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INTEGER PROGRAMMING APPROACHES TO STOCHASTIC GAMES

ARISING IN PAIRED KIDNEY EXCHANGE AND INDUSTRIAL

ORGANIZATION

Amin Dehghanian, PhD

University of Pittsburgh, 2015

We investigate three different problems in this dissertation. The first two problems are related

to games arising in paired kidney exchange, and the third is rooted in a computational branch

of the industrial organization literature. We provide more details on these problems in the

following.

End-stage renal disease (ESRD), the final stage of chronic kidney disease, is the ninth-

leading cause of death in the United States, where it afflicts more than a half million patients,

and costs more than forty billion dollars indirect expenses annually. Transplantation is the

preferred treatment for ESRD; unfortunately, there is a severe shortage of transplantable

kidneys. Kidney exchange is a growing approach to alleviate the shortage of kidneys for

transplantation, and the United States is considering creating a national kidney exchange

program since such a program provides more and better transplants. A major challenge to

establish a national kidney exchange program is the lack of incentives for transplant centers

to participate in such a program. To overcome this issue, the kidney transplant community

has recently proposed a payment strategy framework that incentivizes transplant centers to

participate in a national program. Absent from this debate is a careful investigation of how to

design these incentives. We develop a principal-agent model to analyze these incentives and

find an equilibrium payment strategy. We develop a mixed-integer bilinear bilevel program

to compute an equilibrium payment strategy. We show that this bilevel program can be

solved as a mixed-integer linear program. We calibrate our model and provide several data-
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driven insights about advantages of a national kidney exchange program. We shed light on

several controversial policy questions about an equilibrium payment strategy. In particular,

we demonstrate that there exists a “win-win” payment strategy that could result in saving

thousands of lives and billions of dollars annually.

Consensus stopping games are a class of stochastic games that arises in the context of

kidney exchange. Specifically, the problem of finding a socially optimal pure stationary

equilibrium of a consensus stopping game is adapted to value a given kidney exchange.

However, computational difficulties have limited its applicability. We show that a consensus

stopping game may have many pure stationary equilibria, which in turn raises the question

of equilibrium selection. Given an objective criterion, we study the problem of finding a best

pure stationary equilibrium for the game, which we show to be NP-hard. We characterize

the pure stationary equilibria, show that they form an independence system, and develop

several families of valid inequalities. We then solve the equilibrium selection problem as a

mixed-integer linear program (MILP) by a branch-and-cut approach. Our computational

results demonstrate the advantages of our approach over a commercial solver.

Industrial organization is an area of economics that studies firms and markets. Currently,

a class of stochastic games are adopted to model behaviors of firms in a market. However,

inherent challenges in computability of stationary equilibria have restricted its applicability.

To overcome this challenge, we develop several characterizations of stationary equilibria for

the class of stochastic games.

Keywords: Kidney exchange, standard acquisition charge, pricing, bilevel programming,

principal-agent models, stochastic stopping games, equilibrium selection, consensus decision-

making, veto players, independence system, branch-and-cut, industrial organization.
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1.0 INTRODUCTION

1.1 SUMMARY OF THE THESIS

This thesis primarily investigates topics arising in paired kidney exchange. In the first

topic, we develop an equilibrium payment strategy that incentivizes transplant centers to

participate in a national kidney exchange program. In the second topic, we develop a novel

approach to solve the problem of finding a socially optimal pure stationary equilibrium

of a class of stochastic games arising in contexts such as kidney exchange. In the third

topic, we provide several characterizations of stationary equilibria of an important class of

stochastic games from the industrial organization literature. Such characterizations facilitate

computing stationary equilibria of this class of stochastic games. We provide a brief review

of contents of this thesis, in the following.

Chapter 2: An Optimal Incentive Alignment for a National Kidney Exchange

Program. Living-donor transplantation is the preferred treatment for chronic kidney dis-

ease, the ninth-leading cause of death in the United States. A significant drawback of

living-donors is that at least one-third of the patients with a willing living-donor are unable

to receive the donor’s kidney due to biological incompatibilities. To mitigate this barrier, an

emerging clinical practice is paired kidney exchange (PKE), in which incompatible patient-

donor pairs exchange donors’ kidneys with other pairs in a biologically compatible manner.

PKE is currently utilized in a decentralized setting in the United States, which leads to inef-

ficiencies. In fact, each transplant center (a consortium of a few transplant centers) manages

a pool of its own incompatible patient-donor pairs, and conducts its exchanges internally.

To achieve the benefits of resource pooling and enhance PKE efficiency, the United States

is moving toward a national PKE program in which all patient-donor pairs are enrolled and
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arranged for PKE. However, each transplant center will participate in a national PKE pro-

gram only if such an action is in its own best interest. Hence, there is a need for a payment

strategy in which each transplant center receives a monetary reward in return for enrolling

each patient-donor. The clinical community believes that a successful national payment

strategy can lead to saving thousands of lives and millions of dollars annually. We present

a principal-agent model to capture the interaction between a national PKE program and

transplant centers through a payment strategy. We next develop a bilevel program to find

an equilibrium payment strategy of the interaction between the national PKE program and

the transplant centers. We calibrate our model using a data set provided by the United Net-

work for Organ Sharing, which leads to data-driven insights about advantages of a national

PKE program. We shed light on several controversial policy questions about an equilibrium

payment strategy. In particular, we demonstrate that there exists a “win-win” equilibrium

payment strategy that leads to saving thousands of lives and billions of dollars annually.

Chapter 3: Optimizing over Pure Stationary Equilibria in Consensus Stop-

ping Games. Developing an accurate method to value a given PKE highly improves PKE

efficacy. A recent approach to value a given PKE is based on finding a socially optimal pure

stationary equilibrium for consensus stopping games, a class of stochastic games that require

the consent of all players to terminate and arise in many practical decision-making environ-

ments with veto players. However, technical difficulties have restricted the applicability of

this approach. Motivated by this challenge, we consider the problem of finding a socially

optimal pure stationary equilibrium for consensus stopping games. We represent the prob-

lem as a mixed-integer linear program (MILP), and establish its computational complexity.

We characterize several combinatorial structures of the equilibria, and subsequently develop

various families of valid inequalities that are used to efficiently solve the MILP by a branch-

and-cut approach. Our extensive computational experiments on a set of real-world instances

demonstrate that our approach can solve some instances in minutes whereas CPLEX cannot

solve even their linear programming relaxations within several hours.

We are the first to provide combinatorial characterizations of stationary equilibria for a

class of stochastic games. This dissertation is the first attempt to develop a novel cutting

plane approach for the problem of finding a socially optimal (pure) stationary equilibrium.
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Chapter 4: Characterizing Entry and Exit for Stationary Equilibria of a Dy-

namic Oligopoly Model. We consider a dynamic industry, from industrial organization

literature, composed of two classes of firms: (i) incumbent firms, and (ii) potential entrants.

In each period, each incumbent needs to decide whether to remain in or exit from the in-

dustry. If it remains, it next decides how much to invest in this period. Otherwise, it exits,

and receives a certain salvage value. In each period, each potential entrant needs to decide

whether to enter or stay out. If it enters, it incurs a certain setup cost, and next decides

how much to invest. If it stays out, it permanently disappears from the industry. The cur-

rent status of the industry is represented by a state variable, which evolves according to a

Markovian transition conditioned on the strategies of all firms. The described industry is at

the heart of a growing literature on industrial organization. We characterize entry and exit

behaviors of the firms in stationary equilibria of the industry. Such characterizations can

facilitate the process of computing stationary equilibria.
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2.0 AN OPTIMAL INCENTIVE ALIGNMENT FOR A NATIONAL

KIDNEY EXCHANGE PROGRAM

2.1 INTRODUCTION

End-stage renal disease (ESRD) leads to permanent failure of both kidneys. As of December

31, 2012, at least 636,905 Americans were suffering from ESRD, and its prevalence rate is

still growing. ESRD expenditures exceeded $40 billion in 2012, and Medicare’s portion was

$28.6 billion (United States Renal Data System 2015). Two available treatment modalities

for ESRD are dialysis and transplantation. Dialysis is a temporary, expensive, and dangerous

modality, and diminishes patients’ quality of life. Kidney transplantation leads to better

patient outcomes and is less expensive than dialysis (Laupacis et al. 1996); hence, it is

the preferred choice of treatment for ESRD. Based on viability status, kidney donors are

classified into two groups: deceased-donors and living-donors. Living-donor transplants

generally provide better long-term survivals than those from deceased-donors. In the sequel,

we restrict our attention to living-donor transplants, and call a living-donor her and an

ESRD patient him.

A difficulty to greater use of living-donors is that at least one-third of ESRD patients

with willing living-donors are physiologically incompatible with their intended donors due to

blood-type and/or tissue-type incompatibilities (Montgomery et al. 2005a). To alleviate this

difficulty, an emerging clinical practice is paired kidney exchange (PKE), in which incom-

patible patient-donor pairs swap their donors in a cyclical and physiologically compatible

manner (see Figure 1). Note that the size of a PKE cycle can conceptually be any integer

greater than or equal to two; however, logistical constraints restrict it to no more than three

in effect. Currently, each patient-donor pair visits a transplant center to find out whether
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they are compatible. If they are compatible, a transplant surgery is conducted in which

the patient receives a kidney from his intended donor. Otherwise, if they are incompatible,

the transplant center seeks to arrange PKE among its incompatible patient-donor pairs.

For convenience, we refer to an incompatible patient-donor pair as a patient-donor (pair)

throughout this chapter, unless otherwise stated.

To achieve the benefits of resource pooling and enhance PKE efficiency, the United States

is moving toward the creation of a national PKE program in which all patient-donor pairs

are registered, and PKE can be arranged through this program. Indeed, as the number of

patient-donor pairs registered in a PKE program increases, both the number of transplants

and their quality increase (Roth et al. 2004, Segev et al. 2005). In particular, a national PKE

program could save at least 1000 additional lives and lead to an annual saving of $200-$500

million for the United States’ healthcare system (Segev et al. 2005, Rees et al. 2012).

A major challenge that has hindered the establishment of a national PKE program is

a lack of incentives for transplant centers to participate. One possible approach is to ask

patient-donor pairs to directly register in the national PKE program and omit the transplant

center as an intermediary in the registration process. Another is to require that the transplant

centers enroll all their patient-donor pairs in the national PKE program, by passing a law.

Ashlagi and Roth (2014) discussed these suggestions and provided reasons as to why they

are unrealistic. In Section 2.6, our numerical results demonstrate that it is unnecessary to

enforce transplant centers to participate in the national PKE program. In fact, we show that

transplant centers should be willing to pay for enrolling most of their patient-donor pairs

in the national PKE program. In the following, we clarify why transplant centers may lack

incentives to participate in a national PKE program.

In a PKE program, patient-donor pairs undergo the following stages: (1) Patient-donor

pairs are evaluated to acquire the necessary medical information including compatibility

information needed for the next stage. (2) A matching algorithm finds an assignment of

donors to recipients subject to compatibility of donors with recipients (cf. Awasthi and

Sandholm 2009, Ünver 2010, Glorie et al. 2014). (3) Recipients and donors undergo final tests

and subsequently transplant surgeries. From a financial standpoint, the insurance company

of a patient is willing to pay for his medical expenses and his donor’s medical expenses,
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Figure 1: A four-way PKE, where each node represents a patient-donor pair. The donor in

each node donates her kidney to the patient in the next node of the cycle.

and the insurance company of a donor does not pay for her medical expenses. Donor’s pre-

match expenses are incurred before the identity of her recipient is known, so it is unclear

who pays for those expenses. This is a pressing question that needs to be addressed before

initiating a national PKE program. Deceased donor kidney transplant was suffering from

the same challenge in 1970s until the Centers for Medicare and Medicaid Services developed

a reimbursement strategy using the concept of a standard acquisition charge (SAC) to pay

organ procurement organizations (OPOs) for the overhead costs of evaluating and recovering

a deceased donor organ. Analogously, the development of a SAC model for a national PKE

program has been recommended so that the issue of pre-match expenses is resolved (Rees

et al. 2012, Melcher et al. 2013). This means that a national PKE program needs a payment

strategy for the pre-match expenses that is individually rational for each transplant center,

i.e., each transplant center is better off to harvest patient-donor pairs rather than do nothing

at all.

As each transplant center participating in a national PKE program seeks to maximize

its benefit, it may decide to only register its hard-to-match pairs in the pool and internally

conduct exchanges on its easy-to-match pairs. Such an approach can save the transplant

center some overhead cost related to logistics, coordination, and bureaucracy (cf. Ashlagi

and Roth 2012). Hence, transplant centers may only send their hard-to-match patient-donor
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pairs to the national PKE program. Ashlagi and Roth (2014) discussed how transplant

centers may interact with a centralized PKE program and how free riding by transplant

centers has already been observed as they withhold some of their patient-donor pairs. This

implies that the aforementioned payment strategy for a national PKE program needs to be

incentive compatible for each transplant center, i.e., each transplant center seeks to maximize

its benefit, given the payment strategy of the national PKE program.

In this chapter, we develop a payment strategy for a national PKE program that is both

individually rational and incentive compatible for transplant centers, and maximizes a social

welfare objective.

2.2 LITERATURE REVIEW

Incentives of transplant centers to participate in a national PKE program have been investi-

gated in several papers. Glorie et al. (2014) developed an algorithm to match patient-donor

pairs with multiple criteria. Their approach included individual rationality of transplant

centers by ensuring that each participating transplant center receives at least as many trans-

plants as those without participation. Ashlagi et al. (2013) studied mechanisms for two-way

exchanges under which full participation is a dominant strategy for transplant centers. They

also established lower bounds on social welfare loss of pursuing such mechanisms. Ashlagi

and Roth (2014) showed that as the number of patient-donor pairs and transplant centers

grows, it becomes less costly for society to incorporate individual rationality of transplant

centers. In addition, they proposed a bonus mechanism to incentivize transplant centers

to enroll all their patient-donor pairs in a large PKE program. Toulis and Parkes (2015)

designed a mechanism under which the truthful reporting of patient-donor pairs is efficient

and incentive compatible for each transplant center. Their analysis relies on the assumption

that the size of each transplant center’s pool is at least moderate (greater than 30). Finally,

they compared the performance of their mechanism with that of Ashlagi and Roth (2014)

by simulation.
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What distinguishes our work from the literature is that we are the first to investigate

the problem of finding an equilibrium payment strategy that incentivizes transplant centers

to participate in a national PKE program. Moreover, we present monetary definitions of

individual rationality and incentive compatibility since defining them only in terms of the

number of transplants is inaccurate.

2.3 A PRINCIPAL-AGENT MODEL

In this section, we formally define our problem and develop a mathematical model to explore

a class of payment strategies for the national PKE program, in which each transplant center

receives a monetary reward in return for harvesting, preparing, and enrolling each patient-

donor pair in the national pool. Consistent with current practice for deceased donors and

Rees et al. (2012), we call such a reward a SAC. We use the term society to refer to the

national PKE program manager throughout the chapter. We approach the problem as a

principal-agent model in which society is the principal and transplant centers are agents.

The parameters of the model are as follows:

• I = {1, 2, . . . , I}: The set of patient-donor and altruistic donor classes.

• E := {(i, j) ∈ I 2| donors of class i are compatible with patients of class j}.

• For all i ∈ I , Ei. = {j ∈ I |(i, j) ∈ E }, i.e., set of patient-donor pair classes whose

patients are compatible with donors of class i.

• For all i ∈ I , E.i = {j ∈ I |(j, i) ∈ E }, i.e., set of patient-donor pair classes whose

donors are compatible with patients of class i.

• C = {1, 2, . . . , C}: Set of transplant centers.

• λic: Arrival rate of patient-donor pairs of class i ∈ I to transplant center c ∈ C .

• αi: Rate of patient-donor pairs of class i ∈ I which are already available in the national

pool. These pairs reflect the unmatched pairs left from earlier periods.

Note that we develop a static model for the problem of assigning the SAC compensations,

⟨sic⟩i∈I ,c∈C , since when the SAC compensations are assigned in a practical setting, they
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will remain unchanged for a long time. Hence, it is plausible to investigate patient-donor

pairs’ arrival process only through its expected value (assuming a stationary distribution).

For this reason, we incorporated the rates λic and αi for each i ∈ I and c ∈ C .

• pic: The probability that a pair of class i ∈ I belonging to transplant center c ∈ C

will be matched if it is enrolled in the national pool. We assume that this parameter is

exogenous. This assumption is plausible since the national pool is much larger than that

of a transplant center, and in principle it is not influenced by decisions of a transplant

center.

• ric: Monetary reward that transplant center c ∈ C receives in return for conducting a

transplant operation on the patient of a pair of class i ∈ I in its facilities. The amount

of money, which is reimbursed by the insurance company of a matched patient, may be

embedded in this reward. When we define our objective function subsequently, regard-

less of whether a patient is internally matched by a transplant center or is externally

matched by the national program, we consider that the patient of each pair harvested

by a transplant center has his surgery in the same center, and the donor always travels

to her intended recipient’s transplant center.

• dic: Monetary cost of harvesting a patient-donor pair and donor’s pre-match cost.

• Ri: Societal reward for matching a patient of class i ∈ I . Similar to ric, the amount

of money, which is reimbursed by the insurance company of a matched patient, may be

embedded into this reward.

Societal decision variables are as follows:

• yij: The number of donors of class i matched to patients of class j in the national pool

for all (i, j) ∈ E .

• sic: The SAC compensation for each pair of class i ∈ I enrolled in the national pool by

transplant center c ∈ C . This can be interpreted as the compensation that a transplant

center receives in return for the service that the center provides for the national PKE

program. This service includes harvesting, preparing, and enrolling a patient-donor of

class i ∈ I in the national program. Another approach is to assume that the SAC com-
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pensation depends both on the class of the enrolled patient-donor pair and the transplant

center harvesting the patient-donor pair. We investigate this question in Section 3.8.

Decision variables for each transplant center c ∈ C are as follows:

• xijc: The number of donors of class i matched to patients of class j in the pool of

transplant center c ∈ C for all (i, j) ∈ E .

• zic: Rate of patient-donors of class i ∈ I from transplant center c ∈ C enrolled in the

national pool.

Without loss of generality, we assume that the rewards ric and Ri are nonnegative for

each i ∈ I and c ∈ C , otherwise all associated decision variables will take the optimal value

0 in the subsequent optimization models and may be omitted. We also follow the convention

that a term in bold refers to a real-valued vector, e.g., xc := ⟨xijc⟩(i,j)∈E , y := ⟨yij⟩(i,j)∈E ,

zc := ⟨zic⟩i∈I , and s := ⟨sic⟩i∈I ,c∈C . For each s ∈ R|I ||C |, transplant center c ∈ C seeks to

maximize its profit by the following problem:

φc(s) := max
∑

(i,j)∈E

ricxijc +
∑
i∈I

(picric + sic)zic (2.1a)

s.t. zic +
∑
j∈Ei.

xijc ≤ λic ∀i ∈ I , (2.1b)

∑
j∈Ei.

xijc =
∑
j∈E.i

xjic ∀i ∈ I , (2.1c)

zic ≥ 0 ∀i ∈ I , (2.1d)

xijc ∈ Z+ ∀(i, j) ∈ E . (2.1e)

For each c ∈ C , let Ψc(s) := {⟨xc, zc⟩ ∈ (2.1b) − (2.1e) :
∑

i,j∈E

ricxijc +
∑
i∈I

(picric + sic)zic ≥

φc(s)}, denote the set of optimal solutions for (2.1a)− (2.1e), called a solution set mapping

in the literature (cf. Robinson 1979, Dempe 2002). Society seeks to maximize social welfare:
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max
∑

(i,j)∈E

Ri

(
yij +

∑
c∈C

xijc

)
−

∑
i∈I ,c∈C

siczic (2.2a)

s.t.
∑
j∈Ei.

yij ≤ αi +
∑
c∈C

zic ∀i ∈ I , (2.2b)

∑
j∈Ei.

yij =
∑
j∈E.i

yji ∀i ∈ I , (2.2c)

∑
(i,j)∈E

ricxijc +
∑
i∈I

(picric + sic)zic −
∑
i∈I

λicdic ≥ 0 ∀c ∈ C , (2.2d)

⟨xc, zc⟩ ∈ Ψc(s) ∀c ∈ C , (2.2e)

yij ∈ Z+ ∀(i, j) ∈ E , (2.2f)

sic unrestricted ∀i ∈ I . (2.2g)

The objective function (2.2a) represents the total reward of society due to the number of

transplants, subtracted from the amount of money that society spends on the participation

of the transplant centers. This objective function reflects the fact that it does not matter

whether a pair is matched internally by a transplant center or by the national PKE program,

provided that the sizes of both matching are the same. Conditions (2.2b) are flow conser-

vation constraints, enforcing that the rate of matched pairs of class i ∈ I does not exceed

the arrival rate of pairs of the same class to the national PKE program. Conditions (2.2c)

are participation constraints for pairs, ensuring that each pair of class i donates a kidney

only in return for receiving a kidney. Conditions (2.2d) are individual rationality constraints

for transplant centers, ensuring that the expected benefit of participating and accepting all

patient-donor pairs for each transplant center is at least as large as the alternative of re-

jecting all patient-donor pairs upon admission. Conditions (2.2e) are incentive compatibility

constraints for transplant centers since they require that given a SAC profile s, each trans-

plant center seeks to maximize its own profit. Indeed, the societal model (2.2a) − (2.2g) is

a bilevel program where the transplant center model (2.1a) − (2.1e) for each c ∈ C is the

lower level problem and reflected by constraints (2.2e). Note that there are multiple (|C |)

lower level problems. Whenever there exist multiple optimal solutions for the lower level

problem (2.2e) for each c ∈ C , the one generating the highest profit for society is selected.
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In other words, we adopt the notion of optimistic formulation in bilevel programming. For

a comprehensive review about different formulations and relations between them in bilevel

programming, see Dempe (2002).

Remark 1. We may truncate our search space to a closed bounded interval in R for variable

sic for each i ∈ I and c ∈ C in problem (2.2a)− (2.2g) because if sic >
∑
j∈I

rjcλjc, then the

optimal solution of problem (2.1a)−(2.1e) is z∗ic = λic, i.e., the optimal reaction of transplant

centers is to enroll all their patient-donor pairs of class i in the national PKE program. On

the other hand, if sic < −picric, then the optimal solution of problem (2.1a)−(2.1e) is z∗ic = 0,

i.e., the optimal reaction of transplant centers is to enroll none of their patient-donor pairs

of class i in the national PKE program. Let sic :=
∑
j∈I

rjcλjc and sic := −picric be upper and

lower bounds of sic, respectively.

2.4 A SINGLE-LEVEL FORMULATION

A bilevel MILP where the lower level is an LP can be transformed into a single-level MILP

that can be solved by state-of-the-art MILP solvers (Fortuny-Amat and McCarl 1981). Con-

versely, a bilevel MILP where the lower level is an MILP with 40 binary variables and a

single budget constraint is unsolvable by state-of-the-art approaches (DeNegre and Ralphs

2009, Tang et al. 2015). Note that the bilevel program (2.2a) − (2.2f) has 300 lower level

problems, each of which has at least 32 constraints and 256 integer variables. Our study in

this section reveals a rich network structure of the lower level problem (2.1a) − (2.1e) that

makes the bilevel program (2.2a)− (2.2f) tractable.

Lemmas 1 and 2 present a reformulation of the lower level problem (2.1a)− (2.1e), which

is used to reformulate the bilevel program (2.2a)−(2.2f) into an equivalent MILP. For a ∈ R,

let a+ := max{a, 0}, ⌊a⌋ be the floor of a, and {a} := a− ⌊a⌋.
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Lemma 1. For each c ∈ C , (x∗
c , z

∗
c) is an optimal solution of (2.1a) − (2.1e) if and only if

x∗
c is an optimal solution of the following IP,

max
∑

(i,j)∈E

(ric − (picric + sic)
+)xijc (2.3a)

s.t.
∑
j∈Ei.

xijc ≤ ⌊λic⌋ ∀i ∈ I , (2.3b)

∑
j∈Ei.

xijc =
∑
j∈E.i

xjic ∀i ∈ I , (2.3c)

xijc ∈ Z+ ∀(i, j) ∈ E , (2.3d)

and

z∗ic = λic −
∑
j∈Ei.

x∗
ijc ∀i ∈ I for which picric + sic ≥ 0, (2.4a)

z∗ic = 0 ∀i ∈ I for which picric + sic < 0. (2.4b)

Proof. (⇒) : In the problem (2.1a)− (2.1e), zic appears only once in a constraint of (2.1b),

for each c ∈ C , i ∈ I . Therefore, if its objective function coefficient is nonnegative, its

optimal value should be such that (2.1b) is binding, so that (2.4a) is satisfied. On the other

hand, if the objective function coefficient of zic is strictly negative, then its optimal value

should be 0, so that (2.4b) is satisfied. Note that if the objective function coefficient of zic is

0, its optimal value may be any number between 0 and λic −
∑
j∈Ei.

x∗
ijc, but since we use the

optimistic formulation of the bilevel program (2.2a)− (2.2g), the optimal value of zic should

satisfy (2.4a).

Therefore, to solve the problem (2.1a)− (2.1e), we only need to consider (xc, zc) in which

(2.4a) − (2.4b) are satisfied. After substituting zic by its equivalent from (2.4a) − (2.4b)

for each i ∈ I , projecting it out of the formulation, and considering integrality of xc,

(2.3a)− (2.3d) is obtained as a reformulation of (2.1a)− (2.1e). Note that after substituting

zic by its equivalent from (2.4a)− (2.4b), the objective function (2.1a) is as follows:
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∑
(i,j)∈E

ricxijc +
∑
i∈I

(picric + sic)
+(λic −

∑
j∈Ei.

xij) =

∑
(i,j)∈E

(ric − (picric + sic)
+)xijc +

∑
i∈I

(picric + sic)
+λic .

After removing the last summation, which is a constant, (2.3a) is obtained.

(⇐) : The proof follows from the reverse steps of that of the first direction.

Lemma 2. For each c ∈ C , the LP relaxation of (2.3b)− (2.3d) is an integral polyhedron.

Proof. We represent constraints (2.3b) − (2.3c) as the projection of the constraints of a

minimum cost network flow problem (Ford and Fulkerson 1962). Note that (2.3c) clearly

correspond to the flow conservation constraints in a minimum cost network flow problem,

and (2.3b) may be represented as the capacity constraints as follows. We construct a network

by splitting each node i ∈ I of the underlying network of (2.3b)− (2.3c) into two separate

nodes and adding a fictitious arc with the capacity of ⌊λic⌋ between these two nodes. Then,

(2.3b) is equal to the capacity constraints after projecting out the variables associated with

the fictitious arcs.

Since the family of constraints of a minimum cost network flow problem is an integral

polyhedron (Ford and Fulkerson 1962) and the projection of an integral polyhedron is integral

(Balas 2005), it follows that the LP relaxation of (2.3b)− (2.3d) is integral.

Lemma 3. For each c ∈ C ,{
xc ∈ R|E | :

∑
j∈Ei.

xijc =
∑
j∈E.i

xjic ∀i ∈ I

}
=

{
xc ∈ R|E | :

∑
j∈Ei.

xijc ≤
∑
j∈E.i

xjic ∀i ∈ I

}
.

Proof. Clearly ⊆ holds. To see the other direction, for each xc belonging to the left set, by

adding all inequalities, it follows that:

∑
i∈I

∑
j∈Ei.

xijc ≤
∑
i∈I

∑
j∈E.i

xjic.
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The left-side and the right-side of the last inequality are equal to
∑

(i,j)∈E

xijc. This implies

that all the inequalities describing the left set may be replaced by the equality form.

In the sequel, we seek to linearize problem (2.2a) − (2.2g) by Lemmas 1 − 3. For each

c ∈ C and s ∈ R|I ||C |, let:

ϕc(s) := max
∑

(i,j)∈E

(ric − (picric + sic)
+)xijc (2.5a)

s.t.
∑
j∈Ei.

xijc ≤ ⌊λic⌋ ∀i ∈ I , (2.5b)

∑
j∈Ei.

xijc =
∑
j∈E.i

xjic ∀i ∈ I , (2.5c)

xijc ≥ 0 ∀(i, j) ∈ E , (2.5d)

and ∆c(s) := {xc ∈ (2.5b) − (2.5d)|
∑

(i,j)∈E

(ric − (picric + sic)
+)xijc ≥ ϕc(s)}. Lemmas 1 and

2 imply that for each c ∈ C , constraint (2.2e) may be rewritten as follows:

xc ∈ ∆c(s), (2.6a)

zic = λic −
∑
j∈Ei.

xijc ∀i ∈ I for which picric + sic ≥ 0, (2.6b)

zic = 0 ∀i ∈ I for which picric + sic < 0. (2.6c)

Note that for each c ∈ C and s ∈ R|I ||C |, the problem (2.5a)− (2.5d) is an LP, and its dual

is as follows:

min
∑
i∈I

vic,1⌊λic⌋ (2.7a)

s.t. vic,1 + vic,2 − vjc,2 ≥ ric − (picric + sic)
+ ∀(i, j) ∈ E , (2.7b)

vic,1, vic,2 ≥ 0 ∀i ∈ I , (2.7c)

where vic,1 and vic,2 are dual variables for constraints (2.5b) and (2.5c), respectively. Note

that variable vic,2 is unrestricted in the dual of (2.5a) − (2.5c), but Lemma 3 implies that

it may be considered to be nonnegative as in (2.7c). It can easily be seen that the primal

(2.5a)− (2.5c) and its dual (2.7a)− (2.7c) are always feasible and bounded.
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A significant consequence of our arguments so far is that the bilevel model (2.2a)−(2.2g)

may be transformed into an MILP, as follows:

max
∑

(i,j)∈E

Ri

(
yij +

∑
c∈C

xijc

)
−

∑
i∈I ,c∈C

(
πic +

∑
k∈Kic

2kτick

)
(2.8)

s.t.∑
j∈Ei.

yij ≤ αi +
∑
c∈C

zic ∀i ∈ I ,

(2.9)∑
j∈Ei.

yij =
∑
j∈E.i

yji ∀i ∈ I ,

(2.10)∑
(i,j)∈E

ricxijc +
∑
i∈I

picriczic +
∑
i∈I

(
πic +

∑
k∈Kic

2kτick

)
−
∑
i∈I

λicdic ≥ 0 ∀c ∈ C ,

(2.11)

−Mgic ≤ zic +
∑
j∈Ei.

xijc − λic ≤ 0 ∀i ∈ I , c ∈ C ,

(2.12)

0 ≤ zic ≤ M(1− gic) ∀i ∈ I , c ∈ C ,

(2.13)

−Mgic ≤ picric + sic ≤ M(1− gic) ∀i ∈ I , c ∈ C ,

(2.14)

−Mwic ≤
∑
j∈Ei.

xijc − ⌊λic⌋ ≤ 0 ∀i ∈ I ,

(2.15)∑
j∈Ei.

xijc =
∑
j∈E.i

xjic ∀i ∈ I , c ∈ C ,

(2.16)
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0 ≤ xijc ≤ Mqijc ∀(i, j) ∈ E , c ∈ C , (2.17)

0 ≤ vic,1 + vic,2 − vjc,2 − ric + h+
ic ≤ M(1− qijc) ∀(i, j) ∈ E , c ∈ C , (2.18)

h+
ic − h−

ic = picric + sic ∀i ∈ I , c ∈ C , (2.19)

0 ≤ vic,1 ≤ M(1− wic) ∀i ∈ I , c ∈ C , (2.20)

zic = {λic}(1− gic) +
∑
k∈Kic

2keick ∀i ∈ I , c ∈ C , (2.21)

τick ≥ sic − sic(1− eick) ∀i ∈ I , c ∈ C , k ∈ Kic, (2.22)

τick ≥ siceick ∀i ∈ I , c ∈ C , k ∈ Kic, (2.23)

τick ≤ sic − sic(1− eick) ∀i ∈ I , c ∈ C , k ∈ Kic, (2.24)

τick ≤ siceick ∀i ∈ I , c ∈ C , k ∈ Kic, (2.25)

πic ≥ sic − sicgic ∀i ∈ I , c ∈ C , (2.26)

πic ≥ sic(1− gic) ∀i ∈ I , c ∈ C , (2.27)

πic ≤ sic − sicgic ∀i ∈ I , c ∈ C , (2.28)

πic ≤ sic(1− gic) ∀i ∈ I , c ∈ C , (2.29)

eick ∈ {0, 1}, τick unrestricted ∀i ∈ I , c ∈ C , k ∈ Kic, (2.30)

πic unrestricted ∀i ∈ I , c ∈ C , (2.31)

vic,2, h
+
ic, h

−
ic ≥ 0, wic ∈ {0, 1} ∀i ∈ I , c ∈ C , (2.32)

qijc ∈ {0, 1} ∀(i, j) ∈ E , c ∈ C , (2.33)

gic ∈ {0, 1} ∀i ∈ I , c ∈ C , (2.34)

yij ∈ Z+ ∀(i, j) ∈ E , (2.35)

sic unrestricted ∀i ∈ I , (2.36)

where M is a sufficiently large constant. The family of constraints (2.12)− (2.14) and (2.34)

is an MILP reformulation of (2.6b) − (2.6c). Also, the family of constraints (2.15) − (2.20)

and (2.32) − (2.33) is an MILP variant of (2.6a), and is derived from the complementary

slackness theorem of LP duality. For further details on how to reformulate a lower level LP

as a family of MILP constraints, see, e.g., Fortuny-Amat and McCarl (1981). The family

of constraints (2.21) − (2.31), (2.13), and (2.34) is to linearize the term siczic in (2.2a),
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and are derived from Lemma (1), replacing the binary decomposition of zic, and using well

known linearization techniques (Glover 1975). Moreover, the base of the logarithm is 2, and

Kic := {0, 1, · · · , ⌊log λic⌋} for all i ∈ I and c ∈ C . As the parameter λic is small in our

practical setting, the binary decomposition of zic does not explode the model size. The next

theorem formalizes our arguments in this section.

Theorem 1. The optimal solution of the MILP (2.8) − (2.36) coincides with that of the

bilevel program (2.2a)− (2.2g).

2.5 CALIBRATION

In this section, we calibrate our model using a data set that will be described in detail in

what follows.

Patient-donor pair classes. We partition patient-donor pairs by ABO blood types of

the patient and the donor of a pair (cf. Ünver 2010). Specifically, there are four ABO blood

types for each patient and each donor: O, A, B, AB. Hence, there are sixteen patient-donor

pair classes. We denote a class as X-Y if the patient and the donor of each pair in the class

have blood types X and Y, respectively. For instance, Class A-B consists of all pairs whose

patients and donors have blood types A and B, respectively.

Compatibility. A patient who is biologically compatible with a donor can receive

the donor’s kidney. Biological compatibility consists of both blood-type and tissue-type

compatibilities. As noted earlier, there are four ABO blood types: O, A, B, AB. Blood-type

compatibility possesses a well-defined structure as follow: (1) An O (blood-type) patient is

blood-type compatible only with O donors. (2) An A patient is blood-type compatible with

both O and A donors. (3) A patient of blood-type B is blood-type compatible with both O

and B donors. (4) An AB patient is blood-type compatible with all donors. When a patient

and a donor are blood-type compatible, tissue-type compatibility should be investigated.

Unlike blood-type compatibility, tissue-type compatibility lacks a well-defined structure.

Tissue-type incompatibility occurs due to the presence of antibodies in a patient’s blood

cells that would damage the kidney from a specific donor. These antibodies rise for several
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reasons, mostly from exposure to another person’s cells, usually due to pregnancy, blood

transfusion or prior transplant. To detect the presence of antibodies, the cross-match test is

conducted in which the bloods of the patient and the donor are mixed. If the donor’s cells

die, the cross-match is positive, i.e., the patient cannot receive a kidney from the donor.

Otherwise, they are compatible. This implies that before conducting a cross-match test, it

is impossible to realize whether a patient is tissue-type compatible with a specific donor. As

a consequence of this restriction, tissue-type compatibility has not been modeled in many

related papers (e.g., Roth et al. 2007, Ünver 2010). Following this stream of literature, we

too skip tissue-type compatibility by the following assumption.

Assumption 1. (Roth et al. 2007, Ünver 2010) No patient is tissue-type incompatible with

the donor of another pair.

Note that a patient may be tissue-type incompatible with his intended donor, and arrival

rates of blood-type compatible patient-donor pairs to the national PKE program is hence

allowed to be greater than zero.

Arrival rates of patient-donor pairs. As data regarding the parameter λic for all

i ∈ I and c ∈ C are unavailable, we describe a process to estimate this set of parameters.

This process consists of two steps: First, we estimate the number of patient-donor pairs in

each class in the United States. Second, we estimate how patient-donor pairs are distributed

among transplant centers based on the number of kidney transplants performed in each

transplant center so far.

By following the approach described in Saidman et al. (2006), the most prevalent ap-

proach in the literature, we derive the probability distribution of patient-donor classes in the

United States. The necessary data to apply the approach of Saidman et al. (2006) is based

on SRTR (2015) and reported in Table 1. Note that the calculated panel reactive antibody

(CPRA) in Table 1 is a measure of sensitization level, and estimates the percentage of donors

that would be tissue-type incompatible with a patient. Table 2 reports the resulting prob-

ability distribution of patient-donor classes in the United States. This table implies that

46.68% of patient-donors are compatible. The number of living-donor transplants in 2012

is 5,346 (SRTR 2015). As of 2010, around 1000 PKEs have been conducted in the United
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States (Rees et al. 2012), although over 15000 living-donor transplants have been conducted

only in 2010-2012 (SRTR 2015). Hence, with a slight loss of accuracy, we can say that almost

all 5,346 living-donor transplants in 2012 have been performed on compatible patient-donor

pairs. Therefore, the total number of compatible and incompatible patient-donor pairs in the

United States may conservatively be estimated as 11, 000 ≈ 5,346
0.4668

. Given that we estimated

the patient-donor population size and the distribution of patient-donor classes, the number

of patient-donor pairs within each class in the United States may easily be estimated.

The number of kidney transplants performed in each transplant center from the start of

living-donor transplant in 1988 to the end of 2014 is available at OPTN Data 2015. Assuming

that the number of incompatible patient-donor pairs arriving at each transplant center is

proportional to the number of kidney transplants performed in the transplant center, we can

estimate how patient-donor pairs are distributed across transplant centers. Knowing this

distribution and the number of patient-donor pairs within each class in the United States,

we can estimate the parameter λic for all i ∈ I and c ∈ C . Finally, we let αi = 0 for all

i ∈ I .

Table 1: Probability characteristics of the patient-donor population.

Patient/Donor blood type Frequency (percent)
O 51.2
A 30.1
B 15.5
AB 3.2

CPRA Frequency (percent)
0− < 1% 50.5
1− 19% 18.4
20− 79% 16.3
80− 100% 14.7
Gender Frequency (percent)
Male 59.3
Female 40.7

Unrelated living donors Frequency (percent)
Spouse 48.97
Other 51.03

The distributions are based on SRTR (2015).

Probabilities. To estimate the parameter pic for all i ∈ I and c ∈ C , we consider

a hypothetical pool in which all patient-donor pairs are enrolled. Then, we match patient-

donor pairs in this pool with the goal of maximizing the number of transplants. Next, we
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Table 2: Distribution of patient-donor population.

Incompatible patient-donor population
Patient blood type

Donor blood type O A B AB
O 0.0716 0.0421 0.0217 0.0045
A 0.1541 0.0247 0.0467 0.0026
B 0.0794 0.0467 0.0066 0.0014
AB 0.0164 0.0096 0.0050 0.0003

Compatible patient-donor population
Patient blood type

Donor blood type O A B AB
O 0.1906 0.1120 0.0577 0.0119
A 0.0000 0.0659 0.0000 0.0070
B 0.0000 0.0000 0.0175 0.0036
AB 0.0000 0.0000 0.0000 0.0007

This distribution is derived from Table 1.

estimate pic for all i ∈ I and c ∈ C by the proportion of patients belonging to class i ∈ I

who are transplanted in the hypothetical pool. These probabilities are reported in Table 3.

Our approach to estimate the parameter pic is plausible because: (1) As will be shown,

our numerical results demonstrate that a significant portion of patient-donor pairs should be

enrolled in the national PKE program under an equilibrium payment strategy. (2) The size

of a transplant center’s pool is insignificant compared to that of a national pool, and hence

the chance of being matched in a national PKE program for an arbitrary patient-donor pair

is almost independent of a single transplant center’s decisions.

Table 3: Probabilities of being matched in a national PKE program for an incompatible

patient-donor pair.

Patient blood type

Donor blood type O A B AB
O 1.0000 1.0000 1.0000 1.0000
A 0.2796 1.0000 1.0000 1.0000
B 0.3165 1.0000 1.0000 1.0000
AB 0.0000 0.3714 0.9630 1.0000
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Societal reward. Each kidney transplant saves society one life and thousands of dol-

lars in foregone medical expenses. Matas and Schnitzler (2003) studied the benefits of

living-donor transplant and quantified its value by a cost-effectiveness analysis. In their

comprehensive study, they considered different factors such as patient survival, cost of dial-

ysis, graft survival, death with function, death after graft loss, cost of organ acquisition,

cost of transplant, maintenance cost with graft function, and cost of return to dialysis after

living-donor transplant. They found that each additional living-donor transplant is worth at

least $269,319 for society. After incorporating inflation (consumer price index), the updated

value of an additional living-donor transplant (Ri for all i ∈ I ) is $334,648.46 (Bureau of

Labor Statistics 2015).

Transplant center costs and rewards. The donor’s pre-match cost (dic) encompasses

expenses for a set of procedures such as blood testing, electrocardiogram, chest x-ray, blood-

work, urine tests, pressure check, medical history and physical examination, psychosocial

assessment, education session, CT scan, and surgeon visit. Depending on the donor’s gen-

der, age, and genetic make-up other medical tests may be required, e.g., mammogram, pap

smear, prostate-specific antigen, exercise stress test and a 2-hour glucose tolerance test. In

this regard, we contacted the University of Pittsburgh Medical Center staff who estimated

dic to be $1,554.82 on average for all i ∈ I and c ∈ C (Tevar 2015).

For conducting each kidney transplant, each transplant center receives an income in

return for providing different services such as physical, psychological, and laboratory evalu-

ations, room, board, and ancillary services, and etc. Bentley (2014) investigated the related

expenses in the interval of one month pre-transplant to six months post-transplant. The

income of a transplant center for each kidney transplant is $419,200 on average (Bentley

2014). Moreover, hospital operating margin was 5.7% in 2013 (American Hospital Associa-

tion 2015). As a result, we can estimate ric to be $419, 200×0.057 = $23, 894.4 for all i ∈ I

and c ∈ C .

22



2.6 POLICY INSIGHTS

There are various frameworks on which a national PKE program may be established. Our

model can quantify benefits of these frameworks for society and different stakeholders, and

provide valuable policy insights.

2.6.1 Benefits of a National PKE Program

Although it is intuitive that a national (centralized) PKE program would perform better than

the current (decentralized) PKE program, it is important to provide quantitative insights

about benefits of a national PKE program for different stakeholders. Indeed, we must ensure

that benefits of establishing a national PKE program outweigh its setup and variable costs.

The more the benefits of a national PKE program are realized, the more incentives for society

exist to establish such a program as soon as possible. Hence, we compare the performance

of a national PKE program with that of a decentralized PKE program with respect to the

following criteria:

C.1 The societal objective, which is the value of (2.2a),

C.2 The total number of transplants,

C.3 The total number of internal transplants,

C.4 The total income of transplant centers,

C.5 The total cost of insurance companies.

Table 4 reports these criteria under several different settings. For each setting, C.1-C.3 are

obtained by running the model (2.8)− (2.36) with parameters extracted from the associated

data set. Given that each transplant surgery brings $419,200 income to a transplant center,

C.4 is equal to C.2 multiplied by 419,200. Annual cost of an ESRD patient treated with

hemodialysis and transplant are, respectively, $90,026.89 and $32,803.99 in 2015 (Rees et al.

2012, Bureau of Labor Statistics 2015). For each setting, C.5 is annual total of such costs

for all patient-donor pairs.
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Table 4 demonstrates that a national PKE program, as compared to a decentralized

PKE program, leads to saving 1,340 additional lives, enhancing the societal objective by

more than $0.5 billion, increasing transplant centers’ income by more than $0.5 billion, and

decreasing insurance costs by $75 million annually. Of note, 1,296 patient-donor pairs are

internally transplanted in the national PKE program, which is more than half of the number

of patient-donor pairs who are all internally transplanted in a decentralized PKE program.

Internal transplants are favorable in the sense that the associated patient-donor pairs do not

need to move across transplant centers, which is more convenient and suppresses traveling

costs for these patient-donor pairs.

2.6.2 SAC Settings

Note that in our model, the SAC compensation sic depends on patient-donor pair class

i and transplant center c. We call this setting center-and-pair-dependent SAC. Although

this setting seems plausible, other possible settings for SAC compensation are: (1) Pair-

dependent SAC : Drop the dependency on transplant center c and have a SAC compensation

si that depends only on patient-donor pair class i. (2) Center-dependent SAC : Drop the

dependency on patient-donor pair class i and have a SAC compensation sc that depends

only on transplant center c. (3) Fixed SAC : Drop the dependency on both transplant center

c and patient-donor class i and have a SAC compensation s that is fixed for all transplant

center c ∈ C and patient-donor class i ∈ I . Clearly, the societal benefit of a center-

and-pair-dependent-SAC setting is higher than that of the other settings. However, it is

not clear which setting works better in practice since each one has its own advantages and

disadvantages. For instance, as a disadvantage of a center-dependent SAC, Rees et al. (2012)

noted that “As the number of KPD [kidney paired donation] transplants performed at each

center may be highly variable, such an approach may lead to large variability in center-specific

KPD SAC charges and payment of widely disparate costs between transplant centers could be

a disincentive to centers participating in such exchanges.” To investigate the benefits of these

settings, we report their associatedC.1-C.5 in Table 4. As this table shows, all these different

settings result in the same number of transplants, which in turn leads to identical transplant
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centers’ income and insurance cost. However, they have different societal objective values.

To find out why, recall that the societal objective is
∑

(i,j)∈E

Ri

(
yij +

∑
c∈C

xijc

)
−

∑
i∈I ,c∈C

siczic,

whose first term is the reward related to transplants and second term is the amount money

spent on (earned by) the participation of transplant centers. The amount of the first term

is $1.269 billion under the optimal SAC compensations for all the settings. However, the

amount of the second term is $88 million, $65 million, 0, and 0 for the center-and-pair-

dependent SAC, the pair-dependent SAC, the center-dependent SAC, and the fixed SAC,

respectively, which leads to different societal objectives for these settings. Of note, in the

center-and-pair-dependent SAC and the pair-dependent SAC, the national PKE program

makes 88, 65 million dollar annual income, respectively, which justifies the cost of establishing

and running a national PKE program. Given the space limitation, we are unable to report

the optimal SAC compensations for the center-and-pair-dependent SAC and the center-

dependent SAC. We report the optimal SAC compensations for the pair-dependent SAC in

Table 5. In addition, the optimal SAC compensation for the fixed SAC setting is equal to

zero, which means that transplant centers pay nothing for participation in the national PKE

program.

2.6.3 Authoritarian Setting

A hypothetical setting of interest is when transplant centers are required by a law to fully

participate in a national PKE program. Specifically, transplant centers should enroll all their

patient-donor pairs in the national PKE program, and they do not receive (or pay) any money

for that. We call this setting authoritarian, and report its associated C.1-C.5 in Table 4.

The results of this table show that the authoritarian setting cannot reach more transplants

than those of any SAC-based setting, and hence there is no benefit in enforcing transplant

centers to participate in a national PKE program. Indeed, as noted earlier, transplant centers

are even willing to annually pay $88, $65 million for enrolling their patient-donor pairs in

a national PKE program with a center-and-pair-dependent SAC or a pair-dependent SAC,

respectively.
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Table 4: Annual total reward (cost) of different stakeholders under different settings.

SAC settting C.1 C.2 C.3 C.4 C.5

Center-and-pair-dependent SAC $1.357E+09 3793 1296 $1.590E+09 $3.109E+08

Pair-dependent SAC $1.335E+09 3793 9 $1.590E+09 $3.109E+08

Center-dependent SAC $1.269E+09 3793 1586 $1.590E+09 $3.109E+08

Fixed SAC $1.269E+09 3793 1731 $1.590E+09 $3.109E+08

Decentralized $8.209E+08 2453 2453 $1.028E+09 $3.875E+08

Authoritarian $1.269E+09 3793 N/A $1.590E+09 $3.109E+08

2.6.4 Participation of Compatible Patient-donor Pairs

Recall that, based on the physiological compatibility, patient-donor pairs are classified into

two groups: (1) compatible patient-donor pairs, and (2) incompatible patient-donor pairs.

The patient can receive the donor’s kidney for each compatible patient-donor pair, but

this is not the case for an incompatible patient-donor pair. PKE is a modality to resolve

this issue of incompatible patient-donor pairs, and clearly compatible patient-donor pairs

lack incentives to participate in a PKE. Hence, a national PKE program will be restricted

only to incompatible patient-donor pairs. However, a national PKE program will reach far

more benefits if compatible patient-donor pairs participate in the program by letting it find

compatible matches for them. Sonmez and Ünver (2015) proposed a new incentive scheme

to encourage compatible patient-donor pairs to participate, and analyzed potentials of the

scheme in terms of enhancing efficiency and equity. To illuminate advantages of compatible

patient-donor pair participation, we run our model for this case and report its results in

Table 6 for settings described in Subsection 2.6.1. Note that the setting “Current” in Table

6 presents the situation where compatible patient-donor pairs do no participate and PKE

for incompatible patient-donor pairs is conducted in a decentralized setting.

Table 6 demonstrates that a national PKE program with participation of compatible

patient-donor pairs compared to what current practice in the United States PKE program
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Table 5: Optimal SAC compensations in US dollars by patient-donor blood types.

Patient blood type

Donor blood type O A B AB
O $-23894.4 $-23894.4 $-23894.4 $201724
A $-6682.07 $-23894.4 $-23894.4 $0
B $-7562.82 $-23894.4 $-23225.9 $0
AB $0 $-8875.1 $-19359.8 $0

will save at least 3400 additional lives, enhancing the societal objective by $1.38 billion,

increasing transplant centers’ income by $1.43 billion, and decreasing insurance costs by

$0.195 billion annually. Note that, these benefits are almost three times as large as those if

compatible patient-donor pairs do not participate. In particular, a national PKE program

with participation of compatible patient-donor pairs creates $0.847 billion more profit for

society than that without participation of compatible patient-donor pairs. This additional

profit may be invested in incentivizing compatible patient-donor pairs to participate. Note

that we are fully aware of ethical dilemmas on monetary transfer in organ exchange, and

we do not recommend its use. We only seek to shed light on advantages of participation of

compatible patient-donor pairs.

All the SAC-based settings provide roughly the same number of transplants which in

turn leads to the same transplant centers’ income and insurance costs. Moreover, center-

and-pair dependent SAC, pair-dependent SAC, and center-dependent SAC settings deliver

almost the same societal objective. However, the societal objective of the fixed SAC setting is

$0.225 billion smaller than those of the other SAC-based settings. Finally, the authoritarian

setting delivers (almost) the same number of transplants as that of any SAC-based setting,

and however its societal objective is at least $0.225 billion smaller than those of center-and-

pair dependent SAC, pair-dependent SAC, and center-dependent SAC settings. This $0.225

billion represents the amount of money that a national PKE program charges transplant

centers for enrolling their patient-donor pairs.
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Table 6: Annual total reward (cost) of different stakeholders under different settings when

compatible patient-donor pairs participate.

SAC setting C.1 C.2 C.3 C.4 C.5

Center-and-pair-dependent SAC $3.923E+09 10990 2169 $4.607E+09 $3.614E+08

Pair-dependent SAC $3.903E+09 10992 36 $4.608E+09 $3.613E+08

Center-dependent SAC $3.923E+09 10990 2169 $4.607E+09 $3.614E+08

Fixed SAC $3.698E+09 10992 0 $4.608E+09 $3.613E+08

Current $2.539E+09 7587 2453 $3.180E+09 $5.561E+08

Authoritarian $3.678E+09 10992 N/A $4.608E+09 $3.613E+08
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3.0 OPTIMIZING OVER PURE STATIONARY EQUILIBRIA IN

CONSENSUS STOPPING GAMES

3.1 MOTIVATION

Discrete-time stochastic games have modeled dynamic competitive interactions among mul-

tiple players since they were introduced by Shapley (1953). A stochastic game consists of

periods, states, actions, rewards, players, and transition probabilities. In each period, the

stochastic game occupies a state, and all players choose their actions simultaneously and

independently. Subsequently, each player receives a reward that depends on the current

state and the actions of all players. The game transitions to the next state according to a

discrete probability distribution, conditioned on the current state and the chosen actions.

Each player seeks to maximize his own reward criterion, e.g., his total expected discounted

reward.

A strategy for each player specifies a probability distribution over the feasible actions

in each period conditioned on the current state and the history of the game up to that

period. If this distribution depends only on the current state, then the strategy is called

stationary. A strategy is called pure when all the probabilities are in {0, 1}. A (stationary)

strategy profile is a collection of (stationary) strategies of all players that fully specifies all

actions in the game, and it must include one and only one (stationary) strategy for each

player (Solan 2012). To analyze stochastic games, there are several solution concepts such

as Nash equilibrium, subgame-perfect equilibrium, and stationary equilibrium. A subgame-

perfect equilibrium is a strategy profile that is a Nash equilibrium of every subgame of the

original game. A stationary equilibrium is a stationary strategy profile that maximizes every

0This chapter is based on Dehghanian et al. (2015).
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player’s reward criterion in each state (among all stationary and non-stationary strategy

profiles) given the strategies of the other players. Equivalently, a stationary equilibrium

is a subgame-perfect equilibrium that is stationary. There are several reasons to analyze

stationary equilibria in stochastic games. First, it prescribes the simplest form of behavior

that is consistent with rationality. Second, compared to subgame-perfect equilibrium, a

stationary equilibrium represents the notion of being free from the past, i.e., “bygones are

bygones”, more completely through a state-contingent behavior (Maskin and Tirole 2001).

The existence of a stationary equilibrium for a discounted stochastic game with finite state

and action spaces has long been established (e.g., Fink 1964, Sobel 1971).

Stochastic games are very challenging since it is often difficult to characterize even sta-

tionary equilibria (Doraszelski and Escobar 2010, Hörner et al. 2011). Solan (2012) notes

that “Unfortunately, to date there are no efficient algorithms to calculate either the value in

zero-sum stochastic games, or equilibria in non-zero-sum games.” In many contexts, players

may prefer to use pure stationary strategies; however, the characterization of pure station-

ary equilibria is even more challenging. Another issue that has limited the applicability

of stochastic games is the existence of multiple stationary equilibria, and it is difficult to

find all such equilibria (Aguirregabiria and Mira 2007). Two major complications arise as

consequences of the existence of multiple equilibria (Köppe et al. 2011): First, it becomes

more difficult to predict players’ behavior, and players may not reach an equilibrium at all.

Second, many existing methods find one equilibrium and provide no systematic methodology

to find all equilibria. Such complications raise an even more challenging question of finding

a best stationary equilibrium with respect to a given criterion in stochastic games.

We consider consensus stopping games, a broad class of stochastic stopping games defined

over a finite set of players, states, actions, and rewards. Such a game dynamically evolves

over an infinite-horizon setting. In each period of the game, each player decides whether to

offer to stop or continue the game. If all players offer to stop, the game terminates, and each

player receives a lump-sum stopping reward. Conversely, if at least one player decides to

continue, each player receives an immediate continuation reward, the game moves into the

next state according to a Markovian transition, and the rest of the players must continue,

regardless of their decisions. In this chapter, we study the problem of finding a best pure
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stationary equilibrium for this class of games. Our primary motivations for studying this

problem include, but not limited to: (1) Optimizing over (pure stationary) equilibria, rather

than identifying such equilibria is inherently interesting, and we are the first who investigate

it comprehensively. (2) Consensus stopping games are an important class of stochastic games

with various applications, as discussed in the rest of this section.

Consensus stopping games arise in the context of consensus decision-making, which is

indeed used by many international organizations in policy making. For instance, the Council

of the European Union requires unanimity in some policy areas such as membership, taxa-

tion, social security, foreign and common defense policy and operational police cooperation

among the Member States (The Treaty of Lisbon 2007). The World Trade Organization, the

Association of Southeast Asian Nations, the North Atlantic Treaty Organization, the Confer-

ence on Security and Cooperation in Europe, the Executive Committee of the International

Monetary Fund, and the Organization for Economic Cooperation and Development all make

decisions by consensus (Steinberg 2002). Indeed, in consensus decision-making, every player

has a veto in the sense that he can prevent a change from the status quo (Tsebelis 2002).

In principle, consensus stopping games may model many dynamic noncooperative con-

sensus decision-making environments to reach a permanent agreement. We elaborate on the

elements of a consensus stopping game, e.g., the players, periods, actions, states, rewards,

and transition probabilities, for two specific applications.

• Organ exchange. ESRD, as described in Chapter 2, is the final stage of chronic kidney

disease in which both kidneys almost fail. The preferred choice of treatment for ESRD

is living-donor transplantation, in which a living-donor donates one of his kidneys to the

patient. A significant barrier to greater use of living-donors is that at least one-third of

the patients with a willing living-donor are unable to receive the donor’s kidney due to

blood type and/or tissue incompatibilities (Montgomery et al. 2005b). To mitigate this

barrier, an emerging clinical practice is PKE in which N ≥ 2 self-interested patient-donor

pairs for whom the only compatible exchange of kidneys is cyclical, swap their donors

(see Figure 2). Periodically, each patient-donor pair decides whether to offer to exchange

or not. If at least one patient-donor pair decides not to offer to exchange, the transplant
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Figure 2: A cycle of N patient-donor pairs for a PKE, where Di refers to donor of intended

recipient (or patient) Pi. Directed arcs in the cycle represent compatibility between patients

and donors; that is, no donor is compatible with his intended recipient but only compatible

with the intended recipient of the next donor in the cycle.

exchange cycle breaks as each donor is willing to donate a kidney only in return for

receiving a kidney for his indended recipient. Therefore, the transplants in the cycle are

accomplished if and only if all patient-donor pairs offer to exchange consensually. To value

a given PKE cycle when the timing of the transplants is determined by self-interested,

autonomous patient-donor pairs, Kurt et al. (2011) propose a consensus stopping game in

which the players are the patient-donor pairs, the decision epochs are biweekly, and the

players’ actions are whether to offer to exchange or not. The glomerular filtration rates

(GFRs), a measure of kidney functionality, of all patients are considered as the state

of the game. Roughly speaking, the immediate continuation and stopping rewards are

estimated by the expected number of days until the next decision epoch (fourteen days)

and the expected number of post-transplant survival days for each patient, respectively.

A transition probability matrix for the case of not offering to exchange describes the

Markovian progression of the GFRs. Finally, Kurt et al. (2011) represent the problem

of finding a best pure stationary equilibrium of the game as an MILP which they solve

using a commercial MILP solver. Consensus stopping games may be applied to model

the timing of transplants for other organ exchange problems, e.g., lung exchange (Ergin

et al. 2015).

• War termination. Two countries fight a war against each other until reaching peace

or one side’s definite victory, whichever occurs first. Periodically, each country chooses
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between continuing the war and offering peace. The war ends if and only if both countries

offer peace simultaneously. This situation may be modeled by a consensus stopping

game in which the players are countries, the decision epochs are, for example, daily,

and the actions are whether to continue the war or offer peace. Political scientists

have utilized the Composite Index of National Capabilities (CINC) score to measure

power of a country and explain war outcomes. In calculating CINC scores, geopolitical

factors such as a country’s relative military, economic, and demographic capabilities are

considered (e.g., Singer et al. 1972, Singer 1988). Therefore, we may consider the CINC

scores of both countries as the state of the game. The expected increase in the area of the

occupied territories and the total area of the occupied territories since the beginning of the

war may be regarded as the immediate continuation and stopping rewards, respectively.

A transition probability matrix for the dynamic evolution of the CINC scores in the

case of continuing the war reflects exogenous factors, which are out of the control of

both countries, such as natural events, third parties’ actions, etc. Other models of war

termination may be found in the political science literature. For instance, Filson and

Werner (2002) present a two-stage asymmetric information bargaining game by which

they provide several insights on the onset and termination of war. As another instance,

Cunningham (2006) studies the correlation between the duration of a civil war and the

number of veto players. This statistical analysis shows that the more the number of veto

players, the longer the conflict.

3.1.1 Summary of Contributions

Motivated by consensus decision-making and its applications, we consider consensus stop-

ping games. Our study reveals a rich structure of these games that allows us to investigate

the problem of finding a best pure stationary equilibrium. Such a problem has not been com-

prehensively investigated before for a class of stochastic games. The specific contributions

of this chapter are as follows: First, we establish that the problem of finding a best pure

stationary equilibrium of a consensus stopping game is NP-hard. Second, we characterize

the pure stationary equilibria, and show that they form an independence system. Accord-
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ingly, we derive two families of combinatorial valid inequalities for an MILP developed for

the problem of finding a best pure stationary equilibrium. Third, we develop an efficient

branch-and-cut algorithm to solve the MILP by applying these valid inequalities. We also

develop a family of Pareto-optimal optimality cuts and several algorithmic enhancements.

Our extensive computational experiments show that the algorithm significantly outperforms

a state-of-the-art commercial MILP solver.

This work is the first to provide combinatorial characterizations of stationary equilibria

for a class of stochastic games. It is also the first attempt to develop a novel cutting plane

approach for the problem of finding a best pure stationary equilibrium for a class of stochastic

games.

3.1.2 Outline of the Chapter

The remainder of this chapter is organized as follows. In Section 3.2 we review the litera-

ture. In Section 3.3 we define consensus stopping games and the problem of finding a best

pure stationary equilibrium, which we show to be NP-hard in Section 3.4. We character-

ize the pure stationary equilibria and develop two families of valid inequalities in Section

3.5. In Section 3.6 we develop an MILP formulation that optimizes over the set of pure

stationary equilibria. We develop a branch-and-cut approach in Section 3.7, and describe

our computational experiments in Section 3.8.

3.2 LITERATURE REVIEW

The stochastic game literature is vast (see the recent survey by Solan 2012). In the eco-

nomics literature, stochastic games typically model dynamic interactions among firms (Eric-

son and Pakes 1995, Doraszelski and Satterthwaite 2010). To find a stationary equilibrium

of a stochastic game, a common approach is to apply the homotopy method (Herings and

Peeters 2004, Borkovsky et al. 2010). Weintraub et al. (2008) introduce the oblivious equi-

librium notion for Ericson and Pakes (1995)-style models, and show that it can approximate
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stationary equilibria under some conditions. Weintraub et al. (2010) develop an algorithm

for computing an oblivious equilibrium. In the operations research literature, mathemati-

cal programming has been used to compute a stationary equilibrium of stochastic games.

For instance, Filar and Vrieze (1997) and Raghavan and Syed (2003) compute a stationary

equilibrium for certain classes of stochastic games. Filar et al. (1991) present a nonlin-

ear programming formulation whose global optima are the stationary equilibria of a finite

discounted stochastic game; however, there was no computational study. Note that these

approaches attempt to identify a single stationary equilibrium, and because of the multi-

plicity of stationary equilibria in stochastic games (Herings and Peeters 2004, Aguirregabiria

and Mira 2007, Doraszelski and Satterthwaite 2010), they may be viewed as heuristics for

finding a best stationary equilibrium.

Our work is also related to the literature of stopping games (for a survey, cf. Nowak

and Szajowski 2005, Part III). The literature includes different variants for the definition of

stopping games (Heller 2012). This stream of research usually addresses the existence of an

equilibrium (cf. Solan and Vieille 2001, Shmaya and Solan 2004, Heller 2012).

What distinguishes this work from the literature of stochastic games and stopping games

is that we focus on the more challenging question of finding a best pure stationary equilib-

rium, compared to the question of finding a stationary equilibrium or the question of estab-

lishing the existence of an equilibrium because for consensus stopping games, (1) finding a

stationary equilibrium is trivial; (2) the game may possess many pure stationary equilibria,

many of which may be Pareto-inefficient with respect to the players’ payoff profile; and (3)

we are able to optimize over pure stationary equilibria by providing effective algorithmic

approaches to choose among those equilibria.

3.3 CONSENSUS STOPPING GAMES

We provide a detailed description of consensus stopping games, and present necessary and

sufficient conditions for a strategy profile to be a pure stationary equilibrium. We define a

consensus stopping game, G, as follows: Let N = {1, 2, . . . , N} be a set of players, and S
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represent the finite state space of G. In each period, each player decides whether to offer

to stop or continue based on the current state s ∈ S . All players make their decisions

independently and simultaneously, and ai(s) ∈ B := {0, 1} denotes player i’s action in state

s, where ai(s) is 1 if he offers to stop, and 0 otherwise. Because we only focus on pure

stationary strategies, ai(s) is sufficient to characterize the action of player i in state s in

each period. If all players offer to stop in state s (i.e.,
∏
i∈N

ai(s) = 1), G terminates and each

player i ∈ N receives a lump-sum stopping reward ui(s, 1). If at least one player decides to

continue (i.e.,
∏
i∈N

ai(s) = 0), G moves into the next state s′ under a Markovian transition

probability P(s′|s) while each player i ∈ N receives an immediate continuation reward

ui(s, 0). Each player i ∈ N has a periodic discount factor λi ∈ [0, 1), accounting for the

time value of his future rewards, and he seeks to maximize his total expected discounted

reward. G is an almost perfect information game, i.e., at the beginning of each period,

all players are perfectly informed of the current state along with all the actions and states

that have already been realized. Note that relative to Kurt et al. (2011), G permits more

general state space and reward structures. Specifically, the reward ui(s, 0) or ui(s, 1) may be

negative, and the state space S need not be the Cartesian product of the individual player’s

state spaces.

We follow the convention that a term in bold refers to a real-valued vector; i.e., v

refers to the vector ⟨v(s)⟩s∈S . Given a vector v ∈ R|S |, define Fi(s,v) := ui(s, 0) +

λi

∑
s′∈S P(s′|s)v(s′) for any s ∈ S , i ∈ N , which we interpret as player i’s expected

continuation payoff starting from state s where v represents the payoffs of all possible states

at the next period. In the sequel of this chapter, unless otherwise stated, we use the terms

strategy and equilibrium to refer to pure stationary strategy and pure stationary equilibrium,

respectively. Let ai := ⟨ai(s)⟩s∈S denote a strategy of player i for each i ∈ N , a := ⟨ai⟩i∈N

denote the resulting strategy profile. Moreover, let wa
i (s) denote the total expected dis-

counted reward of player i in state s under strategy profile a. To formalize this notion, let st

denote the state of the game in period t, and ri(st, a(st)) denote the reward of player i ∈ N

under strategy profile a when state st is realized. Then,

wa
i (s) = E

{
lim

n→+∞

n∑
t=0

λt
iri(st, a(st))

∣∣∣∣∣s
}
,
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where E(·) represents the expectation operator under the probability distribution induced

by strategy profile a over the evolution of the states when the game is initialized in state

s. Accordingly, wa
i := ⟨wa

i (s)⟩s∈S represents the payoff vector for player i under strat-

egy profile a. In a slight abuse of notation, let wa := ⟨wa
i ⟩i∈N represent the payoff

profile under strategy profile a. The outcome of the players’ decisions (continuation or

termination of the game) at each state s is uniquely characterized by a binary variable

x(s) :=
∏
i∈N

ai(s), where x := ⟨x(s)⟩s∈S ∈ B|S | is the corresponding vector. Note that

if all players offer to stop, then x(s) = 1; otherwise, x(s) = 0. For each x ∈ B|S |, let

Ax :=

{
a ∈ B|S |×|N ||

∏
i∈N

ai(s) = x(s)∀s ∈ S

}
which represents the set of strategy profiles

inducing the same outcome for all s ∈ S .

Proposition 1. Given a strategy profile a with associated payoff profile wa:

(i) For all s ∈ S , i ∈ N ,

wa
i (s) =

(∏
i∈N

ai(s)

)
ui(s, 1) +

(
1−

∏
i∈N

ai(s)

)
Fi(s,w

a
i ). (3.1)

Furthermore, wa is the unique solution for this set of equations.

(ii) a is an equilibrium if and only if for all s ∈ S , i ∈ N :

wa
i (s) = max


∏

j∈N ,
j ̸=i

aj(s)

 ui(s, 1) +

1−
∏
j∈N ,
j ̸=i

aj(s)

Fi(s,w
a
i ), Fi(s,w

a
i )

 . (3.2)

(iii) For each x ∈ B|S |, there exists an equilibrium in Ax if and only if strategy profile ā,

defined by āi := x for all i ∈ N , is an equilibrium.

Proof. Parts (i) and (ii) are standard results in the literature of discounted stochastic games

(cf. Fink 1964). We provide the proof for part (iii).
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(⇒) Suppose there exists an equilibrium in Ax, denoted by ã. We show that strategy

profile ā is an equilibrium as well. Since ā, ã ∈ Ax, w
ã = wā by part (i). There are two

cases: If x(s) = 1, then for all i ∈ N , ãi(s) = āi(s) = 1, and

wā
i (s) = wã

i (s) = max


∏

j∈N ,
j ̸=i

ãj(s)

 ui(s, 1) +

1−
∏
j∈N ,
j ̸=i

ãj(s)

Fi(s,w
ã
i ), Fi(s,w

ã
i )


= max


∏

j∈N ,
j ̸=i

āj(s)

 ui(s, 1) +

1−
∏
j∈N ,
j ̸=i

āj(s)

Fi(s,w
ā
i ), Fi(s,w

ā
i )

 ,

where the second equality follows from the fact that ã is an equilibrium and part (ii).

If x(s) = 0, then for all i ∈ N , āi(s) = 0, and

wā
i (s) = Fi(s,w

ā
i ) = max


∏

j∈N ,
j ̸=i

āj(s)

ui(s, 1) +

1−
∏
j∈N ,
j ̸=i

āj(s)

Fi(s,w
ā
i ), Fi(s,w

ā
i )

 ,

where the first equality follows from part (i).

In summary, the equation (3.2) is satisfied for all s ∈ S , i ∈ N . Therefore, ā is an

equilibrium by part (ii).

(⇐) Follows directly from the definitions of ā and Ax.

For each x ∈ B|S |, Proposition 1 (i) implies that all strategy profiles in Ax have the same

payoff profile. In other words, x is necessary and sufficient information for characterizing the

payoff profile of a strategy profile a. As we are interested in studying the set of equilibrium

payoff profiles, by Proposition 1 (iii), it is sufficient to only focus on the set of strategy

profiles in which ai = x for all i ∈ N . We define such a set of strategy profiles as the set

of unanimous strategy profiles, since all players take the same action at each state s ∈ S .

Hereafter, we restrict our attention to the set of unanimous strategy profiles, and with a

slight abuse of notation, x ∈ B|S | represents a unanimous strategy profile. Accordingly,

we define wx
i (s), w

x
i := ⟨wx

i (s)⟩s∈S , and wx := ⟨wx
i ⟩i∈N for unanimous strategy profile x.

We may restate Proposition 1 (i) and (ii) for unanimous strategy profiles as follows. (For

convenience we drop the word unanimous hereafter.)
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Proposition 2. Given a strategy profile x with associated payoff profile wx:

(i) For all s ∈ S , i ∈ N ,

wx
i (s) = x(s)ui(s, 1) + (1− x(s))Fi(s,w

x
i ). (3.3)

Furthermore, wx is the unique solution for this set of equations.

(ii) x is an equilibrium if and only if for all s ∈ S , i ∈ N :

wx
i (s) = max {x(s)ui(s, 1) + (1− x(s))Fi(s,w

x
i ), Fi(s,w

x
i )} . (3.4)

Proposition 2 follows immediately from Proposition 1, and the fact that strategy profile

x is unanimous. Part (i) describes how to calculate the payoff profile of a strategy profile,

and Part (ii) describes the Bellman-Shapley equations for G. Let 0 be the strategy profile

in which x(s) = 0 for all s ∈ S .

Remark 2. An attractive property of Proposition 2 (ii) is that when we assess equilibrium

conditions for a strategy profile x, we only need to check if the Bellman-Shapley equation

(3.4) is satisfied for each s ∈ S , i ∈ N in which x(s) = 1 since (3.4) is trivially satisfied

for each s ∈ S , i ∈ N in which x(s) = 0. In particular, Kurt (2012) formally shows that

the strategy profile 0 is an equilibrium. We prove a more general result, namely, that the set

of equilibria forms an independence system, in Section 3.5.

In this chapter, we study the problem of finding a best equilibrium, with respect to a

given linear objective function of payoffs, for G. Such an objective function is well accepted in

the literature of group decision analysis (cf. Eliashberg and Winkler 1981 and the references

therein). Let Ψ := {x ∈ B|S ||x is an equilibrium of G}, ci(s) ∈ R be an objective function

coefficient for all s ∈ S , i ∈ N , and c := ⟨ci(s)⟩s∈S ,i∈N . Therefore, the problem of finding

a best equilibrium is:

(P) : max{c⊤wx|x ∈ Ψ}. (3.5)

Note that by repeated application of equation (3.3), wx can be represented as a (highly)

nonlinear function of x. Therefore, c⊤wx is a nonlinear function of x as well. We present

an MILP formulation for (P) in Section 3.6.
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3.4 COMPUTATIONAL COMPLEXITY

In one-stage games, the computational complexity of finding a best pure Nash equilibrium

is NP-hard (cf. Gairing et al. 2004, Sperber 2010). In any stationary repeated game, each

pure stationary equilibrium is identical to a pure Nash equilibrium of a one-stage game, and

vice versa. Hence, the problem of finding a best pure stationary equilibrium is NP-hard in

repeated games, which in turn implies that the problem is NP-hard in stochastic games. In

this section, we establish the computational complexity of the problem for consensus stop-

ping games. For further discussion on computational complexity issues related to stochastic

games, see Conitzer and Sandholm (2008).

To establish the computational complexity of the problem of finding a best equilibrium

of G, it is sufficient to establish the computational complexity of its associated decision

problem, which is as follows: Given an instance of G, h ∈ R, and c ∈ R|S |×N , does there

exist an equilibrium x with associated payoff profile wx such that c⊤wx ≥ h?

Proposition 3. For any fixed number of players (N ≥ 2), the decision version of finding a

best equilibrium of G is NP-complete.

Proof. The problem is in NP since given, a strategy profile x, the question of whether x is

an equilibrium with an objective function value of at least h can be verified in polynomial

time by Proposition 2.

We provide a proof by a reduction from Knapsack, a well-known NP-complete problem

(Karp 1972). Consider strictly positive numbers a1, a2, . . . , an, b, c1, c2, . . . , cn, k, we need to

check whether there exist binary values y1, y2, . . . , yn satisfying:

n∑
s=1

csys ≥ k

n∑
s=1

asys ≤ b.

Let N ≥ 2 be an arbitrary integer. We construct (in polynomial time) an instance of G, as

follows:

• N = {1, 2, . . . , N},
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Figure 3: The transition probabilities structure for the instance of G constructed in the proof

of Proposition 3.

• S = {1, 2, . . . , n, n+ 1},

• λi = 0.5 for all i ∈ N ,

• ui(s, 0) = 0 for all s ∈ S , i ∈ N ,

• u1(s, 1) = 2nas, u2(s, 1) = 0 for all s ∈ {1, 2, . . . , n},

• u1(n+ 1, 1) = b, u2(n+ 1, 1) = 1,

• ui(s, 1) = 0 for all s ∈ S , i ∈ {3, . . . , N},

• P(s|n+ 1) = 1
n
for all s ∈ {1, 2, . . . , n},

• P(s|s) = 1 for all s ∈ {1, 2, . . . , n},

• c1(s) =
cs

2nas
for all s ∈ {1, 2, . . . , n}, and c1(n+ 1) = 0,

• c2(s) = 0 for all s ∈ {1, 2, . . . , n}, and c2(n+ 1) = 1 +
∑n

s=1 cs,

• ci(s) = 0 for all i ∈ {3, . . . , N}, s ∈ S .

We show that there exists an equilibrium with the objective function value of at least h :=

1+
∑n

s=1 cs+k for this instance of G if and only if the instance of Knapsack has a solution

with the total value of at least k.
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Under any strategy profile x, for each state s ∈ {1, 2, . . . , n}, if x(s) = 1, then w1(s) =

u1(s, 1) = 2nas and w2(s) = u2(s, 1) = 0 by (3.3). Otherwise, if x(s) = 0, then

wx
1 (s) = F1(s, w

x
1 ) = u1(s, 0) + λ1w

x
1 (s) = 0 +

1

2
wx

1 (s) ⇒ wx
1 (s) = 0,

wx
2 (s) = F2(s, w

x
2 ) = u2(s, 0) + λ2w

x
2 (s) = 0 +

1

2
wx

2 (s) ⇒ wx
2 (s) = 0,

where we have made use of (3.3) and the definition of Fi(s, ·) to write the above equal-

ities. Consequently, wx
1 (s) = 2nasx(s), w

x
2 (s) = 0, and it can easily be verified that the

Bellman-Shapley equation (3.4) is satisfied for each i ∈ {1, 2}, s ∈ {1, 2, . . . , n} under an

arbitrary strategy profile x. For state n+ 1 and player 1, u1(n+ 1, 1) = b, F1(n+ 1,wx
1 ) =

0.5
∑n

s=1
1
n
wx

1 (s) =
∑n

s=1 asx(s) by the definition of Fi(s, ·) and our previous arguments re-

garding computing wx
1 (s) for all s ∈ {1, · · · , n}, so the Bellman-Shapley equation (3.4) is

satisfied if and only if either x(n+1) = 0, or x(n+1) = 1 jointly with
∑n

s=1 asx(s) ≤ b. For

state n+1 and player 2, u2(n+1, 1) = 1, F2(n+1,wx
2 ) = 0.5

∑n
s=1

1
n
wx

2 (s) = 0 by the defini-

tion of Fi(s, ·) and our previous arguments regarding computing wx
2 (s) for all s ∈ {1, · · · , n},

so that the Bellman-Shapley equation (3.4) is always satisfied, and wx
2 (n+1) = x(n+1). For

each i ∈ {3, . . . , N}, s ∈ S , it can similarly be verified that wx
i (s) = ui(s, 1) = Fi(s,w

x
i ) = 0,

and hence the Bellman-Shapley equation (3.4) is satisfied. In summary, a strategy profile x is

an equilibrium if and only if either x(n+1) = 0, or x(n+1) = 1 jointly with
∑n

s=1 asx(s) ≤ b.

Observe that the objective function of the game is:

N∑
i=1

n+1∑
s=1

ci(s)w
x
i (s) =

2∑
i=1

n+1∑
s=1

ci(s)w
x
i (s)

= c2(n+ 1)wx
2 (n+ 1) +

n∑
s=1

c1(s)w
x
1 (s)

= c2(n+ 1)x(n+ 1) +
n∑

s=1

c1(s)(2nasx(s))

= (1 +
n∑

s=1

cs)x(n+ 1) +
n∑

s=1

csx(s).

For the nontrivial case k > 0, any equilibrium with the objective function value of at

least h must have x(n + 1) = 1 since h is larger than the objective function portion for

all s ∈ {1, . . . , n}. Let us couple each strategy profile ⟨x(s)⟩s∈{1,2,...,n} , x(n + 1) = 1 with
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a binary vector ⟨ys⟩s∈{1,2,...,n} by the one-to-one mapping x(s) = ys for all s ∈ {1, . . . , n},

and x(n + 1) = 1. As noted earlier, a strategy profile ⟨x(s)⟩s∈{1,2,...,n} , x(n + 1) = 1 is an

equilibrium if and only if
∑n

s=1 asx(s) ≤ b. Hence, a strategy profile ⟨x(s)⟩s∈{1,2,...,n} , x(n +

1) = 1 is an equilibrium if and only if its associated binary vector ⟨ys⟩s∈{1,2,...,n} is a feasible

solution for the instance of Knapsack. In addition, the objective function of the instance

of G for a strategy profile ⟨x(s)⟩s∈{1,2,...,n} , x(n + 1) = 1 is at least h if and only if the total

value of the associated binary vector ⟨ys⟩s∈{1,2,...,n} for the instance of Knapsack is at least

k.

3.5 CHARACTERIZING EQUILIBRIA AND COMBINATORIAL VALID

INEQUALITIES

In this section, we characterize the equilibria of G and develop two families of combinatorial

valid inequalities for (P) to improve its representation. We first need to define several

functions from the space of strategy profiles to the collection of all subsets of S as follows.

Given a strategy profile x, let:

S k(x) = {s ∈ S | x(s) = k} ∀k ∈ {0, 1}, (3.6a)

S k
i,nv(x) = {s ∈ S k(x) | ui(s, 1) ≥ Fi(s,w

x
i )} ∀k ∈ {0, 1}, i ∈ N , (3.6b)

S k
i,v(x) = {s ∈ S k(x) | ui(s, 1) < Fi(s,w

x
i )} ∀k ∈ {0, 1}, i ∈ N . (3.6c)

It can easily be seen that {S k
i,v(x),S

k
i,nv(x)} is a partition of S k(x) for all i ∈ N , k ∈ {0, 1},

and {S 1(x),S 0(x)} is a partition of S for each strategy profile x. S 1(x),S 0(x) are the

sets of stopping and continuing states under x, respectively. S 1
i,v(x) represents the set of

stopping states in which the Bellman-Shapley equation (3.4) is violated for player i under

x; conversely, S 1
i,nv(x) represents the set of stopping states in which the Bellman-Shapley

equation (3.4) is satisfied for player i under x. Although the Bellman-Shapley equation (3.4)

is satisfied for states of S 0
i,v(x) for player i, it could have been violated if x(s) had been 1

in those states. Hence, it may be thought of as the set of potentially equilibrium-violating

states for player i under x. The set S 0
i,nv(x) can similarly be interpreted for player i under x.
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Specifically, it represents the set of continuing states in which the Bellman-Shapley equation

(3.4) is satisfied even if x(s) had been 1, so that they do not violate the Bellman-Shapley

equation (3.4) even with small perturbations in the strategy profile.

Proposition 4. Given a strategy profile x̄ with associated payoff profile wx̄:

(i) For some strategy profile x with associated payoff profile wx, suppose ∃ i ∈ N such

that S 1
i,nv(x̄) ⊆ S 1(x) ⊆ S 1(x̄). Then wx

i (s) ≥ wx̄
i (s) for all s ∈ S .

(ii) For some strategy profile x with associated payoff profile wx, suppose ∃ i ∈ N such

that S 1
i,v(x̄) ⊆ S 1(x) ⊆ S 1(x̄). Then wx

i (s) ≤ wx̄
i (s) for all s ∈ S .

Proof. Recall that under a fixed strategy profile x, the payoffs of each player represent a

stationary Markov reward process, and hence can be calculated by value iteration (Denardo

1967). Let [wx
i (s)]

n denote the value associated with state s ∈ S at the nth iteration of the

value iteration algorithm under strategy profile x for player i. Furthermore, we initialize our

value iteration with payoffs of player i under x̄, i.e., [wx
i (s)]

0 = wx̄
i (s) for all s ∈ S .

(i) From Proposition 2 (i) and the hypothesis about the relation between x and x̄, there

are four cases:

If s ∈ S 1
i,nv(x̄), then x(s) = 1 and [wx

i (s)]
1 = ui(s, 1) = wx̄

i (s) = [wx
i (s)]

0.

If s ∈ S 0(x̄), then x(s) = 0 and [wx
i (s)]

1 = Fi(s, [w
x
i ]

0) = Fi(s,w
x̄
i ) = wx̄

i (s) = [wx
i (s)]

0.

If s ∈ S 1
i,v(x̄) and x(s) = 1, then [wx

i (s)]
1 = ui(s, 1) = wx̄

i (s) = [wx
i (s)]

0.

If s ∈ S 1
i,v(x̄) and x(s) = 0, then [wx

i (s)]
1 = Fi(s, [w

x
i ]

0) = Fi(s,w
x̄
i ) ≥ ui(s, 1) = wx̄

i (s) =

[wx
i (s)]

0 where the inequality follows from s ∈ S 1
i,v(x̄).

From all four cases, it follows that [wx
i (s)]

1 ≥ [wx
i (s)]

0 for all s ∈ S . By the monotonicity

of the dynamic programming operator induced by strategy profile x for player i (Blackwell

1965), it follows that for any n, [wx
i (s)]

n+1 ≥ [wx
i (s)]

n for all s ∈ S . As a result, wx
i (s) =

lim
n→∞

[wx
i (s)]

n ≥ [wx
i (s)]

0 = wx̄
i (s).

(ii) The proof is similar to that of part (i).

Remark 3. In part (i) of Proposition 4, if S 1(x) ⊂ S 1(x̄), then there exists some ŝ ∈

S 1
i,v(x̄) for which wx

i (ŝ) > wx̄
i (ŝ). In part (ii) of Proposition 4, if there exists some ŝ ∈

S 1
i,nv(x̄) such that ui(ŝ, 1) > Fi(ŝ,w

x̄
i ) and x(ŝ) = 0, then wx

i (ŝ) < wx̄
i (ŝ).
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Lemma 4. A strategy profile x is an equilibrium if and only if S 1
i,v(x) = ∅ for all i ∈ N .

Proof. (⇒) If s ∈ S 1(x), then wx
i (s) = ui(s, 1) ≥ Fi(s,w

x
i ) by Proposition 2. Therefore,

ui(s, 1) ≥ Fi(s,w
x
i ) for all s ∈ S 1(x), i ∈ N . It follows that S 1

i,v(x) = ∅ for all i ∈ N .

(⇐) S 1(x) = S 1
i,nv(x)∪S 1

i,v(x) and S 1
i,v(x) = ∅ for all i ∈ N . It follows that S 1(x) =

S 1
i,nv(x) for all i ∈ N . Therefore, if s ∈ S 1(x), then for all i ∈ N , ui(s, 1) ≥ Fi(s,w

x
i ) and

Proposition 2 (i) implies that wx
i (s) = ui(s, 1). Hence, the Bellman-Shapley equation (3.4)

is satisfied for all s ∈ S 1(x), i ∈ N . As noted in Remark 2, the Bellman-Shapley equation

(3.4) is trivially satisfied for all s ∈ S 0(x), i ∈ N . Consequently, x is an equilibrium by

Proposition 2 (ii).

Proposition 5. Suppose a strategy profile x̄ is an equilibrium. For any strategy profile x

where S 1(x) ⊆ S 1(x̄), the following hold:

(i) For all s ∈ S , i ∈ N , wx
i (s) ≤ wx̄

i (s).

(ii) x is an equilibrium.

Proof. (i) As x̄ is an equilibrium, S 1
i,v(x̄) = ∅ for all i ∈ N by Lemma 4, and the hypothesis

states that S 1(x) ⊆ S 1(x̄). Therefore, S 1
i,v(x̄) ⊆ S 1(x) ⊆ S 1(x̄) for all i ∈ N . The

result follows from Proposition 4 (ii).

(ii) If s ∈ S 1(x), then s ∈ S 1(x̄) = S 1
i,nv(x̄) ∪ S 1

i,v(x̄) = S 1
i,nv(x̄) for all i ∈ N

since S 1
i,v(x̄) = ∅ for all i ∈ N by Lemma 4. This implies that ui(s, 1) ≥ Fi(s,w

x̄
i ) for all

s ∈ S 1(x), i ∈ N . Moreover, wx̄
i (s) ≥ wx

i (s) for all s ∈ S , i ∈ N by part (i), and hence

Fi(s,w
x̄
i ) ≥ Fi(s,w

x
i ) for all s ∈ S , i ∈ N . Therefore, ui(s, 1) ≥ Fi(s,w

x̄
i ) ≥ Fi(s,w

x
i ) for

all s ∈ S 1(x), i ∈ N . So, S 1
i,v(x) = ∅ for all i ∈ N . It follows from Lemma 4 that x is an

equilibrium.

The next corollary is an immediate consequence of Proposition 5 (ii).

Corollary 1. If a strategy profile x̄ is not an equilibrium, then any strategy profile x where

S 1(x̄) ⊆ S 1(x) is not an equilibrium.
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A well-known combinatorial structure is an independence system. Let I be a set, and

J be a set of subsets of I. The pair (I,J ) is an independence system if it satisfies two

conditions: First, the empty set is in J . Second, if I1 ⊂ I2 and I2 ∈ J , then I1 ∈ J (cf.

Nemhauser and Trotter Jr. 1974).

The next corollary immediately follows from Remark 2 and Proposition 5 (ii).

Corollary 2. Let J be the collection of all S 1(x) such that x is an equilibrium. The pair

(S ,J ) is an independence system.

Definition 1. An equilibrium x̄ is maximal if there does not exist any equilibrium x such

that S 1(x̄) ⊂ S 1(x).

Proposition 5 demonstrates that an equilibrium x̄ yields 2
∑

s∈S x̄(s) − 1 additional equi-

libria, and this property describes why G may possess many equilibria in general. However,

by Proposition 5, all such equilibria are payoff-wise dominated, and if ci(s) ≥ 0 for all

s ∈ S , i ∈ N , they can be eliminated from consideration when we search for a best equi-

librium. Based on this dominance, we may restrict our search to maximal equilibria and

develop the following optimality valid inequality for (P) if the objective function coefficients

are non-negative.

Proposition 6. (i) If ci(s) ≥ 0 for all s ∈ S , i ∈ N , then there exists an optimal equilib-

rium that is maximal.

(ii) If a strategy profile x̄ is an equilibrium, then the inequality

∑
s∈S 1(x̄)

[1− x(s)] ≤ |S 1(x̄)|
∑

s∈S 0(x̄)

x(s) (3.7)

is satisfied by every maximal equilibrium x.

Proof. (i) Immediate from Remark 2, Proposition 5 (i), and ci(s) ≥ 0 for all s ∈ S , i ∈ N .

(ii) If
∑

s∈S 0(x̄) x(s) > 0, (3.7) is redundant. Otherwise,
∑

s∈S 0(x̄) x(s) = 0, implying

S 1(x) ⊆ S 1(x̄), so (3.7) cuts off an equilibrium x if and only if S 1(x) ⊂ S 1(x̄). Moreover,

if S 1(x) ⊂ S 1(x̄), then x is a non-maximal equilibrium since x̄ is an equilibrium.

Proposition 7. Given a strategy profile x̄, any strategy profile x where S 1
i,nv(x̄) ⊆ S 1(x)

and S 1(x) ∩ (S 0
i,v(x̄) ∪ S 1

i,v(x̄)) ̸= ∅ for some i ∈ N , is not an equilibrium.
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Proof. Let Ξx̄ be the set of strategy profiles x̃ for which there exists an state ŝ ∈ S 0
i,v(x̄) ∪

S 1
i,v(x̄) such that:

• x̃(s) = 1 for all s ∈ S 1
i,nv(x̄),

• x̃(s) = 0 for all s ∈ S 0
i,nv(x̄),

• x̃(ŝ) = 1 for some ŝ ∈ S 0
i,v(x̄) ∪ S 1

i,v(x̄),

• x̃(s) = 0 for all s ∈ S 0
i,v(x̄) ∪ S 1

i,v(x̄)/{ŝ}.

We show that each x̃ ∈ Ξx̄ is not an equilibrium. Since ŝ ∈ S 0
i,v(x̄) ∪ S 1

i,v(x̄), there are two

non-overlapping cases on where ŝ belongs to:

Case 1) If ŝ ∈ S 1
i,v(x̄), then wx̃

i (s) ≥ wx̄
i (s) for all s ∈ S by Proposition 4 (i). As a

result, Fi(s,w
x̃
i ) ≥ Fi(s,w

x̄
i ) for all s ∈ S . In particular, Fi(ŝ,w

x̃
i ) ≥ Fi(ŝ,w

x̄
i ) > ui(ŝ, 1).

Since Fi(ŝ,w
x̃
i ) > ui(ŝ, 1) and x̃(ŝ) = 1, the Bellman-Shapley equation (3.4) is violated in

state ŝ under x̃, so it is not an equilibrium.

Case 2) If ŝ ∈ S 0
i,v(x̄), then consider strategy profile x̆ defined as follows:

• x̆(s) = 1 for all s ∈ S 1
i,nv(x̄),

• x̆(s) = 0 for all s ∈ S /S 1
i,nv(x̄).

Therefore, x̃ and x̆ take the same value for all s ∈ S /{ŝ}. By Corollary 1, if the strategy

profile x̆ is not an equilibrium, x̃ cannot be an equilibrium since S 1(x̆) ⊆ S 1(x̃).

Suppose x̆ is an equilibrium. By Proposition 4 (i), wx̆
i (s) ≥ wx̄

i (s) for all s ∈ S .

Therefore, Fi(s,w
x̆
i ) ≥ Fi(s,w

x̄
i ) > ui(s, 1) for all s ∈ S 0

i,v(x̄). In particular, Fi(ŝ,w
x̆
i ) >

ui(ŝ, 1). Moreover, suppose that x̃ is an equilibrium; thus wx̃
i (s) ≥ wx̆

i (s) for all s ∈ S

by Proposition 5 (i). As a result, Fi(s,w
x̃
i ) ≥ Fi(s,w

x̆
i ) for all s ∈ S . In particular,

Fi(ŝ,w
x̃
i ) ≥ Fi(ŝ,w

x̆
i ) > ui(ŝ, 1), and this means that the Bellman-Shapley equation (3.4) is

violated in state ŝ under x̃. Therefore, x̃ is not an equilibrium, which is a contradiction.

So far, we have shown that each x̃ ∈ Ξx̄ is not an equilibrium. For any strategy profile

x, satisfying the conditions of Proposition 7, there exists a strategy profile x̃ ∈ Ξx̄ such that

S 1(x̃) ⊆ S 1(x), so x cannot be an equilibrium by Corollary 1.
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An interesting feature of Proposition 7 is that it can provide insights about equilibria

irrespective of whether strategy profile x̄ is an equilibrium or not.

Proposition 8. Given a strategy profile x̄, the following inequalities are valid for Ψ.

∑
s∈S 0

i,v(x̄)∪S 1
i,v(x̄)

x(s) ≤ (|S 0
i,v(x̄)|+ |S 1

i,v(x̄)|)
∑

s∈S 1
i,nv(x̄)

[1− x(s)] ∀i ∈ N . (3.8)

Proof. If
∑

s∈S 1
i,nv(x̄)

[1 − x(s)] > 0, then (3.8) is redundant. Now, consider the other case in

which
∑

s∈S 1
i,nv(x̄)

[1 − x(s)] = 0. This implies S 1
i,nv(x̄) ⊆ S 1(x). If x is an equilibrium and

S 1
i,nv(x̄) ⊆ S 1(x), then S 1(x)∩ (S 0

i,v(x̄)∪S 1
i,v(x̄)) = ∅ by Proposition 7. This is equivalent

to saying that if x is an equilibrium and
∑

s∈S 1
i,nv(x̄)

[1 − x(s)] = 0, then x(s) = 0 for all

s ∈ S 0
i,v(x̄) ∪ S 1

i,v(x̄).

The valid inequalities given in (3.8) remove the set of strategy profiles that are not

equilibria by Proposition 7. In fact, Proposition 7 implies the following logical disjunction:

either x(s) = 1 for all s ∈ S 1
i,nv(x̄), x(s) = 0 for all s ∈ S 0

i,v(x̄) ∩ S 1
i,v(x̄), or x(s) = 0 for

some s ∈ S 1
i,nv(x̄). Although there are other valid inequalities that may ensure the logical

disjunction, by following arguments similar to those of Balas (1979), it can be shown that

(3.8) is a best disjunctive valid inequality in the sense that the amount by which x̄ violates

the valid inequality, is maximized by (3.8) among all disjunctive valid inequalities. Another

advantage of Proposition 8 is that for each player i ∈ N where S 0
i,v(x̄) ∪ S 1

i,v(x̄) ̸= ∅, we

can derive a nontrivial valid inequality.

We conclude this section by describing how our approach may be extended to establish

structures of stationary equilibria in other classes of stochastic games. In Markov decision

processes (MDPs), value iteration is often adopted to establish structural properties of the

optimal value function and the optimal stationary policy. Apart from insights behind the

derived properties, they are sometimes applied to develop a method to compute the op-

timal value function, especially in approximate dynamic programming (cf. Powell 2007).

Although stochastic games may be viewed as a multi-player generalization of MDPs, there

is no analogue of value iteration for discounted stochastic games. Consequently, there have

been only a few characterizations of stationary equilibria for stochastic games aside from
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the well-known Bellman-Shapley equations. An important consequence of Propositions 4, 5,

and 7 is that in the cost of providing the payoff profile of a given strategy profile, we can

characterize the payoff profile and equilibrium behavior of a set of strategy profiles. Our

results are the first combinatorial characterizations for a class of stochastic games, and it

is anticipated that this approach opens the door to analyze stationary equilibria of more

complicated stochastic games.

3.6 EQUILIBRIUM SELECTION FORMULATION

In this section, we present an MILP formulation for (P). Let coefficient Vi(s) be an upper

bound for equilibria payoffs of player i in state s. Kurt et al. (2011) suggest that for each

player i ∈ N , Vi := ⟨Vi(s)⟩s∈S may be calculated as a solution of the MDP equations

Vi(s) = max{ui(s, 1), Fi(s,Vi)} for all s ∈ S , and show it is a valid upper bound as it

represents optimal value function of player i in an MDP where he is maximizing his own

payoffs when the autonomy of the other players is suppressed. By using this set of parameters,

they propose an MILP to represent the set of equilibria of G, relying on the assumption that

ui(s, 0), ui(s, 1) ≥ 0 for all s ∈ S , i ∈ N . Let d := ⟨di(s)⟩s∈S ,i∈N be the payoff profile

of the strategy profile 0. In words, di(s) represents the total expected discounted reward

of player i starting from state s when he always decides to continue. We propose a similar

formulation to represent the set of equilibria of G in the following:

wi(s) ≥ Fi(s,wi) ∀s ∈ S , i ∈ N , (3.9a)

wi(s) ≤ Fi(s,wi) + [ui(s, 1)− di(s)]x(s) ∀s ∈ S , i ∈ N , (3.9b)

wi(s) ≥ [ui(s, 1)− di(s)]x(s) + di(s) ∀s ∈ S , i ∈ N , (3.9c)

wi(s) ≤ ui(s, 1)x(s) + Fi(s,Vi)[1− x(s)] ∀s ∈ S , i ∈ N , (3.9d)

wi(s) unrestricted ∀s ∈ S , i ∈ N , (3.9e)

x(s) ∈ {0, 1} ∀s ∈ S . (3.9f)

Let ∆ := {⟨x,w⟩ |(3.9a)− (3.9f)}.
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Lemma 5. (i) di(s) = Fi(s,di) for all s ∈ S , i ∈ N .

(ii) If a strategy profile x is an equilibrium, then wx
i (s) ≥ di(s) for all s ∈ S , i ∈ N .

(iii) If ui(s̄, 1) < di(s̄) for some s̄ ∈ S , i ∈ N , then x(s̄) = 0 for each equilibrium x.

Proof. (i) Immediate from Proposition 2 (i).

(ii) Note that S 1(0) = ∅ ⊆ S 1(x) for each equilibrium x. The result follows from

Proposition 5 (i).

(iii) Substituting 0 for x̄ in Proposition 8 implies that the following set of inequalities

are valid for Ψ.

∑
s∈S 0

i,v(0)∪S 1
i,v(0)

x(s) ≤ (|S 0
i,v(0)|+ |S 1

i,v(0)|)
∑

s∈S 1
i,nv(0)

[1− x(s)] = 0 ∀i ∈ N ,

where we have made use of the fact that S 1
i,nv(0) ⊆ S 1(0) = ∅, to write the equality. Note

that s̄ ∈ S 0
i,v(0) since ui(s̄, 1) < di(s̄). By the above set of inequalities, x(s̄) = 0 is valid for

Ψ, and hence x(s̄) = 0 for each equilibrium x.

Proposition 9. (i) ⟨x,w⟩ ∈ ∆ if and only if strategy profile x is an equilibrium with

associated payoff profile w.

(ii) If ui(s, 0), ui(s, 1) ≥ 0 for all s ∈ S , i ∈ N , then ∆ is at least as strong as the

formulation of Kurt et al. (2011).

Proof. (i) (⇒) x ∈ B|S | by (3.9f). For each s ∈ S , there are two cases:

If x(s) = 0, wi(s) = Fi(s,wi) for all i ∈ N by (3.9a)− (3.9b).

If x(s) = 1, wi(s) = ui(s, 1) for all i ∈ N by (3.9c)− (3.9d).

As a result, w is associated payoff profile of x by Proposition 2 (i). It also follows from

(3.9a) that the Bellman-Shapley equation (3.4) is satisfied for all s ∈ S 1(x). Therefore, x

is an equilibrium by Proposition 2 (ii).

(⇐) Suppose x is an equilibrium with associated payoff profile w. Constraint (3.9f) is

satisfied since x is a (pure) strategy profile. Constraint (3.9a) is satisfied by Proposition 2

(ii). For each s ∈ S , there are two cases:
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If x(s) = 0, then wi(s) = Fi(s,wi) by Proposition 2 (i). Constraint (3.9b) is obviously

satisfied, and (3.9c) is satisfied by Lemma 5 (ii). Constraint (3.9d) is satisfied since:

wi(s) = Fi(s,wi) ≤ Fi(s,Vi),

where the inequality follows from the definition of Vi.

If x(s) = 1, then wi(s) = ui(s, 1) by Proposition 2 (i). Constraint (3.9b) is satisfied since:

wi(s) = ui(s, 1) ≤ ui(s, 1) + Fi(s,wi)− Fi(s,di) = ui(s, 1) + Fi(s,wi)− di(s),

where the first inequality follows from Lemma 5 (ii), and the second equality follows from

Lemma 5 (i). Constraints (3.9c)− (3.9d) are obviously satisfied.

(ii) If ui(s, 0), ui(s, 1) ≥ 0 for all s ∈ S , i ∈ N , it can easily be shown by value iteration

that di(s) ≥ 0 for all s ∈ S , i ∈ N . The rest of the proof is straightforward.

Proposition 9 (i) implies that Ψ is the projection of ∆ onto the x-space and (P) may be

reformulated as the following MILP:

max
∑

s∈S ,i∈N

ci(s)wi(s) (3.10a)

s.t. ⟨x,w⟩ ∈ ∆. (3.10b)
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3.7 ALGORITHMIC APPROACH

In this section we develop an algorithm to solve (P) efficiently. Problem (P) has a so-called

“block-ladder” structure where x are the linking variables, and is amenable to Benders’ de-

composition (Benders 1962). However, our computational experiments in Tables 7− 9 show

that even a state-of-the-art implementation of Benders’ decomposition (Fischetti et al. 2010)

is ineffective. In this section, our goal is to develop a cutting plane approach for solving (P).

Let θi be an artificial variable that approximates
∑
s∈S

ci(s)wi(s) for any i ∈ N , and let

θ := ⟨θi⟩i∈N . Furthermore, RMP , LB, UB,xincum, and ϵ are the restricted master problem,

lower bound, upper bound, the incumbent solution, and a termination tolerance, respectively.

Decomposition Algorithm

0. Initialization: Let LB := −∞, UB := +∞,xincum := ∅ and RMP be as follows:

max
∑
i∈N

θi (3.11a)

s.t. θi ≤
∑
s∈S

ci(s)Vi(s) ∀i ∈ N , (3.11b)

θi unrestricted ∀i ∈ N , (3.11c)

x(s) ∈ {0, 1} ∀s ∈ S . (3.11d)

1. Restricted Master: Solve RMP and obtain an optimal solution (x̄, θ̄), and let UB :=∑
i∈N θ̄i.

2. Separation:

a. Calculate payoff profilewx̄ associated with x̄ using Proposition 2 (i), and characterize

the sets S 0
i,v(x̄),S

0
i,nv(x̄),S

1
i,v(x̄),S

1
i,nv(x̄) for all i ∈ N .

b. For any i for which S 0
i,v(x̄) ∪ S 1

i,v(x̄) ̸= ∅, add the valid inequality (3.8) to RMP .

c. If x̄ is an equilibrium (i.e., S 1
i,v(x̄) = ∅ for all i ∈ N ) and θ̄i >

∑
s∈S

ci(s)w
x̄
i (s) for

some i ∈ N , then 1. Add a Benders’ optimality cut (Benders 1962) to RMP for

i ∈ N for which θ̄i >
∑
s∈S

ci(s)w
x̄
i (s); 2. Add the valid inequality (3.7) to RMP if

ci(s) ≥ 0 for all s ∈ S , i ∈ N ; 3. If c⊤wx̄ ≥ LB, let xincum := x̄, LB := c⊤wx̄.
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3. Termination: If UB−LB ≤ ϵ, then terminate the algorithm. Otherwise, go to Step 1.

If x̄ is not an equilibrium, there exists some i ∈ N such that S 1
i,v(x̄) ̸= ∅, and hence

(3.8) cuts off x̄ in Step (b). Hence, the Decomposition Algorithm finitely converges for

any ϵ ∈ R+. There are several differences between our proposed algorithm and Benders’

decomposition: First, we solve the set of equations (3.3) as the subproblem. Second, we use

a combinatorial feasibility cut. Third, we use a combinatorial optimality cut in addition to

a Benders’ optimality cut.

In order to calculate wx̄
i in Step (a) for each i ∈ N , by Proposition 2 (i) we solve the

following linear program (LP):

Ri(x̄) : max
∑
s∈S

ci(s)wi(s)

s.t. wi(s) = Fi(s,wi) ∀s ∈ S 0(x̄),

wi(s) = ui(s, 1) ∀s ∈ S 1(x̄),

wi(s) unrestricted ∀s ∈ S .

For each i ∈ N , let γi(s) be optimal dual multipliers of Ri(x̄) for all s ∈ S and y+ :=

max{0, y} for any y ∈ R. To enhance the Decomposition Algorithm, we seek a Pareto-

optimal Benders’ optimality cut (Magnanti and Wong 1981).

Proposition 10. The following Benders’ optimality cut is Pareto-optimal.

θi ≤
∑

s∈S 0(x̄)

γi(s)
(
ui(s, 0) + [ui(s, 1)− di(s)]

+x(s)
)
+

∑
s∈S 1(x̄)

γi(s) (ui(s, 1)x(s) + Fi(s,Vi)[1− x(s)]) ∀i ∈ N . (3.12)
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Proof. Let Pi(x̄) denote the subproblem associated with each player i in (3.10a) − (3.10b)

when x is set to x̄:

Pi(x̄) : max
∑
s∈S

ci(s)wi(s)

s.t. wi(s) ≥ Fi(s,wi) ∀s ∈ S ,

wi(s) ≤ Fi(s,wi) + [ui(s, 1)− di(s)]x̄(s) ∀s ∈ S ,

wi(s) ≥ [ui(s, 1)− di(s)]x̄(s) + di(s) ∀s ∈ S ,

wi(s) ≤ ui(s, 1)x̄(s) + Fi(s,Vi)[1− x̄(s)] ∀s ∈ S ,

wi(s) unrestricted ∀s ∈ S .

In order to generate a Benders’ optimality cut in Step (c), optimal dual multipliers of Pi(x̄)

are needed while we only know optimal dual multipliers of Ri(x̄). In fact, optimal dual

multipliers ofRi(x̄) and Pi(x̄) are closely related. Let πi,1(s), πi,2(s), πi,3(s), πi,4(s) be optimal

dual multipliers of Pi(x̄) associated with equations (3.9a) − (3.9d), for all s ∈ S , i ∈ N ,

respectively. It can easily be seen that for all i ∈ N :

πi,1(s) = πi,2(s) = 0 ∀s ∈ S 1(x̄), (3.13a)

πi,1(s) + πi,2(s) = γi(s) ∀s ∈ S 0(x̄), (3.13b)

πi,3(s) = πi,4(s) = 0 ∀s ∈ S 0(x̄), (3.13c)

πi,3(s) + πi,4(s) = γi(s) ∀s ∈ S 1(x̄), (3.13d)

πi,1(s) ≤ 0, πi,2(s) ≥ 0, πi,3(s) ≤ 0, πi,4(s) ≥ 0 ∀s ∈ S . (3.13e)

At each iteration of the Decomposition Algorithm, Ri(x̄) is solved, and γi(s) is obtained for

all s ∈ S , i ∈ N . There are multiple dual optimal solutions for Pi(x̄), and we may use any

πi,1(s), πi,2(s), πi,3(s), πi,4(s), satisfying (3.13a) − (3.13e), to generate a Benders’ optimality

cut. A Benders’ optimality cut is as follows:

θi ≤
∑
s∈S

πi,1(s)ui(s, 0) + πi,2(s)
(
ui(s, 0) + [ui(s, 1)− di(s)]x(s)

)
+

πi,3(s)
(
[ui(s, 1)− di(s)]x(s) + di(s)

)
+ πi,4(s)

(
ui(s, 1)x(s) + Fi(s,Vi)[1− x(s)]

)
∀i ∈ N .

(3.14)
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Since Ri(x̄) is not degenerate, ⟨γi(s)⟩s∈S is the unique dual solution of Ri(x̄) . In order to

generate a Pareto-optimal Benders’ optimality cut, we need to find π∗
i,1(s), π

∗
i,2(s), π

∗
i,3(s), π

∗
i,4(s)

for all s ∈ S such that they minimize the term on the right-hand side of (3.14) sub-

ject to (3.13a) − (3.13e) for each equilibrium x. The right-hand side of (3.14) subject to

(3.13a)− (3.13e) may be rewritten as follows:

∑
s∈S

πi,1(s)ui(s, 0) + πi,2(s)
(
ui(s, 0) + [ui(s, 1)− di(s)]x(s)

)
+

πi,3(s)
(
[ui(s, 1)− di(s)]x(s) + di(s)

)
+ πi,4(s)

(
ui(s, 1)x(s) + Fi(s,Vi)[1− x(s)]

)
=∑

s∈S 0(x̄)

[πi,1(s) + πi,2(s)]ui(s, 0) + πi,2(s) [ui(s, 1)− di(s)]x(s)+

∑
s∈S 1(x̄)

[πi,3(s) + πi,4(s)]ui(s, 1)x(s) + [πi,3(s) di(s) + πi,4(s)Fi(s,Vi)][1− x(s)] =

∑
sS 0(x̄)

γi(s)ui(s, 0) + πi,2(s) [ui(s, 1)− di(s)]x(s)+

∑
s∈S 1(x̄)

γi(s)ui(s, 1)x(s) + [πi,3(s) di(s) + πi,4(s)Fi(s,Vi)][1− x(s)], (3.15)

where the first and second equality follow from (3.13a), (3.13c) and (3.13b), (3.13d), respec-

tively. In order to minimize (3.15) subject to (3.13a) − (3.13e), we may seek to minimize

(3.15) for each s ∈ S separately. There are three cases:

If s ∈ S 0(x̄) and ui(s, 1) ≥ di(s), then π∗
i,1(s) := 0, π∗

i,2(s) := γi(s), π
∗
i,3(s) := 0, π∗

i,4(s) := 0

minimizes (3.15) subject to (3.13a)− (3.13e).

If s ∈ S 0(x̄) and ui(s, 1) < di(s), then x(s) is equal to 0 for any equilibrium x by Lemma

5. As a result, π∗
i,1(s) := γi(s), π

∗
i,2(s) := 0, π∗

i,3(s) := 0, π∗
i,4(s) := 0 minimizes (3.15) subject

to (3.13a)− (3.13e).

If s ∈ S 1(x̄), then π∗
i,1(s) := 0, π∗

i,2(s) := 0, π∗
i,3(s) := 0, π∗

i,4(s) := γi(s) minimizes (3.15)

subject to (3.13a)− (3.13e) since Fi(s,Vi) ≥ Fi(s,di) = di(s).

It is worth noting that the cut (3.12) requires only optimal dual multipliers of Ri(x̄).

Moreover, we solve the following separation problem in Step 2 of the algorithm: Given

an integral feasible point (x̄, θ̄), generate a valid inequality, separating the point from the
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convex hull of the master problem. The computational complexity of this separation problem

is clearly polynomial since x̄ is integral.

3.7.1 Branch-and-Cut

In the Decomposition Algorithm, we need to solve the restricted master problem repeatedly.

However, solving a mixed-integer restricted master repeatedly may be time-consuming. In

order to deal with this difficulty, we use a branch-and-cut framework. At the root node,

we start with the MILP in Step 0 of the Decomposition Algorithm. Then, we solve the

LP relaxation at each node and generate a violated cut at each integral node by using the

separation procedure described in Step 2 of the Decomposition Algorithm. We use the default

branching and node selection strategies of the MILP solver, ILOG-CPLEX 12.4 (2012).

Dynamic Variable Fixing and Pruning. At node t of the branch and cut tree, let

Jk
t be the set of all states in which x(s) is fixed to k, for any k = {0, 1}. A strategy profile

xt := ⟨xt(s)⟩s∈S can be assigned to each node t as follows:

xt(s) =

 1 if s ∈ J1
t ,

0 otherwise.

If xt is not an equilibrium, node t is pruned because all possible strategy profiles at this

node (admissible with respect to the binary variables being fixed so far) are not equilibria

by Corollary 1. On the other hand, if xt is an equilibrium, we can apply Proposition 8 to fix

some of unfixed binary variables at node t and its offspring. For this reason, x(s) is set to 0

at node t for all s ∈ ∪i∈N S 0
i,v(x

t).

Dynamic Coefficient Strengthening. Recall that ⟨Vi(s)⟩s∈S is the optimal value

function of player i when the autonomy of the other players is suppressed. The coefficient

Vi(s) may be replaced with any other upper bound of wi(s). In general, Vi(s) may be

relatively large, which weakens the LP relaxation of ∆. To address this, we dynamically

tighten upper bounds for wi(s) in progress of the branch-and-cut tree rather than using a

fixed value as an upper bound for wi(s).

At leaf node t, we can obtain a tightened upper bound of wi(s) by using the optimal

value function of player i for a certain MDP. In particular, consider an MDP in which the
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autonomy of all players except for i is suppressed, while player i is restricted to strategies

admissible with respect to the binary variables which are fixed at node t. Since the set of

fixed binary variables increases as we go down further in the search tree, the tightened upper

bound of wi(s) does not increase. Let V
t
i (s) be the tightened upper bound for wi(s) at leaf

node t. For each player i, Vt
i := ⟨V t

i (s)⟩s∈S can be calculated as the unique solution of the

following MDP equations:

V t
i (s) = Fi(s, V

t
i ) ∀s ∈ J0

t ,

V t
i (s) = ui(s, 1) ∀s ∈ J1

t ,

V t
i (s) = max{ui(s, 1), Fi(s,V

t
i)} ∀s ∈ S /J0

t ∪ J1
t .

Similarly, the coefficient di(s) is a lower bound for wi(s), and we may tighten it as we go

down in the search tree. At leaf node t, consider payoff profile wxt
associated with strategy

profile xt, as defined in the previous part. As noted earlier, if xt is not an equilibrium, node

t is pruned. Otherwise, xt is an equilibrium, and by Proposition 5 (i), wxt

i (s) is a lower

bound for wi(s) at node t and its offspring. Compared to di(s), w
xt

i (s) is a tighter lower

bound by Proposition 5. The new set of upper and lower bounds is applied to generate a

Benders’ optimality cut (3.12), which is only locally valid. Since the upper and lower bounds

get tighter as we go down further in the search tree, deeper Benders’ optimality cuts will

be generated. Needless to say, this idea should only be implemented at nodes at which we

generate a Benders’ optimality cut. The idea of coefficient strengthening has received some

recent attention in the optimization community (e.g., Qiu et al. 2014).

Dynamic Player-Aggregated Upper Bounds. In stochastic games, it is natural

to assume that the players compete in the same environment, and therefore share the same

discount factor (cf. Herings and Peeters 2004, Hörner et al. 2011). Suppose that the discount

factors are equal for all players, i.e., λi = λ for all i ∈ N . We present a family of upper

bounds for the objective function at each leaf node t. Let αi ∈ R for all i ∈ N , and

α := ⟨αi⟩i∈N . We define an aggregated MDP, Gα,t, over the state space S as follows. In

each state s ∈ S \(J0
t ∪J1

t ), we may decide whether to stop or continue. In each state s ∈ J1
t

(J0
t ), we have to stop (continue). If we decide to stop, then the MDP terminates and we
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receive a stopping reward uα(s, 1) :=
∑
i∈N

αiui(s, 1). Conversely, if we decide to continue, then

the MDP moves into a new state s′ under the Markovian transition probability P(s′|s) and

we receive an immediate continuation reward uα(s, 0) :=
∑
i∈N

αiui(s, 0). All future rewards

are discounted at rate λ. Therefore, Gα,t has the same dynamic evolution as G, but the

players’ rewards are aggregated in Gα,t and its action space is admissible with respect to the

binary variables which are fixed at node t. Similar to G, we can define strategy x and its

associated payoffs wx,α,t for Gα,t. For each strategy x with associated payoffs wx,α,t for Gα,t

and associated payoff profile wx for G, it can easily be seen that

wx,α,t(s) =
∑
i∈N

αiw
x
i (s) ∀s ∈ S . (3.16)

Let Vα,t := ⟨V α,t(s)⟩s∈S be the optimal value function of Gα,t, which is calculated as the

unique solution of the following MDP equations:

V α,t(s) = uα(s, 0) + λ
∑
s′∈S

P(s′|s)V α,t(s′) ∀s ∈ J0
t ,

V α,t(s) = uα(s, 1) ∀s ∈ J1
t ,

V α,t(s) = max{uα(s, 1), uα(s, 0) + λ
∑
s′∈S

P(s′|s)V α,t(s′)} ∀s ∈ S /J0
t ∪ J1

t .

Consider the following LP:

θ̄t := max
∑

s∈S ,i∈N

ci(s)wi(s) (3.17a)

s.t. wi(s) = Fi(s,wi) ∀s ∈ J0
t , i ∈ N , (3.17b)

wi(s) ≥ Fi(s,wi) ∀s ∈ S /J0
t , i ∈ N , (3.17c)

wi(s) = ui(s, 1) ∀s ∈ J1
t , i ∈ N , (3.17d)∑

i∈N

αiwi(s) ≤ V α,t(s) ∀s ∈ S , (3.17e)

wi(s) ≤ V t
i (s) ∀s ∈ S , i ∈ N , (3.17f)

wi(s) unrestricted ∀s ∈ S , i ∈ N . (3.17g)
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If a strategy profile x is an equilibrium and admissible at node t, then wx satisfies (3.17b)−

(3.17d) by Proposition 2, and satisfies (3.17e) − (3.17f) by (3.16) and the definitions of

Vα,t,Vt
i. Hence, the following inequality is locally valid at node t and its offspring:

∑
i∈N

θi ≤ θ̄t. (3.18)

Of special interest is the case when α is equal to ei, the ith unit vector in R|N |. In this

case, we do not need the above-mentioned assumption about equality of the discount factors,

and we use λi as the discount factor of Gei,t. Consider the following LP for each i ∈ N :

θ̄ti := max
∑
s∈S

ci(s)wi(s) (3.19a)

s.t. wi(s) = Fi(s,wi) ∀s ∈ J0
t , (3.19b)

wi(s) ≥ Fi(s,wi) ∀s ∈ S /J0
t , (3.19c)

wi(s) = ui(s, 1) ∀s ∈ J1
t , (3.19d)

wi(s) ≤ V t
i (s) ∀s ∈ S , (3.19e)

wi(s) unrestricted ∀s ∈ S . (3.19f)

A reasoning similar to that for validity of the inequality (3.18), shows that following inequal-

ity is locally valid at node t and its offspring:

θi ≤ θ̄ti ∀i ∈ N . (3.20)
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3.8 COMPUTATIONAL EXPERIMENTS

3.8.1 Implementation and Test Instances

We implemented the branch-and-cut algorithm described in Section 3.7, using the ILOG-

CPLEX 12.4 Callable Library embedded in C++ under Microsoft Visual Studio 2010. We

conducted our computational experiments on an Intel Xeon PC with 4.0 GHz CPU, 32 GB

RAM, and Windows 7 (64-bit) operating system. Each instance of our test bed was processed

three times within a 4-hour time limit: First by our implementation of the branch-and-cut

algorithm described in Section 3.7 within ILOG-CPLEX 12.4; second by solving the original

MILP model (3.10a)− (3.10b) through ILOG-CPLEX 12.4 (with default settings); and third

by our implementation of a state-of-the-art Benders’ decomposition (Fischetti et al. 2010)

within ILOG-CPLEX 12.4. In the implementation of our branch-and-cut algorithm, all cuts

are generated at integral nodes and added locally. The valid inequalities (3.18) and (3.20)

are added locally in non-integral nodes as well. Dynamic variable fixing and pruning are

implemented via a branch callback routine.

In our implementation of Benders’ decomposition, the vector x is considered as the linking

variables for the basic MILP (3.10a) − (3.10b). We adopt a branch-and-cut framework as

follows. At the root node, we start with the initial problem (3.11a)− (3.11d). At each node,

we use the constraint-generation scheme proposed by Fischetti et al. (2010) to identify a

violated constraint (if any) for each i ∈ N . When no constraint is generated at a node,

we let the default setting of ILOG-CPLEX 12.4 branch and select another node (if any)

to explore. All generated constraints are added globally; in our experiments there was no

significant difference compared to adding them locally.

We restrict our attention to consensus stopping game instances in which each player i ∈

N has an individual state si ∈ Si representing his competitive advantage, where Si denotes

his state space. Also, each player i ∈ N has an individual Markovian transition probability

matrix Pi, where Pi(s
′
i|si) shows the probability that player i will be in state s′i ∈ Si at the

next period given that he is now in state si ∈ Si. As a result, the game state s ∈ S is

(s1, s2, . . . , sN), and the game state space S is the Cartesian product of S1, S2, . . . , SN so
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that |S | =
∏
i∈N

|Si|. Moreover, the game transition probability matrix P is the Kronecker

product of transition probability matrices of all players, i.e, P(s′1, . . . , s
′
N |s1, . . . , sN) =∏

i∈N

Pi(s
′
i|si). Clearly, the equilibrium selection MILP grows rapidly as either the number

of players or the size of Si increases. For each instance, there is an initial state, denoted

by ŝ, and the objective function (3.10a) is set to
∑
i∈N

wi(ŝ). This is a reasonable objective

since it is the sum of all players’ expected reward-to-go from the initial state. Moreover, the

discount factors are equal for all players, and hence we use both valid inequalities (3.18) and

(3.20) in the branch-and-cut algorithm. In computation of the valid inequality (3.18), we let

α ∈ R|N | be a vector whose components are all equal to 1.

In order to enhance the performance, we provide all approaches with strategy profiles

x̄1, x̄2 as a warm start such that for each s ∈ S ,

x̄1(s) =

 1 if s = ŝ,

0 otherwise,
x̄2(s) =

 1 if Vi(s) = ui(s, 1)∀i ∈ N ,

0 otherwise.

Proposition 11. Strategy profile x̄2 is an equilibrium.

Proof. If s ∈ S 0(x̄2), the Bellman-Shapley equation (3.4) is obviously satisfied for all i ∈ N .

Conversely, if s ∈ S 1(x̄2), then

wx̄2
i (s) = ui(s, 1) = Vi(s) ≥ Fi(s,Vi) ≥ Fi(s,w

x̄2
i ) ∀i ∈ N ,

where the first equality follows from Proposition 2 (i), the second equality follows from the

definition of x̄2, and the first and second inequalities follow from the definition of Vi. Hence,

the Bellman-Shapley equation (3.4) is satisfied for all s ∈ S 1(x̄2), i ∈ N .

By Proposition 11, strategy profile x̄2 is an equilibrium. However, x̄1 is not necessarily

an equilibrium, and in such a case it is automatically eliminated from consideration by the

MILP solver.
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3.8.2 Computational Results 1: Real Clinical Instances

We used the method described in Kurt et al. (2011) to generate three categories of consensus

stopping game instances for their kidney exchange problem. In the first (second) category,

there are two players such that the size of Si is equal to 40 (60) for both players. In the

third category, there are three players, and |Si| = 15 for all players.

Tables 7 − 9 include computational results for the first, second, and third category of

instances, respectively. In these tables, we report the number of cuts, number of explored

nodes, the best solution, optimality gap (%), and running time (in the hour: minute: second

time format) for all approaches. Moreover, let Branch-and-Cut refer to the branch-and-

cut algorithm described in Section 3.7, CPLEX refer to solving the original MILP model

(3.10a)− (3.10b) through ILOG-CPLEX 12.4, and Benders refer to the state-of-the-art Ben-

ders’ decomposition (Fischetti et al. 2010). We also sorted the instances in the tables with

respect to the optimality gap of Branch-and-Cut, CPLEX, and Benders, respectively. ILOG-

CPLEX 12.4 does not generate any internal cuts for Branch-and-Cut, and all cuts used to

solve the three categories of instances by Branch-and-Cut are the cuts described in Section

3.7.

In Table 7, both Branch-and-Cut and CPLEX can solve instances a1− a10. On the ma-

jority of these instances, Branch-and-Cut is several orders of magnitude faster than CPLEX.

Branch-and-Cut needs about 15 minutes total to solve all instances of this subset while

CPLEX needs almost 4.5 hours total, i.e., Branch-and-Cut is 18 times faster in processing

the whole set. Branch-and-Cut can solve each instance of a11 − a18 in less than 19 min-

utes while CPLEX cannot solve any of them. Neither Branch-and-Cut nor CPLEX is able

to solve instances a19 − a30. However, Branch-and-Cut provides smaller optimality gaps

for all instances. Overall, Branch-and-Cut outperforms CPLEX on all instances. It is also

worth noting that the optimality gap of Benders is larger than that of Branch-and-Cut and

CPLEX on all instances. In some instances, we observe that the number of explored nodes

and the optimality gap are 0, meaning that those instances are solved at the root node.

In such instances, x̄1 is an optimal solution which was provided for the three solution ap-

proaches through the warm start; however, establishing optimality can be very challenging,
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Table 7: Two player with 40 state-per-player instances, sorted with respect to the optimality

gaps of Branch-and-Cut, CPLEX, and Benders, respectively.

Branch-and-Cut CPLEX Benders
Name #

of
#
of

Best Gap Time #
of

#
of

Best Gap Time #
of

#
of

Best Gap Time

cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s)
a1 31 0 11954.3 0.00 0:08:21 0 0 11954.3 0.00 0:27:23 54 3 11954.3 0.00 1:00:25
a2 0 0 11684.2 0.00 0:00:01 1380 0 11684.2 0.00 1:36:08 0 0 11684.2 0.00 0:00:01
a3 31 0 11472.6 0.00 0:01:45 0 0 11472.6 0.00 0:19:12 17 0 11472.6 0.00 0:14:19
a4 0 0 13057.1 0.00 0:00:01 0 0 13057.1 0.00 0:05:47 0 0 13057.1 0.00 0:00:01
a5 0 0 11230.3 0.00 0:00:01 1350 0 11230.3 0.00 2:16:39 0 0 11230.3 0.00 0:00:01
a6 0 0 11765 0.00 0:00:01 0 0 11765 0.00 0:05:53 0 0 11765 0.00 0:00:01
a7 0 0 11840.4 0.00 0:00:01 0 0 11840.4 0.00 0:02:23 0 0 11840.4 0.00 0:00:01
a8 25 0 12125.8 0.00 0:01:37 0 0 12125.8 0.00 0:36:51 125 0 12125.8 1.05 4:00:00
a9 13 0 13309.1 0.00 0:01:20 0 0 13309.1 0.00 2:28:57 115 0 13309.1 2.96 4:00:00
a10 15 0 11648.1 0.00 0:01:47 0 0 11648.1 0.00 0:49:55 141 0 11648.1 4.85 4:00:00
a11 19 0 11045.8 0.00 0:01:29 1707 0 11045.8 0.12 4:00:00 149 1 11045.8 2.60 4:00:00
a12 21 0 11682.5 0.00 0:01:32 1639 20 11682.5 0.53 4:00:00 150 1 11682.5 2.32 4:00:00
a13 10 0 10429.5 0.00 0:04:32 1513 81 10429.5 0.96 4:00:00 169 1 10429.5 7.55 4:00:00
a14 592 0 11833.3 0.00 0:18:10 1321 24 11833.3 1.43 4:00:00 197 1 11833.3 3.69 4:00:00
a15 14 0 11911.5 0.00 0:01:27 1883 327 11911.5 2.73 4:00:00 154 1 11911.5 3.64 4:00:00
a16 139 0 11540.9 0.00 0:05:10 1416 152 11540.9 2.93 4:00:00 260 0 11540.9 4.74 4:00:00
a17 25 0 11395.2 0.00 0:01:37 1498 17 11395.2 3.19 4:00:00 942 1 11395.2 4.79 4:00:00
a18 12 0 11447 0.00 0:01:20 1849 2 11447 3.71 4:00:00 158 0 11447 6.88 4:00:00
a19 1394 277 12096.9 0.36 4:00:00 1834 0 12096.9 5.23 4:00:00 132 0 12096.9 6.51 4:00:00
a20 726 163 13190 2.31 4:00:00 0 0 13124.2 6.67 4:00:00 144 0 13124.2 6.80 4:00:00
a21 851 161 12286.7 2.54 4:00:00 1509 97 12276.2 3.60 4:00:00 118 0 12276.2 12.33 4:00:00
a22 884 162 12297.7 2.58 4:00:00 1520 71 12226 4.22 4:00:00 166 0 12226 10.34 4:00:00
a23 938 167 11769.6 2.72 4:00:00 1623 43 11619 4.79 4:00:00 428 0 11619 13.22 4:00:00
a24 799 181 11990.3 2.90 4:00:00 1655 400 11901.7 4.23 4:00:00 252 0 11901.7 13.80 4:00:00
a25 759 172 10961.2 3.47 4:00:00 1147 128 10940.4 5.22 4:00:00 451861 10940.4 13.89 4:00:00
a26 836 185 10315.6 3.49 4:00:00 897 278 10264.7 6.84 4:00:00 223 1 10264.7 12.88 4:00:00
a27 719 164 11957.8 3.49 4:00:00 1560 70 11937.8 5.97 4:00:00 152 0 11937.8 12.38 4:00:00
a28 796 162 11544.9 4.25 4:00:00 1919 38 11521.1 7.71 4:00:00 214 1 11521.1 12.35 4:00:00
a29 815 176 9083.38 4.40 4:00:00 840 607 9052.69 4.74 4:00:00 148 1 9046.38 19.99 4:00:00
a30 802 194 11599.7 5.73 4:00:00 1301 30 11558.7 8.59 4:00:00 2 0 11558.7 12.36 4:00:00
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Table 8: Two player with 60 state-per-player instances, sorted with respect to the optimality

gaps of Branch-and-Cut, CPLEX, and Benders, respectively.

Branch-and-Cut CPLEX Benders
Name #

of
#
of

Best Gap Time #
of

#
of

Best Gap Time #
of

#
of

Best Gap Time

cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s)
b1 0 0 11736.6 0.00 0:00:01 0 0 11736.6 0.00 1:02:43 0 0 11736.6 0.00 0:00:01
b2 0 0 11821 0.00 0:00:01 0 0 11821 0.00 0:54:41 0 0 11821 0.00 0:00:01
b3 0 0 11699.1 0.00 0:00:01 0 0 11699.1 0.00 1:00:08 0 0 11699.1 0.00 0:00:01
b4 0 0 11189.1 0.00 0:00:01 0 0 11189.1 0.00 0:36:11 0 0 11189.1 0.00 0:00:01
b5 0 0 13358.9 0.00 0:00:01 0 0 13358.9 0.00 0:31:29 0 0 13358.9 0.00 0:00:01
b6 0 0 11540.9 0.00 0:00:01 0 0 11540.9 0.00 0:35:40 0 0 11540.9 0.00 0:00:01
b7 0 0 11699.1 0.00 0:00:01 0 0 11699.1 0.00 1:05:26 0 0 11699.1 0.00 0:00:01
b8 18 0 10823 0.00 0:20:22 0 0 10823 0.00 3:01:31 11 0 10823 0.00 4:00:00
b9 26 0 11163.8 0.00 0:29:02 81 0 11163.8 0.00 3:02:01 203 0 11163.8 1.20 4:00:00
b10 32 0 10593 0.00 0:34:33 0 0 10593 +∞ 4:00:00 46 0 10593 0.31 4:00:00
b11 4 0 12049.7 0.00 0:02:03 0 0 12049.7 +∞ 4:00:00 44 0 12049.7 0.55 4:00:00
b12 14 0 11627.7 0.00 0:49:29 0 0 11627.7 +∞ 4:00:00 48 0 11627.7 0.55 4:00:00
b13 104 0 12071.5 0.00 1:10:28 0 0 12071.5 +∞ 4:00:00 61 0 12071.5 1.77 4:00:00
b14 123 0 11304.7 0.00 0:58:54 0 0 11304.7 +∞ 4:00:00 92 1 11304.7 2.62 4:00:00
b15 15 0 11117.6 0.00 0:40:21 0 0 11117.6 +∞ 4:00:00 74 1 11117.6 3.75 4:00:00
b16 19 0 11964.8 0.00 0:38:07 0 0 11964.8 +∞ 4:00:00 65 0 11964.8 4.36 4:00:00
b17 172 0 11466.9 0.00 1:19:53 0 0 11466.9 +∞ 4:00:00 84 0 11466.9 5.64 4:00:00
b18 25 0 11014.6 0.00 0:21:51 0 0 11014.6 +∞ 4:00:00 86 0 11014.6 6.14 4:00:00
b19 35 0 10352.7 0.00 0:46:17 0 0 10352.7 +∞ 4:00:00 96 1 10352.7 7.01 4:00:00
b20 295 10 12287.9 0.16 4:00:00 0 0 12287.9 +∞ 4:00:00 88 1 12287.9 2.72 4:00:00
b21 60 10 11831.1 1.06 4:00:00 0 0 11831.1 +∞ 4:00:00 126 1 11831.1 7.31 4:00:00
b22 63 10 11623.6 2.33 4:00:00 0 0 11623.6 +∞ 4:00:00 120 0 11623.6 9.94 4:00:00
b23 83 10 11736.2 2.92 4:00:00 0 0 11598.9 +∞ 4:00:00 122 1 11598.9 14.29 4:00:00
b24 61 10 10959.8 3.48 4:00:00 0 0 10959.8 +∞ 4:00:00 122 1 10959.8 11.28 4:00:00
b25 81 10 9621.96 3.56 4:00:00 0 0 9606.76 +∞ 4:00:00 97 0 9606.76 30.19 4:00:00
b26 92 10 9712.26 3.57 4:00:00 0 0 9709.84 4.65 4:00:00 108 0 9709.84 31.09 4:00:00
b27 69 10 9996.52 4.40 4:00:00 3894 0 9991.23 5.79 4:00:00 115 0 9991.23 22.37 4:00:00
b28 72 10 10149.9 6.02 4:00:00 0 0 10089.9 +∞ 4:00:00 79 1 10089.9 22.94 4:00:00
b29 70 10 7982.41 6.09 4:00:00 0 0 7961.32 +∞ 4:00:00 31 0 7961.32 29.99 4:00:00
b30 204 10 9873.91 10.07 4:00:00 0 0 9852.2 14.08 4:00:00 126 1 9852.2 19.76 4:00:00
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Table 9: Three player with 15 state-per-player instances, sorted with respect to the optimality

gaps of Branch-and-Cut, CPLEX, and Benders, respectively.

Branch-and-Cut CPLEX Benders
Name #

of
#
of

Best Gap Time #
of

#
of

Best Gap Time #
of

#
of

Best Gap Time

cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s)
c1 0 0 16647 0.00 0:00:00 0 0 16647 0.00 0:04:50 0 0 16647 0.00 0:00:01
c2 0 0 18230.9 0.00 0:00:01 0 0 18230.9 0.00 0:04:19 0 0 18230.9 0.00 0:00:01
c3 219 0 17088.9 0.00 0:50:08 0 0 17088.9 0.00 1:00:09 558 0 17088.9 1.78 4:00:00
c4 30 0 17862.1 0.00 0:09:42 0 0 17862.1 0.00 0:33:57 830 0 17862.1 3.85 4:00:00
c5 26 0 15437 0.00 0:09:32 0 0 15437 0.00 0:35:43 969 0 15437 4.92 4:00:00
c6 26 0 16345.6 0.00 0:09:35 0 0 16345.6 0.00 1:46:15 435 0 16345.6 6.42 4:00:00
c7 317 0 17582 0.00 1:11:43 0 0 17582 0.70 4:00:00 92 0 17582 0.98 4:00:00
c8 194 0 16176 0.00 0:44:55 0 0 16176 1.34 4:00:00 195 0 16176 2.28 4:00:00
c9 110 0 16919.5 0.00 0:27:48 0 0 16919.5 +∞ 4:00:00 267 0 16919.5 1.11 4:00:00
c10 152 0 17886.8 0.00 0:36:09 0 0 17886.8 +∞ 4:00:00 196 0 17886.8 1.24 4:00:00
c11 80 0 17638.8 0.00 0:21:09 0 0 17638.8 +∞ 4:00:00 121 0 17638.8 1.60 4:00:00
c12 89 0 17802.4 0.00 0:22:40 0 0 17802.4 +∞ 4:00:00 267 0 17802.4 1.73 4:00:00
c13 213 0 16755.1 0.00 1:08:11 0 0 16755.1 +∞ 4:00:00 405 0 16755.1 1.99 4:00:00
c14 275 0 17251.9 0.00 1:02:46 0 0 17251.9 +∞ 4:00:00 154 0 17251.9 2.34 4:00:00
c15 209 0 17528.5 0.00 0:47:55 0 0 17528.5 +∞ 4:00:00 285 0 17528.5 3.25 4:00:00
c16 695 40 17817.3 0.51 4:00:00 0 0 17817.3 +∞ 4:00:00 141 0 17817.3 6.42 4:00:00
c17 288 40 18735.5 0.59 4:00:00 1646 0 18700.1 0.70 4:00:00 624 0 18692.3 10.39 4:00:00
c18 983 0 17362.6 0.69 4:00:00 0 0 17362.6 +∞ 4:00:00 152 0 17362.6 1.54 4:00:00
c19 486 40 15703.3 0.95 4:00:00 0 0 15681.5 +∞ 4:00:00 651 0 15677 18.04 4:00:00
c20 397 29 16926 1.35 4:00:00 2375 0 16909.6 1.35 4:00:00 564 0 16900.7 12.48 4:00:00
c21 290 40 11975.8 2.19 4:00:00 254 17 11514.2 5.16 4:00:00 621 0 11508.1 43.85 4:00:00
c22 253 40 14279.6 2.22 4:00:00 2814 0 14109.9 3.18 4:00:00 420 0 14094.7 33.47 4:00:00
c23 309 40 15946.9 3.21 4:00:00 1270 0 15908.4 3.55 4:00:00 465 0 15871.2 14.90 4:00:00
c24 886 23 13783.7 3.30 4:00:00 2542 0 13783.7 3.00 4:00:00 315 0 13776.8 33.55 4:00:00
c25 293 40 12439.3 3.93 4:00:00 243 100 12628 1.29 4:00:00 564 0 12295.4 43.47 4:00:00
c26 522 40 15158.6 5.27 4:00:00 2576 0 15141.9 5.60 4:00:00 240 0 15100.6 21.07 4:00:00
c27 507 34 15227.8 5.42 4:00:00 2015 0 14842.6 7.77 4:00:00 378 0 14793.1 29.00 4:00:00
c28 681 31 17215.1 6.66 4:00:00 3163 0 17215.1 7.86 4:00:00 204 0 17174 14.60 4:00:00
c29 349 40 12859.5 11.63 4:00:00 852 0 12457.7 13.48 4:00:00 771 0 12416.1 49.68 4:00:00
c30 303 40 12828.7 16.51 4:00:00 1622 0 12828.7 17.44 4:00:00 228 0 12740.1 39.02 4:00:00
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e.g., instances a11−a18. Moreover, we observe that Branch-and-Cut and Benders solve some

instances without adding any cut at the root node, meaning that the inequalities (3.11b)

are enough to close the optimality gap. CPLEX also solves some instances without adding

any cut at the root node by preprocessing and probing techniques. For instances a20− a30,

no warm-start solution is optimal. For these instances, finding a better solution than the

warm-start solution x̄2 is quite challenging, and CPLEX is unable to find a better solution

while Branch-and-Cut is able to find better solutions and provides smaller optimality gaps.

Moreover, we let CPLEX explore these instances in a 24-hour time limit, and observed that

CPLEX was only able to find a better solution for half of them, and its performance in terms

of optimality gap was dominated by that of Branch-and-Cut for a 4-hour time limit.

Table 8 shows a similar pattern. Both Branch-and-Cut and CPLEX can solve instances

b1 − b9, and Branch-and-Cut is several orders of magnitude faster than CPLEX. Branch-

and-Cut can solve instances b10−b19 while CPLEX cannot solve any of them. The situation

for CPLEX is even worse since it is unable to solve even the LP relaxation and find a bound

for these instances. We attempted to tune CPLEX by adjusting the pricing strategy of the

LP solver, the algorithm used for the LP solver, and the primal heuristic, but this had little

effect. Instances b20 − b30 cannot be solved by Branch-and-Cut nor by CPLEX. However,

Branch-and-Cut provides us with better solutions and smaller optimality gaps. For most

of instances b20 − b30, CPLEX is unable to solve even the LP relaxation, and tuning of

CPLEX parameters had little effect just as that for instances b10 − b19. For instances of

b1−b19, x̄1 is optimal, and establishing optimality is the primary challenge in which Branch-

and-Cut does remarkably well. In fact, for instances b15 − b19, CPLEX cannot close the

optimality gap even in a week. For instances b20− b30, both finding a better solution than

x̄2 and establishing optimality are extremely challenging. For (almost) all of these instances,

CPLEX is unable to find a better solution than x̄2 even within (one week) one day, and its

optimality gap is still larger than that of Branch-and-Cut for a 4-hour time limit. Generally

speaking, the advantage of Branch-and-Cut over CPLEX is even more apparent with the

larger instances. Moreover, Benders outperforms CPLEX in the majority of the instances

of Table 8 within the time limit. However, it too is dominated by Branch-and-Cut on all

instances. Table 9 shows that Branch-and-Cut outperforms the other solution approaches.
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Table 10: Performance of Branch-and-Cut when each type of valid inequality is deactivated.

Original Inequality Inequality Inequality Inequality Inequality

Branch-and-Cut (3.7) (3.8) (3.12) (3.18) (3.20)

Instances Number of solved problems 18 18 18 18 8 18

of Table Average of gap (%) 1.27 1.30 1.46 1.37 2.57 1.28

Instances Number of solved problems 19 19 19 19 10 17

of Table Average of gap (%) 1.45 1.45 1.55 1.53 2.65 1.70

Instances Number of solved problems 15 15 16 16 3 15

of Table Average of gap (%) 2.14 2.19 2.67 2.57 3.05 2.21

In order to evaluate efficiency of the five families of valid inequalities applied in Branch-

and-Cut, we deactivated each type of valid inequality in Branch-and-Cut one at a time

and collected the numerical results. In Table 10, we report the number of solved problems

and average of the optimality gaps in rows 1 − 2, 3 − 4, and 5 − 6 for instances of Table

7 − 9, respectively. In column 1, we report the statistics for Branch-and-Cut. In columns

2− 6, we report the statistics for Branch-and-Cut after deactivation of the associated valid

inequalities. This table shows that the valid inequalities (3.18) and (3.20) have a significant

effect in closing the optimality gap.

3.8.3 Computational Results 2: More General Instances

All instances studied in the preceding subsection had non-negative rewards. In this sub-

section, we investigate a set of random instances including both negative and non-negative

rewards to test the computational performance of our approach under this setting. In our

synthetic test bed, each instance consists of four components: Players’ individual transi-

tion matrices, rewards, discount factors for each player, and the initial state of the game.

All these components, but discount factors, are randomly generated for two categories of

instances as follows.
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We generated two categories of two-player consensus stopping game instances. For the

first (second) category, the size of Si is equal to 40 (60) for both players. Recall from Sub-

section 3.8.1 that (1) the game state is s = (s1, s2), i.e., S = S1 × S2, and (2) the game

transition probability matrix P is the Kronecker product of the individual transition prob-

ability matrices, i.e., P(s′1, s
′
2|s1, s2) = Pi(s

′
1|s1)Pi(s

′
2|s2). In many practical applications of

consensus stopping games such as war termination and organ exchange, which were discussed

in Section 3.1, transition in state of the game is slow, i.e., the game most likely remains in

the same state at the next period as that of the current period. For this reason, we randomly

generated a set of individual transition probability matrices that are highly diagonal, i.e.,

the diagonal entries are close to 1. Specifically, in generating our transition matrices we

used the notion of increasing failure rate (IFR) property. The IFR property has its origins

in maintenance optimization and reliability literature (Barlow and Proschan 1965), but it

has been recently shown that data in varying real contexts, primarily in healthcare and ser-

vice operations, empirically exhibit IFR property (Alagoz 2004). The transition matrices

we generated are designed to be moderately sparse but do not have any diagonal entry that

is less than 0.99. Such transition matrices can be encountered in real-life dynamic settings

where decision epochs are spaced very close to each other so that leaving the state of the

system in one period is not very likely. It is also common to see sparse transition matrices

with large diagonal entries when solutions of a large-scale dynamic decision-making prob-

lem are approximated through state aggregation. To ensure our transition matrices have

the IFR property and the specified threshold probabilities in their diagonals, we simulated

their entries iteratively starting from the top row. In each particular row, we simulated the

entries from left to right in column order after randomly fixing the diagonal entry in the

specified range. All entries of the same row are generated from a uniform distribution whose

boundaries are imposed by a corresponding partial row sum from the previous row due to

the IFR property. While such order restrictions can disallow some entries to be positive,

we also allowed each nondiagonal entry to be 0 with probability 0.01. Across all transition

matrices we generated, on average, the transition matrices for 40-state-per-player instances

were 53% sparse whereas the transition matrices for 60-state-per-player instances were 63%

sparse.
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For each i ∈ {1, 2} and s ∈ S , the rewards ui(s, 0) and ui(s, 1) only depend on si.

For each i ∈ {1, 2} and s ∈ {(s1, s2) ∈ S : si ̸= |Si|}, ui(s, 0) is generated according

to a uniform distribution on the interval [−150, 50], and ui(s, 1) is equal to min
s∈S

di(s) +

rand(si)
|Si|−si
|Si| max

s∈S
di(s), where rand(si) is a random number from a uniform distribution

on [0, 1]. In addition, the last state (i.e., si = |Si|) is absorbing, and its continuation and

stopping rewards are 0 and −∞, respectively. Finally, the initial state of the game ŝ is

generated by a discrete uniform distribution between |Si|
4

and |Si|
2
.

We report our computational results for the first and second categories of instances in

Tables 11 − 12, respectively. These tables illustrate that Branch-and-Cut greatly outper-

forms CPLEX and Benders. Note that CPLEX incorrectly finds many instances infeasible

or unbounded. It also removes the optimal solution for instance d2 in Table 11. We at-

tempted to circumvent these numerical failures by setting the feasibility tolerance parameter

(CPX PARAM EPRHS) to its highest allowed value (0.1), but this had little effect. There

are a couple of reasons behind these failures: (1) Large variability in the coefficients of

the formulation ∆ due to the existence of the transition probability matrix as well as the

big-M type coefficients ⟨Vi(s)⟩s∈S ,i∈N and ⟨di(s)⟩s∈S ,i∈N raises the possibility of numerical

instability. (2) For each x ∈ B|S |, if x(s) = 0 (x(s) = 1), then inequalities (3.9a) − (3.9b)

((3.9c)− (3.9d)) must hold as equalities, which are more numerically unstable.
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Table 11: Negative reward instances with two players and 40 state-per-player.

Branch-and-Cut CPLEX Benders
Name #

of
# of Best Gap Time #

of
#
of

Best Gap Time # of #
of

Best Gap Time

cuts nodes solution (%) (h:m:s) cuts nodessolution (%) (h:m:s) cuts nodessolution (%) (h:m:s)
d1 31 0 -43791.2 0.00 0:01:24 0 0 -43791.2 0.00 0:00:07 2523 0 -43791.2 0.14 4:00:00
d2 6593 173 -42298.1 0.19 4:00:00 287 0 -42315.4 0.00 0:14:16 1530 2 -42315.4 20.69 4:00:00
d3 225 0 -50115 0.00 0:06:32 0 0 INF N/

A
0:00:05 1660 2 -50115 4.54 4:00:00

d4 2866 181 -43871.9 0.27 4:00:00 0 0 -44002.2 UNB 0:00:03 14372 0 -44002.2 37.37 4:00:00
d5 3149 251 -61003.2 0.01 4:00:00 0 0 INF N/

A
0:00:04 2861 0 -61003.2 8.08 4:00:00

d6 31 0 -41204.1 0.00 0:00:43 0 0 INF N/
A

0:00:03 1969 0 -41204.1 1.33 4:00:00

d7 4531 178 -40924.1 0.16 4:00:00 0 0 INF N/
A

0:00:02 1380 1 -41415.6 16.59 4:00:00

d8 7929 318 -38364.6 0.67 4:00:00 945 0 -38414.4 0.71 4:00:00 1924 1 -38414.4 15.68 4:00:00
d9 121 0 -46703.7 0.00 0:04:20 0 0 -46703.7 UNB 0:00:02 4330 0 -46703.7 1.00 4:00:00
d10 131 0 -47275.9 0.01 0:01:43 0 0 -47277.6 0.00 0:01:26 1876 1 -47277.6 24.57 4:00:00
d11 481 17 -69717 0.01 0:20:24 0 0 -69850.1 UNB 0:00:05 2510 0 -69850.1 9.66 4:00:00
d12 113 0 -36144.2 0.00 0:05:45 0 0 INF N/

A
0:00:03 5552 0 -36144.2 1.60 4:00:00

d13 1411 44 -56391.4 0.01 0:55:14 0 0 -56431.1 UNB 0:00:05 1828 0 -56431.1 10.92 4:00:00
d14 3819 242 -38651.9 0.06 4:00:00 0 0 -38672.8 UNB 0:00:05 1931 0 -38672.8 18.96 4:00:00
d15 5424 197 -55730.8 0.05 4:00:00 0 0 INF N/

A
0:00:04 3191 1 -55919.2 11.34 4:00:00

d16 7099 315 -33109.3 0.62 4:00:00 366 0 -33621.2 2.02 4:00:00 2006 2 -33621.2 45.65 4:00:00
d17 6513 209 -60506.6 0.02 4:00:00 0 0 -62539.4 UNB 0:00:04 2446 1 -62539.4 13.17 4:00:00
d18 47 0 -55398.6 0.00 0:01:14 0 0 -55398.6 0.00 0:00:10 2682 0 -55398.6 7.29 4:00:00
d19 439 28 -49544.6 0.00 0:20:57 0 0 INF N/

A
0:00:05 3142 1 -50244.9 25.84 4:00:00

d20 2104 146 -50500 0.01 1:27:08 0 0 -50662.4 UNB 0:00:03 2869 0 -50662.4 10.87 4:00:00
d21 147 0 -54442.8 0.00 0:06:21 0 0 -54442.8 0.00 0:00:07 2179 2 -54442.8 7.10 4:00:00
d22 43 0 -26155 0.00 0:03:32 0 0 INF N/

A
0:00:03 355 0 -26155 4.40 4:00:00

d23 119 0 -42945.8 0.00 0:03:38 0 0 -43032.7 UNB 0:00:02 5848 1 -43032.7 20.81 4:00:00
d24 99 0 -52390.7 0.00 0:04:30 0 0 INF N/

A
0:00:05 4969 0 -52390.7 5.52 4:00:00

d25 149 0 -40318 0.00 0:05:09 0 0 -40327.2 UNB 0:00:04 892 1 -40327.2 7.25 4:00:00
d26 5001 154 -74479.8 0.52 4:00:00 206 75 -74506.1 0.25 4:00:00 2138 2 -74506.1 10.14 4:00:00
d27 168 0 -50124.8 0.00 0:07:36 0 0 -54372.4 UNB 0:00:03 6163 1 -50124.8 9.00 4:00:00
d28 0 0 -47153 0.00 0:00:00 0 0 INF N/

A
0:00:03 0 0 -47153 0.00 0:00:00

d29 4005 154 -71754.9 0.02 4:00:00 0 0 INF N/
A

0:00:06 5838 0 -71972 35.42 4:00:00

d30 104 0 -32799.1 0.00 0:05:00 0 0 INF N/
A

0:00:05 2030 0 -32799.1 6.26 4:00:00

• INF: Infeasible • UNB: Unbounded • N/A: Not applicable
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Table 12: Negative reward instances with two players and 60 state-per-player.

Branch-and-Cut CPLEX Benders
Name #

of
# of Best Gap Time #

of
#
of

Best Gap Time # of #
of

Best Gap Time

cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s) cuts nodes solution (%) (h:m:s)
e1 0 0 -9859.9 0.00 0:00:01 0 0 -9859.9 UNB 0:00:24 0 0 -9859.9 0.00 0:00:01
e2 62 0 -40272.1 0.00 0:57:54 0 0 INF N/

A
0:00:01 200 1 -40272.1 37.51 4:00:00

e3 575 29 -16238.9 6.78 4:00:00 0 0 INF N/
A

0:00:09 200 2 -16529.6 47.49 4:00:00

e4 0 0 5491.23 0.00 0:00:01 0 0 5491.23 0.00 0:00:22 0 0 5491.23 0.00 0:00:00
e5 1259 65 -14832.3 3.19 4:00:00 0 0 INF N/

A
0:00:02 306 1 -17333.6 33.34 4:00:00

e6 380 11 -36677.5 7.94 4:00:00 0 0 INF N/
A

4:00:00 176 1 -36887 29.06 4:00:00

e7 0 0 -16584.5 0.00 0:00:01 3846 0 INF N/
A

4:00:00 0 0 -16584.5 0.00 0:00:01

e8 423 5 -21916.7 1.68 4:00:00 0 0 INF N/
A

0:00:02 198 2 -22595.7 33.55 4:00:00

e9 383 5 -23243.7 0.20 4:00:00 0 0 INF N/
A

0:00:23 218 1 -24911.8 57.43 4:00:00

e10 91 0 -16321.9 0.00 1:56:24 0 0 INF N/
A

0:00:10 172 0 -16321.9 1.11 4:00:00

e11 416 20 -28559.8 4.38 4:00:00 0 0 INF N/
A

0:00:10 138 0 -29452 18.11 4:00:00

e12 67 0 -8071.9 0.00 1:00:08 3864 0 INF N/
A

4:00:00 193 2 -8071.9 10.69 4:00:00

e13 913 36 -23466.3 2.69 4:00:00 0 0 INF N/
A

0:00:01 362 1 -23545.8 74.65 4:00:00

e14 34 0 -8939.3 0.00 0:34:48 0 0 INF N/
A

0:00:02 171 0 -8939.3 33.58 4:00:00

e15 392 24 -9643.13 19.25 4:00:00 0 0 INF N/
A

4:00:00 160 2 -10294.1 61.04 4:00:00

e16 220 0 -18861.3 0.00 2:19:10 0 0 -27315.1 +∞ 4:00:00 199 1 -18861.3 11.96 4:00:00
e17 0 0 -911.841 0.00 0:00:01 0 0 INF N/

A
0:00:09 0 0 -911.841 0.00 0:00:00

e18 0 0 5865.58 0.00 0:00:01 3980 0 INF N/
A

4:00:00 0 0 5865.58 0.00 0:00:01

e19 0 0 -4283.5 0.00 0:00:01 0 0 -4283.5 0.00 0:00:16 0 0 -4283.5 0.00 0:00:00
e20 431 13 -25861.9 5.56 4:00:00 3495 0 -27120.3 11.70 4:00:00 192 1 -27120.3 23.69 4:00:00
e21 0 0 -10039.5 0.00 0:00:01 0 0 INF N/

A
0:00:01 0 0 -10039.5 0.00 0:00:01

e22 121 0 1717.15 0.00 2:04:38 0 0 INF N/
A

4:00:00 187 1 1717.15 135.904:00:00

e23 0 0 208.367 0.00 0:00:01 0 0 INF N/
A

0:00:09 0 0 208.367 0.00 0:00:01

e24 199 0 -9698.95 0.00 3:18:37 0 0 -17128.8 +∞ 4:00:00 222 0 -9698.95 59.03 4:00:00
e25 600 14 -15213.2 11.09 4:00:00 0 0 -19753.8 +∞ 4:00:00 190 1 -19753.8 54.39 4:00:00
e26 0 0 6784.35 0.00 0:00:01 0 0 INF N/

A
0:00:02 0 0 6784.35 0.00 0:00:00

e27 0 0 8851.23 0.00 0:00:01 16 0 INF N/
A

4:00:00 0 0 8851.23 0.00 0:00:01

e28 373 12 -14376.5 17.56 4:00:00 3509 0 -14376.5 28.64 4:00:00 204 1 -14376.5 35.64 4:00:00
e29 351 7 -34220.7 0.67 4:00:00 0 0 INF N/

A
0:00:09 158 0 -34240.8 37.86 4:00:00

e30 365 20 -39354.9 7.64 4:00:00 0 0 INF N/
A

1:45:26 180 1 -40643.6 47.62 4:00:00

• INF: Infeasible • UNB: Unbounded • N/A: Not applicable
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4.0 CHARACTERIZING ENTRY AND EXIT FOR STATIONARY

EQUILIBRIA OF A DYNAMIC OLIGOPOLY MODEL

4.1 INTRODUCTION

Industrial organization is a field of economics that studies structures of firms and markets.

The computational branch of industrial organization which is connected with analyze station-

ary equilibria of stochastic games arising in industries, has received a considerable attention

since the seminal work of Ericson and Pakes (1995). However, technical difficulties related

to computability of stationary equilibria have restricted its applicability. Doraszelski and

Satterthwaite (2010) provided a more computationally tractable model of an oligopolistic

industry with investment, entry, and exit by imposing symmetry restrictions on firms’ be-

haviors. To enhance the computational tractability, we characterize entry and exit behaviors

of firms under stationary equilibria for the model of Doraszelski and Satterthwaite (2010)

while relaxing the symmetry restrictions.

4.2 MODEL REVIEW

This section introduces the oligopoly model of Doraszelski and Satterthwaite (2010) that

investigates evolution of an industry with heterogeneous firms under a competitive dynamic

discrete-time infinite horizon setting. There are two groups of firms: incumbent firms and

potential entrants. In each period, every incumbent firm has to decide whether to remain

in or leave the industry. If it chooses to remain, it must decide how much to invest in this

period. A potential entrant has to decide whether to enter the industry or not. If it chooses

72



to enter the industry, it must decide how much to invest. When these decisions are made,

product market competition occurs and each firm accrues an immediate profit in this period.

Next, the industry moves into a new state according to a Markovian transition, and so on.

We formalize the evolution of the industry in the following.

States and firms. Let N and N e denote the sets of incumbent and entrant firms,

respectively. Let N denote the total number of firms, which is fixed. Firm n is described by

its state ωn ∈ {0, 1, . . . ,M}. States 1, . . . ,M describe the product quality of a firm that is

active in the product market, i.e., an incumbent firm, while state 0 identifies a firm as being

inactive, i.e., a potential entrant. When incumbent (potential entrant) firm n decides to exit

(enter), its state in the next period will be ωn = 0 (ωn ̸= 0). The vector of firms’ states is

ω = (ω1, . . . , ωN), which characterizes the industry at any point. Ω is the set of all possible

states.

Let N∗ be the number of incumbent firms (i.e., active firms), so that there are N −N∗

potential entrants (i.e., inactive firms). In other words, the number of incumbent firms and

the number of potential entrants may vary from period to period, but the total number of

incumbent and potential entrants is fixed. Thus, once an incumbent firm exits the industry,

a potential entrant automatically takes its slot in the competition and has to decide whether

to enter the industry. Potential entrants are drawn from a large pool. They are short-lived

and base their entry decisions on the net present value of entering today; potential entrants

do not have the option of delaying entry, that is if a potential entrant does not enter in this

period, it perishes. In contrast, incumbent firms are long-lived and solve an infinite-horizon

maximization problems to reach their exit decisions. They discount future payoffs by a factor

of β.

Incumbent firms. Consider incumbent firm n, so that ωn ̸= 0. We assume that

at the beginning of each period each incumbent firm draws a random salvage value ϕn

from a distribution F (·) with E(ϕn) = ϕ. Salvage values are independently and identically

distributed across firms and periods. Incumbent firm n learns its salvage value ϕn prior to

deciding about its exit and investment, but the salvage values of its rivals remain unknown

to it. Let χn(ω, ϕn) = 1 indicate that the decision of incumbent firm n, who has drawn

salvage value ϕn, is to remain in the industry in state ω and let χn(ω, ϕn) = 0 indicate that

73



its decision is to exit the industry, collect the salvage value ϕn, and perish. Since this decision

is conditioned on its private ϕn, it is a random variable from the perspective of other firms.

We use ξn(ω) =
∫
χn(ω, ϕn)dF (ϕn) to denote the probability that incumbent firm n remains

in the industry in state ω.

If an incumbent firm n remains in the industry at state ω, it competes in the product

market, and accrues a current profit of πn(ω). In addition to receiving the current profit,

the incumbent incurs the investment xn(ω) ∈ [0, x] that it decided on at the beginning

of the period and moves from state ωn to state ω′
n ̸= 0 in accordance with the transition

probabilities specified subsequently.

Potential entrants. Suppose that ωn = 0 and consider potential entrant n. We assume

that at the beginning of each period each potential entrant draws a random setup cost ϕe
n from

a distribution F e(·) with E(ϕe
n) = ϕe. Like salvage values, setup costs are independently and

identically distributed across firms and periods, and setup cost of a firm is private information

of the firm. If potential entrant n enters the industry, it incurs the setup cost ϕe
n. If it stays

out, it receives nothing and perishes. We use χe
n(ω, ϕ

e
n) = 1 to indicate that the decision of

potential entrant n, who has drawn setup cost ϕe
n, is to enter the industry in state ω and

χe
n(ω, ϕ

e
n) = 0 to indicate that its decision is to stay out. From the perspective of other

firms ξn(ω) =
∫
χe
n(ω, ϕ

e
n)dF

e(ϕn) denotes the probability that potential entrant n enters

the industry in state ω.

Unlike an incumbent, the entrant does not compete in the product market. Instead it

undergoes a setup period upon committing to entry. The entrant incurs its previously chosen

investment xe
n ∈ [0, xe] and moves to state w′

n ̸= 0. Hence, at the end of the setup period,

the entrant becomes an incumbent.

Transition probabilities. The probability that the industry transitions from today’s

state ω to tomorrow’s state ω′ is determined jointly by the investment decisions of the incum-

bent firms that remain in the industry and the potential entrants that enter the industry.

Thus, P (ω′ | ω, χ(ω, ϕ), χe(ω, ϕe), x(ω), xe(ω)) is the probability that the industry moves

from state ω to state ω′ given that the incumbent firms’ exit decision are χ(ω, ϕ), their

investment decisions are x(ω), etc.
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We denote a strategy profile by (x, ξ), that specifies decisions of all players for all states.

Following the notation convention, (x−n, ξ−n) denotes strategies of all players except for n.

Proposition 12. Given a strategy profile (x, ξ) with associated payoff profile V x,ξ, the fol-

lowing hold:

V x,ξ
n (ω, ϕn) =πn(ω) + χn(ω, ϕn)

(
− xn(ω)+

βE
{
V x,ξ
n (ω′)|ω, ξ−n(ω), x(ω)

} )
+
(
1− χn(ω, ϕn)

)
ϕn ∀ω ∈ Ω, n ∈ N ,

(4.1a)

V x,ξ
n (ω) =E{V x,ξ

n (ω, ϕn)} ∀ω ∈ Ω, n ∈ N ,

(4.1b)

V x,ξ
n (ω, ϕe

n) =χe
n(ω, ϕ

e
n)
(
− ϕe

n − xn(ω) + βE
{
V x,ξ
n (ω′)|ω, ξ−n(ω), x(ω)

} )
∀ω ∈ Ω, n ∈ N e,

(4.1c)

V x,ξ
n (ω) =E{V x,ξ

n (ω, ϕe
n)} ∀ω ∈ Ω, n ∈ N e.

(4.1d)

Furthermore, V x,ξ is the unique solution of (4.1a)− (4.1d).

Let

gn
(
ω, χn(ω, ϕn), xn(ω), Vn

)
:=πn(ω) + χn(ω, ϕn)

(
− xn(ω)+

βE {Vn(ω
′)|ω, ξ−n(ω), x(ω)}

)
+
(
1− χn(ω, ϕn)

)
ϕn ∀ω ∈ Ω, n ∈ N ,

(4.2a)

gn
(
ω, χn(ω, ϕn), xn(ω), Vn

)
:=χn(ω, ϕn)

(
− ϕn − xn(ω)+

βE {Vn(ω
′)|ω, ξ−n(ω), x(ω)}

)
∀ω ∈ Ω, n ∈ N e.

(4.2b)
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Proposition 13. (x, ξ) is an equilibrium if and only if

V x,ξ
n (ω, ϕn) = sup

χ̃n(ω,ϕn)∈{0,1}
x̃n∈[0,x]

{
gn
(
ω, χ̃n(ω, ϕn), x̃n(ω), V

x,ξ
n

)}
∀ω ∈ Ω, n ∈ N , (4.3a)

V x,ξ
n (ω) = E{V x,ξ

n (ω, ϕn)} ∀ω ∈ Ω, n ∈ N , (4.3b)

V x,ξ
n (ω, ϕe

n) = sup
χ̃e
n(ω,ϕn)∈{0,1}
x̃e
n∈[0,xe]

{
gn
(
ω, χ̃e

n(ω, ϕ
e
n), x̃n(ω), V

x,ξ
n

)}
∀ω ∈ Ω, n ∈ N e, (4.3c)

V x,ξ
n (ω) = E{V x,ξ

n (ω, ϕe
n)} ∀ω ∈ Ω, n ∈ N e. (4.3d)

Propositions 12− 13 are standard results in stochastic games. For further discussion on

these results, see Doraszelski and Satterthwaite (2010).

4.3 CHARACTERIZATION OF ENTRY AND EXIT IN STATIONARY

EQUILIBRIA

In this section, we provide several characterizations of stationary equilibrium behavior of

firms for the model of Doraszelski and Satterthwaite (2010). Specifically, our first character-

ization presents a set of strategy profiles for which the payoff of a specific player dominates,

or is dominated by, that of a given strategy profile. The second characterization provides

a set of states in which the Bellman-Shapley equation is violated. The third characteriza-

tion yields a set of non-equilibrium strategy profiles in a “neighborhood” of a given strategy

profile. These properties are expected to facilitate the process of computing stationary equi-

libria. In what follows, unless otherwise stated, we use the terms strategy and equilibrium

to refer to stationary strategy and stationary equilibrium, respectively.

For each strategy profile (x, ξ), define

Cn(ω, x, ξ) := −xn(ω) + βE
{
V x,ξ
n (ω′)|ω, ξ−n(ω), x(ω)

}
∀ω ∈ Ω, if n ∈ N , (4.4a)

Ce
n(ω, x, ξ) := −xn(ω) + βE

{
V x,ξ
n (ω′)|ω, ξ−n(ω), x(ω)

}
∀ω ∈ Ω, if n ∈ N e. (4.4b)

For an incumbent firm n, Cn(ω, x, ξ) represents the expected discounted profit if it decides

to stay in the market in this period while the other firms always follow the strategies induced
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by (x, ξ), and firm n follows the strategy induced by (x, ξ) from the next period on. For an

entrant firm n, Cn(ω, x, ξ) represents the maximum expected discounted profit if it enters

the market in this period without paying a setup cost while the other firms always follow the

strategies induced by (x, ξ) and firm n follows the strategy induced by (x, ξ), from the next

period on. For a ∈ [0, 1], the generalized inverse distribution functions F−1(a) and F e−1(a)

are as follows:

F−1(a) := inf{y ∈ R|F (y) ≥ a},

F e−1(a) := inf{y ∈ R|F e(y) ≥ a}.

For each strategy profile (x, ξ), let

Ωn(x, ξ) :=
{
ω ∈ Ω | Cn(ω, x, ξ) > F−1(ξn(ω))

}
if n ∈ N , (4.5a)

Ωn(x, ξ) :=
{
ω ∈ Ω | Cn(ω, x, ξ) ≤ F−1(ξn(ω))

}
if n ∈ N , (4.5b)

Ω
e

n(x, ξ) :=
{
ω ∈ Ω | Ce

n(ω, x, ξ) ≥ F e−1(ξn(ω))
}

if n ∈ N e, (4.5c)

Ωe
n(x, ξ) :=

{
ω ∈ Ω | Ce

n(ω, x, ξ) < F e−1(ξn(ω))
}

if n ∈ N e. (4.5d)

Proposition 14. Given a strategy profile (x̂, ξ̂) with associated payoff profile V x̂,ξ̂:

(i) For n ∈ N ∪ N e and a strategy profile (x, ξ) with associated payoff profile V x,ξ,

suppose that

ξ̂n(ω) ≤ ξn(ω) ≤ F (Cn(ω, x̂, ξ̂)) if ω ∈ Ωn(x̂, ξ̂), (4.6a)

F (Cn(ω, x̂, ξ̂)) ≤ ξn(ω) ≤ ξ̂n(ω) if ω ∈ Ωn(x̂, ξ̂), (4.6b)

ξ̂n(ω) ≤ ξn(ω) ≤ F e(Ce
n(ω, x̂, ξ̂)) if ω ∈ Ω

e

n(x̂, ξ̂), (4.6c)

F e(Ce
n(ω, x̂, ξ̂)) ≤ ξn(ω) ≤ ξ̂n(ω) if ω ∈ Ωe

n(x̂, ξ̂), (4.6d)

and

− xn(ω) + βE
{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

}
≥

− x̂n(ω) + βE
{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

}
∀ω ∈ Ω. (4.7)

Then V x,ξ
n (ω) ≥ V x̂,ξ̂

n (ω) for all ω ∈ Ω.
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(ii) For n ∈ N ∪ N e and a strategy profile (x, ξ) with associated payoff profile V x,ξ,

suppose that

ξn(ω) ≤ ξ̂n(ω) if ω ∈ Ωn(x̂, ξ̂), (4.8a)

ξ̂n(ω) ≤ ξn(ω) if ω ∈ Ωn(x̂, ξ̂), (4.8b)

ξn(ω) ≤ ξ̂n(ω) if ω ∈ Ω
e

n(x̂, ξ̂), (4.8c)

ξ̂n(ω) ≤ ξn(ω) if ω ∈ Ωe
n(x̂, ξ̂), (4.8d)

and

− xn(ω) + βE
{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

}
≤

− x̂n(ω) + βE
{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

}
∀ω ∈ Ω. (4.9)

Then V x,ξ
n (ω) ≤ V x̂,ξ̂

n (ω) for all ω ∈ Ω.

Proof. Note that payoffs of firm n under a given strategy profile may be calculated by value

iteration (Denardo 1967). Specifically, let [V x,ξ
n (ω, ϕn)]

m and [V x,ξ
n (ω)]m be the mth iteration

of the value iteration algorithm under strategy profile (x, ξ) where we initialize our value

iteration by payoffs of firm n under strategy profile (x̂, ξ̂).

(i) First, suppose that n ∈ N . From Proposition 12, there are following possible cases:

• If ω ∈ Ωn(x̂, ξ̂) and ϕn < F−1(ξ̂n(ω)), then

[V x,ξ
n (ω, ϕn)]

1 = πn(ω) +
(
− xn(ω) + βE

{
[V x,ξ

n (ω′)]0|ω, ξ−n(ω), x(ω)
} )

= πn(ω) +
(
− xn(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

})
≥ πn(ω) +

(
− x̂n(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

})
= V x̂,ξ̂

n (ω, ϕn)

= [V x,ξ
n (ω, ϕn)]

0.
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• If ω ∈ Ωn(x̂, ξ̂) and F−1(ξ̂n(ω)) ≤ ϕn < F−1(ξn(ω)), then

[V x,ξ
n (ω, ϕn)]

1 = πn(ω) +
(
− xn(ω) + βE

{
[V x,ξ

n (ω′)]0|ω, ξ−n(ω), x(ω)
} )

= πn(ω) +
(
− xn(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

})
≥ πn(ω) +

(
− x̂n(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

})
= Cn(ω, x̂, ξ̂)

≥ F−1(ξn(ω))

≥ ϕn

= V x̂,ξ̂
n (ω, ϕn)

= [V x,ξ
n (ω, ϕn)]

0.

• If ω ∈ Ωn(x̂, ξ̂) and F−1(ξn(ω)) ≤ ϕn, then

[V x,ξ
n (ω, ϕn)]

1 = ϕn

= V x̂,ξ̂
n (ω, ϕn)

= [V x,ξ
n (ω, ϕn)]

0.

• If ω ∈ Ωn(x̂, ξ̂) and ϕn < F−1(ξn(ω)), then

[V x,ξ
n (ω, ϕn)]

1 = πn(ω) +
(
− xn(ω) + βE

{
[V x,ξ

n (ω′)]0|ω, ξ−n(ω), x(ω)
} )

= πn(ω) +
(
− xn(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

})
≥ πn(ω) +

(
− x̂n(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

})
= V x̂,ξ̂

n (ω, ϕn)

= [V x,ξ
n (ω, ϕn)]

0.
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• If ω ∈ Ωn(x̂, ξ̂) and F−1(ξn(ω)) ≤ ϕn < F−1(ξ̂n(ω)), then

[V x,ξ
n (ω, ϕn)]

1 = ϕn

≥ F−1(ξn(ω))

≥ Cn(ω, x̂, ξ̂)

= πn(ω) +
(
− x̂n(ω) + βE

{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

})
= V x̂,ξ̂

n (ω, ϕn)

= [V x,ξ
n (ω, ϕn)]

0.

• If ω ∈ Ωn(x̂, ξ̂) and F−1(ξ̂n(ω)) ≤ ϕn, then

[V x,ξ
n (ω, ϕn)]

1 = ϕn

= V x̂,ξ̂
n (ω, ϕn)

= [V x,ξ
n (ω, ϕn)]

0.

Our arguments show that if n ∈ N , then [V x,ξ
n (ω, ϕn)]

1 ≥ [V x,ξ
n (ω, ϕn)]

0 for all ω ∈ Ω.

Otherwise, if n ∈ N e, it can similarly be shown that [V x,ξ
n (ω, ϕn)]

1 ≥ [V x,ξ
n (ω, ϕn)]

0 for

all ω ∈ Ω. Therefore, it follows from Proposition 12 that [V x,ξ
n (ω)]1 ≥ [V x,ξ

n (ω)]0 for all

ω ∈ Ω. By the monotonicity of the dynamic programming operator induced by strategy

profile (x, ξ) for firm n (Blackwell 1965), it follows that [V x,ξ
n (ω)]m+1 ≥ [V x,ξ

n (ω)]m for all

ω ∈ Ω. Consequently, V x,ξ
n (ω) = lim

m→+∞
[V x,ξ

n (ω)]m ≥ [V x,ξ
n (ω)]0 = V x̂,ξ̂

n (ω) for all ω ∈ Ω.

(ii) The proof is similar to part (i).

Proposition 15. (i) For a strategy profile (x, ξ), the Bellman-Shapley equation (4.3a) is

violated for an incumbent firm n ∈ N in state (ω, ϕn) if the following conditions hold:

F−1(ξn(ω)) ≤ ϕn < Cn(ω, x, ξ) if ω ∈ Ωn(x, ξ), (4.10a)

Cn(ω, x, ξ) < ϕn ≤ F−1(ξn(ω)) if ω ∈ Ωn(x, ξ). (4.10b)
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(ii) For a strategy profile (x, ξ), the Bellman-Shapley equation (4.3c) is violated for an

entrant firm n ∈ N e in state (ω, ϕn) if the following conditions hold:

F e−1(ξn(ω)) ≤ ϕn < Ce
n(ω, x, ξ) if ω ∈ Ω

e

n(x, ξ), (4.11a)

Ce
n(ω, x, ξ) < ϕn ≤ F e−1(ξn(ω)) if ω ∈ Ωe

n(x, ξ). (4.11b)

Proof. (i) Note that when (ω, ϕn) satisfies the condition (4.10a), firm n decides to stay in

the market in state (ω, ϕn) under strategy profile (x, ξ) (i.e., χn(ω, ϕn) = 1). The payoff of

this decision is equal to Cn(ω, x, ξ) which is strictly smaller than that of deciding to leave

the market, ϕn. Hence, the Bellman-Shapley equation (4.3a) is violated in (ω, ϕn).

If (ω, ϕn) satisfies the condition (4.10b), then firm n decides to leave the market in state

(ω, ϕn) under strategy profile (x, ξ) (i.e., χn(ω, ϕn) = 0). The payoff of such a decision is ϕn

which is strictly smaller than that of deciding to stay in the market, Cn(ω, x, ξ). Therefore,

the Bellman-Shapley equation (4.3a) is violated in (ω, ϕn).

(ii) The proof is similar to part (i).

Proposition 16. Given a strategy profile (x̂, ξ̂):

(i) Suppose that there exist n ∈ N and ω̆ ∈ Ω for which F−1(ξ̂n(ω̆)) < Cn(ω̆, x̂, ξ̂). Any

strategy profile (x, ξ) satisfying conditions (4.6a) − (4.7) and F−1(ξ̂n(ω̆)) ≤ F−1(ξn(ω̆)) <

Cn(ω̆, x̂, ξ̂) is not an equilibrium.

(ii) Suppose that there exist n ∈ N and ω̆ ∈ Ω for which Cn(ω̆, x̂, ξ̂) < F−1(ξ̂n(ω̆)). Any

strategy profile (x, ξ) satisfying conditions (4.8a)− (4.9) is not an equilibrium.

(iii) Suppose that there exist n ∈ N e and ω̆ ∈ Ω for which F e−1(ξ̂n(ω̆)) < Ce
n(ω̆, x̂, ξ̂).

Any strategy profile (x, ξ) satisfying conditions (4.6a)−(4.7) and F e−1(ξ̂n(ω̆)) ≤ F e−1(ξn(ω̆)) <

Ce
n(ω̆, x̂, ξ̂) is not an equilibrium.

(iv) Suppose that there exist n ∈ N e and ω̆ ∈ Ω for which Ce
n(ω̆, x̂, ξ̂) < F e−1(ξ̂n(ω̆)).

Any strategy profile (x, ξ) satisfying conditions (4.8a)− (4.9) is not an equilibrium.

Proof. (i) Since strategy profile (x, ξ) satisfies conditions (4.6a)−(4.7), it follows from Propo-

sition 14 (i) that V x,ξ
n (ω) ≥ V x̂,ξ̂

n (ω) for all ω ∈ Ω. Therefore,

E
{
V x,ξ
n (ω′)|ω, ξ−n(ω), x(ω)

}
≥ E

{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

}
∀ω ∈ Ω. (4.12)
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Inequalities (4.7) and (4.12) imply that:

− xn(ω) + βE
{
V x,ξ
n (ω′)|ω, ξ−n(ω), x(ω)

}
≥

− xn(ω) + βE
{
V x̂,ξ̂
n (ω′)|ω, ξ−n(ω), x(ω)

}
≥

− x̂n(ω) + βE
{
V x̂,ξ̂
n (ω′)|ω, ξ̂−n(ω), x̂(ω)

}
∀ω ∈ Ω.

Therefore, Cn(ω, x, ξ) ≥ Cn(ω, x̂, ξ̂) for all ω ∈ Ω. In particular, Cn(ω̆, x, ξ) ≥ Cn(ω̆, x̂, ξ̂).

Thus, it follows that F−1(ξn(ω̆)) < Cn(ω̆, x, ξ) by the hypothesis that F
−1(ξ̂n(ω̆)) ≤ F−1(ξn(ω̆)) <

Cn(ω̆, x̂, ξ̂). By Proposition 15, the Bellman-Shapley equation (4.3a) is violated in state

(ω̆, ϕn) for all ϕn ∈ [F−1(ξn(ω̆)), Cn(ω̆, x, ξ)). This implies that strategy profile (x, ξ) is not

an equilibrium.

(ii) Since strategy profile (x, ξ) satisfies conditions (4.8a)−(4.9), it follows from Proposi-

tion 14 (ii) that V x,ξ
n (ω) ≤ V x̂,ξ̂

n (ω) for all ω ∈ Ω. Hence, similar to the proof of part (i), it can

be shown that Cn(ω, x, ξ) ≤ Cn(ω, x̂, ξ̂) for all ω ∈ Ω. In particular, Cn(ω̆, x, ξ) ≤ Cn(ω̆, x̂, ξ̂).

As (x, ξ) satisfies conditions (4.8a) − (4.9) and ω̆ ∈ Ωn(x̂, ξ̂), it follows that ξ̂n(ω̆) ≤ ξn(ω̆),

which in turn implies that F−1(ξ̂n(ω̆)) ≤ F−1(ξn(ω̆)). From the hypothesis that Cn(ω̆, x̂, ξ̂) <

F−1(ξ̂n(ω̆)), it follows that Cn(ω, x, ξ) ≤ Cn(ω̆, x̂, ξ̂) < F−1(ξ̂n(ω̆)) ≤ F−1(ξ̂n(ω̆)). As a re-

sult, strategy profile (x, ξ) is not an equilibrium since by Proposition 15, the Bellman-Shapley

equation (4.3a) is violated in state (ω̆, ϕn) for all ϕn ∈ (Cn(ω̆, x, ξ), F
−1(ξn(ω̆))].

(iii) The proof is similar to part (i).

(iv) The proof is similar to part (ii).
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5.0 CONCLUSIONS

5.1 AN OPTIMAL INCENTIVE ALIGNMENT FOR A NATIONAL

KIDNEY EXCHANGE PROGRAM

PKE is a growing clinical practice to provide transplantable kidneys for ESRD patients with

willing incompatible living-donors. Currently, the Netherlands and South Korea are conduct-

ing a national PKE program, and the United States is considering creating a national PKE

program since such a program will provide more and better transplants. In Chapter 2, we

investigated barriers to establish a national PKE program in the United States. Specifically,

we addressed how to incentivize transplant centers by a payment strategy to participate in a

national PKE program. We developed a principal-agent framework to model how a national

PKE program and transplant centers interact through the payment strategy. To find an

equilibrium payment strategy, we developed a bilevel program that can be solved through

a transformation into an MILP. We calibrated our model and provided several data-driven

insights regarding an equilibrium payment strategy and benefits of a national PKE program.

In particular, we demonstrated that there exists a “win-win” equilibrium payment strategy

under which all participants- consisting of patient-donor pairs, insurance companies, and

transplant centers- benefit from creation of a national PKE program.
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5.2 OPTIMIZING OVER PURE STATIONARY EQUILIBRIA IN

CONSENSUS STOPPING GAMES

Stochastic games are a powerful tool to model competition of several players in a dynamic

setting. However, their applications have been limited since a stochastic game, in general,

possesses multiple stationary equilibria, and that makes it hard to predict how players be-

have. To solve this issue, it is inherently interesting to find a socially optimal stationary

equilibrium. However, the problem of finding a socially optimal stationary equilibrium is

often computationally intractable. We showed that such a problem is amenable to MILP

approaches for special cases. In Chapter 3, we considered consensus stopping games, a broad

class of stochastic stopping games. We studied the problem of finding a best pure stationary

equilibrium for this class of games, which we showed to be NP-hard. We presented an MILP

formulation for the problem of finding a best pure stationary equilibrium. We characterized

the pure stationary equilibria of the game, and developed several families of valid inequal-

ities. We developed an algorithm to solve the problem and demonstrated its efficiency by

our computational experiments. The majority of results in this chapter can be applied to

nonlinear objective functions of payoffs. In particular, the valid inequalities (3.7) and (3.8)

may be applied to any nondecreasing and general nonlinear objective function of payoffs,

respectively. The approach of this chapter might also be amenable to analyze stationary

equilibria of other types of stochastic games. We leave this extension as a topic for future

research.

5.3 CHARACTERIZING ENTRY AND EXIT FOR STATIONARY

EQUILIBRIA OF A DYNAMIC OLIGOPOLY MODEL

Industrial organization is a field of economics to study how firms behave in an industry. Re-

cently, a class of stochastic games is adopted to model behaviors of firms in the literature of

industrial organization. Complicated structures of this class of stochastic games make it dif-

ficult to compute stationary equilibria. In Chapter 4, we investigated this class of stochastic

84



games. To overcome challenges in computation of stationary equilibria, we developed sev-

eral characterizations of stationary equilibria. We expect these characterizations to facilitate

such computations. In fact, we anticipate that such characterizations may be adopted in a

framework similar to Chapter 3 to solve the problem of finding a best stationary equilibrium

for this class of stochastic games. We leave this direction for future research.
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S. L. Saidman, A. E. Roth, T. Sönmez, M. U. Ünver, and F. L. Delmonico. Increasing the opportu-
nity of live kidney donation by matching for two- and three-way exchanges. Transplantation,
81(5):773–782, 2006.

D. L. Segev, S. E. Gentry, D. S. Warren, B. Reeb, and R. A. Montgomery. Kidney paired donation
and optimizing the use of live donor organs. Journal of the American Medical Association,
293(15):1883–1890, 2005.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the United
States of America, 39(10):1095, 1953.

E. Shmaya and E. Solan. Two-player nonzero-sum stopping games in discrete time. The Annals of
Probability, 32(3):2733–2764, 2004.

J. D. Singer. Reconstructing the correlates of war dataset on material capabilities of states, 1816–
1985. International Interactions, 14(2):115–132, 1988.

J. D. Singer, S. Bremer, and J. Stuckey. Capability distribution, uncertainty, and major power war,
1820-1965. In B. Russett, editor, Peace, War, and Numbers, pages 19–48. Sage Beverly Hills,
1972.

M. J. Sobel. Noncooperative stochastic games. The Annals of Mathematical Statistics, 42(6):
1930–1935, 1971.

E. Solan. Stochastic games. In R. A. Meyers, editor, Computational Complexity, pages 3064–3074.
Springer New York, 2012.

E. Solan and N. Vieille. Quitting games. Mathematics of Operations Research, 26(2):265–285, 2001.
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