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ABSTRACT 

This dissertation sought to examine the effect of exposure to fine particulate matter ambient air 

pollution (PM2.5) on cardiovascular disease and biological pathways linking them. 

In the first manuscript, PM2.5 air pollution was significantly associated with IHD and 

PVD mortality in Allegheny County, PA at a lag of 5 days, for the period 1999-2011. The risk of 

IHD mortality due to PM2.5 was significantly greater for individuals who died outside of a 

hospital or nursing home compared to deaths in the hospital or nursing home.  

In the second manuscript, overall, there were no appreciable effects of short and long-

term exposure to PM2.5 air pollution with regard to biomarkers of cardiovascular risk i.e. CRP, 

WBC count, homocysteine and fibrinogen, after adjusting for demographic and cardiovascular 

risk factors in adult NHANES participants for the period 2001-2008. However, we did find some 

evidence suggesting stronger associations of PM2.5 with biomarkers of cardiovascular risk in 

participants with elements of metabolic syndrome e.g., obesity, diabetes, hypertension and 

smokers. 

In the third manuscript, individuals with preexisting metabolic syndrome compared to 

individuals without preexisting metabolic syndrome, showed a stronger positive response in 

systemic inflammation, as manifested by CRP and WBC count, in association with PM2.5 air 
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pollution (both short term and long term), after adjusting for demographic and cardiovascular 

risk factors in adult NHANES participants for the period 2001-2008  

Further research is warranted to confirm these findings in large cohorts. With one third of 

the U.S. population compromised by metabolic syndrome, the health impact of particulate air 

pollution in this sensitive population is likely to be significant and emphasizes the public health 

importance of this body of work.  
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1.0  INTRODUCTION 

According to World Health Organization, globally, 3.7 million deaths were attributable to 

ambient air pollution in 2012. 80 % of these deaths attributable to ambient air pollution were due 

to ischemic heart diseases and stroke[1]. Cardiovascular diseases (CVD) including ischemic 

heart diseases and stroke is a major cause of death in United States (US) and globally. Although, 

rates of deaths attributable to CVD have declined over the years in US, it still accounts for 1 in 

every 3 deaths. The economic burden to society is huge considering that the total direct and 

indirect cost of CVD and stroke in the United States for 2010 is estimated to be $315.4 billion 

[2]. American Heart Association (AHA) in its 2010 statement reported that exposure to short 

term and long term levels of PM2.5 increases risk for CVD morbidity and mortality. Many 

credible pathological mechanisms have been elucidated that support the biological plausibility of 

these findings. These include systemic inflammation, systemic oxidative stress, thrombosis and 

coagulation, systemic and pulmonary arterial blood pressure responses, vascular (including 

endothelial) dysfunction, cardiac ischemia, and heart rate variability/autonomic dysfunction[3]. 

However, the epidemiological evidence that explains these mechanisms is still inconclusive.  
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1.1 PARTICULATE MATTER AMBIENT AIR POLLUTION AND 

CARDIOVASCULAR DISEASE 

Epidemiological studies have consistently demonstrated link between particulate matter (PM) 

ambient air pollution and CVD. In broad term, studies can be separated into those that have 

investigated the health effects of acute and chronic air pollution exposure. Brook et al. (2010) 

extensively reviewed available evidence to study relationship of PM air pollution and CVD. In a 

scientific statement from the AHA, they summarized that there is a small, yet consistent 

association between increased mortality and short term elevations in PM10 and PM2.5. They 

concluded that for every 10 μg/m3 elevation in PM2.5 during the preceding 1 to 5 days, there is 

increase of 0.4% to 1.0% in daily mortality specifically cardiovascular death and for every 10 

μg/m3 elevation in long term average PM2.5 exposure, there is approximate 10 % increase in all-

cause mortality. Mortality risk from CVD was elevated to similar extent, although range was 

very broad. Hospital admissions due to CVD were also elevated in response to daily changes in 

PM levels. They also concluded that there is a strong evidence of PM effect on ischemic heart 

disease, moderate (yet growing) for heart failure &  ischemic stroke and modest or mixed for 

peripheral vascular and cardiac arrhythmia/arrest[3]. 

1.1.1 PM2.5   Ambient Air Pollution and Cardiovascular Mortality 

Several studies have been conducted in Unites States and other parts of world after AHA 

statement in 2010 that examined relationship of PM2.5 exposure with CVD mortality. In a study 

conducted in New York, Ito et al. (2011) found that PM2.5 was associated with CVD mortality in 

the warm season at lag 0 [% Excess Risk (ER) = 2.0 %; 95% confidence interval (CI), 0.7–3.3; 
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per 10 μg/ m3] and lag 1 day (1.9 %; 95% CI, 0.8–3.1) and in the cold season at lag 1 day (1.0%; 

95% CI, –0.1 to 2.2). [4]. Zhou et al. (2011) found significant positive association for cumulative 

effect from lag 0 to 2 days  for PM2.5 for all-cause and cardiovascular mortality in the warm 

season in Detroit, suggesting a role of secondary pollutants; in contrast, Seattle showed positive 

associations in Winter [5].  

Shang et al. (2013) conducted a meta-analysis of time series studies from China, 1990-

2012 and found that each 10 µg/m³ increase in PM2.5 was associated with a 0.38% (95% CI: 0.31, 

0.45) increase in total mortality, a 0.51% (95% CI: 0.30, 0.73) in respiratory mortality, and a 

0.44% (95% CI: 0.33, 0.54) in CVD mortality. The associations for PM10 were similarly 

strong[6]. In 2013, Shah et al. conducted a meta-analysis of global studies conducted during 

1984-2012 that examined relationship of the daily levels of particulate matter and gaseous 

pollutants with heart failure hospitalizations or heart failure mortality. They found that increases 

in particulate matter concentration were associated with heart failure hospitalization or death 

(PM2.5, 2.12% per 10 µg/m³, 95% CI: 1·42–2·82; PM10, 1·63% per 10 µg/m³, 95% CI: 1·20–

2·07). Strongest associations were seen on the day of exposure, with more persistent effects for 

PM2.5[7]. Samoli et al. (2014) conducted meta-regression of time series in 10 European 

Mediterranean metropolitan areas. They found a statistically significant increase in cardiac 

deaths by 1.33% (95% CI: 0.27, 2.40%) for a 10 µg/m³ increase in six days' PM2.5 exposure.   

Stronger effects were observed in the warm season. Atkinson et al. (2014) conducted a meta-

analysis and found that a 10 µg/m³ increment in PM2.5 was associated with a 1.04% (95% CI 

0.52-1.56) increase in the risk of death. However, worldwide, there was substantial regional 

variation (0.25% to 2.08%). The associations for respiratory causes of death were larger than for 

cardiovascular causes, 1.51% (1.01% to 2.01%) vs 0.84% (0.41% to 1.28%)[8]. 
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As of now, three studies have examined the relationship between daily PM2.5 and 

mortality in Pittsburgh. Chock et al. (2000) conducted a time series from period 1989-1991 and 

found statistically significant results for PM10 with daily non-accidental mortality for age < 75 in 

0- lag model. However, due to small signal to noise ratio, they could not credibly ascertain the 

relative association of PM2.5 and mortality [9]. Franklin et al. (2007) in a multicity analysis, 

found statistically significant association between daily lag 1 PM2.5 and all-cause mortality in 

Pittsburgh [10]. In another multicity analysis, Franklin et al. (2008) found overall statistically 

significant association of PM2.5 and non-accidental deaths and CVD mortality, but, Pittsburgh 

specific results were not available[11]. 

1.2 PARTICULATE MATTER AMBIENT AIR POLLUTION AND BLOOD 

MARKERS OF CVD RISK 

The first study to link PM air pollution with blood markers was conducted in Belfast and 

Edinburgh, UK in 1999. This study found that city center PM10 measurements over three days 

were positively associated with C-reactive protein (CRP) (p<0.01), negative correlated with 

fibrinogen (p<0.05) and not associated with white blood cell count (WBC) (p<0.61). However, 

none of the personal exposure estimates averaging over three days were associated with any of 

these outcomes. The variables adjusted for analysis were city, season, temperature, and repeated 

individual measurements. Since 1999, there have been number of epidemiological studies that 

attempted to explain biological mechanism linking particulate air pollution with blood markers 

of systemic inflammation (CRP and WBC), systemic oxidative stress (homocysteine) and 

thrombosis and coagulation (fibrinogen), yet the results are inconclusive. Some of the possible 
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reasons behind inconsistent findings are errors in exposure assessment, different exposure time 

period, difference in PM constituents, relative small sample size and inadequate control of 

confounders.  

1.2.1 Particulate Matter Ambient Air Pollution and C - reactive protein 

CRP is a circulating acute-phase reactant that is increased many-fold during the inflammatory 

response to tissue injury or infection. It is synthesized primarily in the liver and its release is 

stimulated by interleukin 6 (IL-6) and other pro-inflammatory cytokines.[12] CRP is linked to 

the development of cardiovascular diseases [13]. 

Out of all the biomarkers studied in relation to air pollution, CRP is the most extensively 

studied. Li et al. (2012) published a systematic review of effect of particulate matter air pollution 

on CRP, including cross-sectional, longitudinal and randomized crossover trial studies. Except 

one study among adults with type 1 or 2 diabetes that found significant association of 7 day 

mean of PM10 with CRP changes, they reported largely null findings from cross-sectional studied 

reviewed [14-21]. One possible reason for largely null findings suggested by them was intake of 

anti-inflammatory medications among adults. Results from three longitudinal studies conducted 

in occupational settings were positive suggesting high PM exposure levels inducing CRP 

synthesis and large variations of PM level enabling detection of meaningful changes of CRP 

levels [22-24]. Additionally, less likely use of medications that might affect CRP levels in a 

healthy occupational population. However, results were inconsistent from ten longitudinal 

studies conducted among the healthy general population [25-34]  and adults with chronic 

inflammatory conditions like CVD [29, 35-38], COPD [29, 39], diabetes and obesity [30, 40-42]. 

Except one, all other seven randomized crossover trial reported null findings[43]. 
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A total of seven longitudinal studies have been published after Li et al.’s systematic 

review. Out of the four panel studies, only Meier et al. (2014) found positive association [44-47]. 

Meier et al. (2014) found that a 10 μg/ m3 increment in PM2.5 exposure was associated with a 

5.56 % (1.05-10.27) increase in CRP among 18 nonsmoking male highway maintenance workers 

in US [47]. Among three large cohort studies, two found significant association. Bind et al. 

(2012) did not found association among short and intermediate exposure (windows of 4/24 

hours, and 3 to 28 days moving average preceding each subject’s examination) of PM2.5, particle 

number and black carbon and CRP among prospective cohort of 704 subjects from the 

Normative Aging Study[48]. Ostro et al. (2014) conducted analysis of SWAN cohort of 1923 

mid-life women and reported that a 10 μg/m3 increment in annual PM2.5 exposure was associated 

with a 25.5% (95% CI: 10.2, 42.9) increase in CRP [49]. Hennig et al. (2014) analyzed a 

prospective population-based German cohort of 4,793 participants (45-75 years of age) and 

found that a 1 μg/m3 increase in residential long-term total PM2.5  was associated with a 4.53% 

increase in hs-CRP concentration (95% CI: 2.76, 6.33). The CRP was 17.89% (95% CI: 7.66, 

29.09) and 7.96% (95% CI: 3.45, 12.67) higher in association with 1 μg/m3 increases in 

residential long-term traffic- and industry specific PM2.5, respectively[50]. 

Two cross-sectional studies were conducted outside US in specific populations i.e. traffic 

policemen and COPD patients. Zhao et al. (2013) analyzed a cross-section of 101, 25-55 years 

old nonsmoker traffic policemen in Shanghai, China with no cardiopulmonary disease and no 

current medication. They found that PM2.5 exposure is associated with the increases in hs-CRP of 

1.1% (0.6–1.5) [51]. However, Dadvand et al. (2014) did not found clear pattern of associations 

across lags 1–10 prior to blood sampling in 251 clinically stable COPD patients in Barcelona 

metropolitan areas, Spain.[52]. 
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The relationship of PM exposure to CRP has been examined extensively. After, Li et al. 

(2012), seven additional longitudinal studies have been conducted. Out of three longitudinal 

studies of large cohort, two observed positive association of long term PM2.5 exposure. Two 

panel studies of healthy volunteers reported null findings, whereas two panel studies of 

occupational settings reported positive association.   

1.2.2 Particulate Matter Ambient Air Pollution and White Blood Cell 

WBC is an indicator of cellular response to inflammation and considered a potentially useful 

predictor of prevalent or incident CVD, according to the joint scientific statement by the Centers 

for Disease Control and Prevention and the American Heart Association [13]. 

As of now, four panel studies have been conducted examining relationship of particulate 

matter air pollution and WBC count [25, 30-32, 37]. Except Dubowsky et al. (2006), none of 

them found significant association. Dubowsky et al. (2006) analyzed 44 senior citizens (> 60 

years of age) in Missouri, USA. They found positive associations between longer moving 

averages of PM2.5 and WBCs across all participants with a 5.5% (95% CI: 0.10, 11) increase per 

interquartile increase (5.4 μg/m3) of PM2.5 averaged over the previous week. Associations with 

WBC counts remained significantly elevated through the 14-day mean but declined with longer 

moving average. Additionally, WBC counts generally increased with IQR changes in ambient 

Black Carbon (BC) [30]. 

Out of five cross-sectional studies, only two studies i.e. Schwartz et al. (2001) and Chen 

et al. (2008) found significant positive association [14, 19, 53-55]. Schwartz et al. (2001) 

analyzed national sample of US population from NHANES III and found that in single-pollutant 

models, PM10 (Lag 0 and 1 before blood collection) was associated with WBC count. In two-
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pollutant models, PM10 (Lag 0 and 1 before blood collection) remained a significant predictor of 

WBC count controlling for SO2.   For WBC, the OR of being in the top 10% for the same IQR 

change was 1.64 (95% CI; 1.17, 2.30). These results were stable with control for indoor 

exposures, dietary risk factors and serum cholesterol[54]. Chen et al. (2008) also conducted 

secondary analysis of NHANES III and found statistically significant association between WBC 

count and estimated long term PM10 levels (p = 0.035). Participants from the least polluted areas 

(1-year PM10 < 1st quartile cutoff: 27.8 μg/m3) had lower WBC counts than the others 

(difference = 145 x 10(6)/L; 95% CI, 10-281)[55].  

Except two cross-sectional studies that examined long-term PM (specifically PM10) 

exposure, all other studies have only examined short term (up to 7 days before blood collection) 

PM exposure. None of the cross sectional studies have examined PM2.5 exposure. Also, no 

longitudinal analysis of large cohort has been conducted. The results are inconsistent and more 

epidemiological studies are needed to examine this relationship, especially focusing on PM2.5 

exposure.   

1.2.3 Particulate Matter Ambient Air Pollution and Fibrinogen 

Fibrinogen is a circulating glycoprotein that acts at the final step in the coagulation response to 

vascular and tissue injury. It is synthesized in liver and cleared by thrombin to form soluble 

fibrin fragments, which are the most abundant component of blood clots[12].Several prospective 

epidemiological studies have shown independent association of fibrinogen and incident 

cardiovascular disease[13]. 

After CRP, fibrinogen is the most studied biomarkers in relation to particulate air 

pollution. A total of 16 longitudinal studies conducted have largely reported null findings [28, 
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29, 31, 33, 35, 44, 46, 56-58], however two longitudinal studies of large cohort found significant 

positive findings. Ruckerl et al. (2007) analyzed a prospective longitudinal cohort of 1,003 MI 

survivors in six European cities and found that five day cumulative exposure to PM10 (13.5 μg/ 

m3) was associated with increased fibrinogen concentrations (percent change of arithmetic mean, 

0.6; 95% CI, 0.1–1.1). In addition to the effect for the cumulative exposure, they also found 

significant increase for fibrinogen with lag 3 for PM2.5 and PM10 [38]. Bind et al. (2012) 

analyzed a prospective cohort of 704 subjects from the Normative Aging Study  and found that 

an IQR increase in exposure (3-day moving average) was associated with a 2.4% (95% CI; 

0.1,4.81) increase in fibrinogen for particle number and  2.6% (95% CI; 0.9,4.3) increase for BC. 

In contrast, PM2.5 was not associated with fibrinogen [48]. 

Chuang et al. (2007) conducted a panel study among 76 young healthy students aged 18 

to 25 years from a university in Taipei and observed that 1 day average PM10 and 1-3 day 

averages sulfate were positively associated with fibrinogen. None of the other particulate matter 

and its constituents was associated with fibrinogen [27]. Wu et al. (2012) panel study of 40 

healthy college students in Beijing, China and found significant associations with Ca, Na, Mg, 

Ba, Fe, Ti, Co and Cd (p<0.05); no association between particles (i.e. PM10, PM10-2.5, PM2.5) and  

fibrinogen[44]. 

Hildebrandt et al. (2009) conducted a panel study among 38 male patients with chronic 

pulmonary disease during winter 2001/2002 in Germany and found a consistent increase in 

fibrinogen for lag 3 with all particulate pollutants (i.e. UFP, PM10, EC, OC) except for ACP. 

Additionally, the 5-day mean concentrations of UFP demonstrated a positive significant 

association[39]. Huttunen et al. (2012) conducted a panel study of 52 elderly ischemic heart 

disease patients living in the city center of Kotka, Finland and observed statistically significant 
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positive association with PM2.5-10 at lag 1. There was a change of 1.15% (95% CI; 0.18, 2.12) per 

5.37μg/m3 (IQR) [37]. Rückerl et al. (2014) analyzed three panels of non-smoking individuals 

(1) with type 2 diabetes (2) with impaired glucose tolerance (3) with a potential genetic 

predisposition in Augsburg, Germany. They observed small positive associations with lag 3 for 

UFP for the panel with potential genetic susceptibility and small but significant positive 

associations for PM10-2.5, PM10, BC and CO for several lags for the panel of T2D/IGT [59].   

Similar to longitudinal studies, largely null findings were reported from 9 cross-sectional 

studies conducted so far among randomly selected healthy adults [14, 16, 53, 60, 61]. Pekkanen 

et al. (2000) analyzed a cross-section of 7205 office workers in London, UK and observed 

significant associations of PM10 only in the warm season. During warm season, there was 

difference of 3.24% in fibrinogen level (1.29, p<0.05) for an increase in PM10 (lag 1) from 10th 

to 90th percentile (i.e. 33.1 μg/m3) [62]. Schwartz et al. (2001) analyzed national sample of US 

population from NHANES III and found PM10 was associated with fibrinogen in single-pollutant 

models. In two-pollutant models (with NO2); PM10 was also positively associated with 

fibrinogen. The magnitude of the effects was modest [e.g., 13 mg/dL fibrinogen for an IQR 

change in PM10, 95% CI: 4.6, 22.1 mg/dL]. However, the OR of being in the top 10% of 

fibrinogen for the same IQR change was 1.77 (95% CI: 1.26, 2.49). These results were stable 

with control for indoor exposures, dietary risk factors and serum cholesterol [54]. Zeka et al. 

(2006) conducted cross-sectional analysis on 710 subjects of the VA Normative Aging Study 

cohort, USA and observed PN concentration in the prior 48 h was associated with increased 

fibrinogen levels (4.19%; 95% CI: 2.04, 6.34), as were concentrations the week before (2.14%; 

95% CI: 50.05, 4.23). The relative change for 1 SD change in the concentration level to 4 week 

moving average  BC for fibrinogen was 1.78%  (95% CI: 0.19, 3.36). No association was seen 



 

11 

with PM2.5 and Sulphate [19]. Hoffmann et al. (2009) analyzed baseline data from prospective 

cohort of 4032 participants from densely populated and highly industrialized Ruhr area, 

Germany. They reported that in the adjusted analysis, a cross-sectional exposure difference of 

3.91 μg/m3 in PM2.5 (interdecile range) was associated with increases in fibrinogen of 3.9% (95% 

CI: 0.3, 7.7) in men, whereas no association found in women. Short-term exposures to air 

pollutants and temperature did not influence the results markedly [20]. 

Emmerechts et al. (2012) analyzed a cross section of 233 diabetic patients in Belgium 

and found that concentrations of fibrinogen correlated positively with PM10 at day-2 and day-3, 

as well as with the mean PM10 concentration over 1 week. Each 10 μg/ m3 increase in the mean 

concentration of PM10 over the preceding week at the patient’s residence elevated fibrinogen 

levels by 4% (95% CI: 1,7) [21]. Dadvand et al. (2014) in cross-section of 251 clinically stable 

COPD patients did not observe a clear pattern of associations across the lags for PM2.5 [52]. 

Broadly, studies have examined short, intermediate and long term exposure. Largely null 

findings have been reported from panel studies of healthy young volunteers. Panel studies 

conducted among susceptible population i.e. cardiopulmonary patients have inconsistent results. 

Three studies have examined intermediate exposure (> 7 days to <12 months), however, only 

one longitudinal study found positive association of particle number with fibrinogen. Out of 

three studies that examined long term exposure (annual average), only one study observed 

positive association between annual average PM exposure and fibrinogen. 

1.2.4 Particulate Matter Ambient Air Pollution and Homocysteine 

Homocysteine is a highly reactive, sulfur-containing amino acid formed as a by-product of the 

metabolism of the essential amino acid methionine. Mechanistic studies have demonstrated that 
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homocysteine may induce vascular damage by promoting platelet activation, oxidative stress, 

endothelial dysfunction, hypercoagulability, vascular smooth muscle cell proliferation, and 

endoplasmic reticulum stress. Recent meta-analyses that included larger numbers of prospective 

studies and/or corrected for regression dilution bias (the intra-individual variability in 

homocysteine levels over follow-up) do show a significant association between homocysteine 

and CVDs.[12] 

As of now, only four studies have been conducted to examine relationship of particulate 

air pollutants and homocysteine. Ren et al. (2010) conducted longitudinal analysis of 1000 white 

non-Hispanic older men (mean age, 72.00 +/- 7.2 yrs.) of The Normative Aging Study cohort 

and found that IQR increases in PM2.5 and BC (7-day moving averages) were associated with 

1.5% (95% CI; 0.2, 2.8) and 2.2% (95% CI; 0.6%, 3.9%) increases in total plasma homocysteine, 

respectively [63]. Wu et al. (2012) conducted a panel study of 40 healthy college students in 

Beijing, China and did not find significant association between cumulative average 

concentrations of PM2.5 and its chemical constituents during the preceding 1 (24 hours) to 6 (144 

hours) days prior to the blood collection and tHCy [44]. 

Bacarelli et al. (2007) conducted a cross-sectional analysis of 1,213 healthy subjects from 

Lombardia, Italy. Overall, they did not found any significant association. However in smokers, 

24-hr PM10 levels were associated with 6.3% (95% CI: 1.3, 11.6) and 4.9% (95% CI: 0.5, 9.6) 

increases in fasting and post methionine-load tHcy, respectively, but no association was seen in 

nonsmokers (p-interaction = 0.005 for fasting and 0.039 for post methionine-load tHcy). For 

smokers, 7-day PM10 was associated with a non-significant 3.3% (95% CI: –1.5, 8.4) increase in 

fasting tHcy and a significant 5.2% (95% CI, 0.8 to 9.8; p < 0.05) increase in PML tHcy [64]. 

Park et al. (2008) analyzed a cross-section of 960 community residing elderly men from The 
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Normative Aging Study cohort and did not found any significant association of PM2.5 with total 

homocysteine. However, statistically significant positive associations of total homocysteine were 

observed with traffic-related particles (black carbon and organic carbon) and this was more 

pronounced in persons with low concentrations of plasma folate and vitamin B12. After 

controlling for all potential confounders, an IQR increase in concurrent day BC (0.66 mg/m3) 

was related to a 3.13% (95% CI, 0.76–5.55%) increase in tHcy. No association was observed 

with sulfate, an indicator of coal combustion particles, or PM2.5 [65]. 

The epidemiological studies conducted have only examined short term (up to 7 days 

before blood collection) PM exposure. More studies are needed for any definite conclusion; 

however it seems that short term PM exposure may be associated with homocysteine, especially 

among smokers and older people. 

1.3 PARTICULATE MATTER AMBIENT AIR POLLUTION AND 

INFLAMMATORY MARKERS (CRP AND WBC) IN ADULTS WITH ELEMENTS OF 

METABOLIC SYNDROME 

Out of six longitudinal studies examining the relationship of particulate matter ambient air 

pollution and CRP in adults with elements of metabolic syndrome, three did not show any 

significant association [40-42]. Dubowsky et al. (2006) in panel study of 44 senior citizens (> 60 

years of age) found that associations between PM2.5 and CRP were consistently, and often 

significantly, elevated among the 8 individuals with diabetes (26 repeated samples), 14 

individuals with obesity (41 repeated samples), and 4 individuals with concurrent diabetes, 

obesity, and hypertension (14 repeated samples). They reported that an IQR (6.1 μg/m3) increase 
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in 5 day mean PM2.5 was associated with 48% increase (95 % CI: 5.3-109) in CRP for persons 

with obesity, 74% increase (95% CI:18-158) for persons with diabetes, and an 81 % increase 

(95% CI:21-172) for persons with obesity, diabetes and hypertension compared with a 12% 

increase (95% CI: -25-67) for individuals without any of these conditions[30]. Rückerl et al. 

(2014) conducted study among three panels of non-smoking individuals (1) with type 2 diabetes 

(2) with impaired glucose tolerance (3) with a potential genetic predisposition in Germany. They 

did not found any clear pattern of association among those who had type 2 diabetes and with 

impaired glucose tolerance. However, for the panel with potential genetic susceptibility, a 

consistent and clear increase in CRP in association with all air pollutants (i.e. UFP, PM10, PM10-

2.5, PM2.5, BC and OC) for lag 0 to 4 and 5-day average exposure was observed [59]. Ostro et al. 

(2014) observed the strongest relation of PM2.5 to CRP among diabetics (72.1%, 95% CI 2.9-

187.8 for a 10 μg/m3 change in PM2.5), and associations greater than 40% were noted for the 

high-age group and several other subgroups such as, high blood pressure, on hormone 

therapy[49].  

Zeka et al. (2006) in a cross-sectional analysis of 710 subjects of the VA Normative 

Aging Study cohort found no statistically important difference for any category of effect 

modifiers ((age (<78, >=78 years); BMI, use of medications i.e. anti-hypertensive and cardiac 

medication and hypertension), however, there was suggestion that older age (78 years or older) 

increased the effect of Particle Number concentrations on CRP levels. A 4-fold difference was 

seen for the association between BC and CRP in the presence of obesity [19]. Emmerechts et al. 

(2012) in a cross sectional sample of 233 diabetic  patients  in Belgium found significant positive 

correlations between PM10 exposure at the patient's residence and CRP concentrations for PM10 

exposure windows within 1 week , with positive but only borderline significant values (0.05 < P 
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< 0.10) for the longer time windows up to 6 months. Each 10 μg/m3 increase in the mean PM10 

concentration over the preceding week at the patient's residence increased the CRP by 23% (95% 

CI: 5–45) [21]. 

Three studies have examined the relationship of particulate matter ambient air pollution 

and WBC count in adults with elements of metabolic syndrome. Chen et al (2008) and 

Emmerechts et al. (2012) found significant association whereas Dubowsky et al. (2006) did not. 

Chen et al. (2008)  reported graded association between PM10 and WBC across subpopulations 

with increasing MS components, with 91 x 106/L difference in WBC for those with no MS 

versus 214, 338, and 461 x 106/L for those with 3, 4, and 5 metabolic abnormalities (trend-test p 

= 0.15) was also noted[55]. Emmerechts et al. (2012) observed that for each 10 μg/m3 increase in 

the mean PM10 concentration over the preceding week at the patient's residence increased the 

WBC by 7% (95% CI: 2,12) [21]. 

1.4 EXPOSURE ASSESSMENT FOR AMBIENT AIR POLLUTION 

Exposure assessment of study participants is one of the most challenging aspects of air pollution 

epidemiology. Over the years, methods for assessment have developed starting from proximity 

based to methods based on air quality networks to more advanced methods relying on personal 

exposure. Broadly, panel studies have relied on fixed site monitoring stations. However, recent 

studies have incorporated personal exposure assessment for better estimates. Individual’s activity 

pattern and fixed site monitors were used to estimate personal exposure of participants in study 

by Seaton at al. (1999)[31]. Sorensen et al. (2003) utilized equipment for personal sampling that 

was placed in a backpack, which the subjects carried or placed nearby when they were indoors 
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[56]. Sullivan et al. (2007) and Delfino et al. (2008) measured exposure at participant’s residence 

(outside of residence) or very close to their residence [29, 57]. 

In case of large prospective cohort and cross-sectional studies, a range of methods have 

been used for exposure assessment. Pekkanen et al. (2000), Steinvil et al. (2008) and Panasevich 

et al. (2009) mainly relied on data from fixed site monitoring network [14, 61, 62]. Liao et al. 

(2005) assigned exposure values equal to county specific daily average pollutant exposures, 

calculated for each pollutant by averaging all available monitor-specific daily averages from all 

operating monitors within a county on any calendar date [53]. Bacarelli et al. (2007) used 

information from monitors located at 53 different sites throughout Lombardia, Italy to identify 

nine different study areas in the region characterized by homogeneous within-area air pollution 

concentrations. Averaged mean hourly concentrations were used for exposure assessment after 

assigning each of the study subjects to one of the nine pollution areas, based on their residence 

[60]. 

Schwartz et al. (2001) and Emmerechts et al. (2012) employed geostatistical methods for 

modelling exposures using inverse distance weighting (IDW) and kriging respectively[21, 54]. 

Generally, kriging is a better method as degree of uncertainty in spatial predictions at un-

sampled sites can be calculated thus indicating where interpolation is less reliable. Also, intrinsic 

nature of kriging model better deals with erroneous local variability, yet poor edge representation 

is still an issue. However, IDW methods are simpler to apply and more suitable where sampling 

network is sparse and errors are assumed to be large [66]. 

Dadvand et al. (2014) used land use regression (LUR) model to obtain spatial estimates 

of pollutants and temporally adjusted for assigning to participants[52]. LUR models are 

relatively inexpensive and provide reliable estimates of traffic related air pollution when 
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adequate land use, transportation and pollution monitoring data are available. The main 

limitation of this method is its area specificity [66]. 

Forbes et al. (2009) estimated annual average background exposure to PM10 and other 

pollutants for each 1 km2 of England from an emission inventory by using air dispersion models 

including the effect of weather conditions [16]. Dispersion models generally rely on Gaussian 

plume equations and have advantage of incorporating both spatial and temporal variation of air 

pollution within a study area without need for dense monitoring networks. The disadvantages of 

this model is relatively costly data input, unrealistic dispersion pattern assumptions, need for 

extensive cross-validation and estimate errors die to temporal mismatches[66]. 

Hoffmann et al. (2009) used the EURAD (European Air Pollution Dispersion) model, a 

dispersion and chemistry transport model to estimate the annual mean values for background 

PM2.5 concentrations on a spatial scale of 5-km grid-cell length and assigned these to the 

addresses of the participants. The EURAD model uses input data from official emission 

inventories on a scale of 1 km2, including industrial sources, household heating, traffic, and 

agriculture data on hourly meteorology and regional topography. Surface concentrations were 

calculated by dispersing emissions in horizontal strata, taking chemical reactivity and transport 

processes into account. From the model output, daily surface concentrations of air pollutants for 

a grid-cell length of 5 km were calculated and validated by comparing the model-derived values 

with measured air pollution data from monitoring sites [20]. Due to their high implementation 

cost, data requirements and 1-km grid resolution, integrated meteorological-emission models 

usage is limited in air pollution epidemiological studies [66]. 
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1.5 BIOLOGICAL MECHANISM OF PARTICULATE MATTER AMBIENT AIR 

POLLUTION AND CADIOVASCULAR DISEASES  

Particulate matter inhalation can lead to cardiovascular disease events by three generalized 

intermediary pathways. These pathways include pathway 1, the pulmonary oxidative stress and 

inflammation leading to systemic oxidative stress and inflammation that further releases pro-

inflammatory mediators (e.g. cytokines, activated immune cells, or platelets) or vasculoactive 

molecules (e.g. ET, possibly histamines or micro particles) from lung based cells; pathway 2, 

systemic ANS imbalance or heart arrhythmia by particle interaction with lung receptors or 

nerves; and pathways 3, translocation of PM and/or its constituents into systemic circulation[1]. 

These pathways represent simplified version of complicated biological processes. There is a 

strong experimental evidence of oxidative stress as a critically important cause and consequence 

of PM-mediated cardiovascular effects at the molecular level. Activation of pathway 2 and 3 

within minutes and hours of PM inhalation leads to ANS imbalance (e.g. elevated BP, 

arrhythmias, and increased platelet aggregation), along with direct effects of circulating PM 

constituents (e.g. vasoconstriction, elevated BP, possibly platelet aggregation). These effects 

would be clinically meaningful in those who are susceptible in terms of vulnerable plaque, 

myocardium or circulation and may be responsible for acute triggering of acute cardiovascular 

events e.g. strokes, arrhythmias and heart failure in these individuals. On the contrary, Pathway 1 

(i.e. systemic inflammation) usually requires longer periods for activation of cellular 

inflammatory response (e.g. activated WBCs, platelets) and increased cytokines expression 

consequentially leading to atherosclerotic plaque vulnerability, enhanced coagulation & 

thrombotic changes, insulin resistance and dyslipidemia. These effects would predispose 
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individuals for future cardiovascular events, especially in those who already have traditional risk 

factors or may expedite acute effects via pathways 2 and 3 of later air pollutant exposures. 

In general, there is a large degree of overlap among mechanisms and timing of 

physiological responses to PM inhalation. Also, response to PM inhalation may vary in relation 

to dosage, duration and chemical constituents of PM. However, there is an indication of strong 

overall mechanistic evidence in favor of pathway 1 (via systemic inflammation) as compared to 

other pathways in animal and human studies (Figure 1). 

 

 

Figure 1: Biological pathways linking PM exposure with CVDsa. 

 

 

 

aReprinted with permission Circulation.2010; 121:2331-2378 ©2010 American Heart Association, Inc. 
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1.6 SUMMARY 

Over the last two decades, numerous studies in the United States and elsewhere have reported a 

positive relation between particulate air pollution and CVD morbidity and mortality. The 

epidemiologic evidence that explains biological mechanism behind this positive relationship 

comes from studies of blood markers of systemic inflammation (CRP and WBC), systemic 

oxidative stress (homocysteine) and thrombosis and coagulation (fibrinogen) and other blood 

markers in relation to particulate air pollution. However, due to errors in exposure assessment, 

different exposure time period, difference in PM constituents, relative small sample size and 

inadequate control of confounders, the findings of these studies are inconsistent. Thus, the results 

of my study that utilizes a large representative sample of US population with exposure 

assessment consistent with large populations at different lag periods may provide evidence of 

biological mechanism by which particulate air pollution is related to CVDs. 
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2.0  SPECIFIC AIMS 

The specific aim and related hypothesis are:  

Specific Aim 1: To examine the short term association of PM2.5 air pollution exposure 

with cardiovascular mortality in Allegheny County, PA. We hypothesize that exposure to PM2.5 

air pollution exposure is positively associated with cardiovascular mortality. 

 

Specific Aim 2: To examine the association of PM2.5 air pollution exposure with 

biomarkers (i.e. CRP, WBC, Fibrinogen and HCY) of cardiovascular risk in adult NHANES 

participants. We hypothesize that exposure to PM2.5 air pollution is positively associated with 

biomarkers of CVD risk 

 

Specific Aim 3: To examine the association of PM2.5 air pollution exposure with 

biomarkers (i.e. CRP, WBC, Fibrinogen and HCY) of cardiovascular risk in adult NHANES 

participants with and without metabolic syndrome. We hypothesize that participants with 

metabolic syndrome have increased response of change in biomarkers to PM2.5 air pollution 

compared to participants without metabolic syndrome. 



 

22 

3.0  SHORT-TERM EXPOSURE TO PM2.5 AIR POLLUTION AND 

CARDIOVASCULAR MORTALITY IN ALLEGHENY COUNTY, PA: USING A 

SPATIO-TEMPORAL KRIGING METHOD OF EXPOSURE ASSESSMENT 

3.1 ABSTRACT 

Background and Objectives: Short term exposure to fine particulate matter (PM2.5) has been 

associated with cardiovascular diseases (CVD) mortality in numerous studies. However, findings 

from previous studies in Pittsburgh, Allegheny County, PA do not provide conclusive evidence 

of association of PM2.5 with CVD mortality. Our objective was to estimate the relationship of 

short term exposure to PM2.5 and CVD mortality in Allegheny County for the period 1999-2011. 

We also sought to identify vulnerable population subgroups based on sociodemographic 

characteristics, location at the time of death and time of year (season) of death. 

Methods: We utilized a time-stratified case-crossover design to analyze natural CVD mortality 

and other specific natural CVD mortality outcomes i.e. ischemic heart disease (IHD), acute 

myocardial infarction (AMI), cerebrovascular disease, peripheral vascular disease (PVD), heart 

failure (HF) and cardiac arrhythmias for associations with PM2.5, after adjusting for O3 and 

apparent mean temperature. Stratified analysis was conducted for age, gender, race, education, 

season, and location at the time of death. Results are expressed as the percentage change in risk 

of mortality per 10 µg/m3 increase for PM2.5. 
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Results: We found a significant association of PM2.5 with IHD {(2.1% (95% CI, 0.2 %-4.1%)} 

and PVD {(7.6% (95 % CI, 0%-15.7%)} mortality at lag day 5, adjusting for O3 and apparent 

mean temperature. No significant association of PM2.5 with AMI, cerebrovascular disease, HF or 

cardiac arrhythmia was observed. The risk of IHD mortality due to PM2.5 was significantly 

different for those who died outside (4.9 %; 95 % CI, 1.3%-8.6%) of a hospital (0.8 %; 95 % CI, 

-2.1%-3.7%) or a nursing home (1.3 %; 95 % CI, -2.4%-5.0%). Those who died outside of 

hospital or nursing home mainly consisted of deaths at residence. 

Conclusions: PM2.5 air pollution was significantly associated with IHD and PVD mortality. The 

risk of IHD mortality due to PM2.5 was significantly greater for individuals who died outside of a 

hospital or nursing home compared to deaths in the hospital or nursing home. This may reflect a 

more accurate real time exposure to event phenomenon based on spatiotemporal kriging method 

of exposure assessment at zip code of residence and should be explored further. 

3.2 INTRODUCTION 

Several studies have examined the relationship of short term ambient particulate matter (PM2.5) 

air pollution with cardiovascular disease (CVD) mortality [9, 67-71]. Additionally, many studies 

have evaluated susceptibility (e.g. older people) to CVD mortality associated with short-term 

exposure to (PM2.5) air pollution [70-72]. However, findings from previous studies in Pittsburgh, 

Allegheny County, do not provide conclusive evidence of association of PM2.5 air pollution with 

CVD mortality [9-11]. These studies utilized exposure assessments based on single/limited 

monitors for the region. 
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Allegheny County has made considerable progress in reducing PM2.5 air pollution in last 

decade, however, it is important to examine association of PM2.5 air pollution and CVD mortality 

at current levels of air pollution and evaluate susceptible populations because estimates from 

other places may not be applicable to Allegheny County on account of differences in air 

pollution mixtures, population demographics and other factors. Further, none of the study 

conducted in Pittsburgh, Allegheny County examined the effects of PM2.5 air pollution on CVD 

mortality by individual level characteristics such as age, gender, race, education, location at the 

time of death and time of year (season) of death.  

The objectives of the present study were (1) to estimate the short term association 

between ambient particulate matter (PM2.5) air pollution and cause specific mortality i.e., 

cardiovascular and other CVD outcomes, in Allegheny County, 1999-2011, while considering 

the latency of the association and confounding by ozone (O3) and temperature; and (2) to identify 

vulnerable population subgroups based on sociodemographic characteristics, location at the time 

of death and time of year (season) of death. We utilized case-cross over design to analyze recent 

data (1999-2011) with a time frame of 13 years, to examine CVD mortality and other specific 

CVD mortality outcomes i.e. ischemic heart disease (IHD), acute myocardial infarction, 

cerebrovascular disease, peripheral vascular disease (PVD), heart failure and cardiac 

arrhythmias. Moreover, we employed spatiotemporal kriging at the ZIP Code Tabulation Areas 

(ZCTA) level to most precisely determine exposure levels of PM2.5 and O3. 
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3.3 MATERIALS AND METHODS 

Air Pollution and Weather Data 

ZCTA level estimates of PM2.5and O3 were obtained by spatiotemporal kriging with a product-

sum covariance function using measurements from Air Quality System monitors in Allegheny 

County. The spatiotemporal kriging method has been widely used to interpolate spatiotemporal 

measurements of air pollutants. For a specific predicted point-value, the spatiotemporal kriging 

interpolation combined not only its spatially neighboring monitors but also measurements 

backward and forward within seven days. The overall accuracy of spatiotemporal Kriging was 

evaluated using 10-fold cross-validation. The amount of variance explained by PM2.5and O3 

spatiotemporal kriging prediction models were 74.8 % and 87.9 % respectively. This was mainly 

limited due to less capture of less large-scale spatial variations [73]. 

Meteorological variables (mean air temperature, dew point temperature) were available 

from the Pittsburgh International airport. We calculated apparent air temperature as a 

combination of air temperature and dew point temperature to better take into account health 

effects of hot, humid days. The following formula was used to calculate apparent mean 

temperature: 

Apparent mean temperature (°c) = -2.653 + 0.994*Mean air temperature (°c) + 0.0153*(Dew point temperature (°c)) 2 

 

Mortality Data 

Mortality data for Allegheny County residents were obtained from the Pennsylvania Department 

of Health Vital Statistics Division for January, 1999–December, 2011. Mortality data were 

collected from death certificate information and include, for each death, the date and cause of 
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death (International Classification of Diseases (ICD)-10), sex, age, race, education,  location at 

the time of death, zip code of residence, county and state of death. 

 We classified natural cause mortality data into cardiovascular diseases of the circulatory 

system (ICD-10, I00-I99), ischemic heart disease (ICD-10, I20-I25), acute myocardial infarction 

(ICD-10, I21), cerebrovascular disease (ICD-10, I60-69), peripheral vascular disease (ICD-10, 

I70-79), heart failure (ICD-10, I50) and cardiac arrhythmias (ICD-10, I47-I49). Mortality data 

were categorized by age (<80, and ≥80 years, and missing), educational level (<12, 12, >12 

years, and missing), race (white, black, other, and unknown), location at the time of death 

(hospital, nursing home and outside of hospital or nursing home), and season (cold (October-

March), warm (April-September).  

 

Statistical Analysis 

A case-crossover design was utilized in which each case acts as his or her own control. This 

method offers the advantage of controlling for potential confounding from fixed or slowly 

varying individual-level characteristics. We used time-stratified referent selection, in which time 

is divided into fixed strata and the days in each stratum are considered for referents. Control days 

were matched on the same day of week in the same calendar month and year when a death (i.e., 

case) occurred. Cases had either 3 or 4 control days. 

The PM2.5 effects were examined with single-day (lag 0, 1, 2, 3, 4, 5) and unconstrained 

distributed day lags by cause-specific mortality. Lag 0 represents exposure on the same day as 

death; lag 1 represents exposure on the previous day, and so on, whereas unconstrained 

distributed day lag contains many lagged terms at the same time in model, so for example, the 

unconstrained distributed day lag model for maximum lag 5 will contain all lag terms from lag 0 
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to lag 5.  All models were adjusted for ozone and apparent mean temperature at the same lag as 

PM2.5 in single-day lag model or the same distributed lags in unconstrained distributed day lag 

models. We fitted conditional logistic regression models using PROC PHREG in SAS 9.3 (SAS 

Institute, Cary, NC, USA). Results are expressed as the percentage change in risk of mortality 

per 10 µg/m3 increase for PM2.5. To examine effect modification, we separately fitted models 

with an interaction term for PM2.5and potential effect modifier (age, gender, race, education, 

season, and location at the time of death). 

3.4 RESULTS  

Around 60% of deaths were among individuals who were greater than 80 years of age for most 

of the outcomes except heart failure (75.2%) and cardiac arrhythmia (41.1%).  A greater majority 

of events occurred among females ranging from 51.7%-62.5%. Approximately 90 % were of 

white race and roughly 10 % black for most of the outcomes, except for cardiac arrhythmia 

where blacks were in high proportions (17.5%). In terms of education level, the proportion of 

<12, 12 and >12 years of education were nearly quarter, half and quarter, except for the 

peripheral vascular diseases where around 50 % were >12 years educated.  The majority (43% to 

72%) of deaths occurred at a hospital. 53-55 % of deaths occurred in the cold season for all of 

the outcomes (Table 1). 

The mean level of PM2.5 (µg/m3), O3 (ppb), and apparent mean temperature (°C) were 

13.8, 27.0 and 10.2 respectively for the entire study period. The pollutant levels were higher for 

the warm period compared to the cold period (Table 2). Shown in Table 3 are the distribution of 

the absolute differences between exposure on the case day and average of control days. The 
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correlation between pollutants and apparent mean temperature was low to moderate (Table 4). 

The time series of pollutants, apparent mean temperature and outcomes depict variation over the 

study period (Figure 2). 

We estimated associations between daily concentrations of PM2.5 at the zip code of 

residence and cause specific mortality for single and unconstrained distributed lag models. The 

single lag models were better as compared to distributed lag models because of small Akaike 

Information Criterion (AIC) of the single lag models. For subsequent analyses, we selected the 

single lag with the most certain effect estimate, as determined by the AIC, separately for each 

cause of death. We found significant association of PM2.5 with IHD and PVD mortality at lag 5. 

For every 10 µg/m3 increase in PM2.5 at lag 5, there was a 2.1% (95% CI, 0.2 %-4.1%) increase 

in IHD mortality, whereas, for PVD, there was an increase of 7.6% (95 % CI, 0 %-15.7%), 

adjusting for O3 and apparent mean temperature. There were no statistically significant 

associations of PM2.5 with acute myocardial infraction, cerebrovascular disease, heart failure or 

cardiac arrhythmia (Figures 3 and 4).  

The observed associations between PM2.5 and cause-specific mortality were further 

investigated for effect modification by age, gender, race, education, location at the time of death 

and season. Table 5 shows the percent changes in mortality by cause, PM2.5, and population 

subgroup associated with per 10 µg/m3 increase in PM2.5 for the selected lag. The risk of 

mortality was significantly different for those who died outside (4.9 %; 95 % CI, 1.3%-8.6%) of 

a hospital (0.8 %; 95 % CI, -2.1%-3.7%) or nursing home (1.3 %; 95 % CI, -2.4%-5.0%) for 

ischemic heart disease. Approximately 95% of deaths outside of a hospital or nursing home 

occurred at the residence. Except for this, we did not found any statistically significant 

interactions. However, we did found statistical significant effect estimates in different subgroups 
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for CVD, IHD and PVD mortality. For CVD mortality, the estimates were statistically significant 

for males (2.2%; 95 % CI, 0.1%, 4.4%), whites (1.7%; 95 % CI, 0.1%, 3.2%), outside of hospital 

or nursing home (3.8%; 95 % CI, 0.9%, 6.9%); and warm period (2.2%; 95 % CI, 0.2%, 4.2%). 

For IHD mortality, the estimates were statistically significant for >=80 years old (2.6%; 95 % CI, 

0.1%, 5.2%), whites (2.3%; 95 % CI, 0.2%, 4.3%), outside of hospital or nursing home (4.9%; 

95 % CI, 1.3%, 8.6%); and warm period (3.5%; 95 % CI, 0.7%, 6.5%). For PVD mortality, the 

estimates were statistically significant for male (13.7%; 95 % CI, 1.5%, 27.3%), hospital (11.6%; 

95 % CI, 1.7%, 22.4%); and cold period (13.4 %; 95 % CI, 1.2%, 27.1 %) (Table 5). 

3.5 DISCUSSION 

Our study provides evidence of an association between short term exposure to ambient PM2.5 

(lag 5) and mortality due to IHD and PVD, after adjusting for O3 and apparent mean temperature. 

The risk of dying due to IHD was significantly higher for those who died outside of a hospital or 

nursing home. For CVD mortality, the risk of dying was significant for males, whites, and in 

warm season whereas for IHD mortality, the risk of dying was significant for older, whites, and 

in warm season and for PVD mortality, the risk of dying was significant for males and in cold 

season.  

The health impacts of particulate matter air pollution on mortality may differ for men and 

women primarily due to biological differences (hormonal complement, body size) or daily 

activity patterns. Literature shows weak evidence of higher particulate matter–associated risks 

for women than for men[74]. However, we found higher effect estimates for men compared to 

women for CVD and PVD mortality, although differences in effect estimates between sexes were 
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not statistically significant. Our study results are similar to a study conducted in Sao Paulo, 

Brazil [75]. 

There is strong evidence that older people are more susceptible to effects of air pollution 

[76]. Besides differences in physiology, older people likely have different indoor/outdoor 

activity patterns, occupational exposures, and social networks [76]. In our study, higher effect 

estimates for older people were observed for IHD mortality, though differences in effect 

estimates between older and younger people were not statistically different. 

Evidence shows that exposure to air pollution and health status of populations, differs by 

race, with blacks more susceptible compared to other population groups [77, 78]. Differences in 

air pollution related mortality, similar to other health disparities, could be due to genetic 

differences among racial groups or race may acts as a surrogate marker for socioeconomic status 

among other reasons[79]. Most of the studies that evaluated role of race in impacting mortality 

due to particulate air pollution have found no statistical difference among racial groups [72, 80-

82]. One of the limitation noted was use of simplistic categories of race i.e. % African 

Americans or dichotomous categories (e.g. Black, white) [76].We used racial categories as such 

i.e. white, black, other and unknown (% of other and unknown combined was <1%). In our 

study, higher effect estimates were observed among whites compared to black, others and 

unknown, although like previous studies these differences were not significant.  

Socioeconomic status of an individual could modify particulate matter–associated health 

risks through differences in access to health care, baseline health status, occupational exposures, 

and nutrition. Education is the most commonly studied SES indicator for particulate matter–

associated health risks. There is a suggestive evidence of higher risk of mortality with lower 
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education level [76]. We used education as an indicator for SES and did not found effect 

modification of education on mortality. 

Seasonal differences in particulate matter–associated health risks have been observed in 

various studies [11, 83]. These differences may be due to differences in particulate matter 

constituents, level of exposure due to the rate of ventilation of indoor environments with outdoor 

concentrations, time spent outdoors and interaction between temperature and other weather 

conditions with particulate matter. In a seasonal analysis of particulate matter associated 

mortality, higher effect estimates were observed in spring and summer months in Northeast 

region of US [84].We found higher effects estimates for CVD and IHD mortality in summer 

season compared to winter season, though, differences in effect estimates were not statistically 

different. PM2.5 was associated with CVD mortality in the warm season at lag 0 and lag 1 day 

and in the cold season at lag 1 day in a study conducted in New York [4]. Another study found 

significant positive association for cumulative effect from lags 0 to 2 days for PM2.5 for all-

cause and cardiovascular mortality in the warm season in Detroit; in contrast, Seattle showed 

positive associations in winter [5]. In the present study, risk of PVD mortality was higher and 

significant in winter period. This may be due to increased blood clotting because of cold and 

lower mobility in winter period.  

Previous studies have found that risk of dying from air pollution is higher for deaths 

occurring out of hospital compared with in-hospital deaths [81, 85]. More than a threefold effect 

on all-cause mortality from high concentrations of PM10 was observed for deaths occurring out of 

hospital, when compared with in-hospital deaths, mainly driven by heart disease and stroke [81]. 

In the present study, risk of IHD mortality due to PM2.5 was significantly greater for individuals 

who died outside of a hospital or nursing home compared to deaths in the hospital or nursing 
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home.  This difference may be due to actual differences in exposure to air pollutants, as places 

other than hospital or nursing home may be less protected from ambient air pollution. 

Additionally, individuals at hospital or nursing home have obviously better access to treatment, 

thus alleviating effect of air pollution on mortality. We expect that people dying outside of a 

hospital or nursing home would be from disadvantaged groups e.g. blacks or homeless. These 

subpopulations may have difficulty in accessing timely health care leading to significantly higher 

effect of air pollution on CVD/ IHD mortality. The significantly higher estimates of those who 

died outside hospital or nursing home may be due to more accurate exposure assessment based 

on spatiotemporal kriging method at zip code of residence. 

The present study had a sufficient sample size (except for cardiac arrhythmias) to 

examine multiple outcomes and effect modification by individual level characteristics. The large 

sample size was due to use of mortality data for whole Allegheny County for a time frame of 13 

years. However, there are some limitations in our study. First, there may be exposure 

measurement error due to use of average zip code level exposure estimate for examining air 

pollution associated health risk, instead of individual level estimate. However, compared to 

studies that use a single central monitor for exposure estimate, average zip code level exposure 

estimates are better because they incorporates both spatial and temporal variations. Second, no 

association of PM2.5 air pollution with acute myocardial infarction, cerebrovascular disease, 

heart failure or cardiac arrhythmias were found. This might be due to low predictive power of 

spatiotemporal kriging prediction models used in this study. However, with the same model, we 

were able to detect association for CVD, IHD and PVD mortality.  
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Conclusion 

In summary, the study showed that short term exposure to ambient PM2.5 air pollution was 

significantly associated with IHD and PVD mortality. The risk of IHD mortality due to PM2.5 

air pollution was significantly greater for individuals who died outside of a hospital or nursing 

home compared to deaths in the hospital or nursing home. This may reflect a more accurate real 

time exposure to event phenomenon based on spatiotemporal kriging method of exposure 

assessment at zip code of residence and should be explored further. 

3.6 TABLE AND FIGURES 
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Table 1. Demographics, place and time of cause specific mortality in Allegheny County, PA (1 January 1999- 31 December 2011) 

 Cardiovascular  
Disease   

Ischemic Heart 
Disease 

Acute Myocardial 
Infraction* 

Cerebrovascular disease Heart Failure Peripheral Vascular 
disease 

Cardiac arrhythmia 

 N % N % N % N % N % N % N % 

Total 62515 100 34945 100 11303 100 10116 100 4358  100 2256 100 992 100 

Age (years) 
    <80 
   >=80 
Missing 

 
25545  
36966  

4 

 
40.9 
59.1 

0.0 

 
14920 
20022 

3 

 
42.7 
57.3 

0.0 

 
4919 
6382 

2 

 
43.5 
56.5 

0.0 

 
         3622  

6493 
1 

 
35.8 
64.2 

0.0 

 
1079 
3279 

0 

 
24.8 
75.2 

0 

 
929 

1327 
0 

 
41.2 
58.8 

0 

 
584 
408 

0 

 
58.9 
41.1 

0 
Gender 
    Male 
    Female 

 
28096  
34419  

 
44.9 
55.1 

 
16880 
18065 

 
48.3 
51.7 

 
5132 
6171 

 
45.4 
54.6 

 
3794 
6322 

 
37.5 
62.5 

 
1699 
2659 

 
39.0 
61.0 

 
942 

1314 

 
41.8 
58.2 

 
384 
608 

 
38.7 
61.3 

Race 
   White 
   Black 
   Others 
   Unknown 

 
55739  
6571  
173  
329  

 
89.2 
10.5 

0.3 
0.1 

 
31499 

3332 
96 
18 

 
90.1 

9.5 
0.3 
0.1 

 
10241 

1032 
27 

3 

 
90.6 

9.1 
0.2 
0.0 

 
8952 
1126 

36 
2 

 
88.5 
11.1 

0.4 
0.0 

 
3967 
377 
12 

2 

 
91.0 

8.7 
0.3 
0.1 

 
2039 
210 

5 
2 

 
90.4 

9.3 
0.2 
0.1 

 
815 
174 

2 
1 

 
82.2 
17.5 

0.2 
0.1 

Education ( years) 
   <12 
   12 
  >12 
Missing 

 
15663  
31760  
13597  

1495 

 
25.1 
50.8 
21.8 
2.39 

 
8790 

17820 
7465 
870 

 
25.2 
51.0 
21.4 

2.5 

 
2772 
5921 
2368 
242 

 
24.5 
52.4 
21.0 

2.1 

 
2407 
5187 
2319 
203 

 
23.8 
51.3 
22.9 

2.0 

 
1318 
2064 
864 
112 

 
30.2 
47.4 
19.8 

2.6 

 
62 

612 
1135 
447 

 
2.8 

27.1 
50.3 
19.8 

 
211 
508 
257 
16 

 
21.3 
51.2 
25.9 

1.6 
Location of death  
 Hospital 
 Nursing home 
 Outside of hospital or 
nursing home** 

 
29274 
18116 
15125 

 
46.8 
29.0 
24.2 

 
15105 

9522 
10318 

 
43.2 
27.3 
29.5 

 
6165 
2516 
2622 

 
54.5 
22.3 
23.2 

 
5318 
3826 
972 

 
52.6 
37.8 

9.6 

 
1848 
1867 
643 

 
42.4 
42.8 
14.8 

 
1383 
570 
303 

 
61.3 
25.3 
13.4 

 
723 
116 
153 

 
72.9 
11.7 
15.4 

Location of death 
Hospital, inpatient 
Hospital/ER, outpatient 
Hospital, dead upon 
arrival 
Hospital, unknown 
Nursing Home 
Residence 
Other  

 
22678 

6449 
139 

8 
 

18116 
14363 

762 

 
36.3 
10.3 

0.2 
0.0 

 
29.0 
23.0 

1.2 

 
10442 

4551 
106 

6 
 

9522 
9813 
505 

 
29.9 
13.0 

0.3 
0.0 

 
27.3 
28.1 

1.5 

 
4264 
1849 

48 
4 
 

2516 
2535 

87 

 
37.7 
16.4 

0.4 
0.0 

 
22.3 
22.4 

0.8 

 
5018 
295 

5 
0 
 

3826 
923 
49 

 
49.6 

2.9 
0.1 

0 
 

37.8 
9.1 
0.5 

 
1696 
148 

4 
0 
 

1867 
613 
30 

 
38.9 

3.4 
0.1 

0 
 

42.8 
14.1 

0.7 

 
1126 
252 

4 
1 
 

570 
289 
14 

 
49.9 
11.2 

0.2 
0.0 

 
25.3 
12.8 

0.6 

 
618 
104 

1 
0 
 

116 
146 

7 

 
62.3 
10.5 

0.1 
0 
 

11.7 
14.7 

0.7 
Season 
 Cold 
 Warm 

 
33350  
29165  

 
53.4 
46.7 

 
18659 
16286 

 
53.4 
46.6 

 
6056 
5247 

 
53.6 
46.4 

 
5439 
4677 

 
53.8 
46.2 

 
2319 
2039 

 
53.2 
46.8 

 
1218 
1038 

 
54.0 
46.0 

 
551 
441 

 
55.5 
44.5 

*Mortality due to Acute Myocardial Infraction is a category of Ischemic Heart Disease 
** Outside of hospital or nursing home** (includes mainly deaths at residence) 
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Table 2. Air pollutants levels and apparent mean temperature in Allegheny County, PA (1 January 1999- 31 

December 2011) 

 Entire Year Warm Period Cold Period 
Mean  SD Min Max IQR Mean  SD Min Max IQR Mean  SD Min Max IQR 

PM2.5 (µg/m3) 13.8   7.6 0.8 64.5 8.9 15.7  8.6 1.2 64.5 10.7 12.0 5.8 0.8 49.8 7.4 
 O3 (ppb) 27.0  9.8 0.1 83.3 14.4 32.8 8.1 3.5 83.3 10.8 21.3 7.6 0.1 65.9 10.3 

Apparent Mean 
Temperature 
(°C)  

10.2  11.0 -12.6 35.4 19.3 18.7  7.1 -4.3 35.4 10.1 1.7 7.0 -12.6 25.7 10.0 

 
 

 

Table 3. Distribution of the absolute differences between exposure on case day and average of control days in 

Allegheny County, PA (1 January 1999- 31 December 2011) 

Variable Mean Min 5th  25th 50th 75th  95th  Max 
PM2.5 (µg/m3) 6.0 0.0 0.4 2.2 4.7 8.4 15.7 43.5 
 O3 (ppb) 5.8 0.0 0.4 2.2 4.8 8.2 14.9 36.7 
Apparent 
Mean 
Temperature 
(°C)  

4.6 0.0 0.3 1.9 3.9 6.6 11.6 22.8 

 

 

Table 4. Spearman Correlation between pollutants and apparent mean temperature in Allegheny County, PA 

(1 January 1999- 31 December 2011), N=265064 

 PM2.5  (µg/m3) O3 (ppb) Apparent mean 
temperature (°C) 

PM2.5 (µg/m3) 1.000 0.151 
<.0001 

0.371 
<.0001 

O3 (ppb) 0.151 
<.0001 

1.000 0.532 
<.0001 

Apparent mean 
temperature (°C) 

0.371 
<.0001 

0.532 
<.0001 

1.000 
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Table 5. Effect modification of Association between PM2.5 and mortality by cause of death, adjusting for O3 and apparent mean temperature by 

individual level characteristics and season, in Allegheny County, PA (1 January 1999-31 December 2011) 

 Cardiovascular  Disease 
(Lag5)  

  Ischemic Heart Disease 
(Lag5) 

Acute Myocardial 
Infraction (Lag1) 

Cerebrovascular disease 
(Lag2) 

Heart Failure (Lag2) Peripheral Vascular 
disease (Lag5) 

Cardiac arrhythmia 
(Lag1) 

 %  95 % CI %  95 % CI %  95 % CI %  95 % CI %  95 % CI %  95 % CI %  95 % CI 
Age (years) 
    <80 
   >=80 
Missing 

 
1.4 
1.0 

84.9 

 
-0.8 
-0.8 

-69.6 

 
3.6 
2.9 

1023.3 

 
1.4 
2.6 

576.6 

 
-1.5 
0.1 

-75.4 

 
4.4 
5.2 

18512 

 
0 

0.4 
- 

 
-4.8 

-4 
- 

 
5.1 
4.9 

- 

 
-0.8 
1.7 

- 

 
-6.5 
-2.7 

- 

 
5.2 
6.3 

- 

 
-2.7 
-3.6 

- 

 
-12.9 
-9.5 

- 

 
8.7 
2.7 

- 

 
8.6 
6.6 

- 

 
-2.8 
-3.3 

- 

 
21.4 
17.4 

- 

 
-9.3 
-15 

- 

 
-22.2 
-29.3 

- 

 
5.7 
2.2 

- 
Gender 
    Male 
    Female 

 
2.2 
0.3 

 
0.1 

-1.6 

 
4.4 
2.3 

 
2.7 
1.6 

 
-0.1 
-1.1 

 
5.5 
4.3 

 
2.4 

-1.7 

 
-2.5 

-6 

 
7.5 
2.8 

 
0.7 
0.8 

 
-4.9 
-3.6 

 
6.7 
5.5 

 
-5.1 
-2.2 

 
-13.1 
-8.9 

 
3.6 
4.9 

 
13.7 

3.7 

 
1.5 

-5.8 

 
27.3 
14.1 

 
-19.4 
-6.1 

 
-33.5 
-19.1 

 
-2.3 

9 
Race 
   White 
   Black  
   Others 
   Unknown 

 
1.7 
-2. 
-1 

-13.1 

 
0.1 

-6.8 
-24.6 
-55.9 

 
3.2 
1.7 

29.9 
71.2 

 
2.3 
1.1 
-23 

27.1 

 
0.2 

-4.9 
-49 

-44.8 

 
4.3 
7.4 

16.2 
192.5 

 
0.8 

-6.3 
10.6 

-73.1 

 
-2.6 

-15.9 
-45.9 
-98.8 

 
4.4 
4.4 

125.8 
520.5 

 
1.2 
0.0 

-48.7 
- 

 
-2.6 
-10 

-75.4 
- 

 
5.1 

11.0 
6.7 

- 

 
-3.4 
-2.2 

-97.1 
199.5 

 
-8.8 

-18.5 
-99.9 
-97.5 

 
2.3 

17.3 
4.9 

35765.9 

 
6.2 

26.9 
-32.5 
-46.4 

 
-1.7 
-0.6 

-83.9 
-93.4 

 
14.6 
61.9 

182.3 
334 

 
-10 

-23.6 
- 
- 

 
-20.7 
-43.9 

- 
- 

 
2.3 
4.2 

- 
- 

Education (years) 
   <12 
   12 
  >12 
 Missing 

 
1.5 
0.7 
1.5 
3.7 

 
-1.3 
-1.2 
-1.6 
-5.3 

 
4.4 
2.8 
4.7 

13.4 

 
0.7 
2.7 
1.9 
5.0 

 
-3 

0.0 
-2.2 
-6.5 

 
4.6 
5.5 
6.2 
18 

 
-5.1 
1.1 
3.9 
4.6 

 
-11.3 
-3.4 
-3.4 

-16.6 

 
1.4 
5.8 

11.7 
31.3 

 
-0.9 
0.8 
1.9 
8.7 

 
-7.7 
-4.1 
-5.4 

-15.1 

 
6.5 
5.9 
9.8 

39.2 

 
-4.1 
-5.6 
5.8 

-15.6 

 
-13.1 
-12.8 
-6.5 

-40.6 

 
6 

2.3 
19.6 
19.7 

 
-1.1 
9.1 

14.1 
22.2 

 
-14.2 
-1.5 
-3.3 
-20 

 
14 

20.8 
34.5 
86.5 

 
-9.5 

-14.5 
-8 

2.9 

 
-29.3 
-27.6 
-27.3 
-63.1 

 
15.8 

1 
16.3 

186.8 
Location of death  
 Hospital 
 Nursing home 
 Outside of hospital 
or nursing home* 

 
0.8 

-0.3 
3.8 

 
-1.3 
-2.9 
0.9 

 
2.9 
2.4 
6.9 

 
0.8 
1.3 
4.9 

 
-2.1 
-2.4 
1.3 

 
3.7 

5 
8.6* 

 
0.6 
-6 

4.7 

 
-3.7 

-12.5 
-2.1 

 
5.2 
1.1 
12 

 
-1.4 

5 
-2.7 

 
-6.1 
-0.9 

-13.1 

 
3.5 

11.3 
8.9 

 
-8.5 
3.1 

-8.3 

 
-16 
-5 

-20.8 

 
-0.3 
11.8 

6.2 

 
11.6 

3.2 
-2.4 

 
1.7 

-10.8 
-20.5 

 
22.4 
19.4 
19.8 

 
-11.2 
-4.6 

-20.5 

 
-22.5 
-32.4 
-41.9 

 
1.8 

34.5 
8.7 

Season 
 Cold 
 Warm 

 
0.8 
2.2 

 
-1.4 
0.2 

 
3 

4.2 

 
0.8 
3.5 

 
-2.3 
0.7 

 
3.9 
6.5 

 
0 

-1 

 
-5.2 
-5.7 

 
5.5 
3.9 

 
-0.1 
1.2 

 
-5.7 
-4.0 

 
5.7 
6.6 

 
-4.6 
-3.6 

 
-12.7 
-11.1 

 
4.4 
4.5 

 
13.4 

4.5 

 
1.2 

-6.3 

 
27.1 
16.5 

 
-13.8 
-8.9 

 
-28.5 
-23.4 

 
3.9 
8.3 

*% risk was significantly higher for those who died outside of a hospital or nursing home for Ischemic Heart Disease mortality (P value for interaction <0.05). 

- No estimate for these subgroups either due to no observations or models did not converge
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Figure 2. Time series of pollutants, apparent mean temperature and cardiovascular mortality in Allegheny 

County, PA (1 January 1999-31 December 2011) 
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Figure 3. Association between PM2.5 and  mortality by cause of death in Allegheny County, PA, expressed as 

percentage increase in risk (%) and 95% confidence intervals per 10 µg/m3  in single daily lag0 to lag5 (1 

January 1999-31 December 2011), adjusted for O3 and apparent mean temperature 
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Figure 4. Association between PM2.5 and mortality by cause of death in Allegheny County, PA, expressed as 

percentage increase in risk (%) and 95% confidence intervals per 10 µg/m3  in  unconstrained distributed lag 

models (1 January 1999-31 December 2011), adjusted for O3 and apparent mean temperature 
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4.0  ASSOCIATION OF EXPOSURE TO PARTICULATE MATTER (PM2.5) 

AIR POLLUTION AND BIOMARKERS OF CARDIOVASCULAR DISEASE RISK IN 

ADULT NHANES PARTICIPANTS 

4.1 ABSTRACT 

Background and Objectives: Exposure to particulate matter (PM2.5) is associated with 

increased cardiovascular mortality and morbidity, mediated by a hypothesized biological 

mechanism of systemic inflammation and oxidation. Our objective was to examine the 

association of ambient PM2.5 exposure and markers of systemic inflammation and oxidation in 

adult National Health and Nutrition Examination Survey (NHANES) participants and within 

sensitive subgroups.  

Methods: NHANES data (2001-08) on adult participants were merged with meteorological data 

from CDC WONDER and downscaler modelled air pollution data from the United States 

Environmental Protection Agency for each census tract in the 48 conterminous United States. 

The effects of short term (lags 0 to 3 days  and their averages), and long term (30 & 60 day 

moving average and annual average (anavg)) PM2.5  exposures  on C-reactive protein (CRP, 

n=16160), white blood cells (n=16136), fibrinogen (n=2461) and homocysteine (n=11224) levels  

were analyzed using multiple linear regression, adjusting for age, gender, race, education, body-

mass index (BMI), smoking status, total cholesterol, HDL cholesterol, diabetes, hypertension, 
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history of any cardiovascular disease, maximum apparent temperature and ozone. SAS 

SURVEYREG  was used to account for the complex survey design of NHANES. Stratified 

analyses were conducted for BMI, diabetes, hypertension and smoking status.  

Results: Overall, we found no statistically significant positive associations of either short term or 

long term PM2.5 air pollution for any of the biomarkers after controlling for confounders. 

However, we found evidence suggesting stronger associations in participants with obesity, 

diabetes, hypertension and smokers. For every 10 µg/m3 increase in PM2.5, there was a 

significant increase of (a) 36.9 % (0.1 %, 87.2%) in CRP at anavg PM2.5 (adjusted for short term 

exposure of PM2.5 and O3) among diabetics (b) 2.6 % (0.1 %, 5.1%) in homocysteine at lag 0 

among smokers. 

Conclusions: Although, we found no association between PM2.5 and biomarkers of 

cardiovascular risk in general NHANES participants, there were subgroups that manifested 

increase in markers of systemic inflammation and oxidation to PM2.5 exposure. Further studies 

should concentrate on the impact of PM2.5 on markers of systemic inflammation and oxidation in 

those with multiple pre-existing cardiovascular risk factors. 

4.2 INTRODUCTION 

Numerous epidemiological studies have consistently shown that ambient particulate matter is 

associated with increased risk of cardiovascular mortality and morbidity [3, 54, 86]. Particles less 

than 10 micrometers in diameter (PM10) have primarily been used as an exposure metric of 

particulate air pollution in previous studies [54] . However, fine particles, defined as less than 2.5 

http://support.sas.com/rnd/app/da/new/dasurvey.html%23The%20SURVEYREG%20Procedure
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micrometers in diameter (PM2.5), have a smaller size and can penetrate deeper into the lungs than 

large particles and may therefore be of greater health concern [87-89].   

One of the biological pathways linking particulate matter air pollution exposure with 

cardiovascular mortality and morbidity could be systemic inflammation and oxidative stress [3]. 

C-reactive protein (CRP), white blood cell (WBC) count, homocysteine and fibrinogen are 

markers of systemic inflammation and oxidation associated with cardiovascular diseases [12]. 

Although many studies have examined the association of short term exposure, defined as less 

than 30 days duration, of PM2.5 with CRP and fibrinogen [48, 90], there are few studies 

associating PM2.5 with WBC count [19] and homocysteine [44, 63, 91]. Further, there are only a 

few studies examining long term exposure, defined as greater than equal to 30 days duration, of 

PM2.5 with CRP [49, 50, 90] and fibrinogen [20, 90].  No study has examined the association of 

long term exposure of PM2.5 with WBC count and homocysteine. Therefore, the relationship 

between PM2.5 and biomarkers of cardiovascular risk remain inconclusive.  

To date, two studies have been published that utilized nationwide National Health and 

Nutrition Examination Survey (NHANES) data in order to examine the effects of air pollution on 

biomarkers of cardiovascular risk, where PM10 was the exposure metric of particulate air 

pollution [54, 55]. Schwartz (2001) found positive associations for short term exposure of PM10 

and fibrinogen and WBC counts. Chen et al. (2008) found significant positive association of long 

term PM10 and WBC count. However, to our knowledge, no study has been published examining 

the association of PM2.5 and biomarkers of cardiovascular risk in a large nationally representative 

sample. 

Our objective was to examine the association of ambient air pollution exposure with 

biomarkers of cardiovascular risk (CRP, WBC Count, homocysteine and fibrinogen) in adult 
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NHANES participants using nationally available modeled PM2.5 data. We hypothesized that an 

increase in ambient PM2.5 air pollution exposure would be associated with an increase in 

biomarkers of cardiovascular risk in adult NHANES participants, providing a potential 

explanation of the link between air pollution and cardiovascular disease. 

4.3 MATERIALS AND METHODS 

Health data. We used health data from the NHANES conducted by the National Center for 

Health Statistics of the Centers for Disease Control and Prevention (CDC) for the period 2001-

2008. Details about this survey and the detailed measurement procedures and protocols have 

been described on the NCHS website [92]. In brief, the NHANES followed a complex, stratified, 

and multistage probability sampling of the population of the United States (US), with 

oversampling of minorities (African Americans and Mexican Americans) and the elderly (≥ 60 

years of age). The survey consisted of an extensive household interview followed by a series of 

laboratory and other physical tests administered in a mobile examination center (MEC). Only 

those who completed the household interviews were invited for the MEC examination. Since 

1999, NHANES has been continuously conducted in two year cycles. The survey was approved 

by the Institutional Review Board of the NCHS, and informed consent was obtained before 

participation. NHANES public use data sets were accessed for the four cycles of 2001-02, 2003-

04, 2005-06, and 2007-08. We studied non-pregnant adults age 20 and older for CRP, WBC and 

homocysteine; and adults age 40 and older for fibrinogen.  The data for CRP and WBC count 

were available from 2001 to 2008, homocysteine from 2001 to 2006 and fibrinogen from 2001-

2002. After excluding pregnant women and participants with missing data on biomarkers levels 
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and covariates of interest, there were 16160, 16136, 11224 and 2461 participants included in our 

analysis for CRP, WBC, homocysteine and fibrinogen respectively. 

Markers of Inflammation and covariates. The biomarkers of interest in this study were 

CRP, WBC count, homocysteine, and fibrinogen. In addition to these biomarkers, we also 

obtained data on demographic variables (including age, gender, race/ethnicity, and education) 

and potential risk factors for cardiovascular disease, namely smoking status, body mass index 

(BMI), total cholesterol, HDL cholesterol, self-report of physician diagnosed diabetes, history of 

any cardiovascular diseases (i.e. congestive heart failure, coronary heart diseases, angina/angina 

pectoris, heart attack, stroke) and hypertension. Smoking status was defined as follows: current- 

presently smoking cigarettes or serum cotinine levels were greater than or equal to 10 ng/mL; 

former- have smoked 100 cigarettes in life but currently not smoking; never- had not smoked at 

least 100 cigarettes in life. Hypertension was defined as systolic blood pressure ≥ 140 mmHg, 

diastolic blood pressure ≥ 90 mmHg, or a self-report of current use of antihypertensive 

medication. We also obtained data from NHANES on infections within the last 30 days (cold, 

gastrointestinal illness, flu/pneumonia/ear infection), chronic obstructive pulmonary disease 

(COPD) (includes emphysema and chronic bronchitis), household smoker presence and 

rheumatoid arthritis for conducting sensitivity analyses. 

Ambient air pollution and weather data. Predictions of daily ambient 24-hour average 

PM2.5 (µg/m3) and 8-hour maximum O3 levels (ppb) were obtained from the Environmental 

Protection Agency (EPA) using a downscaling modeling approach [93]. This downscaling 

approach uses Bayesian space-time modeling to combine air monitoring data and gridded 

numerical output from the Community Multi-Scale Air Quality Model (CMAQ ) to produce 

point level daily air pollution predictions to the year 2000 US census tract centroids [94]. Daily 
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predictions of O3 and PM2.5 were obtained from January 1, 2001 – December 31, 2008 at the 

population weighted centroid (centers of population) of each year 2000 US census tract in the 48 

conterminous states [95].   

Meteorological data were obtained from the CDC WONDER North America Land Data 

Assimilation System Daily Air Temperatures and Heat Index (1979-2010) website [96]. Daily 

values of the maximum air temperature and maximum heat index for each county were extracted 

for the time period January 1, 2001 through December 31, 2008. Heat index incorporates both 

temperature and relative humidity and is a better measure on days when air temperature >80 F°. 

Maximum heat index was provided for those days when air temperature was above 80 F° or 

26.7° C.  CDC used a formula by Steadman to calculate the hourly heat index, from which the 

daily maximum heat index was computed [97]. For our analysis, we computed a daily maximum 

apparent air temperature which was defined as the daily maximum heat index if provided; 

otherwise the daily maximum air temperature was used. 

We assembled an environmental database of daily pollution data and meteorological data 

for each census tract in the 48 conterminous United States for the time period January 1, 2001 

through December 31, 2008.  This large database contained predicted values of PM2.5 and O3 at 

the population weighted centroid of each year 2000 US census tract and maximum apparent 

temperature for each county assigned to the appropriate census tract level.  In addition to the 

daily levels (lag 0), we calculated the following for PM2.5 and O3,: the level on the previous day 

(lag 1); two days prior (lag 2); three days prior (lag 3); the average of lags 0 and 1 (lag 0 to 1); 

average of lags 0, 1 and 2 (lag 0 to 2); average of lags 0, 1, 2, and 3 (lag 0 to 3); average of lags 1 

and 2 (lag 1 to 2); and the average of lags 1, 2, and 3 (lag 1 to 3). The following long term 
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averages were also calculated: the average of the 30 days prior (30-day moving average), 60 days 

prior (60-day moving average), and annual average. 

Merging of health and environmental data. The Census tract (11 digit Federal 

Information Processing Standards code) of residence of each individual and the date of the 

NHANES examination were used to merge the NHANES data with the environmental dataset of 

air pollution and weather described above. Thus, each NHANES participant was assigned PM2.5, 

O3, and temperature exposure based on the census tract of residence. 

Statistical analysis. We performed weighted descriptive analyses (mean and standard 

error) for each biomarker overall and also stratified by covariates. We examined exposure to 

ambient PM2.5 as a predictor of each biomarker of interest - CRP, WBC, homocysteine, and 

fibrinogen in separate regression models. CRP and homocysteine were log transformed to 

improve normality and stabilize the variance. The short term effects of PM2.5 were examined. We 

specifically analyzed the effect of PM2.5 on the day of the blood draw (lag 0) as well on the day 

before (lag 1), two days before (lag 2), and three days before (lag 3) and averages of these time 

periods (lag 0 to 1, lag 0 to 2, lag 0 to 3, lag 1 to 2, and lag 1 to 3).  In addition, we examined the 

long term effects of PM2.5 on each biomarker by using the average PM2.5 in the 30 days prior, 60 

days prior and annual average value. We also examined the annual average PM2.5 after adjusting 

for short term effects of air pollution (lag 0 to 3 of PM2.5 and O3). 

We used multiple linear regression models to assess the association of PM2.5 with each 

biomarker and calculated regression estimates for a 10 μg/m3 increase in PM2.5. We adjusted 

regression estimates for selected covariates based on prior biological and epidemiological 

knowledge of major determinants of cardiovascular health. Age, BMI, total cholesterol and HDL 

cholesterol were treated as continuous variables, whereas gender, smoking (current smokers vs 



 

47 

never & former smoker), diabetes, hypertension and history of any cardiovascular disease were 

treated as dichotomous variables in the models. Race/ethnicity was categorized as Non-Hispanic 

White, Non-Hispanic Black, Mexican American, and Other Race. Education was categorized as 

1-11th grade, high school grade/GED or some college, and college graduate. Both single 

pollutant and two pollutant models (adjusted for the co-pollutant O3 at the same lag or average as 

PM2.5) were evaluated.  The short term models were adjusted for the same day maximum 

apparent temperature, whereas the long term models were adjusted for the 30 day moving 

average maximum apparent temperature. Quartiles of temperature were used to account for non-

linear relationship of temperature with biomarkers.  

Based on prior studies, we used subgroup analyses to assess effect modification by 

smoking status (current smokers, never and former smoker), BMI (< 30 kg/m2, ≥ 30 kg/m2), self-

report of physician diagnosed diabetes (Yes/No), and hypertension (Yes/ No) [19, 20, 30]. 

Regression estimates were adjusted for O3 and maximum apparent temperature and other 

covariates. 

Sensitivity analyses. Certain medical conditions (e.g. rheumatoid arthritis and COPD), 

acute infections and presence of household smoking have been related to elevated levels of 

inflammatory markers [98-101]. Therefore, we investigated the sensitivity of our results to 

alternate ways of modelling by excluding people with history of (a) rheumatoid arthritis; (b) 

COPD; (c) acute infection in last 30 days; (d) household smoking. We also examined our results 

after controlling for season and year because temperature and pollutants show seasonal and 

yearly trend. 

All statistical analyses were performed using SAS software, version 9.2, Cary, NC, US. 

Descriptive analyses were conducted using PROC SURVEYMEANS and PROC 
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UNIVARIATE. All regression models were run accounting for the complex sampling design of 

the NHANES with the SAS SURVEYREG command by using the sample weights included in 

the datasets. P-values <0.05 of were considered significant. All p-values were 2-tailed.  

4.4 RESULTS  

Table 6 shows the distribution of environmental variables from 2001 to 2008 at the level of 

participant’s address on the day of blood draw. The mean ±standard error of PM2.5 (µg/m3), O3 

(ppb), and maximum apparent temperature (°C) were 11.88±0.37, 42.38 ±0.93, and 22.22±0.46 

respectively. 

Table 7 shows the survey weighted descriptive statistics of biomarkers for non-pregnant 

adult participants, excluding those with missing data on biomarkers levels and covariates of 

interest. Females had higher levels of CRP and fibrinogen and lower levels of homocysteine, 

whereas there were no gender differences in levels of WBC. Blacks had elevated levels of all the 

biomarkers except WBC. Older and less educated participants had raised levels of biomarkers. 

Biomarker levels were elevated in those with hypercholesterolemia, among  current smokers, and 

those with the  presence of diabetes, obesity, hypertension, history of any CVD, rheumatoid 

arthritis, COPD and recent infections (except homocysteine that was higher in former smokers, 

overweight and those without any infections in last 30 days). 

In the complete study group, none of the PM2.5 lags (short term or long term) were 

significantly positively associated for any of the biomarkers in both single pollutant and bi-

pollutant models after adjusting for age, gender, race, education, BMI, smoking status, total 
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cholesterol, HDL cholesterol, diabetes, hypertension, history of any cardiovascular disease, 

maximum apparent temperature and ozone (Figure 5 and 6).  

 

Effect modification by obesity, diabetes, hypertension and smoking 

In subgroup analyses, we found increased response of change in biomarkers in participants who 

had obesity, diabetes, hypertension, and who were smokers, compared to those who did not have 

these cardiovascular risk factors (Figure 7, 8, 9 and 10). In particular, participants with diabetes 

showed consistent increased response across all biomarkers compared to participants without 

diabetes. 

We found some significant and near significant positive associations for diabetic 

participants: (a) for every 10 µg/m3 increase in annual average PM2.5 (adjusted for short term 

exposure of PM2.5 and O3), there was a significant increase of 36.9 % (0.1 %-87.2%) in CRP; (b) 

for every 10 µg/m3 increase in 60 day moving average PM2.5, there was a near significant 

increase of 0.3 x 103 cells /µL (-0.05 x 103 - 0.69 x 103) in WBC count (c) for every 10 µg/m3 

increase at 2 day lag PM2.5, there was a near significant increase of  5 % (-0.2%-10.5%) in 

homocysteine. Also, for smokers, there was a significant increase of 2.6 % (0.1 %-5.1%) in 

homocysteine for every 10 µg/m3 increase at zero day lag PM2.5. 

 

Sensitivity Analysis 

The results of sensitivity analyses excluding people with history of (a) rheumatoid arthritis; (b) 

COPD; (c) acute infection in last 30 days; (d) household smoking were largely similar. Also, 

adjusting for season and year led to similar results (Data not shown). 
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4.5 DISCUSSION 

Our objective was to examine the association of PM2.5 air pollution exposure with biomarkers of 

cardiovascular risk (specifically CRP, WBC, fibrinogen, and homocysteine) in adult NHANES 

participants. Overall, we found no statistically significant positive association of either short term 

or long term PM2.5 air pollution with any of the biomarkers of cardiovascular risk. However, 

participants with obesity, diabetes, hypertension and smoking history showed increased levels of 

cardiovascular biomarkers with increase in PM2.5 exposure, compared to those participants 

without these cardiovascular risk factors. In particular, participants with diabetes showed 

consistent increased response across all biomarkers compared to participants without diabetes. 

Our findings were robust to alternate ways of modelling conducted by excluding people with 

history of (a) rheumatoid arthritis; (b) COPD; (c) acute infection in last 30 days; (d) household 

smoking and to adjustment for season and year. 

 

Short term effects of PM2.5 air pollution on biomarkers 

Our study supports largely null findings of previously conducted research among the general [44, 

45, 48, 50, 90], elderly [48], and COPD [52] populations for short term effects of PM2.5 on CRP. 

In contrast to our study, Meier et al. (2014) reported significant positive association of 15 hour 

averages of PM2.5  on CRP in a panel study of non-smoking male highway maintenance workers 

[47]. Similarly, Zhao et al. (2013), in a cross-section of 101 25-55 years old non-smoking traffic 

policemen with no history of cardiopulmonary disease and no current medication in Shanghai, 

China, showed significant positive association of 24 hour averages of PM2.5 on CRP [51]. In both 

studies, significant positive findings may be due to participants’ regular exposure to very high 

level of air pollution on account of their occupation. 
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In regard to the association of PM2.5 with fibrinogen, in concordance with our study, 

previous investigations of both  general [27, 28, 44, 56, 58, 90, 102], elderly [19, 29, 48], and 

pre-existing COPD [52]  and heart disease [35, 37, 57] populations have reported null 

findings.However, Ruckerl et al. (2007) reported significant positive association of lag 3 PM2.5 in  

a prospective cohort of 1,003 Myocardial Infraction survivors in six European cities. This 

positive finding may be explained by exposure to high levels of air pollution in Myocardial 

Infraction survivors who are susceptible due to previous physiologic insult [38]. 

In regard to the association of PM2.5 with WBC, our study is in agreement with null 

findings of previous studies among young [102], elderly [19, 25, 30], and elderly populations 

with preexisting heart disease [37]. In contrast to our study, Dubowsky et al. (2006) reported 

positive associations of PM2.5 with WBC; these associations increased with longer moving 

average and reached statistical significance for previous moving average of 7 days in a panel 

study of 44 elderly participants. However, similar to our study they reported non-significant 

findings for moving averages larger than 14 days.  

Out of three studies conducted so far examining the association of PM2.5  with 

homocysteine, only Ren et al. (2010) reported significant positive associations of moving 

averages of 5, 6 and 7 days of PM2.5 and homocysteine in the Normative Aging Study cohort of 

1000 elderly non-Hispanic white community residing  men [44, 63, 91]. Our study supports 

otherwise null findings. 

 

Long term effects of PM2.5 air pollution on biomarkers 

The null association of a long term effect of PM2.5 on CRP in our study is in accord with previous 

studies [48, 90] . In contrast to our study, Hennig et al. (2014) and Ostro et al. (2014) reported 
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significant positive association for prior year ambient PM2.5 with CRP. However, similar to our 

study, Hennig et al. (2014)  found no association for 28-day mean PM2.5 .With regard to the 

association between long term effects of PM2.5 on fibrinogen, our findings are consistent with 

three previous US studies [19, 48, 90]. However, Hoffmann et al. (2009) reported significant 

association for men in a cross-sectional study of 4032 participants from the densely populated 

and highly industrialized Ruhr area, Germany [20]. To our knowledge, ours is the first study to 

examine the association of long term PM2.5 exposure on homocysteine and WBC, and we found 

no significant positive association. 

 

Effect modification by obesity, diabetes, hypertension and smoking 

We found suggestive evidence that participants with obesity, diabetes, hypertension and smokers 

experienced larger increase in biomarkers compared to participants without these cardiovascular 

risk factors. In particular, participants with diabetes showed consistently increased response 

across all biomarkers compared to participants without diabetes. This finding is in accord with 

previous studies of short term [30, 59] and long term air pollution [49] and our current 

understanding of susceptible population groups to air pollution [3].  

Using NHANES and PM10, Schwartz (2001) and Chen et al. (2008) found positive 

associations for short term (same day) exposure with fibrinogen and WBC counts; long term (1 

year) exposure and WBC count respectively. However, both studies utilized NHANES III (1989-

1994) participants who lived in urban areas only and the pollutant data from US EPA Air Quality 

System monitors [54, 55]. PM10 levels during this earlier time period (1989-1994) were 

significantly higher (mean PM10 = 35.2 µg/m3)[54].  
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Our findings are in accordance with Balmes et al. (2013), who utilized mixed model 

analysis to evaluate NHANES (2001-2006) participants from both rural and urban area and US 

EPA’s hierarchical Bayesian modeled PM2.5.They reported no significant positive associations 

for both short and long term PM2.5 with CRP and WBC count. However, similar to our findings, 

they also reported larger increase in CRP and WBC count in participants with hypertension 

compared to those without hypertension (Balmes J, Mann J, Navarro K, McKone T, unpublished 

data). 

 

Strengths and limitations 

To our knowledge, this is the first nationwide population-based study examining the association 

of short and long-term exposure to PM2.5 air pollution with biomarkers of cardiovascular risk. 

The PM2.5 exposure was assessed by using pollutant predictions at the population weighted 

centroid of the census tract using downscaling model approach from EPA [93].  This approach 

allows use of health data for nearly the entire country instead of being limited to urban areas due 

to its ability to predict air pollutant concentrations for a large spatial extent and makes study 

findings generalizable to the US.  Additionally, it better predicts temporal variability indicative 

of air pollutant concentrations measured at air quality monitors compared with earlier CMAQ 

models and spatial interpolation methods [93, 103]. Our study was able to consider health effects 

at the lower end of ambient particulate matter exposure compared to previous studies [54] . Our 

study suggests that even at low level of air pollution, those with multiple pre-existing 

cardiovascular risk factors might have an increased risk of cardiovascular disease when exposed 

to particulate matter air pollution.  
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This study must be interpreted in the context of its known limitations. There is a potential 

of exposure misclassification due to less confidence in the pollutant predictions in rural areas 

because of the increasing distance of these locations from air quality monitors [103]. 

Additionally, there is a possibility of error in exposure measurement due to use of average 

population exposure rather than individual exposure estimates and not accounting for the time 

spent indoors vs outdoors by the participants.   

 

Conclusions 

Overall, there were no appreciable effects of short and long-term exposure to PM2.5 air pollution 

with regard to biomarkers of cardiovascular risk after adjusting for demographic and 

cardiovascular risk factors in our nationally representative sample of adult men and women. 

However, we did find some evidence suggesting stronger associations of PM2.5 with biomarkers 

of cardiovascular risk in participants with elements of metabolic syndrome e.g. obesity, diabetes, 

hypertension and smokers. Further studies should concentrate on the impact of PM2.5 on markers 

of systemic inflammation and oxidation in those with multiple pre-existing cardiovascular risk 

factors.    
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4.6 TABLES AND FIGURES 

Table 6. Distribution of environmental variables 

Year N PM2.5(µg/m3) O3 (ppb) Temperature (° C) 

2001 2227 11.02 ± 0.59 41.25 ± 1.53 23.18±1.33 

2002 2130 12.64 ± 1.51 46.06 ± 3.18 23.12±1.19 

2003 2018 12.77 ± 1.08 43.79 ± 2.50 22.18±1.00 

2004 2175 11.32 ± 0.81 38.96 ± 1.82 22.37±1.58 

2005 1893 12.69 ± 0.96 43.35 ± 2.84 21.36±1.40 

2006 2074 10.83 ± 0.68 39.30 ± 1.69 21.23±1.01 

2007 2604 12.80 ± 1.43 44.39 ± 2.84 22.46±1.83 

2008 2667 11.37 ± 0.62 42.83 ± 2.17 21.93±1.22 

2001-2008 17788 11.88 ± 0.37 42.38 ± 0.93 22.22±0.46 

*Values are mean ± SE 
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Table 7. Survey weighted descriptive statistics of biomarkers for non-pregnant adult study participants 

 C-reactive protein White blood cells count Homocysteine Fibrinogen 
 

n (%) 
Mean±SE  
(mg/dL) n (%) 

Mean ± SE 
(103 cells/µL)  n (%) 

Mean ± SE 
(µmol/L) n (%) 

Mean ± SE 
(mg/dL) 

Overall 16160 (100) 0.40±0.01 16136(100) 7.26±0.03 11224(100) 8.80±0.07 2461(100) 368.54±4.74 
Age (years) 
  20-39 
  40-59 
  60+ 

 
5227 (37.4) 
5228 (39.9) 
5705 (22.8) 

 
0.35±0.01 
0.41±0.01 
0.47±0.01 

 
5218(37.4) 
5223(39.9) 
5695(22.8) 

 
7.40±0.04 
7.21±0.05 
7.12±0.04 

 
3686(37.8) 
3611(39.9) 
3927(22.3) 

 
7.72±0.06 
8.79±0.07 
10.66±0.14 

 
         N/A 
1252(67.0) 
1209(33.0) 

 
N/A 
356.20±5.19 
393.57±4.69 

Gender 
   Male 
   Female 

 
8234(49.7) 
7926(50.4) 

 
0.34±0.01 
0.46±0.01 

 
8219(49.6) 
7917(50.4) 

 
7.25±0.04 
7.27±0.04 

 
5782(50.0) 
5442(50.0) 

 
9.45±0.08 
8.16±0.09 

 
1255(49.4) 
1206(50.6) 

 
357.34±5.55 
379.47±4.62 

Race/Ethnicity 
   White 
   Black 
   Hispanic 
   Others 

 
8340(72.6) 
3205(10.5) 
3097(7.6) 
1518(9.3) 

 
0.39±0.01 
0.51±0.02 
0.44±0.02 
0.37±0.02 

 
8326(72.6) 
3202(10.5) 
3096(7.6) 
1512(9.3) 

 
7.32±0.04 
6.59±0.05 
7.48±0.05 
7.37±0.07 

 
5941(73.2) 
2255(10.5) 
2246(7.4) 
782(8.9) 

 
8.96±0.08 
8.94±0.11 
7.58±0.06 
8.39±0.15 

 
1433(78.6) 
429(8.7) 
439(4.2) 
160(8.5) 

 
365.01±5.49 
392.62±4.87 
367.91±2.57 
376.85±5.19 

Education 
   1-11th grade 
   HS grad/GED  
  College graduate 

 
4633(18.1) 
8329(56.0) 
3198(26.0) 

 
0.47±0.02 
0.41±0.01 
0.32±0.01 

 
4622(18.0) 
8319(56.0) 
3195(26.0) 

 
7.54±0.06 
7.35±0.04 
6.88±0.04 

 
3128(17.3) 
5840(56.6) 
2256(26.1) 

 
9.21±0.15 
8.83±0.08 
8.47±0.09 

 
710(17.3) 
1200(53.4) 
551(29.3) 

 
392.64±5.41 
370.69±5.27 
350.39±4.59 

Smoking 
   Never 
   Former 
   Current 

 
8233(51.0) 
4232(24.8) 
3695(24.4) 

 
0.38±0.01 
0.40±0.01 
0.44±0.01 

 
8218(51.0) 
4226(24.7) 
3692(24.4) 

 
6.92±0.03 
7.02±0.05 
8.21±0.06 

 
5654(50.3) 
2984(24.8) 
2586(25.0) 

 
8.39±0.06 
9.28±0.12 
9.17±0.13 

 
1155(48.1) 
835(31.8) 
471(20.1) 

 
363.76±4.05 
367.16±6.05 
382.17±7.35 

BMI 
  <25.0  
  25-29.9  
  >=30.0 

 
4943(33.1) 
5779(34.9) 
5438(32.1 

 
0.26±0.01 
0.35±0.01 
0.60±0.0 

 
4938(33.1) 
5767(34.9) 
5431(32.1) 

 
6.96±0.04 
7.16±0.04 
7.69±0.05 

 
3532(33.6) 
4063(34.9) 
3629(31.5) 

 
8.49±0.09 
9.05±0.08 
8.86±0.10 

 
693(29.3) 
987(38.9) 
781(31.7) 

 
348.88±5.48 
364.05±4.21 
392.23±4.75 

Hypertension 
  Yes 
   No 

 
6006(30.2) 
10154(69.8) 

 
0.49±0.01 
0.36±0.01 

 
5996(30.2) 
10140(69.8) 

 
7.40±0.04 
7.20±0.04 

 
4101(29.8) 
7123(70.2) 

 
10.10±0.10 
8.26±0.07 

 
1177(39.8) 
1284(60.2) 

 
386.76±5.23 
356.52±4.97 

Total Cholesterol (mg/dL) 
  <240  
  >=240  

 
13627(84.2) 
2533(15.8) 

 
0.40±0.01 
0.41±0.01 

 
13606(84.2) 
2530(15.8) 

 
7.23±0.04 
7.45±0.05 

 
9436(83.8) 
1788(16.2) 

 
8.73±0.07 
9.17±0.12 

 
1971(79.9) 
490(20.1) 

 
365.72±5.13 
379.77±4.32 

HDL-Cholesterol (mg/dL) 
  <40  
  40-49  
  50-59  
  >60  

 
3092(19.1) 
4671(28.4) 
3775(23.3) 
4622(29.2) 

 
0.49±0.02 
0.41±0.01 
0.39±0.02 
0.34±0.01 

 
3089(19.2) 
4662(28.4) 
3773(23.3) 
4612(29.2) 

 
7.87±0.06 
7.46±0.05 
7.08±0.05 
6.82±0.04 

 
2011(17.9) 
3289(28.7) 
2637(23.4) 
3287(29.9) 

 
9.05±0.10 
8.98±0.10 
8.65±0.08 
8.61±0.10 

 
500(19.9) 
726(28.8) 
539(22.0) 
696(29.3) 

 
374.45±8.36 
376.00±5.26 
368.10±4.30 
357.56±5.16 

Diabetes 
  Yes 
  No 

 
1763(7.5) 
14397(92.5) 

 
0.57±0.03 
0.39±0.01 

 
1759(7.5) 
14377(92.5) 

 
7.62±0.08 
7.23±0.03 

 
1139(7.1) 
10085(92.9) 

 
10.10±0.20 
8.71±0.07 

 
318(9.5) 
2143(90.5) 

 
399.92±8.63 
365.27±4.61 

History of any CVD 
 Yes 
  No 

 
1867(8.4) 
14293(91.6) 

 
0.57±0.02 
0.39±0.01 

 
1864(8.4) 
14272(91.6) 

 
7.46±0.06 
7.24±0.03 

 
1299(8.4) 
9925(91.6) 

 
11.38±0.26 
8.57±0.06 

 
349(11.0) 
2112(89.0) 

 
403.86±6.76 
364.17±5.04 

Recent Infection  
 Yes 
 No 

 
4104(26.0) 
11273(74.0) 

 
0.53±0.02 
0.36±0.01 

 
4100(26.0) 
11256(74.0) 

 
7.51±0.05 
7.16±0.04 

 
2924(27.1) 
7736(73.0) 

 
8.70±0.12 
8.87±0.06 

 
615(24.3) 
1785(75.7) 

 
375.15±4.48 
366.30±5.33 

Rheumatoid Arthritis 
 Yes 
 No 

 
882(4.1) 
15252(95.9) 

 
0.60±0.03 
0.39±0.01 

 
880(4.1) 
15230(95.9) 

 
7.45±0.13 
7.25±0.03 

 
591(4.1) 
10613(95.9) 

 
9.73±0.28 
8.77±0.06 

 
161(5.0) 
2296(95.01) 

 
402.54±6.75 
366.69±4.80 

COPD 
 Yes 
 No 

 
1233(7.4) 
14880(92.6) 

 
0.61±0.03 
0.38±0.01 

 
1234(7.5) 
14855(92.6) 

 
7.77±0.10 
7.22±0.03 

 
816(7.4) 
10372(92.7) 

 
9.43±0.23 
8.75±0.07 

 
189(7.5) 
2259(92.5) 

 
401.13±7.54 
365.60±4.88 

Household Smoker 
 Yes 
 No 

 
3159(20.0) 
12883(80.0) 

 
0.48±0.02 
0.38±0.01 

 
3157(20.0) 
12861(80.0) 

 
8.07±0.07 
7.06±0.03 

 
2225(20.6) 
8906(79.4) 

 
9.47±0.14 
8.64±0.06 

 
466(19.5) 
1971(80.5) 

 
380.99±7.06 
365.49±4.60 
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Figure 5. Change (95 % CI) in biomarkers for per 10 µg/m3 increase in PM2.5 at different lag times (a) C - 

reactive protein (CRP) (b) White Blood Cell (WBC) counts (c) Homocysteine (d) Fibrinogen. Models are 

adjusted for age, gender, race/ethnicity, education, smoking status, body mass index, total cholesterol, HDL 

cholesterol, diabetes, hypertension, history of any cardiovascular diseases and maximum apparent 

temperature. 
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Figure 6. Change (95 % CI) in biomarkers for per 10 µg/m3 increase in PM2.5 at different lag times (a) C - 

reactive protein (CRP) (b) White Blood Cell (WBC) counts (c) Homocysteine (d) Fibrinogen. Models are 

adjusted for age, gender, race/ethnicity, education, smoking status, body mass index, total cholesterol, HDL 

cholesterol, diabetes, hypertension, history of any cardiovascular diseases, maximum apparent temperature 

and ozone 
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Figure 7. Effect Modification of associations between PM2.5 and C - reactive protein (CRP) by disease 

condition at different lag times. Models are adjusted for age, gender, race/ethnicity, education, smoking 

status, body mass index, total cholesterol, HDL cholesterol, diabetes, hypertension, history of any 

cardiovascular diseases and maximum apparent temperature and ozone. 
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Figure 8. Effect Modification of associations between PM2.5 and White Blood Cell (WBC) counts by disease 

condition at different lag times. Models are adjusted for age, gender, race/ethnicity, education, smoking 

status, body mass index, total cholesterol, HDL cholesterol, diabetes, hypertension, history of any 

cardiovascular diseases and maximum apparent temperature and  ozone. 
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Figure 9. Effect Modification of associations between PM2.5 and Homocysteine by disease condition at 

different lag times. Models are adjusted for age, gender, race/ethnicity, education, smoking status, body mass 

index, total cholesterol, HDL cholesterol, diabetes, hypertension, history of any cardiovascular diseases, 

maximum apparent temperature and ozone. 
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Figure 10. Effect Modification of associations between PM2.5 and Fibrinogen by disease condition at different 

lag times. Models are adjusted for age, gender, race/ethnicity, education, smoking status, body mass index, 

total cholesterol, HDL cholesterol, diabetes, hypertension, history of any cardiovascular diseases, maximum 

apparent temperature and ozone. 
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5.0  SYSTEMIC INFLAMMATORY RESPONSE TO PARTICULATE 

MATTER (PM2.5) AIR POLLUTION AND METABOLIC SYNDROME IN ADULT 

NHANES PARTICIPANTS 

5.1 ABSTRACT 

Background and Objectives: Previous studies suggest that individuals with preexisting cardio 

metabolic disorders may be at particularly increased risk of systemic inflammation by PM2.5 air 

pollution, leading to increased risk of cardiovascular diseases. We investigated potential 

susceptibility of metabolic syndrome (MetS) participants to ambient PM2.5 air pollution as 

suggested by increased markers of systemic inflammation compared to participants without 

MetS in adult National Health and Nutrition Examination Survey (NHANES) participants. 

Methods: NHANES data (2001-08) on adult participants were merged with meteorological data 

from CDC WONDER and downscaler modelled air pollution data from the United States 

Environmental Protection Agency for each census tract in the 48 conterminous United States. 

The effects of short term (lags 0 to 3 and their averages), and long term (30 & 60 day moving 

average (ma) and annual average (anavg)) PM2.5 levels on C-reactive protein (CRP, n=7134) and 

white blood cells count (WBC, n=7123) were analyzed using multiple linear regression, 

adjusting for age, gender, race, education, smoking status, history of any cardiovascular disease, 
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maximum apparent temperature and ozone, for participants with and without MetS. SAS 

SURVEYREG  was used to account for the complex survey design of NHANES.   

Results: : After adjusting for confounders, we generally observed an increase in CRP and WBC 

count with both short and long term ambient PM2.5 air pollution exposure for participants with 

MetS compared to participants without MetS. For every 10 µg/m3change in lag 0 PM2.5, there 

was a significant positive change of 10.1% (95% CI:  2.2%, 18.6%) in CRP for participants with 

MetS, whereas for participants without MetS, change in CRP was - 1.3% (95% CI: 8.8 %, 6.8%). 

There were no significant associations for WBC count. 

Conclusions: These data are consistent with the hypothesis that individuals with preexisting 

metabolic syndrome are susceptible to ambient PM2.5 air pollution as expressed by serum 

markers of systemic inflammation. Further research is warranted to confirm these findings in 

large cohorts. With one third of the U.S. population compromised by MetS, the health impact of 

particulate air pollution in this sensitive population is likely to be significant. 

5.2 INTRODUCTION 

Metabolic syndrome (MetS), defined as a cluster of individual cardiovascular risk factors 

comprised of raised blood pressure, dyslipidemia (raised triglycerides and lowered high-density 

lipoprotein cholesterol), raised fasting glucose, and central obesity,  increases the likelihood of  

cardiovascular disease (CVD) [104-106] and has been associated with systemic inflammation 

[107]. Studies have shown that MetS increases the risk of CVD to an extent greater than that 

conferred by any of its individual components [105, 108, 109]. Individuals with MetS have 

shown greater susceptibility to autonomic dysfunction (e.g. heart rate variability) in response to 

http://support.sas.com/rnd/app/da/new/dasurvey.html%23The%20SURVEYREG%20Procedure
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PM2.5 exposure [110]. Recently, a study reported higher risk of CVD mortality with increased 

levels of long term PM2.5 exposure among participants with preexisting cardio-metabolic 

disorders e.g. diabetes, hypertension [111]. 

Previous studies have shown that the association between particulate matter (PM) 

exposure and systemic inflammation is stronger among participants with diabetes, obesity, and 

hypertension [19, 21, 30, 49]. These findings suggest that individuals with preexisting cardio 

metabolic disorders may be at particularly increased risk of systemic inflammation by PM air 

pollution. [107]. Therefore, it is important to study the effect of PM air pollution on systemic 

inflammation in participants with MetS. This is an important public health issue because of the 

enormous and growing prevalence of MetS worldwide, including one third population of the 

United States, and ubiquitous nature of air pollution. 

Our objective is to use data from the National Health and Nutrition Examination Survey 

(NHANES), a US nationwide survey, to investigate potential susceptibility of MetS participants 

to PM2.5 air pollution for markers of systemic inflammation, i.e., C-reactive protein (CRP) and 

white blood cell (WBC) count compared to participants without MetS. We hypothesized that 

participants with MetS will have increased response of change in biomarkers of cardiovascular 

risk to increase in PM2.5 air pollution compared to participants without MetS. 

5.3 MATERIALS AND METHODS 

Health data. We used health data from the NHANES conducted by the National Center for 

Health Statistics of the Centers for Disease Control and Prevention (CDC) for the period 2001-

08. Details about this survey and the specific measurement procedures and protocols have been 
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described on the NCHS website [92]. In brief, the NHANES followed a complex, stratified, and 

multistage probability sampling of the population of the US, with oversampling of minorities 

(African Americans and Mexican Americans) and the elderly (≥ 60 years of age). The survey 

consisted of an extensive household interview followed by a series of laboratory and other 

physical tests administered in a mobile examination center (MEC). Only those who completed 

the household interviews were invited for the MEC examination. Since 1999, the NHANES has 

been continuously conducted in two year cycles. The survey was approved by the Institutional 

Review Board of the NCHS, and informed consent was obtained before participation. The 

NHANES public use data sets were accessed for the four cycles of 2001-02, 2003-04, 2005-06, 

and 2007-08. We studied non-pregnant adults aged 20 and older having information available on 

all five criteria of MetS. After excluding pregnant women and participants with missing data on 

biomarkers levels and covariates of interest, there were and 7134 and 7123 participants included 

in our analysis for CRP and WBC, respectively. 

Markers of Inflammation and covariates. The biomarkers of interest in this study were 

CRP and WBC count. In addition to these biomarkers, we also obtained data on demographic 

variables (including age, gender, race/ethnicity, and education) and potential risk factors for 

cardiovascular disease, such as smoking status and history of any cardiovascular diseases (i.e. 

congestive heart failure, coronary heart diseases, angina/angina pectoris, heart attack, stroke). 

Smoking status was defined as follows: current-presently smoking cigarettes or serum cotinine 

levels were greater than or equal to 10 ng/mL; former-have smoked 100 cigarettes in life but 

currently not smoking; never-had not smoked at least 100 cigarettes in life. We also obtained 

data from NHANES on infections within the last 30 days (cold, gastrointestinal illness, 

flu/pneumonia/ear infection), chronic obstructive pulmonary disease (COPD) (includes 
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emphysema and chronic bronchitis), household smoker presence and rheumatoid arthritis for 

conducting sensitivity analyses. 

Definition of MetS. MetS was defined as per the Joint Scientific Statement Harmonizing 

the MetS [107]. According to these guidelines, MetS is defined as the presence of three or more 

of the following conditions: high blood pressure, hypertriglyceridemia, low high- density 

lipoprotein cholesterol (HDL-C), elevated fasting glucose, and abdominal obesity. High blood 

pressure was defined as systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 

mmHg. For this analysis, high blood pressure could also be defined by a self-report of current 

use of antihypertensive medication. Hypertriglyceridemia was identified based on triglycerides 

≥150 mg/dL. Low HDL-C was identified by HDL-C < 40 mg/dL in men or < 50 mg/dL in 

women. Elevated fasting glucose was defined as fasting glucose ≥100 mg/dL; for this analysis, 

elevated fasting glucose could also be defined by a self-report of current use of insulin or oral 

hypoglycemic. Abdominal obesity was defined based on waist circumference ≥ 102 cm in men 

and 88 cm in women. The details of the adult questionnaire, MEC examination, and laboratory 

tests for profiling MetS risk factors have been described on the NCHS website [92]. 

Ambient air pollution and weather data. Predictions of daily ambient 24-hour average 

PM2.5 (µg/m3) and 8-hour maximum O3 levels (ppb) were obtained from the Environmental 

Protection Agency (EPA) using a downscaling modeling approach [93]. This downscaling 

approach uses Bayesian space-time modeling to combine air monitoring data and gridded 

numerical output from the Community Multi-Scale Air Quality Model (CMAQ ) to produce 

point level daily air pollution predictions to the year 2000 US census tract centroids [94]. Daily 

predictions of O3 and PM2.5 were obtained from January 1, 2001 – December 31, 2008 at the 
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population weighted centroid (centers of population) of each year 2000 US census tract in the 48 

conterminous states [95].   

Meteorological data were obtained from the CDC WONDER North America Land Data 

Assimilation System Daily Air Temperatures and Heat Index (1979-2010) website [96]. Daily 

values of the maximum air temperature and maximum heat index for each county were extracted 

for the time period January 1, 2001 through December 31, 2008. Heat index incorporates both 

temperature and relative humidity and is a better measure on days when air temperature >80 F°. 

Maximum heat index was provided for those days when air temperature was above 80 F° or 

26.7° C.  CDC used a formula by Steadman to calculate the hourly heat index, from which the 

daily maximum heat index was computed [97]. For our analysis, we computed a daily maximum 

apparent air temperature which was defined as the daily maximum heat index if provided; 

otherwise the daily maximum air temperature was used. 

We assembled an environmental database of daily pollution data and meteorological data 

for each census tract in the 48 conterminous United States for the time period January 1, 2001 

through December 31, 2008.  This large database contained predicted values of PM2.5 and O3 at 

the population weighted centroid of each year 2000 US census tract and maximum apparent 

temperature for each county assigned to the appropriate census tract level.  In addition to the 

daily levels (lag 0), we calculated the following for PM2.5 and O3,: the level on the previous day 

(lag 1); two days prior (lag 2); three days prior (lag 3); the average of lags 0 and 1 (lag 0 to 1); 

average of lags 0, 1 and 2 (lag 0 to 2); average of lags 0, 1, 2, and 3 (lag 0 to 3); average of lags 1 

and 2 (lag 1 to 2); and the average of lags 1, 2, and 3 (lag 1 to 3). The following long term 

averages were also calculated: the average of the 30 days prior (30-day moving average), 60 days 

prior (60-day moving average), and annual average. 
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Merging of health and environmental data. The Census tract (11 digit Federal 

Information Processing Standards code) of residence of each individual and the date of the 

NHANES examination were used to merge the NHANES data with the environmental dataset of 

air pollution and weather described above. Thus, each NHANES participant was assigned PM2.5, 

O3, and temperature exposure based on the census tract of residence. 

Statistical analysis. We performed weighted descriptive analyses (mean and standard 

error) for each biomarker overall and also stratified by covariates. We examined exposure to 

ambient PM2.5 as a predictor of each biomarker of interest- CRP and WBC in separate regression 

models. CRP was log transformed to improve normality and stabilize the variance. To evaluate 

the short term effects of PM2.5 we analyzed the effect of PM2.5 on the day of the blood draw (lag 

0) as well on the day before (lag 1), two days before (lag 2), and three days before (lag 3) and 

averages of these time periods (lag 0 to 1, lag 0 to 2, lag 0 to 3, lag 1 to 2, and lag 1 to 3).  In 

addition, we examined the long term effects of PM2.5 on each biomarker by using the average 

PM2.5 in the 30 days prior, 60 days prior and annual average value. We also examined the long 

term effects of PM2.5 after adjusting for short term effects of air pollution (lag 0 to 3 of PM2.5 and 

O3). 

We used multiple linear regression models to assess the association of PM2.5 with each 

biomarker in subgroups: participants with and without MetS. The regression estimates were 

calculated for a 10 μg/m3 increase in PM2.5 after controlling for selected covariates based on prior 

biological and epidemiological knowledge of major determinants of cardiovascular health. Age 

was treated as a continuous variable, whereas gender, smoking (current smokers vs never & 

former smoker) and history of any cardiovascular disease were treated as dichotomous variables 

in the models. Race/ethnicity was categorized as non-Hispanic white, non-Hispanic black, 
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Mexican American, and other race. Education was categorized as 1-11th grade, high school 

grade/GED or some college, and college graduate. Models were run adjusted for the co-pollutant 

O3 at the same lag or average as PM2.5.  Short term models were adjusted for maximum apparent 

temperature at the zero lag. The 30 day and 60 day moving average models were adjusted for 30 

day maximum apparent temperature. The annual average models were not adjusted for 

temperature. Quartiles of temperature were used to account for non-linear relationship of 

temperature with biomarkers.  

 Sensitivity analyses. Certain medical conditions (e.g. rheumatoid arthritis and COPD), 

acute infections and presence of household smoking have been related to elevated levels of 

inflammatory markers [98-101]. Therefore, we investigated the sensitivity of our results to 

alternate ways of modelling by excluding people with history of (a) rheumatoid arthritis; (b) 

COPD; (c) acute infection in last 30 days; (d) household smoking. We also examined our results 

after controlling for season and year because temperature and pollutants show seasonal and 

yearly trend. All statistical analyses were performed using SAS software, version 9.2, Cary, NC, 

US. Descriptive analyses were conducted using PROC SURVEYMEANS and PROC 

UNIVARIATE. 

All statistical analyses were performed using SAS software, version 9.2, Cary, NC, US. 

Descriptive analyses were conducted using PROC SURVEYMEANS and PROC 

UNIVARIATE. All regression models were run accounting for the complex sampling design of 

the NHANES with the SAS SURVEYREG command by using the sample weights included in 

the datasets. P-values <0.05 of were considered significant. All p-values were 2-tailed.  
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5.4 RESULTS 

There were 7408 and 7397 non-pregnant adult participants with information available on all five 

criteria of MetS and CRP or WBC analysis respectively. Out of these, 35.1 % (N=2901 for CRP 

analysis group, N=2894 for WBC analysis group) were defined as having MetS as they met three 

or more criteria per the definition of MetS [107]. 

Table 8 shows the distribution of environmental variables from 2001 to 2008 at the level 

of participant’s address on the day of blood draw. The mean ± standard error of PM2.5 (µg/m3), 

O3 (ppb), and maximum apparent temperature (°C) were 11.74±0.37, 42.47±0.98, and 

22.14±0.48, respectively. 

Table 9 shows the survey weighted descriptive statistics of biomarkers for non-pregnant 

adult participants with information available on all five criteria of MetS, excluding participants 

with missing data on CRP and WBC levels and covariates of interest. The CRP levels were 

raised in black, older and male participants, whereas, WBC count were higher in younger, male 

and races other than black. The levels of both biomarkers were elevated in current smokers, 

lower education and presence of history of any CVD, rheumatoid arthritis, chronic obstructive 

pulmonary disease, and recent infections. 

In single pollutant PM2.5 models, there was an increased response of change in CRP in 

participants who had MetS compared to those who did not have MetS, for both short and long 

term exposure, after adjusting for age, gender, race, education, smoking status, history of any 

cardiovascular disease, and maximum apparent temperature. The increased response was greater 

for long term exposure. In bi-pollutant models (i.e., adjusting for ozone), there was a significant 

positive association of lag 0 PM2.5 for participants with MetS. For every 10 µg/m3change in 

PM2.5, there was a change of 10.1% (2.2%-18.6%) for CRP. Also, for other lags, there was an 
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increase in CRP in participants who had MetS compared to those who did not have MetS (Figure 

11).  

Similar to CRP, there was an increase in WBC count in participants who had MetS 

compared to those who did not have MetS, for both short and long term exposure in single 

pollutant PM2.5 models, after adjusting for age, gender, race, education, smoking status, history 

of any cardiovascular disease, and maximum apparent temperature. The increased response was 

more for long term exposure. In bi-pollutant models (i.e., adjusting for ozone), the point 

estimates were enhanced (Figure 12). 

Sensitivity Analysis. The results of sensitivity analyses excluding people with history of 

(a) rheumatoid arthritis; (b) chronic obstructive pulmonary disease; (c) acute infection in last 30 

days; (d) household smoking were largely similar.  Additionally, adjusting for season and year 

led to similar results (Data not shown). 

5.5 DISCUSSION 

Our objective was to examine the association of PM2.5 air pollution exposure with biomarkers, 

i.e., CRP and WBC, of cardiovascular risk in adult NHANES participants with MetS compared 

to participants without MetS. We found that participants with MetS had an increased response of 

change in biomarkers of cardiovascular risk to increase in PM2.5 air pollution compared to 

participants without MetS. 

Our study supports previous evidence that preexisting cardio metabolic diseases may 

confer susceptibility to particle-induced systemic inflammation. Previous epidemiological 

studies have found stronger effects of air pollution on inflammatory markers among diabetics 
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[21, 30, 49] and the obese [19]. Controlled human exposure studies in MetS participants [112] 

found significant positive associations of CRP to particle air pollution compared to studies in 

healthy adults [113-115].  

However, there are a few studies that have examined the relationship of PM2.5 with CRP 

and WBC count before in people with MetS. Dubowsky et al.  2006 found consistently 

significant positive associations for moving averages of 1-7 days of  PM2.5 exposure by presence 

of diabetes, obesity individually or diabetes, obesity and hypertension together in a panel study 

of 44 elderly participants for CRP [30]. In the same study, there was non-significant increased 

response for WBC count. Using the NHANES data, a study reported a significant incremental 

change in WBC count to long term exposure of PM10 according to a number of MetS criteria. 

However, they utilized NHANES III (1989-1994) participants who lived  in urban areas, and the 

pollutant data from US EPA Air Quality System monitors PM10 levels during this earlier time 

period (1989-1994) were significantly higher (1 year average PM10 = 36.8 ±13 µg/m3).  

The stronger associations of PM2.5 exposure with biomarkers of cardiovascular risk in 

MetS participants, who are already at higher risk of CVD, are likely due to already primed 

cellular machinery for the generation of excess reactive oxygen species and proinflammatory 

responses [116]. Animal studies have shown dysregulation of normal cardiac, vascular, and 

autonomic responses to inhalation exposure of O3 and PM2.5 in rats with high fructose diet 

induced MetS [117]. 

To our knowledge, this is the first nationwide population-based study examining the 

association of short and long-term exposure to PM2.5 air pollution with inflammatory biomarkers 

of cardiovascular risk. The PM2.5 exposure was assessed by using pollutant predictions at the 

population weighted centroid of the census tract using downscaling model approach from EPA 
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[93].  This approach allows use of health data for nearly the entire country instead of being 

limited to urban areas due to its ability to predict air pollutant concentrations for a large spatial 

extent and makes study findings generalizable to the US.  Additionally, it better predicts 

temporal variability indicative of air pollutant concentrations measured at air quality monitors 

compared with earlier CMAQ models and spatial interpolation methods [93, 103]. Our study was 

able to consider health effects at the lower end of ambient particulate matter exposure compared 

to previous studies [54] . As a result, this investigation suggests that even at a low level of air 

pollution, those with multiple pre-existing cardiovascular risk factors might have an increased 

risk of cardiovascular disease when exposed to particulate matter air pollution.  

This study must be interpreted in the context of its known limitations. There is a potential 

of exposure misclassification due to less confidence in the pollutant predictions in rural areas 

because of the increasing distance of these locations from air quality monitors [103]. 

Additionally, there is a possibility of error in exposure measurement due to use of average 

population exposure rather than individual exposure estimates and not accounting for the time 

spent indoors vs outdoors by the participants.   

 

Conclusion 

In summary, participants with MetS, compared to participants without MetS, showed a stronger 

positive response in systemic inflammation, as manifested by CRP and WBC count, in 

association with particulate air pollution (both short term and long term).With one third of the 

U.S. population meeting criteria for MetS, the health impact of particulate air pollutant in this 

sensitive population has the potential to be significant. 
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 Table 8. Distribution of environmental variables 
Year N PM2.5(µg/m3) O3 (ppb) Temperature (° C) 

2001 812 11.00±0.76 41.48±1.79 23.57±1.47 

2002 922 12.60±1.66 47.00±3.54 23.27±1.27 

2003 799 12.20±0.91 43.18±2.21 21.76±0.93 

2004 859 11.38±0.92 38.93±1.72 22.39±1.59 

2005 766 11.78±0.83 42.70±2.60 21.04±1.32 

2006 832 10.81±0.73 39.56±1.69 21.25±1.09 

2007 1054 12.80±1.61 44.35±3.25 21.78±1.97 

2008 1090 11.51±0.75 43.03±2.19 22.22±1.20 

2001-2008 7134 11.74±0.37 42.47±0.98 22.14±0.48 

*Values are mean ± SE 
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Table 9. Survey weighted descriptive statistics of biomarkers for non-pregnant adult participants with 

information available on all five criteria of metabolic syndrome 

 C - reactive protein White blood cells count 
 

n (%) 
Mean±SE  
(mg/dL) n (%) 

Mean ± SE (103  

cells/µL) 
Overall 7134(100) 0.4±0.01) 7123(100) 6.78± 0.04 
Age (years) 
  20-39 
  40-59 
  60+ 

 
2302(38.6) 
2321(39.3) 
2511(22.2) 

 
0.35±0.02 
0.42±0.02 
0.46±0.02 

 
2299(38.5) 
2318(39.3) 
2506(22.2 

 
6.85±0.05 
6.73±0.05 
6.77±0.08 

Gender 
  Male 
  Female 

 
3651(49.6) 
3483(50.4) 

 
0.34±0.01 
0.47±0.01 

 
3645(49.7) 
3478(50.3) 

 
6.83±0.05 
6.74±0.05 

Race/Ethnicity 
  White 
  Black 
  Hispanic 
  Others 

 
3722(72.4) 
1363(10.9) 

1381(7.6) 
668(9.1) 

 
0.39±0.01 
0.50±0.02 
0.41±0.02 
0.39±0.04 

 
3717(72.4) 
1362(10.8) 

1380(7.6) 
664(9.1) 

 
6.84±0.05 
6.25±0.06 
6.85±0.07 
6.89±0.09 

Education 
  1-11th grade 
  HS grad/GED or    some 
college 
  College graduate 

 
1993(17.8) 
3708(56.4) 
1433(25.8) 

 
0.44±0.02 
0.43±0.02 
0.32±0.02 

 
1987(17.8) 
3704(56.5) 
1432(25.7) 

 
7.12±0.08 
6.87±0.05 
6.37±0.05 

Smoking 
  Never 
  Former 
  Current 

 
3653(51.1) 
1894(24.6) 
1587(24.3) 

 
0.38±0.02 
0.41±0.02 
0.45±0.02 

 
3645(51.1) 
1891(24.6) 
1587(24.4) 

 
6.38±0.03 
6.56±0.07 
7.85±0.07 

History of any CVD  
  Yes 
  No 

 
801(8.2) 

6333(91.9) 

 
0.56±0.05 
0.39±0.01 

 
798(8.2) 

6325(91.9) 

 
7.19±0.12 
6.75±0.04 

Recent Infection  
  Yes 
  No 

 
1904(27.1) 
4981(72.9) 

 
0.54±0.03 
0.36±0.01 

 
1903(27.1) 
4972(72.9) 

 
7.02±0.06 
6.69±0.05 

Rheumatoid Arthritis 
 Yes 
 No 

 
369(4.01) 

6754(96.0) 

 
0.57±0.04 
0.40±0.01 

 
367(4.0) 

6745(96.0) 

 
7.10±0.16 
6.77±0.04 

COPD 
  Yes 
  No 

 
538(7.4) 

6574(92.6) 

 
0.65±0.06 
0.38±0.01 

 
539(7.5) 

6562(92.6) 

 
7.27±0.11 
6.74±0.04 

Household Smoker 
  Yes 
  No 

 
1376(20.3) 
5711(79.7) 

 
0.47±0.03 
0.39±0.01 

 
1376(20.3) 
5700(79.7) 

 
7.67±0.08 
6.56±0.03 

Abbreviations: CVD, cardiovascular diseases  

* excludes participants with missing data on CRP and WBC levels and covariates of interest 
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Figure 11. (a) Effect Modification of associations between PM2.5 and C - reactive protein (CRP) by metabolic 

syndrome. Models are adjusted for age, gender, race/ethnicity, education, smoking status, history of 

cardiovascular disease, and maximum apparent temperature. (b) Models were also adjusted for the same lag 

ozone. 
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Figure 12. (a)  Effect Modification of associations between PM2.5 and White Blood Cell (WBC) counts by 

metabolic syndrome. Models are adjusted for age, gender, race/ethnicity, education, smoking status, history 

of cardiovascular disease, and maximum apparent temperature. (b) Models were also adjusted for the same 

lag ozone. 
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6.0  SUMMARY AND PUBLIC HEALTH SIGNIFICANCE 

Short term exposure to ambient PM2.5 air pollution was significantly associated with CVDs 

mortality, specifically, IHD and PVD, in Allegheny County, PA. The risk of IHD mortality due 

to PM2.5 air pollution was significantly greater for individuals who died outside of a hospital or 

nursing home compared to deaths in the hospital or nursing home. This could be due to exposure 

to high level of air pollution outside of hospital or nursing home, difficulty in accessing timely 

health care leading to significantly higher effect of air pollution on CVD/ IHD mortality or may 

be due to more accurate exposure assessment based on spatiotemporal kriging method at zip 

code of residence. This needs to be explored further. To understand the biological pathway 

linking PM2.5 exposure with CVDs, a nationwide representative sample of adult men and women 

was utilized. Suggestive evidence of stronger associations of PM2.5 with biomarkers of 

cardiovascular risk i.e. CRP, WBC count, homocysteine and fibrinogen, in participants with 

elements of MetS e.g. obesity, diabetes, hypertension and smokers were observed. Further 

investigation showed a stronger positive response in systemic inflammation, as manifested by 

CRP and WBC count in association with particulate air pollution (both short term and long 

term), in participants with MetS, compared to participants without MetS. With one third of the 

U.S. population meeting criteria for MetS, the health impact of particulate air pollutant in this 

sensitive population has the potential to be significant. 
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