 

often microsctructurally complex, as they capture details of textile construction. As such these 

studies offer limited insight into the effects of mechanical forces on the design features that are 

known to impact the foreign body response to synthetic meshes. Moreover, these microstructural 

models do not scale to the dimensions of products currently used in clinical practice, and are 

unable to capture the gross mechanical behavior of mesh devices. Ideally, computational models 

of synthetic mesh would accurately represent the mechanical behavior of their physical 

counterparts, while providing meaningful data regarding the impact of loading on clinically 

relevant textile features. 

1.4 MOTIVATION AND SPECIFIC AIMS 

As previously described, pelvic organ support is a complex mechanical system in which muscles 

and connective tissues combine to maintain position of the vagina, which in turn supports the 
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bladder, urethra, and rectum. Disruption of this support leads to a wide range of dysfunction, 

arising from altered anatomy. Specifically, POP directly results from defects in vaginal support, 

allowing the vaginal walls to descend in response to in-vivo forces. These supportive defects 

destabilize the positioning of other pelvic organs, leading to the presence of a vaginal bulge, or in 

the worst-case scenario, inversion the entire vagina outside the body (Stage 3 and 4 POP).  

To restore vaginal support, a graft is surgically fixed to the vagina, tensioned, and 

anchored to the pelvic sidewall, lifting the vagina superiorly and laterally. Due to the high failure 

rates associated with biological grafts, synthetic mesh grafts have become widespread for pelvic 

organ prolapse repair. Though objective cure rates are often reported to be over 90%, occurrence 

of severe complications are not rare events, often with symptoms more severe than prolapse 

itself. The severity of and regularity of these complications led to 2 recent public health 

notifications and legislation regarding the reclassification of mesh products for prolapse repair 

(61, 62, 108). 

Despite the obvious mechanical role of such devices following implantation, the 

mechanical behavior of synthetic mesh devices has yet to be fully characterized, let alone in 

response to the specific mechanical demands urogynecologic applications. Rather, synthetic 

prolapse mesh was predicated on mesh technology for abdominal hernia, which was developed 

prior to the 1976 Medical Devices Amendment Act. As a result, synthetic mesh was quickly 

adapted for prolapse repair, without undergoing strict pre-clinical testing. The transfer of mesh  
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technology was so direct that often surgeons would use the same abdominal hernia mesh, simply 

cut into appropriate dimensions for prolapse repair. Thus, the base technology was not developed 

with the pelvic floor in mind.   

In this dissertation, I hope to demonstrate the importance of mechanical loading on the 

design and surgical implantation of current synthetic mesh devices. First, I will experimentally 

examine the microscopic and macroscopic deformation of synthetic mesh in response to 

boundary conditions that mesh devices experience in-vivo. Using this data, I then develop and 

validate a 3-dimensional (3D) computational model for synthetic mesh. Lastly, this dissertation 

will combine computational mesh models with patient specific pelvic floor geometries to 

simulate prolapse and subsequent repair in-silico. Using this approach various surgical and 

patient factors will be examined in relation to procedure efficacy. Overall, this dissertation is 

intended to examine the role of mechanical forces on the behavior of prolapse mesh and 

demonstrate the need to consider such mechanics during mesh development. Further, I hope to 

develop tools to guide and optimize future prolapse mesh products for patient specific needs 

prior to implantation. Such concepts are indeed novel to the treatment of prolapse and would 

provide the foundations required to dramatically improve the clinical practices in this area. To 

achieve these goals, the specific aims of this dissertation are: 

 

Specific Aim 1) Characterize the ex-vivo mechanical behavior of synthetic prolapse meshes 

and examine the impact of loading on clinically relevant textile features  
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1.a. Examine the change in pore geometry of mesh products in response to uniaxial 

tension. Clinically relevant textile properties including porosity, effective porosity, pore 

dimensions, as well as structural properties will be determined in response to various in-vivo 

loads. 

1.b. Utilize 3D photogrammetry to measure the surface deformation of mesh products in 

response to uniaxial tension. In addition, the impact of fixation method (boundary conditions) 

and pore geometry on surface deformations will be examined. 

Specific Aim 2) Utilize experimental data to develop, validate, and computationally 

examine planar deformation of a computational model for synthetic mesh    

2.a. Develop a protocol for CAD design and uniform discretization of pore geometry for 

current synthetic mesh devices. Mechanical properties for synthetic mesh will be determined via 

inverse finite element methods based on experimental data.  

2.b. Utilize experimental testing to validate the deformation (quantified via pore 

dimensions and mesh burden) predicted by computational models of synthetic mesh loading. 

2.c. Perform a sensitivity analysis using computational mesh modeling, examining the 

impact of loading angle and magnitude of force on pore deformation. 

Specific Aim 3) Develop a computational model for finite element simulation of prolapse 

and subsequent mesh repair  

3.a. Develop a protocol for segmentation and discretization of pelvic floor structures 

obtained from magnetic resonance imaging (MRI) scans. Vaginal geometries will then be 
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utilized to create a computational model of prolapse and used to simulate synthetic mesh repair. 

During these simulations, the impact of surgical (tension, suture locations) and anatomic 

variables (geometry, fixation points) will be examined.  
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2.0  EX-VIVO DEFORMATION OF PROLAPSE MESH 

2.1 OVERVIEW  

Synthetic meshes are widely used in prolapse repair surgeries in order to provide permanent 

structural support to the vagina. Recent reports have found that synthetic meshes are used in 

one–third of all surgical POP repairs and specifically 93% of abdominal sacrocolpopexy 

procedures (62, 109). Although synthetic meshes have demonstrated superior cure rates relative 

to biological grafts, the justification of their use must be weighed against complication rates (27, 

46, 47, 110, 111). Mesh related complications include infection, vaginal discharge, dyspareunia, 

erosion, and exposure. Perhaps the most devastating and least understood of these complications 

are erosion and exposure. Erosion is characterized by the movement of implanted mesh into and 

through adjacent organs, degrading tissues in contact with the mesh. Similarly, exposure is 

characterized by the degradation of vaginal tissue in contact with mesh, allowing mesh to 

become exposed through the vaginal epithelium. Exposure is observed clinically by visualization 

and/or palpation of mesh in the vaginal lumen and is associated with pain, bleeding, odor, and 

discharge. While the mechanistic causes of erosion and exposure are not currently understood, it  
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is likely that the degradation of tissues associated with the implanted mesh results from the host 

response to these devices. Further, there is growing evidence that the host response to synthetic 

mesh is largely influenced by the textile properties of these products (86, 112, 113). 

 Aside from dictating the host response, the textile properties of mesh greatly impact the 

overall mechanical behavior of the device. Previous studies have found a wide range of structural 

properties for synthetic mesh, varying with changes in pore geometry (2, 114, 115). Though 

vendors have deliberately altered textile properties (filament diameter, knit pattern, pore size, 

etc.) with the goal of tailoring the mechanical behavior of synthetic grafts, there has been little 

consideration for the impact of mechanical loading on these textile properties. This is particularly 

important for load bearing textiles, such as prolapse meshes, given the implications of textile 

features, such as pore size, on the host response.   

As previously highlighted, pelvic organ support is a complex mechanical system in which 

support to the vagina is provided by the levator ani muscles and connective tissue attachments to 

the pelvic sidewall. The vagina in-turn orchestrates support to the pelvic organs by maintaining 

static equilibrium and resisting transient changes in abdominal pressure. Current synthetic graft 

repairs mimic the mechanical role of connective tissue, as synthetic meshes are typically attached 

to the vagina and then secured to the sacrum (sacrocolpopexy) or to structures in the pelvic 

sidewall (transvaginal procedures). Under these conditions, mesh devices assume the role of 

suspension cables, maintaining the position of the vagina while resisting the downward forces of 

abdominal pressure and the weight of other pelvic viscera. When used in this capacity, synthetic 

meshes are predominately subjected to uniaxial tensile loading. Given the porous construction of 
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mesh products, it is expected and widely observed, that uniaxial loads deform the mesh 

substructure (pore geometry). The impact of uniaxial loads is highlighted by clinical reports of 

mesh contraction (100, 102). Thus, for urogynecologic meshes to function as intended, it is 

necessary to understand how mesh products deform in response to loading conditions similar to 

those experienced by the vagina and its supportive structures. Understanding how prolapse mesh 

deforms in response to such loading conditions, and how this relates to changes in textile 

properties, is critical for the improvement of synthetic prolapse meshes.  

2.1.1 Textile Properties      

The textile properties of synthetic mesh refer to many of the design features found within these 

products. As previously discussed, many textile properties have been linked to the host response. 

Often these properties are included in promotional literature for mesh kits, as vendors highlight 

how their proprietary designs are expected to reduce complications and maintain high levels of 

efficacy. Typically vendors report the material, mesh weight, pore size, and porosity based on 

their perceived importance to clinicians. While these properties are reported separately, it is 

important to understand what each term represents and the interdependence of these 

characteristics. 

Mesh material refers to the substances from which a mesh is constructed, whether 

synthetic, biologic, or composite (a combination of synthetic and biologic components). 

Synthetic meshes are typically comprised of polymeric materials that have been extruded into 
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thin filaments. Currently, polypropylene is the dominant material for mesh construction though 

many other materials have been used in previous generations of prolapse meshes (85). 

Mesh weight refers to the area density of the mesh, given in units of g/cm2. Mesh weight 

is similar to a measure of density or specific gravity, though given the planar geometry of 

synthetic mesh, a planar measurement of density is used as opposed to a volumetric one. Thus, 

mesh weight can be simply thought of as the amount of material present in a given area. Given 

the porous nature of contemporary synthetic meshes, lower mesh weight is most often achieved  

by utilizing greater pore diameters (though smaller filament diameters may used as well). Larger 

pores increase the amount of void space per unit area, lowering the amount of mesh material 

over this area. 

Generally, pore size refers to the diameter of the repeating pore structure found in 

synthetic mesh. However, the typical pore geometry is polygonal and thus, a range of diameters 

may be reported depending on which transverse points are chosen for this measurement. There is 

currently no standard by which vendors report pore size, meaning that companies may report 

mean, median, or maximum diameters for their products (Table 1). Often, companies report the 

maximum diameter of the largest repeating pore in light of recent publications demonstrating the 

benefits of larger pores. It must be stressed that while mesh vendors report the maximum 

diameter of the largest pore, smaller pores and cross-fibers found within the knit structures are 

often ignored. Therefore, a single value of pore size may not accurately represent an entire mesh, 

as knot structures often contain microscopic pores. 
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Lastly, vendors frequently tout the porosity of a mesh product. Though, as with mesh 

weight, porosity is dependent on the pore size of a given mesh and large pore meshes tend to 

have greater porosity values. Additionally, porosity may vary with filament diameter or be 

dependent on whether a mesh is constructed with monofilament or multifilament fibers. It should 

be noted that multifilament construction has been associated with increased rates of infection 

arising from small interstices between individual filaments. These findings have led to a rapid 

decline in prolapse meshes containing multifilament fibers. 

 

Table 1. Current prolapse meshes are directly derived from abdominal hernia meshes. Often, mesh 

products are used for both hernia and prolapse repair, though they are cut and marketed depending on their 

application. While nearly all current meshes are considered type 1 polypropylene, their textile and structural 

properties greatly vary. 
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2.1.2 Structural Properties 

In addition to textile properties, vendors often report the mechanical behavior of mesh, 

characterized by its structural properties. Structural properties are non-normalized measures of 

mechanical behavior, and describe the load-elongation behavior of structures. Structural 

properties are dependent on the amount of material present, unlike mechanical properties, which 

are constant for a given material (Figure 12). For instance, a steel rod with a greater diameter 

will require more force to break relative to smaller diameter steel rod of equal length. While the 

structural properties of these rods are different (larger failure load and elongation for larger 

diameter rod), the mechanical properties (failure stress and strain) should be statistically similar. 

Mechanical properties should never be reported for synthetic mesh, as these devices are not 

continuous solids since pores are of the same length scale as the mesh product. Further, prolapse 

meshes are composite materials, constructed from interconnected filaments meaning that only 

structural properties should be reported.  

For uniaxial tensile testing, important structural properties include ultimate load at 

failure, ultimate elongation, stiffness, and energy absorbed. The ultimate load is the force at 

which mesh fails (breaks, tears, etc.). As a structural property, ultimate load is dependent on the 

dimensions of the mesh sample tested. The ultimate load is analogous to ultimate stress or tensile 

strength, (mechanical properties) where ultimate stress is defined as the ultimate load divided by 

the specimen’s cross-sectional area. It should be noted that the reported ultimate load is 

dependent on the type of mechanical test being performed. For example, the ultimate load for 
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uniaxial testing may vary from that obtained from biaxial or ball burst testing. These differences 

arise from the unique boundary conditions used in each test. It is also interesting to note that 

mesh vendors typically report the uniaxial tensile failure properties (load, elongation, linear 

stiffness) in order to demonstrate the mechanical efficacy of these devices. While such 

information likely suggests that mesh failure will not occur in-vivo, there is currently little 

evidence that such data is related to mesh outcomes clinically.  

Ultimate Elongation is the maximum elongation, or distension a mesh undergoes until the 

point of failure. Similar to the ultimate load, ultimate elongation is dependent on both the 

dimensions of the tested sample and the mechanical testing protocol used to analyze the mesh. 

Ultimate elongation is similar to ultimate strain, where ultimate strain is defined as ultimate 

elongation divided by the initial length of the samples.  

The stiffness of a mesh is determined from the slope of the load-elongation curve, 

reported in units of N/mm. Intuitively, stiffness is the resistance of a material to deformation or 

elongation (i.e. stiffer materials require more force to elongate or deform). Stiffness can be 

calculated at any point along the load-elongation curve, though often the maximum slope is 

reported. It is important to note that many mesh products exhibit non-linear load-elongation 

behavior, thus the slope of this line changes along the curve. As such, it is important to report the 

elongation at which the slope is calculated and how this relates to anticipated in-vivo loading. 

Whereas stiffness refers to the slope of the load-elongation curve, the slope of a stress-strain 

curve is referred to as the tangent modulus. The tangent modulus is similar to stiffness, but 

relates normalized measures, stress and strain, rather than raw load and elongation. 
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Lastly the energy absorbed is defined as the area under the load-elongation curve given in 

units of Nmm. The parameter represents the total energy required to cause failure of a sample, 

providing a measure of toughness for a structure. Similarly, the area under the stress-strain curve 

is referred to as the strain energy density. Strain energy density provides a measurement for the 

amount of energy required to fail a material, independent of the samples dimensions. 

 

 

Figure 12. Materials testing can be classified as either structural or mechanical. Structural properties 

(ultimate load, ultimate elongation, stiffness, energy absorbed) are obtained directly from load-elongation curves. 

Mechanical properties (ultimate strength, ultimate strain, tangent modulus, strain energy) are normalized by 

specimen dimensions and are used to characterize the mechanical behavior of continuous materials. While 

continuous materials (extruded polypropylene) can be characterized in terms of mechanical properties, porous 

textiles (knitted polypropylene) must be characterized using structural properties.  
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2.1.3 Uniaxial Tensile Properties of Synthetic Mesh 

Previous studies have thoroughly examined synthetic mesh in regards to traditional structural 

properties (2, 112, 114, 115). In general, the mechanical behavior of mesh is determined by the 

textile properties, including construction technique (knit vs. weaving), pore geometry, and edge 

treatments (tanged edges vs. free edges), though pore size has not been found to correlate with 

structural properties (85, 112, 114). The impact of textile features is quite apparent when 

considering the wide range of mechanical behavior exhibited by contemporary prolapse mesh 

products (2, 114). Despite exclusive testing of knitted Type I polypropylene devices, the variety 

of properties exhibited by synthetic mesh is remarkable with stiffness values varying as much as 

3 orders of magnitude (Table 2). 

 

Table 2. Previous uniaxial tensile testing of prolapse mesh has found a wide range mechanical behavior, despite 

being constructed from the same material. The variation in structural properties arises from differences in pore 

geometry and knit pattern. Data reported is from Shepherd et al. (114). 

 

  57 



 

 Whereas the specific values of structural properties greatly differ, mesh properties often 

have nonlinear load-elongation curves. The non-linearity of these devices is largely expected as 

their porous structure and knit construction allows for significant fiber reorganization upon 

application of force. Indeed, the extent of this nonlinearity is influenced by the orientation of 

pores to the axis of loading. Pores whose fibers are less aligned with the axis of loading undergo 

greater rotation, thereby increasing the nonlinearity of the loading curve as complete fiber 

recruitment requires a greater magnitude of stretch. This logic follows from similar mathematical 

descriptions of collagen fiber recruitment developed by Lanir et al. (116). Conversely, pores 

whose fibers are aligned with the axis of loading, such as a square loaded along one of its of its 

orthogonal axes, or with rigid pores (i.e. little to no fiber rotation) would exhibit a largely linear 

response.  

2.1.4 Gap in Knowledge 

While previous data regarding the structural properties of mesh is valuable, the relationship 

between reported structural properties and clinical outcomes is unclear. Many studies emphasize 

the failure criteria for mesh. This is especially true in vendor literature as companies look to 

reassure clinicians that their products will not fail in-vivo. The perceived importance of 

mechanical strength likely stems from the high failure rates for biological material, and reporting 

superior ultimate load and elongation values is somewhat analogous to a factor of safety. Yet, 

structural failure of synthetic mesh is extremely rare clinically, with a few anecdotal and 

questionable reports of mesh deterioration following implantation (117-119). Conversely, recent 
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studies have found that mesh fibers remain intact even in patients who suffer from complications 

(120). In this regard, many synthetic meshes are overdesigned for use in pelvic floor 

reconstructive surgeries and may contribute to the development of complications via stress-

shielding, a mechanosensitive phenomenon in which stiff materials shield biological structures 

from mechanical loads. This reduction in physiologic loading leads to degenerative tissue 

remodeling. Stress shielding is believed to have resulted in the catastrophic failure of several 

implants in the orthopedic area, including hip implants (121, 122). 

 Rather than focus on the failure criteria, structural properties should be examined within 

portions of the load-elongation curve that are physiologically relevant. Unfortunately, little is 

known of the loads placed on synthetic mesh during surgical tensioning or in-vivo. Regardless, 

these values likely do not approach the failure criteria (>20N for a majority of meshes), and are 

well within the toe-region of the load-elongation curve (115). 

When considering the textile characteristics and their changes resulting from mechanical 

loading, it is important to understand the environment in which mesh is used. Several studies 

have compared the biological response to surgical mesh between abdominal hernia repair and 

prolapse repair models, finding distinct differences between these sites. Specifically vaginal 

implantation was found to have an increased inflammatory response and with greater fibrotic 

tissue formation relative to abdominal implantation (101). Additionally, these studies found 

exposure (incorrectly referred to as erosion in these papers) to be more common following 

vaginal implantation, as no erosions were observed abdominally (102, 123). However, it should 

be noted that in each of these studies, mesh was merely sutured to the vagina and not used as a 
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support to attach the vagina to the pelvic sidewall or sacrum, as is done during prolapse repair 

procedures. While these studies suggest that the difference in biological location plays a key role, 

it neglects one of the largest differences between hernia and prolapse repair surgeries - the forces 

applied to the mesh. 

When used for abdominal hernia repair, mesh predominately resists abdominal pressure, 

effectively loading the mesh along the entire boundary. This pressurized system loads hernia 

mesh in a multi-axial fashion, similar to the surface of a balloon undergoing inflation. These 

conditions simultaneously load all axes, leaving the pore geometry relatively unchanged. 

Conversely, during abdominal sacrocolpopexy and transvaginal procedures, the mesh, or mesh 

arms, are anchored at 2 distinct locations (vagina and sacrum or vagina and pelvic sidewall, 

receptively). Thus, in response to surgical tensioning or in-vivo loading, the mesh largely 

experiences uni-directional (uniaxial) tensile loads. Such uniaxial loads likely deform mesh pores 

as fibers reorganize to resist the applied force. In addition, the discrete placement of sutures 

imparts strikingly different boundary conditions as it relates to hernia repair. Whereas the 

perimeter of a hernia mesh is fixed in place, prolapse meshes are typically only fixed in a 

minimal amount of locations (several to anchor to the vagina and one to two per attachment site). 

This allows for a significant movement of mesh fibers as individual filaments orient to the axis 

of loading. Given this fundamental understanding of prolapse mesh function, the changes in 

textile properties must be understood in relation to two mechanical concepts - tensile loading and 

boundary conditions.  
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Though previous studies clearly demonstrate significant changes in pore geometry upon 

loading, these changes in pore configuration have not been quantified. Understanding how the 

application of forces alter textile features such pore size, which are known to significantly alter 

the host response, is critical to understanding the occurrence of complications. Further, such 

information is necessary to consider when designing mesh products for urogynecologic 

applications.  

2.2 MESH POROSITY IN RESPONSE TO UNIAXIAL LOADS 

2.2.1 Introduction 

Synthetic mesh use for the surgical repair of POP is widespread, with approximately 1/3 of all 

surgical repairs utilizing mesh as of 2011 (124). Ideally, synthetic mesh provides structural 

support to the vagina in order to eliminate the symptoms of prolapse, including the presence of a 

vaginal bulge, urinary and/or fecal incontinence, and the psycho-social issues resulting from the 

disorder (18, 125). Though synthetic mesh effectively maintains the position of the pelvic organs 

in long-term studies, the benefit of mesh has been questioned due to the risk of significant 

surgical complications, including exposure, erosion, pain, and dyspareunia (68). Despite the 

improvements in complication rates resulting from the transition to lightweight, monofilament,  
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macro-porous, polypropylene mesh, recent studies focused on outcomes have found that up to 

20% of women who undergo a transvaginal application of prolapse mesh require a repeat surgery 

for recurrent symptoms or complications (67). 

 As a result of the large number of reported complications (64, 71), much focus has been 

placed on the textile characteristics of surgical mesh and their influence on patient outcomes. 

Perhaps the most notable difference between mesh products is the geometry of the individual 

pores. Previously the architecture of the pores has been shown to dictate the mechanical behavior 

of a mesh (112, 114), and the dimensions of the pores are believed to be the most influential 

design feature when discussing the biological response to mesh (86, 87, 89, 90). Pore size, and 

more generally the distance between mesh filaments has been extensively examined in hernia 

literature, where it has been shown to significantly influence the mechanical integrity of the 

resulting mesh-tissue complex, as well as the immune response induced by a mesh (89, 90). 

Specifically, mesh structures with greater pore sizes were found to yield mesh-tissue composites 

of significantly greater strength and increased collagen deposition, while small pore structures 

restricted vascular growth and contained less mature collagen (86, 87). Pore sizes with 

dimensions less 10µm provide harbors for bacterial proliferation, leading to persistent infection, 

as macrophages and neutrophils are unable to pass through these pores (91). Notably, effective 

tissue in-growth, characterized by the quality of the tissue which forms around mesh fibers (i.e. 

little scar tissue), only occurs in mesh pores with a diameter of 1000µm or greater for 

polypropylene mesh (97). Pores less than 1000µm are associated with greatly enhanced  
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inflammatory and fibrotic responses (98, 99). Given the consequences of mesh pore size on the 

host response, this parameter must be considered not only prior to implantation, but more 

importantly, upon surgical fixation and in response to in-vivo loading conditions (Figure 13). 

 

 

Figure 13. The mechanical role of synthetic mesh is dissimilar between hernia (a) and prolapse (b) repair. 

For hernia repair, mesh is loaded along all axes simultaneously, maintaining a flat configuration (c). Vaginally, 

mesh arms are placed in tension to provide structural support. Such loading has the potential to deform mesh pores 

and result in wrinkling of mesh (d). 

 

As discussed earlier, many prior mechanical studies of synthetic mesh examine its failure 

behavior (i.e. when it begins to tear apart) (126, 127). However, the failure properties of mesh in 

many cases far exceed in-vivo loads and deformations. Thus, structural properties derived from 

load-to-failure protocols (ultimate elongation and ultimate load) likely have little bearing on the 

host response. Additionally, the linear stiffness is typically calculated from the linear region of 
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the load-elongation curve, a region that often exceeds anticipated physiologic loads and 

displacements. As opposed to the structure properties, the characteristics of mesh deformation 

within the toe region of the load-elongation curve may be more relevant for predicting mesh-host 

interactions. Thus, the impact of tensile loading and boundary conditions will be considered at 

forces that are within the initial toe region of the load-elongation curve.  

The overall goal of the first sub-aim is to characterize the changes in mesh pore geometry 

in response to tensile loading, considering the clinically relevant textile properties porosity and 

pore size. Here we examine such changes within the toe-region of the load-elongation curve for 

several currently available prolapse meshes. We hypothesize that regardless of initial pore 

geometry, mesh pores will become unsuitable for effective tissue ingrowth (dimensions < 1mm) 

with decreased porosity in response to tensile loading. 

2.2.2 Methods    

To account for the impact of pore geometries four synthetic mesh products with distinct 

geometries were considered: Gynemesh PS (Ethicon), UltraPro (Ethicon), Restorelle (Coloplast), 

and Alyte Y-mesh (Bard) (Figure 14). Each mesh was removed from sterile packaging and cut to 

90 x 15mm strips along their recommended implantation direction. Additional orientations were 

considered for Restorelle and UltraPro due to observations of anisotropy and anticipated loading 

of these pore geometries in current sacrolcolpopoxy and transvaginal mesh kits. Specifically, 

UltraPro was cut 90° offset from the recommended direction (UltraProOpp) as preliminary 

uniaxial studies found significantly different mechanical behavior between these two axes. For 
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Restorelle, the initial square pore geometry was not expected to change significantly, as little 

fiber rotation was anticipated. However, rotating the pores by 45° would likely result in 

significant fiber rotation and overall pore deformation. Further, rotated square pores are common 

in transvaginal mesh devices, including a Restorelle based product line marketed as DirectFix 

(Coloplast). Given this expected sensitivity to the loading direction, a smaller offset angle (5°) 

was also examined for Restorelle, as such alignment is probable during surgical implantation and 

in-vivo loading. In total, 3 orientations of Restorelle were considered: pores offset at 0°, 5°, and 

45° from the horizontal axis. 

 

 

Figure 14. Raw images (top) and corresponding binarized images after a custom thresholding protocol 

(bottom). Here, images of the mesh mid-substance are shown at 0N for Gynemesh PS, Alyte’s stem section,  

Restorelle 0° offset, and UltraPro, from left to right. 
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Additionally, the amount of material was considered as the intact Alyte mesh consists of 

2 distinct sections, one for vaginal attachment and one for sacral attachment. While the pattern 

used to create these sections is identical, the sacral section of consists of two offset layers of this 

patterning that are knitted together. This effectively doubles the amount material in the sacral 

section relative to the vaginal section. Due their distinct appearance, samples from the vaginal 

and sacral sections were considered independently. A total of five samples representing each of 

these aforementioned groups were independently tested (n = 5).  

A uniaxial tensile testing protocol was used to apply predetermined loads to each sample. 

All samples were secured in custom soft tissue clamps along their length, such that the minimum 

clamp-to-clamp distance (gauge length) was approximately 75mm, providing a constant aspect 

ratio of 5. The bottom clamp was attached to the base of a materials testing machine (Instron 

5565, Grove City, PA), while the top clamp was attached to the machine crosshead, in line with a 

50lb load cell (Honeywell Sensotec, Columbus, OH) (Figure 15). A preload of 0.1N was applied 

at a rate of 10 mm/min to remove slack from samples. After the preload was applied, each mesh 

was loaded to 5N at 50 mm/min and subsequently to 10N at 50 mm/min. Neither force nor 

elongation measurements were zeroed between loading steps. The loads chosen for this study are 

estimates of in-vivo loading of mesh structures, based on reported intrabdominal pressure (IAP) 

and our MRI measurements of surface area for the anterior vagina. Specifically, the loads 

utilized in this protocol (5N and 10N) are within the range of forces associated with pressures 

measured during valsalva and coughing (128, 129). Here we assume these forces are transmitted 

to vaginal tissue via mesh attachments. While the loads associated with resting IAP  
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are less than 5N for a majority of women, vaginal dimensions, chronically elevated IAP (obese 

patients), and specific activities require mesh deformation to be understood throughout the entire 

anticipated loading range. 

 

 

Figure 15. Uniaxial tensile testing set-up to measure textile properties in response to mechanical loading. 

Shown here is an UltraPro sample following the application of the preload. A DSLR camera was used to image the 

mesh mid-substance at each load. A ruler was placed in-plane with mesh samples and used to scale images.  

 

Following the application of each load (preload included), the cross-head was held in 

place and the mesh mid-substance was imaged using a digital SLR camera (Canon, EOS Rebel 

T3, Melville, NY) equipped with a 60mm macro lens (Canon, EFS f/2.8, Melville, NY). To 
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produce repeatable image quality all images were taken using the same camera placement and 

settings. Based on preliminary imaging of mesh, high aperture (F16) and low ISO (ISO 100) 

settings were found to produce optimal image quality. In addition, all samples were imaged prior 

to testing, providing 4 loading states for each mesh (0N, 0.1N, 5N, and 10N). Pore geometries 

were analyzing using a cropped, 10 x 10 mm region from the center of each image. During 

tensile loading, it was common for mesh to undergo lateral contraction, and the width was often 

less than 10mm during imaging. In these instance images were cropped to the width of the mesh 

while the crop length remained 10mm. The crop dimensions were chosen as they fully captured 

the repeating unit structure (pore geometry) of each mesh used in this study and minimized the 

boundary effects imposed by the testing clamps. Due to these constraints, larger porosity values 

would be observed closer to the clamps. 

Images were scaled and cropped using ImageJ (NIH, Bethesda, MD) and then imported 

into a custom Mathematica script for pore analysis (V9, Champaign, IL). Images were first 

binarized using a custom thresholding to ensure that all mesh fibers were included in the analysis 

(Figure 14). In conjunction with a set intensity threshold, image erosion and dilation processing 

was manually performed to eliminate noise and image irregularities resulting from the 

translucence of mesh filaments. Following binarization, image coloring was inverted such that 

mesh fibers were represented by black pixels, and white pixels represented void space. Using the 

color value associated with each pixel, porosity was calculated as: 

Porosity = Void Pixels / Total Pixels = White Pixels / Total Pixels 
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Porosity provides a measure of the amount of mesh material per unit area, with a value of 0 

representing a solid piece of mesh (no pores) and a value of 1 representing no mesh. In addition, 

pore diameters were determined by identifying the centroid of each pore in an image. Due to the 

lateral contraction of the mesh samples in response to tensile loading, void space outside of the 

mesh boundaries was not included for porosity measurements. Further, to avoid skewing of our 

measurements, only pores which were entirely included in an image where used for analysis. 

This was accomplished by subtracting the pore area along the image boundary from all 

calculations. 

 

 

Figure 16. Following binarization, each isolated cluster of white pixels was identified as a mesh pore. The 

centroid of each pore was located (red circles) and the minimum diameter of each pore was determined. 

. 
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Following binarization, a gradient-based edge algorithm was used to identify clusters of 

white pixels. These clusters represent the individual pores within the mesh structure. Once 

identified the center of mass for each cluster was determined and a series of diameters were 

taken for each pore such that the line between the opposing pixels on the pore boundary passed 

through the location of the pore centroid (Figure 16). For each pore, the minimum diameter (dmin) 

was recorded, creating a distribution of dmin for all pores in an image. To more easily display 

trends in pore diameter, histograms were created such that dmin values were grouped in 4 classes 

from 0 to 2 mm with a bin range of 0.5 mm. The contribution of each dmin class to the total pore 

area was reported as the area fraction, where area fraction was defined as the pixel area of pores 

from a given diameter class divided by the total pore area in an image. 

Structural properties were computed for each mesh based on the load-elongation data 

obtained during testing. Due to the stress relaxation observed during imaging at 5N, structural 

properties were only determined from load-elongation curves up to 5N. Elongation refers to the 

mesh elongation required to reach 5N. Stiffness measurements were made considering the 

nonlinearity of these curves as previously noted (2). The stiffness measurement defined as the 

“low stiffness” for this study was calculated by taking the minimum slope of the curve using a 

5% moving window, while a stiffness measurement defined as the “high stiffness” was taken as 

the maximum slope of the curve using a 5% window.  

For statistical analysis a repeated measures ANOVA with Bonferroni post-hoc was used 

to examine effect of loading on mesh porosity and to make comparisons between mesh products 

at a given load. The impact of loading on dmin was examined using a Kruskal-Wallis test. Finally, 

  70 



 

the structural properties at each load were compared between groups using a one-way ANOVA 

with Bonferroni or Dunnett’s T3 post-hoc as appropriate. Significance was set at p = 0.05. 

2.2.3 Results 

2.2.3.1 Textile Properties 

For nearly all meshes tested, uniaxial loading dramatically altered the geometry of individual 

mesh pores at 5N of force, with many pores completely collapsing by 10N of force (Figure 17). 

These gross observations are well characterized by measured changes in porosity and dmin. Prior 

to uniaxial loading (0N), Gynemesh PS and Alyte’s sacral portion had the lowest porosities 

(60.1% and 49.7% respectively). Application of the 0.1N preload resulted in small decreases in 

porosity for several groups, however none of these decreases were found to be significant. On 

the other hand, the application of 5N led to a noticeable change in pore shape and a tremendous 

reduction in porosity for nearly all groups, with values decreasing by as much as 87% of their 

original porosity (Figure 18). Restorelle 0° offset was the only mesh whose porosity was not 

significantly reduced upon application of load (p > 0.05). At 5N, Restorelle 45° offset, 

UltraProOpp, and Alyte’s vaginal section saw the largest reductions in porosity, decreasing to 

9.5% 11.7%, and 14.5%, respectively. At this load, Gynemesh PS and Restorelle 5° offset did 

not experience as large of a reduction, but still underwent ~8% decrease in porosity, with values 

falling to 51.3% and 65.8%, respectively (p < 0.05). 
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Figure 17. Mesh mid-substance deformation at 0.1N (top), 5N (middle), and 10N (bottom) of applied 

force. Representative images from Gynemesh PS (a), Restorelle 0° (b), Restorelle 5° (c), Restorelle 45° (d), Alyte’s 

vaginal section (e), Alyte’s stem section (f), UltraPro (g), and UltraProOPP (h) are shown. Each image has 

dimensions of 10 x 10 mm. 

 

 

Figure 18. Porosity measurements at 0, 0.1, 5, and 10N of force. Error bars represent standard deviation, 

while * represents a significant impact of loading on mesh porosity (p < 0.05). 
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 Loading to 10N led to significant pore reductions for all mesh groups other than Restorelle 

0° and Restorelle 5° offsets. In fact, this deformation was so severe that the mesh structure 

appeared as a solid piece of polypropylene. The deformation of these meshes is reflected in the 

porosity values, which approached 0%, with values of 15.5%, 10.2%, 6.4%, 3.8%, and 8.6%, for 

Gynesmesh PS, UltraProOpp, Restorelle 45° offset, Alyte vaginal, and Alyte sacral, respectively 

(Figure 18). 
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Figure 19. Distribution of minimum pore diameter (dmin) for Gynemesh PS (a), Restorelle 0° (b), Restorelle 

5° (c), Restorelle 45° (d), Alyte’s vaginal section (e), Alyte’s stem section (f), UltraPro (g), and UltraProOPP (h) at 0, 

0.1, 5 and 10N of force. The y-axis represents the fraction of total pore area contributed by pores within a given 

range of diameters. The application of a uniaxial load was found to significantly alter the diameter distribution for 

all meshes tested (p < 0.05). 

 

 Again such dramatic reductions in pore size was reflected in measurements of dmin, as all 

meshes experience a significant decrease in the dmin at 10N of force (Figure 19, p < 0.001). Prior 

to loading (0N) all Restorelle cuts had ~94% of the total pore area derived from pores of dmin 

greater than 1mm in diameter. Conversely, at 0N Alyte’s stem had just 35.6% of the total pore 
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area from pores >1 mm. While the stem section is less likely to contact vaginal tissue, it is noted 

that Alyte’s vaginal section has the next lowest area fraction from pores greater than 1 mm, at 

55%. While the application of a preload did not significantly alter dmin, at 5N all meshes other 

than Gynemesh PS had a significant shift in dmin distribution, with the mode decreasing in all 

cases. The most striking result at 5N was the finding that Restorelle 45° offset, both UltraPro 

orientations, and both Altye sections had 0 pores with a dmin above 1 mm. In fact, for Restorelle 

45° offset, UltraProOpp, Altye stem, and Altye vaginal had more than 90% of the total pore area 

remaining from mesh pores less than 0.5 mm in diameter. At 10N of force, pore diameter 

continued to decrease for all meshes, with Gynemesh PS having the most dramatic shift in dmin 

distribution in this loading range. Upon loading to 10N, Gynemesh PS did not have any pores 

with a dmin greater than 1mm. 

2.2.3.2 Structural Properties 

Overall, the trends and observations from the load-elongation data were consistent with our 

previously published data. Loading curves to 5N for Gynemesh PS, Alyte vaginal, Alyte stem, 

UltraPro, UltraProOPP, and Restorelle 45° offset all exhibit a nonlinear load-elongation response 

typical of fiber recruitment, while Restorelle at 0° and 5° immediately enter a linear load-

elongation response with a sudden, and brief decrease in slope, likely related to tightening of the 

knot structures (Figure 20). However, as evident by the range of curves obtained, the manner by  
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which meshes are loaded appears to be dependent on the original pore shape and its orientation 

relative to the loading axis. It should be noted that during imaging of the mesh mid-region at 5N, 

all meshes stress-relaxed to similar values (~3N) before the next loading step.  

 

  

Figure 20. Representative load-elongation curves for all groups tested. Meshes display a wide range of 

responses from 0 to 5N, due to initial pore geometry and orientation to the loading axis (a). During imaging of 

samples at 5N, each mesh underwent stress relaxation prior to application of the 10N load (b). 

 

When comparing the elongation required for each mesh to reach 5N of force, Restorelle 

45° required almost 27mm of elongation, twice that of nearly all other groups tested (Table 3, p 

< 0.05). Most striking was the elongation of UltraProOPP which required 59 mm of elongation in 

order to reach 5N, ~55% more than Restorelle 45° and nearly 4 times more elongation than all 

other meshes (p < 0.0001). These compliant behaviors are reflected in the low stiffness measures 

for Restorelle 45° and UltraProOPP, which were an order of magnitude lower than of nearly all 
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other meshes (p < 0.0001), more than 75% less than the closest low stiffness value. It is notable 

that Restorelle 45° and UltraProOPP reached ~15 mm and ~40 mm of elongation in response to an 

applied force of just 1N, greater than the elongations most meshes achieved in response to 5N of 

force. 

 

Table 3. Structural properties for each mesh were obtained from load-elongation curves to 5N. Elongation values 

are those required for the mesh to achieve 5N of force, while low and high stiffness values are the minimum and 

maximum slopes of the load-elongation curve, respectively. Values are represented as Mean ± S.D. 

 

 

Conversely, Gynemesh PS was found to have the greatest low stiffness value at 0.30 

N/mm, 2 times that of Restorelle 0° and nearly 4 times that of UltraPro (Table 3 < 0.0001). The 

orientation of Restorelle dramatically altered its low stiffness with Restorelle 5° having the  
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greatest low stiffness value. Similarly, an increased amount of material was found to increase the 

low stiffness of Alyte, as the stems stiffness was twice that of the vaginal section (p = 0.014).  

High stiffness values were more similar across all mesh groups, though significant 

differences were observed. Alyte stem was found to have the greatest high stiffness value at 0.55 

N/mm, 18% greater than Gynemesh PS (p = 0.001) and 7% greater than the vaginal section of 

Alyte (p > 0.05). Interestingly, Restorelle 5° had a lower high stiffness value compare to 0° and 

45° orientations, which were nearly identical. Interestingly, the high stiffness values from 5N to 

10N of loading are nearly identical for all Restorelle orientations. Conversely, the high stiffness 

of UltraProOPP was ~45% lower compared to the UltraPro (p < 0.001). 

2.2.4 Discussion 

In this sub-aim, the changes in clinically relevant textile properties, porosity and pore diameter, 

were examined in response to uniaxial tensile loading for 4 currently available mesh products. 

Indeed, mechanical loading resulted in significant changes in porosity and pore diameter, the 

magnitude of these deformations were primarily dictated by the knit pattern and the direction of 

applied force relative to this pattern. From a mechanical perspective, these general findings were 

expected and could have been predicted without experimentation. However, a major, 

unanticipated finding was that the porosity of nearly all products tested approached 0% in 

response to just 10N of applied force (2.22 lbs of force), which is well within the physiologic 

range. A second major finding was that in response to the application of a uniaxial force, pore 

diameters decreased rapidly, and by 10N nearly all meshes had 0 pores with a minimum diameter 
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greater than 1mm, regardless of the initial orientation. These findings are clinically relevant in 

light of recent studies that have linked low porosity and small pore diameters (< 1mm) to 

complications, presumably resulting from a higher mesh burden (mesh material in contact with 

tissue within a small region). Generally, it is assumed that if a mesh has both large pore size and 

high porosity prior to implantation, then the mesh will be less likely to generate complications. 

However, the findings in this study suggests that this assumption is not valid, since ex-vivo 

porosity values may have little bearing on the porosity of the mesh once it is surgically tensioned 

and subjected to in-vivo loads. This is especially true for prolapse repair procedures, where the 

mechanical demands of mesh are consistent with uniaxial tensile loading utilized in this study. 

The present method for computing porosity shows good agreement with previous studies 

of Gynemesh PS and Restorelle (previously Smartmesh) without loading. Previously, the 

intersections of an overlaid grid were used to determine the ratio of void space to total area 

(112). While the previous method provides a reasonable approximation, it appears to 

overestimate porosity by several percent compared to the custom thresholding method developed 

here. Defining each pixel as mesh or void area provides a more robust description and detailed 

measurement of porosity and simultaneously allows for the dimensions of individual pores to be 

determined. Additionally, the low stiffness values at 5N for Gynemesh PS and Restorelle 0° 

offset show agreement with low stiffness values reported in previous studies during which 

testing was conducted to mesh failure. Disagreements in high stiffness values suggests that  
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loading to 10N was within the toe-region of the curve, as mesh fiber requirement and 

reorganization was ongoing. Preliminary testing confirmed this finding for all other meshes 

tested. 

The overall mesh deformation observed in this study is also consistent with previous 

studies that have characterized the reduction in pore size after the application of strain (92, 93). It 

should be noted that the latter studies report effective porosity, which only considers void area 

from pores greater than 1mm in diameter. Rather than compute effective porosity, which was 

found to have increased variability for several meshes based on the distribution of dmin around 

the cutoff of 1mm, our study reports the diameters of all pores imaged. This provides a more 

precise understanding of how diameters are altered throughout the loading process and 

supplements porosity data. Given the dramatic decreases in porosity and pore diameters observed 

in this study, one would anticipate that even at small forces, uniaxial loading of mesh would 

induce an enhanced inflammatory response with increased fibrous encapsulation of the mesh. 

Since fibrous encapsulation can undergo contraction by resident fibroblasts, this may provide an 

explanation for pain following mesh implantation, the most common mesh related complication 

(130). 

 Finally, this testing demonstrates the impact of mesh orientation to the direction of loading. 

This is important as nearly all pore geometries have inherent anisotropy due to knit patterns. Due 

to its simple square patterning, Restorelle readily illustrates this concept, providing a near 

instantaneous linear response that is more apt to maintaining pore size when loaded along or 

nearly along the fiber orientation (0° and 5° offsets). The same mesh with fibers oriented with a 
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45° offset immediately collapses at loads less than 1N, yielding a response with very low initial 

stiffness and a rapid decrease to ~0% porosity. While only 3 differing cuts were examined here, 

Restorelle likely displays a spectrum of properties between those observed at 0° and 45° offset, 

depending on the specific device design and how it is implanted in-vivo. This variable behavior 

is not limited to Restorelle and should be anticipated for all meshes, though the range of 

properties may vary.  

When interpreting these results with respect to clinical outcomes, it should be noted that 

these values were obtained ex-vivo. As such, the effect of anchoring the mesh to tissue, mesh 

encapsulation, tissue ingrowth, and how well the vagina is supported by other tissues may 

influence actual porosity and dmin values experienced in-vivo. Nevertheless, these findings are 

critical to consider when initially placing/tensioning a mesh. Lastly, it should be noted that the 

dimensions of the mesh samples used in this study (90 x 15 mm) may be more similar to the 

dimensions of the arms found on transvaginal mesh products, rather than the mesh at the vaginal 

interface or the mesh dimensions used for abdominal sacrocolpopexy. While an increase in 

overall mesh dimensions may better maintain porosity, due to the transfer of forces through the 

fiber network, the load at which meshes collapse is likely not linearly scaled to the mesh 

dimensions. Rather the collapse of pores is likely more dependent on the knit pattern and the 

manner in which the mesh is fixed. As previously mentioned, this study focused on analysis of 

the mesh mid-region, where deformation is assumed to be uniform. Conversely deformation near 

the clamps is greatly influenced by the rigid fixation of the entire mesh boundary. While the  
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boundary condition here is not identical to anchoring of mesh in-vivo, it should be anticipated 

that the number of attachments (sutures) used as well as their orientation to the applied load will 

greatly affect the observed changes in pore geometry.  

In response to tensile loading, it should be noted that mesh products are subject to out of 

plane deformation. This may result in a reduction of image quality, thus introducing error into 

porosity measurements. While a large depth of field was used to reduce such errors, out of plane 

fiber deformation may result in image blurring, artificially increasing the porosity of the mesh. 

Additionally, binarization and thresholding protocols may be subject to image quality, as they 

require high contrast between the background and mesh fibers. To achieve repeatable image 

quality, the same background, lighting conditions, and camera settings were used to collect all 

images. Perhaps the largest source of variability in this study was due to inconsistent cutting of 

mesh along a given direction. As shown in the results of this study, small changes in mesh 

orientation to the applied force can drastically affect the deformation behavior of mesh products. 

While little variation was observed in porosity measurements, these changes are more likely to 

manifest in the loading curve, as orientation to applied loads alters the manner in which mesh 

fibers are recruited and how force is distributed. 
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2.3 SURFACE CURVATURE OF SYNTHETIC MESH 

2.3.1 Introduction 

As of 2011, roughly one-third of all surgical repairs for POP were utilizing synthetic mesh, yet 

up to 20% of those who undergo surgery with mesh require repeat operations for recurrent 

symptoms or complications (61, 67). More troublesome is the severity of such complications, 

with mesh exposure being not only one of the most devastating mesh related complications, but 

also one of the most common (63, 64, 131). Recent federal reports have found that exposure 

through the vaginal wall occurs in up to 15% of transvaginal repairs and 10.5% of 

sacrolcolpopexy repairs (39). Concomitant with exposure is the deformed appearance of mesh in 

the vaginal lumen. Surgeons and researchers have commonly noted mesh appears “bunched”, 

“contracted”, or “folded”, in eroded areas. This evidence suggests that the deformation of mesh 

may be responsible for the degenerative tissue response associated with exposure. Though the 

mechanisms that lead to mesh exposure remain unclear, growing evidence suggests that small 

pore size, and more generally the small inter-filament distances, greatly enhance the host foreign 

body response, leading to exposure (77, 112, 114).  

In the abdominal wall, it was determined that pores with diameters less than 1mm elicit 

an enhanced immune response, with poor mesh incorporation into the host tissue. Building on 

this concept, the previous sub-aim of this dissertation found tensile loading to drastically reduce 

mesh porosity, yielding pore dimensions much less than 1mm, creating a scenario in which tissue 

integration was unfavorable (92, 93). The reduction in pore size, brings mesh fibers closer 
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together in space, resulting in increases in mesh burden, where mesh burden is defined as the 

amount of mesh material per unit volume of tissue. Though tensile loading clearly leads to pore 

collapse at some level of force, additional deformations, such as wrinkling and folding, may 

provide an alternative or concomitant mechanism to increase mesh burden. Moreover, the 

boundary conditions of a standard uniaxial tensile test do not necessarily mimic the in-vivo 

loading of prolapse mesh.  

The boundary conditions applied to synthetic mesh have the potential to greatly impact 

its mechanical behavior. For instance the deformation experienced by mesh devices during 

standard uniaxial tensile testing and ball burst testing are strikingly different, though expected 

due to the radical differences in constraints (112, 114). In response to uniaxial testing, mesh is 

allowed to contract in the direction perpendicular to loading (similar to Poisson’s effect for 

continuum solids), while fixing the mesh along the entire boundary, per a standard ball burst 

protocol, prevents the collapse of pores. Although both testing methods assume a planar 

geometry (i.e. no buckling or wrinkling), the method in which mesh is fixed noticeably alters 

changes in mesh burden in response to mechanical loading. 

While many previous studies have employed standard testing protocols to assess the 

properties of mesh, the boundary conditions employed for such testing (i.e. clamping at the edge) 

do not reflect those imposed during or following in-vivo fixation. As such, important features 

regarding mesh deformation in-vivo may have been overlooked. Specifically, when a surgeon 

places a mesh to restore vaginal support, sutures are used to attach the material to the vagina as 

well as the anchoring surfaces. This method of attachment subjects the mesh to various point 
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loads, a stark contrast to the uniform application of load or displacement to an entire boundary 

during traditional uniaxial tensile testing. Further, the number of point loads (sutures) and their 

locations are variable, as surgeons do not necessarily use the same number of sutures or exactly 

the same suture placements from patient to patient (anatomical variations, patient size, etc).  

Without constraining an entire edge, point loads are more likely to create out-of-plane 

deformations, resulting in a bending or wrinkling phenomenon along the lines through which 

force is transmitted. Such out of plane deformations are expected due to the constraint effects of 

pore deformation. Understanding the surface deformation of mesh products will provide valuable 

insight into the local deformation and mesh burden throughout a mesh device, as folding of the 

mesh surface is an alternative mechanism by which mesh fibers can be brought closer together in 

3-dimensional space. Similar to the 2-dimensional concept of bridging fibrosis, the volumetric 

proximity of fibers in or along a tissue would elicit a union of individual foreign body responses 

of each fiber and reduce the likelihood of tissue ingrowth (Figure 21). In concert with the 

decrease in pore geometry observed in response to uniaxial loading, surface wrinkling may 

dramatically impact the host tissue response.  

Describing surface deformations, such as bending, has been well characterized in several 

fields of research, including neurological development (132, 133) and cardiology (134-136). 

Following from these studies, out-of-plane surface deformations for a thin body can be 

characterized via surface curvature, as the geometric transformation of a flat surface to a curved 

one implies some local surface deformation. The same concepts used in these fields can be 

directly applied to understand the out-of plane deformation of mesh in response to point loads. 
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Thus, the goal of this sub-aim was two-fold: 1) develop an experimental and theoretical approach 

by which the surface curvature of polypropylene mesh could be quantified and compared and 2) 

use this approach to examine the impact of variable boundary conditions on the surface curvature 

of polypropylene mesh products used in the repair of pelvic organ prolapse. We hypothesize that 

boundary conditions more representative of in-vivo loading will result in significantly greater 

surface curvature compared to those deformations resulting from traditional tensile testing. 

 

 

Figure 21. Out-of-plane deformations, such as surface wrinkling or bunching, brings mesh filaments closer 

together. The proximity of filaments may result in the union of foreign body responses from individual filaments, 

creating bridging fibrosis. 

 

2.3.2 Methods  

2.3.2.1 Experimental Testing  

Gynemesh PS (Ethicon) and Restorelle (Coloplast) samples were removed from sterile 

packaging and cut to 15 x 5 cm strips along the recommended implantation direction (n = 5 
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each). These products were chosen based on their widespread clinical use and to examine the 

response of varied pore geometries following application of differing boundary conditions. All 

samples were subjected to 3 uniaxial tensile tests (n=5 per test per mesh) with boundary 

conditions (BCs) varied as follows: 1) the entire top and bottom edges of the mesh were fixed in 

custom tissue clamps 2) the entire bottom edge was fixed and the top edge was sutured to a 

custom plate using 2 interrupted suture ties 3) both the top and bottom edges were sutured to 

custom plates using 2 interrupted suture ties on each edge (Figure 22). For this study, all sutures 

were centered about the width of the mesh and placed 1.5 cm apart. A grid pattern was cut into 

the custom design plates to allow for suture ties to be consistently tied at specific, repeatable 

locations. During each trial the bottom clamp/plate was fixed to the base of a materials testing 

machine (Instron 5565, Grove City, PA), while the top clamp/plate was attached to the machine 

crosshead, inline with a 5kN (0.1N resolution) load cell. Each sample was preloaded to 1N at 10 

mm/min and subsequently loaded to 10N at 50 mm/min. While 10N of force is estimated to be 

greater than resting loads experienced by mesh (137), this load limit is estimated to be within the 

range of physiologic loads (such as those for coughing, valsalva, etc). This estimate is based on 

vaginal geometries and intra-abdominal pressures (128, 129). The suture distances and mesh 

dimensions chosen for this study were based on those that may be applied during an abdominal 

sacrocolpopexy procedure. 
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Figure 22. Experimental boundary conditions (BCs) utilized in this study. Each mesh sample was loaded to 

1 and 10N of force at each of the 3 BCs shown above. Clamps were used to constrain an entire boundary or 2 

interrupted suture ties were used to secure the mesh to custom clamps at the top and/or bottom boundaries. 

 

2.3.2.2 Photogrammetry    

At each load (1N and 10N) and boundary condition, ten photographs of the mesh-clamp/plate 

complex were taken using a digital single-lens reflex (DSLR) camera (Canon, EOS Rebel T3, 

Melville, NY) equipped with a 60mm macro lens (Canon, EFS f/2.8, Melville, NY). A 

registration block was also included in each photograph (Figure 23). To ensure similar image 

quality and repeatability between trials, all images were taken using the same camera settings 

(F8, ISO 400, shutter speed 3s). Camera settings were optimized to produce high contrast images  
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with a large depth of field. Images were consistently taken from 5 angles at 2 differing heights, 

centered about the axis of loading. All ten images were then imported into Photoscan Pro 

(Agisoft, St. Petersburg, Russia) for 3D reconstruction. 

 In order to compute surface curvature, full scale, close-range photogrammetry was utilized 

to capture the 3D (3-dimensional) mesh geometry. Photogrammetry is a reconstruction technique 

which combines a set of images into a three dimensional surface model by identifying and 

matching points in each image. Photogrammetry was chosen to capture surface deformation as 

preliminary testing revealed that traditional experimental methods of quantifying 3D 

deformations (painting the surface to create a speckle pattern, affixing surface markers, etc.) 

restricted the movement of fibers at knot locations and increased the stiffness of the meshes. All 

photogrammetric reconstructions were performed using Photoscan Pro software. First, the 

orientation of each image was determined with respect to the object of interest using the image 

metadata (focal length) and overlapping of features identified across images. This process yields 

a sparse point cloud of the surface features based on the initial photo alignment. The initial point 

cloud was then cropped to eliminate any obvious errors in point identification and the point 

cloud was repopulated ignoring removed features. 

 Once the initial point cloud and spatial orientation of the images were confirmed, 

Photoscan Pro continued to identify features in each image and used the 3D positioning of each 

image to locate the 3D coordinates of each feature point, refining and adding detail to the point 

cloud. It should be noted that such feature matching is highly dependent on the quality of images 

used for reconstruction. Specifically, images with a large depth of field (significant portion of 
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foreground and background in focus) and low ISO were found to produce optimal images for 

photogrammetry. After feature matching was completed, a surface model is created from the 

point cloud. The registration block, which was included in model reconstructions, was then used 

to scale and orient the models in a global coordinate system. Finally, a texture map was created 

using individual images and their orientation, and projected onto the surface model. The 

reconstructed prolapse mesh surface and texture maps were then exported as stereolithography 

(.stl) and point cloud (.xyz) files for surface analysis. 

 

 

Figure 23. Ten images from various angles and heights (top) were used to reconstruct 3D models of the 

mesh surface (bottom) in response to tensile loading. Shown here is Gynemesh PS loaded to 10N for BC 2. A 

registration block was included in all images for model scaling. 
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2.3.2.3 Surface Curvature 

Surface models from photogrammetric reconstruction were exported to Meshlab (Visual 

Computing Lab, ISTI-CNR, Pisa, Italy) and 10 points along the top and bottom boundaries of the 

mesh surface were manually selected to serve as nodes for finite element analysis. The 3D 

coordinates representing the nodal locations were exported to a text file. These nodal 

coordinates, along with the 3D coordinates representing the mesh surface (.xyz files) were then 

exported into a custom Mathematica script (V9, Champaign, IL), mapped to a four element patch 

of 4-node biquintic finite elements (BQFEs) and parameterized in local element coordinates 

(ξ,η), where the values of ξ and η range from -1 to 1 (Figure 24).  

 

 

Figure 24. Experimental data points, representing the 3D mesh surface, were mapped to the local 

coordinate systems (ξ,η) of a 4-element patch of biquintic finite elements (BQFEs). 10 points on the mesh surface 

were manually selected to serve as nodes for finite element discretization. 
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The 2D (2-dimensional) interpolation functions for the BQFEs are derived from the 1D 

(1-dimensional) quintic hermite element and provide C2 continuity (136). In addition, each node 

of the BQFE has 6 nodal values representing the z-coordinate and the first, second, and cross 

derivatives with respect to the local coordinate system. Nodal values for the 4-element patch 

were fit simultaneously using a least squares method, where a scalar penalty function was used to 

enforce C2 continuity across the element boundaries. The z-coordinates for each element are 

obtained by summing the 24 products of: 

Z = Ni
jk(ξ, η)Zi

jk                                                       (2.1) 

i = 1,4 

j = 0,2 

j + k ≤ 2 

Where i is the node number, j and k are the order of the derivative with respect to the local 

coordinates, and Z is the Cartesian z-coordinate that was fit. Summation convention is implied in 

Eq. 1 (136). The large point sampling obtained via 3D reconstruction (>1000 points per element) 

eliminated the need for error functions used previously for this technique.  

In order to transform values from between the in-surface coordinates and Cartesian 

coordinates, an appropriate covariant curvilinear basis was created such that: 

g1 = �X,ξ  , Y,ξ  , Z,ξ �  ,   g2 = �X, η  , Y, η  , Z, η �  ,    g3 = g1×g2
|g1×g2|                (2.2) 

Further the contravariant curvilinear basis is given by: 

g1 = g1×g2
�g

  , g2 = g3×g1
�g

  , g3 = g1×g2
�g

                                   (2.3) 
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Where the scaling factor, √g, is given by: 

�g = g1 ∙ (g2 × g3)                                                    (2.4) 

Details on curvilinear coordinates and coordinate transformations are outlined in texts by 

Taber and others (138, 139). In order to characterize the coordinate system in space, the surface 

metric, or first fundamental form of a surface, is required (138, 140). The surface metric, gij, is 

defined as: 

gij = gi ∙ gj  , i = 1,2                                                    (2.5) 

Local curvature calculation requires the curvature tensor, also known as the second 

fundamental form of a surface. The curvature tensor, Bij , is given by (140): 

Bij = gi,j ∙ g3                                                           (2.6) 

From the curvature tensor, the principal curvature values and directions of principal 

curvature are obtained from the characteristic equation, where the principal values are given by 

(140): 

k1,2 = 1
2
�IB ± �(IB)2 − 4 IIb�                                               (2.7) 

The scalar values IB and IIB are the first and second principal invariants of Bij and are 

defined as:  

IB = tr(B)                                                              (2.8) 

IIB = det(B) 

Alone, the principal curvatures and principal directions provide a great amount of local 

surface detail. While such detail is extremely useful in determining local deformation 

characteristics and creating continuous curvature maps for a given surface, these are not effective 
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for generalizing the gross deformation experienced by a surface. To provide an overall measure 

of surface curvature and effectively demonstrate the gross changes in surface curvature during 

loading, the average maximum value of principal curvature was chosen. First, the maximum 

principal curvature represents the out-of-plane peaks and valleys, which arise during the 

wrinkling phenomenon. Max curvature for this study is defined such that: 

kmax ≔ max[|k1|, |k2|]                                                   (2.9) 

All surface fitting and curvature calculations were performed using a custom 

Mathematica script. Data visualization was completed in Matlab R2012a (Mathworks, Natick, 

MA) where Delaunay triangulation was used to reconstruct 3D surfaces. A custom script was 

used to eliminate distorted elements, rendering a smoothed geometry that was representative of 

the original reconstructed model. Computed curvature values from Mathematica were then 

projected onto the approximated surface.  

In order to characterize the entire mesh surface and make comparisons between boundary 

conditions and mesh type, the average of the absolute value of the maximum principal curvature, 

Mean(|kmax|), was used. Mean(|kmax|) provides a measure of the magnitude of curvature for the 

entire surface. A Mean(|kmax|) of 0 indicates a flat surface, while larger values represent surfaces 

of higher curvature. In addition, the variance of kmax, (Var(kmax)), was computed to provide a 

measure of the undulation or wrinkling present across a surface. Larger Var(kmax) values indicate 

surfaces with greater fluctuations in curvature (i.e. higher peaks and lower valleys, though a  
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Var(kmax) of 0 may represent either a flat surface or one in which curvature does not change 

rapidly (e.g. shallow parabolic shapes). As such the values of Mean(|kmax|) and Var(kmax) should 

be considered together in order to make appropriate conclusions regarding a surface.  

A Friedman's test was used to compare the Mean(|kmax|) and Var(kmax) values between the 

applied boundary conditions at 1 and 10N of applied load. Additionally, a Kruskal-Wallis test 

with Mann-Whitney post-hoc was used to compare meshes at the same load and boundary 

condition. Statistical analysis was performed in SPSS (V20, IBM, Armonk, NY) with a 

significance value set at p = 0.05. 

2.3.2.4 Validation  

In order to examine the accuracy of the custom code used for surface interpolation, validation of 

the computational methods was performed using known functions with C2 continuity. Here the 

parabolic (y = x2) and sinusoidal (y = 0.5sin(3x)) functions were considered. The analytical 3D 

curvature was calculated for each shape using the Hessian of each function. Briefly, the Hessian 

of a function is a square matrix of second-order partial derivatives that describe the local 

curvature of a function. The functions used in validation were chosen as these general geometric 

shapes (parabolic and sinusoidal) were observed in the deformation patterns during mesh trials.  

To isolate the error associated with the surface interpolation algorithm, 3D datasets were 

generated with each of these functions by extruding in the z direction. Unlike surface data  

  

  95 



 

obtained via photogrammetry, the generated data here was equally distributed along the surface. 

These ideal, generated datasets then underwent the same nodal selection protocol and surface 

analysis as photogrammetry datasets. 

 

 

Figure 25. Validation of the experimental methods with various surfaces of known curvature. The top row 

depicts the reconstructed surface models exported from Photoscan Pro for flat, parabolic, and sinusoidal geometries. 

The bottom row displays the computed |kmax| for each surface. Regions of low curvature (flat) are represented by 

cool colors, while the warm colors signify surfaces of high curvature. kmax values are in units of cm-1.  

 

Additional validation was performed to assess the total error of the overall approach or 

the combined error from both the photogrammetry and surfaced interpolation techniques. To 

examine this source of error, the same parabolic (y = x2) and sinusoidal (y = 0.5sin(3x)) 

functions were used to design and fabricate acrylic models. Each equation was sketched in 

Solidworks (2012, Dassault Systèmes, Waltham, MA) and extruded to a depth of 1 inch, creating 

  96 



 

a solid for each function. Acrylic pieces were then cut using a precision laser, producing a 

physical model with a surface following either the parabolic or sinusoidal function. Each of the 

two physical models were imaged, reconstructed, and scaled using the photogrammetry methods 

described above (Figure 25). Again, the surface curvature for these parts was determined using 

the same nodal selection and interpolation methods described above. In addition to these 

functions, a flat surface was fabricated, imaged, and analyzed, as this surface should have a 

curvature of 0. 

2.3.3 Results 

2.3.3.1 Mesh Surface Curvature  

The application of tensile loads resulted in noticeably different behavior among the 3 boundary 

conditions. Traditional soft tissue clamps (BC 1) allowed little out of plane deformation for both 

Gynemesh PS and Restorelle, resulting in a nearly planar sheet in response to application of load, 

though at 10N it was noted that the lateral edges of both Gynemesh and Restorelle exhibited a 

slight, bowed appearance. This small, out-of-plane deformation created a mesh surface with a 

shallow parabolic geometry along the width of the sample. The resulting curvatures match well 

with those deformations observed for BC 1. Examination of Figure 26 (a,d)  shows the curvature 

to be nearly 0 cm-1 for the entire mesh surface at 1N and similarly in the middle of the mesh at 

10N (Figure 27 a,d). In agreement with observed behavior, both Gynemesh PS and Restorelle 

have increased kmax values near the lateral edges at 10N. 
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 Mesh deformations for BC 2 were markedly different from those seen for BC 1. BC 2 

produced significant buckling in all meshes, with peaks originating from the suture locations. 

Again, the contour maps for |kmax| are in agreement with the observed deformations (Fig. 26 and 

27, b and e). At 1N, Gynemesh PS samples developed small kmax values at the sutures, while 

Restorelle remained in a nearly flat configuration. By 10N of force, both meshes exhibited large 

out-of-plane deformations, typically with 2 peaks stemming from the suture location and a valley 

forming between the suture points. It should be noted that the buckling behavior produced 

noticeable lateral contraction of the mesh. This lateral contraction was more pronounced at the 

edge fixed with sutures, while little to no contraction was observed at the boundary with the 

standard tissue clamps. 

BC 3 produced the most dramatic mesh deformation, with large undulations in the mesh 

surface and greater lateral contraction along the entire length of the mesh (Fig. 26 and 27, c and 

f). Analysis at 1N confirmed the overall increases in kmax. In particular, distinct regions of 

elevated kmax were observed along a vertical line between the top and bottom suture locations for 

Gynemesh PS. Unlike Gynemesh PS, Restorelle remained relatively flat at 1N, though large 

folds (nearly 90°) were commonly observed just lateral to the suture location. These folds 

generated large curvatures, though the fold typically did not extend along the length of the mesh, 

nor medially past the suture location. At 10N, both mesh products experienced substantial 

wrinkling along the entire mesh, leading to large kmax values across the entire surface. In 

addition, both meshes had a great deal of lateral contraction along the entire mesh length (Fig 27, 

c and f).  
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Figure 26. Contour map of |kmax| for representative Gynemesh PS (a,b,c) and Restorelle (d,e,f) samples at 

1N. Boundary conditions (BCs) 1,2, and 3 are represented by (a,d), (b,e), and (c,f) respectively. Solid black lines 

represent the direction of kmax. 

 

 When characterizing the entire surface via Mean(|kmax|) and Var(kmax), the BCs considered 

in this study were found to significantly impact both Gynemesh PS and Restorelle (Table 1). At 

1N, Mean(|kmax|) values for Gynemesh PS increased by several orders of magnitude, with median 

values of 0.0608, 0.162 and 0.406 cm-1 for BC 1, BC 2, and BC 3, respectively. Similar changes 

were also seen for Restorelle, though Restorelle had a significantly lower Mean(|kmax|) for BC 3 

compared to Gynemesh PS (p = 0.009). The variance of kmax was also found to increase from BC  
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1 to BC 3. Median values of Var(kmax) increased at least an order of magnitude for both 

Gynemesh PS and Restorelle (Table 2). However, no differences in this parameter were observed 

at 1N. 

 

 

Figure 27. Contour maps of |kmax| for representative Gynemesh PS (a,b,c) and Restorelle (d,e,f) samples at 

10N. Boundary conditions (BCs) 1,2, and 3 are represented by (a,d), (b,e), and (c,f), respectively. Solid black lines 

represent the direction of kmax. A scale from 0 to 1 cm-1 was used to visualize non-homogeneities in curvature 

distribution. Actual maximum curvatures observed in BC 3 (c,f) skew the scaling for BC 1 and 2, making it difficult 

to distinguish locations of peak curvature on all samples. 
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Table 4. Mean |kmax| values of the entire mesh surface. Results for Gynemesh PS (n=5) and Restorelle (n=5) are 

shown for both 1 and 10N for boundary conditions (BCs) 1, 2, and 3. P-values are from a Friedman’s test, used to 

compare Mean |kmax| between BCs. * indicates differences between Gynemesh PS and Restorelle at the same load 

and BC (p < 0.05). Values are represented as Median (25th quartile - 75th quartile). 

 

 

Changes in surface curvature and the surface undulation became more pronounced when 

meshes were loaded to 10N, a load at which all mesh surfaces laterally contracted and became 

highly curved. In addition, differences between the meshes became more apparent at 10N. For 

BC 1, Mean(|kmax|) values for Gynemesh PS and Restorelle were 0.178 and 0.0698 cm-1 (p = 

0.016), while Var(kmax) values were 0.05 and 0.0139 cm-1 (p = 0.016), respectively. Despite the 

differences for BC 1, Gynemesh PS and Restorelle deformed similarly for BC 2 (p > 0.05). Still 

values found for BC 2 were dramatically increased relative to BC 1 for each mesh. BC 3 resulted 

in a highly curved, wrinkled surface for all meshes tested, with Mean(|kmax|) values of 1.834 and 

1.170 cm-1 for Gynemesh PS and Restorelle, respectively. In addition, the increase Var(kmax) was  
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striking, with values of 5.714 and 1.855 cm-1 for Gynemesh PS and Restorelle. For BC 3, 

Gynemesh PS was found to have significantly greater Mean(|kmax|) and Var(kmax) relative to 

Restorelle (p = 0.009 and 0.016, respectively). 

 

Table 5. Variance of kmax over the entire mesh surface. Results for Gynemesh PS (n=5) and Restorelle (n=5) are 

shown for both 1 and 10N for boundary conditions (BCs) 1, 2, and 3. P-values are from a Friedman’s test, used to 

compare Var(kmax) between BC. * indicates differences between Gynemesh PS and Restorelle at the same load and 

BC (p < 0.05). Values are represented as Median (25th quartile - 75th quartile). 

 

 

2.3.3.2 Validation 

Surface interpolation with the 4-element patch of BQFEs fit the surface points of generated data 

extremely well for both parabolic and sinusoidal functions, as the greatest percent error in 

prediction of z-coordinates was << 0.1%. Moreover, this interpolation method was able to  
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accurately predict the curvature of the parabolic function, though errors for sinusoidal surface 

curvature were as large as 8%, typically occurring in locations of peak curvature. Still, the 

overall shape of the predicted curvature plot was similar to the theoretical plot (Fig. 28).  

In general, the photogrammetric techniques used in this study generated excellent surface 

models, with a remarkable level of textural detail (Fig. 25). Upon closer inspection, most 

surfaces contained small surface fluctuations due to the point-matching algorithm used in 

Photoscan Pro. The error in curvature calculation associated with the overall approach was 

measured using the manufactured parabolic and sinusoidal surfaces of known curvature. Again, 

surface interpolation proved accurate in predicting the z-coordinates (RMS Error < 0.003). 

Analysis of the flat surface revealed first principal curvatures on the order of 0.05 cm-1, while 

second principal curvatures had a peak value of 0.019 cm-1. Data from the reconstructed 

parabolic surface also showed agreement with the theoretical |kmax| values, with peak errors of 

~4% (Figure 28). The predicted curvatures for the reconstructed sinusoidal part were not as 

accurate, with peak errors of approximately 25%. Still, the predicted curvature values capture the 

overall shape of the theoretical curvature plot. Here errors were typically found at locations of 

peak curvature, as peak values were consistently underestimated. 

In general, this validation demonstrates that the methods used in this study accurately 

measure curvature of flat and parabolic surfaces, while providing conservative measures for peak 

curvature on sinusoidal geometries. Given that each of these validation geometries were  
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observed in mesh trials, we consider this method for determining surface curvatures to provide a 

relatively conservative comparison between surfaces, as exact curvatures for undulated shapes 

would result in larger differences than reported in the present study. 

 

 

Figure 28. Validation results from surfaces of known curvature. The solid black line represents the 

theoretical curvature for the test parabolic surface (a) and the test sinusoidal surface (b). The red squares represent 

the predicted |kmax| values along the x-axis using generated surface data, while the blue triangles represent the 

predicted |kmax| values using data from photogrammetric reconstructions. 

 

2.3.4 Discussion 

In this sub-aim, a method for quantifying and comparing the out-of-plane deformation of thin, 

porous textiles was established. This method provides reasonable accuracy and effectively 

describes the out-of-plane deformations experienced by synthetic meshes used for prolapse 

repair in response to loading. Importantly, the findings presented here demonstrate that the 
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manner in which a prolapse mesh is fixed at its boundaries greatly impacts the magnitude of out-

of-plane deformations it experiences in response to loading. Fixation of the entire mesh boundary 

using clamps, as is traditionally done when evaluating the response of meshes to uniaxial 

tension, results in a flat surface. The inclusion of discrete point loads, representing suture 

locations, significantly increases the amount of buckling/wrinkling deformation for these 

products. Both Gynemesh and Restorelle experienced similar differences between the boundary 

conditions considered here; however at 10N of force, Gynemesh was found to have greater 

magnitudes of curvature and surface undulation.  

While traditional materials testing protocols utilize conditions similar to BC 1, the 

conditions applied during surgical implantation of mesh are typically more similar to those tested 

in BCs 2 and 3 due to fixation using discrete suture attachments. The inclusion of these point 

loads drastically increases the curvature of the mesh, creating regions of increased mesh density. 

Based on previous findings regarding minimum pore size (92, 93), regions of increase curvature 

would likely exhibit an enhanced inflammatory response with little tissue integration due to 

occurrence of bridging fibrosis. Further, the non-homogenous distribution of curvature, which 

may serve as a proxy for mesh burden, may explain the discrete nature of pain and exposure 

which is seen clinically (65). While locations of increased curvature suggest the presence of 

bridging fibrosis and increased inflammatory responses, future studies relating curvature and 

histological outcomes are needed to confirm this hypothesis. 
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Despite differences in pore geometry, both Gynemesh PS and Restorelle experienced 

large increases in curvature for point loading observed at 10N, though Gynemesh PS curvature 

values were greater than that of Restorelle for BC 1 and BC 3. It is likely that pore geometry is 

responsible for these observed differences. Indeed, the square patterning of Restorelle may more 

effectively resist buckling under specific conditions (i.e. those similar to BC 1 with force applied 

parallel to the fiber direction), but discrete point loads still greatly destabilizes planar 

deformation for this mesh. Given the potential differences in buckling behavior, unique suturing 

techniques, varying in number and position of sutures, may be required for each mesh device in 

order to prevent unwanted deformations.  

For clinical interpretation, it should be noted that this study provides a time-zero 

perspective regarding the deformation of mesh products. Thus, the impact of tissue boundaries, 

tissue integration, and additional biological factors are neglected. Still this study demonstrates 

that the method of mesh fixation, in addition to the amount of tension a mesh experiences, 

directly alter the configuration of mesh pores and thereby impact the host response. In a recent 

study examining complications in patients undergoing transvaginal mesh procedures, Feiner et 

al. illustrated contour maps of patient pain locations (65). These locations are typically 

associated with palpable ridges, which are found along a horizontal line between each set of 

bilateral fixation arms. It is along these lines that one would expect force to be transmitted 

between fixation points, assuming tensile loading of the fixation arms. This would create 

increases in curvature, similar to those as observed in the current study. 
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Moreover, these results are directly applicable to both abdominal sacrocolpopexy and 

transvaginal procedures. When tensioning a mesh to restore vaginal support, surgeons must 

consider both the amount of force placed on the mesh and the locations of suture attachment. For 

instance, larger forces used to “tension” the mesh and “elevate” the vaginal wall may yield 

significant pore collapse (similar to Poisson’s effect), while isolated suture locations, particularly 

at the boundary of a mesh, may lead to mesh wrinkling upon physiological loading. Considering 

these factors would help to eliminate sources of mesh bunching that have previously been 

reported upon implantation (141). As previously mentioned, surgical techniques and product 

designs that incorporate fixation points or geometries to reduce surface curvature and maintain of 

pore size upon loading, may greatly reducing the likelihood of complications.      

Finally, this is the first study in which curvature calculations were determined via 

photogrammetry reconstruction. Therefore, it was necessary to report the accuracy associated 

with this approach. Photogrammetry is a widely used and incredibly powerful technique to 

capture the surface geometry of a wide range of objects. However, slight point-matching 

inaccuracies, in concert with the limited ability of quintic functions to describe the derivative of 

high oscillating surfaces, may have introduced error into curvature calculations. Based on the 

validation results presented here, such errors appear to be magnified for highly oscillatory 

surfaces. Future analysis may require surface smoothing techniques to minimize error arising 

from the calculation of derivatives as performed here (142). Further, we will examine the use of  
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additional methods of surface interpolation to address the underestimation of curvature for highly 

oscillatory surfaces. For example, subdivision surfaces may more accurately predict surface 

curvature and can be directly integrated into large-scale finite element simulations.  

2.4 CONCLUSIONS 

In Section 2, the deformation behavior of synthetic mesh was examined, considering the in-vivo 

loading of these devices for prolapse repair. The goal of this section was to relate the application 

of mechanical forces to changes in mesh configuration that are known to influence the host 

response. These results demonstrate that mechanical loading significantly impacts two clinically 

relevant textile properties, pore size and mesh burden. Further, the deformations resulting from 

the experimental tensile and point-loading protocols produced mesh deformations consistent with 

the clinical presentation of mesh in regions of exposure.  

More specifically, mesh deformation was characterized at two levels of scale, with 

microscopic evaluation of pore geometry in response to the application of tensile forces and 

macroscopic deformation quantified by changes in surface curvature for varied boundary 

conditions and tensile forces. Both pore size and surface curvature are of great clinical 

importance, as they are both dictate the relative density of mesh fibers. When mesh fibers come 

too close in 3D space, the foreign body responses shown to encase each mesh fiber merge, 

greatly enhancing the overall immune response, possibly, setting the stage for degenerative tissue 

remodeling.  
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Using traditional uniaxial tensile testing, the changes in mesh pore size were examined 

within the toe region of the load-elongation curve. While mesh devices are rarely subjected to 

forces in the linear region of its load-elongation response, surgical implantation (tensioning) and 

a majority of in-vivo forces likely fall within the initial portion of the load-elongation curve. 

Despite the application of relatively small forces used in this aim, mesh pore size was 

dramatically reduced for nearly all meshes and orientations of these products. While all mesh 

products tested were knitted polypropylene meshes, the magnitude of pore collapse differed 

between products and their relative orientation to the axis of loading. Mesh geometries whose 

fibers were notably misaligned with the loading axis were subject to the most severe pore 

collapse. Products such as Restorelle 45° and UltraProOpp were easily deformed with almost 0% 

porosity before reaching 5N of force. Still all meshes with the exception of Restorelle 0° had 0 

pores greater than 1mm in diameter at just 10N of force.  

Although tensile loading alone was sufficient to increase the density of mesh material, the 

boundary conditions in Sub-aim 1.a produced planar deformation of mesh. Yet, when observed 

clinically, mesh in regions of exposure are often folded and bunched together, signifying some 

amount of non-planar deformation. Though the foreign body response may produce mesh 

contraction, this implies mesh folding is a direct result of the foreign body response, rather than a 

cause. More simply, the findings of this aim suggest that the application of point loads in concert 

with the tensile forces examined are sufficient to produce deformations representative of in-vivo 

bunching. Such out-of-plane deformation would effectively increase the density of mesh 

material, likely intensifying the immune response.  
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In general, this section identifies two mechanical factors which produce undesirable mesh 

configurations; orientation of fibers to tensile forces and boundary conditions. Each of these 

factors provides a mechanism by which local increases in mesh burden can, and do, occur. It is 

imperative that these mechanical phenomena are understood and considered when developing 

and implanting meshes for prolapse repair. As shown here, a simple understanding of how the 

mechanical function of prolapse meshes alters key textile features provides valuable information 

that is crucial to eliminating undesirable complications following mesh implantation. 
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3.0  COMPUTATIONAL MODELING OF SYNTHETIC PROLAPSE MESH 

3.1 OVERVIEW 

The primary use of synthetic mesh for prolapse repair is to provide mechanical support of the 

pelvic floor organs, re-approximating a patient’s anatomy with the hope of restoring proper 

function. When used in this capacity, synthetic mesh clearly functions as a load bearing 

structure. The previous aim has thoroughly demonstrated that mechanical loading and the 

manner in which a mesh is loaded greatly impacts the deformation of mesh devices. Further, the 

deformations observed in Aim 1 are consistent with clinical presentation of complications and 

textile properties that are known to induce a detrimental biological response.  

Though much can be learned from experimental approaches, such as those utilized in 

Aim 1, experimental testing is often expensive and resource intensive. Such experimental studies 

should be statistically powered, requiring a number of physical prototypes to be constructed to 

evaluate a wide range of variables. Often the scope of these studies is limited as budgetary and 

time limitations force researchers to focus on a small number of variables. The tight focus on a 

few variables is evident when examining the design of prolapse mesh devices. Nearly all mesh 

products use the same knit construction methods with only slight variations in patterning to tune 
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the gross structural behavior of devices. Historically, significant changes to overall mesh design 

have resulted not from small research studies or in-house industrial development, but from large-

scale clinical research studies in which thousands of women were implanted with a specific 

device design (46, 125, 143, 144). Not only are these methods inefficient and slow to iterate, but 

these studies expose women to products that could, and have, produced devastating 

complications (62, 111). In order to efficiently design and evaluate mesh products for use in the 

pelvic floor, computational modeling of such devices must be used. 

The concept of computational modeling of medical devices in biological systems is far 

from novel. In fact, such practices are commonplace in other fields of research and in industrial 

settings, as researchers and companies look to reduce costs and quickly (and thoroughly) 

evaluate the mechanical function of structures prior to manufacturing a physical prototype. For 

example, studies have computationally evaluated the impact of stent implantation on the arterial 

wall (145). Additionally, hip implants have been the subject of many computational studies, 

following the disastrous results of the 1990’s, with many hip implants leading to bone fracture 

(146, 147). Computational studies have greatly enhanced our knowledge of these products and 

provided tremendous insight into the function of medical devices in the human body. The ability 

to assess the impact of a wide range of variables, including extreme mechanical scenarios and 

patient specific factors, such as variable tissue properties and anatomy, is invaluable for product 

development. The application of such modeling efforts to the examination of prolapse mesh 

would significantly enhance our understanding of the function of mesh in-vivo, and lead to rapid 

improvement of current clinical methods. 
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3.1.1 Previous Modeling of Synthetic Mesh 

To date there have been few attempts to construct computational models for synthetic mesh 

devices despite the increasing prevalence of published structural properties. Of the little 

computational effort directed towards synthetic meshes, the main area of focus for such studies 

has been on the application of mesh for hernia repair, not pelvic organ prolapse repair. Still, 

several conceptual variations of prolapse mesh have been used in finite element analysis (FEA). 

One of the simplest FEA representations of synthetic mesh approximates individual filaments as 

combination of 1st order beam elements. The location at which these beam structures meet are 

defined as joints. In general, the overarching pore structure is recreated as a series of beam 

elements, while the knots are modeled as joints (148). Using a fiber recruitment model to define 

the stress-strain relationship for the beam elements, this model was found to accurately predict 

the tensile behavior of several mesh products. In addition, the pore deformation of this model 

grossly represented the deformation of synthetic mesh upon uniaxial loading, though the 

accuracy of the geometric representation was not validated. Further, this model was not able to 

accurately represent the fiber diameter of mesh; meaning that clinically relevant measurements 

of mesh burden and pore size could not be attained.  

In contrast to this simple representation of mesh, other groups have attempted to model 

the interaction of individual filaments at the knit structures in order to predict the behavior of 

prolapse meshes (107). Similar to the previous model, mesh fibers (bundles of filaments) were 

approximated by “line” elements. However, these line elements were connected by knot 
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structures of increased complexity. In this representation, line elements could rotate and translate 

about knot junctions, presumably approximating the “locking” or “tightening” behavior of knots 

as forces are applied. Impressively, this model captured both the load-elongation response of 

mesh and the deformation of individual mesh fibers and knots at a meso-level of scale (knot 

level) reasonably well. However, model based predictions of load and deformation were not 

accurate when dimensions were scaled to the macro-level (a large network of knots and lines), 

conservatively predicting deformations. While the model deviations likely arise from the 

increased degrees of freedom at larger levels of scale, such limitations prevent this detailed FE 

representation from being used to predict the deformation of synthetic prolapse meshes.  

3.1.2 Gap in Knowledge 

While the examination of synthetic mesh via computational methods such as FEA is relatively 

new, the focus of many of these models is directed solely towards predicting the load-elongation 

behavior of mesh. Though this is often the main rationale for developing FE studies, such 

measures have yet to be proven useful for determining the host response to synthetic mesh. 

Rather than the overall deformation of these products, the deformation of its substructure (pores) 

is the primary measure of interest, as distance between mesh filaments, and the change in 

distance between these filaments has been shown to dictate the host response. However, neither 

of the previous models discussed accurately represents the fiber diameter, and as such, it is 

impossible for these previous FE representations to provide measurements of pore deformation.  
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Given the limitations of previous models, it is clear that no current computational model 

of mesh has been developed for the purpose of measuring textile properties and their changes in 

response to mechanical loading. The inability to determine the impact of loading on vital textile 

properties is a significant shortcoming of FE studies for synthetic mesh. While previous models 

may accurately predict the mechanical interaction of biological structures and mesh, the 

deformations of these products may continue to produce the same complications that occur with 

current prolapse meshes. In fact, simply defining the mechanical sufficiency is similar to current 

attitudes towards mesh design, as the mechanical superiority of polypropylene mesh is the 

primary reason for its use, with little consideration for the configuration of filaments. In light of 

recent findings regarding the importance of pore size and the impact of mechanical loading on 

this textile property, it is necessary for future FE models of synthetic mesh to produce accurate 

predictions of this most impactful variable. 

3.2 DEVELOPMENT OF A COMPUTATIONAL MODEL FOR MESH 

3.2.1 Model Development 

An effective clinical model for synthetic prolapse mesh must consider the geometry and size of 

the pore structure. Though continuum approaches may provide accurate mechanical 

characterization, the inability to determine pore dimensions or additional textile properties limits 

the usefulness of such models in terms of predicting the host response (149). While modeling a 
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porous network has been performed for problems of small dimensions (150), is often 

computationally expensive to create, discretize, and scale porous networks to the dimensions 

found in prolapse meshes which often contain more than 2000 pores depending on the pore size 

and overall mesh dimensions. Although the development and solutions to large-scale problems 

are similar to those of smaller dimensions, large mesh dimensions exponentially increase 

computational complexity, introducing additional degrees of freedom. 

Initially, the goal of this dissertation was to develop robust mechanical models for 

synthetic mesh, building upon the work of Feola et al (148). As such, a fiber-reinforced 

continuum model was implemented in order to describe the mechanical interaction, specifically 

the transfer of force, between synthetic mesh products and the tissues of the pelvic floor. 

Embedded fiber patterns were constructed considering a unit cell centered on a knot in the mesh, 

that when repeated in two directions represented the actual mesh architecture. Despite excellent 

results in terms of predicting the load-elongation behavior, this continuum approach was unable 

to predict pore size or gross mesh behavior. While fiber-reinforced continuum models may prove 

beneficial for simulation of out-of-plane deformation or the prediction of stress and strain, at a 

reduced computational cost, such methods cannot be used to examine the deformation of 

individual pores.  

Once again, the inability for a computational model to capture changes in mesh textile 

properties led to the development of a discrete pore model, directly constructed from the pore 

architecture of synthetic mesh. In order to establish a methodology for examining computational 

models of mesh and to appropriately analyze appropriate variables for mesh use in the pelvic 
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floor, the remainder of this dissertation will focus on square pore geometries. Square pores were 

chosen as this pore structure is one of the most widely used in prolapse meshes, found in 

currently available mesh products such as Restorelle, Vertessa Lite, and Uphold prolapse meshes 

(Figure 29). Though the general pore architecture of these mesh products is similar between 

these products, each has a differing pore size leading to a variation in mechanical properties. In 

addition to being a widely used geometry, square pores provide a simple geometry that is 

relatively easy to recreate in computer-aided design (CAD) software and thus, provides a an 

excellent starting point for the development and assessment of computational mesh models. 

 

 

Figure 29. Square pore geometries are common among synthetic mesh devices, though companies utilize 

unique pore diameters and knit patterns to differentiate their products. Shown here are mesh designs from Coloplast 

(Restorelle), Caldera (Vertessa Lite), and Boston Scientific (Uphold). These pore architectures are used to construct 

a variety of devices including abdominal sacrocolpopexy and transvaginal mesh products. 
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To capture the behavior of mesh textiles, the fibers (filament bundles) must be allowed to 

rotate, as they undergo recruitment. After observations of uniaxial testing of synthetic mesh 

samples (Sub-aim 1a), it was evident that mesh fibers rotate about the intersections of the fibers 

(Figure 30). The intersections of fibers will be referred to as knots for the remainder or this 

dissertation. Given the clear reorientation of fibers in response to the application of tensile 

forces, it can be assumed that these sub-structures are the predominant load-bearing component 

of synthetic mesh. This recruitment behavior is analogous to collagen fiber recruitment in 

biological tissues. The rotation of fibers from their original position into alignment with the 

direction of the applied load produces a characteristic non-linear load-elongation curve. While 

fiber recruitment in biological tissues can arise from both rotations and uncrimping of collagen, 

fiber recruitment in synthetic mesh largely arises from fiber rotation, as little slack is present in 

the undeformed configuration. One may expect a small amount of crimp in each knot structure, 

as the micro-pores present in each knot appear to vanish in response to application of load, 

suggesting that the knot structure may “tighten”. This knot tightening phenomena may manifest 

in slight fluctuations in stiffness in the toe region of the load-elongation curve, such as those seen 

in Restorelle 0°. 

In contrast to the load-bearing fibers, knots behave as a simple pivot point, allowing 

fibers to rotate about their center and even compressing in response to the aforementioned 

tightening (Figure 30). Simplifying mesh textiles to a system of knots and fibers greatly reduces 

the geometric complexity of synthetic mesh products and utilizes sound mechanical analogues 

such as pivot points and structural beams.  
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Figure 30. To scale mesh micro-structure to the dimensions of physical products, and determine textile 

properties following simulated deformation, the pore geometry was simplified. Here, square pores were assumed to 

consist of a network of fiber and knot structures. Using this method, pores of various dimensions can be readily 

created. In addition, knot and fiber structures were discretized using solid finite elements (right). 

 

3.2.2 CAD Model of Prolapse Mesh 

Using these simplified concepts (fibers and knots) a unit cell was sketched in the x-y plane in 

Solidworks (2013, Dassault Systèmes, Waltham, MA). The unit cell consisted of a single square 

knot with 4 fibers, 1 placed along each edge of the knot in a cross formation. The unit cell was 

then extruded in the z direction and a linear pattern was used to repeat the extruded unit cell 

geometry along both x and y axes creating a “sheet” of mesh similar to those produced by  
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synthetic mesh vendors (Figure 31). With this template and unit cell structure, the dimensions of 

the solid, porous-network geometry could be easily manipulated, allowing for specific product 

dimensions to be examined. 

 

 

Figure 31. A linear pattern was used to generate a CAD sheet of synthetic mesh from the initial pore 

geometry (Figure 30). Specific device geometries could then be cut from the appropriate CAD mesh sheet.  

 

As previously stated, this dissertation will focus on square pore geometries given their 

relatively simple design and widespread clinical adoption. First, the methods outlined above 

were combined with microscopic measurements from Restorelle’s mesh architecture (Pore size = 

22mm, Fiber length = 1.8mm, Knot length = 0.28mm, filament thickness = 0.3 mm). The linear 

pattern feature (Solidworks) was then used to create a mesh sheet that measured 440 x 440mm 

(100 x100 pores). Similar to clinical practice, specific geometries of mesh products could then be 

cut from the mesh sheet using Boolean addition and subtraction. For Restorelle, computational 
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models of 90 x 15mm (orientated at both 0° and 45°) were created to simulate experimental 

uniaxial tensile tests. In addition, the geometry of a current transvaginal mesh product, Directfix 

Anterior (Directfix A), was cut from the mesh sheet using a planar sketch and Boolean 

subtraction. 

3.2.3 Discretization  

Though the creation of synthetic mesh structures in CAD software is relatively straightforward, 

such geometries are not directly usable in FEA. This is because CAD geometries are only 

defined by the surfaces that outline the boundaries of the solids. Rather, solid FEA (as opposed 

to surface FEA) requires geometries to represent a volume that can be discretized, or broken 

down into smaller components known as finite elements. Collectively, a set of finite elements 

that represent a geometry are referred to as a “mesh”. Though the term “mesh” is widely used in 

FEA literature, the term “discretization” will be used in this dissertation, as “mesh” will be 

reserved for synthetic mesh textiles.  

Discretization is a vital component of FEA, as this technique allows for complex 

boundary value problems to be approximated by a linear system of equations. However, it must 

be emphasized that FEA provides an approximate solution to a boundary value problem and the 

accuracy of this solution is dependent on both the number and type of elements used to 

approximate the physical system. In this sense, FEA is analogous to approximating the area 

under a curve using a Riemann sum; where increasing the number of squares (elements) provides 

a solution that is closer to the theoretical solution obtained via integration. In addition, the 
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solution provided by Riemann’s sum is dependent on whether a right, middle or left method is 

used. These techniques (left, right, middle) are similar to differing element types (discussed 

below). Regardless, as more squares, or elements, are used to approximate the solution, 

Riemann’s sum converges to the theoretical value, just as the inclusion of more elements to 

approximate a boundary value problem should led to convergence of a solution. 

 

 

Figure 32. For finite element analysis, geometries are discretized, or subdivided, into a set of domains 

known as finite elements. Discretization allows known mathematical relationships (defined over elemental domains) 

to be applied to complex geometries in order to approximate the solution to boundary value problems. Types of solid 

finite elements include linear hexahedral (a), quadratic hexahedral (b), linear tetrahedral (c), and quadratic 

tetrahedral (d). 
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For solid FEA analysis, tetrahedral or hexahedral elements are commonly used to 

discretize structures (Figure 32). Tetrahedral elements can be classified as linear or quadratic, 

where the linear or quadratic describes the order of the interpolation functions (1st and 2nd order 

respectively). Linear tetrahedrons are defined by a collection of 4 nodes (4-node tet), with each 

node representing a vertex of a tetrahedron (tet), and 4 faces. The quadratic tetrahedron is 

defined by a collection of 10 nodes (10-node tet), where 4 nodes represent the vertices of a 

tetrahedron and the remaining 6 nodes represent the midpoint of the lines connecting each 

vertex. Similarly, hexahedral elements (hex) can be either 1st or 2nd order. The linear hex is 

defined by a collection of 8 nodes (8-node brick), whereas the quadratic hex consists of 20 nodes 

(20-node brick). Each hex has 8 nodes representing the vertices of a hexahedron, though the 

remaining 14 nodes of the quadratic hex are located at the midpoint of the lines connecting the 

vertices. As anticipated by their mathematical definition, quadratic functions capture nonlinear 

behavior and tend to provide small errors if solutions are sufficiently smooth. As such, quadratic 

finite elements are often useful for nonlinear problems, such as simulations of beam bending. 

While quadratic functions often lead to smaller errors, 2nd order terms (and an increased number 

of nodes) introduce greater computational complexity and therefore, increase computational 

expense. In addition, similar solutions can be obtained by further discretizing geometries, though 

increasing the number of finite elements also dramatically increases computational expense. 

Given this understanding, the magnitude of the discretization or degree of refinement must be 

considered for each boundary value problem. To assess whether or not a sufficient level of 

discretization has been achieved for a specific FE model, convergence testing is performed. 
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During convergence testing, geometries are further discretized by increasing the number 

elements (h-refinement) and order of elements (p-refinement) until solutions to the boundary 

value problem converge to a common value. 

3.2.4 Discretizing of Prolapse Mesh 

After being cut from the solid CAD mesh sheet, all mesh geometries were imported into 

Autodesk Simulation Mechanical 2014-2015 (Autodesk, San Rafael, CA) for discretization. 

Using this software various discretization techniques were applied to the mesh. First, 

discretization was performed using only tetrahedral elements. This technique adequately 

discretized all mesh geometries, though occasionally element quality was quite low (large aspect 

ratio). The purely tetrahedral algorithm was applied using 3 levels of increasing refinement 

(50%, 75%, and 100% of the “mesh/discretization” length). Next, a mixed hex/tet algorithm was 

applied to all mesh geometries and the same 3 levels of refinement were used. Both pure tet and 

mixed hex/tet methods provided a homogenous distribution of elements across the entire mesh 

geometry. Specifically, each fiber consisted of the same number and type of elements for each 

discretization protocol. Similarly, each knot was found to have the same number and type of 

elements for a given discretization method. The homogeneity in element distribution implies that 

all mesh fibers or knots will behave similarly (no discretization bias). This distribution was not 

attainable using various other discretization software packages (TetGen, Gmsh, Trelis, etc). All 

discretized geometries where then exported for further refinement and use in FEA. 
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 All exported discretized geometries were further refined using Gmsh (Geuzaine and 

Remacle). Specifically, the split element tool was used to divide each element into two elements, 

exponentially increasing the number of overall number of elements in a model. This refinement 

was applied 3 times, with each sequential refinement exported for analysis. In total, 9 

discretizations (3 Simulation Mechanical refinements, each subjected to 3 Gmsh refinements) 

were created for each geometry considered in this dissertation. It should be noted that all 

refinements previous discussed consisted only of 1st order elements. Geometries consisting of 2nd 

order elements were generated in Preview (University of Utah, MRL), where linear tets and 

hexes were converted to their quadratic counterparts. However, the use of quadratic elements 

was limited in this dissertation and will be noted where appropriate.  

3.2.5 Determination of Material Properties 

To accurately predict the mechanical behavior of synthetic mesh devices, a constitutive 

relationship was considered for synthetic mesh. Here it must be understood that a constitutive 

relationship assumes a material to be continuous. Clearly, synthetic meshes are discontinuous on 

the level of scale of their mechanical deformation. However, the simplification of this geometry 

to knots and fibers allows for meshes to be modeled as a structure of continuous materials. 

Therefore knots and fibers were assigned separate constitutive formulations. 

While numerous constitutive equations could be considered for the knots and fibers, the 

optimal choice was to limit the number of variables used to predict the mechanical behavior of 

synthetic mesh. As such, a Neo-Hookean material, one of the simplest constitutive relations, was 
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used to model the knot and fiber structures independent of one another. The strain energy of a 

Neo-Hookean material is given by: 

𝑊𝑊 = 𝜇𝜇
2

(𝐼𝐼1 − 3) − 𝜇𝜇 ∗ ln(𝐽𝐽) + 𝜆𝜆
2

(ln 𝐽𝐽)2                                    3.1 

where μ and λ are the Lamé parameters from linear elasticity, J is the Jacobian of the 

deformation gradient tensor (J = det (F)), and I1 is the first invariant of the right Cauchy-Green 

tensor. Further the Lamé parameters can be determined via Young’s modulus (E) and Poisson’s 

ratio (ν) by: 

𝜆𝜆 = 𝜈𝜈𝜈𝜈
(1+𝜈𝜈)(1−2𝜈𝜈)

                                                            3.2 

𝜇𝜇 =
𝐸𝐸

2(1 + 𝜈𝜈)
 

Thus, only two parameters, E and ν, are required to define a Neo-Hookean material. In addition, 

these parameters have distinct physical meanings. Young’s modulus is a measure of stiffness of a 

material, while Poisson’s ratio governs the compressibility of the material where a value of 0 

represents a completely compressible material and 0.5 represents an incompressible material. 

Intuitively this simple, 2 parameter model appears to possess the ability to capture large degree 

of the mechanical behavior of knot and mesh structures, allowing for the stiffness and 

compressibility the primary load bearing structures (fibers) and pivot points (knots) to be 

determined separately. One would anticipate fibers would have a greater Young’s modulus 

relative to the knots, while knots would be expected to have a lower Poisson’s ratio to provide 

compressible, compliant pivot points.  
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 Neo-Hookean properties were determined using an inverse optimization method, fitting 

computational simulations to matching uniaxial testing data obtained experimentally. For 

experimental testing, sterile sheets of Restorelle were removed from their packaging and were 

cut into 90 x 15mm strips. Similar to Sub-Aim 1a, Restorelle samples were cut with the square 

pores oriented either 0° or 45° offset from the horizontal. For each orientation, 5 samples were 

cut and tested in uniaxial tension. Here a 0° offset was chosen as this orientation was previously 

found to minimize fiber rotation (Aim 1a), thereby designating the fibers as the primary load 

bearing structures. Assuming the mechanical properties of the knots to be negligible in the 

absence of fiber rotation (i.e. Eknot << Efiber), the data obtained from 0° trials directly represents 

the mechanical behavior of the fibers alone. The 45° offset was chosen as this orientation was 

previously found to induce the maximal amount of fiber rotation. Since the amount of fiber 

rotation in this model is governed by the properties of the pivot points, the 45° data can be used 

to determine the material properties of the knots. All samples were secured in custom soft tissue 

clamps and the bottom clamp was fixed to the base of a materials testing machine (Instron 5565,  

Grove City, PA), while the top clamp was attached to a movable crosshead, inline with a 50lb 

load cell (Honeywell Sensotec, Columbus, OH). Samples were then preloaded to 0.1N at a rate 

of 10mm/min and subsequently loaded to failure at a rate of 50mm/min.  

 Following experimental testing, a computational model of the aforementioned uniaxial 

testing was constructed using the FEBio software suite (Univeristy of Utah, MRL). Discretized 

mesh geometries were imported into Preview (Univeristy of Utah, MRL) and the bottom edge of 

the FE mesh model was fixed in all 3 directions to a rectangular plate modeled as a rigid body. 
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The rigid body was included to measure the total reaction force (N) of the mesh structure, 

analogous to the measurement provided by the load cell experimentally. A displacement was 

then applied to the top edge of the computational mesh where the magnitude of displacement 

was set to the average elongation required for Restorelle to reach 5N of force. As previously 

mentioned, the mesh failure is extremely rare clinically and thus, ultimate elongations were not 

considered when fitting material properties to tensile datasets. Rather, average elongations at 5N 

where obtained from the 5 experimental trials. Separate simulations were created for 0° and 45° 

offset geometries with their respective experimental elongations used to drive model 

displacements. Initial testing was conducted to ensure that model convergence could be attained 

using a wide solution space of E and ν for both knot and fiber material. Upon varying the 

modulus by several orders of magnitude and ranging ν from 0 to 0.5, it was determined that the 

solution space was sufficiently large. It should be noted that geometries used in determination of 

material properties were finely discretized, with the 0° offset geometry consisting of 115200 hex 

elements and the 45° offset simulation containing 112320 hex elements. Models of further FE 

refinement were not solvable due to the technical limitations of FEBio and its performance on 

the hardware available to our laboratory.   

 Once the simulation files were prepared, an inverse FE method was used to optimize 

material properties for the knot and fiber structures. This inverse analysis was performed in 

FEBio, where a Levenberg-Marquardt optimization method was employed. First, E and ν for the 

fibers were determined using the 0° offset tensile data and corresponding simulation file. Initial 

guesses for E were varied by 4 orders of magnitude and ν was varied between 0 and 0.5 to ensure 
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that a global solution was attained. In addition, the Neo-Hookean properties for the knot material 

were varied using the same changes in values to ensure that knot properties did not impact the 

optimization of fiber properties. While rounding errors led to slight variation in fiber properties, 

specifically impacting Efiber, the attained Neo-Hookean fiber parameters were determined to be: 

Efiber = ~5000MPa and νfiber = ~0.49. Next, E and ν were determined for the knot material 

holding Efiber and νfiber constant at their optimized values. Once again E was varied by 4 orders of 

magnitude and ν was varied between 0 and 0.5 to obtain global minima. The optimal values for 

the knot material were determined to be Eknot = ~100MPa and νknot = ~0.01.    

After material properties were determined for both Neo-Hookean materials, simulations 

were repeated for each orientation, utilizing the optimized values. The resulting FE simulations 

were then post-processed and visualized in Postview (University of Utah, MRL). In order to 

compare experimental load-elongation data to predicted values, the rigid body plate was selected. 

Then, the total reaction force of the selected rigid body was plotted against the elongation of the 

rigid body. The resulting load-elongation plot is representative of the loads and elongations 

experimentally recorded by the materials testing machine. 

Overall, the optimized material properties accurately predicted the load-elongation 

behavior of the synthetic mesh strips up to 5N of applied tensile load (Figure 33). 

Experimentally, 0° offset data exhibits a small degree of non-linearity as the slope of the load-

elongation curve is initial high and decreases between 10-13mm of elongation, before 

approximately returning to its initial slope. Identical structural behavior was also present in 

previous uniaxial data for Restorelle at both 0° and 5° offsets (Aim 1a). The transient decrease in 
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stiffness likely arises from tightening or slipping of individual polypropylene filaments or knot 

structures. This filament displacement would produce a small amount of elongation at a reduced 

resistance relative to loading when all openings in the mesh are in contact. Regardless, the Neo-

Hookean material model and the geometric simplifications used in the current model produce a 

predominately linear response and were unable to capture this slight fluctuation in stiffness. Still 

the model demonstrates good agreement with experimental results. Impressively, the developed 

computational model was able to accurately predict the nonlinear load-elongation behavior 

observed during testing of 45° offset samples (Figure 33). Notably, the simulated results exhibit 

a non-linear load-elongation response capturing the recruitment of mesh fibers as they reorient 

along the loading axis. 

 

 

Figure 33. An inverse optimization method was used to determine Young’s modulus and Poisson’s ratio 

for both the knot and fiber materials. Solid blue and red lines represent experimental load-elongation data for 

Restorelle tested with fibers 0° and 45° offset, respectively. Blue and red diamonds are load-elongation data points 

from corresponding finite element simulations (0° and 45° orientations) with the calibrated model.  
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3.2.6 Convergence Testing 

The above work has successfully defined the geometry and material properties required to create 

a computational model of synthetic mesh. This model is readily implemented in FEA and has 

demonstrated the ability to accurately predict the load-elongation behavior of synthetic mesh. 

While this is the first 3D solid FE model to accurately represent such behavior, it was not the 

primary rationale for this work. Rather than load-elongation behavior, the purpose for 

constructing this model was to measure clinically relevant textile mesh properties, including 

mesh burden and pore diameter. Therefore it was necessary to determine the convergence of this 

model based on the prediction of these desired outputs.  

Convergence testing is a vital and necessary component of FEA. Generally, FEA sub-

divides a body into finite elements, providing a numerical approximation to a theoretical 

solution. However, the most beneficial use of FEA is for boundary value problems in which a 

theoretical solution is either extremely complex or unattainable. Given the difficulties in 

obtaining a “true” solution, it is important to assess the trustworthiness of FEA results. 

Numerical methods, such as Netwon’s method, are highly dependent on the level of 

discretization used. Finer discretization utilizes additional approximation points, providing a 

solution closer to the theoretical value. Convergence testing assesses the dependence of a FEA 

solution on the discretization (number of elements) used. As such FEA results are considered 

trustworthy (not necessarily accurate) when discretization refinement results in solutions that 

converge to a common solution. 
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 In order to examine model convergence, 9 discretization’s of increasing element count 

were created for both 0° and 45° offset geometries as described in Section 3.2.4. Though 9 

discretized geometries were created several were eliminated from convergence testing due to the 

technical limitations of the version of FEBio available to our research center (>~800,000 

elements). In addition, the most simplistic model, consisting of a single hex element for each 

mesh fiber and a single hex element for each knot was not considered as it was clear such a 

coarse discretization would restrict the deformation of mesh fibers. Therefore 6 geometries were 

determined to be suitable for an initial convergence study. 

 Each discretized model was imported into Preview and subjected to a uniaxial tensile 

loading for the boundary conditions used previously. Briefly, the bottom edge of the mesh was 

attached to a rigid body and fixed the x, y, and z directions, while a displacement was applied to 

the top edge of the mesh, along the y-axis. Here the magnitude of displacement was set to 39mm, 

approaching, though not reaching, failure elongations determined for Restorelle 0° in response to 

uniaxial testing. The mesh knots and fibers were modeled as separate Neo-Hookean materials 

using the optimized Young’s Moduli and Poisson’s ratios as determined above. Solutions for all 

6 discretized models were obtained and the deformed mesh geometries at 39mm of elongation 

were exported for additional post-processing to determine mesh burden and pore size. 

3.2.6.1 Mesh Burden Calculation 

In order to determine mesh burden, solid discretized geometries of the deformed mesh at 39mm 

of elongation were exported from Postview. Deformed models were then imported into Meshlab 
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(Visual Computing Lab, ISTI-CNR, Pisa, Italy) for conversion into point cloud (.xyz) files. Point 

cloud files contain the 3D coordinates of all vertices in a given geometry. For discretized 

geometries, these values represent the nodal locations. Since the nodal coordinates represent the 

location of mesh material (polypropylene) in 3D space, the density of the nodes provides a 

measure of the amount of material per unit volume, or mesh burden.  

  

 

Figure 34. A 2D representation of mesh burden calculation. For each point identified as mesh (white 

pixels), the number of additional mesh points within a radius of 2mm was totaled. This point-wise density (area 

density for 2D) was defined as mesh burden. While 2D calculations of mesh burden utilizes planar images (pixels) 

and circular area, extension to 3D uses nodal coordinates and spherical volumes.   

 

Point clouds representing the nodal locations were then imported into a custom 

Mathematica script for mesh burden calculation. Mesh burden was determined for each nodal 

location by summing the total number of nodes located within a sphere with a radius of 2mm. 

The radius of 2mm was chosen, as this radius is roughly the same as the pore diameter for 
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Restorelle, providing a definite, nonzero baseline mesh burden value for nodes in the 

undeformed geometry. After mesh burden was calculated for each node, results can be readily 

visualized as 2D point plots, where the color at each nodal location represents the value of mesh 

burden. Similarly, this concept can be applied to 2D geometries or images where the number of 

mesh points is summed over a circle with a radius of 2mm. 

3.2.6.2 Minimum Pore Diameter Calculation  

In order to calculate pore size, images of the computational mesh geometry were taken before 

and after deformation was applied using a screen capture. Since the pore size of the undeformed 

mesh is known (Restorelle pore size = 2.2mm) and the pixel resolution of the undeformed and 

deformed geometry images were the same, all images could be scaled to the same dimensions in 

ImageJ (NIH, Bethesda, MD). After scaling, each image was imported into a custom 

Mathematica code for measurement of pore diameter, similar to that used in Section 2.2.2. 

Briefly, images were binarized such that all pixels representing the mesh were black and all non-

mesh pixels were white (images shown here are inverted for ease of interpretation, i.e. the mesh 

is white). Next, an edge detection algorithm was used to identify clusters of white pixels 

enclosed around the entire border by white pixels. These clusters were identified as pores. The 

center of mass for each pore was then determined and the minimum distance of a line passing 

through the pore center from opposite pore edges was then identified as the minimum pore 

diameter. Minimum pore diameter was recorded for all identified pores in an image. 
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3.2.6.3 Convergence Results 

For 0° offset geometries, discretization convergence was obtained relatively quickly (Figure 35). 

Not surprisingly, coarse discretization of synthetic mesh appears to limit the deformation of pore 

geometries, as average mesh burden for models of less than 2000 elements were found to be 

~17.5% lower than the converged value. Specifically, fewer elements in the knot structures 

appeared to have limited the compression of the knots in response to this loading condition. 

Interestingly, the average minimum pore diameter was relatively uninfluenced by increasing the 

number of elements converging to a value of ~2.2mm at just 2532 elements. This may be due to 

the fact that mesh loaded with the 0° offset experienced relatively little pore deformation at the 

elongations considered in this study. Regardless, the measurement of mesh burden and pore 

geometry converged by 14400 elements (8 elements per knot and 16 elements per fiber) for 

uniaxial tensile simulation of square pores with an offset of 0°. 

Similarly, output measures were found to converge with minimal refinement for 45° 

offset geometries. Unlike 0° convergence trials, coarse discretization produced overestimates for 

maximum mesh burden, approximately 14.5% greater than the converged value of 0.42 

pixels/mm2. Once again dmin was not dramatically affected by h-refinement, with values 

approaching 0.59mm with ~20,000 elements. Considering convergence outcomes from both 

orientations, determination of material properties was completed with mesh geometries of 73,000 

linear hexahedral elements. This discretization density was chosen as it the computational 

expense for this density was not found to be limiting. 
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Figure 35. Convergence testing for Restorelle 0° (a,b) and 45° (c,d) finite element models. The impact of 

increasing elements on simulated outcomes for maximum mesh burden (a,c) and dmin (b,d) was considered. 

Convergence of these measures was quickly attained for both orientations. 

  

3.2.6.4 Discussion 

In this section, a method for the development of a computational model for synthetic meshes was 

described. Here the complex knit structure of synthetic mesh was simplified into a series of solid 

fiber and knot elements that were arranged to approximate a square pore geometry. Upon 

determination of material parameters for fiber and knot structures, this computational model 
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accurately captured the uniaxial load-elongation behavior of synthetic mesh strips. In addition, 

this is the first computational model of synthetic mesh for which the textile properties of mesh 

burden and pore diameter can be measured. 

Interestingly, the number of elements used to discretize synthetic mesh geometries did 

not have a profound effect on the measured output variables measure in this study, for the 

prescribed boundary conditions. This may result from the relatively low level of force used 

relative to the failure loads reported for Restorelle. Still, elongations of the 45° offset were quite 

large, resulting in significant pore collapse. Given that these outcomes were based on mesh 

deformation, it is likely that such discretization convergence results will be similar for additional 

loading conditions. Nonetheless, discretization of the knot and fiber structures should be 

considered for all synthetic mesh simulations. Specifically, coarse meshing for knot structures 

may significantly alter fiber rotation thereby impacting both the nonlinearity of the load-

elongation curve and limiting pore deformation. In addition, the number of elements used in fiber 

geometries is important to consider for simulations in which fiber buckling (or non-planar 

deformation) occurs, as more elements through the fiber thickness may be required to provide 

accurate predictions of bending. 
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3.3 MODEL VALIDATION 

3.3.1 Introduction 

The pelvic floor is a mechanically complex environment with a wide range of loading 

conditions. Currently, surgeons use synthetic mesh implants to provide support to the vagina, in 

order to re-approximate the anatomy of the pelvic floor and relieve the symptoms associated with 

POP. Though synthetic mesh is used to perform a specific mechanical function, little is known 

about the response of these devices to mechanical loading. Recently, the structural properties of 

mesh have become an area of interest with many publications and vendors touting the 

mechanical superiority of products (85, 114, 151). However, a majority of these studies focus on 

the failure properties of mesh, although mesh failure is rarely observed clinically and therefore is 

not likely the cause of the complications associated with mesh. In addition, synthetic mesh is 

based on a technology developed for the treatment of abdominal hernias and therefore prolapse 

meshes are often designed with little consideration for the mechanical demands of the pelvic 

floor. The failure to acknowledge such a vital design component is particularly interesting when 

considering that exposure rates for prolapse mesh are significantly greater than those observed 

for hernia mesh products (78, 101, 152, 153). Clearly there is a need to understand the impact of 

mechanical loads on prolapse mesh products, specifically considering the geometries of prolapse 

mesh and the boundary conditions these devices experience in the pelvic floor.  
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Experimental testing and refinement of mesh design is a resource intensive and costly 

process. Rather than undergo pre-market testing, mesh manufacturers utilize the 510k approval 

process and immediately enter new prolapse meshes into clinical testing. As such, vendors utilize 

prolapse patients as a proving ground for new pore geometries and device architectures. Prolapse 

mesh manufactures are able to avoid the premarket approval process (PMA) as prolapse mesh is 

predicated on hernia mesh technology, implemented prior to the Medical Devices Amendment 

Act of 1976. In order to comply with 510k regulations, and avoid PMA processes, synthetic 

mesh design has seen little innovation during recent decades, stagnating the advancement of 

prolapse repairs, while causing unnecessary harm to women due to a lack of testing.  

 Computational modeling provides a tremendous tool for optimizing mesh products to the 

needs of pelvic floor support without physically creating mesh products or implanting them in 

patients. The development of such a computational tool would allow for in-depth examination of 

mesh designs in response to loading conditions specific to the pelvic floor. Ultimately, 

computational simulations would allow for novel mesh designs and material to be evaluated 

prior to implantation, optimizing the selection of devices used for clinical trials, and allowing for 

rapid advancements in POP treatment standards. While previous computational models for 

synthetic mesh have been published, current models have focused solely on predicting the 

mechanical behavior of mesh, rather than textile factors, which are known to cause 

complications. Moreover, previous models are limited in terms of their application, as they 

cannot be scaled to the dimensions or gross architecture of sacrolcolpopexy and transvaginal 

meshes.  
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 The solid computational model of synthetic mesh previously developed in this 

dissertation, aims to overcome the limitations of previous FE models. In addition, to accurately 

predicting the load-elongation behavior of clinically relevant mesh structures, the proposed 

model allows for direct calculation of mesh burden and pore diameter, two textile properties that 

have been shown to influence the host immune response. In order is to establish the usefulness of 

this model and demonstrate its ability to predict these textile properties in response to mechanical 

loads, validation trials must be performed. 

 When using FEA, two requirements must be met in order for simulation results to be 

deemed trustworthy. These requirements are verification and validation. Simply, verification 

ensures that the computational tools are solving the equations correctly. In order to verify a 

computational tool, the numerical solutions to the governing equations are compared with those 

obtained by previously verified FE software. Verification demonstrates the ability of a 

computational tool to determine the correct numerical solution. The Musculoskeletal Research 

Laboratory (MRL) at the University of Utah provides verification for FEBio, with a wide array 

of test cases considering implementation of nearly all features, including contact, material 

selection, and element deformations. While verification is completed by the FEBio development 

team, validation is required for each specific model developed in FEBio. Validation assesses a 

specific model’s ability to replicate the physics of the real world (i.e. simulating the right 

equations). Validation of a finite element (FE) model is completed by comparing experimental 

and computational results. This ensures that the model represents real world physics and 

provides solutions that correctly predict actual behavior. 
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 In this study, we aim to validate the proposed FE model of synthetic prolapse mesh. Here, 

an experimental testing rig will be constructed to simultaneously load and image synthetic mesh 

under boundary conditions similar to those experienced by a transvaginal prolapse mesh during 

surgical implantation, with tensile forces applied to the mesh arms. This experimental test will 

then be recreated in FEBio. Finally, comparisons of mesh burden and pore diameter will be used 

to assess the accuracy of our computational model.  

3.3.2 Methods 

3.3.2.1 Experimental Testing 

In this study a transvaginal mesh product, DirectFix A, was used to validate our model of 

synthetic mesh. Directfix A was chosen as this device is currently in clinical use and is directly 

cut from a sheet of Restorelle, the same mesh for which material properties have been 

established. For experimental measurement of pore deformation, a custom testing rig was 

designed and constructed to mechanically load transvaginal mesh products (Figure 36). The 

testing rig was comprised of a raised platform with cylindrical pegs (5mm diameter) arranged in 

a circular pattern, at a radius of 5 inches. Pegs were placed in 5° increments about the 

circumference, providing a total of 72 positions for mesh attachment. The raised square platform 

(4 inch height) was centered and fixed within the circle. Four movable posts were also designed 

and constructed for insertion onto the pegs. Posts were rounded in order to provide a pulley-like 

surface for suture translation. 
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Figure 36. Model validation was completed through experimental loading of DirectFix A using a custom 

testing rig. Mesh arms were placed in custom clamps and a 250g weight was allowed to hang freely from tension 

posts as shown. In addition, 2 fixation rods located on a raised platform were placed through individual pores in the 

mesh body. 

 

 Each DirectFix A sample was suspended above the raised platform and centered. Two 

steel rods were placed through separate mesh pores on the inferior body of the device to simulate 

fixation to the vagina (Figure 36). Next, soft tissue clamps were attached to each of the 4 arms of 

the transvaginal mesh and a 250g weight was tied to each soft tissue clamp with a suture. Suture 

lines were placed in the rounded posts and pulled taught such that the weight extended outside of 

the peg circumference. To apply load to the mesh arms, weights were allowed to freely hang, 

suspended from the posts.  
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Figure 37. For experimental validation, 2 separate loading conditions were considered. Under the first 

condition, upper arms were loaded at 40° and the lower arm was loaded at -20°. For condition 2, upper arms were 

loaded at 15°, while lower arms were loaded at -45°. All angles are relative to the horizontal axis, with the origin at 

the device center. A weight of 250g was applied to each mesh arm at the prescribed angle.  

 

A digital SLR camera (Canon, EOS Rebel T3, Melville, NY) equipped with an 18mm 

lens (Canon, EFS f/2.8, Melville, NY) was placed above the testing platform and leveled such 

that the camera lens was parallel to the mesh surface. Images of the entire DirectFix A sample 

were taken after suture lines were pulled taught (weights not hanging) and following the 

application of load (weights freely hanging). These two images represent the undeformed and 

deformed configurations for measurement of mesh burden and pore diameter. For model 

validation, two experimental scenarios were considered (n = 3 each, 6 total): 1) the top arms 

were loaded at 45° and the bottom arms were loaded at -20° and 2) the top arms were loaded at  
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10° and the bottom arms were loaded at -45° (Figure 37). All loading angles used in this 

experiment were relative to the horizontal axis, with the origin at the device/platform center. For 

each trial, mesh was imaged in both its undeformed and deformed configurations. 

3.3.2.2 Computational Testing  

The above experiment was then recreated in Preview (University of Utah, MRL). Computational 

geometries for DirectFix A were obtained using a Boolean subtraction in Solidworks to cut the 

contour of the transvaginal mesh from a 100 x 100cm sheet of Restorelle (Figure 38). The 

computational geometry was then discretized and imported into Preview, where the center pore 

of the main body was placed at the origin of the computational space. This positioning allowed 

for simple definition of the mesh arm loading vectors. Two cylindrical rods (diameter = 1.5mm) 

were then created and placed in the same pores that were fixed experimentally. The experimental 

images of the undeformed geometry were used to verify the rod location. Further, each rod was 

defined as a rigid body and a rigid constraint was used to fix the translation and rotation of the 

rods (translation = rotation = 0). While the rigid bodies represent the fixation provided by the 

steel rods, contact between the cylinders and mesh pores introduced significant computational 

difficulty, due to the deformation of mesh elements about the rods. To simplify this interaction, 

the inner surface of the mesh pores at the rod locations were fixed in the x, y, and z directions. 

The removal of this contact greatly improved model convergence and performance.  
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Figure 38. A computational model of DirectFix A (right) was cut from the sheet of Restorelle pores 

extruded in Solidworks. Dimensions of the physical DirectFix A device (left) were used to create a 1:1 model. 

 

In order to simulate the application of tensile forces to the mesh, a traction force was 

applied to each of the mesh arms. Traction forces were defined as a vector with the magnitude of 

2.45N (the force of the freely hanging weight), while the components of the vector were altered 

in order to produce the angle at which loads were applied. A computational model was created 

for each experimental condition. Lastly, a sliding contact was prescribed for all mesh surfaces to 

prevent penetration of mesh fibers and knots. Similar to experimental testing, screen captures 

were used to record images of the undeformed and deformed computational geometries.  

3.3.2.3 Mesh Burden 

Unlike previous measurements of mesh burden, which were based on 3D nodal locations 

(Section 3.2.6.1), validation of mesh burden measurements required a 2D approach to be used.  
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This is because experimental measurement of mesh burden could only be obtained from 

photographs, a planar imaging technique. Therefore, mesh burden calculations were modified 

such that planar images could be used to determine density values (Figure 34).  

 Prior to determination of mesh burden, all images were binarized such that pixels 

representing the mesh were black and pixels representing void space (no mesh) were white. For 

each pixel representing mesh, the total number of mesh pixels within a radius of 2mm was 

determined, providing a local density (pixels/mm2) value for each the number of mesh pixels. As 

with 3D measurement of mesh burden, a radius of 2mm was chosen as it provides a nonzero 

baseline measure of mesh burden for Restorelle. In addition, mesh burden values were 

normalized by the maximum value of mesh burden in the undeformed configuration, providing a 

measure of the change in mesh burden following the application of load. This normalization was 

required as computational and experimental images had differing resolutions. As such, higher 

resolution images resulted in greater mesh burden values relative to lower resolution images. 

After calculating normalized mesh burden for each pixel, results were visualized using 2D 

contour plots. Images from both computational and experimental testing were subject to the same 

image processing and mesh burden measurements.    

3.3.2.4 Minimum Pore Diameter 

The method used to measure of minimum pore diameter, dmin, was previously detailed in Section 

3.2.6.2. Briefly, images were scaled using the dimensions of the undeformed geometry and 

binarized to distinguish whether pixels represented mesh or void space. Clusters of void space 

  146 



 

were identified as pores and the center of mass for each pore was then determined (Figure 39). 

Finally, a series of pore diameters passing through the pore center were determined and dmin was 

recorded for each pore. Once again, images from both computational and experimental testing 

were subject to the same image processing for pore diameter measurement.  

 

 

Figure 39. Image processing was used to automatically identify mesh pores and determined their minimum 

diameters. First, a gradient based method was used to identify isolated clusters, representing pores. Here, each color 

represents a cluster of pixels identified as a pore (a). Next, the centroid of each cluster was determined (represented 

by red dots) and used to determine the minimum diameter for each pore (b). 
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3.3.2.5 Statistics 

Statistical analysis was performed for both mesh burden and dmin measurements to compare 

experimental results with computational predictions. In order to compare the overall mesh 

deformation, the median values of mesh burden and pore diameter were calculated for both the 

undeformed and deformed geometries. A Bland-Altman analysis was used to compare 

differences between experimental and finite element (FE) results for each loading condition, with 

a significance of 0.05. 

3.3.3 Results   

Overall, computational simulations effectively captured the deformation of DirectFix A observed 

experimentally (Figure 40). Examination of the deformed geometries demonstrates that the FE 

boundary conditions implemented, well approximated experimental conditions, as the location of 

mesh arms and the distortion of the transvaginal mesh body are strikingly similar for both 

loading conditions. However, it was noted that for experimental testing the mesh device 

experienced a small degree of out-of-plane deformation at the steel fixation rods, though no out-

of-plane deformation was obtained in FE simulations. Experimentally, it is likely that the contact 

of the mesh fibers, along with the asymmetry of these structures, resulted in bunching and out-

of-plane movement. In addition, slight out-of-plane perturbations of the traction vector (airflow, 

uneven suture height during application of load, etc.) may have initiated out of plane deformation 

experimentally.     
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Figure 40. Contour plots of normalized mesh burden for deformed DirectFix A geometries. Overall, 

computational and experimental results demonstrate good agreement for loading condition 1 (top) and 2 (bottom). 

Mesh burden values were normalized by the maximum mesh burden of the undeformed geometry. Warmer colors 

represent greater percent increases in mesh concentration.  

 

 In response to loading condition 1, DirectFix A experienced significant pore deformation, 

specifically at the inferior mesh arms, the fixation rods, and between superior mesh arms within 

the main device body. Experimentally, this boundary condition was found to increase peak mesh 

burden by 260%, relative to the unloaded device. Comparatively, a 330% increase was predicted 

by the computational model (Figure 40). For both experimental and computational results, peak 

mesh burden was predicted at the fixation rods, though the magnitude between these results was 

found to significantly different (Figure 41, p < 0.05). Predicted increases in mesh burden at the 

inferior mesh arms and the superior mesh bodies were similar between experimental and 
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computational models, with approximately a 2-fold increase at these locations (p > 0.05). 

Locations of decreased dmin showed good agreement with regions of increased mesh burden, 

demonstrating the inverse correlation between these parameters (decrease in diameter results in 

increase mesh per unit volume). Median dmin values were similar between FE predictions and 

experimental findings for condition 1, with just a 0.1% and 9% difference for undeformed and 

deformed geometries, respectively. 

 

 

Figure 41. Bland-Altman plots for average normalized mesh burden (left) and dmin (right). The y-axis 

represents the difference between experimental and finite element results. Condition 1 is represented by the blue 

circles and condition 2 is represented by the red triangles. Error bars represent standard deviation. * represents 

significant differences between experimental and finite element measurements (p < 0.05). 
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Similar to condition 1, condition 2 resulted in significant pore deformations for DirectFix 

A. Specifically, the pores of the inferior mesh arms and the mesh body, between the superior 

mesh arms, were areas of intense pore collapse. Experimentally, peak mesh burden was 

increased by 236% relative to the unloaded state, while simulated results were found to increase 

by ~221%. Overall the location and magnitude of mesh burden showed good agreement between 

experimental and computation methods (p > 0.05). While mesh burden was accurately predicted 

for condition 2, the average experimental dmin was ~0.4mm less than predicted values (p < 0.05). 

3.3.4 Convergence Testing 

For each boundary condition, discretization convergence (“mesh” or h-refinement) was 

examined considering the output variables of normalized mesh burden and dmin. Here, three 

levels of h-refinement were considered with mesh geometries consisting of 29,066, 136,349, and 

232,646 linear hexahedral elements. Average normalized mesh burden and dmin values are were 

found to converge quickly with standard deviations less than 2% of across all three models, 

regardless of the boundary condition. Given the similarity in results between these models, all 

values reported in this study were obtained using the 136,349 element geometry.   
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Figure 42. Convergence testing results for validation geometries, examining the impact of discretization 

refinement on normalized mesh burden (a,c) and dmin (b,d) measurements for loading conditions 1 (a,b) and 2 (c,d). 

The levels of discretization considered in this study had little impact on these specific outcomes. 

3.3.5 Discussion 

In this study, a computational model for a transvaginal prolapse mesh, DirectFix A, was 

validated. This was accomplished by comparing experimental measures of mesh burden and pore 

diameter with FE predictions. The proposed computational model effectively captured the 

overall deformation of DirectFix A under 2 distinct loading conditions. Notably, the locations of 

increased mesh burden and decreased dmin were similar between experimental and FE testing. 
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For loading condition 1, peak mesh burden was significantly overestimated, though this 

magnitude was increased only at the location of the rod fixations. Away from this boundary 

condition, mesh burden results were similar to experimental measures. Overall, the distribution 

of dmin was accurate in terms of magnitude and location for condition 1. Conversely, mesh 

burden predictions for loading condition 2 were accurate, while median dmin values were 

overestimated by ~0.4mm. Given the sensitivity of these measures, and the accurate distribution 

of mesh burden and dmin across the mesh surface, the proposed model has proven useful for 

predicting areas at increased risk for mesh complications for transvaginal mesh products.  

Previously, fiber reinforced continuum solids have been considered to model porous 

textile structures. While such models are useful for predicting the overall load-elongation 

response of synthetic meshes, the continuum assumption does not allow for the investigation of 

clinically relevant parameters, such as pore diameter and mesh burden. Further, discrete 

representations of synthetic mesh are not scalable to the dimensions of prolapse mesh devices 

used clinically, and therefore are unusable for analysis of these products. Given that pore 

diameter has been shown to greatly influence the host response to mesh, increasing inflammatory 

cytokines and MMP levels in vaginal tissue (75, 93), the ability to measure this parameter served 

as the main evaluation criteria for our computational model of synthetic mesh. To this end, the 

novel FE model presented in this study, demonstrates the ability to examine changes in pore 

diameter in response to a variety of loading conditions. More importantly, the techniques used to 

create this model can be scaled to examine devices as large as prolapse mesh constructs. 
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In addition to providing the first computational measures of pore deformation, this study 

was the first experimental analysis of an entire transvaginal mesh product in response to 

mechanical loading. Previous ex-vivo analyses of synthetic mesh only considered small, 

rectangular strips of material. Therefore, a common argument was that the data and observations 

of pore collapse (Aim 1) obtained from uniaxial testing of these strips was irrelevant, as mesh 

devices consisting of complex geometries, such as DirectFix A, do not experience such loading 

conditions. To counter this argument, the experimental deformations observed in this study were 

quite similar to those observed in Aim 1, as areas in which mesh fibers were aligned with the 

axis of loading (upper mesh arms) maintained pore diameter, while areas with mesh fibers offset 

from the axis of loading (lower mesh arms and mesh body), experienced significant pore 

collapse. Such experimental findings confirm the need to consider the mechanical loading and 

orientation of mesh filaments, throughout an entire prolapse mesh device. 

When considering the results of this study, is it important to note that FE simulations only 

predicted planar deformations. Though experimental loading conditions were selected to 

minimize non-planar deformations, self-contact of the physical mesh fibers and the boundaries 

imposed at the fixation rods are believed to have resulted in out-of-plane deflection. Such 

behavior is likely the result of small bending moments of the mesh surface. Specifically, 

increased loading angle of the upper arms (condition 1) resulted in greater bunching of mesh 

around the fixation rods. The increased out-of-plane deformation effectively decreased our 

planar measurement of mesh burden, as mesh material became hidden from view. The effect of 

this bunching deformation was confirmed experimentally, as the number of pixels representing 
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mesh material decreased by 24% in the loaded state, relative to the unloaded state for loading 

condition 1. Similarly, a 10% decrease was observed for loading condition 2 (Figure 43). Given 

this change in the number of “mesh” pixels it is not surprising that experimental mesh burden 

measurements were significantly lower (~21%) relative to computational predictions, where the 

amount of mesh pixels was constant between undeformed and deformed images (no z-

displacement).  

The absence of out-of-plane deformation in the FE model is largely a function of the 

boundary effects of the CAD geometry and the application of traction vectors. Computational 

mesh models were constructed from rectangular elements whose flat faces were in-plane with 

one another. Thus, any contact forces between these faces are normal to the element surface (in-

plane). Conversely, physical mesh fibers are comprised of a bundle of circular filaments that are 

not necessarily in plane. As such, contact of physical fibers may result in out-of-plane 

displacement and bunching due to the normal force arising from filament contact. Additionally, 

FE implementation of the traction vector assumes no z-component (2D traction vector), while 

application of traction experimentally is likely to contain some nonzero z-component, due to the 

tolerances of the testing rig (post pivots may not be in-plane with the raised platform). Further, 

the process of hanging the 250g weights may introduce forces with z-components prior to the 

attainment of static equilibrium. The presence of a constant or transient z-component has the 

potential to induce bending moments in the physical mesh device. 
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Figure 43. Subtle differences in mesh deformation were noted at the fixation rods (red circles). 

Experimentally (top), mesh was found to deform out-of-plane, resulting in bunching of the mesh about the fixation 

rods. However, no out-of-plane deformation was observed in FE models likely due to the flat boundaries of the 

computational fibers.  

 

While the FE element implementation used here is unable to capture this out-of-plane 

deformation, the current model and validation discussed in this study serve as a starting point for 

clinically relevant computational modeling of synthetic mesh. At this time, there are substantial 

limitations in terms of modeling out-of-plane deformation of textiles, such as surface wrinkling. 

This behavior is mathematically complex and often contains multiple solutions. These factors 
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lead to convergence issues for FE models and may require significant constraints in order to 

derive a solution. Further, these constraints may incorrectly approximate the real world physics, 

providing inaccurate solutions. Despite these challenges, computational modeling of textiles is 

an active area of research, though current methods do not consider pores such as those found in 

prolapse mesh (154, 155). Although it is unclear whether a porous model can be used for 

wrinkling analysis, it is likely that advancements in textile modeling will advance the FE model 

used here. Nonetheless, the model developed and used in this study provides a reasonable 

approximation for pore deformation and has the potential to dramatically enhance our 

understanding of the mechanical behavior of synthetic mesh and optimize products for use in the 

pelvic floor.    

Interestingly, both experimental and computation results demonstrate severe pore 

collapse at both the inferior mesh arms, as well as the mesh body between the superior arms. 

Notably, the decrease in pore size is greater when predominately lateral forces (smaller loading 

angles) are applied to the transvaginal mesh (condition 2). While the inferior mesh arms are 

typically not in contact with the vagina, the superior mesh body is directly interacting with the 

anterior vagina. Therefore, pore dimensions in this location may greatly impact the host response 

and subsequent integration of mesh into the vagina. Given that many pores in this region of 

DirectFix A had dmin values less than 1mm, it is likely that this location may be prone to 

complications such as exposure. Indeed, this finding is in agreement with clinical observations of 

pain and exposure, as this location is the most widely reported site for tenderness, pain, and mesh 

exposure in the vaginal lumen (65). In addition, clinicians often note the ability to transvaginally 
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palpate a taut band between the superior mesh arms during postsurgical exams. Notably, Feiner 

et al. examined post-surgical pain following transvaginal mesh implantation and specifically 

highlighted this location (65). The authors even included sketches of pain locations that are 

strikingly similar to the contour plots of mesh burden and dmin presented the current validation 

study. The correspondence between these studies suggests that the decrease in pore size, 

resulting from mechanical loading, provides a mechanism by which transvaginal mesh 

complications can occur. Further, the relationship between computational results and clinical 

findings highlight the need for FEA of synthetic mesh devices prior to surgical implantation and 

during product development.  

3.4 MESH BURDEN SENSITIVITY 

3.4.1 Introduction 

Through trial and error, “light-weight” (>1g/cm3), wide-pore, monofilament, polypropylene 

mesh was found to reduce complications in urogynecologic applications. Recent hernia mesh 

studies have highlighted the importance of mesh diameter size in determining the host response 

to synthetic mesh implants. Such studies have provided a potential explanation for the improved 

complication rates obtained by the latest generation of prolapse mesh, given the recent shift to 

wide-pore geometries. Specifically, hernia literature has found that mesh outcomes are related to 

a mesh’s pore diameter, as pores greater than 1mm are associated with decreased inflammatory 
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and fibrotic responses relative to pores less than 1mm (98, 99). Despite this design feature, 

synthetic mesh use for POP repair remains plagued by relatively high rates of exposure, ranging 

from 11-15% of all cases, deterring clinical use of mesh in spite of relatively good anatomic 

success rates (71).  

 As demonstrated in Aim 1, application of mechanical forces greatly reduces mesh pore 

size for a wide array of synthetic mesh products. However, industry reported pore size and 

current assessment of mesh devices do not consider pore size under application of force. 

Currently, mesh pore size is difficult to measure following implantation, as synthetic mesh is not 

directly visible. In addition, polypropylene is considered a radiopaque material, rendering it 

nearly invisible to current medical imaging modalities. Several studies have utilized synthetic 

mesh impregnated with ferromagnetic particles to allow for mesh visualization via MRI, yet such 

studies are unable to reconstruct individual mesh pores. Therefore, neither the pore diameters nor 

the potential deformation of these pores can be assessed following implantation (156, 157). 

Nonetheless, it is quite common for mesh exposure to present in areas of decreased pore size. 

 In order to assess the impact of mechanical loading on pore size and mesh burden, this 

dissertation has proposed a novel FE model for synthetic mesh. Whereas previous computational 

models of mesh have focused solely on the mechanical behavior of mesh, the current model 

improves upon this computational tool by providing the ability to directly measure textile 

properties. Previous work in this aim has explored the development of this computational model 

and demonstrated the ability for this model to predict the uniaxial tensile behavior of Restorelle 

mesh. In addition, this method for simulating mesh behavior has been validated via experimental 
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testing of a transvaginal mesh product in 2 distinct loading conditions. Following validation, this 

model can now be utilized to explore the mechanical behavior of transvaginal mesh in response 

to a variety of loading conditions. Therefore, the aim of this study is to conduct a sensitivity 

analysis of DirectFix A, examining the impact of loading angle and the magnitude of applied 

force on pore size and mesh burden. 

3.4.2 Methods 

In this study, a transvaginal mesh device, Restorelle DirectFix A, was used to demonstrate the 

impact of arm loading angle and magnitude of force on the pore dimensions and mesh burden. A 

previously validated FE model of DirectFix A was imported into Preview (University of Utah, 

MRL) and the mesh geometry was partitioned into 2 parts - the knots and fibers. The fibers 

represent the individual line segments of a mesh, consisting of linked filaments, while the knots 

represent the intersection of fibers. Knots and fibers were considered independent Neo-Hookean 

materials and material properties were determined from uniaxial tensile testing of Restorelle in 2 

independent orientations (Efiber = 5000MPa, νfiber = 0.49, Eknot = 100MPa, νknot = 0.01). Details 

regarding determination for material coefficients are outlined in Section 3.2.5.  

3.4.2.1 Model Variables 

In order to determine the location of suture fixations, a FE geometry of a prolapsed vagina and 

bony pelvis were imported into Preview (a detailed method for creation of pelvic floor 

geometries will be discussed in Chapter 4). Next, a surgeon specializing in pelvic floor 

  160 



 

reconstructions positioned the DirectFix A mesh on the vagina and highlighted the vaginal 

locations at which sutures would be placed in order to fix the device upon surgical repair. Fixed 

boundary conditions (x, y, z displacements = 0) were imposed at these designated suture 

locations for all simulations in this study. Following application of vaginal suture fixations, the 

3D patient anatomy was rotated in order to identify sites of mesh fixation in the pelvic sidewall. 

The 3D coordinates of the inferior attachment sites (left and right oburator foramen) and superior 

attachment sites (left and right sacrospinous ligaments) were marked using a spherical geometry 

generated in Preview. Finally, the vaginal and bony pelvis geometries were hidden from view 

and a set of coronal and sagittal images were taken of the mesh and fixation spheres via screen 

capture. These images were used to identify the approximate, planar loading angles for DirectFix 

A (Figure 44). 

 

 

Figure 44. Anterior view of the segmented patient geometry with DirectFix A positioned anterior to the 

vagina. Using this geometry a series of loading angles for the upper and lower mesh arms were determined. 
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Following analysis of the sidewall attachment locations, it was determined that the 

inferior mesh arms for this specific patient geometry, are loaded almost exclusively along the 

global x-axis (lateral loading). Therefore, an angle of 0° was included in sensitivity analysis. In 

addition, angles below the horizontal were considered, as anatomical differences in subsequent 

patients may require the mesh arms to be pulled distally. Further, a clinically relevant scenario in 

which surgeons are unable to dissect completely to the urethro-vaginal junction would again 

require increased distal tensioning of the inferior mesh arms. Given these considerations, 3 

loading angles of the inferior mesh arms were considered with respect to the horizontal axis 

(θlower); 0°, -10°, -20° (Figure 45). 

In addition, the loading angle of the superior mesh arms are subject to change. Based on 

the location of the mid-sacrospinous ligament for this specific geometry, it was determined that 

the top mesh arms are required to be tensioned predominately along the global x-axis, at an angle 

of ~15° above the horizontal. Considering variable patient geometries (increased superior 

location of the sacrum relative to the vagina) and distal placement of the mesh, increasing angles 

relative to the horizontal were considered for DirectFix A. To provide a wide range of loading 

conditions, 3 angles relative to the horizontal were chosen for tensile loading of the upper mesh 

arms (θupper); 15°, 30°, 45° (Figure 45). 

Finally, the amount of tension placed on each of the mesh arms was considered for this 

sensitivity analysis. To date, there are no studies that have examined the amount of tension 

placed on mesh arms during surgical fixation, though anecdotal evidence based on the pore 

deformation and gross deformations observed in Aim 1, suggest that tensioning loads are on the 
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order of 1 to 10N. However, given that the validation of this specific mesh model was attained 

using a force of ~2.5N, a maximum force value of 2.5N was used for this parametric analysis. To 

examine the impact of surgical tensioning on deformation of DirectFix A, 3 levels of force were 

considered in this study (T); 0.5N, 1N, and 2.5N. 

 

 

Figure 45. The validated mesh geometry was used to examine the impact of loading variables on mesh 

burden and pore diameter. Sensitivity of these textile properties to changes in the magnitude of tension (T), upper 

arm loading angle (θupper), and lower arm loading angle (θlower) were determined. Red circles represent locations of 

suture attachments, which were modeled using fixed boundary conditions.  

 

In order to apply tension to FE models, a traction force was applied to all transvaginal 

mesh arms simultaneously. The magnitude of the traction vector was constant for all arms in a 

given simulation (0.5N, 1N, or 2.5N) and the components of the vector were altered in order to 
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provide the desired angle of loading. In total, 27 individual FE simulations were performed, one 

for each of the possible combinations of the 3 model variables; upper arm loading angle (θupper), 

lower arm loading angle (θlower), and magnitude of applied force (T). For each simulation, mesh 

burden, minimum pore diameter (dmin), and the number of ineffective pores (NIP) were 

determined. Details regarding the calculation of mesh burden and dmin were previously described 

in Sections 3.2.6.1 and 3.2.6.2. The number of ineffective pores was derived from measurements 

of dmin, where NIP is the total number of pores with a minimum pore diameter less than 1mm. 

The pore diameter cutoff of 1mm is based on previous literature demonstrating that pores of 

polypropylene mesh with diameters less than 1mm, increase the overall inflammatory response 

to mesh and result in poor tissue integration (86, 87, 97). 

3.4.2.2 Statistics 

A multiple regression analysis was used to examine the relationship between the model 

parameters (θupper, θlower, T) and the model outputs (mesh burden, dmin, NIP), using a forward 

stepwise method. Sum of squares, R, and R2, were used to assess the ability of the model 

parameters to predict the outputs and an ANOVA test was used to determine whether the 

regression model significantly predicts the outcome measures. Significant was set to a value of 

0.05.  
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3.4.3 Results 

In response to application of tensile forces, the 4 mesh arms noticeably extended and rotated for 

all loading conditions simulated in this study. At 0.5N, the deformation of the mesh pores was 

minimal for all loading angles, with the inferior mesh arms undergoing the greatest pore collapse 

(Figure 46). An approximately 40% increase in maximum mesh burden was observed in the 

inferior mesh arms for all angles, though only a 10-14% (2-3mm) decrease in the mean dmin was 

observed for meshes at 0.5N. In addition, no simulations at 0.5N were found to have mesh pores 

with a dmin less than 1 (NIP = 0).  

Continuing to 1N of force, mesh deformations were more pronounced, as the inferior 

mesh arms continued to collapse, increasing the maximum mesh burden by 70% relative to the 

unloaded mesh. At this force, mesh pores located in the superior mesh body, between the 

superior mesh arms, also began to collapse. This behavior was most pronounced with superior 

mesh arms loaded at 45°, as mesh burden for this region were found to be 1.6 times that of the 

unloaded geometry. Still, pore collapse had little impact on the mean dmin values for the 

deformed mesh. However, the number of pores with diameters less than 1mm rose dramatically 

in response to 1N of force, ranging from 72-162, roughly 8-15% of all pores in the device. The 

location of collapsed pores (dmin < 1mm) showed good agreement with the locations of increased 

mesh burden.  
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Figure 46. Contour plots of raw mesh burden values, predicted by the FE model under various loading 

conditions. For the top row of plots, θupper and θlower were held constant at 45° and 20°, respectively. For the lower 

row of plots, T and θlower were held constant at 2.5N and 0°, respectively. Mesh burden was positively correlated 

with load, as increases in mesh concentration were observed in the inferior mesh arms and between the upper arms 

(top row). Though overall mesh burden was not correlated with θupper, increases in this angle led to increased mesh 

burden between the upper mesh arms (lower row).  

 

By 2.5N of force, the deformation of mesh pores was grossly apparent, as the pores of the 

inferior mesh arms and superior mesh body continued to collapse (Figure 46). At this level of 

force, average mesh burden was 2 times that of the unloaded mesh. While mesh burden of the 

inferior arms was similar for all loading conditions, the loading angle altered the deformation 

present in the superior mesh body. Application of load at 45° resulted in maximum mesh burden 

values that were 300% of the unloaded state, with increased mesh concentration occurring in the 
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mesh body, between the contralateral superior sutures. These concentrations of mesh were 

greatly reduced at loading angles of 30° and 15°, with normalized mesh burden values of ~1.7 

and ~1.5 respectively. Further, NIP continued to rise dramatically at 2.5N of force, with 10-22% 

of mesh pores having dmin less than 1mm. The location of these mesh pores was identical to that 

observed at 1N, though the degree of pore collapse had noticeably increased.  

 

 

Figure 47. The magnitude of tensile load (T) was found to be a significant predictor for maximum mesh 

burden (R2 = 0.93, p < 0.001) and the total number of pores less then 1mm in diameter (NIP, R2 = 0.836, p < 0.001).  

 

In general, regression analysis well described the impact of model variables (θupper, θlower, 

and T) on the measured outputs (mesh burden, median dmin, and NIP). Regression modeling found 

that T alone was the most significant variable in predicting mesh burden, accounting for 86.5% 

of the variation in this outcome (Figure 47, p < 0.001). Further, the magnitude of tensioning was 

significantly correlated to mesh burden outcomes, with a Pearson’s correlation coefficient of 
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0.93 (R2 = 0.93, p < 0.001). The model was slightly enhanced by the inclusion of θupper, which 

explained an additional 2.4% of the variability in mesh burden. However, θupper was not 

significantly correlated with mesh burden outcomes (R2 = .155, p = .219), suggesting that T 

alone is the primary variable influencing overall mesh burden. As expected from visualization of 

mesh burden contour plots, θlower was not found to be a significant predictor for mesh burden. 

Similarly, the magnitude of tensile load (T) was the only model variable found to be a 

significant predictor of NIP and median dmin, with Person’s correlation coefficients of 0.836 and -

0.687 respectively (p < 0.001 for each). The impact of T on pore collapse was dramatic, with 

average NIP values of 0, 109, and 180 at 0.5N, 1N, and 2.5N, respectively. In general, model 

predictions of NIP were less robust compared to mesh burden predictions, with an R2 of 0.699. It 

should be noted that neither θupper nor θlower were significantly correlated to NIP (p > 0.1). Median 

dmin values were also insensitive to changes in these model variables, with a maximum decrease 

of 16.8% (~ 4mm) observed across all tested conditions (R2 = 0.472, p > 0.2).  

3.4.4 Discussion 

In this study, a validated FE model of DirectFix A was used to examine the impact of variable 

loading conditions on the deformation of mesh pores. The sensitivity of textile measurements, 

quantified by mesh burden and minimum pore diameter, were assessed in relation to variations in 

the magnitude of tensile force, the upper arm loading angle, and the lower arm loading angle. 

Understanding the impact of these variables on pore deformation provides valuable insight into 

the relationship between mesh architecture, surgical technique, and mechanical loading of 
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prolapse meshes. In this study, it was observed that the magnitude of force used to tension mesh 

arms significantly increases mesh burden while dramatically decreasing pore diameters. Further,  

this outcome was observed for a broad range of loading angles that are likely to occur in-vivo. 

Importantly, this study has identified the inferior mesh arms and superior main body of DirectFix 

A to be the primary locations of pore collapse, regardless of loading condition.  

Overall, this study demonstrates the potential for computational tools to be utilized for 

design and virtual assessment of synthetic mesh devices. While the scope of this analysis was 

limited to 3 variations of just 3 mechanical variables, the simulation used here can be further 

altered to explore a wider range of angles and forces that are deemed appropriate for a given 

device, or even tailored to specific patient geometries. Additionally, factors that impact pore 

deformation, such as the number of suture fixations and their locations, can also be readily 

manipulated in order to optimize surgical fixation of mesh devices. The impact of suture location 

is readily observed by comparing the results from validation experiments (Section 3.3.3) with 

those observed in the current study. Specifically, the 3 superior sutures used in this study, limited 

the deformation of mesh pores between the superior mesh arms, whereas validation simulations 

observed a greater magnitude of mesh burden in this same region despite, a similar gross 

appearance. Further, the steel fixation rods used in the validation study were located proximal to 

the placement of the inferior sutures in the current study. As such, the deformation of the inferior 

pores in the current sensitivity study, extended further (medially) into the mesh body with a 

greater magnitude of mesh burden.  
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The main finding from this study was the observation that the magnitude of tensioning is 

the most influential variable in determining the pore deformation of DirectFix A. This is to say, 

that of the three loading variables considered in this study, only the magnitude of tension was 

found to alter the outcome measures. This result builds upon previous findings that tensile 

loading greatly reduces the pore dimensions of synthetic mesh devices (Aim1, (93)). However, 

unlike previous studies that examined rectangular strips of mesh, the current study considers the 

geometry of an entire transvaginal mesh device. The present findings, in addition to experimental 

observations from validation trials (Section 3.3), clearly demonstrate that significant regions of 

transvaginal mesh products experience the same deformation phenomena, despite varied suture 

attachments and a wide range of loading conditions. These are the first studies in which such 

deformation has been measured and quantified for a transvaginal mesh device. 

Interestingly, the loading angle of the lower mesh arms was not found to impact any of 

the outcome measures. However, the pores of the lower mesh arms were observed to collapse 

similarly regardless of the loading angle. The inherent instability of these arms directly results 

from the orientation of mesh pores to the axis of loading. In the inferior mesh arms, the fibers are 

offset ~45° from the direction of loading (at any angle), requiring significant fiber rotation in 

order to resists applied loads. This fiber rotation is identical to observations of mesh 

deformations in Section 2.2.3. As with experimental observations of pore collapse for Restorelle 

at 45° offset, a significant reduction in pore diameter is observed at small levels of force for 

DirectFix A (Mean NIP = 108 at just 1N). Given that pore collapse was common in the inferior 

mesh arms across all loading angles (though increasing with T), it is not surprising that θlower had 
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little influence on the outcome measures in this study. It should be noted that the inferior mesh 

arms are less likely to be in direct contact with the vagina, relative to the mesh body. Therefore, 

collapse of these pores may pose a reduced risk of exposure, relative to areas of pore collapse in 

contact with the vagina. Still, these arms may create regions of high stiffness in the mesh or 

induce a foreign body response with fibrous encapsulation, causing pain.    

Conversely, the loading angle of the upper arms, in concert with the level of force, led to 

pore collapse in the mesh body. While θupper was not found to alter dmin or NIP, this variable had a 

noticeable effect on mesh burden measurements, despite accounting for just 2.4% of the variance 

in mesh burden. Notably, the maximum mesh burden value across all simulations was attained at 

2.5N with a θupper value of 45°. At this angle, mesh burden values were nearly 330% that of the 

original unloaded mesh, with mesh concentrations increasing between the superior mesh arms. 

This increase in mesh concentration likely results from the distribution of stress throughout the 

mesh device, as discontinuous mesh structures distribute forces between points of attachment. In 

this scenario, forces are transmitted to the mesh at the soft tissue clamps and subsequently 

transmitted through the mesh fiber network. The transmission of these forces is largely governed 

by the mesh knit pattern, though the material properties (assuming fibers to be continuous) will 

likely impact the pore deformation and subsequent force transmission. While fibers reorient to 

the direction of the applied load, the upper arm angle of 45° effectively pulls the mesh fibers in 

the vertical direction, creating a bunching effect around the suture locations. Conversely, loading 

the upper arms at an angle of 15° greatly reduced the overall mesh burden at the superior sutures, 

despite large amounts of fiber rotation and pore collapse. In this scenario, bunching is avoided at 
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the suture locations, reducing increases in mesh burden to 200%, much less than that observed 

for 45° loading. Clearly, θupper influences mesh burden between the superior mesh arms (Figure 

46), yet this model parameter was not significantly correlated to the outcome measures of this 

study. This is because mesh burden, dmin, and NIP are measures for the entire mesh surface. As 

such, it appears as though the consistent collapse of the inferior mesh arms (for any combination 

of model inputs) is the driving force behind such measurements. To address this concern, future 

analyses may require individual locations of mesh devices (such as the mesh body) to be 

considered independent from one another.  

Overall, outcome measures used in this study vary in terms of their ability to capture the 

deformation of synthetic mesh. In general, maximum mesh burden and normalized maximum 

mesh burden effectively describe the pore collapse observed in many of the loading conditions 

tested. However, attempts to describe the distribution of pore deformation across the entire mesh 

(mean mesh burden, median dmin, mean dmin) saw small percentage changes in response to 

loading, leading to difficulty interpreting the effect of model parameters. The subtle changes in 

these values is likely due to the fact that only relatively small percentage of mesh pores 

experience significant deformation, as 7-20% of all DirectFix A pores had diameters less than 

1mm for 1N and 2.5N simulations. While only a small subset of pore diameters were less than 

1mm, these deformations may have a tremendous impact on the host response to DirectFix A. In 

order to capture these clinically relevant results, generalized measures such as mean and median 

should be avoided. Rather, contour plots for these measures are extremely useful in determining 

locations at risk for mesh related complications. Further, NIP provides a clinically relevant output 
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that can be used to assess the ability of synthetic mesh devices to maintain their pore geometries. 

Combining the contour plots for mesh burden with NIP provides a useful method for assessment 

of mesh devices and their response to mechanical loading.    

 In regards to DirectFix A, the locations of increased mesh burden in this study were 

strikingly similar to those observed in the validation study, despite differing locations of suture 

attachment. Specifically, pore collapse was observed in the inferior mesh arms and the mesh 

body between the superior mesh arms. These locations of pore collapse are in agreement clinical 

findings of mesh erosion and pain following transvaginal mesh implantation (65). As such, it 

appears likely that the transmission of force through these regions leads to pore collapse, 

providing a mechanism by which complications can occur. In order to alleviate this issue, 

different suture techniques or mesh designs must be developed with the goal of eliminating these 

areas of concern. The tools provided in this aim afford a rapid assessment of new mesh designs 

and fixation techniques, allowing for products to be optimized prior to surgical implantation.  

Interpretation of these results provides great insight into several mechanical factors that 

govern the deformation of mesh devices. Yet, many additional factors such as the suturing 

technique (number and location of sutures), or loading angles and tensions outside of those 

examined here, may yield differing pore deformations. Moreover, these factors which influence 

mesh burden, may vary for each individual mesh product or patient anatomy. Still, this study 

provides a robust methodology for assessing a wide range of clinical scenarios and vaginal mesh 

products. 
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3.4.5 Generalization of Methods 

To demonstrate the feasibility of creating additional computational mesh geometries, the 

protocol outlined above was utilized to create one additional transvaginal mesh geometry for 

FEA (Figure 48). Briefly, a transvaginal mesh product manufactured by Boston Scientific, 

Uphold, was imaged using a DLSR camera and the dimensions of the unit pore structure were 

measured (pore diameter = 1.6mm, fiber thickness = 0.44mm) 

Next, a sheet of pores was created in Solidworks and the device geometry was cut from 

this sheet using Boolean subtraction. Mesh was then discretized using hexahedral elements such 

that all knots contained the same number of elements and all fibers contained the same number 

of elements. Discretized geometries were then imported into FEBio and mesh was fixed using a 

series of tied contacts to mimic suture attachment to the vagina. Suture locations were identified 

per a pelvic floor reconstructive surgeon (Figure 48). Finally, a tensile load of 10N was applied 

to each mesh arm to examine the deformation of this particular mesh design. 

Overall, Uphold deformations were strikingly similar to those observed for DirectFix A, 

with increases in mesh burden occurring between the superior mesh arms (Figure 49). Unlike 

DirectFix A, Uphold does not have inferior fixation arms, though additional regions of increased 

mesh burden were noted at the lateral mesh body. Still, given the loading angles and suture 

fixations considered in this preliminary work, maximum increases in mesh burden relative to the 

deformed state were ~20%, suggesting that Uphold pores are more stable relative to DirectFix A 

for the particular loading conditions considered. It must be stated that these findings regarding 
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Uphold are preliminary and additional studies characterizing the behavior of this model, in 

addition to validation for this computational pore geometry, are required before further 

conclusions can be made. 

 

 

Figure 48. The methods outlined in this aim can be generalized to assess a wide variety of mesh devices. 

To demonstrate feasibility, a computational model for Uphold, a transvaginal mesh device currently in clinical use, 

was created and used to simulate mesh behavior under various loading conditions.  
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Nonetheless, the development of a computational model for Uphold demonstrates that the 

methods outlined in this aim are indeed applicable to a wide variety of mesh geometries. As 

such, this technique provides a valuable tool for the development and assessment of mesh 

designs prior to implantation. Future studies will be required not only to validate mesh models of 

differing pore geometries, but also to compare various mesh designs and their ability to maintain 

pore dimensions in response to the application of mechanical forces. 

 

 

Figure 49. Contour plot of normalized mesh burden for Uphold, following the application of tensile forces 

to the mesh arms. Warmer colors represent areas of increases mesh concentration. Similar to DirectFix A, tensile 

loading results in pore collapse in the mesh body between the superior mesh arms.  
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3.5 CONCLUSIONS 

There is tremendous potential for the use of computational tools in the field of urogynecology 

and reconstructive pelvic surgery. Currently, the loading environment of the pelvic floor is 

largely unknown with few studies considering the role of mechanics in this field. Yet, many 

pelvic floor disorders are the direct result of mechanical instability, with structural deficiencies 

leading to urine leakage (urinary incontinence) or bulging of the vaginal canal (prolapse). The 

need to understand this anatomy from a mechanical perspective is apparent, as many treatments 

aim to restore support to pelvic floor structures through implantation of graft materials. 

Specifically, synthetic mesh used to treat POP is used in a load bearing capacity, yet their 

mechanical role in the pelvis is largely unknown. Just as computational models have been used 

to understand and design implants for biological systems ranging from artificial hearts to stents 

and joint replacements, these tools can be applied to improve clinical treatment of POP. 

 In Section 3, a computational model for synthetic mesh was developed, validated, and 

used to examine the deformation behavior of a transvaginal mesh product. The proposed 

computational model differentiates itself from previous models by accounting for the thickness 

of mesh linkages and allowing for the spatial distribution of mesh to be calculated. Therefore, 

this model can be used to predict the concentration of mesh material, a clinically important 

parameter, in addition to general load-elongation behavior. Unlike previous attempts to model 

synthetic mesh, the current FE approximation can be scaled to the dimensions of prolapse mesh 

devices and accurately predict both load-elongation and pore deformation behaviors. 
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Currently, this FE implementation is only validated for planar mesh deformations, and 

though the current solid model can be used to simulate 3D deformations, further validation is 

required to ensure the accuracy of such measurements. Given the current technical limitations of 

experimental mesh burden measurements (inability to accurately image and reconstruct mesh in 

3D), validation and sensitivity analyses in this aim were limited to 2D deformations. Ultimately, 

it is our hope to develop 3D imaging technologies to capture a volumetric representation of 

experimental mesh deformation for the validation, or at minimum, quantitatively measure 3D 

mesh deformation. Ongoing work in our lab is exploring the potential for imaging of 

polypropylene mesh via MRI without the altering the behavior of these mesh devices. Currently, 

MRI studies of mesh, utilize devices loaded with ferromagnetic particles in order to visualize 

products following implantation. However, this technique has only been considered for PVDF 

mesh (not polypropylene as it commonly used) and it is unclear whether this treatment alters the 

mechanical behavior of the mesh (157, 158). Further, the resolution of these scans is not 

sufficient for reconstruction of the pore structure found in most synthetic meshes. 

Rather than utilize iron-loaded mesh, preliminary studies in our lab have considered 

tensioned polypropylene mesh samples in a gelatin phantom. While polypropylene is radiopaque, 

the phantom provides a signal using a T2 imaging protocol. Thus, the absence of signal is 

interpreted as mesh material, allowing for mesh to be segmented from volumetric scans and 

reconstructed. This preliminary work has demonstrated the ability to capture the porous  
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architecture of mesh samples, though much work is still required to optimize the quality of 3D 

reconstructions. Though this technique may be difficult to implement for in-vivo implantation, it 

may provide a useful tool for validation of 3D mesh deformation.  

Finally, the studies presented in this section have focused on a single pore geometry. The 

square pore geometry considered here is quite common in synthetic mesh devices, being used in 

products such as Restorelle (Coloplast), Vertessa lite (Caldera), and Uphold (Boston Scientific). 

In addition, a single transvaginal mesh product, DirectFix A was used to demonstrate the overall 

technique developed in this dissertation. However, it is important to note that pore geometries of 

increased complexity are utilized in prolapse mesh devices, and therefore, additional 

assumptions may be required in order to apply the same knot and fiber simplification used in this 

dissertation. Still, this methodology can be applied to numerous mesh devices currently on the 

market, with vastly different designs. In order to demonstrate the potential of the method 

outlined in this dissertation, an additional transvaginal mesh product, Uphold, was created and 

underwent the same sensitivity analysis performed in Section 3.4. This proof of concept 

demonstrates the power of computational modeling to assess the design of mesh products 

without the need to manufacture a product, allowing for mesh designs to be quickly eliminated 

from production. While clinical trials and testing are still required to ensure the effectiveness of 

mesh products, computational modeling allows for quicker product development and greatly 

reduces the risk of complication for patients during clinical trials. 
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4.0  COMPUTATIONAL MODEL OF PROLAPSE AND MESH REPAIR 

4.1 OVERVIEW 

Pelvic organ prolapse (POP) is a common condition amongst women, affecting more than 50% 

of woman over the age of 50 (159). Though the underlying cause of POP remains unclear, this 

disorder directly results from the breakdown of the mechanical support to the vagina. As 

previously highlighted, synthetic mesh is widely used to restore support to the vagina with a high 

degree of efficacy relative to other surgical reconstruction methods, including native tissue 

repair. Unfortunately, the success of synthetic mesh products is countered by significant 

complication rates (up to 20%) following mesh implantation. These complications rates are 

relatively high; especially given that in many cases this procedure is often elective (62, 111). 

Though a limited number of studies have sought to examine the cause of mesh related 

complications, few have considered the mechanical role of synthetic mesh as used for prolapse 

repair. 

 In order to examine synthetic mesh from a mechanical perspective the first aim of this 

dissertation utilized experimental methods in order to characterize changes in clinically relevant 

textile properties under mechanical loads, considering both micro- and macro- levels of 
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deformation. Following from this experimental approach, Aim 2 successfully developed and 

validated a computation model for synthetic mesh, based on observations of mesh behavior from 

Aim 1. This computational model was then used to simulate a variety of loading conditions for a 

prolapse mesh device, allowing for virtual assessment of clinically relevant textile properties. 

While the previous 2 aims highlight the importance of mechanical forces on synthetic mesh 

design and implantation techniques, these studies have yet to consider whether or not such 

deformations occur in women undergoing prolapse repair. While experimental evaluation of 

mesh deformation is difficult to assess following implantation (often only noted following 

complications), computational methods provide an excellent resource for testing mesh devices in 

the pelvic floor environment. 

 Previous studies in this dissertation have utilized FE assessment of mesh deformation 

under the application of tensile loads, allowing for a thorough analysis of mesh designs without 

the need to create physical mesh prototypes. A similar concept can be applied when considering 

mesh implantation to support the vagina. In addition to understanding how mesh devices deform 

in response to general loading conditions, virtual implantation of a prolapse mesh allows for such 

assessments to be made under boundary conditions specific to the pelvic floor. This method not 

only allows for specific mesh designs to be assessed without a physical device, but prototypes or 

actual products can be assessed in response to boundary conditions for a specific patient 

anatomy. Development of such a methodology would provide a type of personalized medicine, 

allowing for surgeons to simulate mesh implantation and choose a mesh or attachment method 

that is most beneficial to a specific patient based on her anatomical defects.  
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In order to develop such a computational tool, a reliable method for the generation of 

pelvic floor geometries, usable in FE studies, must be created. The concept of creating patient 

specific geometries is relatively new, yet widely used across many fields of medical research. 

Previously, patient specific models have been used to examine the contact mechanics of the hip, 

providing insight into development of osteoarthritis (160-162). These studies have found that the 

geometry of the hip joint (femur and acetabulum) greatly impacts the contact forces in the hip. 

Conversely, Sigal et al. have found that alterations in material properties were more likely to 

drive deformation of the optic nerve head than the geometric differences between patient specific 

models (163). These studies provide significant insight into various pathologies, allowing for 

numerous factors, such as geometric effects, to be virtually examined. In the literature for hip 

osteoarthritis, such geometric analysis has even led to the development of clinical imaging 

diagnostics. 

Patient specific modeling has great potential for understanding the pelvic floor. Abnormal 

pelvic bone geometries are linked to the development of POP (3), yet these known geometric 

anomalies are extremely rare and do not explain the incidence of prolapse throughout the 

population. Rather, understanding geometric alterations that follow gestation, a main risk factor 

for POP, or the anatomical development of POP, can greatly enhance our understanding of the 

mechanics of this disorder. In regards to this dissertation, a patient’s anatomy likely plays a large 

role in the success of mesh repair surgery, as well as the overall deformation experienced by a 

mesh device. As shown in Aim 2, the magnitude of tensile force applied to a transvaginal mesh, 

is the primary factor responsible for increasing mesh burden. While a surgeon does tension 
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synthetic mesh in order to reduce vaginal bulging, the amount of tension is dependent on the 

dimensions of a prolapsed anatomy. For instance, if the location of the pelvic sidewall 

attachment, relative to the vagina, is sufficiently large, it may require mesh to be excessively 

tensioned, increasing the likelihood of pore collapse.    

Given the perceived importance of patient anatomy on prolapse development and repair, 

such factors should be included in computational studies. Not only would such analysis provide 

insight into the conditions that lead to prolapse, it would also allow for assessment of mesh 

devices in the pelvic floor environment. Incorporation of these geometries would build upon the 

second aim of this dissertation and allow for mesh products to be mechanically characterized in 

regards to their specific use. To this end, the overall goal of this aim is to develop a 

computational method for patient specific analysis of the pelvic floor. The computational tools 

presented here will focus on the development of pelvic floor geometries, with the goal of 

implementing these into FE studies of prolapse and mesh repair.  

4.1.1 Imaging of Prolapse 

In recent decades, medical imaging diagnostics have become common in the field of 

urogynecology. Though computed tomography (CT) is occasionally used to examine the pelvis, 

ultrasound and MRI are the most prevalent imaging modalities for examination of pelvic floor 

disorders (Figure 50). Ultrasound is typically performed translabially or transperineally in order 

to examine the position of structures such as the bladder, urethra, and vagina (164-166). While 

transvaginal ultrasound can be used, insertion of the ultrasound probe into the vaginal lumen, in 
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concert with the compliance of the vagina, can distort the natural positioning and appearance of 

pelvic floor structures. In general, ultrasound has proven useful for examining pelvic floor 

support, quantifying the extent of prolapse in the anterior, apical, and posterior compartments 

(167). In addition, ultrasound has been used to examine the effect of pregnancy on the pelvic 

floor, providing evidence that gestation significantly impacts vaginal support (166). The main 

advantage of ultrasound is that it provides a mobile, relatively inexpensive method for assessing 

the pelvic floor. Furthermore, ultrasound fundamentally produces dynamic images, allowing for 

the motility of structures to be examined in response to loads. Contemporary ultrasound devices 

can also be used to create volumetric scans, allowing for 3D reconstruction of pelvic anatomy. 

  

 

Figure 50. Ultrasound (a) and MRI (b) are commonly used to image structures of the pelvic floor. Mid-

sagittal views from each modality allow for clear identification of the bladder (B), urethra (U), vagina (V), and 

rectum (R). While ultrasound is relatively inexpensive and more readily allows for dynamic scans, deformation from 

the transducer and low resolution, limit the use of ultrasound for 3D reconstruction. 
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 Unfortunately, the resolution of ultrasound is poor compared to other imaging modalities, 

typically allowing only the boundaries of objects to be identified (since it is based on changes in 

material density). Thus, ultrasound is most useful for gross diagnostics, such as determination of 

structures or abnormal masses. Another limitation of ultrasound is its inability to penetrate dense 

materials, meaning that organs or tissues cannot be imaged if they are positioned behind bone, 

relative to the ultrasound transducer. This, combined with short penetration depths (less spatial 

resolution with increasing depth), limits the ability for clinicians and researchers to view the 

entire pelvic floor.  

To address many of the limitations of ultrasound, MRI is widely used to visualize the 

pelvic floor. Specifically, MRI has been used to extensively characterize the spatial orientation 

of the vagina and other pelvic floor viscera as they relate to prolapse development (168). Further, 

MRI can be used to characterize specific deficiencies that may lead to dysfunction, including 

disruption of connective tissues or muscular defects (168). Perhaps the greatest strengths of MRI 

is the level of detail that can be obtained, though the resolution of images is greatly influenced by 

tissue composition, use of contrast, image field of view, and many additional factors. Still, planar 

and volumetric MRI scans used for pelvic floor imaging often have resolutions well below 1mm. 

This level of detail, combined with the ability of MRI to penetrate all biological structures, 

provides sufficient data for rigorous anatomical characterization. Dynamic MRIs have also been 

used to examine the displacement of pelvic floor structures in response to the application of load, 

though dynamic sequences suffer from decreased resolution (168). However, compared to other  
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imaging modalities, MRI is expensive, limits a patient’s range of movement, and requires more 

time for image acquisition (dynamic methods notwithstanding). Therefore, the choice between 

MRI and ultrasound is dependent on the specific needs of a study. 

4.1.2 Imaging of Synthetic Mesh 

Often the efficacy of prolapse repair is evaluated via a post-surgical physical examination 

(POPQ exam). While measurements obtained during this examination are used to quantify the 

success or failure of surgery, they provide little insight into the behavior of synthetic mesh or its 

contribution to the surgical outcome. To address this, several researchers have begun to use 

imaging modalities to examine synthetic mesh following implantation. Specifically, ultrasound 

has been the primary method for visualizing mesh devices, as it is currently the only imaging 

modality in which standard polypropylene mesh can be observed, albeit at low resolutions (141, 

169). Ultrasound studies have primarily focused on identifying the longevity of mesh 

attachments and determining the gross positioning and deformation of mesh. Such studies have 

been useful in identifying failure mechanisms of mesh repair, yet there are conflicting reports 

regarding the amount of contraction (lateral deformation or “shrinkage”) experienced by mesh 

in-vivo (141, 169).  

Despite the ability to visualize synthetic mesh via ultrasound, this imaging modality fails 

to provide a sufficient detail of mesh architecture for reconstruction. As with gross ultrasonic 

imaging of the pelvic organs, ultrasound imaging of mesh suffers from limited resolution and 

depth of penetration. Indeed, ultrasound produces images in which the location of the mesh 
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surface can be identified, yet neither planar images nor 3D scans provide the spatial resolution 

required to identify the porous structure of mesh. Therefore, it is not feasible to use ultrasound to 

examine changes in pore diameter or mesh burden following implantation.  

As previously mentioned, standard (non-altered) polypropylene mesh is not visible via 

MRI. Still, researchers have performed MRI scans following prolapse mesh repair in order to 

assess the positioning of the pelvic viscera following reconstruction of support (170). Though 

this method provides a quantitative assessment for clinical outcomes, once again it provides little 

insight into the role or mechanical behavior of mesh. In order to visualize mesh via MRI, devices 

impregnated with ferromagnetic particles have been implanted, though such studies have only 

been performed in hernia literature (156). Unfortunately, even with the contrast provided by iron 

particles there appears to be insufficient spatial resolution for identification of mesh pores 

(though imaging protocols may not have been optimized for such resolutions).  

4.1.3 Pelvic Floor Constitutive Models 

The development of a reliable finite element model requires a great deal of inputs specific to the 

physics of the boundary value problem of interest. Such inputs include geometries, boundary 

conditions, and material properties. While the previous aims of this dissertation have focused on 

developing and evaluating these model inputs for synthetic mesh materials, much work is still 

required to assess these important aspects for the pelvic floor itself. Thus, Aim 3 is focused on 

enhancing the inputs for pelvic floor FE models. In addition to developing a method for 

identifying and preparing geometries of pelvic floor structures, experiments focused on 
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developing of a constitutive model for vaginal tissue will be discussed in Appendix A. While the 

studies in Aim 3 do not consider the constitutive model in Appendix A, it should be noted that 

the material properties of the vagina are important to consider for mesh repair simulations, as this 

tissue is directly in contact with synthetic mesh and is often the site of complications.  

 Constitutive models are widely used in the field of biomechanics to simulate the behavior 

of biological tissues. In mechanics, constitutive models simply refer to the relationship between 

the deformation (extension, strain, etc.) of a material and the resistive forces (load, stress, etc.) of 

the material. Hooke’s law is a classic example of a linear constitutive relationship, where force 

and displacement are related through a single parameter, stiffness. Constitutive models can be 

classified as either structural or phenomenological. Phenomenological models are developed 

with the intent of mathematically describing a mechanical response curve for a given event, 

leveraging the behavior of mathematical functions to describe some result. A common 

phenomenological model in orthopedic biomechanics is known as the quasi-linear viscoelastic 

theory (QLV). Quasi-linear viscoelasticity is used to characterize the time-dependent loading and 

relaxation behavior of biological soft tissues (171, 172). Though parameters for 

phenomenological models can often be related to the physical properties of a material, their 

inclusion is not founded in the structure or organization of biological tissues. Unlike 

phenomenological models, structural models are formulated by first taking into account the 

tissue’s morphology, though often the tissue behavior and composition is simplified. For 

biological tissues, structural models are often based on fiber families or contractile elements, 

which serve as analogues for collagen fibers and actin-myosin chains (muscle). Importantly, 

  188 



 

structural models are developed prior to mechanical testing of tissues and guide experimental 

design, whereas phenomenological models are often retrofit to experimental results. Though this 

is often the case, many testing methods are now associated with a prototype phenomenological 

model (i.e. stress-relaxation testing and QLV) (173, 174).  

 Despite the prevalence of constitutive models in biomechanics, specifically in orthopedic 

and cardiovascular fields (175-177), few pelvic floor tissues have undergone such rigorous 

characterization. To date, constitutive relationships have only been considered for the levator ani 

and vaginal tissues (178, 179). Still, the number of publications on this subject is extremely 

limited, and a majority of previous studies include questionable testing methods or are severely 

limited in terms of their application. For instance, currently only information on the passive 

properties of the levator ani are known, despite the importance of its contractile component. 

Further, strain measurements in this literature are often obtained using actuator displacements as 

opposed to mid-substance deformation, likely over predicting tissue strains. Additionally, 

constitutive models for vaginal tissue have been constructed from its passive uniaxial behavior, 

leading to the exclusive use of isotropic material models (129, 180, 181). However, given the 

prevalence of smooth muscle and the existence of orthogonal fiber families in vaginal tissue, it is 

likely that an isotropic model, based on passive mechanics, is not optimal. Indeed, previous 

studies have acknowledged stark differences in the mechanical behavior between the 

longitudinal and circumferential axes (182). Furthermore, the data used to create previous 

vaginal constitutive models is suspect, including predominately cadaveric tissue from elderly 

patients and incorrectly reporting tissue strain (use crosshead elongation). While such models 
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may provide a starting point for FE analyses, it is unlikely that previous constitutive relationships 

are representative of vaginal tissue, let alone vaginal tissue during gestation or at the time of 

prolapse repair (177, 183). Unfortunately, the accuracy of such models is unknown, as validation 

and parametric studies have yet to be performed. 

4.1.4 Gap in Knowledge 

As shown in the first two aims, mechanical loads dramatically influence the deformation of 

synthetic mesh on both a micro- and macro- level scale. Importantly, it has been shown that such 

deformations decrease the dimensions of individual mesh pores to diameters less than 1mm. 

Such a reduction in pore size has been associated with poor clinical outcomes, resulting from an 

enhanced host response. While such deformations have been observed in areas of exposure and 

erosion in the pelvic floor, current imaging modalities are unable to provide significant 

measurement of pore diameter in-vivo. 

 Though such measurements are difficult to obtain experimentally, computational models 

provide a means by which such behavior can be studied. The combination of patient specific 

models and the computational model developed in Aim 2, afford the opportunity to virtually 

implant and assess the behavior of synthetic mesh. Specifically, geometries and displacements of 

the pelvic floor can be readily, and accurately, obtained from imaging modalities and used to 

drive computational models of POP. Combining patient anatomies with synthetic mesh models  
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allows for manipulation and assessment of variables that are difficult to measure experimentally. 

Further, these computational simulations allow for measurements to be made without subjecting 

women or animal models to potential mesh related complications. 

The quality of FE simulations is highly dependent on the quality of the inputs used. 

Unfortunately, current mechanical characterization of the pelvic floor is poor, with little invested 

in identifying vital model parameters. While large parametric studies can be used to assess the 

effects of inputs on a single structure (though such studies are currently uncommon in pelvic 

floor FEA), physically accurate predictions concerning the interaction of multiple structures 

(synthetic mesh and vagina, vagina and bladder), requires the geometries and mechanical 

behavior of these structures to be well characterized. To this end, the goal of Aim 3 is to develop 

a method for the creation of solid pelvic floor geometries for FEA and to utilize such geometries 

to characterize the deformation of prolapse mesh following virtual implantation.  

4.2 CREATION OF PATIENT SPECIFIC GEOMETRIES 

4.2.1 3D Reconstruction of Pelvic Floor Structures 

Three-dimensional reconstruction of biological structures from medical imaging modalities has 

been performed across many disciplines, with a variety of experimental endpoints (164, 184, 

185). A great number of these studies have utilized reconstruction techniques to investigate the 

in-vivo stresses and strains experienced by biological tissues, as such measures are largely 
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impossible to obtain by other means. Though several imaging modalities have been used to 

examine the pelvic floor, our laboratory, and others, have chosen to use MRI for the purpose of 

reconstructing precise pelvic floor geometries (129, 181). The flexibility of MRI protocols 

allows for a number of soft tissues to be visualized in the pelvic floor. In addition, 

straightforward registration of multiple image sets allows researchers to leverage the differing 

contrasts obtained by various MRI protocols. Such versatility, combined with excellent 

resolution, allows for pelvic floor structures to be clearly identified relative to other imaging 

methods.  

4.2.2 MRI Protocol 

MRI scans were obtained from an image repository, containing scans from a cohort of women 

whom underwent clinical examination for gynecological issues, though not necessarily POP. All 

MRI scans were performed at Oklahoma University using a Bruker Cliniscan, 3T MRI with IRB 

approval (IRB #5057). For patients presenting with POP, a clinician reduced the vaginal bulge 

before collection of images. Prior to imaging, a water-based gel (ultrasound gel) was injected 

into the vaginal canal in order to provide contrast in the vaginal lumen. All images were taken 

with the patient in a supine position. To leverage the injected contrast, a T2-weighted protocol 

was used, with a slice thickness of 5mm and spatial resolution of 0.5078 x 0.5078mm (TE = 75, 

TR = 2500). Both axial and sagittal slices were attained for each patient. In addition, axial 
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LAVA (liver acquisition with volume acquisition, slice thickness = 2.1mm) scans were used for 

reconstruction, as these were found to provide additional detail on muscle location and confirm 

the boundaries of bony structures (of 0.6836 x 0.6836mm, TE= 75, TR = 2500). 

4.2.3 Image Segmentation 

Image segmentation refers to the process by which structures of interest are isolated from a 

sequence of images. In general, there are two primary types of segmentation - automatic and 

manual. Automatic segmentation uses an image processing protocol to enhance and define image 

features, such as boundaries, based on differences in intensity. Automatic methods are widely 

used in fields such as orthopedics to quickly segment bones from CT scans, given that the 

contrast between bone and other tissue tends to be high for CT images. Other methods for 

segmenting require user input, such as seeding the initial location of the structure of interest, 

before image processing is used to grow the selection based on image gradients. Methods that 

require initial user input are often referred to as semi-automatic. Again, semi-automatic protocols 

are extremely useful for image sets in which the structures of interest have distinct boundaries of 

consistent intensity. Lastly, manual segmentation requires users to manually process each image 

in order to identify the boundaries of the object of interest. Manual processes typically allow the 

user to select image coordinates for material boundaries or trace a spline around the structure 

with user selected seed points. Regardless of the method used, segmentations are used to create a
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set of image masks. Here, a Boolean operation is used to set the image intensity outside the 

selected region to 0 (black), while pixels inside the selected regions are set to 1 (white). Thus, a 

3D stack of images is created, highlighting the spatial positioning of the object of interest.  

Through trial and error, it was determined that both automatic and semi-automatic 

methods were ineffective for segmenting many of the structures in the pelvic floor, though a 

wide variety of segmentation software packages were utilized (Mimics, SimpleWare, Osirix, 

Seg3D, etc). Even a custom, semi-automated segmentation script (Mathematica V9, Wolfram 

Alpha, Champaign, IL), optimized to the contrast of pelvic floor images, struggled to reliably 

identify the boundaries of many organs including muscles, the urethra, and vagina. Often, 

automatic methods would produce vastly incomplete segmentations or include intensities that 

were not part of the object of interest. Much of this difficulty can be attributed to the complex 

architecture and irregular boundaries of the pelvic floor anatomy. In addition, it was not 

uncommon for an object of interest to have a variable intensity between slices, limiting the 

usefulness of seeding segmentation locations. As such, manual segmentation was required for all 

geometries used in this study. 

For this study all segmentations were perform using Seg3D (SCI, University of Utah). 

DICOM (Digital Imaging and Communications in Medicine) files from both axial T2 and LAVA 

imaging protocols were simultaneously imported. Since all scans were taken in the supine 

position within a short time frame, without having patients exit the scanner, individual scans 

were found to have good alignment. Nonetheless, image sets were aligned using point set 

registration algorithm, where the locations of the right and left ischial spines were selected as 
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registration points. After images were aligned, the following structures were identified for 

segmentation: vagina, bladder, levator ani muscles, pelvic bones (pubis, ischium, ilium), distal 

rectum, and urethra.  

 

 

Figure 51. Axial slices from a T2-weighted MRI scan were used to reconstruct patient geometries in 

Seg3D. First, structures of interest were identified and then manually segmented using a variety of tracing tools. 

Shown here are segmentations for the vagina (orange) and bony pelvis (green) (left). Segmentations were 

reconstructed in 3D and exported as iso-surfaces (right). 

 

Using Seg3D, the border of each structure was traced using the polyline tool and a fill 

command was used to segment all pixels within the boundaries of the polyline (Figure 51). In 

addition, the brush tool was used to aid in the selection of pixels belonging to a given structure. 

For hollow organs such as the vagina and rectum, both the inner and outer lumen were traced 

such that only the volume occupied by tissue were segmented. Collectively, axial segmentations 
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represent a stack of image masks, identifying the volume occupied by an object of interest. The 

set of masks were then used to create an iso-surface of the segmented structure, which was 

exported as a stereolithography (.stl) file for further processing. Stereolithography files represent 

the raw, triangulated surface of an object, where triangle vertices are used to define the face 

normal to the surface via the right hand rule. It must be noted that .stl files are not a solid 

geometry definition. Rather, they provide the boundaries (surface) of solid objects. Before 

proceeding to creation of solid geometries, surface renders of all hollow structures were 

examined to ensure that the lumen had not been filled in during the segmentation process. 

4.2.4 Surface Smoothing 

A majority of segmentation software packages, such as Seg3D, utilize pixel (or voxel) based 

segmentation methods. As such, individual pixels are identified as the object of interest and 

selected for inclusion into segmentation masks. The inclusion of entire voxels results in jagged 

boundaries for segmented geometries, as these segmentations are fundamentally constructed 

from stacks of cubes (voxels, Figure 51). Conversely, spline based methods, such that 

implemented in our custom segmentation script, do not require entire selection of voxels, but 

rather construct surface geometries via lofting of splines obtained from each MRI image. 

However, manual spline segmentation is a labor-intensive process and appeared to struggle in 

capturing the variable thickness of the vagina. Therefore, pixels based methods were found to 

provide geometries that were more representative of the anatomy, despite the rough appearance 

of the surface. 
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Though more representative of tissue thickness, the sharp edges obtained from pixel 

segmentation can dramatically alter the results of FE studies, leading to non-physiologic stress 

concentrations and discontinuities in deformation. In addition, these sharp edges are not 

representative of most biological structures (Figure 52). In order to remove jagged edges, all 

geometries were subject to a surface smoothing. Smoothing was performed using 3D Coat (V4.1, 

Pilgway), a voxel sculpting and uv-mapping software package. Stl files were imported into 3D 

Coat and a sculpting tool was applied to the entire surface, until all sharp edges were removed. 

Care was taken to avoid over-smoothing of geometries, as multiple applications of the sculpting 

tool were found to eliminate anatomical features. Smoothed geometries were then exported as 

.stl files for surface mesh refinement and solid meshing. 

 

 

Figure 52. Raw iso-surfaces require smoothing to better approximate the shape of biological structures. 

Once geometries are smoothed, an iso-parameterization algorithm was used to discretize the surface into triangle 

elements. Shown here is the surface processing of a vaginal geometry following segmentation. 
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4.2.5 Finite Element Discretization  

Smoothed geometries were then imported into Meshlab (Visual Computing Lab, ISTI-CNR, 

Pisa, Italy) for surface discretization (“mesh”) refinement (Figure 52). First, a quadric edge 

collapse decimation algorithm was applied to re-mesh (re-discretize) the surface and reduce the 

total number of surface faces. The target face count for quadratic mesh edge detection was set to 

50% of the original face count. This reduction was not found to noticeably alter the surface 

geometry. The polygon surface was then examined to ensure that no surface triangulations were 

overlapping. Next, an iso-parameterization filter was applied to the geometry, where the 

minimum and maximum mesh sizes were set to 140 and 180, respectively. After iso-

parameterization of the surface, the iso-parameterization meshing filter was applied in order to 

alter the discretization (“mesh”) density by varying the sampling rate. Here, higher sampling 

rates are used to construct dense finite element “meshes” (discretization’s) and lower sampling 

rates are used to create coarse finite element “meshes”. After a desired discretization density was 

attained, “remeshed” geometries were exported once again as .stl files and imported into Gmsh 

(Geuzaine and Remacle).  

Once imported into Gmsh, surface models were used to create solid geometries via the 

3D meshing tool. Both the number and quality of solid elements were dependent on the 

dimensions and quality of surface mesh created in Meshlab. For all biological structures 
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considered in this dissertation, 4-node tetrahedral elements were used for solid discretization. All 

discretized solid geometries were then exported as I-DEAS Universal (.unv) files for finite 

element studies. 

 

 

Figure 53. Overall procedure for the generation of anatomical geometries from patient MRI scans. Though 

many software packages are available for each step, this specific protocol was found to address the challenges 

associated with segmentation and discretization of pelvic floor structures from current clinical diagnostic images.  
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4.3 SIMULATION OF PROLAPSE AND REPAIR 

4.3.1 Introduction 

Pelvic organ prolapse (POP) effects up to 50% of women over the age of 50, yet relatively little 

is known about the development of this condition (159). Despite the identification of several risk 

factors, including pregnancy and increased intra-abdominal pressure (20, 28, 30), the 

mechanisms that lead to prolapse remain unclear. However, given the clinical presentation of 

prolapse, it is clear that this disorder results from deficiencies in the structural support of the 

vagina. Surgical management aims to restore the positioning of the pelvic organs, using synthetic 

mesh to reconstruct vaginal support. While many patients undergo successful surgery, 

complication rates up to 20% suggest that a greater understanding of these repairs is needed (67), 

especially in regards to the highly complex mechanics of the vagina and its supportive tissues.  

 To date, numerous studies have sought to identify biomarkers, such as altered protein 

expression, in order to identify both the cause of prolapse and the undesired response to synthetic 

mesh devices (16, 75, 186). Although such a marker would provide tremendous insight into the 

evaluation and treatment of POP, this condition often develops decades after events identified as 

main risk factors. Thus, the number of confounding factors is extensive, making it difficult to 

identify a root biological cause. Rather than examining the many factors that may lead to 

prolapse, characterizing prolapse development and treatment from a mechanical perspective can  
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help to narrow the biological phenomena of interest. Such approaches have proven extremely in 

understanding the development of osteoarthritis and designing treatments specific to the causes 

of this disorder (160). 

Following from these orthopedic studies, finite element analysis (FEA) provides a 

tremendous tool for efficiently and thoroughly assessing the mechanical variables that result in 

dysfunction or negative biological responses. The use of such models to understand the pelvic 

floor is truly in its infancy, with much of data and methods required to construct robust FE 

models yet to be obtained or pursued. While previous pelvic floor models (both simple and 

complex) have been useful for understanding general concepts in the pelvic floor (180, 181), 

many of these studies fail to acknowledge the limitations of their assumptions, largely imposed 

by the lack of reliable inputs. To further the development of pelvic floor FE models, while 

enhancing our understanding of prolapse and mesh repair, the aim of this study was to develop a 

computational model that simulates prolapse of the anterior vaginal wall and subsequent mesh 

repair. This study will consider patient specific vaginal geometries, the presence of apical 

support, mesh device deformation, and methods for mesh fixation. We hypothesize that loss of 

apical support will result in anterior wall displacements representative of cystocele, while mesh 

repair will restore anterior wall support, preventing the development of prolapse. In addition, we 

hypothesize that tensioning of mesh will lead to significant increases in mesh burden, despite 

effective treatment of prolapse.  
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4.3.2 Methods 

4.3.2.1 Preliminary Study: Model Development 

Geometry Preparation  

A preliminary study was first conducted to demonstrate the feasibility of creating a patient 

specific pelvic floor anatomy for analysis of prolapse and mesh repair. In addition, this study was 

used to identify the impact of boundary conditions on FE predictions of prolapse. For this study, 

a series of MRI scans were taken from a parous patient and used to reconstruct a vaginal 

anatomy. Importantly, the selected patient was not clinically diagnosed with prolapse, nor was 

prolapse identified in mid-sagittal MRI images taken during maximum valsalva. A parous, non-

prolapse patient was selected as this anatomy was identified as properly supported, yet at an 

increased risk of developing prolapse (20-22). MRI scans used in this study were obtained using 

the repository and imaging protocol described in Section 4.2.2, in accordance with the IRB at 

Oklahoma University. Briefly, a water-based gel was injecting into the vaginal canal in order to 

provide contrast in the vaginal lumen. With the patient in the supine position, a series of MRI 

scans were taken. For this study, a T2-weighted protocol with a slice thickness of 5mm was used 

for segmentation. 

To reconstruct the 3D vaginal geometry, the interior and exterior surface of the vagina 

was manually segmented from axial slices in Seg3D (SCI, University of Utah). Segmentation 

methods are described in detail in Section 4.2.3 (Figure 54). Image masks were exported from 

Seg3D and imported into 3D Coat for surface rendering and smoothing as previously outlined. It 
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should be noted that both the luminal and abluminal surfaces of the vagina underwent the same 

smoothing process. Finally, smoothed surface geometries were imported in Gmsh for solid 

discretization using linear tetrahedral elements to define the volume between the two surfaces 

(14893 linear tetrahedral elements). For preliminary studies, vaginal tissue was modeled as a 

Neo-Hookean material, where Young’s modulus (E) and Poisson ratio (ν) were set to 1.5MPa 

and 0.3, respectively. These values were based on previous uniaxial studies of cadaveric vaginal 

tissue, as well as findings from tensile testing of sheep vaginal tissue (187, 188).  

 

 

Figure 54. An MRI scan from a parous patient was used to assess the impact of apical support on 

deformation of the anterior vaginal wall. Axial slices were segmented (a) and used to create a solid vaginal 

geometry, discretized using linear tetrahedral elements (b) via the protocol outlined in Figure 53.  

 

 

  203 



 

For prolapse repair simulations, the mesh geometry was based on DirectFix A, a 

transvaginal mesh device used to treat prolapse of the anterior vaginal wall (cystocele). Details 

on the development and validation of the DirectFix A FE model are described in Aim 2. Briefly, 

mesh pores were modeled as a series of continuum fibers, where the intersections between fibers 

were assumed to be continuum knot structures. The pore dimensions of the FE mesh model were 

2.2mm, equal to experimental measurements of undeformed pores in Aim 1 for Restorelle. Knots 

and fibers were considered as two independent Neo-Hookean materials, where the material 

properties (E and ν) were determined from uniaxial tensile testing of Restorelle (Section 3.2.5). 

Fiber properties were determined using load-elongation data obtained when fibers were oriented 

at 0° relative to the axis of loading, while knot properties were fit using data with fibers offset by 

45°. All geometries were imported into FEBio (V2, MRL, University of Utah) for FEA. 

 

Ideal Support Model 

The solid vaginal geometry was imported into FEBio in order to examine the effect of boundary 

conditions on the deformation of the anterior vaginal wall. First, boundary conditions for the 

“ideal” support model were determined. Based on anatomical dissections, surgeon feedback, and 

literature examining vaginal support, the entire outer surface of the proximal vagina was fixed in 

the z-direction, meaning that this surface could not move distally (Figure 55). This fixation 

represents level I support, which is provided by the cardinal and uterosacral ligaments. 

Specifically, level I support maintains the position of the uterus and upper vagina (6). In 

addition, the entire outer surface of the distal vagina was fixed in the z-direction, representing 
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attachment to the perineal body. While there is likely some descent of the distal vagina in 

response to in-vivo loading (valsalva), the lack of information regarding this attachment 

introduced an unknown variable. Therefore, the impact of this attachment was limited by 

restricting the displacement of this boundary. Finally, the anterior aspect of the distal vagina was 

fixed in all 3 axes, simulating rigid attachments of the perineal body in association with the pubic 

bone. This is justified by the examination of dynamic MRIs of women presenting with cystocele. 

During valsalva, the anterior distal vagina serves as a pivot point, about which the anterior wall 

moves, suggesting that this point remains relatively fixed. While there is likely contact of the 

vagina with other organs (bladder, rectum, etc.), such boundaries were not included in this study 

in order to maintain the simplicity of this model. 

 To simulate increased abdominal pressure, such as that applied during valsalva, a traction 

force was applied to the anterior surface of the mid to distal vagina. The traction force was 

applied at an angle of -63°, with a magnitude of 1.55N. The magnitude of this vector was chosen 

as it was found to produce deformations similar to that of cystocele under the prolapse boundary 

conditions discussed below. As such, it must be noted that this study is based only upon 

deformations and the changes in observed displacements. Additional model inputs (material 

parameters, boundary conditions, etc.), as well as validation of such inputs, are required before 

predicted stresses and reaction forces can be considered reliable. 
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Figure 55. Mid-sagittal view of the FE vaginal geometry. To simulate “Ideal” vaginal support the entire 

apex of the vagina was fixed in the z-direction (black lines), in addition to z-fixation of the distal vagina. Further, a 

portion of the superior-posterior surface of the vaginal wall was fixed in the y-direction. A traction force was applied 

to the mid-distal anterior vaginal surface to simulate loading via abdominal pressure. 

 

Prolapse Model 

Anterior wall prolapse is widely associated with defects in the apical support (level I) of the 

vagina, as strong correlations have been found between the support of the vaginal apex (C 

measurement in POPQ exam) and the degree of prolapse of the anterior vagina (Ba measurement 

in POPQ exam) (189). In addition, disruption of apical supports has been found to result 

cystocele formation for planar vaginal geometries during FEA (180). Using these findings, a 

prolapse model was derived from the ideal support scenario by removing the z-constraint from 
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the anterior, proximal (apical) vagina. All other boundary conditions and applied tractions were 

unchanged from the ideal support model. As the properties of the vagina and in-vivo loading 

conditions of the vagina are unknown, it should be noted, once again, that the magnitude of the 

anterior traction vector was altered using the prolapse model in order to develop geometries 

representative of prolapse. Therefore, this condition serves as a baseline for assessing the impact 

of apical support and mesh repair on the deformations of the vagina. It was determined that a 

traction force applied at an angle of -63°, with a magnitude of 1.55N, produced deformations 

representative of prolapse. 

 

 

Figure 56. Mid-sagittal view of the FE vaginal geometry. To simulate the development of prolapse, an 

apical defect was considered by removing the superior-anterior apical support. All other boundary conditions and 

model parameters were unchanged from the “Ideal” support model. 
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Prolapse Repair 

To simulate prolapse repair, a discretized DirectFix A geometry was imported into the prolapse 

model and positioned parallel to the anterior vaginal surface, such that the inferior aspect of the 

device was along the urethro-vaginal junction. A traction vector was then applied to the entire 

DirectFix A geometry along the y-direction, displacing the mesh posteriorly in order to conform 

the mesh to the anterior surface of the vagina. A sliding contact (augmented Lagrangian) was 

implemented to prevent the penetration of mesh and vaginal geometries. After conforming to the 

vaginal surface, the mesh was “sutured” to the vagina using a series of 8 tied contacts placed 

about the perimeter of the mesh body.  

 

 

Figure 57. Anterior view of the FE vaginal geometry with attached DirectFix A mesh. Tied contacts were 

used to simulate suture attachments of the mesh to the vagina (red circles). For both untensioned and tensioned 

models, each mesh arm was fixed in the x, y, and z-directions. All additional model parameters were unchanged 

from the apical defect model.  
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Following attachment to the vagina, 2 mesh repair scenarios were considered. In the first 

case, the most distal portion of each of the 4 mesh arms were fixed in all in the x, y, and z-

directions, as they were positioned following attachment to the vagina. This was considered the 

untensioned mesh case, as it simulates a scenario in which the surgeon does not apply force prior 

to fixing the mesh arms. This scenario is largely hypothetical, as the positioning of the mesh 

arms do not reflect the anatomical locations in which transvaginal mesh is fixed clinically. In 

addition, a tensioned mesh case was considered, in which a traction vector (8.9N magnitude ≈ 

2lbs) was applied to each mesh arm. Mesh tensioning was completed in 2 steps. First, the 

traction vector was applied along the x-axis resulting in a predominately planar mesh 

deformation. Next, the traction vector was directed posteriorly at a 45° angle, relative to the x-y 

plane. Finally, the most distal portion of each of the 4 mesh arms was fixed (in x, y, and z) in the 

tensioned state. Again, it should be noted that the tensioned case does not necessarily reflect 

anatomical mesh fixation, as the locations of the mesh arms are not necessarily at the pelvic 

sidewall. All boundary conditions and anterior traction loads were identical to those used in the 

prolapse model, outside of those implemented for mesh contact and attachment.  

4.3.2.2 Prolapse Patient 

Geometry Preparation  

Next, mesh repair was assessed considering the prolapsed anatomy and the anatomical locations 

for mesh fixation. For this study, MRI reconstruction utilized scans of a parous patient whom 

was clinically diagnosed with prolapse. POP was confirmed upon visualization of anterior 
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vaginal wall via a mid-sagittal MRI image taken during maximum valsalva. Prior to imaging, 

prolapse was reduced and remained reduced for baseline (resting) scans. Once again, MRI scans 

were obtained using the repository and imaging protocol described in Section 4.2.2. For this 

patient a registered set of a T2-weighted and LAVA scans were used for segmentation. 

 

 

Figure 58. An MRI scan from a patient presenting with prolapse was used to assess the impact of 

anatomical mesh attachment during surgical repair. Axial slices were segmented (a) and used to create a solid 

vaginal geometry, using linear tetrahedral elements (b). In addition, the bony pelvis was segmented in order to 

identify anatomical mesh attachment sites. 

 

In this study, both the vagina and pelvic bones were manually segmented using axial 

slices in Seg3D, as described in Section 4.2.3. Surfaces for vaginal and bone geometries were 

individually reconstructed and smoothed (see 4.2.3, 4.2.4). While both surface geometries 

underwent isoparameterization and refinement, only the vaginal geometry was imported into 
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Gmsh for solid “meshing” using linear tetrahedral elements. To reduce computational expense, 

the pelvic bones were modeled as rigid bodies, thus only surface definitions for this structure 

were required. This was justified, as stiffness of bone is much greater than that of soft tissues. In 

addition, bony geometries served as anatomical landmarks and no forces were applied to this 

structure during FE simulations. 

The patient-specific vaginal geometry was modeled using a Neo-Hookean ground 

substance with embedded fibers, distributed in a spherical orientation. This fiber orientation 

allows for fiber recruitment along the direction of loading, as fibers develop force in tension. 

Conversely, embedded fibers do not provide resistance to compressive force. As such, the 

compressive and initial tensile behavior of the vagina is governed by the Neo-Hookean ground 

substance, while tissue behavior at higher strain is governed by the embedded fibers. Here, fiber 

strain energy is given by: 

𝑊𝑊 = 𝜉𝜉
𝛼𝛼

(𝑒𝑒𝛼𝛼(𝐼𝐼𝑛𝑛−1)𝛽𝛽 − 1)                                                       4.1 

where ξ > 0, α > 0, β ≥ 2, and In is the square of the fiber stretch ((λn)2). For the FE model in this 

study, the following values were used: ξ = 10, α = 1, and β = 2. In addition, Neo-Hookean 

parameters representing the ground substance remained as E = 1.5 and ν = 0.3. Upon 

convergence testing, considering the displacement of the vaginal bulge, a vaginal model 

consisting of 6138 linear tetrahedral elements selected for use in all FE simulations. For prolapse 

repair simulations, a validated model of DirectFix A (Aim2) was considered. 
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Ideal Support Model 

For all simulations, the bony pelvic and vaginal geometries were included. In this study, the bony 

pelvis was considered a rigid body and a rigid constraint was used to fix the pelvis along the x, y, 

and z-axes. Similar to the preliminary study, an “ideal” vaginal support model was considered. 

Again, the proximal vagina was fixed in the z-direction, representing level I support, while the 

entire outer surface of the distal vagina was fixed in the z-direction, representing attachment to 

the perineal body (Figure 59). Finally, the anterior aspect of the distal vagina was fixed in all 3 

axes, simulating rigid attachments of the perineal body in association with the pubic bone. In 

order to simulate in-vivo loading, a force of 4.5N was applied to the mid to distal portion of the 

anterior vaginal at a -63° angle to the x-y plane. 

 

 

Figure 59. Mid-sagittal view of the FE vaginal geometry reconstructed from a women with prolapse. 

Shown here are the boundary conditions considered for an “ideally” supported vagina.  
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Prolapse Model 

The prolapsed vaginal geometry was used to simulate anterior wall prolapse, again assuming an 

apical support defect. As such the proximal, anterior edge of was not fixed, while the proximal 

posterior edge was fixed in the z-direction as implemented previously. Further, the entire outer 

surface of the distal vagina was fixed in the z-direction as this represents attachment to the 

perineal body and the anterior aspect of this selection was fixed in all x, y, and z. In addition, a 

force of 4.5N was applied to the mid to distal portion of the anterior vaginal at a -63° angle to the 

x-y plane to simulate increased intrabdominal pressure during valsalva. 

 

 

Figure 60. Mid-sagittal view of the FE vaginal geometry reconstructed from a women with prolapse. All 

boundary conditions and model parameters were similar to the “ideal” support model described in Figure 59, except 

for the removal of the fixed boundary at the anterior apex. 
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Prolapse Repair 

For simulation of prolapse repair, the validated model of DirectFix A was imported into the 

prolapse simulation model and positioned parallel to the anterior vagina. A pelvic floor 

reconstructive surgeon positioned the device and marked the locations for suture attachment, 

specific to the vaginal geometry and based on best clinical practice. A traction vector was then 

applied to the entire surface of the DirectFix A geometry in the y-direction, while the vagina was 

fixed in x, y, and z. A sliding contact interface was defined between the mesh and anterior vagina 

to prevent the penetration of mesh and vaginal geometries upon displacement of the mesh. After 

conforming to the anterior vaginal surface, the mesh was “sutured” to the vagina at 5 locations 

identified by the reconstructive surgeon using tied contacts (Figure 61).  

Once again, two mesh repair scenarios were considered (Figure 61). In the first case, the 

most distal portion of each of the 4 mesh arms was fixed in the x, y, and z-directions in their 

configuration following attachment to the vagina. As with the previous patient, this was 

considered the untensioned mesh repair case. In addition, a tensioned mesh scenario was 

constructed, where the mesh arms were tensioned using prescribed displacements derived from 

the anatomical fixation points. To determine the anatomical attachment sites, the bony pelvis 

geometry was used. First, the 3D coordinates of the ischial spines (left and right), and the most 

distal tip of the sacrum were determined (Figure 62). The line between the ischial spine and tip 

of the sacrum were assumed to represent the path of the sacrospinous ligament, the attachment 
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point for the superior arms of DirectFix A. For this study, the superior mesh arms were fixed at 

the midpoint of the sacrospinous ligament. In addition, the 3D coordinates of the left and right 

obturator foramen were identified for inferior mesh arm fixation.  

 

 

Figure 61. For simulation of prolapse repair, two configurations of the mesh device were examined. First, 

an untensioned mesh repair was considered. Here, the mesh was fixed to the anterior surface of the vagina using a 

series of ties contacts (left, red circles), and the distal tips of all mesh arms were fixed. In addition, a tensioned mesh 

model was considered (right). In this scenario, mesh arms were tensioned to anatomical fixation sites and then fixed. 

 

Using the coordinates of these attachments and the most distal portion of their respective 

mesh arms, the displacement vector for each arm was determined. Again, mesh tensioning was 

completed in 2 steps, with the first step applying the x and y components of the displacement 
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vector. After this step was completed, the z displacement was applied to complete positioning the 

mesh arms. This step-wise method was found to dramatically enhance the convergence of mesh 

positioning. Finally, the most distal portion of each of the 4 mesh arms was fixed (in x, y, and z). 

 

 

Figure 62. To simulate implantation of synthetic mesh for prolapse repair, the bony pelvis was used to 

identify the 3D coordinates for mesh arm fixation (a). After identification of these attachment sites, a computational 

mesh model was fixed to the anterior surface of the vagina, and the mesh arms were “tensioned” to their anatomical 

fixation sites utilizing a displacement driven finite element simulation (b)  
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4.3.2.3 Computational Measures 

In order to quantify the effect of apical support and mesh repair on model deformation, 

measurements of the vagina and mesh were made following the application of the anterior 

surface load. To characterize vaginal deformation, the total displacement of the anterior apex and 

vaginal bulge were reported. Total displacements were determined by selecting a group of 

elements in the undeformed geometry and tracking their movements for each scenario. It should 

be noted that total displacement is a combined measure of the individual x, y, and z 

displacements for an element. For mesh repair trials, 3D mesh burden was determined as 

outlined in Section 3.2.6.1. Briefly, the local density of nodes was computed by summing the 

total number of nodes within a sphere with a 2mm radius. This local density value, termed mesh 

burden, was determined for each node of the discretized DirectFix A geometry. In addition, 

normalized mesh burden was determined by dividing each mesh burden value by the maximum 

mesh burden of the undeformed DirectFix A geometry. Therefore, normalized mesh burden 

provides a measure of the local increase in mesh concentration. Displacement post processing 

was performed in PostView (MRL, University of Utah), while mesh burden measurements were 

obtained using a custom Mathematica script (V10, Champaign, IL). Since all measures were 

performed on a single patient no statistical analyses was completed.  
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4.3.3 Results 

4.3.3.1 Preliminary Study: Model Development 

In each case, the vagina underwent noticeable displacement in response to the anterior load, with 

the anterior vaginal wall contacting the posterior wall (Figure 63). In general, maximum 

displacements were observed at the distal vagina, as this portion contacted the posterior wall, 

before sliding distally towards and past the hymenal ring. Interestingly, during prolapse 

simulation, this contact resulted in substantial displacement (~3.8cm) of the posterior-distal 

vagina, just at the attachment to the perineal body. Upon inspection, this result appears consistent 

with MRI observation of prolapse during valsalva. Apical support eliminated much of the 

displacement observed in the prolapse case, with apical and vaginal bulge displacements 

decreased by ~104% and ~215%, relative to prolapse simulations.  

Both prolapse repair methods considered for this patient were effective in reducing the 

displacements of the anterior vaginal wall following removal of the anterior apical support. For 

untensioned mesh, vaginal bulge displacements were nearly identical to those observed under 

conditions of ideal support, though apical descent remained nearly twice that of the ideal model 

(Table 6). Unsurprisingly, untensioned mesh did not result in a dramatic change in mesh burden, 

as maximum normalized mesh burden increased just 13% after the application of the anterior 

load. Overall, mesh pores appeared relatively unchanged, with no obvious locations of increased 

mesh burden.  
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Figure 63. Contour plots of total displacement obtained using a parous, nonprolapse vaginal geometry. 

Shown is a mid-sagittal view of the undeformed geometry (a) and the deformations observed following the 

application of anterior load for the ideally supported (b), apical defect (c), untensioned mesh repair (d), and 

tensioned mesh repair (e) models. The top circle (a) indicates the location of the anterior apex, while the bottom 

circle (a) represents the leading edge of the anterior wall prolapse. 

 

Despite reducing the overall displacement of the anterior wall, mesh tensioning was less 

effective in terms of reducing the presence of a vaginal bulge. Specifically, the displacement of 

the vaginal bulge remained at 5.57cm; nearly 2cm more than that observed for ideal and un-

tensioned mesh scenarios. In addition, 8.9N of tension dramatically altered the overall 

appearance of both the vagina and the DirectFix A mesh. Notably, the apex experienced a greater 

descent, with increased anterior movement, relative to the ideal and untensioned mesh cases, 
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with a total displacement of 5.28cm. Furthermore, tensioning of mesh to 8.9N led to a dramatic 

rise in mesh burden, with increases in mesh per unit volume of 220%. Regions of pore collapse 

were easily identifiable, with dramatics increases in mesh burden in the inferior mesh arms and 

the superior mesh body between the superior mesh arms (Figure 64). 

 

Table 6. Predicted displacements of the vaginal apex and leading edge of the anterior vaginal bulge following 

application of anterior traction forces for a parous, nonprolapse patient geometry. The maximum effective stress in 

the vagina was also determined for all models. In addition, the maximum normalized mesh burden was determined 

for mesh repair models, following application of the anterior load. Here, mesh burden (mesh/mm3) was normalized 

by the maximum mesh burden of the undeformed DirectFix A geometry. 
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Figure 64. Contour plots of normalized mesh burden for 3D DirectFix A geometries following application 

of the anterior vaginal load. Shown are the untensioned (left) and tensioned (right) scenarios. Plots shown are a 

projection of the 3D geometry onto the xz-plane. Mesh burden values (mesh/mm3) were normalized by the 

maximum mesh burden for the undeformed DirectFix A geometry. 

 

4.3.3.2 Prolapse Patient 

Overall, the vaginal anatomy for the prolapse patient appeared to have an increased vertical 

orientation relative to the parous, nonprolapse patient. In addition, MRI scans of this patient 

allowed for a greater length of the vagina to be segmented, with the entire introitus and vaginal 

apex included in all simulations. Similar to the previous patient, application of load to the 

anterior vaginal surface resulted in posterior displacement of the anterior wall, before contacting 

the posterior vagina and descending distally towards and past the hymen (Figure 65). However, it 

was noted that much of the displacement of the anterior wall was directed in z-direction 
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(distally), with less posterior movement compared to the previous patient. As such, the total 

displacement for the vaginal bulge and apex were noticeably lower, at 3.21cm and 2.38cm, 

respectively. Still, this displacement produced a distinct vaginal bulge, extending outside of the 

inroitus, representative of Stage 3 prolapse. Again, the deformed vaginal geometry demonstrated 

good agreement between model predictions and MRI observations of POP. 

 

 

Figure 65. Contour plots of total displacement obtained using a prolapse vaginal geometry. Shown is a 

mid-sagittal view of the undeformed geometry (a) and the deformations observed following the application of 

anterior load for the ideally supported (b), apical defect (c), untensioned mesh repair (d), and tensioned mesh repair 

(e) models. The top circle (a) indicates the location of the anterior apex, while the bottom circle (a) represents the 

leading edge of the anterior wall prolapse 

 

  222 



 

Interestingly, ideal support did not appear to eliminate symptomatic prolapse, as the 

displacement of the vaginal bulge was 2.53cm for this scenario. Though this displacement is a 

21% decrease relative to the apical defect case, the presence of the vaginal bulge remains 

substantial, resting below the level of the hymen. Unsurprisingly, addition of apical support 

limited the displacement of the vaginal apex, with almost no displacement observed at this 

location (Table 7). 

 

Table 7. Predicted displacements of the vaginal apex and leading edge of the anterior vaginal bulge following 

application of anterior traction forces for a prolapse patient geometry. The maximum effective stress in the vagina 

was also determined for all models. In addition, the maximum normalized mesh burden was determined for mesh 

repair models, following application of the anterior load. Here, mesh burden (mesh/mm3) was normalized by the 

maximum mesh burden of the undeformed DirectFix A geometry. 
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Figure 66. Contour plots of normalized mesh burden for 3D DirectFix A geometries following application 

of the anterior vaginal load for untensioned (left) and tensioned (right) mesh repair scenarios. Plots shown are a 

projection of the 3D geometry onto the xz-plane. Mesh burden values (mesh/mm3) were normalized by the 

maximum mesh burden for the undeformed DirectFix A geometry. 

 

Unlike the ideal support case, both prolapse repair methods considered for this patient 

were effective in reducing the displacements of the vaginal bulge and apex. Overall, the 

deformation of the distal vaginal was similar between these two models, as the total 

displacement of the vaginal bulge was reduced by 40% and 43% for untensioned and tensioned 

repair models (Table 7). For each mesh repair case, it was noted that the vaginal bulge came to 

rest about the level of the hymen, in contact with the posterior wall of the vagina. Again, the 

displacements of the vaginal apex were decreased ~43% for both mesh repair models, though 

their appearance slightly differed. Specifically, tensioned mesh repair appeared to create a 

depression in the anterior vaginal surface, at the superior portion mesh body, following 

application of force to this model (Figure 64e). Although such deformation was not further 
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quantified, it was noted that this location was found to have a significant amount of pore 

collapse. While both untensioned and tensioned repairs resulted in apparent relief of prolapse, 

tensioning of mesh greatly increased the mesh burden. Following anatomical tensioning, mesh 

burden was increased 70% relative to the undeformed DirectFix A geometry. For the tensioned 

model, pore collapse only occurred in the superior mesh body, between the superior mesh arms. 

4.3.4 Discussion 

In this study, a computational method for simulating the in-vivo mechanical loading of the 

vagina was established in order to model the development of POP. In addition, patient specific 

anatomies were combined with computational synthetic mesh geometries to examine the 

interaction between a transvaginal mesh device, DirectFix A, and vaginal tissue following repair 

of POP. Importantly, this study found that removal of apical support alone could result in the 

development of prolapse for non-pathological vaginal geometries. However, restoration of this 

support was not sufficient to eliminate the development of a vaginal bulge in a patient presenting 

with prolapse. In addition, this study demonstrated that DirectFix A was effective in reducing the 

descent of the anterior vaginal wall, though tensioning of mesh was found result in a significant 

decrease in the diameters of mesh pores, with over a 70% increase in mesh burden in the superior 

portion of the device. Importantly, it was demonstrated that the anatomy of a patient impacts the 

manner by which prolapse develops, in addition to the deformation experienced by mesh 

products following implantation. 
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 The results of this study suggest that apical support is a vital component for preventing 

prolapse of the anterior vaginal wall. Removal of this support from the non-prolapsed anatomy 

permitted vaginal displacements representative of a cystocele. Indeed, apical support is widely 

believed to play a role in the development of prolapse and has been implemented in simple FE 

studies to model cystocele formation (180, 189). However, the addition of this support to the 

prolapsed vaginal anatomy was not successful in eliminating symptomatic prolapse, with the 

vaginal bulge remaining below the level of the hymen. Though apical defects are strongly 

correlated with anterior prolapse (189), this finding suggests that factors other than apical 

support may provide mechanisms by which a cystocele can develop. The result from the 

prolapsed anatomy simulation, in concert with the observation that the prolapsed vaginal 

anatomy was highly aligned with the vertical axis, suggests that the anatomy has remodeled 

throughout the progression of prolapse. The increased vertical alignment of the vagina may result 

from deficiencies of the levator ani muscles, which serve to pull the distal vagina anteriorly, 

thereby angling the vaginal apex posteriorly towards the sacrum (17). Loss of this function 

would allow the distal vagina to move posteriorly, placing the apex directly above the inroitus. In 

this configuration, downward pressures would deform the anterior vaginal wall, predominately in 

the distal direction, with minimal contact with the posterior vagina. Conversely, posterior 

angling of the vagina would produce contact between the vaginal walls, providing resistance to 

the downward displacement of the anterior vagina. Alternatively, remodeling of vaginal length or 

level 2 support may greatly influence the extent of prolapse. For instance, increased mid- to 

distal- support (level 2), such as that provided by mesh repair, was found to eliminate 
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symptomatic prolapse for both patient anatomies. Additionally, increased vaginal length may 

reduce the boundary effects imposed by apical support. As such the distal vagina may be free to 

distend regardless of the presence of apical support. While rigorous FE studies considering a 

wide range of vaginal geometries is required to substantiate such conclusions, the current study 

clearly demonstrates the importance of vaginal geometry on the observed deformation of the 

vagina following application of load. 

Though mesh repair was generally successful in reducing prolapse, the mesh body 

between the superior mesh arms was found to experience significant deformation for both 

tensioning protocols used here. This is of particular interest, as this site is a common location for 

pain and mesh erosions in women whom have undergone transvaginal mesh surgery (65). 

Additionally, clinicians are often able to palpate a “ridge” of mesh at this location from the 

vaginal lumen. While these findings are identical to those observed in Aim 2, the results from 

this study demonstrate that such deformations can occur following clinical fixation of mesh arms 

in the pelvic floor. Therefore, this study provides convincing evidence that mechanical 

deformations result in the collapse of mesh pores at this site, increasing the likelihood of the poor 

clinical outcomes (86, 87).  

Supporting this finding, posterior-lateral tensioning of the mesh arms to 8.9N 

(preliminary study) led to dramatic pore collapse in the mesh body, between the superior arms, 

with mesh burden increasing by 120%. Similarly, the act of displacing the superior mesh arms to 

the sacrospinous ligament, resulted in a mesh burden increase of ~70% at this same location. 

This deformations is nearly identical to those observed during experimental and FE sensitivity 
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studies performed in Aim 2, though the boundary conditions in this study are increasingly similar 

to in-vivo loading conditions (3D tensioning and attachment to a vaginal geometry). The 

consistency of this deformation across many loading conditions, specifically upon virtual 

implantation in the pelvic floor, provides strong evidence that DirectFix A has an increased risk 

of negative outcomes in this location.  

While stress maps do not necessarily reflect accurate measures for vaginal tissue (Table 6 

and 7), they are useful for understanding the transmission of force through the mesh architecture 

(Figure 67). These plots demonstrate that a majority of force is transmitted from the mesh arms 

to the locations of suture attachment, in agreement with results from Aim 1. As such, it is 

interesting to note that the pore collapse of the inferior arms and superior mesh body occurs at 

small forces, corroborating the ease with which mesh pores oriented at 45° deform in response to 

mechanical loading. However, accurate and validated properties of vaginal tissue are required 

before tissue stress concentrations can be evaluated, limiting the usefulness of those values 

reported here. Such data would provide insight into the occurrence of stress shielding following 

implantation of prolapse mesh, which may be of particular interest at mesh fixation sites or areas 

of increased mesh burden (77). Still, these preliminary results demonstrate the nonhomogeneous 

distribution of force throughout complex mesh geometries, creating relatively high 

concentrations of force in the tissue at the suture locations, while the remaining vagina is largely 

unloaded. Given the mechanosensitive behavior of vaginal tissue (26), excessive loading, or 

absence of loading, may dramatically alter tissue homeostasis.  
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Figure 67. Contour plot of effective stress for DirectFix A, with tensile forces applied at various loading angles (a. 

upper arm 15°, lower arm 0°, b. upper arm 45°, lower arm 20°). Cooler colors represent lower stress values, while 

warmer colors represent greater stress values. 

 

To our knowledge this was the first finite element study of the pelvic floor to utilize 

patient specific anatomy to simulate prolapse and subsequent mesh repair. Though previous 

studies have simulated cystocele and rectocele development, the vaginal models used were 
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greatly simplified, using 2 uniform rectangular prisms to represent the anterior and posterior 

vaginal walls (180, 181). Further, these geometries were not connected and therefore did not 

represent the tubular, non-uniform thickness of the vagina. While such geometric simplifications 

are useful for understanding basic movements of the vagina, it greatly alters the boundary 

conditions of this problem, thereby altering the deformations of the vagina. In addition to the 

many model variables that were unknown in these studies, the lack of geometric accuracy adds 

additional uncertainty to simulation outcomes. More concerning was the lack of consideration 

for the effect of these assumptions, and the absence of quantitative model validation. Rather, the 

methods developed and used in the current study, greatly advance the reliability of pelvic floor 

models through the inclusion of patient specific anatomies. Still, the present model suffers from a 

lack of reliable model inputs (in-vivo loads, tissue properties, etc.) and sufficient validation to 

assess the accuracy of the approximations made. Nonetheless, accounting for the geometry of the 

pelvic floor allows for an increasingly accurate representation of the boundary conditions in this 

environment, leading to better predictive capabilities for such models. 

Despite the novelty of this study, they are several limitations that must be kept in mind 

when interpreting these results and expanding the scope in future studies. Again, it must be noted 

that there is currently is no rigorous or validated material model for the vagina, let alone 

characterization of prolapsed vaginal tissue. Previous studies have assumed the vagina to be an 

isotropic material, utilizing Neo-Hookean or Mooney-Rivlin models to represent this tissue (129, 

180, 181, 188). While the appropriateness of such models has not been assessed in terms of the 

mechanical response, structurally, vaginal tissue is not an isotropic material, as it contains 
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distinct fiber orientations in both the longitudinal and circumferential axes. This fiber orientation 

has even been shown to result in differing mechanical behaviors between these axes (182). The 

current study improves upon a previous hyperelastic models by incorporating embedded fibers in 

a Neo-Hookean ground substance, however this implantation only considers 1 fiber family, 

rather than the 2 orthogonal fiber families present in vaginal tissue. Better characterization of the 

fiber families present in vaginal tissue, as well as the interaction between these families (cross-

links, etc.), it vital to predicting the mechanical behavior of anisotropic tubular structures, such 

as the vagina. Further, mechanical characterization of vaginal tissue is required in order to 

develop such a robust material model. 

In addition, it must be noted that while the appearance of prolapse is similar between 

computational models and mid-sagittal slices, there is no quantitative validation of the model 

deformation. To fully understand the limitations and application of FE prolapse models and 

repair validation studies are required. Medical imaging modalities may prove useful in validation 

of the computational models proposed here, as a known load or displacement can be applied to a 

subject anatomy. The resulting deformation behavior can then be compared with computational 

predictions for the vagina or vagina-mesh complex. Such validation would be similar to those 

completed for hip FE models and can be performed with clinical patients, cadavers, or animal 

models (162).  
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4.4 CONCLUSIONS 

The use of computational modeling in the field of urogynecology is largely in its infancy, as 

many of the required model inputs are unknown or poorly characterized. Still, there is great 

potential for the use of finite element modeling in the pelvic floor to increase our understanding 

of disorders and predict the impact of clinical treatments prior to surgical intervention. In order 

to enhance the quality of computational simulations of the pelvic floor, it is imperative that 

researchers focus on characterizing this environment and validating the behavior of 

computational models.  

In Section 4, a method for creating patient specific geometries of the pelvic floor was 

developed. In turn, these geometries were utilized in finite element studies to simulate the 

development of prolapse and subsequent mesh repair. This work represents the first attempt to 

simulate the development of POP using solid, 3D finite elements that represent the anatomical 

geometry of the vagina. While the simulations here are limited, given the lack of inputs 

discussed above, this model is quite representative of the deformations observed in the clinical 

presentation of a cystocele. As such, it has proven useful in determining the impact of supportive 

structures, including mesh implantation, on the displacement of the anterior vaginal wall. 

Though validation is required to assess the accuracy of such models, the methods presented here 

clearly demonstrate the ability of computational models to analyze vaginal support, as well as the 
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development of prolapse and clinical treatment. Alone, this model allows for a wide range of 

variables to be considered, furthering our understanding of prolapse and mesh repair. Still, if 

model accuracy is desired, the inputs of this model must be improved. 

To this end, the work presented in Section 4 has dramatically improved the geometries 

used for computational analyses of the pelvic floor. The inclusion of actual surface geometries, 

variable vaginal cross-sections, and the orientation of the vagina in the pelvis, provides a more 

accurate representation of the pelvic floor and may greatly improve predictions of its overall 

mechanical behavior. For instance, a non-homogenous vaginal cross-section should dictate the 

manner in which the vaginal wall descends in response to application of force. Assuming 

homogeneous material properties, thinner vaginal cross sections are more likely to buckle 

relative to thicker cross sections. As such, these thin sections may result in regions of increased 

displacement (such as the vaginal bulge). In addition, vaginal orientation may noticeably impact 

the deformation of the vaginal wall. Specifically, one would expect vertically oriented vaginal 

geometries to result in displacements that are predominately in the distal direction (Patient 2), 

relative to geometries with increased horizontal alignment. Again, accurate material models and 

measured in-vivo forces are required in order to improve these simulations, however, the 

inclusions of accurate geometries is a significant advancement for this field.  
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5.0  CONCLUSION 

Overall, this dissertation has thoroughly examined the mechanical behavior of synthetic mesh, 

considering its use for the repair of pelvic organ prolapse (POP). Through the use of 

experimental testing and computational simulations, a tool to predict the response of synthetic 

mesh products has been developed and implemented to evaluate mesh in the pelvic floor. The 

findings presented here are crucial to the field of urogynecology and engineers working to 

improve treatments for pelvic floor disorders.    

5.1 CLINICAL IMPLICATIONS 

First, the deformation of synthetic mesh was examined in response to uniaxial loads. While ex-

vivo tensile testing of prolapse mesh has become quite common, this dissertation was the first to 

quantify the change in textile properties in response to mechanical forces. Importantly, it was 

shown that the porosity and pore diameter of mesh devices approach 0 with increasing tensile 

forces. This deformation is particularly concerning given that meshes consisting of small pores 

are associated with increased complication rates, relative to wide-pore devices (78, 85). Though 
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the impact of pore size has yet to be scientifically examined in the pelvic floor, overwhelming 

clinical evidence has found lightweight (often wide-pore) prolapse mesh to be superior, yielding 

fewer complications. Nevertheless, the impact of pore size on biological outcomes has been well 

documented in the hernia mesh literature. Specifically, many studies have demonstrated that the 

host response to polypropylene mesh is enhanced when pore diameters are less than 1mm. 

Though nearly all prolapse meshes in use today meet this design criteria in their unloaded state, 

this dissertation suggests that the mechanical forces applied during surgical tensioning or in 

response to in-vivo loads, results in mesh pores which are less than 1mm in diameter. This 

concept is important for clinicians to consider when placing mesh devices. 

 In addition, Aim 1 demonstrates that the manner in which synthetic mesh is fixed to a 

substrate, significantly alters the surface deformation in response to uniaxial loading. 

Specifically, discrete point loads where found to increase the amount of surface wrinkling, 

relative to mesh secured along the entire boundary. Bunching or wrinkling of mesh is commonly 

associated with locations of exposure, suggesting that increased mesh burden, resulting from 

wrinkling deformations, likely enhances the local immune response (102). Clinically, synthetic 

mesh is subjected to point loads via suture fixation, meaning that surgeons and vendors must 

consider both the number and the locations of suture placement. By placing sutures at ideal 

locations, surface wrinkling of mesh can be reduced, or potentially eliminated, to optimize mesh 

devices and procedures. 
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In the second aim, a novel computational model for synthetic mesh was developed and 

validated, comparing the experimental and simulated deformation of a transvaginal mesh 

product. This computational model was then used to examine the deformation a transvaginal 

mesh in response to a variety of loading conditions. For this specific mesh product, DirectFix A, 

it was determined that the magnitude of tensile force was the main factor driving increases in 

mesh burden, with significant pore collapse at just 1N. In addition, the location of maximum 

mesh burden was impacted by alteration of the upper arm loading angle. Per a clinician specified 

suturing technique, superiorly directed tensile forces greatly increased mesh burden between the 

upper arms, though pore collapse (measure by the number of pores < 1mm in diameter) was 

substantial for all loading angles at 1N. This computational tool is of tremendous importance for 

the field of urogynecology. The ability to simulate a variety of loading conditions provides an 

appreciation for the extent to which actual mesh devices (as opposed to strips of mesh for 

uniaxial testing) deform. The versatility of this model allows for a wide array of pore dimensions 

and product designs to be assessed, and provides a strong visual representation of the mechanical 

loading of mesh products that is relatable to clinicians.  

The final aim combined this computational model for synthetic mesh with patient 

anatomies in order to simulate cystocele and examine the deformation of mesh following 

implantation in the pelvic floor. Through the use of finite element modeling, it was shown that 

apical support defects result in the development of prolapse for certain patient anatomies. 

Importantly, it was demonstrated that tensioning of DirectFix A to anatomical fixation sites, 

greatly increases the amount of mesh burden, with a dramatic reduction of pore diameter in the 
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region between the superior mesh arms. The methods utilized in this aim are of great clinical 

importance, and have the potential to transform the treatment of POP. Specifically, these tools 

allow for mesh devices to be assessed in the pelvic floor environment prior to implantation, 

allowing for a new generation of devices to be optimized specifically for use in the pelvic floor. 

More importantly, clinicians can utilize these techniques to identify surgical fixation sites and 

select an optimal mesh design based on the needs of a specific patient. Such pre-surgical 

planning will minimize undesired mesh deformations and reduce the complication rates 

associated with synthetic prolapse mesh.  

As a clinician interpreting the findings of this dissertation, one must note that all the 

results presented provide a time zero perspective of synthetic mesh following implantation. In 

other words, the experimental and computational methods used here, ignore the potential effects 

of tissue ingrowth or the foreign body response on the structural mechanics of mesh. Though 

some may consider this a limitation, the concepts (pore diameter, tensioning, etc.) presented in 

this dissertation are most prevalent during surgical placement and in-vivo loading immediately 

following mesh implantation. At these critical time points, mesh devices are subjected to 

mechanical loads that dictate their configuration for the remainder of their lifespan. As such, we 

argue that this initial, or time zero, deformation is most important in determining the host 

response to synthetic mesh.  

Overall, I believe this dissertation highlights the importance of considering, and 

thoroughly understanding, the intended function of a medical device prior to clinical 

implementation. While this concept may seem obvious, the shortcomings of synthetic prolapse 
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mesh are a strong remainder that we as a field do not grasp the mechanisms responsible for 

vaginal support. This concept is extremely important for both the clinicians using these devices 

and the engineers designing medical products. Despite the limitations of this dissertation, the 

preliminary work presented above clearly exposes numerous concerns regarding the use of 

prolapse mesh. Unfortunately, during the transfer of mesh technology from hernia repair to 

prolapse repair, health care providers failed to acknowledge the importance of device function, 

leading to unacceptable complication rates. Ultimately, I feel that new mesh devices will be 

required to obtain satisfactory complication rates. Such devices should consider alternative 

synthetic materials that resist plastic deformation and can be constructed to maintain pore 

diameters, while yielding a minimal foreign body response. In conjunction with new synthetics, 

it is likely that tissue-engineering grafts may provide effective prolapse treatments. Though 

previous biologics have proven unsuccessful, the recent decade has seen tremendous 

advancement in the development of specialized organs and tissues for medical use. 

Regardless of the future changes in graft selection, the success of prolapse treatment is 

dependent on our understanding the pelvic floor environment. Though the rigor of the 

mechanical analyses performed here may be difficult to incorporate into clinical examinations, I 

believe that the main concepts presented in this dissertation are important for clinicians to 

consider when using synthetic mesh. Specifically, this dissertation highlights that tensioning, 

mesh orientation, and the locations of suture attachment can dramatically alter mesh 

deformation. While surgeons may not be able to measure these variables clinically, it is 

imperative that they understand the relationship between the manipulation of a device and a 
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patient’s outcome. Understanding this relationship alone will allow surgeons to alter their mesh 

selection (or at least trimming of the mesh), tensioning, and suture placement from patient to 

patient. Simply, a conscious awareness of the mesh behavior and understanding the pelvic floor 

function, would allow surgeons to more effectively utilize pelvic floor grafts. Clearly these 

variables govern mesh deformation and embedding these principals into clinical practice is key 

to altering the paradigm of prolapse treatment.      

5.2 ENGINEERING SIGNIFICANCE 

In addition, the results of this dissertation have a significant impact on our understanding of the 

mechanics of textile meshes and the biomechanics of the female pelvic floor. The mechanical 

behavior of textile products is an intense area of research, with many seeking to understand the 

complex nature of knitted and woven fibers (154). Such fiber networks are challenging to model 

due to the volume of interactions and fibers present, especially when considering devices on the 

scale of consumer and clinical textiles (107). Often the dimensions of the knit pattern are much 

less than those of a textile sheet, allowing for continuum approaches to be utilized; yet this is not 

the case for prolapse meshes. Given the discrete, or highly porous, nature of prolapse mesh, the 

approach used in this dissertation provides an effective method for simplifying textile 

architectures, while capturing the mechanical behavior of mesh devices. Most importantly, this 

approach allows for textile characteristics to be monitored in response to mechanical phenomena. 
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 The research presented here provides a substantial amount of information relating 

engineering principals to the field of urogynecology. To date, biomechanics in this field is 

largely undeveloped, especially compared to mature engineering fields such as orthopedics and 

cardiovascular systems. Yet, the pelvic floor features a wide array of mechanical functions, 

ranging from voiding, peristalsis, and childbirth, to the resistance of intra-abdominal pressure. 

Application of mechanical principals to such issues has great potential in terms of understanding 

the normal function of this environment, progression of disorders, and the treatment of disorders. 

To this end, the work presented here has shed light on many of the boundary conditions that must 

be considered when designing synthetic mesh implants for use in the pelvic floor. Specifically, 

the impact of tensile loading, suture placement, orientation of loads, and patient anatomies have 

all been found to produce mesh deformations that are associated with a detrimental host 

response. Utilizing the methods developed here, engineers can optimize synthetic mesh, or 

biological products, for repair of POP. These methods allow for rapid design iteration, while 

minimizing harm to patients or animals by selecting only optimal designs for implantation.  

 Aside from providing tools to develop synthetic meshes, this dissertation has significantly 

enhanced our understanding of vaginal tissue through the use of biaxial testing (Appendix A). As 

previously mentioned, urogynecological biomechanics is a relatively undeveloped field. 

Therefore, much of the experimental data and relationships found in established fields have yet 

to be determined. In order to address these shortcomings and improve computational models of 

the pelvic floor, a biaxial device was developed to allow for rigorous mechanical characterization 
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of compliant soft tissues. Specifically, this dissertation provides the first biaxial data and 

anisotropic constitutive model of vaginal tissue. Further, it was determined that smooth muscle

contraction increases the isotropic behavior of the vagina. These findings are vital for the 

development of accurate computational models and greatly enhance our understanding of vaginal 

tissue. 

 As mentioned above, this dissertation highlights the need for engineers to understand the 

environment in which medical products are intended to function. While engineering concepts are 

constant across a wide range of fields, it is the responsibility of an engineer to determine which 

principals are important for a given situation. To appropriately identify the variables or principals 

of interest, an engineer must thoroughly understand a given problem. In this sense, the 

shortcomings of previous mesh devices can be largely attributed to a lack of understanding of the 

pelvic floor. Likewise, the potential for future treatments is dependent better characterization of 

the biology and function of this environment. Throughout this dissertation, and our additional 

studies (which are not been presented here), numerous challenges have arisen from the unique 

behavior of the tissues in this space. In a majority of our studies, custom testing apparatuses were 

constructed to accommodate the complex boundary conditions of mesh devices, or the 

unexpected behaviors of organs and tissues that were observed during preliminary testing. The 

challenges presented by this complex network of tissues and their distinct behavior must be 

appreciated when developing treatments for the pelvic floor. Only once we understand and 

respect these characteristics can we as engineers truly create an optimal solution.  
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5.3 LIMITATIONS 

Importantly, it must be stated that the all of the work presented in this dissertation represents a 

first attempt to characterize the mechanical behavior of synthetic mesh in the pelvic floor. While 

the findings presented above greatly enhance our knowledge of this subject area, numerous 

assumptions and simplifications were made, largely stemming from the vast amount of unknown 

variables in this field. Therefore, the methods and results found in this dissertation have notable 

limitations. Though many limitations were discussed in their respective studies, several of these 

should be considered with respect to the overall conclusions.  

First, it should be noted that this dissertation did not examine all potential boundary 

conditions, or present a large-scale parametric analysis. Rather, this dissertation focused on 

recreating boundary conditions that were representative of that which synthetic mesh experiences 

in-vivo. For this reason, tensile forces were chosen in Aim 1, and as the feasibility of 

experimentally recreating such loading conditions became difficult, computational models were 

used. Still, it is clear that the deformation of mesh will not be the same for all products, or from 

patient to patient. While all meshes examined in this dissertation were found to yield undesirable 

deformations, it is probable that boundary conditions that eliminate such deformations exist. 

Given the overall efficacy of synthetic mesh repair, the effect of boundary conditions, combined 

with the variability in host response, reduces the complication rate to ~20%. In short, there is no 

“one size fits all” approach to mesh repair, and therefore, large-scale computational studies  
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should be pursued to access which variables are most important for yielding successful 

outcomes. Such information can then be used to develop new mesh products and provide 

guidelines for surgeons using synthetic mesh. 

Further, it must be noted that the computational model of synthetic mesh developed in 

this dissertation is limited in terms of its application. Specifically, our model was unable to 

accurately capture the out-of-plane deformations observed experimentally. It is challenging to 

capture the buckling of such thin textiles, and as such, modeling of this behavior may not be 

feasible using the solid element definitions employed here. Moreover, the computational 

frameworks for predicting this bending behavior require significant advancement prior to their 

inclusion in prolapse mesh simulations. Despite the shortcomings of this model, the framework 

developed here has provided a tremendous amount of information regarding the behavior of 

prolapse mesh devices, specifically allowing for the examination of textile properties in response 

to mechanical loads. As such, the current model provides a robust tool to guide the design of 

future products and direct their clinical implementation.  

In addition, the computational methods presented this dissertation only considered the response 

of square pores to mechanical loads. While this pore geometry is quite common among prolapse 

meshes, other configurations are currently in clinical use. Though similar methods for 

discretizing other polygonal-shaped pores would be feasible, the number of knot and fiber 

structures in the unit pore would likely increase. This, combined with non-orthogonal fiber 

directions, may require more rigorous structural testing in order accurately determine the   
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material behavior. For instance, a modified planar biaxial protocol (synthetic mesh is not a 

continuum, as such traditional planar biaxial analysis cannot be used) may be required to assess a 

wide array of fiber orientations and generate sufficient material models. 

Finally, additional information regarding the loading conditions and material properties 

of the pelvic floor are required to validate and develop accurate finite element simulations of 

prolapse and mesh repair. For instance, the boundary conditions of this environment are largely 

unknown, including the location of vaginal supportive structures and their material properties. 

Additionally, data regarding the forces placed on these structures and the attachments between 

pelvic floor constituents must be more thoroughly characterized. While parametric analyses 

allow current models to provide useful information, we must work to better characterize the 

pelvic floor in total. Currently, this is a major limitation for all FE models of the pelvic floor, 

though it can be readily addressed through mechanical testing and imaging diagnostics. 

Nonetheless, simple computational studies, such as those found here, are incredibly useful for 

determining which variables and principals are most vital for prolapse development and synthetic 

mesh treatment. 

5.4 FUTURE DIRECTIONS 

Overall, this dissertation has provided much of the groundwork for computational modeling of 

the pelvic floor and prolapse mesh repair. Though the results presented here provide significant 
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insight into mesh behavior and its use for prolapse repair, there remain several areas for 

improvement. As such, the maximum benefit of this research can only be attained through 

continued refinement and enhancement of the methods outlined in this dissertation.  

 Most importantly, future work must examine the impact of pore size on the host response 

in the pelvic floor. Such studies are widely documented in the hernia literature, yet as suggested 

by Pierce et al., the vagina may be more susceptible to complications (87, 123). Though fibrotic 

encapsulation of mesh filaments is commonly observed in the vagina, pore size and its impact on 

the host response has not been examined in previous vaginal mesh studies (75, 123). Pending the 

outcomes of such studies, more strict design criteria may be required for mesh use in the pelvic 

floor (i.e. requiring pore diameters greater than 1mm). While such findings will not directly 

impact the results presented in this dissertation, they will enhance the context in which 

simulations of mesh deformation are interpreted  

 In order to demonstrate the reliability of the simulations found in Aim 3, the 3D 

deformation of computational mesh models must be validated. Though boundary value problems 

involving surface wrinkling or bunching are computationally difficult, such behavior appears 

play a significant role in clinical outcomes. Numerical methods for examining such behavior are 

currently an area of intense research, though their use in FEA may not be available for some time 

(190, 191). Nonetheless, quantifying the accuracy of the current FE model would be beneficial 

for interpretation of these computational results. Additionally, clinical and experimental 

quantification of wrinkling via ultrasound or MRI, may provide definitive evidence regarding the 

impact of mesh burden on the host response (157).  
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Future studies must also work towards the advancement of computational models of the 

pelvic floor. Mechanical characterization of additional pelvic floor structures, including the 

development of constitutive models, is essential for representing the true behavior of this 

environment. In addition, future work must explore the boundary conditions of the pelvic floor. 

Specifically, better characterization of the in-vivo loads are required to enhance FE inputs. While 

placement of pressure transducers in the abdomen may provide such inputs, this technique may 

prove invasive and fail to accurately represent the forces placed on the vagina and its supportive 

structures. Rather, processing of in-vivo imaging diagnostics using methods such as hyperelastic 

warping (or other deformable image analyses), may prove to be ideal methods for determining 

in-vivo stresses or strains (192, 193). Still, the determination of these values is dependent on the 

accuracy of imaging modalities and the constitutive models used. 

Finally, patient specific modeling has tremendous potential in the field of urogynecology. 

The ability to understand variations in anatomy and its impact on synthetic mesh, provide the 

opportunity to personalize treatments. However, the greatest benefit of such data may come from 

the comparison of patient anatomies. Through quantification of anatomical positioning and 

statistical shape analysis, researchers can examine the development of pelvic floor disorders, in 

addition to the effects of synthetic mesh repair (194). Such analysis may prove useful in 

predicting populations who are at risk for developing prolapse, or which mesh device is optimal 

for a particular subset of women. This analysis would also provide researchers with a “standard” 

patient geometry that encompasses a standard deviation of anatomic variability. The 

development of standard, or average, patient geometries would provide vendors and researchers 
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with a baseline anatomy when developing mesh devices or procedures. While patient specific 

analysis is well suited for individual surgeries, the development of prolapse treatments, and 

products, requires larger populations to be considered.  

5.5 CLOSING 

In closing, I would like to thank all of those who have made this work possible. I am truly 

blessed to have worked with a number of incredible individuals throughout my graduate career. 

It has simply been an amazing experience working in this area of research, and having the 

opportunity to approach incredibly challenging problems that few have considered. Reflecting on 

this work, I believe that that we have truly made a difference and have made a tremendous 

impact on the field of urogynecology and clinical treatment of prolapse. Once again, thank you 

for all of your support. I know that we can all take great pride in the research presented here.  

 

Hail to Pitt. 
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APPENDIX A 

BIAXIAL TESTING OF VAGINAL TISSUE 

A.1 INTRODUCTION 

One of the greatest limitations of current FE simulations of the pelvic floor is the lack of data 

regarding the mechanical behavior of the tissues in the pelvic floor. Previous FE models have 

been created to examine tissue stretch during childbirth and to examine the deformations 

associated with cystocele or rectocele (180, 181, 195). In general, these models employ 

simplified vaginal and musculature geometries that are useful for understanding the general 

concepts of pelvic floor injury or presentation of prolapse. However, these studies have given 

little consideration to the impact of material properties on these outcomes. Often the vagina and 

other organs of the pelvic floor are assumed to be Neo-Hookean materials. While the method 

used to determine the material properties in many of these FE studies is unclear, a small number 
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of referenced publications imply that Neo-Hookean values were obtained from cadaveric tissues. 

Unfortunately, the properties of cadaveric tissues may differ significantly from women of age to 

gestate or even from tissues obtained from living women in general (183).  

Though it can be assumed that these studies were merely using the data that was 

available, it is concerning that this literature fails to acknowledge the impact of such important 

variables. Rather than attempting to define robust material models, these previous studies merely 

adjust FE boundary conditions and material properties in order to reproduce deformations that 

are clinically observed, without mention of their potential impact. Perhaps the greatest weakness 

of current FE modeling of the pelvic floor is the failure to perform sensitivity analyses on 

boundary conditions or material selection, providing little context for the accuracy of these 

models. Further, the differences between isotropic and anisotropic material behavior is likely 

more pronounced when a tubular vaginal geometries are used, a geometric consideration rarely 

included in previous modeling efforts. Until a thorough parametric analysis or validation study is 

performed, predictions offered by such models are limited and do not utilize the full potential of 

computational modeling.  

 Conversely, in this dissertation the vagina was modeled as a composite material with a 

Neo-Hookean ground substance with spherically embedded fibers in the Section 4.3. As 

previously discussed, the Young’s modulus and Possions ratio were chosen to approximate the 

stress-strain behavior of vaginal tissue observed during uniaxial tensile testing. While these 

values were obtained from a variety of animal species, the variation in material properties across 

these tissues was minimal (49, 187, 196). Still, application of a Neo-Hookean material requires 
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one to assume that tissue behavior is isotropic, an assumption that is likely not valid for vaginal 

tissue. The inclusion of embedded fiber model (Section 4.3) did was indeed isotropic in terms of 

its initial configuration, though this model was able to better approximate the highly non-linear 

stress-strain behavior of vaginal tissue, indicative of fiber recruitment. In addition, these fibers 

only resist tensile forces and do not generate force under compressive loading, another behavior 

associated with collagenous tissues (compressive loads are resisted by the ground substance). 

While the inclusion of fibers is more physiologically grounded, the implementation of a single 

fiber family is still not ideal for describing vaginal tissue.   

In order to improve the predictive capabilities of pelvic floor FE models, it is imperative 

that an appropriate material model for vaginal tissue is established. The vagina is central to 

pelvic support and is directly manipulated during prolapse repair. Development of an accurate 

vaginal material model will greatly advance the prolapse repair simulations, allowing for the 

interface between tissue and mesh to be better understood and providing more accurate 

predictions of stresses observed at this location. In mechanics it is known that the junction of two 

materials leads to stress concentrations at the material interface. The greater the mismatch in 

stiffness between two materials leads, the greater the stress concentrations at the interface. This 

interface is a primary area of concern for numerous medical implants, and the failure to consider 

this interaction has led to catastrophic device failures in other fields. For example, hip implants 

were associated with a high occurrence of native bone fractures in the 1990’s. Both 

computational and experimental analysis revealed that implants were mechanically stiffer (by 

orders of magnitude) relative to the bones in which they were in contact with. Such a disparity in 
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mechanical properties led to atrophy and damage of the surrounding bone, resulting from stress 

shielding and areas of increased stress concentrations. With advanced material models for the 

vagina, it will be feasible to quantitatively assess the role of stress shielding and stress 

concentrations, in relation to mesh complications, while avoiding designs that are unfavorable. 

Given that such measures may be impossible to obtain experimentally, POP repair simulations 

are likely the only manner in which such observations can be made.  

 Development of new material models for the vagina requires rigorous mechanical testing, 

in which the constituents of vaginal tissue can be manipulated and characterized in response to a 

wide range of loading conditions. Such experimental data can be attained through the use of 

planar biaxial testing. Planar biaxial testing has been used to characterize many tissues that 

exhibit anisotropic behavior (183, 197-200). Notably, this testing method has been used to 

construct detailed material models for cardiac tissues, including blood vessels and heart valve, 

describing their mechanical behavior while considering distinct fiber families with differing 

initial orientations (201). Recent biaxial studies have also explored the impact of muscle 

contraction on the biaxial properties of cardiac tissue, isolating the passive behavior of these 

tissues (202, 203). Such a mechanical description is well suited for vagina given the organization 

and composition of this tissue. Yet, planar biaxial testing of vagina tissue has not been performed 

to date, though studies have incorrectly termed ball burst testing as a “planar biaxial” method. 

Thus, the objective of this study was to rigorously characterize the planar biaxial mechanical 

behavior of the rat vagina, accounting for the effect of active smooth muscle contraction on these 

properties. In addition, a strain energy function will be used to describe vaginal biaxial data, in 
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order to elucidate the role of longitudinal and circumferential fibers, as well as the impact of 

smooth muscle contraction. We hypothesize that smooth muscle contraction will increased the 

stiffness of the vagina. 

A.2 METHODS 

A.2.1 Biaxial Testing Device Development  

Prior to mechanical testing of vaginal tissue, a planar biaxial testing device, appropriate for 

testing compliant soft tissues, was developed. The testing apparatus was designed for 

incorporation into a Bose Testbench system (Bose, Eden Prairie, Minnesota), which consisted of 

2 linear actuators and 2 reaction brackets. Each linear actuator had a stroke length of 12mm, 

where displacements were driven by manipulation of magnetic fields, producing “frictionless” 

movement. These electromagnetic based actuators are analogous to those found in speakers. 

Actuators were fixed along orthogonal axes (x and y) and a reaction bracket was fixed opposite 

of each motor. A 5lb (22.24N) load cell (Honeywell, Morristown, NJ) was then attached to each 

reaction bracket to measure the force along a given axis. A custom designed saline bath was 

placed between the actuator and load cell to ensure that tissues were kept hydrated throughout 

testing. In addition, a media circulation system was interfaced with the bath to maintain constant 

saline temperature and to provide even distribution of solutes added during mechanical testing. 

Circulation was maintained using a simple closed loop system, with a roller pump placed in 
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series (MasterFlex Roller Pump, Cole-Parmer, Vernon Hills, IL). Finally, a camera was 

suspended and leveled such that the lens was parallel to the bath, centered above the specimen. 

The camera was used to track the movement of optical strain markers throughout testing. 

 Preliminary planar biaxial testing conducted in our lab was limited due to the extreme 

compliance of vaginal tissue. During this testing, both virgin and pregnant rat vaginal tissue was 

isolated in tested biaxially (204). However a majority of samples experienced large deformations 

upon application of preload (6-10mm). Pregnant tissues were especially problematic; with the 

entire actuator stoke length traveled before preload values were reached. Further, inspection of 

the testing apparatus, found that the motion carriages, a structure used to connect the tissue to the 

load cell or actuator, introduced significant mechanical friction into measurements and restricted 

rotation of the tissue. Therefore, the actual loads and deformations of these specimens were 

subject to significant experimental noise produced by the motion carriages. 

 To improve upon the previous biaxial apparatus, a new linear carriage was designed and 

constructed with the goal of removing noise arising from friction (Figure 68). In order to remove 

internal friction, the motion carriages were redesigned utilizing a set of air bearings (New Way 

Air Bearing, Aston, PA). Air bearings utilize a porous carbon media to produce a bearing 

(contact) surface that consisting of a thin layer of air. The air membrane prevents the porous 

media and the moving surface (rotational or linear shaft) from contacting, with the rigid surface 

“hovering” above the bearing surface. The net effect is similar to that produced by an air hockey 

table. Briefly, carriage sleds were created with 2, 6-inch precision stainless steel rods (1/2 inch 

diameter, Tolerance: -0.0002 to -0.0007, NB Corporation of America) placed parallel to one 
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another, and between 2 endplates. The rear endplate was designed for attachment to the load cell 

or actuator, while the front end plate was attached to a thrust-bushing fixture. The parallel steel 

rods were tracked through 2, standard ½” air bearings, parallel with one another. Linear shafts of 

greater tolerances, or constructed from lighter materials (i.e. aluminum), did not track smoothly 

through air bearings, introducing friction into movements. 

A custom manufactured thrust bushing (0.625” diameter, New Way Air Bearing, Aston, 

PA) was used for frictionless rotation of the suture lines used to apply forces to the biaxial 

samples (discussed below). Thrust bushings are similar to air bearings, but include a flat air-

bearing surface in addition to a center bore, allowing for simultaneous suspension and rotation of 

a vertically oriented shaft with attached thrust facing. Each thrust bushing was attached to the 

front of a motion carriage (sled) using a custom fixture designed to overhang into the saline bath. 

Finally, a steel, forked shaft was constructed for placement in the thrust bearing, allowing for 

attachment of 2 separate suture lines. A pulley wheel (diameter = 9mm, groove width = 1mm) 

was placed on each of these forked rods for the placement of suture lines. A total of 4 motion 

carriages were created, with one attached to each actuator and load cell. It should be noted that 

all air-bearings were connected to a pressurized air source (80 PSI) during testing to allow for 

free movement of the rotational shafts and linear sled. All biaxial tests were performed on a 

pneumatic isolation table to eliminate noise from external vibrations.  
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Figure 68. Custom motion carriages where designed to minimized frictional noise during testing of compliant soft 

tissues. Air bearings (a) and thrust bushings (c) were used to provide frictionless linear and rotational carriage 

movements (b), thereby eliminating erroneous force measurements during testing. 

 

Upon completion of the air bearing sleds, a series of tests were performed to assess the 

internal friction. First, a load cell was attached to the linear actuator, and the linear sled was 

placed in series with the load cell. This configuration allowed for simultaneous displacement and 

load measurement for each carriage. Next, a sinusoidal displacement, with an amplitude of 2mm, 

was applied to each carriage. The displacement frequency was varied by orders of magnitude, 
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including 0.25, 0.5, 1, and 10Hz. These frequencies were chosen to assess the amount of internal 

friction as they represent a range of displacement rates utilized in previous uniaxial and biaxial 

testing protocols. Generally, slow displacement rates are used in planar biaxial testing to allow 

time for fiber rotation, however the displacement rate for a specific tissue should be selected 

based on its viscoelastic behavior or the specific research question (i.e. under slow strain rates, 

some tissue may dissipate all force). After testing, the carriage was detached from the load cell 

and actuator, and weighed on a digital scale. The sled weight and acceleration were used to 

determine the theoretical force observed during testing. Ideally, as the displacement frequency 

goes to 0, the measured force should go to 0, while higher frequencies should develop forces 

equal to the sled mass times the acceleration (Newton’s law). This testing was performed for all 

4 carriages. 

Overall, sleds performed well in terms of minimizing force development from carriage 

motion (Figure 69). The air bearings were particularly effective at frequencies below 1Hz, as the 

forces observed during experimental testing were below the sensitivity of the load cell used. 

Thus, while these measurements were variable, the effect of such forces during biaxial testing at 

frequencies below 1Hz is negligible for the load cells used in this study. However, noticeable 

errors were observed at 10Hz, with experimental forces ~0.5N greater than theoretical values. 

Such differences may be attributed to inertia of the actuator, load cell, or sled, and may even 

arise from assembly of the motion carriages. For instance, small misalignments of the linear 

track may result in elevated forces, as the linear shafts pass through the bearing. In addition, 
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instabilities of the carriage may result in spurious forces (whiplash, vibration, flex of the 

assembly, etc.) at the displacement peaks. Regardless, these results suggest that biaxial testing at 

high displacement should be avoided for the current carriage design.  

 

 

Figure 69. Representative validation results of “frictionless” linear movement for the air bearing sleds. As the 

frequency approaches 0, the acceleration of the sled approaches 0 (thus, F 0). Force measurements were 

negligible at displacement rates below 1Hz, showing good agreement between theoretical and measured values. 

However, differences became pronounced at higher frequencies, suggesting the presence of friction or instability of 

the motion carriage at relatively high displacement rates.  
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A.2.2 Experimental Testing  

Vaginal tissues were obtained from virgin Long-Evans rats (n=14) in accordance with the 

IACUC at the University of Pittsburgh (#12101017). Ten samples were used for preliminary 

testing in order to determine the specific protocol and demonstrate feasibility and repeatability of 

biaxial testing on rat vaginal tissue. The remaining 4 samples underwent the established protocol 

and analysis (described below). Immediately following euthanasia, the entire reproductive tract 

(vagina, cervix, uterine horns) was harvested en-bloc, using transabdominal and transperineal 

incisions (Figure 70). Next, the vagina was isolated using two transecting cuts, one just distal to 

the cervix and the other just proximal to the introitus. The vagina was then cut along its length, 

lateral to the urethra, achieving a square-planar configuration, with the length of the vagina 

representing the longitudinal axis and the width of the vagina representing the circumferential 

axis. Finally, the urethra was sharply removed from the lateral edge of the planar tissue sample 

and the specimen thickness was measured using a laser reflectance system. On average, tested 

vaginal samples measured ~12x12x0.6mm.  

For biaxial testing, suture lines were used to apply displacements to samples. In this 

study, #0 braided polyester suture was chosen, as this material was found to have desirable 

flexibility and minimal shape memory, relative to monofilament sutures. However, multifilament 

suture was found to permanently elongate during preliminary biaxial testing. To ensure that this 

plastic deformation did not influence biaxial measurements, all suture lines were pre-stressed 

under uniaxial tension to 10N of force, using a materials testing machine (Instron 5565, Grove 
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City, PA). A load of 10N was chosen, as this was roughly an order of magnitude greater than 

anticipated loads experienced during biaxial testing. To mount samples onto the custom designed 

rotational shafts, suture lines, tipped with barbed ends were anchored along the tissue parameter. 

Four evenly spaced hooks were inserted on each side of the specimen, ~1mm from each edge. 

This hook placement has been shown to create a homogenous strain distribution at the tissue 

mid-substance (205, 206). 

 

 

Figure 70. Sample preparation for biaxial testing. After explanting the reproductive track en-bloc, the 

vagina was isolated via proximal and distal transections at the cervix and inroitus (a, dashed-lines), respectively. The 

vagina was then cut along the length, just lateral to the urethra (b) and unfolded into a planar geometry (c). Finally, 5 

markers were placed on the luminal surface and 4 hooks were placed along each edge of the tissue (c, d).  

 

Following suture line attachment, 5 optical markers were adhered to the tissue mid-

substance in a square grid pattern. Samples were then placed in the bath, containing an 

oxygenated Krebs-bicarbonate solution, and each suture line was attached to a rotational shaft. 

Throughout testing, samples were kept in the warmed (~37°C), oxygenated Krebs-bicarbonate 
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solution, which was constantly cycled with a solution reservoir. The roller pump was turned off 

during testing to eliminate error in strain measurement resulting from movement of fluid over the 

optical markers.  

 

 

Figure 71. Schematic for biaxial testing of live tissue samples. A roller pump was used to deliver warmed 

media and distribute solutions intended to alter the contractile state of smooth muscle. 

 

After allowing 10 minutes for tissue equilibration, each axis was preloaded to 0.1N and 

ten cycles of equibiaxial preconditioning were performed to 100kPa. The sample was then 

subjected to a stress-controlled biaxial protocol, where the following stress ratios (PLL:Pθθ) were 
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considered: 100:100, 50:100, 75:100, 100:100, 100:50, 100:75, and 100:100 kPa. Here, the PLL 

and Pθθ are the 1st Piola-Kirchoff stresses for the longitudinal and circumferential axes, 

respectively. The tissue then underwent ten cycles of loading and unloading at each stress ratio. 

The final loading cycle was used for all analyses described below. Preliminary testing revealed 

that Pθθ ratios below 25kPa resulted in forces that were within the error of the load cells 

(<0.005N), leading to difficulty controlling actuator motion. After application of all stress ratios, 

the actuators were set to their home position (i.e. the position used prior to application of 

preload).  

Following baseline testing in Krebs solution, 120mM KCl was added to the bath to 

induce smooth muscle contraction, and tissues were again given 10 minutes for equilibration. 

The same preload, preconditioning, and stress ratios were then applied to the tissue in the KCl-

Krebs solution. The bath was then drained and the KCl solution was discarded. The tissue and 

bath were then rinsed with the heated Krebs-bicarbonate solution and given 10 minutes to 

equilibrate. This wash and equilibration procedure was repeated 3 times. Following the final 

rinse, 4mM EGTA (ethylene glycol tetraacetic acid) was added to the bath solution and the tissue 

was given 10 minutes for equilibration once again. Following equilibration in the EGTA-Krebs 

solution, the testing protocol (preload, preconditioning, and stress ratios) was repeated once 

more.  
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Figure 72. Entire biaxial testing apparatus. A camera was positioned above the specimen, parallel to the table, in 

order to record marker positions during testing. 

 

Throughout the entire testing procedure a camera was used to capture the position of the 

optical strain markers (Figure 72). Marker positions were used to determine Lagrangian strain 

using a digital video extensometer (DVE) and WinTest software (V4.1, Bose, Eden Prairie, 

Minnesota). Additionally, homogeneity of the strain field at the tissue mid-substance was 

assessed using a DSLR camera (Canon, EOS Rebel T3, Melville, NY) to record marker positions 

and a custom Mathematica (V9, Wolfram Alpha, Champaign, IL) script to track marker positions 

and determine experimental strains.  
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A.2.3 Areal Strain  

For all experimental testing, stress (load) was the independent variable, while strain was the 

dependent variable. In order to evaluate the deformation of vaginal tissue under biaxial stress, the 

peak strain values from the final cycle of each stress ratio were determined. In this study, peak 

strain refers to the final measured strain value in a given cycle, not the maximum strain attained 

during a loading cycle. In addition to peak strains for each axis, the peak areal strain was 

determined for each stress ratio, where areal strain is given by:  

𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐿𝐿𝐿𝐿 ∗ 𝐸𝐸𝜃𝜃𝜃𝜃 + (𝐸𝐸𝐿𝐿𝐿𝐿 + 𝐸𝐸𝜃𝜃𝜃𝜃)                               Eq. 4.2 

where ELL and Eθθ are the circumferential and longitudinal Lagrangian strains. 

Areal strain provides a measure of the overall extensibility of a tissue, accounting for the 

strain along both axes. More specifically, areal strain is the change in area of the planar specimen 

between the reference and deformed states. While this measurement was determined for all 

measured strains, only the peak (or final) areal strain was reported for each cycle.  

A.2.4 Stress - Strain Data  

For all data sets, applied stress ratios utilized the 1st Piola-Kirchoff stress tensor, P, where the 

non-zero components of P are given by: 

𝑃𝑃𝜃𝜃𝜃𝜃 = 𝑓𝑓𝜃𝜃
𝐻𝐻𝑋𝑋𝐿𝐿

                       𝑃𝑃𝐿𝐿𝐿𝐿 = 𝑓𝑓𝐿𝐿
𝐻𝐻𝑋𝑋𝜃𝜃

                                         Eq. 4.3 

  263 



 

Here, fθ and fL are the loads measured in the circumferential and longitudinal axis, H is the 

specimen thickness, and Xθ and XL are the unloaded dimensions of the sample in the 

circumferential and longitudinal of axes. In order to fit the selected constitutive model (discussed 

below) to this data, the 2nd Piola-Kirchoff stress tensor, S, was determined by: 

𝑺𝑺 = 𝑷𝑷 ∗ 𝑭𝑭−𝑇𝑇                                                        Eq. 4.4 

where F is the deformation gradient tensor. For each measured value of f, WinTest provides 

simultaneous measures of the Lagrangian strains, ELL and Eθθ. Unfortunately, due to software 

limitations, real time values of the marker positions could not be synched with the force values 

from WinTest in order to directly calculate F. However, preliminary biaxial testing of vaginal 

tissue revealed that the shear components of F were negligible. This was determined by 

analyzing digital recordings of marker displacement during testing using a custom strain 

calculation script in Mathematica (V9, Wolfram Alpha, Champaign, IL) based on a finite 

element method implemented by Humphrey et al (207). While our custom analysis did provide 

all components of the deformation gradient tensor, again, these values could not be synched with 

force values from WinTest. Still, these preliminary results provided sufficient evidence that shear 

strain was negligible for biaxial testing in this orientation (typically less than <1%). Assuming 

EθL = ELθ = 0, F can be simplified to: 

𝑭𝑭 =  �𝝀𝝀𝑳𝑳 𝟎𝟎
𝟎𝟎 𝝀𝝀𝜽𝜽

�                                                       Eq. 4.5 

where λL and λθ represent the stretch along the longitudinal and circumferential axes. Using their 

relation to the Green strain tensor, λL and λθ are given by: 
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𝜆𝜆𝐿𝐿 =  �2 ∗ 𝐸𝐸𝐿𝐿𝐿𝐿 + 1           𝜆𝜆𝜃𝜃 =  �2 ∗ 𝐸𝐸𝜃𝜃𝜃𝜃 + 1                           Eq. 4.6 

After determination of the axial stretch values, the deformation gradient could then be used to 

determine S via Equation 4.4. Though it is implied above, it should be noted that the loading 

conditions of experimental planar biaxial testing assume that SLZ = SθZ = SZZ = 0 and ELZ = EθZ = 

0. Additionally, EZZ can be computed assuming isovolumetric tissue deformation, resulting from 

the high water content of biological tissues (EZZ = λZ = (λL*λθ)-1). 

A.2.5 Strain Energy Function  

To develop a robust material model for the vagina, we sought to determine a representative 

material response using all data from this study. This was accomplished by adopting a 

constitutive model that characterizes the impact of smooth muscle contraction and describes the 

multi-axial loading of tissues. First, it was assumed that vaginal tissue can be modeled as a 

hyperelastic material, meaning that the stress state can be determined from a scalar strain energy 

function, and that this behavior is independent of strain rate or loading history (no time 

dependence). Following from Valdez-Jasso et al., assuming the tissue to be incompressible, S 

can be related to strain energy by (203): 

𝑺𝑺(𝑬𝑬) =  𝜕𝜕𝜕𝜕(𝑬𝑬)
𝜕𝜕𝑬𝑬

− 𝑝𝑝𝑪𝑪−1                                               Eq. 4.7 

where W is the strain energy (a scalar function) and C is the right Cauchy-Green tensor. Given 

that SZZ = 0, SLL, and Sθθ can be expressed as a function of the tissue deformation, while the 

Lagrange multiplier, p, is eliminated algebraically (201, 203).  
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 Additionally, it must be noted that the stress-control protocol used in this study resulted 

in the same sampling of stress-space for all tests, yet the measured strain responses were not 

necessarily similar between samples. This variation in strain-space prevents direct averaging of 

W(E) to determine a representative material response. Thus, the complimentary strain energy 

function, Wc(E), was required to describe general tissue behavior. Here, the complimentary 

strain energy function is defined as (203): 

𝑊𝑊𝑐𝑐(𝑺𝑺) =  𝑺𝑺:𝑬𝑬 −𝑊𝑊(𝑬𝑬)                                             Eq. 4.8 

where : is the contraction, or inner product of the tensors S and E. 

Next, a general form of the strain energy function was chosen such that (201): 

𝑊𝑊 = 𝑄𝑄𝛽𝛽 = �𝐴𝐴1𝐸𝐸𝐿𝐿𝐿𝐿2 + 𝐴𝐴2𝐸𝐸𝜃𝜃𝜃𝜃2 + 𝐴𝐴3𝐸𝐸𝐿𝐿𝜃𝜃2 + 2𝐴𝐴4𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝜃𝜃𝜃𝜃 + 2𝐴𝐴5𝐸𝐸𝐿𝐿𝜃𝜃𝐸𝐸𝐿𝐿𝐿𝐿 + 2𝐴𝐴6𝐸𝐸𝐿𝐿𝜃𝜃𝐸𝐸𝜃𝜃𝜃𝜃�
𝛽𝛽

    Eq. 4.9 

Given that shear term are negligible, this simplifies to: 

𝑊𝑊 = 𝑄𝑄𝛽𝛽 = �𝐴𝐴1𝐸𝐸𝐿𝐿𝐿𝐿2 + 𝐴𝐴2𝐸𝐸𝜃𝜃𝜃𝜃2 + 2𝐴𝐴4𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝜃𝜃𝜃𝜃�
𝛽𝛽

                           Eq. 4.10 

where a1, a2, a4 and β are model coefficients. Physically, a1 and a2, are stiffness measures for the 

longitudinal and circumferential axes respectively, while a4 is a measure of the axial coupling 

stiffness. In addition, β is a stiffness parameter that governs the nonlinearity of the strain energy 

function. The power form was chosen rather than a traditional Fung-type exponential, as it is 

directly invertible.  

Using this strain energy function, the axial stresses SLL and Sθθ are readily determined via 

partial differentiation of W, with respect to the corresponding component of the Green strain 

tensor, given by Equation 4.8: 
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𝑆𝑆𝐿𝐿𝐿𝐿 = 2𝛽𝛽𝑄𝑄𝛽𝛽−1(𝐴𝐴1𝐸𝐸𝐿𝐿𝐿𝐿 + 𝐴𝐴4𝐸𝐸𝜃𝜃𝜃𝜃)                                      Eq. 4.11 

𝑆𝑆𝜃𝜃𝜃𝜃 = 2𝛽𝛽𝑄𝑄𝛽𝛽−1(𝐴𝐴2𝐸𝐸𝜃𝜃𝜃𝜃 + 𝐴𝐴4𝐸𝐸𝐿𝐿𝐿𝐿) 

Solving Equation 4.11 for ELL and Eθθ, the components of the strain tensor are given by: 

𝐸𝐸𝐿𝐿𝐿𝐿(𝑆𝑆𝐿𝐿𝐿𝐿 ,𝑆𝑆𝜃𝜃𝜃𝜃) = 𝑄𝑄1−𝛽𝛽

2𝛽𝛽�𝑎𝑎1𝑎𝑎2−𝑎𝑎42�
(𝐴𝐴2𝑆𝑆𝐿𝐿𝐿𝐿 + 𝐴𝐴4𝑆𝑆𝜃𝜃𝜃𝜃)                            Eq. 4.12 

𝐸𝐸𝜃𝜃𝜃𝜃(𝑆𝑆𝐿𝐿𝐿𝐿 ,𝑆𝑆𝜃𝜃𝜃𝜃) =
𝑄𝑄1−𝛽𝛽

2𝛽𝛽(𝐴𝐴1𝐴𝐴2 − 𝐴𝐴42) (𝐴𝐴1𝑆𝑆𝜃𝜃𝜃𝜃 + 𝐴𝐴4𝑆𝑆𝐿𝐿𝐿𝐿) 

Substituting Equation 4.12 into Equation 4.10, allows for Q to be defined as: 

𝑄𝑄 (𝑆𝑆𝐿𝐿𝐿𝐿 ,𝑆𝑆𝜃𝜃𝜃𝜃) = 1

(4𝛽𝛽�𝑎𝑎1𝑎𝑎2−𝑎𝑎42�
1
2𝛽𝛽−1

 �𝐴𝐴2𝑆𝑆𝐿𝐿𝐿𝐿2 + 𝐴𝐴1𝑆𝑆𝜃𝜃𝜃𝜃2 − 2𝐴𝐴4𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝜃𝜃𝜃𝜃�
1
2𝛽𝛽−1          Eq. 4.13 

Given these definitions, complimentary strain energy can be written as a function of the stress 

components: 

𝑊𝑊𝐶𝐶(𝑆𝑆𝐿𝐿𝐿𝐿 ,𝑆𝑆𝜃𝜃𝜃𝜃) = (2𝛽𝛽 − 1) ∗ 𝑄𝑄(𝑆𝑆𝐿𝐿𝐿𝐿 ,𝑆𝑆𝜃𝜃𝜃𝜃)                                Eq. 4.14 

 For each specimen, model coefficients (a1, a2, a4, β) were determined by combining 

stress-strain data from all stress ratios (5 total, as only the final 1:1 ratio was included). This data 

provided a detailed description of the stress-space (SLL-Sθθ). Optimal values for model 

coefficients were determined by fitting Equation 4.12 to experimental ELL and Eθθ values from 

all stress ratios for a given sample, and contractile state, simultaneously, using a Marquardt-

Levenburg algorithm. Thus, 3 sets of coefficients were determined for each specimen, one for 

baseline, KCl (smooth muscle contracted), and EGTA (smooth muscle relaxed) trials. 
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To determine representative values for model parameters, WC (Eq. 4.14) was calculated 

for each trial over a grid of evenly spaced SLL and Sθθ coordinates, ranging from 0-100kPa, in 

increments of 0.0015kPa. WC values were then averaged on a point-by-point basis for each 

coordinate in the stress-space (SLL-Sθθ). Representative model coefficients were determined by 

fitting averaged WC values with Equation 4.14, using a Marquardt-Levenburg algorithm. A set of 

representative values was determined for baseline, KCl, and EGTA trials separately. 

A.2.6 Statistics  

To examine the impact of smooth muscle contraction on areal strain, a repeated-measures 

ANOVA was used to compare KCl and EGTA trials. The coefficient of determination, R2, and 

root mean square (RMS) error were used to assess the quality of fit to individual data sets, 

including average WC data. In addition, a one-way ANOVA was used to compare fitted 

parameters between contractile states (KCl vs. EGTA), with a significance value of 0.05.  

A.3 RESULTS 

In response to the preload, nearly all samples experienced large strains (up to ~70%) relative to 

unloaded configuration, though preload strains were highly variable between samples. Preload 

strains were comparable between the 3 trials for each specimen, however KCl trials reached 

greater preload strains for both ELL and Eθθ for nearly all samples tested. Examination of areal 
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strain clearly demonstrated the impact of muscle contraction on tissue preload strain as KCl 

increased areal strain by 6-117% (majority were ~15%), relative to baseline trials. Addition of 

EGTA was found to return areal strain to baseline values (Figure 73, p > 0.05), significantly 

lower than strains measured during KCl trials (p = 0.02). While strains were variable between 

samples, the clear impact of KCl and EGTA suggests that tissue samples were indeed viable 

throughout testing. 

 

 

Figure 73. Upon application of preload, all vaginal samples experienced noticeable strains. Comparison of the 3 

trials for each specimen revealed that preload areal strains for KCl trials were significantly greater than baseline and 

EGTA strains (p = 0.02). EGTA was found to return areal strains to baseline levels (p > 0.05). 
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To standardize loading history across samples, all measurements were made relative to 

the preloaded reference state, zeroing the strain values after application of the preload (Figure 

74). Overall, samples did not appear to experience plastic deformation following preconditioning 

or completion of individual trials (strains returned to ~0%). Interestingly, circumferential loading 

curves exhibited increased nonlinearity, relative to the longitudinal axis, though both axes were 

found to have little to no toe region (Figure 75). The absence or reduction of this toe region is a 

stark contrast to previous uniaxial studies of rat vaginal tissue. In addition, application of lower 

stress values on the longitudinal axis led to greater magnitudes of strain on the circumferential 

axis and vice versa, demonstrating axial coupling (Figure 75). Notably, holding SLL at 100kPa, 

while decreasing Sθθ to 50kPa and 75kPa, occasionally led to negative strains along the 

circumferential axis. While the magnitude of negative strains varied, nearly all circumferential 

loading curves exhibited decreasing strains at some point for these stress ratios. 

 

 

Figure 74. To standardize the loading history of all samples, measured strain values were normalized by the final 

preload strain. Therefore, all stress-strain data used to determine strain energy parameters was referenced to the 

preloaded state, rather than the unloaded state.  
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Figure 75. Representative biaxial stress-strain data for vaginal tissue. The circumferential (circ.) axis typically 

exhibited increased nonlinearity relative to the longitudinal (long.) axis, though both axes quickly increased in 

stiffness. The stress ratio noticeably impacted the stress-strain curves for both the long. and circ. axes, demonstrating 

axial coupling. Please note that the stress-strain data above is not referenced to the preloaded state. This was chosen 

to visually separate circ. and long. curves. 

 

In general, the chosen strain energy function was able to capture the complex axial 

interactions observed during biaxial loading, producing good fits to experimental data with an R2 

value of 0.88 and RMS error of ~0.001 for both KCl and EGTA groups. Plotting the predicted 

loading curves, reveals distinct axial coupling, as both ELL and Eθθ vary depending on the stress 

ratio. Impressively, all fit variables showed little variance following normalization of stress-

strain data. In addition, model coefficients were found to highlight distinct differences in tissue 

behavior between contractile states. The coefficient a1 was nearly 41% greater for EGTA trials 

relative to KCl trials, suggesting that smooth muscle contraction decreased the stiffness of the 
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longitudinal axis (p = 0.013). The nonlinear stiffness parameter β was also significantly 

increased for EGTA trials, though this increase was roughly 5% (p = 0.048). Still, small changes 

in nonlinear parameters, such as β, can dramatically impact the behavior of tissues. In general, 

representative and mean values were similar for all parameters, though representative values 

were appropriately determined by averaging specimen strain energy in the same SLL-Sθθ space 

(WC). 

 

Table 8. Best fit parameters for KCl and EGTA trials. KCl was found to significantly decrease a1 and β values 

relative to EGTA trials, indicating a decrease in stiffness. Values are represented as mean ± std., while values in 

parenthesis are the representative model parameters for KCl and EGTA groups. * indicates significant differences 

between KCl and EGTA groups (p < 0.05). 

 

 

Visualization of the strain energy and complimentary strain energy functions highlight 

distinct differences in tissue behavior between KCl and EGTA trials. Regardless of contractile 

state, the distinct asymmetry of the strain energy plots (W and WC) reveals that the rat vagina 

behaves as an anisotropic material, with a stiffer longitudinal axis. This is in agreement with 

model parameters, as representative a1 values are 44% and 64% greater than a2 values for KCl 
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and EGTA trials, respectively. This is indicated by the increased number of contours along the 

longitudinal axis, relative to the circumferential axis in Figure 75 (top plots). Interestingly, the 

vaginal mechanics were increasingly isotopic for KCl trials, relative to EGTA trials (Table 8, 

Figure 76).  

Contour plots of the representative-complimentary strain energy functions provide a 

detailed view of the stress-space probed by the stress-controlled protocol used in this study. 

Again, the distinct anisotropy of these contours well illustrates the anisotropy of vaginal tissue, 

with KCl treated tissues behaving in a more isotropic manner. Complimentary strain energy plots 

highlight the increased compliance of the circumferential axis, as complimentary strain energy 

more rapidly increases along this axis. It is important to note that the maximum complimentary 

strain energy (WC) for the experimentally tested range (up to 100kPa), is just 4kPa, less than half 

of that maximum value in the strain energy (W) plots. Though experimental Eθθ values 

commonly exceeded 20%, ELL values were often less than 10% suggesting that much of the 

plotted longitudinal strain-space for strain energy plots consists of extrapolated data. Simply, 

values closer to the y-axis were experimentally observed while, values at increasing ELL values 

are based on model predictions.  
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Figure 76. Contour plots of the strain energy (W, top) and complementary strain energy (WC, bottom) for KCl (left) 

and EGTA (right) groups. Plots were generated using representative model parameters. W and WC demonstrate 

anisotropic tissue behavior, with a stiffer longitudinal axis relative to the circumferential axis. KCl was found to 

decreases tissue anisotropy, significantly reducing the stiffness of the longitudinal axes, though it remains nearly 

twice as stiff as the circumferential axis (Table 8). 
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A.4 DISCUSSION 

Currently, there is limited information regarding the mechanical behavior of biological tissues in 

the female pelvic floor. In order improve the inputs for FE models of the pelvic floor and 

enhance the predictive capabilities of such models, robust material models must be created for 

these tissues. To this end, the goal of this study was two-fold; 1) design a biaxial testing 

apparatus for compliant soft tissues and 2) evaluate the biaxial mechanical properties of the rat 

vagina. A strain energy function was then fit to biaxial data in order to characterize the 

mechanical behavior of the vagina, considering the role of smooth muscle contraction on its 

biaxial properties. In this study, it was shown that the rat vagina exhibits a distinct, anisotropic 

behavior, with a stiffer longitudinal axis relative to the circumferential axis, regardless of 

contractile states. In general, muscle relaxation resulted in greater strain energy at comparable 

strains, with values more rapidly increasing in the longitudinal direction. Interestingly, smooth 

muscle contraction was found to increased tissue compliance, primarily along the longitudinal 

axis. This study provides the first quantitative description of vaginal anisotropy and highlights 

the impact of smooth muscle contraction on the mechanical behavior of the vagina. 

Preliminary testing demonstrated the extreme compliance of virgin vaginal tissue, as 

preload strains were typically on the order of 40%, though occasionally much greater strains 

were observed along the circumferential axis. On average, the preload was equal to a stress 

~20kPa relative to the unloaded state, which is a considerable level of stress, given the stress 

ratios used in this study. The large increases in strain upon preloading for each axis suggests a 
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substantial amount of crimp within vaginal tissue. Most surprisingly, smooth muscle contraction 

clearly altered the final strain values after preloading, with KCl groups averaging 15% greater 

areal strain relative to EGTA trials. Though such increases were variable between samples, 

comparison of KCl and EGTA trials within samples provided significant evidence to suggest that 

preload strains were increased following smooth muscle contraction. This behavior likely results 

from increased collagen crimp present within the extracellular matrix (ECM) of the vagina 

following muscle contraction. Thus, additional crimp would require further displacement before 

accruing the same preload as relaxed smooth muscle trials, manifesting as increased strain.  

Given the variable nature of preload strains, all trials were normalized by this strain in 

order to standardize the loading history between specimens. This was justified as all tissues and 

suture lines appeared taught following application of the 0.1N preload. Still, it must be noted that 

all measurements in this study were made relative to the preloaded reference state, rather than the 

true unloaded configuration. As such, the predictions based on this data for vaginal tissue may 

not fully capture the toe region exhibited by vaginal tissues. Applying preloads to extremely 

compliant tissues, such as the vagina, is a challenging process given that low levels of force 

(0.1N) can result in significant deformation. The difficulty in applying this preload demonstrates 

the need to minimize noise in force measurements, highlighting the importance of the 

“frictionless” motion carriages. Still, future biaxial studies of vaginal tissue may require load 

cells of increased sensitivity, as the preload used in this study approached our load cell 
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resolution. Such studies may provide additional information regarding fiber requirement in 

vagina tissue. Nonetheless, the present study effectively demonstrated the impact of smooth 

muscle contraction, which was quite significant at the stress values used in this study.  

 Importantly, this study demonstrated the anisotropic behavior of the rat vagina. 

Specifically, the longitudinal axis was found to be nearly twice as stiff as the circumferential axis 

(parameter a1 vs. a2) regardless of smooth muscle contraction. However, smooth muscle 

contraction significantly reduced the stiffness of the longitudinal axis (~41%), while 

circumferential stiffness (a2) decreased by just 8%. Thus, smooth muscle contraction resulted in 

stiffness values that were increasingly similar between the two axes, producing an increased 

isotropic response, relative to that observed with relaxed smooth muscle. This finding contradicts 

our hypothesis, as smooth muscle contraction decreased the stiffness of the longitudinal axis, 

thereby altering tissue anisotropy. In agreement with observations of increased preload strain, it 

is likely that smooth muscle contraction increased the initial crimp of the collagen fibers, thereby 

altering the toe region for both the longitudinal and circumferential axes. 

When characterizing vaginal biaxial mechanical data from a stress-controlled protocol, 

traditional methods for accessing tissue behavior (maximum tangent modulus, maximum strain, 

etc.) were ineffective. Such measurements suffered from extreme variability, arising from the 

complex axial interactions observed during testing. Specifically, the behavior of each axis was 

highly dependent on the stress ratio applied, with greater stress values limiting and occasionally 

decreasing the strain (contraction) on the orthogonal axis. However, it was not uncommon for 

one axis to initially experience increasing strain with increasing stress, then suddenly exhibit 
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decreasing strain (passive contraction) as stress continued to increase. Such behavior may be 

attributed to Poissons effect, though the complex shape of these loading curves may suggest 

significant interplay between the orthogonal axes. Regardless, the complexity of these stress-

strain curves led to difficulties in determining the tangent modulus and large variability for such 

measurements.  

While simplistic determination of loading curve variables did not capture the behavior of 

vaginal tissue, application of a strain energy function was extremely effective in characterizing 

this biaxial behavior. Not only was the chosen strain energy function able to provide good fits to 

biaxial data, it was able to eliminate much of the experimental noise and provide insight into the 

fundamental differences in vaginal mechanics with and without smooth muscle contraction. The 

strain energy function used in this study was selected as it considers two main loading axes (a1 

and a2 terms) and the interaction between these axes (a4 terms). Given the structure of the vaginal 

muscularis, it was apparent that these behaviors were necessary in order to accurately represent 

the tissue behavior. It should be noted that the form used here does not include shear terms, as 

these were determined to be 0 for the current study. Additional testing may investigate the 

impact of shear by orienting the longitudinal and circumferential axes at 45° relative to the 

loading axes, and conducting a similar protocol. Such studies have previously been performed 

for heart valves (201). However, the rat vagina is likely not large enough for samples to be cut 

and tested in this orientation, given the dimensions considered in this study. Therefore, such 

testing would not be possible on the current biaxial device or until biaxial testing boundary 

conditions are developed to ensure that samples of smaller dimensions can develop homogenous 
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strain fields at the tissue mid-substance. Alternatively, other animal species may be considered, 

though few species have vaginal tissues that meet the planar assumption (length >> thickness) of 

biaxial testing. Given the difficulties in procuring human vaginal tissue, and the overall thickness 

of this tissue, it may not be reasonable to test the human vagina biaxially. This underscores the 

importance of developing animal models for pelvic floor research and characterizing the 

relationship (similarities and differences) of animal tissues to human analogues (1, 49, 196). 

Given the similarities in vaginal mechanics observed in uniaxial tests, it is likely that biaxial 

behavior is comparable across species. 

Though this biaxial study employed a stress-controlled protocol, a strain-controlled 

protocol was considered. Preliminary tests were used to explore this feedback mechanism, yet 

strain data obtained from the digital video extensometer (DVE) was quite noisy, and introduced 

difficulty into actuator control. While strain-control may be analogous to deformation driven 

events such as a fetus passing through the vaginal canal, the vagina often responds to the 

application of force, including internal and external pressures. Stress-controlled do not require an 

axis to reach a specified stretch, allowing fiber requirement and axial interactions to dictate the 

deformation behavior of the tissue. This is dissimilar from strain-controlled protocols, which 

may restrict the effects of fiber behavior. Still, strain-control may be appropriate for mimicking 

certain in-vivo behaviors. Given the differing perspectives provided by these protocols, their 

benefits and limitations must be considered during data analysis and upon selection (and 

development) of constitutive models. 
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Overall this study provides great insight into the mechanical behavior of vaginal tissue, 

stressing the need to consider its anisotropy and contractile state in FEA. Indeed, this is the first 

study to quantitatively demonstrate the anisotropic behavior of vaginal tissue and the first to 

demonstrate the significant impact of smooth muscle contraction it’s the behavior. Such novel 

findings highlight the limitations of previous FE models of the pelvic floor, and more 

importantly provide necessary data to improve the accuracy of these simulations. Further, the 

biaxial device developed in this study can be used to further examine connective tissues and 

other compliant tissues of the pelvic floor, in order to develop better material models for 

computational studies. Though not completed in this study, the derived mechanical description of 

the vagina can be implemented in constitutive relationships for FEA. In addition, fiber based 

constitutive models should be examined for vaginal tissue and contrasted with the constitutive 

model derived in this study. 
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APPENDIX B 

POROSITY AND PORE DIAMETER CALCULATION 
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APPENDIX C 

DETERMINATION OF SURFACE CURVATURE 

C.1 CUVRATURE CALCULATION 
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C.2 CUVRATURE VISUALIZATION 

% Code to read in and plot curvature results 
% Bill Barone 
% Created 6-15-12 
% Last Modified 9-11-12 
  
clear all 
clc 
  
% ZData = xlsread('PredictedZdata2000pts.xls'); 
Data = importdata('TotalSurfaceResults.txt'); 
X = transpose(Data(:,1)); 
Y = transpose(Data(:,2)); 
Z = transpose(Data(:,3)); 
%k1 = transpose(Data(:,6))/100; 
k2 = transpose(Data(:,7))/100; 
k1 = transpose(Data(:,19))/100; 
%k2 = transpose(Data(:,20))/100; 
GaussianCurvature = transpose(Data(:,10))/100; 
MeanCurvature = transpose(Data(:,21))/100; 
Uk1 = transpose(Data(:,11)); 
Vk1 = transpose(Data(:,12)); 
Wk1 = transpose(Data(:,13)); 
Uk2 = transpose(Data(:,14)); 
Vk2 = transpose(Data(:,15)); 
Wk2 = transpose(Data(:,16)); 
  
mean(abs(k1)) 
var(k1) 
  
%Create Plot for Major Curvature k1 
%quiver3 creates vector plot from imported data 
% quiver3(X,Y,Z,Uk2,Vk2,Wk2,'black','ShowArrowHead','off') 
% set(gca,'DataAspectRatio',[1,1,1]) 
% hold on 
  
%use delaunay triangulation to create surface use interpolation of 
%curvature function from mathematica code for surface coloration 
TRI = delaunay (X,Y); 
  
trisurf(TRI,X,Y,Z) 
figure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Original meshes before the cleaning the triangulation 
  
trisurf(TRI,X,Y,Z,k1) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
  
colorbar 
title('Major Curvature k1') 
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%colorbar('location','southoutside') 
%figure 
  
%repeat process for Minor Curvature k2 
% quiver3(X,Y,Z,Uk2,Vk2,Wk2,'black','ShowArrowHead','off') 
% set(gca,'DataAspectRatio',[1,1,1]) 
% hold on 
trisurf(TRI,X,Y,Z,k2) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
title('Minor Curvature k2') 
caxis([-8, 8]) 
colorbar 
%figure 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Clean the mesh using Rouzbeh's code 
%clean_mesh.m is property of Rouzbeh Amini and is not included for print 

in this dissertation 
  
factor_std = 2.5; 
TRI2 = clean_mesh( TRI,X,Y,Z, factor_std ); 
  
  
% quiver3(X,Y,Z,Uk1,Vk1,Wk1,0.25,'black','ShowArrowHead','off') 
% set(gca,'DataAspectRatio',[1,1,1]) 
% hold on 
trisurf(TRI2,X,Y,Z,k1) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
caxis([-4.5, 4.5]) 
colorbar 
alpha(.9) 
title('Major Curvature k1') 
%colorbar('location','southoutside') 
figure  %for some reason this figure does not print correctly, but if 

the code is copied and pasted directly below the following plot is correct 
  
%Cleaned Major Curvature k1 
quiver3(X,Y,Z,Uk1,Vk1,Wk1,1,'black','ShowArrowHead','off') 
set(gca,'DataAspectRatio',[1,1,1]) 
hold on 
trisurf(TRI2,X,Y,Z,abs(k1)) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
title('Major Curvature k1') 
alpha(.9) 
caxis([0,1]) 
colorbar 
figure 
  
%repeat process for Minor Curvature k2 
quiver3(X,Y,Z,Uk2,Vk2,Wk2,1,'black','ShowArrowHead','off') 
set(gca,'DataAspectRatio',[1,1,1]) 
hold on 
trisurf(TRI2,X,Y,Z,abs(k2)) 
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shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
title('Minor Curvature k2') 
alpha(.9) 
caxis([0, 0.5]) 
colorbar 
figure 
  
%Max Curvatures (I calculated this as Major Curvature) 
% quiver3(X,Y,Z,Uk1,Vk1,Wk1,0.25,'black','ShowArrowHead','off') 
% hold on 
% quiver3(X,Y,Z,Uk2,Vk2,Wk2,0.25,'m','ShowArrowHead','off') 
% set(gca,'DataAspectRatio',[1,1,1]) 
% hold on 
trisurf(TRI2,X,Y,Z,abs(k1)) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
title('Maximum Curvature') 
alpha(.9) 
%caxis([0,max(abs(k1))]) 
caxis([0,1.8]) 
colorbar 
view(0, 90) 
figure 
  
%GaussianCurvature 
% quiver3(X,Y,Z,Uk1,Vk1,Wk1,0.25,'black','ShowArrowHead','off') 
% hold on 
% quiver3(X,Y,Z,Uk2,Vk2,Wk2,0.25,'m','ShowArrowHead','off') 
% set(gca,'DataAspectRatio',[1,1,1]) 
% hold on 
trisurf(TRI2,X,Y,Z,GaussianCurvature) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
title('GaussianCurvature') 
alpha(.9) 
caxis([-40, 40]) 
colorbar 
view(0, 90) 
figure 
%MeanCurvature 
% quiver3(X,Y,Z,Uk1,Vk1,Wk1,0.25,'black','ShowArrowHead','off') 
% hold on 
% quiver3(X,Y,Z,Uk2,Vk2,Wk2,0.25,'m','ShowArrowHead','off') 
% set(gca,'DataAspectRatio',[1,1,1]) 
% hold on 
trisurf(TRI2,X,Y,Z,MeanCurvature) 
shading interp  
set(gca,'DataAspectRatio',[1,1,1]) 
title('MeanCurvature') 
alpha(.9) 
caxis([-1,1]) 
colorbar 
view(0, 90) 
figure 

 

  308 



 

APPENDIX D 

BIAXIAL CONSTITUTIVE MODELING 
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