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Clinical studies have indicated that pregnancy alters the pharmacokinetics profiles of several 

medications. Results from previous studies have suggested that physiological changes that occur 

in pregnancy, including increased plasma concentrations of female hormones may play an 

important role in the observed changes in drug metabolism. Despite this general awareness, the 

mechanisms underlying the regulation of major drug metabolizing enzymes such as cytochrome 

P450 (CYP450) and UDP-glucuronosyltransferase (UGT) during pregnancy remain unknown. 

The aim of this dissertation was to characterize the impact of pregnancy related hormones on 

hepatic CYPs, UGTs and transporters.  

The effect of female hormones on the expression and activity of selected CYP, UGT, and 

transporters was measured in four independent studies in primary cultures of human hepatocytes. 

A mixture of female hormones at projected hepatic concentrations in the third trimester of 

pregnancy significantly increased mRNA expression, activity, and protein expression of 

CYP3A4 but limited impact on other CYPs. Female hormones however, differentially altered the 

expression and activity of various UGT enzymes. Progesterone and estradiol increased the 

activities of UGT1A1 and UGT1A4, respectively.  Conversely, human chorionic gonadotropin 

decreased the activity of UGT1A4. A significant increase in the expression of UGT1A6 and 

UGT1A9 was observed by progesterone compared to the control. Human growth hormone 
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enhanced the mRNA expression of UGT2B7. Expression of UGT1A1, UGT1A3 and AhR were 

significantly increased by estradiol. Progesterone significantly increased the expression of 

BCRP. Estradiol also enhanced the expression of NHERF1. Together, these findings provide 

support for the role of female hormones in the altered specific drug metabolism and transport 

during pregnancy. 

Using physiological based pharmacokinetics (PBPK) modeling, we predicted that 

pregnancy will increase the clearance of buprenorphine (a drug that is simultaneously 

metabolized by CYP and UGT). This was supported by preliminary clinical observations. 

However, female hormones did not have any significant impact on the metabolism of 

buprenorphine in primary cultures of human hepatocytes, implicating additional factors to be 

responsible for pregnancy-mediated changes in pharmacokinetics of buprenorphine. 

In conclusion, our findings indicate that pregnancy related hormones contribute to some 

of the observed changes in drug metabolism and transport during pregnancy.  
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1.0  INTRODUCTION 
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1.1 DRUG USE DURING PREGNANCY 

Women represent 50.8% (157 million) of the population in the United States. About 40% (62 

million) women are of childbearing age between 15 and 44 years, and about 6.5% (4 million) of 

them get pregnant every year (Dye et al., 2013). More than 50% of pregnant women take at least 

one prescription medication (Andrade et al., 2004; Choi et al., 2013; Glover et al., 2003). 

Medication use during pregnancy is very common. A prospective and observational study 

reported that about 96% of pregnant patients received at least one medication during their 

pregnancy, and more than 62% of them used over-the-counter medications (Refuerzo et al., 

2005). Andrade et al., 2014, reported that during the 270 days before delivery, the percentage of 

pregnant women who used a drug other than over-the-counter vitamins or minerals from the 

United States Food and Drug Administration category A, B, C, D, and X were 2.4%, 50.0%, 

37.8%, 4.8%, and 4.6%, respectively (Figure 1-1-A) (Andrade, 2004). Moreover, 3.4% and 1.1% 

of pregnant women received a drug from category D and X, respectively, after the first prenatal 

visit (Andrade, 2004). Commonly used prescription medications during pregnancy include anti-

hypertensives (labetalol and methyldopa), anti-diabetics (insulin, glyburide, and metformin), and 

anti-retrovirals (ritonavir), in addition to antivirals, antibiotics, and medications that minimize 

nausea. The most common over-the-counter medications used during different trimesters in the 

National Birth Defects Prevention Study are shown in (Figure 1-1-B) (Werler et al., 2005; Yoon 

et al., 2001). Improper dosing of these medications during pregnancy can cause treatment failure 

or drug toxicity, leading to serious complications to the mother and fetus (Tatum et al., 2004). 

For example, using angiotensin-converting enzyme (ACE) inhibitors in pregnancy may cause 

fetal hypertension as well as fetal death (Pryde et al., 1993). Moreover, inadequate treatment of 

some diseases during pregnancy can lead to disease complications, and increase prematurity and 
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perinatal death. Therefore, health care professionals are still concerned about using drug therapy 

in pregnant women since it plays an important role in maternal and fetal health. That is why 

determining the suitable dosage according to the changes in drug disposition in pregnancy is very 

critical. The current labeling of medications only provides safety information about whether or 

not the drug can be used in pregnancy according to the FDA pregnancy classification, which is 

based on safety studies in animals or humans. However, labeling usually does not provide 

information about drug dosing (based on changes in pharmacokinetics and pharmacodynamics) 

during pregnancy. Therefore, physicians usually prescribe doses used in non-pregnant population 

for pregnant women, due to the lack of pharmacokinetic information. As a result, the standard 

adult dose could be inadequate or toxic. For example, (Webb et al., 2004) reported on the lack of  

antipsychotic treatment guidelines during pregnancy, where the treatment is based on the 

prescriber’s clinical judgment. With limited information about the influence of pregnancy on the 

efficacy of these medications, these findings emphasize the significant need for studying the 

effect of pregnancy on drug disposition in order to determine the appropriate dose and optimize 

pharmacotherapy in this special population, as well as to avoid any unexpected harm to the 

pregnant woman and the fetus.  

Altered pharmacokinetics during pregnancy has been hypothesized in several studies 

based on what has been revealed as gender differences in pharmacokinetic parameters in animals 

and humans (Anger and Piquette-Miller, 2008; Curry, 2001; Czerniak, 2001). Pregnancy is a 

very unique period that has its own physiological changes starting from conception and 

increasing gradually and linearly until the end of gestation (Anger, 2008). The aim of this review 

is to discuss the current data on altered pharmacokinetics of medications in pregnancy. 
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Figure 1-1 Percentage of drug exposure during pregnancy. 

(A) Drug exposure during pregnancy based on FDA pregnancy risk category (Andrade, 2004). 

(B) Percentage of using over-the-counter medications during pregnancy (Werler, 2005).  
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1.2 ALTERED DRUG PHARMACOKINETICS IN PREGNANCY 

Pharmacokinetic data in pregnant women is limited due to the difficulty in conducting clinical 

studies in pregnant women. Some of the challenges are small sample sizes and use of different 

control population to compare the results (pregnant women at different stages of pregnancy 

versus non-pregnant subjects or male controls).  

Changes in hepatic drug metabolism by specific isoforms of CYP450 enzymes during pregnancy 

has been reported in several clinical pharmacokinetic studies (Table 1-1). For example, increases 

in the clearance of CYP2C9, CYP2D6, and CYP3A4 substrates in the third trimester have been 

noted, compared with non-pregnant control subjects or during post partum (McGready et al., 

2003; Tracy et al., 2005; Yerby, 2001). On the other hand, the metabolism of CYP1A2 and 

CYP2C19 substrates is decreased by 50% and 40%, respectively (McGready, 2003; Tracy, 

2005). Results from clinical pharmacokinetic studies indicate that clearance of UGT1A1, 

UGT1A4, and UGT2B7 substrates are increased (Table 1-1) (Chen et al., 2009; Fischer et al., 

2014; Watts et al., 1991). The pharmacokinetics of lamotrigine, an antiepileptic drug that is 

metabolized mainly by UGT1A4, is significantly changed during pregnancy with a 360% 

increase in its clearance in the third trimester compared to pre-pregnancy, by an unknown 

mechanism (Pennell et al., 2004). Studies also reported that serum concentration-to-dose ratio of 

lamotrigine is decreased by 27% and 66% in the first and third trimester, respectively, compared 

to the postpartum period, suggesting the need for lamotrigine dosage adjustments in pregnant 

women (de Haan et al., 2004). Changes in drug clearance during pregnancy can influence 

steady-state drug concentrations significantly (Mosekilde et al., 2012). Consequently, healthcare 

professionals are at a crossroad in prescribing medications to pregnant women, because changes 

in therapeutic efficacy plays an important role in both maternal and fetal health. Therefore, 
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understanding drug pharmacokinetics during pregnancy is very important in accomplishing the 

desired therapeutic outcomes and avoiding drug toxicity by determining the adequate dose and 

achieving the therapeutic drug plasma concentration.  
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Table 1-1 Change of drug metabolizing activities and drug clearance in vivo. 

 ↑ increase, ↓ decrease 

 

Enzyme Activity change Pharmacokinetics change Reference 

CYP1A2 ↓ Decreased the apparent oral clearance of caffeine (Tracy, 2005) 

CYP2A6 ↑ Increased clearance of nicotine  (Dempsey et al., 
2002) 

CYP2C9 ↑ Increased clearance of phenytoin  (Yerby et al., 1990) 
CYP2C19 ↓ Decreased the metabolic ratio of proguanil (McGready, 2003) 
CYP2D6 ↑ Decreased the urinary ratio of dextromethorphan/dextrorphan (Tracy, 2005) 

CYP3A4 ↑ 

 
Increased oral clearance of midazolam 
Increased oral clearance of glyburide 

Increased oral clearance of methadone 
 
 

 
(Hebert et al., 2008) 
(Hebert et al., 2009) 
(Wolff et al., 2005) 

 
 

UGT1A1 ↑ Increased labetalol oral clearance (Fischer, 2014) 
UGT1A4 ↑ Increased lamotrigine apparent clearances (Pennell, 2004) 
UGT2B7 ↑ Increased oral clearance of zidovudine (Watts, 1991) 
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Pregnant women undergo several physiological and metabolic changes throughout 

gestation. These changes have been known to alter drug pharmacokinetics such as absorption, 

distribution, metabolism, and excretion (Table 1-2). However, the underlying mechanism for 

these changes is poorly understood.  
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Table 1-2 Physiological changes during pregnancy and related alterations in drug pharmacokinetics  

Physiological changes during pregnancy Possible pharmacokinetic changes Reference 

Reduced stomach motility and delay in gastric emptying Decreased drug absorption (Dawes and Chowienczyk, 
2001) 

Increased plasma volume Increased volume of distribution (Lund and Donovan, 1967) 

Decreased albumin (20‒30%) and α 1-acid glycoprotein Increased drug free fraction 
Increased clearance of low clearance drugs 

(Frederiksen, 2001) 
(Clark et al., 1989) 
(Honda et al., 1990) 

Increased cardiac output Increased hepatic clearance for high 
clearance drugs (Hodge and Tracy, 2007) 

Increased expression of drug-metabolizing enzymes Increased hepatic clearance of low 
clearance drugs 

(Hill and Pickinpaugh, 
2008) 

25-50 % increased of renal plasma flow Increased renal clearance of renally 
secreted drugs 

(Baylis, 1982) 
(Koren, 2011) 

50% increased of glomerular filtration rate Increased renal clearance of renally 
filtered drugs 

(Davison and Hytten, 
1974) 
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1.2.1 Drug Absorption   

Gastrointestinal symptoms such as nausea and vomiting are very common in pregnancy (Bassey, 

1977; Shah et al., 2000). Due to these conditions, drug absorption can be decreased, resulting in 

low drug concentrations in plasma (Koren, 2011). It has been reported that increased levels of 

progesterone is linked to reduced stomach motility, delayed gastric emptying (Dawes, 2001), as 

well as extension of small bowel transit time by about 30–50% (Clark, 1989). Moreover, during 

pregnancy, the ionization of weakly acid drugs is increased due to increased gastric pH (Carter et 

al., 1981). Consequently, these changes have the potential to alter drug absorption and drug 

bioavailability (Parry et al., 1970). Huston et al., 1989 reported decreased gastric emptying of 

solid meals in postmenopausal women who had been treated with hormonal replacement therapy 

compared to men. This indicates that female steroidal hormones may play a role in reducing the 

rate of gastric emptying, which may decrease rate of drug absorption and maximum drug 

concentration, and increase the time to reach maximum drug concentration (Dawes, 2001).  On 

the other hand, absorption of certain drugs, such as inhaled medications, can increase because of 

elevated cardiac output and alveolar uptake (Dawes, 2001). 

1.2.2 Drug Distribution.  

Plasma volume increases during pregnancy, starting from the first trimester up to the third 

trimester, leads to increased total body water (8 liters intravascularly and extravascularly), and 

increases the volume of drug distribution particularly for hydrophilic drugs (Frederiksen, 2001; 

Lund, 1967). Plasma albumin concentration decreases from 4.2 gm/dL in non-pregnant women 



 

  11 

to 3.6 gm/dL in pregnant women during the second trimester of pregnancy (Frederiksen, 2001). 

Moreover, levels of α-1-acid glycoprotein (AAG) are decreased during pregnancy (Honda, 

1990), leading to an increase of fraction unbound (fub) of certain drugs.  As a result of lower 

plasma protein levels, the protein binding of the drugs will be reduced, leading to increased free 

fraction, especially for highly protein bound drugs such as midazolam and digoxin (Costantine, 

2014). For example, the oral clearance of valproic acid in pregnant women was higher, and this 

was reported to be due to an increased free fraction of the drug (Pennell, 2003). Extracellular 

fluid space is also increased as the weight of the pregnant woman increases (Frederiksen, 2001; 

Plentl and Gray, 1959). An increase in the pregnant women’s body weight can lead to an 

increased volume of distribution for lipophilic drugs and decrease the dose per kilogram when a 

fixed dose is administered, which may result in decreased steady state concentrations (Koren, 

2011). A combination of these factors is expected to increase the volume of distribution and 

lower the plasma concentrations of most drugs and therefore justifies a need for dosing 

adjustment (Frederiksen, 2001; Frederiksen et al., 1986; Hill and Pickinpaugh, 2008; Hodge, 

2007; Mendenhall, 1970).  

1.2.3 Drug Metabolism.  

Pregnancy alters drug clearance by either increasing or decreasing the activity of hepatic drug-

metabolizing enzymes. Clinical studies in pregnant women have shown that clearance of 

CYP2C9, CYP2D6, CYP3A4, UGT1A1, UGT1A4, and UGT2B7 substrates were increased 

compared with non-pregnant controls (Fischer, 2014; Hebert, 2008; Pennell, 2004; Tracy, 2005; 

Watts, 1991; Yerby, 1990). On the other hand, the clearance of CYP1A2 and CYP2C19 

substrates were decreased (McGready, 2003; Tracy, 2005). For instance, several medications that 
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are used in pregnant women are metabolized by CYP3A4, such as nifedipine and midazolam. 

Studies performed in pregnant women reported that nifedipine clearance increased four-fold 

during the third trimester of pregnancy compared to controls (Prevost et al., 1992). Recently, 

changes in the drug-metabolizing activity during first, second, and third trimester of pregnancy 

compared to the postpartum period have been characterized using caffeine metabolism as a 

marker for CYP1A2 activity, dextromethorphan O-demethylation as a marker for CYP2D6 

activity, and dextromethorphan N-demethylation as a marker for CYP3A activity (Tracy, 2005). 

Activity of CYP1A2 was significantly reduced by 32%, 48%, and 65% during the first, second, 

and third trimester, respectively (Tracy, 2005). On the other hand, activity of CYP2D6 increased 

significantly by 25% in first trimester, 34% in second trimester, and 47% in third trimester 

compared to the postpartum period (Tracy, 2005). Also, CYP3A activity significantly increased 

by 35-38% during all pregnancy trimesters compared to the same subjects during the postpartum 

period (Tracy, 2005).  

Results from in vitro experiments demonstrated significant changes (induction or 

inhibition) in specific isoforms of CYP450 and UGT enzymes by estradiol, progesterone, human 

growth hormone, pituitary growth hormone, cortisol, placental lactogen, and prolactin in primary 

cultured human hepatocytes (Choi, 2013; Papageorgiou et al., 2013). This implies an alteration 

in the clearance of drugs that are metabolized by these enzymes. However, the mechanism of 

how these changes occur has not been fully evaluated. 

1.2.4 Drug Elimination.  

The cardiovascular system also changes physiologically during pregnancy with 30-60% increase 

in cardiac output during the third trimester which leads to an increase in blood flow to the liver, 
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kidneys, uterus, and placenta (Hodge, 2007). Due to the increase in cardiac output, the total 

hepatic blood flow increases by 160% in the third trimester compared to non-pregnant women, 

which can significantly enhance the metabolic capacity of phase I and II enzymes, leading to 

increased drug exposure for hepatic metabolism, as well as influencing the clearance of high 

extraction ratio drugs (Anger, 2008; Hodge, 2007; Nakai et al., 2002). Clinical studies have 

shown that clearances of intravenously administered nicotine (high extraction ratio drug) is 

increased by 60–70% during pregnancy as compared to the postpartum period (Dempsey, 2002). 

Increasing plasma volume also results in increases in the glomerular filtration rate and increase 

in renal blood flow of up to 50%, leading to increased drug renal clearance and decreased 

elimination half-life (Baylis, 1982). Examples of drugs that are renally excreted are digoxin, 

atenolol, ampicillin, cefazolin, and aminoglycosides (Baylis, 1982; Hebert et al., 2005). 

Increases in the renal clearance of atenolol by 36% have been reported during pregnancy 

compared to the 3-month postpartum period (Hebert et al., 2005). Moreover, renally eliminated 

active metabolites, such as morphine-6-glucuronide (the active metabolite of morphine), were 

reported to have high clearance in late pregnancy, resulting in a lower therapeutic effect (Koren, 

2011).  

In summary, absorption, distribution, metabolism and elimination can be altered during 

pregnancy. In the following section, we will discuss hormonal regulation of drug metabolism. 
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1.3 HORMONAL REGULATION OF DRUG METABOLIZING ENZYME 

EXPRESSION 

Drug metabolism can be classified into two phases. Phase I reactions include primarily 

cytochrome P450 (CYP450) enzymes, which convert drugs to more polar metabolites through 

oxidation and chemical reduction. CYP1, CYP2, and CYP3 families are the major CYP enzymes 

responsible for most phase I reactions (Shimada et al., 1994). Among all 18 CYP enzymes that 

have been identified in humans, CYP3A and CYP2C are the most abundant hepatic subfamilies, 

which account for 30% and 20%, respectively, of the total amount of hepatic CYP enzymes 

(Shimada, 1994). CYP 3A4, 2C9, 2C8, 2E1, and 1A2 have the highest expression in the liver, 

while CYP 2A6, 2D6, 2B6, 2C19, and 3A5 are the lowest expressed P450 enzymes (Zanger and 

Schwab, 2013). CYP3A is responsible for about 60% of the P450-mediated metabolism of 

currently available drugs (Michalets, 1998).  

Phase-II conjugation reactions are responsible for the metabolism of many endogenous 

and exogenous compounds and comprise of glucuronidation, sulfation, methylation, acetylation, 

glutathione conjugation, amino acids conjugation, and sulfoxidation (King et al., 2000). 

Glucuronide conjugation is one of the major detoxification and elimination pathways for 

endogenous and exogenous chemicals. It accounts for more than 35% of all phase II drug 

metabolism pathways (Refuerzo, 2005; Tukey and Strassburg, 2000). Glucuronide conjugates of 

drugs are normally excreted through biliary membrane transporters. UGT1A and UGT2B 

(UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, and UGT2B15) are 

the major subfamilies responsible for glucuronidation of many dietary chemicals, drugs, and 

their metabolites (Mackenzie et al., 2005). Expression of these enzymes is influenced by multiple 



 

  15 

factors including xenobiotics, cytokines, hormones, sex, age, as well as genetic polymorphisms 

(Zanger, 2013).  

Pregnancy is characterized by dramatic increases in the concentration of female 

hormones (Figure 1-2). Pregnancy is known as an estrogenic condition with a 100-fold increase 

in estradiol, the hormone responsible for maturation and growth of fetal organs (Buster and 

Abraham, 1975). Progesterone, the hormone that plays a key role to maintain gestation, increases 

significantly during pregnancy from 30-40 ng/ml to 100-200 ng/ml (Tulchinsky and Hobel, 

1973). It has been also reported that concentrations of estradiol and progesterone in normal, 

healthy women are 0.2-1 nM and 5-50 nM, respectively (Stricker et al., 2006). However, during 

pregnancy, estradiol and progesterone levels increase gradually up to 100 nM and 1 mM, 

respectively (Tulchinsky et al., 1972). Other estrogen hormones such as estrone and estriol, as 

well as 17α-hydroxyprogesterone, human growth hormone, and human chorionic gonadotropin, 

are also dramatically increased during pregnancy, especially in the third trimester (Soldin et al., 

2005; Tulchinsky, 1972).  
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Figure 1-2 Plasma concentrations of female hormones during pregnancy.  

Adapted from (Tulchinsky, 1972).  
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Several studies reported that elevated levels of estradiol and progesterone are associated 

with many changes that occur throughout the gestational period (Moyer and Felix, 1998; Nilsen 

and Brinton, 2002). These high levels of estradiol and progesterone have been suggested to be 

responsible for the alteration in hepatic enzymatic expression and activity, such as CYP450 and 

UGT, by several studies. Data from a recent in vitro study reported that estradiol can increase the 

expression of CYP2A6, CYP2B6, CYP2C9, CYP3A4, and CYP2E1, while progesterone 

enhances the expression of CYP2A6, CYP2B6, CYP2C8, CYP3A4, and CYP3A5 in primary 

human hepatocytes (Choi, 2013). In addition, estradiol up-regulates the expression of UGT1A4 

while progesterone up-regulates UGT1A1 expression in a concentration-dependent manner 

(Jeong et al., 2008).  

Several assumptions have been made by many authors in supporting the role of female 

hormones in regulating drug-metabolizing enzymes. These assumptions are based on the 

evidence that the type and levels of female hormones may play a major role in modulating the 

expression and activity of many hepatic drug-metabolizing enzymes. It has been reported that 

changes in drug metabolism are different between females and males. For instance, the rate of 

elimination of drugs that are metabolized by CYP2A6, CYP2B6, and CYP3A4 are faster in 

females than in males (Anderson, 2005; Lamba et al., 2003). On the other hand, drugs that are 

metabolized by CYP1A2 have slower elimination rates in females than in males (Anderson, 

2005). Since these alterations in drug metabolizing enzymes occur similarly in pregnancy, and 

due to the differences in the hormonal and physiological characteristics between females and 

males, this may indicate that female hormones can play a potential role in altering hepatic 

enzyme expression and activity. In addition, similar changes in the activity of CYP1A2, 

CYP2A6, CYP2C19, and UGT1A4 have been reported between pregnant women and oral 



 

  18 

contraceptive users (Hodge, 2007). Also, high concentrations of progesterone up-regulate the 

expression of UGT1A1 (the major enzyme for labetalol metabolism) through activation of the 

pregnane X receptor (PXR) (Jeong, 2008). Together, this suggests that fluctuations of female 

hormone levels such as progesterone and estradiol could mediate changes in the clearance of 

drugs that are metabolized by these enzymes during pregnancy.  

1.4 ALTERATION OF BILIARY DRUG TRANSPORTERS DURING PREGNANCY 

Transporters are large proteins located in the biological membrane of different tissues such as 

liver, kidney, intestine, brain, and placenta (DeGorter et al., 2012). Drug transporters play an 

important role movement of drugs in and out of cell and in drug-drug interactions as well as in 

determining drug efficacy and safety (Feghali and Mattison, 2011). Based on their location and 

physiological function of how they transport drugs through the cell membrane, they can be 

classified as uptake or efflux transporters. Influx transporters expressed at the sinusoidal 

(basolateral) membrane of hepatocytes belong to the solute carrier (SLC) family, such as organic 

cation transporters (OCT), multidrug and toxin extrusion transporters (MATE), organic anion 

transporters (OAT), and organic anion transporting polypeptides (OATP), which are important in 

transporting substrates into the cells (Russel., 2010). On the other hand, efflux transporters 

expressed at the apical (canalicular) membrane of hepatocytes belong to the ATP-binding 

cassette (ABC) family (Russel., 2010). Efflux transporters facilitate the transfer of drugs from 

the intracellular to the extracellular environment by using energy, which results from ATP 

hydrolysis (Russel., 2010). Examples of ABC transporters are P-glycoprotein (P-gp), multidrug 

resistance associated proteins (MRP), breast cancer resistance protein (BCRP), and bile salt 
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export pump (BSEP) (International Transporter, 2010). Both influx and efflux transporters are 

important key factors in drug biotransformation and excretion pathways by regulating the drug 

access to the metabolizing enzymes (Shugarts and Benet, 2009). The therapeutic role of drug 

transporters in pregnancy and how they modify drug pharmacokinetics has not been studied 

(Feghali, 2011). Drug-drug interactions can occur at the site of transport proteins by either 

induction or inhibition (Feghali, 2011). For example, co-administering antiretroviral drugs 

together, such as saquinavir (P-gp substrate) and ritonavir (P-gp inhibitor), results in inhibition of 

Pgp by ritonavir, increasing the bioavailability of saquinavir (Alsenz et al., 1998; Eagling et al., 

1999; Feghali, 2011; Huisman et al., 2001).  

Several studies have focused on drug transporters during pregnancy, particularly 

placental transporters (Keitel et al., 2006). However, there is a great need for studying the 

regulation of other transporters in other organs during pregnancy, such as the ABC(Fenech et al., 

2011) transporters at the canalicular side of hepatocytes, which is important elimination of 

glucuronide conjugates. Biliary excretion plays an important role in the detoxification and 

elimination of many drugs. Therefore, inhibition of biliary transporters may result in pathologic 

complications such as intrahepatic cholestasis of pregnancy (ICP) (Fattinger et al., 2001). 

Physiological changes during pregnancy and inherent genetic variations have been linked to 

variations in transporter expression and activity (Fenech, 2011). For example, hepatic uptake of 

steroid glucuronides and biliary secretion of glucuronides and dibromosulfophthalein were 

significantly altered in pregnant rats (Wen et al., 2013). MRP2 protein levels have been reported 

to be reduced significantly during pregnancy compared to the postpartum period (Cao et al., 

2001). This suggests a regulation of these transporters during pregnancy. Progesterone levels 

increase significantly during pregnancy and have been reported to inhibit BSEP transporters 
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(Sharma et al., 2013). BSEP is expressed on the canalicular membranes and play an important 

role in transporting bile acids such as taurocholic acid (Sharma, 2013). Additionally, high serum 

concentrations of progesterone metabolites have been known to be associated with impaired 

biliary excretion and inducing trans-inhibition of BSEP, which leads to accumulation of bile 

acids and eventually causes toxicity (Fattinger et al., 2001). Recent studies demonstrated that 

17α-hydroxyprogesterone caproate (17α-OHPC), a synthetic analog of progesterone used for 

preventing pre-term delivery, inhibited the taurocholate efflux with sandwich cultured human 

hepatocytes in a concentration-dependent manner (Sharma, 2013).  

1.5 NUCLEAR MECHANSIM FOR REGULATION OF DRUG METABOLIZING 

ENZYMES AND BILIARY DRUG TRANSPORTERS EXPRESSION 

It has been known that the binding of inducers such as rifampin and phenobarbital to certain 

nuclear receptors (e.g. pregnane X receptor (PXR), estrogen receptor (ER), and constitutive 

androstane receptor (CAR)) in the cytosol leads to homo-dimerization or translocation from the 

cytoplasm into the nucleus. These transcriptional regulators bind to a specific sequence of DNA 

or different response elements in the upstream region of the target gene, resulting in a nuclear 

receptor/DNA complex (Figure 1-3). Then DNA is transcribed downstream into messenger RNA 

and finally translated into proteins that will alter cell function. The underlying mechanisms or 

factors responsible for alterations in drug-metabolizing enzymes and transporters during 

pregnancy remain unclear. Therefore, understanding transcriptional regulation and metabolic 

activity of drug-metabolizing enzymes and transporters during pregnancy is very important in 

maintaining optimal therapeutic efficacy.  
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The effect of pregnancy on the mRNA and protein expressions of drug-metabolizing 

enzymes and transporters has been studies in mice and rats. These studies showed down-

regulation of various cyps (except cyp2da1, cyp2d, and cyp3a13), ugts, uptake (except oat2) and 

efflux transporters (Table 1-3) and (Table 1-4). In mice and rats, it has been also reported that 

expression of hepatic nuclear receptors are decreased during pregnancy and is associated with 

down-regulation of many metabolizing enzymes and hepatobiliary transporters (Milona et al., 

2010; Wen, 2013). Recent studies reported the association between transporters, like MDR1 and 

MRP2, and the metabolizing enzymes that can be regulated by the pregnane X receptor (PXR) 

(Jigorel et al., 2006). For example, rifampicin activates PXR and subsequently induces the 

MRP2 expression in human liver cells (Jigorel, 2006). 
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Table 1-3 mRNA Expression of Drug-metabolizing enzymes and transporters in pregnant mice 

aHepatic mRNA expression. bRenal expression 

 

 Table 1-4 Hepatic Protein Expression of Drug-metabolizing enzymes and transporters in pregnant rats 

Increased expression Decreased expression Unchanged expression Reference 

Cyp26a1a, cyp2d a, 
 Cyp3a13 a, ugt1a5 a 

Cyp1a2 a, cyp2c37 a, cypc50 a, cyp2c54 a, cyp2d22 a, 
cyp3a11 a,  

ugt1a1a, ugt1a6 a, ugt1a9 a, ugt2a3 a, ugt2b1 a, ugt2b34 a, and 
ugt2b35a 

Cyp2b10 a 

(Fortin et al., 
2013; Topletz et 
al., 2013; Wen, 

2013) 

Oat2 
Abca1 a, Abcg5 a, Abcg8 a, Atb8b1 a, Bcrp a, Bsep a, Mate 1b, 

Mdr1bb, Mdr2 a, Mrp2b, Mrp4b, Ntcp a, Oatp1b2 a, Oct1 a, 
   

Mrp1b, Mrp3b, Mrp5b, 
Mrp6b, Oatp1a4 a, Oat2b1 

a 

(Aleksunes et al., 
2012; Yacovino 

et al., 2013) 

Increased expression Decreased expression Unchanged expression Reference 

------- Ugt1a, ugt1a1, ugt1a5, ugt1a6, ugt2b1 ------- (Luquita et al., 
2001) 

------- Mrp2, Mrp3, Mrp6, Oatp2 Mrp1, Oatp1  (Cao et al., 
2002) 
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High concentrations of female hormones have been suggested to have the capability of 

influencing the expression of drug metabolizing enzymes via activation of nuclear receptors such 

as estrogen receptor α (ERα), PXR, and CAR (Chen, 2009; Jeong, 2008). Accumulating data 

shows that estradiol is an activator of ERα and CAR while progesterone is an activator of PXR 

(Jeong, 2008; Lehmann et al., 1998; Masuyama et al., 2003). Recent in vitro studies have shown 

that estradiol up-regulated the expression of CYP2A6 and CYP2B6, and this was mediated by 

the activation of ERα and CAR, respectively, in human hepatocytes (Choi, 2013; Koh K, 2009). 

Altogether, the findings from in vitro studies indicated that estradiol enhances the expression of 

UGT1A4 via ERα activation, and progesterone enhances UGT1A1 expression by PXR activation  

(Chen, 2009; Jeong, 2008). This suggests a potential mechanism for the increased clearance of 

lamotrigine (UGT1A4 substrate) and labetalol (UGT1A1 substrate) during pregnancy. This data 

indicates that female hormones may have the potential to regulate the expression and activity of 

drug-metabolizing enzymes and biliary drug transporters through certain nuclear receptors.  
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Figure 1-3 Nuclear mechanism of drug-metabolizing enzyme expression 

 PB: Phenobarbital; Rif: Rifampin; PXR: Pregnane X receptor; CAR: constitutive androstane 

receptor; PB-RE: Phenobarbital response element; Rif-RE: Rifampin response element. 
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1.6 HYPOTHESIS AND OBJECTIVES 

Several health conditions and complications such as gestational diabetes, preeclampsia, epilepsy, 

and human immunodeficiency virus (HIV) exist during pregnancy. However, there is a lack of 

information about the drug disposition in pregnancy to optimize appropriate treatment of these 

disorders. As previously discussed, physiological changes during pregnancy are associated with 

alterations in drug pharmacokinetics. Multiple studies have demonstrated that elevated levels of 

female hormones, such as estradiol and progesterone, play an important role in regulating the 

expression and activity of hepatic CYP enzymes. However, these studies were mainly limited to 

estradiol and progesterone and their individual effect on CYP expression and activity. Human 

growth hormone, 17α-hydroxyprogesterone, and human chorionic gonadotropin also are very 

important steroidal hormones, and their concentrations also increase during pregnancy. 

Combining these hormones together will mimic the human physiological condition much closer 

than individual hormones. 

Glucuronide conjugation is one of the major phase II drug metabolism pathways. 

Lamotrigine and labetalol are commonly used medications in pregnant women for treatment of 

epilepsy and hypertension, respectively. Data from clinical studies indicated that clearance of 

these medications is significantly increased in pregnant women, affecting the efficacy while the 

underlying mechanism has not yet been determined. A few animal studies have shown that 

biliary membrane transporters are altered in pregnant rodents. These findings are difficult to 

extrapolate to pregnant women due to the difference in expression of these transporters between 

animals and humans. Several nuclear receptors regulate the expression of different drug-

metabolizing enzymes. Information about the effect of female hormones on the expression of 

these transcriptional receptors is very limited. Therefore, our primary aim was to characterize 
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how pregnancy influences the expression and activity of hepatic phase I and II drug metabolism, 

biliary drug transporters, and nuclear receptors. This will improve our understanding about how 

pregnancy alters drug disposition. We hypothesize that pregnancy related hormones have the 

potential to change the expression and activity of drug metabolizing enzymes and transporters, 

causing altered pharmacokinetics during pregnancy.  

We used a two-dimensional of primary cultures of human hepatocytes to study the 

regulation of CYPs, UGTs and biliary drug transporters by pregnancy related hormones. Primary 

cultures of human hepatocytes express most of the phase I and phase II drug metabolizing 

enzymes, and many uptake and efflux transporters. Over the past several years, hepatocytes have 

been widely used to study drug metabolism in different aspects such as evaluating the drug-drug 

interactions, drug toxicity and induction or inhibition studies. Human hepatocytes used in our 

studies were isolated from premenopausal and postmenopausal female donors.  Recent studies 

have shown that induction of CYP3A4 by growth hormone and cortisol is similar in 

premenopausal and postmenopausal donors (Papageorgiou, 2013), suggesting that hepatocytes 

model can be used from both donors to evaluate the regulation of drug metabolizing enzymes by 

pregnancy related hormones. In addition, some of the hepatocytes were isolated from female 

donors who had a history of chemotherapy. Several studies have reported that previous 

chemotherapy does not affect the function and integrity of hepatocytes (Hewes et al., 2006; 

Vondran et al., 2008).  

To test our hypothesis, we first evaluated the effect of female hormone mixtures on the 

expression and activity of major CYP450 isoforms using primacy cultures of human hepatocytes 

isolated from human female donors. In this work, we used a validated CYP cocktail assay of 

enzyme-specific probe drugs (chapter 2). Our secondary aim was to examine the regulation of 
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UGT enzymes and the major nuclear receptors by individual and mixture treatment of female 

hormones. This was accomplished using primary cultures of human hepatocytes isolated from 

human female donors (chapter 3). Our third objective was to validate a physiologically based 

pharmacokinetics (PBPK) model for buprenorphine in non-pregnant women in order to evaluate 

the effect of pregnancy on buprenorphine pharmacokinetics using this model, and to compare the 

predicted and observed pharmacokinetic parameters in pregnant subjects (chapter 4). The fourth 

aim was to examine the effect of female hormones on both CYP and UGT metabolism together 

using buprenorphine as one of the medications used in pregnant women to treat pain and opioid 

addiction and simultaneously metabolized by both CYP and UGT pathways. In this study, we 

evaluated the effect of female hormones on the major pharmacokinetics of buprenorphine using 

primary cultures of human hepatocytes (chapter 5). The final aim was to characterize the 

influence of female hormones on the expression and activity of biliary drug transporters using 

sandwich cultured human hepatocytes isolated from human female donors (chapter 6).  
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2.0  EFFECT OF GESTATIONAL HORMONES ON THE EXPRESSION AND ACTIVITY 

OF HEPATIC CYP450 USING PRIMARY CULTURES OF HUMAN HEPATOCYTES 
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2.1 ABSTRACT 

Pregnancy alters the pharmacokinetics of many drugs, but the underlying mechanism for these 

alterations is still unclear. The objective of this study was to examine the impact of gestational 

hormones on the activity and expression of hepatic cytochrome P450 (CYP450) enzymes. 

Primary human hepatocytes from five different female donors were treated for 72 hours with 

physiologic concentrations of gestational hormones: progesterone (2 µM), estradiol (0.3 µM), 

estriol (0.8 µM), estrone (0.2 µM), 17α-hydroxyprogesterone (0.1 µM) and human growth 

hormone (0.005 µM). Projected hepatic concentrations (10-fold higher) of the same hormones 

were also used in combination. The activities of five major cytochrome P450 enzymes were 

determined using a validated CYP cocktail assay with enzyme-specific probe drugs, CYP1A2 

(phenacetin), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (dextromethorphan) 

and CYP3A4 (testosterone). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

was used for measuring the respective metabolite concentrations and the mRNA expression of 

the major CYPs was evaluated by qRT-PCR. Enzyme protein concentration was determined by 

western blot analysis. Our results showed that mixture of female hormones at projected hepatic 

concentrations (predicted concentrations of female hormones accumulated in the liver at third 

trimester of pregnancy) significantly enhanced mRNA expression, activity, and protein 

expression of CYP3A4. This observation is consistent with increased clearance of CYP3A4 

substrate observed in pregnancy. However, female hormones did not have any effect on the 

expression and activity of other CYP450 enzymes tested (CYP1A2, CYP2C9, CYP2C19, and 

CYP2D6). These observations suggest that additional regulatory mechanisms might be 

responsible for the observed alteration in the in vivo effect of pregnancy on certain CYP 

enzymes. 
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2.2 INTRODUCTION 

Many pregnant women use several medications. Pharmacokinetics of some of these drugs are 

altered during pregnancy. For example, clearance of drugs that are substrates of CYP2C9, 

CYP2D6, and CYP3A4 are reported to be increased (Hebert, 2008; Hebert, 2009; Tracy, 2005; 

Wolff, 2005; Yerby, 1990), while clearance of drugs that are metabolized by CYP1A2 and 

CYP2C19 are decreased (McGready, 2003; Tracy, 2005). However, the underlying physiological 

and biochemical mechanism of changes in the pharmacokinetics of these drugs remain unknown. 

Therefore, a better understanding of the underlying mechanism of pregnancy-mediated changes 

in drug metabolism is needed to improve drug therapy during pregnancy. 

Several physiological changes occur during pregnancy. These are essential to facilitate 

the growth and development of the fetus (Granger, 2002; Hill, 2008). These changes have an 

impact on drug metabolism and pharmacokinetics of certain drugs. One of these changes is the 

significance increase in steroid hormones throughout the gestation. Progesterone and estradiol 

concentrations are substantially increased during pregnancy. Increased levels of other steroid 

hormones such as estriol, estrone, and 17α-hydroxyprogesterone have also been reported 

(Tulchinsky, 1972). Therefore, we hypothesized that pregnancy-related hormones have the 

capability to modulate the expression and activity of various drug-metabolizing enzymes during 

pregnancy. Previous studies have shown that estradiol, progesterone and growth hormone are the 

most important steroid hormones that alter the expression and activity of certain CYP450 

enzymes (Bandiera and Dworschak, 1992; Ochs et al., 1986; Sakuma et al., 2004; Waxman et 

al., 1995). Estradiol increased the expression of Cyp3a41 and Cyp3a44 in mouse (Sakuma, 

2004) and increased the expression of CYP2C7 in rat (Bandiera, 1992). Waxman et al., 1995 

reported that growth hormone regulated the expression of CYP2A2 and CYP3A2 in 
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hypophysectomized rats. Progesterone also changed the rate of hepatic drug metabolism in rat 

(Ochs, 1986). However, due to the differences between animal and human in terms of expression 

and regulation of hepatic drug metabolizing enzymes, it is difficult to extrapolate data from 

animal species to humans.  

Hepatocytes are exposed to a combination of female hormones (Isoherranen and 

Thummel, 2013). The synergistic effect of progesterone and estrogen has been reported in 

different tissues such as the brain (Nilsen, 2002). Additionally, progesterone inhibits the 

estrogen-mediated constitutive androstane receptor (CAR) transactivation in HepG2 cells 

(Kawamoto et al., 2000). It has been also suggested that high concentration of progesterone and 

estradiol may have a synergistic effect in regulating the expression and activity of certain 

CYP450 enzymes (Nilsen, 2002). The individual effect of estradiol and progesterone on the 

expression of certain CYP enzymes has been previously evaluated in hepatocytes (Choi, 2013; 

Papageorgiou, 2013). However the combination effect of these hormones and other female 

hormones such as estrone, estriol, 17α-hydroxyprogesterone and human growth hormone on the 

expression and activity of other major CYP enzymes are lacking.  

Our aim is to comprehensively examine the effect of multiple important female hormones 

known to increase dramatically during pregnancy using a cocktail of probes for various CYP 

enzymes on the expression and activity of major CYP450 enzymes in primary human 

hepatocytes system.  
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2.3 MATERIAL AND METHODS 

2.3.1 Chemicals 

Progesterone (P), 17α- hydroxyprogesterone (17α-OHP), estrone (E1), estradiol (E2), estriol 

(E3), human growth hormone (hGH) and bovine serum albumin (BSA) were purchased from 

Sigma-Aldrich (St. Louis, MO). CYP450 enzymes substrates, corresponding metabolites and 

internal standards (IS) were obtained from Sigma-Aldrich (St. Louis, MO) or Toronto Research 

Chemicals (Toronto, Ontario, Canada). Cell lysis buffer was purchased from Roche 

(Indianapolis, IN). Rabbit anti-human primary monoclonal antibodies against CYP3A4 and β-

actin, and anti-rabbit IgG linked with horseradish peroxidase were obtained from Cell Signaling 

(Danvers, MA). Polyvinylidene difluoride (PVDF) membrane was obtained from Bio-Rad 

(Hercules, CA). Enhanced chemiluminescence substrate was purchased from Thermo Fisher 

Scientific (Rockford, IL).  

2.3.2 Human Hepatocyte Incubation of Female Hormones and Treatment with a Cocktail 

of CYP450 Substrates 

Freshly isolated primary human hepatocytes in maintenance media from five different female 

donors were purchased from Life Technologies (Carlsbad, CA) as monolayers (1.5×106 

cells/well) in 6-well plates. The viability of human hepatocytes was greater than 87%.  

Hepatocyte donor demographics are shown in (Table 2-1). Upon arrival, the media was replaced 

with Hepatocytes Maintenance Medium Medium (HMMTM) (Lonza, Allendale, NJ) containing 1 

µM dexamethasone, 4 µg/mL insulin, and 10000 U/mL penicillin/streptomycin. The hepatocytes 
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were maintained at 37°C in a humidified atmosphere with 5% CO2. The baseline activity was 

determined by treating hepatocytes with 0.1% (v/v) of dimethyl sulfoxide (DMSO) as vehicle 

control. The response of the hepatocytes to 10 µM of rifampin as CYP3A4 inducer and 10 µM of 

ketoconazole as CYP3A4 inhibitor was also evaluated. Cells were also treated with vehicle 

(DMSO) as a control, or a mixture of low and 10 times higher concentration of a mixture of 

female hormones corresponding to the third trimester plasma concentration of these female 

hormones in pregnancy as listed in (Table 2-2) for 72 hours. Low hormone concentrations 

simulated the concentration of these hormones observed in plasma at third trimester of 

pregnancy, while high hormone concentrations simulated those in the liver during the third 

trimester according to the log p values of these hormones. Treatment medium was replaced every 

24 hours for the 72-hour period of incubation. On day 4, the medium was replaced with fresh 

HMMTM containing a cocktail of CYP substrates for 60 min:  [100 µM phenacetin (CYP1A2), 90 

µM diclofenac (CYP2C9), 50 µM S-mephenytoin (CYP2C19), 20 µM dextromethorphan 

(CYP2D6) and 250 µM testosterone (CYP3A4). After incubation, culture medium supernatant 

was collected to measure the metabolites of the selected CYP450 substrates. Hepatocyte total 

RNA was extracted using Trizol. Expression of mRNA of the selected CYP450 enzymes was 

measured using qRT-PCR. Protein levels of CYP3A4 in all hepatocytes were determined by 

western blot analysis. Under the microscope, there were no significant morphological changes 

observed in the hepatocyte culture over the 72 hours incubation period.  
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Table 2-1 Hepatocyte donors demographics. 

Donor ID Age Sex Race BMI Smoking Alcohol use 

HU1522 67 F Caucasian 25 NO NO 

HU1527 31 F Caucasian 21 YES YES 

*HU12-010 31 F Caucasian ND ND ND 

HU1593 31 F Caucasian 29 NO YES 

HU1632 34 F Caucasian 38 NO NO 

* This batch was not treated with human growth hormone 
ND: no data 
 

 

Table 2-2 Female hormone concentrations at third trimester of pregnancy in humans 

Hormone Low conc. (µM) High conc. (µM) 

Progesterone 2 20 

E1 0.2 2 

E2 0.3 3 

E3 0.8 8 

17-α OHP 0.1 1 

hGH 0.005 0.05 
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2.3.3 CYP450 Cocktail Activity Measurement and Sample Preparation 

A validated method of LC-MS/MS assay was used to quantitate the metabolites formed from the 

substrates. In a micro-centrifuge tube, a mixture of 200 µL of cell medium, 20 µL of internal 

standard (IS), and 500 µL of water was added and contents passed through Waters Oasis HLB 1 

Ml (30mg) extraction cartridge, previously conditioned with 1 mL methanol and 1 mL water. 

After washing with 1 mL of 5% methanol, the analytes retained on the column were eluted with 

1 mL of methanol and the eluent was evaporated for dryness. The residue was reconstituted with 

100 µL of 50% methanol. 20 µL of the solution was finally injected into a LC-MS/MS system.  

2.3.4 Chromatographic and Separation Condition 

Sample analysis was performed using Micromass Quattro triple quadrupole mass spectrometer 

interfaced with electrospray ionization probe (Waters 2759 LC model). Chromatographic 

condition was performed using a Luna C8 column (150 x 3.0 mm, 5µm).  A mobile phase 

consisted of solvent A (95% H2O, 5% methanol containing 0.02% ammonium formate) and 

solvent B (methanol containing 0.02% ammonium formate). Gradient elution (delivered at 0.3 

mL/min) was performed using 1-minute initial increase of B from 3 to 100%, followed by 

maintaining B at 100% for 4 minutes in order to achieve the baseline. The retention times of 

acetaminophen, 4’-hydroxydiclofenac, 4’-hydroxymephenytoin, dextrophan, and 6β-

hydroxytestosterone were 6.0, 7.5, 6.6, 6.1, and 7.0 min, respectively. The precursor ions and 

their daughter ions products used for selected reaction monitoring in the positive-ion ESI mode 

for acetaminophen, 4’-hydroxydiclofenac, 4’-hydroxymephenytoin, dextrophan, and 6β-

hydroxytestosterone were m/z 152 è 110, 312 è 230, 235 è 150, 257 è 157, 305 è 269, 
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respectively. The lower limit of quantification for acetaminophen, 4’-hydroxydiclofenac, 4’-

hydroxymephenytoin, dextrophan, and 6β-hydroxytestosterone were 0.1, 1, 2, 0.1 and 0.1 

ng/mL, respectively.  The assay was validated with precision (coefficients of variation ≤15%), 

specificity and accuracy (≥85%). 

2.3.5 Determination of mRNA Expression 

Total RNA was extracted from the cells using Trizol reagent. Briefly, 0.2 mL of chloroform for 

each one mL of Trizol reagent was added. The clear supernatant layer was then transferred to 

new eppendorf tube and RNA was precipitated by adding 1.5 volume of isopropanol. The sample 

was centrifuged at12000 rpm at 4 °C for 30 minutes, and supernatant was removed. Ethanol 75% 

was added to wash out remaining solvent. Sample was then centrifuged. After completely drying 

the sample, RNA was dissolved in 30 µL of RNase-free water. The concentration of RNA was 

determined using nanodrop spectrophotometer at 260 nm. Pure RNA was used to synthesize the 

first strand of cDNA by reverse-transcription reaction using iScript TM Reverse Transcription 

Supermix for RT-qPCR (Bio-Rad, Hercules, CA). The following primers for each CYP450 

enzymes were used: aggtcaaccatgacccagag and agggcttgttaatggcagtg for CYP1A2, 

cctctggggcattatccatc and atatttgcacagtgaaacatagga for CYP2C9, cctcgggactttattgattgct and 

ccagctccaagtaagtcagc for CYP2C19, acaccatactgcttcgacca and cagcccattgagcacgac for CYP2D6, 

agagctcttcagaacttctcct and tctggttgaagaagtcctcct for CYP3A4, and ctcaagggcatcctgggctaca and 

tggtcgttgagggcaatgcc for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as housekeeping 

gene. Oligonucleotides were obtained from Integrated DNA Technologies (Coralville, IA). PCR 

reaction mixture was prepared by mixing 2 µL cDNA sample, 1 µL GAPDH or CYP gene 

(primer of interest), 10 µL SYBR Green master mix and 7 µL water. After initial denaturation at 
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95°C for 10 minutes, 40 cycles of amplification were performed with denaturation at 95°C 

followed by annealing and extension performed at 60°C for 1 minute. To identify PCR products, 

dissociation curves were used in the reaction. The relative levels of mRNA of CYP450 genes 

were normalized with the copy number of GAPDH. The relative levels of mRNA fold changes of 

all genes were quantified using the 2-ΔΔC
T method (Livak and Schmittgen, 2001). 

 

2.3.6 Western Blot Analysis 

Hepatocyte pellets were collected in phosphate buffered saline (PBS) and then centrifuged at 

(10,000 G at 4ºC for 10 minutes). The cells were lysed as per the procedures reported earlier 

(Pillai et al., 2013). Briefly, 125 µL cell lysis buffer was added to the cell pellet, sonicated to 

lyse the cells, and total protein levels were measured using bicinchoninic acid assay (BCA) 

(Smith et al., 1985). Twenty-five micrograms of proteins were loaded onto 10% SDS-

polyacrylamide gel and electrophoresis was used for separation. The proteins were transferred to 

a polyvinylidene difluoride (PVDF) membrane at 90V for 1.5 hours.  The membrane was 

blocked with 5% bovine serum albumin (BSA) in Tris buffered saline containing 0.1% Tween 20 

(TTBS). Then PVDF membrane was incubated overnight at 4°C with rabbit anti-human primary 

monoclonal antibody against CYP3A4 (1:1000 dilution) or rabbit anti-human monoclonal 

antibody against β-actin (1:1000 dilution) in 5% BSA. After washing with TTBS, the membrane 

was incubated with anti-rabbit IgG linked with horseradish peroxidase (1:3000 dilution) for 1 

hour at room temperature. The membrane was treated with enhanced chemiluminescence 

substrate (ECL) and the luminescence was captured on films and developed. The difference in 
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the band intensities was determined by densitometry using ImageJ Software 1.48V 

(http://imagej.en.softonic.com). 

2.3.7 Prediction of Female Hormones Interactions with CYP3A4 

A computational approach to predict the interactions of female hormones (ligands) with 

CYP3A4 was utilized. The crystal structures of esrtone, estradiol, estriol, progesterone and 17α-

hydroxyprogesterone were obtained from protein data bank (PDB). SYBYL® X1.3 software 

from Tripos Inc. was used to generate the binding pockets by the reported co-crystalized binding 

pockets. Binding pockets were confirmed by extracting the ligands and re-docking the 

crystalized ligands with the protein virtually. Important amino acid interactions with the ligands 

have been checked. The docking scores were calculated utilizing the CScore calculation 

methods. Final image refinements were performed using PyMol (Schrodinger).  

 

2.3.8 Statistical Analysis 

All the experiments were carried out in duplicate in each of the five sets of hepatocytes. The data 

was expressed as the mean ± SEM. Activity and expression of CYP450 enzymes in treated 

groups were expressed relative to the vehicle (control group). The differences in activity and 

expression between the incubation with low hormone concentrations or high hormone 

concentrations with control group were compared using student’s t-test. The statistical 

significance was considered if the p value < 0.05. 
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2.4 RESULTS 

2.4.1 Effect of Low and High Concentrations of Female Hormones Mixtures on the 

Activity of CYP450 

Hepatocyte metabolic capacity was examined by treating cells with prototypical inducer 

(rifampin) and inhibitor (ketoconazole), and the magnitude of change in CYP3A4 enzyme 

activity was determined by measuring testosterone 6β-hydroxylation. Rifampin increased 

CYP3A4 activity by 5-fold, while ketoconazole decreased CYP3A4 activity to 30-50% of 

control (Figure 2-1). Treatment with female hormone combinations at predicted liver 

concentrations significantly enhanced the activity of CYP3A4. Contrary to the reduced activity 

of CYP1A2 during pregnancy (Tracy, 2005), our data showed no effect of female hormones on 

the activity of CYP1A2. Additionally, there was no change in the activity of CYP2C9, CYPC19, 

or CYP2D6. 
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Figure 2-1 Effect of female hormones on the activity of CYP450 enzymes 

Activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A was measured by quantifying 

their corresponding metabolites. Experiments were conducted in duplicate for each hepatocyte 

(n=5), and results are expressed as mean ± SEM. *p < 0.05 compared with control. 
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2.4.2 Effect of Low and High Female Hormone Mixtures on the Protein Level of CYP3A4 

To examine the impact of female hormones on the expression of CYP3A4, the protein level of 

CYP3A4 was quantified after treatment with low and high hormonal mixtures in five different 

primary cultures of human hepatocytes (Figure 2-2). Protein level increased significantly by 1.4-

fold after treatment with high concentrations of the hormones combination (p<0.005). The 

influence of high hormone concentrations on the protein expression of CYP3A4 was compared 

with rifampin, a known CYP3A4 inducer and PXR activator, in three different primary cultures 

of human hepatocytes. Rifampin significantly induced CYP3A4 protein expression by 2.6 fold 

(P<0.05). Based on the studies of Pharmaceutical Research and Manufacturers of America 

(PhRMA) in determining the extent of inducers in in-vitro and in-vivo drug-drug interactions 

(Bjornsson et al., 2003), a mixture of female hormones at accumulated liver concentrations 

seems to be an inducer of CYP3A4 by increasing the protein expression of CYP3A4 by more 

than 50% relative to rifampin induction.  
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 Figure 2-2 Effect of female hormones and rifampin on CYP3A4 protein expression. 

Protein expression of CYP3A4 in three human hepatocytes treated with DMSO (control), low 
and high hormone concentration mixtures, and rifampin. Densitometry readings of CYP3A4 
protein expression were normalized to β-actin and control group was arbitrarily defined as 100%. 
A representative western blot performed in duplicate is shown. (Experiments were conducted in 
duplicates for each hepatocyte, and results are expressed as mean ± SEM. *p<0.05 compared 
with control. 
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2.4.3 Effect of Low and High Female Hormones Mixtures on the mRNA Expression of 

CYP450 

The impact of low and high hormone concentrations on mRNA expression of the various CYP 

enzymes was measured using qRT-PCR (Figure 2-3). The expressions of CYP1A2, CYP2C19, 

and CYP2D6 were not changed. The mRNA expression of CYP2C9 was increased by 1.4- and 

1.8-fold at low and high concentrations, respectively. CYP3A4 mRNA expression was increased  

approximately 2-fold at low concentrations and 4-fold (p < 0.05) at high concentrations of 

gestational hormones. (Figure 2-4) shows that the protein level of CYP3A4 was correlated with 

the mRNA expression of CYP3A4 after treatment with high hormone mixture (r2 = 0.8, 

p<0.001). 
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Figure 2-3 Effect of female hormones on CYP450 mRNA expression. 

Expression of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A was measured by qRT-

PCR and normalized to the mRNA expression of GAPDH. Experiments were conducted in 

duplicate for each hepatocyte, and results are expressed as mean ± SEM. *p < 0.05 compared 

with control. 
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Figure 2-4 Effect of female hormones on CYP450 mRNA expression. 

Correlation between CYP3A4 protein and mRNA expression in primary culture of human 

hepatocytes (r=0.8, p value= 0.002).  
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2.5 DISCUSSION 

Results from clinical studies indicate that clearance of CYP3A4 substrates is increased during 

pregnancy and was found to be higher in females than in males (Anderson, 2005; Hebert, 2008; 

Hebert, 2009; Tracy, 2005; Wolff, 2005). indicating the potential role of female hormones in 

altering drugs metabolized by CYP3A4 during pregnancy. We hypothesized that female 

hormones may be responsible for the increased expression and activity of various CYP450 

enzymes in the liver and would contribute to the altered pharmacokinetics of several drugs in 

pregnant women. The concentrations of female hormones used throughout the study were tested 

in hepatocytes and presented similar concentrations as those in the third trimester of pregnancy 

(Choi, 2013; Tulchinsky, 1972).  

Our results showed that pregnancy-related hormones at predicted liver concentrations 

similar to that at the end stage of pregnancy increased the activity, protein, and mRNA 

expressions of CYP3A4 significantly. This was similar to the observed increase in CYP3A4 

activity using dextromethorphan N-demethylation as a marker of CYP3A4 activity during the 

third trimester of pregnancy (Tracy, 2005). A positive correlation between the protein and the 

mRNA expressions of CYP3A4 indicating that the observed increase in the CYP3A4 protein 

levels by high concentrations of female hormones mixture might be driven by the increased 

expression of CYP3A4. It has been reported that pregnancy significantly increases cyp3a protein 

levels in mice (Zhang et al., 2008), which is consistent with our findings.  It has also been 

reported that high concentrations (similar to level of these hormones in the third trimester of 

pregnancy) of estradiol, progesterone, and a combined treatment of placental growth hormone, 

growth hormone, and cortisol increases the expression of CYP3A4 significantly in human 

hepatocytes, which is also in agreement with our data (Choi, 2013; Papageorgiou, 2013). The 
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findings in our study may have important clinical implications, as we considered the effect of a 

mixture of six important female hormones and evaluated their effect on human CYP activities 

using a simultaneous measurement of specific and sensitive CYP cocktail assay. We also 

measured the mRNA and protein expression of CYP enzymes.  

CYP3A4 and CYP3A5 are the major forms of CYP3A expressed in human liver. 

CYP3A4 is the most abundant CYP450 isoform accounting about 30% of the total hepatic P450 

enzyme in humans (Fahmi et al., 2010). It is responsible for about 60% of P450-mediated 

metabolism of currently available drugs (Michalets, 1998). CYP3A4 has a wider substrate range 

than CYP3A5 (Flockhart and Rae, 2003). Known substrates for CYP3A4 during pregnancy 

include midazolam, amlodipine, cyclosporine, clarithromycin, dexamethasone, diltiazem, 

erythromycin, hydrocortisone, methadone, nifedipine, verapamil, saquinavir, and ritonavir. 

Clinical observations demonstrated that clearance of midazolam, methadone, and nifedipine is 

increased during pregnancy (Hebert, 2008; Prevost, 1992; Wolff, 2005). Our data suggested that 

induction of CYP3A4 by female hormones might be responsible for the observed increase in the 

clearance of CYP3A4 substrates during pregnancy. 

The underlying mechanisms or factors responsible for altering drug-metabolizing 

enzymes during pregnancy remain unclear. Therefore, understanding the transcriptional 

regulation and metabolic activity of drug-metabolizing enzymes during pregnancy is very 

important. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are activated 

by different endogenous ligands such as steroid hormones (Hernandez et al., 2009). Estradiol has 

been reported to activate CAR and estrogen receptor (ER) in mouse and human hepatocytes, 

respectively (Chen, 2009; Kawamoto, 2000). Moreover, results from previous studies indicated 

that estradiol and progesterone at concentrations corresponding to that during pregnancy 
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increased the activities of PXR and CAR-driven promoters, respectively (Jeong, 2008; Lehmann, 

1998). Ligand-activated transcription factors such as PXR and CAR are known to up-regulate the 

expression of CYP3A4 (Burk et al., 2004). This data suggested that female hormone-mediated 

increase of CYP3A4 expression is likely to be a PXR-and CAR-dependent mechanism. 

Our findings showed that female hormones have no effect on the expression or activity of 

CYP1A2, CYP2C9, CYP2C19, and CYP2D6. Several studies indicate that estradiol and 

progesterone are rapidly eliminated from the body through hepatic metabolism (Goldzieher and 

Brody, 1990; Kuhl, 1990). It has also been reported that estradiol and progesterone at third 

trimester concentrations are rapidly depleted from hepatocytes maintaining medium (Choi, 2013; 

Koh et al., 2012; Papageorgiou, 2013), which may explain the absence effect of female 

hormones on the expression and activity of CYP1A2, CYP2C9, CYP2C19 and CYP2D6. We 

used phenacetin as a substrate for CYP1A2. CYP1A2 activity is known to be decreased during 

pregnancy (Tracy, 2005). This observation can be explained by the fact that both estradiol and 

phenacetin are substrates for CYP1A2, and this can lead to a competition between these two 

substrates, which can also influence the impact of estradiol on the activity of CYP1A2. Eugster 

et al., 1993 reported that estradiol did not inhibit CYP1A2 activity in microsomes using caffeine 

as a CYP1A2 substrate.  

In conclusion, we evaluated the impact of pregnancy-related hormones on the expression 

and activity of major CYP450 enzymes in primary cultures of human hepatocytes. Our results 

showed that these female hormones at third trimester-estimated liver concentrations increased 

the enzyme activity, mRNA and protein expression of only CYP3A4, but did not change the 

expression or activity of other P450 enzymes. This data provides a biologically plausible 

mechanism for the alterations observed in hepatic CYP450 enzyme activity during pregnancy.  
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3.0  REGULTION OF HEPATIC UDP-GLUCURONOSYLTRANSFERASE ENZYMES BY 

FEMALE HORMONES USING PRIMARY CULTURES OF HUMAN HEPATOCYTES 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  50 

3.1 ABSTRACT 

Clinical studies have shown that pharmacokinetics of drugs that undergo glucuronide 

conjugation such as lamotrigine, labetalol, and zidovudine, are altered during pregnancy. 

However, the underlying mechanism remains unknown. Increased plasma concentrations of 

pregnancy related hormones, including estradiol and progesterone, have been suggested to 

influence the expression and activity of major cytochrome P450 (CYP450) enzymes. However, 

information regarding the regulation of UDP-glucuronosyltransferase (UGT) enzymes by female 

hormones is limited. The aim of this study is to evaluate the impact of estrogens (estrone, 

estradiol, and estriol), progesterone, 17α-hydroxyprogesterone, human growth hormone, and 

human chorionic gonadotropin individually and in combination for the expression and activity of 

major UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) as well as the 

expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR), peroxisome 

proliferator-activated receptor alpha (PPARα), and aryl hydrocarbon receptor (AhR) using 

primary cultures of human hepatocytes. Our results indicated that progesterone increases the 

expression and activity of UGT1A1. A mixture of female hormones at liver concentration also 

increased activity of UGT1A1. Estradiol induces the expression and activity of UGT1A4. 

Induction of UGT1A4 activity was also observed in human hepatocytes treated with a 

combination of female hormones at concentrations predicted in the human liver during the third 

trimester of pregnancy. On the other hand, human chorionic gonadotropin reduced the activity of 

UGT1A4. Progesterone induced mRNA level of UGT1A6 and UGT1A9, and human growth 

hormone enhanced the mRNA expression of UGT2B7. Expression of UGT1A3 and UGT2B7 

was also increased by female hormone combinations at concentrations observed in the plasma 

during the third trimester of pregnancy. Human growth hormone also enhanced the expression of 
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UGT2B7. Female hormones have different effects on the expression of other UGTs and nuclear 

receptors. Our findings show that estradiol increased the expression of UGT1A1, UGT1A3, 

UGT1A9, and UGT2B7. Female hormones did not change the expressions of PXR, CAR and 

PPARα. AhR mRNA was up-regulated by estradiol and human growth homorne, suggesting that 

AhR can be a candidate-signaling pathway responsible for the observed changes in UGT1A, 

UGT1A3 and UGT2B7 (Goodwin et al., 1999; Lankisch et al., 2008; Yueh et al., 2003). These 

findings provide an important basis for understanding the mechanism of altered glucuronidation 

pathway during pregnancy.  
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3.2 INTRODUCTION 

Phase II drug metabolizing enzymes play an important role in the detoxification of several 

endobiotics and xenobiotics to form more water soluble conjugates that can be easily excreted 

into the bile or urine (Jancova et al., 2010). Phase II enzymes include UDP- 

glucuronosyltransferases (UGTs), sulfotransferases (SULTs), glutathione S-transferases (GSTs), 

and N-acetyltransferases (NATs) (Kohalmy and Vrzal, 2011). Glucuronidation reactions 

catalyzed by UGTs are considered to be the most important metabolic detoxification pathways 

among phase II reactions. Previous studies have indicated that UGTs are responsible for 

glucuronidation of about 40-70% of medications in human (Wells et al., 2004). Studies in 

pregnant women revealed that the pharmacokinetics of medications such as lamotrigine (Tran et 

al., 2002), labetalol (Fischer, 2014), and zidovudine (Watts, 1991) are significantly altered. 

However, the underlying mechanism has not been identified. 

Regulation of UGT enzymes has been linked to sex-specific hormones in mice (Nicolson 

et al., 2010). For instance, hepatic UGT1A1 and UGT1A5 enzymes are expressed mostly in 

female mice. However, hepatic UGT2B1 is predominantly expressed in male mice (Buckley and 

Klaassen, 2009). These findings highlight the role of sex hormones in regulating the expression 

of UGTs.  

Elevated levels of female hormones are some of the physiological changes seen during 

pregnancy. Plasma concentrations of estrogens (estrone, estradiol, and estriol) increase during 

pregnancy (Loriaux et al., 1972). Compared with estrone and estriol, plasma concentrations of 

estradiol are double that of estrone and four times that of estriol during human gestation 

(Loriaux, 1972). As pregnancy progresses, plasma concentrations of progesterone and 17α-

hydroxyprogesterone increase (Seren et al., 1981). Plasma concentrations of human chorionic 
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gonadotropin reach its peak in the first ten weeks of pregnancy. After that, it declines to a plateau 

at 19 weeks of pregnancy (Braunstein et al., 1976; Korhonen et al., 1997). 

Regulation of UGTs by pregnancy has been evaluated in pregnant mice and indicated that 

mRNA expression of Ugt1a1, 1a6, 1a9, 2a3, 2b1, 2b34, and Ugt2b35 are decreased by 40-80%. 

However, mRNA levels of UGT1A5 increased by 50-100% compared with virgin controls (Wen, 

2013). It is however difficult to extrapolate these findings to humans due to specie differences in 

drug-metabolizing enzymes. 

The effects of estradiol and progesterone on the expression and activity of hepatic UGTs 

have been evaluated in different human cell systems. In HepG2 cells, progesterone is shown to 

induce the expression of UGT1A1 by activating the pregnane X receptor (PXR) (Jeong, 2008). 

In HepG2 and MCF7 cells, estradiol up-regulates the expression of UGT1A4, mediated by 

estrogen receptor α (ERα) (Chen, 2009).  The effects of other female hormones on the expression 

of other UGTs in human hepatocytes have not been evaluated. 

This study aimed to examine the effects of multiple female hormones individually and in 

combination on the activity and expression of major UGTs in primary cultures of human 

hepatocytes. Effects of female hormones on the mRNA expression of UGT1A1, UGT1A3, 

UGT1A4, UGT1A6, UGT1A9, and UGT2B7 were evaluated. The activities of UGT1A1 and 

UGT1A4 were studied utilizing etoposide (Wen et al., 2007) and lamotrigine (Rowland et al., 

2006), respectively, as specific probe substrates.  
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3.3 MATERIAL AND METHODS 

3.3.1 Chemicals 

Progesterone (P), 17α-hydroxyprogesterone (17α-OHP), estrone (E1), estradiol (E2), estriol (E3), 

human growth hormone (hGH), human chorionic gonadotropin (HCG), 4-methylumbelliferone 

(4MU), 4-methylumbelliferone glucuronide (4MU-G), etoposide (ETOP), etoposide glucuronide 

(ETOPG) and were purchased from Sigma-Aldrich (St. Louis, MO). TaqMan Primers for UGTs 

and nuclear receptors were purchased from Life Technologies (Carlsbad, CA) . 

3.3.2 Incubation of Primary Cultures of Human Hepatocytes with Female Hormones and 

Treatment with Etoposide and Lamotrigine Substrates  

Freshly isolated primary human hepatocytes in a cold maintenance media (1.5×106 cells/well) in 

6-well plates were purchased from Life Technologies (Carlsbad, CA). Hepatocyte donor 

demographics are shown in (Table 3-1). Upon receipt, the media was replaced with ice-cold 

hepatocyte maintenance media (HMMTM) (Lonza, Allendale, NJ) containing 0.35 mg/mL 

Geltrex™ for overnight incubation. The cell cultures were maintained at 37°C in a humidified 

atmosphere with 5% CO2. The extent of baseline activity and response of the primary cultures of 

human hepatocytes were determined by treatment for 72 hours with 0.1 % dimethyl sulfoxide 

(DMSO) as vehicle control and 2 mM phenobarbital as a prototypical inducer of UGT1A6/9 

activity. Cells were also treated with DMSO as a control, a low and 10-times higher 

concentration of female hormone mixture, high concentration of estradiol, progesterone, human 

growth hormone, and human chorionic gonadotropin (Table 3-2) for 72 hours to evaluate the 
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effect of these hormones on the expression and activity of different UGTs. Final concentration of 

DMSO was 0.1% (v/v). Treatment medium was replaced every 24 hours for the 72-hour period. 

On day 4, the medium was replaced with fresh HMMTM medium containing 100 µM of 4MU 

(UGT1A6/1A9 substrate) for 30 minutes, 400 µM of ETOP (UGT1A1 substrate) for 60 minutes 

and 40 µM of LTG (UGT1A4 substrate) for 24 hours. After the incubation time, the culture 

medium and cell lysate were collected to measure the formation of 4-methylumbelliferone 

glucuronide, etoposide glucuronide and lamotrigine-N-glucuronide. The total hepatocyte RNA 

was extracted using Trizol reagent. There were no significant morphological changes observed in 

hepatocyte culture. Each experiment was performed in triplicate and repeated twice. Statistical 

differences between control and treated groups were determined using student’s t-test. A p value 

of less than 0.05 was considered statistically significant. Data is expressed as mean ± SEM. 

 

Table 3-1 Hepatocyte donors demographic. 
 

Donor ID Age Sex Race BMI Smoking Alcohol use 

HU1718 59 F Caucasian 39 YES NO 

HU1743 56 F Caucasian 19 YES YES 

HU14016 82. F Caucasian. ND ND ND 

ND: No data 
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Table 3-2 Female hormones concentrations at third trimester of pregnancy in humans 

Hormone Low conc (µM) High conc (µM) 

Progesterone 2 20 

E1 0.2 2 

E2 0.3 3 

E3 0.8 8 

17-α OHP 0.1 1 

hGH 0.0005 0.005 

HCG 0.0009 0.009 

 

3.3.3 4-methylumbelliferone glucuronide, Etoposide and Lamotrigine Glucuronidation 

β-glucuronidase was used to hydrolize etoposide glucuronide as described in (Reder-Hilz et al., 

2004). Samples were diluted with 1 mL methanol and then evaporated under a stream of nitrogen 

at 40°C and then dissolved in either 100 µL of sodium acetate buffer (100 mM, pH 5.0) and 50 

µL β-glucuronidase solution (2000 U/ml) or 150 µL sodium acetate buffer (100 mM, pH 5.0). 

All samples were incubated in a water bath at 37°C overnight. 1.5 µL of 70% perchloric acid was 

added to 150 µL of samples and centrifuged at 13,000 rpm for 5 minutes. 50 µL of supernatant 

was injected into the HPLC system. For 4-methylumbelliferone and lamotrigine glucuronidation 

assay, 1.5 µL of 70% perchloric acid was added to 150 µL of all samples and centrifuged at 



 

  57 

13,000 rpm for 5 minutes. Then, 20 µL and 100 µL of 4-methylumbelliferone and lamotrigine 

glucuronides supernatant samples, respectively were applied into the HPLC system.  

3.3.4 HPLC analysis 

4MUG, ETOPG and LTGG were quantified with an HPLC (Waters 2695 Separations Module, 

Alliance Analytical Inc.) and UV-detector (2998 Photodiode Array, Waters Corporation). A C8 

column was used to seprate various components (Zorbax Eclipse XBD-C8 analytical column 

(4.6 X 15 cm; Rockland Technologies INC). 

For quantification of 4MUG, the mobile phase consisted of solvent A (10 mM of 

phosphoric acid, pH 2.9) and solvent B (20% acetonitrile). UV absorption was measured at 316 

nm and the flow rate was 1 mL/min. The following gradient was used: 90 % A for 0-4 min; then, 

mobile phase B increased to 50% over 4 min, and then the ratio returned back to the initial 

conditions for 3 min.  Retention time for 4MUG was 6.8 minutes and the standard curves were 

linear from 0-20 µg/mL.  

For etoposide quantification, the mobile phase consisted of solvent A (0.1 % formic acid) 

and solvent B (100% acetonitrile). UV absorption was measured at 254 nm and the flow rate was 

1 mL/min. The following gradient was used: 90 % A for 0-3 min; then, mobile phase B increased 

to 40% over 5 min, and then the ratio returned back to the initial conditions for 1 min.  Retention 

time for etoposide was 7.5 min. Peak areas of the authentic etoposide prepared from a 

concentration range of 1 to 300 µg/mL were used to quantify etoposide glucuronide formation.  

Lamotrigine-N-glucuronide were analyzed using mobile phase consisting of solvent A 

(25 mM of phosphate buffer, pH 7.4) contains 200 µL of triethylamine for 1 L of total volume) 

and solvent B (100% acetonitrile). UV absorption was detected at 254 nm and the flow rate was 
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1 mL/min with using the following gradient: 91 % A for 0-3 min and held for 4 min, 91 % A for 

7-8 min, 63 % A for 9-15 min and 91 % A for 16-30 min. Retention time for lamotrigine-N-

glucuronide was 10.3 min. Peak areas of standard curve concentration of LTGG prepared from a 

concentration range of 0 to 20 µg/mL were used to quantify lamotrigine formation. 

3.3.5 RNA Sample preparation and Quantitative Real-Time PCR Assay  

1 mL of Trizol reagent was added to the plated cells to extract total RNA. Then, 0.2 mL of 

chloroform was added to separate each sample into two phases. RNA was precipitated by adding 

isopropanol (1.5 volume of the supernatant layer) to the supernatant layer. Then the sample was 

centrifuged at 12,000 rpm at 4°C for 30 minutes, and then the supernatant was removed. Thirty 

microliters of RNase-free water was added to the dried samples to dissolve the RNA. The 

concentration of RNA was determined using nanodrop spectrophotometer at 260 nm. Pure RNA 

was used to synthesize the first strand cDNA by reverse-transcription reaction using iScript TM 

Reverse Transcription Supermix for RT-qPCR (Bio-Rad, Hercules, CA). The following primers 

were obtained for quantitative RT-PCR (qRT-PCR) analysis from Applied Biosystems (Foster 

City, CA): UGT1A1 (Hs02511055), UGT1A3 (Hs04194492), UGT1A4 (Hs01655285), 

UGT1A6 (Hs01592477), UGT1A9 (Hs02516855), UGT2B7 (Hs00426592), and GAPDH 

(Hs02758991) genes. The PCR amplifications were performed on the ABI Prism 7300 system 

(Applied Biosystems, Foster City, CA). The reactions were performed in 20 µL: 10 µL of 

TaqMan Master Mix, 1 µL of each TaqMan probe, 4 µL of cDNA (1 µg/ml), and 5 µL of 

RNase-free water. The reactions were performed under the following conditions: After initial 

denaturation at 95°C for 10 minutes, 40 cycles of amplification were performed with 

denaturation at 95°C for 15 seconds followed by annealing and extension performed at 60°C for 



 

  59 

one minute. Dissociation curves were used in the reaction in order to identify PCR products. The 

relative levels of mRNA of all genes were normalized with the copy number of GAPDH. The 

relative levels of mRNA fold changes of all genes were quantified using the 2-ΔΔC
T method 

(Livak, 2001). 
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3.4 RESULTS 

3.4.1 Effect of Female Hormones on UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 

and UGT2B7 Expression 

To investigate the role of female hormones on the regulation of UGT1A1, UGT1A3, UGT1A4, 

UGT1A6, UGT1A9, and UGT2B7 expression, mRNA expression of these UGTs was measured 

using qRT-PCR after treating the hepatocytes with 2 mM phenobarbital, low and high female 

hormones mixtures (estrone, estradiol, estriol, progesterone, 17α-hydroxyprogesterone, human 

growth hormone, and human chorionic gonadotropin) as well as with individual treatments of 

high concentrations of estradiol, progesterone, human growth hormone, and human chorionic 

gonadotropin for 3 days. GAPDH was used as a housekeeping gene. 

 

3.4.1.1 Effect of Female hormones on UGT1A1 Expression 

Phenobarbital, estradiol, and progesterone induced UGT1A1 expression by 4-fold (p < 0.005), 

1.7-fold (p < 0.05) and 1.6-fold (p < 0.05), respectively. Other hormones did not change the 

expression of UGT1A1 compared with control (Figure 3-1). 
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Figure 3-1 Effect of female steroid hormones on UGT1A1 expression. 

The mRNA expression of UGT1A1 was determined after treating the primary cultures of human 

hepatocytes with female hormones chronically. The ratio of the treated group (PB or female 

hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control group was 

arbitrarily defined as 100%. Experiments were conducted in duplicate for all hepatocytes, and 

results are expressed as mean ± SEM. * (p < 0.05) and ** (p < 0.01) compared to the control 

group. 
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3.4.1.2 Effect of Female hormones on UGT1A3 Expression 

 Phenobarbital and estradiol enhanced the expression of UGT1A3 by 3-fold (p  < 0.005) and 1.9-

fold (p < 0.05), respectively. Expression of UGT1A3 increased by 1.4-fold in the presence of 

low concentrated female hormone mixture (p < 0.005). However, other hormones did not affect 

the expression of UGT1A3 when compared to control (Figure 3-2). 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Effect of female steroid hormones on UGT1A3 expression. 

The mRNA expression of UGT1A3 was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (p < 0.05) and ** (p < 0.01) compared 

to the control group. 
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3.4.1.3 Effect of Female hormones on UGT1A4 Expression 

UGT1A4 exhibited increased mRNA expression: 12-fold increase by phenobarbital (p < 0.005) 

and 1.4-fold increase (p < 0.05) by estradiol. UGT1A4 expression is not influenced by other 

female hormones (Figure 3-3). 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 Effect of female steroid hormones on UGT1A4 expression.  

The mRNA expression of UGT1A4 was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%.  Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (p < 0.05) and ** (p < 0.01) compared 

to the control group. 
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3.4.1.4 Effect of Female hormones on UGT1A6 Expression 

As shown in (Figure 3-4), phenobarbital caused a 2-fold increase in the mRNA levels of 

UGT1A6 (p < 0.05). Progesterone and mixture of female hormones at low concentrations 

increased the expression of UGT1A6 by 1.2-fold and 1.4-fold, respectively (p < 0.05), whereas 

other female hormones showed no change in mRNA expression. 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Effect of female steroid hormones on UGT1A6 expression. 

The mRNA expression of UGT1A6 was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (p < 0.05) compared to the control 

group. 
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3.4.1.5 Effect of Female hormones on UGT1A9 Expression 

Only estradiol and progesterone showed significant increase in the expression of UGT1A9 by 

1.5-fold (p < 0.005) and 1.4-fold (p<0.0005), respectively (Figure 3-5).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Effect of female steroid hormones on UGT1A9 expression. 

The mRNA expression of UGT1A9 was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. ** (p < 0.01) and *** (p < 0.001) 

compared to the control group. 
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3.4.1.6 Effect of Female hormones on UGT2B7 Expression 

 The combination of female hormones and individual treatment with estradiol and human growth 

hormone increased the mRNA levels of UGT2B7 (Figure 3-6). Low concentration of female 

hormone mixtures increased expression of UGT2B7 by 1.3-fold (p < 0.05, and high 

concentrations of female hormone mixtures increased expression of UGT2B7 by 1.4-fold (p < 

0.05). Estradiol and human growth hormone increased expression of UGT2B7 by 1.7-fold (p < 

0.05) and 1.5-fold (p < 0.05).  

 

 

 

 

 

 

 

 

 

Figure 3-6 Effect of female steroid hormones on UGT2B7 expression. 

The mRNA expression of UGT2B7 was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (p < 0.05) compared to the control 

group. 
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3.4.2 Hormonal Regulation of UGT1A1 and UGT1A4 Activities 

To examine the effect of female hormones on the activity of UG1A1, we initially 

validated our system by treating the cells with 2 mM phenobarbital as a positive control for 3 

days. On day 4, we replaced the media with 100 µM of 4-methylumbelliferone for 30 minutes. 

We measured the activity of UGT1A6/1A9 by quantifying the concentration of 4-

methylumbelliferone glucuronide (Figure 3-7). Phenobarbital induced UGT1A6/1A9 activity by 

85%, which confirms that our model system is responsive to external stimuli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  68 

 

 

 

Figure 3-7 Effect of phenobarbital on UGT1A6/1A9 induction  

Concentration of 4-methylumbelliferone glucuronide was measured to test the functional activity 

of UGT1A6/1A9. Experiments were conducted in duplicate for all hepatocytes, and results are 

expressed as mean ± SEM. *** (p < 0.001) compared to the control group. 
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3.4.2.1 UGT1A1 Activity  

Female hepatocytes were treated with mixtures of female hormones (estrone, estradiol, estriol, 

progesterone, 17α-hydroxyprogesterone, human growth hormone, and human chorionic 

gonadotropin) at low and high concentrations as well as with high concentrations of estradiol, 

progesterone, human growth hormone, and human chorionic gonadotropin for 3 days. On day 4, 

hepatocytes were incubated with 400 µM of ETOP as UGT1A1 substrate for 60 minutes. The 

concentration of ETOP glucuronide was determined (Figure 3-8). Progesterone and mixture of 

female hormones at high concentrations significantly increased the activity of UGT1A1 by 2-

fold (p < 0.05). 
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Figure 3-8 Effect of female steroid hormones on UGT1A1 activity. 

Activity of UGT1A1 was measured by quantifying the formation of etoposide glucuronide after 

treating the primary cultures of human hepatocytes with female hormones chronically. 

Experiments were conducted in duplicate for all hepatocytes, and results are expressed as mean ± 

SEM. * (p < 0.05) compared to the control group.  
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3.4.2.2 UGT1A4 Activity 

Female hepatocytes were treated with mixtures of female hormones (estrone, estradiol, estriol, 

progesterone, 17α-hydroxyprogesterone, human growth hormone, and human chorionic 

gonadotropin) at low and high concentrations as well as with individual treatments of high 

concentrations of estradiol, progesterone, human growth hormone, and human chorionic 

gonadotropin for 3 days. On day 4, the media was replaced with 40 µM of LTG as UGT1A4 

substrate for 24 hours. Then the concentration of LTGG was determined (Figure 3-9). High 

levels of female hormone mixtures increased the activity of UGT1A4 significantly by 1.3-fold (p 

< 0.05). However, human chorionic gonadotropin suppressed 65% of UGT1A4 activity 

significantly (p < 0.05). Estradiol and progesterone at high concentrations did not significantly 

change the activity of UGT1A4.  
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Figure 3-9 Effect of female steroid hormones on UGT1A4 activity. 

Activity of UGT1A4 was measured by quantifying the formation of lamotrigine glucuronide 

after treating the primary cultures of human hepatocytes with female hormones chronically. 

Experiments were conducted in duplicate for all hepatocytes, and results are expressed as mean ± 

SEM. * (p < 0.05) compared to the control group. 
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3.4.3 Hormonal Regulation of Nuclear Receptors  

It is known that several CYPs are regulated by PXR and CAR. UGTs are also known to be 

regulated via PXR, CAR, AhR, and PPARα (Zhou et al., 2005). To determine the role of these 

nuclear receptors in regulation of CYP450, UGTs, and transporters by female hormones, we 

measured the expression of PXR, CAR, AhR, and PPARα after treating the primary culture of 

hepatocytes with 2 mM phenobarbital, low and high female hormone mixtures (estrone, 

estradiol, estriol, progesterone, 17α-hydroxyprogesterone, human growth hormone, and human 

chorionic gonadotropin), as well as with individual treatments of high concentrations of 

estradiol, progesterone, human growth hormone, and human chorionic gonadotropin for 3 days. 

GAPDH was used as a housekeeping gene.  

 

3.4.3.1 Effect of Female hormones on AhR Expression 

Phenobarbital, low hormone combinations, high hormone combinations, and human chorionic 

gonadotropin did not significantly induce AhR expression (1.7-, 1.6-, 1.3-, 2- and 1.6-fold, 

respectively) (Figure 3-10). Estradiol and human growth hormone increased the expression of 

AhR significantly by 1.7-fold and 1.9-fold, respectively (p < 0.05). 
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Figure 3-10 Effect of female steroid hormones on AhR expression. 

The mRNA expression of AhR was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (p < 0.05) compared to the control 

group. 

 

 

 

 

 

 

 



 

  75 

3.4.3.2 Effect of Female hormones on PXR Expression  

Our data showed that PXR mRNA levels were not changed by female hormones (Figure 3-11). 

This may indicate that the observed increase in the expressions of UGTs by these hormones is 

independent of PXR.  

 

 

 

 

 

 

 

 

 

 

Figure 3-11 Effect of female steroid hormones on PXR expression. 

The mRNA expression of PXR was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (p < 0.05) compared to the control 

group. 
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3.4.3.3 Effect of Female hormones on CAR Expression 

Female hormones did not show any affect on the mRNA expressions of CAR (Figure 3-12).  

 

 

 

 

 

 

 

 

 

 

Figure 3-12 Effect of female steroid hormones on CAR expression. 

The mRNA expression of CAR was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM.  
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3.4.3.4 Effect of Female hormones on PPARα Expression 

Female hormones did not show any affect on the mRNA expressions of PPARα (Figure 3-13). 

 

 

 

 

 

 

 

 

 

 

Figure 3-13 Effect of female steroid hormones on PPARα expression. 

The mRNA expression of PPARα was determined after treating the primary cultures of human 

hepatocytes with multiple female hormones chronically. The ratio of the treated group (PB or 

female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and control 

group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM.  

 

 



 

  78 

3.5 DISCUSSION 

Results from clinical studies have demonstrated that clearance of labetalol and lamotrigine is 

altered during pregnancy by 60% (Fischer, 2014) and 200% (Tran, 2002), respectively, 

indicating the need for dosage adjustments for these medications during pregnancy. Similar 

changes in lamotrigine clearance in pregnant women and women using oral contraceptives have 

been reported (Ohman et al., 2008), suggesting that female hormones such as estradiol and 

progesterone are responsible for the altered lamotrigine pharmacokinetics during pregnancy. 

Labetalol and lamotrigine are primarily metabolized by UGT1A1 and UGT1A4 enzymes. This 

indicates that UGT1A1 and UGT1A4 are induced during pregnancy, but the underlying 

mechanism of this alteration remains unknown. In this study, we examined the regulation of 

activity and expression of phase II enzymes, particularly UGTs (UGT1A1, UGT1A3, UGT1A4, 

UGT1A6, UGT1A9, and UGT2B7) by pregnancy-related hormones. We also evaluated the 

impact of female hormones on the major transcriptional nuclear receptors including AhR, PXR, 

CAR, and PPARα that are known to regulate the expression of these UGTs.  

To evaluate the impact of female hormones on the activity and expression of UGTs, we 

used the physiological plasma concentrations of these female hormones reached in pregnancy as 

a low concentration and at 10-times higher, comparable to concentrations of these hormones in 

the liver (Table 3-1). 

 At ten times higher than the progesterone plasma concentration (20 µM), activity and 

mRNA expression of UGT1A1 was significantly increased. This increase is in agreement with 

another study where 10 µM progesterone increased the activity and mRNA expression of 

UGT1A1 in HepG2 cells (Jeong, 2008). A previous microsomal study indicates that UGT2B7 

also contributes to the glucuronidation of labetalol (Jeong, 2008). In our study, we also examined 
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the effect of female hormones on the expression of UGT2B7. Our results showed that 

progesterone and phenobarbital (a known inducer) did not increase UGT2B7 expression. These 

results are also in consistent with another study where progesterone and rifampin (known 

inducers) did not show induction in the mRNA level of UGT2B7 (Jeong, 2008). On the other 

hand, expression of UGT2B7 was significantly increased by a mixture of female hormones at 

low and high concentrations as well as by the high concentrations of estradiol and human growth 

hormone. This can explain the increased oral clearance of morphine (UGT2B7 substrate) in 

pregnant women by 70% more than in non-pregnant women (Figure 3-6) (Gerdin et al., 1990; 

Jeong, 2008). 

Lamotrigine is a substrate of UGT1A4. Lamotrigine clearance has been known to 

increase significantly in pregnant women (Tran, 2002). Therefore, increased oral clearance of 

lamotrigine can be attributed to increased expression and activity of UGT1A4. Our results 

showed that a mixture of female hormones and estradiol induced the activity and mRNA 

expression of UGT1A4, respectively, at concentrations 10 times higher than their plasma 

concentration in primary cultures of hepatocytes. Our data agreed well with previously reported 

results where estradiol up-regulated the expression of UGT1A4 in HepG2 and MCF7 cells 

(Chen, 2009). Contrary to the induction of UGT1A4 activity and expression by female 

hormones, our findings indicate that high concentrations of human chorionic gonadotropin 

reduced the activity of UGT1A4. It has been reported that activity of hepatic CYP2A and 

CYP2E1 decreased in porcine liver after treatment with human chorionic gonadotropin 

decreased (Zamaratskaia et al., 2008). Activity of major drug metabolizing enzymes is known to 

be similar and has a comparable level between pig and human livers (Anzenbacher et al., 1998). 
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We have further evaluated the expression of other UGT isoforms such as UGT1A3, 

UGT1A6, and UGT1A9. Our results indicate that mixture of female hormones at lower 

concentrations and high concentrations of estradiol increase the expression of UGT1A3 in 

human hepatocytes. UGT1A3 is the major hepatic UGT enzyme that conjugates 

chenodeoxycholic acid (CDCA), the major bile acid in the liver that controls cholesterol 

homeostasis, to chenodeoxycholic acid-24 glucuronide (CDCA-24G) (Trottier et al., 2006). 

During cholestasis, the concentration of CDCA-24G increased by 50-fold (Trottier, 2006). 

Therefore, increased expression of UGT1A3 can be clinically relevant by increasing the 

metabolism of CDCA leading to cholestasis. Intrahepatic cholestasis of pregnancy (ICP) has 

been associated with increased levels of estrogen (Schreiber and Simon, 1983). In the present 

study and based on the in-vitro and in-vivo drug-drug interaction studies conducted by the 

Pharmaceutical Research and Manufacturers of America (PhRMA) (Bjornsson, 2003), estradiol 

seems to be an inducer of UGT1A3 by 2-fold compared to control and has more than a 40% 

increase relative to phenobarbital.  

The expression of UGT1A6 was increased by phenobarbital and high concentrations of 

estradiol. The induction by estradiol was only about 1.2-fold compared to control, suggesting 

that estradiol does not alter expression of UGT1A6. Similarly, UGT1A9 expression was 

increased by estradiol and progesterone by 50% and 40%, respectively.  However, this increase 

was not more than 40% of phenobarbital’s effect on the expression of UGT1A9. Therefore, they 

are not considered to be inducers of UGT1A9.  

In the present study, we evaluated the impact of female hormones on the expression and 

activity of several major UGTs that are known to be regulated by transcription receptors such as 

AhR, PXR, CAR, and PPARα. Therefore, we examined the effect of female hormones on the 
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expression of these specific transcription receptors. Our study indicated that estradiol induced 

AhR expression. Several studies have shown that AhR regulates the expression of UGT1A1 and 

UGT1A3 (Chen et al., 2005; Fujiwara et al., 2012; Lankisch, 2008; Senekeo-Effenberger et al., 

2007; Yueh, 2003). Our data also revealed that estradiol induces the expression of UGT1A1, 

suggesting that estradiol-mediated UGT1A1 induction is attributed to an increase in AhR 

expression. In addition, there was no change in the expression of PXR, CAR and PPARα. This 

suggests that PXR, CAR, and PPARα do not play a major role in female hormone-mediated 

UGT induction in human hepatocytes.  

In summary, we have characterized the regulation of major UGTs by pregnancy related 

hormones in primary cultures of human hepatocytes. Activity and expression of UGT1A1 is 

regulated by progesterone, whereas activity and expression of UGT1A4 is regulated by high 

hormone mixtures and estradiol, respectively. This indicates that progesterone and estradiol are 

likely to be responsible for the altered metabolism of labetalol and lamotrigine, respectively, in 

pregnancy. Estradiol and progesterone are the only hormones that regulate the expression of 

UGT1A6 and UGT1A9. Mixtures of female hormones regulate the expression of UGT1A3 and 

UGT2B7. AhR seems to be the probable pathway for female hormone-mediated UGT induction. 

Our findings provide a possible mechanism for the alteration in drug metabolism during 

pregnancy.  
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4.0  BUPRENORPHINE DISPOSITION DURING PREGNANCY: OBSERVED AND PBPK 

PREDICTION  
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4.1 ABSTRACT 

Physiological changes during pregnancy are expected to alter the pharmacokinetics of 

medications. Limited pharmacokinetic studies, however, have been performed in pregnant 

subjects. Due to the lack of drug dosing guidelines during pregnancy, and since conducting 

clinical studies in pregnant women is challenging, there is a need to develop and validate 

physiologically based pharmacokinetic (PBPK) models that can predict the systemic exposure of 

medications used during pregnancy. Recently, PBPK has been used to facilitate clinical studies 

and fast-track drug development processes. In this study, our aims are to validate a PBPK model 

(SIMCYP) for buprenorphine in non-pregnant women, to evaluate the effect of pregnancy on 

buprenorphine pharmacokinetics using this model, and to compare predicted and observed 

parameters in pregnant subjects. We validated a PBPK model using a digitized buprenorphine 

concentration-time curve in 17 non-pregnant women obtained from the literature. We then 

incorporated various major physiological changes that occur during pregnancy in the PBPK 

model and predicted the pharmacokinetic parameters during pregnancy. Due to the lack of a 

sublingual route of buprenorphine administration in the current SimCYP version, we used the 

oral route as a surrogate and refined our model by optimizing the fraction absorbed and 

absorption rate constant in order to achieve similar exposure of the observed data. Then, we 

validated the PBPK model prediction for buprenorphine in pregnant women by comparing with 

our observed data in pregnant women. Our data shows that the predicted concentration-time 

curves of buprenorphine in all trimesters of pregnancy agreed well with the observed 

concentrations-time curves. The prediction fold error for the area under the concentration-time 

curve (AUC), maximum plasma concentration (Cmax), and oral clearance (CL) are between 0.82 
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to 1.3, indicating that pharmacokinetics of buprenorphine can be reasonably predicted using a 

pregnancy PBPK model. 
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4.2 INTRODUCTION 

Clinical observations during pregnancy suggest that pharmacokinetics of certain drugs are 

changed, indicating the need for designing a new dosing regimen in pregnant women. Due to 

ethical considerations and the difficulty in conducting clinical studies in pregnant women, a 

physiologically based pharmacokinetics (PBPK) model can be used to predict the exposure of 

medications during different trimesters of pregnancy.  

Multiple literature observations indicated that drug-metabolizing enzymes, including 

CYPs or UGTs, are altered during pregnancy (Chen et al., 2009; Choi et al., 2013; Jeong et al., 

2008; Papageorgiou et al., 2013). Pregnancy PBPK models have been used recently to predict 

the pharmacokinetics of drugs that are metabolized by different CYP450 enzymes (Ke et al., 

2014; Xia et al., 2013) by incorporating the major pregnancy related physiological changes. 

However, there is limited information on the application of PBPK model for drugs that are 

cleared by hepatic UGTs or by a combination of CYPs and UGTs. Therefore, we proposed to 

evaluate the effect of pregnancy on a drug that is simultaneously cleared by both CYP and UGT 

enzymes such as buprenorphine. Similar to other medications used in pregnancy, manufacture 

labeling of buprenorphine does not include any information on the pharmacokinetics during 

pregnancy.  

To develop and validate the pregnancy PBPK model, it is required that predicted data be 

comparable to the observed data. Therefore, we first conducted a clinical pharmacokinetic study 

in pregnant women who were on chronic buprenorphine treatment and compared the generated 

data from pregnancy PBPK with those observed in pregnant women. Buprenorphine is 

administered sublingually to treat acute pain and opioid addiction during pregnancy (Jones et al., 

2008). The sublingual bioavailability of buprenorphine is approximately 51% (Kuhlman et al., 
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1996). Buprenorphine is highly bound to plasma protein, mainly alpha-1 glycoprotein (AAG) 

(Welsh and Valadez-Meltzer, 2005) and has a long half-life (37 hours) (Ducharme et al., 2012). 

It is metabolized to its active metabolite, norbuprenorphine, by CYP 3A4, and both 

buprenorphine and norbuprenorphine undergo glucuronidation by UGT11A1, UGT1A3, and 

UGT2B7 (Ducharme, 2012; Rouguieg et al., 2010). Buprenorphine is excreted primarily in the 

feces, and 10%-30% of buprenorphine is excreted in urine (Welsh, 2005). To the best of our 

knowledge, using a PBPK model to predict the impact of pregnancy on the pharmacokinetics of 

drugs that are metabolized simultaneously by CYPs and UGTs has not yet been reported. In the 

current study, we applied a pregnancy PBPK model to predict the exposure of buprenorphine in 

pregnant women in different stages of pregnancy. We verified the model using observations of 

buprenorphine pharmacokinetics in pregnant women. 
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4.3 MATERIAL AND METHODS 

4.3.1 Reagents and Software 

Buprenorphine and buprenorphine-D4 were purchased from Cerilliant (Round Rock, TX). Strata 

X-C cartridge used for buprenorphine extraction was obtained from Phenomenex (Torrance, 

CA). Version 13 of SimCYP (SimCYP, Sheffield, UK) was used for PBPK simulations. 

 

4.3.2 PBPK Model Structure 

Anatomical and physiological parameters for both non-pregnant and pregnant populations were 

incorporated in the SIMCYP 13 as a compartment full PBPK model. These parameters include 

body weight, organ volumes, blood flows, plasma protein cardiac output, serum creatinine, 

glomerular filtration rate, renal function and the metabolic enzyme activity. The pregnancy 

PBPK model was extended by adding the fetoplacental unit, which occurs between arterial and 

venous blood compartments.  Fetoplacental unit represents fetus, placenta, and uterus, as well as 

amniotic fluid (Figure 4-1).  

 

4.3.3 PBPK Model of Buprenorphine in Non-pregnant and Pregnant Subjects 

(Figure 4-2) shows the approach that was used in this project. SIMCYP was used to predict 

plasma concentration versus time profile of buprenorphine in non-pregnant women utilizing the 
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literature information about the physicochemical properties and the pharmacokinetics parameters 

of buprenorphine such as log P, pka, B:P ratio, fup, CL, and Clint (Table 4-1). Since the current 

SimCYP version does not incorporate a sublingual route of administration, we selected the oral 

route of administration for optimizing the model. We further optimized the rate constant of 

absorption (ka=1.7 h-1) and fraction absorbed (fa=0.26) in order to mimic sublingual 

administration and to improve the predictions of Cmax and AUC. Renal clearance (CLr=7.192 L 

h−1) was also adjusted in order to improve the adaptation of the elimination phase. The 

predictions were compared to the observed buprenorphine pharmacokinetic profile in 17 healthy 

female subjects who received 16 mg of sublingual buprenorphine (Compton et al., 2007) 

After verifying the PBPK model in non-pregnant subjects, the mean concentration time 

profiles of buprenorphine and pharmacokinetics data were simulated at first trimester (14-18 

weeks), second trimester (24-28 weeks) and third trimester (28-40 weeks) of pregnancy and 

compared with the observed results in pregnant subjects studied. Briefly, human female 

population size (n=100) of the PBPK model under fasting conditions was used by selecting 10 

trials and having 10 subjects in each trial. The PBPK model incorporated the changes in 

physiological parameters during pregnancy such as body weight, cardiac output, serum 

creatinine, renal function and the metabolic changes related to the CYP450 and UGT enzymes. 

In pregnancy, the activity of CYP2C9, CYP2D6, CYP3A4, UGT1A1, and UGT1A4 increases 

while the activity of CYP1A2 and CYP2C19 decreases. The glomerular filtration rate and renal 

blood flow also increases in pregnancy (Baylis, 1982; Davison, 1974; Koren, 2011). The mean 

predicted buprenorphine plasma concentration and the pharmacokinetic profiles in different 

tissue compartments, such as fetoplacental (fetus and placenta) and brain were also obtained by 

simulations. 



 

  89 

 

  

 

 

Figure 4-1Pregnancy PBPK model structure 
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Figure 4-2 PBPK model general workflow of buprenorphine in pregnancy 

 

 

 

 

 

 

 

 

 

 

PBPK model in 
non-pregnant 

women

• Predicting the mean plasma concentration time profile of buprenorphine with those observed in 
non-pregnant women

Refine

• Modifying some of buprenorphine parameters such as fa, ka and CLr to obtain similar fitting to that 
observed in non-pregnant subjects 

PBPK model in 
pregnant women

• Applying the PBPK model in pregnant subjects after validating the model in non-pregnant subjects

Verification

• Predicting the mean plasma concentration time profile of buprenorphine and compared with those 
observed in pregnant women	  
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Table 4-1Physicochemical properties and pharmacokinetic parameters of buprenorphine. 

Parameter Value Reference 

Molecular weight 467 (Likar, 2006) 

Log P 4.98 (Avdeef et al., 1996) 

pKa 8.31 (Avdeef, 1996) 

B  :  P ratio 0.6 (Mistry and Houston, 
1987) 

fup 0.07 (Mistry, 1987) 

fa 0.26 * 

Ka (h−1) 1.7 * 

CL (L  h−1) 610.86 Predicted 

CLr (L  h−1) 7.192 * 

CLint,CYP 
(µL/min/mg - microsomal protein) 

CLint, CYP3A4 = 38.3 (Picard et al., 2005) 

CLint, CYP2C8 = 14.2 (Picard, 2005) 

CLint,UGT1A1 
(µL/min/mg - microsomal protein) 279 (Kilford et al., 2009) 

Buprenorphine administration 

Dose (mg) 8 

Route Oral 

Dosing interval (h) 12 

 
*fa, ka and CLr were optimized in order to predict the best fitting curve and similar predicted PK 
parameters compared with observed data.  
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4.3.4 Subjects and Study Design 

Subjects between the ages of 18 and 45 years old and on buprenorphine therapy were eligible for 

the study. The study was approved by the institutional review board at the University of 

Pittsburgh. All study subjects were provided with a written, informed consent before 

participation in the clinical study. The exclusion criteria included subjects who are on HIV 

medications or taking medications known to induce CYP3A4 activity (rifampin and 

phenobarbital) or inhibit CYP3A4 activity such as ketoconazole and other antifungal 

medications. Eligible subjects were enrolled into four pharmacokinetic studies: first trimester 

(n=1), second trimester (n=5), third trimester (n=3). Subject demographics such as age, race, 

body weight, height, and vital signs were recorded. Buprenorphine (8 mg) was administered. 

Blood samples (7 mL) were collected at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8, 10, and 12 hours. 

Plasma samples were then stored at -80oC until analysis. 

4.3.5 Sample Preparation 

Plasma sample (500 µL) mixed with 25 µL of buprenorphine (BUP)-D4 as an internal standard 

was extracted with 1 ml of 0.1% perchloric acid (HClO4). Samples were then centrifuged at 

15000 rpm for 10 minutes. Then, buprenorphine and its metabolites were extracted by solid 

phase extraction. The extraction cartridge was conditioned twice with 1 mL methanol and twice 

with 1 mL 0.1% HClO4. Then, the sample was loaded onto the cartridge. After washing twice 

with 1 mL of 2% HCOOH in H2O and two times with 1 mL of 2% HCOOH in methanol, the 



 

  93 

analytes were eluted three times with 60% acetonitrile, and 40% isopropanol containing 5% 

ammonium hydroxide. The eluent was air-dried. The residue was then reconstituted with 100 µL 

of the initial mobile phase (10% acetonitrile, 90% water, containing 0.1%HCOOH), and 7.5 µL 

of the sample solution was injected directly into the LC-MS/MS system. 

4.3.6 Liquid Chromatographic and Mass Spectrometry  

Sample analysis was performed on a Thermo TSQ Quantum Ultra-Triple quadrupole mass 

spectrometer. Chromatographic conditioning was performed using a C18 column (1.7 µM, 2.1 x 

100mm). A mobile phase consisting of solvent A (98% H2O, 2% methanol containing 0.1% 

HCOOH) and solvent B (acetonitrile containing 0.1% HCOOH) was used. The following 

gradient was used: 87 % A for 0-0.5 minute and then 35% A for 0.5-4.5 minutes and then held 

for 0.5 minutes, and 87 % A for 5-7 minutes. The flow rate was 0.3 ml/min. The ion transitions 

for BUP were m/z 468.3 ⇒ 396.2. The standard curve for BUP ranged from 0.50 to 50 ng/ml. 

4.3.7 Pharmacokinetic Analysis 

The area under the concentration time curve (AUC) of BUP from 0-8 hours was calculated using 

the linear trapezoidal rule. Apparent oral clearance of BUP was calculated as follows: 

CL = F*Dose/ (AUC) (Equation 4-1) 

We used the reported sublingual bioavailability (F) of buprenorphine as 51% (Kuhlman, 1996). 

Cmax was defined as the highest plasma concentration. 
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4.4 RESULTS 

4.4.1 Prediction of Buprenorphine Pharmacokinetics in Non-pregnant Women 

To evaluate the adequacy of prediction of the simulated plasma buprenorphine concentration 

during pregnancy, we first compared the simulated plasma concentration versus time profiles of 

buprenorphine in non-pregnant women to the observed data in non-pregnant women (Figure 

4-3). Simulated plasma concentration versus time profile was similar to the observed 

concentrations time profile during non-pregnancy. As shown in (Table 4-2), the area under the 

concentrations-time curve (AUC) and the sublingual clearance (CLsub) of predicted (11.9 

ng/mL.h and 343 L/h) and observed data (11 ng/mL.h and 343 L/h) were similar. The prediction 

fold error for AUC and CLsub were 1.1 and 0.9, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Predicted and observed mean plasma concentration time curve of 

buprenorphine (ng/mL) in non-pregnant women 
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4.4.2 Prediction of Buprenorphine Pharmacokinetics in Pregnancy Versus Non 

pregnancy 

After we verified the PBPK model in non-pregnant women, we predicted buprenorphine 

pharmacokinetics in pregnancy and compared that to buprenorphine pharmacokinetics in non-

pregnant women (Figure 4-4). The predicted AUC of buprenorphine in non-pregnant women, 

and in pregnant women during the first trimester, second, trimester, and third trimester is 11.9, 

10.5, 9.4 and 8.7 (ng/mL.h), respectively. The predicted AUC decreased overall by 20% in 

pregnancy versus non-pregnancy. The predicted CLsub of buprenorphine in non-pregnant women, 

and in pregnant women during the first trimester, second, trimester, and third trimester is 343, 

389, 434 and 469 (L/h), respectively. The changes in AUC and CLsub seemed to be trimester-

dependent.  

 

 

 

 

 

 

 

 

 

Figure 4-4 Predicted plasma concentration time curve of buprenorphine (ng/mL) in 

pregnant women 
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4.4.3 Predicted versus Observed Pharmacokinetics of Buprenorphine in 

Pregnancy  

Nine pregnant women on buprenorphine treatment participated in the study. One subject was in 

the first trimester, five subjects were in the second trimester, and three subjects were in the third 

trimester of pregnancy. The observed buprenorphine plasma concentration versus time profiles in 

different gestational periods in the pregnant women are presented in (Figure 4-5). Compared to 

the control group (non-pregnant women), the mean area under the concentration-time curve 

(AUC0-8) decreased approximately 25% and 30% at second trimester and third trimester, 

respectively. However, there was no change in the AUC between the first trimester group and the 

control group, which reflect low number of subjects studied in the first trimester. The observed 

maximum concentration (Cmax) in the third trimester was 30% lower than the observed Cmax in 

non-pregnant control population. Our data showed that the simulated profile fitted the observed 

profile during all the three trimesters. We also compared the PBPK model predicted 

pharmacokinetic parameters with the observed buprenorphine pharmacokinetics in non-pregnant 

and pregnant women (Table 4-2). The predicted and observed Cmax, AUC0-8, Tmax, and 

sublingual clearance (CLsub) of buprenorphine are similar in all the trimesters, and their 

prediction fold errors are between 0.82 and 1.2. This indicates that the PBPK model is able to 

adequately predict the pharmacokinetics of buprenorphine during pregnancy. 
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Figure 4-5 Predicted and observed AUC of buprenorphine during pregnancy. 

Predicted versus observed area under the concentration-time curve of buprenorphine (ng/mL) in 

first trimester (A), second trimester (B), third trimester (C) and overall pregnancy (E). 
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The pharmacokinetics parameters of buprenorphine in non-pregnant women and in pregnant women at each trimester are presented in 

(Table 4-2). Compared to non-pregnant women, the observed buprenorphine apparent oral clearance was increased by 1.2- and 1.4-

fold in second and third trimester of pregnancy, respectively.  

 

Table 4-2 Observed and predicted pharmacokinetic parameters of buprenorphine. 

 Non-PG 1st trimester 2nd trimester 3rd trimester All trimesters (mean) 

 Pred Obs PFE Pred Obs PFE Pred Obs PFE Pred Obs PFE Pred Obs PFE 

Cmax  
(ng/mL) 3.42 2.65 1.3 2.9 2.9 1 2.4 2.4 1 2.1 1.9 1.1 2.5 2.4 1 

Tmax (h) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

AUC0-8 
(ng/mL.h) 11.9 11 1.1 10.5 12.8 0.82 9.4 8.9 1.1 8.7 7.7 1.1 9.5 9.8 0.97 

CL  
(L/h) 672 727 0.9 762 625 1.2 851 899 0.95 920 1039 0.89 842 816 1 

CL/F  
(L/h) 343 371 0.9 389 319 1.2 434 458 0.95 469 530 0.89 429 416 1 

Pred: predicted. Obs: observed. PFE: prediction fold error. Cmax: maximum concentration. Tmax: time to reach maximum 
concentration. 
AUC: area under the concentration time curve. CL: clearance, F: bioavailability 
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4.4.4 Predication of Buprenorphine Exposure in Maternal Brain and 

Fetoplacental Unit 

We applied our PBPK model to predict the effect of pregnancy on buprenorphine exposure in 

major physiological organs such as brain and fetoplacental unit (Figure 4-6). Feto-placental unit 

represents fetus, placenta, and uterus, as well as amniotic fluid (Xia, 2013). Brain buprenorphine 

AUC during pregnancy appeared to be lower than that in non-pregnant women (Table 4-3). 

During pregnancy, brain-to-plasma and feto-placental-to-plasma ratios of buprenorphine were 

50:1 and 10:1, respectively resulting in an overestimating of the buprenorphine concentrations 

compared to a reported exposure of buprenorphine in in these organs (Coles et al., 2009; Pontani 

et al., 1985).  

  

Table 4-3 Simulated AUC of buprenorphine in maternal plasma, brain and feto-placental unit. 

 

AUC (ng/mL.h) Non-PG 1st trimester 2nd trimester 3rd trimester 

Plasma  11.9 10.5 9.4 8.7 

Brain  592 557 535 547 

Fetoplacental  102 101 107 
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Figure 4-6 Simulated mean plasma concentrations-time curve of buprenorphine (ng/mL) in 

plasma, brain, and feto-placental unit. 

The predicted mean concentration of buprenorphine (ng/mL) versus time curve in plasma and 

brain of non-pregnant women (A), maternal plasma, brain, and feto-placental unit in first 

trimester (B), second trimester (C), and third trimester (D).  
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4.5 DISCUSSION 

A Physiologically based pharmacokinetics (PBPK) model is a very valuable tool for predicting 

drug exposure in different physiological conditions. Due to limitations in conducting clinical 

studies in pregnant women as well as the limited availability of data on drug dosing in 

pregnancy, PBPK is a valuable tool to predict drug exposure in plasma and other organs 

including liver, kidney, brain, and fetal in pregnant women. PBPK model can also facilitate the 

prediction of drug exposure in different tissues, which cannot be readily measured in human 

subjects. The PBPK model has been used mostly for simulating the disposition of multiple 

xenobiotics in pregnant women particularly for evaluating the maternal and fetal disposition and 

mainly in the third trimester (Gaohua et al., 2012; Ke et al., 2014). In this study, predicted and 

observed pharmacokinetics parameters of caffeine, metoprolol and midazolam were compared 

during the third trimester of pregnancy using pregnancy PBPK model. Their prediction fold 

change of the pharmacokinetics of these compounds was about 2-fold compared to the observed 

data. However, the impact of gestational age on the plasma and tissues pharmacokinetics is 

lacking. Therefore, we successfully developed and verified the pregnancy PBPK model for 

predicting the pharmacokinetics of buprenorphine incorporating all trimesters, pregnancy 

physiological changes, renal clearance, fraction absorbed, and absorption rate constant. 

Buprenorphine is a synthetic opioid used to treat pain and opiate addiction (Brown et al., 2011; 

Picard, 2005). It is also recommended in opioid-dependent pregnant patients (Jones, 2008). It is 

metabolized to its inactive metabolite, nor-buprenorphine, by the N-dealkylation pathway 

(Picard, 2005). Multiple CYP450 enzymes are involved in buprenorphine metabolism including 

CYP2C8, CYP2C9, CYP2C18, CYP2C19, and CYP3A4. CYP3A4 accounts for 65% of nor-

buprenorphine formation (Picard, 2005). Buprenorphine also undergoes glucuronidation, mainly 
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by UGT1A1, UGT1A3, and UGT2B7 (Rouguieg, 2010). Activity of CYP3A4, UGT1A1, and 

UGT2B7 is known to be altered significantly during pregnancy (Fischer et al., 2014; Hebert et 

al., 2008; Watts et al., 1991). Due to limited information about the pharmacokinetics of 

buprenorphine in pregnant women, we predicted for the first time the effect of pregnancy on the 

pharmacokinetics of buprenorphine using a pregnancy based PBPK model and compared 

predicted data with the observed data in pregnant subjects. A successful application of PBPK 

model for buprenorphine in pregnancy indicates the possibility of applying a PBPK model for 

predicting the pharmacokinetics of other medications that have similar metabolic pathways in the 

pregnant population. Our model predicted AUC, Cmax, and CL of buprenorphine similar to 

those in observed data, indicating that our pregnancy PBPK model is appropriate. As we have 

previously shown in chapters 2 and 3, the metabolic activity of CYP3A4 and UGT1A1 increased 

during pregnancy. Therefore, our assumption of increased observed and predicted clearance of 

buprenorphine in pregnant women was due to increased activities of these metabolizing 

enzymes, suggesting the need for increasing buprenorphine doses during pregnancy for 

achieving the optimal therapeutic effect.  

The brain-to-plasma ratio of buprenorphine concentration has been reported in rats to 

range from 3.0 to 10.5 after administration of 0.2 mg/kg of buprenorphine intravenously (Pontani 

et al., 1985). Fetoplacental-to-plasma ratio (2:1) of buprenorphine concentration has also been 

reported in pregnant mice after a single intravenous dose (120 mCi/kg) of [3H] buprenorphine 

(Coles et al., 2009). Our pregnancy PBPK model predicted the exposure of buprenorphine in 

maternal brain and fetal compartments. Our data showed that brain-to-plasma and feto-placental-

to-plasma ratios of buprenorphine were 50:1 and 10:1, respectively. This indicates that our 

model overestimates the concentrations of buprenorphine in brain and feto-placental unit. Our 
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PBPK simulations were performed at steady state in contrast to the published single dose studies. 

This can explain the higher brain exposure of buprenorphine predicted by the PBPK model. 

Multiple dose studies in animals should be performed to confirm the predictions. The lower 

brain-to-plasma and fetoplacental-to-plasma ratios of buprenorphine in animals may also be 

related to efflux of buprenorphine by certain transporters that are yet to be identified. Results 

from in vitro and in vivo studies indicated that the efflux transporter P-glycoprotein (P-gp) 

mediates norbuprenorphine access to the brain and plays an important role in the antinociceptive 

of norbuprenorphine (Alhaddad et al., 2012; Brown et al., 2012). In this study, we predicted the 

pharmacokinetics of buprenorphine only. Future studies should be performed to evaluate the 

effect of pregnancy on the exposure of norbuprenorphine in plasma and brain during pregnancy. 

In summary, based on the reported data of buprenorphine in healthy women volunteers, we have 

shown the ability of our pregnancy PBPK model to predict the observed data in pregnant women 

during different trimesters of pregnancy. Our data also suggests the need for dosing adjustments 

of buprenorphine during pregnancy. The pregnancy PBPK model can be further refined once 

there is more data available from additional subjects, especially during the first trimester stage.  
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5.0  EFFECT OF PREGNANCY HORMONES ON HEPATIC BUPRENORPHINE 

METABOLISM 
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5.1 ABSTRACT 

It has been known that pregnancy affects hepatic drug metabolism. However, the underlying 

mechanism responsible for this alteration is unknown. Regulation of hepatic cytochrome P450 

(CYP) and UDP-glucuronsyltransferases (UGT) by female hormones–estradiol and 

progesterone–have been reported using different probes for CYP450 and UGT enzymes. An 

example of a medication that is simultaneously metabolized by both CYP and UGT is 

buprenorphine. Buprenorphine is a partial µ-opioid receptor agonist used to treat pain and opiate 

addiction in pregnant women. It is metabolized to norbuprenorphine mainly by CYP3A4 and 

CYP2C8, and both buprenorphine and norbuprenorphine undergo glucuronidation by UGT1A1, 

UGT1A3, and UGT2B7. Physiological based pharmacokinetics (PBPK) modeling indicated 

increased clearance of buprenorphine during pregnancy. Our goal in this study was to 

characterize the impact of pregnancy hormones on the pharmacokinetics of buprenorphine and 

its metabolites. Plasma (low) and liver (high) concentrations of female hormone mixtures were 

incubated with primary cultures of human hepatocytes and treated with buprenorphine (100 

ng/mL) for 0-2 hours. Concentrations of buprenorphine and its metabolites were quantified by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS). Buprenorhine-glucuronide was 

the predominant metabolite formed in human hepatocytes. Both plasma and liver concentrations 

of female hormones did not influence the metabolism of buprenorphine in human hepatocytes. 

Female hormones mixtures did not change the exposure of any of the metabolites. Intrinsic 

clearance, hepatic clearance, and sublingual clearance of buprenorphine were not altered after 

treatment with female hormones at both concentrations. These observations indicate that 

pregnancy related hormones effect on the liver may not be responsible for the predicted and 

observed increase in the clearance of buprenorphine during pregnancy. Given that buprenorphine 
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can also be metabolized by small intestine, alterations in gut metabolism of buprenorphine, 

should be evaluated in future studies.  
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5.2 INTRODUCTION 

The activity of hepatic enzymes such as cytochrome P450 (CYP) and UDP-glucuronsyl 

transferases (UGT) may be altered during pregnancy, leading to changes in pharmacokinetics, 

necessitating dose-adjustment of certain drugs (Concheiro et al., 2011; Fischer, 2014; Tracy, 

2005; Tran, 2002). Clinical findings in pregnant women have indicated that clearance of 

methadone, a full opioid agonist, decreased during pregnancy (Pond et al., 1985). It has also 

been reported that clearance of morphine is greater in pregnant women compared to non-

pregnant women (Gerdin, 1990). These findings support the hypothesis that pregnancy alters 

drug metabolism. However, the mechanisms that lead to such alterations are not yet to be 

completely understood. Buprenorphine is an example of an opioid medications used during 

pregnancy. Buprenorphine is a synthetic partial µ-opioid receptor agonist derived from the 

morphine alkaloid, thebaine, used to treat pain and opiate addiction during pregnancy (Brown et 

al., 2011; Jones et al., 2012; Picard, 2005).  

The primary metabolic pathway of buprenorphine is N-dealkylation of its cyclopropyl 

group at the 17-position to nor-buprenorphine (Figure 5-1) (Brown, 2011; Cone et al., 1984; 

Huang et al., 2001; Kobayashi et al., 1998; Picard, 2005). CYP3A4 is the primary enzyme that 

mediates N-dealkylation of buprenorphine metabolism (Brown, 2011; Kobayashi, 1998). Out of 

thirteen P450 isoforms tested in human liver microsome, CYP2C8,	  3A4, 3A5, and 3A7 have been 

identified to produce nor-buprenorphine in human liver microsome (Picard, 2005). The majority 

of nor-buprenorphine is formed by CYP3A4, accounting for about 65% and CYP2C8 with 30% 

(Picard, 2005). CYP 2C9, 2C18, 2C19 and CYP3A also produce additional oxidative products in 

human liver microsome or CYP450 transfected cells (Picard, 2005). A study in human liver 

microsome also reported that both buprenorphine and nor-buprenorphine formed hydroxy-
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buprenorphine and hydroxy-nor-buprenorphine, respectively (Picard, 2005).  CYP3A was the 

major CYP isoform that formed buprenorphine to hydroxy-buprenorphine (Picard, 2005). Chang 

et al, 2006, reported that buprenorphine undergoes hydroxylation in human liver microsome to 

produce M1 and M2 following by N-dealkylation to produce M3 and M4 or M5. M1 was mainly 

formed by 2C8, 3A4, 3A5, and 3A7. M3 and M5 were produced by 3A4, 3A5, and 3A7 (Chang 

et al., 2006). On the other hand, M1 (conjugated) and M3 (60 to 70% unconjugated) have been 

identified in human urine in subjects taking buprenorphine (Chang, 2006). In addition, the free 

buprenorphine has not been detected in human urine after a sublingual administration of 

buprenorphine (Cone, 1984). Buprenorphine and nor-buprenorphine (the active metabolite) 

undergo glucuronidation by UDP-glucuronsyl transferases (UGT) (Cone, 1984). Glucuronidation 

of buprenorphine and nor-buprenorphine has been tested in human liver microsome (Rouguieg et 

al., 2010). Buprenorphine and nor-buprenorphine glucuronides are formed only by UGT1A1, 

UGT1A3, and UGT2B7 among other six hepatic UGT isoforms (Rouguieg, 2010). UGT1A3 and 

UGT2B7 are the most predominant UGT isoforms that produce buprenorphine glucuronides 

(Rouguieg, 2010). On the other hand, UGT1A1 and UGT1A3 were primarily responsible for 

formation of nor-buprenorphine glucuronide (Rouguieg, 2010). Recent studies identified that N-

dealkylation and glucuronidation are predominant in small intestine and human liver 

microsomes, respectively, suggesting that both gut and liver are involved in the metabolism of 

buprenorphine (Moody et al., 2009).  

To the best of our knowledge, there is no data available related to the impact of 

pregnancy on buprenorphine metabolism. During pregnancy, pharmacokinetics parameters such 

as hepatic clearance, may be altered due to the effect of pregnancy on hepatic blood flow, drug 

protein binding and, intrinsic clearance (CLint) (Jeong, 2010). PBPK modeling and preliminary 
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data form out lab indicated that clearance of buprenorphine is increased during pregnancy 

(chapter 5).  One of the suggested potential mechanisms responsible for modifications in drug 

pharmacokinetics during pregnancy is the increased levels of major female hormones such as 

estradiol, progesterone and growth hormone. Therefore, in this study, we examined the influence 

of pregnancy hormones at plasma and accumulated liver concentrations on the pharmacokinetics 

of buprenorphine and its metabolites using primary cultures of human hepatocytes.  

 

Figure 5-1 Buprenorphine metabolic pathway.  

Adapted from (Picard, 2005).  
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5.3 MATERIAL AND METHODS 

5.3.1 Chemicals 

Progesterone (P), 17α-hydroxyprogesterone (17α-OHP), estrone (E1), estradiol (E2), estriol (E3), 

human growth hormone (hGH), and human chorionic gonadotropin (HCG) were purchased from 

Sigma-Aldrich (St. Louis, MO). Buprenorphine and buprenorphine-D4 were purchased from 

Cerilliant (Round Rock, TX). MCX cartridge used for buprenorphine extraction was obtained 

from Waters Corp. (Milford, MA).  

 

5.3.2 Incubation of Primary Cultures of Human Hepatocytes with Female Hormones, and 

Treating with Buprenorphine 

Freshly isolated primary human hepatocytes (1.5×106 cells/well) in 6-well plates were 

purchased from Life Technologies (Carlsbad, CA) in a cold maintenance media. Hepatocytes 

donor demographics are shown in (Table 5-1). Upon receipt, the media was replaced with ice-

cold hepatocyte maintenance media (HMMTM) (Lonza, Allendale, NJ) containing 0.35 mg/mL 

Geltrex™ and incubated overnight. The cell cultures were maintained at 37°C in a humidified 

atmosphere at 5% CO2. Cells were treated with DMSO (vehicle), low hormones mixture, or high 

hormones mixtures for 72 h. The concentrations of female hormones used are shown in (Table 

5-2). Low and high concentrations of female hormones mixtures correspond to the levels of these 

hormones in plasma and liver, respectively. Final concentration of DMSO in the incubation 

medium was 0.1% (v/v). Treatment medium was replaced every day. On day 4, the medium was 
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replaced with fresh HMMTM medium containing buprenorphine (100 ng/ml) for 0, 30, 60, and 

120 minutes. The culture medium and cell lysate were collected to measure the concentration of 

buprenorphine and its metabolites using LC-MS/MS analysis. There were no significant 

morphological changes observed in the hepatocyte cultures. Each experiment was conducted in 

triplicate. Statistical differences were determined using student’s t-test. P value <0.05 was 

considered statistically significant. Data is expressed as mean ± SEM. 

 

 

Table 5-1 Hepatocyte donors demographic. 

Donor ID Age Sex Race BMI Smoking Alcohol use 

HU14016 82 F Caucasian n.d. n.d. n.d. 

HU14017 57 F Caucasian. n.d. n.d. n.d. 

HU1745 57 F Caucasian 17 No No 
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Table 5-2 Female hormones concentrations at third trimester of pregnancy in humans 

Hormone Low conc (µM) High conc (µM) 

Progesterone 2 20 

E1 0.2 2 

E2 0.3 3 

E3 0.8 8 

17-α OHP 0.1 1 

hGH 0.0005 0.005 

HCG 0.0009 0.009 

 

 

5.3.3 Samples Preparation 

300 µL of supernatant sample was pre-treated with 700 µL of 0.1% perchloric acid (HClO4) and 

25 µL of mixture of buprenorphine-d4 and norbuprenorphine-d3 were used as internal standards. 

The mixture was then loaded onto MCX cartridge, Waters Corp. (Milford, MA), initially 

conditioned two times with 1 mL methanol and 1 mL 0.1% HClO4. One mL of samples was then 

loaded onto the cartridge. After washing two times with 1 mL of 2% HCOOH in H2O, the 

analytes were eluted two times with 1 mL of (60% acetonitrile, 40% isopropanol containing 5% 

ammonium hydroxide). Then the eluent was dried down under air. The residue was then 
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reconstituted with 100 µL of the initial mobile phase (10% acetonitrile, 90% water, containing 

0.1%HCOOH) and 7.5 µL of the solution was injected directly into the LC-MS/MS system.  

 

5.3.4 Determination of Buprenorphine Concentration 

Sample analysis was performed on a Thermo TSQ quantum ultra-triple quadrupole mass 

spectrometer. Chromatographic condition was performed using a C18 column (1.7 µM, 2.1x100 

mm). A mobile phase consisted of solvent A (98% H2O, 2% acetonitrile containing 0.1% 

HCOOH) and solvent B (acetonitrile containing 0.1% HCOOH). The flow rate was 0.3 ml/min. 

The ion transitions for buprenorphine, norbuprenorphine, buprenorphine-glucuronide, 

norbuprenorphine-glucuronide, buprenorphine-d4 and norbuprenorphine-d3 were m/z 468.3 è 

396.2, 414.1 è 340, 644.3 è 468.3, 590.1 è 414.1, 472.3 è 400.2, and 417.1 è 343. The 

standard curve range for buprenorphine was 1-100 ng/ml and quality controls were 2, 10, and 50 

ng/ml. The following gradient was used: 87 % A for 0-0.5 minutes, and then 35% A for 0.5-4.5 

minutes, held for 0.5 min, and 87 % A for 5-7 min.  

5.3.5 Data Analysis 

The apparent intrinsic clearance of buprenorphine was calculated using the following equation 

(Pillai et al., 2014): 

Clint,app(mL/min/kg) =  (0:693/t1/2)(1mL incubation/1.5X106 cells) 

(130X106/g liver)(20 g liver/kg per body weight) (Equation 5-1)  
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Based on the intrinsic clearance, the hepatic clearance (CLh) was calculated as following 

equations: 

CLh =  Qh(1-Fh) (Equation 5-2) 

Where the Qh is the hepatic blood flow and equal to 21 mL/min/kg, and Fh is the hepatic 

availability.  

Fh was calculated based on the following equations: 

Fh = Qh/(Qh + fu,incXClint,app) (Equation 5-3) 

Where fu,inc is the fraction unbound in the hepatocytes incubation media and was calculated: 

fu,inc = 1/(1+Kp(Vc/Vm) (Equation 5-4) 

Where Kp is the partition coefficient and equal to 4.98 (Avdeef, 1996), Vc is the volume for the 

cell adhesion and equal to 0.0051 (Pillai, 2014), and Vm is the volume of the media = 1 mL.  

Sublingual clearance of buprenorphine was predicted based on the hepatic clearance using the 

following equation: 

CLsub = CLh/F 

Were F = 0.51 is the reported sublingual bioavailability of buprenorphine obtained form 

literature (Kuhlman et al., 1996).  
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5.4 RESULTS 

The average concentration of buprenorphine, norbuprenorphine, buprenorphine-glucuronide and 

norbuprenorphine-glucuronide are shown in (Figure 5-2A-D). There was a continuous loss of 

buprenorphine over time from the culture media. The formation of norbuprenorphine was small 

in all hepatocytes and the norbuprenorphine-glucuronide was detected only in one donor. 

Buprenorphine-glucuronide was the most predominant detected metabolite, accounting for most 

of buprenorphine metabolism. (Table 5-3) and (Table 5-4) show the mean area under the 

concentrations-time curves (AUC0-120 min) and the mass balance for buprenorphine, 

norbuprenorphine, buprenorphine-glucuronide and norbuprenorphine-glucuronide after treatment 

with buprenorphine (100 ng/mL). Exposure of buprenorphine did not change with treatment of 

low or high concentrations of female hormones mixture. Three was no significance difference in 

AUC0-120 min or the mass balance of norbuprenorphine, buprenorphine-glucuronide and 

norbuprenorphine-glucuronide between low hormones treated group and control group. 

Compared to DMSO, there was no effect of female hormones on the formation of 

norbuprenorphine, buprenorphine-glucuronide and norbuprenorphine-glucuronide.  
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Figure 5-2 Buprenorphine elimination time course. 

Time course of (A) Buprenorphine, (B) Norbuprenorphine, (C) Buprenorphine-glucuronide and (D) Norbuprenorphine-glucuronide 

after low and high concentrations of female hormones, following incubation with 100 ng/mL of buprenorphine in primary cultures of 

human hepatocytes. Data are expressed as mean ± SEM. 
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Table 5-3 Area under the concentrations-time curves for buprenorphine and its metabolites. 

The mean area under the concentrations-time curves (AUC0-120 min (µg*min/mL)) for Buprenorphine (BUP), Norbuprenorphine 

(NBUP), Buprenorphine-glucuronide (BUP-G) and Norbuprenorphine-glucuronide (NBUP-G) after incubation with low and high 

concentrations of female hormones, following incubation with 100 ng/mL of buprenorphine in primary cultures of human hepatocytes. 

Data are expressed as mean ± SEM.  

Treatment BUP NBUP BUP-G NBUP-G 

Vehicle 4.3 ± 1.6 1.74± 1.7 3.67± 0.02 0.048 

Low hormones 4.6 ± 1.2 1.46 ± 1.42 4 ± 0.55 0.041 

High hormones 3.9 ± 0.9 1.27± 1.29 2 ± 2.26 0.037 
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Table 5-4 Mass balance of buprenorphine and its metabolites. 

Mass balance of Buprenorphine (BUP), Norbuprenorphine (NBUP), Buprenorphine-glucuronide 

(BUP-G) and Norbuprenorphine-glucuronide (NBUP-G) after incubation with DMSO, low and 

high concentrations of female hormones, following incubation with 100 ng/mL of buprenorphine 

in primary cultures of human hepatocytes.  

 

 

 

 

 

 

 

 

 

 

 

Treatment BUP NBUP BUP-G NBUP-G 

Vehicle 17.1 14.4 72.9 1.5 

Low hormones 25.7 13.5 94.3 0.97 

High hormones 15.9 5.5 101.9 1.1 
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Pharmacokinetics parameters of buprenorphine, including area under the concentration-

time curve (AUC0-120 min), elimination half-life (t1/2), intrinsic clearance (Clint, app), and predicted 

sublingual clearance (CLsub (mL/min) are shown in (Table 5-5). Compared to vehicle (control), 

there was no significant change in buprenorphine half-life, intrinsic clearance, hepatic clearance 

and predicted sublingual clearance after treatment with female hormones mixture at low 

concentrations. There was no difference in the half–life, intrinsic clearance, hepatic clearance 

and predicted sublingual clearance of buprenorphine after treatment with female hormones 

mixture at high concentrations relative to control (DMSO). Overall, both concentrations of 

female hormones mixtures did not affect buprenorphine pharmacokinetics.  
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Table 5-5 Pharmacokinetics parameters of buprenorphine in hepatocytes treated with female hormones. 

The mean pharmacokinetics parameters of buprenorphine after incubation with low and high concentrations of female hormones, 

following incubation with 100 ng/mL of buprenorphine in primary cultures of human hepatocytes. Data are expressed as mean ± 

SEM. 

 

Treatment Half-life (min) Bup metabolized after 2 
hours (%) 

Clint, app 
(mL/min/kg) CLh (mL/min) CLsub (mL/min) 

Vehicle 47 ± 15 79.6 ± 3.5 26.9 ± 8.6  11.5 ± 1.7 22.6 ± 3.3 

Low 
hormones 48.3 ± 7.1 83 ± 7.1 25.1 ± 3.7 11.3 ± 0.8 22.1 ± 1.5 

High 
hormones 38.9 ± 6.1 89.8 ± 3.9 31.2 ± 4.9 12.4 ± 0.8 24.3 ± 1.6 
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5.5 DISCUSSION 

PBPK simulation and preliminary clinical observations indicated increase clearance of 

buprenorphine during pregnancy. It is known that buprenorphine undergoes hepatic metabolism 

mainly via N-dealkylation pathway by CYP3A4 to its active metabolite (norbuprenorphine) 

(Cone, 1984; Picard, 2005). Buprenorphine and norbuprenorphine undergo glucuronidation 

mainly by UGT1A1, UGT1A3 and UGT2B7 (Rouguieg, 2010). Our observations in chapter 1 

and 2 have indicated that a mixture of female hormones at third trimester concentrations 

corresponds to what is rejected in the liver of pregnant women enhanced significantly the 

expression and activity of CYP3A4, and the expression of UGT2B7 in primary cultures of 

human hepatocytes. Our data in chapter 2 also showed that progesterone significantly increased 

the expression and activity of UGT1A1 and expression of UGT1A3 increased significantly by 

estradiol and low hormones mixture. As a result, we expected that mixtures of female hormones 

at similar concentrations would have the potential to increase the metabolism of buprenorphine 

in primary cultures of human hepatocytes. In this study, we evaluated the magnitude change in 

the buprenorphine metabolism after treatment with female hormones mixtures at plasma (low) 

and liver (high) concentrations during the third trimester of pregnancy.  

Our data showed that buprenorphine-glucuronide was the predominant metabolite in the 

hepatocytes. These findings are in agreement with the theory that buprenorphine is metabolized 

by N-dealkylation, mainly in the small intestine and glucuronidated primarily by the liver 

(Moody, 2009). It has been also reported that norbuprenorphine metabolite is excreted more in 

the urine than the buprenorphine glucuronide (Cone, 1984). On the other hand, buprenorphine 
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and its glucuronide metabolite are excreted in the bile more than norbuprenorphine after 

sublingual administration of buprenorphine (Cone, 1984). Norbuprenorphine-glucuronide 

formation was detected only in one subject, and this is consistent with other reported data where 

glucuronidation was detected only for buprenorphine (Moody, 2009).  Our results demonstrated 

that plasma concentrations of female hormones mixture did not affect the exposure of 

buprenorphine, norbuprenorphine, buprenorphine-glucuronide and norbuprenorphine-

glucuronide.  

We also evaluated the impact of female hormones on the pharmacokinetic parameters of 

buprenorphine (i.e. half-life, intrinsic clearance, hepatic clearance, and sublingual clearance). 

Our results indicated that both concentrations of female hormones did not significantly change 

the pharmacokinetics of buprenorphine. This indicates that combination of female hormones may 

not be responsible for the observed change in the clearance of sublingual buprenorphine that was 

observed during pregnancy. The formation of norbuprenorphine, buprenorphine-glucuronide and 

norbuprenorphine-glucuronide was investigated in human liver microsomes and human small 

intestine microsomes incubated with therapeutic concentrations of buprenorphine (Moody, 

2009). In their study, buprenorphine concentration was higher in gut more than in the liver due to 

the deconjugation of buprenorphine-glucuronide by bacterial glucuronidases (Moody, 2009). 

Moreover, N-dealkylation was the major pathway of buprenorphine metabolism in human small 

intestine microsomes and buprenorphine-glucuronide was the predominant metabolite in human 

liver microsomes (Moody, 2009).  Their findings indicated that hepatocyte plays an important 

role in buprenorphine glucuronidation, however it has a minimal contribution to N-dealkylate 

buprenorphine metabolism. Therefore, this suggested that both small intestine and liver play 

important role in the metabolism buprenorphine of in humans. 
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In summary, our findings indicate that female hormones did not affect the metabolism of 

buprenorphine in primacy cultures of human hepatocytes. Therefore, further studies are needed 

to explain the contribution of both small intestine and hepatocyte in the metabolism of 

buprenorphine.  
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6.0  EFFECT OF FEMALE HORMONES ON THE EXPRESSION AND ACTIVITY OF 

BILIRY DRUG TRANSPORTERS  
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6.1 ABSTRACT 

Physiological changes during pregnancy alter the pharmacokinetics of several medications, 

resulting in either lowered drug efficacy or drug toxicity. Biliary elimination is a very important 

pathway for elimination of endogenous and exogenous compounds. The objective of our study is 

to evaluate the impact of pregnancy on the expression and activity of biliary drug transporters. 

Sandwich cultured human hepatocytes (SCHH) from three independent livers were incubated 

with third trimester plasma and liver-extrapolated concentrations of female hormones including 

estrone, estradiol, estriol, progesterone, 17α-hydroxyprogesterone, human growth hormone, and 

human chorionic gonadotropin individually, and in combination. Liver transporter function was 

examined using sodium taurocholate as a substrate of bile salt export pump (BSEP). mRNA 

expression levels of P-glycoprotein (P-gp), multidrug resistance associated proteins (MRP2), 

breast cancer resistance protein (BCRP), BSEP, and Na/H exchange regulatory factor 1 

(NHERF1) were assessed using qRT-PCR. The functional activity of the hepatic transporter was 

confirmed by calculating the biliary excretion index (BEI) of taurocholate. Female hormones did 

not play a major role in altering the activity of BSEP. Progesterone significantly decreased the 

mRNA expression of BCRP, and estradiol significantly increased the mRNA expression of 

NHERF1. No significant changes in the expression of P-gp, MRP2, and BSEP were observed 

compared with the relative control. Taken together, this data may provide limited impact of 

pregnancy related hormones on the expression and activity of drug transporters. 
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6.2 INTRODUCTION 

Liver is the primary organ responsible for the metabolism and elimination of several endogenous 

and exogenous compounds (Yang et al., 2013). Many drugs that undergo glucuronidation, cross 

the canalicular space and get excreted into the bile via the ATP-binding cassette (ABC) 

transporters superfamily (Liu et al., 1999). The most highly expressed biliary drug transporters at 

the canalicular membrane are P-glycoprotein (P-gp), multidrug resistance associated proteins 

(MRP2), breast cancer resistance protein (BCRP), and the bile salt export pump (BSEP) 

(Ghibellini et al., 2006).  

 P-gp is a transmembrane protein encoded by MDR1 and MDR2 in humans and is 

composed of 1280 amino acids (Dong et al., 1998). The MDR1 gene is the most common gene 

reported to transport drugs such as digoxin, antitumor agents, and opiates (Fardel et al., 2001). A 

study in mice showed that phospholipid secretion is controlled by MDR2 (Frijters et al., 1999). 

Schondorf et al., 2002 reported that MDR1 transcription is potentially induced by antineoplastic 

agents (cisplatin, doxorubicin, paclitaxel) in ovarian cancer cell lines. 

MRP2 is a 13-transmembrane protein that contains 1545 amino acids (Fardel, 2001; Sun 

et al., 2010). MRP2 is expressed primarly in the liver at the canalicular space with low 

expression in renal proximal tubules, gut enterocytes, placenta, and blood brain barrier (Kruh and 

Belinsky, 2003). MRP2 is responsible for the elimination of conjugated bilirubin, xenobiotics, as 

well as conjugated metabolites (Keppler and Arias, 1997). It plays an important role in the drug 

disposition of several glucuronide metabolites. Different physiopathological conditions 

contribute in the modulation of MRP2 (Payen et al., 2002). For example, MRP2 expression is 

down-regulated during cholestasis and increased in some tumor tissues (Payen, 2002). 
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BSEP is predominantly localized in liver canaliculi (Stieger et al., 2007). It has a narrow 

substrate spectrum and is responsible mainly for the canalicular transport of conjugated bile 

acids such as taurocholic acid (TCA) (Stieger, 2007). BSEP is also involved in the transport of 

some antineoplastic drugs such as vinblastine (Lecureur et al., 2000). Expression of BSEP can be 

controlled by different physiological factors. It has been reported that inhibiton of BSEP can 

affect bile salt excretion (Ghibellini, 2006). Steroid hormones such as estrogen and progesterone 

play an important role in regulating the hepatic expression of these transporters (Fardel, 2001). 

For example, estrogen metabolites have been reported to produce BSEP trans-inhibition leading 

to cholestasis in rat liver (Stieger et al., 2000). Moreover, progesterone has been shown to inhibit 

BSEP (Barnes et al., 1996), which may lead to a condition similar to intrahepatic cholestasis of 

pregnancy (ICP).  

BCRP is localized and highly expressed in different human tissues including liver 

(canalicular membrane of hepatocytes), breast, placenta, and intestine (Yang et al., 2014). It has 

a broad substrate specificity and is involved in the biliary elimination different substrates such as 

chemotherapeutic drugs (Kock and Brouwer, 2012). Studies in human placenta BeWo cells 

indicated that progesterone, estriol, human placental lactogen, and human prolactin up-regulated 

the expression of BCRP during pregnancy (Wang et al., 2008; Wang et al., 2006). However, 

estradiol down-regulated BCRP expression in human placenta BeWo cells (Wang, 2006). 

Estradiol in combination with progesterone has been found to increase the expression of BCRP 

(Wang, 2006).  

Multiple studies have reported the regulation of drug transporters in a pregnant mouse 

model. Hepatic mRNA expression of MDR2, MRP2, BSEP, and BCRP were down-regulated in 

pregnant mice from day 14 to day 17 of gestation compared with the postnatal period (Aleksunes 
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et al., 2012). Although much has been learned, the role of pregnancy-related hormones in 

regulating the human hepatic expression of biliary drug transporters is still poorly understood. 

Due to the continuous increase in the plasma levels of female hormones during pregnancy, we 

hypothesize that female hormones will potentially regulate the expression of biliary drug 

transporters in human hepatocytes. Therefore, the goals of our study were: 1) to examine the 

impact of pregnancy-related hormones on the activity of BSEP using sodium taurocholate as a 

substrate of BSEP with sandwich culture human hepatocytes, and 2) to evaluate the effect of 

female hormones on the hepatic expression of P-gp, MRP2, BSEP, BCRP, and NHERF-1 in 

sandwich cultured human hepatocytes. 
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6.3 MATERIAL AND METHODS 

6.3.1 Chemicals 

Progesterone (P), 17α-hydroxyprogesterone (17α-OHP), estrone (E1), estradiol (E2), estriol (E3), 

human growth hormone (hGH), and human chorionic gonadotropin (HCG were purchased from 

Sigma-Aldrich (St. Louis, MO). Taurocholic acid and sodium salt (24-14C) were purchased from 

Perkin Elmer. TaqMan Primers for transporters were purchased from Life Technologies. 

6.3.2 Female Hormones Incubation in SCCH and Transporter Study 

Freshly isolated, sandwich cultured human hepatocytes (1.5×106 cells/well) overlaid in sandwich 

fashion into 6-well plates were purchased from Life Technologies (Carlsbad, CA) in cold 

maintenance media. Hepatocyte donor demographics are shown in (Table 6-1). Upon receipt, 

media was replaced with ice-cold hepatocyte maintenance media (HMMTM) (Lonza, Allendale, 

NJ) containing 0.35 mg/mL Geltrex™ for overnight incubation. The cell cultures were 

maintained at 37°C in a humidified atmosphere with 5% CO2.  

 The effect of female hormones on the functional activity of BSEP was studied in 

sandwich cultured human hepatocytes (SCHH) was described by Sharma et al., 2013. Briefly, 

freshly isolated SCHHs from three female livers were incubated with 1 µM of taurocholic acid 

(TCA) containing DMSO as a vehicle control, or a mixture of high concentration female 

hormones (Table 6-2), or 40 µM of cyclosporine in standard Hank’s balanced salt solution 

(HBSS) containing Ca2+ at 37°C for 20 minutes. The uptake of taurocholate was stopped by 

washing cells three times with ice-cold media. The taurocholate efflux from canalicular space 
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was initiated by adding standard HBSS (containing DMSO, or a mixture of high concentration 

female hormones, or 40 µM of cyclosporine) to maintain the integrity of tight junctions or by 

adding Ca2+ free HBSS (containing DMSO, or a mixture of high concentration female hormones 

or 40 µM of cyclosporine) to open the bile canaliculi tight junctions. Culture supernatants and 

cell lysates were collected and 200 µL aliquots were subjected to liquid scintillation counting to 

determine the efflux of TCA [14C]. Cell lysis buffer was prepared as described by (Liu and 

Unadkat, 2013). Briefly, 1 mM EDTA was mixed with 10-M Tris HCl, pH 8, and 0.5% Triton-X 

100. Total protein was measured using the Bradford method (Bradford, 1976) in order to 

normalize data with total amount of protein. Efflux of TCA into canalicular space and intrinsic 

biliary clearance were calculated using the following equations (Liu, 1999): 

 

Biliary excretion index BEI (%) =  

[Accumulation (cell+bile) - Accumulation (cell)]/ Accumulation (cell+bile) * 100                    

(Equation 6-1) 

 

Intrinsic biliary clearance (Bililary CLint) = 

 [Accumulation (cell+bile) - Accumulation (cell)] / (AUCmedium) (Equation 6-2) 

 

Where accumulation (cell+bile) is the amount of radioactivity in standard HBSS containing Ca2+, 

accumulation (cell) is the amount of radioactivity in HBSS without Ca2+, and AUC is the product 

of the initial concentration in the medium multiplied by the incubation time.  

In the absence of cyclosporine or female hormones, taurocholic acid efflux in canaliculi 

is defined to be 100% based on the difference in radioactivity between the standard HBSS 
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containing Ca2+ or Ca2+-free HBSS. In the presence of cyclosporine or female hormones, 

taurocholic acid efflux in canaliculi becomes less and was used to represent the percent of 

inhibition of taurocholic acid efflux into the canalicular space. Data is representative of three 

independent livers and repeated twice. Statistical differences were determined using student’s t-

test. P value <0.05 was considered statistically significant. Data is expressed as mean ± SEM. 

 

 

Table 6-1 Hepatocyte donors demographic. 

Donor ID Age Sex Race BMI Smoking Alcohol use 

HU1743 56 F Caucasian 19 YES YES 

HU14016 82 F Caucasian ND ND ND 

HU14017 57 F Caucasian. ND ND ND 

ND: No data 
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Table 6-2 Female hormones concentrations at third trimester of pregnancy in humans 

Hormone Low conc (µM) High conc (µM) 

Progesterone 2 20 

E1 0.2 2 

E2 0.3 3 

E3 0.8 8 

17-α OHP 0.1 1 

hGH 0.0005 0.005 

HCG 0.0009 0.009 

 

6.3.3 RNA Sample preparation and Quantitative Real-Time PCR Assay 

Isolation of total RNA and quantification of mRNA expression levels were described in chapter 

2. Briefly, Trizol reagent (Invitrogen, San Diego, CA) was used to extract total RNA from 

hepatocytes. The purity and concentration of the extracted RNA were determined using 

NanoDrop spectrometers at absorbance of 260 nm. cDNA was synthesized using 1 µg of total 

RNA by reverse-transcription using iScript TM Reverse Transcription Supermix (Bio-Rad, 

Hercules, CA). Taqman Master Mix and the following primers were obtained for quantitative 

RT-PCR (qRT-PCR) analysis from Applied Biosystems: ABCB1 (Hs00184500), ABCB11 

(Hs00184824), ABCC2 (Hs00166123), ABCG2 (Hs01053790) and GAPDH (Hs02758991) 

genes. The PCR amplifications were performed in an ABI Prism 7300 system (Applied 
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Biosystems, Foster City, CA, USA). Expressions of mRNA levels were normalized to the 

housekeeping gene (GAPDH). The relative levels of mRNA fold changes of all genes were 

quantified using the 2-ΔΔC
T method (Livak, 2001). 
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6.4 RESULTS 

6.4.1 Effect of Female Hormones on the Expression of Biliary Drug Transporters 

To evaluate the influence of female hormones on the expression of biliary drug transporters, 

three independent SCHHs were treated with 2 mM phenobarbital, low and high female hormone 

mixtures (estrone, estradiol, estriol, progesterone, 17α-hydroxyprogesterone, human growth 

hormone, and human chorionic gonadotropin) as well as with individual treatment of high 

concentration estradiol, progesterone, human growth hormone, and human chorionic 

gonadotropin for 3 days. mRNA levels of BSEP, P-GP, MRP2, and BCRP were measured by 

quantitative real-time PCR (Figure 6-1A-D). The relative mRNA expression was normalized to 

GAPDH. Phenobarbital decreased the mRNA expression of BSEP by about 80 % (p < 0.05). 

Progesterone at high concentration significantly suppressed the expression of BCRP by 33% (p < 

0.05). Female hormones did not alter the expression of other biliary transporters.  
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Figure 6-1 Effect of female hormones on hepatic mRNA expression of biliary drug transporters. 

The mRNA expression of (A) P-gp, (B) BSEP, (C) MRP2, and (D) BCRP were determined after 

treating SCHH (n=3) with multiple female hormones chronically.  The ratio of the treated group 

(PB or female hormones)/control group (DMSO or vehicle) was normalized to GAPDH and 

control group was arbitrarily defined as 100%. Experiments were conducted in duplicate for all 

hepatocytes, and results are expressed as mean ± SEM. * (P<0.05) compared to the control 

group. 
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6.4.2 Effect of Female Hormones on TCA Transport 

To determine the impact of female hormones on the inhibition of TCA efflux, we incubated 

SCHH with female hormones at the predicted concentrations in the liver corresponding to the 

third trimester of pregnancy (Figure 6-2). High concentrations of female hormone combinations 

decrease the efflux of TCA. However, compared to control, this was not statistically significant. 

Significant inhibition in TCA efflux (p < 0.05) was observed after treatment with 40 µM of 

cyclosporine (positive control inhibitor). 

 The average (±SD) accumulation in the presence of calcium (cells+bile) for 

cyclosporine, and female hormones was 1.3 ± 0.08, and 7.3 ± 0.3 (pmol/mg protein), 

respectively. However, the average (±SD) accumulation in the absence of calcium (cells) for 

cyclosporine, and female hormones was 0.95 ± 0.1, and 1.5 ± 0.06 (pmol/mg protein), 

respectively. The mean BEI and intrinsic biliary clearance for taurocholate, cyclosporine, and 

female hormones were 71%, 27%, and 77%, respectively, and 12.3, 3.1, and 11.9 µL/min/mg 

protein, respectively.  
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Figure 6-2 Effect of female hormones on TCA efflux. 

Percent of taurocholate efflux in canaliculi after treatment with female hormones and 

cyclosporine (positive control) was calculated based on equation (1) relative to the control. 

Experiments were conducted in duplicate in three groups hepatocytes, and results are expressed 

as mean ± SEM. *(p < 0.05) compared to the control group. 
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6.4.3 Expression of NHERF-1 after Female Hormones Treatment 

To understand the regulation of NHERF1 by female hormones, we treated three different 

SCHHs with 2 mM phenobarbital, low and high female hormone mixtures (estrone, estradiol, 

estriol, progesterone, 17α-hydroxyprogesterone, human growth hormone, and human chorionic 

gonadotropin) as well as with individual treatment of high concentration estradiol, progesterone, 

human growth hormone, and human chorionic gonadotropin for 3 days. Expression levels of 

NHERF1 were measured by quantitative real-time PCR (Figure 6-3). The relative mRNA 

expression was normalized to GAPDH. Estradiol is the only hormone that regulates the 

expression of NHERF1 by significantly enhancing its mRNA level (p < 0.05). 
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Figure 6-3 Effect of female hormones on NHERF-1 expression. 

The mRNA expression of NHERF-1 was determined after treating SCHH (n=3) with multiple 

female hormones chronically.  The ratio of the treated group (PB or female hormones)/control 

group (DMSO or vehicle) was normalized to GAPDH and control group was arbitrarily defined 

as 100%. Experiments were conducted in duplicate for all hepatocytes, and results are expressed 

as mean ± SEM. * (P<0.05) compared to the control group. 
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6.5 DISCUSSION 

Biliary drug transporters play an important role in the elimination of several drugs. Bile salt 

export pump (BSEP, ABCB11) is a very important transporter responsible for excretion of bile 

acids such as taurocholic acid (TCA) from the hepatocytes into the bile (van Beusekom et al., 

2013). Intrahepatic cholestasis of pregnancy (ICP) is a common medical condition that has been 

linked to the inhibition of BSEP, presumably due to the accumulation of toxic bile acids in the 

liver (Woodhead et al., 2014). Information about the regulation of biliary transporters by female 

hormones is limited. To examine the impact of female hormone combinations on the activity of 

BSEP, we first calculated the percentage of taurocholate BEI to determine the functional 

expression of substrates into the canalicular space (Liu, 1999).  Our findings showed that BEI of 

taurocholate is 71%, consistent with other reported BEI: 41-63% ((Bi et al., 2006) and 53-71% 

(Abe et al., 2009). We also calculated the intrinsic biliary clearance of taurocholate (12.3 

µL/min/mg protein), which was in agreement with the reported intrinsic biliary clearance from 

(Abe, 2009): taurocholate, 12-25 µL/min/mg protein. We used cyclosporine as a positive control 

(known inhibitor of BSEP). The BEI and biliary intrinsic clearance in presence of cyclosporine 

was 27% and 3.1 µL/min/mg, respectively, indicating a significant inhibition of BSEP and 

confirming the functional activity of the BSEP transporter. Since the BEI in the presence of 

female hormones is higher than the BEI of taurocholate (substrate of BSEP), this suggests that 

female hormones play a limited role in regulating the biliary excretion pathway. 

In this study we evaluated for the first time the combined effect of female hormones on 

the expression of various biliary drug transporters in SCHH. Our data showed the inhibitory 

effect of female hormones on the mRNA expression of the bile salt export pump (BSEP). It also 

demonstrated the role of progesterone in regulating the mRNA expression of breast cancer 
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resistance protein (BCRP). Moreover, the regulation of NHERF1 by estradiol has been also 

examined in SCHH. Our overall findings indicate the potential role of female hormones in 

regulating the expression of BSEP, BCRP, as well as NHERF1. We also evaluated the regulation 

of other efflux transporters by female hormones. Our findings indicated that only progesterone 

has the potential to decrease the expression of BCRP. However, other female hormones did not 

change the expressions of P-gp and MRP2. BCRP is highly expressed in different tumor cells 

(Carcaboso et al., 2010; Huss et al., 2005; Kawabata et al., 2003; Wu et al., 2013). Recently it 

has been shown that progesterone regulated BCRP by down-regulating BCRP-mRNA levels 

(Wu, 2013). For the regulation of P-gp, our data indicated that female hormones did not alter the 

expression of P-gp and MRP2 at the mRNA level, which is in part consistent with other studies 

that demonstrated the unchanged expression of P-gp during pregnancy in mouse liver (Zhang et 

al., 2008). However, it has been reported that expression of MRP2 is decreased in pregnant rats 

(Cao, 2002). The reason for this discrepancy may be due to the interspecies differences between 

humans and rodents in regard to the expression of MRP2.  

Na/H exchange regulatory factor 1 (NHERF1) is a cytoplasmic protein that plays an 

important role in recruiting different ion transporter proteins to the plasma membrane in various 

cells (Wang et al., 2008). (Cuello-Carrion et al., 2010) reported that expression of NHERF1 is 

increased by estrogen in rat colon during the estrous cycle. It was also reported that estrogen 

enhanced the mRNA expression of NHERF1 in breast cancer cell lines (Katzenellenbogen et al., 

2000) as well as in the epithelial cells in the bile duct of rat liver (Fouassier et al., 2009). As 

levels of estrogen increased during pregnancy, we expected increases in the expression of 

NHERF1 by estrogen. Based on this, we measured the mRNA expression of NHERF1 after 

treatment with various female hormones including estradiol in SCHH. Our data indicate that 
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estradiol significantly increased the expression of NHERF1. Accumulation studies indicated that 

NHERF1 interacts with MRP2 and plays an important role in the expression and function of 

MRP2 at the canalicular space (Li et al., 2010). We also observed a slight increase in the 

expression of MRP2 by estradiol (17%), which may be due to increased NHERF1 expression, 

which is consistent with the reported decrease of the function of MRP2 in NHERF1 deficient 

mice (Li, 2010). 

In summary, the present study indicated that progesterone significantly inhibits the 

expression of BCRP. Given the fact that BCRP has a large number of substrates (Krishnamurthy 

and Schuetz, 2006; Mao and Unadkat, 2005; Zhang et al., 2009), these findings may explain the 

altered pharmacokinetics of BCRP substrates such as sulfasalazine in pregnant women. Our data 

also suggested that female hormones do not play a major role in modulating the expression of 

BSEP, MRP2 and P-gp.  
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7.0  CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS  

Pregnancy is associated with several physiological changes that are expected to alter the 

pharmacokinetics of medications. Limited studies about the effect of pregnancy on drug 

pharmacokinetics. These studies indicated that clearance of certain drugs metabolized by CYPs 

and UGTs is increased during pregnancy. However, limited studies have been performed to 

characterize reasons for the observed increase in clearance of certain drugs in pregnancy. The 

overall purpose of this dissertation was to evaluate the effect of pregnancy on phase I, II, and II 

pathways. First, the effect of major pregnancy hormones on the expression and activity of 

hepatic CYP450 enzymes was evaluated. Second, the effect of major female hormones on the 

expression and activity of hepatic UGT enzymes was analyzed. Third, the effect of major female 

hormones on the expression and activity of biliary drug transporters was assessed. Fourth, we 

developed and validated a pregnancy PBPK model of buprenorphine.  Finally, the impact of 

pregnancy-related metabolism of buprenorphine–as this drug is cleared by both CYP and UGT–

was appraised.  

In the first study, the effect of a mixture of female hormones at concentrations 

corresponding to plasma concentrations and projected liver concentrations on the expression and 

activity of major hepatic CYP enzymes was investigated in primary cultures of human 

hepatocytes. Findings of this investigation indicated that pregnancy-related hormones 

significantly increased the mRNA, activity, and protein levels of CYP3A4 but did not alter the 
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expression of CYP1A2, CYP2C9, CYP2C19, or CYP2D6. This observation provided a 

mechanistic understanding of increased clearance of substrates of CYP3A4 during pregnancy. 

Results supported the need for a dosage adjustment of CYP3A4 substrates used in pregnancy is 

recommended.  

In the second study, the effect of various individual female hormone mixtures on the 

expression and activity of major hepatic UGT enzymes was evaluated in primary cultures of 

human hepatocytes. Results indicated that expression and activities of UGT1A1 and UGT1A4 

are increased in the presence of female hormones, which explained the observed increase 

clearance of labetalol and lamotrigine during pregnancy. However, increased expression and 

activity of UGT1A4 substrate (lamotrigine) is only partially explained by female hormones. In 

this study, our findings demonstrated that different female hormones increased the expressions of 

UGT1A3, UGT1A6, UGT1A9, and UGT2B7. The expressions of nuclear receptors were also 

measured. Data showed that female hormones have an effect only on AhR by up-regulating its 

mRNA expression. These findings demonstrated that female hormones increased the expression 

of UGT1A1 and UGT1A3 perhaps through the effect on AhR.  

The new study evaluated the effect of pregnancy on buprenorphine pharmacokinetics 

using a PBPK model. A PBPK model in non-pregnant women was first validated. Then the 

model was used to evaluate the effect of pregnancy on buprenorphine pharmacokinetics by 

comparing the SIMCYP-predicted data to the observed data in pregnant subjects. Findings 

demonstrated that prediction of buprenorphine pharmacokinetic parameters in pregnant women 

is in agreement with observed results, suggesting that buprenorphine pharmacokinetics can be 

reasonably predicted using a pregnancy PBPK model. Both predicted and observed data of 

buprenorphine in pregnancy demonstrated that clearance of buprenorphine was increased by 
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about 25%. These results support making dosage adjustments of buprenorphine in pregnant 

women and illustrate value of PBPK modeling in predicting pharmacokinetic of drugs during 

pregnancy. 

In the fourth study, the metabolism of buprenorphine was evaluated after treatment of 

human hepatocytes with plasma and projected liver concentrations of female hormones. This 

study was conducted to evaluate whether pregnancy related hormones play a major role in the 

observed increased clearance of buprenorphine during pregnancy using primary cultures of 

human hepatocytes. Buprenorphine-glucuronide was the predominant metabolite. This study 

demonstrated that both plasma and liver concentrations of female hormones did not influence the 

metabolism of buprenorphine or generation of the metaboltes. The observed increase in 

clearance of buprenorphine in pregnancy may be due to altered gut metabolism of 

buprenorphine. 

In the study of regulation of biliary drug transporters by female hormones in sandwich 

cultured human hepatocytes, the effect of predicted liver concentrations of female hormones on 

the activity of BSEP transporter was characterized. Findings indicated that female hormones did 

not play a major role in altering the activity of BSEP. Expressions of BSEP, P-gp, MRP2, and 

BCRP were measured. Female hormones had a different effect on the mRNA levels of various 

biliary drug transporters. Progesterone decreased the mRNA expression of BCRP significantly 

while estradiol increased the mRNA expression of NHERF1 substantially. 

The overall findings provide some specifics on the mechanistic understanding of how 

pregnancy influences drug disposition. The important role that pregnancy-related hormones have 

in altering the expression and activities of hepatic CYPs, UGTs, and biliary transporters was 

identified. Several substrates of these enzymes and transporters are commonly used in pregnant 
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women. Therefore, these results indicate that dosing of these medications should be carefully 

considered. In vitro and in vivo studies were also conducted to predict the altered 

pharmacokinetics during pregnancy. Incorporating this data, together with knowledge of 

physiological changes in pregnancy, can be used to develop more accurate models, which 

ultimately can help us optimize drug therapy in pregnant women.  

 

Primary contribution of the current work: 

• Studies were performed in human relevant tissues (primary cultures of female human 

hepatocytes). 

• Effect of female hormones mixture at plasma and liver concentrations was tested. 

• CYP cocktail assay was used for measuring CYP activity. 

• Provided potential mechanism of increased clearance of CYP3A4 substrates during 

pregnancy. 

• Provided potential mechanism of increased UGT-mediated clearance of lamotrigine and 

labetalol during pregnancy. 

• Applied and validated PBPK model of buprenorphine in pregnancy and predicted fetal 

and brain exposure of buprenorphine during pregnancy. 

• In vitro, in silico, and in vivo studies were performed to understand the impact of 

pregnancy on metabolism and transport. 
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Limitations of the current work: 

There were some limitations to the current studies: 

• Three sets human hepatocytes were utilized in the UGT and transporter regulation 

studies. Availability and cost were the primary reasons for use of only three sets of 

hepatocytes. The small sample size could be the reason that significant differences in the 

expression of some of the other enzymes, transporters, and transcriptional receptors 

studied between the control group and the group treated with female hormones were not 

observed.  

• Most of the human hepatocytes that were utilized were isolated from subjects who had a 

history of chemotherapy. This may have confounded the results observed. Unfortunately 

this is the primary source of human hepatocytes available currently.  

• Some of the hepatocytes utilized in transporter regulation and buprenorphine metabolism 

studies were isolated from postmenopausal women. This could be a possible reason for 

the lack of effect of female hormones on transporters expression and on buprenorphine 

pharmacokinetics.  

• Hepatocytes are not a suitable model for evaluating the activation of nuclear receptors. 

We were only able to measure m-RNA expression of certain nuclear receptors. 

• The impact of pregnancy hormones on the expression and activity of CYPs, UGTs, and 

transporters was evaluated. The protein level of CYP3A4 after treatment with female 

hormones was also measured. Future measurements of protein expression of UGTs and 

transporters could expand the understanding and interpretation of these findings. 

•  As previously described, female hormones did not significantly alter the metabolism of 

buprenorphine in human hepatocytes. Because the small intestine has been shown in 
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previous studies to contribute to the metabolism of buprenorphine, future studies might 

investigate the effect of female hormones on the metabolism of buprenorphine in the 

small intestine. 

•  The PBPK model used in these studies predicted the pharmacokinetics of 

buprenorphine in pregnant women. Future studies could be performed to validate the 

exposure of buprenorphine metabolites using this model, which could contribute to a 

greater understanding of the adequacy of this modeling approach.  

• Female hormones only partially explained changes in expressions and activities of 

certain drug metabolizing enzymes and transporters. Other factors that alter 

pharmacokinetics of drugs are not addressed in this study.  

• Addition of serum from pregnant women to the human hepatocyte culture in order to 

evaluate the effect of various components was not successful. Future studies should 

optimize this approach. 
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