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The prediction of long-term deflection of large-span prestressed concrete bridges is a serious 

challenge to the current progress towards sustainable transportation system, which requires for a 

longer service lifetime. Although a number of concrete models and numerical formulations were 

proposed, the accuracy of prediction is not satisfactory and significant underestimate happens in 

structural analysis. 

In order to overcome this obstacle, a unified viscoelasto-plastic damage model is 

proposed for the prediction of long-term performance of large-span prestressed concrete bridges 

carrying heavy traffic flow. In this unified concrete model, concrete cracking, plasticity and 

history-dependent behaviors (e.g. static creep, cyclic creep and shrinkage) are coupled. The 

isotropic damage model developed by Tao and Phillips enriched with the plastic yield surface is 

used in this study. For the static creep and shrinkage models, the rate-type formulation is applied 

so as to 1) save the computational cost and 2) make it admissible to couple memory-dependent 

and -independent processes. Cyclic creep, which is frequently ignored in structural analysis, is 

found to contribute substantially to the deflections of bridges with heavy traffic loads. The model 

is embedded in the general FEM program ABAQUS and a case study is carried out on the 

Humen Bridge Auxiliary Bridge. The simulation results are compared to the inspection reports, 

and the effectiveness of the proposed model is supported by the good agreement between the 

simulation and in-situ measurements. 

A UNIFIED VISCOELASTO-PLASTIC DAMAGE MODEL FOR LONG-TERM 

PERFORMANCE OF PRESTRESSED CONCRETE BOX GIRDERS 

Jie Zhang, M.S. 

University of Pittsburgh, 2015

 



 v 

TABLE OF CONTENTS 

PREFACE ..................................................................................................................................... X 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 FRAMEWORK FOR UNIFIED MODEL ................................................................ 7 

3.0 VISCOELASTO-PLASTIC DAMAGE MODEL ................................................... 10 

3.1 ISOTROPIC DAMAGE VARIABLE.............................................................. 10 

3.2 PLASTIC PART ................................................................................................ 13 

3.3 CONSISTENT THERMODYNAMIC EQUATION ...................................... 15 

3.3.1 Elastic part of Helmholtz free energy .......................................................... 17 

3.3.2 Plastic part of Helmholtz free energy .......................................................... 18 

3.4 CONSISTENSY CONDITIONS ...................................................................... 19 

3.4.1 Plastic consistency condition ......................................................................... 19 

3.4.2 Damage consistency condition ...................................................................... 20 

4.0 MEMORY-DEPENDNT BEHAVIOR..................................................................... 22 

4.1 STATIC CREEP ................................................................................................ 22 

4.2 CYCLIC CREEP ............................................................................................... 25 

4.3 SHRINKAGE ..................................................................................................... 28 

5.0 NUMERICAL  IMPLEMENTAION ....................................................................... 30 

5.1 GENERAL IMPLEMENTATION .................................................................. 30 



 vi 

5.2 CALCULATION OF THE PLASTIC MULTIPLIER .................................. 33 

5.3 EVOLUTION OF THE DAMAGE VARIABLES ......................................... 35 

5.4 OVERALL FLOWCHART .............................................................................. 37 

6.0 CASE STUDY ............................................................................................................ 40 

6.1 BRIDGE INTRODUCTION............................................................................. 40 

6.1.1 Specific dimension ......................................................................................... 41 

6.1.2 Traffic investigation ...................................................................................... 43 

6.2 FINITE ELEMENT MODEL .......................................................................... 48 

6.3 SIMULATION APPROACH ........................................................................... 50 

6.4 SIMULATION RESULTS ................................................................................ 52 

6.4.1 The pure viscoelastic analysis ....................................................................... 52 

6.4.2 The unified model .......................................................................................... 56 

6.5 CRACK AND DAMAGE DISTRIBUTION ................................................... 60 

7.0 CONCLUSION ........................................................................................................... 64 

APPENDIX A .............................................................................................................................. 66 

APPENDIX B .............................................................................................................................. 68 

BIBLIOGRAPHY ....................................................................................................................... 70 



 vii 

 LIST OF TABLES 

 

Table 1. Vehicle classification ...................................................................................................... 45 



 viii 

LIST OF FIGURES 

 

Figure 1. The unified viscoelasto-plastic damage and memory-dependent model ......................... 9 

Figure 2. Kelvin chain model........................................................................................................ 23 

Figure 3. The overall flowchart of the numerical implementation based on the unified model by 

ABAQUS ...................................................................................................................................... 37  

Figure 4. The flowchart of return mapping algorithm .................................................................. 38 

Figure 5. The flowchart of damage variable calculation .............................................................. 39 

Figure 6. Humen Bridge Auxiliary Channel Bridge ..................................................................... 41 

Figure 7. The dimension of cross-section at the pier (mm) .......................................................... 42 

Figure 8. The dimension of cross-section at the middle span (mm) ............................................. 43 

Figure 9. Traffic volume from 1998 to 2010 ................................................................................ 44 

Figure 10. The volume proportion of the six types in 1998......................................................... 45 

Figure 11.  The volume proportion of the six types in 1999......................................................... 46 

Figure 12. The volume proportion of the six types in 2000.......................................................... 46 

Figure 13. The volume proportion of the six types in 2001.......................................................... 47 

Figure 14. The volume proportion of the six types in 2002.......................................................... 47 

Figure 15.  The volume of type 6 vehicles from 1998 to 2002 ..................................................... 48 

Figure 16. ABAQUS model for the Humen Bridge ..................................................................... 49 

Figure 17.  The detailed distribution of presstressing tendons ..................................................... 50 



 ix 

Figure 18. The deflection at the middle point for pure viscoelastic analysis with linear time scale

....................................................................................................................................................... 53 

Figure 19. The deflection at the middle point for pure viscoelastic analysis with log time scale 53 

Figure 20. The comparison of deflections at middle point from measurements and simulations 

based on pure viscoelastic analysis models in 7 years with linear time scale .............................. 55 

Figure 21. The comparison of deflections at middle point from measurements and simulations 

based on pure viscoelastic analysis models in 7 years with log time scale .................................. 55 

Figure 22. The comparison of deflections at middle point based on measurements and 

simulations from the unified models in 7 years with linear time scale ......................................... 57 

Figure 23. The comparison of deflections at middle point based on measurements and 

simulations from the unified models in 7 years with log time scale ............................................. 57 

Figure 24. The first year profile from the unified model with B4 model and real measurements 58 

Figure 25. The second year profile from the unified model with B4 model and real measurements

....................................................................................................................................................... 59 

Figure 26. The third year profile from the unified model with B4 model and real measurements

....................................................................................................................................................... 59 

Figure 27. The fourth year profile from the unified model with B4 model and real measurements

....................................................................................................................................................... 60 

Figure 28. The fifth year profile from the unified model with B4 model and real measurements 60 

Figure 29. The real crack distribution of Humen Bridge at 2003 ................................................. 61 

Figure 30. The cracks and damage simulation based on the unified model by the end of 

construction ................................................................................................................................... 62 

Figure 31. The cracks and damage simulation based on the unified model after 1 year .............. 62 

Figure 32. The cracks and damage simulation based on the unified model after 3 years ............ 63 

Figure 33. The cracks and damage simulation based on the unified model after 7 years ............ 63 



 x 

PREFACE 

 

First, I would like to thank my advisor Dr. Yu for providing me the opportunity to do the 

research and supporting me throughout my graduate studies. I could not finish my thesis without 

his instruction and education. 

I would also like to acknowledge my committee members, Dr. Morteza Torkamani and 

Dr. Jeen-Shang Lin. Thank you for your precious time and wise advice. 

Furthermore, I would like to extend my gratitude and appreciation to Tong Teng, the PhD 

student of Dr. Yu, for helping me in the theoretical knowledge study and guiding me with the 

simulation. 

Moreover, I would like to thank Chunlin Pan and Weijing Wang, the PhD students of Dr. 

Yu, for their precious advices on my thesis.  

Finally, I would like to take this opportunity to express my thanks to my parents for their 

continuous support throughout my graduate studies. 

 

 



 1 

1.0  INTRODUCTION 

To realistically predict the long-term behavior of a large-span prestressed concrete bridge is a 

serious challenge to the current progress towards sustainable transportation system, which 

requires for a longer service lifetime. According to a recent survey (Bažant et al., 2012 a,b), a 

great number of bridges worldwide are suffering the excessive deflections which were 

significantly underestimated in design. The unexpected deflection will result in cracks in 

concrete members, and therefore significantly compromise the safety and serviceability of a 

prestressed concrete bridge. For example, the Koror-Babeldaob (KB) bridge with a large-

span of 241 m, developed an excessive deflection and collapsed in 1996, three months after 

remedial work (Bažant et al., 2010, 2012 a,b). Based on the design with CEB-fib 

recommendation (Comité Euro-International du Béton, 1972), the final deflection from the 

design camber (0.3 m) should be terminated at 0.76-0.88 m. According to the ACI 

recommendation (American Concrete Institute, 1971), the deflection from the design camber 

should be 0.71 m (McDonald et al., 2003) and 0.737 (Bažant et al., 2012 a,b). However, a 

year before the collapse, the deflection of KB Bridge already developed to 1.39 m from 

camber and kept evolving (Bažant et al., 2012 a,b). In addition, an extra creep deflection had 

accumulated during construction which caused a reduction of the camber from the design 
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value 0.3 m to only 0.075 m. Therefore the total deflection in 1995 was 1.61m (Bažant et al., 

2012 a,b), which was more than double of the design deflection.  

One reason for the underestimate in design was the obsolete material model (Yu et al., 

2012, Bažant et al., 2012 a,b, Wendner et al., in press a,b). Both the CEB-fib 

recommendation, which is an old version of fib MC2010 (Fédération Internationale du Béton, 

2012), and the ACI recommendation used in design gave inaccurate predictions about the 

long-term creep and shrinkage, which are the two major causes of the deflection. To improve 

the accuracy, B3 model, which is an old version of B4 model (Bažant et al., in press), was 

developed by Bažant and Baweja (2000). The B3 model and B4 model not only match the 

experimental data better, but are also easier to be theoretically justified than the ACI and 

CEB-FIP model (Hubler et al., 2015, Wendner et al., in press a,b). The creeps in B3 Model 

(Bažant and Baweja, 2000) and B4 model (Bažant et al., in press) are divided into basic creep 

and drying creep based on the solidification theory (Bažant and Prasannan 1989 a,b, Bažant 

and Baweja 2000). The basic creep is unbounded and consists of short-term strain, viscous 

strain and a flow term while the drying creep is bounded and related to moisture loss. In 

addition, the parameters in B3 and B4 model are adjustable which can be updated according 

to the experiment data and the material used in bridge (Bažant et al., 2011). The simulations 

of KB Bridge based on the B3 model and other previous models were done by Bažant et al. 

(2012 a,b), the results of which prove that predicted deflection by B3 model with suitable 

parameters is more realistic than the rest and matches the real deflection quite well. To 

further prove the effectiveness of B3 model, Bažant et al. also simulated the Konaru Bridge, 
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Urado Bridge, koshirazu Bridge and Tsukiyono Bridge based on this model in 2012, and all 

the predictions are acceptable compared with the real measurements. The above simulations 

illustrate that with the appropriate parameters, B3 model can capture the deflection of a large-

span bridge quite well with its accurate prediction in creep and shrinkage compared to the 

ACI and CEB-fib model. However, when a large-span presstressed concrete bridge is 

carrying heavy traffic flow, whether the pure viscoelastic analyses based on ACI, CEB-fib 

and B3 model can accurately predict the long-term deflection is still unknown. This stems 

from the fact that the influences of other factors, like damage, plasticity, and cyclic creep, 

remain poorly understood when heavy traffic flow is under consideration. If these influences 

are non-negligible, which will be proved true in this study, the pure viscoelastic analysis may 

not be able to accurately predict the deflection of a large-span presstressed concrete bridge 

with heavy traffic load. 

Another cause for the underestimate of deflection is the analysis method. In the past, 

one-dimensional beam-type analysis was utilized to simulate the box girder with the 

approximate formulations of shear lag for the top slab. This method, common in commercial 

design software, however, has two deficiencies (Yu et al., 2012). One deficiency is that this 

method cannot accurately simulate the shear lag effects because they are both elastic and 

aging viscoelastic. Besides, these effects occur both in top/bottom slab and web and are 

caused by not only the shear forces from piers but also the concentrated loads by anchors. 

The other one is that beam-type analysis cannot take differences of drying creep and 

shrinkage caused by different factors into account. Therefore, a three dimensional finite 
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element analysis is utilized where the box girder is considered as a thick shell (Yu et al., 

2012).  Because the stress obtained from the principle of superposition follows a linearly 

viscoelastic stress-strain relation in Volterra integral form, the creep can be calculated by 

using Volterra integral equations in the three dimensional finite element analysis, which is 

called integral-type method and is very popular now (Yu et al., 2012). However, this integral-

type implementation method is not fit for this study because it has two disadvantages. The 

first one is that all the previous data like strain need to be stored to proceed current simulation, 

which will cause a huge computational cost. The second one is that this implementation is not 

compatible with many memory-independent phenomena, like damage and plasticity (Yu et al., 

2012). 

To mitigate the underestimate of deflection, a viscoelasto-plastic unified concrete 

model with memory-dependent and -independent behaviors (note as “the unified model” 

hereafter) is developed in this study. In this new unified model, the creep and shrinkage 

models, like ACI (American Concrete Institute Committee, 2008), fib MC 2010 (Fédération 

Internationale du Béton, 2012) and B4 model (Bažant et al., in press) are selected in pure 

viscoelastic analysis. In addition, the unified model also takes other memory-dependent and -

independent phenomena, like damage, plasticity and cyclic creep into account in order to 

improve the prediction accuracy for the long-term behavior of a large-span prestressed 

concrete bridge with heavy traffic flow. Instead of the integral-type, the rate-type 

implementation with exponential algorithm is utilized in this study which can overcome the 

two disadvantages from the integral-type mentioned above (Yu et al., 2012, Bažant et al., 
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2012, Wendner et al., in press a,b). In the rate-type algorithm, the viscoelastic stress-strain 

relation can be approximated by a rheological model (e.g. Kelvin chain model, Maxwell 

chain model) (Yu et al., 2012). Kelvin chain model is selected in this study which consists of 

a series of Kelvin chain units with coupled spring and dashpot. In rate-type implementation, 

by transferring the incremental stress-strain relation to a quasi-elastic incremental stress-

strain relation, the creep calculation can be simplified to a series of elasticity problems with 

initial strains (Jirásek and Bažant, 2002, Yu et al., 2012). Because of this simplification, the 

storage of previous data is no more necessary and the computational cost can be greatly 

reduced, which is important to the large-scale structure analysis. In addition, this 

transformation makes it convenient for one to couple the creep and shrinkage and other 

factors like steel relaxation, cyclic, damage, and plasticity.  

To avoid the tragedy like KB Bridge and many other collapsed bridges again, a more 

comprehensive and effective concrete model is necessary. Yet, limited concrete model 

combining the damage, plasticity and the memory-dependent behaviors (e.g. static creep, 

cyclic creep, shrinkage, etc.) is available now and barely any research is focusing on it. 

Therefore, the objective of this study is to propose a comprehensive concrete model coupling 

the damage, plasticity and the memory-dependent behaviors to accurately predict the long-

term deflection of the large-span prestressed concrete bridge especially for those carrying 

heavy traffic. In this study, both the pure viscoelastic analysis and the unified model will be 

implement by the finite element software ABAQUS to simulate Humen Bridge Auxiliary 

Channel Bridge (denoted as “Humen Bridge” hereafter), a large-span prestressed concrete 
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bridge with heavy traffic load. The simulation results will be compared with the real 

deflections of the bridge in order to verify the effectiveness of this unified model.  

The rest part of this thesis is arranged in the following style. Following the 

introduction of the background of the concrete models and analysis methods and the 

significance of the new effective concrete model, in the Chapter 2, the general framework of 

the unified concrete models is demonstrated. Then Chapter 3 focuses on the damage and 

plasticity behaviors and their thermodynamic consistency conditions. Chapter 4 introduces 

mainly the three memory-dependent behaviors, static creep, cyclic creep and shrinkage. The 

numerical implementation is illustrated in Chapter 5 with three flowcharts. A case study 

about the simulation of Humen Bridge is described in the Chapter 6, where the finite element 

model and the simulation method are displayed, followed by the comparison and discussion. 

At last, conclusions of this thesis is drawn in Chapter 7. 
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2.0  FRAMEWORK FOR UNIFIED MODEL 

In this study, the unified model is proposed where the instantaneous behavior and memory-

dependent behavior are considered. Therefore, the total strain tensor ij can be decomposed 

into the instantaneous strain tensor 
i

ij  and the memory-dependent strain tensor 
t

ij .The 

instantaneous strain tensor, including the elastic strain tensor e

ij  and plastic strain tensor p

ij , 

will develop instantaneously after loading, while the memory-dependent strain tensor t

ij , 

including static creep sc

ij , cyclic creep cc

ij  and shrinkage sh

ij , will grow with the time. The 

mathematical expression for the decomposition is expressed as: 

 

 
"( ) ( )

i t
ij ij

e p cc sh

ij ij ij ij ij ij

 

                                                   (Eq. 2-1) 

The one-dimensional illustration for the unified model is shown in Figure 1. The 

whole unified model can be separated into the following parts with the implementation 

sequence: 

1. Due to the fatigue growth of pre-existing microcracks in hydrated cement, cyclic 

creep is developed which can be calculated by the mathematical algorithm developed by the 

Bažant and Hubler (2014). 
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2. The variation of humidity and temperature will lead to the shrinkage which is 

calculated based on the shrinkage models.  

3. The static creep is calculated based on the rate-type algorithm, where the 

viscoelastic part is approximated by a series of Kelvin chain model. In rate-type 

implementation, the creep calculation can be simplified to a series of elasticity problems with 

initial strains by transferring the incremental stress-strain relation to a quasi-elastic 

incremental stress-strain relation (Jirásek and Bažant, 2002, Yu et al., 2012). 

4. Then, the plastic part can be isolated by the return mapping algorithm (Simo and 

Hughes, 1998) from the rest parts, which is convenient for one to calculate the plastic strain. 

Whether the plastic strain remains or evolves is determined by the plasticity consistency 

conditions.  

5. Next, the elastic part is calculated, which is governed by the spring with the Yong’s 

modulus ( )E t  which is a function of the age t  of concrete (Bažant and Prasannan, 1989 a,b).  

6. The damage part is considered at last. Similar to the plasticity, damage remains 

when the principal stress within the damage surface, and evolves when the principal stress 

violate the damage criterion. The damage is realized by degradation of the stiffness matrix of 

spring and of the Kelvin chain units.  
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Figure 1. The unified viscoelasto-plastic damage and memory-dependent model 
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3.0  VISCOELASTO-PLASTIC DAMAGE MODEL 

3.1 ISOTROPIC DAMAGE VARIABLE 

The damage model in this study is derived according to the isotropic damage theory. This 

model is thermodynamically consistent and small strains and isothermal conditions are 

assumed here.  

In this model, the damaged configuration is transformed from the effective 

(undamaged) one. This can be realized through either strain equivalence or strain energy 

equivalence hypothesis (Voyiadjis and Kattan, 2006). In this study, strain equivalence 

hypothesis is utilized which assumes that the strain tensors in the damaged configuration are 

equivalent to those in the effective (undamaged) configuration. Because this hypothesis is 

generally applied to couple the plasticity and continuum damage behaviors (Menzel et al., 

2005; Voyiadjis and Kattan, 2006), the plastic strain tensor 
p

ij  , elastic strain tensor 
e

ij   and 

the instantaneous strain tensor =i p e

ij ij ij    are considered here. Therefore, the hypothesis can 

be expressed as: 
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e e

ij ij

p p

ij ij

i i

ij ij

 

 

 

 







                                                                (Eq. 3-1) 

 Then by utilizing the Hook’s law, the effective (undamaged) stress tensor ij  can be 

obtained as: 

( ) ( )e e

ij ijkl kl ijkl klE t E t                                                   (Eq. 3-2) 

where ( )ijklE t  is the fourth-order effective (undamaged) isotropic elasticity tensor, which is a 

function of the age  t  of concrete. For the linear elastic materials,  ( )ijklE t  is given as: 

 ( ) 2 ( ) ( )dev

ijkl ijkl ij klE t G t I K t                                              (Eq. 3-3) 

where 
1

3

dev

ijkl ijkl ij klI I     is the deviatoric part of the fourth-order identity tensor 

0.5 ( )ijkl ik jl il jkI       .  ( )G t  and  ( )K t  are the effective (undamaged) shear and bulk 

moduli, respectively. The tensor  ij  is the Kronecker delta calculated as: 

 
1

0

ij

ij

when i j

when i j





 


 

                                                (Eq. 3-4) 

The stress in damaged configuration can be written as: 

( ) e

ij ijkl klE t                                                             (Eq. 3-5) 

where ( )ijklE t  is the fourth-order damaged isotropic elasticity tensor.  

In isotropic damage model, a scalar (isotropic) damage variable  , which represents 

the average crack density, is introduced to transform an undamaged stress tensor into a 

damaged one. This transformation is defined as: 

(1 ) (1 ) ( ) e

ij ij ijkl ijE t                                              (Eq. 3-6) 
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By substituting Eq. 3-6 into Eq. 3-2, the relation between the fourth-order isotropic 

elasticity tensor in undamaged configuration ( )ijklE t  and in damaged configuration ( )ijklE t  

can be obtained as: 

 (1 )ijkl ijklE E                                                     (Eq. 3-7) 

To account for the different effects of damage mechanisms on the nonlinear 

performance of concrete, the Cauchy stress tensor can be decomposed into tensile stress 

tensor ij   and compressive stress tensor ij   by spectral decomposition (Ortiz, 1985; 

Lubliner et al., 1989; Lee and Fenves, 1998; Wu et al., 2006) as: 

ij ij ij                                                             (Eq. 3-8) 

The total Cauchy stress tensor can be calculated by the combination of the principal 

values and their principal directions as: 

3 ( ) ( ) ( )

1
ˆ k k k

ij i jk
n n 


                                                  (Eq. 3-9) 

According to Eq. 3-9, the tension part can be calculated by only combining tensile 

principal values with their directions like: 

3 ( ) ( ) ( ) ( )

1
ˆ ˆ( )k k k k

ij i jk
H n n  


                                        (Eq. 3-10) 

where the ( )ˆ( )kH   is called Heaviside step function that ( )ˆ( ) 1kH    when ( )ˆ 0k   and 

( )ˆ( ) 0kH    when ( )ˆ 0k  . 

In the same way, the compression part of Cauchy stress tensor ij 
can also be 

calculated by combining compression principal values with their directions. 

Then, the dimensionless scalar damage variable  is defined (Tao and Phillips, 2005) 

as: 
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ij ij

ij

 



     
                                                 (Eq. 3-11) 

where  ,   are tensile and compressive damage variables, respectively. 
ij  represents 

the scalar contraction of the second order tensor, i.e. 
ij ij ij   . This damage variable is 

adopted in this study because it can take both tension and compression into consideration . 

3.2 PLASTIC PART  

In plasticity theory, the yield surface (criterion) of the model is always a key property. This 

surface should accurately model the non-symmetrical behavior when concrete is under both 

tensile and compressive external forces.  In this study, the yield surface is developed by the 

Lubliner et al. (1989) and adapted by Lee and Fenves (1998) and Wu et al. (2006). This 

surface can successfully simulate the concrete behaviors under uniaxial, biaxial, multiaxial 

and repeated loadings and is expressed as: 

2 1 max max
ˆ ˆ3 ( ) ( ) (1 ) ( ) 0f J I H c                           (Eq. 3-12) 

where 2 / 2ij ijJ s s  is the second-invariant of the effective devitoric stress and 

/ 3ij ij kk ijs     . ( ) / 3iiI   is the first-invariant of the effective stress tensor ij . 

max
ˆ( )H   is the Heaviside step function, the same operation as in damage part (Eq. 3-10), and 

max̂  is the maximum principle effective stress.    are the hardening parameters under 

tension and compression respectively and calculated as  (Lee and Fenves, 1998): 

0

t

dt                                                              (Eq. 3-13) 
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where   are the equivalent plastic strain rates. The tensile rate   and compressive rate    

can be calculated separately by expressions (Lee and Fenves, 1998) as: 

max
ˆˆ( ) p

ijr                                                       (Eq. 3-14) 

min
ˆˆ(1 ( )) p

ijr                                                   (Eq. 3-15) 

max
ˆ p and 

min
ˆ p are the maximum and minimum eigenvalues of the plastic strain rate 

tensor. It should be noted here that the function to calculate eigenvalues and their directions 

of a certain second-order tensor like stress or strain tensor is available in user-subroutine 

UMAT in ABAQUES, which is convenient for one to obtain the 
max

ˆ p and 
min

ˆ p . By this 

function, the principle stresses ( )ˆ k and their directions can also be easily obtained. The 

dimensionless parameter  ˆ( )ijr   in Eq. 3-14 and Eq. 3-15 is a weight factor of principle 

stresses ˆ
ij  and is defined as (Lee and Fenves, 1998): 

3

1

3

1

ˆ
ˆ( )

ˆ

kk
ij

kk

r









 




                                                (Eq. 3-16) 

where     is calculated as 
1

( )
2

x x x   . Note that the range of this weight factor should 

be ˆ0 ( ) 1ijr   . When all the eigenstresses ˆ
ij  are positive, the weight factor equals one and 

when all the eigenstresses ˆ
ij  are negative, it equals zero. 

The parameter   in Eq. 3-12 is a dimensionless constant developed by Lubliner et al. 

(1989) and is expressed as: 

0 0

0 0

( / ) 1

2( / ) 1

b

b

f f

f f


 

 





                                                     (Eq. 3-17) 
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0bf
  is the initial biaxial compressive yield stress and 0f

  is the uniaxial one. Generally, 

  is assumed from 0.08 to 0.14 according to experiments (Lubliner et al., 1989). The 

parameter   in Eq. 3-12 is developed by Lee and Fenves in 1998 and given as: 

( )
( ) (1 ) (1 )

( )

c

c


   



 


 
                                          (Eq. 3-18) 

 ( )c    and ( )c    are the cohesion parameters which will be calculated in section 

3.3.2. 

3.3 CONSISTENT THERMODYNAMIC EQUATION 

The Helmholtz free energy of concrete is generally a combination of elastic, plastic and 

damage behaviors (Tao and Phillips, 2005). According to the hypothesis of uncoupled 

elasticity (Lubliner, 1989, Wu et al., 2006), the unit volume of free energy   can be 

decomposed into the elastic part e and the plastic part p . In this study, the elastic strain 

tensor e

ij  and damage variables ,   are considered in the elastic part of free energy while 

the plastic hardening variables ,   are considered in the plastic part. Therefore, the unit 

volume of Helmholtz free energy can be expressed as (Taqieddin, 2008): 

( , , ) ( , )e e p

ij                                                (Eq. 3-19) 

Because the isothermal condition is assumed here, the second-law of thermodynamics 

can be applied. It states that the rate change of internal energy should be no more than the 

external expenditure power. According to this law, the following relation can be obtained: 
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ext

v

dv P                                                          (Eq. 3-20) 

where 
extP  can be calculated by the principle of virtual work: 

intext ij ij

v

P P dv                                                    (Eq. 3-21) 

By substituting Eq. 3-21 into Eq. 3-20, the following inequality can then be obtained: 

( ) 0ij ij                                                        (Eq. 3-22) 

where   is the rate of change in free energy and can be calculated by taking the time 

derivative of Eq. 3-19 as: 

e e e p p
e p e

ije

ij

    
     

  

   

   

    
        

    
      (Eq. 3-23) 

Substituting Eq. 3-23 back into Eq. 3-22, one will get the following relation: 

( ) 0
e e e p p

p e

ij ij ij ije

ij

    
          

  

   

   

    
        

    
(Eq. 3-24) 

The Cauchy strees tensor is defined as 
e

ij e

ij


 







 here to simplify the above 

equation because Eq. 3-24 is valid for any allowable internal variable (Taqieddin, 2008). 

Then Eq. 3-24 can be rewritten as the following relation: 

0p

ij ij Y Y c c                                                (Eq. 3-25) 

where  Y   are defined as the damage thermodynamic conjugate forces and expressed as  

(Taqieddin, 2008): 

e

Y







 


                                                       (Eq. 3-26) 

c  are defined as the plasticity cohesion conjugate forces and expressed as  

(Taqieddin, 2008):  
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p

c













                                                          (Eq. 3-27) 

3.3.1 Elastic part of Helmholtz free energy 

The total effective (undamaged) elastic free energy is calculated as: 

1 1

2 2

e e e e

ij ijkl kl ij ijE                                                    (Eq. 3-28) 

Similar to the transformation from an undamaged stress tensor into a damaged one, 

the damaged elastic free energy can be transformed from the effective (undamaged) one 

according to elastic strain equivalence hypothesis (Voyiadjis and Kattan, 2006): 

1 1
(1 )

2 2

e e e e e

ij ijkl kl ij ijE                                     (Eq. 3-29) 

According to Resende (1987), the susceptibility of damage evolution for concrete is 

different under hydrostatic load and deviatoric load. Therefore, Tao and Philips (2005) 

adapted the free energy function in Eq. 3-29 into the following expression: 

21 1 1
(1 ) (1 ) ( )

2 2 3

e e e e

ij ijkl kl mm ij ijkl klE E                      (Eq. 3-30) 

Then, the damage thermodynamic conjugate forces Y   can be calculated by 

substituting Eq. 3-30 into Eq. 3-26 that: 

21 1
{ (1 )( ) }

2 9

e
ij e e e

ij ijkl kl mm ij ijkl kl

ij

Y E E


      









    


      (Eq. 3-31) 

where   in Eq. 3-30 and Eq. 3-31 is a dimensionless reduction factor developed by Tao and 

Philips (2005) to reduce the susceptibility from the hydrostatic loading, and is expressed as: 

 
1

1
1 exp( )cY d Y

  
  

                                             (Eq. 3-32) 
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c and d  here are two material constants ensuring the calculation results match the 

experimental data. 

3.3.2 Plastic part of Helmholtz free energy 

The total plastic free energy is a function of the hardening parameters   and   , 

which expressed as (Tao and Philips, 2005): 

2

0 0

1 1
( ) [ exp( )]

2

p f h f Q     


                         (Eq. 3-33) 

( )c    and ( )c    are the cohesion parameters which are functions of hardening 

parameters   and    respectively. These cohesion parameters suggest the evolution of 

stresses caused by plastic hardening or softening under uniaxial tensile or compression 

loadings. Because the concrete behavior under compression is more ductile, the compressive 

cohesion parameter ( )c    is defined according to an exponential law as (Lubliner et al., 

1989): 

0( ) [1 exp( )]
p

c f Q


  


   




    


                         (Eq. 3-34) 

Q  and   are two material constants that can characterize the saturated status. As for 

tensile cohesion parameter ( )c   , it is expressed in linear form such that (Lubliner et al., 

1989): 

0( )
p

c f h


  


   




  


                                        (Eq. 3-35) 

where 0f
  is the uniaxial tensile yield stress and h is a material constant. 
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3.4 CONSISTENSY CONDITIONS  

3.4.1 Plastic consistency condition 

The connection between plastic flow direction and plastic strain rate can be obtained by flow 

rule. Associated flow rule and non-associated flow rule are two major kinds. In this study, a 

non-associated flow rule is applied, in which the yield surface f  is not consistent with plastic 

potential PF . This means the plastic flow direction is not perpendicular to the yield criterion. 

For the frictional material like concrete, this rule can increase the accuracy when modeling 

the volumetric expansion under compression (Taqieddin, 2008). According to Chen and Han 

(1988), by using the associated flow rule with the yield criterion f  in Eq. 3-12, the 

expansion of concrete is usually underestimated, while by using the non-associated flow rule 

with plastic potential PF , this problem can be overcome. Therefore, the plastic strain rate can 

be obtained based on a non-associated flow rule as: 

P
P

ij P

ij

F
 







                                                        (Eq. 3-36) 

where P  is known as the plastic loading factor or known as the Lagrangian plasticity 

multiplier. The plastic potential PF is provided by Lee and Fenves (1998) as: 

2 13P PF J I                                                      (Eq. 3-37) 
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and then 

2

3

2 3

P
ij P

ij

ij

SF
a

J





 


                                              (Eq. 3-38) 

where P  is the expansion constant ranging from 0.2 to 0.3 for concrete according to 

experiment (Lee and fenves, 1998). 

The consistency conditions are related to the plasticity surface f and its rate f  which 

is calculated by taking the time derivative of f .  This consistency can be expressed as 

(Voyiadjis and Kattan, 1992):  

0 0

0 0 0

0 0 0

P

P

P

If f then

If f and f then

If f and f then







 

  

  

                               (Eq. 3-39) 

3.4.2 Damage consistency condition 

To study the damage consistency, damage surfaces g 
, for tension and compression loadings 

respectively, are developed by Tao and Phillps (2005) and introduced here. Similar to the 

form by La Borderie et al. (1992), these surfaces are two functions of the damage 

thermodynamic conjugate forces Y   and the scalar damage parameters   are expressed as: 

0 0g Y Y Z                                                     (Eq. 3-40) 

where 0Y   are tensile and compressive initial damage thresholds respectively. Z   are tensile 

and compressive softening parameters that follow a power law (Tao and Phillps, 2005) as: 

1
1

( )
1

bZ
a






 





                                                   (Eq. 3-41) 

a  and b  are four material constants from the uniaxial experiment.  
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In the principal stress space, a tensile or compressive stress can be within or on the 

damage surface. When within the surface, the damage criterion will not be violated even if 

the stress point is under loading condition, which means the isotropic damage variable keeps 

the current status. When the stress level arrive at the damage surface, two situations are 

possible. One is unloading or keeping the same loading, and isotropic damage variable keeps 

the current status. The other one is loading and the damage evolve and isotropic damage 

variable needs to be updated. This consistency can be express as (Voyiadjis and Kattan, 

1992): 

0 0

0 0 0

0 0 0

If g then

If g and g then

If g and g then

  

   

   

                                    (Eq. 3-42) 
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4.0  MEMORY-DEPENDNT BEHAVIOR 

4.1 STATIC CREEP 

When concrete is under a unit stress applied at time t , the static creep at current time t is 

generally characterized by the compliance function ( , )J t t .  Traditionally, because the stress 

( )t  obtained from the principle of superposition follows a linearly viscoelastic stress-strain 

relation in Volterra integral form, the creep can be calculated by using Volterra integral 

equation as ( , )
t

t
J t t d


 . However, this integral-type method has two disadvantages when 

analyze the large-scale creep-sensitive structures (Yu et al., 2012):  

1. Because of the concrete ageing, the kernel of Volterra integral equation ( , )J t t  is 

not convolutional. This means all history data need to be stored and sums of all previous 

steps need to be analyzed, which greatly enhance computational cost.  

2. More strictly, the method is not compatible with many influencing phenomena such 

as cracking, damage, humidity temperature, cyclic creep and steel relaxation.  

To avoid the above disadvantages, instead of integral-type, the rate-type method with 

exponential algorithm is applied in this study. In the rate-type algorithm, the linearly 

viscoelastic stress-strain relation can be transferred into a quasi-elastic one with the 
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application of a rheology model (Yu et al., 2012). In this study, Kelvin chain model is 

selected and illustrated in Figure 2. 

              

Figure 2. Kelvin chain model 

 

This model consists of a series of kelvin chain units ( 1,2,3...,i M ) with the stiffness 

iD . With the retardation time i , each unit couples a spring with the stiffness iE  and a 

dashpot with viscosity i i iE  . For the 3-D rate-type formulation, incremental stress-strain 

relation is expressed as (Yu et al., 2012): 

 Δ Δ
e

σ = E ε                                                           (Eq. 4-1) 

where E  is the effective incremental modulus, which is given as: 

 
1

1

1 1

( )

M

i

it





 


D
E E

                                                 (Eq. 4-2) 
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Next, the Kelvin chain unit stiffness iD  and inelastic part of incremental static creep 

ε"  need to be calculated. The first can be achieved with the continuous retardation 

spectrum (Bažant, 1995) which provides a smoothed plot of compliance of kelvin chain units 

1

iD 
against its retardation time 

i  in log scale. Then, by utilizing Laplace transformation 

inversion supplemented by Widder’s approximate inversion formula (Widder, 1971), this 

spectrum can be identified uniquely with the given compliance function that (Bažant, 1995 

and Yu et al., 2012): 

( )lim( ) ( )
( )

( 1)!

k k

i i
k

i

k C k
L

k

 
 


                                               (Eq. 4-3) 

The development of this continuous spectrum is shown in Appendix A. ( )kC  in Eq. 4-

3 is the k-th order time derivative of the compliance function in creep part. In this study, k = 3 

is accurate enough. Then with the discretization of the continuous spectrum, the discrete 

spectrum for each Kelvin unit can be obtained as (Bažant, 1995 and Yu et al., 2012): 

( ) ( ) ln10i iA L                                                       (Eq. 4-4) 

To stabilize the implementation, the exponential algorithm (Appendix B) then is 

applied to obtain Kelvin chain unit stiffness iD with two internal state variables for each 

integration point in each step (Bažant et al., 1971 and 1975, Yu et al., 2012): 

/ it

i e
 

                                                              (Eq. 4-5) 

(1 ) /i i i t                                                            (Eq. 4-6) 

and then  

1

(1 )
i

i i

D
A 




                                                          (Eq. 4-7) 
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The static creep increment scε  can also be derived by this algorithm as (Yu et al., 

2012): 

1

(1 )
M

n

i i

i




  ε"                                                   (Eq. 4-8) 

where n

i  is the internal state variable from the last time increment, which can be updated 

after obtaining the effective stress increment as (Yu et al., 2012): 

1 1n n

i i i i i   σD                                                 (Eq. 4-9) 

Note in this method, storage of all the previous data like i , i ,   from 1 to n-1 step 

is not necessary, which greatly reduce the computational cost.  

4.2 CYCLIC CREEP 

The cyclic creep of concrete, also known as fatigue creep, is the long-term behavior caused 

by the cyclic load. This load results in the fatigue growth of pre-existing microcracks in 

hydrated cement which leads to either an additional deformation (Bažant, 1968) to the static 

creep or an acceleration of the static creep (Bažant and Panula, 1979). Since it was 

experimentally detected in 1906, many investigation has been done to develop a generally 

accepted theory and constitutive law for the cyclic creep. 

In this study, a micro-mechanical model for cyclic creep developed by Bažant and 

Hubler (2014) is used. In the model, three-dimensional planar microcrack of size a  is 

considered. For tensile loading, mode I (crack opening mode) is concerned, and for 
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compression loading a combination of modes II (crack sliding mode) and III (tearing mode) 

is relevant. The growth of the crack is assumed to be in a self-similar way that expand in a 

certain scale. The energy release rate due to this growth can be expressed as (Bažant and 

Hubler, 2014): 

*

1 [ ]G
a a



 



                                                        (Eq. 4-10) 

where 
*  is the complementary energy per microcrack;   is the applied remote stress; 1  is 

a dimensionless constant characterizing the geometry. Next the effective stress intensity 

factor based the average energy release rated can be expressed as (Bažant and Hubler, 2014): 

K GE                                                             (Eq. 4-11) 

where E  is the Young’s elastic modulus. For the sake of simplicity, mode I will be used here 

1 2 /K K a    (Tada et al., 1973). Therefore, Eq. 4-11 can be rewrite as (Bažant and 

Hubler, 2014): 

2

2 /G a E                                                        (Eq. 4-12) 

where, 2  is a dimensionless shape factor 2 4 /  . By substituting Eq. 4-12 in to Eq. 4-10 

with integration, one gets:  

2
* 32

13
a

E

 


                                                        (Eq. 4-13) 

Suppose the volume per microcrack to be 3

cl  and all the microcracks to be 

perpendicular to the direction of applied stress. According to the Castigliano’s theorem 

(Castigliano, 1873), the displacement u  per crack can be calculated as: 

 

* *
30

2 2

1
[ ] [ ]a a

c c

u a
P l El






 
  

 
                                  (Eq. 4-14) 
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where P  is the remote applied force that 2

cP l   and 0  is a dimensionless constant 

characterizing the geometry 
0 2 12 / 3   . Then the macroscopic strain can be calculated as 

(Bažant and Hubler, 2014): 

30

3

cc

c c

u
a

l El


                                                     (Eq. 4-15) 

Suppose the total microcrack size increment over N cycles is 
0N Na a a   . Where 

Na is the crack size after N cycles and 0a  is the size before cycles. 
0/ 1Na a   is assumed 

here because the creep strain in service is always small (Bažant and Hubler, 2014).  In this 

case 
3

0 0

(1 ) 1 3( )N Na a

a a

 
   . Then the strain increment for cyclic creep can be obtained as 

(Bažant and Hubler, 2014): 

  
3 3 30 0

0 03

0

( ) 3 ( )cc N
N

c c

a a
a a

El E l a

 
  


                              (Eq. 4-16) 

Next, Paris law (Paris and Erdogan, 1963) is applied because it can accurately 

approximate the intermediate range of fatigue crack growth, which is relevant for creep 

deflections of structures in the service renege. Stress amplitude of cyclic loading 

max min      and of stress intensity factor max minK K K   is considered here. 

According to Paris law, very large amplitudes and very high max and maxK  are not concerned 

because they are more valuable for failure analysis instead of deformation analysis in service 

stress range. Base on this precondition, Paris law can be expressed as (Paris and Erdogan, 

1963): 

( )mN

c

a K

N K


 
                                                     (Eq. 4-17) 
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where cK  is the critical stress intensity factor.  and m  are empirical constants. The 

amplitude K  is proportional to the remote applied stress amplitude and can be calculated as 

K c a     ( c  is a dimensionless geometry constant). Eq. 4-17 can be rewrite as (Paris 

and Erdogan, 1963): 

0 ( )m

N

c

c a
a a N

K





                                              (Eq. 4-18) 

By substituting Eq. 4-18 into Eq. 4-16 one can obtain the strain increment of cyclic 

creep (Bažant and Hubler, 2014): 

1 ( )cc m

c

C N
f


 


 


                                                 (Eq. 4-19) 

where 
1C  is expressed as (Bažant and Hubler, 2014): 

030 0
1

0

3
( ) ( )

c m

c c

f aca
C

E a l K

  
                                         (Eq. 4-20) 

cf   here is the standard compression strength of concrete. It can be noted from Eq. 4-

19 that cyclic creep strain tensor cc  is depend on both   and N  linearly. This perfectly 

matches the experiment measurement and simplifies the structural analysis. In this study, the 

exponent value m  is assumed to be 4 and the coefficient  1C  is about 46×10-6.   

4.3 SHRINKAGE 

The shrinkage is calculated based on the different recommendations. In this part, the ACI 

shrinkage model is utilized for illustration, the formulations of which are referred to the ACI 
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209.2R-08 (American Concrete Institute Committee, 2008). The shrinkage of concrete sh at 

time t   is calculated as: 

( )
( , )

( )

sh c
c shu

c

t t
t t

f t t




 




 
                                          (Eq. 4-21) 

where ct  is the drying time. f and  are two shape and size constants to define the time-ratio 

part. According to ACI 209.2R-08 (American Concrete Institute Committee, 2008), for the 

standard condition, the average ultimate shrinkage strain shu  is suggest as 6780 10shu    

mm/mm . 
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5.0  NUMERICAL  IMPLEMENTAION  

5.1 GENERAL IMPLEMENTATION  

In the implementation, all the variables at the beginning of current step, whose values are 

from the previous step, are marked as ( )n , and the updated values at the end of current step 

are marked as
1( )n . The increment of the tensor is the difference between the updated value 

and the previous value such that 1( ) ( )n n

ij ij ij     . 

By taking the time derivative of Eq. 2-1, the total incremental strain tensor can be 

obtained: 

( ) ( )

i t
ij ij

e p sc cc sh

ij ij ij ij ij ij

 

     

 

                                        (Eq. 5-1) 

Note that the total incremental strain tensor ij  will be automatically given in 

ABAQUS. 

The effective stress tensor 1n

ij   can be updated from n

ij  in the last time step: 

1n n

ij ij ij                                                               (Eq. 5-2) 

Then, the damaged stress tensor
1n

ij 
 can be transferred from the effective stress 

tensor 
1n

ij 
 as:  

1 1 1(1 )n n n

ij ij                                                         (Eq. 5-3) 
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Note that the increment of the effective stress 
ij  in a Kevin unit equals that in the 

elastic spring. With the substitution of Eq. 5-1, the incremental effective stress 
ij of the 

Kelvin chain unit and elastic spring can be written according to Hook’s law as: 

( ) ( )e p sc cc sh

ij ijkl kl ijkl kl kl kl kl klE E                                (Eq. 5-4) 

From Eq. 5-1, the incremental instantaneous strain tensor consists of elastic and 

plastic parts as: 

i e p ep

ij ij ij ij                                                                (Eq. 5-5) 

In addition, i

ij  is the difference between the total incremental strain tensor and the 

incremental memory-dependent strain tensors as: 

ep cc sh sc

ij ij ij ij ij                                                 (Eq. 5-6) 

Note that the incremental static creep sc  can be obtained from the previous time 

step by Eq. 4-8: 

/

1

(1 )i

M
tn

i

i

e




  sc
ε                                                 (Eq. 5-7) 

The incremental cyclic creep cc  can be obtained by Eq. 4-19 with the effective 

stress tensor from the last time step n : 

1 ( )
cc

cc n m

c

C N
f


 


 


                                                (Eq. 5-8) 

The incremental shrinkage sh  (e.g. in ACI model) can be obtained by Eq. 4-21 as: 

1

1

( ) ( )
[ ]

( ) ( )

sh n c n c
shu

n c n c

t t t t

f t t f t t

 

 
 



 
  

   
                              (Eq. 5-9) 

The next job is to calculate the incremental elastic strain 
e

ij  and the incremental 

plastic strain 
p

ij , both of which are dependent on the effective stress tensor 1n  at current 
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time step. This calculation is realized by using the classical radial returning mapping 

algorithm (Simo and Huges, 1998) that: 

1 ( )
P

n n ep p trial

ij ij ijkl kl kl ij P ijkl

ij

F
E E     



 
     


                     (Eq. 5-10) 

where ( )trial n ep

ij ij ijkl klE      is the trial stress tensor. According to the plasticity consistency 

conditions (Eq. 3-39), if the trail stress is within the yield surface ( ,( ) ) 0trial nf c   , concrete 

response is elastic. In this situation, the variables are updated as:  

0P                                                                (Eq. 5-11) 

    
1n trial

ij ij                                                            (Eq. 5-12) 

1( ) ( )p n p n

ij ij                                                        (Eq. 5-13) 

1( ) ( )n nc c                                                         (Eq. 5-14) 

However, if the stress is on the yield surface, the calculation of plastic multiplier 
P  

is necessary to update the 1n

ij  , 1( )p n

ij
  and

1( )nc 
. This calculation will be described in the 

section 5.2.  

For the damage part, the damage variable 1n  is evaluated and used to transfer the 

effective stress tensor 1n

ij    to the real stress tensor 1n

ij  . This evolution will be described in 

the section 5.3. 
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5.2 CALCULATION OF THE PLASTIC MULTIPLIER 

The goal in this part is to calculate the plastic multiplier 
P  in order to update the 1n

ij  , 

1( )p n

ij
  and

1( )nc 
. According to the plasticity consistency conditions (Eq. 3-39), 

P  needs 

to be calculated, when the stress at the end of current step is on the yield surface with loading 

condition. With the substitution of the yield function (Eq. 3-12), the following expression can 

be obtained:  

1 1 1 1 1 1 1 1

2 1 max max
ˆ ˆ( , ( ) ) 3 ( ) ( ) (1 ) ( ) 0n n n n n n n nf c J I H c                         (Eq. 5-15) 

By substituting the consistent conditions (Eq. 3-39) into previous function, one can 

obtain: 

1

max

max

ˆ 0
ˆ

n n

ij

ij

f f f f
f f    

  

  

 

   
         

  
    (Eq. 5-16) 

where ij  is expressed as (Taqieddin, 2008): 

[ 6 3 ]

trial

ijtrial P

ij ij P ij
trial

ij

S
G Ka

S
                         (Eq. 5-17) 

max̂  is expressed as (Taqieddin, 2008): 

max 1
max max

ˆ 2ˆ ˆ [ 6 (3 )]
3

trial P

P ij
trial trial

ij ij

I
G Ka G

S S


             (Eq. 5-18) 

   is from Eq. 3-14 and Eq. 3-36: 

max
ˆ

P

P

F
r 



 
  


                                               (Eq. 5-19) 

   is from Eq. 3-15 and Eq. 3-36: 
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min

(1 ) ( )
ˆ

P

P

F
r 



 
     


                                      (Eq. 5-20) 

and therefore, by taking the ij , max̂ ,    and    derivative of plastic yield 

surface f , the following expressions can be obtained: 

3

ˆ2

trial

ij

p ij
trial

ij
mn

Sf

S
 




 


                                            (Eq. 5-21) 
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1 1
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                   (Eq. 5-22) 
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
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
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                                             (Eq. 5-23) 
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
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
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
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 

                            (Eq. 5-24) 

Finally, by substituting Eq. 5-21, Eq. 5-22, Eq. 5-23 and Eq. 5-24 into Eq. 5-16, the 

plastic multiplier 
P  can be expressed as (Taqieddin, 2008): 

trial

P

f

H
                                                              (Eq. 5-25) 

where 
trialf  in the above equation is expressed as: 

max

ˆ
ˆ

trial n trial trial

ij ij

ij

f f
f f  

 

 
    

 
                               (Eq. 5-26) 

and H is expressed as: 
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    (Eq. 5-27) 

max,min
ˆ

pF






in the Eq. 5-27 is calculated as (Taqieddin, 2008): 
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 
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                                (Eq. 5-28) 

5.3 EVOLUTION OF THE DAMAGE VARIABLES 

The damage variable 1n  at the n+1 step is calculated here which is related to the effective 

stress tensor 1n

ij  and the elastic strain tensor 1( )e n

ij
  by the end of current step. Whether the 

1n  need to be updated from the last step is depend on the damage consistency conditions 

(Eq. 3-42). The damage surface from Eq. 3-40 can be rewritten with step indication as: 

1

0( ) ( ) 0n ng Y Y Z                                                (Eq. 5-29) 

The damage thermodynamic forces here are calculated as (Eq. 3-31): 

1

1 1 1 2
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2 9 1 exp( )( )
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ij e n e n e n

ij ijkl kl ij ij ijkl kln

ij

Y E E
cY d Y


    



 

   

 
  

  
(Eq. 5-30) 

The tensile and compressive effective stress tensors ij 
 can be derived by spectral 

decomposition introduced from Eq. 3-8 to Eq. 3-10. Note that Eq. 5-30 is a nonlinear 

function of the damage thermodynamic forces Y  , which can be written as ( ) 0K Y    for 

simplicity, and the Newton-Raphson iterative method is utilized to solve it such that 

(Taqieddin, 2008): 
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Y Y Y Y K Y
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
    

 


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
                          (Eq. 5-31) 

With  
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(Eq. 5-32) 

Because the result of this iterative procedure is highly depend on the initially guess, 

here the first guess 0Y   is suggested as (Taqieddin, 2008): 
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1 1

0 1
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                                  (Eq. 5-33) 

When converge to a tolerance criterion, this iterative procedure will stop, and 

outcome is regard as the damage thermodynamic forces 1( )nY    at the n+1 step. 

( )nZ   in Eq. 5-29 is the softening parameters from the previous step. 

By substituting 1( )nY   , 0Y   and ( )nZ   in to the Eq. 5-29, damage surface g 
 can be 

obtained. According to the damage consistency conditions (Eq. 3-42), if the 0g    and 

0g   , the damage variable needs not to be updated ( 1( ) ( )n n     , 1( ) ( )n n    ), and 

real stress tensor 1n

ij  equals the updated effective stress tensor 1n

ij  , and if 0g   and 

0g   , the damage evolves, and the tensile/compressive damage variables are updated as 

(Tao and Philips, 2005 and Taqieddin, 2008): 
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                               (Eq. 5-34) 

Then the total damage variable can be calculated by Eq. 3-11 as (Tao and Philips, 

2005): 
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                         (Eq. 5-35) 

Meanwhile, the softening parameters should be updated as (Taqieddin, 2008): 

11
1

1

1 ( )
( ) ( )

1 ( )

n
n b

n
Z

a



 
 

  




 
                                       (Eq. 5-36) 
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5.4 OVERALL FLOWCHART 

The overall flowchart of the numerical implementation based on the unified model in 

ABAQUS is shown from Figure 3 to Figure 5. 

Input: tb ,h,T

Initialize: ε0
s,γ

0
μ

Set: J(t0,t0)=1/Et0

Select retardation times

τi=10i-7 , i=1,2,…,13

Loop over time steps

n=1,2,…,M

Loop over element

L(τi), A(τi), λi, Di, E"

Strain increment:

Shrinkage strain: Δεsh  

Cyclic creep strain:  Δεcc 

Inelastic static creep strain: Δε"

Strain increment:

Elastic strain: Δεe 

Plastic strain: Δεp

Calculate stresses and 

strains and displacement

Update γμ
(n+1)

End

Assemble stiffness/load matrix

Structural analysis by 

ABAQUS

Loop over elementsReturn mapping 

algorithm - Fig. 4(a)

Input Δε, Δt, γi
(n),σn, 

Δσcc, ΔN

Update stain:

Elastic strain:(εe)(n+1) 

Plastic strian: (εp)(n+1) 

Static creep strain: (εsc)(n+1) 

 Cyclic creep strain: (εcc)(n+1) 

 Shrinkage strain: (εsh)(n+1) 

 Strain increment (Δεe+Δεp)

Calculate Φ(n+1)

- Fig. 4(b)

Update stress:

          Real stress: σ(n+1)

Update stress:

              effective stress: σ(n+1) 

 

Figure 3. The overall flowchart of the numerical implementation based on the unified model by 

ABAQUS 
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σ n , (ε e )n , (ε p )n , (κ ± )n , (ϕ ± )n , σn

 strain increment (Δεe+Δεp)

 σ trial = σ n + E∙(Δεe+Δεp), Δλ p =0

σ n+1 =σ trial 

(ε p )n+1 = (ε p )n

(ε e )n+1 = (ε e )n + (Δεe+Δεp)

Yes

Update Δλ p=Δλ p+f trail/H

No

Calculate Δε p , (κ ± )

Update σ trial =σ trial − EΔε p

Update hardening functions c+ , c−

No

Update σ n+1 =σ trial

Yes

f (σ trial ) < 0

Convergence

f (σ trial ) = 0

 

Figure 4. The flowchart of return mapping algorithm 
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Input  (εe)n+1, σ n+1

Evaluate (Y ± )n+1

Update (Φ± )n+1

Using (Y ± )n+1

Update (Φ)n+1

 (Φ)n+1

(Φ)n+1 = (Φ)n

No
Yes

g± ((Y ± )n+1, (Φ± )n ) < 0

 

Figure 5. The flowchart of damage variable calculation 
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6.0  CASE STUDY  

To verify the effectiveness of the unified concrete model in predicting the long-term 

performance of large-span prestressed concrete bridge with heavy traffic load, Humen Bridge, 

as a suitable choice, is selected and studied here. The necessary details are described and the 

finite element model along with the simulation approach is introduced. Then, the simulation 

results based on the pure viscoelastic analysis and the unified model are derived and 

compared with the real measurements. Finally, the results are analyzed and the accuracy of 

the unified concrete model is evaluate.  

6.1 BRIDGE INTRODUCTION  

Humen Bridge is a three-span (150 m+ 270 m +150 m) cast-in-situ rigid frame segmentally 

prestressed concrete bridge located at Pearl River Delta in Guangdong Province, China. Its 

270 m main span overtakes the main span of Gateway Bridge in Australia (260 m) and 

became the longest span for the same type prestressed concrete bridge in the world when it 

was in operation in June, 1997. The bridge consists of two identical single box girder spans. 
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Carrying the opposite traffic flow, these two spans are independent with each other. The view 

of Humen Bridge is shown in Figure 6.  

 

Figure 6. Humen Bridge Auxiliary Channel Bridge 

6.1.1 Specific dimension  

The span in Humen Bridge consists of a single box girder. The top length of the box 

girder is 15 m and the bottom length is 7 m. The height of the box girder is from 14.8 m at the 

pier to 5 m at the mid-span. The top slab has the consistent thickness along the traffic 

direction but it increases from 0.15 m at the exterior of the suspended top slab to 0.45 m at 

the intersection of the web and then decrease to 0.25 m at the middle of the cross-section. 

This change follows a linear format. The thickness of bottom slab varies from 1.3 m at pier to 

0.32 m at mid-span and thickness of web is reduced from 0.8 m at the pier to 0.4 m at the 

mid-span. These two changes follow a quadratic parabolic curve. The specific dimension of 

the box girder is shown in Figure 7 and Figure 8. 
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Figure 7. The dimension of cross-section at the pier (mm) 
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Figure 8. The dimension of cross-section at the middle span (mm) 

6.1.2 Traffic investigation 

Pearl River Delta in Guangdong province is one of the most industrialized and richest areas 

in China, where is close to the metropolitan, Hongkong. Because of this particular location, 

Humen Bridge has to carry the traffic flow inside Guangdong Province and flow between 

Guangdong Province and Hong Kong, which makes it carrying one of the largest traffic 

volume in the world.  

With the assist of Highway toll system of Humen Bridge, the amount of the vehicles 

passing the bridge and the magnitude of their weight are recorded. According to the 

inspection report (Humen Bridge Auxiliary Bridge inspection report, 2011), the traffic 

volume increased from 6,381,541 in 1998 to 24,484,336 in 2010 (shown in Figure 9). This 
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large traffic volume may suggests that the cyclic creep and damage may be critical to the 

long-term deflection. 

 

Figure 9. Traffic volume from 1998 to 2010 

 

All the vehicles are classified into six types (Humen Bridge Auxiliary Bridge 

inspection report, 2011): type 1 represents for motorcycles whose weights are negligible and 

therefore it is not considered in the simulation; the type 2-6 stand for the different vehicles 

and are characterized by the increasing weight. The report also provides the specific 

proportion of these six types for each year and proportions from 1998 to 2002 are illustrated 

from Figure 10 to Figure 14. With the increase of total traffic volume, the amount of type 6 

increased from 196,872 in 1998 to 460,140 in 2002, which grows about 234%. The exact 

volume of type 6 vehicles is shown in figure 15.  
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Table 1. Vehicle classification 

 
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

Weight (ton) - 0-2 2-5 5-8 8-20 >20 

 

 

Figure 10. The volume proportion of the six types in 1998 
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Figure 11.  The volume proportion of the six types in 1999 

 

Figure 12. The volume proportion of the six types in 2000 
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Figure 13. The volume proportion of the six types in 2001 

 

Figure 14. The volume proportion of the six types in 2002 
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Figure 15.  The volume of type 6 vehicles from 1998 to 2002 

6.2 FINITE ELEMENT MODEL 

The advanced 3D finite element modelling software ABAQUS is selected to simulate the 

long-term behavior of Humen Bridge. An advantage of this software is its user-subroutine 

UMAT providing a convenient way for users to define their own material properties, which 

perfectly meet the demand in this study. With the assistance of the blueprint, this bridge 

model is built in ABAQUS (Figure 16). Because of its symmetry both in longitudinal and 

transversal directions, half span and half cross-section of the span is simulated.  
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Figure 16. ABAQUS model for the Humen Bridge 

 

In this study, concrete is modeled by 3D hexahedral isoparametric elements (C3D8 in 

ABAQUS) and prestressing tendons are modeled by 3D truss elements (T3D2 in ABAQUS). 

After meshing, 35,433 hexahedral elements and 23,222 truss elements are generated in the 

model. Because the influence of normal reinforcing tendons on the behaviors of prestressed 

concrete bridge is negligible, these rebars are not considered in this simulation. All the web 

and top/bottom slabs are meshed into two layers of C3D8 elements and the prestressing 

tendons are placed at the middle of them. Perfect bond is assumed between concrete and the 

prestressing tendons by sharing the same element nodes in this simulation. Trying to capture 

balanced cantilever construction procedure which leads to a complicated loading history both 

in the concrete and tendons, all the elements are deactivated at first and then progressively 

activated based on the construction sequence. The camber generated during construction is 

neglected in the deflection comparison to focus on the post-construction behavior. 

In this model, 94 longitudinal prestressing tendons (ASTM A416-87A170) are 

applied to prestress the 69 segments. Among these tendons, 66 are cantilever tendons placed 
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inside the top slab and 28 are continuous tendons in the bottom slab. Besides the longitudinal 

tendons, the vertical prestressing tendons (32-mm diameter screw-thread steel) are placed in 

the web with 1 m spacing to increase the shear-resistant ability of the concrete girder. The 

detailed distribution of these tendons is illustrated in Figure 17. For each group of tendons, 

the prestress is applied 7 days after their anchoring segments casted. The initial prestressing 

level for longitudinal prestressing tendons is selected as 1080MPa and for the vertical 

prestressing tendons is about 400 MPa. 

 

Figure 17.  The detailed distribution of presstressing tendons 

6.3 SIMULATION APPROACH  

In this study, the Humen Bridge is simulated based on both pure viscoelastic analysis and the 

unified model. The pure viscoelastic analysis is based on ACI, fib MC2000 and B4 model, 
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separately. The ACI model is basically empirical where the only intrinsic parameter 

employed to represent concrete composition in its compliance formulas is the concrete 

strength cf  . B4 model is adapted from the B3 model, whose creep is divided into basic creep 

and drying creep based on the solidification theory (Bažant and Prasannan 1989 a,b, Bažant 

and Baweja 2000). The basic creep is unbounded and consists of short-term strain, viscous 

strain and a flow term while the drying creep is bounded and related to moisture loss. As a 

new version, the fib MC2010 model is updated from the CEB-fib MC190 model also by 

splitting creep into basic creep and drying creep like B4 model. The unified concrete model 

will be implemented with the ACI, fib MC2000 and B4 model as its viscoelastic analysis 

respectively. 

All intrinsic and extrinsic parameters are the same to emphasize the difference 

resulting from the compliance function. All the parameters are set as follows: 

1. Design compressive strength 46cf    MPa 

2. Cement content c = 523.5 kg/m3 

3. Water to cement ratio by weight w/c = 0.35 

4. Aggregate to cement ratio by weight a/c = 3.5 

5. Humidity h (70%) 

6. Temperature T (20℃) 

7. For the prestressing tendon: E = 200 GPa and fy = 1674 MPa 

All the implementations are realized by the user-subroutine UMAT in the ABAQUS. 
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In this simulation, the pure viscoelastic analysis based on three creep and shrinkage 

models without considering damage, plasticity and the cyclic creep are implemented 

respectively first. The results will be compared with each other and with the real 

measurements. Then the unified model with viscoelastic analyses based on three different 

models, considering damage, plasticity and the cyclic creep, are used to simulate the long-

term behaviors. The outcome comparison is similar to the comparison of the pure viscoelastic 

analysis. Finally, the analysis and the conclusion can be drawn based on these comparisons. 

6.4 SIMULATION RESULTS  

6.4.1 The pure viscoelastic analysis 

The deflections calculated based on pure viscoelastic analyses are analyzed here as a 

comparison with the deflections from unified model. The asymptote of long-term vertical 

deflection is directly governed by the compliance function because the concrete shrinkage 

and steel relaxation will die out with the increase of time. In this simulation, the vertical 

deformations at the middle point of the Bridge based on ACI, fib MC2010 and B4 models are 

calculated and plotted with 100 years both in the linear time scale (Figure 18) and logarithmic 

time scale (Figure 19). Note that the log time figure is plot here because the deflection 

tendency is more obvious when the compliance function is govern by a logarithmic term.  
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Figure 18. The deflection at the middle point for pure viscoelastic analysis with linear time scale 

 

 

Figure 19. The deflection at the middle point for pure viscoelastic analysis with log time scale 

 

The deflections here are calculated from the end of construction, which means no 

camber during construction is considered. From the Figure 18, and Figure 19, the values 

based on ACI, fib MC2010 and B4 are different from each other even with the same intrinsic 

and extrinsic parameters. Among these three deflections, the one based on ACI model is the 



 54 

most conservative one. For this model, the compliance function is bounded which means 

creep will terminate after a certain time. According to the ACI formulas, this creep 

termination usually takes about 30 years and then the deflection curve will tend to a 

horizontal line. This can be shown in the Figure 18 that at about 30 years (10, 950 days), the 

deflection increases to about 120 mm and then stabilized. For the fib MC2010 and B4 model, 

the compliance functions consist of the bounded drying creep and logarithmic basic creep, 

which makes the functions unbounded. Governed by the logarithmic part in compliance 

functions, the decreasing tendencies of deflection evolution based on these two models are 

shown especially in Figure 19 with log time scale. However, although the deflection 

tendencies for fib MC2010 and B4 model are similar, the value for B4 model is greater than 

the fib MC2010 model after 3 years and this difference is increasing with time. By the time of 

100 years, the deflection from B4 model develops to about 250 mm while the one from fib 

MC2010 model only reaches about 160 mm.  

Next, the deflections based on pure viscoelastic analyses are compared with the in-

situ measurements from the inspection report (Humen Bridge Auxiliary Bridge inspection 

report, 2011). In this report, the deflections of left span and right span are recorded from the 

completion of the bridge to 7 years, which is plotted in Figure 20 and Figure 21 along with 

the deflections based on ACI, fib MC2010 and B4 models. It is obvious that all the predicted 

deflections based on pure viscoelastic analyses are much smaller than the in-situ 

measurements. After 7 years, the vertical deflection prediction of ACI, fib MC2010 and B4 



 55 

models are about 100 mm, 110 mm and 140 mm respectively while the measured value for 

left span and right span are about 210 mm and 220 mm respectively. 

 

 

Figure 20. The comparison of deflections at middle point from measurements and simulations based 

on pure viscoelastic analysis models in 7 years with linear time scale 

 

 

Figure 21. The comparison of deflections at middle point from measurements and simulations based 

on pure viscoelastic analysis models in 7 years with log time scale 
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The striking difference of deflection between the simulation value and real 

measurement suggests that the pure viscoelastic analysis based on the creep and shrinkage 

models, like ACI, fib MC2010 and B4 model, is insufficient in accurately predicting the 

vertical deflection for the large-span prestressed concrete bridge with heavy traffic like 

Humen Bridge. This is mainly because viscoelastic analysis ignores many phenomena and 

therefore, a more comprehensive model that can take all important factors into account is 

needed to improve the accuracy of prediction.  

6.4.2 The unified model  

In this section, the prediction of middle point deflection is demonstrated based on the unified 

model where the plasticity, damage, cyclic creep and other factors are considered. The creep 

and shrinkage models, ACI, fib MC2010 and B4 model, with the same intrinsic and extrinsic 

parameters are selected for the viscoelastic analysis in the unified concrete model.  The 

results from the simulation are illustrated in Figure 22 and Figure 23, along with the real 

measurements both in linear time scale and log time scale.  
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Figure 22. The comparison of deflections at middle point based on measurements and simulations 

from the unified models in 7 years with linear time scale 

 

 

Figure 23. The comparison of deflections at middle point based on measurements and simulations 

from the unified models in 7 years with log time scale 

 

 From Figure 22 and Figure 23, one can find that the simulations based on the unified 

concrete model match the real deflections quite well. After 7 years, the prediction based on 
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the unified model with ACI, fib MC2010 and B4 model is 258 mm, 212 mm, and 198 mm 

respectively while the measured value for left span and right span are about 210 mm, and 220 

mm respectively. The simulation given by unified model with B4 model is almost as accurate 

as the fib MC2010 model after 3 years, however the results from B4 model is much more 

accurate than the other two simulations before 3 years. Therefore, considering the whole of 7 

years, the unified concrete model with B4 creep and shrinkage model is the most effective 

material model. 

 In the inspection report (Humen Bridge Auxiliary Bridge inspection report, 2011), not 

only the deflection of middle point of the bridge, but also the deflection profiles are recorded 

from 1998 to 2002. Because the prediction at middle point from unified model with B4 creep 

and shrinkage model matches the measurements most well, the simulation results for 

deflection profiles based on this model are compared with the real deflections. The 

comparisons from the first year to the fifth year are illustrated from Figure 24 to Figure 28. 

The accuracy of these results is acceptable. 

 

Figure 24. The first year profile from the unified model with B4 model and real measurements  
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Figure 25. The second year profile from the unified model with B4 model and real measurements  

 

 

Figure 26. The third year profile from the unified model with B4 model and real measurements  
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Figure 27. The fourth year profile from the unified model with B4 model and real measurements  

 

 

Figure 28. The fifth year profile from the unified model with B4 model and real measurements  

6.5 CRACK AND DAMAGE DISTRIBUTION  

Concrete cracking is a key element in the unified concrete model to increase the accuracy of 

the prediction. Therefore, whether the crack and damage distribution match the real situation 
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is considered in this study. A comprehensive inspection was done to the Humen Bridge at 

2003 including the investigation on cracks and damage (Humen Bridge Auxiliary Bridge 

inspection report, 2011). According to the inspection report, many cracks were founded near 

the middle span that initiated from the bottom slab and then propagated vertically into the 

web. Besides, a few skewed cracks were found in the top web area about the ¼ span of the 

main span. The distribution of the cracks at 2003 are illustrated in the Figure 29. 

 

Figure 29. The real crack distribution of Humen Bridge at 2003 

 

Next, the cracks and damage evolution are simulated based on the unified concrete 

model and the predicting distributions are shown from Figure 30 to Figure 33. After the end 

of the construction, the strain for the whole bridge is very small and barely any damage can 

be found. After 1 year, few cracks appear at the bottom slab near to the web at the middle 

span. Then, by the time of 3 years, these cracks propagate to the whole bottom slab at the 

middle span. Finally, after the 7 years, the cracks at bottom slab propagate along the 

longitudinal way, and new small cracks initiate around the ¼ span of the main span. Overall, 

one can find that the simulated cracks and damage evolution match the real one quite well. 
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Figure 30. The cracks and damage simulation based on the unified model by the end of construction 

 

Figure 31. The cracks and damage simulation based on the unified model after 1 year  
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Figure 32. The cracks and damage simulation based on the unified model after 3 years 

 

Figure 33. The cracks and damage simulation based on the unified model after 7 years 
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7.0  CONCLUSION  

The pure viscoelastic analysis without considering the cyclic creep and other memory-

independent behaviors may not accurately predict the long-term deflection of the the large-

span prestressed concrete bridge with heavy traffic flow. Therefore, in this study, a unified 

concrete model combining the instantaneous behavior (e.g. elasticity, plasticity and damage) 

with the memory-dependent behavior (e.g. quasi-static and cyclic creep, shrinkage, etc.) is 

proposed. To demonstrate the effectiveness and advantage of this unified model in predicting 

the deflection of the large-span prestressed concrete bridge with heavy traffic flow, Humen 

Bridge, as a case study, is simulated by ABAQUS with rate-type algorithm based on both 

pure viscoelastic analysis with three creep and shrinkage models (ACI, fib MC2010 and B4 

model) and then the unified model with these three models. The simulation results are 

compared with the real deflections. Based on these results and comparisons, the following 

conclusions can be drawn: 

 1. Without considering damage, plasticity and cyclic creep, the pure viscoelastic 

analysis is insufficient in predicting the deflection of the large-span prestressed concrete 

bridge carrying heavy traffic flow. 

 2. In the pure viscoelastic analysis, B4 model gives a more accurate prediction than 

the other two, while ACI model, totally based on the empirical formulas, gives the least 
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accurate result. The main reason for this phenomenon is that B4 model divides the creep into 

basic creep and drying creep with the adjustable parameters which can be updated according 

to the experiment data and the material used in bridge to match the real deflection.  

 3. Taking the damage, cyclic creep and other factors in to account, the unified 

concrete model with suitable parameters whose viscoelastic analysis is based on B4 model 

can predict the deflection and crack propagation of Humen Bridge quite well. 

 4. The present investigation may suggest that damage and cyclic creep are critical to 

accurately predict the large-span prestressed concrete bridge with heavy load like Humen 

Bridge. Therefore, taking these factors into consideration is a valid way to improve a model 

in predicting the deflection of the large-span prestressed concrete bridge carrying heavy 

traffic flow. 

 5. The successful application of the rate-type implementation with exponential 

algorithm in the simulation proved the effectiveness of this analysis method. In addition, the 

efficiency of rate-type algorithm in simulating Humen Bridge, a large scale structure, and the 

convenience of it in combining the static creep and other effects are well demonstrated in this 

thesis. 

 

 

 



 66 

APPENDIX A 

CONTINUOUS RETARDATION SPECTRUM 

When concrete is under a unit stress applied at time t , the viscoelastic behavior at current 

time t  is generally characterized by the compliance function ( , )J t t : 

0( , ) 1/ ( , )J t t E C t t                                                       (Eq. A-1) 

where 0E  is the instantaneous elastic modulus; and ( , )C t t  is the creep part of the 

compliance function. This ( , )C t t  can be approximated in a continuous form with t t    

(Bažant, 1995): 

/ /

0
( ) ( ) / (1 ) ( )(1 ) (ln )C L e d L e d        

 
 


                     (Eq. A-2) 

where ( )L   is defined as the continuous retardation spectrum (Bažant, 1995). To efficiently 

deduce ( )L   from the known compliance function, a general method developed by Tschoegl 

(1971, 1989) is then adopted (Bažant, 1995). Setting 1/   and (ln ) ( )d d   , Eq. A-2 

can be rewritten as (Bažant, 1995): 

1 1

0
( ) ( )(1 )C L e d   


                                            (Eq. A-3) 

1 1 1 1

0 0
( ) ( ) ( )C L d L e d      

 
                                  (Eq. A-4) 

Then denoting (Bažant, 1995):  
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1 1

0
( ) ( )f L e d   


                                               (Eq. A-5) 

one can rewrite Eq. A-4 as:  

( ) ( ) (0)C f f                                                    (Eq. A-6) 

( )f   is the Laplace transform of the function 
1 1( )L  

 and   is the transforma 

variable (Bažant, 1995). 

Next, the Laplace transform can be inverted by Widder’s inversion formula (Widder, 

1971). This inversion formula is expressed as: 
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with the property: 
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           (Eq. A-8) 

where 
( )kf  is the k th derivative of function f . 

 Because (0)f  is a constant, the continuous retardation spectrum ( )L   can then be 

expressed as (Bažant, 1995): 
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                                                (Eq. A-9) 
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APPENDIX B 

EXPONENTIAL ALGORITHM 

With the application of Kelvin chain model, the constitutive law for creep can be transferred 

from Volterra integral equations to a system of ordinary first-order linear differential 

equations (Yu et al., 2012). In this system, the equations for the Kelvin unit strains i  can be 

expressed as (Yu et al., 2012): 

( )
( ) ( ) ( )i

i i

i

t
D t t t



 
  

 
D


                                           (Eq. B-1) 

( ) ( )i i it t                                                           (Eq. B-2) 

where   is the 6   1 column stress matrix; i  is a 6   1 column matrix represents strains of 

each Kelvin chain unite; iD  is the elastic moduli for each Kelvin unite; and D  is a 6   6 

elastic stiffness matrix with a unit value of Young’s modulus and expressed as  (Yu et al., 

2012): 
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               (Eq. B-3) 

where  is the Poisson ration and 0.18   for simplicity; and * (1 2 ) / (2(1 ))     . 

 The traditional algorithms for this first-order differential equations are stable only if 

1t    ( 1  is the shortest retardation time of Kelvin chain units) (Yu et al., 2012). With the 

increasing of time step t ,  these traditional algorithms will fail by numerical instability. 

Therefore, to overcome this problem, the exponential algorithm was developed which is 

unconditionally stable (Bažant et al., 1971 and 1975, Yu et al., 2012). In this algorithm, two 

parameters used in the constitutive law are introduced as (Bažant et al., 1971 and 1975, Yu et 

al., 2012): 

/ it

i e
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                                                             (Eq. B-4) 

(1 ) /i i i t                                                           (Eq. B-5) 
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