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BEYOND STANDARD MODEL PHYSICS AT CURRENT AND FUTURE

COLLIDERS

Zhen Liu, PhD

University of Pittsburgh, 2015

The Large Hadron Collider (LHC), a multinational experiment which began running in

2009, is highly expected to discover new physics that will help us understand the nature

of the universe and begin to find solutions to many of the unsolved puzzles of particle

physics. For over 40 years the Standard Model has been the accepted theory of elementary

particle physics, except for one unconfirmed component, the Higgs boson. The experiments

at the LHC have recently discovered this Standard-Model-like Higgs boson. This discovery

is one of the most exciting achievements in elementary particle physics. Yet, a profound

question remains: Is this rather light, weakly-coupled boson nothing but a Standard Model

Higgs or a first manifestation of a deeper theory? Also, the recent discoveries of neutrino

mass and mixing, experimental evidences of dark matter and dark energy, matter-antimatter

asymmetry, indicate that our understanding of fundamental physics is currently incomplete.

For the next decade and more, the LHC and future colliders will be at the cutting-edge

of particle physics discoveries and will shed light on many of these unanswered questions.

There are many promising beyond-Standard-Model theories that may help solve the central

puzzles of particle physics. To fill the gaps in our knowledge, we need to know how these

theories will manifest themselves in controlled experiments, such as high energy colliders.

I discuss how we can probe fundamental physics at current and future colliders directly

through searches for new phenomena such as resonances, rare Higgs decays, exotic displaced

signatures, and indirectly through precision measurements on Higgs in this work. I explore

beyond standard model physics effects from different perspectives, including explicit models
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such as supersymmetry, generic models in terms of resonances, as well as effective field theory

approach in terms of higher dimensional operators. This work provides a generic and broad

overview of the physics potentials of different particle physics experiments, supported by

several detailed studies on characteristic physics cases to highlight the special features. The

studies presented in this work provide timely and crucial knowledge highly demanded for

our understanding and planning for future experiments.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is a successful theory describing the micro-

scopic world. With the predicted particle–the Higgs boson– discovered at the Large Hadron

Collider, the Standard Model is complete. The SM crystallizes over a hundred years of con-

tinuous development in our understanding of the physics world as the cutting edge tested

theory of microscopic physics up to the highest energies accessible today. A few clouds

are hanging over the SM as a fundamental theory, urging the need for Beyond Standard

Model (BSM) physics. In this thesis, we explore possible probes for BSM physics at different

colliders. I first introduce the topics studies in this thesis.

A. DIJET RESONANCES

While much of the attention for new physics discovery has centered on theories associated

with electroweak symmetry breaking, most initial states at hadron colliders are composed of

colored particles with the strong interactions of quantum qhromodynamics (QCD). Hence,

any new colored resonances will be produced with favorable rates at the LHC since their

couplings may be typically of the strength of the strong-interaction.

Beyond the SM, there are many possible exotic colored states that can be produced

at the LHC. Besides being phenomenologically interesting and experimentally important

to search for, many of the exotic states are also theoretically motivated. For example,

color-antitriplet scalars may be produced via quark-quark annihilation as squarks in R-

parity violating supersymmetric (SUSY) theories [1], or as “diquarks” in E6 grand unified

theories [2]. Color-sextet scalars can arise in partially unified Pati-Salam theories [3] and
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be produced also via quark-quark annihilation. Color-triplet fermions can be produced via

quark-gluon annihilation as “excited quarks" in composite models [4, 5]. Sextet fermions, the

so-called “quixes”, associated with chiral color [6] and top quark condensate models [7] may

also be produced via quark-gluon annihilation. Color-octet scalars that are SU(2)L singlets

can arise in technicolor models [8], and in universal extra dimensions [9]. Color-octet vectors

have been extensively explored as axigluons [6, 10] and colorons [11, 12]. There has also been

much recent interest in studying the similar states in the context of Kaluza-Klein gluons [13],

and low-scale string resonances [14–16] via gluon-gluon, or quark-antiquark annihilation.

Any new resonant states produced at the LHC through interactions with light partons

will contribute to the dijet production, leading to one of the simplest signal topologies.

Motivated by the above considerations, we study the colored resonances in a most general

way. We classify them according to their couplings to light partons, solely based on group

theory decomposition. Among those possible colored resonances, we focus on those produced

by the leading parton luminosities directly from valence quarks or gluons. We apply the new

ATLAS and CMS data to put bounds on various possible colored resonant states and derive

LHC limits on these states. Our study has been included in the LHC experimental searches.

Studies on generic resonance of this type will be best tested at hadron colliders such as the

LHC and VLHC. We discuss the details of LHC searches in section II.A.

B. ELECTROWEAK RESONANCES

Additional colorless vector gauge bosons (Z ′) occur in many extensions of the Standard Model

(SM), in part because it is generically harder to break additional abelian U(1)′ factors than

non-abelian ones1. The existence of a Z ′ could have many other possible implications, in-

cluding an Next-to-Minimal-Supersymmetric-Standard-Model(NMSSM)-like solution to the

µ problem (and the possibility of electroweak baryogenesis), new F and D term contributions

to the lightest scalar mass, an additional Higgs singlet, additional neutralinos (with collider

and dark matter consequences), new vector (under the SM) fermions for anomaly cancella-

1For reviews, see [2, 17–19]. Specific properties are reviewed in [20–26].
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tion, and many possibilities for neutrino mass. Other possibilities involve interactions with

dark matter, the mediation of supersymmetry breaking, Flavor Changing Neutral Current

(FCNC) (for family non-universal couplings), associated charged W ′ s, and the production

of superpartners and exotics. The Z ′ couplings could also give clues about a possible em-

bedding of the U(1)′ into a more fundamental underlying theory. Although Z ′s can occur at

any scale and with couplings ranging from extremely weak to strong, we concentrate here on

TeV-scale masses with couplings not too different from electroweak, which might therefore

be observable at the LHC or future colliders.

A U(1)′ or Z ′ is generic in many scenarios of physics beyond the Standard Model, such

as string theory compactifications, GUTs, extra-dimensions, compositeness, dynamical elec-

troweak symmetry breaking, dark-sector models, etc. We study the potential of probing a

TeV-scale Z ′ with electroweak couplings in future high energy pp collider. Our study aim at

a comprehensive study of the discovery and diagnosis power of such machine for the Z ′ . We

study the leptonic and hadronic decay modes of the Z ′ as well as the W+W− decay mode

in presence of Z − Z ′ mixing. We show that a 100 TeV VLHC could potentially discover

a Z ′ up to 28 TeV and determine the Z ′ mass, width, and especially the coupling strengths

well enough under very minimalistic assumptions to distinguish different Z ′ models well.

Following the notation in [17], we define the couplings of the SM and additional neutral

gauge bosons to fermions by

−LNC = eJµemAµ + g1J
µ
1 Z

0
1µ + g2J

µ
2 Z

0
2µ, (I.B.1)

with

Jµα =
∑
i

f̄iγ
µ[εαiL PL + εαiR PR]fi. (I.B.2)

The SM (Z0
1) parameters are g1 = g/ cos θW and ε1iL = ti3L − sin2 θW q

i, ε1iR = − sin2 θW q
i,

where qi is the electric charge of fi in units of |e| and ti3L = ±1/2 is the third component of

weak isospin. We will absorb gα into the chiral charges2 by defining

g1i
L,R ≡ g1ε

1i
L,R, g2i

L,R ≡ g2ε
2i
L,R. (I.B.3)

2The gauge coupling g2 is not really a separate parameter, because it can be absorbed in the chiral
couplings, as in (I.B.3). However, the separate extraction of g2 would become meaningful if the charges were
established to correspond to an embedding in a nonabelian group of some other model with well-defined
normalization, such as the E6 and LR models.
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When it does not cause confusion we will drop the superscript 2 on g2i
L,R. It will also be

convenient to define the vector and axial couplings and the asymmetry parameters

giV,A ≡ giL ± giR, Ai ≡
gi 2L − gi 2R
gi 2L + gi 2R

=
2 giV g

i
A

gi 2V + gi 2A
, (I.B.4)

for i = u, d, e, ν, · · · . Analogous definitions hold for the g1i
L,R.

Assuming negligible (mass and kinetic) Z−Z ′ mixing [21, 25, 26]) and family universality,

the relevant Z ′ parameters are MZ′ , ΓZ′ , and the chiral couplings giL,R for i = u, d, e, and

ν. A lower bound on ΓZ′ (the “minimal” width) can be calculated in terms of the other

parameters from the decays into the SM fermions, but a larger ΓZ′ is possible due to decays

into Higgs particles, superpartners, right-handed neutrinos, exotic fermions (such as those

needed in some Z ′ models for anomaly cancellation), or other BSM particles [27, 28]. We

will usually assume as well that the U(1)′ charges commute3 with SU(2), so that there are

only five relevant chiral charges,

guL = gdL ≡ gqL, guR, gdR, geL = gνL ≡ g`L, geR. (I.B.5)

Ideally, one would like to determine these, as well asMZ′ and ΓZ′ , in a model-independent

way from collider as well as existing and future precision data. In practice, the existing limits

are sufficiently stringent that we may have to resort to considering specific benchmark models.

For illustration, we will consider the well-known χ, ψ, and LR models, associated with the

breakings SO(10) → SU(5) × U(1)χ, E6 → SO(10) × U(1)ψ, and SU(2)L × SU(2)R ×
U(1)B−L → SU(2) × U(1)Y × U(1)LR (for gR = g), respectively. We will also consider

Zη =
√

3
8
Zχ−

√
5
8
Zψ, associated with a certain compactification of the heterotic string, and

the B-L model4 with charge (B − L)/2. The charges for these benchmark models are listed

in Table I.1. For the E6, LR, and B-L models we will take for the reference value of g2 the

GUT-normalized hypercharge coupling

g2 =

√
5

3
g tan θW ∼ 0.46, (I.B.6)

3One exception is the benchmark sequential model, in which g2iL,R = g1iL,R. This could possibly emerge from
a diagonal embedding of the SM in a larger group, or for Kaluza-Klein excitations in an extra-dimensional
theory.

4The B − L charge usually occurs in a linear combination with T3R = Y − B−L
2 , where Y = Q− T3L, as

in the χ and LR models. Here we consider a simple B−L charge as an example of a purely vector coupling.
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Table I.1: Benchmark models and couplings, with εiL,R ≡ ε̂iL,R/D. The last row shows the

total width of a 10 TeV Z ′, including only fermion pair decay modes.

χ ψ η LR B-L SSM

D 2
√

10 2
√

6 2
√

15
√

5/3 1 1

ε̂qL –1 1 –2 –0.109

1/6

ε̂uL
1
2
− 2

3
sin2θW

ε̂dL −1
2

+ 1
3
sin2θW

ε̂uR 1 –1 2 0.656 ε̂uR −2
3
sin2θW

ε̂dR –3 –1 –1 –0.874 ε̂dR
1
3
sin2θW

ε̂lL 3 1 1 0.327
–1/2

ε̂νL
1
2

ε̂eL −1
2

+ sin2θW

ε̂eR 1 –1 2 –0.438 ε̂eR sin2θW

Q̂u 2 –2 4 0.765 0 −1
2

Q̂d –2 –2 1 –0.765 0 —

ΓZ′ (GeV) 116 52 63 205 91 296
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which is an approximation to the simplest E6 prediction [29] for the GUT models and follows

for gR = g in SU(2)L× SU(2)R×U(1)B−L. We will also consider the sequential model with

g2 = g1 and ε2iLR = ε1iLR.

In this table, we also list the total width of these benchmark models for 10 TeV Z ′. We

note here this only includes the fermion pair decay modes, as for the bosonic decay modes,

additional inputs of mixing angles are needed. These widths can be viewed as the minimal

widths of these models. The typical total width for Z ′ varies from ≈ 50 GeV (for Z ′φ) to

≈ 300 GeV (for Z ′SSM) for 10 TeV Z ′, manifesting the validity of narrow width approximation

for weakly interacting Z ′ searches at hadron colliders.

The Z ′ could mix with the SM Z boson, bridged by mass mixing and kinetic mixing. This

Z − Z ′ mixing gives rise to hZZ ′ coupling and Z ′W+W− coupling, introducing additional

decay channels of Z ′ into Zh and W -boson pair. The mixing is strongly constrained by

the precision electroweak data (for a recent review, see, e.g., Ref. [17]). The mass mixing

between Z and Z ′ introduces the SM-like Higgs to Z ′Z ′ coupling proportional to the (milli-)

U(1)′ charge of the SM-like Higgs boson, and the Z ′W+W− coupling proportional to the

mixing as well. With further gauge kinetic mixing, the mixing is further shifted and new

hZZ ′ vertices will emerge.

We discuss the details of LHC searches in section II.B, ILC searches in section III.A, and

VLHC searches in section IV.A.

C. SUPERSYMMETRY

SUSY solves the Higgs hierarchy problem in an elegant way, features gauge coupling uni-

fication, provides a viable dark matter candidate and potentially generate the baryon-

antibaryon asymmetry through electroweak baryogenesis. The Minimal Supersymmetric

Standard Model (MSSM) remains one of the most appealing models that leads to a more

complete theory beyond the Standard Model (SM). Its simplest extension, the NMSSM

[30, 31] introduces additional appealing features. Among the most notable is that it pro-

vides an attractive solution to the SUSY µ problem [32]. Furthermore, it is widely believed

6



Table I.2: Branching ratios in % for benchmark models. The fermion branching ratios are

for each family, but three families are included in the total width. The diboson modes are

in the decoupling limit sin β = cosα → 1 with heavy H,H±, A, for which the Zh width is

the same as that for W+W−. The W , Z, and t masses are ignored. The last row shows

ΓZ′/MZ′ .

χ ψ η LR B-L SSM

u 3.6 12.2 15.9 1 0.4 5.1 9.9

d 17.8 12.2 9.9 18.2 5.1 12.8

e 5.9 4.1 3.3 2.3 15.4 2.9

ν 5.3 2.0 0.7 0.8 7. 5.8

W+W− 1.12 4.1 5.3 2.3 0. 2.9

ΓZ′/MZ′ 0.012 0.006 0.007 0.021 0.009 0.032
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that the discovery of a Standard Model-like Higgs boson [33, 34] strongly supports the idea

of weak-scale supersymmetry based on the “naturalness” argument. However, in the context

of the MSSM, a Higgs mass of mh ∼ 126 GeV still requires a significant degree of fine tun-

ing [35–38]. In contrast, the NMSSM largely alleviates the tuning required to achieve this

rather high mass value [39, 40].

1. SUSY Higgs Sector

The Higgs sector of the MSSM consists of two SU(2)L doublets. After electroweak symmetry

breaking (EWSB), there are five physical states left in the spectrum, two CP-even states h0

and H0 with mh0 < mH0 , one CP-odd state A0, and two charged scalar states H±. At tree-

level, it is customary to use the mass mA and the ratio of the vacuum expectation values

tan β = vu/vd as the free parameters to determine the other masses. These masses receive

large radiative corrections from the top-stop sector due to the large top Yukawa coupling.

If we categorize these Higgs bosons according to their couplings to the electroweak gauge

bosons, there are two distinct regions in the MSSM [41]:

(i) The “decoupling region”: For a relatively heavy A0 (mA & 300 GeV), the lighter CP-

even state h0 is the SM-like Higgs and the others H0, A0, and H± are heavy and nearly

degenerate.

(ii) The “non-decoupling region”: For mA ∼ mZ , the heavier CP-even Higgs H0 is the SM-

like Higgs, while h0 and A0 are light and nearly degenerate. The mass of the charged

Higgs H± is typically around 140 GeV.

The decoupling scenario comfortably accommodates the current searches due to the effective

absence of the non-SM-like Higgs states. In fact, it would be very difficult to observe any

of the heavy MSSM Higgs bosons at the LHC if mA ∼> 400 GeV for a modest value of

tan β ∼< 10 [42–45]. The non-decoupling scenario, on the other hand, would lead to a rich

LHC phenomenology due to the existence of multiple light Higgs bosons. Although this latter

scenario would be more tightly constrained by current experiments, it would correspondingly

have greater predictive power for its phenomenology.
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In the NMSSM, one complex SU(2)L×U(1)Y singlet scalar field is added to the Higgs

sector. As a result, after the scalar fields acquire vacuum expectation values, one new CP-

even and one new CP-odd state are added to the MSSM spectrum, resulting in three CP-even

mass eigenstates (denoted by H1, H2, H3), two CP-odd mass eigenstates (A1, A2), plus a

pair of charged states (H±).

The masses of the CP-even scalars can be better understood by considering what happens

when the singlet is added to the MSSM spectrum. The masses of the MSSM Higgs bosons

can be in one of two scenarios: the SM-like Higgs of the MSSM can either be the lighter

eigenstate or the heavier eigenstate, as illustrated in the top row of Fig. I.1. After adding the

singlet scalar, the two panels of the MSSM give rise to six possible scenarios in the NMSSM,

as illustrated in the lower row of Fig. I.1.

In reality, the mass eigenstates are admixtures of the gauge interaction eigenstates, and

thus cannot be labelled as simply as in Fig. I.1. Nevertheless, these graphs give us an intuitive

picture of the result of adding the singlet field of the NMSSM.

Recently, many analyses of the NMSSM have been performed in light of the recent

Higgs searches at the LHC, focusing on the large mA region. References [46–48] showed

the compatibility of the NMSSM with an enhanced γγ rate, while Reference [49] studied

the stringent flavor and muon g − 2 constraints on the model. Moreover, the NMSSM may

include many interesting features, that include grand unification of gauge couplings [50],

naturalness for the Higgs mass [39, 40, 51–53], neutralino Dark Matter [54–56], and possible

accommodation of multiple nearly degenerate Higgs bosons [57–59].

These low-mA parameter regions of the NMSSM have unique properties and offer rich

phenomenology, providing complementary scenarios to the existing literature for the large-

mA case, as mentioned above. The production cross section and decay branching fractions

for the SM-like Higgs boson may be modified appreciably and new Higgs bosons may be

readily produced at the LHC.
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Figure I.1: Illustration of the effect of adding the singlet to the MSSM CP-even Higgs boson

spectrum before mixing.
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2. SUSY Dark Matter

Observations of the cosmic microwave background, gravitational lensing, clustering of galax-

ies, galactic rotation curves, etc. have provided compelling evidence for the existence of Dark

Matter (DM), which is likely to be of particle origin.

One of the best motivated candidates for DM is the Weakly Interacting Massive Parti-

cle (WIMP), a good example of which is the Lightest Supersymmetric Particle (LSP) (for

reviews, see [60–62]).

The identification of the particle DM is one of the most challenging tasks in theoretical

and experimental particle physics. From the theoretical point of view, the weakly interacting

massive particle remains to be a highly motivated candidate (for a recent review, see, e.g.,

Ref. [61]). To reach the correct relic abundance in the current epoch, a WIMP mass is

roughly at the order

MWIMP ∼<
g2

0.3
1.8 TeV. (I.C.7)

The upper bound miraculously coincides with the new physics scale expected based on the

“naturalness” argument for electroweak physics. There is thus a high hope that the search for

a WIMP dark matter may be intimately related to the discovery of TeV scale new physics.

However, the precise value of the WIMP mass and the exact relic abundance heavily de-

pend on the dynamics in a specific model. If WIMPs exist in the Galaxy, they may be

detected through direct search experiments [63–70]. The DAMA experiment [63] has de-

tected an annual modulation in the measured recoil spectrum at the 8.9σ level, consistent

with the presence of WIMP DM in the Galaxy. More recently, the CoGeNT [64], CRESST

[65] and CDMS [66] experiments have also obtained results that are consistent with low mass

WIMP DM. On the other hand, these results have been challenged by other experiments

such as XENON-10 [67], XENON-100 [68] and more recently TEXONO [71], which have

excluded the parameter space favored by the DAMA, CoGeNT, CRESST and CDMS exper-

iments. Complementary to the direct searches, indirect detection experiments include the

Fermi gamma ray space telescope [72], Alpha Magnetic Spectrometer [73], Air Cherenkov

Telescopes[74–76], and CMB experiments such as Planck [77], and the Wilkinson Microwave
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Anisotropy Probe (WMAP) [78, 79]. The WMAP observations place a lower limit on the

particle massmχ & 10 GeV, assuming a velocity-independent annihilation cross section 〈σav〉
= 1 pb×c [80–85]. The non-observation of gamma rays from DM annihilation in the nearby

dwarf galaxies [72, 86] has been used to place constraints on the DM particle mass mχ & 40

GeV, for neutralino annihilation to the bb̄ channel with a velocity-independent cross sec-

tion 〈σav〉 = 1 pb×c, although these bounds would be relaxed with a more general analysis

including the velocity-dependent contributions [87–90].

On the other hand, the LHC experiments have made a historic discovery of the long-

sought-after Higgs boson predicted by the SM. The experiments also show no evidence for

Beyond-SM Higgs bosons, nor other new physics such as SUSY etc. with the current data,

seemingly in favor of heavy colored sparticles [91–95]. Several authors have studied the

present LHC data and the implications for DM, as well as the possibility that future LHC

data will provide information to the DM puzzle [37, 96–118]. Although the SUSY parameter

space has been significantly reduced due to the absence of a SUSY signal at the LHC and

due to the constraining properties of the SM-like Higgs boson, a dark matter candidate can

still be readily accommodated in SUSY theories.

It is interesting to understand the viable WIMP mass range under current experimental

constraints. While the dark matter direct detection experiments probe the dark matter at

around a few hundred GeV with high sensitivity, the sensitivity drops significantly for the

light dark matter given the limitation from the energy threshold of a given experiment. Light

WIMP dark matter and its related sector, on the other hand, typically receive strong exper-

imental constraints from various dark matter related searches, especially direct searches at

lepton colliders. These factors make proper light WIMP DM candidate in a given model very

restricted, sometimes tuned to rely on specific kinematics and dynamics. A comprehensive

examination of light DM candidates in the low mass range is then in demand. Indeed, there

have been interesting excesses in annual modulation by the DAMA collaboration [63], and

in direct measurements by CoGeNT [64]5, CRESST [65] and CDMS [120] experiments that

could be interpreted as signals from a low mass dark matter.

The tantalizing events from the gamma ray spectrum from the Galactic Center in the

5For a recent independent analysis, see Ref. [119].
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Fermi-LAT data could also be attributed to contributions from low mass dark matter anni-

hilation [121]. To convincingly establish a WIMP DM candidate in the low mass region, it

is ultimately important to reach consistent observations among the direct detection, indirect

detection and collider searches for the common underlying physics such as mass, spin and

coupling strength.

Table I.3: Possible solutions for light (< 40 GeV) neutralino DM in MSSM and NMSSM.

Models DM (< 40 GeV) Annihilation

Funnels NMSSM Bino/Singlino χ̃0
1χ̃

0
1 → A1, H1 → SM

Co-ann. MSSM & NMSSM Bino/Singlino χ̃0
1χ̃

0
1 → ff̄ ; χ̃0

1f̃ → V f ; f̃ f̃ ′ → ff ′

In section II.E, we explore the implications of a low mass neutralino LSP dark matter in

the mass window 2 − 40 GeV in the framework of the NMSSM (see Ref. [122] for a recent

review). The robust bounds on the chargino mass from LEP experiments disfavored the

Wino-like and Higgsino-like neutralinos, and forced a light LSP largely Bino-like or Singlino-

like, or an admixture of these two. However, those states do not annihilate efficiently to the

SM particles in the early universe. Guided by the necessary efficient annihilation to avoid

overclosing the universe, we tabulate in table II.10 the potentially effective processes, where

the first row indicates the funnel processes near the light Higgs resonances, and the second

row lists the coannihilation among the light SUSY states. There is another possibility of

combined contributions from the s-channel Z-boson and SM-like Higgs boson, as well as the

t-channel light stau (∼ 100 GeV).

With a comprehensive scanning procedure, we confirm three types of viable light DM

solutions consistent with the direct/indirect searches as well as the relic abundance considera-

tions: (i) A1, H1-funnels, (ii) LSP-stau coannihilation and (iii) LSP-sbottom coannihilation.

Type-(i) may take place in any theory with a light scalar (or pseudo-scalar) near the LSP

pair threshold; while Type-(ii) and (iii) could occur in the framework of MSSM as well.

These possible solutions all have very distinctive features from the perspective of DM astro-

physics and collider phenomenology. We present a comprehensive study on the properties

of these solutions and focus on the observational aspects of them at colliders, including new

13



phenomena in Higgs physics, missing energy searches and light sfermion searches. The de-

cays of the SM-like Higgs boson may be modified appreciably and the new decay channels to

the light SUSY particles may be sizable. The new light CP-even and CP-odd Higgs bosons

will decay to a pair of LSPs as well as other observable final states, leading to rich new Higgs

phenomenology at colliders. For the light sfermion searches, the signals would be very diffi-

cult to observe at the CERN Large Hadron Collider when the LSP mass is nearly degenerate

with the parent. However, a lepton collider, such as the International Linear Collider (ILC),

would be able to uncover these scenarios benefited from its high energy, high luminosity, and

the clean experimental environment.

3. SUSY Displaced Decays

In spite of progressively tightening limits [123, 124], supersymmetry continues to serve as one

of the most compelling scenarios for new physics at the LHC. In the absence of traditional

signals below about 1 TeV, there has been a growing interest in exploring models in which

superparticles are light enough for the 8 TeV LHC to produce, but somehow manage to

evade the existing searches. Indeed, this situation remains a strong possibility, in large part

because the observable signatures of SUSY depend extremely sensitively on the details of

the spectrum and on the decays of the lightest superparticles. In particular, a broad class of

highly-motivated scenarios that has so far received relatively limited dedicated attention in

LHC searches includes superparticles with macroscopic decay lengths spanning from sub-mm

to tens of meters. Such “displaced” particles can occur in models with R-parity violation

(RPV) [1] or gauge mediated SUSY breaking (GMSB) [125], and also in mini-split spectra

where all squarks are at roughly the 1000 TeV scale [126, 127] and the gluino lifetime becomes

extended.

However, displaced decay signals occupy a subtle place in collider phenomenology. At

the high end of the above lifetime range, long-lived charged particle searches [128–130] may

become appropriate if the displaced particle is charged or has a nontrivial chance to form

charged hadrons, but the efficiency drops exponentially for lower lifetimes. At the low

end of the lifetime range, any number of prompt searches or searches involving bottom or
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charm hadrons might pick up the signals [131], but may subject them to unnecessarily large

backgrounds. Many different targeted strategies have been applied to search the broad range

lifetimes in between [132–145]. Because energetic particle production originating in the bulk

of the detector is extremely rare, most of these searches benefit from tiny backgrounds,

often O(1) event or smaller while maintaining good signal efficiency. The non-observation of

excesses in such clean searches then begs the question of their implications for more general

classes of models, where even very low efficiency can still lead to significant limits. Several

recent phenomenological works have investigated the power of these searches, or proposed

new searches for similarly striking signals [146–159].

In section II.F, we attempt to develop a more refined understanding of the status of

SUSY scenarios with displaced decays, in light of the small but powerful collection of existing

LHC displaced particle searches. Most of the models that we study have either never been

searched for at nonzero lifetime, or explicit searches cover only one possible signature out of

several. In practice, it is typical for each highly specialized displaced decay search to phrase

its results in terms of only one or a handful of highly specialized new physics models. This is

understandable, given the vast range of possible interesting models and the computational

overhead required to fully simulate and interpret them. However, inferring the implications

of those searches for a different model, and in particular how they might interplay with

each other in covering the parameter space of that different model, then requires careful

recastings. We present here, what we believe to be for the first time in the context of

our chosen SUSY models, a comprehensive set of such recastings for multiple displaced

particle searches simultaneously. Our results highlight the strengths and weaknesses of the

various searches, and give a clear indication of what regions may currently be lacking in

sensitivity. The process of undertaking these recastings also illustrates some of the difficulties

and ambiguities that can arise when attempting to extrapolate the results of displaced decay

searches beyond their original target models, especially given the unconventional approaches

to event reconstruction. A saving feature is that total rates near the boundaries of sensitivity

are usually very strong functions of both mass and lifetime, such that even O(1) uncertainties

in our estimation of experimental acceptance can still lead to only O(10%) uncertainties in

model reach. Nonetheless, where possible we point out aspects of the searches that could be
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particularly prone to mismodeling by recasters. We also make several suggestions for how

some of these searches might be adapted to serve as more powerful probes of SUSY or other

models beyond their original targets.

Of course, even restricting ourselves to simple variations on the particle content of the

MSSM, the variety of possible displaced final-state signatures is extremely rich. To narrow

down the possibilities to a manageable level, we first of all focus on simplified models where

only one type of superparticle is produced, and undergoes a single-stage displaced decay

back into SM particles and/or the LSP. These simplified models can generally be embedded

into a variety of more complete spectra with additional production channels, such that our

results are both broad in applicability and conservative within any given model. (For a more

inclusive survey approach, see [157].) Within the still rather large set of possible simplified

models, we focus on ones that have a sizable fraction of hadronic visible decays, either directly

or due to subsequent decays of electroweak bosons. Such hadronic signals are nominally the

most challenging and the least constrained by explicit displaced searches, and in some cases

unconstrained or only mildly constrained even in prompt decay searches. Significantly, some

of the simplified models that are most motivated by naturalness [160–164] can fall into this

category, including direct production of the lightest stop eigenstate or of a quasi-degenerate

multiplet of Higgsinos.

D. HIGGS BOSON

The discovery of a Higgs boson at the LHC [33, 34] completes the simple structure of the

SM. Yet, a profound question remains: Is this rather light, weakly-coupled boson nothing

but a SM Higgs, or it is a first manifestation of a deeper theory? While the LHC certainly

will take us to a long journey on seek for new physics beyond the SM, it would be very

important to determine the Higgs boson’s properties as accurately as possible at the LHC

and future collider facilities, whether or not there are other particles directly associated with

the Higgs sector observed at the LHC. In the following sections, we will briefly introduce the

Higgs phenomenology at different collider facilities.
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1. Higgs Boson at the LHC

The LHC facilitates the discovery of the SM-like Higgs boson at around 126 GeV. A huge

number of Higgs bosons could be produced through various channels, including Glu-Glu Fu-

sion (GGF), Weak-Boson Fusion (WBF, or VBF), weak-boson associated production, heavy

fermion associated production (tt̄h, bb̄h, etc.) and so on. The corresponding production

rates for the SM Higgs boson at 8 TeV LHC are shown in the upper panel of Fig. I.2 from

Ref. [165]. We also show the Higgs decay branching fractions as a function of the would-be

SM Higgs mass in the lower panel of Fig. I.2. Due to the off-shell suppression of the decay

width to weak bosons, other decay models, especially decays to fermion pairs and diphoton

become sizable for a 126 GeVHiggs boson. This enables us to learn Higgs properties from

different decay modes comparing to a heavier one. In the meantime, the hadron collider pro-

vide a very complex environment for Higgs studies, resulting in specific designs and searching

strategies for the Higgs boson.

The LHC as a high energy hadron machine, facilitates large gluon and valence quark

parton luminosities. This leads to the leading production mode of the Higgs boson to be

through top-loop induced GGF process. The LHC is also QCD background rich. The GGF

produced Higgs then decay into, though with 10−3 or below branching fractions, diphoton

or four charged leptons from ZZ∗ to stand out of the background. These two channels are

the leading channels contributing to the Higgs discovery and later detailed studies on its

properties such as CP at the LHC. The electroweak background for four charged leptons

are small at the LHC, resulting in small signal and background interference. As for the

diphoton final state, the background is well understood but non-negligible. These signal

and background differences cause invariant mass peak shift for the Higgs decay products,

which can be taken advantage of to bound the Higgs boson width [166]. Another interesting

application from the Higgs to four charged lepton final states is to compare the off-shell

Higgs contribution and on-shell Higgs contribution. This can also lead to some interesting

bounds on the Higgs boson total width, though some careful treatment of the interpretation

need to be taken into account.

The Higgs to fermion decay channels will provide direct evidence of Higgs’s role in chiral-
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Figure I.2: Higgs production and decay branching fractions from Ref. [165].
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symmetry breaking in the fermion sector. The dominate production rate of the Higgs from

GGF can be viewed as an indirect evidence of such couplings, but such effects can also arise

from BSM physics effects, e.g. heavy fermion loops. The two dominate fermion pair decay

modes of the Higgs boson are to bottom pairs and tau lepton pairs. The QCD-rich hadron

collider environment made these two decay modes hard to observe from GGF. Instead, one

can rely on the weak boson associated production, where the leptonic decaying Z boson

can significantly increase the signal to background ratios. So far we have seen evidence

for both decays through this channel. The muon Yukawa coupling of the Higgs boson can

be probed at the LHC, benefited from the clean muon chamber. However, the process is

signal statistics limited. Similarly, slightly indirect probe of the charm Yukawa through J/ψ

meson plus photon decay modes are proposed. Amongst these SM Yukawa couplings, the top

Yukawa is probably one of the most important ones, such decay is kinematically forbidden.

The LHC could probe such coupling through tt̄h production mode. After the LHC 7 and 8

TeV run, the ATLAS (CMS) put an upper bound on the cross section 6.7 (4.4) times the SM

value [167, 168]. In addition, the BSM flavor changing fermion decays of the Higgs boson

can be interesting and observed, which will certainly reveal Higgs’s role in flavor violation.

Upcoming LHC run II will certainly improve the situation.

Higgs exotic decays such as invisible decays can be probed at the LHC through ZH

associated production, which can limit the Higgs invisible branching fractions to 40%. There

are many other interesting and challenging Higgs decays modes, especially these inspired by

SUSY as discussed in section I.C.1, for a rather comprehensive review, see Ref. [169].

2. Higgs Width at the ILC

The discovery of a Higgs boson at the LHC [33, 34] completes the simple structure of the

SM. While we look forward to a long and hopefully fruitful run at the LHC as it continues

to search for direct evidence of new physics beyond the SM, it will be very important to

determine the Higgs boson’s properties as accurately as possible at the LHC and future

collider facilities. It may be that the Higgs itself is our first access to the next regime of

physics.
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The key properties of the Higgs boson are the strengths of its couplings to other particles.

The overall strength of these couplings, at least to particles lighter than the Higgs itself, is

characterized by the total width Γh. Because of the broad spread of the partonic energy

distribution, limited energy-momentum resolution for final state particles, and the large SM

backgrounds in the LHC environment, there is essentially no way to measure its total width or

any partial width to a desirable accuracy without additional theoretical assumptions [170–

172]. Assuming an upper limit for a Higgs coupling, such as that of hWW and hZZ,

then an upper bound for the total width can be inferred [172]. Around (10 − 40) × Γh

accuracy can be achieved by measuring the interference effect which shifts the invariant

mass distribution of the ZZ/γγ mode [166], and by measuring pp → ZZ differential cross

sections with mZZ > 300 GeV [173, 174]. At a lepton collider optimized for Higgs boson

studies, such as ILC or a circular e+e− collider (TLEP) [175], the hZZ coupling, and thus

the partial decay width Γ(h→ ZZ) can be measured to a good accuracy [176] by measuring

inclusive Higgs cross sections. The total decay width then can be indirectly determined. For

review on ILC, see the ILC Technical Design Report (TDR) [177]. See, e.g., [178] for an

estimate of sensitivity in a 2-Higgs Doublet Model.

3. Higgs Couplings from ZZ-fusion at the ILC

We evaluate the e−e+ → e−e++h process through the ZZ fusion channel at the ILC operating

at 500 GeV and 1 TeV center of mass energies. We perform realistic simulations on the

signal process and background processes. With judicious kinematic cuts, we find that the

inclusive cross section can be measured to 2.9% after combining the 500 GeV at 500 fb−1 and

1 TeV at 1 ab−1 runs. A multivariate log-likelihood analysis further improves the precision

of the cross section measurement to 2.3%. We discuss the overall improvement to model-

independent Higgs width and coupling determinations and demonstrate the use of different

channels in distinguishing new physics effects in Higgs physics. Our study demonstrates

the importance of the ZZ fusion channel to Higgs precision physics, which has often been

neglected in the literature.

The discovery of a 126 GeV Higgs Boson at the LHC completes the roster of particles
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predicted by the SM. High energy experiments now continue their search for physics beyond

the Standard Model in light of this new era. A major new avenue for pursuing this search is

the detailed study of the Higgs itself. While the mass of the Higgs boson is a free parameter

in the SM, its couplings to other particles are dictated by the gauge and Yukawa interactions.

The observations of this particle are so far consistent with the SM expectations, but there is

considerable room for new physics to reveal itself in deviations of the Higgs properties from

the SM. There are also many theoretical scenarios in which such deviations would arise at a

potentially detectable level. Hence, a precise measurement of those couplings is a key tool in

establishing a departure from the SM, and in characterizing any sign of new physics which

may be discovered.

The LHC will continue to accumulate a large amount of data at unprecedented energies

for many years, which will improve on current understanding of Higgs physics. It also faces

certain limitations intrinsic to a hadron collider, including the uncertainty of large QCD-

related backgrounds. The LHC can measure particular channels involving specific modes of

production and decay in combination, and thus constrain combinations of coupling constants

and the unknown width. Unfortunately, because it cannot measure a single coupling inde-

pendent of the width, it cannot place strong bounds on the absolute values of couplings, nor

on the total width unless additional, model-dependent, assumptions are made [170–172, 179–

181]. A “Higgs factory" such as the International Linear Collider has the potential to make

precision measurements of Higgs physics that take advantage of the simple reconstructable

kinematics and clean experimental environment. One especially appealing feature of the ILC

is the ability to accurately extract the Higgs width in a model-independent manner.

The key feature of a lepton collider in making model-independent measurements is the

ability to determine the inclusive Higgs production rate. This is done using processes such

as e−e+ → h+X where X represents additional measurable particles. Since the initial state,

including longitudinal momentum, is well-known we can infer the Higgs momentum without

specifying the decay of the Higgs:

ph = pe−e+ − pX . (I.D.8)
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This complete kinematical reconstruction allows us to discriminate the inclusive Higgs signal

from background and measure the couplings of the relevant production mechanism indepen-

dently of the width. Once this is done, measurements of additional specific decay channels

can be used to determine the total width and the absolute values of other couplings. In a

previous study we discussed this general strategy in detail [182]. Based on available analyses

the model-independent Higgs width Γh can be measured at the level of δΓh ' 5% relative to

the true width. Most of this error derives from the uncertainty on the inclusive cross section.

Thus, any substantial improvement of the total width measurement depends critically on

improving the precision on the inclusive cross section. Currently, the inclusive cross section

sensitivity is estimated for the “Higgsstrahlung" channel e−e+ → Zh. The cross section

for this channel is largest just above the threshold at a center of mass energy
√
s ' 250

GeV, where it can be measured using the Z decay to electrons and muons with a relative

error δσincZh ' 2.6% [183, 184]. At
√
s = 500 GeV the Higgsstrahlung rate is substantially

reduced but using hadronic decays of the Z may allow one to measure the cross section at

δσincZh ' 3% [185].

e −

e +

e −

h

e +

Z

Z

Figure I.3: Feynman diagram of the ZZ fusion signal process.

Further improvements can be made by examining the alternate production mechanism

of ZZ fusion

e−e+ → e−e+Z∗Z∗ → e−e+h, (I.D.9)

as depicted in Fig. I.3, which has often been neglected in the literature. This mode has a
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small rate at 250 GeV but grows with energy as ln2(s/M2
Z). At 500 GeV it already contributes

roughly twice as much to the final state e−e+h as the Higgsstrahlung process Zh→ e−e+h,

which falls roughly as 1/s, as can be seen in Fig. I.4. At 1 TeV this ratio grows to almost a

factor of twenty. Thus, although the Higgsstrahlung process benefits from a sharp kinematic

on-shell Z peak through the reconstructible final states into which the Z decays, the ZZ

fusion channel, which features two energetic forward/backward electrons, should also be

exploited to make maximal use of the high-energy reach of the ILC.

In section III.C we perform a fast detector simulation analysis of the inclusive ZZ fusion

channel measurement at 500 GeV and 1 TeV. We simulate the predominant backgrounds

and a SM-like Higgs signal and calculate the signal sensitivity using a cut-based analysis

and multivariate log-likelihood analysis. We find that with the cut-based analysis, we can

reach a sensitivity on the cross section to 2.9% level. The multivariate analysis further

improves the precision of the cross section measurement to 2.3%.
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4. Higgs Boson at Muon Collider

In the light of the discovery of a 126 GeV Standard-Model-like Higgs boson at the LHC,

we evaluate the achievable accuracies for direct measurements of the width, mass, and the

s-channel resonant production cross section of the Higgs boson at a proposed muon collider.

We find that with a beam energy resolution of R = 0.01% (0.003%) and integrated luminosity

of 0.5 fb−1 (1 fb−1), a muon collider would enable us to determine the Standard-Model-like

Higgs width to ±0.35 MeV (±0.15 MeV) by combining two complementary channels of the

WW ∗ and bb̄ final states. A non-Standard-Model Higgs with a broader width is also studied.

The unparalleled accuracy potentially attainable at a muon collider would test the Higgs

interactions to a high precision.

Of all properties of the Higgs boson, its total decay width (Γh) is perhaps of the most

fundamental importance since it characterizes the overall coupling strength. Once it is

determined, the partial decay widths to other observable channels would be readily available.

Because of the broad spread of the partonic energy distribution, limited energy-momentum

resolution for final-state particles and the large SM backgrounds in the LHC environment,

there is essentially no way to measure its total width or any partial width to a desirable

accuracy without additional theoretical assumptions [170, 179, 180]. Assuming an upper

limit for a Higgs coupling, such as that of hWW , then an upper bound for the total width

can be inferred [171, 172]. At a muon collider, however, due to the much stronger coupling

for the Higgs to the muons than to the electrons, an s-channel production of a Higgs boson

[186] will likely lead to clear signal for several channels, and thus its total decay width may

be directly measured by fitting its scanned data.

In section IV.B, we propose a realistic scanning and fitting procedure to determine the

Higgs boson width at a muon collider. We demonstrate the complementarity for the two

leading signal channels h → bb̄, WW ∗. The combined results lead to a highly accurate

determination for the width, mass and the s-channel production cross section. This is un-

doubtedly invaluable for determining the Higgs interactions and testing the theory of the

electroweak symmetry breaking to an unparalleled precision.

Higgs boson properties could be studied with a high accuracy at a muon collider via the
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s-channel resonant production. It is a possible situation where the center-of-mass energy of

the muon collider is off the resonance above the Higgs mass. The discovery potential for a

generic heavy Higgs boson (H) and compare different production mechanisms, including the

“radiative return” (γH), Z-boson associated production (ZH) and heavy Higgs pair produc-

tion (HA). These production mechanisms do not sensitively rely on a priori knowledge of

the heavy Higgs boson mass. We include various types of Two Higgs Doublet Models for

the comparison. We conclude that the radiative return process could provide an important

option for both the heavy Higgs discovery and direct measurement of invisible decays at a

high energy muon collider.

With the discovery of the SM-like Higgs boson (h) at the LHC [33, 34], the follow-up

examinations of its properties at the LHC and future colliders will be of high priority for

collider physics.

The Higgs sector may not be as simple as it is in the minimal electroweak theory. A

wide class of new physics scenarios, ranging from supersymmetry [187] to models of neutrino

mass generation [188–192], postulates the existence of an extended sector of fundamental

scalars. While such an extension could leave some imprint on the properties of the recently

discovered Higgs boson, it is also imperative that the proposed future colliders should have

the potential to identify additional scalars that could be produced within its kinematic reach.

Due to the rather weak couplings and the large SM backgrounds, the LHC will have limited

coverage for such search [193–197]. At a future lepton collider, on the other hand, due to

the clean experimental environment, it would be straightforward to identify a heavy Higgs

signal once it is copiously produced on resonance [198].

The exact center-of-mass energy required for an optimal heavy Higgs signal depends on

the unknown heavy Higgs mass, in particular for the s-channel resonant production at a

muon collider. The situation may be remedied if instead we consider associated production

of a Higgs boson with other particles. A particularly interesting process is the “radiative

return” (RR) process. In the case of the Higgs boson production, the processes under con-

sideration are

µ+µ− → γH, γA, (I.D.10)
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where H (A) is a heavy neutral CP-even (CP-odd) state, respectively. When the center of

mass energy of the muon collider is above the heavy Higgs resonance, the photon emission

from the initial state provides an opportunity of the heavy Higgs boson “back” to the reso-

nance. For this, one does not need to know the mass of the (unknown) heavy scalar. This

mechanism alone could also provide an excellent channel to measure the invisible decay of

the heavy Higgs boson.
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II. BSM PHYSICS AT THE LHC

A. DIJET RESONANCES

The CERN Large Hadron Collider is pushing the energy frontier and taking the field of high

energy physics to a new era. While much of the attention for new physics discovery has

centered on theories associated with electroweak symmetry breaking, most initial states at

hadron colliders are composed of colored particles. Hence, any new colored resonances will

be produced with favorable rates at the LHC since their couplings may be typically of the

strength of the strong-interaction.

Beyond the SM, there are many possible exotic colored states that can be produced

at the LHC. Besides being phenomenologically interesting and experimentally important to

search for, many of the exotic states are also theoretically motivated. For example, color-

antitriplet scalars may be produced via quark-quark annihilation as squarks in R-parity

violating SUSY theories [1], or as “diquarks” in E6 grand unified theories [2]. Color-sextet

scalars can arise in partially unified Pati-Salam theories [3] and be produced also via quark-

quark annihilation. Color-triplet fermions can be produced via quark-gluon annihilation

as “excited quarks" in composite models [4, 5]. Sextet fermions, the so-called “quixes”,

associated with chiral color [6] and top quark condensate models [7] may also be produced via

quark-gluon annihilation. Color-octet scalars that are SU(2)L singlets can arise in technicolor

models [8], and in universal extra dimensions [9]. Color-octet vectors have been extensively

explored as axigluons [6, 10] and colorons [11, 12]. There has also been much recent interest

in studying the similar states in the context of Kaluza-Klein gluons [13], and low-scale string

resonances [14–16] via gluon-gluon, or quark-antiquark annihilation.

Any new resonant states produced at the LHC through interactions with light partons
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will contribute to the dijet production, leading to one of the simplest signal topologies.

Both the ATLAS and CMS collaborations have recently searched for this class of signal and

obtained 95% confidence level limits on the production cross section of such resonant states.

From these limits they were able to already put the most stringent bound on the mass of

an excited quark of 1.53 TeV from ATLAS [199] and 1.58 from CMS [200], and on a string

resonance [200] of 2.5 TeV.

Motivated by the above considerations, we study the colored resonances in a most general

way. We classify them according to their couplings to light partons, solely based on group

theory decomposition as shown in section II.A.1. Among those possible colored resonances,

we focus on those produced by the leading parton luminosities directly from valence quarks

or gluons. We then construct their couplings to light partons and describe their general

features in section II.A.2. In section II.A.3 we calculate the cross sections for their resonant

production at the LHC with c.m. energies of 7 and 14 TeV. We apply the new ATLAS and

CMS data to put bounds on various possible colored resonant states in section II.A.4. Finally,

we conclude in section II.A.5. A few appendices contain the QCD color treatment, and a

list of Feynman rules for the resonance couplings to the initial state light partons VI.AVI.B.

1. Classification of Resonant Particles in Hadronic Collisions

The resonance structures can be classified according to the spin (J) and the quantum num-

bers under the SM gauge group SU(3)C × SU(2)L × U(1)Y . We adopt a notation of group

structure

(SU3, SU2)JQe , (II.A.1)

where Qe indicates the electric charge (T3 + Y ).

In pp collisions at the LHC, we consider the dominant partons participating in the heavy

resonance production to be the valence quarks and gluons. We express them with our
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notation as

Q (3,2)
1/2
2/3,−1/3 Left− handed doublet

U (3,1)
1/2
2/3 Right− handed singlet

D (3,1)
1/2
−1/3 Right− handed singlet

A (8,1)1
0 vector.

(II.A.2)

We can thus classify the single particle production via the annihilation of any two partons

above. Table II.1 lists the quantum numbers of possible resonances in our notation from two

initial partons. Since the LHC is a “QCD machine”, it is natural to start primarily based on

the SU(3)C quantum numbers of the two initial states. We thus have partonic collisions of

quark-quark: 3⊗ 3; quark-gluon: 3⊗ 8; gluon-gluon: 8⊗ 8; and quark-antiquark: 3⊗ 3̄.

Possible spins and the electric charges are also given in Table II.1. In principle, neutral

particles may be further classified by the discrete symmetries according to their parity (P),

charge conjugation (C), and CP properties if these quantum numbers are conserved in their

interactions. We will discuss them in the next section. In the last column, we add baryon

numbers (B) carried by the initial state partons. Depending on the underlying theory for

the new resonances, baryon number may or may not be conserved in their interactions.

2. Parton-Resonance Interactions

We now construct the interaction Lagrangians for the resonances and partons guided by

the SM gauge symmetry. We limit our consideration only to those colored states listed in

Table II.1. We will not postulate their interactions with other particles (leptons, electroweak

bosons, or even new particles beyond the SM). Although an incomplete description for a res-

onant particle as a full interacting theory, this minimal approach is sufficient for evaluating

the production rate at the LHC. Assuming these interactions dominate, then their decay to

dijets would also be the leading channel. Furthermore, we will not consider higher dimen-

sional color representations beyond 8 again due to the minimality considerations. Should

there exist a color “15-tet" fermion, a simple calculation of the QCD beta-function would

indicate the loss of the asymptotic freedom of QCD [201].
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Table II.1: The SU(3)C × SU(2)L × U(1)Y quantum numbers and spins (J) of possible

resonant states created by initial state quarks and gluons. The electric charge (Qe = T3 +Y )

and baryon number (B) carried by the two initial state partons are also provided.

initial state J SU(3)C SU(2)L U(1)Y |Qe| B

QQ 0 3⊕ 6 1⊕ 3 1
3

4
3
,2
3
,1
3

2
3

QU 1 3⊕ 6 2 5
6

4
3
,1
3

2
3

QD 1 3⊕ 6 2 −1
6

2
3
,1
3

2
3

UU 0 3⊕ 6 1 4
3

4
3

2
3

DD 0 3⊕ 6 1 −2
3

2
3

2
3

UD 0 3⊕ 6 1 1
3

1
3

2
3

QA 1
2
, 3

2
3⊕ 6̄⊕ 15 2 1

6
2
3
,1
3

1
3

UA 1
2
, 3

2
3⊕ 6̄⊕ 15 1 2

3
2
3

1
3

DA 1
2
, 3

2
3⊕ 6̄⊕ 15 1 1

3
1
3

1
3

AA 0, 1, 2 1⊕ 8⊕ 8⊕ 10⊕ 1̄0⊕ 27 1 0 0 0

QQ̄ 1 1⊕ 8 1⊕ 3 0 1, 0 0

QŪ 0 1⊕ 8 2 −1
2

1, 0 0

QD̄ 0 1⊕ 8 2 1
2

1, 0 0

UŪ, DD̄ 1 1⊕ 8 1 0 0 0

UD̄ 1 1⊕ 8 1 1 1 0
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A similar approach to ours has been carried out to construct the potentially large signals

at the early run of the LHC with minimal model input [202, 203]. There has also been

previous work on classifying exotic particles at the LHC [204].

a. 3 ⊗ 3 At the LHC the valence-valence initial states consist of two quarks, uu, dd, or

ud. Hence, the production cross section of a heavy particle that couples to two quarks will

receive an enhancement from the parton luminosity of the initial state. As listed on the

top section of Table II.1, such states can be color-antitriplets or sextets. They also carry an

exotic baryon number of 2/3 (if B is conserved) and thus are often referred to “diquarks”.1

According to their electroweak (EW) quantum numbers under SU(2)L ⊗ U(1)Y , there are 6

such states. We denote them by the notation in Eq. (II.A.1) as

Φ ∼ (3⊕ 6̄,3)0
−4/3,2/3,−1/3, Φq ∼ (3⊕ 6̄,1)0

q (q = −1/3, 2/3, −4/3),

V µ
U ∼ (3⊕ 6̄,2)1

−1/3,−4/3 V µ
D ∼ (3⊕ 6̄,2)1

2/3,−1/3. (II.A.3)

We construct the gauge invariant Lagrangian as follows

LqqD ∼ Kj
ab

[
yαβ QC

αaiσ2ΦjQβb + καβ Φj
−1/3Q

C
αaiσ2Qβb

+λ
1/3
αβ Φj

−1/3D
C
αaUβb + λ

2/3
αβ Φj

2/3D
C
αaDβb + λ

4/3
αβ Φj

−4/3U
C
αaUβb

+λUαβ Q
C
αaiσ2γµV

j
U

µ
Uβb + λDαβ Q

C
αaiσ2γµV

j
D

µ
Dβb

]
+ h.c., (II.A.4)

where Φj = 1
2
σkΦ

j
k with σk the SU(2)L Pauli matrices and Kj

ab are SU(3)C Clebsch-Gordan

coefficients with the quark color indices a, b = 1−3, and the diquark color index j = 1−ND.

ND is the dimension of the (ND = 3) triplet or (ND = 6) antisextet representation. C

denotes charge conjugation, and α, β are the fermion generation indices. The color factor

Kj
ab is symmetric (antisymmetric) under ab for the 6 (3̄) representation. Their normalization

convention is given in Appendix VI.A.

1This should not be confused with a possible two-light-quark bound state as “diquark”. We are talking
about a new state at a TeV mass scale with a quantum number similar to two quarks.
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After electroweak symmetry breaking, the states in Eq. (II.A.3) mix and reclassify

themselves according to color (3, 6̄) and electric charges (−4/3, 2/3, −1/3), denoted by

END , UND , DND . The relevant interactions among the physical states are then

LqqD = Kj
ab

[
λEαβE

j
ND

uCαaPτuβb + λUαβU
j
ND

dCαaPτdβb + λDαβD
j
ND

dCαbPτuαa

+λE
′

αβE
jµ
ND

uCαaγµPRuβb + λU
′

αβU
jµ
ND

dCαaγµPRdβb

+λD
′

αβ D
jµ
ND
uCαaγµPτdβb

]
+ h.c. (II.A.5)

where Pτ = 1
2
(1 ± γ5) with τ = R,L for the right- and left-chirality projection operators.

Here and henceforth, we include a superscript µ to indicate a vector state.

Naively, the strength of these Yukawa interactions can be naturally of the order of unity,

since the interactions among colored states are likely to be similar to QCD strong interaction

with a coupling constant g2
s = 4παs ∼ O(1). However, many of them are tightly constrained

by flavor physics. A commonly adopted solution is the “minimal flavor violation” (MFV)

[205]. This assumption makes the couplings align with the SM Yukawa matrices, and they

only become significant when involving heavier quarks such as the top [206]. In some specific

model realizations, the MFV is not necessary and certain individual operators involving light

flavors can be sizable [207]. We do not introduce additional couplings for those new colored

states and thus the baryon number is conserved. In fact, the baryon number can be made

a conserved quantum number for the above interactions by the SM gauge symmetry along

with a simple extension to the lepton sector [206].

We note that the color-triplet scalars (U3, D3) resemble scalar quarks (ũ, d̃) in SUSY

and the interactions (with the chirality τ = L) are directly analogous to R-parity violating

operators of the λ′′ terms [1], or the “diquarks” [2]. Color-triplet scalars at the TeV scale

have also been considered in SUSY models to present a unified explanation of dark matter

and baryogenesis [208]. The color-sextet scalars posses similar nature of “diquark Higgs” in

some unified theories [3] or some exotic diquarks [209]. The vector states, on the other hand,

are more exotic in terms of connections with an underlying model. There has been previous

interest in the resonant production of diquark scalars and vectors at the LHC [210].
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b. 3⊗8 A gluon and a quark can yield large partonic luminosity, and may couple to exotic

fermion states. For simplicity, we only consider spin-1/2 states, with quantum numbers as

(3⊕ 6̄, 1⊕ 2)
1/2
−1/3, 2/3.

We have not included the 15 since, as mentioned previously in this section, a 15 fermion

would spoil the asymptotic freedom of the strong coupling.

Instead of writing down the complete SM gauge invariant operators, we consider the

interactions after electroweak symmetry breaking with physical mass eigenstates. These

two states are fermionic and of electric charges −1/3 and 2/3. We denote them generically

by q∗ND , or specifically by d∗ND and u∗ND , where ND = 3 or 6 for the dimension of their

color representation. The SU(3)C gauge invariance requires the interactions to start with

dimension-five, and are of the color-magnetic dipole form. The Lagrangian for these physical

states is then

LqgF =
gs
Λ
FA,µν

[
ūK̄ND,A(λULPL + λURPR)σµνu

∗
ND

+d̄K̄ND,A(λDLPL + λDRPR)σµνd
∗
ND

]
+ h.c. (II.A.6)

where FA,µν is the gluon field strength tensor with the adjoint color index A = 1, ..., 8, and

K̄A are 3 × ND matrices of Clebsch-Gordan coefficients connecting the color indices of the

different representations. If the new fermion field is a 3, then K̄†A = KA =
√

2TA, where TA

are the fundamental SU(3) representation matrices. Due to the presence of a gluon field, we

naturally include a QCD coupling gs. The new physics scale Λ is at leastMq∗j or higher. In a

strongly interacting theory, we expect that the strength of the couplings λUL,R and λDL,R should

be typically of the order of unity. However, if the operators are from one-loop contributions

in a weakly coupled theory, then one would expect to have a suppression factor of the order

1/16π2 [202].

The color-triplet states resemble the excited quarks. They could also be string excitations

in a low scale string scenarios [14–16]. The color-sextet fermions arise in theories of chiral

color [6] and top quark condensate models [7], the so-called “quixes”. There has been previous

interest in the color-sextet fermion production at hadron colliders [211].
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c. 8⊗8 LHC is often referred to as a “gluon machine" since it has a large parton luminosity

for gluon-gluon initial states. Among the bosonic states from the 8⊗8 decompositions, many

higher dimensional color representations can be embedded into larger theories, unlike the

15-tet fermion states that spoil the asymptotic freedom. We only focus on the color-octet

resonances that can result from gluon-gluon fusion. They may carry the quantum numbers

(8S ⊕ 8A, 1)0,1,2
0 . (II.A.7)

The symmetric and antisymmetric representations can be utilized with the algebraic relations

of the fundamental representation matrices

[TA, TB] = ifABCTC , {TA, TB} =
1

NC

δAB + dABCTC , (II.A.8)

and NC = 3 is the dimension of the SU(3)C fundamental representation.

The leading operators start from dimension-five. Two possible interactions between glu-

ons and a spin zero octet and spin two octet are

Lgg8 = gsd
ABC

(
κS
ΛS

SA8 F
B
µνF

C,µν +
κT
ΛT

(TA,µσ8 FB
µνF

C
σ

ν
+ fTA,ρ8 ρ FB,µνFC

µν)

)
, (II.A.9)

where S8 (T8) is a scalar (tensor) octet. We again assume that the couplings κS, κT of the

order of unity. The relative coupling factor f is more likely to be 1. If the operators are

from one-loop contributions in a weakly coupled theory, then one would expect to have a

suppression factor of the order 1/16π2.

It is also possible to couple two gluons and a CP-odd octet scalar or tensor. The couplings

of the CP odd states are identical in form to those in Eq. (II.A.9) with the replacement of

one field strength tensor with its dual:

F̃A
µν =

1

2
εµνρσFA

ρσ, (II.A.10)

where εµνρσ is the four dimensional antisymmetric tensor.

Finally, the antisymmetric structure constants fABC can also be used to construct in-

teractions with CP-odd color octets. However, since the color structure is antisymmetric,

the Lorentz structure must also be antisymmetric. Hence, terms proportional to FµνF̃ µν are

zero and the only surviving term is T̃ µσ8 F̃µνF
ν
σ , where T̃8 is the CP-odd color-octet tensor.
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Color-octet (pseudo)scalars can arise in technicolor models [8, 212], and in universal extra

dimensions [9]. There has been much recent interest in the gluon fusion production of color-

octet scalars at the LHC [213, 214]. These interactions were induced via loops which are

parameterized by the octet-scalar coupling in Eq. (II.A.9) with an additional suppression

from the loop factor. Color-octet vector states have also been studied in the context of

low-scale string resonances [15, 16] via gluon-gluon annihilation, but it typically leads to a

suppressed rate.

d. 3⊗ 3̄ Although the quark-antiquark annihilation would not result in the largest par-

tonic luminosity at high energies in pp collisions, we include some discussions for resonant

production from 3⊗ 3̄ for completeness. The resonances may carry the quantum numbers

(1⊕ 8, 1⊕ 3)1
−1,0,1, (1⊕ 8, 2)0

0,1. (II.A.11)

Once again, we focus on the color-octet states and ignore the well-known color-singlet states

such as Z ′’s, W ′’s, and Kaluza-Klein gravitons.

We first consider the color-octet vector states. We denote them according to their color

and electric charges V 0
8 , V

±
8 . We write their interactions with quarks as

Lqq̄V = gs
[
V8

0,A,µ ūTAγµ(gULPL + gURPR)u+ V8
0,A,µ d̄TAγµ(gDL PL + gDRPR)d

+
(
V +,A,µ

8 ūTAγµ(CLV
CKM
L PL + CRV

CKM
R PR)d+ h.c.

)]
, (II.A.12)

where V CKM
L,R are the left- and right-handed CKM matrices. Due to the stringent constraints

from flavor physics, we have assumed that there is no FCNC, and the charged current aligns

with the SM CKM. The couplings CL,R and gL,R are thus diagonal and naturally order of

unity. Well-known examples of color-octet vectors coupled to qq̄ include the axigluon [6, 10],

a coloron or Techni-ρ [11, 12], a Kaluza-Klein gluon [13], and low-scale string resonances

[14–16] via qq̄ annihilation.

As for the color-octet scalar states, we note that the renormalizable interactions between

a color-octet scalar and two quarks are Yukawa type interactions, and the SM gauge invariant

interactions require the scalar to be a doublet [215] under SU(2)L. Once again, due to the

assumption of MFV, their couplings to light quarks would be small, and the only significant
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coupling would be to the top or bottom quarks. The single production of charged and neutral

scalars through initial state bottom quarks has been studied previously [216]. However,

similar to Higgs production, the dominant resonant production of the scalar states would

be via gluon fusion through top quark loops due to the increased parton luminosity and

enhanced couplings. The effective couplings should be of the same form as in Eq. (II.A.9)

for S8, but with a suppressed coupling.

We summarize the resonant states of our phenomenological interests in Table II.2. We

propose notations for their names, give their conserved quantum numbers, leading couplings

to initial state partons, and related theoretical models.

3. Resonance Production at The LHC

We will now give analytical formulas and present the expected numerical values of the pro-

duction cross sections of the colored resonances at the LHC with 7 and 14 TeV hadronic

center of momentum (c.m.) energies. The hadronic cross sections are computed by calculat-

ing the partonic cross section (σij) and convolving it with the parton distribution functions

(pdfs). We write the formula as

σ(S) =
∑
ij

∫
dτ

dLij
dτ

σij(s), (II.A.13)

dLij
dτ
≡ (fi ⊗ fj)(τ) =

∫ 1

0

dx1

∫ 1

0

dx2fi(x1)fj(x2)δ(x1x2 − τ), (II.A.14)

where S (s) is hadronic (partonic) c.m. energy squared, fi the parton i’s distribution function

with a momentum fraction xi, and τ = s/S. For all numerical results here and henceforth,

we have used the CTEQ6L1 pdfs [217] and set the factorization and renormalization scales

the same at the resonance mass (Q2 = M2).

For a resonant production, the on-shell condition forces the partonic cross section to go

like σij ∼ δ(s −M2). Thus the hadronic cross section will be evaluated with the parton

luminosity at τ = M2/S. We first show the partonic luminosities versus the scale at the res-

onance mass in Fig. II.1 for the parton combinations of u1u2, d1d2, u1d2 +d1u2, g1g2, g1u2 +

u1g2, g1d2 + d1g2, u1ū2 + ū1u2, and d1d̄2 + d̄1d2 at (a) 7 and (b) 14 TeV LHC. As expected,

initial states involving valence quarks and gluons will have the largest parton luminosities.
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Table II.2: Summary for resonant particle names, their quantum numbers, and possible

underlying models.

Particle Names J SU(3)C |Qe| B Related models

(leading coupling)

Eµ
3,6 (uu) 0, 1 3, 6 4

3
−2

3
scalar/vector diquarks

Dµ
3,6 (ud) 0, 1 3, 6 1

3
−2

3
scalar/vector diquarks; d̃

Uµ
3,6 (dd) 0, 1 3, 6 2

3
−2

3
scalar/vector diquarks; ũ

u∗3,6 (ug) 1
2
, 3

2
3, 6̄ 2

3
1
3

excited u; quixes; stringy

d∗3,6 (dg) 1
2
, 3

2
3, 6̄ 1

3
1
3

excited d; quixes; stringy

S8 (gg) 0 8S 0 0 πTC , ηTC

T8 (gg) 2 8S 0 0 stringy

V 0
8 (uū, dd̄) 1 8 0 0 axigluon; gKK , ρTC ; coloron

V ±8 (ud̄) 1 8 1 0 ρ±TC ; coloron
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Figure II.1: The parton luminosities dLij/dτ versus resonance mass at the (a) 7 TeV and

(b) 14 TeV LHC.
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In particular, gluons dominate at lower masses, while valence quarks take over at higher

masses. The cross-over between gg and uu occurs near M = 0.75 (1.2) TeV at the 7 (14)

TeV LHC. Not only the u quark pdf is about twice as much as that of d at low masses, but

also it falls much more slowly at high masses than d. For completeness, we also include q̄

initial state when relevant. In fact, the cross-over of the partonic luminosities between gg

and uū occurs near M = 1.2 (2.2) TeV at the 7 (14) TeV LHC.

The rapidity of the partonic c.m. system is also of significant interest, which is defined

as

yCM =
1

2
ln
x1

x2

. (II.A.15)

We show the yCM distributions at the 7 and 14 TeV LHC for M = 1.5 TeV in Figs. II.2(a)

and II.2(b) respectively. These distributions measure the longitudinal boost due to the

asymmetry between the two parton energies. The gg and uu initial states are symmetric and

hence peaked at zero rapidity. Due to the up-quark being valence with a broader distribution

in x, the uu initial state develops a larger discrepancy between parton momentum fractions

than the gg initial state and is therefore broader. Also, the uū, ud̄ and ug initial states have

a large imbalance in the momentum fractions and are broader than the uu and gg initial

states. In fact, at the 14 TeV LHC the imbalance is so pronounced for ug that the rapidity

distribution peaks at |yCM | ≈ 0.9. Since the 14 TeV LHC probes lower τ than the 7 TeV

LHC, a larger discrepancy between the parton momentum fractions can develop and the

rapidity distributions are considerably broader than at the 7 TeV LHC. This fact will have

an impact on the experimental acceptance for the final state jets.

We consider the leading production with the resonances as listed in Table II.2. We do not

attempt to calculate the decay of the resonances. Instead, we parameterize the production

rate to dijets simply by a branching fraction (BR). Thus the total signal cross section will

be governed by a coupling constant to the initial state partons, a branching fraction, and

the resonance mass.

In the following calculations we employ the narrow width approximation, which is valid

for Γ � M , where Γ and M are the total width and mass of the resonant particle, respec-

tively. Using the interactions listed in section II.A.2, for a resonance mass on the order of a
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Figure II.2: Center of momentum system rapidity distributions for resonance mass of 1.5

TeV and initial states gg, uu, uū and ug at the (a) 7 and (b) 14 TeV LHC.
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TeV and order one couplings between the new resonance and SM partons we find Γ . 0.15M .

However, if the couplings of the resonance are large or there are many additional decay chan-

nels, the width may be sizeable and its effects will have to be included.

a. Quark-Quark Annihilation The uu, dd, and ud initial states can annihilate into

color-antitriplet and sextet spin 0 and spin 1 particles, often referred as diquarks. Based

on the interactions of section II.A.2.a and using the Feynman rules in the appendix, for a

resonant diquark mass of M the hadronic cross section from uu and dd initial states is found

to be

σqq = λ2πND

N2
C

1

S
(q ⊗ q)(τ0) (II.A.16)

for both scalar and vector diquarks and for the ud initial state

σud = λ2 πND

22N2
C

1 + δ1J

S
((u⊗ d)(τ0) + (d⊗ u)(τ0)) , (II.A.17)

where the coupling constant λ specifies the resonance as in Eq. (II.A.5) and J is the spin

of the resonance. ND is the dimension of the antitriplet (ND = 3) or sextet (ND = 6)

representation. Here and henceforth, τ0 = M2/S.

The production cross sections of the color-sextet vector diquarks to dijet at a 7 TeV and 14

TeV LHC are shown in Figs. II.3(a) and II.3(b), respectively. The production cross sections

of the scalars E6, U6 are the same as those for the vectors Eµ
6 , U

µ
6 while the production rate

for the scalar D6 is half that of Dµ
6 .

Due to the antisymmetric factor on the quark color indices, the only non-zero valence

quark configuration to give a antitriplet scalar diquark is the flavor-off diagonal contribution

ud → D̄3. However, the antitriplet vector diquarks can be produced from both the flavor

diagonal uu → Ēµ
3 , dd → Ūµ

3 and flavor-off diagonal ud → D̄µ
3 contributions from valence

quarks. Also, since the cross section is proportional to the dimension of the diquark rep-

resentation, the production cross sections for the antitriplet diquarks are half that of the

respective sextet diquarks.

Besides the leading contribution from the valence quarks, we have also included the anti-

quark contributions for the conjugate particle production in the numerical results presented
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Figure II.3: Dijet cross sections for color-sextet vector production via uu, ud and dd initial

states versus its mass at the LHC for (a) 7 TeV and (b) 14 TeV. Subleading contributions from

antiquarks for the conjugate particle production are also included. The coupling constant to

initial state partons and the branching fraction to dijet have been factorized out.
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here. We summarize a few representative cross sections for the color-sextet vector diquarks,

along with the percentage contribution from the antiquarks.

7 TeV LHC : Ēµ
6 D̄µ

6 Ūµ
6

σ(pb) M = 0.5 TeV 3400 2100 1300

q̄q̄′ 2.8% 5.6% 11%

σ(pb) M = 3 TeV 0.96 0.27 0.064

q̄q̄′ 0.011% 0.028% 0.068%

14 TeV LHC : Ēµ
6 D̄µ

6 Ūµ
6

σ(pb) M = 1 TeV 800 510 320

q̄q̄′ 2.8% 5.5% 11%

σ(pb) M = 5 TeV 0.92 0.30 0.090

q̄q̄′ 0.026% 0.075% 0.21%

Once again, we have pulled out the coupling constant λ2 and the branching fraction (or

equivalent to setting λ2 =BR=1).

The next-to-leading order (NLO) QCD corrections to scalar diquark production have

been previously calculated [218] and sizable corrections were found. For instance, the cross

section with masses between 0.5 and 1.5 TeV can be increased by about 20% for U6 and

30−35% for D3. It is expected that the corrections to the other color-sextets and antitriplets

should be similar to the above.

b. Quark-Gluon Annihilation The ug and dg initial states can produce color-triplet

and sextet excited quarks. Using the Feynman rules in the appendix, the hadronic cross

section for excited quarks of mass M is

σqg = 8π2λ2 αs
NC

M2

Λ2

1

S
(g ⊗ q)(τ0), (II.A.18)
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Figure II.4: Dijet cross sections for color-sextet fermion production via ug and dg initial

states versus its mass at the LHC for (a) 7 TeV and (b) 14 TeV. Subleading contributions from

antiquarks for the conjugate particle production are also included. The coupling constant to

initial state partons and the branching fraction to dijet have been factorized out. The new

physics scale, Λ, has been set equal to 2M .
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where λ2 = λ2
L + λ2

R and λL,R specify the interactions as in Eq. (II.A.6). Since the Clebsch-

Gordan coefficients for the color-triplet and sextet states are normalized the same it follows

that the production cross sections are the same. Comparing with the convention in Ref. [5],

the new physics scale Λ here corresponds to twice the excited quark mass.

Figure II.4 presents the production cross section of excited sextet quarks u∗6 and d∗6

produced from ug and dg initial states, respectively, at the (a) 7 and (b) 14 TeV LHC. The

u∗6 production rate is larger than the d∗6 production rate by about a factor of two at low

mass, due to the larger u quark pdf. We have taken the cutoff Λ = 2M in the numerical

evaluation. With our CG coefficient normalization, our results should be a factor of two

larger than that using the convention of [5].

For the numerical results we have once again included the conjugates, produced from

ūg, d̄g → u∗, d̄∗. Representative results for the total cross section and the percentage contri-

bution from antiquarks, after factorizing out the overall constants, are

7 TeV LHC : u∗6 d∗6

σ(pb) M = 0.5 TeV 6200 3400

q̄g 8.5% 20%

σ(pb) M = 3 TeV 0.035 0.0080

q̄g 0.82% 2.6%

14 TeV LHC : u∗6 d∗6

σ(pb) M = 1 TeV 1300 720

q̄g 8.4% 20%

σ(pb) M = 5 TeV 0.052 0.014

q̄g 1.2% 4.2%

c. Gluon-Gluon Annihilation Gluon-gluon annihilation can result in color-octet scalars

and tensors. Using the parameterization of Eq. (II.A.9) and Feynman rules in the appendix,
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the hadronic production cross section of a color-octet scalar and tensor of mass M from

gluon-gluon fusion is

σgg = 4π2αsκ
2 N2

C − 4

NC(N2
C − 1)

M2

Λ2

1 + δ0J

S
(g ⊗ g)(τ0), (II.A.19)

where κ and Λ are specified by the interaction. Since on-shell tensor polarizations are

traceless, the T8
ρ
ρ term in Eq. (II.A.9) does not contribute to the resonant production of the

color-octet tensor.

The production cross sections for the color-octet scalar to dijets are presented in Fig. II.5

for the LHC at 7 TeV (dashed curve) and 14 TeV (solid curve). For the numerical results

presented the new physics scale Λ has been set equal to the resonant mass. The color-octet

tensor cross section is one half that of the the color-octet scalar. Since the gluon luminosity

falls fast at a higher mass, the cross section at 7 TeV LHC drops by more than five orders of

magnitude from 6000 pb at M = 0.5 TeV to 0.02 pb at M = 2.5 TeV, and at 14 TeV LHC

by about five orders of magnitude from 1200 pb at M = 1 TeV to 0.01 pb at M = 4.6 TeV.

The production cross section of an octet tensor is half that of the octet scalar.

The next-to-leading logarithm (NLL) soft-gluon resummation correction to scalar octet

production via gluon fusion has been previously calculated and sizable corrections were

found [214]. The cross section can be increased by a factor of 2.4 at mass 0.5 TeV and 3.5

at a mass of 2.5 TeV.

d. Quark-Antiquark Annihilation Although the parton luminosity is lower than the

previously discussed initial states, we also include resonant production from uū, dd̄, ud̄, and

dū initial states. These states can couple to color-octet vectors. Using the interactions in

Eq. (II.A.12), the production cross section for a color-octet vector of mass M from qq̄′ initial

states is

σqq̄ = 4π2g2αs
CF
NC

1

S
(q ⊗ q̄′)(τ0) (II.A.20)

where
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Figure II.5: Dijet cross sections for color-octet scalar production via gg initial states versus

its mass at the LHC for 7 TeV (dashed curve) and 14 TeV (solid curve). The coupling
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g2 =


1
2
(|CLV CKM

L |2 + |CRV CKM
R |2) for charged states,

1
2
(|gU,DL |2 + |gU,DR |2) for neutral states.

The color factor CF = (N2
C − 1)/2NC = 4/3.
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Figure II.6: Dijet cross sections for color-octet vector production via ud̄, uū, dd̄, and dū initial

states versus its mass at the LHC for (a) 7 TeV and (b) 14 TeV. The coupling constant to

initial state partons and the branching fraction to dijet have been factorized out.

The cross sections for color-octet vectors are presented in Fig. II.6 for the (a) 7 TeV and

(b) 14 TeV LHC. Since the u quark pdf is greater than the d quark pdf, the neutral vectors

are produced more favorably by the uū initial state than by dd̄. Due to the d̄ quark pdf

being larger than the ū quark pdf, the production of V +
8 is larger than the production rate

of V 0
8 from uū initial state and V 0

8 production rate from dd̄ initial state is larger than the
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production rate of V −8 . Some representative cross sections values are listed below.

7 TeV LHC : ud̄→ V +
8 dū→ V −8 uū→ V 0

8 dd̄→ V 0
8

σ(pb) M = 0.5 TeV 1500 640 1300 760

σ(pb) M = 3 TeV 0.015 0.0037 0.016 0.0030

14 TeV LHC : ud̄→ V +
8 dū→ V −8 uū→ V 0

8 dd̄→ V 0
8

σ(pb) M = 1 TeV 330 140 290 170

σ(pb) M = 5 TeV 0.026 0.0063 0.023 0.0066

Once again, we have pulled out the coupling constant λ2 and the branching fraction (or

equivalent to setting λ2 =BR=1).

All the cross sections presented in this section are at leading order in QCD. The produc-

tion cross section of colored resonance can receive sizable QCD corrections as shown for the

color-triplet and sextet scalar diquarks [218] and color octet scalars [214]. We will take this

into account when setting the bounds.

Throughout this study, we neglect the color-singlet states, such as Z ′, W ′ or KK gravi-

tons. Our formalism for is equally applicable to those by adjusting the couplings gs →
e/ sin θW and setting the color factor CF to 1. Before folding in the decay branching fraction

to the final state, the production rates for a color-singlet state would be smaller than the

colored resonance by roughly about a factor of 30.

4. Bounds from the LHC Dijet Spectrum

Searching for new physics signals in the dijet spectrum at hadron colliders has been long

carried out. The standard form of the four-fermion contact interaction in the literature

is [219]:

L4q =
2π

Λ2
q̄Lγ

µqLq̄LγµqL (II.A.21)

For a sufficiently high mass, the new resonant states can be integrated out and the 3 ⊗ 3

and 3⊗ 3̄ vector interactions can produce similar interactions to Eq. (II.A.21). The bounds
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on the four fermion interactions can be roughly translated into bounds on our interactions

with the identification
2π

Λ2
∼ λ2

2M2
, (II.A.22)

where M is the mass of the resonant state of our current interest. Assuming a coupling

constant of unity, the current LHC bound of Λ ≥ 4 TeV translates into

M & 1.1 TeV.

Note this bound is only a rough estimate since one would have to be careful in computing

the color factor and counting the contributing light partons.

Using measurements of dijet production rates at 7 TeV LHC, the ATLAS and CMS

collaborations have recently released bounds on the dijet production cross sections as a

function of resonance mass based on the first data of 3.1 pb−1 [199] and 2.9 pb−1 [200],

respectively. Even with such small amount of initial data, the LHC experiments have gone

beyond the existing Tevatron results, pushing the LHC to the phase of discovery for new

physics.

We model the experimental efficiencies by a simple parameterization. The detector ac-

ceptance for dijet events at ATLAS was about 31% for an excited quark mass around 300

GeV, and about 48% around 1700 GeV. For our study we model this acceptance as

AATLAS =


0.17

1400 GeV
(m− 300 GeV) + 0.31 m ≤ 1700 GeV

0.48 m > 1700 GeV

(II.A.23)

To model the CMS detector acceptances we compared our results for dijet production cross

section without detector acceptance to the the CMS results including detector acceptance.

Using their axigluon and excited quark results, we model the CMS detector acceptance as

ACMS =
∆

2100 GeV
(m− 500 GeV) + 0.47, (II.A.24)

where ∆ = 0.08 for the quark-quark final state and ∆ = 0.17 for the quark-gluon final

state. There was no analogous data to find the acceptance for gluon-gluon final states. We

therefore also use the quark-gluon acceptance for the gluon-gluon final state.
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Figure II.7: 95% confidence level upper limits on dijet production cross sections versus reso-

nant mass for (a) ATLAS results (solid circles) and (b) CMS results from the contributions

of gluon-gluon (open circles), quark-gluon (solid circles), and quark-quark (open boxes). Our

fits (dashed curve) almost overlap with the theoretical predictions (solid curves) provided by

ATLAS for q∗3 and CMS for q∗3 and axigluon.
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The predicted dijet cross sections for triplet excited quarks at ATLAS and triplet excited

quarks and axigluons at CMS are presented by the solid curves in Figs. II.7(a) and II.7(b),

respectively. To reproduce their results for the triplet excited quark production, we set λ = 1

in Eq. (II.A.18) and summed over all possible initial state quarks. As can be seen, using

the acceptances in Eqs. (II.A.23) and (II.A.24), our simulations (dashed curves) fit well the

results provided by the ATLAS and CMS collaborations (solid curves). The current 95%

confidence level upper limits for dijet production cross sections at both ATLAS and CMS

are also presented in Fig. II.7.

All of the colored resonances presented in the previous sections can contribute to the dijet

signal; hence, the ATLAS and CMS dijet cross section bounds can be used to place limits

on the mass and couplings of these new particles. We consider the current bounds on those

colored resonances as summarized in Table II.2. In presenting our results for the current

bound, we once again parameterize the signal rates by an overall coupling to the initial state

partons and a branching fraction to decay to the final state dijets. The limits on the product

of the two constants of new colored resonances as a function of the resonant mass are shown

in Fig. II.8. The color-sextet vector diquark and color-octet scalar bounds are based on the

leading order QCD calculations presented here with K-factors from QCD corrections, while

all other bounds are based solely on the leading order calculations. The regions above the

corresponding curves are excluded, thus providing meaningful upper bounds for the couplings

and lower bounds for the resonant masses. The zigzag shapes of the curves are due to the

non-smooth experimental bounds for different masses as in Fig. II.7(b).

Figure II.8(a)2 shows the CMS bounds on the sextet vector diquarks with a NLO K-

factor of 1.2 included [218]. The bounds on the scalar U6, E6 couplings are the same as those

on vector Uµ
6 , E

µ
6 and the bounds on the D6 couplings are twice weaker than the bound on

Dµ
6 . Furthermore, taking into account the different K-factors of 1.3 for triplets and 1.2 for

sextets , the bound on the antisextet vectors are 1.8 times stronger than the bounds on the

triplet vectors and the bounds on Dµ
6 are 3.7 times stronger than D3.

Figure II.8(b) shows the bounds on the excited quarks. Results based on the ATLAS

2We have extended the Eµ6 bound beyond the CMS data point at 2.6 TeV, assuming there has been no
event observed.
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data (solid curves) and CMS data (dashed curves) are comparable. Following the convention

in Ref. [5], we have set Λ = 2M . As noted earlier, the results for a color-triplet and sextet

are the same. The bounds obtained here are stronger than those for the diquarks above.

Figure II.8(c) shows the bounds on octet scalar couplings including NLL K-factors run-

ning from 2.4 at resonance mass 0.5 TeV and 3.5 at 2.5 TeV [214]. Even with the K-factor,

the weakest bound of all studied are the gg initial processes. This is due to the sharp fall of

gg luminosity at higher masses. The bounds on the coupling constants of the T8 are a factor

of two weaker than those of the S8.

Although not as large as uu, dd initial states, the qq̄ annihilation provides reasonable

sensitivity to the colored resonances. In comparison with the Tevatron as a pp̄ collider,

the LHC is somewhat in a disadvantageous situation with respect to the valence quark

dominance. Nevertheless, the LHC results currently have slightly extended the Tevatron

bounds on axigluons and universal colorons [200]. We also obtain significant bounds for the

color-octet resonances based on the CMS data as seen in Fig. II.8(d). However, due to the

much larger data sample, the Tevatron dijet bounds for color-singlet vectors (Z ′, W ′ etc.)

are much more stringent than those from the LHC.

Assuming a coupling constant and branching ratio of unity as indicated by the horizontal

dotted lines in Fig. II.8, the current mass lower bounds on the colored resonant states are
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summarized as

Eµ
6 2.7 TeV (CMS) E6 2.7 TeV

Dµ
6 2.3 TeV (CMS) D6 1.9 TeV

Uµ
6 1.8 TeV (CMS) U6 1.8 TeV

Eµ
3 2.5 TeV (CMS) Uµ

3 0.8, 1.0− 1.2, 1.4− 1.6TeV

Dµ
3 1.9 TeV (CMS) D3 0.8, 0.9− 1.2, 1.3− 1.7 TeV

u∗6 1.7 TeV (CMS), 1.6 TeV (ATLAS) d∗6 1.1 TeV, 1.2 TeV

V ±8 1.6 TeV (CMS) V 0
8 1.6 TeV

S8 1.2 TeV (CMS) T8 0.9 TeV ,

where the mass bounds have been rounded to the nearest tenth of a TeV. All of the bounds

obtained here are beyond the existing Tevatron analyses.

It should be noted that there are small uncertainties associated with the results above.

For instance, the bounds presented above have been obtained by utilizing the narrow width

approximation. Also, the detector acceptances are somewhat dependent on the spin of the

resonance.

5. Summary and Outlook

Experiments at the LHC have opened up the energy frontier for TeV scale new physics

searches. Motivated by the recent ATLAS and CMS dijet analyses, we study the possible

colored resonances in a most general approach. We classify the colored resonances based on

group theory decomposition of QCD SU(3)C interaction as well as other quantum numbers,

as listed in Table II.1. These resonances may carry exotic SM quantum numbers, but all of

them find their interesting roles in certain theories beyond the SM.
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We then construct their effective couplings to light partons. Based on those features, we

name them and list them in Table II.2. We calculate their resonant production cross section

at the LHC. The production rates may be as large as 400 pb (1000 pb) at the c.m. energy

of 7 (14) TeV for a mass of 1 TeV, leading to the largest production rates for new physics

at the TeV scale, and simplest event topology with dijet final states. Our approach is quite

general and applicable to other possible signals of resonant particles other than dijets at the

LHC.

We applied the new ATLAS/CMS dijet data to have put bounds on various possible

colored resonant states. We obtained the lower bounds on their masses ranging from 0.9 to

2.7 TeV, if their couplings are of the order of unity. The results obtained here are beyond the

existing Tevatron analyses. In an optimal situation, if a signal above the SM backgrounds

is established in the near future, it is then the exciting time to determine the nature of

the resonance particle and to untangle the new underlying theory as commented in the text

and in Table II.2. With the anticipated increase of integrated luminosity and c.m. energy,

experiments at the LHC will undoubtedly take our understanding of particle physics to an

unprecedented level.

B. ELECTROWEAK RESONANCES

A U(1)′ or Z ′ is generic in many scenarios of physics beyond the Standard Model, such

as string theory compactifications, GUTs, extra-dimensions, compositeness, dynamical elec-

troweak symmetry breaking, dark-sector models, etc. We study the potential of probing a

TeV-scale Z ′ with electroweak couplings in future experiments. In particular, we focus on

two scenarios: (1) If a Z ′ is discovered at the LHC, what is the potential of measuring its

mass and width and to distinguish between benchmark models utilizing various observables,

especially asymmetries, at a high luminosity LHC and the ILC. (2) If the Z ′ is not accessible

as a clear resonance signal, what is the exclusion reach at the ILC.

Typical Z ′ models with electroweak couplings should be observable3 at the LHC as reso-

3The reach is reduced if the dilepton branching ratios are significantly reduced due to BSM decay chan-
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nances in the dilepton channels for masses up to ∼4-5 TeV for
√
s = 14 TeV and an integrated

luminosity of 100 fb−1. There have been extensive studies of diagnostic possibilities4 of the

Z ′ couplings at the LHC utilizing the cross sections

σf ≡ σ[ff̄ ] ≡ σpp→Z′→ff̄ = σZ′B(Z ′ → ff̄) (II.B.25)

for decays into the final state ff̄ for f = `, τ, t, b (with ` = e, µ), as well as forward-backward

or charge asymmetries, rapidity distributions, and possible final state polarizations for τ−τ+

or tt̄. Other possible probes include ΓZ′ from the lineshape, and various rare decay modes

and associated productions. It was generally concluded that significant diagnostic probes of

the couplings would be possible for Z ′ masses up to around 2.5 TeV.

However, ATLAS [240] and CMS [241] have already excluded dilepton resonances cor-

responding to standard benchmark Z ′s below ∼2.5-2.9 TeV, so even if a Z ′ is observed in

future LHC running it will be difficult to carry out detailed diagnostics. We have therefore

re-examined what might be learned for a relatively heavy Z ′, allowing for high integrated

luminosities of 300 and 3000 fb−1 at the LHC, in combination with observations at the ILC

with
√
s = 500 GeV and integrated luminosity of 500 fb−1, or at 1 TeV with 1000 fb−1,

for fixed e∓ polarizations. We also consider the possibility of additional ILC running with

reversed polarizations. We consider two illustrative cases: (1) a 3 TeV Z ′ observed directly at

the LHC and indirectly at the ILC; (2) a more massive Z ′ observed only by indirect effects

at the ILC. Future studies will also include indirect constraints from existing and future

precision experiments.

1. LHC Searches

The formalism relevant to the production and decay of a Z ′ at the LHC is summarized

in Appendix VI.D. We assume in this section that a narrow colorless resonance has been

observed as a peak in the `−`+ distribution at the LHC at mass MZ′ , and that the lep-

ton angular distribution has identified that the resonance has spin-1 [225, 230]. Assuming

family universal couplings and neglecting Z − Z ′ mixing (known to be small from precision

nels [27, 28].
4See, for example, [27, 28, 220–239]. Other studies are reviewed in [17, 19, 23].

57



electroweak studies [21, 25, 26]), there remain to be determined the five chiral couplings in

(I.B.5) as well as ΓZ′ . Ideally, one would like to determine these in as model-independent a

way as possible.

The simplest observables (other than MZ′) are the cross sections σf = σZ′B(Z ′ → ff̄)

after subtracting backgrounds, especially for f = e, µ. However, the cross sections have

uncertainties from the parton distribution functions (PDFs), higher-order terms, and the

luminosity. Furthermore, they are inversely proportional to ΓZ′ , as in (VI.D.19), so they do

not allow a determination of the absolute couplings, even in principle. Also, the leptonic

rates depend only on a linear combination of the u and d couplings (roughly 2 to 1 at the

LHC), unless there is significant information from the rapidity distribution (which is unlikely

at the LHC).

The ΓZ′ ambiguity can be eliminated and the PDF/higher order uncertainties can be

reduced by considering ratios of observables. If one can tag the f = b and t final states well

enough then the ratios of the rates for f = `, b, t could in principle determine the ratios of

gq 2
L + gu 2

R , gq 2
L + gd 2

R , and g` 2
L + ge 2

R (again assuming family universality). These could be

promoted to absolute measurements if ΓZ′ can be extracted from the lineshape, since the

product σfΓZ′ = σZ′Γ(Z ′ → ff̄) depends only on the absolute couplings.

Forward-backward or charge asymmetries could yield additional information. From

(VI.D.25) we see that gf 2
R /gf 2

L can be determined for f = `, u, d if charge identification

is available for `, t, b, respectively. This is again independent of ΓZ′ and involves reduced

PDF uncertainties. Final state polarization effects for f = τ or t could carry complementary

information, which could increase the accuracies of the determinations and/or help to test

our assumption of family universality. Off-pole interference with standard model (mainly

γ and Z) backgrounds could also in principle yield information such as the signs of the

couplings [235, 238].

As stated previously, however, the existing LHC limits are sufficiently strong that it will

most likely not be possible to obtain significant model-independent determinations of the

couplings from the LHC alone. Nevertheless, some of the observables could at least allow

discrimination between the benchmark models.
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2. Leptonic Final States

The leptonic final states are very clean at the LHC. The standard model dilepton background

is at the attobarn level, negligible compared to the femtobarn-level signal. We tabulate the

cross sections and total widths for our benchmark models in Table II.3 for MZ′ = 3 TeV.

These widths are “minimal”; if the Z ′ can decay into final states other than standard model

fermions, the total width will increase, resulting in a suppression of the standard model

fermion branching fractions as well as the appearance of new visible (invisible) final states

like W+
RW

−
R (sterile νcRνR).

Table II.3: The minimal widths for the benchmark Z ′ models and the cross sections σe =

σ[e−e+] = σZ′B(Z ′ → e−e+) at the (14 TeV) LHC for dielectron final states in the mass

window 2.8− 3.2 TeV. The acceptance of the electron-positron pair is taken to be 78%.

χ ψ η LR B-L SSM

width (3 TeV Z ′) (GeV) 34.7 15.7 18.9 61.4 27.4 88.7

σe (fb) 0.850 0.430 0.503 1.006 1.004 1.602

We simulate the signal and background events using MadGraph5 [242] with input model

files generated by FeynRules [243], using proton parton distribution functions (PDF) set

CTEQ6l1 [217]. The generated events then pass through Pythia6 [244] to perform parton

showers and then Delphes [245] for detector simulation using the Snowmass Delphes3 card.

We show the invariant mass distributions and the angular distributions in the center of mass

(CM) frame of the dielectron system for these benchmark models in Fig. II.9. One can extract

the mass, width, and total rate σe from the invariant mass distribution as shown in the left

panel5. The dimuon final state is similar. The energy resolution for high energy muons is

worse than for electrons according to the Snowmass detector simulation. As a result, dimuon

final states will provide additional statistics for Z ′ discovery but won’t contribute much to

the mass and width determinations.
5The rapidity distribution of the dielectron pair could in principle be useful for separating the effects of

the u and d. In practice, however, there is little sensitivity for MZ′ & 3 TeV.
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Figure II.9: Left panel: the invariant mass distribution of the dielectron system for the

benchmark models for a 3 TeV Z ′ at the LHC at 14 TeV; Right panel: the angular distribution

of the electrons in the CM frame with respect to the rapidity (boost) direction of the system

in the lab frame, integrated over the dielectron rapidity y.

The forward-backward asymmetry AFB, defined in (VI.D.25) (which is equivalent to the

charge asymmetry Ac in (VI.D.26)), can be obtained directly by counting, from the charge

asymmetry, or by fitting to the angular distribution shown in the right panel of Fig. II.9

for the benchmark models. From (VI.D.25) one sees that AFB is sensitive to the difference

between the left and right- chiral couplings-squared of the leptons and of the quarks. Of

course, there is no forward-backward asymmetry in a pp collider at zero Z ′ rapidity y, but

there can be an asymmetry for nonzero y. We define the forward direction with respect

to the rapidity (boost) direction of the Z ′ or equivalently of the dielectron system. The

(mainly valence) quark direction is usually the same as the boost direction at the LHC.

However, around 20% of the events have the anti-quark direction along the boost direction

(the contamination factor). This contamination factor varies for different PDF sets, adding

additional theoretical uncertainties. It also varies somewhat with the Z ′ model because of

the different relative couplings of up-type and down-type quarks.

In order to estimate the sensitivity to the Z ′ parameters, we have simulated the line-
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shape and angular distributions for each of our benchmark models, assuming the minimal

width, and then “fit” to the simulated data to determine the uncertainties in the extracted

parameters. We show the fitting results for the masses and widths of the Z ′ in the left panel

of Fig. II.10, and the simulated cross section and forward-backward asymmetries in the right

panel. The two contours are for the LHC at 14 TeV and 300 fb−1 (blue) and 3000 fb−1

(red). The fitting for the mass and width is model-independent. We fit the invariant mass

distribution by a Breit-Wigner resonance convoluted with a Gaussian distribution for the

smearing from the electron energy resolution. We assume 0.7% systematic uncertainties for

the mass and width (
√

2 times the electron energy resolution 0.5%). We see that MZ′ can

be reproduced to around 10 GeV, i.e., better than one percent. ΓZ′ can also be determined

to around 10 GeV, but from Table II.3 and Fig. II.10 this is very crude (e.g., 30-60%) for

the minimal widths in most of the benchmark models. The total width and mass precision

is dominated by systematic uncertainties: one can see that the improvement from 300 fb−1

to 3000 fb−1 is not significant. Nevertheless, the LHC is the only planned facility that can

measure these quantities to any precision6.

We also show the forward-backward asymmetry and cross section determinations7. In

addition to the statistical uncertainties, we take the systematic uncertainties 10%⊕2% (6%⊕
2%) for the cross section for the LHC at 300 fb−1 (3000 fb−1). The 10% (6%) are the corre-

lated uncertainties (e.g., PDF and luminosity uncertainties) that will cancel when taking the

ratios of cross sections, leaving 2% systematics for the forward-backward asymmetry. AFB

can be determined very well for asymmetric models such as the Zχ and ZLR, approximately

20% (5%) at the LHC 14 TeV with 300 fb−1 (3000 fb−1). The absolute error is comparable

for the other (more symmetric) models. The contours in Fig. II.10 indicate that there is

some reasonable possibility of distinguishing some of the benchmark models with minimal

width at the LHC 14 TeV. However, there is not much possibility for model-independent

studies based on the dielectron observables alone.

6In principle the mass could be determined indirectly, e.g., by comparing results from the ILC at different
energies. However, the ILC sensitivity is small for a multi-TeV Z ′ mass.

7The uncertainties in ΓZ′ are too large to obtain useful model-independent constraints from σe ΓZ′ .
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Figure II.10: The results for pp → Z ′ → e−e+ with dielectron invariant mass from 2.8 −
3.2 TeV. Left panel: ∆χ2 = 1 contours for the fitted width versus mass for the LHC at

300 fb−1 and 3000 fb−1. Right panel: ∆χ2 = 4 contours of the simulated forward-asymmetry

versus the cross section.

3. Hadronic Final States

The hadronic final states of the 3 TeV Z ′ are particularly important. Once combined with the

leptonic channels, under the assumption of family universality, one can in principle obtain

the absolute values of the Z ′ coupling strength to both leptons and hadrons. On the other

hand, one faces the difficulties of huge QCD backgrounds. In this section we discuss the

possibility of observing these channels at the LHC.

We list the parton level cross section for both signal and irreducible background at

the LHC 14 TeV in Table II.4. The cross sections for these models for the dijet final

state, including up, down, charm and strange quarks, are at the femtobarn level. The QCD

background, after preliminary cuts, is ∼1000 times larger than the signal. More strict cuts

and selection criteria may help improve this channel, but nevertheless the dijet channel is

not promising.

We are particularly interested in the third generation final states. Heavy quark tagging

techniques make it possible to observe these channels. Moreover, they can determine the
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(family universal) Z ′ couplings to up-type quarks and down-type quarks. In the case that top

quark charge and/or polarization tagging is available, one would be able to obtain constraints

on the chiral couplings of the Z ′. On the other hand, the top quark signal is statistically very

limited, as shown in the table. The top tagging and mis-tagging rates in this highly boosted

scenario require further investigation. Thus we only list its parton level cross section and

not discuss backgrounds.

Table II.4: Parton level cross sections at the LHC 14 TeV. We only select events with final

state dijet and bottom pair invariant mass in the window 2.9 − 3.1 TeV. σSM2j;cut are with

cuts ht (scalar sum of jets’ pT s) > 500 GeV, pT > 200 GeV, and yj < 2.

χ ψ η LR B-L SSM

σSM2j (fb) 1.4× 106

σSM2j;cut(fb) 5.1× 103

σZ
′

2j (fb) 6.0 5.6 8.3 21 1.4 19

σZ
′

2b (fb) 2.9 1.6 1.9 7.8 0.4 6.2

σSM+Z′
2b (fb) 5.5 3.7 3.9 10 2.3 8.7

σZ
′

2t (fb) 0.7 1.7 3.2 5.8 0.5 7.0

For the bottom pair final state we include both the QCD dijet background and the SM

bottom pair irreducible background. We show the cut flow effective acceptance ε and final

significance at LHC 14 TeV in Table II.5. The QCD dijets are required to be in the mass

window of 2.5 − 3.5 TeV, with ht > 500 GeV and leading jet pt > 200 GeV at the parton

level. The cross section is 36 pb, but tight b-tagging criteria that have a 0.1% fake rate

from light quark jets can reduce it greatly. Both the signal and irreducible bottom pair

background require bb̄ invariant mass in the same window. The effective invariant mass meff

is the invariant mass of all the jets with pt > 100 GeV. After these series of cuts, we will be

able to establish three sigma significance for the excess for the benchmark models Zχ, ZLR

and ZSSM in the bb̄ final state at LHC 14 TeV with 3000 fb−1.
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Table II.5: Cut flow table and significance S/
√
B for Z ′ → bb̄ processes at LHC 14 TeV. The

cross sections σ before cuts are for bottom pair (dijet) invariant mass from 2.5 − 3.5 TeV.

εb represents the percentage acceptance of at least one tagged b-jet. εP bt represents the

percentage acceptance also requiring the pT of the leading b-jet to be greater than 1.2 TeV.

σeff is the cross section after these cuts.

QCD Dijet SM bb̄ χ ψ η LR B-L SSM

σ (fb) 36300 12.1 3.44 1.73 2.03 10.8 0.45 9.74

εb (%) 0.561 27.6 30.7 30.1 30.2 29.7 30.7 28.7

εP bt (%) 0.0365 6.80 9.07 9.14 9.34 8.15 9.56 7.63

σeff (fb) 11.78 0.82 0.31 0.16 0.19 0.88 0.04 0.74

S√
B

@ 0.3 ab−1 1.5 0.8 0.9 4.3 0.2 3.6

S√
B

@ 3 ab−1 4.8 2.4 2.9 14 0.7 11
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4. Summary and Outlook

We study and discuss the Z ′ discovery and model discrimination potential of the LHC and

ILC, using the benchmark models Z ′χ, Z ′ψ, Z ′η, Z ′LR, Z ′B−L, and Z ′SSM . We discuss two

scenarios: (1) a 3 TeV Z ′ that can be resonantly produced at the LHC; (2) a Z ′ that is too

massive to observe as a clear resonance signal.

We discuss the potential of the LHC at 14 TeV with integrated luminosity of 300 fb−1

and 3000 fb−1 in both leptonic and hadronic final states. The leptonic final states have

low background and provide the best sensitivity for discovery. The excellent lepton energy

resolution allows them to probe the Z ′ mass and width. We show in the left panel of Fig. II.10

that for 300 fb−1 (and 3000 fb−1), one can reach around 10 GeV precision for each at ∼ 1σ.

Unfortunately, the width uncertainty is a significant fraction of the width itself for typical

models with electroweak-scale couplings, limiting the possibility of constraining the absolute

magnitudes of the couplings. The leptonic forward-backward asymmetry, combined with the

cross section would have some sensitivity to the chiral couplings, and in particular would

allow discrimination between benchmark models (with minimal width) at a reasonable level.

We also discuss the hadronic Z ′ modes at the LHC. We study the sensitivity of the bottom

pair final state in detail. Although there is a large background from mis-tagged light jets as

shown in Table II.5, a 3σ excess can be achieved for certain benchmark models, such as Z ′χ,

Z ′LR and Z ′SSM .

The inclusion of additional observables (such as heavy particle final states, additional

asymmetries and polarizations, and precision electroweak constraints), a global χ2 study for

model discrimination, the possibility of model-independent coupling extractions, and the im-

plications of departing from such assumptions as family universality are under investigation.

C. SUSY HIGGS PHYSICS IN NMSSM

These low-mA parameter regions of the NMSSM have unique properties and offer rich phe-

nomenology, providing complementary scenarios to the existing literature for the large-mA
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case, as mentioned above. The production cross section and decay branching fractions for

the SM-like Higgs boson may be modified appreciably and new Higgs bosons may be readily

produced at the LHC. We evaluate the production and decay of the Higgs bosons in this

model and propose further searches at the LHC to probe the Higgs sector of the NMSSM.

The rest of this section is organized as follows. In Sec. II.C.1, we present a short,

self-contained introduction to the Higgs sector of the NMSSM. In Sec. II.C.2, we discuss

our parameter scanning scheme and the current constraints applied. We then discuss the

resulting constraints and correlations for the NMSSM parameter space in Sec. II.C.3 for

the case that the SM-like Higgs is the lightest CP-even scalar and in Sec. II.C.4 when the

SM-like Higgs is the second lightest CP-even scalar. In Sec. II.C.5, we consider the basic

LHC phenomenology for our results. Finally, we summarize and conclude in Sec. II.F.3.

1. NMSSM Higgs Sector and the Low-mA Region

In the NMSSM [30, 31, 246, 247], a new gauge singlet chiral superfield Ŝ is added to the

MSSM Higgs sector resulting in a superpotential of the form

WNMSSM = Yuû
cĤuQ̂+ Ydd̂

cĤdQ̂+ Yeê
cĤdL̂+ λŜĤuĤd +

1

3
κŜ3 (II.C.26)

with an explicit Z3 symmetry. Additionally, the soft-SUSY breaking Higgs sector of the

NMSSM is:

VH,Soft = m2
HuH

†
uHu+m2

Hd
H†dHd+M2

S|S|2 +

(
λAλ(H

T
t εHd)S +

1

3
κAκS3 + c.c.

)
. (II.C.27)

After the singlet obtains a vacuum expectation value (VEV) 〈S〉 = vs/
√

2, an effective µ

term is generated: µ = λvs/
√

2, which solves the so-called µ-problem of the MSSM. An

effective b-term beff = µ(Aλ + κ
λ
µ) is also generated at tree level.

In this work, we assume a CP-conserving Higgs potential with all the coefficients being

real. We further take λ and κ to be positive, unless otherwise stated. For the VEVs, we

use the convention 〈H0
u〉 = vu/

√
2, 〈H0

d〉 = vd/
√

2, with v2
u + v2

d = v2 = (246 GeV)2 and

tan β = vu/vd. After electroweak symmetry breaking, we are then left with three CP-even

Higgs states H1, H2, H3, two CP-odd Higgs states A1, A2, and a pair of charged Higgs states

H±.

66



a. Masses CP-odd Higgs Bosons For the CP-odd Higgs bosons, we define the mixing

states

Av =
√

2
(
Im(H0

d) sin β + Im(H0
u) cos β

)
, As =

√
2 Im(S). (II.C.28)

The relevant parameters of our interest are the diagonal elements of the mass matrix in the

basis of (Av, As) as

m2
A =

2µ

sin 2β

(
Aλ +

κ

λ
µ
)

=
2beff

sin 2β
, (II.C.29)

m2
As =

λ2v2

8µ2

(
m2
A sin 2β + 6

κ

λ
µ2
)

sin 2β − 3
κ

λ
µAκ. (II.C.30)

The full mass matrix expression can be found in Ref. [246]. In the limit of zero mixing

between Av and As, mA is the mass of the CP-odd Higgs Av, as in the case of the MSSM.

However, in the NMSSM, the mass eigenstates are typically a mixture of Av and As, resulting

in a more complicated mass spectrum and parameter dependence. Although mA is not a

mass eigenvalue in the NMSSM, it takes the same form in terms of beff as in the MSSM [see

Eq. (II.C.29)]. We also note that m2
As

has the contribution −3κ
λ
µAκ. As a result, to obtain

positive mass squared eigenvalues, the combination µAκ can not be too large and positive,

in particular, for the small mA region that we consider in section II.C. We denote the mass

eigenstates as A1 and A2, where mA1 ≤ mA2 .

Charged Higgs Bosons The charged Higgs bosons H± in the NMSSM have the same

definition as in the MSSM, but a new contribution to their mass

H± = H±d sin β +H±u cos β, m2
H± = m2

A +m2
W −

1

2
(λv)2. (II.C.31)

The extra λ-dependent term leads to a reduction of the charged Higgs mass compared to its

MSSM value. Requiring m2
H± ≥ 0 gives an upper bound for λ as a function of mA

λ ≤
√

2

v

√
m2
A +m2

W . (II.C.32)

The LEP search limit mH± & 80 GeV [248, 249], as well as the bounds from the Tevatron

and LHC charged Higgs boson searches, strengthen this upper limit even further, depending

on the value of tan β.
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CP-even Higgs Bosons The CP-even Higgs sector is much more complicated compared

to that of the MSSM. It is advantageous to define the basis as: hv

Hv

 =

 cos β sin β

− sin β cos β


 √2 (Re(H0

d)− vd)
√

2 (Re(H0
u)− vu)

 , S =
√

2 (Re(S)− vs).

(II.C.33)

The benefit of using this basis is that the couplings of hv to the gauge sector and the fermion

sector are exactly the same as that of the SM Higgs. On the other hand, Hv does not couple

to pairs of gauge bosons at all, and its coupling to the up-type quarks (down-type quarks and

charged leptons) is proportional to 1
tanβ

(tan β) with respect to the SM values. The singlet,

S, does not couple to either the gauge bosons or the fermions. While the mass eigenstates

H1,2,3 (with mH1 ≤ mH2 ≤ mH3) are typically mixtures of hv, Hv and S, by knowing the

fraction of hv, Hv, and S in the mass eigenstates, we have a better understanding of their

interactions with the gauge bosons and fermions.

The diagonal entries of the mass matrix for the CP-even Higgs bosons in the basis of

(hv, Hv, S) are given by [246]

m2
hv = m2

Z +

[
1

2
(λv)2 −m2

Z

]
sin2 2β , (II.C.34)

m2
Hv = m2

A −
[

1

2
(λv)2 −m2

Z

]
sin2 2β , (II.C.35)

m2
S =

λ2v2

8µ2

(
m2
A sin 2β − 2

κ

λ
µ2
)

sin 2β +
κ

λ
µ
(
Aκ + 4

κ

λ
µ
)
. (II.C.36)

Note that the combination κ
λ
µAκ, that appear inm2

S, also appeared inm2
As

[see Eq. (II.C.29)].

While κ
λ
µAκ could not be too large and positive in order for m2

As
to be positive, we see that

it also can not be too large and negative in order for m2
S to be positive. This term also

introduces certain correlation between µ and Aκ, as discussed in Secs. II.C.3 and II.C.4.

For large mA, we see that m2
Hv

grows with mA, while mhv remains around the electroweak

scale. The singlet, on the other hand, is determined by a combination of µ, Aκ, and mA, as

well as the dimensionless quantities κ, λ, and tan β.

The first and foremost effect of the introduction of the singlet and its couplings to the

MSSM Higgs sector is the extra λ-term in Eqs. (II.C.34) and (II.C.35), which lifts up the
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mass of the SM-like Higgs m2
hv
, in particular, for small tan β, while reducing m2

Hv
. In the

MSSM, for the SM-like Higgs to have a mass of approximately 126 GeV typically requires

the tree-level Higgs mass-squared m2
Z cos2 2β to be maximized, which prefers large tan β.

In the NMSSM, by contrast, the contribution from 1
2
(λv)2 sin2 2β results in small values of

tan β being favored, especially for large λ. Consequently, the contribution to the Higgs mass

from stop sector loop corrections can be relaxed. The left-right mixing in the stop sector is

no longer required to be near maximal (|At| ∼
√

6M3SQM3SU in the MSSM).

The mixture of the singlet with the MSSM Higgs sector, in particular with hv, could

further affect the SM-like Higgs mass. If we consider only the hv-S mixing for simplicity, when

m2
hv
> m2

S, the mass eigenvalues for the SM-like Higgs is pushed up after the diagonalization

of the 2×2 mass matrix. This is the so-called “push-up” scenario described in the literature.

On the other hand, when m2
hv
< m2

S, the mass eigenvalue for the SM-like Higgs is pushed

down due to the mixing, and is, thus, called the “push-down” scenario. Such effects have

been discussed extensively in the literature [40, 48], considered almost exclusively in the limit

of mA � mZ , which decouples the effect of the MSSM non-SM like Higgs Hv, while focusing

only on the mixture of hv and S. The low-lying spectrum in such cases includes two CP-even

Higgs bosons, H1 and H2, as a mixture of hv and S, with either H1 or H2 being the 126 GeV

SM-like Higgs, corresponding to the push-down or push-up scenario, respectively. In this

large-mA scenario, only one CP-odd Higgs As might be light, while Av and H± are heavy

and decouple. Both the push-up and push-down scenarios, however, suffer from a certain

degree of fine-tuning for the NMSSM parameters if the stop masses are relatively light and

the left-right mixing in the stop sector is not large [40].

Low-mA Region

In this section, we consider the region of the NMSSM with relatively small mA (mA ∼<
2mZ). In this region, all the MSSM-type Higgs bosons are relatively light, with m2

hv
and

m2
Hv

relatively close to each other. With an appropriate choice of other NMSSM parameters,

m2
S and m2

As
can be light as well. This could lead to potentially large mixing effects in the

Higgs mass eigenstates, resulting in possible deviations of the SM-like Higgs couplings to the

gauge boson and fermion sectors.

The low-mA region of the MSSM (the so-called “non-decoupling” region) has been studied
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in Refs. [45, 250–255]. It was pointed out that for mA ∼ mZ , the heavy CP-even Higgs, H0

in the usual MSSM notation, is the SM-like Higgs. On the other hand, for the light CP-even

Higgs h0 to be SM-like, mA is typically large: mA & 300 GeV, in the so-called “decoupling”

region of the MSSM. However, these observations do not necessarily hold in the NMSSM,

due to the singlet-induced λ-term contribution to m2
hv

and m2
Hv

, as well as the singlet mixing

effects in the mass matrix.

If we ignore the singlet mixture with hv and Hv for the moment, and study the conse-

quence of the extra λ-term in the 2 × 2 (hv, Hv) system in the NMSSM, then, to have the

heavy CP-even MSSM Higgs be SM-like, m2
hv
≥ m2

Hv
, requires

m2
A ≤ m2

Z cos 4β + (λv)2 sin2 2β. (II.C.37)

Fig. II.11 shows the lines in the λ versus mA plane when m2
hv

= m2
Hv

, for various values

of tan β. For regions above the lines, m2
hv
> m2

Hv
, and the heavy CP-even MSSM Higgs is

SM-like (up to mixing and loop corrections). For regions below the lines, m2
hv
< m2

Hv
, and

the light CP-even MSSM Higgs is SM-like. All the lines cross the point mA = mZ and λ =
√

2mZ/v ∼ 0.5. For small tan β ∼ 1, large λ (above the tan β = 1 line) is preferred to realize

mhv > mHv , while small λ gives rise to mhv < mHv . For larger values of tan β, the curve

tilts more and more vertically. For tan β & 10, the λ dependence becomes rather weak and

the separation of the two regions is governed by the value of mA: mA . mZ for mhv > mHv

and mA & mZ for mhv < mHv , which is similar to the usual MSSM case. In Fig. II.11, we

also include the mH± contours as dashed lines, with the shaded area indicating the region

ruled out by m2
H± < 0. Taking into account the LEP bound of mH± & 80 GeV [248, 249]

limits us to the right of the mH± = 80 GeV contour. Therefore, requiring mhv > mHv while

satisfying the experimental charged Higgs bounds restricts us to two regions: large λ & 0.5,

mA & mZ for small tan β ∼ 1 − 2, or small λ . 0.5, mA . mZ for tan β & 2. Imposing

a stronger bound on mH± from t → bH± searches at the Tevatron and the LHC [256–258]

further narrows down the mhv > mHv region, resulting in a fine-tuned region to realize.

On the other hand, mhv < mHv is much easier to realize in the NMSSM. In contrast to

the MSSM, where being deep into the decoupling region mA & 300 GeV is typically required

to satisfy both the mass window and the cross section requirement (i.e. for h0 to obtain

70



0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mA  (GeV)

!

 

 

40

80 120 160 200

tan"=1
tan"=2
tan"=3
tan"=4
tan"=5
tan"=10

Figure II.11: Lines for m2
hv

= m2
Hv

for different values of tan β in the λ versus mA plane.

m2
hv
> m2

Hv
above the lines and m2

hv
< m2

Hv
below the lines. Also shown by the dashed lines

are the mass contours for the tree-level value of mH± . The shaded region corresponds to the

excluded region with m2
H± < 0.
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SM-like couplings to the gauge bosons), in the NMSSM, with the mixture of the singlet and

the possible suppressed couplings to bb̄, even a suppressed coupling to the gauge sector could

be accommodated while satisfying the experimentally observed cross section range. Note

that our discussions are based on tree level expression for the Higgs masses. While including

loop corrections shifts all the masses, our statements are still qualitatively valid.

Including the extra singlet in the spectrum gives three distinct cases, as sketched in

Fig. I.1, corresponding to either H1, H2, or H3 being SM-like:

• H1 SM-like: mhv . mHv ,mS,

• H2 SM-like: mS . mhv . mHv or mHv . mhv . mS,

• H3 SM-like: mHv ,mS . mhv .

With the off-diagonal mixing in the mass matrix, the separation of these regions becomes

less distinct while the above relations still approximately hold.

b. Couplings The mass eigenstates H1,2,3 are, in general, a mixture of hv, Hv, and S:

Hi =
∑
α

ξHαHi Hα, for i = 1, 2, 3, Hα = (hv, Hv, S), (II.C.38)

with ξHαHi being the 3× 3 unitary matrix that rotates the Higgs bosons into the mass eigen-

states. In particular, |ξHαHi |2 defines the fraction of hv, Hv, and S in Hi with the unitarity

relations:

|ξHαH1
|2 + |ξHαH2

|2 + |ξHαH3
|2 = 1, |ξhvHi |

2 + |ξHvHi |
2 + |ξSHi |2 = 1. (II.C.39)

Similarly, for the CP-odd Higgs bosons, the unitary rotation is Ai =
∑

α ξ
Aα
Ai
Aα where

i = 1, 2, and Aα = (Av, As). The fractions of Av and As in the CP-odd mass eigenstates A1,2

are given by |ξAαAi |2, i = 1, 2, with |ξAvA1
|2 = |ξAsA2

|2 = 1− |ξAsA1
|2 = 1− |ξAvA2

|2.
In Table II.6, we express the tree-level reduced couplings of the NMSSM Higgs mass

eigenstates to various pairs of SM particles, which are the ratios of the NMSSM Higgs

couplings to the corresponding SM values. The charged Higgs couplings of H+dLu
c
R and

H−uLdcR are normalized to the SM top and bottom Yukawa couplings
√

2mt/v and
√

2mb/v,

respectively. In the NMSSM, the HiZZ and HiWW couplings are always modified in the
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Table II.6: Reduced Higgs couplings at tree level. The charged Higgs couplings of H+dLu
c
R

and H−uLdcR are normalized to the SM top and bottom Yukawa couplings
√

2mt/v and
√

2mb/v, respectively.

Hi Ai H±

Ruu ξhvHi + ξHvHi / tan β ξAvAi / tan β RdLu
c
R
−1/ tan β

Rdd ξhvHi − ξ
Hv
Hi

tan β ξAvAi tan β RuLd
c
R

− tan β

RV V ξhvHi

same way at leading order. Therefore, we use V V to represent both WW and ZZ. The

coupling of the CP-even Higgs bosons to the gauge boson sector V V is completely determined

by the hv-fraction of Hi: |ξhvHi |2, which plays an important role in understanding the coupling

and branching fraction behavior of the SM-like Higgs boson. Note that |ξhvHi |2 ≤ 1, therefore,

the HiV V couplings, as well as the Hi → V V partial decay widths, are always suppressed

compared to their SM values. However, the branching fractions of Hi → V V could still be

similar or even enhanced compared to their SM values, since Hi → bb could be suppressed

as well.

The Higgs to γγ and Higgs to gg couplings are both loop-induced. The dominant con-

tribution to the hvγγ coupling comes from the WW loop, with a sub-leading destructive

contribution from the top loop. The hvgg coupling, on the other hand, is dominated by the

top-loop contribution. The Hiγγ and Higg couplings are modified similarly in the NMSSM,

based on the reduced couplings as listed in Table II.6.

2. Parameter Scan and Constrained Regions

We will focus our scan on the parameters that are most relevant to the Higgs sector, namely,

parameters appearing in the Higgs potential, as well as the stop mass parameters, which

could induce a relatively large loop correction to the Higgs mass. Since the impact of other
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SUSY sectors to the Higgs mass is typically small, we effectively decouple them by setting

all other SUSY mass parameters to be 3 TeV and the other trilinear soft SUSY breaking

parameters to be 0. Note that the sbottom and stau might modify the Higgs mass and

certain couplings at loop level, which could have substantial effects in certain regions of

parameter space. We defer a discussion of these regions to specific studies in the literature

[259] and will only focus on the Higgs and stop sectors in the current study.

In the MSSM, the relevant Higgs and stop sector parameters are

mA, tan β, µ, M3SQ, M3SU , At, (II.C.40)

as well as the Higgs vacuum expectation value v = 246 GeV. In the NMSSM, the tree level

Higgs potential involves seven parameters: (λ, κ,Aλ, Aκ, vs, tan β) and v. After replacing vs

by µ = λvs/
√

2 and replacing Aλ by mA as defined in Eq. (II.C.29), we are left with three

new parameters compared to the MSSM case. We scan these parameters in the range of

0 ≤ mA ≤ 200 GeV,

1 ≤ tan β ≤ 10,

100 GeV ≤ µ ≤ 1000 GeV,

0.01 ≤ λ, κ ≤ 1,

−1200 GeV ≤ Aκ ≤ 200 GeV,

100 GeV ≤ M3SQ, M3SU ≤ 3000 GeV,

−4000 GeV ≤ At ≤ 4000 GeV, (II.C.41)

unless otherwise stated. The range of mA is chosen to guarantee that Hv and Av are light.

The ranges of µ, λ, κ and Aκ are chosen such that the CP-even and odd singlet masses are

allowed to vary over a wide range. The stop sector mass and mixing parameters are chosen

to cover both the minimal and maximal mixing scenarios. We restrict tan β to be in the

range of 1 − 10 since regions with higher values of tan β do not contain a SM-like Higgs

boson in the mass window of 124 − 128 GeV, as will be discussed in detail in Secs. II.C.3

and II.C.4.
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The scan is performed by utilizing NMSSMTools 3.2.1 [260–262] to calculate the Higgs

and SUSY spectrum, Higgs couplings, decay widths, branching fractions, and various Higgs

production cross sections. The full constraints imposed for the scan procedure include:

• the latest LHC limits in various SM Higgs searches [263–267];

• bounds on MSSM Higgs search channels from LEP, the Tevatron, and the LHC [43, 268];

• stop and sbottom masses to be heavier than 100 GeV.

We did not impose bounds that are not directly relevant to the Higgs sector, for example,

other SUSY particle searches, flavor physics, and dark matter relic density. Those bounds

typically involve SUSY parameters of other NMSSM sectors which we did not scan. Although

some significant reduction of the allowed parameter space may occur with these additional

constraints, we do not expect our conclusions to be changed. We generated a large Monte

Carlo sample over the multi-dimensional parameter space and tested each parameter point

against the experimental constraints. For the following presentation, the allowed points (or

regions) in the plots are indicative of consistent theoretical solutions satisfying the experi-

mental constraints, but are not meant to span the complete space of possible solutions.

Given the discovery of a SM-like Higgs boson around 126 GeV, we study its implication

by applying the following requirements step by step:

Either H1, or H2, or H3 in the mass window of 124 − 128 GeV, (II.C.42)

σ × Br(gg → Hi → γγ)

(σ × Br)SM

≥ 0.8,
σ × Br(gg → Hi → WW/ZZ)

(σ × Br)SM

≥ 0.4. (II.C.43)

The cases delineated in Eqs. (II.C.42) and (II.C.42) determine the defining feature of the

regions described in this section and will, henceforth, be referred to as H1-126, H2-126 and

H3-126, respectively.

Figure II.12 shows the allowed mass regions versus mH± for the CP-even Higgs bosons

(left panels) and the CP-odd/charged Higgs bosons (right panels). The first and second row

panels are for points that pass all the experimental constraints as itemized earlier, as well as

H1 and H2, respectively, satisfying both the mass and cross section requirements as listed in

Eqs. (II.C.42) and (II.C.43). The third row panels are for points that pass all experimental
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Figure II.12: The left panels show the allowed mass regions versus mH± for the CP-even H1

(red), H2 (green), and H3 (blue). The right panels show the allowed mass regions versus

mH± for the CP-odd A1 (magenta), and A2 (brown), and the charged Higgs H± (cyan). The

first and second row panels contain the points that pass all the experimental constraints as

well as having H1 and H2 being SM-like. The third row panels contain the points that pass

all the experimental constraints as well as Eq. (II.C.42), but not Eq. (II.C.43).
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constraints as well as H3 satisfying the mass requirement as listed in Eq. (II.C.42). We have

chosen to plot the physical Higgs masses against the charged Higgs mass mH± , rather than

the conventional choice of mA as in the MSSM. Due to the relatively large loop corrections

to the Higgs masses, the natural scale parameter choice in the NMSSM would be the loop

corrected Av mass mAloop , the NMSSM equivalent of the MSSM mA (the physical mass for

the CP-odd MSSM Higgs). Av, however, has to mix with As to provide masses for the two

CP-odd mass eigenstates A1 and A2. The charged Higgs mass mH± , on the other hand,

retains roughly the simple relationship with mAloop , described in Eq. (II.C.31), after loop

corrections. Therefore, we choose the physical mH± as the scale parameter in Fig. II.12. In

this figure, we scanned in the range 0 GeV < mtree
H± < 300 GeV, rather than 0 GeV < mA <

200 GeV, to improve the coverage of the parameter region of our interest.

For H1 being the SM-like Higgs in the mass window of 124 − 128 GeV (see the first row

of Fig. II.12), H2 is typically in the mass range of 125 − 300 GeV, while mH3 & 200 GeV.

The charged Higgs mass is in the approximate range 125− 300 GeV. Charged Higgs bosons

with mass less than 150 GeV are mostly ruled out by the direct search for H± produced in

top decays. The light CP-odd Higgs could be very light, a few GeV . mA1 . 300 GeV, while

mA2 & 200 GeV. When mA1 < mH1/2, the decay channel H1 → A1A1 opens, leading to

very interesting phenomenology, as will be discussed in detail in Sec. II.C.3. Note that the

boundary of the H2 and H3 regions, as well as the boundary of the A1 and A2 regions show

nice correlation with mH± . This is because the boundary is given by mHv as in Eq. (II.C.35)

for the CP-even case, and by mA for the CP-odd case, both of which scale with mH± . The

singlet mixing with Hv and Av will push/pull the mass eigenstates away from mHv and mA,

leaving a clear boundary. Given a H2, H3 pair (A1, A2 pair), the one whose mass is closer

to the H2-H3 (A1-A2) boundary line is more Hv (Av)-like.

For H2 being the SM-like Higgs in the mass window of 124 − 128 GeV (see the second

row of Fig. II.12), a large fraction of the points contain H1 in the mass range of 60 − 124

GeV. There is also a significant set of points with mH1 < mH2/2, which turns on the decay

channel H2 → H1H1, as will be discussed in Sec. II.C.4. mH3 is in the mass window of

approximately 200−350 GeV, and grows roughly linearly with mH± , an indication of H3

being mostly Hv-like. The points with mH3 below ∼180 GeV are removed by a combination
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of the collider constraints and the cross section requirement of Eq. (II.C.43). This is very

different from the H1-126 case, in which H3 could be singlet dominant with mass as large as

1 TeV or higher. For the light CP-odd Higgs A1, it falls into two regions: one region with

60 GeV . mA1 . 300 GeV (mH± & 200 GeV), with little dependence on mH± (for A1 being

mostly As); another region with mA1 & 150 GeV (mH± & 150 GeV), which grows linearly

with mH± (for A1 being Av-like). A2 typically has a mass of 200 GeV or higher, which also

falls into two regions accordingly.

For H3 being the SM-like Higgs in the mass window of 124 − 128 GeV (see the third row

of Fig. II.12), both the singlet and Hv-dominant Higgs bosons need to be lighter than about

126 GeV. Given the tight experimental constraints on the light Higgs searches, as well as

the fine-tuning between the mass parameters, this region turns out be to highly restrictive.

While we can realize regions with mH3 in the desired mass window, it is extremely difficult

to satisfy the cross section requirement of Eq. (II.C.43). Panels in the third row of Fig. II.12

show points with H3 in the mass window of 124 − 128 GeV. However, σ × Br(gg → H3 →
γγ,WW/ZZ)/SM is less than 0.4 in general, and it is therefore hard to accommodate the

observed Higgs signal as H3 in the NMSSM.

In what follows, we will discuss the H1-126 and H2-126 cases in detail, exploring the

relevant parameter space for each region, the composition of the 126 GeV SM-like Higgs and

the other light NMSSM Higgs bosons, possible enhancement or suppression of various search

channels as well as correlations between them.

3. H1 as the SM-like Higgs Boson

a. Parameter Regions For H1 to have SM-like cross sections for

gg → H1 → γγ,WW/ZZ within the experimentally observed ranges, H1 needs to be either

dominantly hv or have a considerable singlet fraction with a suppressed H1 → bb̄ partial

width. Hv and S dominant states are typically heavier such that, usually, the lightest CP-

even Higgs state is mostly hv. This case is seldom realized in the MSSM low-mA region

(mA ∼< 2mZ), since the light CP-even Higgs boson typically has suppressed couplings to

WW and ZZ in this region. In the NMSSM, the tree-level diagonal mass term for hv is
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Figure II.13: The dependence of mH1 on the following NMSSM parameters in the H1-126

case: λ, κ, tan β, and µ. Grey points are those that pass the experimental constraints,

pale-pink points are those with H1 in the mass window 124 GeV < mH1 < 128 GeV and

green points are those with the cross section requirements further imposed. Black points are

those that remain perturbative up to the Planck scale.
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m2
hv

= m2
Z cos2 2β + 1

2
(λv)2 sin2 2β. Large λ and small tan β are preferred to push up the

mass of hv into the desired mass window. For small tan β, even for small mA, typically

m2
hv
< m2

Hv
, resulting in the lighter MSSM-like CP-even Higgs being SM-like in the low-mA

region. In addition, mixture with the singlet in the NMSSM which produces, in particular, a

suppressed H1 → bb̄ partial decay width, could lead to a SM-like γγ andWW/ZZ branching

fraction for H1 as well. The push-down effect in mass eigenvalues from the singlet mixing

also helps to realize the mostly hv state being H1.

To show the effect of the narrowing down of the parameter regions due to the mass and

cross section requirements, Fig. II.13 presents the dependence of mH1 on λ, κ, tan β, and µ,

with gray dots for all points satisfying the experimental constraints, pale-pink points which

pass the mass window requirement of Eq. (II.C.42), and green points, that almost overlap the

pale-pink points, which pass both the mass and cross section requirements of Eqs. (II.C.42)

and (II.C.43).

After requiring H1 to fall into the mass region of 124 − 128 GeV, we are restricted to

the parameter region of λ & 0.55, κ & 0.3 (with a small number of points down to 0.1),

1 . tan β . 3.5, µ . 500 GeV, -1200 GeV . Aκ . 200 GeV with no restriction on mA which

is allowed to be in the entire region of 0 − 200 GeV (the corresponding region for Aλ is

approximately −650 GeV to 300 GeV). The stop mass parameters M3SQ, M3SU and At are

unrestricted as well. Further imposing the cross section requirement for gg → H1 → γγ,WW

and ZZ does not narrow down the allowed regions for these parameters further.

Also shown as the black points in Fig. II.13 are the parameter points where λ and κ

remain perturbative up to the Grand Unified Theory (GUT) scale. They occupy a small

region of 0.5 . λ . 0.65, 0.3 . κ . 0.5, tan β ∼ 2, 100 . µ . 150 GeV, −150 . Aκ . 100

GeV, and 150 . mA . 200 GeV (−30 . Aλ . 230 GeV). While M3SQ and M3SU are

unconstrained, |At| is restricted to be & 1200 GeV. These parameter regions are summarized

in Table II.7.

We have noted earlier that the light CP-odd Higgs A1 could be very light. When it falls

below half of the H1 mass, H1 → A1A1 opens up, which could dominate the H1 decay width,

compared to the usual case in which decay to bb̄ dominates. Therefore, we further separate

the H1-126 case into three regions:
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Table II.7: NMSSM Parameter regions for the H1-126 case.

tanβ mA µ λ κ Aλ Aκ

(GeV) (GeV) (GeV) (GeV)
H1-126 1∼3.5 0∼200 100∼500 & 0.55 & 0.3 -650∼300 -1200∼200
perturb. 1.5 ∼2.5 150∼200 100∼150 0.55∼0.65 0.3∼0.5 -30∼230 -150∼100

mA1 <
mH1

2 1∼3.5 100∼200 100∼200 & 0.55 & 0.5 -150∼150 -50∼30

• H1 Region IA: mA1 > mH1/2 and |ξhvH1
|2 > 0.7: green points in Figs. II.14-II.19.

• H1 Region IB: mA1 > mH1/2 and |ξhvH1
|2 < 0.7: red points in Figs. II.14-II.19.

• H1 Region II: mA1 < mH1/2: magenta points in Figs. II.14-II.19.

To identify the NMSSM parameter regions that give a SM-like H1 in the mass window of

124 − 128 GeV, in Fig. II.14, we show the viable regions in various combinations of NMSSM

parameters. Grey points are those that pass the experimental constraints, pale-pink points

are those with H1 in the mass window 124 GeV < mH1 < 128 GeV, green and red points

are for H1 Region I with mA1 above the H1 → A1A1 threshold, and magenta points are

for H1 Region II with low mA1 . Again, the black points are those where λ and κ remain

perturbative up to the GUT scale.

The first two panels show the (a) λ versus mA, and (b) κ versus mA regions. For small

values of mA, λ has to be around 0.6−0.7, since too large a value of λ is ruled out by the

charged Higgs mass bounds, while too small a value of λ results in mH1 being less than 124

GeV. For larger values of mA, the λ range is enlarged to 0.55 . λ . 1. κ, on the other hand,

has to be ∼ 1 for small mA, while smaller κ is allowed for larger mA.

Panel (c) of Fig. II.14 shows the viable region in the λ versus κ plane. Given λ & 0.55 and

κ & 0.3, the renormalization group running of λ, and κ, as well as of the Yukawa couplings

yt,b and gauge couplings might reach the Landau pole before MGUT. As noted in Ref. [35], a

larger λ allows a highly natural light Higgs boson. For all the points that pass the mass and

cross section requirements, only a small region of the λ-κ plane, as shown by the black points

in panel (c) of Fig. II.14, remain perturbative up to the GUT scale around 1016 GeV. For
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Figure II.14: Viable NMSSM parameter regions in the H1-126 case: (a) λ versus mA, (b)

κ versus mA, (c) λ versus κ, (d) tan β versus mAloop , (e) Aλ versus µ, and (f) Aκ versus

µ. Grey points are those that pass the experimental constraints, pale-pink points are those

with H1 in the mass window 124 GeV < mH1 < 128 GeV. Green points are for H1 Region

IA: mA1 > mH1/2 and |ξhvH1
|2 > 0.7. Red points are for H1 Region IA: mA1 > mH1/2 and

|ξhvH1
|2 < 0.7. Magenta points are for H1 Region II: mA1 < mH1/2. The black points are

those where λ and κ remain perturbative up to the GUT scale.
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larger values of κ, it reaches the Landau pole before the other couplings. While the running

of λ is much slower, it has a large impact on the running of the gauge couplings and Yukawa

couplings. Increasing the value of λ would accelerate the running of the top Yukawa coupling.

However, for all the viable points that pass both the mass and cross section requirements,

the scale at which at least one of the couplings becomes non-perturbative is typically larger

than 107 GeV, much higher than the electroweak scale. Since adding new multiplets or other

new physics could affect the running of the couplings and delay the Landau pole scale, in our

study, we relax the perturbativity constraint and only place a loose upper bound of λ, κ ≤ 1.

All of our parameter points remain perturbative up to at least the scale of 107 GeV.

Panel (d) of Fig. II.14 shows the viable region in the tan β-mAloop plane, where we have

plotted mAloop for better comparison with the MSSM.8 Unlike in the MSSM case, where

constraints from collider direct Higgs searches and the light CP-even Higgs h0 being SM-like

require the parameters to be in the decoupling region of mA & 300 GeV [45], in the NMSSM,

by contrast, with the push-down effect from the singlet mixing and the extra contribution

from 1
2
(λv)2 sin2 2β to the tree level mass squared for hv, H1 could be the SM-like Higgs in

the low-mA region: mAloop & 140 GeV (while the tree-level mA could be as low as a few

GeV). The range of tan β is smaller compared to that of the MSSM:9 1 . tan β . 3, since

smaller tan β is preferred for providing a sizable contribution from the λ-term to the tree

level Higgs mass m2
hv
.

Panel (e) of Fig. II.14 shows a clear correlation between Aλ and µ. This is because a

larger value of µ is needed to cancel the negative contribution from Aλ to keep m2
A > 0, as

given in Eq. (II.C.29). Panel (f) of Fig. II.14 shows a weaker correlation between Aκ and µ.

While larger µ is typically preferred for a larger negative Aκ, µ can not be too large since

otherwise at least one of the CP-even Higgs masses squared becomes negative.

The magenta points in Fig. II.14 are in H1 Region II: mA1 < mH1/2. It maps out the

region of small |Aκ|, |Aλ| and µ: −50 . Aκ . 30 GeV,−150 . Aλ . 150 GeV, 100 . µ . 200

GeV. mA is restricted to be in the range of 100 − 200 GeV (mAloop &150 GeV), and κ in

the range of 0.5 − 1. Ranges for λ and tan β, however, are not narrowed compared to the

8mA in the MSSM is the physical mass for the CP-odd Higgs A0, with loop corrections already included.
9tanβ ≤ 3 is excluded by the LEP Higgs searches in the MSSM [269].
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Figure II.15: The normalized σ×Br/SM for (a) gg → H1 → γγ and (b) gg → H1 → WW/ZZ

as a function of mH1 in the H1-126 case. The current experimental constraints from the SM

Higgs searches of the γγ, WW and ZZ channels are also imposed. Color coding is the same

as for Fig. II.14.

generic H1 Region I, as shown as the green points in Fig. II.14.

Unlike in the MSSM case, where the mass parameters for the stop sector, M3SQ and

M3SU , are correlated with the stop left-right mixing At to be close to the mmax
h scenario,

|At| ∼
√

6M3SQM3SU , there is no obvious correlation between M3SQ, M3SU , and At in the

NMSSM. All the ranges are allowed for these parameters. This is because in the MSSM,

we need large loop corrections to the Higgs mass from the stop sector to push it to the 124

− 128 GeV mass window, which requires either large stop masses around 5 − 10 TeV or

large stop mixing. In the NMSSM, such a lift to the Higgs mass could be achieved by the

(λv)2 contribution to the Higgs mass at tree level, resulting in a less constrained stop sector.

The mass for the lightest stop can be as light as 100 − 200 GeV, with slightly larger mass

splitting ∆mt̃ & 200− 300 GeV anticipated for small mt̃1 . However, once mt̃1 & 400 GeV, a

degenerate stop mass spectrum can also be accommodated.

b. Production and Decays of the SM-like H1 In Fig. II.15, we show the cross sections

ratios of NMSSM model to the Standard Model (σ × Br/SM) for gg → H1 → γγ in panel
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(a) and gg → H1 → WW/ZZ in panel (b) as a function of mH1 . The current 95% C.L.

experimental exclusion limits for the SM Higgs searches in the γγ, WW and ZZ channels

are also imposed. While the γγ limit imposes strong constraints in the low mH1 region, for

mH1 in the mass window of 124 − 128 GeV, the WW and ZZ cross section bounds are

more important and rule out points with large σ × Br. For the γγ channel, σ × Br/SM

mainly varies in the range of 0.8 − 1.75, where the lower limit comes from our requirement

of the signal region, as indicated by the current Higgs signal at both the ATLAS and CMS

experiments [33, 34, 265]. Notice that for a few points, σ × Br/SM as large as 2 can be

reached. For the WW/ZZ channel, σ × Br/SM varies mostly between the range of 0.7 −
1.6, with a few points that could reach a value of 0.5 or even smaller.

In the NMSSM, both the production cross section and decay branching fractions could

deviate from their SM values. In the mass window of 124 − 128 GeV, σ(gg → H1)/σSM

typically varies between 0.6 − 1.4, although a suppression as small as 0.2 or an enhancement

as large as 1.7 are also possible. For the decay branching fraction, H1 → WW/ZZ (γγ) is

typically approximately 0.6−1.5 (0.6−2) of the SM value. There are a few points with very

large enhancement factors, approximately 3−4 (5−6) for WW/ZZ (γγ), which are needed

to compensate the associated suppression from the gluon fusion production.

H1 → γγ and H1 → WW/ZZ are highly correlated, as in the case of the MSSM scenario.

This is because the loop generated H1γγ coupling receives its dominant contribution from

the W -loop and is therefore controlled by the same H1WW coupling. Such correlation is

shown in Fig. II.16, panel (a) for γγ versus V V . In the H1-126 case, most of the points fall

into the region of

σ × Br(gg → H1 → γγ)/(σ × Br)SM

σ × Br(gg → H1 → V V )/(σ × Br)SM

=
Br(H1 → γγ)/BrSM

Br(H1 → V V )/BrSM

≈ 1.1 . (II.C.44)

However, there are a few scattered points with larger γγ : V V ratios. These points have an

enhanced H1 → γγ partial width due to light stop contributions.

Unlike the correlation shown in the γγ versus V V channel, the correlation between

the bb and V V channels exhibit interesting feature, as shown in Fig. II.16, panel (b), for
Br

BrSM
(H1 → bb) versus Br

BrSM
(H1 → V V ). For H1 Region I, bb and WW are anti-correlated so

that the V V channel is enhanced compared to the SM value only when the bb channel gets
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(a) (b)

Figure II.16: The normalized σ × Br/SM for (a) γγ versus WW/ZZ channel and (b) the

normalized Br/BrSM for WW/ZZ versus bb in the H1-126 case. Color coding is the same as

for Fig. II.14.

(a) (b)

Figure II.17: The normalized σ × Br/SM for gg → H1 → γγ with (a) mA dependence and

(b) µ dependence in the H1-126 case. Color coding is the same as for Fig. II.14.
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relatively suppressed. This is as expected since bb and V V are the two dominant H1 decay

channels for mH1 > 2mA1 .

For H1 Region II with low mA1 , however, no such correlation is observed. While H1 → bb

could be much suppressed compared to its SM value, Br(H1 → V V )/BrSM varies in the range

of 0.5 − 1.5, almost independently of Br(H1 → bb)/BrSM. The opening of the H1 → A1A1

channel in this mass window replaces H1 → bb to keep H1 → V V in the desired range to

satisfy the cross section requirement.

The ττ and bb channels have also been searched for at the LHC, which indicate a weak

SM Higgs signal of approximately 1− 2σ [263, 264, 266, 267]. For the ττ channel, while the

dominant contribution comes from the vector boson fusion (VBF) production, gg → H → ττ

could be separated with a dedicated search [263, 266]. H → bb has been studied for both V H

and ttH production, with better limits coming from V H associated production [264, 267].

In the NMSSM, since it is the same down-type Higgs Hd that couples to both the bottom

quark and the tauon, H1bb and H1ττ receive the same corrections (up to small difference

in the radiative corrections that are non-universal for bottom and tau). Therefore, the

bb and ττ channels are highly correlated: Br(H1 → bb)/BrSM ≈ Br(H1 → ττ)/BrSM. For

VBF/VH→ H1 → ττ/bb, σ×Br/SM is . 1.1. While for gg → H1 → τ+τ−, an enhancement

as large as 1.5 of the SM value is possible, which is again from stop loop corrections to

gg → H1. ttH1 with H1 → bb receives little enhancement, σ × Br/SM . 1.05.

Fig. II.17 shows the parameter dependence of σ × Br/SM for gg → H1 → γγ for mA

[panel (a)] and µ [panel (b)]. Larger values for σ × Br/SM is achieved for larger values of

mA and smaller values of µ. If a significant enhancement of gg → H1 → γγ is observed in

future experiments, mA and µ (as well as Aλ) would be restricted to a narrower region.

c. Wave Function Overlap The deviation of the production and decay of H1 can be

traced back to the hv, Hv and S fractions in H1, which is given by the wave function overlap

|ξhvH1
|2, |ξHvH1

|2 and |ξSH1
|2, as defined in Eq. (II.C.38). Fig. II.18 shows |ξSHi |2 versus |ξhvHi |2 for

H1 [panel (a)], H2 [panel (b)] and H3 [panel (c)]. Since |ξhvHi|2 + |ξHvHi |2 + |ξSHi |2 = 1, the

distance between the cross diagonal line and the points indicates the value of |ξHvHi |2. For the
generic H1 Region IA (green points), |ξhvH1

|2 + |ξSH1
|2 ∼ 1; the Hv-fraction in H1 is almost 0.
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(a) (b) (c)

Figure II.18: |ξSHi |2 versus |ξhvHi |2 for H1 (a), H2 (b) and H3 (c) in the H1-126 case. Color

coding is the same as for Fig. II.14.

(a) (b)

Figure II.19: Av-fraction in the light CP-odd Higgs A1: |ξAvA1
|2 = 1 − |ξAvA2

|2 = 1 − |ξAsA1
|2 in

the H1-126 case. Color coding is the same as for Fig. II.14.
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Typically, about 70% or more of H1 is hv, which couples exactly like the SM Higgs, while

the singlet component varies between 0 to approximately 30%. For H2, it could be either

Hv-dominant for those points with |ξSH2
|2 ∼ 0, or a mixture of Hv and S for points with

larger |ξSH2
|2. H3 is mostly singlet-dominant, or with a small mixture of hv for points close

to the cross-diagonal line. It could also have a significant Hv − S mixture for points with

smaller |ξSH3
|2.

For the H1 Region IB (red points), |ξhvH1
|2 < 0.7, H1 typically has a sizable fraction of Hv

and S. H2 is also a mixture of hv, Hv and S, with H3 being mostly a Hv-S mixture.

For H1 in the low mA1 region (magenta points of H1 Region II), H1 and H2 are mostly

a hv − Hv mixture, with H1 being more hv-like, and H2 being more Hv-like. This region

and Region IB share the property that they typically depend on a suppressed H1bb̄ coupling

proportional to ξhvHi− ξ
Hv
Hi

tan β. The S fractions of Region II vary between 0 to 25% for both

H1 and H2, while it is the dominant component of H3.

Fig. II.19 shows the fraction of MSSM CP-odd Higgs Av in the light CP-odd Higgs A1:

|ξAvA1
|2 as a function of Aκ [panel (a)] and µ [panel (b)]. The more negative Aκ becomes, the

larger the diagonal mass term m2
As
for the singlet As becomes, which results in A1 becoming

more and more Av-like. The µ dependence also shows a trend of large µ leading to A1

being more Av-like, mainly due to the −3κ/λ µAκ contribution to the m2
As

mass term. The

As-fraction in A1, as well as the Av-fraction in A2, is simply 1− |ξAvA1
|2. For the points that

satisfy the perturbativity requirement (black points), A1 is mostly singlet like. For regions

with small mA1 < mH1/2 (magenta points), a significant fraction of A1, 40% to 80%, is

singlet. While for generic H1 Region I, A1 could be either Av-like (small mA, large negative

Aκ and Aλ, large µ, large κ ) or As-like, depending on the NMSSM parameters. Note that

while we are focusing on the lowmA region, which controls the mass scale for the MSSM-type

CP-odd Higgs, the mass parameter for the CP-odd singlet Higgs could vary in a large range

given the scanning parameter region. As a result, mA1 is below 300 GeV, while the mass

for the heavy CP-odd Higgs, mA2 , could be as large as 1 TeV or higher.
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4. H2 as the SM-like Higgs Boson

a. Parameter Regions In the limit where the mixings between hv, Hv and S are small,

there are two cases that give rise to H2 being SM-like: H1 being singlet like and H3 being

mostly Hv; or H1 being mostly Hv-like and H3 being mostly singlet. Including the loop

corrections as well as mixture between hv, Hv and S, the separation between these two cases

becomes less distinct. The former case is similar to H1-126, except that the singlet is now the

lightest state. The latter case is similar to the MSSM non-decoupling region, which requires

a high level of fine-tuning to satisfy the experimental constraints, as well as mass and cross

section requirements. As a result, in the NMSSM, while there are points with a relatively

large Hv-fraction in H1, there is always a sizable S-fraction in H1 as well.

Unlike theH1-126 case, where imposing the mass window onmH1 already greatly narrows

down the parameter regions while the cross section requirement usually does not provide

further restriction, imposing the mass window in the H2-126 case (124 GeV < mH2 <

128 GeV) does not greatly reduce the parameter space beyond the already restricted space

from satisfying the experimental constraints. Requiring H2 to have a SM-like gg → γγ,

WW/ZZ rate, however, does further reduce the parameter space to be in the small tan β,

small µ, medium to large λ, and small |Aλ| region, as summarized in Table. II.8. Note that

compared to the H1-126 case, where mA could be very small, in the H2-126 case, mA is

typically larger than about 100 GeV. We note, however, that mAloop in both cases is greater

than approximately 150 GeV. In the H1-126 case, the SM-like Higgs is pushed down and

requires a larger stop-loop correction while in the present H2-126 case, the SM-like Higgs is

pushed up and, as a result, requires less of a contribution from the stop sector. The stop

mass parameters M3SQ, M3SU and At are therefore less restricted in the H2-126 case.

Also shown in Table II.8 is the region where λ and κ remain perturbative until the GUT

scale. Unlike the H1-126 case in which |At| is restricted to be & 1200 GeV, for the H2-126

case, |At| is typically unrestricted.

While the light CP-odd Higgs A1 is almost always heavier than mH2/2, the lightest CP-

even Higgs H1 could be lighter than mH2/2 such that the H2 → H1H1 decay opens up.

Although H2 is typically hv-like, it could obtain a relatively large S-fraction to suppress the
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Table II.8: NMSSM Parameter region for the H2-126 case.

tanβ mA µ λ κ Aλ Aκ

(GeV) (GeV) (GeV) (GeV)
mH2 ∼ 126 &1 0∼200 100∼300 0∼0.75 0∼1 -600∼300 -1200∼50
H2-126 1∼3.25 100∼200 100∼200 0.4∼0.75 & 0.05 -300∼300 -1200∼50
perturb. 1.5∼2.5 170∼200 100∼130 0.5∼0.7 0.05∼0.6 0∼300 -300∼50

mH1 <
mH2

2 1.25∼2.5 125∼200 100∼150 0.5∼0.75 & 0.3 0∼200 -500∼-250

otherwise dominant decay mode H2 → bb. Therefore, we separate the H2-126 case into three

regions:

• H2 Region IA: mH1 > mH2/2 and |ξhvH2
|2 > 0.5: green points in Figs. II.20-II.23.

• H2 Region IB: mH1 > mH2/2 and |ξhvH2
|2 < 0.5: red points in Figs. II.20-II.23.

• H2 Region II: mH1 < mH2/2: magenta points in Figs. II.20-II.23.

In Fig. II.20, we show the viable regions in various combinations of the NMSSM param-

eters. The first two panels show the (a) λ versus mA, and (b) κ versus mA regions. Small

mA . 100 GeV is not favored since the cross sections for gg → H2 → γγ,WW/ZZ are

suppressed. λ is typically in the range of 0.4 − 0.75. Smaller λ is not allowed due to the

suppressed cross sections, while larger values of λ are not allowed due to charged Higgs mass

bounds. κ varies over the whole range of 0 − 1, with larger values of mA preferred for smaller

κ.

Panel (c) of Fig. II.20 shows the viable region in the λ-κ plane. Regions with small

λ satisfy the mass window but fail the cross section requirement. Also, shown in black,

are those points that remain perturbative until the Planck scale, which spans a range of λ

between 0.5 to 0.7 and κ between 0.1 and 0.5. Panel (d) of Fig. II.20 shows the viable region

in the tan β-mAloop plane. tan β falls into a range of 1.5 − 3.25, while mAloop varies between

160 − 240 GeV (mA varies between 100 − 200 GeV).

Panel (e) of Fig. II.20 shows a weak correlation between Aλ and µ. Regions of Aλ . −300

GeV fail the cross section requirement. There is also a correlation between Aκ and µ, as

91



(a) (b)

(c) (d)

(e) (f)

Figure II.20: Viable NMSSM parameter regions in the H2-126 case: (a) λ versus mA, (b)

κ versus mA, (c) λ versus κ, (d) tan β versus mAloop , (e) Aλ versus µ, and (f) Aκ versus

µ. Grey points are those that pass the experimental constraints, pale-pink points are those

with H2 in the mass window 124 GeV < mH2 < 128 GeV. Green points are for H2 Region

IA: mH1 > mH2/2 with |ξhvH2
|2 > 0.5. Red points are for H2 Region IB: mH1 > mH2/2 with

|ξhvH2
|2 < 0.5. Magenta points are for H2 Region II: mH1 < mH2/2. The black points are

those where λ and κ remain perturbative up to the GUT scale.
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shown in panel (f) of Fig. II.20. This is because in the H2-126 case, most H1 are singlet-

like. The CP-even singlet mass needs to be smaller than mhv and is typically controlled

by the cancellation between a positive µ parameter and a negative Aκ term, as shown in

Eq. (II.C.36). This correlation can be seen more clearly in H2 Region II (magenta points)

where finer cancellation is enforced.

The magenta points in Fig. II.20 are for H2 Region II: mH1 < mH2/2. They span the

region of small |Aκ|, |Aλ| and µ, intermediate κ, mA ∼ 200 GeV, and 1.5 . tan β . 2, as

summarized in Table II.8.

b. Production and Decays for the SM-like H2 The ranges of σ × Br/SM for gg →
H2 → γγ, shown in Fig. II.21, is slightly large than that of the H1-126 case. An enhancement

as large as a factor of 2 can be achieved in the present case. For gg → H2 → WW/ZZ,

the σ × Br/SM is typically in the range of 0.4 − 1.6, and bounded above by the current

experimental searches in the WW/ZZ channels. Note that a relatively strong suppression

of about 0.4 could be accommodated more easily than in the H1-126 case.

H2 → γγ and H2 → WW/ZZ are also highly correlated, as shown in Fig. II.22, panel

(a) for γγ versus WW/ZZ. There are several branches, corresponding to H2 Region IA

and IB as categorized in Sec. II.C.4.a. For Region IA (green points) with H2 being mostly

hv-dominant, Br(H1→γγ)/(Br)SM
Br(H1→WW )/(Br)SM

≈ 1.1 for the lower branch of green points. However, there

is another branch with a higher value of Br(H1→γγ)/(Br)SM
Br(H1→WW )/(Br)SM

≈ 2. Those points typically have

an enhanced H2 → γγ compared to the SM value due to the light stop contributions. For

Region IB (red points) with H2 being a mixture of hv, Hv and S, Br(H1→γγ)/(Br)SM
Br(H1→WW )/(Br)SM

≈ 1.4.

In Fig. II.22, panel (b), we show the correlation between the bb and V V channel: Br(H2 →
bb)/BrSM versus Br(H2 → V V )/BrSM. While most regions exhibit an anti-correlation as

expected, in H2 Region II (magenta points) with mH1 < mH2/2, the branching fraction for

the V V channel is almost independent of the bb channel. This is, similar to the magenta

region in the H1-126 case, due to an opening up of the decay channel H2 → H1H1, which

compensates for the suppression of the bb channel while keeping the total decay width of H2

close to the SM value.

The bb and ττ channels also exhibit a similar correlation behavior as in the H1-126 case:
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(a) (b)

Figure II.21: The normalized σ×Br/SM for (a) gg → H2 → γγ and (b) gg → H2 → WW/ZZ

as a function of mH2 in the H2-126 case. The current experimental constraints from the SM

Higgs searches of the γγ, WW and ZZ channels are also imposed. Color coding is the same

as for Fig. II.20.

(a) (b)

Figure II.22: The normalized σ × Br/SM for (a) γγ versus WW/ZZ channel, and the

normalized Br/BrSM for (b) WW/ZZ versus bb in the H2-126 case. Color coding is the same

as for Fig. II.20.
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(a) (b) (c)

Figure II.23: |ξSHi |2 versus |ξhvHi |2 for H1 (a), H2 (b) and H3 (c) in the H2-126 case. Color

coding is the same as for Fig. II.20.

Br(H2 → bb)/BrSM ≈ Br(H2 → ττ)/BrSM. For VBF and VH with H2 → ττ, bb, σ × Br/SM

is in the range of 0.4 − 1.1 for H2 Region IA and is much suppressed in Region IB and is

. 0.4. For gg → H2 → τ+τ−, most of the H2 Region IA falls into the range of 0.4 − 1.4,

although an enhancement as large as 2 is possible. For Region IB, this channel is almost

always suppressed with σ × Br . 0.8(σ × Br)SM. The process ttH2 with H2 → bb receives

little enhancement, with σ × Br/SM . 1.06 for Region IA and σ × Br/SM . 0.7 for Region

IB.

c. Wave Function Overlap Fig. II.23 shows |ξSHi |2 versus |ξhvHi |2 for (a) H1, (b) H2 and

(c) H3. For H2 Region II (magenta points), H1 is mostly singlet, H2 is mostly hv and H3 is

mostly Hv.

For H2 region IA (green points) with |ξhvH2
|2 > 0.5, whileH2 is mostly hv-like by definition,

its Hv-fraction is almost always small. In contrast, while H1 is dominated by S, it could have

a relatively large Hv-fraction. H3 is typically a mixture of S and Hv, with the Hv-fraction

always being sizable: |ξHvH3
|2 & 0.4. The hv-fraction in H3 is almost negligible.

For H2 region IB (red points) with |ξhvH2
|2 < 0.5, the singlet fraction in H2 could be

significant, sometime even as large as 0.8. While the hv-fraction in H2 decreases, it in-

creases accordingly in H1: |ξhvH1
|2 > 0.5. This opens up the possibility of H1 with sizable

H1WW/H1ZZ couplings that we will discuss in the next section. Both H1 and H2 could

95



have a fraction of Hv as large as 0.3−0.4. H3, on the other hand, is mostly a mixture of Hv

and S, with the hv-fraction being negligible.

The compositions of A1 and A2 are similar to that of the H1-126 case. Larger negative

values of Aκ lead to a large fraction of A1 being Av. However, for Aκ ∼ 0, A1 could be

mostly As.

5. LHC Phenomenology for the Non-SM-like Higgs Bosons

In the previous sections, we have presented two very interesting scenarios in the low-mA

region. The SM-like Higgs boson could be the lightest scalar particle (H1-126) while the

next lightest one is an admixture of its MSSM partner and the singlet state. The alternative

is that the SM-like Higgs boson is the second lightest (H2-126) while the lightest scalar is

a Hv-S-hv mixture. While the collider phenomenology of the SM-like Higgs boson has been

shown earlier, it would be interesting to identify the signal features of the other low-mass

Higgs bosons.

a. H1 as the SM-like Higgs Boson In Fig. II.24(a), we show the dominant production

cross sections of gg fusion and VBF for H1 (red and pink points), H2 (green and light green

points) and H3 (blue and light blue points), respectively, satisfying all the constraints for the

H1-126 case at the 14 TeV LHC. The yellow lines indicate the corresponding cross sections

with SM couplings. When the hv-fraction is sizable, the production cross sections for H2

could be similar to the SM-like rate. The cross sections could also be suppressed by two

orders of magnitudes if the S-fraction is large, as for the H3 case. The VBF process can be

more significantly suppressed than that of gg fusion. The production cross section for the

CP-odd states A1,2 from gg fusion via triangle loop diagrams is shown in Fig. II.24(b). The

rate can be similar to that of the SM-like Higgs boson and the spread of the cross section over

the parameter scan is roughly about an order of magnitude, less pronounced than those for

the CP-even cases. Although about an order magnitude lower, the production cross section

from bb̄ annihilation can be significantly larger than that of the SM value, due to the tan β

enhancement.
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(a) (b)

Figure II.24: Cross sections at the 14 TeV LHC in the H1-126 case for (a) H1,2,3 production

via gg fusion (VBF) denoted by red (pink), green (light green), blue (light blue) points,

respectively, and for (b) A1,2 production via gg fusion (bb̄ fusion) denoted by purple (light

purple), brown (light brown) points, respectively. The yellow lines indicate the cross sections

with SM couplings.

In Fig. II.25, we further show the relevant branching fractions for H1,2,3, A1,2 and H±

to the SM particles (and H2,3 → t̃1t̃1) for the case of H1-126. The yellow lines indicate

the corresponding branching fraction values with SM couplings. The non SM-like Higgs

bosons typically have suppressed decay branching fractions to the regular SM channels, in

particular for H3, due to the opening up of new decay channels to lighter Higgs bosons pairs.

The experimental searches for those new Higgs bosons at the LHC will continue to cover a

broad parameter region. A1 decays dominantly to bb̄, with about 10% to τ+τ−, as shown

in Fig. II.25(e). The phenomenological consequences of this decay have been studied in the

literature [247, 270–272], emphasizing the h → A1A1 → 4τ, 4b, 2τ2b modes and we will not

discuss them further here. One of the most striking results for the CP-odd Higgs decay,

perhaps, is the potentially very large enhancement for the branching fraction A1 → γγ, as

seen in Fig. II.25(e). This is partly because of the reduced Γtot caused by the suppression

of the A1b̄b coupling, and partly because of the enhanced Γ(A1 → γγ) due to the loop

contributions from the light charginos and charged Higgs bosons, and from the top and stop.
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(a) (b)

(c) (d)

(e) (f)

Figure II.25: Decay branching fractions for H1,2,3, A1,2 and H± to the SM particles (and

H2,3 → t̃1t̃1) in the case of H1-126. The yellow lines indicate the corresponding values with

the SM couplings.
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(a) (b)

(c) (d)

(e) (f)

Figure II.26: Decay branching fractions for H1,2,3, A1,2 and H± to Higgs bosons in the case

of H1-126.
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(a) (b)

Figure II.27: Cross sections at the 14 TeV LHC in the H2-126 case. The color codes and the

legends are the same as in Fig. II.24.

In the pure singlet limit, the dominant viable decay channel is A1 → γγ induced by the

chargino loop and charged Higgs loop from their non-suppressed couplings with the singlet.

However, the chargino in our case is always much lighter than the charged Higgs, granting

non-zero A1γγ coupling. The total width could be as low as around 10−6 GeV. This may

lead to interesting scenarios with a proper LSP that produces a greatly suppressed low-end

γγ continuum for an indirect dark matter search [273] such as Fermi-LAT.

Another interesting feature is that the CP-even heavy Higgs bosons could decay to a pair

of stops when kinematically accessible. It is important to note that a heavier Higgs boson

could decay to a pair of lighter Higgs bosons at a substantial rate and sometimes dominantly,

as long as kinematically accessible. As shown in Fig. II.26 for the case of H1-126, we see

that

H1 → A1A1, ZA1, (II.C.45)

H2 → A1A1, ZA1, H1H1, (II.C.46)

H3 → A1A1, H1H1, ZA1, W±H∓, A1A2, H1H2, H2H2, H+H−, (II.C.47)

H± → W±A1, W±H2, W±H1, (II.C.48)

A1 → ZH1, (II.C.49)
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(a) (b)

(c) (d)

(e) (f)

Figure II.28: Decay branching fractions for H1,2,3, A1,2 and H± to the SM particles (and

H3 → t̃1t̃1) in the case of H2-126. The yellow lines indicate the corresponding values with

the SM couplings.
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(a)

(b) (c)

(d) (e)

Figure II.29: Decay branching fractions for H1,2,3, A1,2 and H± to Higgs bosons in the case

of H2-126.

A2 → A1H1, A1H2, W±H∓, ZH1, ZH2, ZH3, A1H3, (II.C.50)
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roughly according to the sizes of the branching fractions at the low values of the mass. The

relative branching fractions depend on phase space factors and the couplings dictated by the

MSSM and singlet components. Consequently, the striking signals will be multiple heavy

quarks, such as 4b, 4t and 2b2t, and will likely include τ+τ− as well. While the final state

with a W or Z may be a good channel from the event identification view point, the final

states with multiple heavy quarks may be rather challenging to separate out from the large

SM backgrounds.

b. H2 as the SM-like Higgs Boson Similar results for the Higgs production and decay

channels are shown in Figs. II.27−II.29, respectively, at the 14 TeV LHC for the H2-126 case.

It is interesting to note that H1 is non-SM-like, and lighter than H2, yet it could have as

large a production cross section as H2. Although the branching fractions to WW, ZZ, and

γγ are somewhat smaller than those for the SM, these clean signals can be searched for in

the near future. For example, the H1 could have a sufficient coupling with vector boson pairs

to be responsible for the approximately 98 GeV excess at LEP [57, 269, 274].

Again, we find it very interesting that a heavier Higgs state could dominantly decay to

a pair of lighter Higgs bosons. Note that H1 is non-SM-like and light, so that there are no

Higgs pair channels for it to decay to. We see, from Fig. II.29,

H2 → H1H1, (II.C.51)

H3 → H1H1, H1H2, ZA1, A1A1, H2H2, (II.C.52)

H± → W±H1, W±A1, W±H2, (II.C.53)

A1 → ZH1, ZH2, (II.C.54)

A2 → ZH1, A1H1, A1H2, ZH2, W±H∓, ZH3, A1H3, (II.C.55)

again roughly according to the sizes of the branching fractions at the low values of the mass.

The collider signatures would be multiple heavy quarks, τ ′s, and multiple gauge bosons as

commented in the last section. The Higgs pair final states from the decay may serve as an

important window for a new discovery.

It was previously noted [45, 275] that in the low-mA region, the direct production of

the Higgs boson pairs may be quite accessible at the LHC due to the model-independent
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gauge couplings for H+H−γ and H±AW∓. Additional studies include processes such as

H3 → H2H1 [276], low mass H± with light A1 [277], two low mass Higgs scenarios [278] and

Higgs boson pair productions [279].

6. Summary and Outlook

In the framework of the Next to Minimal Supersymmetric Standard Model, we study the

Higgs sector in light of the discovery of the SM-like Higgs boson at the LHC. We pay

particular attention to the light Higgs states in the case when the parameter mA ∼< 2mZ .

Our results, coming from a broad parameter scan after implementing the current collider

constraints from Higgs physics, lead to the following findings:

• The Higgs bosons in the NMSSM, namely three CP-even states, two CP-odd states, and

two charged Higgs states, could all be rather light, near or below the electroweak scale

(v), although the singlet-like state can be heavier. The SM-like Higgs boson could be

either the lightest CP-even scalar as in Fig. II.12(a), or the second lightest CP-even scalar

as in Fig. II.12(c), but is unlikely to be the heaviest scalar as in Fig. II.12(e).

• If we relax the perturbativity requirement by allowing the NMSSM parameters λ and κ

to be larger (see Tables II.7 and II.8), the allowed region for the mass parameters would

be enlarged significantly (e.g., black versus green, red and magenta points in Fig. II.13,

Fig. II.14 and Fig. II.20, etc.).

• The SM-like Higgs signal at the LHC may be appreciably modified, as shown

in Figs. II.24(a) and II.27(a) for production, and Figs. II.25(a) and II.28(b) for decay.

• Consequently, the γγ rate can be enhanced (Figs. II.15, II.17 and II.21). The naive corre-

lations of γγ/V V and V V/bb̄ ratios can be violated (Figs. II.16 and II.22). Furthermore,

if the SM-like Higgs can decay to a pair of lighter Higgs bosons, the anti-correlation in

the V V/bb̄ ratio can be further broken (magenta regions of Figs. II.16(b) and II.22(b)).

• New Higgs bosons beyond the SM may be readily produced at the LHC. The production

cross sections via gg fusion and VBF could be of the same orders of magnitude as those

of the SM productions (Figs. II.24 and II.27). Their decay branching fractions to the SM
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particles could be even larger than those of the SM (Figs. II.25 and II.28), depending on

tan β and the size of their SM-like Higgs fractions (Figs. II.18 and II.23).

• The unique channels for the heavy Higgs signal are the decays to a pair of light Higgs

bosons (Figs. II.26 and II.29). The striking signals will be multiple heavy quarks (t, b)

and tau-leptons in the final states.

D. SUSY DARK MATTER IN MSSM

With the ever increasing experimental sensitivity of DM detection experiments, we are mo-

tivated to explore to what extent DM properties have been constrained by the results from

particle accelerator experiments. Our goal is to systematically examine the complementarity

between DM direct detection experiments, indirect detection searches, and collider experi-

ments, and in particular explore the potential pivotal role played by the Higgs bosons. We

perform a comprehensive study in the framework of the MSSM. We impose the following

constraints on our model considerations:

(1) Relic abundance: the neutralino LSP constitutes all the cold DM, consistent with the

cosmological observations [78, 79].

(2) Collider constraints: the MSSM parameter space satisfies all collider constraints from

the Higgs boson searches and has a SM-like Higgs boson near 126 GeV.

(3) Flavor constraints: the parameter space satisfies the flavor constraints from b →
sγ [280], Bs → µ+µ− [281].

We further check the consistency of the annihilation rate at zero velocity 〈σav〉(v → 0) with

CMB observations, and the absence of gamma rays from nearby dwarf galaxies [72, 86]. It is

known that the spin-independent WIMP-nucleon elastic scattering cross section obtained by

the XENON-100 experiment [68] puts a very strong bound on the MSSM parameter space.

We find that the surviving region has characteristic features, notably a Bino-like LSP. What

is most interesting to us is that all these scenarios would lead to definitive predictions for

the LHC experiments, that can be verified by the next generation of direct/indirect search
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experiments such as LUX [69] and XENON-1T [70].

The rest of the section is organized as follows. In Section II.D.1, we discuss our technique

for scanning the MSSM parameter space. In Section 4, we present our results, and discuss the

experimental constraints from the Higgs and flavor searches. We also discuss the constraints

on the parameter space imposed by the XENON-100 search for spin-independent scattering,

as well as the Super-K and IceCube/DeepCore limits on spin-dependent scattering. We

show that future experiments such as LUX and XENON-1T will likely probe the natural

supersymmetric parametric space consistent with the LSP constituting all the DM. We

present extensive discussions of our results in Section II.D.3 and finally draw our conclusions

in Section II.D.4.

1. The MSSM Parameters Relevant to DM studies

In SUSY theories with conserved R-parity, the LSP is a viable WIMP DM candidate. For

both theoretical and observational considerations [60, 61, 282–284], it is believed that the

best candidate is the lightest Majorana mass eigenstate which is an admixture of the Bino

(B̃), Wino (W̃3), and Higgsinos (H̃d,u), with the corresponding soft SUSY breaking mass

parameters M1, M2, and the Higgs mixing µ, respectively. The neutralino mass matrix in

the Bino-Wino-Higgsino basis is given by

Mneut =



M1 0 −mz cos β sin θw mz sin β sin θw

0 M2 mz cos β cos θw −mz sin β cos θw

−mz cos β sin θw mz cos β cos θw 0 −µ

mz sin β sin θw −mz sin β cos θw −µ 0


,

where mz is the Z boson mass, θw the Weinberg angle, and tan β = vu/vd is the ratio of the

vacuum expectation values for the two Higgs doublets. The lightest neutralino is a linear

combination of the superpartners

χ0
1 = N11B̃ +N12W̃3 +N13H̃d +N14H̃u, (II.D.56)
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where Nij are the elements of the matrix N that diagonalize Mneut:

N∗MneutN
−1 = diag{mχ0

1
,mχ0

2
,mχ0

3
,mχ0

4
}. (II.D.57)

The eigenvalues of Mneut are the masses of the four neutralinos. An interesting limit is

mz � |M1±µ| and |M2±µ|, in which case, the mass eigenstates (neutralinos χ0
i ) are nearly

pure gauge eigenstates (gauginos and Higgsinos). This also implies that large mixing of

gaugino and Higgsino components for the mass eigenstates only takes place whenM1 and/or

M2 are nearly degenerate with µ. We will focus only on the lightest neutralino (henceforth

denoted by χ0
1) with a mass mχ0

1
. In particular, we assume that it constitutes the majority

of the DM.

Intimately related to the neutralinos is the Higgs sector. The tree level Higgs masses

in the MSSM can be expressed in terms of tan β and the CP-odd mass MA. Radiative

corrections enhance the Higgs mass significantly via the top quark Yukawa coupling, the

third generation squark mass parameters MQ3, MU3, and the left-right squark mixing At.

Flavor physics observations from the b-quark sector often serve as stringent constraints and

we therefore include the sbottom sector parametersMD3 and the squark mixing Ab. The last

potentially relevant sector is the stau, which could be light and contribute to the t-channel

exchange, co-annihilations to control the relic density. We therefore generously vary the

MSSM parameters in the ranges

5 GeV < |M1| < 2000 GeV, 100 GeV < |M2, µ| < 2000 GeV,

3 < tan β < 55, 80 GeV < MA < 1000 GeV,

−4000 GeV < At < 4000 GeV, 100 GeV < MQ3, MU3 < 3000 GeV, (II.D.58)

−4000 GeV < Ab < 4000 GeV, 100 GeV < MD3 < 3000 GeV,

−4000 GeV < Aτ < 4000 GeV, 100 GeV < ML3, ME3 < 3000 GeV.

The lowest values of M1, M2 and µ control the LSP mass for the WIMP DM. The lower

values of 100 GeV for M2, µ are dictated by the LEP-2 bound from the largely model-

independent chargino searches. The lower limit of tan β is close to the LEP-2 Higgs search

exclusion. The lower limit of MA is chosen to cover the non-decoupling Higgs sector as well
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as above the LEP-2 bound on the charged Higgs. The upper limit of M1, M2, µ and the soft

SUSY breaking masses in the stop and stau sectors are set with consideration of naturalness

[37, 38, 285–288]. The other soft supersymmetry breaking parameters are less relevant for

our DM considerations and we therefore set the other trilinear mass parameters to be zero,

and the other soft SUSY breaking masses at 3 TeV.

While the natural value of µ is supposed to be close to the electroweak scale, we vary

µ up to 2 TeV to capture some interesting features such as the scenario of “well-tempered

neutralino” [289]. Letting µ ≈ 2 TeV would already allow for a severe fine tuning at the level

of about 0.04% [285]. Although not our focus, we have included arbitrary signs for the M1,

M2, µ parameters. This allows us to see the possible solutions with very specifically chosen

parameter relations such as the “blind spots” scenarios [290–292].

We choose a flat prior for the scanning with a total number of scanned points around

10 million. Several different layers of scanning are performed to account for different exper-

imental constraints and theoretical considerations, as seen by the corresponding color codes

in our plots.

2. Current Constraints and the Scanning Results

The hints of DM detection from the DAMA, CoGeNT, and CRESST experiments have

drawn significant interest in considering valid theoretical interpretations. The sensitivity of

the DM direct searches have been steadily improving at an impressive pace, notably with

the XENON collaboration [67, 68]. The indirect searches from WMAP, Fermi-LAT, and

IceCube have also played crucial roles in exploring the nature of the DM particle.

Although the null results of searching for Supersymmetry at colliders have significantly

tightened the viable SUSY parameter region, the bounds on WIMP DM properties are

only limited within specific models, most notably in mSUGRA or CMSSM [100, 101]. The

direct exploration of the electroweak gaugino sector at the LHC would be very challenging

given the hostile background environment and the current search results depend on several

assumptions[293, 294]. On the other hand, if we demand the correct WIMP LSP relic

abundance from the current observations as in eq. (II.E.82), the SUSY parameter space of
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eq. (IV.B.9) will be notably constrained in the Higgs and gaugino sectors. We assume a

10% theoretical uncertainty in the calculation of the DM relic density [89, 295]. Applying

the Planck result for Ωχh
2 in eq. (II.E.82) combined with 10% theoretical uncertainty, we

demand that the relic density in our model points be within the following 2σ window

0.0947 < Ωχ0
1
h2 < 0.1427 . (II.D.59)

We use the publicly available FEYNHIGGS code [296] as the spectrum calculator. The Higgs

constraints are imposed using the HIGGSBOUNDS package [297] with our additional modifica-

tions. We modify the codes to include the most recent LHC constraints [263–267, 298–305].

The standard SLHA [306] output recorded is then supplied to the MICROMEGAS code [307]

which computes the DM relic density, direct/indirect search cross sections and flavor cal-

culations. This is done to avoid any possible inconsistency due to the subtle differences

in the spectrum calculator, particularly the lack of accuracy in the default approximate

diagonalization routine for the neutralino mass matrix.

a. Constraints from the Higgs Searches and the Flavor Sector The discovery of

a SM-like Higgs boson h as well as the upper limits on difference channels for the other Higgs

bosons A,H,H± shed much light on the electroweak sector, and can thus guide us for DM

studies. When scanning over the SUSY parameter space as in eq. (IV.B.9), and requiring the

correct WIMP LSP relic abundance to be within the 2σ window in eq. (II.D.59), we further

require the theory to have a SM-like Higgs boson, and to accommodate all the current

constraints from the Higgs searches:

123 GeV < mh < 128 GeV, σγγ > 0.8 σγγ(SM),

plus Higgs search bounds from LEP, Tevatron, LHC, (II.D.60)

plus LEP bounds1 on the slepton mass (≥ 80 GeV)

and the squark and the chargino mass (≥ 100 GeV).

The Higgs diphoton rate being SM-like is one of our assumptions. We do not demand it to

reach a large excess as indicated by the early LHC results, nor do we accept the deficit as
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suggested by the latest CMS results [308, 309]. It is a statement of having a SM-like Higgs

boson. Due to the correlation of the Higgs couplings, the requirement of the σγγ cross section

effectively sets the SM-like values for σWW , σZZ as well.

The absence of tree-level flavor changing neutral currents (FCNC) in the SM puts strong

constraints on new physics. We consider two processes that have been observed to be con-

sistent with the SM prediction and thus provide constraints on the MSSM parameter space.

The first process is b→ sγ [310], for which the branching fraction is sensitive to the charged

Higgs boson and supersymmetric particles (e.g. chargino/stop) in the loop. The world av-

erage of the branching fraction of this channel [280] is (3.43± 0.21± 0.07) × 10−4, in good

agreement with the standard model prediction [311–313] (3.15± 0.23)× 10−4.

The second process is Bs → µ+µ−, which receives a large contribution in the MSSM

proportional to (tan6 β/m4
A) [314]. The LHCb collaboration has recently announced the

first evidence [281] of this very rare decay and the branching ratio for this process was

found to be
(
3.2+1.4 +0.5
−1.2 −0.3

)
× 10−9 in good agreement with the standard model prediction

of (3.23± 0.27) × 10−9 [315]. We adopt world average of the branching fraction of this

channel [280] (3.2± 1.0)× 10−9 to put constraints on BR(Bs → µ+µ−).

We adopt the theoretical uncertainties from the SM predictions. We note that the uncer-

tainties from experiments are of the same order of magnitude as the theoretical uncertainty

for BR(b → sγ), and thus the latter becomes very important. In light of these precision

results, we require our MSSM solutions to be within 2σ of the observed value2

2.79× 10−4 < BR(b→ sγ) < 4.07× 10−4,

1.1× 10−9 < BR(Bs → µ+µ−) < 5.3× 10−9. (II.D.61)

1The particle mass constraints applied here may still be evaded for certain limiting cases, if the lower
lying particles have a mass splitting less than the order of GeV, for instance.

2It should be noted that the experimental measured value is an untagged value, while the theoretical
prediction is CP averaged [316, 317].
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(a) (b)

(c) (d)

Figure II.30: Allowed parameter regions versus the CP-odd Higgs boson mass mA, for (a)

tan β, (b) the Higgs mixing parameter µ, (c) stop mixing parameter At and (d) LSP DM

mass mχ, respectively. All points pass the collider and Higgs constraints of eq. (II.D.60).

The grey squares require that the DM does not overclose the Universe; the red stars in

addition satisfy the flavor constraints of eq. (II.D.61); the blue disks are consistent with the

LSP being all of the DM (i.e. predicts the correct relic density of eq. (II.D.59)). The green

squares pass the XENON-100 direct search bound in addition to the other requirements.
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(a) (b)

Figure II.31: Allowed branching fraction regions versus tan β, for (a) b → sγ, (b) Bs →
µ+µ−. The corresponding experimental central values and 2σ bands are plotted on each

panel. Symbols and legends are the same as in Fig. II.30.

b. Confronting the Direct and Indirect Searches Thus far, the most stringent con-

straints on the spin-independent elastic scattering cross section (σSI
p ) come from the XENON-

100 experiment. The results from the XENON experiment challenge the signal hints from

DAMA, CoGeNT and CRESST in the low mass region of mχ ≈ 10 GeV, and cut deeply into

the parameter space with σSI
p ∼ 2× 10−9 pb at mχ ∼ 60 GeV. Limits on the spin-dependent

cross section are not as constraining. We account for the bounds from the Super-Kamiokande

[318], and the IceCube/DeepCore [319] experiments that are sensitive to the spin-dependent

scattering of DM with Hydrogen at the sun’s location. We also take into account bounds

obtained by the Fermi satellite from the absence of gamma rays from the nearby dwarf

galaxies.

c. Scanning Results We now present our results for the allowed parameter regions in

Figs. II.30−II.37. In Fig. II.30, we show the parameter points passing the Higgs constraints

in eq. (II.D.60) versus the CP-odd Higgs boson mass mA, for (a) tan β, (b) Higgs mixing

parameter µ, (c) stop mixing parameter At and (d) DM mass mχ0
1
, respectively. These
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(a) (b)

(c) (d)

(e) (f)

Figure II.32: Allowed parameter regions. Symbols and legends are the same as in Fig. II.30.

(a) The Wino mass parameter M2 and (b) the Higgsino mass parameter µ versus the Bino

mass parameter M1; (c) the second neutralino mass mχ0
2
and (d) the third neutralino mass

mχ0
3
versus the lightest neutralino DM massmχ0

1
; (e) the lighter stau massmτ̃1 and (f) lighter

stop mass mt̃1 versus the DM mass mχ0
1
.
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allowed parameter regions are shown in Fig. II.31 for branching fractions (a) BR(b → sγ)

and (b) BR(Bs → µ+µ−) versus tan β. We show from the same set of points, the Wino

mass parameter M2 and the Higgsino mass parameter µ versus the Bino mass parameter M1

in Figs. II.32(a) and (b). We show the second and third neutralino masses mχ0
2
, mχ0

3
, the

light stau mass and the light stop mass versus the LSP mass mχ in Figs. II.32(c), (d), (e)

and (f). In the above Figures II.30−II.32, all points satisfy the collider, and Higgs search

requirements in eq. II.D.60. The grey squares show MSSM models that do not overclose

the universe. The red stars in addition satisfy the flavor requirements in eq. (II.D.61). The

blue disks represent the models that give the correct relic density in eq. (II.D.59). Finally,

the green squares pass the severe XENON-100 direct search bound on the WIMP-proton

spin-independent elastic scattering.

The results obtained here are consistent with the existing literature on the studies at the

LHC [320, 321]. We make the following important observations:

(1). Higgs constraints (grey squares): We start with points that do not overclose the universe

and satisfy the collider search requirements in eq. (II.D.60). We reproduced the known results

that there are two surviving regions:

(i) The non-decoupling regime where mA ∼ 95− 130 GeV, the heavy CP-even Higgs (H) is

SM-like, and the light CP-even Higgs (h) is nearly degenerate in mass with the CP-odd Higgs

(A). This region is particularly interesting since it leads to rich collider phenomenology and

favors a light WIMP mass mχ . 50 GeV. These points are not shown on the plots since they

are disfavored by the flavor constraints, as discussed next.

(ii) The decoupling regime where mA & 250 GeV, the light CP-even Higgs is SM-like, and

the heavy CP-even Higgs is nearly degenerate in mass with the CP-odd Higgs. This regime

is difficult to observe at the LHC when mA & 400 GeV and tan β ∼ 10 − 20 in traditional

SM Higgs search channels due to severely suppressed couplings to the gauge bosons.
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(2). Flavor constraints (red stars): The two decay processes b → sγ and Bs → µ+µ− are

the most constraining ones. The experimental central values are plotted on the calculated

branching fractions in Fig. II.31 on each panel, along with 2σ bands, which is summarized

in eq. (II.D.61). These flavor constraints prefer lower tan β values and essentially remove

the light Higgs (H0, A0, H±) solutions in the non-decoupling region in our generic scan. The

solutions with a light LSP of mχ . 30 GeV are also eliminated. Our results are in good

agreement with the existing studies [106, 116]. Further improvements in the Bs → µ+µ−

measurement would strongly constrain the large tan β and low mA region. However, we have

not tried to exhaust parameter choices with possible cancellations among different SUSY

contributions, and some sophisticated scanning may still find solutions with certain degrees

of fine-tuning [322].

(3). Relic density requirement (blue disks): Merely requiring that the LSP does not overclose

the universe does not constrain the MSSM parameter space very much, as most clearly seen

from the gray squares and red stars in Fig. II.32. This is because the Higgsino-like or Wino-

like LSPs and NLSPs can annihilate efficiently through gauge bosons and Higgs bosons.

Requiring the correct dark matter relic density at the present epoch does constrain the

parameter space significantly. We see the preference for µ > M1 and M2 > M1, as in

Figs. II.32(a) and (b). Otherwise the Higgsino or Wino LSP would annihilate too efficiently,

and result in underabundant DM relic. Nevertheless, we do find a nearly degenerate region

of a Bino LSP and Wino NLSPs as seen in Fig. II.32(c), which is best characterized by

the “well-tempered” scenario [289]. This scenario, however, seems to be less implementable

with Higgsino NLSPs as seen in Figs. II.32(b) and (d), if µ is not much greater 1 TeV.

Importantly for our interests, we see prominent strips near mχ ∼ mZ/2, mh/2 which are

the Z and Higgs funnel regions. Interestingly, as seen in Fig. II.30(d), there is a region of

depletion near mA ≈ 2mχ, indicating the very (too) efficient annihilation near the A0 funnel

in the s-channel that is removed by the correct relic density requirement. This is a result of

a lower bound on the LSP-Higgsino component N13 that we will discuss later.

For the low mass dark matter that is favored by CoGent, DAMA, CRESST and CDMS

experiments, the solutions are disfavored by precision electroweak observables, LEP con-
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straints on SUSY direct searches, and constraints from the Higgs property3. In our analysis,

we strictly apply the LEP bounds on the SUSY searches and the requirement for a SM-like

Higgs boson as given in eq. (II.D.60), then there are no surviving points in the low mass DM

region. However, as noted in Refs. [323–327], if one adopt the scenarios with a compressed

spectrum, such as a mass difference mb̃ −mχ < 5 GeV to evade the LEP bounds, or relax

the h→ γγ to be SM-like, new solutions in the low mass region could emerge.

(4). Direct search bounds (green, yellow and magenta squares): The results from DM direct

searches can be translated to spin-independent cross sections and thus to the MSSM param-

eters. This is shown in Fig. II.33, where all the points in the colored shaded region give the

correct relic abundance in eq. (II.D.59), satisfy the collider constraints in eq. (II.D.60) and the

flavor constraints in eq. (II.D.61). The parameter space favored by the DAMA, CoGeNT,

CRESST and CDMS experiments, as well as the stringent bound from the XENON-100

experiment are plotted. We see that the blue region is further excluded by the XENON-

100 experiment4. As seen in Fig. II.30(a), lower tan β and higher mA values are preferred.

Figures II.30(b) and II.32(b) show the lower bound µ > 200 GeV. This consequently leads

to a heavier χ0
3 as seen in II.32(d), while χ0

2 could be still as light as the LSP χ0
1 as seen in

II.32(c).

The most important observation from our study is that the surviving points are quite

characteristic. We can identify the following classes of predictive features for the LSP DM

from Fig. II.33.

I-A (green) χ0
1χ

0
1 → Z → SM predicts mχ ≈ mZ/2 ∼ 45 GeV, the Z-funnel [330].

I-B (green) χ0
1χ

0
1 → h→ SM predicts mχ ≈ mh/2 ∼ 63 GeV, the h-funnel.

I-C (green) χ0
1χ

0
1 → H,A→ SM predicts mχ ≈ mA,H/2 ∼ 0.2− 0.5 TeV, the H/A-funnel.

The A-funnel is overall dominant comparing to the H-funnel.

II-A (yellow) Neutralino/chargino coannihilation [331, 332]: χ0
iχ

0
j , χ

0
iχ
±
j → SM.

II-B (magenta) Sfermion assistance [333–335]: χ0
1τ̃ , χ

0
1t̃, χ

0
1b̃→ SM ; t-channel τ̃ , ν̃ in χ0

iχ
0
j .

3Our requirement of the h→ γγ rate in eq.(II.D.60) also limits the allowed Higgs branching fractions to
SUSY particle pairs, especially for those solutions with kinematically allowed Higgs decays to NLSP pairs.

4It should be noted that the theoretical calculation of the spin-independent cross section may have
significant uncertainties [328, 329].
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Figure II.33: Spin-independent cross section versus the DM mass mχ0
1
. All the points in the

colored shaded region give the correct relic abundance in eq. (II.D.59), satisfy the collider

constraints in eq. (II.D.60) and the flavor constraints in eq. (II.D.61). The green region

represents the model points with the Z and Higgs resonances. The Z funnel and h funnel

regions are clearly visible for WIMP masses around half the Z mass and half the Higgs

mass. The yellow points represent the region of co-annihilation with Wino-like/Higgsino-like

NLSPs. The magenta points represent the region with τ̃ , ν̃τ , b̃, t̃ contributions. The gray

points represent the scenarios with special cancellations when M1 and µ take opposite signs.

The DAMA and CoGeNT contours (3σ) are shown for astrophysical parameters v0 = 220

km/s, vesc = 600 km/s, and for a local density ρ0 = 0.3 GeV/cm3. CRESST contours are

2σ regions, from [65]. Also shown is the 90% confidence contour from the recent CDMS

analysis [66]. The blue region is excluded by the XENON-100 experiment (90% exclusion

curve from [68], for v0 = 220 km/s, vesc = 544 km/s, ρ0 = 0.3 GeV/cm3). Recent results from

the TEXONO [71] collaboration are shown. Expected exclusion bounds from the ongoing

LUX experiment [69] and the future XENON-1T experiment [70] are also shown.
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We categorize model points as scenario I if the difference between the mediator mass and

twice the LSP mass is within 8% of the mediator mass, namely

|mZ,h,A − 2mχ0
1
| ≤ 0.08 mZ,h,A. (II.D.62)

We categorize model points as scenario II-A if the difference between the LSP mass and

neutralino NLSP5 mass is less than 15% of the LSP mass, namely mχ0
2
− mχ0

1
< 0.15mχ0

1
.

Other cases are categorized as scenario II-B. Our classification and categorization have been

verified by investigating a fraction of our generated model points and looking into their

individual contributing annihilation channels. Two remarks are in order: First, the light

sfermions needed in this category are still viable, especially for t̃, b̃, with respect to the direct

LHC searches, because the mass splitting with the LSP is too small to result in significant

missing transverse energy to be sensitive for the search. In case of compressed spectra, LHC

searches on the monojet and monophoton could gain some sensitivity [336–341]. Second,

this categorization based on simple kinematics has exemptions when the LSP coupling to

the resonant mediator is very week and thus the co-annihilation mechanism is dominant. We

have kept track of those cases in the plot by examining the points individually.

(5). Indirect search bounds:

There exist cosmological bounds from the indirect search for DM signals. We present

the annihilation cross section 〈σav〉 in the limit v → 0 (i.e. the v-independent component)

versus the LSP DM mass in Fig. II.34(a), along with the 95% exclusion obtained by the

Fermi-LAT satellite from the absence of gamma rays from the nearby dwarf galaxies [72].

We see that further improvement from the measurement by the Fermi-LAT will reach the

current sensitivity range. The spin-dependent scattering cross section with a proton is shown

in Fig. II.34(b), along with the 90% exclusion curves from the Super-Kamiokande experiment

[318] and the IceCube constraint from DM annihilation in the Sun [319]. We see that IceCube

results are cutting into the relevant parameter region closing the gap from the direct searches,

5This is almost always true because we have a very Bino-like LSP. For cases with τ̃1, t̃1 NLSP with the
sfermion coannihilation mechanism, they fall into scenario II-B automatically.
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(a) (b)

Figure II.34: (a) The annihilation cross section 〈σav〉 in the limit v → 0 along with the

95% exclusion obtained by the Fermi satellite from the absence of gamma rays from the

nearby dwarf galaxies [72]. (b) The spin-dependent scattering cross section with a proton,

along with the 90% exclusion curves from the Super-K [318] and IceCube [319] experiments.

Legends are the same as in Fig. II.33.

although the bounds from the indirect searches are not quite as strong as that from XENON-

100. It is worth mentioning that the local DM density in the Sun may be higher than the

referral value [342] and thus would yield a slightly stronger exclusion from IceCube.

3. Discussions

a. The Nature of the DM Experimental results from the collider searches, the b-quark

rare decays and the direct DM searches, combined with the relic density requirement have put

very stringent constraints on the SUSY parameter space. This in turn could have significant

implications for searches at future collider experiments. Of primary importance is the nature

of the LSP. We show the gaugino and Higgsino fraction (N2
1i) of the neutralino LSP versus its

mass in Fig. II.35, consistent with all collider and flavor measurements as well as the correct

relic density. From Fig. II.35(a), we note that the surviving points are mostly Bino-like

(N2
11, as shown by the black dots), with lower fractions for Wino-like (N2

12, red dots) and
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(a) (b)

Figure II.35: The gaugino and Higgsino fractions of the LSP versus mχ0
1
(a) consistent with

the relic density, collider, and flavor constraints, (b) consistent with XENON-100 in addition

to the other requirements. The gray points represent the results for M1 and µ to have

opposite signs and the corresponding fractions N2
11, N2

12, N2
13 and N2

14 are denoted by hollow

squares, circles, daggers and hollow triangles, respectively.

Higgsino-like (N2
13, N

2
14, green and blue dots, respectively). As noted earlier, this is because

Wino-like and Higgsino-like LSP’s annihilate very efficiently via SU(2) gauge interactions

resulting in too little dark matter at the present epoch. Yet, the LSP could not be purely

Bino-like since it would overclose the Universe. In the region mχ0
1
∼ 40 GeV−60 GeV, the

line structures corresponding to the Higgsino components are easily identifiable with the Z

and h exchanges.

The XENON-100 direct search plays a crucial role in fixing the DM properties. The

surviving points are shown in Fig. II.35(b). We see that the Wino and Higgsino fractions of

the LSP are further constrained. The H̃d component comes in with the opposite signs with

respect to the H̃u and W̃ components. Bino-like LSP becomes more pronounced and the

Wino and Higgsino components consist of less than 7% each, rendering the “well-tempered”

scenario [289] difficult to realize with large Bino-Wino or Bino-Higgsino mixing. The com-

parison between Fig. II.35(a) and (b) clearly shows the XENON-100 exclusion probes deeply

into the Higgsino and Wino components. On the other hand, the H̃d component N2
13 must
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be non-zero, and so is N2
14 for H̃u. The non-zero lower bound would have significant impli-

cations for direct searches as we will discuss next, although the precise values may depend

on the choice of the ranges for M1, M2 and µ.

It is important to note that a relative opposite sign between M1 and µ could result in

a subtle cancellation for the hχχ coupling [290, 292], and thus enlarge the allowed mixing

parameters, reaching about 20% Wino/Higgsino mixtures, as shown by the grey points in

Fig. II.35(b). This can happen only for a higher LSP mass when co-annihilations or H,A

funnels are in effect.

b. Lower Limit on the Spin-Independent Cross Section With our assumptions

in the MSSM framework and the well-constrained properties of the LSP, we would expect

that the DM scattering cross section may be predicted.It is interesting to ask whether one

may derive a lower limit for the spin-independent scattering cross section. This is quite

achievable for the Higgs resonance situation. Much effort has been made to derive the

neutralino recoil cross sections with nuclei in various SUSY models [283, 343–348]. This cross

section mainly receives contributions from h, H exchanges and squark exchanges. Given the

current experimental bounds on the masses of the squarks from the LHC [349, 350], the

Higgs exchanges dominate. As a good approximation in the decoupling limit cos(α − β) '
0, tan β ≥ 3 and a Bino-like LSP, the neutralino-nucleon cross sections via the Higgs

exchanges are of the form [347]:

σχN ∝


|N11|2|N13|2
m4
H cos2 β

(fTs + 2
27
fTG)2, H exchange,

|N11|2|N14|2
m4
h

(fTu + 4
27
fTG)2, h exchange.

(II.D.63)

fTs , fTu and fTG are parameters measured from nuclear physics experiments. The H ex-

change benefits from an enhancement factor (N13/ cos β)2. When the H is heavy, the h

exchange proportional to N2
14 becomes important. Due to our natural choices of parameters

as in eq. (IV.B.9), there exist lower bounds on N2
13 and N2

14, as shown in Fig. II.35, although

unnaturally large values of µ and mA could relax these bounds. Consequently, the LSP spin-

independent cross sections at the Z, h funnels, which are mainly from the LSP scattering of
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(a) (b)

Figure II.36: (a) the annihilation cross section 〈σav〉(v → 0) versus the spin independent

cross section σSIP . (b) the spin-dependent cross section σSDP versus the spin independent cross

section σSIP . Legends are the same as in Fig. II.33.

a t-channel H exchange, reaches a lower bound, roughly

σSIp (h,H) & 10−10 pb. (II.D.64)

As seen in Fig. II.33, this range (green dots) will be probed by the ongoing LUX experiment

and will be fully covered by the proposed XENON-1T experiment. Similar argument could

be also applicable to the H,A funnel regions, where t-channel h exchange could become

dominant. However, an exception is that a subtle cancellation takes place when M1 and µ

take opposite signs [290–292]. As seen from the grey points in Fig. II.33(b), this can happen

only for a higher LSP mass when co-annihilations or H,A funnels could be in effect.

In Ref. [54], a parameter-independent lower bound σSIp & 2×10−12 pb could be obtained

in the mass range 440 GeV . mχ . 1020 GeV and µ > 0. In the most general pMSSM

[115] with much larger M2, µ parameters, the spin-independent cross section could go lower,

depending on the mixing parameters.
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c. Connection to the Indirect Searches The WIMP DM at the present epoch is

non-relativistic and we can thus relate the current indirect search via LSP annihilation to

that at freeze out [351]. The partial wave properties of the LSP annihilation allow us to

understand the various contributions. Fig. II.36(a) shows the annihilation cross section

〈σav〉(v → 0) versus the spin-independent cross section when scattering off a proton σSIp .

The model points in green squares near half the Z boson and near half the 126 GeV Higgs

boson in Fig. II.34(a) correspond to the low branch of the green squares in Fig. II.36(a),

due to the p-wave suppression. On the other hand, the s-channel annihilation through A in

the mass window 200 GeV ∼ 500 GeV in Fig. II.34(a) is through s-wave, and thus has a

relatively high cross section (indicated by the high branch of green squares). Although the

LSP couplings to H and A both are mainly through their Higgsino components N14, the H

exchange is via p-wave and thus yields a lower cross section as shown by the middle branch

in Fig. II.36(a). Finally, we note that the LSP-NLSP co-annihilation (yellow squares) could

yield higher cross sections for both direct, and indirect searches, depending on their Wino and

Higgsino components. Figure II.36(b) shows the spin-dependent cross section versus the spin-

independent cross section, for our different models. Some of the models represented by blue

points have a large enough cross section to be probed by IceCube/DeepCore [319]. However,

a large spin-dependent cross section implies a proportionally large spin-independent cross

section. Thus, all models in blue are excluded by the XENON-100 experiment. Figure II.36

illustrates the connection between spin-dependent and spin-independent measurements, as

well as the connection between direct searches and indirect searches. Further improvement

of the indirect search sensitivity will soon reach the relevant parameter region, and will probe

the A exchange contribution due to its s-wave dominance.

d. Implication of LSP for Higgs Physics A class of solutions exist with the LSP

mass nearly half the mediator Z, h, H, A mass that undergoes a resonant enhancement in

annihilation, in the Higgs funnel region. One may expect to see the mediator’s invisible decay

mode to LSP pairs in collider experiments. Unfortunately, these channels are kinematically

suppressed near threshold by the non-relativistic velocity factor. Near the Z peak for exam-

ple, the search for Z → χ0
1χ

0
1 would prove impossible since the branching fraction would be
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(a) (b)

(c) (d)

Figure II.37: Branching fractions to neutralinos and charginos (a) for h,H,A decays to LSP

pair versus the LSP mass, (b) for H, (c) for A, and (d) for H± versus its mass respectively.
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smaller than 10−5 due to this suppression. On the other hand, invisible decay channels could

be sizable for heavier parent particles. Shown in Fig. II.37(a) are the branching fractions of

h, H, A to a pair of LSP χ0
1χ

0
1 versus its mass, which would be the invisible mode in collider

experiments. It is informative to note that the SM-like Higgs boson receives two distinctive

contributions denoted by the red squares

BRmax(h→ χ0
1χ

0
1) ∼

 1% mχ ≈ 60 GeV,

10% mχ ≈ 45 GeV.

(II.D.65)

The branching fraction near 60 GeV is rather small although this is clearly identifiable as

the h-funnel region. The branching fraction near 45 GeV is about an order of magnitude

larger because of the available kinematics, even though it is from the Z-funnel. This leads to

the very interesting and challenging possibility of observing the Higgs invisible decay at the

LHC [352–354], (a sensitivity of about 20% is considered feasible). The search sensitivity

would be significantly improved at future e+e− colliders, reaching about a few percent at the

ILC, and even 0.3% at the TLEP [355].

e. Consequences of Co-annihilation For the co-annihilation scenarios, some other

SUSY particles are nearly degenerate with the LSP to ensure efficient annihilation. The

common case is that the NLSP and NNLSP of the Winos (χ±1 , χ0
2) or the Higgsinos (χ

±
1 , χ

0
2,3)

are nearly degenerate with the Bino-like LSP, with appreciable mixing among them. On the

other hand, the XENON-100 search bound puts a constraint on the sizes of the mixing as seen

from Fig II.35(a) and (b). Nevertheless, the spin-independent cross sections are typically

higher than those from the Higgs resonances, reaching σSI
p ∼ 10−8 pb (yellow region). The

indirect detection cross sections are in general between the s-wave dominance (higher green

band) and p-wave dominance (lower green band).

As shown in Figs. II.37(b)−(d), branching fractions for the other heavy Higgs bosons

H,A to a pair of light SUSY particles could reach up to about 10% − 20%. These are

the solutions for the correct relic density with co-annihilations. However, due to the mass

degeneracy, the final decay products would be rather soft and would be difficult to observe

with the LHC. Consequently, these also yield the invisible decay channels.
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(a) (b)

(c) (d)

Figure II.38: (a) Spin-independent cross section versus the gaugino and Higgsino fractions

N2
1i, and neutral Higgs decay branching fractions to DM pairs (b) versus the leading Higgsino

fraction N2
13, (c) versus spin-independent cross section, and (d) versus spin-dependent cross

section.
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The coannihilation scenarios predict a rich spectrum near the LSP mass, leading to many

different phenomena that can be explored by sparticles pair productions [294, 356, 357].

To conclude our discussion in this section, we bring a few crucial observables to com-

parison. First, in Fig. II.38(a), we show the spin-independent cross section labelled by the

gaugino components N2
1i of Bino (black), Higgsinos (green and blue), and Wino (red). The

lower right slopes of the N2
13 and N2

14 regions in this plot indicate the variable contribu-

tions from H-exchange and h-exchange, respectively, as discussed earlier in eq. (II.D.63).

We then show the Higgs decay branching fractions versus the leading gaugino component

N2
13 in Fig. II.38(b). We see that the higher branching fractions naturally correspond to a

higher value of the mixing parameter. In Figs. II.38(c) and (d), we reiterate the correla-

tions among the observables by showing the neutral Higgs decay branching fractions versus

spin-independent cross section and spin-dependent cross section, respectively. It is a generic

feature that higher Higgs decay branching fractions correspond to higher cross sections. It

is interesting to see that the spin-dependent cross section shows slightly more correlation

with the Higgs BR’s. We see the similarity between Figs. (b) and (d). This comes from the

fact the Z-exchange in spin-dependent cross section is governed by N2
13 while N2

14 is rather

small. It is important to emphasize that in anticipation of the improvement of the direct

search in the near future, the LUX and XENON-1T experiments would be able to cover the

full parameter space, pushing down to very small Higgs branching fractions, as shown in

Fig. II.38(c).

4. Summary and Outlook

Within the framework of the MSSM, we investigated the possibility of the lightest supersym-

metric particle being all the dark matter in light of the recent discovery of a SM-like Higgs

boson, and the search for other Higgs bosons and SUSY particles at the LHC. We scanned

through a wide range of the MSSM parameter space, and searched for model points wherein

LSP has the correct properties to be the (WIMP) thermal DM. We applied the constraints

on the MSSM Higgs sector from the LEP, Tevatron and LHC observations. We also im-

posed flavor constraints from the recent experimental results at the LHCb and BELLE, and

127



Table II.9: Connection between the SUSY DM properties and the Higgs bosons.

Type DM mass Annihilation Partial 〈σv〉(v → 0) Collider

labels mχ0
1

channels waves searches

I-A ∼ mZ/2 χ0
1χ

0
1 → Z p low Z, h,H,A→ χ0

1χ
0
1

I-B ∼ mh/2 χ0
1χ

0
1 → h p low h,H,A→ χ0

1χ
0
1

I-C ∼ mA/2 χ0
1χ

0
1 → A s high H,A→ χ0

1χ
0
1

mχ0
1
∼ mχ±1

χ0
1χ

0
2, χ

0
1χ
±
1 H,A→ χ0

1χ
0
2

II-A ∼ mχ0
2

χ0
2χ

0
2, χ

+
1 χ
−
1 s+p medium H,A→ χ0

2χ
0
2

→ SM H± → χ0
1χ
±
1

mχ0
1
∼ mτ̃1 τ̃+

1 τ̃
−
1 , ν̃τ ν̃τ , H,A→ τ̃+

1 τ̃
−
1

II-B ∼ mν̃τ χ1
0τ̃
±
1 → SM s+p medium H± → τ̃±1 ν̃τ
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found stringent bounds on the parameter space. The low LSP mass region may be closed,

yielding a rough bound mχ > 30 GeV, unless for a compressed SUSY spectrum such as

mb̃ −mχ < 5 GeV.

The XENON-100 experiment significantly constrains the viable parameter region via

the spin-independent elastic WIMP-proton scattering cross section, as shown in Figs. II.30-

II.33. Although not as sensitive, the indirect search experiments such as Fermi/LAT and

IceCube have obtained impressive results to cut into the SUSY parameter region, as seen

in Fig. II.34. We are able to identify the Higgs contributions and thus to make predictions

for future searches at the LHC and ILC. There are also clear contributions from the co-

annihilation channels. Table II.9 summarizes these distinctive MSSM model points, and the

relation with the Higgs bosons. We reiterate the key points of our findings. For the resonance

scenarios as in I-A, I-B and I-C,

• Z, h, H and A are the most important mediators at resonance to yield the correct relic

abundance and give predictive narrow mass windows as shown in Fig. II.33, which we

refer to as the Z, h and H/A-funnel regions. The spin-independent scattering in the Z, h

funnel is dominated by the t-channel H exchange when N2
13 � N2

14, which is mostly the

case seen in Fig. II.35(b).

• With our parameter scanning, the necessarily non-zero Wino, Higgsino components of

the LSP (as seen in Fig. II.35) imply a lower bound for the WIMP scattering cross

section mediated by h and H, as in eq. (II.D.64). In particular, the spin-independent

cross sections may be fully covered by the next generation of direct search experiments

for DM mass around 30− 800 GeV such as LUX and XENON-1T, as seen in Fig. II.33

and Fig. II.38(c). An exception is the fine-tuned cancellation, the “blind spots” scenario,

way above the Z, h funnels, as shown by the grey crosses in Fig. II.33.

• Z, h, H and A mediators determine the partial wave decomposition as listed in Table

II.9 and predict a definite range of indirect search cross sections. It is especially sensitive

to the A-exchange contribution, as seen in Fig. II.36(a).

• The invisible decays of h, H and A are expected, as plotted in Fig. II.37(a). Future

studies at the LHC, and in particular, at the ILC may reveal the true nature of the DM

particle, as seen in Figs. II.38(b-d).
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Table II.10: Possible solutions for light (< 40 GeV) neutralino DM in MSSM and NMSSM.

Models DM (< 40 GeV) Annihilation

Funnels NMSSM Bino/Singlino χ̃0
1χ̃

0
1 → A1, H1 → SM

Co-ann. MSSM & NMSSM Bino/Singlino χ̃0
1χ̃

0
1 → ff̄ ; χ̃0

1f̃ → V f ; f̃ f̃ ′ → ff ′

For the co-annihilation scenarios as in II-A and II-B,

• Although the “well-tempered” scenario with large Higgsino and Wino fractions is disfa-

vored by the XENON-100 data, the co-annihilation may still be a valid solution to obtain

the correct relic density. There may be several light SUSY particles such as neutralinos,

charginos, or stau, leading to many rich phenomena that can be searched for at the LHC,

and may be fully covered by the ILC.

• For highly degenerate NLSP, NNLSP, the decays ofH, A andH± as shown in Figs. II.37(b)-

(d) could lead to large invisible modes, making the collider search for DM very interesting.

E. SUSY DARK MATTER IN NMSSM

Supersymmetric theories are well motivated to understand the large hierarchy between the

electroweak scale and the Planck scale. The LSP can serve as a viable DM candidate.

In the MSSM, the lightest neutralino serves as the best DM candidate (for a review, see,

e.g., Ref. [358]). The absence of the DM signal from the direct detection in underground

experiments as well as the missing energy searches at colliders, however, has significantly

constrained theory parameter space. The relic abundance consideration leads to a few favor-

able scenarios for a (sub) TeV DM, namely Z/h/A funnels, and LSP-sfermion coannihilation.

For heavier gauginos, the “well-tempered” spectrum [289] may still be valid.

In this section, we explore the implications of a low mass neutralino LSP dark matter in

the mass window 2 − 40 GeV in the framework of the NMSSM (see Ref. [122] for a recent
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review). The robust bounds on the chargino mass from LEP experiments disfavored the

Wino-like and Higgsino-like neutralinos, and forced a light LSP largely Bino-like or Singlino-

like, or an admixture of these two. However, those states do not annihilate efficiently to the

SM particles in the early universe. Guided by the necessary efficient annihilation to avoid

overclosing the universe, we tabulate in table II.10 the potentially effective processes, where

the first row indicates the funnel processes near the light Higgs resonances, and the second

row lists the coannihilation among the light SUSY states. There is another possibility of

combined contributions from the s-channel Z-boson and SM-like Higgs boson, as well as the

t-channel light stau (∼ 100 GeV). For more details, see Refs. [323, 326, 327, 359–361].

With a comprehensive scanning procedure, we confirm three types of viable light DM

solutions consistent with the direct/indirect searches as well as the relic abundance considera-

tions: (i) A1, H1-funnels, (ii) LSP-stau coannihilation and (iii) LSP-sbottom coannihilation.

Type-(i) may take place in any theory with a light scalar (or pseudo-scalar) near the LSP

pair threshold; while Type-(ii) and (iii) could occur in the framework of MSSM as well.

These possible solutions all have very distinctive features from the perspective of DM astro-

physics and collider phenomenology. We present a comprehensive study on the properties

of these solutions and focus on the observational aspects of them at colliders, including new

phenomena in Higgs physics, missing energy searches and light sfermion searches. The de-

cays of the SM-like Higgs boson may be modified appreciably and the new decay channels to

the light SUSY particles may be sizable. The new light CP-even and CP-odd Higgs bosons

will decay to a pair of LSPs as well as other observable final states, leading to rich new

Higgs phenomenology at colliders. For the light sfermion searches, the signals would be very

difficult to observe at the CERN LHC when the LSP mass is nearly degenerate with the par-

ent. However, a lepton collider, such as the ILC, would be able to uncover these scenarios

benefited from its high energy, high luminosity, and the clean experimental environment.

This section is organized as follows. In section II.E.1, we first define the LSP dark

matter in the NMSSM, and outline its interactions with the SM particles. We list the

relevant model parameters with broad ranges, and compile the current bounds from the

collider experiments on them. We then search for the viable solutions in the low mass region

by scanning a large volume of parameters. Having shown the existence of these interesting
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solutions, we comment on the connection to the existing and upcoming experiments for the

direct and indirect searches of the WIMP DM. Focused on the light DM solutions, we study

the potential signals of the unique new Higgs physics, light sbottom and stau at the LHC in

section II.E.2. We summarize our results and conclude in section II.E.3.

1. Light Neutralino Dark Matter

a. Neutralino Sector in the NMSSM In the NMSSM, the neutralino DM candidate

is the lightest eigenstate of the neutralino mass matrix [122], which can be written as

MÑ0 =



M1 0 −g1
vd√

2
g1

vu√
2

0

M2 g2
vd√

2
−g2

vu√
2

0

0 −µ −λvu

∗ 0 −λvd

2κ
λ
µ


(II.E.66)

in the gauge interaction basis of Bino B̃, Wino W̃ 0, Higgsinos H̃0
d and H̃0

u, and Singlino

S̃. Here λ, κ are the singlet-doublet mixing and the singlet cubic interaction couplings,

respectively [122], and we have adopted the convention of v2
d + v2

u = (174 GeV)2. The light

neutralino, assumed to be the LSP DM candidate, can then be expressed as

χ̃0
1 = N11B̃ +N12W̃

0 +N13H̃
0
d +N14H̃

0
u +N15S̃, (II.E.67)

where Nij are elements of matrix N that diagonalize neutralino mass matrix MÑ0
:

N∗MÑ0
N−1 = Diag{mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5
}, (II.E.68)

with increasing mass ordering for mχ̃0
i
.

Given the current chargino constraints, a favorable SUSY DM candidate could be either

Bino-like, Singlino-like or Bino-Singlino mixed. In most cases, the DM follows the properties

of the lightest (in absolute value) diagonal entry. Similar to Bino-Wino mixing via Higgsinos,

Bino and Singlino do not mix directly: they mix through the Higgsinos. The mixing reaches

maximum when M1 ∼ 2κ/λµ from simple matrix argument. This Bino-Singlino mixing is
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the only allowed large mixing with light DM candidate due to LEP bounds. A particularly

interesting case is the Peccei-Quinn limit [246, 362, 363], when the singlet cubic coupling is

small: κ→ 0, and both the singlet-like (CP-odd) Higgs boson and the Singlino can be light.

Under the limit of either a Bino-like LSP N11 ≈ 1 or a Singlino-like LSP N15 ≈ 1, the

couplings of the physical Higgs bosons and the LSP are

Hiχ̃
0
1χ̃

0
1 (i = 1, 2, 3) : g1N11

[
ξhvi (cβN13 − sβN14)− ξHvi (sβN13 + cβN14)

]
+
√

2λN15

[
ξhvi (sβN13 + cβN14) + ξHvi (cβN13 − sβN14)

]
−
√

2κξSi N
2
15

Aiχ̃
0
1χ̃

0
1 (i = 1, 2) : −ig1N11ξ

A
i [sβN13 − cβN14]

−i
√

2λN15ξ
A
i [cβN13 + sβN14]− i

√
2κξASi N2

15, (II.E.69)

where ξi are the mixing matrix elements for the Higgs fields with

Hi = ξhvi hv + ξHvi Hv + ξSi S, Ai = ξAi A+ ξASi AS, (II.E.70)

in the basis of (hv, Hv, S) for the CP-even Higgs sector and (A,AS) for the CP-odd Higgs

sector.10 In the limit of a decoupling MSSM Higgs sector plus a singlet, the singlet-like Higgs

has ξS ≈ 1 and the SM-like Higgs has ξhv ≈ 1.

Specifically, in the Bino-like LSP scenario,

N11 ≈ 1, N15 ≈ 0, N13 ≈
mZsW
µ

sβ, N14 ≈ −
mZsW
µ

cβ, (II.E.71)

Hiχ̃
0
1χ̃

0
1 : g1N11

mZsW
µ

[
ξhvi s2β + ξHvi c2β

]
−
√

2κξSi N
2
15, (II.E.72)

Aiχ̃
0
1χ̃

0
1 : −ig1N11

mZsW
µ

ξAi − i
√

2κξASi N2
15. (II.E.73)

The couplings to the SM-like or MSSM-like Higgs bosons are proportional to the Bino-

Higgsino mixing of the order O(mZsW/µ). The coupling to the SM-like Higgs with ξhvi ≈
1, ξHvi � 1 is roughly s2β + ξHvi c2β, and is typically suppressed for tan β > 1. The coupling

to the MSSM-like Higgs with ξHvi ≈ 1, ξhvi � 1, on the other hand, is unsuppressed. The

couplings to the singlet-like (CP-even and CP-odd) Higgs bosons are suppressed by N2
15.

10In the basis of (hv, Hv, S), hv =
√

2[cosβ Re(H0
d) + sinβ Re(H0

u)] couples to the SM particles with
exactly the SM coupling strength; while Hv =

√
2[− sinβ Re(H0

d) + cosβ Re(H0
u))] does not couple to the

SM W and Z. Similarly, A and AS are the CP-odd MSSM Higgs and singlet Higgs, respectively [246].
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In the Singlino-like LSP scenario,

N11 ≈ 0, N15 ≈ 1, N13 ≈ −
λv

µ
cβ, N14 ≈ −

λv

µ
sβ, (II.E.74)

Hiχ̃
0
1χ̃

0
1 : −

√
2λN15

λv

µ

[
ξhvi s2β + ξHvi c2β

]
−
√

2κξSi N
2
15, (II.E.75)

Aiχ̃
0
1χ̃

0
1 : i
√

2N15
λv

µ
ξAi − i

√
2κξASi N2

15. (II.E.76)

The couplings to the SM-like or MSSM-like Higgs bosons are proportional to the Singlino-

Higgsino mixing of the order O(λv/µ). The contributions from the hv and Hv components

follow the same relation as in the Bino-like LSP case above. The coupling to the singlet-like

Higgs can be approximated as −
√

2κN2
15, proportional to the Singlino component and the

PQ symmetry-breaking parameter κ.

Neutralinos couple to fermion-sfermion through their Bino, Wino and Higgsino com-

ponents, proportional to the corresponding U(1)Y Hyper charge, SU(2)L charge and tan β

modified Yukawa couplings. For the Bino-like LSP, the coupling is dominated by the U(1)Y

Hyper charge. For the Singlino-like LSP, the couplings to the SM fermions are more complex

as the leading contributions depend on the mixing with the gauginos and Higgsinos.

b. Parameters and Constraints There are 15 parameters relevant to our low-mass DM

consideration. In the Higgs sector with a doublet and a singlet, the tree-level parameters are

mAtree ,11 tan β, µ, λ, κ and Aκ, and loop-level correction parameters on the stop sector MQ3,

MU3 and At. These parameters also determine the Higgsino masses, Singlino mass and make

strong connections between these particle sectors. The soft SUSY breaking gaugino mass

M1 governs the Bino mass. To explore the sfermion coannihilation with the LSP, we choose

the third generation of stau and sbottom as benchmarks by including ML3, ME3 and Aτ for

stau, and MD3 and Ab for sbottom. The third generation sfermion sectors are expected to

potentially have large mixing and small masses from the theoretical point of view, and as

well are the least constrained sectors from the phenomenological perspective. We decouple

other squarks and sleptons by setting their masses at 3 TeV and other trilinear mass terms

11mAtree is the tree-level MSSM CP-odd Higgs mass parameter, defined as m2
Atree

= 2µ
sin 2β (Aλ + κ

λµ) [122,
364].
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Table II.11: The parameters and ranges considered. The symbols “ . . ." in entries indicate

the scanning ranges the same as the ones in the general scan.

General Scenario-dedicated Scan

Scan Sbottom Stau H1, A1-funnels

mAtree [0,3000] . . . . . . . . .

tan β [1,55] . . . . . . . . .

µ [100,500] . . . . . . . . .

|Aκ| [0,1000] . . . . . . . . .

λ [0,1] . . . . . . [0.01,0.6]

κ [0,1] either κ ∈ [2, 30]λ/(2µ)

|M1| [0,500] or M1 ∈ [2, 30], or both

MQ3, MU3 [0,3000] . . . . . . . . .

|At| [0,4000] . . . . . . . . .

MD3 [0,3000] [0,80] 3000

|Ab| [0,4000] . . . 0

ML3,ME3 [0,3000] 3000 [0,500] 3000

|Aτ | [0,4000] 0 [0,2000] 0
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to be zero. The range for µ parameter is mainly motivated by the LEP lower bounds on the

chargino mass. The upper bounds of superparticle mass parameters and the µ parameter

are motivated by the naturalness argument [37, 285, 286, 288].

In the rest of the study, we employ a comprehensive random scan over these 15 parame-

ters, which are summarized in table II.11. The second column presents the parameter ranges

for our general scan. To effectively look for possible solutions, we also device several scenario-

dedicated scans as listed in the other columns: sbottom-scan, stau-scan and A1, H1-funnels

scan with certain relationship enforced and simplified parameters for different scenarios. The

combinations for κ andM1 are motivated by focusing on the Bino-like and Singlino-like LSP.

In addition, we also choose several benchmarks as seeds and vary the DM mass parameters

accordingly. This helps us to examine the possibility of Bino-Singlino mixture as well as

solutions with fixed sfermion masses.

Focusing on the light DM scenarios motivated in table II.10, and guided by the relevant

collider bounds to be discussed in the next section, we adopt the following theoretical and

experimental constraints for the rest of the study:

• 2σ window of the SM-like Higgs boson mass: 122.7 − 128.7 GeV, with linearly added

estimated theoretical uncertainties of ±2 GeV included.

• 2σ windows of the SM-like Higgs bosons cross sections for γγ, ZZ, W+W−, τ+τ− and

bb̄ final states with different production modes.

• Bounds on the other Higgs searches from LEP, the Tevatron and the LHC.

• LEP, Tevatron and LHC constraints on searches for supersymmetric particles, such as

charignos, sleptons and squarks.

• Bounds on Z boson invisible width and hadronic width.

• B-physics constrains, including b → sγ, Bs → µ+µ−, B → χsµ
+µ− and B+ → τ+ντ , as

well as ∆ms, ∆md, mηb(1S) and Υ(1S)→ aγ, hγ.

• Theoretical constraints such as physical global minimum, no tachyonic solutions, and so

on.

We use modified NMSSMTools 4.2.1 [260–262] to search for viable DM solutions that satisfy

the above conditions.
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Figure II.39: Z boson partial decay widths (left panel) and coupling parameters |N2
13−N2

14|
, cos2 θb̃, cos2 θτ̃ (right panel) to the pairs χ̃0

1χ̃
0
1 (red), b̃1b̃1 (green) and τ̃1τ̃1 (blue) versus

the neutralino and sfermion masses. Constraints on ∆Γinv in eq. (II.E.77) and ∆Γtot in

eq. (II.E.78) are imposed.

c. Highlights from Experimental Bounds The absence of deviations from the SM

predictions on precision observables as well as null results on new physics direct searches put

strong bounds on the parameters. We take them into account to guide our DM study. In

this subsection, we highlight some specific collider constraints that are very relevant to our

light neutralino DM study.

Bounds on light neutralino LSP

Precision measurements of Z-boson’s invisible width put strong constraint on the light

neutralino LSP. The 95% C.L. upper limit on Z boson invisible width is [365]

∆Γinv < 2.0 MeV. (II.E.77)

Z boson coupling to neutralino LSP pairs is proportional to N2
14 − N2

13 and vanishes when

tan β = 1. This coupling could also be small when the LSP is “decoupled” from Higgsi-

nos, e.g., for a Bino-like LSP with |µ| � |M1|, g1vu,d or a Singlino-like LSP with |µ| �
2|κ/λµ|, |λ|vu,d.

We show the impact of eq. (II.E.77) on the relevant mass and coupling parameters in

Fig. II.39. The left panel shows in red the scanning results of Γ(Z → χ̃0
1χ̃

0
1) as a function
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of mχ̃0
1
. The resulting |N2

13 −N2
14|, which governs the Zχ̃0

1χ̃
0
1 coupling, is shown in the right

panel (red). Its typical value is near 0.1. The increasing in the allowed range for larger mχ̃0
1

is due to the extra phase space suppression near the Z decay threshold. For tan β > 1 and

negligible Z decay phase space suppression, this requires µ ∼> 140 GeV for the Bino limit

shown in eq. (II.E.71) and µ/λ & 540 GeV for the Singlino limit shown in eq. (II.E.74).

The property of the neutralino LSP is constrained by the invisible decay branching

fraction of the observed 126 GeV Higgs as well, with the 95% C.L. upper limit of Brinv

around 56% [366] from indirect fitting with current observed production and decays. Current

direct searches on Higgs to invisible from ZH associated production and VBF set limits of

Brinv < 75% [367] and Brinv < 58% [368]. Limits from other searching channels such as

mono-jet and WH associated productions can also contribute (see, e.g., Ref. [369]) and are

relatively weak as well.

Bounds on light sfermions

Superpartners of light quarks and leptons are in general excluded up to a few hundred

GeV with arbitrary mass splittings [370] and are not suitable to be the NLSP to coannihilate

with light neutralino LSP. The stop quark has been excluded up to 63 GeV at LEP [371] for

arbitrary mixing angles and splittings. Sneutrino is in general unlikely to coannihilate with

the light Bino-like LSP, because the Z-boson invisible width searches forbid light sneutrino.

Only sbottom and stau could coannihilate with the light neutralino LSP.

Light sbottom and stau also contribute to the Z hadronic width. The current experi-

mental precision on Z boson decay width is 2.4952± 0.0023 GeV [365], leading to

∆Γtot < 4.7 MeV at 95% C.L., (II.E.78)

which includes a theoretical uncertainty of ∼ 0.5 MeV based on a complete calculation with

electroweak two-loop corrections [372].

The couplings of the Z to the sfermions depend on the mixing angles of the sfermions,

which are originated from the left-right mixing in the sfermion mass matrices. We take

the mixing angle θf̃ convention that lighter mass eigenstate of the sfermions follows f̃1 =

cos θf̃ f̃L + sin θf̃ f̃R. The Z boson coupling to the sfermions can then be expressed as

Zf̃1f̃1 : gLf cos2 θf̃ + gRf sin2 θf̃ , (II.E.79)

138



Table II.12: Collider constraints on the sbottom and stau. Some of above constraints are

from the Review of Particle Physics [370].

f̃ mmin( GeV) Ref. Condition

76 DELPHI [373] b̃→ bχ̃0, all θb̃, ∆m > 7 GeV

b̃ 89 ALEPH [371] b̃→ bχ̃0, all θb̃, ∆m > 10 GeV

645 ATLAS [374, 375] b̃→ bχ̃0
1, mχ̃0

1
< 100 GeV, for mb̃ > 100 GeV

τ̃ 26.3 (81.9) DELPHI [373] τ̃ → τ χ̃0
1,∆m > mτ (15 GeV), all θτ̃

with gLf = −(T3f − Qf sin2 θw) and gRf = Qf sin2 θw being the left-handed and right-handed

chiral couplings of the corresponding SM fermions. To minimize the Zf̃1f̃1 coupling in

order to suppress the contribution to Γtot, θf̃ needs to be near the Z-decoupling value:

tan2 θmin
f̃

= −gLf /gRf . For a sbottom (down-type squark), tan2 θmin
f̃

equals 5.49, preferring

the lighter sbottom to be right-handed. For a stau (slepton), tan2 θmin
f̃

equals 1.16, preferring

the lighter stau to be an even mixture of τ̃L and τ̃R.

The left panel of Fig. II.39 shows the scanning results of Γ(Z → b̃1b̃1, τ̃1τ̃1) as a function

of mb̃1
, mτ̃1 after imposing ∆Γtot < 4.7 MeV. The resulting mixing parameters cos2 θf̃ are

shown in the right panel. For the light sbottom, it is almost completely right-handed with

cos θb̃ ≈ 0, mb̃1
& 16 GeV. For the light stau, a wide range of cos2 θτ̃ . 0.25 can be

accommodated with mτ̃1 & 32 GeV, especially for large mτ̃1 when there is extra kinematic

suppression in phase space.

Light sbottom and light stau are also constrained by many other collider searches, as

summarized in table II.12. The LEP constraints on sfermion pair productions excludes

sbottom and stau . 80− 90 GeV with relatively large mass splitting ∆m = mb̃,τ̃ −mχ̃0
1
& 5

GeV, independent of sfermion mixing angles. Once ∆m becomes small (. 5 GeV), the LEP

constraints could be relaxed. Mono-photon searches at LEP could constrain the extreme

degenerate LSP and NLSP sfermion. The limits, however, do not apply for GeV level mass
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splitting due to hadronic activity veto applied in the analysis. There are currently no LHC

bounds on stau yet. The existing analysis for sbottom searches at the LHC are optimized

for heavy (> 100 GeV) sbottom and larger mass splitting. These bounds are applicable to

the heavier sbottom b̃2 after taking into account the branching fraction modifications for b̃2

decay. To summarize, as a result of stringent collider constraints, the coannihilator sfermions

considered in this section are in the rather narrow ranges

Stau : mτ̃1 = (32− 45) GeV with ∆m = mτ̃ −mχ̃0
1
< (3− 5) GeV,(II.E.80)

Sbottom : mb̃1
= (16− 45) GeV with ∆m = mb̃ −mχ̃0

1
< 7 GeV. (II.E.81)

Bounds on light Higgs bosons

Current measurements of the Higgs properties at the LHC, in particular the discovery

modes H → γγ and H → ZZ∗ both point to the 126 GeV Higgs being very SM-like. For the

NMSSM, it is conceivable to have light Higgs bosons from the singlet Higgs fields, especially

in the approximate PQ-symmetry limit of the NMSSM. These light Higgs bosons could be

either CP-even or CP-odd. A light CP-even Higgs boson also appears in the non-decoupling

solution of the MSSM [45]. They could give rise to new decay channels of the SM-like Higgs

boson observed at the LHC and thus would be constrained by the current observations. If

the light Higgs bosons are present in the main annihilation channels for the DM, such as in

the case of A1, H1-funnels, slight mixing with the MSSM Higgs sector is required to ensure

large enough cross sections for χ̃0
1χ̃

0
1 → A1/H1 → SM particles in the early universe. If

sizable spin-independent direct detection rate is desired and mainly mediated by singlet-like

light CP-even Higgs boson, its sizable mixing with the MSSM CP-even sector is required

as well. LEP experiments have made dedicated searches for light Higgs bosons and have

tight constraints on the MSSM components of the light Higgs ξhv1 and ξHv1 . NMSSMTools

has incorporated all these constraints on the light Higgs bosons. Hadron collider searches

on light CP-odd Higgs bosons are also included.

Relic abundance considerations

In the multi-variable parameter space in the NMSSM, the collider constraints presented

in the previous sections serve as the starting point for viable solutions. In connection with

the direct and indirect searches, the DM related observables, such as Spin-Independent (SI)
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cross sections σSI
p,n, Spin-Dependent (SD) cross sections σSD

p,n, indirect search rate 〈σv〉 and
relic density Ωh2 are calculated with MicrOmegas 2.2 [376] integrated with NMSSMTools.

Furthermore, we choose the LSP to be neutralino and consider its contribution to the current

relic abundance. As for a rather tight requirement, we demand the calculated relic density

corresponding to the 2σ window of the observed relic density [377] plus 10% theoretical

uncertainty [295, 378]. To be conservative, we also consider a loose requirement that the

neutralino LSP partially provides DM relic, leaving room for other non-standard scenarios

such as multiple DM scenarios [379–386]. We thus choose the tight (loose) relic density

requirement as

0.0947 (0.001) < Ωχ̃0
1
h2 < 0.142, (II.E.82)

d. DM Properties With a comprehensive scanning procedure over the 15 parameters as

listed in Table II.11, we now present the interesting features of the viable LSP DM solutions

and discuss their implications and consequences.

We show the DM relic density Ωh2 (left panel) and the scaled12 spin-independent cross

section σSI
p (right panel) versus the neutralino DM mass in Fig. II.40. The red, green, and

blue dots are the points in the A1, H1-funnels, sbottom, and stau coannihilation regions, re-

spectively, which satisfy all constraints described in section II.E.1.b as well as direct detection

limits from the LUX [387] and superCDMS [388]. The grey shaded region shows the sbottom

coannihilation solutions that are excluded by direct detection. The horizontal line marks the

lower limit for the tight relic abundance requirement. On the right panel, the color points

(shaded regions) are the viable solutions that pass tight (loose) relic abundance constraints

specified in eq. (II.E.82). To gain some perspectives, also shown there are the 68% and 95%

C.L. signal contours from CDMS II [120], the current 95% C.L. exclusion and projected

future exclusion limit from superCDMS, the current LUX result and future LZ expecta-

tion. The grey shaded region at the bottom is for the coherent neutrino-nucleus scattering

backgrounds [389], below which the signal extraction would be considerably harder.

As seen from the left panel of Fig. II.40, all the three scenarios as in Table II.10 could

12DM direct detection observables are scaled with the ratio of the LSP relic density over the measured
value.
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Figure II.40: Relic density (left panel) and scaled spin-independent cross section σSI
p (right

panel) versus neutralino DM mass. All points pass constraints described in section II.E.1.b.

The A1, H1-funnels, sbottom coannihilation, stau coannihilation solutions are shown in red,

green and blue dots, respectively. Left panel: all points pass the LUX [387] and super-

CDMS [388] direct detection constraints. The grey shaded region shows the sbottom coan-

nihilation solutions that are excluded by direct detection. The horizontal line is the lower

limit for the tight relic requirement. Right panel: the color points (shaded regions) are the

viable solutions that pass tight (loose) relic abundance constraints specified in eq. (II.E.82).

Also shown are the 68% and 95% C.L. signal contours from CDMS II [120] (dotted black

enclosed region), 95% C.L. exclusion and projected exclusion limits from superCDMS (solid

and dashed black) and LUX/LZ (solid and dashed magenta). The grey shaded region at the

bottom is for the coherent neutrino-nucleus scattering backgrounds [389].
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provide the right amount of relic cold dark matter within the 2σ Planck region. However,

results from the DM direct detection have led to important constraints, cutting deep into

the regions consistent with the relic density considerations, in particular, for the sbottom

coannihilation case. The direct detection in the sbottom coannihilation scenario receives

a large contribution from the light sbottom exchange, typically of the order 10−8 ∼ 10−5

pb, which is severely constrained by current searches from LUX and superCDMS. The large

shaded grey region of sbottom coannihilation solutions on the left panel of Fig. II.40 is

excluded by the direct detection constraints. This is also seen on the right panel of Fig. II.40

by the green dots mostly excluded by the direct detection. There is, however, a narrow dip

region for mb̃1
−mχ̃0

1
< 3 GeV when the direct detection rate could be suppressed below the

current limit (for example, see [390]). These small mass splittings indicate late freeze-out of

the coannihilator, resulting in a low relic density for the DM. For mb̃1
−mχ̃0

1
> mb, the direct

detection rate decreases slowly as the splitting increases. The collider searches from LEP also

exclude large mass splitting. Consequently, to survive direct detection, loose relic density

and collider constraints, the mass splittings typically need either to be between 2 GeV to mb,

or be as large as allowed by the LEP searches. On the other hand, the A1, H1-funnels and

stau coannihilation cases are not affected much by the direct detection constraints. Only a

small fraction of A1, H1-funnels and stau coannihilation solution is excluded by the direct

detection. For the A1, H1-funnel region, mχ̃0
1
spans over the whole region of 2−40 GeV. For

the sbottom (stau) coannihilation, only mχ̃0
1
& 10 (30) GeV is viable due to the tight LEP

constraints.

There are several recent studies on the possible “blind spot” for direct detection where

large accidental cancellation in the neutralino Higgs couplings occurs [292, 359, 391]. Ref. [391]

specifically pointed out the non-negligible cancellation between direct detection mediated by

the light CP-even Higgs and the heavy CP-even Higgs with negative µ parameter. These

constructions could further reduce the direct detection rate for our A1, H1-funnels and stau

coannihilation solutions.

The left panel of Fig. II.41 shows the relic density versus the mass splitting |mA1,H1 −
2mχ̃0

1
|/mA1,H1 for the A1, H1-funnel region. The deviation from the pole mass is typically

less than 15% to satisfy the relic density constraints, with |mA1,H1 − 2mχ̃0
1
| . 12 GeV. The
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Figure II.41: Left panel: relic density versus the mass splitting mA1,H1 − 2mχ̃0
1
|/mA1,H1 for

A1-funnel (red) and H1-funnel (blue). Grey points represent those with non-negligible s-

channel Z boson contributions. Right panel: the sfermion masses versus neutralino LSP

mass for the coannihilation regions. The shaded/dotted regions are those pass loose/tight

relic density requirement for the sbottom coannihilation (green) and stau coannihilation

(blue). The diagonal lines indicate the mass splittings of 0, 1.7 (mτ ), 4.2 (mb), and 7 GeV

as references.
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Figure II.42: The LSP DM candidate components N2
1j as a function of its mass in the A1, H1-

funnel region with tight relic constraints. The left panel is for the Bino-like LSP (N2
11 > 0.5)

and the right panel is for Singlino-like LSP (N2
15 > 0.5).

interplay among the LSP’s couplings to the resonant Higgs mediator, the Higgs couplings

to SM particles, and the resonance enhancement in the early universe determines the relic

density. For larger deviations from the resonance region, there are non-negligible Z mediated

contributions (indicated by grey points in Fig. II.41), which is emphasized in Ref. [359].

The right panel of Fig. II.41 shows the mass of sbottom/stau versus neutralino LSP

for the sbottom/stau coannihilation regions. For the sbottom, imposing loose relic density

requirement and collider constraints yields that 2 GeV < mb̃1
−mχ̃0

1
< 7 GeV. Most points

that satisfy the direct detection fall in the region of 2 GeV < mb̃1
−mχ̃0

1
< mb, which typically

have a suppressed relic density. Only very few points survive both the dark matter direct

detection and tight relic density requirement with mχ̃0
1
∼ 20 GeV and mb̃1

−mχ̃0
1
∼ 6 GeV.

For the stau, imposing direct detection bound does not restrict the mass regions further,

while imposing the tight relic density requirement favors slightly larger stau masses.

It is informative to understand the DM LSP nature in terms of the gaugino, Higgsino and

Singlino components N2
1j. This is shown in figures II.42 and Fig. II.43, for the A1, H1-funnel
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Figure II.43: The LSP DM candidate components N2
1j as a function of its mass for stau

coannihilation with the Bino-like LSP (left panel) and the Singlino-like LSP (middle panel)

and sbottom coannihilation (right panel) with the loose relic density constraint.

region and the stau, sbottom coannihilation regions, respectively, as a function of the LSP

mass.

As seen in Fig. II.42, for the A1, H1-funnel case, the dark matter could either be Bino

(dark black dots) or Singlino (light black dots) dominated, or as a mixture of these two. For

a Bino-like LSP (left panel), the H̃d component is typically larger: about 0.5%−5% while

H̃u component is suppressed, . 0.1%. For a Singlino-like LSP (right panel), it features a

larger H̃u component: around 1% to 10%, while H̃d fraction is much more suppressed. These

features are direct results of the mixing matrix as shown in eq. (II.E.71) and eq. (II.E.74).

As seen in Fig. II.43, the stau coannihilation case can have the LSP being dominantly

Bino-like (left panel) with a Higgsino fraction up to about 5% (mostly H̃d), or dominantly

Singlino-like (middle panel) with a Higgsino fraction up to about 20% (mostly H̃u). The

Singlino-like LSP case usually has a larger relic density due to the suppressed coupling to

the stau coannihilator. The sbottom coannihilation case (right panel) has a much smaller

fraction of Higgsino component 0.5% or less, with LSP being mostly Bino-like.

Finally, we want to comment on the degree of mass degeneracy for these solutions. For

the funnel case, the requirement is mostly for hitting the resonance with the LSP pair.

For a measure defined as |mH1/A1 − 2mχ̃0
1
|/mH1/A1 , about 10% mass split in the neutralino
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and singlet-like Higgs sector is more than sufficient to provide viable solutions as shown in

Fig. II.41. For the sfermion coannihilation, several requirements need to be satisfied simulta-

neously. One requirement is the nearly degenerate masses of the coannihilator and the LSP,

as enforced by the LEP constraints and effective coannihilation. The other requirement is to

have the appropriate amount of L-R mixing while keeping the heavier eigenstate heavier than

hundreds of GeV, as enforced by Z-boson width constraint, collider searches on sfermions,

and the decays of the SM-like Higgs boson. This tuning leads to the lack of solutions with

Z-decoupling sfermions as shown in Fig. II.39. Overall, light neutralino solutions require

certain level of tuning, and future searches are likely to either lead to discovery or push the

solutions into much narrower and fine-tuned regions.

Direct and indirect detection

As already discussed in the last section, for the spin-independent (SI) direct detection

of all these three scenarios with the loose relic density constraint, the signal rates vary in a

large range. It is typically mediated by the CP-even Higgs bosons via t-channel exchange.

The partons in the nucleon couple to the MSSM doublet Higgs bosons (or hv and Hv)

directly. The dark matter candidate, which is Bino-like or Singlino-like, couples to the

doublet Higgs bosons through their Higgsino components only, as shown in eqs. (II.E.72)

and (II.E.75). Their direct detection are usually suppressed because the singlet-like Higgs

only couples to the SM fermions weakly, and the doublet Higgs bosons do not couple to

the LSP pairs much. The signal rate could be extended well below the coherent neutrino

backgrounds. Certain tuned scenarios could result in larger SI direct detection, for example,

a very light CP-even Higgs with sizable doublet Higgs fraction [392, 393]. The detection rate

for the sbottom coannihilation scenario, on the other hand, is naturally high, coming from

the additional contribution through the sbottom exchange.13 The next generation direct

detection experiments such as LZ and superCDMS would provide us valuable insights into

very large portion of the allowed parameter space with the increased sensitivity of several

orders of magnitude.

13A recent study shows that the pole region resides at mb̃ = mχ̃0
1
−mb instead of mb̃ = mb + mχ̃0

1
[390].

Given that the sbottom mass is always larger than the corresponding LSP mass, we are away from this pole
region. In our analyses, we correct the direct detection cross sections calculated by MicrOMEGAs [376] by
replacing the values for points near the fake pole of mb̃ = mb +mχ̃0

1
with points of the same sbottom mass

away from the pole, which well approximates the results in Ref. [390] in the relevant regions.
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Figure II.44: The scaled proton spin-dependent direct detection rate (left panel) and the

indirect detection rate (right panel) versus the neutralino DM mass. Red, green and blue

dots are for the solutions in A1, H1-funnels, sbottom and stau coannihilation scenarios,

respectively. The solid lines on the left panel correspond to exclusions on σSD
p from SIM-

PLE [394], PICASSO [395], COUPP [396], and XENON100 [397]. The solid (dashed) line on

the right panel corresponds to exclusion on indirect detection rate from Fermi-LAT [72] with

bb̄ (τ+τ−) annihilation mode. The shaded region are the preferred low velocity annihilation

cross section to account for the gamma ray excess with 35 GeV Majorana DM annihilating

into bb̄ [398].
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We show the scaled proton Spin-Dependent (SD) cross section in the left panel of

Fig. II.44. All the viable solutions has the spin-dependent cross sections of the order 10−4 pb

or smaller, below the current limits from various dark matter direct detection experiments.

For these solutions through the funnels and coannihilations, the usual connection among

the annihilation, direct detection, indirect detection and collider searches through crossing

diagrams is not always valid. It needs to be examined in a scenario and model specific

manner. Due to the Majorana nature of the neutralino LSP, only the CP-even Higgs bosons

could mediate the SI direct detection, and only the axial vector current through Z-boson

contributes to the SD direct detection. In addition, there are squark contributions to the

direct detection, which leads to large SI direct detection rate for sbottom coannihilation

scenario as discussed in previous sections. As a result, the SD direct detection provides a

complementary probe for the neutralino LSP’s couplings to the Z boson. This is especially

true even in some of the “blind spot” scenarios.

In the right panel of Fig. II.44 we show the low velocity DM annihilation rate in the

current epoch for different light DM scenarios, together with the 95% C.L. exclusions on the

indirect detection rate from Fermi-LAT [72]. Majority of our solutions satisfy the indirect de-

tection constraints. Note that the low-velocity DM annihilation rate could be either larger or

smaller than the usual WIMP thermal relic preferred value of ∼ 2× 10−26 cm3s−1 (assuming

s-wave dominance). This is because the DM annihilation rate at low velocity does not nec-

essarily correspond to the thermal averaged dark matter annihilation 〈σv〉 around the time

of the dark matter freezing out. When far away from the resonance, the s-channel CP-odd

(CP-even) Higgs exchange corresponds to s-wave (p-wave) annihilation. While low velocity

annihilation rate for the s-wave annihilation is similar to the thermal freezing out rate due to

the velocity independence, the rate for p-wave annihilation today is much lower comparing to

the early universe due to velocity suppression. Furthermore, this simple connection between

mediator CP property and partial wave no longer holds when near the resonance region,

when full kinematics needs to be taken into account in numerical studies. In particular, for

the funnel region with 2mχ̃0
1
> mA1,H1 (2mχ̃0

1
< mA1,H1), low velocity rate should be higher

(lower) than the freezing out annihilation rate due to the increase (decrease) of resonant

enhancement. The bulk of our funnel region solutions corresponds to the 2mχ̃0
1
< mA1,H1
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case, as a result of the combined constraints imposed.

Interestingly, our results indicate that possible solutions exist for those regions preferred

by the GeV gamma-ray excess from the Galactic Center, which is indicated by the grey

region in the right panel of Fig. II.44. While the astro-physical sources for explanation of

the excess could be very subtle with different subtraction scheme resulting in different shapes

of excess, or even no excess, this observation has stimulated several interesting discussions

recently [398–409]. As shown in later sections, the dominant decay for funnel mediators is

bb̄, which serves as a good candidate for the gamma-ray source. For the stau and sbottom

coannihilations, the main annihilation channels for the LSP pairs are τ+τ− and bb̄, with the

former yielding a different gamma ray spectrum. The predicted gamma-ray excess spectra

could vary in shape in many different ways in a given model such as (N)MSSM due to various

composition of annihilation products. With more data collected and analyzed, confirmation

of the gamma-ray excess and a robust extraction of the excess shape would help pin down

the source and shed light on the underlying theory. The three light neutralino LSP DM

scenarios provide an important framework with their different annihilation modes, yielding

a range of soft to hard gamma-ray spectra to confront the potential excess data.

2. LHC Observables

Collider experiments provide a crucial testing ground for the WIMP light dark matter sce-

narios. In the NMSSM, guided by the light A1 and H1 in the funnel region, the light sbottom

and stau in the coannihilation regions, we discuss the collider implications of the three light

dark matter solutions on observables related to the SM-like Higgs boson, searches for light

scalars and Missing Transverse Energy (MET) signals.

a. Modifications to the SM-like Higgs Boson Properties The observation of a

SM-like Higgs boson imposes strong constraints on the extensions of the SM Higgs sector.

In particular, one of the CP-even Higgs bosons in the NMSSM is required to have very

similar properties to the SM Higgs boson. As a result, any deviation of this SM-like Higgs

boson from hv state is tightly constrained. Moreover, decays of the SM-like Higgs boson to
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these newly accessible states of χ̃0
1χ̃

0
1, A1A1, H1H1, τ̃+

1 τ̃
−
1 and b̃1b̃

∗
1 could reduce the Higgs

branching fractions to the SM particles, which are constrained by the current experimental

results as well. Furthermore, new light charged sparticles such as sbottom and stau could

modify the loop-induced Higgs couplings such as Higgs to diphoton.

We examine the cross sections of the dominant channels for the SM-like Higgs boson

search, as well as the Higgs decay branching fractions to those new light states. In Fig. II.45,

we show the ratios of the cross sections with respect to the SM value σ/σSM of gg → HSM →
WW/ZZ versus that of gg → HSM → γγ for the 126 GeV SM-like Higgs. The γγ channel

remains correlated with the WW/ZZ channel, with the cross section ratios to the SM values

varying between 0.7 − 1.2. Since the W -loop dominates the Higgs to diphoton coupling,

deviations from the diagonal line come from the variation of other loop contributions such

as the (s)fermion-loop. Importantly, although we have new light charged states such as

sbottom and stau that could modify the Higgs to diphoton coupling, it does not show

large deviations. Their limited contributions result from indirect constraints imposed on

the Higgs boson decays to these light sfermions pairs. Beyond the mass range of our current

interest, dedicated scan for stau around 100 GeV may still give very large enhancement in

the diphoton rate, as discussed in detail in Ref. [259].

We show the decay branching fractions of the SM-like Higgs boson to the new states in

Fig. II.46. The left panel shows the branching fractions of HSM → A1A1, H1H1. We see

that the exotic decays can be as large as 40% and still consistent with the current Higgs

measurements. Given the possible decay final states of A1 and H1 to ττ , bb̄ or γγ, dedicated

searches for these exotic multi-body decays of the SM-like Higgs could be fruitful in studying

these solutions. A generic 7-parameter fit with extrapolation shows the LHC 14 TeV could

bound the exotic decays of the Higgs boson up to 14− 18% (7− 11%) with 330 (3000) fb−1

of integrated luminosity [196], assuming the couplings of the Higgs boson to W and Z not

exceeding the SM values [172].

The right panel in Fig. II.46 shows the branching fractions of HSM → χ̃0
1χ̃

0
1, τ̃

+
1 τ̃
−
1 and

b̃1b̃
∗
1 versus contributions to the Z-boson width. The invisible decay channel χ̃0

1χ̃
0
1 (red) shows

some correlations between Z andHSM decay because both are mediated through the Higgsino

component. The invisible branching fraction of the SM-like Higgs boson could be quite

151



Figure II.45: The cross section ratios σ(gg → HSM → WW/ZZ)/σSM versus σ(gg → HSM →
γγ)/σSM for the SM-like Higgs. The A1, H1-funnels, sbottom coannihilation, stau coannihi-

lation solutions are in red, green and blue dots, respectively. A black dashed line with slope

1 is shown as a reference.

Figure II.46: Left panel: branching fractions of the SM-like Higgs boson decaying to new

light Higgs channels A1A1 (magenta and orange), and H1H1 (black) versus the hv fraction

(ξhvSM)2 of the SM-like Higgs boson. Right panel: branching fractions of the SM-like Higgs

boson decaying to χ̃0
1χ̃

0
1 (red), b̃1b̃

∗
1 (green) and τ̃+

1 τ̃
−
1 (blue) versus partial widths of these

modes for Z boson.
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sizable, reaching 30%− 40%. While the current LHC limits on the invisible Higgs decay via

the ZH and VBF channels are relatively weak [366–368], future measurements will certainly

improve the sensitivity to further probe this important missing energy channel [410–413].

The Higgs boson couplings to sfermion receive contributions from D-term, F-term and

trilinear soft SUSY breaking terms, resulting in a generally non-correlated decay branching

fractions to b̃1b̃
∗
1 (green) and τ̃+

1 τ̃
−
1 (blue) comparing to the corresponding decays of the Z

boson. These decay branching fractions could be as large as 30%. However, given the small

mass splitting between the mass of the sbottom/stau with that of the LSP, all the SM decay

products would be too soft to be identifiable in the LHC environment. In practice, those

channels could be counted as the invisible modes.

b. Non-SM Light Higgs Bosons Non-SM light Higgs bosons are particularly impor-

tant in the A1, H1-funnel solutions and may as well exist for sbottom and stau coannihilation

solutions. They are well-motivated in the PQ-limit NMSSM. These light scalars are usually

singlet-dominant, but they have non-negligible mixing with the MSSM doublet Higgs bosons

in the case of the A1, H1-funnel solutions.

The two panels on the left of Fig. II.47 show the couplings of A1 and H1 to quarks, gluons

and gauge bosons, normalized to the SM values, versus the doublet fractions as defined in

eq. (II.E.70). For A1, the couplings squared roughly scale with the MSSM CP-odd Higgs

fraction (ξA1 )2. The couplings to the up-type quarks are further suppressed by 1/ tan β while

the couplings to the down-type quarks are enhanced by tan β, which could reach ∼ 0.1 for

|gd/gSM
d |2 despite the small (ξA1 )2. Loop induced A1 coupling to gluon is dominated by the

bottom loop, therefore roughly the same order as the normalized A1dd̄ coupling. The H1

couplings to SM particles are through its hv and Hv components. hv couples in the same way

as the SM Higgs, while Hv couples to the up- and down-type quarks with a factor of 1/ tan β

and tan β of the corresponding SM Higgs couplings, and does not couple to W and Z at all.

H1dd̄ and H1gg couplings squared span over a while range for a given (ξhv1 )2 + (ξHv1 )2, while

H1uū and H1V V scale with (ξhv1 )2 + (ξHv1 )2 almost linearly.

We show the leading decay branching fractions of the light Higgs bosons for the A1, H1-

funnel cases in the two right panels of Fig. II.47. The decays of both CP-even and CP-odd
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Figure II.47: Left panels: squared normalized couplings of the light CP-even, CP-odd Higgs

bosons to up-type quarks (brown), down-type quarks (blue), gluon pair (pink) and weak

boson pairs (orange) versus their doublet fraction: (ξA1 )2 for A1 (upper panel) and (ξhv1 )2 +

(ξHv1 )2 for H1 (lower panel) in the funnel regions. Right panels: branching fractions of light

Higgs bosons A1, H1 to χ̃0
1χ̃

0
1 (red), bb̄ (green) and τ+τ− (blue) and A1A1 (brown) final

states for the funnel regions.
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Figure II.48: Total cross sections at the 14 TeV LHC for the light A1 (left panel) andH1 (right

panel), from the gluon fusion (ggF), Vector Boson Fusion (VBF), Vector boson associated

production (V H1), and bb̄, tt̄ associated production.

Higgs boson show clear τ+τ− dominance at lower masses and bb̄ dominance once above the

bb̄ threshold. It is interesting to note that the invisible mode for A1 → χ̃0
1χ̃

0
1 is competitive to

τ+τ− below the bb̄ threshold, and increasingly important for larger mA1 comparing with the

bb̄ mode. This is because the higher DM mass, the more annihilation contribution through

Z-boson (for example, the Z-funnel emphasized in Ref. [359]) could be in effect, allowing

either larger deviation of the dark matter from A1 pole and larger branching fraction of A1

to LSP pair. For the H1 decays on the other hand, the invisible mode H1 → χ̃0
1χ̃

0
1 is less

competitive and typically below 30%. A new interesting channel H1 → A1A1 opens up when

kinematically allowed, which could reach as large as 80%.

These light Higgs bosons can be produced either indirectly from the decay of heavier

Higgs bosons or directly from the SM-like processes through their suppressed MSSM doublet

Higgs components. The former indirect production has many unique features. One of the

important cases has been discussed in the previous section as HSM → A1A1. Many other

interesting channels have also been discussed in Refs. [369].

The direct production cross sections at the LHC could still be quite sizable, benefited

from the large phase space and high parton luminosity at low x. We calculate the cross

sections of these light Higgs bosons by extrapolating SM Higgs cross sections [414] to low
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Figure II.49: Neutralino DM production from Higgs decays at the 14 TeV LHC as a function

of Higgs boson mass. Left panel is for ZH,WH and VBF production, and right panel is for

tt̄H/A, bb̄H/A associated production.

mass regions and scaling with the corresponding squared couplings. The production cross

sections for various channels are shown in Fig. II.48. The gluon fusion remains to be the

leading production mode, and is typically of the order of pb. For the light A1, because its

coupling to the top quark is suppressed by tan β, the tt̄A1 cross section are as low as tens

of ab, while bb̄A1 cross section could reach as high as pb level. For the light H1, it usually

mixes more with the hv, resulting in sub pb level tt̄H1 and bb̄H1 cross sections. The light

CP-even Higgs boson also couples to the weak bosons. The VBF and Z/WH1 associated

production rate range from sub fb to sub pb.

As discussed in the last section, one of the promising channels to search at the LHC is

the Higgs boson to invisible mode [367, 368]. This study can be naturally carried out with

the Higgs bosons other than the SM-like one. In Fig. II.49 we show the cross sections for

the Higgs bosons produced in channels of tt̄H/A, bb̄H/A, WH/ZH, as well as VBF, with

the subsequent decay of Higgs bosons into a neutralino LSP pair as the invisible mode. For

V H and VBF, the cross section rate could be as large as 10 fb to 1 pb for production via

a relatively light Higgs, reaching a maximum near mHSM ≈ 125 GeV. This is because VVH

coupling is maximized for the SM-like Higgs. We note that given the fact that the SM-like

Higgs boson must take up a large portion of hv in the doublet, such associated production
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will be correspondingly suppressed for other Higgs bosons. On the other hand, the bb̄H/A

and tt̄H/A production cross sections reach their maximal allowed value around 80 GeV and

fall below 1 fb for mH/A & 600 GeV.

We have also included contributions from the solutions of both A1, H1-funnels and coan-

nihilations. In principle, the coannihilation regions do not necessarily have light Higgs bosons

in presence, nor the Higgs bosons have large branching fractions to DM pairs. Nevertheless,

Higgs bosons could help enhance the DM signals, especially for the Singlino-like one. These

processes can be triggered in the LHC experiments with large MET plus the other compan-

ioning SM particles. Besides the typical search for `` or `ν + 6ET and VBF jets +6ET , other
possible search channels include the heavy quark associated production tt̄+ 6ET and bb̄+ 6ET .
It is also known that one could take the advantage of the Initial State Radiation (ISR) of

a photon or a jet for DM pair production. Such searches have been carried out in terms of

effective operators [415] at the LHC for mono-photon and mono-jet searches. These searches

should be interpreted carefully in our case through Higgs portal, due to the existence of the

relatively light particles in the spectrum (see, e.g., Ref. [416]).

c. Light Sfermions It is of intrinsic interest to study the viability of the light sfermions

at the LHC. Usual sfermion searches at the LHC tag the energetic visible part of the sfermion

decay, requiring a larger mass gap between the sfermion and neutralino LSP. In this section,

we discuss the LHC implications for these light sfermions with compressed spectra.

The light sbottom has to be very degenerate with the LSP to avoid the LEP constraints

as shown in eq. (II.E.81): ∆m = mb̃1
− mχ̃0

1
. 7 GeV. This very special requirement has

important kinematical and dynamical consequences and it leads to two distinctive regimes

for the sbottom search at the LHC.

For ∆m > mb, the prompt decay of b̃1 → bχ̃0
1 would result in 2b + /ET final state for

sbottom pair production. Given the softness of the b jets with energy of a few GeV, these

events have to be triggered by demanding large /ET or a very energetic jet from initial or final

state radiation. As a result, the b jet from sbottom though soft in the sbottom rest frame,

can be boosted and can be even triggered on. However, the signal cross section is reduced

by orders of magnitude with the requirement of large /ET or a energetic jet.
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Table II.13: Summary of the ATLAS sbottom search results on the upper bound of signal

cross section σvis [375], and the sbottom signal cross section σsig after selection cuts for the

benchmark point of mb̃1
= 20 GeV and mχ̃0

1
= 14 GeV from our study, in the two signal

regions SRA and SRB.

SRA SRB

mCT ≥ 250 GeV ≥ 300 GeV ≥ 350 GeV

95% C.L. upper limit
0.45 0.37 0.26 1.3

σvis (fb)

σsig (fb) 0.20 0.19 0.17 137

ATLAS has performed the sbottom searches for 2b+ /ET and bb̄j + /ET final states [375]

at the 8 TeV LHC with 20 fb−1 integrated luminosity, and a similar CMS analysis has used

the 7 TeV data with HT and variable αT to reject backgrounds with 0, 1, 2 and 3 b-jets [417].

While current studies focus on the sbottom mass between 100 − 700 GeV with ∆m ≥ 15

GeV, we adopted the same cuts used in their analyses to put bounds on the light sbottom

in the sbottom coannihilation scenario.

For illustration, we choose a sbottom mass to be 20 GeV and a neutralino LSP mass to

be 14 GeV. We generate the events using MadGraph5 [242] at parton level. In table II.13,

we list the 95% C.L. upper limit on σvis from the ATLAS analysis [375] for two signal

regions: SRA, mostly sensitive to bb̄+ 6ET final state, and SRB, mostly sensitive to bb̄j + 6ET
final state. This search mainly relies on large MET with two b-tagged jets and requires

additional hard jet in SRB [375]. The last row of table II.13 gives the signal cross sections

after all cuts, σsig, for the chosen benchmark point in the sbottom coannihilation region.

We see that the bb̄ + /ET search does not provide a meaningful bound for the light sbottom

case, which could be attributed to the inefficient choice of the acceptance cuts, optimized

for sbottom mass of hundreds of GeV. The bb̄j + /ET search in SRB, on the other hand,

provides far more stringent bound that rules out the light sbottom prompt decay case with
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∆m = mb̃ −mχ̃0
1
> mb. Varying the light sbottom mass and neutralino LSP mass does not

alter the results much since the triggers and cuts are on the order of hundred GeV.

For ∆m < mb, the tree-level 2-body decay is kinematically inaccessible and its decay

lifetime is most likely longer than the QCD hadronization scale of (10−12− 10−13) second. A

sbottom would first hadronize into a “R-hadron” [418]. If the R-hadron subsequently decays

in the detector, the small mass difference would lead to very soft decay products with little

MET and thus escape the detection at the LHC. These events may have to be triggered on

by demanding a highly energetic jet from initial or final state radiation, recoiling against

large MET. The requirement of large MET or a leading jet of hundreds of GeV reduces its

signal cross section by several orders of magnitude. The overwhelming hadronic backgrounds

at the LHC environment would render this weak signal impossible. If the R-hadron decays

within the detector with favorable displacement, an interesting possibility of displaced vertex

search at the LHC with high pT jet recoiling against sbottom pairs may be sensitive to such

a scenario, see Ref. [419]. If the R-hadron, on the other hand, is quasi-stable and is charged

(CHArged Massive Particle CHAMP), it could lead to a soft charged track in the detector.

Searching for such signals is interesting, but typically challenging at the LHC [420]. On

the other hand, such a light and long-live charged R-hadron has been excluded by CHAMP

searches at the LEP.

In the stau coannihilation scenario, there is typically a light stau of mass between 32 and

45 GeV, which degenerates with the neutralino LSP with a small mass splitting of less than 3

− 5 GeV. It is known that searching for slepton signals at the LHC is extremely challenging

because of the low signal rate and large SM backgrounds. The direct pair production for

stau at the LHC is via the s-channel γ/Z exchanges. The electroweak coupling and p-wave

behavior render the production rate characteristically small. With the leading decay of stau

to tau plus LSP, the final state signal τ̃+τ̃− → τ+τ− + 6ET encounters the overwhelming

SM backgrounds such as W+W− → τ+τ− + 6ET . Furthermore, the nearly degenerate mass

relation for our favorable DM solutions further reduces the missing energy, thus making

the signal more difficult to identify over the SM backgrounds. For stau pair production in

association with an additional energetic jet or photon, the extra jet/photon momentum kicks

the stau pair and could result in a larger missing energy. However, W+W−+ nj background
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would still be overly dominating, which makes the stau detection very challenging at the

LHC. For some related studies, see Ref. [421].

The existing LHC searches on neutralino/chargino with cascaded decay via stau can

be viewed as stau searches and the analyses relied on two tagged taus with MT2 cut. The

minimal MT2 cut of 90 ∼ 110 GeV makes these searches insensitive to our light stau solutions

which typically have a much smaller MT2.

3. Summary and Outlook

Identifying particle dark matter is of fundamental importance in particle physics. Searching

for a light dark matter particle is always strongly motivated because of the interplay among

the complementary detection of the underground direct search, indirect search with astro-

particle means, and collider studies. Ultimately, the identification of a WIMP dark matter

particle must undergo the consistency check for all of these three detection methods. In this

section, we discussed the phenomenology of the light (< 40 GeV) neutralino DM candidates

in the framework of the NMSSM. We performed a comprehensive scan over 15 parameters

as shown in table II.11. We implemented the current constraints from the collider searches

at LEP, the Tevatron and the LHC, the direct detection bounds, and the relic abundance

considerations. We illustrated the qualitative nature of the neutralino dark matter solutions

in table II.10. We provided extensive discussions for the complementarity among the under-

ground direct detection, astro-physical indirect detection, and the searches at the LHC and

ILC. Our detailed results are summarized as follows.

• Viable light DM solutions: we found solutions characterized by three scenarios: (i)

A1, H1-funnels, (ii) stau coannihilation and (iii) sbottom coannihilation, as listed in

Table II.10. The A1, H1-funnels and stau coannihilation could readily provide the right

amount of dark matter abundance within the 2σ Planck region (figures 2 and 3). The

sbottom coannihilation solutions typically result in a much lower relic density. This

under-abundance could also occur for A1, H1-funnel solutions if mA1/H1 ≈ 2mχ̃0
1
, and for

stau coannihilation solutions if the LSP is Bino-like.
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• Features of the light DM solutions: the neutralino LSP could either be Bino-like, Singlino-

like or an admixture (figures II.42 and II.43). For the A1, H1-funnels, the light Higgs

bosons A1/H1 are very singlet-like. They serve as the nearly resonant mediators for the

DM annihilation. For the stau coannihilation, the stau usually needs large L-R mixing

or Z decay kinematic suppression to avoid the Z boson total width constraint, and it

could be as light as 32 GeV. For the sbottom coannihilation, the sbottom is mostly right

handed and could be as light as 16 GeV given the Z total width consideration as well as

other collider constraints (Fig. II.39).

• Direct detection: the direct detection rates for the three types of solutions vary in a large

range. For the sbottom coannihilation with the right amount of DM relic abundance,

the SI direct detection rate is usually high, due to the effective bottom content in the

nuclei. The SD direct detection provides complementary probes to the DM axial-vector

couplings to Z boson and light squark exchanges. The three kinds of solutions could

have very low SI direct detection rate, some extend into the regime of the coherent

neutrino-nucleus scattering background. The next generation of direct detection such as

LZ, SuperCDMS and SNOLAB experiments would provide us valuable insights into very

large portion of the allowed parameter space (figures II.40 and II.44).

• Indirect detection: the low velocity annihilation cross sections for these solutions also

vary in a large range, usually prefer a rate lower than the canonical value of s-wave

dominance assumption. For the A1, H1-funnels, the resonance feature allows some larger

rates in the current epoch. Interestingly, it naturally provides a dark matter candidate

for the GeV gamma-ray excess with ∼ 35 GeV LSP pair that mainly annihilates into bb̄.

For sbottom and stau coannihilations, the corresponding annihilations are mainly into

bb̄ and τ+τ−, with the later yielding different gamma-ray spectra (Fig. II.44).

• SM Higgs physics: the decays of the SM-like Higgs boson may be modified appreciably

(Fig. II.45), and its new decay channels to the light SUSY particles, including the invisible

mode to the LSP DM particle, may be sizable (Fig. II.46).

• New light Higgs physics: the new light CP-even and CP-odd Higgs bosons will decay

to the LSP DM particle, as well as other observable final states (Fig. II.47), leading

to interesting new Higgs phenomenology at colliders. The search for a light singlet-like
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Higgs boson is usually difficult at the LHC due to the low production rates (Fig. II.48)

and the large SM backgrounds. The searches for pair produced singlet-like Higgs bosons

via the decay of the SM-like Higgs as in Fig. II.46 and production of LSP pairs through

Higgs portals as in Fig. II.49 may improve the signal sensitivity at the LHC.

• Collider searches for the light sfermions: for the sbottom coannihilation, our recast of

the current LHC searches for heavier sbottom shows that the case of ∆m > mb has

been ruled out given the analysis of the sbottom pair production with a hard ISR jet.

For the case of ∆m < mb, the long-lived charged R-hadron has been excluded by the

LEP search, and the only viable case left would be a promptly decaying sbottom (or an

R-hadron) that could escape the LHC search due to the softness in decay products, but

will be covered at the ILC by searching for events with large missing energy plus charged

tracks or displaced vertices.

For the stau coannihilation, searches at the LHC would be prohibitively difficult with

the nearly degenerate masses. A lepton collider, however, comes to the rescue: For the

case of ∆m < mτ , the stau is most likely long-lived and has been excluded by the LEP

search. For the case of ∆m > mτ , the ILC will definitely be capable of covering this

scenario.

F. SUSY DISPLACED DECAYS

We consider models with displaced decays motived by the naturalness argument [160–164]:

• t̃→ d̄id̄j via baryonic RPV, including t̃→ b̄b̄ [151] (Figs. II.51, II.52)

• g̃ → uidjdk via baryonic RPV (Fig. II.53)

• H̃ → uidjdk (+soft) via baryonic RPV (Fig. II.54)

• q̃ → q G̃ in GMSB (Fig. II.55)

• g̃ → g G̃ in GMSB (Fig. II.56)

• t̃→ t(∗) G̃ in GMSB (Fig. II.57)

• H̃ → h/Z G̃ (+soft) in GMSB (Fig. II.58)

• g̃ → qq̄B̃ in mini-split SUSY (Fig. II.59)
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Some major options missing from this list are sleptons, electroweak gauginos, simplified

spectra with leptonic RPV, and mini-split SUSY with gluino decays dominated by heavy

flavor. As discussed in more detail below, some of these other possibilities are covered already

by existing searches or recasts, and some we expect to have significant overlap with the above

signals, but some would also be worth a closer look in future work.

The most powerful displaced decay limits within our selection of models typically come

from the CMS tracker-based search for displaced dijets [138]. This search often remains

sensitive to models with cτ much larger than the tracker radius, as well as to models with

decay topologies different from the nominal dijets. For models where the long-lived particle

is colored, hadronization implies a sizable charged fraction that can also be picked up by

stable charged particle searches in events where the decay takes place outside of the detector.

Similarly, these searches maintain some sensitivity for cτ much smaller than the 5−−10 m

outer detector radius. The overlap of exclusions between displaced decay searches and sta-

ble charged particle searches can then be significant, sometimes more than three orders of

magnitude in lifetime. At the low end of the lifetime range, prompt searches also become

sensitive. While it is not possible for us to precisely map out the lifetime range over which

these searches remain efficient, conservative guesses again allow for significant overlap. This

complementarity often allows for exclusions that span from prompt lifetimes to infinity with

no gaps.

The main results of this section consist of a series of exclusion plots over the mass-lifetime

plane of each displaced particle, Figs. II.51 through II.59. For the colored production models,

the mass reach in the cτ range of O(mm−−m) is usually comparable to, and in some cases

better than, the ≈ 1 TeV reach from collider-stable charged particle searches. In particular

stops, which are expected to have mass less than about 1 TeV in a natural model, have

very little viable model space surviving in this lifetime range under these decay scenarios.

For the electroweak Higgsino production, stable charged particle limits do not apply, and

prompt searches are typically limited in sensitivity, but a large number of displaced searches

yield powerful limits, especially in the GMSB case. We find that for cτ ∼ 10 cm, masses

below about 600−−800 GeV are excluded, giving serious tension with naturalness at those

lifetimes. For natural masses near 100 GeV, the excluded lifetime ranges from O(10 microns)
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to O(10 m) in RPV, and up to O(100 m) in GMSB, dominated there by CMS’s tracker-based

displaced dilepton search [139].

For all models, the region of lifetimes around cτ ∼ 10 m could in principle benefit

from searches in the hadronic calorimeters and muon chambers, such as those performed by

ATLAS [140, 141]. But the existing searches are highly limited in sensitivity by their focus

on lower-mass models and by requiring very tight reconstruction cuts on both sides of the

event. For the Higgsino models, improvements in this direction might be the only option for

extending the sensitivity to higher lifetimes, without ultimately appealing to more standard-

style SUSY searches that assume that both final-state Higgsinos escape the detector unseen.

The section is organized as follows. In the next sub-section, we review the existing LHC

collider-stable and displaced particle searches that we use in our limit-setting. (This sub-

section may be bypassed by a reader who is not interested in the details of these analyses.)

Sec. II.F.2 specifies the motivations and features of the simplified SUSY models under in-

vestigation, and presents our derived limits. We conclude and present some ideas for future

searches in section II.F.3. An appendix discusses the details and calibrations of our detector

simulations used for recasting.

1. The LHC Searches Under Consideration

Displaced decay searches at the LHC are currently limited to a handful of specific new physics

scenarios.14 Searches that target minimal SUSY include non-pointing photons in gauge

mediation (assuming a mostly-bino LSP) [132, 133], the “disappearing track” signature of

NLSP charginos in anomaly mediation [134, 434], displaced leptons from neutralino or stop

decays with leptonic RPV [135, 136, 138], and late decays of gluino R-hadrons stopped

in the calorimeters in mini-split SUSY [137, 145]. Other searches focus on models such

as Hidden Valleys [138–141, 144, 146, 147] or light hidden-sector gauge bosons [142, 143].

Recently, ATLAS has also re-interpreted its prompt gluino limits, accounting for the effect

of displacement on the signal acceptance [131], results that we put into broader context here.

14Displaced decay searches have also previously been carried at the Tevatron [422–430] and at LEP [431–
433]. These searches have for the most part either been superseded by the LHC or do not have immediate
relevance to the SUSY models we consider. We do not attempt to recast any of them. However, we practically
assume that long-lived particles below 100 GeV should have been highly visible to some of these searches.
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Table II.14: A summary of the LHC searches recast in this section.

energy lumi refs analysis

CMS heavy stable charged 7+8 TeV 5.0+18.8 fb−1 [129] II.F.1.a

CMS displaced dijets 8 TeV 18.5 fb−1 [138, 435] II.F.1.b

CMS displaced dileptons 8 TeV 19.6/20.5 fb−1 [139] II.F.1.c

CMS displaced e+µ 8 TeV 19.7 fb−1 [136] II.F.1.d

ATLAS muon spectrometer 7 TeV 1.94 fb−1 [141] II.F.1.e

ATLAS low-EM jets 8 TeV 20.3 fb−1 [140] II.F.1.f

ATLAS µ+tracks 8 TeV 20.3 fb−1 [135] II.F.1.g

CMS has re-interpreted its stable charged particle searches for a large ensemble of pMSSM

models with long but finite lifetimes [130], and we apply a similar strategy to our more

focused set of models.

From this modest but growing list of analyses, we select seven that appear to be of great-

est relevance for the SUSY models studied in Section II.F.2: the CMS heavy stable charged

particle search [129], the CMS displaced dijets search [138], the CMS displaced dileptons

search [139], the CMS displaced electron and muon search [136], the ATLAS muon cham-

ber search[141], the ATLAS low-EM jet search [140], and the ATLAS displaced muon plus

tracks search [135]. Except for the ATLAS muon chamber, all of these have been performed

with the full 8 TeV dataset. The following subsections summarize the relevant aspects of

each analysis that we use for our recasts, as well as commentary on the reliability of these

recasts where appropriate. Our approximate reproduction of each of these analyses relies

on simplified detector simulations. Descriptions of these simulations and their calibration

to known experimental results is provided in a corresponding set of subsections in the ap-

pendix. Table II.14 provides a compact overview, including the associated references and

subsections.
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a. CMS Heavy Stable Charged Particles Both ATLAS [128] and CMS [129] have

conducted searches for heavy stable charged particles (HSCP) that traverse the entire detec-

tor, and appear as a “heavy muon” with anomalously small velocity or dE/dx in the detector

material. We choose to focus on the CMS searches [129], though we expect very similar per-

formance from the ATLAS searches. Stable squarks and gluinos have already been explicitly

considered by both experiments, and will simply generalize these results to cases with finite

lifetimes.

The only major subtlety when dealing with meta-stable colored particles is that they are

only seen bound into R-hadrons [418]. The hadronization fractions can be estimated from

simple models, and are likely fairly accurate for squarks given the extensive theoretical and

experimental experience with heavy quarks. Hadronization of the color-octet gluino is less

certain, but we assume here the default behavior in Pythia8 [436]. (This results in a charged

hadronization fraction of approximately 46%.) A more subtle issue is how these R-hadrons

interact with the detector material, especially the chance that a charged R-hadron will pass

through the calorimeters without a net charge exchange, and thus manage to trigger in

the muon system. CMS considers two models: a nominal hadronic cloud interaction and a

more extreme “charge-stripped” assumption where all R-hadrons emerge from the back of the

calorimeter in a neutral state. Thankfully, the complicated interplay with the detector has

been accounted for by CMS, and to extract our own finite-lifetime limits we can concentrate

on simpler, geometric considerations.

We consider two of their search strategies. For the nominal hadronic interaction model,

we take the tracker plus time-of-flight analysis. For the pessimistic charge-stripped assump-

tion, we take the tracker-only analysis.

The tracker plus time-of-flight analysis relies dominantly on the muon trigger, and

searches for anomalous track candidates that are matched between the muon chamber and

inner tracker. This track must be reconstructed with |η| < 2.1 and pT > 70 GeV, inverse-

velocity above 1.225/c (measured using timing information), and a high dE/dx. There are

also additional requirements on the mass inferred from the momentum and velocity measure-

ments, which are constructed to be highly efficient for signal. In order to recast the cross

section limit for a given model at finite lifetime, we form a conservative rescaling factor.
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The numerator is the number of charged R-hadrons that would pass into the analysis given

the above cuts, excepting the dE/dx cut, which we cannot model but which should also

be highly efficient for signal. The denominator is the number of charged R-hadrons that

pass these criteria and that also decay fully outside the detector. We only consider decaying

R-hadrons where none of the visible decay products re-intercept the detector volume, as this

may cause additional activity in the muon chambers and could have an unpredictable effect

on the acceptance.15

In order to access the charge-suppressed scenario, the tracker-only analysis exploits a

subtlety of the 6ET trigger. A charged R-hadron may leave a track in the inner tracker, but if

it leaves no track in the muon chamber and minimal calorimeter activity along its trajectory,

the particle-flow algorithm used in triggering will assume that the track is spurious and

not count it toward the 6ET calculation. The R-hadron therefore adds to the apparent 6ET .
Because each R-hadron either leaves such a “trigger-invisible” track or is neutral to begin

with, the apparent 6ET is the total recoil pT of the heavy particle pair.16 Offline, events

from this 6ET -triggered sample can be analyzed for inner tracks consistent with heavy stable

particles. The basic track |η| and pT requirements are the same, but there is no velocity cut

(as no timing information with respect to the muon chambers is available), and the dE/dx

requirement is tightened. Again, we cannot model the dE/dx cut, so we assign an ad hoc

velocity ceiling of 0.7c, which puts us on the steep section of the Bethe-Bloch stopping power

curve [438]. (Our final results are not very sensitive to the placement of this velocity cut.)

We again form a rescaling factor for the infinite-lifetime cross section limits presented by

CMS. For the numerator, we take the number of events where the recoil pT exceeds 150 GeV

15CMS has also provided a full efficiency map of this analysis [130], which can be extremely useful in
general recasts. However, we do not use this map since our physics models are identical to the ones that
CMS studies, up to the finite lifetime. There could in principle be some interplay between the variation in
stable particle acceptance and non-decay probability versus kinematics, which we are not simulating, but our
treatment should be conservative. For example, slow particles would tend to decay earlier and become vetoed
from the analysis, but slow stable particles (especially with β ∼< 0.4) are anyway less efficiently accepted.
Similarly, particles at higher |η| must survive over a longer three-dimensional path length before exiting the
detector, and again are more likely to be lost due to decay, but high-|η| is also less efficient even for stable
particles. Therefore, our naive approach, which effectively assumes a flat acceptance within the fiducial
region, misses the fact that the particles that survive undecayed also tend to be in kinematic regions with
higher acceptance. In any case, the turn-off of overall acceptance for this analysis due to decays at lower
lifetimes is exponential, and we expect this behavior to dominate.

16For all SUSY pair production, processed through Pythia8, we damp the ISR, which has been shown to
better-reproduce matched results [437].
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and at least one R-hadron is charged and passes the reconstruction cuts. The denominator

is the number of events that satisfy these criteria and where both R-hadrons decay fully

outside the detector (including the non-intercept requirement on the visible daughters, as

above).

b. CMS Displaced Dijets The CMS displaced dijet search [138, 435] uses a specialized

trigger to capture events containing a pair of high-pT jets containing displaced tracks at

the level of several hundred microns. In the offline analysis, it counts the total number of

jet-pairs that appear to be consistent with common vertices with a large number of such

displaced tracks. For our recasts, we focus on the “High-Lxy” analysis, which has 1.14± 0.54

expected background vertices and one observed, placing an upper limit of 3.7 signal vertices.

We have found that the High-Lxy works well for all of our models, even ones with short decay

lengths (〈Lxy〉 < 20 cm), and that the choice of High-Lxy versus the very similar Low-Lxy

analyses has only minor impact on our results.

The jets used in the analysis have pT > 60 GeV and |η| < 2, and the total event HT must

exceed 300 GeV at trigger level. (In practice we use a slightly tighter 320 GeV to account for

the observed turn-on of the trigger with HT measured offline [439].) Each pair of such jets

is inspected for associated tracks with impact parameters larger than 500 µm, and this set

of displaced tracks is checked for consistency with a common vertex. At least one displaced

track from each jet is required to fit that vertex, and there are a number of additional quality

requirements on the vertex itself: total track-mass greater than 4 GeV, total track-pT greater

than 8 GeV, “significant” transverse distance Lxy from the primary vertex, and a multivariate

likelihood-ratio discriminant cut. The discriminant is formed from distributions over the

vertex track multiplicity, the fraction of tracks with positive impact parameters (based on

the sign of the dot product of the track’s pT vector and transverse displacement vector

at the transverse point of closest approach to the beamline), and two additional variables

based on a special clustering of track crossing points along a line starting at the detector’s

center and oriented with the dijet pT direction. The exact algorithm for this clustering is

not given by CMS. For our reproduction of the analysis, we create a sliding window of full-

width 0.15 × Lxy, and adjust it to surround a maximal number of crossing points. When
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multiple window locations would surround different crossing point collections with equal

multiplicities, we choose the one with the smallest RMS. For its multivariate discriminant,

CMS includes both the cluster multiplicity and the RMS relative to the vertex Lxy. We

determine the event-by-event value of the discriminant by using CMS’s own distributions

for the four variables. (Our calibration distributions for these variables and the multivariate

discriminant can be found in Appendix VI.E.5.)

The rest of the High-Lxy selection demands at most one prompt track per jet within

the dijet candidate, less than 9% of the energy of each jet associated to prompt tracks, and

a multivariate discriminant value greater than 0.8. In the analysis note [435] (which has

identical results as the more recent preprint [138]), CMS’s new physics limit is phrased in

terms of the number of dijet candidates that pass all of these requirements over the full

8 TeV run.

While this defines the basic search, we point out a few possible subtleties:

• CMS has only performed full simulation on models with dijet masses up to 350 GeV. We

assume that there are no major obstacles to probing masses beyond 1 TeV. These may

experience more tracking confusions due to the greater multiplicity of hits, but on the

other hand should also be capable of surviving the analysis cuts with a smaller fraction

of successfully-reconstructed tracks.

• For all of the physics models that CMS has studied, the displaced particle is neutral

and leaves no tracker hits before its decay. It is unclear what would happen for charged

displaced particles, such as R-hadrons, which would leave a signature sometimes called

an “exploding track.” Presumably the extra hits would lead to additional confusions

of the tracker algorithms. We simply exclude such cases from the analysis, effectively

assuming zero efficiency. This is certainly an over-conservative treatment, especially, for

decays that occur before crossing the first pixel layer.

• For some of our SUSY models, more than two jets can originate from the same displaced

vertex. In principle, in the note [435] CMS considers all possible displaced dijet pairs,

allowing the same jet to appear multiple times. Such a decay could therefore contribute

much more than one dijet candidate. However, since the exact procedure is not unam-

biguously described in the CMS note, when a dijet pair passes the basic selection cuts
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(before the High-Lxy selections), we remove its constituent jets from further consideration

for constructing other dijet pairs.

• For most of our SUSY models, the displaced dijet candidate will be produced in a decay

with additional activity, and will therefore by itself not reconstruct the decaying particle’s

momentum vector. Since CMS’s cluster discriminant variables are constructed under the

assumption that the vertex displacement vector and dijet momentum vector are well-

aligned, there is a question of whether the discriminant is particularly inefficient for

models where this is no longer true. We have found that any such effect is quite minor,

and that the multivariate discriminant is mainly driven by the vertex track multiplicity

variable.17

• When a decay contains bottom and/or charm quarks, it may generate multiple nearby

displaced vertices rather than a single displaced vertex. CMS gives some explicit indi-

cation of how the reconstruction rate differs for heavy flavor decays, and it appears that

such small secondary displacements do not play a significant role, but only for models

down to O(cm) lifetimes. The behavior for shorter lifetimes is not specified. Due to the

ambiguity, we simply ignore decays that contain heavy flavor and have Lxy < 1 cm.

• It is clarified in the more recent analysis preprint [138] that no lepton identification is

utilized, and that electrons and muons would function as jet constituents in this analysis.

However, the earlier note [435], on which we base our analysis, is not explicit on this

point. We have therefore excluded isolated leptons (as per the definition of [139]) from

jet clustering. This may lead to slightly over-conservative limits when leptonic decays

are available.

c. CMS Displaced Dileptons The CMS displaced dilepton search [139] is in some ways

a simpler version of the displaced dijet search above.18 The analysis operates on pairs of

isolated e+e− or µ+µ−, demanding that a pair reconstruct to a common highly-displaced

vertex. The analysis is both background-free and has zero observed events, leading to a 95%

limit of approximately 3 signal events.

17The same conclusion was reached in [156].
18We do not consider the superceded version of this search at lower luminosity and beam energy [440].

170



Electron-pair candidates in the event must consist of a leading (subleading) electron with

pT > 40 GeV (25 GeV). Muon-pair candidates must consist of muons with pT > 26 GeV.

Each lepton should be in the well-instrumented region of the tracker, at |η| < 2.0, and

should have a “significant” transverse displacement of 12σ relative to the resolution. Since

here we do not simulate track-by-track resolutions, we simply replace this last criterion with

a fixed cut of 250 µm. This choice appears to give conservative results for very low lifetimes.

CMS further requires the leptons to be isolated from other tracks, excluding other identified

leptons, using hollow cones of outer radius 0.3 built around the lepton candidates. Since

our own lepton ID is “perfect” (up to the efficiency factors discussed in the appendix), we

use solid cones. This again should furnish a conservative approximation, and should roughly

approximate the ID failures that would occur in reality, e.g. for leptons inside of b/c-jets.

Non-lepton tracks with pT > 1 GeV count toward the isolation, and should tally to less

than 10% of the lepton pT . For muon-pairs, the two candidate tracks must be separated

by ∆R > 0.2, to operate in the region of high dimuon trigger efficiency. For electron-pairs,

we here additionally require ∆R > 0.1, assuming that the ECAL patterns of closely-spaced

electrons could start to become difficult to reconstruct. A number of other basic quality cuts

are applied: the dilepton pair should have invariant mass above 15 GeV to avoid hadronic

resonances, the azimuthal angle between the dilepton momentum vector and its displaced

vertex position vector should be less than π/2, and the 3D opening angle between a pair of

candidate muon tracks should have a cosine greater than −0.79 to veto cosmics.

Given the simpler topology and cuts relative to the displaced dijet search, we should

naively be more confident in the robustness in our recasting procedure for different models.

Nonetheless, as discussed in Appendix VI.E.6, our modeled acceptances appear to be low

for some of CMS’s benchmark models, possibly because we err on the conservative side for

the lepton track-finding efficiencies at large decay radii. The “exploding track” question also

persists in principle, but does not arise in any of the models that we consider. (Displaced

dileptons only occur for our GMSB Higgsino models, in which case the long-lived particle

is always neutral.) There is still some question about how this analysis would behave when

additional tracks emerge from the same vertex, such as h→ ZZ∗ → l+l−+jets from Higgsino

decay. However, this model is the only case that we study where such a question would arise,
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and the limits from this search are regardless not the most powerful for displaced Higgs

decays.

d. CMS Displaced Electron and Muon The CMS displaced electron and muon

search [136] uses a highly minimalistic and inclusive analysis, simply demanding the pres-

ence of exactly one electron and one muon, each with significant 2D impact parameter up

to 2 cm. The analysis is broken down into three exclusive bins in joint impact parameters,

with varying degrees of background. Consequently, the statistical analysis is somewhat more

involved, as discussed below.

The electron and muon must each have pT > 25 GeV, |η| < 2.5, and transverse impact

parameter between 0.02 cm and 2 cm. The last requirement allows the analysis to focus on

the region of tracking parameters where the efficiencies are largely the same as for prompt

tracks. The two leptons must also be well-isolated. In addition to a basic particle isolation

requirement, which we form by tallying all hadrons (charged and neutral) within ∆R < 0.3

and demanding a relative pT less than 10%, each lepton must also be isolated from jets with

a pT threshold of 15 GeV within ∆R < 0.5. The leptons themselves must also be separated

by at least this distance and have opposite charges.

The three exclusive signal regions consist of a high-displacement/lower-background re-

gion SR3 where both leptons’ impact parameters are above 0.1 cm, an intermediate region

SR2 where the event fails this criterion but still has impact parameters above 0.05 cm, and

a low-displacement/higher-background SR1 where the event fails both of these criteria but

still has impact parameters above 0.02 cm. The observed (expected) event counts are, re-

spectively, 0 (0.051), 0 (1.01), and 19 (18.0). We have coded this three-bin statistical analysis

as a toy Monte Carlo using a Poisson likelihood-ratio discriminator built from the central

background predictions, and including the systematic uncertainties on the background (as-

sumed Gaussian and uncorrelated) as perturbations on the simulated pseudo-experiments.

This allows us to map out the 95% CLS boundaries in the three-dimensional space of signal

bin counts. Our statistical analysis is not exactly the same as that performed by CMS, but it

should furnish an adequate approximation. We have verified this by reproducing sections of

the leptonic RPV stop limits presented in the analysis note. Approximately speaking, high-
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lifetime signals that are concentrated in SR2 and/or SR3 have a limit N(SR2)+N(SR3) < 3,

whereas low-lifetime signals that are concentrated in SR1 have a limit N(SR1) < 13.5.

Other than the nontrivial statistical analysis, this particular displaced search was one

of the simplest for us to implement, since it is insensitive to efficiency degradations and

nontrivial geometries that occur for decays in the body of the detector. Also, due to the fact

that the focus is on decays that occur before traversing the pixels, the issue of whether the

displaced particle is charged does not appear.

e. ATLAS Muon Spectrometer The ATLAS muon spectrometer search [141] (7 TeV,

2 fb−1) is focused on models where particle decay lengths are several meters, and have high

probability of decaying outside of the HCAL. It uses a novel vertex-finding algorithm [441] to

identify the sprays of tracks from a displaced decay within the muon chambers. Events with

two successfully identified candidates are used in the analysis, with zero events expected and

zero observed (again, setting an upper limit of about 3 signal events).

To pass the analysis cuts, first of all both decays must occur within fiducial regions of the

muon spectrometer. The identified decays must be well-isolated from tracks above 5 GeV

out to ∆R < 0.4, and from jets above 15 GeV out to ∆R < 0.7. (Again, we do not consider

displaced decays from charged particles, since the particle’s own track would veto it.)

This analysis appears to fill an important niche at lifetimes intermediate between the

tracker radius and beyond the outer detector radius for colored long-lived particles, and

uniquely probes out to the largest possible decay distances for long-lived particles that lack

charged states. Nonetheless, we will see that the search is ultimately not very powerful.

There are several reasons for this:

• Unlike all of the other analyses that we study here, it has not (yet) been performed at

the full beam energy and luminosity. We will indicate how much this might help below

by making a naive projection to 8 TeV, 20 fb−1, assuming identical signal efficiencies and

zero background.

• The ATLAS data acquisition becomes highly inefficient for particles traveling large dis-

tances at sub-light speeds, and loses the signal when a time delay of ≈ 7 ns has accrued

relative to a light-speed particle. For example, a particle traveling at 0.7c and decaying at
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r = 5 m (at η = 0) accrues this much delay, and this velocity is already above the typical

median for pair-produced heavy particles. The timing requirement therefore usually has

an O(1) impact on our signal acceptance.

• The analysis requires coincident behavior for both decays, and therefore pays every

possible inefficiency factor twice. These include basic requirements such as neutral R-

hadronization probabilities, the geometric constraints of the muon spectrometer, the

vertexing efficiency, and the isolation requirements. The geometry in particular becomes

a major factor when considering either very long or very short lifetimes, where it respec-

tively leads to either a power suppression or an exponential suppression. Analyses that

can rely on one candidate only need to be “lucky” once.

Regarding the last point, it would be very interesting to see if this analysis could be run

with a single-candidate option. On the one hand, this would result in much higher back-

ground rates (effectively O(10 pb)) with the original reconstructions and cuts. On the other

hand, many of the models that we consider here have quite appreciable cross sections, and

because they have much higher masses than the baseline models that ATLAS studied, should

lead to even more spectacular multi-track signatures in the muon spectrometer. Relaxing the

isolation requirements somewhat, to allow more of the decay particles to point back to the

HCAL, could also be beneficial. These HCAL signals would also be rather distinctive given

that they would contribute mainly in the outermost layers. However, it is unclear whether

ATLAS’s jet reconstruction requirements would anyway ignore such anomalous deposition

patterns.

It should be also noted that the information on the performance of the displaced vertex

reconstruction from ATLAS’s papers is limited to a rather small set of new physics models,

using the common benchmark scenario of a Higgs-like scalar decaying to a pair of displaced

pseudoscalars. Only four mass points with fairly similar kinematics are studied, the most

energetic decays coming from a 140 GeV scalar decaying into a 40 GeV pseudoscalar. It is

therefore unclear how this very complex search would perform on, say, a 1 TeV RPV gluino

decaying into three jets. Moreso than most of our other recasts, this one must be then viewed

cautiously and somewhat conditionally. Still, because of the search’s limitations discussed

above, in practice it does not end up probing masses beyond a few hundred GeV.

174



f. ATLAS Low-EM Jets The ATLAS low-EM jets search [140] focuses on coincident

jet-like signals confined entirely to the HCAL, with stringent cuts on nearby ECAL and

tracker activity. It is sensitive to pairs of displaced decays within the HCAL volume. The

analysis has a small but non-negligible background, leading to an upper limit of about 20

signal events.

For a pair of jets to pass into the analysis, the leading (subleading) jet must have pT >

60 GeV (40 GeV). Each jet should have no associated tracks with pT > 1 GeV within

∆R < 0.2, and should have at least approximately 16 (101.2) times more energy recorded in

the HCAL than in the ECAL. As discussed in Appendix VI.E.9, our default model of these

isolation requirements uses a combination of a flat efficiency factor and an overconservative

veto on decays in the HCAL body that produce particles pointing back to the ECAL. An

alternative, looser version removes the latter requirement, and the two extremes define an

approximate error band for our modeling of this analysis. We also automatically veto events

containing charged long-lived particles, which as usual would leave a track. ATLAS further

makes an explicit cut of 5 ns on the signal timing delay relative to what would be deposited

by a particle moving at light-speed. Given that the linear distances involved are about half

as large as those for the muon spectrometer analysis, this ends up having a relatively less

detrimental effect (though still potentially O(1)) on the signal acceptance. Finally, there is a

requirement that the event has 6ET < 50 GeV in order to reject non-collision events, though

this can severely impact many of our models with invisible LSPs.

Similar to the ATLAS muon spectrometer search, the requirement of coincident decays

within the same detector system significantly limits the model reach. For our SUSY models,

much of the candidate-by-candidate inefficiency comes from our somewhat ad hoc require-

ment that no decay particles can point back to the ECAL, and we take results with and

without this requirement to define our uncertainty band. Still, we conclude that this search

is not very competitive, even to a luminosity-scaled muon spectrometer search. It seems as

if it is simply too constrained by geometry.

As in the previous subsection, it would potentially be useful if the search could be adapted

for single-candidate acceptance instead of requiring decays with coincident properties. The

fact that this would increase the background could be offset in several ways that should
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maintain high signal acceptance. First of all, most of the SUSY models that we consider

would deposit far more energy than ATLAS’s benchmark models. A search that is broken

down into different jet ET bins could already improve sensitivity. Second, these very en-

ergetic and wide-angle multibody decays might leave quite unusual 3D spatial and timing

deposition patterns in the HCAL, possibly so unusual that even the relative ECAL deposi-

tion requirement could be relaxed. In fact, we are again already giving ATLAS the benefit

of the doubt by assuming that such unusual jets would pass the reconstructions of their

analysis. But the limited mass reach of the search by itself limits the possible impact of this

subtlety.

It would also be very advantageous if the 6ET cut could be eliminated. For GMSB and

mini-split models in particular, the cut is a major handicap. It can also contribute a subtle

geometric problem in models without true 6ET . Under the zeroth-order assumption that a

particle decaying within the HCAL has all of its energy absorbed at one point, the particle’s

reconstructed momentum vector is effectively rescaled by its lab-frame energy. For sparticle

pair production that is not exactly back-to-back in 3D space, true transverse momentum

balances, but the energy-scaled transverse momentum need not. Again, this is mainly an

issue for models with large masses, beyond the sensitivity of the original search. But it could

become problematic if the search were to be extended.

g. ATLAS Displaced Muon Plus Tracks The ATLAS muon plus tracks search [135]

uses the inner tracker to reconstruct highly displaced vertices containing at least one muon.19

The basic search, which counts the number of events containing at least one such vertex, is

background-free. However, a looser version of the search relaxes the demand that the muon

is matched to the displaced vertex candidate. This version is also background-free, and has

improved signal acceptance, especially for models with a mixture of low-multiplicity leptonic

decays and high-multiplicity hadronic decays (i.e., our GMSB Higgsino and stop models).

We utilize this version for our recasts.

Vertices are reconstructed from displaced tracks originating within the inner region of the

tracker, r < 18 cm and |z| < 30 cm. The tracks used toward the vertex reconstruction must

19We do not consider the superceded versions of this search at lower luminosity and beam energy [442, 443].
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have pT > 1 GeV and transverse impact parameter greater than 2 mm. A good candidate

vertex must be reconstructed within the fiducial volume, have at least five associated tracks,

a track-mass greater than 10 GeV. The muon selection is pT > 55 GeV and |η| < 1.07, and

transverse impact parameter greater than 1.5 mm.

Unlike the other ATLAS searches, this one requires neither very tight activity cuts nor

coincident behavior for the decays. Consequently, it is much more powerful within its realm

of applicability. Again, we conservatively ignore displaced particles produced in the decays

of charged R-hadrons.

Because this is a tracker-based analysis, similar to the CMS displaced dijets, the possi-

bility also exists for subtleties when heavy flavor secondary decays occur after the displaced

decay. However, ATLAS states explicitly that vertices less than 1 mm from one another are

merged. While the exact behavior for heavy flavor final-states is not given by ATLAS, we

assume that this merging procedure effectively makes them insensitive to this issue.

2. Models and Limits

We now describe three of the well-known scenarios that lead to displaced sparticle decays,

and present our new limits on several simplified models within those scenarios. In all three

scenarios, we consider models with LSP or NLSP gluinos, which are common search targets

due to their enormous pair production cross sections. For gauge mediation, we also consider

the closely-related case of light-squark NLSPs. Otherwise, we focus on either stop pair

production or Higgsino pair production, as both particles are expected to be below 1 TeV in

a truly natural SUSY theory [160–164].20 In most of what follows in this section, we restrict

ourselves to presenting the basic search results, and reserve commentary on implications for

Section II.F.3.

We generate event samples for most models with Pythia8 [436], making extensive use

of that program’s R-hadronization capabilities. Final-state particles from each lowest-level

R-hadron or Higgsino decay are subsequently displaced before detector simulation and event

reconstructions. For some of the colored production models where multibody decay kine-

20We save explicit investigation of a left-handed sbottom (N)LSP for future work.
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matics can be important, we have generated events in MadGraph5 [444]. In this case, the

Pythia8 R-hadronization routine does not work because the R-odd colored particle has al-

ready decayed, and its daughters given color connections to other parts of the event. There,

we identify final-state hadrons as descendants of the long-lived colored particles in an ap-

proximate way: each hadron is associated to the closest quark/gluon in ∆R as viewed the

end of the parton shower, and the ancestry of that quark/gluon is traced by proxy.21

All pair production cross sections are normalized to their NLO+NLL predictions, includ-

ing colored production through pure QCD [445] and electroweak Higgsino production [446].

These predictions are all conveniently tabulated for 7 and 8 TeV by the LHC SUSY Cross

Section Working Group [447]. The Higgsino predictions assume nearly mass-degenerate Hig-

gsino states with small mixings into the gauginos (assuming M1,2 ∼ 1 TeV). Those cross

sections are only provided up to 410 GeV, but we assume a flat K-factor for higher masses.

The generated particle-level events are passed through the detector simulations described

in the Appendix and then subjected to the various analysis cuts described in Section II.F.1.

The main output is a set of experimental acceptances for each individual simplified model

(either per-decay or per-event), scanned over mass and lifetime. As an illustrative example,

we provide our acceptances for the RPV t̃ → d̄s̄ model described below, passed through

the CMS displaced dijet analysis. As can be seen, this specific analysis is most efficient for

masses greater than a few hundred GeV and lifetimes at the O(10 cm) scale.

When constructing limits, for most of our recast experimental searches we provide a

very rough error band on our predicted exclusion regions by varying these signal acceptance

estimates up and down by a factor of 1.5 (not allowing those rescaled acceptances to exceed

unity). This gives some indication of sensitivity to possible recasting errors. There are only

two specific searches where we do not follow this protocol. The first such search is for stable

charged particles, for which we do not explicitly include an error band. Our modeling here is

fairly basic and conservative, and the acceptance anyway turns off exponentially fast at low

lifetimes. We have also recast CMS’s over-conservative “charge stripped” limits, estimated

21 Using the simple 2-body t̃ → d̄id̄j as a cross-check, we find that the invariant mass of each stop is
reconstructed to within about 10% and without bias, and that most search acceptances are only mildly
sensitive to to the ordering of decay and hadronization. The largest effects are on the tracker-based searches,
with the efficiencies dropping by 10−−15% for the sample decayed before hadronization, and therefore
yielding conservative limits.
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Figure II.50: Our central predictions for the CMS per-decay displaced dijet acceptances for

t̃ → d̄s̄, using the detector model described in Appendix VI.E.5 and following the analysis

described in Section II.F.1.b. The different colored lines are steps of 100 GeV in mass.
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in a scenario where interactions in the calorimeters always strip off the R-hadron charges.

The second search is for low-EM jets at ATLAS, where we have opted to instead define

over-conservative and under-conservative treatments of the isolation against EM calorimeter

activity, which we cannot reliably model. Here, we require either that no decay particles

point back to the ECAL, or do not place any explicit isolation criterion (though in both

cases we employ a flat O(1) reconstruction efficiency factor given in Appendix VI.E.9).

a. Baryonic R-Parity Violation One of the simplest extensions to the MSSM is the

introduction of R-parity-violating Yukawa superpotential couplings and/or a µ-term between

the lepton doublet and down-type Higgs doublet superfields [1]. R-parity violation may also

be introduced in the soft SUSY-breaking potential, or in the Kähler potential [151]. These

are all typically set with zero coefficients in order to enforce R-parity. R-parity trivially pre-

vents dimension-four proton decay and stabilizes the LSP, providing a possible dark matter

candidate. However, these virtues are hardly strict requirements of the MSSM. Proton decay

can be prevented by alternative stabilizing symmetries, which in any case may be required

given the existence of potentially dangerous R-even operators at dimension-five [162]. Dark

matter could easily arise from a different particle sector instead of the MSSM neutralino.

Violation of R-parity can lead to radical changes in collider phenomenology, depending

sensitively on which operators are activated, on the magnitude and flavor structure of those

operators, and on the identity of the LSP, which is no longer stable and no longer needs

to be electromagnetically neutral. Broad ranges of coupling strengths allow for the LSP

to decay at displaced locations within the LHC detector volumes. For example, for two-

body sfermion decays into light SM fermions, mediated by one of the R-parity-violating

Yukawas, a dimensionless coupling of O(10−10−−10−6) would yield a substantial population

of measurably-displaced decays.

Proton stabilization allows the active RPV operators to violate either lepton number or

baryon number, but not both. This partitions the RPV scenarios into two mutually-exclusive

classes, which we can call leptonic RPV and baryonic RPV. The only explicit RPV displaced

searches so far at the LHC have assumed leptonic RPV [135, 136, 138, 139], capitalizing

on the presence of leptons in the final state to help with triggering and with controlling
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backgrounds. Here we pursue the completely untested case of baryonic RPV. (However, we

will put the leptonic RPV searches to an alternative use in the next subsection, applying

them to gauge mediation models.)

We begin with the case of stop LSP. Minimalistically, the decay would be mediated

by the usual Yukawa superpotential interaction of right-handed chiral quark/squark fields,

λ′′ijkUiDjDk (ijk are flavor indices). This is the only baryon-number-violating interaction

in the MSSM that respects SUSY at dimension-four. The required antisymmetrization over

color indices requires a commensurate antisymmetrization over down-type flavor indices,

leading to allowed decays t̃ → d̄s̄, d̄b̄, and s̄b̄. Recently, it has also been observed that

stop decays may proceed through a different combination of chiral quark/squark fields, via

dimension-five operator QiQjD
†
k in the Kähler potential [151]. The resulting component-field

operators allow for a decay t̃ → b̄b̄, and indeed this is generally preferred since the decay

amplitudes are chirally-suppressed (analogous to pion decay). Prompt decays t̃→ d̄j d̄k have

only just begun to be probed by the LHC, in the mass region 200−−400 GeV [448]. It has

been estimated that a search based on jet substructure could also push down into the lower-

mass region currently not covered [449]. (For longer-term projections, also see [449] as well

as [450].) The only other available limits are when the stops are detector-stable, the strongest

(≈ 900 GeV) coming from the CMS and ATLAS charged R-hadron searches [128, 129].

Figs. II.51 and II.52 show the regions of mass and lifetime for t̃ → d̄j d̄k that have now

been excluded according to our recasts, taking the two extreme cases of only light-flavor

decays and only b̄b̄ decays. The sensitivity is dominated by the charged R-hadron and

displaced dijet searches, a pattern that will recur often in our colored sparticle limits. For

both models there is nearly complete coverage out to almost 1 TeV, with a notable weak-spot

at cτ ∼ 10 m and of course much weaker limits for displacements ∼< mm. This weakening at

low lifetimes is more pronounced for the b̄b̄ decays, partially because the CMS dijet search

is intrinsically less efficient for heavy flavor decays due to the somewhat lower particle track

multiplicities, but also because of the conservative choice in our modeling of displaced vertex

reconstruction for b-jets, discussed in Section II.F.1.b. At lower lifetimes, we have also

indicated the existing and projected prompt limits, applying a conservative sensitivity cutoff

at 1 mm. (There should still be sensitivity from prompt searches for longer lifetimes, but
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Figure II.51: Recast constraints on displaced t̃→ d̄j d̄k via baryonic RPV. Colored bands in-

dicate acceptance variations up/down by 1.5. The dot-dashed lines indicate contours of λ′′312,

assumed to be the only contributing RPV coupling. Prompt limits (dark gray) are from [448],

and low-mass search projections (light gray) are from [449]. They are conservatively cut off

at 1 mm.
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Figure II.52: Recast constraints on displaced t̃ → b̄b̄ in the Dynamical RPV framework.

Colored bands indicate acceptance variations up/down by 1.5. The dot-dashed lines indicate

contours of η′′333/M , assumed to be the only contributing RPV coupling. It arises from the

Kähler potential operator (η′′333/M)Q3Q3D
†
3+(h.c.). Prompt limits (dark gray) are from [448]

(neglecting a possible improvement in the limits due to the higher b-jet multiplicity in

the DRPV model), and low-mass search projections (light gray) are from [449]. They are

conservatively cut off at 1 mm.
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we do not have enough information to reliably model this.) Combining these three searches,

unbroken coverage is achieved for all lifetimes for masses where the prompt searches are

sensitive. Indeed, for stop masses up to a few hundred GeV, the CMS dijet search alone

spans 6−−7 orders of magnitude in lifetime. This amazing performance capitalizes heavily

on the fact that millions of stop pairs would have been produced at such small masses, with

sizable enough kinematic tails to pass the jet HT and pT cuts, and enough remaining rate to

catch anomalously early or late decays from models at the edges of the exclusion region. Two

other displaced searches, ATLAS muon chamber (including our naive 8 TeV projection) and

ATLAS low-EM jets, are much less competitive for the reasons discussed in Sections II.F.1.e

and II.F.1.f, though they do offer useful complementarity in that their limits are derived

from completely different detector systems. Finally, we point out a sizable region in the b̄b̄

decay case that is also covered by the ATLAS µ+tracks search, from a small population of

events where one of the bottom decays produces a hard muon.22

The next model that we consider is gluino LSP. Considering only traditional superpoten-

tial RPV, the gluino decays by first transitioning into a virtual squark and a corresponding

real quark. The virtual squark then splits to two quarks through the UDD operator. The

full 3-body decay is g̃ → jjj. There are again many options for flavor structure, which may

be engineered both at the level of the λ′′ijk couplings and the squark mass spectrum. Here,

we simply assume decays into light flavors, though decays involving b-quarks could again be

subjected to weaker limits at low lifetimes, and decays involving t-quarks would also receive

constraints from the displaced searches involving leptons. Otherwise, we expect fairly similar

coverage. Of course, branching ratios into top also suffer additional phase space suppression.

Fig. II.53 shows our estimated exclusions for g̃ → jjj. The qualitative features are quite

similar to the RPV stop decays, though the much higher cross sections yield a significantly

extended mass reach for all searches. CMS dijets in particular reaches above 1.5 TeV, close

to the production limit of O(1) event in the entire run, and exceeding the mass reach of the

stable R-hadron search by several hundred GeV. Notably, the displaced trijet configuration

is very efficiently picked up by the CMS dijets search, which was designed for a very different

22The muon in this search is triggered from the standalone muon spectrometer, and is not explicitly
required to be isolated.

184



CMS dijet
ATLAS µ spect

LHC8 projection

charged stable

charge-strip
ped

ATLAS HCAL

g ! j j j  (RPV)~

prompt 3j resonance

Figure II.53: Recast constraints on displaced g̃ → jjj via baryonic RPV. Colored bands

indicate acceptance variations up/down by 1.5. The dot-dashed lines indicate contours of

mq̃/
√
λ′′ijk. We have parametrized the decay assuming that one species of off-shell RH squark

dominates, and splits into quarks via a single λ′′ijk coupling. All final-state quarks are also

assumed to be from the first two generations. Prompt limits (gray) are derived from [451].

They are conservatively cut off at 1 mm.
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Figure II.54: Recast constraints on displaced H̃0 → jjj via baryonic RPV. Colored bands

indicate acceptance variations up/down by 1.5. The dot-dashed lines indicate contours of

mq̃/
√
Yqλ′′ijk. We have parametrized the decay assuming that one species of off-shell RH

squark dominates, coupling to the Higgsino according to its up-type or down-type Yukawa

Yq ∝ mq/(v sin β) or mq/(v cos β), and splits into quarks via a single λ′′ijk coupling. All

final-state quarks are also assumed to be from the first two generations.

signal. The weak spot at 10 m is still apparent, but much less pronounced since the CMS

dijet search nearly matches the HSCP search sensitivity at that lifetime. It is also interesting

to supplement with the limits from prompt searches [451, 452], which are similar for purely

light-flavor decays and decays containing b-quarks. Again applying an ad hoc 1 mm cutoff

on the lifetime sensitivity of the prompt searches, there is currently unbroken coverage for

all possible lifetimes for masses potentially as high as 900 GeV.

The last baryonic RPV example model that we consider is a Higgsino multiplet “co-

LSP.” The four Higgsino states are assumed to be only mildly mixed into heavier electroweak

gauginos, and the multiplet split by O(10 GeV) or less. The heavier Higgsinos undergo a soft
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but prompt cascade via virtual gauge boson emission into the lightest, neutral Higgsino. The

displaced decay of this lightest Higgsino proceeds in almost exact analogy with the gluino

decay, though now the virtual squark is accessed via a super-Yukawa coupling instead of a

super-QCD coupling. Again, the flavor structure of the decay can be nontrivial, but as a

first pass we simply assume that the final quarks are all light. Decays involving tops deserve

a dedicated investigation, especially in the context of a natural theory, though we anticipate

fairly similar limits.

Fig. II.54 shows our estimated exclusions for H̃ → jjj. The qualitative picture from

the displaced decay searches remains similar, though with reduced mass reach due to the

smaller production cross sections. Unlike the preceding stop and gluino examples, there are

no explicit limits on H̃ → jjj in either prompt or stable charged particle searches. For the

prompt case, we can compare to g̃ → jjj searches [451, 452]. Using simple cross section

scaling suggests that that promptly decaying RPV Higgsinos are genuinely unconstrained,

since the Higgsino cross section is roughly 500 times smaller at a given mass. (A more

aggressive dedicated prompt search could be useful, though would be highly challenging.)

For the stable case, the LSP here is generically neutral, and hence does not leave a track.

Therefore, our reported direct Higgsino production limits here are the first for any lifetime.

While we have only studied a small sample of possible spectra, these results clearly

illustrate the power of the LHC in probing baryonic RPV in general via displaced decays.

An obvious extension of our observations would be an application to a broader class of

flavor assumptions, though as indicated we do not expect radically different sensitivity.

The remaining extensions would be to consider different LSPs, and perhaps more model-

dependent scenarios where the LSP is created in cascades in addition to prompt production.

An LSP squark could represent a rather trivial example, since the production and decay could

be very similar to the LSP stop. However, decays into the top quark could also open up,

and the effective production cross section could also be highly enhanced by the multiplicity

of nearby squark states (cascading promptly into one another) and/or by gluino exchanges.

Direct LSP slepton production represents a qualitatively different direction, wherein a 4-

body decay to ljjj or νjjj (via virtual electroweakino and squark) might dominate, even

for much larger values of the λ′′ijk. Finally, production of different electroweakinos, such

187



as a mostly-bino or mostly-wino, could be considered. In fact, the latter has recently been

investigated in [156], and similarly finds very high mass reach using the CMS displaced dijets

search. With the generality and power of the HSCP and dijets searches, the main missing

pieces in covering the mass-lifetime plane for these varied models would be prompt and b-

tagged searches (possibly recast from other models) and more aggressive muon-chamber and

calorimeter searches, especially for the cases without long-lived charged states. Additional

studies within the framework of dynamical RPV could also be interesting, since this allows

for additional flavor and chirality structures in the decays.

b. General Gauge Mediation Traditional forms of gauge mediation assume fairly min-

imal messenger sector constructions, and consequently relatively predictive patterns of sparti-

cle masses [125]. For example, relationships likeM1:M2:M3 = α1:α2:α3 for the three gauginos

favor a bino-like NLSP and a much heavier gluino. A much more general perspective has

been advocated in [453], acknowledging the full range of possible MSSM spectra derivable

from arbitrary messenger sectors, perturbative or not. Practically speaking, the individual

sfermion and gaugino soft masses become almost freely-adjustable, up to two sfermion sum

rules and flavor universality, as well as vanishing A-terms at the mediation scale. Even

more general model frameworks allow for the possibility of flavor nonuniversality effects,

either by mixing into a supersymmetric composite sector [454–457], by gauging flavor sym-

metries [458], or by introducing large A-terms through non-minimal interactions between

MSSM and messenger fields [459].

Such freedom of model-building in gauge mediation allows for a number of intriguing

options for LHC phenomenology. Practically any superparticle can be made the NLSP, which

then decays into its SM-partner and a light gravitino (i.e., Goldstino) at a rate controlled

only by the fundamental SUSY-breaking mass scale,
√
F . Roughly speaking, when the SM

partner is light,

cτ ∼ 0.3 mm

(
100 GeV

m̃

)5
( √

F

100 TeV

)4

, (II.F.83)

implying displaced decays at the O(mm – 10 m) scale for
√
F in the range of a few-hundred

to a few-thousand TeV. With the traditional option of the bino-like neutralino as the NLSP,
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the decays are dominated by photon and gravitino. Consequently, the experimental effort in

displaced GMSB searches has focused on signals of displaced/delayed photons and missing

energy [132, 133].23 In [148, 460], it was pointed out that an NLSP neutralino with larger

wino or Higgsino fraction would also yield displaced W , Z, and Higgs. The possibility of

displaced NLSP stops was emphasized in [153, 461, 462], especially for stop masses near or

below the top quark mass. The simplest remaining displaced NLSP options would be slepton

decaying to lepton, squarks decaying to (non-top) quarks, and gluino decaying to gluon.24

None of these other possibilities have been searched for in the case of displaced decays,

though a number of searches have been performed for prompt decays and for the collider-

stable cases. However, most NLSP possibilities are actually already under tight constraint,

as we will see, again sometimes with coverage over the full range of possible lifetimes.

A notable exception is any variation on the slepton NLSP, such as the standard mostly-

τ̃R when the sleptons are degenerate up to Yukawa effects, or possibly ẽR/µ̃R if the staus

can be made heavier [466]. These would be largely unconstrained by the displaced vertex

searches due to the low track multiplicities and vertex masses, and searches for displaced

activity in the calorimeters or muon chambers would usually fail to pick up the signal, for

example because the associated slepton track would cause isolation failure. CMS’s displaced

e+µ search [136] should yield some sensitivity for leptonic tau decays. Though we reserve

for future work a more comprehensive study of the status of displaced slepton NLSPs in

GMSB, we anticipate that planned searches for “kinked track” topologies will be important

to more fully cover the parameter space, and that existing disappearing track searches might

also provide some sensitivity.

The remaining NLSP options that yield a single SM final-state particle, without passing

through an intermediate heavy SM decay (top or electroweak), are the non-top squarks and

the gluino. As in the baryonic RPV models, presently the only potentially applicable tracker-

based search is the CMS displaced dijets, but the nominal number of partons in the decay is
23These are also necessarily the most model-dependent of the available signals, since a simplified model

containing only the bino would have vanishing tree-level pair production cross section. The most powerful
existing search [132] mainly capitalizes on pair production of mostly-winos cascading down into a mostly-bino,
relying on the relationship M2/M1 ' α2/α1.

24An NLSP sneutrino from light ˜̀
L doublets would decay fully invisibly, making the displacement irrelevant

for its experimental signatures. The distinctive phenomenology of such a scenario has been studied in [463–
465].
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not two. Here, in order for the displaced dijet search to be sensitive, the decay must undergo

a hard enough final-state bremsstrahlung to create a second jet. Given the large strong

production cross sections, this is an affordable penalty: of order (αs/π) log(m̃/(60 GeV)),

times color factors, with the sparticle mass and jet pT cut appearing inside the logarithm.

Quantitatively, the chance to radiate a second jet is roughly at the 1−−10% level. Of

course, a search explicitly geared toward the one-jet topology could be more efficient, and

the displaced dijet trigger would already capture this signal in cases where both decays

occur within the inner 60 cm radius of the tracker and with at least O(mm) displacement.

However, at the very high and very low lifetime ranges, the inefficiency induced by requiring

an extra jet may be less than the inefficiency that would be induced by forcing both decays

to occur at improbably short or long proper times. A more fruitful option for future analyses

could be to exploit the traditional jet, HT , and 6ET triggers, and apply an offline search for

individual displaced jets.25

Proper simulation of the decays for the existing displaced dijet search requires some level

of matrix element matching. This is performed automatically by the Pythia8 shower in the

case of q̃ → qχ̃0 with a massless neutralino LSP, while the desired decay q̃ → qG̃ is not

matched. However, we have observed essentially identical rates and kinematics for extra jet

production in q̃ decays between explicit MadGraph5 2- and 3-body decay simulations with

neutralino and gravitino LSPs, and close agreement with Pythia8’s matched predictions for

the first shower emission. We therefore feel confident using the massless neutralino LSP as a

proxy for the gravitino LSP for squark decays in Pythia8. For the gluino, such an analogous

decay to neutralino does not exist at tree level, is not part of the MadGraph5 MSSM model,

and would not obviously be matched if forced to proceed in Pythia8. Instead, we compare

the unmatched Pythia8 predictions for its first shower emission to MadGraph5, both with

gravitino LSP. We again find similar decay kinematic distributions, with Pythia8 predicting

a somewhat slower falloff out to ∆R(j, j) ∼ π. But the major difference is in the total

emission rate, which Pythia8 over-estimates by a factor of about 1.8. To approximately

compensate for this, we rescale the individual vertex reconstruction efficiencies by 1/2. It

should be understood that O(10%) modeling uncertainties on the displaced dijet reconstruc-

25We thank Joshua Hardenbrook for emphasizing this possibility.
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Figure II.55: Recast constraints on displaced q̃ → qG̃ in general GMSB, conservatively

assuming contributions from only d̃R and s̃R. Colored bands indicate acceptance variations

up/down by 1.5. The dot-dashed lines indicate contours of the SUSY-breaking scale
√
F .

Prompt limits (gray) are derived from [467]. They are conservatively cut off at 1 mm.

tion efficiencies for GMSB gluinos should likely be applied, though we anyway effectively

absorb this into our ad hoc systematic variations.

Starting with the squark NLSP, we display the results in Fig. II.55. We conservatively

assume just two degenerate species, d̃R and s̃R. This is a technical possibility if the SU(3)

contributions to the sfermion masses are small, the SU(2) contributions are large, and the

third-generation squarks receive additional mass contributions. The exclusions are similar

to those of the RPV stops (Figs. II.51 and II.52), although now with much stronger prompt

jets+6ET searches. Unbroken coverage over lifetime is achieved up to about 450−−550 GeV,

limited by the crossover between the HSCP and displaced dijet searches.

Next we consider the gluino NLSP in Fig. II.56. Comparing to the RPV results for

g̃ → jjj in Fig. II.53, we observe much weaker displaced decay limits and much stronger
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Figure II.56: Recast constraints on displaced g̃ → gG̃ in general GMSB. Colored bands

indicate acceptance variations up/down by 1.5. The dot-dashed lines indicate contours of

the SUSY-breaking scale
√
F . Prompt limits (gray) are derived from the q̃ → qG̃ of [467].

They are conservatively cut off at 1 mm.

prompt decay limits. The former is due to the requirement of additional hard radiation in

the decay to pass the CMS displaced dijet reconstruction. The latter is due to the much

more distinctive jets+6ET signature. Most of the model space below 1200 GeV is covered,

with expected weak spots at O(mm) and O(1−−10 m), though much of the surviving space

at smaller lifetimes would likely be probed by a more detailed jets+6ET recast, as in [131].

Full coverage over all lifetimes is only achieved for masses below 800 GeV.

We now move on to the naturalness-motivated options, starting with the NLSP stop

in Fig. II.57. We consider stops of any mass above 100 GeV, including a range of masses

below mt and through the compressed region where mt̃ = mt.26 In these regions, the decays

are dominantly 3-body t̃ → WbG̃, with a large fraction of energy going into the effectively

26Because of the smallness of the tt̃G̃ coupling, top quark decay into a light stop and G̃ would be rare.
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Figure II.57: Recast constraints on displaced t̃ → t(∗)G̃ in general GMSB. Colored bands

indicate acceptance variations up/down by 1.5. The dot-dashed lines indicate contours of

the SUSY-breaking scale
√
F . Prompt limits (gray) are derived from [468, 469]. They are

conservatively cut off at 1 mm.
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derivatively-coupled gravitino/Goldstino. Also, in addition to the by-now familiar searches

that have appeared in all of our recasts above, the semileptonic decays of the stop open up

sensitivity in the ATLAS µ+tracks search and the CMS displaced e+µ search. While the

sensitivity regions for these searches are fully contained by CMS displaced dijets, corroborat-

ing coverage is provided by the leptonic searches over much of the excluded region. Adding

in the prompt searches [468, 469], which likely give unbroken coverage between 100 GeV and

670 GeV,27 we infer that GMSB stops of any lifetime are excluded below about 500 GeV.

For lifetimes at the cm-scale, exclusions extend beyond 700 GeV, and, as noted before, out

to about 900 GeV for lifetimes longer than O(10 m). (For other estimates of displaced stop

exclusions in GMSB, see [157].)

Finally for GMSB, we consider Higgsino multiplet co-NLSPs. As in the RPV case

above, we assume that all Higgsino states are nearby to one another (split by no more than

O(10 GeV)), with heavier states decaying promptly. The lightest Higgsino will preferentially

decay to some mixture of ZG̃ and hG̃, with γG̃ suppressed. The lifetime and branching

fractions of the lightest Higgsino exhibit simple behavior if mixings with the bino and wino

are small, and the scalar Higgs sector is close to the “decoupling limit.” For instance, when

tan β = 1, the lightest Higgsino coupling to either ZG̃ or hG̃ vanishes, depending on the

relative signs of the µ parameter and M1,2. For tan β � 1, the hG̃ and ZG̃ decay modes

have similar partial widths if mH̃ ∼> mh.

We present the limits in these three extreme cases in Fig. II.58: a) pure H̃ → ZG̃, b)

pure H̃ → hG̃, and c) large-tan β. Though the HSCP searches again do not apply, the

GMSB Higgsino brings into play all of our other displaced decay recasts, now including as

well the CMS displaced dilepton search. For decays that include direct Z bosons, this last

search can be seen to play a major role, competing significantly with and even beating the

27The prompt searches face some subtleties. On the one hand, for stop masses well above mt, existing
searches for t̃→ tχ̃0 with massless neutralino should offer identical coverage. On the other hand, the decay
kinematics near or below mt can be significantly different than the corresponding decays to neutralinos. The
expectation is that the GMSB limits there should be much stronger than the nominal limits, and not subject
to the usual sensitivity gap with a compressed spectrum [470]. The major exception is a mostly-t̃L stop,
for which spin effects would reshape the 6ET -sensitive distributions and weaken the limits in searches with
semileptonic decays. Without recasting the most recent searches, it is not possible to precisely delineate this
gap, though the results of [470] suggest that it may be several 10’s of GeV wide, centered in the vicinity of
200 GeV. Since the displaced searches are not designed to cut on 6ET -sensitive tails, we do not expect such
spin effects to be significant there.
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Figure II.58: Recast constraints on displaced H̃0 decays via GMSB: a) pure H̃0 → ZG̃, b)

pure H̃0 → hG̃, c) large-tan β. Colored bands indicate acceptance variations up/down by
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CMS dijet search. This is especially obvious at very low and very high lifetimes, where

the dilepton search benefits from both lower track impact parameter thresholds and looser

pT reconstruction thresholds. Similarly, leptonic decays play a major role in the prompt

searches [471], with maximal sensitivity for pure H̃ → ZG̃, capitalizing in part on 3- and

4-lepton channels. Taking the large-tan β case as a baseline example, mH̃ = 100 GeV is now

covered from zero lifetime up to cτ ∼ 100 m, and mH̃ = 300 GeV is covered up to cτ ∼
few m. The highest mass reach is for cτ ∼ 10 cm, extending out to about 600 GeV. For the

pure H̃ → hG̃ case, our displaced search recasts represent the only extant limits, as was the

case for the RPV Higgsinos.

We have touched upon most of the possible displaced NLSP decays in gauge mediation.

The last obvious remaining option, which we now briefly discuss for completeness, would

be wino co-NLSPs. In some ways, this should overlap significantly with our H̃ results, but

there are some notable differences. First, wino cross sections are about two times larger.

Second, the W̃ 0 has a significant branching fraction into photons, hence subjecting it to

the displaced/delayed photon searches. Third, when the wino multiplet is somewhat sepa-

rated in mass from the bino and Higgsino, the mass splitting between charged and neutral

states is protected at leading order in the mass mixing by an accidental custodial symmetry,

with the first nontrivial mixing contributions often comparable to or smaller than the elec-

troweak radiative mass splitting of ≈ 170 MeV. This famously leads to the long-lived decays

W̃± → π±W̃ 0, with cτ ' 5 cm, searched for in [134, 434]. In such a case, there can be non-

trivial competition between the above decay and W̃± → W±G̃. There can also be peculiar

cases with an initial stage decay W̃± → π±W̃ 0, leaving a disappearing track, followed by a

secondary displaced decay W̃ 0 → (γ/Z)G̃. Finally, there are also some corners of parameter

space with m(W̃±) < m(W̃ 0) due to chargino and neutralino mixings [472], causing every

event to contain two displaced W s. The signatures would be much more similar to those of

H̃ → ZG̃, though missing the displaced dileptons and, if cτ > O(cm), containing a track

or track stub pointing to the displaced decay (similar to the slepton NLSPs). All together,

the potentially rich displaced phenomenology of wino co-NLSPs in gauge mediation clearly

deserves a more detailed investigation, and would bring together a surprisingly varied set of

displaced search results.
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c. Mini-Split SUSY The last model framework that we consider is mini-split super-

symmetry, where the scalars of the MSSM (excepting the SM-like Higgs boson) are all raised

to the 1000 TeV scale [126, 127, 473]. This scale could represent a sweet-spot between

masses that are high enough to avoid flavor constraints with arbitrary sfermion mass matrix

structure, but low enough to provide a 125 GeV Higgs from the stop loop corrections. The

separation between MSSM scalars and fermions can arise automatically in several SUSY-

breaking mediation scenarios (surveyed in [126] and discussed on general terms in [127]).

However, while some of the important virtues of SUSY such as gauge coupling unification

and dark matter can be preserved, the original motivation of naturalness is partially aban-

doned. The apparently finely-tuned Higgs mass might nonetheless be viewed as a byproduct

of anthropic selection bias in the multiverse, in some ways similar to the unnaturally small

cosmological constant [473], or as a compromise against much larger “tunings” within the

available “model space” of broken SUSY theories [127].

While gauginos need not be present at any particular mass scale, the WIMP miracle

is suggestive of TeV-scale masses, potentially within reach of the LHC. One of the most

interesting targets is the gluino, since the flow of R-parity in its decay must pass through the

heavy squarks, leading to suppressed matrix elements and extended lifetimes. Two types of

LHC searches so far have directly targeted this signal: searches for R-hadrons stopped in the

calorimeters and decaying out-of-time with respect to collisions [137, 145], and an ATLAS

reinterpretation of its prompt jets+ 6ET searches using models with displaced decays [131].

Neither of these are optimally sensitive, though the former strategy has the added benefit of

permitting a lifetime measurement if a positive signal is observed, and the latter strategy can

be carried out quickly with no changes to the event reconstruction and selection software.

In addition, searches for anomalous tracks from collider-stable R-hadrons, which we have

discussed above in the contexts of both RPV and GMSB, continue to apply.

Here we put all of these long-lived gluino searches into context for a couple of specific

assumptions for the decay kinematics. In almost full generality, the gluino may decay into any

flavor-combination of quark-antiquark pairs plus a B̃, W̃ , or H̃. The exact admixture of these

decays is highly model-dependent. Since the decay rate through any given off-shell squark

channel scales like 1/m4
q̃, the lightest squark eigenstate would dominate if there is a somewhat
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Figure II.59: Recast constraints on displaced g̃ → qq̄B̃ in mini-split SUSY: a) mB̃ = 0, b)

mB̃ = mg̃−100 GeV. Colored bands indicate acceptance variations up/down by 1.5. The dot-

dashed lines indicate the intermediate squark mass, assuming that either dR or sR dominates

the decay. Prompt limits (gray) are derived from [467, 474]. They are conservatively cut

off at 1 mm. Additional displaced limits come from stopped R-hadron searches [145] and

ATLAS’s recast prompt limits [131]. (The latter is only approximate, as it has not been

strictly re-interpreted from ATLAS’s model assumptions to our exclusive g̃ → qq̄B̃ final-
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spread-out scalar mass spectrum. Yukawa effects in the renormalization group may favor

light third generation squarks, suggesting dominant decays g̃ → tt̄χ̃0 or g̃ → tb̄χ̃−+c.c. [127],

though flavor-anarchic soft masses could instead lead to lighter first- or second-generation

squarks. Loop-induced decays g̃ → gχ̃0 might also become important [475], though again

depending in detail on the squark mass spectrum, as well as on the gaugino mass spectrum.

For our initial study here, we simply assume 100% 3-body branching fraction g̃ → qq̄B̃ for

q = udcs. The only free parameters are then the gluino and neutralino masses, as well as

the gluino lifetime set by the squark mass scale [127],

cτ ≈ 10−5 m
( mq̄

PeV

)4
(

TeV

mḡ

)5

. (II.F.84)

We reserve a more general survey of displaced mini-split phenomenology for future work.

Fig. II.59 shows our results, choosing eithermB̃ = 0 ormB̃ = mg̃−100 GeV. We find once

again that, amongst explicit displaced decay searches, CMS displaced dijets offers superior

sensitivity. For the light neutralino case, exclusions extend out as far as 1400 GeV, and for

the heavy neutralino out to 800 GeV. The dedicated mini-split gluino searches, based on

stopped R-hadron decays [137, 145] and ATLAS’s recasts of prompt searches [131],28 do not

tend to be competitive with this search combined with the HSCP searches. Interestingly,

the ATLAS muon chamber and low-EM jets searches, which have tended to give universally

weaker coverage, potentially offer more stable sensitivity as the visible activity gets squeezed

out when mB̃ ' mg̃. This owes largely to their focus on lower-mass signatures, which

for compressed SUSY spectra becomes a major virtue. However, the overlap with HSCP

coverage remains substantial.

3. Summary and Outlook

The initial 7 and 8 TeV runs of the LHC have launched an impressive exploration of the vast

parameter space of the MSSM and its extensions, yielding the most sensitive searches to date

and in many cases already probing up to TeV mass scales. In this section, we have sought to
28The ATLAS recasts in [131] assume a model with 50% branching fractions into qq̄χ0 and gχ0, respectively.

Since our models here are pure qq̄χ0, rigorous interpretation of the limits would require yet another layer of
recasting. We do no attempt this, but use the ATLAS results only to indicate an approximate model reach.
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initiate a systematic extension of this program into the similarly vast realm of SUSY with

non-prompt final-stage decays, as occur in a number of common and well-motivated scenarios

within the MSSM such as R-parity violation, gauge mediation, and mini-split spectra. This

has been accomplished by recasting seven existing searches for stable charged particles and

highly displaced decays, and combining these with prompt searches. Our present survey

has focused mainly on signals containing a sizable fraction of hadronic decays, including

“natural” spectra with light stops and Higgsinos. The overarching conclusion is that, while

very few long-lived particle searches are explicitly designed to be sensitive to these signals,

the extremely low backgrounds and reasonably high acceptances of those searches nonetheless

allow us to place tight limits. Indeed, we have typically found large patches of parameter

space where multiple distinct search channels overlap. That said, we have identified several

places where significant improvements might still be possible.

We first list here some conclusions of our investigations regarding the performance of the

searches:

• In the long-lifetime limit, several searches have been carried out for stable charged R-

hadrons. They are usually still sensitive down to cτ ∼ meter, catching rare late-decaying

particles, and providing substantial overlap with explicit displaced decay searches. Lim-

its on squarks and gluinos extend up to about 1 TeV. However, there is of course no

sensitivity to long-lived neutral particles, such as (N)LSP Higgsinos.

• The CMS displaced dijet search is extremely effective for essentially any decay topology

involving any number of energetic quarks and gluons (including one or three, as well as

many decays with leptons [138]). It is almost universally the most powerful displaced

decay search when hadronic decays dominate, including decays involving weak bosons.

For cτ ∼ 10 cm, (stop) squark pairs are probed up to almost 1 TeV, gluinos typically up

to above 1 TeV, and Higgsinos up to 600–800 GeV. Though the trigger pT requirements

are relatively harsh, good sensitivity is maintained for superparticles with strong or

electroweak production cross sections down to 100 GeV mass, by picking up events on

the high-pT tails. It seems likely that similar search strategies, perhaps capitalizing on

different sets of triggers and displaced vertex criteria, could expand the model reach.

In particular, within our own set of models the original dijet requirement reduces by
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O(10−−100) the acceptance for “monojet” decay topologies such as from q̃ → qG̃ and

g̃ → gG̃ in GMSB. A standard jets+6ET style trigger could much more efficiently pick up

this signal, and a single displaced-jet requirement would likely eliminate the remaining

background. It would also be very useful to investigate this style of search for more

traditionally motivated signals such as τ̃ → τG̃, which would require accepting low-

multiplicity/low-mass vertices. For this signature and many others, it is important to

understand what happens when the displaced particle is charged and can leave its own

track segment.

• Existing ATLAS searches for displaced decays inside the calorimeters and muon cham-

bers should in principle supplement the region cτ ∼ few meters, where both the stable

charged track and displaced dijet searches are becoming weaker. However, these searches

were highly optimized for low-mass pseudoscalar signals, and achieve relatively limited

sensitivity for displaced SUSY models. It seems likely that these searches could be mod-

ified to better capitalize on the energetic signatures of superparticles with 100’s of GeV

mass, where they are anyway most needed to extend the global search reach beyond

cτ ∼ 1 m, especially for long-lived neutral particles where stable charged track searches

are unusable. This could possibly be done using existing data from the specialized AT-

LAS HCAL and muon triggers. Such modified searches would still need to achieve very

high efficiency in order to become competitive with the other searches, possibly benefiting

from a single-candidate mode rather than their standard double-candidate.

• We have also considered three searches that capitalize on relatively clean leptonic signa-

tures: a displaced muon in association with a displaced tracker vertex (not necessarily

geometrically overlapping), a displaced dilepton pair, and generic eµ+X signatures where

the electron and muon are each displaced. Interestingly, the µ+tracks search shows non-

trivial sensitivity even to fully hadronic decays, provided that they contain energetic

bottom quarks. However, within the scope of models studied here, all of these searches

truly become relevant for signals involving weak bosons, such as stop and Higgsino decays

in GMSB. The displaced dilepton search in particular offers improved sensitivity relative

to displaced dijets when Z bosons are available, since the former can be constructed

with both lower impact parameter thresholds and lower pT thresholds. The µ+tracks is
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also highly competitive, though somewhat weaker in lifetime coverage due to geometric

restrictions on the vertexing.29

• A variety of prompt searches have been directly applied to the decay topologies that we

consider here. It is, however, mostly unclear how effective these searches are when the

decays become appreciably displaced, especially for searches involving leptons or tradi-

tional b- and τ -jets. A first analysis in this direction was performed by ATLAS [131] for

gluinos in mini-split SUSY, indicating an approximately logarithmic degradation of mass

reach with increasing lifetime (presumably stemming from the onset of a linear falloff in

displaced decay acceptance when cτ > O(m)). For searches at CMS, which rely much

more on tracking and vertexing in the construction and validation of particle-flow jets,

more significant degradations might be expected. While we have shown that CMS’s ded-

icated displaced dijets search can much more efficiently pick up the gluino signal in the

lifetime range where ATLAS shows results, we expect that there would be additional ben-

efits to exploring other searches involving “many b-jets” and/or “many τ -jets” (possibly

plus 6ET ), ideally with some allowances for uncharacteristically high displacements. Such

searches would (or perhaps already do) bridge the possible weakening in fully hadronic

coverage around O(mm) lifetime stemming from CMS’s 500 µm displaced dijet impact

parameter cut. As noted, the benefit of searching down to smaller nonzero displacements

was already made clear in our GMSB Higgsino results, where displaced dileptons was

able to push the lifetime reach down by as much as an order of magnitude.

We next discuss some of the physics implications of our findings:

• Natural supersymmetry with light, promptly-decaying stops has been coming under pro-

gressively more pressure from a series of LHC searches. Moving to scenarios with dis-

placed stop decays into jj via baryonic RPV or t(∗)G̃ in GMSB, we are apparently forced

into to even more unnatural regions of model space. This is particularly true in baryonic

RPV, where prompt decay limits are currently very weak. However, very small λ′′ and

displaced stop decays are actually favored by cosmological arguments, as even λ′′ ∼> 10−6

29It could be quite interesting to recast this search (as well as the displaced dijets) for the t̃→ l+b leptonic
RPV model, which was searched for in the eµ+X channel in [136]. There are likely other models we have
not touched upon for which this search could be uniquely sensitive.
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with sub-TeV stops would efficiently wipe out the baryon asymmetry of the universe in

a standard thermal history with baryogenesis no lower than the weak scale [476]. It is

therefore becoming very difficult to simultaneously accommodate naturalness, baryogen-

esis, and LHC direct searches in such a scenario. In GMSB, where an NLSP stop is rather

nongeneric but has been an interesting logical possibility for some time [461], the region

with mt̃ < mt is almost guaranteed to yield displaced decays (provided
√
F ∼> 10 TeV).

The mt̃ < mt possibility is now fully closed, as is essentially all model space below

500 GeV.

• Natural supersymmetry with light Higgsinos is traditionally very challenging to probe

via direct electroweak Higgsino production, though some limits are becoming available in

general GMSB models where decays into Z bosons are appreciable [471]. In the presence

of baryonic RPV, the multijet decays of the lightest Higgsino yield a very striking and

highly constrained displaced signature, and furnish the only extant LHC direct produc-

tion limits in that topology. The cosmological implications are more model-dependent,

but again tend to disfavor the as-yet unprobed prompt decays [476]. RPV Higgsinos with

cτ ∼> 10 m would effectively act stable, and again become very difficult unless, as usual for

neutralinos, they are produced in the decays of heavier colored superparticles and appear

as 6ET . In the GMSB case, as noted above, almost all of the searches that we have recast

become sensitive, the only exception being stable charged particles. The mass/lifetime

coverage is qualitatively similar to the RPV case, though the smaller fraction of visible

energy, the typically smaller number of hard partons, and the smaller branching fractions

into individual final states all contribute to slightly lower mass reach. Assuming that

a natural Higgsino mass must be roughly below 400 GeV (naively corresponding to less

than 5% fine-tuning of the Higgs boson mass), the displaced GMSB decay searches can

probe a large fraction of the available space with
√
F between 10 TeV and a several

1000 TeV. In particular, for mH̃ ' few 100 GeV, there is now a fairly firm constraint
√
F ∼> 1000 TeV, unless the decay is dominated by hG̃.

• Mini-split SUSY with sub-TeV gluinos is close to being fully ruled-out for any squark mass

scale. An immediate escape hatch is to compress the spectrum to mg̃ −mχ̃ ∼< 100 GeV.

We have also not studied in detail the limits on decays involving top quarks, though many
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other searches then open up, and it would be surprising if the limits become appreciably

weaker. Non-minimal decay topologies involving electroweak-ino cascades could also be

interesting to study, but would likely only yield signals that are even more visible to

displaced decay searches.

• Generic colored superparticles as (N)LSPs in either RPV or GMSB are to large degree

ruled out for any lifetime if the mass is below about 1 TeV, again with the gluino limits

tending to be several 100 GeV stronger than squark limits. Light RPV squarks with

prompt decays would also face direct search difficulties similar to stops, but partially

compensated by the higher multiplicity of flavor/chirality states.

What else remains to be done? Within the context of RPV (both baryonic and leptonic),

a more thorough survey of the current status of different LSPs and flavor structures along the

lines of [477] and [149, 478] seems warranted. Leptonic RPV in particular has a quite large set

of possible couplings. Spectra with “electroweak” LSPs besides Higgsinos, namely sleptons

or gauginos, also deserve further attention, as they can become much more visible than they

would be if their decays were prompt. For general gauge mediation, we have emphasized

in Section II.F.2.b that the full set of possible NLSPs is (rather remarkably) almost fully

covered. The major exceptions are again sleptons and winos, with the latter offering an

interestingly varied array of different signatures. We again expect that the existing set of

displaced and prompt searches have much to say about all of the above models, though in

many cases coverage may still be entirely lacking, unnecessarily weak, or ambiguous given

the current limitations of making public the general analysis acceptances.

With the upcoming Run 2 of the LHC, the mass reach for the models that we have

explicitly studied might be expected to roughly double, assuming that similar analyses will

be undertaken. We encourage the experiments to continue their displaced decay search

programs at an even greater level of breadth so that interesting signals are not left behind.

We also hope that future recasts are better facilitated by more explicit discussions of analysis

acceptances, less tied to one or two specific fully simulated models in limited kinematic

ranges. Endeavors like ours should ideally not require as much from-scratch calibration,

extrapolation, and guesswork, as detailed here in Section II.F.1 and in the Appendices below.

Of course, the need to facilitate more general model interpretations becomes even more
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pressing if a discovery is made. Works along the lines of CMS’s stable charged particle

efficiency maps [130] are a step in the right direction. But we emphasize that even coarse

parametrizations such as the ones that we have developed can prove invaluable, especially if

directly compared against full internal simulations by the collaborations. We hope that our

work, which has further clarified the extreme power and broad model reach of these searches,

spurs further activities in these directions, and we look forward to the next round of LHC

displaced search results.
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III. BSM PHYSICS AT THE ILC AND CEPC

A. ELECTROWEAK RESONANCES AT THE ILC

1. Z ′ observables at the ILC

A lepton collider with high luminosity could probe the Z ′ couplings through their interference

with the SM. Here we study the sensitivity of different observables to a Z ′ at the 500 GeV

and 1 TeV ILC. Previous studies include [223, 224, 227, 479–484].

We show our results in Fig. III.1. We apply an acceptance of polar angle for the charged

leptons in region of 10◦ < θ < 170◦ [485]. We require a minimal pT of 20 GeV for jets. We

include a 0.25% polarization uncertainty, 0.2% uncertainties on leptonic observables, and

0.5% uncertainties on hadronic observables [177]. Among those uncertainties associated with

leptonic and hadronic final states, we assume that 0.14% are correlated and thus will cancel

in asymmetry observables. The τ lepton, bottom quark, and top quark tagging efficiencies

are set at 60%, 96% [177] and 70%.

We study the accuracies of the muon forward-backward asymmetry AFB[µ−µ+] and the

cross section σ[µ−µ+] for the dimuon final state1, assuming the fixed (normal) beam po-

larization2 P(e−, e+) = (+0.8,+0.3), using the formulae in (VI.E.34) and (VI.E.42). The

muon forward-backward asymmetry in the SM is relatively large, as shown in the left panel

of Fig. III.1. The difference in cross section is dominantly a summation of interference terms

from different squared helicity amplitudes, and it is possible to have sizable interferences

1Dielectron final states also involve t-channel exchanges.
2As discussed in Appendix VI.E.2 we define P > 0 for predominantly left (right)-handed e−(e+). We

note this is opposite of the ILC convention for the positron polarization. We only use such convention in
this section for simplicity of discussion. In other secitons, especially for physics physics, we take the ILC
convention.
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Figure III.1: The accuracies of ILC observables for a 500 GeV ILC. Details of the as-

sumed uncertainties are discussed in the text. Left panel: ∆χ2 = 1(4) contours (red (blue))

of the simulated e−e+ → µ−µ+ cross sections σ[µ−µ+] and the forward-backward asym-

metry AFB[µ−µ+] in the dimuon system, with 500 fb−1 data at fixed beam polarization

P (e−, e+) = (+0.8,+0.3). Right panel: ∆χ2 = 1(4) contours (red (blue)) of the simulated

polarization (left-right) asymmetry in the dimuon system ALR[µ−µ+], and the total polariza-

tion asymmetry ALR[tot] (including all of the final states except e−e+ and νν̄), with 500 fb−1

each for beam polarizations P (e−, e+) = (+0.8,+0.3) and P (e−, e+) = (−0.8,−0.3).
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without changing the cross section much. A typical example is the Z ′SSM , shown in the

figure, and similarly the Z ′LR. All of the leptonic cross sections are smaller than the SM.

This is no longer true for hadronic final states, since geL/Rg
u/d
L/R could have either sign. From

this figure we can see that Z ′χ, Z ′B−L and Z ′SSM are well separated from the SM.

If the beam polarization can be flipped from normal polarization to the reversed polar-

ization P(e−, e+) = (−0.8,−0.3), one can determine the polarization (left-right) asymmetry

ALR[µ−µ+] for the dimuon channel, defined in (VI.E.45) and (VI.E.46), for which some of the

systematics cancel. One can also observe the total polarization asymmetry ALR[tot] defined

in (VI.E.47), for which one does not need to identify the final state (other than removing the

dielectron) and which has higher statistics. However, there are some cancellations between

final states. For example, some final states may have positive deviations from the SM while

others have negative deviations. Both ALR[µ−µ+] and ALR[tot] are shown in the right panel

of Fig. III.1, assuming 500 fb−1 for each polarization.3 For the ALR[tot], we sum all of the

observed final states other than the dielectron4. ALR has the merit that not only most of

the luminosity uncertainty cancels, but also many systematic uncertainties, such as those

associated with tagging efficiencies, acceptances, etc., cancel. Therefore, we only include

the polarization and statistical uncertainties when treating the polarization asymmetries5.

ALR[µ−µ+] is especially sensitive to Z ′χ, while ALR[tot] is useful for distinguishing Z ′LR.

There is some complementarity between the LHC and ILC observations, as can be seen

in Figs. II.10 and III.1. For example, the LHC has limited discrimination between the

LR, B-L, and SSM models, especially from the cleaner AFB[e−e+], while these could be

well-separated using the ILC observables.

208



ILC 500\1000 GeV 500\1000 fb-1

H-0.8,-0.3\-0.2L Σ@allD
H+0.8,+0.3\+0.2L Σ@allD
H+0.8,+0.3\+0.2L AFB@Μ

-
Μ

+D
ALR@totD

\

\

\

\

0 5 10 15

Χ

Ψ

Η

LR

B-L

SSM

MZ ' HTeVL

Figure III.2: The exclusion reach of the 500 GeV (1 TeV) ILC with 500 fb−1 (1000 fb−1)

of integrated luminosity for both normal beam polarization P (e−, e+) = (+0.8,+0.3)

(P (e−, e+) = (+0.8,+0.2)) (brown (red) and yellow (green)) and reversed beam polarization

P (e−, e+) = (−0.8,−0.3) (P (e−, e+) = (−0.8,−0.2)) (cyan (blue)). We show the comple-

mentarities between different beam polarizations and observables σ including all channels

other than the dielectron (cyan (blue) and yellow (green)) and AFB from the dimuon final

state (brown (red)). We also show the exclusion reach (magenta (purple)) from ALR[tot] for

reversed beam polarizations, with 500+500 fb−1 and 1000+1000 fb−1 for the ILC 500 GeV

and ILC 1000 GeV, respectively. The reaches from ALR[tot] would be reduced by ∼15% for

divided runs of 250 + 250 fb−1 and 500 + 500 fb−1.
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2. Z ′ Beyond the LHC Reach

We show the exclusion (95% C.L.) reach of the ILC at 500 GeV and 1 TeV, including the

case that the Z ′ is beyond the LHC reach, in Fig. III.2. We show the reach from both the

normal and reversed beam polarizations obtained from the cross sections for µ−µ+, τ−τ+,

2 jets (from light quarks), bb̄, and tt̄, where we combine the χ2 from each channel after

including the appropriate systematic uncertainties. We also show the exclusion reach from

the muon forward-backward asymmetry AFB[µ−µ+] and from ALR[tot]. In the latter case

we assume that the beam polarizations can be reversed and that a full luminosity run is

made for each polarization. The uncertainties included are described in the previous section.

We assume the deviations in the cross sections and asymmetries from the SM scale with

M−2
Z′ . We conservatively estimate that corrections will reduce the exclusion reach by . 2%.

There is no single best exclusion observable; for some models like Z ′χ and Z ′SSM the normal

polarization is better, for others like Z ′ψ, Z ′η and Z ′LR the reversed beam polarization or

the forward-backward asymmetry has a larger reach. The polarization asymmetries, with a

portion of systematic uncertainties cancelled, is especially stringent for the LR model.

3. Summary of the Z ′ at the ILC

For the ILC, the chiral couplings and Z ′ mass affect various observables through the in-

terference of the Z ′ with SM contributions. Typical observables include the cross section

σ, forward-backward asymmetry AFB for di-fermion systems with charge identification, and

polarization asymmetries ALR for reversed beam polarizations. (Other possibilities include

the polarized forward-backward asymmetry and the final state polarizations in τ+τ− and tt̄.)

We show the cross section and forward-backward asymmetry for the dimuon system in the

left panel of Fig. III.1. It shows good discrimination potential for Z ′χ, Z ′B−L and Z ′SSM from
3With the doubled run one would also have such new observables as σL+σR in (VI.E.45), AFB in (VI.E.42)

with reversed polarization, or AFBLR in (VI.E.48). Alternatively, one could divide a 500 fb−1 run into two
250 fb−1 runs with opposite polarizations, in which case the outer contours in Fig. III.1 would correspond
to ∆χ2 = 2.6.

4The major contribution to ALR[tot] is from the hadronic final states, since the polarization asymmetry
for dileptons is much smaller. One could also consider different final states separately to gain better statistical
sensitivity (but with larger systematic uncertainties).

5Some parametric uncertainties in the SM parameters don’t cancel. We ignore them here as they are
expected to improve in the future [486].
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other models and the SM background. The polarization asymmetry for the total (except for

dielectron) cross section and the dimuon final states are also potentially very useful if the e∓

polarizations can be reversed, as shown in the right panel of Fig. III.1. The asymmetry for

the total cross section is especially important because it involves high statistics and reduced

systematic uncertainties, since the final states do not need to be identified.

For the scenarios in which the Z ′ cannot be resonantly produced, we study the exclu-

sion reach for the ILC from cross sections, forward-backward asymmetries, and polarization

asymmetries. The results are shown in Fig. III.2, which also shows the complementarity

between these observables.

In this preliminary study we have focused on the ability of various observables at the

LHC and ILC to discriminate between several benchmark Z ′ models with minimal width.

For MZ′ ∼ 3 TeV the LHC should be able to observe a Z ′ through its leptonic decays, and

obtain a measurement of its mass and width at the 10 GeV level. Some sensitivity to the

chiral couplings (as illustrated by model discrimination) would be possible at the LHC and

especially at the ILC, and the ILC reach would extend considerably higher as well.

However, there are a very large variety of possible models, including those with much

weaker or stronger couplings than our benchmarks. Ideally, one would like to obtain as much

information as possible in a model-independent way from the LHC, ILC, other colliders, and

also from existing and future precision electroweak experiments.

B. HIGGS WIDTH AT THE ILC

In this section, we revisit the issue of to what extent an ILC, combined with expected LHC

inputs, would be able to precisely determine the Higgs total width and individual couplings.

We follow a systematic approach in a model-independent manner. We discuss the leading and

subleading contributions for total width and perform studies on two typical processes at the

ILC. We find the optimal results for the Higgs couplings, the invisible decay mode, and total

width determinations. Finally, we consider the effects of adding mildly model-dependent

assumptions, which can significantly improve the precision.
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1. Formalism for Higgs Width Determination

a. General Approach to the Higgs Width The total width of the SM Higgs boson

is predicted to be about 4.2 MeV. For such a narrow width, only a muon collider may

provide a sufficiently small energy spread to directly measure the width [181, 487–489]. At

the LHC and ILC, the smearing effects from energy spread for both the initial state and

final state override the Breit-Wigner resonance distribution, although it may have a visible

effect in differential cross section distributions involving interference with the background

diagrams [166, 173, 174].

The Narrow Width Approximation (NWA) allows us to write a total s-channel cross

section as a production cross section multiplied by the branching fraction (Br) of the Higgs

boson decay

σAB '
σ(A→ h)Γ(h→ B)

Γh
∝ g2

Ag
2
B

Γh
, (III.B.1)

where we have symbolically denoted the Higgs production via A with an AAh coupling

(gA), and the subsequent decay to B with a BBh coupling (gB). There is a well-known

“scaling degeneracy” of the NWA cross section, namely the cross section is invariant under

the scaling of related couplings by κ and the total width of the resonant particle by κ4. This

demonstrates the incapability of hadron colliders to determine the couplings and width in a

model-independent fashion. With certain modest assumptions, one may obtain some bounds

on the total width as recently discussed in [171, 172, 179, 196, 490].

When determining the accuracies from the measurements, we take the form of

Eq. (III.B.1) in a general sense. We consider all available measurements from, for instance,

AA-fusion, Ah-associated production etc. to extract g2
A. This form also allows for inter-

changing production and decay since g2
A and g2

B are on equal footing.

In order to break the “scaling degeneracy” without assumptions on the couplings, we

must go beyond the simple form σAB. The most efficient process for this purpose is the

inclusive Higgs production cross section from the coupling to A. This can be measured when

we know the information about the incoming and outgoing particles aside from the Higgs

boson in the process. The best-known example is the “Higgstrahlung” process e+e− → hZ,
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where one can construct the recoil mass by the well-measured Z decay products

M2
rec = (pe+e− − pZ)2 = s+M2

Z∗ − 2
√
sEZ . (III.B.2)

The peak near mh selects the signal events and the Higgs decay modes are all accounted for

inclusively. Thus the inclusive cross section σincZ and equivalently g2
Z can be measured since

the factor
∑

all g
2
B/Γh is unity.

With the inclusive cross section σincA (equivalently g2
A) measured, one can readily perform

the extraction to the total width Γh by utilizing exclusive cross sections:

• directly measuring σAA

Γh =
(g2
A)2

(g2
Ag

2
A/Γh)

∝ g2
A

σincA

σAA
; (III.B.3)

• indirectly determining σAA by inserting other cross section measurements from the ILC

Γh =
(g2
A)2(g2

Bg
2
C/Γh)

(g2
Ag

2
B/Γh)(g

2
Ag

2
C/Γh)

∝ g2
A

σincA σBC
σABσAC

(III.B.4)

=
(g2
A)2(g2

Bg
2
C/Γh)(g

2
Dg

2
E/Γh)

(g2
Ag

2
B/Γh)(g

2
Cg

2
D/Γh)(g

2
Ag

2
E/Γh)

∝ g2
A

σincA σBCσDE
σABσCDσAE

= ...;

• more generally, indirectly determining σAA by inserting other cross sections including those

from the LHC

Γh =
(g2
A)2

g2
Ag

2
B/Γh

(
g2
B

g2
A

)
∝ g2

A

σincA

σAB

(
BrB
BrA

)
. (III.B.5)

We note that in the above method as expressed in Eqs. (III.B.3), (III.B.4) and (III.B.5), the

right hand sides are fully expressed by experimental observables6, which can be easily and

consistently used to determine precision on derived quantities such as Γh. In principle, the

longer the chain of measured cross-sections is in our expressions above, the more sources of

uncertainties we must be concerned with, but this may allow us to utilize quantities with

minimal individual uncertainties which can be advantageous. The most important channels

to measure depend on the center of mass energy. Current plans for the ILC foresee an

initial stage of running at 250 GeV, which maximizes the Higgstrahlung cross section, and a

higher-energy phase at 500 GeV with perhaps 1 TeV running at an upgraded machine where
6We keep g2A to make clear the transition between Eq. (III.B.1) and Eq. (III.B.3). As stated earlier, it is

a direct translation from observable σincA .
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weak boson fusion takes over. This leads to rich physics interplay between combinations

of contributing channels which we discuss in the following subsections Sec. III.B.1.b and

Sec. III.B.1.c.

Determining the couplings other than g2
A from σincA , can be done directly once Γh is

known. With any exclusive cross section measurement σAB or σBA, we can write

g2
B ∝

σABΓh
g2
A

. (III.B.6)

However, one needs to be cautious when determining g2
B using this relation. Γh is a de-

rived quantity and may depend heavily on σAB as well. For proper treatment of errors,

we will evaluate precision on these quantities consistently by global fitting as described in

Sec. III.B.3.a and Appendix VI.G. Discussions in this subsection and following subsections

clearly point out leading and sub-leading contributions and will provide guidance for current

and future studies.

b. The ILC at 250 GeV With ILC only

For an electron-positron machine running near 250 GeV the leading Higgs production

mechanism is the “Higgstrahlung” process e+e− → hZ. For Z decaying to electrons and

particularly to muons we can have very good resolution on recoil mass and a clear excess

over expected background. Detailed simulations estimate that the inclusive cross section

σ(Zh) can be determined to a statistical uncertainty of 2.5% with 250 fb−1 of integrated

luminosity [183, 184, 491].

Unfortunately, σZZ can not be measured with great precision at the ILC due to the

limited statistics from the small Z leptonic branching fractions. As such, the total width

determined from Eq. (III.B.3) has large uncertainties. However, we can make several mea-

surements from which an equivalent ratio of couplings to widths is derivable, as shown in

Eq. (III.B.4). For a Standard-Model-like Higgs boson, couplings to b-quarks and to W and

Z bosons are expected to dominate, leading to high statistics for those channels. Since we

are mainly interested in ratios of coupling constants and the Higgs width, σWZ and σZW

give us equivalent information and can potentially both be measured. To use Eq. (III.B.4)

we must have at least one cross section that involves a Higgs coupling to non-Z particles at
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both vertices. At the ILC this generally requires producing the Higgs via WW fusion. This

mechanism becomes dominant at higher energies but remains relatively small at 250 GeV.

Nonetheless, Dürig et al. estimate that σ(e+e− → hνν → bbνν) = σWb can be measured

with 10.5% accuracy [492]. Then by measuring σZb and σWZ one has an alternative and

likely more precise determination of the Higgs width

Γh ∝ g2
Z

σincZ σWb

σZW σZb
. (III.B.7)

Incorporating LHC data

The LHC Run II will accumulate a significant amount of integrated luminosity and the

Higgs property will be studied to a high accuracy. Although, as discussed in Sec. III.B.1.a,

it cannot resolve the inclusive Higgs measurement, we can use ratios of cross sections from

the LHC in conjunction with ILC data to improve our results as described by Eq. (III.B.5).

The ATLAS and CMS collaborations have conducted simulations to estimate the sensitivity

of various cross section and ratio measurements with 300 fb−1 of data and in some cases up

to 3000 fb−1 [493–495]. In particular, with 300 fb−1 of data the LHC is expected to measure

the Higgs decays to γγ, ZZ, WW , bb and ττ with ∼ 5 − 20% accuracy. We can use these

numbers along with measurements of σZb, σZγ, σZW and σZτ at the ILC to determine the

total width as well. Generically, either the relevant ILC cross section or the ratio coming

from the LHC will have limited sensitivity so the individual combinations will have only

moderate uncertainty for the total Higgs width, but in combination with each other and the

pure ILC combinations above an improved result for the width can be achieved, as will be

discussed in section III.B.3.

Invisible Decays of the Higgs One further decay channel which it is interesting to

include is the partial width for Higgs decaying to invisible particles. In the SM this is a tiny

branching fraction due to h→ ZZ → 4ν (Br ∼ 0.2%). However it may be enhanced by new

physics such as Higgs portal scenarios for dark-matter [496]. The invisible decay cross section

can be measured to high precision at the ILC. This is done by again using the recoil mass and

the absence of visible final particles except for the recoiling matter, which will be a Z for our

purposes at the 250 GeV ILC. Since we only expect to measure one cross section involving

the coupling to invisible particles, the invisible decay measurement does not constrain the
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total Higgs width in a model-independent analysis. Rather, other measurements largely fix

gZ and Γh which then constrain ginv, the effective coupling to invisible final states. However,

as will be discussed in Sec. III.B.3.b, the invisible width can become an important constraint

when applying very moderate assumptions. We have performed a fast simulation of the

invisible decay sensitivity, which is detailed in Sec. III.B.2.a.

c. The ILC at 500 GeV and Beyond Beyond 250 GeV the Higgstrahlung cross section

falls off and the fusion cross sections grow. At 500 GeV WW fusion is the leading process

with a cross section of approximately ∼ 130 fb. The total Zh inclusive cross section is ∼ 100

fb, however the he+e− component is only about 3% of this and similarly for the muon decay

mode. At this energy, ZZ fusion to e+e−h contributes roughly twice as much cross section

as hZ with Z → e+e−, µ+µ− [497]. The inclusive cross section cannot be measured as well

for leptonic decays of the Z but including hadronic decays it may be possible to establish

σincZ at 3% using 500 GeV data [498]. At 1 TeV the fusion cross-sections completely dominate

the production signal. For a SM-like Higgs the best individual determination of the width

is expected to come from measuring σWb, σWW and σZb with high precision. These can be

put in the form of Eq. (III.B.4)

Γh ∝ g2
Z

σincZ σ2
Wb

σ2
Zb σWW

. (III.B.8)

Based on the statistical uncertainty expected in these channels, one finds the precision

on the total width can be known with a ∼ 6% error as reported in Ref. [177], and as

confirmed using the numbers in Sec. III.B.3.a. This error is dominated by the uncertainty

on the inclusive cross section, which is squared in our formula, and that of the cross section

σWW . Although the remaining measurements, σWb and σZb both enter quadratically, they

are expected to be known to the sub-percent level and thus add only a small contribution to

the total uncertainty. These uncertainties assume that the 250 GeV run has been completed

in order to obtain the best resolution on σZb and on σZh. One should, however, bear in

mind that these are statistical uncertainties based on SM productions and decays rates; this
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formula is sensitive to additional theoretical and systematic uncertainties, and to deviations

from the SM.

Assuming the numbers used above, we can ask if any other channels will contribute

significantly to the total model-independent width. The best candidate is one used for the

250 GeV analysis as in Eq. (III.B.7).

This derivation depends linearly on the sub-percent cross sections noted above and is

therefore less sensitive to any additional sources or error not included in the purely statistical

determinations currently in use. It makes use of σWZ rather than σWW . Although σWW has

a large cross section at 500 GeV, σWZ can be determined from several different measurements

at 250 and 500 GeV. We have carried out a detailed simulation of signal and background for

one of these processes which we outline in Sec. III.B.2.b.

The best constraints will come by measuring as many channels as possible, including the

available information from the LHC. However, only minor improvements beyond Eq. (III.B.4)

are possible at 500 GeV for an approximately SM-like Higgs. The uncertainty on the inclusive

cross section becomes the largest source of error and total width depends on it quadratically,

as seen in Eqs. (III.B.3), (III.B.4) and (III.B.5). Due to this dependence the error on σincZ

contributes 5% to the total width uncertainty, and improving this key measurement is crucial

to any substantial improvements on the total width. As a result, we argue that inclusive

measurement from ZZ-fusion at a 500 GeV and 1 TeV ILC deserves detailed studies for

potential improvements.

2. Simulations

Many analyses for specific ILC channels exist in the literature, in particular the recently

published ILC TDR [177] and the Snowmass Report [498]. We now present two new studies

in this section, that contribute to our determination of the width as motivated in sections

Sec. III.B.1.b and Sec. III.B.1.c.

a. Invisible Decays of the Higgs at 250 GeV We perform a quick simulation of

the invisible signal to estimate the sensitivity. For event generation we use the ILC-Whizard
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setup provided through the detector simulation package SGV3 [499]. Beam profiles for several

energies have been generated by GuineaPIG [500], these include effects from Beamstrahlung

and ISR. These profiles are interfaced with Whizard 1.95 [501]. The output from this event

generator is showered and hadronized by Pythia and the final state particles are passed to

SGV, which performs a fast detector simulation. Detected particles are grouped into jets by

SGV, for which we set an initially low separation cutoff. The Higgs is taken to be SM-like in

its couplings with a mass of 126 GeV. We assume a beam polarization of −0.8 for the electron

and +0.3 for the positron, consistent with standard assumptions used in the ILC TDR [177].

The simulation includes generator level cuts of Mjj > 10 GeV and |Mll| > 4 GeV where j

are outgoing quarks or gluons and ll applies to final-final state lepton pairs and to initial-final

state pairs of the same charge. To check our simulations we have performed a calculation

of the Zh → bbνν signal in our setup following the analysis of Ref. [502], which used a full

detector simulation. We find good agreement on the expected number of events.

For a signal sample we use the Standard Model process e+e− → Zh, h→ ZZ → 4ν as a

template and scale it according to a parameterized branching fraction

σZh→Z+inv = σZh × Brinv. (III.B.9)

We perform this analysis at the 250 GeV energy scale and concern ourselves only with the

Higgstrahlung production process. We consider two analysis channels: Z decaying to leptons

(e+e− and µ+µ−) and Z decaying to jets. The latter has lower resolution of the peak but

benefits from large statistics. In Fig. III.3 we present simulation results showing the recoil

mass peak overlaying the major backgrounds in both channels.

We perform our analysis by imposing the following requirements: In the leptonic Z case

we require exactly two detected charged tracks, which are identified as either opposite sign

muons or opposite sign electrons. The invariant mass of this lepton pair,Mll must be between

80 and 100 GeV. The recoil mass must satisfy 120 < Mrec < 150 GeV. The magnitude of the

3-momentum of the pair must be less than 50 GeV. Finally, the total detected momentum

and total detected energy must both be within 10 GeV of the momentum and energy of the

lepton pair.
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Figure III.3: Recoil mass distributions for the invisible decay of the Higgs boson (assuming

100% branching fraction) for 250 fb−1 at 250 GeV. The Higgs signal is shown in red while

the background in blue. In the left panel: recoil mass for Z → e+e−; in the right panel:

recoil mass for Z → jj. The cuts are described in Sec. III.B.2.a.

For the hadronic Z decays, we first use the Durham algorithm (kt algorithm) to merge

all detected particles down to two jets, which must have an invariant mass 70 < Mjj < 110

GeV. The recoil mass must satisfy 120 < Mrec < 160 GeV. The transverse momentum of the

jet pair must be greater than 20 GeV. To reduce the background from leptonically decaying

W s we veto events where the highest energy charged track is greater than 35 GeV.

The main background for the leptonic Z comes from e+e− → llνν. In the hadronic case

we see approximately equal backgrounds from e+e− → qqνν and e+e− → qqlν. We also

consider e+e− → qqll, although it adds a negligible number of events to either channel after

cuts. We present the expected number of events from signal and background in Table III.1

below. The numbers shown are for 250 fb−1 of integrated luminosity and a 100% branching

fraction to invisible particles for the Higgs.

We will take the statistical uncertainty in a given channel to be
√
NS +NB where NS and

NB are the expected number of signal and background events, respectively. Based on our

numbers, given a 10% branching fraction to invisible decays, one could measure the studied

cross section with a 5.4% relative accuracy. The cross section for 1% branching fraction

could be measured with 52% relative uncertainty. A branching fraction greater than 3.5%
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Table III.1: Expected number of events in invisible Higgs searches for leptonically and

hadronically decaying Z at a 250 GeV ILC with 250 fb−1 of data.

Process Z → ee Z → µµ Z → jj

ee→ Zh 1810 1970 41900

ee→ llνν 4730 3000 6220

ee→ qqνν 0 0 20700

ee→ qqlν 0 0 22600

ee→ qqll 0 0 84

can be excluded at 95% confidence in the leptonic channel alone and as low as 0.9% can be

excluded for the hadronic channel.

b. Estimated Sensitivity for σZW at 500 GeV To augment the sensitivity of σZW , we

carry out a Monte Carlo simulation of the signal e+e− → e+e−h→ e+e−W+W− at the ILC

running at 500 GeV. In particular, we include signal events generated by ZZ fusion graphs,

which are small at 250 GeV but comprise the majority of events at 500 GeV.

This signal has several nice features. At 500 GeV, after cuts, approximately two thirds of

the signal is generated by ZZ fusion, and one third comes from the Higgstrahlung process.

We search for an on-shell Higgs decaying to one on-shell and one off-shell W . Each W then

decays either hadronically to two jets or leptonically to a charged lepton and a neutrino.

We consider the all-hadronic and semi-leptonic cases for the two W s taken together; the

all leptonic-mode makes up only a small fraction (∼ 9%) of total WW decays. For both

the hadronic and semi-leptonic cases the event is essentially fully reconstructible, with the

neutrino momentum assumed to be equal to the missing momentum in the semi-leptonic

case.

Our simulation framework is the same as described in the previous subsection. For each

event, we first identify the two highest energy charged tracks which have been identified
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Figure III.4: Kinematic distributions for the signal e+e− → e+e−h → e+e−W+W− →
e+e−4j, after the hadronic decay selection criteria are applied for 500 fb−1 at 500 GeV. In

the left panel: the recoil mass using outgoing electrons; in the right panel: invariant mass of

the recoil electron pair.

as electrons by SGV. If these are not opposite in charge sign we consider the next highest

energy electron track until we find one that is of opposite sign to the highest energy track.

Otherwise we discard the event. If these tracks are identified with a jet that includes seen

hadronic particles, we subtract the track momentum from the jet and use the observed track

momentum as the electron momentum, otherwise we identify the electron momentum with

the jet. After this process we define the number of jets with hadronic particles and energy

greater than 5 GeV to be Nhj (number of hadronic jets). We also consider potential muon

tracks. Muons are not specifically identified by SGV, they appear as charged tracks that are

not identified as electrons or hadronic states.

For our event selection, we first require that either 70 < Mee < 110 GeV, which we

consider a Higgstrahlung event, or Mee > 150, which we take as a fusion event. The distri-

butions for the recoil mass and the invariant mass for our signal are shown in Fig. III.4, one

can clearly see the Higgstrahlung and fusion regions in the latter.

If there are more than 3 initial jets, and Mh > 115 GeV, and Emiss < 50 GeV we treat

the event as a fully hadronic decay. Otherwise we consider it as semi-leptonic and require

that it have at least two hadronic jets and one additional electron or muon track.
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Figure III.5: Invariant mass of the 4 jets identified with a Higgs in the all-hadronic analysis

for 500 fb−1 at 500 GeV. The Higgs signal is shown in red on top of the primary background

arising from e+e− → e+e−qq in blue.

c. Fully Hadronic Reconstruction For the fully hadronic case we merge the existing

jets according to the Durham algorithm until there are only four. The Durham jet defini-

tion is a sequential combination algorithm which merges the nearest sub-jets at each step

according to the distance parameter

Y ≡ 2 min[E2
1 , E

2
2 ](1− cos θ12). (III.B.10)

We denote by Y45 the distance parameter at which the fifth jet is merged into the fourth

and similarly for Y34. We then take the pair of jets which has an invariant mass closest

to the physical W mass and treat this as the on-shell W . The remaining pair are then

regarded as the off-shell W . The sum of the two W momenta is identified with the Higgs,

with corresponding mass Mh. Figure III.5 shows a simulation of the signal Mh along with

the dominant background.

The six outgoing particles of the signal provide a number of angular variables which can

be useful in discriminating against background. The decay of a Higgs through a pair of

W s has been analyzed in detail in Ref. [503] and we adopt the angular variables described

therein. We first boost to the rest frame of the Higgs. Then for each W we boost to the rest
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frame of that W and compute the angle between one of the jets from its decay and the boost

direction of the W with respect to the Higgs rest frame. We choose whichever jet gives an

angle less than π
2
and call these angles θj1, θj2 for the two W s. A third angle, φj, describes

the angle between the planes of decay of the W s in the Higgs rest frame.

We adopt a similar treatment for the incoming and outgoing electrons. We again begin in

the Higgs rest frame and define θl1, θl2 as the angles between the incoming/outgoing electron

associated with each Z, and the boost direction of the Z with respect to the Higgs, in the

Z rest frame. Then φl is the angle between the incoming and outgoing lepton pair “decay”

planes7.

With these reconstructions and definitions, we impose the following cuts: The recoil

mass must be between 110 and 250 GeV. The 4-jet reconstructed Higgs mass, Mhad must

be less than 150 GeV. We choose these cuts because the recoil mass provides a sharper

resolution at the low mass edge while the jet reconstruction is better for the high mass

cut-off. The off-shell reconstructed W must have an invariant mass less than 70 GeV and

its momentum in the rest frame of the Higgs ( |P rest
W |) must be less than 45 GeV. The

on-shell W should have an invariant mass between 55 and 100 GeV. For further discrim-

ination against the backgrounds we rely on a likelihood function L. This function differs

in the Higgstrahlung (Lh) and ZZ fusion (Lf ) analysis regions. Lh and Lf take as inputs

θj1, θj2, θl1, θl2, φj, φl, |P rest
W |, Y34, Nhj,M

off
W , and Mh. Lf also uses Mee. These functions are

defined as the logarithm of the ratio of background to signal probability distributions in the

input variables. We have only used simple functions, such as Gaussians and exponentials, to

approximately fit these distributions and have not tried to include complicated correlations,

so a more detailed analysis might improve their efficacy.

d. Semi-leptonic Reconstruction For the semi-leptonic decays, we proceed in analo-

gous fashion. We require at least one additional electron or muon candidate and take the

highest energy track among those found as our decay-product lepton. (Disregarding the two

which are selected as recoiling electrons.) As before, we subtract this track from a hadronic

7There is a seventh physical angle describing the orientation of the Higgs decay relative to the Zs involved
in producing it, but this does not seem to show any useful structure in the backgrounds or signal. This is
expected for the signal since the scalar Higgs cannot transmit angular correlation information.
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Table III.2: Cuts applied in hadronic and semi-leptonic analysis for e+e− → e+e−h →
e+e−W+W−.

Variable Hadronic Semi-Leptonic

Higgstrahlung Fusion Higgstrahlung Fusion

Mrec > 110, < 250 > 115

Mh < 150 > 100, < 150

M off
W < 70 > 10, < 60

|P rest
W | < 45

M on
W > 55, < 100

L Lb Lf Lb Lf

jet if necessary. We identify the missing energy and momentum with the neutrino. We then

merge the hadronic jets down to two, discarding the event if there is initially only one. The

sum of the hadronic jets is considered to be one W while the other is the sum of the charged

lepton and the neutrino. The Higgs is then the sum of the two W s and W on is whichever

has an invariant mass nearer the physical W mass. Angles are defined as in the all-hadronic

case except that, for the leptonically decaying W , θj2 and φj are defined by the charged

lepton instead of the nearer jet to the boost direction in the W rest frame. We do not

attempt to reconstruct the tau decays. The Higgstrahlung and fusion regions are defined

as before and we apply the following cuts: The recoil mass must be greater than 115 GeV.

The candidate Higgs mass, constructed from two jets plus a charged lepton plus missing

energy, must be between 100 and 150 GeV. The off-shell W should have an invariant mass

between 10 and 60 GeV. Further cuts are imposed by likelihood functions, which depend on

θj1, θj2, θl1, θl2, φj, φl,M
off
W , and Mh and, for the fusion case, Mee. Our cuts are summarized

in Table III.2.
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Table III.3: Expected number of events from h → WW signal and backgrounds with 500

fb−1 at 500 GeV ILC.

Process Expected Events

All Hadronic Semi-leptonic

Higgstrahlung ZZ Fusion Higgstrahlung ZZ Fusion

eeh→ ee4j 85 183 0 0

eeh→ eeqqlν 1 1 52 111

ee→ eeqq 65 100 39 59

ee→ ee4q/eeqqgg 38 85 2 1

ee→ eeqqlν 1 9 8 41

ee→ qqlν < 18 < 18 < 18 < 18

Total Background 104(+18) 194(+18) 49(+18) 101(+18)

δσ 16% 11% 19% 13%
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e. Sensitivity To estimate our sensitivity we include a number of backgrounds which

are expected to contribute significantly after cuts. We model the processes e+e− → e+e−qq,

e+e− → qqlν,e+e− → e+e−jjjj, and e+e− → e+e−qqlν. Among these e+e− → e+e−qq is

the most significant in both the fully hadronic and semi-leptonic channels. Not surprisingly,

e+e− → e+e−4j also contributes significantly to the fully hadronic analysis background and

e+e− → e+e−qqlν to the semi-leptonic background. We provide the expected number of

events from various sources which pass our cuts in Table III.3 below, assuming 500 fb−1 of

integrated luminosity.

The last row before the total background sum sets an upper limit on any background

contributions from e+e− → qqlν. No events in our generated sample for this process pass the

cuts, but due to the large initial cross section we are not sensitive to a number of observed

events smaller than ∼ 18.

A further consideration is the effect of Higgs decays to b-quark pairs, which are expected

to present a large branching fraction for a SM-like scalar. These decays can potentially

pass our cuts and contribute to the excess over non-Higgs backgrounds but they could limit

our ability to measure the pure WW signal. However, this concern can be largely addressed

with b-tagging techniques. We do not include an explicit b-tagging simulation in our analysis,

however, reasonable estimates show that the net effect of b-quark decays and b-tagging is

small and we will proceed based on the assumption that this background can be neglected.

See Appendix VI.H for a more detailed discussion of these effects.

Based on the numbers above we estimate the sensitivity to the combined all-hadronic

and semi-leptonic signals using

δσeeh→eeWW =

√
NS +NB

NS

(III.B.11)

where NS and NB are the expected number of signal and background events respectively.

This gives an uncertainty on the signal cross section δσeeh→eeWW = 6.8%. However, we can

additionally make use of Higgstrahlung signal events where the Z decays to muons. This

should give us essentially the same number of signal events as the Higgstrahlung to electrons

channel. If we very conservatively assume that the background is also the same, we can
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bring the error down to δσeeh→eeWW = 6.0%. Assuming no new background would bring our

error down to 5.6%. For the results below we will use δσZW = 6% for this channel.

3. Achievable Accuracies at the ILC

a. Model-Independent Fitting The expected statistical uncertainty on various other

cross sections at the ILC have been calculated by several authors [177, 498]. We will make

use of numbers presented for the Snowmass Community Study for cross sections other than

those we have calculated ourselves. Table III.4 lists the ILC uncertainties we use in our

analysis below. Table III.5 lists the most relevant LHC uncertainties in our study. These

include assumptions about future theoretical and systematic errors. ATLAS and CMS use

different extrapolation assumptions to obtain their high luminosity precisions. We have

combined them in a conservative way to estimate the effect of both experiments, for details

of the combination in Appendix. VI.G.

Our procedure for this model-independent fit is described in Appendix VI.G, especially

in Eq. (VI.G.62). This fit also determines the relative error on the various coupling constants

gA. The results are given below in Table III.13 and Fig. III.6. We present the expected errors

at the 250, 500 and 1000 GeV stages of running with integrated luminosities of 250 fb−1,

500 fb−1, and 1000 fb−1 respectively, henceforth labeled as ILC250, ILC500 and ILC1000

scenarios. For each scenario we include projected sensitivities with and without the addition

of information from the LHC. For the invisible decays we present the case for a 10% invisible

branching fraction and for 1%. As mentioned in Sec. III.B.1.b, the addition of the invisible

search does not constrain the other Higgs couplings or total width in a model-independent

fit.

Using the σZW determination above we can compute the Higgs width in terms of

Eq. (III.B.8). σZW can be further constrained by measurements of the process e+e− →
Zh, h→ WW at 250 GeV and e+e− → ννh, h→ ZZ at 500 GeV. Combining the information

from these channels we estimate that σZW can be determined to a relative error of δZW =

4.6%. Using the available estimates for δσZb and δσWb one finds that the total error on Γh

using Eq. (III.B.8) is 6.8%. This is nearly the same as the error achievable using Eq. (III.B.4).
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Table III.4: Estimated relative errors for various cross sections at the ILC. The first and sec-

ond rows indicate the production energy and mechanism respectively for the Higgs while the

first column shows the decay modes. Numbers are taken from the ILC Snowmass Whitepa-

per [498] except for simulation studies presented in this section. The Brinv is absolute error.

√
s and L ILC250 ILC500 ILC1000

(Pe− , Pe+) (−0.8, + 0.3) (−0.8, + 0.3) (−0.8, + 0.2)

Decay\ Production Zh ννh Zh/eeh ννh ννh

inclusive (%) 2.6 3.0

bb (%) 1.2 11 1.8 0.66 0.5

cc (%) 8.3 13 6.2 3.1

τ+τ− (%) 4.2 5.4 9.0 2.3

gg (%) 7 11 4.1 1.6

WW (%) 6.4 6 2.4 3.1

ZZ (%) 19 25 8.2 4.1

γγ 29− 38 29− 38 20− 26 8.5

Brinv(%) 0.5-0.7
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Table III.5: Relative uncertainties of relevant quantities from projections of ATLAS and

CMS experiments for LHC 14 TeV with 300 fb−1 and 3000 fb−1 (HL_LHC) integrated

luminosity from Snowmass studies [196]. See the text and Appendix VI.G for combination

details.

γγ (%) WW ∗ (%) ZZ∗ (%) bb̄ (%) τ+τ− (%)

LHC ATLAS 9-14 8-13 6-12 N/A 16-22

300 fb−1 CMS 6-12 6-11 7-11 11-14 8-14

Combined 12 10 10 14 14

HL_LHC ATLAS 4-10 5-9 4-10 N/A 12-19

3000 fb−1 CMS 4-8 4-7 4-7 5-7 5-8

Combined 7 7 6 7 8

As can be seen from Table III.13 and Fig. III.6, the results for ILC alone fitting are com-

parable with the model-independent fitting in Ref. [196]. Our study for the invisible Higgs

decays in Sec. III.B.2.a and ZZ-fusion Higgs to WW both improves the ILC measurements

when comparing Table III.4 with Ref. [177]. The combination with LHC measurements from

Table III.5 improves almost all couplings precisions for 250 GeV ILC. The improvement for

total width in this case receives contributions from several channels at the LHC as described

in Eq. (III.B.5). Especially for gγ and gg, which are statistically limited at the ILC, the LHC

can provide sizable gains. With ILC 500 data many of these benefits become marginal due

to increased sensitivity from ILC channels alone. Still, the improvement in the gγ remains

significant. Including an ILC run at 1 TeV leads to further gains in the fermion and photon

channels and essentially obviates the effect of LHC information.

As noted before, the largest contribution to the total width error derives from the uncer-

tainty on the inclusive cross section. Further studies on ZZ-fusion inclusive measurement at

the ILC for 500 GeV and 1 TeV should be valuable. Approximately half of the expected sen-
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Table III.6: Model-independent precisions (1σ) of the width and couplings constants ex-

pected for a SM-like Higgs at three stages of ILC run. All results assume completion of

previous stage of ILC runs. Results in combination with LHC projections are in parenthesis.

We combine 300 fb−1 estimates for the LHC with the 250 GeV ILC run, and 3000 fb−1 with

the 500 GeV run and 1 TeV run. The absolute value of uncertainty on Brinv is given for an

input Brinv of 10% (1%).

Relative Error
ILC250 +ILC500 +ILC1000

%

Γ 12 (9.3) 4.8 (4.8) 4.5 (4.5)

gZ 1.3 (1.3) 0.99 (0.99) 0.98 (0.98)

gW 5.0 (3.5) 1.1 (1.1) 1.1 (1.1)

gγ 20 (6.2) 9.5 (3.8) 4.1 (2.9)

gg 6.5 (4.3) 2.3 (2.0) 1.5 (1.5)

gb 5.4 (4.1) 1.5 (1.5) 1.3 (1.3)

gc 6.9 (5.8) 2.8 (2.8) 1.8 (1.8)

gτ 5.8 (4.6) 2.8 (2.1) 1.6 (1.6)

Brinv(%) 0.6 (0.5)
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Figure III.6: Model-independent uncertainties of the Higgs boson couplings from ILC

250 GeV with (blue) and without (black) LHC data with 250 fb−1 of integrated luminosity;

at 500 GeV (red/purple) with 500 fb−1; and at 1 TeV (orange/brown) with 1000 fb−1.

Results at 250 GeV are combined with LHC 14 TeV using 300 fb−1 projections while those

at 500 GeV and 1 TeV use 3000 fb−1 projections. For details see Table III.13 and the text.
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sitivity (∼ 3%) on the inclusive measurement at 500 GeV comes from Higgstrahlung events

with Z decaying to electrons or muons. If the fusion cross-section, which is roughly twice

as many events, can be utilized efficiently the overall precision at 500 GeV might be pushed

down to nearly the 2% level, which in combination with the 250 GeV measurement could

determine the inclusive cross-section at less than 2%.

b. Model-Dependent Constraints Thus far we have proceeded with a strictly model-

independent method for fixing the couplings, treating Γh as an independent parameter.

Effectively, this means we allow for arbitrarily large Higgs decays into “buried” channels which

are not constrained at the ILC. One may improve on the results by adding the reasonable

assumption that any buried channels in the clean environment of the ILC are negligibly

small compared to the total width, i.e., if we assume that the total width is the sum over

partial widths arising from the coupling constants fitted above. This would be true for a

SM-like Higgs. By including the search for invisible decays we can make this assumption

considerably more robust.

In Table III.7 and Fig. III.7 we present expected sensitivities with the assumption that,

including the invisible channel, all significant decay modes are observable. We include LHC

information in Table III.5 for all columns. Two cases are shown for each energy:

1. MDA (Model-Dependent Case A) shows the case where no excess is observed and only

an upper limit on the invisible decay cross section can be set. Since in this case the

invisible signal is consistent with zero, we only show the upper limit on the branching

fraction.

2. MDB (Model-Dependent Case B) shows the case assuming a tree-level custodial symme-

try relation g2
hWW/g

2
hZZ = cos2θw.8

MDA fitting results show strong improvement in the coupling precisions compared to

the model-independent extraction as well as a large reduction on the total width error, with

gains at both energy scales. We note here for the MDA fit the total width is no longer

a fitting parameter, but rather a derived quantity as shown in Eq. (VI.G.63). The rarest

8This condition holds for Higgs singlet and doublet models. However, this condition does not necessarily
hold for triplet models with custodial symmetry [505, 506].
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Table III.7: Model-dependent precisions for coupling constants achievable at the ILC,

combined with LHC (HL_LHC) under two different assumptions for ILC250 (ILC500

and ILC1000). MDA assumes no invisible decays above background. MDB assumes

g2
hWW/g

2
hZZ = cos2θw. Note that in MDA Γh is no longer a free parameter, and in MDB gW

and gZ are essentially the same parameter, gV . SM theoretical uncertainties are shown in

the second column, from Ref. [414, 504]. Uncertainty on Brinv is absolute value and input

of Brinv is set at 10%.

SM Theo. ILC250 +ILC500 +ILC1000

Error on MDA MDB MDA MDB MDA MDB

Br(%) (±%) (±%) (±%) (±%) (±%) (±%)

Γh +3.9,−3.8 1.5 7.8 0.84 4.4 0.67 4.2

gZ ±4.2 0.75
1.3

0.44
0.99

0.41
0.98

gW ±4.1 2.8 0.38 0.25

gγ ±4.9 6.0 6.1 3.6 3.8 2.7 2.9

gg ±10.1 2.7 3.9 1.5 1.9 0.89 1.4

gb ±3.4 1.4 3.3 0.75 1.4 0.59 1.3

gc ±12.2 4.3 5.2 2.5 2.7 1.4 1.8

gτ ±5.6 2.3 3.7 1.6 2.0 1.1 1.5

Brinv — < 0.52 0.60 < 0.52 0.57 < 0.52 0.57
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Figure III.7: Model-dependent uncertainties of the Higgs boson couplings from ILC250

(blue), ILC500 (red) and ILC1000 (orange) runs under assumption MDA (first panel) and

MDB (second panel). Estimates include projected information from the LHC. For details,

see caption of Table III.7 and the text. Uncertainty on Brinv is absolute value and input of

Brinv is set at 10%.
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channels show the least improvement comparing to the Model-Independent fit, which is

to be expected since they are least sensitive to the overall width. This assumption, that

“buried” channels are a negligible contribution is valid in many models. Still, searches for

exotic Higgs decays are well-motivated [369] and should start with a concerted effort given

the clean environment at a lepton collider where many can be explicitly “unburied". MDB

fitting also shows improved precisions for the 250 GeV run. Most obviously, the gW precision

is set to the same level as the gZ , and this in turn better constrains other couplings to quarks

and leptons. The improvement on the total width is not as dramatic as in MDA since the

large branching fraction to bb and other modes still gives a significant contribution. With the

addition of ILC 500 information MDB has little effect on the expected precisions. That is,

the ILC model-independent measurements of gW and gZ are already comparable and small so

the assumption that they are equal does not affect the fit much. As in the model-independent

approach, ILC1000 can improve the sensitivity for fermionic, photonic and gluon couplings

in MDA or MDB. We list in the second column the theoretical uncertainties on the total

width Γh and branching fractions of a 126 GeV SM Higgs from Ref. [414, 504]. Roughly twice

the uncertainty on coupling constants enters into the Brs. One can see that for both MDA

and MDB the statistical precisions on couplings are comparable to theoretical uncertainties.

In principle the theory errors are reducible but effort will be needed to make maximum use

of the potential at a Higgs factory.

4. Summary and Outlook

In this section we have outlined a systematic approach to the determination of the Higgs total

width and measurable coupling parameters in a model-independent manner at the ILC in

Sec. III.B.1, and illustrated the complementarity for operating the ILC at 250 GeV, 500 GeV

and 1 TeV. We have performed detailed simulations for two channels which can play an

important role in determining the total width with high precision in model-independent

and model-dependent scenarios. We first included the invisible decay channels at 250 GeV,

and carried out new analyses of the e+e− → e+e−h with h → W+W− at 500 GeV. In

Sec. III.B.3, we estimated the achievable accuracies on coupling constants and total width
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at the ILC. We also emphasized the benefits and importance of combining measured cross

sections from the LHC and the ILC, which results in improved precision, especially for the

total width at 250 GeV ILC and precisions for gγ and gg for 250 GeV as well as 500 GeV

ILC. With the statistics assumed for a 1 TeV ILC run, LHC information leads to only small

improvements.

Our specific findings can be summarized as follows.

1. At 250 GeV the key measurement of the inclusive Higgstrahlung cross section, which

enters all the partial width determinations in this approach, can be made with high

precision as discussed in Sec. III.B.1.b. However, the precision on the total width is

limited by the error on other exclusive cross sections, such as e−e+ → e−e+h→ e−e+ZZ∗

and e−e+ → ννh→ ννW+W−. This is where the additional information for the coupling

ratios from the LHC provides important enhancement of the achievable precision as

discussed in Sec. III.B.3.a. As shown in Table III.13, any couplings can be measured in

a fully model-independent way at this energy to the (3− 5)% level. Under the minimal

assumption that the searches for visible and invisible modes comprise all significant decay

channels or custodial symmetry, these couplings can be measured at the (1−3)% percent

level.

2. At 500 GeV the total width can be largely determined by measuring a few channels due

to the high precision expected for Higgs decays to bb produced via Higgstrahlung and

WW fusion as discussed in Sec. III.B.1.c. We have shown that the exclusive cross section

for ZZ fusion process with subsequent decay of the Higgs boson to WW ∗ (σZW ) can also

be determined with good precision and used in place of the σWW measurement to achieve

nearly the same precision on the total width in a way which is less sensitive to additional

errors in the bb decay channels as shown in Sec. III.B.2.b. At this energy, assuming

the 250 GeV run has been completed, one can make model-independent determinations

of the coupling constants at the (1 − 3)% level as shown in Table III.13. Adding the

assumption that all significant modes have been seen can reduce these errors to the

sub-percent level for some couplings as shown in Table III.7. At this point any further

improvement of the Higgs total width is limited by the uncertainty in the inclusive cross

section for Zh production. Improving this key measurement would require either a longer
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run at 250 GeV or detailed study at 500 GeV. At this stage efforts to reduce theoretical

uncertainties are needed to consistently interpret the experimental results in terms of

theoretical parameters.

3. A 1 TeV ILC run with high luminosity can improve the fermion, photon and gluon

coupling measurements by ∼ 25− 50% except for gb.

4. Good precision for Higgs to invisible, 0.5− 0.7%, can be reached at the Zh threshold at

250 GeV, as shown in Sec. III.B.2.a.

5. At a higher ILC energy above 250 GeV, the fusion channels will become more important.

In particular, the inclusive ZZ fusion process at higher energy could provide further im-

provement for the model-independent coupling precision, and should be carefully studied

with respect to the various sources of backgrounds.

C. HIGGS COUPLINGS AT THE ILC

In this work we perform a fast detector simulation analysis of the inclusive ZZ fusion channel

measurement at 500 GeV and 1 TeV. We simulate the predominant backgrounds and a

SM-like Higgs signal and calculate the signal sensitivity using a cut-based analysis and

multivariate Log-likelihood analysis. We find that with the cut-based analysis, we can reach

a sensitivity on the cross section to 2.9% level. The multivariate analysis further improves

the precision of the cross section measurement to 2.3%.

The rest of the section is organized as follows: In Sec. III.C.1, we discuss the kinematic

features for identifying the signal and perform a detailed analyses for the ZZ fusion process

at 500 GeV and 1 TeV energies including backgrounds. In Sec. III.C.2 we discuss the effects

of this additional information on the model-independent Higgs width and couplings. We also

illustrate the potential use of these couplings in constraining higher-dimensional operators.

We summarize our results in Sec. III.C.3. Appendix VI.C is included to address issues

relating to potential signal and backgrounds with a single photon in the final state.
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1. Sensitivity Analysis

We consider the signal process e−e+ → e−e+h via ZZ fusion. We assume that the incoming

leptons are described by the nominal beam energy moving along the beam axis in the positive

and negative directions respectively. Then the outgoing electrons are each characterized by a

3-dimensional vector and there are six independent degrees of freedom measured in our final

state. We choose the dimensionful variables to be the invariant mass of the final electron-

positron pair mee and the recoil mass, given by

m2
rec ≡ s− 2

√
sEee +m2

ee. (III.C.12)

The recoil mass provides the most distinct signal feature since it displays the resonance

peak at the Higgs mass mh ' 126 GeV observable on top of a continuum background. The

electron-pair mass mee favors a large value mee & 250 (600) GeV at a 500 (1000) GeV center

of mass energy. This is distinct from the Higgsstrahlung mode where the pair mass is strongly

peaked at the Z resonance. Despite a broad distribution for the ee pair mass in the ZZ

fusion, it still provides some discriminating power against the diffuse electron background.

Z (from e+)

Z (from e−)
h

1

e−

e +

h

2

e −

Z(from e−)

Z(from e+)

e +

hP

Figure III.8: Angles θ1, θ2 and φ as defined in the text. The label e− (e+) represents

the outgoing electron (positron) and the Z momentum is given by the difference between

outgoing and incoming electrons (positrons). The arrows represent momentum directions.

The higgs momentum is perpendicular to the plane in the right panel.

The remaining kinematic degrees of freedom can be described by four angles. One of

these, the azimuthal angle of the Higgs boson around the beam axis, is irrelevant to our
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analysis due to the rotational symmetry of the initial state around the beamline when the

beam is not transversely polarized. The other three angles, illustrated in Fig. III.8, are chosen

as follows: θ1 is the angle between the intermediate Z coming from the initial electron and

the Higgs boost direction in the rest frame of the Higgs. θ2 is the angle between the final

state electron and the Higgs boost direction in the rest frame of the outgoing e−e+ pair.

These angles take advantage of the scalar nature of the Higgs. The distributions for cos θ1

and cos θ2 are rather flat since the Higgs boost direction has no preference to align with the

spins of the incoming Zs or outgoing electrons. There is some correlation between these

two angles and mild enhancement at larger | cos θ|, which corresponds to a more collinear

configuration. This is mitigated by the relatively large virtuality of the Z propagators. In

contrast the most important backgrounds show much stronger correlation and peaks at high

| cos θ| arising from highly collinear regions of phase space which tend to dominate their

production. The third variable, φ, is defined as the angle between the plane defined by

the ZZ pair and the plane defined by the outgoing e−e+ pair when viewed along the Higgs

boost direction. It is a measure of coplanarity. Here the signal shows a preference for small

values of φ, indicating coplanar emission of the outgoing e−e+ pair with the Z propagators

and with the incoming leptons. This strong correlation is expected since the Higgs does not

carry away any spin information. The backgrounds will generally have a more complex spin

structure which is not strongly coplanar.

In practice, the outgoing electrons of our signal will tend to radiate photons, an effect

we treat with showering. This radiation degrades our signal resolution. To ameliorate this,

nearby photons are clustered according to a recombination algorithm and identified with a

single electron as described in detail in the next section.

Given our inclusive signal process, the backgrounds are of the form e−e+ → e−e+X.

Obviously, the single photon radiation X = γ arising from the Bhabha scattering is by far

the largest. Although the majority of events should be removed by the requirement of a

large recoil mass mX , beamstrahlung and the effects of the initial state radiation (ISR), as

well as the final state radiation (FSR), will produce additional largely collinear photons.

This generates a long tail in the recoil mass spectrum due to unobserved photons, mainly

along the beam pipe. To keep this class of backgrounds under control, we introduce a cut on
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the transverse momentum pT of the outgoing e−e+ pair. Photons which are lost down the

beam-pipe should only contribute small pT differences to the observed final state. Thus the

final state e−e+ intrinsically has no pT as long as collinear photons from final state showering

are correctly regrouped with the electrons. The signal, in contrast, has a non-zero pT from

the recoiling Higgs.

This leaves a background from e−e+γ where the extra photon is not close enough to

either electron to be grouped with it by the clustering algorithm. We find it most convenient

to simply veto events, in addition to the e−e+ pair, with a single isolated photon

Eγ > 10 GeV, θγ > 6◦, (III.C.13)

where θγ is the polar angle with respect to the beam. The effectiveness of this cut is illustrated

in Table III.8 for the 500 GeV and 1 TeV run. (See the next section in Tables III.9 and III.11

for numerical definitions of the cuts.) Simple cuts on invariant mass and pT reduce the e−e+γ

induced background by three orders of magnitude but it remains 30 times larger than our

signal. However the single photon veto reduces this by more than 90%.

Table III.8: Cross section (fb) for signal e−e++h and background e−e+γ after sequence of

cuts. The cuts are specified in Table III.9 and Table III.11 for 500 GeV and 1 TeV case

respectively.

Cuts (fb) generator level mrec, mee pT (ee) veto isolated single γ

e−e+h (500 GeV) 11.5 4.11 3.48 3.48

e−e+γ (500 GeV) 165000 317 67.2 1.32

e−e+h (1 TeV) 24.1 9.75 8.49 8.18

e−e+γ (1 TeV) 175000 1570 344 4.73

In principle this affects our inclusiveness. However, the Standard Model processes which

could produce such a signal, such as h→ γγ (where one photon is lost down the beam pipe)

and h → Zγ constitute branching fractions of 2.3 × 10−3 and 1.6 × 10−3 respectively. As
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will be seen, the ultimate precision for the inclusive Higgs production measurement is at the

∼ 2% level so that Higgs decays to γγ or Zγ would have to be enhanced by more than an

order of magnitude compared to the Standard Model to be seen in the model-independent

inclusive measurement. Any such large signal enhancements will be seen at the LHC, to the

extent that they are not already excluded by current results. See the Appendix for further

discussion.

After these cuts some background can remain due to poorly measured final state particles.

Particularly at 1 TeV center of mass energies, errors on the detected momentum of the final

state can sometimes fake a recoil mass and a high pT that passes our other cuts. This is

necessarily an issue to be determined in detail by experimentalists when working with an

actual machine and is only parameterized by assumptions on detector smearing and efficiency

in our simulation. We find that badly measured states are typically associated with very high-

energy photons. Either these photons are not detected at all due to imperfect calorimeter

efficiency, or they are reported but with significant error on their transverse momenta. Mis-

measured low energy photons will not usually cause a big enough error to satisfy our previous

cuts. Thus it is useful to veto events with very high-energy detected photons, which are

relatively rare in the signal.

Again, one may worry about introducing a bias against photons from Higgs decay, but

this problem can be addressed. When an event has a high-energy photon we first boost it

into the rest frame of the Higgs, as determined by the momentum of the outgoing lepton pair.

If the photon’s energy in the Higgs frame is less than half the Higgs mass, then it potentially

comes from a Higgs decay, and we do not subject it to the high-energy veto. Thus only

events with “eligible” photons, γ∗ which could not have come from the Higgs decay, are cut.

a. Simulation Framework To estimate the expected number of events and derive the

sensitivity reach at a given energy and luminosity we use the ILC-Whizard setup provided

through the detector simulation package SGV3 [499]. Beam profiles for several energies have

been generated by GuineaPIG [500], which includes effects from Beamstrahlung and ISR.

These profiles are interfaced with Whizard 1.95 [501] to generate parton level samples. The

parton level samples are then passed to Pythia which performs showering and hadronization

241



to final state particles [244]. SGV is a fast detector simulation which has been found to agree

well with full simulation results.

To avoid collinear and soft divergences, at the parton level we require that the Energy

of a final state photon be greater than 10 GeV, and that the invariant masses of final

lepton-antilepton pairs and of lepton-photon pairs be greater than 4 GeV. We also require

that the invariant mass of a final state (anti-)electron with an initial (anti-)electron, or of a

final photon with an initial lepton, be greater than 4 GeV. More collinear photons will be

generated via the showering routines in Pythia.

After simulating tracking and calorimeter hits SGV attempts to identify charged and neu-

tral particles and groups these into jet-like objects according to a sequential recombination

algorithm. We use the JADE algorithm, which defines a distance between objects

yij ≡
2EiEj(1− cos θij)

E2
vis

, (III.C.14)

where Ei and Ej are the energies of two objects and Evis is the total seen energy of the

event. Nearby objects are merged into subjets until all subjets are separated by yij > 0.01.

In selecting our observables we first identify the two highest energy electron/positron

tracks in an event and discard it if there are fewer than two detected (anti-)electrons. We

also require that these particles have opposite signs. If nearby calorimeter hits included in

the subjet which contains the track are only identified as photons, then we use the “jet”

momentum and energy for our reconstructed lepton. If the subjet contains any particles

identified as hadrons then we use only the track momentum in order to minimize cases

where hadron jets overlap with the recoiling electrons. For the purposes of the isolated

photon cut described above, we define an isolated photon as a “jet” object which contains

only photons and no charged tracks or hadronic calorimeter hits.

In the case of pure photon plus electron/positron backgrounds we simulate both e−e+ →
e−e+γ and e−e+ → e−e+γγ at the matrix element level. After showering there is some

overlap in the signals described by these two processes. In the spirit of matching calculations

done for hadron colliders we discard events from e−e+ → e−e+γ which produce two isolated

photons after the clustering procedure.
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Table III.9: Cuts applied at ILC 500 GeV.

122 GeV < mrec < 145 GeV

110 GeV < mee < 370 GeV

Cut 1 pT (ee) > 40 GeV

veto 1 iso. photon

E∗γ < 200 GeV

Cut 2 φ < 1.5

b. 500 GeV Analysis We proceed with a sensitivity analysis for the ILC running at a

500 GeV center of mass energy. We apply an initial beam polarization of −0.8 for the

electron and +0.3 for the positron, following the ILC TDR [177]. We first perform a purely

cut-based analysis with the cuts listed in Table III.9. E∗γ represents only photon hits with

energy greater than 65 GeV in the rest frame of the Higgs.

Figure III.9 displays the signal and background distributions in mrec, mee and the three

angular variables, after applying Cut 1 as listed. As can be seen, the angular variables show

considerable distinction from the background which can be used to enhance our sensitivity.

Cut 2 acts on these angles.

For this analysis we define the signal sensitivity according to the statistical 1σ relative

error on the signal,
δσ

σ
=

√
Ns +Nb

Ns

, (III.C.15)

where Ns,b = Lσs,b are the expected number of signal and background events after cuts re-

spectively. We assume the integrated luminosity L = 500 fb−1 at this energy. The statistical

significance is then inversely related to the signal sensitivity as Ns/
√
Ns +Nb. The effect of

our cuts on the cross section for signal and background processes is given in Table III.10.

We find that this cut based analysis can measure the inclusive ZZ fusion signal to a

relative error of 8%. At this energy the dominant background after our cuts is e−e+νeν̄e,
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Figure III.9: Comparison of signal (solid red) and total background (dashed blue) distribu-

tions for variables mrec, mee, θ1, θ2 and φ at
√
s = 500 GeV. Cut1 in Table III.9 is applied.

For clarity, both signal and background distributions are normalized to unity.
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Table III.10: Cross sections for signal and background processes at ILC 500 GeV.

Process Generator Level (fb) Cut1 (fb) Cut2 (fb)

ee→ eeh(Signal) 11.5 3.48 3.11

ee→ eeνeνe 659 23.9 16.0

ee→ eeνµ,τνµ,τ 78.6 1.02 0.70

ee→ eeqq 1850 9.33 6.88

ee→ eell 4420 5.18 4.42

ee→ eeγγ 1640 1.18 0.60

ee→ eeγ 165000 1.32 0.66

Total Background 174000 41.9 29.2

δσ/σ - 8.7% 8.2%

over 80% of which is from the process e−e+ → W−W+. The large cross section of e−e+ →
W−W+ is favored by the beam polarization we have used at 500 GeV ILC. It is possible

to reduce this background with a polarization that favors right-handed electrons, however,

this also reduces the signal and we do not find any significant gain in sensitivity with the

reversed polarization. It is possible to enhance sensitivity with an analysis that is sensitive

to shape and to correlations between variables. This is particularly useful when the signal

and background display distinct features which are not sharp enough to be efficiently cut

on, as in Fig. III.9.

c. 1-TeV Analysis We next extend our analysis to a 1 TeV center of mass energy

with 1000 fb−1 integrated luminosity. The polarization is assumed to be (−0.8, +0.2) as

suggested by the Snowmass Higgs report [196]. The ZZ fusion process is enhanced with

increased center of mass energy. However, due to radiation from the energetic e− and e+,

the Higgs mass peak in the mrec distribution is much more smeared than in the 500 GeV
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Table III.11: Cuts applied at ILC 1 TeV.

95 GeV < mrec < 300 GeV

500 GeV < mee < 870 GeV

Cut 1 pT (ee) > 50 GeV

veto 1 iso. photon

E∗γ < 200 GeV

Cut 2 0.14 < θ2 < 3.0

φ < 1.5

case, and photon radiation backgrounds become more significant. The angular variables θ2

and φ show greater distinctions between signal and background. To maximize significance

we apply cuts as listed in Table III.11.

Figure III.10 compares the signal and total background distributions after Cut1. Ta-

ble III.12 shows the expected cross sections after Cut1 and Cut2. Despite the degradation of

the recoil mass peak we gain significance from enhanced statistics and a somewhat improved

signal to background ratio. The cut-based analysis can reach a sensitivity of 3.1%.

d. Multivariate Log-Likelihood Analyses To improve upon the cut-based results for

reaching the optimal sensitivity, we perform a multivariate analysis (MVA), by evaluating a

five-dimensional Log-likelihood as a function of the deviation from the SM. Assuming Poisson

statistics in each bin, the Log-likelihood is defined as

LL(n;ν) = 2

Nbins∑
i=1

[ ni ln(
ni
νi

) + νi − ni] (III.C.16)

where νi is the expected number of events in bin i for the SM signal plus background, and

ni is the number of events in bin i for the SM signal scaled by factor r (signal × r) plus
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Figure III.10: Comparison of signal (solid red) and total background (dashed blue) distri-

butions for variables mrec, mee, θ1, θ2 and φ at
√
s = 1 TeV. Cut1 in Table III.11 is applied.

For clarity, both signal and background distributions are normalized to unity.
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Table III.12: Cross sections for signal and background processes at ILC 1 TeV with

1000 fb−1 of integrated luminosity.

Process Generator Level (fb) Cut1(fb) Cut2(fb)

ee→ eeh(Signal) 24.1 8.18 7.52

ee→ eeνeνe 978 31.5 17.2

ee→ eeνµ,τνµ,τ 93.9 3.24 1.64

ee→ eeqq 2830 24.1 13.6

ee→ eell 6690 13.7 10.8

ee→ eeγγ 3180 2.68 1.10

ee→ eeγ 175000 4.73 2.28

Total Background 189000 80.0 46.6

δσ/σ - 3.6% 3.1%
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Figure III.11: 5-dimensional Log-likelihood as a function of the relative cross section r defined

below Eq. (III.C.16) for (left panel): 500 GeV case and (right panel): 1 TeV case. For both

analyses, Cut1 is applied.

248



background. We evaluate the region around r = 1 and our 1σ deviation from the Standard

Model value corresponds to ∆LL = 1.

Rather than applying Cut2 on the angular distributions, we apply Cut1 and evaluate

the Log-likelihood in the five dimensional phase space defined by the variables mrec, mee, θ1,

θ2, and φ. In the analysis, we perform a 3125-bin analysis by dividing the phase space along

each variable evenly into five bins. Figure III.11 shows the Log-likelihood as a function of r.

In the 500 GeV analysis, we find the sensitivity on signal cross section improved to 6.0%. For

the 1 TeV case, the multivariate analysis increases the sensitivity to 2.5%. The likelihood

profile for the 500 GeV (1 TeV) case is shown in the left (right) panel of Fig. III.11.

2. Impact on Higgs Physics

a. Higgs Width and Coupling Fits Based on our results, the sensitivities on σincz

which can be reached by studying the ZZ fusion channel at 500 GeV and 1 TeV ILC are 6.0%

(8.2%) and 2.5% (3.1%) based upon MVA (cut-based) analyses, respectively. In combination

this yields a 2.3% (2.9%) combined uncertainty on σincz from this production mode.

This is comparable to the current estimated precision of the ILC from studies [185] of Zh

associate production. That is, σincz of 2.0% achieved by combining 2.6% and 3.0% uncertain-

ties from 250 GeV and 500 GeV [498]). Thus, by combining the ZZ fusion and Zh measure-

ments we estimate a final sensitivity σincz to 1.5%, a 25% improvement over the Zh channel

alone. This improvement refines many other derived quantities in the model-independent fit.

We demonstrate the improvement for a few representative quantities in Table III.13. We have

performed a global 10-parameter model-independent fit following Ref. [182]. We compute

sensitivities for the ILC alone and in combination with projected HL(High Luminosity)-LHC

results. We take the optimistic projections for HL-LHC precision on cross sections from the

CMS detector based on Ref. [196]. As discussed in detail in Ref. [182], twice the error of

σincz propagates into the Γtot determination and this error dominates for stages beyond the

250 GeV phase of the ILC. Our study at the ILC 250+500+1000 stage relatively improves

the total width precision by 16%, Higgs to ZZ coupling by 25%, Higgs to WW coupling by

16%, and Higgs to bb̄ coupling by 8%. For other couplings with less precision the σincz is not
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Table III.13: The improvement on selected coupling precisions by incorporating our ZZ

fusion analysis from a typical 10-parameter model-independent fit. We show both the

ILC exclusive results and ILC combined with the optimistic CMS HL-LHC input [196].

For details of fitting scheme and combination scheme, see Ref. [182]. The results for ILC

250/500/1000 (GeV) assume 250/500/1000 fb−1 integrated luminosities.

Relative Error % ILC 250+500 ILC 250+500+1000

δσZh 6.0% 2.5%

Improvement with HL-LHC with HL-LHC

Γ 4.8 → 4.7 4.8 → 4.6 4.5 → 3.7 4.5 → 3.7

gZ 0.99 → 0.94 0.99 → 0.94 0.98 → 0.75 0.98 → 0.75

gW 1.1 → 1.1 1.1 → 1.1 1.1 → 0.89 1.1 → 0.88

gb 1.5 → 1.5 1.5 → 1.5 1.3 → 1.2 1.3 → 1.1
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the largest source of uncertainty and less improvement is expected.

b. Operator Analysis New physics beyond the Standard Model (BSM) could give rise

to modifications of the Higgs couplings. The proper framework to describe such possibilities

in a model-independent manner is the effective field theory (EFT) approach. With respect

to the SM gauge symmetry, such effects are expressed by dimension-six Higgs operators

after integrating out heavy particles or loop functions [507–510].9 The operators modify-

ing Higgs to ZZ couplings are naturally of particular interest in our case. This is partly

because it will be one of the most precisely determined quantities through a recoil-mass

measurement and partly because it is one of the key couplings that could help reveal the un-

derlying dynamics of electroweak symmetry breaking. Certain operators may have different

momentum-dependence and thus measurements of differential cross sections may be more

sensitive to the new effects.10 The ILC is expected to have several operational stages with

different center of mass energies, and the high precision measurement achievable from ZZ

fusion will contribute to our knowledge of these different operators.11

To demonstrate this important feature, we consider the following two representative

operators

OH = ∂µ(φ†φ)∂µ(φ†φ), OHB = g′Dµφ†DνφBµν , (III.C.17)

with

Ldim−6 ⊃ cH
2Λ2
OH +

cHB
Λ2
OHB, (III.C.18)

where φ is the SM SU(2)L doublet and Λ is the new physics scale. The coefficients cH and

cHB are generically of order unity. Following the convention for comparison with existing

studies [510, 513–517], we adopt the scaled coefficients c̄H = v2

Λ2 cH and c̄HB =
m2
W

Λ2 cHB. This

translates to generic values of c̄H ≈ 0.06 and c̄HB ≈ 0.006 for Λ = 1 TeV.

The operator OH modifies the Higgs-ZZ coupling in a momentum-independent way at

lowest order. This operator renormalizes the Higgs kinetic term and thus modifies the Higgs
9For recent reviews of these operators, see e.g., Refs. [438, 511–513]. Many of these operators not only

contribute to Higgs physics, but also modify EW precision tests simultaneously [514–517].
10For discussions of the effects on Higgs decays due to these operators, see Ref. [518].
11Assuming existence of a single operator at a time, limits can be derived, see e.g. [519].
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coupling to any particles universally [520, 521]. Equivalently, one may think of rescaling the

standard model coupling constant. In contrast, the operator OHB generates a momentum-

dependent Higgs-ZZ coupling. This leads to a larger variation of the production rate versus

c.m. energy for the Zh process than the ZZ fusion because of the energy difference in the

intermediate Z bosons. Consequently, the corresponding deviations of the cross sections are

approximately,

ILC 250 GeV : ∆σ
σ

(Zh) ≈ −c̄H − 4.5 c̄HB,

ILC 500 GeV : ∆σ
σ

(Zh) ≈ −c̄H − 25 c̄HB,

∆σ
σ

(e−e+h) ≈ −c̄H + 1.1 c̄HB, (III.C.19)

ILC 1 TeV : ∆σ
σ

(e−e+h) ≈ −c̄H + 2.4 c̄HB.

Such operators receive direct constraints from the LHC from similar production pro-

cesses [514, 515], off-shell Higgs to ZZ measurement [522], etc., all of which lack desirable

sensitivities due to the challenging hadron collider environment. Based on an analysis of

current data the coefficient c̄HB is excluded for values outside the window (−0.045, 0.075)12

and c̄H is far less constrained [514, 515].

We only list above the cross sections which can be precisely measured at different ILC

stages, with corresponding polarizations taken into account. The distinction between ZZ

fusion(e−e+h) and Zh-associated production with Z decaying to electron-positron pairs is

easily made by applying a minimal mee cut above mZ .

In Fig. III.12 we plot the expected constraints on the constants cH and cHB from the Zh

and ZZ processes measured at the ILC, assuming only these two constants among the six-

dimensional terms are non-zero. We show the 95% C.L. contours for different measurements.

The dashed(dot-dashed) blue line represents the contour from Zh-associated measurement

at ILC 250 GeV(500 GeV). The red line represents the contour from combined ZZ fusion

measurements at ILC 500 GeV and 1 TeV. One can see that at a given energy for a simple

production mode only a linear combination of the two operators is constrained, resulting
12The window is (−0.053, 0.044) for single operator analysis. This smallness of the difference between the

marginalized analysis and single operator analysis illustrates that this operator mainly affects Higgs physics
and thus other electroweak precision observables do not provide much information.
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Figure III.12: Constraints on coefficients of dimension-six operators c̄H and c̄HB with and

without the inclusion of ZZ fusion channel. The dashed and dot-dashed lines represent 2σ

deviations from zero in the Zh channel at 250 and 500 GeV (blue lines), respectively. The

solid (red) lines indicates the constraint from ZZ fusion for 500 GeV plus 1 TeV. The

outer (black-dashed) contour shows the constraint from combined Zh measurements and the

middle (yellow) and inner (green) contours show the combined 2σ and 1σ results with ZZ

fusion included.
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in a flat-direction in the contours. However, measurements of Zh at two different energies

would allow us to measure both simultaneously, as shown in the gray contour. Moreover,

the addition of the ZZ information at 1 TeV would offer significant improvements as shown

in the yellow contour. This allows us to measure cH and cHB at the level of 0.04 and

0.004 respectively. Much of the improvement comes from the fact that in ZZ fusion, in

contrast to Zh-associate production, the OHB operator contributes with opposite sign of OH
operator. We note here such indirect measurements would strongly constrain BSM physics

which are otherwise difficult to test, such as singlet-Higgs assisted baryogenesis [523], “neutral

naturalness” [521, 524, 525], etc.

3. Summary and Outlook

To summarize, the ZZ fusion channel for Higgs measurement could provide valuable infor-

mation for precision studies of the Higgs width and couplings because of the logarithmic

increase of the total cross section versus the center of mass energy. Although the signal

suffers from large radiation induced smearing at high energies it can be observed with good

precision at a 1 TeV run and benefits from a multi-variate analysis. We have also demon-

strated the sensitivity to probe higher-dimensional operators at the ILC, which are usually

not covered by conventional global fits. We find:

• The inclusive cross section of the ZZ fusion channel can be measured to 2.5% at 1

TeV. This is competitive with the best estimate of Higgsstrahlung measurement at 250 GeV,

as shown in Sec. III.C.1.c and Sec. III.C.1.d.

• Combing the ZZ fusion and Higgsstrahlung channels, the model-independent measure-

ment of the inclusive cross section can be improved to 1.5% with a commensurate improve-

ment of the Higgs width determination, as shown in Sec. III.C.2.a.

• Sensitivities on the inclusive cross section σincZ at multiple energies also offers the

possibility to distinguish contributions from different higher-dimensional operators induced

by BSM physics. We demonstrate the ability to simultaneously constrain two operators

whose effects are difficult to observe at the LHC, as shown in Sec. III.C.2.b. Including the

ZZ fusion channel provides as large as 50% relative improvement for the constraint on the
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chosen operators compared to the Zh-associated production channel alone.

In the preceding analysis and discussion, we have shown the appreciable impact of in-

cluding the ZZ fusion channel at the ILC for Higgs physics. Full detector simulations may

be desirable to further the study of this signal mode.

D. HIGGS WIDTH AND COUPLINGS AT THE CEPC

Table III.14: Estimated precisions of Higgs boson property measurements at the CEPC. All the
numbers refer to relative precision except for MH and BR(H → inv) for which ∆MH and 95% CL
upper limit are quoted respectively.

∆MH ΓH σ(ZH) σ(ννH)× BR(H → bb)

5.5 MeV 2.8% 0.51% 2.8%

Decay mode σ(ZH)× BR BR

H → bb 0.28% 0.58%

H → cc 2.2% 2.3%

H → gg 1.6% 1.7%

H → ττ 1.2% 1.3%

H → WW 1.5% 1.6%

H → ZZ 4.3% 4.3%

H → γγ 9.0% 9.0%

H → µµ 17% 17%

H → inv 0.28% 0.28%

Table III.14 summarizes the estimated precisions of Higgs property measurements dis-

cussed in this section. For the leading Higgs boson decay modes, namely bb, cc, gg, WW ,
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ZZ and ττ , percent level precisions are expected. As it has been discussed this level of

precision is required to attain sensitivity to many beyond SM physics scenarios.

All σ × BR measurements results are based on simple counting experiments. The best

achievable statistical uncertainties for 5 ab−1 are 0.25% for σ(e+e− → ZH)× BR(H → bb)

and 0.5% for σ(e+e− → ZH). Even for these measurements, statistics will be the dominant

source of uncertainties. Systematic uncertainties from the efficiency/acceptance of the de-

tector, the luminosity and the beam energy determination are expected to be small. The

integrated luminosity can be measured with a 0.1% precision, a benchmark already achieved

at LEP [526], and can be potentially improved in the future. The center-of-mass energy

will be known better than 1 MeV, resulting negligible uncertainties on the theoretical cross

section predictions and experimental recoil mass measurements. In summary, all aforemen-

tioned measurements will have uncertainties that are statistically dominated at CEPC.

In order to extract the implications of the predicted measurement precision shown in

Table III.14 on possible new physics models, constraints on additional contributions to Higgs

couplings are derived. The Standard Model makes specific predictions for the Higgs couplings

to the SM fermions, g(hff ; SM) , and to the SM gauge bosons g(hV V ; SM) 13 . The deviation

from the Standard Model couplings will be parameterized using:

κf =
g(hff)

g(hff ; SM)
, κV =

g(hV V )

g(hff ; SM)
(III.D.20)

In addition to couplings which are present at tree level, the Standard Model also predicts

effective couplings hγγ and hgg, in terms of other SM parameters. Change can be induced

by the possible shifts in the Higgs couplings described above. In addition, they can also be

altered by loop contributions from new physics states. Hence, they will be introduced as two

independent couplings, with their ratios to the SM predictions denoted as κγ and κg.

Furthermore, it is possible that the Higgs can decay directly into new physics particles.

In this case, two type of new decay channels will be distinguished:

I. Invisible decay. This is a specific channel in which Higgs decay into invisible particles.

This can be searched for and, if detected, measured.
13For the discussion of coupling fits and their implications, ′′h′′ is used to denoted the 125 GeV Higgs

boson.
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II. Exotic decay. This includes all the other new physics channels. Whether they can

be observed, and, if so, to what precision, depends sensitively on the particular final

states. In one extreme, they can be very distinct and can be measured very well. In

another extreme, they can be in a form which is completely swamped by the background.

Whether postulating a precision for the measurement of the exotic decay or treating it

as an independent parameter (essentially assuming it can not be measured directly) is

an assumption one has to make. Results in both cases will be presented. In the later

case, it is common to use the total width Γh as an equivalent free parameter.

In general, possible deviations of all Standard Model Higgs couplings should be consid-

ered. However, in the absence of obvious light new physics states with large couplings to the

Higgs boson and other SM particles, a very large deviation (> O(1)) is unlikely. In the case

of smaller deviations, the Higgs boson phenomenology will not be sensitive to the deviations

κe, κu, κd and κs. Therefore, they will not be considered here.

CEPC will not be able to directly measure the Higgs coupling to top quarks. A deviation

of this coupling from its SM value does enter hγγ and hgg amplitudes. However, this can be

viewed as parameterized by κγ and κg already. Therefore, there will be no attempt to include

κt as an independent parameter. In summary of the previous discussions, the following set

of 10 independent parameters is considered:

κb, κc, κτ , κµ, κZ , κW , κγ, κg, BRinv, Γh. (III.D.21)

In this 10 parameter list, the relation ΣiΓi = Γh is used to replace the exotic decay branching

ratio with the total width.

Several assumptions can be made that can lead to a reduced number of parameters (see

also [165, 180]). For instance a 9 parameter fit can be defined assuming lepton universality:

κb, κc, κτ = κµ, κZ , κW , κγ, κg, BRinv, Γh. (III.D.22)

This can be further reduced to 7 parameters, by assuming the absence of exotic and invisible

decays (excluding h→ ZZ → νννν) [180, 196]:

κb, κc, κτ = κµ, κZ , κW , κγ, κg. (III.D.23)
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In addition to the previously mentioned assumptions, which reduce the number of parame-

ters, there are also several classes of parameter space constraining assumptions, which can

be combined in various ways with the former. These assumptions could also lead to possi-

ble extraction of coupling strengths from the LHC and enhancement of coupling precision

projections for lepton colliders in a more model dependent manner. One such example is to

assume κW , κZ ≤ 1 [170, 172]. This assumption on the κV ratios is valid on a large class of

Higgs sector extensions, including MSSM, 2HDM, NMSSM, etc. [527].

We remark here on the rational of considering a variety of fits with different assumptions.

Different fits achieve different goals. In practice, the relative usefulness of them depends

on the scenario and the goal. For example, in a specific and complete model, the Higgs

couplings can be determined by a smaller number of more fundamental parameters. This

leads to relations among the Higgs couplings. One can set the strongest limit by taking

full advantage of these relations. Deviations produced by such an underlying model can be

detected most sensitively in a such constrained fit. On the other extreme, model independent

fit gives a model independent limit on the broadest possible model space. It helps to capture

deviations that can be missed by a constrained fit. At the same time, it produces the weakest

limits. In practice, it is likely something in between these two extremes that will be the most

useful. As it was previously mentioned, there are many ways of imposing constraints. Even

stronger ones then discussed above can be considered. However, the purpose of this note is

not to access the reach in all possible models, which is an impossible task. We are aiming at

giving an overall picture of the capability of CEPC. Similar problems have been encountered

in all previous studies of Higgs factories. A relatively common set of assumptions have been

used as benchmarks, such as the ones discussed above. Therefore, for comparison purpose,

we will focus on a 10-parameter model independent fit, and 7-parameter constrained fit

recommended by the LHC Higgs cross section group [180].

The LHC and especially the HL-LHC will provide valuable and complementary infor-

mation about the Higgs boson properties. For example, the LHC is capable of directly

measuring the top Yukawa coupling through the tth process [167, 168]. In addition, the

LHC could use differential cross sections to differentiate top-loop contributions and other

heavy particle-loop contributions to the Higgs to gluon coupling [528–531], and similarly
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to separate the dimension-four and dimension-six (with higher momentum dependence) op-

erator contributions to the Higgs to vector boson couplings [514]. For the purpose of the

coupling fit in our framework, the LHC with its large statistics, helps improving precision

on rare processes such as Higgs to diphoton couplings. Note that a large portion of the sys-

tematics intrinsic to a hadron collider would be cancelled by taking ratios of measured cross

sections. For example, combining the ratio of the rates pp → h → γγ and pp → h → ZZ∗

and the measurement of hZZ coupling at the CEPC can significantly improve the measure-

ment of κγ. These are the most useful inputs from the LHC to combine with CEPC. Similar

studies with the ILC can be found in Refs. [182, 490, 532].

The 10-parameter fit and the 7-parameter fit for several integrated luminosities are shown

in Tables III.15 and III.16, respectively. In addition, the combinations with expectations

(with theoretical uncertainties included) from HL-LHC from Ref. [533] are shown in the

same tables as well.14 We assume HL-LHC will operate at 14 TeV center-of-mass energy and

accumulate an integrated luminosity of 3000 fb−1.

The CEPC Higgs properties measurements mark a giant step beyond the HL-LHC. First

of all, in contrast to the LHC, a lepton collider Higgs factory is capable of measuring the

absolute width and coupling strengths of the Higgs boson. A comparison with the HL-

LHC is only possible with model dependent assumptions. One of such comparison is within

the framework of a 7-parameter fit, shown in Fig. III.13. Even with this set of restrictive

assumptions, the advantage of the CEPC is still significant. The measurement of κZ is more

than a factor 10 better. The CEPC can also improve significantly on a set of channels which

suffers from large background at the LHC, such as κb, κc, and κg. We emphasize that this

is comparing with the HL-LHC projection with aggressive assumptions about systematics.

Such uncertainties are typically under much better control at lepton colliders. Within this

7 parameter set, the only coupling which HL-LHC can give a competitive measurement is

κγ, for which the CEPC’s accuracy is limited by statistics. This is also the most valuable

input that the HL-LHC can give to the Higgs coupling measurement at the CEPC, which

underlines the importance of combining the results of these two facilities.

14We note here that LHC and CEPC have different sources of theoretical uncertainties, for detailed dis-
cussion, see Refs. [165, 196, 534–536].
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Figure III.13: The 7 parameter fit result, and comparison with the HL-LHC. The projections

for CEPC at 250 GeV with 5 ab−1 integrated luminosity are shown. The CEPC results

without combination with HL-LHC input are shown with dashed edges. The LHC projections

for an integrated luminosity of 300 fb−1 are shown in dashed edges.
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Figure III.14: The 10 parameter fit result and comparison with the ILC. The CEPC at 250

GeV with 5 ab−1 integrated luminosity and the ILC 250+500 GeV at 250+500 fb−1 are

shown. The CEPC and ILC result without combination with HL-LHC input as shown in

dashed edges.

We also remark on the couplings which are left out in this fit. The most obvious omission

is the BRinv. The CEPC with 5 ab−1 can measure this to a high accuracy of 0.25%, as shown

in Table III.15. At the same time, the HL-LHC can only manage a much lower accuracy

6− 17% [196].

As we have discussed above, one of the greatest advantages of lepton collider Higgs factory

is the capability of determining the Higgs coupling model independently. The projection of

such a determination at the CEPC is shown in Fig. III.14. For comparison, we have also put

in the projection from the combination ILC 250 GeV and 500 GeV runs, based on the baseline

designed luminosities. The advantage of the higher integrated luminosity at a circular lepton

collider is apparent. The CEPC has a clear advantage in the measure of κZ . It is also much

stronger in κµ and BRinv measurements.
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Table III.15: Coupling measurement precision in percent from the 10 parameter fit described in
the text for several benchmark integrated luminosity of CEPC, and corresponding results after
combination with the HL-LHC. All the numbers refer to are relative precision except for BRinv for
which 95% CL upper limit are quoted respectively.

CEPC CEPC+HL-LHC

Luminosity (ab−1) 0.5 2 5 10 0.5 2 5 10

Γh 8.7 4.4 2.8 1.9 6.2 3.7 2.5 1.8

κb 4.1 2.1 1.3 0.92 2.8 1.7 1.2 0.87

κc 5.4 2.7 1.7 1.2 4.2 2.4 1.6 1.2

κg 4.8 2.4 1.5 1.1 3.2 2.0 1.4 1.0

κW 3.9 1.9 1.2 0.87 2.4 1.6 1.1 0.82

κτ 4.5 2.3 1.4 1.0 3.2 1.9 1.3 0.97

κZ 0.81 0.40 0.26 0.18 0.81 0.40 0.26 0.18

κγ 15 7.4 4.7 3.3 2.7 2.5 2.3 2.0

κµ 28 14 8.6 6.1 8.9 7.7 6.3 5.1

BRinv 0.88 0.44 0.28 0.20 0.88 0.44 0.28 0.20
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Table III.16: Coupling measurement precision in percent from the 7 parameter fit described in
the text for several benchmark integrated luminosity of CEPC, and corresponding results after
combination with the HL-LHC.

CEPC CEPC+HL-LHC

Luminosity (ab−1) 0.5 2 5 10 0.5 2 5 10

κb 3.7 1.9 1.2 0.83 2.3 1.5 1.1 0.78

κc 5.1 3.2 1.6 1.2 4.0 2.3 1.5 1.1

κg 4.7 2.3 1.5 1.0 2.9 1.9 1.3 0.99

κW 3.8 1.9 1.2 0.84 2.3 1.6 1.1 0.80

κτ 4.2 2.1 1.3 0.94 2.9 1.8 1.2 0.90

κZ 0.51 0.25 0.16 0.11 0.49 0.25 0.16 0.11

κγ 15 7.4 4.7 3.3 2.6 2.5 2.3 2.0
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IV. BSM PHYSICS AT VLHC AND MUON COLLIDER

A. ELECTROWEAK RESONANCES AT VLHC

Typical Z ′ models with electroweak couplings should be observable1 at the LHC as resonances

in the dilepton channels for masses up to ∼4-5 TeV for
√
s = 14 TeV and an integrated

luminosity of 100 fb−1. There have been extensive studies of diagnostic possibilities2 of the

Z ′ couplings at the LHC utilizing the cross sections

σf ≡ σ[ff̄ ] ≡ σpp→Z′→ff̄ = σZ′B(Z ′ → ff̄) (IV.A.1)

for decays into the final state ff̄ for f = `, τ, t, b (with ` = e, µ), as well as forward-backward

or charge asymmetries, rapidity distributions, and possible final state polarizations for τ−τ+

or tt̄. Other possible probes include ΓZ′ from the lineshape, and various rare decay modes

and associated productions.

We can classify them into three classes:

• Cross sections, such as σ`, σb, σt, σj (including line shape of the invariant mass)3;

• Forward-backward (charge) asymmetries, such as AFB`+`− , A
FB
tt̄ ;

• Radiations, especially W -boson radiations, such as σF`+`−W± , σ
B
`+`−W± , σbb̄W± , etc.

To gain a sense of what might be achievable at the VLHC , we show the total cross section

σ and leptonic cross section of the benchmark models in Fig. IV.8 for three different energies

of proton-proton collider. We use to cyan lines in the lower plot to show the Z ′ discovery
1The reach is reduced if the dilepton branching ratios are significantly reduced due to BSM decay chan-

nels [27, 28].
2See, for example, [27, 28, 220–239]. Other studies are reviewed in [17, 19, 23].
3In presence of Z − Z ′ mixing, new modes such as σZ

′

W+W− and σZ
′

Zh are also possible.
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Figure IV.1: Top panel: the production cross sections for benchmakr Z ′s for pp collider at

14, 33, and 100 TeV. Bottom panel: the discovery and exclusion reaches of Z ′ for VLHC 100

TeV at 1 ab−1 (blue) and 10 ab−1 (red) and LHC 14 TeV at 300 fb−1 (orange) and 3000

fb−1 (green) through dilepton (e, µ) channels.
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Figure IV.2: The ratios of the 2 → 3(4) process cross sections over corresponding 2 → 2

process cross sections. The 68% C.L. error bars account for signal statistical uncertainties

only, assuming 1 ab−1 integrated luminosity. This figure is to show what maximal amount

of Z ′ information we may learn from weak boson radiations.

and exclusion with combing the clean leptonic modes σµ and σe. We can see that at 1 ab−1

the 100 TeV VLHC could discover (exclude) up to 24 ∼ 29 (30 ∼ 34) TeV Z ′ for various

benchmark models. As for our benchmark of 10 TeV Z ′, total cross section are around 1 ∼ 10

fb, and the leptonic cross sections are of the order hundreds of ab at 100 TeV VLHC . The

implies large statistics are achievable and observables such as forward-backward asymmetry

could be obtained with good precision.

Each cross section is a measure of the product of production vertex couplings and decay

vertex couplings over the total width. Denoting the subprocesses with their production and

decay chiral couplings, LL and RR types contribute to the forward leptons, and LR and

RL types contribute to the backward leptons. Forward and backward leptons/anti-lepton

obey 1 + cos θ2 and 1− cos θ2 angular distribution in the Z ′ C.M. frame with respect to the

quark/anti-quark direction, respectively.

To optimize what we can learn about the Z ′ from the VLHC , we consider utilizing the

radiations from initial and final states. Because Z ′ is an SU(3) singlet, the gluon radiation
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from initial and final state provide no diagnostic power on the couplings. Consequently we

consider electroweak gauge boson radiations only, namely W -boson, Z-boson and photon.

We show the ratio of the cross section of Z ′ production with radiation over that of correspond-

ing Z ′ mode in Fig. IV.2. These ratios for radiations from pp→ Z ′ → µ−µ+, bb̄, tt̄andjj. We

associate statistical uncertainties to these ratios with error bars assuming 1 ab−1 integrated

luminosity. We note here that we have not consider any specific decay modes of the radiated

gauge boson. Neither do we include any uncertainties in the background in this illustrative

figure. In this sense, what we are showing are what we may maximally learn from these

possible radiations.

The W -boson radiation is of most interest because it can naturally act as a polarization

tagger; only left-handed fermions radiates W -boson and all fermions can be approximately

viewed as massless at such high energy. Consequently, the forward lepton mode with initial

state W -boson radiation (ISR-W ) corresponds to LL subprocess (σF`+`−W±) and backward

lepton mode with W -boson radiation corresponds to LR subprocess (σB`+`−W±). The sum of

LL and LR is shown in the µµW ratio in Fig. IV.2. Final State W -boson Radiation (FSR-

W ) in leptonic Z ′ decay modes are indicated by µeνν̄. For hadronic decay modes, bb̄W and

tt̄W are ISR-W only while jjW includes both ISR-W , FSR-W and their interference. This

cause the ratio of jjW are higher than both tt̄W and bb̄W . We note that throughout this

section, unless specified, we still use the convention of j representing light quark u, d, c, s

and gluon jets assuming b tagging and t tagging are available at VLHC .

The Z-boson and photon radiations also potentially provide some diagnostic power.

The Z-boson diagnostic power comes from its different couplings to left chiral and right

chiral fermions. Clearly, this would be weaker than that of W -boson radiations from its

nature of maximal parity violation. The photon radiation diagnostic power comes from

different electric charges of up-type quark, down-type quarks and leptons and for this reason

is expected not to be strong. Moreover, the Z-boson radiation and photon radiation are a

combined effect of ISR, FSR and interference.

One might also consider these additional FSR radiations help probe the invisible Z ′.

Taking neutrino for example, the FSR either result in Z + 6ET or ` + 6ET . The transverse

mass of this system does not have an intrinsic mass scale as the mother Z ′ → νν̄ has
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zero intrinsic missing transverse energy. Subjecting to different sources of background, this

mono-Z boson search could help probe the invisible decays of the Z ′ [537], especially when

a effective Z tagger with low mistagging rate from jets become feasible.

The total unknown parameters of Z ′ models with negligible Z − Z ′ mixing, family uni-

versality and U(1)′ commutes with SU(2) are six (seven). These are Z ′ mass, (Z ′ width,)

and 5 chiral charges/couplings. Z ′-mass (and width) can be measured from letponic Z ′

lineshape, and improved by other channels. The remaining five chiral couplings requires at

least four (five) linearly independent observables, note Z ′ width can already be counted as

an observable toward chiral couplings determinations assuming minimal Z ′ width with only

fermion pair decay modes.

Cross sections σ`, σb, σt and σj provides three linearly independent observables. Lepton

forward-backward asymmetry provides a fourth observable to determine these five chiral

couplings. We note there these observables all depends on chiral couplings squared with

negligible interference with background. In fact, the leptonic forward-backward asymmetry

as a function of lepton pair invariant mass provide additional information about the signs of

these couplings through interfere with SM background. Top forward-backward asymmetry

and radiations provides additional observables to increase the diagnostic power. More, with

these additional observables, one can relax the assumption about minimal width, relax the

assumption of commuting U(1)′ and SU(2) generator, etc. We perform numerical studies to

estimate the precision on these observables in the following section IV.A.1 and section IV.A.2

and perform parameter fit in section IV.A.3 to show the VLHC diagnostic power on Z ′.

1. Gold-plated Modes: Leptonic Final States

The leptonic Z ′ processes at the VLHC provide the largest discovery potential and diagnostic

power comparing to other modes. They enjoy little QED background at pp collider. Many

observables are accessible in these leptonic modes. In this section, we consider the three types

of observables mentioned in the previous section, including leptonic Z ′ cross sections, dilepton

invariant mass distribution, lepton forward-backward (charge) asymmetry and leptonic Z ′

ISR-W . The forward-backward asymmetry can also be studied as a function of dilepton
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Figure IV.3: Left panel: the invariant mass distribution of the dielectron system for the

benchmark models for a 10 TeV Z ′ at the 100 TeV VLHC ; Right panel: the 90% C.L. contour

of fitting precision on Z ′ mass and width from electron positron pair final state at integrated

luminosity of 1(5) ab−1.

invariant mass to reveal the relative signs of the products of the couplings. The leptonic

Z ′ ISR-W can be further decomposed into forward lepton piece and backward lepton piece.

We study the VLHC sensitivity on these interesting and important observables here. For

all of the following studies, we use Madgraph5 [242] for parton level event generation using

models generated by FeynRules [243], showered by Pythia6.4 [244] and detector simulated

by Delphes3 [245]. We choose CTEQ6.1 Parton Distribution Function (PDF) in five flavor

scheme. We conservatively assume the detector of VLHC the same as ATLAS detector, a

common assumption recommend by Snowmass.

a. Dilepton Invariant Mass The dilepton invariant mass bump would be the smoking

gun for a Z ′ discovery. This partial cross section distribution over dilepton mass carries

the Z ′ mass, width information as shown in figure IV.3. On the left panel, we show this

distribution for our 10 TeV Z ′ benchmark models. The spread is a PDF convoluted Z ′ Breit-

Wigner distribution smeared by Gaussian distribution from detector effects. The energy

resolution on the electrons for our detector assumption is 1% with electron positron pair
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acceptance ∼ 78%. We require these leptons pT greater than 100 GeV. We show the fitting

precision on the Z ′ width and mass from this distribution on the right panel of Fig. IV.3,

assuming 1 ab−1 integrated luminosity. The precision can be further improved by combining

the dimuon final state.

We show that ∼ 1% precision on mass and 10% − 20% precision on Z ′ width can be

achieved. For this invariant mass distribution fit we neglect the background for two reasons.

One reason is the dielectron background cross section is small, approximately one order of

magnitude smaller than the signal. The second reason is distribution follow polynomial tails

nicely and can be removed by SM calculation with little theoretical uncertainties and further

improved by data-driven methods.

We note the resolution on Z ′ width largely depends on the lepton energy resolution. The

Z ′ benchmark model widths varies from 52 GeV for Z ′φ to 296 GeV for Z ′SSM . As long as

the energy resolution is not much larger than the Z ′ width, we shall have sensitivities to it.

For our fitting procedure, we assume no systematic uncertainties on the energy resolution of

leptons, due to lack of detector information. We should emphasis here width is of peculiar

importance to understanding Z ′ properties. It sets the overall strength of the couplings, oth-

erwise all measured cross sections would be invariant with a proper scaling of Z ′ parameters

with allowance of unobserved decays.

b. Forward-backward Asymmetry The forward-backward asymmetry the first and

foremost probe we have for the chiral structure of Z ′ couplings. We show the angular

distribution of the dielectron system in the left panel of Fig. IV.4. This angular distribution

is a direct probe of the spin of the underlying resonance and forward-backward asymmetry.

Assuming a vector resonance, the angular distribution is equivalent to forward-backward

asymmetry. On the right panel of this figure, we show the precision on this leptonic forward-

backward asymmetry versus the leptonic cross section σl precision. We assume an 10%(6%)⊕
2% systematic uncertainties for the cross section measurement for 1 (5) ab−1 integrated

luminosity.

We assume the 10%(6%) systematic uncertainties which usually contains PDF uncer-

tainties and some other correlated systematic uncertainties can be canceled by taking the
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Figure IV.4: Left panel:the angular distribution of the electrons in the CM frame with
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with systematic uncertainties specified in the text.
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Table IV.1: The comparison of leptonic forward-backward asymmetry of two bins withm`−`+

in the window of 9.5 ∼ 9.9 TeV and 10.1 ∼ 10.5 TeV. If the asymmetries increase (decrease)

we list “+" (“−"). We also list the significance of this comparison.

χ ψ η LR B-L SSM

sign − − − + + +

significance @ 10 ab−1 0.9 2.7 1.4 4.3 1.5 2.4

ratio of cross sections to obtain forward-backward asymmetry, these captures the advantages

of such quantities in ratios. We keep this assumption throughout this section. This is to

say, we assume 2% systematic uncertainties for all the other quantities except when they can

be expressed as in form of ratios. Note here we assume 2% residual systematic uncertain-

ties associated with leptonic forward-backward asymmetry. The background cross section is

less than one tenth of the benchmark signals. We assume the uncertainties associated with

background subtraction included in this 2% uncertainty.

There are two factors that downgrades the forward-backward asymmetry of the dilepton

system. The first factor is the direction of quark identification. At pp collider, a priori one

can not tell the initial state quark/anti-quark direction. The best we can do it so associate

the Z ′ boosting direction as the quark direction, utilizing the fact that energetic valence

quarks contributes most to the production. Still there is large possibility of wrongly assign

the direction at such high energy collider at the VLHC . The second factor is from collider

acceptance which removes very forward and backward leptons. This can be clearly seen on

the left panel of Fig. IV.4 in the | cos θ| ∼ 1 regions. This factor downgrades the ratio of

AFB from 0.75 to 0.65 for a lepton sample obeys (1 + cos θ)2. The overall effect of these two

factors downgrades the asymmetry by a factor of ∼ 75% for 10 TeV Z ′.

Another crucial observable associated with the leptonic forward backward asymmetry as

a function of dilepton invariant mass. This is one of the few observables that are sensitive

to the sign of the couplings through its interference with the SM background. It worthy
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Figure IV.5: The transverse mass distribution of the e±+ 6ET system in the µ−µ+ +e±+ 6ET
final state. Signal and background are not stacked. The dimuon invariant mass mµ−µ+ are

restricted in the window of 9 ∼ 11 TeV.

mention here the intrinsic forward-backward asymmetry of the SM background is 0.30. A

simple comparison of the forward backward asymmetry between two bins with m`−`+ ≤ mZ′

and m`−`+ ≥ mZ′ would be sufficient to extract such information. We show such comparison

in Table. IV.1, where the two bins are taken at 9.5 ∼ 9.9 TeV and 10.1 ∼ 10.5 TeV.

c. Weak Boson Radiation Weak boson radiation is another interesting probe for un-

derlying Z ′ chiral structures. We can see that W -boson radiation provides better diagnostic

power than Z-boson and photon radiations. The ISR-W from pp → Z ′ → µ−µ+ process

can be observed for µ−µ+W± final state and FSR-W can be observed for mu±`∓ + 6ET final

state, especially mu±e∓ + 6ET final state for reduction of background and possible mixture

with ISR-W .

In this section, we present our study on ISR-W in the µ−µ+W± process. We first

consider the leptonic W for purpose of clean background . For simplicity, we show the result

for µ−µ+ +e±+ 6ET final state in Fig. IV.5 and Table. IV.2. Other processes in `−`+ +`±+ 6ET
shall provide similar significance.

We consider the irreducible SM background with a same final state. We require the µ−µ+
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Table IV.2: The results of the initial state W -boson radiation. We list the parton level cross

sections in the first two rows, and in the last row the cross section after showering, detector

simulation and cuts specified in the text for the µ−µ+ + e± + 6ET final state.

SM bkg χ ψ η LR B-L SSM

σ(µ−µ+) (ab) — 990 520 600 1100 1200 1800

σ(µ−µ+W±) (ab) — 26 31 42 3.0 73 190

σ(µ−µ+ + e± + 6ET )cut (ab) 0.08 0.69 0.87 1.1 0.08 2.0 4.9

pair invariant mass in the mass window of 9 ∼ 11 TeV, the transverse mass of the electron

greater than 20 GeV, and the final state electron/positron pT greater than 100 GeV. Though

one would expect a sharp transverse mass peak near the W -boson mass, this is washed out

by the energy resolutions on the final state leptons and ISR jets. The transverse mass as a

result does not provide much signal background discrimination. As shown in Table. IV.2,

the leptonic ISR-W for most benchmark models are accessible with ≥ 5 ab−1 luminosity.

We would like to comment on the hadronic ISR-W as well. These channels would require

hadronic W tagger to establish the signal from QCD ISR background. The effectiveness of

these hadronic W taggers heavily depends on the detector performance on the η − φ plane.

Current assumption of the detector is 0.1×0.1 resolution. This, however, may not be enough

to resolve highly boosted W s. In addition, to distinguish between hadronic W and hadronic

Z would be very hard. As a result, the µ−µ+ with hadronicW and hadronic Z will be mixed

and reduce the diagnostic power greatly.

2. Crucial Modes for Coupling Determination: Hadronic Final States

The Z ′ hadronic final states are crucial for coupling determination, as it directly provide

information on the size of products of up-type and down-type hadronic couplings. At the

VLHC , the QCD background is quite challenging. We list our study on the signal and

274



background for bb̄, tt̄ and jj final states in Table. IV.3.

We simulate the SM QCD background in five flavor scheme and exclusive background

for bb̄ for purpose of statistics and cross check. We show the parton level cross sections of

our benchmark models in the table. We only list the background cross section after cuts due

to high efficiency from these basic cuts. The SM QCD background for large dijet invariant

mass mainly from t-channel process. A stringent cut on the large jet pT reduces them greatly.

For our study, we require 3 TeV minimal pT for the leading jet in pT in the final state. We

construct the invariant mass of jets by including all jets with pT greater than 100 GeV.

We only select events with this invariant mass in the window of 8.5 ∼ 11.5 TeV. For bb̄

and tt̄ channels we require at least one tagged bottom quark and top quark, respectively.

Additionally, this tagged jet is required to have pT greater than 3 TeV.

We also show the significance on these hadronic channels at 10 ab−1. We can see that

these tagged channels bb̄ and tt̄ has a much higher significance than jj final state.

We would like to note different possibilities in the hadronic final state. One is possible

charm tagging. A charm quark with large boosting factor in principle can be tagged using

a similar method for b-tagging. In fact, in some cases a charm quark can fake a bottom

quark. Energetic Z ′ with known mass actually provide well-defined sample of bottom quarks

and charm quarks with know boosting factor. As a result, charm tagging actually provide

additional probe for the Z ′ chiral couplings.

3. Diagonosis Power of the VLHC

With sensitivities at the VLHC for observables belong to all three classes discussed earlier

in the discussion, we gathered more than enough observables to perform a relative model-

independent fitting. We keep the assumption of negligible Z −Z ′ mixng, family universality

and SU(2) commuting U(1)′. We perform a 5-parameter fitting, namely these introduced in

Eq. I.B.5 and show the result in Fig. IV.6. The result is shown in terms of chiral couplings

squared. As discussed earlier, only the interference with the background could potentially

reveal the sign of the couplings. The observables in use are σl, σb, σt, AlFB, ISR-W in

leptonic mode and Z ′ total width.
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Table IV.3: The hadronic cross sections for benchmark models and SM background, before

and after cuts described in the text. The statistical significance of each modes at 10 fb−1 are

listed for corresponding modes. The background before cuts are huge and as a results not

listed, since cuts are very effective in removing these t-channel dominated QCD background.

SM bkg χ ψ η LR B-L SSM

σb (fb) — 3.3 1.6 1.8 9.5 0.4 8.5

σbcut (fb) 9.1 0.38 0.19 0.23 1.0 0.05 0.93

S/
√
B@10 ab−1 — 13 6.5 7.5 34 1.5 31

σt (fb) — 0.66 1.6 2.9 5.4 0.42 6.5

σtcut (fb) 11 0.13 0.32 0.58 1.1 0.08 1.3

S/
√
B@10 ab−1 — 4.0 9.6 18 33 2.5 39

σj (fb) — 7.9 6.4 9.6 30 1.7 30

σjcut (fb) 7.5× 103 3.7 3.0 4.4 14 0.8 13

S/
√
B@10 ab−1 — 4.5 3.4 5.0 16 0.9 15
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Figure IV.6: 5(6)-parameter fit contour at 68% C.L. for our benchmark models. The color

for different benchmark models are the same as in Fig. IV.8.
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Figure IV.7: Left panel: clustered transverse mass distribution of the lepton and 6ET plus

leading jet system for Z ′ → W+W− signal and background. Right panel: clustered transverse

mass distribution of the jets and 6ET system for Z ′ → zh signal and background.

We show the fitting result in series of two dimensional plots. The separation of fitted

regions of different benchmark models show the diagnostic power of the VLHC .

4. In the Presence of Z − Z ′ Mixing

In presence of Z − Z ′ mixing, new decay channels of Z ′ → W+W− and Z ′ → Zh are open.

Some additional decay modes to new Higgs states are possible as well, as many Z ′ models

introduces new Higgs states to give mass for for U(1)′ gauge boson. As discussed in earlier

section, such mixing is strongly constrained by the Elctroweak precision observables.

For Z−Z ′ mass mixing, the decay branching fraction of Z ′ → W+W− and Z ′ → Zh will

be the same in the large Z ′ mass limit such as predicted by Goldstone equivalence theorem.

We discuss the observability of both Z ′ decay modes at the VLHC in this section.

There are three possible combinations of this pair of W bosons, including fully leptonic

decay, semi-leptonic decay and fully hadronic decay. The fully hadronic decay mode requires

dedicatedW -tagging to dijet background from both the SM and Z ′ itself, whereas the former

is expected to be very large as in the Z ′ dijet searches. As a result, we consider fully leptonic
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decay and semi-leptonic decay mode in this subsection.

The W pair fully leptonic decay is characterized by pair of oppositely charged leptons

with missing energy. The missing energy is made up by a pair of neutrinos from different

mother W boson.

The W pair semi-leptonic decay is characterized by large 6ETwith energetic jets (dijets)

and charged lepton. It has little ambiguity and larger rate comparing to the full leptonic

decays. On the right panel of Fig. IV.7 we show the clustered transverse mass distribution

for the `+ jet+ 6ET system with a clear peak and endpoint at the Z ′ mass. We note here the

typical energy of the hadronicW boson is greater or equal to 5 TeV, resulting in very clustered

dijet system. Using an anti-kT alogrithm with R = 0.5, these dijets from hadronic W bosons

are most likely clustered into one jet. We thus define the clustered as the `+jet+ 6ET system

to avoid additional mass gains and endpoint smearing from ISR, so here we only include the

leading jet with pT greater than 100 GeV. We can see that the clustered transverse mass

alone can serve as a most effective signal background discriminator, characterized by a broad

peak with FWHM around 1.5 TeV. Clearly the smearing effects shifts the endpoint behavior

of the clustered transverse momentum, but still the signal Jacobian peak stands out of the

continuous background.

The Z ′ → Zh decay mode bears quite interesting phenomenology as well. For such a

heavy Z ′, the decay product of both the h boson and Z boson are highly boosted. The Higgs

bosons decay mostly hadronically, with around 80% Br being purely hadronic decays with

significant Br to the bb̄ final state. One interesting possibilities is to require two bottom

tagging within the boosted Higgs jet using jet substructure. This possibilities is to be tested

at the LHC 13 TeV. A challenge at the VLHC is it would be hard to reconstruct the displaced

vertices for very boosted bottom quarks, as the corresponding impact parameter has large

uncertainties. Developments on higher magnetic field, higher resolutions on trackers and

calorimeters will certainly improve the performance on boosted b-tagging. For our study,

we conservatively assume no boosted di-bottom Higgs tagger, and thus the hadronic Higgs

boson will be a jet (jets). One then would put more requirements on the boost Z boson from

Z ′ decay, namely on the invisible Z boson or dileptonic Z boson. Consequently, we focus on

two signal regions here: 1) jet(s) plus 6ET ; 2) jet(s) plus dilepton. An interesting possibilities
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is to make use of the semi-leptonic decays of the bottom jet [538].

B. HIGGS WIDTH AT A MUON COLLIDER

At a muon collider, due to the much stronger coupling of the Higgs to muons than to

electrons, an s-channel production of a Higgs boson [186] will likely lead to clear signals

for several channels, and thus its total decay width may be directly measured by fitting its

scanned data.

In this section, we propose a realistic scanning and fitting procedure to determine the

Higgs boson width at a muon collider. We demonstrate the complementarity for the two

leading signal channels h → bb̄, WW ∗. The combined results lead to a highly accurate

determination for the width, mass and the s-channel production cross section. This is un-

doubtedly invaluable for determining the Higgs interactions and testing the theory of the

electroweak symmetry breaking to an unparalleled precision.

1. Resonant Profile for a Higgs Boson

For a resonant production µ+µ− → h and a subsequent decay to a final state X with a

collider c.m. energy
√
ŝ, the Breit-Wigner formula reads

σ(µ+µ− → h→ X) =
4πΓ2

hBr(h→ µ+µ−)Br(h→ X)

(ŝ−m2
h)

2 + Γ2
hm

2
h

, (IV.B.2)

where Br denotes the corresponding decay branching fraction. At a given energy, the cross

section is governed by three parameters: mh for the signal peak position, Γh for the line

shape profile, and the product B ≡ Br(h→ µ+µ−)Br(h→ X) for the event rate.

In reality, the observable cross section is given by the convolution of the energy distri-

bution delivered by the collider. Assume that the µ+µ− collider c.m. energy (
√
s) has a flux

distribution
dL(
√
s)

d
√
ŝ

=
1√

2π∆
exp[
−(
√
ŝ−√s)2

2∆2
],

280



with a Gaussian energy spread ∆ = R
√
s/
√

2, where R is the percentage beam energy

resolution; then, the effective cross section is

σeff(s) =

∫
d
√
ŝ
dL(
√
s)

d
√
ŝ

σ(µ+µ− → h→ X)

∝

 Γ2
hB/[(s−m2

h)
2 + Γ2

hm
2
h] (∆� Γh),

B exp[
−(mh0−

√
s)2

2∆2 ](Γh
∆

)/m2
h (∆� Γh).

(IV.B.3)

For ∆� Γh, the line shape of a Breit-Wigner resonance can be mapped out by scanning over

the energy as given in the first equation. For ∆ � Γh on the other hand, the physical line

shape is smeared out by the Gaussian distribution of the beam energy spread, and the signal

rate will be determined by the overlap of the Breit-Wigner and the luminosity distributions,

as seen in the second equation above.

Unless stated otherwise, we focus on the SM Higgs boson with the mass and total width

as

mh0 = 126 GeV, Γh = 4.21 MeV. (IV.B.4)

For definitiveness in this study, we assume two sets of representative values for the machine

parameters [539]

Case A : R = 0.01% (∆ = 8.9 MeV), L = 0.5 fb−1, (IV.B.5)

Case B : R = 0.003% (∆ = 2.7 MeV), L = 1 fb−1. (IV.B.6)

We see that their corresponding beam energy spread ∆ is comparable to the Higgs total

width. In Fig. IV.4, we show the effective cross section versus the µ+µ− collider c.m. energy

for the SM Higgs boson production. A pure Breit-Wigner resonance is shown by the dotted

curve. The solid and dashed curves include the convolution of the luminosity distribution

for the two beam energy resolutions and are integrated over
√
ŝ. For simplicity, we have

taken the branching fractions h → µ+µ− to be the SM value and the final state h → X to

be 100%. The beam energy resolution manifests its great importance in comparison between

the solid and dashed curves in this figure.

281



125.97 125.98 125.99 126 126.01 126.02 126.03
0

10

20

30

40

50

60

70

s HGeVL

Σ
ef

fHs
LH

pb
L

Breit-Wigner

Gh=4.21 MeV

R=0.003 %

R=0.01 %

Μ
+

Μ
-

®h

Figure IV.8: Effective cross section for µ+µ− → h versus the collider energy
√
s for the SM

Higgs boson production with mh0 = 126 GeV. A Breit-Wigner line shape with Γh = 4.21

MeV is shown (dotted curve). The solid and dashed curves compare the two beam energy

resolutions of cases A and B.

Table IV.4: Effective cross sections (in pb) at the resonance
√
s = mh0 for two choices of

beam energy resolutions R and two leading decay channels, with the SM branching fractions

Brbb̄ = 56% and BrWW ∗ = 23% [504].

µ+µ− → h h→ bb̄ h→ WW ∗

R (%)
σeff (pb) σSig σBkg σSig σBkg

0.01 16 7.6 3.7

0.003 38 18
15

5.5
0.051
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2. Width Determination for the SM Higgs Boson

An excellent beam energy resolution for a muon collider would make a direct determination

of the Higgs boson width possible in contrast to the situations in the LHC and ILC. Be-

cause of the expected narrow width for a SM Higgs boson, one still needs to convolute the

idealistic Breit-Wigner resonance with the realistic beam energy spectrum as illustrated in

Eq. (IV.B.3). We first calculate the effective cross sections at the peak for the two cases

of energy resolutions A and B. We further evaluate the signal and SM background for the

leading channels

h→ bb̄, WW ∗. (IV.B.7)

We impose a polar angle acceptance for the final-state particles,

10◦ < θ < 170◦. (IV.B.8)

Tightening up the polar angle to 20◦ − 160◦ will further reduce the signal by 4.6%, and the

background by 6.7% (15%) for the bb̄ (WW ∗) final states. We assume a 60% single b-tagging

efficiency and require at least one tagged b jet for the bb̄ final state. The backgrounds are

assumed to be flat with cross sections evaluated right at 126 GeV using Madgraph5. This

appears to be an excellent approximation over the energy range of the current interest about

100 MeV. We tabulate the results in Table IV.4. The background rate of µ+µ− → Z∗/γ∗ → bb̄

is 15 pb, and the rate of µ+µ− → WW ∗ → 4 fermions is only 51 fb, as shown in Table IV.4.

Here, we consider all the decay modes of WW ∗ because of its clear signature at a muon

collider. The four-fermion backgrounds from Zγ∗ and γ∗γ∗ are smaller to begin with and

can be greatly reduced by kinematical considerations such as by requiring the invariant mass

of one pair of jets to be near mW and setting a lower cut for the invariant mass of the other

pair. While the bb̄ final state has a larger signal rate than that for WW ∗ by about a factor

of three, the latter has a much improved signal (S) to background (B) ratio, about 100:1

near the peak.

For a given beam resolution, we assume that a scan procedure over the collider c.m. energy
√
s is available. The current Higgs mass statistical error is about 0.4 GeV [33, 34] with an
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integrated luminosity of about 10 fb−1. Toward the end of the LHC run with about 100

times more luminosity accumulated, it is conceivable to improve the statistical error of the

mass determination by about an order of magnitude. Then, the systematic errors would

have to be controlled to the best level. It was argued that an ILC could reach a similar or

better accuracy [540]. We thus proceed to scan over the energy in the range

126 GeV ± 30 MeV in 20 scanning steps. (IV.B.9)

The energy scanning step is set at 3 MeV, roughly the same size of the ∆ and Γh.

We first generate ideal data in accordance with a Breit-Wigner resonance at this mass

convoluted with Gaussian distribution of the beam energy integrated over
√
ŝ, as discussed

before. These data are then randomized with a Gaussian fluctuation with standard deviation
√
N , where N is the number of events expected for a given integrated luminosity, summing

both signal and background. The simulated events over the scanning points are plotted with

statistical errors for the assumed integrated luminosity as in Eqs. (IV.B.5) and (IV.B.6).

The results are shown by the solid curves in Fig. IV.9, for cases A and B as in Eq. (IV.B.5)

(left panels) and Eq. (IV.B.6) (right panels). The bb̄ and W+W− final states are separately

shown by the upper and lower panels, respectively.

We adopt a χ2 fit over the scanning points with three model-independent free parameters

in the theory Γh, B and mh0 by minimizing the χ2. The fitting accuracies for the Higgs

properties can be illustrated by the standard deviation, denoted by δΓh, δB, and δmh. These

standard deviations are estimated by the standard method of projecting the χ2
min + 1 sphere

to corresponding parameters. To see the effects from the available luminosity, we show our

results for the SM Higgs width determination in Fig. IV.10 for both cases by varying the

luminosity. The achievable accuracies with the scanning scheme as specified in Eq. (IV.B.9)

by combining two leading channels are summarized in Table IV.5 for three representative

luminosities per step with the same 20-step scanning scheme.
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Figure IV.9: Number of events of the Higgs signal plus backgrounds and statistical errors

expected for cases A and B as a function of the collider energy
√
s in bb̄ and WW ∗ final

states with a SM Higgs mh0 = 126 GeV and Γh = 4.21 MeV.
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Figure IV.10: Fitted values and errors for the SM Higgs width versus the luminosity per

step with the scanning scheme as specified in Eq. (IV.B.9).

Table IV.5: Fitting accuracies for one standard deviation of Γh, B, and mh of the SM Higgs

with the scanning scheme as specified in Eq. (IV.B.9) for three representative luminosities

per step. Results with the default luminosities for cases A and B described in Eqs. (IV.B.5)

and (IV.B.6) are in boldface.

Γh = 4.21 MeV Lstep ( fb−1) δΓh ( MeV) δB δmh ( MeV)

0.005 0.73 6.5% 0.25

R = 0.01% 0.025 0.35 3.0% 0.12

0.2 0.17 1.1% 0.06

0.01 0.30 4.4% 0.12

R = 0.003% 0.05 0.15 2.0% 0.06

0.2 0.08 1.0% 0.03
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Table IV.6: The effective cross sections (in pb) for the exotic Higgs, with Brbb̄ = 18% and

BrWW ∗ = 7.3%.

µ+µ− → h h→ bb̄ h→ WW ∗

R (%)
σeff (pb) σSig σBkg σSig σBkg

0.01 18 2.6 1.3

0.003 20 3.0
15

1.5
0.051

3. Width Determination for a Broader Higgs Boson

We now explore the unique feature of the direct width measurement for a broader resonance

at a muon collider. For definitiveness, we still work with a Higgs-like particle with a mass

at 126 GeV, but with a total width of ten times larger than that of the SM value, Γh = 42

MeV. We shall consider scenarios in which the signal at the LHC of this particle (assuming

a SM Higgs) would be unchanged.

In Fig. IV.11, we present the similar analyses as in Fig. IV.9 for a broader Higgs. There

are two features of this figure compared to the SM Higgs in Fig. IV.9. First, the increase of

Higgs width requires a broader scan range to reconstruct the Breit-Wigner resonant distribu-

tion. We choose to scan the same number of 20 scan steps with a step size of 10 MeV, while

keeping the same total integrated luminosity. It is seen from the figure that the physical line

shape of the Higgs boson is essentially mapped out by the scanning. Second, since the signal

rate at the LHC is governed by partial widths to initial (i) and final (f) states ∝ ΓiΓf/Γh,

the rate could be kept the same when increasing the Higgs total width by a factor κ while

scaling the partial widths up by a factor of
√
κ. This would correspondingly reduce the cross

section for the signal at a muon collider as seen in Eq. (IV.B.2). Under this constraint, the

results for the branching fractions and the effective peak cross sections of a broader Higgs

at a muon collider are listed in Table IV.6.

Although a larger Higgs width would be easier to resolve with a fine energy resolution,
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Figure IV.11: Number of events of the Higgs signal plus backgrounds and statistical errors

expected for cases A and B as a function of the collider energy
√
s in bb̄ and WW ∗ final

states with an exotic Higgs mh0 = 126 GeV and Γh = 42 MeV.
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Figure IV.12: Fitted values and errors for the Higgs width versus the input values. The step

size is set as a rounded half-integer value between 3 MeV− 10 MeV in accordance with the

Higgs width 0.6− 10 times the SM value.

it is a practical concern when a larger range of the scanning energy is needed with a fixed

total luminosity. In Fig. IV.12, we explore this issue by plotting the width determination

with statistical errors for a fixed total luminosity at 1 fb−1 and varying Higgs widths. The

events from the bb̄ channel and WW ∗ channel are shown individually. It turns out that a

smaller width could receive better accuracies in the scanning process due to the larger signal

rate than that at a larger width as mentioned above. We summarize the fitting accuracies

in Table IV.7.

Table IV.7: Fitting accuracies for the exotic Higgs properties. The scanning scheme is the

same as in Fig. IV.12.

Γh = 2.5− 42 MeV δΓh ( MeV) δB δmh ( MeV)

bb̄ 0.33− 1.1 2.8%− 11% 0.07− 1.2

WW ∗ 0.14− 0.67 2.2%− 5.2% 0.05− 0.71
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4. Summary and Outlook

The direct measurement of the Higgs width with high precision will be invaluable to explore

new physics through this “Higgs lamp post." For instance, varying the parameters tan β, MA

in the MSSM within the current LHC constraints, the SM-like Higgs width could change by

20%. Models with Higgs invisible decays would increase the width. Generic Higgs multiplet

models allow an increase in total width, as illustrated in the triplet Georgi-Machacek model.

Composite Higgs models also alter the Higgs width from the SM value.

The mass and cross section can be simultaneously determined along with the Higgs width

to a high precision. The results obtained are largely free from theoretical uncertainties.

Uncertainties of the signal evaluation do not alter the width and mass fitting. The major

systematic uncertainty comes from our knowledge of beam properties. The uncertainty

associated with the beam energy resolution R will directly add to our statistical uncertainties

of Higgs width. This uncertainty can be well-calibrated by experimentalists as well as by

measuring the Z boson peak rate. Our estimated accuracies are by and large free from

detector resolutions. Other uncertainties associated with b tagging, acceptance, etc., will

enter into our estimation of signal strength B directly. These uncertainties will affect our

estimation of total width Γh indirectly through statistics, leaving a minimal impact in most

cases. It is worthy it to mention that our scanning scheme for the SM Higgs case is by simply

adopting the projected accuracy for the Higgs mass measurement from the LHC and ILC.

A prescanning with the muon collider to narrow down the mass window could also increase

the achievable accuracies, as a tradeoff for the total luminosity available.

Moreover, our study on the width and mass measurements can be applicable to new

particles predicted in many theories. For example, the CP -odd and the other CP -even Higgs

states in the minimal supersymmetric standard model and in two-Higgs-doublet-models may

all be suitably studied at a muon collider. The achievable high accuracy would help to resolve

nearly degenerate Higgs states.
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C. HIGGS FROM RADIATIVE RETURN AT A MUON COLLIDER

The exact center-of-mass energy required for an optimal heavy Higgs signal depends on the

unknown heavy Higgs mass, in particular for the s-channel resonant production at a muon

collider. The situation may be remedied if instead we consider associated production of a

Higgs boson with other particles. A particularly interesting process is the “radiative return”

(RR) process. In the case of the Higgs boson production, the processes under consideration

are

µ+µ− → γH, γA, (IV.C.10)

where H (A) is a heavy neutral CP-even (CP-odd) state, respectively. When the center of

mass energy of the muon collider is above the heavy Higgs resonance, the photon emission

from the initial state provides an opportunity of the heavy Higgs boson “back” to the reso-

nance. For this, one does not need to know the mass of the (unknown) heavy scalar. This

mechanism alone could also provide an excellent channel to measure the invisible decay of the

heavy Higgs boson. Without losing generality, we illustrate our main points with a notation

in the context of a two-Higgs-doublet model (2HDM) [541], where the vacuum expectation

values (vev) of both the doublets contribute to the W - and Z-masses. 4

In Sec. IV.C.2, we first present the radiative return production of heavy Higgs boson in

µ+µ− collision in detail. We also consider the production l+l− → ZH and l+l− → AH (l =

e, µ) in Sec. IV.C.3. To make the illustration more concrete, we compare these production

modes in Sec. IV.C.4 in the framework of 2HDM. Because of the rather clean experimental

environment and the model-independent reconstruction of the Higgs signal events at lepton

colliders. Finally, we summarize our results and conclude in Sec. IV.C.5.

1. Production Mechanisms

Perhaps the most useful feature of a muon collider is the potential to have s-channel resonant

production of the Higgs boson [181, 186, 198, 487, 489]. As has been already mentioned in the

4For discussion on RR for other new physics searches at lepton colliders, see Refs. [542–545].
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Figure IV.13: Main production mechanisms of heavy Higgs boson H/A at lepton colliders.

previous section, such a machine undoubtedly has its merits in analyzing in detail the already

discovered Higgs boson near 125 GeV. When it comes to identifying a heavier additional

(pseudo)scalar, however, we do not have any a priori knowledge about the mass, rendering

the new particle search rather difficult. If one envisions a rather wide-ranged scanning, it

would require to devote a large portion of the design integrated luminosity [488, 489]. In this

section, we discuss the three different production mechanisms for the associated production

of the heavy Higgs boson. Besides the “radiative return” as in Eq. (IV.C.10), we also consider

µ+µ− → Z∗ → ZH and HA. (IV.C.11)

The relevant Feynman diagrams are all shown in Fig. VI.1.

We first parametrize the relevant heavy Higgs boson couplings as

Lint = −κµ
mµ

v
Hµ̄µ+ iκµ

mµ

v
Aµ̄γ5µ (IV.C.12)

+κZ
m2
Z

v
HZµZµ

+
g

2 cos θW

√
(1− κ2

Z)(H∂µA− A∂µH)Zµ.

The two parameters κµ and κZ characterize the coupling strength with respect to the SM

Higgs boson couplings to µ+µ− and ZZ. The coupling κµ controls the heavy Higgs resonant

production and the radiative return cross sections, while κZ controls the cross sections for ZH

associated production and heavy Higgs pairHA production. We have used κµ as the common

scale parameter for Yukawa couplings of both the CP-even H and the CP-odd A, although
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Table IV.8: Parametrization and their 2HDM models correspondence.

Coupling κ ≡ g/gSM Type-II & lepton-specific Type-I & flipped

gHµ+µ− κµ sinα/ cos β cosα/ sin β

gAµ+µ− κµ tan β − cot β

gHZZ κZ cos(β − α) cos(β − α)

gHAZ 1− κ2
Z sin(β − α) sin(β − α)

in principle they could be different. For the HAZ coupling we have used the generic 2HDM

relation: κZ is proportional to cos(β−α) and theHAZ coupling is proportional to sin(β−α).5

In the heavy Higgs decoupling limit of 2HDM at large mA, κZ ≡ cos(β − α) ∼ m2
Z/m

2
A is

highly suppressed and κµ ≈ tan β (− cot β) in Type-II [546, 547] and lepton-specific [548–551]

(Type-I [541, 546] and flipped [548–551]) 2HDM. Note that many SUSY models, including

MSSM and NMSSM, are essentially Type-II 2HDM, subject to fewer tree-level parameters

for the Higgs potential and potentially large supersymmetric loop corrections. We tabulate

our choices of parameters and their 2HDM correspondences in Table. IV.8. We reiterate

that such a notation can be carried over to any scenario where there is another multiplet in

addition to the SM Higgs doublet contributing to the W - and Z-masses, whereby the WW

and ZZ couplings of the two neutral CP-even scalars are connected by a unitary relationship,

with some SU(2) Clebsch-Gordan coefficients arising in addition.

We choose the following configuration as shown in Table IV.9 for the muon collider

parameters and the detector acceptance, to study feasibilities of these different production

channels. The beam energy spread is defined as

dL(
√
s)

d
√
ŝ

=
1

2π∆
exp[−(

√
s−
√
ŝ)2

2∆2
], (IV.C.13)

with ∆ = R
√
s/
√

2.

5Customarily, tanβ is the ratio of the two vev’s, and α is the mixing angle of the two scalar states.
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Table IV.9: Muon Collider Parameters [552] assuming four collider years of running. The

photon energy resolution is set as SiD from ILC TDR [485].

√
s = 1.5 GeV 500 fb−1

√
s = 3.0 GeV 1, 760 fb−1

Beam energy spread: R = 0.1%

Polar angle acceptance: 10◦ < θ < 170◦

pTmin for photon: 10 GeV

Photon Energy Resolution: 0.17/
√
E ⊕ 0.01

pTmin for lepton: 20 GeV

∆Rmin for leptons: 0.2

Figure IV.14: Total width of heavy Higgs boson in Type II 2HDM as a function of Higgs

mass for a variety values of tan β = κµ. We only consider partial widths to fermion pairs

here. The total width is symmetric with respect to
√
mt/mb.
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2. Radiative Return

Due to the “radiative return”, when the heavy Higgs boson mass is below the center of

mass energy of the muon collider, the photon emission from the initial state provides an

opportunity of the heavy Higgs boson “back” to resonance. The signature is quite striking:

a mono-chromatic photon plus other recoil particles. The “recoil mass” is a sharp resonant

peak at mH/A, manifesting itself from the continuous background. This photon’s energy is

subject to the beam energy spread and detector energy smearing. The tagging of the heavy

Higgs boson from its decay product, if necessary, provides extra handle on reducing the

background and increasing the significance.

a. Signal and Background The characteristics of this RR signal is a photon with the

energy given by

Eγ =
ŝ−m2

H/A

2
√
ŝ

, (IV.C.14)

from which one constructs a recoil mass peaked at the heavy Higgs mass mH/A. The energy

of this photon is smeared by the following factors: detector photon energy resolution, collider

beam energy spread, additional (soft) ISR/FSR, and heavy Higgs total width. Our choice of

the detector photon energy resolution and beam energy spread are as shown in Table IV.9.

The beam energy spread and (soft) ISR are of GeV level [552]. When the Higgs boson mass

is significantly below the beam energy, the recoil mass construction receives large smearing

due to the energy resolution for the very energetic photon.

Besides the Higgs boson mass, the other most important parameter is the total width,

which effectively smears the mono-chromatic photons as well. We calculate the total width as

a sum of the partial widths to fermion pairs for Type II 2HDM in Fig. IV.14. In this model,

κµ = tan β in the decoupling limit. The total width is minimized when tan β =
√
mt/mb.

Because of the quadratic dependence, there are typically two values to give the same width

tan β1 · tan β2 = mt/mb. Numerically we take mt/mb = 42. We can see that typically the

total width ranges from a few GeV to hundreds of GeV. The total width of heavy Higgs boson

could remain small in lepton-specific 2HDM. We thus choose three representative values for

the total width: 1, 10, and 100 GeV for later discussions.
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The inclusive cross section for mono-photon background is very large in comparison

with the radiative return signal. The background is mainly from the Möller scattering

with ISR/FSR µ+µ− → µ+µ−γ, and the W exchange with ISR µ+µ− → ννγ. The signal

background ratio is typically of the order 10−3 for a 3 TeV muon collider. As a result, for

the discovery through the RR process, we need to rely on some exclusive processes, or to

the least veto mono-photon plus missing energy and mono-photon plus dimuon exclusive

channels.

It should be noted that, in a 2HDM, the heavy neutral scalar H may decay into both

tt̄, bb̄ and τ+τ− modes, where the branching ratios depend on tan β. We adopt the Type-

II 2HDM for illustration. We show in Fig. IV.15 the total cross sections (left panel) for

µ+µ− → H/Aγ → qq̄γ (for q = t, b) for tan β = 5, 40, with the basic cuts applied on the

photon. It is clear from the plots that while the rates for tt̄γ is considerably suppressed for

large values of tan β, it can be of comparable magnitude (or even larger) to that for bb̄γ for

relatively low tan β. Judicious criteria for event selection, therefore, need to be developed

for both channels. In the rest of the present study, however, only the bb̄ mode is considered

for simplicity.

To be more specific, we choose the bb̄ final state as a benchmark with heavy Higgs boson

decay branching fraction (Br) to this final state to be 80%. We also assume 80% b-tagging

efficiency and require at least one b-jet tagged. In fact, any visible decay of the heavy Higgs

boson except for the dimuon final state, negligible in most of models, would be very efficient

in background suppression. One could also interpret our assumption as that 80% of the

decays of the Higgs boson could be utilized.

We employ Madgraph5 [242] and for parton level signal and background simulations and

tuned Pythia 6.4 [244] mainly for ISR and FSR, and further implement detector smearing

and beam energy spread with our own code. We show the recoil mass distribution for the

heavy Higgs boson mass of 0.5, 1, 1.5, 2, 2.5, 2.9 TeV each with 1, 10, 100 GeV width at a

3 TeV muon collider in Fig. IV.15 (right panel). Both cross sections of the signal and the

background at fixed beam energy increase as the recoil mass increases due to the infrared

nature of the photon radiation. The spread of recoil mass peak increases at a lower mass,

due to the larger photon energy detector resolution smearing at a higher photon energy. We
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Figure IV.15: Left panel: total cross section for H/A→ bb̄ (solid lines) and tt̄ (dashed lines)

as a function of mH/A at
√
s = 3 TeV, in Type-II 2HDM scenario for tan β = 5 (blue) and

40 (red). Right panel: recoil mass distribution for heavy Higgs mass of 0.5, 1, 1.5, 2, 2.5,

2.9 TeV with total width 1 (red), 10 (blue), and 100 (green) GeV at a 3 TeV muon collider.

The beam energy resolution and photon energy resolution are as shown in Table. IV.9. ISR

and FSR are included but not beamstrahlung. Background (black) includes all events with a

photon that has pT > 10 GeV. Note that signal and background have different multiplication

factors for clarity.
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can see that the pronounced mass peaks look promising for the signal observation, and the

RR process is a plausible discovery production mechanism that does not rely on the precise

knowledge of the new heavy Higgs boson mass. We discuss the observability of this mode in

next subsection.

b. Estimated Sensitivities To quantify the reach of the signal observation, we choose

different bin sizes according to the spread of the photon energy distribution. This is because

the recoil mass spread is broader than the photon energy smearing, as scaled by a factor of
√
ŝ/mH/A. This implies the Higgs mass resolution would be much worse than the photon

energy resolution if the mass is far away from the beam energy. We find the bin sizes in step

of 1 GeV that optimize statistical significance of signal at κµ = 10 over the background. With

this optimal choice of number of bins, we show the 2σ exclusion (solid) and 5σ discovery

(dashed) limits from RR in Fig. IV.16 for both 1.5 TeV and 3 TeV muon colliders as described

in Table IV.9, for three different benchmark heavy Higgs width values 1, 10, and 100 GeV

in red, blue, and green, respectively. The results show that the RR production mode could

cover a large κµ (tan β in Type II 2HDM) region. To put these results into perspective, we

reproduce the LHC curves for the discovery reach on the mA − tan β plane in solid black

lines for 300 fb−1 and 3000 fb−1 [193]. These LHC discovery projections are mainly from

searches on heavier Higgs bosons decaying into SM particles such as τ+τ− and tt̄, in the

maximal mixing scenario in the MSSM. This “wedge” shape indicates the LHC’s limitation

in discovering heavy Higgs bosons in the medium tan β range, roughly when the production

rate is minimal for the MSSM as a Type-II 2HDM. It is important to see the significant

extension at the high energy muon collider via the RR process over the LHC coverage in the

heavy Higgs parameter space.

3. ZH Associated Production and HA Pair Production

The ZH associated production and HA pair production of Eq. (IV.C.11) at tree level are

mediated by an off-shell Z boson. The cross section for the ZH associated production is

proportional to κ2
Z . On the other hand, the HA pair production is proportional to 1 − κ2

Z
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Figure IV.16: Estimated 2σ exclusion limits (solid) and 5σ discovery limits (dashed) in the

Higgs mass and κµ plane, shown as shaded region. We include the cases with Higgs width

1 (red), 10 (blue), and 100 (green) GeV. We overlay the 3 TeV muon collider reach (gray

shade) over 1.5 TeV muon collider results (pink shade). For comparison, the two solid black

wedged curves reproduce the LHC cotverage in mA-tan β plane for 300 fb−1 and 3000 fb−1,

respectively.
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in generic 2HDM models. These two channels bear some complementarity with each other.

To quantify our study, we assume 90% tagging efficiency for the visible Z decays in the ZH

associated production. We also studied the leptonic Z boson decay mode, where requirement

on lepton pT , angle and separation are imposed as described in Table IV.9. For simplicity,

we take both the CP-even and CP-odd heavy Higgs bosons to have the same mass.

In Fig. IV.17 we show the event contours with 10 events (solid) and 50 events (dashed) for

both ZH andHA channels in themH,A-κZ plane. As expected, once crossing the kinematical

threshold, the HA channel would be sensitive to a large range of κZ value. For instance, even

for κ ∼ 0.97, one still have 6% of the full cross section which leads to about 15 events. The

kinematically favored channel ZH associated production is more sensitive than the HA pair

production, expending to a larger mH region, as long as κZ > 0.1. A higher energy collider

would extend the mass coverage to the multiple TeV kinematical limit, with a proportionally

larger κZ value as seen in the figures.

4. Comparison of Different Modes

Kinematically, the RR process and the ZH associated production have quite different thresh-

old behavior due to the massless nature of the photon. The closer the Higgs boson mass is

to the energy threshold, the more effective the RR channel would be with respect to the ZH

associated production. Well above the threshold on the other hand, these two processes scale

with the energy in the same way as 1/s. Dynamically, the RR process is only dependent on

κµ, while both ZH associated production and HA pair production mainly depend on κZ .

These two parameters are essentially independent of each other, characterizing the muon

Yukawa coupling and the Higgs-gauge coupling, respectively.

It would be nevertheless informative to put side-by-side the reach of the two theory

parameters via these two processes. Our results are summarized in Fig. IV.18, where we

choose a 3 TeV muon collider to illustrate this comparison in the parameter plane κµ-κZ .

The shaded regions labeled by different values of the heavy Higgs mass show the higher

signal rate from the RR process than both the ZH associated production and HA pair

production. The nearly flat region for 1.4 TeV H and A represents the good sensitivity from
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Figure IV.17: Sensitivity to the Higgs coupling κZ versus the Higgs mass for the ZH asso-

ciated production (red for all visible Z decays, magenta for the leptonic Z decay only) and

HA pair production (brown) for the muon collider defined as in Table IV.9 at the center of

mass energy 1.5 TeV (left panel) and 3 TeV (right panel). Shaded regions bounded by solid

(dashed) curves are regions with more than 10 (50) signal events being produced, indicating

the exclusion (discovery) reach.
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HA pair production in the low κZ region. As expected, the RR process is more sensitive for

a heavier Higgs boson near the energy threshold, which would be especially important in the

decoupling regime for ZH/HA processes. At higher (lower) energies, the mass reach scales

up (down), but with a lower (higher) luminosity need scaled by 1/s.

Only after specifying the underlying theory for the heavy Higgs bosons, and requiring the

lighter Higgs boson in agreement with the current LHC measurement, these two parameters

could be constrained in a correlated manner, subject to the experimental accuracy. The

allowed κZ region is tightly constrained by the currently observed SM-like Higgs boson. We

reproduce the allowed parameter regions from Ref. [178] for four types of 2HDM with current

LHC data (solid) and projection after LHC-300 fb−1 (dashed). This illustrates that the RR

processes is very much favored in 2HDM models, where the lighter SM-like Higgs boson

carries most of the couplings to the electroweak gauge bosons.

5. Summary and Outlook

We studied the signature and sensitivity for heavy Higgs boson signals from three production

modes at a high energy muon collider. Compared to the s-channel resonance at
√
s = mh,

these different production mechanisms do not rely on a priori knowledge of the Higgs boson

mass, and thus avoid the broad scanning procedure. We find that radiative return (RR) is of

particular interest. This signal (γH) is characterized by a mono-chromatic photon that yields

a reconstructed recoil mass peak at the heavy Higgs boson mass. We performed numerical

simulations for this signal and its SM backgrounds and showed the coupling-mass parameter

space κµ-m (SUSY equivalent of tan β−MA) covered by such search at a high energy muon

collider to be substantially extended over the LHC expectation with the direct observation of

the heavy Higgs boson. Comparing with other modes of ZH and HA production at a lepton

collider, the RR process is advantageous, especially for the “decoupled” scenarios in many

2HDM-like models. We further discussed its potential for measuring the invisible decays of

the heavy Higgs boson and found some sensitivity especially for larger values of κµ. The RR

process could certainly provide us an interesting option comparing to traditional scanning

procedure for heavy Higgs boson discovery at a high energy muon collider.
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Because of the lepton universality for gauge interactions, the processes µ+µ− → ZH, HA

would be the same as those in e+e− collisions at the same c.m. energy since the contributions

to both processes are overwhelmingly from the s-channel Z-exchange. Thus the advantage

of the RR process (γH) would also apply when compared with a high energy e+e− collider,

where the RR process is essentially absent.
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Figure IV.18: Comparison of sensitivities between different production mechanisms in the

parameter plane κµ-κZ for different masses of the heavy Higgs boson at the 3 TeV muon

collider. The shaded regions show the higher signal rate from the RR process than both

the ZH associated production and HA pair production. We also reproduce the allowed

parameter regions (extracted from Ref. [178]) for four types of 2HDM with current LHC

data (solid) and projection after LHC-300 fb−1 (dashed).
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V. CONCLUSIONS

In this chapter, we collect the key features of many of the studies discussed in previous

chapters, detailed features of the each analysis can be found in the corresponding sections.

Dijet resonances: We study the colored resonance production at the LHC in a most

general approach. We classify the possible colored resonances based on group theory decom-

position, and construct their effective interactions with light partons. The production cross

section from annihilation of valence quarks or gluons may be on the order of 400−1000 pb at

LHC energies for a mass of 1 TeV with nominal couplings, leading to the largest production

rates for new physics at the TeV scale, and simplest event topology with dijet final states.

We apply the new dijet data from the LHC experiments to put bounds on various possible

colored resonant states. The formulation is readily applicable for future searches including

other decay modes.

Electroweak resonances: In this work, we study the physics potential for the Z ′ at the

VLHC . We choose different benchmark models for the Z ′, namely Z ′χ, Z ′φ, Z ′η, Z ′LR, Z ′B−L
and Z ′SSM , and include also the mass mixing through the SM Higgs boson with additional

U(1)′charge. The latter introduces Z ′ → W+W− and Z ′ → Zh decay modes, in addition to

the fermion decay modes. In conclusion, the newly observed Higgs-like particle at the LHC

strongly motivates a muon collider as the Higgs factory. We proposed methods and evaluated

the attainable accuracy to directly measure the Higgs width by scanning and fitting the s-

channel resonance. The unparalleled precision would test the Higgs interactions to a high

precision and undoubtedly take us to a deeper understanding of the electroweak-symmetry-

breaking sector.

Multi-Higgs at colliders: We study the Higgs sector of the NMSSM in light of the

discovery of the SM-like Higgs boson at the LHC. We perform a broad scan over the NMSSM
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parameter space and identify the regions that are consistent with current Higgs search results

at colliders. In contrast to the commonly studied “decoupling” scenario in the literature where

the Minimal Supersymmetric Standard Model CP-odd Higgs boson mass is large mA � mZ ,

we pay particular attention to the light Higgs states in the case when mA ∼< 2mZ . The Higgs

bosons in the NMSSM, namely three CP-even states, two CP-odd states, and two charged

Higgs states, could all be rather light, near or below the electroweak scale, although the

singlet-like states can be heavier. The SM-like Higgs boson could be either the lightest CP-

even scalar or the second lightest CP-even scalar, but is unlikely to be the heaviest scalar.

These NMSSM parameter regions have unique properties and offer rich phenomenology. The

decay branching fractions for the SM-like Higgs boson may be modified appreciably. The

correlations of γγ/V V and V V/bb̄ can be substantially altered. The new Higgs bosons may

be readily produced at the LHC and may decay to non-standard distinctive final states, most

notably a pair of Higgs bosons when kinematically accessible. We evaluate the production

and decay of the Higgs bosons and comment on further searches at the LHC to probe the

Higgs sector of the NMSSM. The Higgs sector in the NMSSM provides a well motivated

theoretical framework consistent with the Higgs boson discovery and the searches at the

LHC. The low-mA parameter region yields multiple light Higgs bosons that lead to rich

phenomenology at colliders. Although strongly constrained by the current searches, it is

also highly predictive. Dedicated studies for this very interesting sector, in particular for

a multiple Higgs boson final state at the LHC, will allow a search for this scenario to be

completed in the near future.

SUSY dark matter: We investigate DM in the context of the MSSM. We scan through

the MSSM parameter space and search for solutions that (a) are consistent with the Higgs

discovery and other collider searches; (b) satisfy the flavor constraints from B physics; (c)

give a DM candidate with the correct thermal relic density; and (d) are allowed by the

DM direct detection experiments. For the surviving models with our parameter scan, we

find the following features: (1) The DM candidate is largely a Bino-like neutralino with

non-zero but less than 20% Wino and Higgsino fractions; (2) The relic density requirement

clearly pins down the solutions from the Z and Higgs resonances (Z, h,H,A funnels) and

co-annihilations; (3) Future direct search experiments will likely fully cover the Z, h funnel
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regions, and H,A funnel regions as well except for the “blind spots”; (4) Future indirect

search experiments will be more sensitive to the CP-odd Higgs exchange due to its s-wave

nature; (5) The branching fraction for the SM-like Higgs decay to DM can be as high as

10%, while those from heavier Higgs decays to neutralinos and charginos can be as high as

20%. We show that collider searches provide valuable information complementary to what

may be obtained from direct detections and astroparticle observations. In particular, the

Z- and h-funnels with a predicted low LSP mass should be accessible at future colliders.

Overall, the Higgs bosons may play an essential role as the portal to the dark sector. We

conclude that understanding the nature of DM requires us to consider results from a number

of different experiments. Future collider searches and the next generation of direct detection

experiments will likely cover the conventional parameter range of the MSSM if the LSP

constitutes all of the DM. The recent exciting discovery of the SM-like Higgs boson, and

searches for beyond the SM physics at the energy frontier will serve as a new “lamp post”

and guide in DM searches complementary to what may be obtained from direct detection

and astro-particle observations at the cosmic frontier.

Light SUSY dark matter: We study the neutralino being the LSP as a cold DM

candidate with a mass less than 40 GeV in the framework of the NMSSM. We find that

with the current collider constraints from LEP, the Tevatron and the LHC, there are three

types of light DM solutions consistent with the direct/indirect searches as well as the relic

abundance considerations: (i) A1, H1-funnels, (ii) stau coannihilation and (iii) sbottom

coannihilation. Type-(i) may take place in any theory with a light scalar (or pseudo-scalar)

near the LSP pair threshold; while Type-(ii) and (iii) could occur in the framework of MSSM

as well. We present a comprehensive study on the properties of these solutions and point

out their immediate relevance to the experiments of the underground direct detection such

as superCDMS and LUX/LZ, and the astro-physical indirect search such as Fermi-LAT. We

also find that the decays of the SM-like Higgs boson may be modified appreciably and the

new decay channels to the light SUSY particles may be sizable. The new light CP-even

and CP-odd Higgs bosons will decay to a pair of LSPs as well as other observable final

states, leading to interesting new Higgs phenomenology at colliders. For the light sfermion

searches, the signals would be very challenging to observe at the LHC given the current
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bounds. However, a high energy and high luminosity lepton collider, such as the ILC, would

be able to fully cover these scenarios by searching for events with large missing energy plus

charged tracks or displaced vertices. Overall, a light WIMP DM candidate remains to be of

great interest both experimentally and theoretically. A light neutralino DM in the NMSSM

may result in rich physics connecting all the current and the upcoming endeavors of the

underground direct detection, astro-physical indirect searches, and collider signals related to

the Higgs bosons and new light sfermions.

SUSY displaced decays: Supersymmetry searches at the LHC are both highly varied

and highly constraining, but the vast majority are focused on cases where the final-stage

visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes

have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are

relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches

for collider-stable and displaced new particles facilitates recastings into powerful long-lived

superparticle searches, even for models for which those searches are highly non-optimized. In

this section, we assess the status of such models in the context of baryonic R-parity violation,

gauge mediation, and mini-split SUSY. We explore a number of common simplified spectra

where hadronic decays can be important, employing recasts of LHC searches that utilize

different detector systems and final-state objects. The LSP/NLSP possibilities considered

here include generic colored superparticles such as the gluino and light-flavor squarks, as well

as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness.

We find that complementary coverage over large swaths of mass and lifetime is achievable

by superimposing limits, particularly from CMS’s tracker-based displaced dijet search and

heavy stable charged particle searches. Adding in prompt searches, we find many cases where

a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no

gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.

Higgs width at the ILC: We outline a systematic approach to the determination of

the Standard Model-like Higgs boson total width and measurable coupling parameters in a

model-independent manner at the ILC and illustrate the complementarity for operating the

ILC at 250 GeV near the Zh threshold and at 500 GeV and 1 TeV utilizing the WW,ZZ

fusion processes. We perform detailed simulations for an important contributing channel
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to the coupling determination and for invisible decays. Without model assumptions, and

combining the information for the coupling ratios from the LHC, the total width can be

determined to an accuracy of about 6%, and the couplings for the observable channels can

be measured to the (3−5)% level at 250 GeV, reaching (1−3)% level including the 500 GeV

results, with further improvements possible with a 1 TeV run. The best precision for the

branching fraction measurement of the Higgs to invisible modes can be reached at 0.5−0.7%

around the Zh threshold. Further studies from ZZ fusion at higher energies may provide

significant improvement for the measurements. With modest theory assumptions, the width

and coupling determinations can be further improved to the percent or sub-percent level.

Higgs couplings from ZZ-fusion at the ILC: We evaluate the e−e+ → e−e+ + h

process through the ZZ fusion channel at the ILC operating at 500 GeV and 1 TeV center

of mass energies. We perform realistic simulations on the signal process and background

processes. With judicious kinematic cuts, we find that the inclusive cross section can be

measured to 2.9% after combining the 500 GeV at 500 fb−1 and 1 TeV at 1 ab−1 runs. A

multivariate log-likelihood analysis further improves the precision of the cross section mea-

surement to 2.3%. We discuss the overall improvement to model-independent Higgs width

and coupling determinations and demonstrate the use of different channels in distinguishing

new physics effects in Higgs physics. Our study demonstrates the importance of the ZZ

fusion channel to Higgs precision physics, which has often been neglected in the literature.

Higgs boson at muon collider: In the light of the discovery of a 126 GeV Standard-

Model-like Higgs boson at the LHC, we evaluate the achievable accuracies for direct mea-

surements of the width, mass, and the s-channel resonant production cross section of the

Higgs boson at a proposed muon collider. We find that with a beam energy resolution of

R = 0.01% (0.003%) and integrated luminosity of 0.5 fb−1 (1 fb−1), a muon collider would

enable us to determine the Standard-Model-like Higgs width to ±0.35 MeV (±0.15 MeV)

by combining two complementary channels of theWW ∗ and bb̄ final states. A non-Standard-

Model Higgs with a broader width is also studied. The unparalleled accuracy potentially

attainable at a muon collider would test the Higgs interactions to a high precision.

Higgs boson at muon collider through radiative return: Higgs boson properties

could be studied with a high accuracy at a muon collider via the s-channel resonant pro-
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duction. We consider the situation where the center-of-mass energy of the muon collider is

off the resonance above the Higgs mass. We discuss the discovery potential for a generic

heavy Higgs boson and compare different production mechanisms, including the “radiative

return”, Z-boson associated production and heavy Higgs pair production. These production

mechanisms do not sensitively rely on a priori knowledge of the heavy Higgs boson mass.

We include various types of Two Higgs Doublet Models for the comparison. We conclude

that the radiative return process could provide an important option for both the heavy Higgs

discovery and direct measurement of invisible decays at a high energy muon collider.
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VI. APPENDIX

A. CLEBSCH-GORDAN COEFFICIENTS

Here we exhibit the Clebsch-Gordan Coefficients relations that are needed in color resonance

calculation for general SU(N) groups. Typical initial state group structure includes N ⊗N ,

N ⊗ N̄ , N ⊗ A and A⊗ A, whereas A denotes the adjoint representation of SU(N).

We assume that the Clebsch-Gordan coefficients obey the following orthogonality rela-

tionship:

Tr[KaK̄b] = δab , (VI.A.1)

where Ka = K̄†a. The Clebsch-Gordan coefficients couple the different irreducible represen-

tations together in a gauge invariant way. Hence, depending on the interaction, the indices

a take on different values. For example, according to our conventions in Eqs. (II.A.5) and

(II.A.6):

a =


1, ..., N(N−1)

2
couplings to the antisymmetric combination of N ⊗N boson

1, ..., N(N+1)
2

couplings to the symmetric combination of N ⊗N boson

1, ..., N2 − 1 couplings to the new fermion from N ⊗ A
(VI.A.2)
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Using this orthogonality condition, the following identities are used for the appropriate cou-

plings:

Tr[KaK̄a] =


N(N−1)

2
couplings to the antisymmetric combination of N ⊗N boson

N(N+1)
2

couplings to the symmetric combination of N ⊗N boson

N2 − 1 couplings to the new fermion from N ⊗ A
(VI.A.3)

Specifically for SU(3) couplings, the color antisymmetric (symmetric) coupling of two

quarks is the triplet-(sextet) scalar or vector diquark. Then we have for the diquark inter-

actions in Eq. (II.A.5) and excited quark interactions in Eq. (II.A.6)

Tr[KaK̄a] =


3 couplings to the triplet diquark

6 couplings to the sextet diquark

8 couplings to the triplet and sextet excited quarks

(VI.A.4)

The complete symmetric invariant symbol of SU(3) algebra satisfy

dABCdABC = 2CF (N2 − 4) (VI.A.5)

where as CF = (N2 − 1)/2N is the eigenvalue of the quadratic SU(N) Casimir operator

acting on the fundamental representation. For SU(3), CF = 4/3.

B. FEYNMAN RULES

Here we give the explicit Feynman rules for the interacting vertices constructed in the text,

as in Sec. II.A.2.

The diquark Feynman rules are in Eq. (B.1) and (B.2): QND may be END , DND , or UND ,

depending on the initial state. The labels q, q′ = u, d indicate whether the initial state

quarks are up-type or down-type and α, β are generation indices. For the triplet diquark the

Clebsch-Gordan coefficients are antisymmetric Kj
ab = −Kj

ba, and for the antisextet diquark

they are symmetric Kj
ab = Kj

ba. C is the charge conjugation matrix.
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−i(1 + δqq′)λ
QND
αβ Kj

abCPτ

q′, b, β

q, a, α
QND

, j
(B.1)

.

q = q′ : −iλ
′QND

αβ (Kj
abPR −Kj

baPL)Cγµ

q 6= q′ : −iλ
′DND
αβ Kj

abPτCγµq′, b, β

q, a, α
Qµ

ND
, j

(B.2)

−2i
gs

Λ
KND,A(/kγµ − kµ)(λ

U
LPL + λU

RPR)

u

k, A, µ u∗
ND

(B.3)

.

−4igsd
ABC κS

ΛS
((k1 · k2)gµν − k2µk1ν)

k2, C, ν

k1, B, µ SA
8 , k

(B.4)

.

−2igsd
ABC κT

ΛT
(k1αk2βgµν − k1νk2βgαµ

+(k1 · k2)gαµgβν − k1αk2µgβν

+2fgαβ((k1 · k2)gµν − k2µk1ν))k2, C, ν

k1, B, µ T A
8 , k, αβ

(B.5)

.

q

q̄
V A

8 , µ
(B.6)

V +
8 : −igsT

Aγµ(CLV CKM
L PL + CRV CKM

R PR)

V 0
8 : − igsT

Aγµ(g
U/D
L PL + g

U/D
R PR)

..

.

Figure VI.1: Feynman rules for the vertices of resonant particle couplings to quarks and

gluons. All the momenta are incoming and τ = L,R.
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The excited quark Feynman rules in Eq. (B.3): equally applicable for both u∗ND and d∗ND .

The spin summation for a spin-2 tensor state (TA8 ) of mass M obeys the relation [553]:

Σεµν(k)ε∗ρσ(k) = Bµν,ρσ(k) =

(
gµρ −

kµkρ
M2

)(
gνσ −

kνkσ
M2

)
+

(
gµσ −

kµkσ
M2

)(
gνρ −

kνkρ
M2

)
− 2

3

(
gµν −

kµkν
M2

)(
gρσ −

kρkσ
M2

)
.

C. CONSIDERATION OF ONE PHOTON SENSITIVITY

As discussed in the main text, we find it useful to simply veto events with a single, isolated

photon in addition to an electron-positron pair. This cut reduces the potentially large

background arising from Bhabha scattering plus radiation which can pass the invariant mass

and pT cuts. This cut also reduces signal events where the Higgs decays to a single photon

plus invisible particles, or a single photon plus additional particles which are lost down the

beam pipe. In general we do not expect this to be a relevant effect since our final sensitivity

for the model-independent cross section is 2.5% while the Standard Model processes which

might contribute to such events are at the level of 10−3 branching fractions or less. Only

order of magnitude enhancements to these channels from exotic physics would be relevant to

our analysis and such enhancements are constrained by exclusive searches at the LHC and

in future at the ILC.

Nevertheless, there may be some exotic model which would produce an observable effect

in the inclusive measurement which is not ruled out by other searches. We note that if one

wishes to preserve sensitivity to exotic channels which could produce a single isolated photon,

it is possible to institute cuts which will remove almost all of the background while preserving

a substantial fraction of any such Higgs decays. We find that, in the reconstructed Higgs rest

frame, the isolated photon in the background sample is not isotropically distributed. The

background photon usually appears collinear to the Higgs boost direction, and/or confined

to be near the radial plane containing the beam and the Higgs boost vector. This is because

the photon is recoiling against the e−e+ pair with a possible boost along the beam axis

due to additional unseen photons. We also find that measurement errors on the photon are
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typically larger in the polar angle than in the azimuthal direction. Thus one can largely

remove this background by cutting on the polar (with respect to the Higgs boost) and

azimuthal (measured with respect to the Higgs-beam plane) angles of a single extra photon

in the Higgs rest frame. We find the problematic background can be reduced to the level of

a few fb while preserving ∼ 60% of any hypothetical Higgs decay signal, 1 since the photon

from such a decay would be isotropically distributed in the Higgs rest frame. Hence any new

physics signal large enough to affect the inclusive rate would still be observable, although

underestimated.

We note that a cut similar in spirit to this one is already present in the widely used

analysis of Higgsstrahlung inclusive measurement at the 250 GeV ILC [184]. In that case

additional single photons were removed by a “pT balance" cut when the pT of an isolated

photon accounted for the bulk of the e−e+ pair pT . However, since this more complicated

approach does not materially change our results we present the simpler case of simply vetoing

the single isolated photon as described in the main text.

D. Z ′ AT THE LHC

Here we establish our notation and summarize the basic formalism for the production and

decay of a Z ′ into a fermion pair at the LHC by the process pA pB → ff̄ + X. We define

s = (pA + pB)2 and ŝ = (pf + pf̄ )
2, where in our examples we take s = (14 TeV)2 and

ŝ = (3 TeV)2. y is the ff̄ rapidity, with y > 0 along the ~pA direction (i.e., the ff̄ boost

direction). θ∗ is the angle of f in the ff̄ rest frame, defined2 with respect to y (i.e., with

respect to ~pA for y > 0 and ~pB for y < 0), and z = cos θ∗. We ignore the transverse

momentum pT of the ff̄ system.

Let fqi(x)[fq̄i(x)] be the proton PDF of the ith flavor quark [antiquark] qi [q̄i], evaluated at

the scale µ2, which we will take to be ŝ. The tree-level cross section for Drell-Yan production

1This fraction is relative to other decay channels not affected by the cut, since other cuts will affect all
decays equally.

2The θ∗ convention is opposite that in [220] for y < 0, which was motivated by the simultaneous study
of pp̄.
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is then

dσ

dŝ dy dz
=

1

ŝ

∑
i=u,d,c,s,b

[
pi(ŝ, y)

dσ(qiq̄i → ff̄)

dz
+ p̄i (ŝ, y)

dσ(q̄iqi → ff̄)

dz

]
, (VI.D.6)

where3

pi(ŝ, y) ≡ xAxBfqi(xA)fq̄i(xB), p̄i(ŝ, y) ≡ xAxBfq̄i(xA)fqi(xB), (VI.D.7)

with

xA,B ≡
√
ŝ

s
e±y. (VI.D.8)

For family-independent couplings and ignoring quark masses, we can absorb the heavier

quark PDFs into pu,d, i.e., we redefine pu + pc → pu and pd + ps + pb → pd, and similarly

for p̄u,d, with
∑

i=u,d,c,s,b →
∑

i=u,d. We also define the distribution functions integrated over

rapidity

Pi(ŝ, y1, y2) =

∫ y2

y1

pi(ŝ, y) dy, P i(ŝ, y1, y2) =

∫ y2

y1

p̄i(ŝ, y) dy, (VI.D.9)

where 0 ≤ y1 < y2 ≤ ymax.

The differential cross sections in (VI.D.6) due to s-channel γ, Z, and Z ′ are given by

dσ(qiq̄i → ff̄)

dz
=

Cf
384πŝ

{[
Gi
LL +Gi

RR

]
(1 + z)2 +

[
Gi
LR +Gi

RL

]
(1− z)2

}
, (VI.D.10)

where Cf is the color factor (1 for leptons and 3 for quarks), and4

Gi
ab(ŝ) =

∣∣∣∣∣e2 qiqf +
g1i
a g

1f
b ŝ

ŝ−M2
Z + iMZΓZ

+
g2i
a g

2f
b ŝ

ŝ−M2
Z′ + iMZ′ΓZ′

∣∣∣∣∣
2

(VI.D.11)

for a, b = L,R. The expression for dσ(q̄iqi→ff̄)
dz

is the same except (1 ± z)2 → (1 ∓ z)2.

We have ignored the masses of the initial and final fermions in (VI.D.10), which is an

adequate approximation except for the t quark. For our simulations, the top quarks mass

is approximately included. The massive top quark will also affect the top charge tagging
3Higher order QCD K factors K(ŝ, y) can be included in pi and p̄i. We have not implemented the K

factors in the present study. They will potentially increase the sensitivity through an increase in cross section,
and may alter the angular distribution slightly.

4Giab and the analogous Ciab defined in (VI.D.14) should more properly be written as Gifab and Cifab ,
respectively. We usually suppress the dependence on the final state fermion for notational simplicity.
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efficiency through its leptonic decays. For simplicity, we will evaluate the SM couplings for

both the LHC and ILC cases at MZ .

Near the Z ′ pole it is often adequate to ignore the γ and Z, in which case

Gi
ab(ŝ)→ ŝ2|D(ŝ)|2Ci

ab, (VI.D.12)

where

|D(ŝ)|2 =
1

(ŝ−M2
Z′)

2 +M2
Z′Γ

2
Z′

(VI.D.13)

is the Breit-Wigner propagator-squared and

Ci
ab ≡ |gia|2 |gfb |2, a, b = L,R. (VI.D.14)

1. Narrow Width Approximation

We first consider Z ′ production, ignoring interference effects, in the narrow width approxi-

mation (NWA),

|D(ŝ)|2 → π

MZ′ΓZ′
δ(ŝ−M2

Z′). (VI.D.15)

This is a reasonable first approximation for a multi-TeV scale Z ′ with electroweak couplings,

for which typically ΓZ′/MZ′ = O(1%) unless there are important non-SM decay channels.

The cross section is then

dσ

dy dz
→ Cf

384MZ′ΓZ′

∑
i=u,d

{[
piC

i
N + p̄iC

i
F

]
(1 + z)2 +

[
piC

i
F + p̄iC

i
N

]
(1− z)2

}
=

Cf
384MZ′ΓZ′

∑
i=u,d

{
p+
i C

i
+(1 + z2) + 2p−i C

i
−z
}
,

(VI.D.16)

where

p±i ≡ pi ± p̄i, P±i ≡ Pi ± P i, (VI.D.17)

and

Ci
N ≡ Ci

LL + Ci
RR, Ci

F ≡ Ci
LR + Ci

RL

Ci
± ≡ Ci

N ± Ci
F = (Ci

LL + Ci
RR)± (Ci

LR + Ci
RL).

(VI.D.18)
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Integrating over angles (one could include a cut on maximum |z|):

dσ

dy
=

∫ +1

−1

dσ

dy dz
dz =

Cf
144MZ′ΓZ′

{
p+
uC

u
+ + p+

d C
d
+

}
σ =

(∫ y2

y1

+

∫ −y1
−y2

)
dσ

dy
dy =

Cf
72MZ′ΓZ′

{
P+
u C

u
+ + P+

d C
d
+

}
.

(VI.D.19)

These results are sometimes rewritten in terms of the Z ′ partial widths

Γ(Z ′ → ff̄) =
CfMZ′

24π

(
|gfL|2 + |gfR|2

)
Γ(Z ′ → qiq̄i) =

MZ′

8π

(
|giL|2 + |giR|2

)
,

(VI.D.20)

so that

dσ

dy
=

4π2

3M3
Z′

[p+
u Γ(Z ′ → uū) + p+

d Γ(Z ′ → dd̄)]B(Z ′ → ff̄), (VI.D.21)

where B(Z ′ → ff̄) ≡ Γ(Z ′ → ff̄)/ΓZ′ is the branching ratio into ff̄ . Similarly,

σ ≡ σZ′B(Z ′ → ff̄) =
8π2

3M3
Z′

[P+
u Γ(Z ′ → uū) + P+

d Γ(Z ′ → dd̄)]B(Z ′ → ff̄) (VI.D.22)

is the total cross section into ff̄ . (We will sometimes denote σ by σfor by σ[ff̄ ].) Since ΓZ′

is not known a priori (except in specific models) one cannot directly constrain the absolute

couplings from σf , although one can obtain ratios of couplings by comparing different final

states. However, if ΓZ′ can be measured independently from the lineshape to a precision of

around 25 GeV as shown in the left panel of Fig. III.1, then σf ΓZ′ = σZ′Γ(Z ′ → ff̄) does

contains information on the absolute couplings. Another difficulty is that the cross section

for a given f depends on the combination Cu
+ +Cd

+(P+
d /P

+
u ). In principle, one could separate

C+
u,d by using the rapidity dependence, but in practice there is little sensitivity for MZ′ & 3

TeV. (Similar statements apply to the rapidity dependence of the angular distribution.) The

u and d couplings could, however, be separated if one can observe bb̄ and tt̄ (assuming

family-universality).

In addition to ΓZ′ , the total cross sections suffer from PDF, luminosity, K factor, and

other systematic uncertainties. These difficulties are reduced for ratios of rates for different

final states, angular distributions, and final state polarizations.
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2. Angular Distribution

Define the forward (F ) and backward (B) cross sections for rapidity y as

F (y) ≡
∫ 1

0

dσ

dy dz
dz, B(y) ≡

∫ 0

−1

dσ

dy dz
dz. (VI.D.23)

Recall that positive z corresponds to f in the direction of the rapidity, so that F and B are

symmetric under y → −y. It is also useful to define F and B integrated over a range of |y|:

F ≡
(∫ y2

y1

+

∫ −y1
−y2

)
F (y) dy, B ≡

(∫ y2

y1

+

∫ −y1
−y2

)
B(y) dy. (VI.D.24)

The forward-backward asymmetries are then

AFB(y) ≡ F (y)−B(y)

F (y) +B(y)
=

3

4

p−uC
u
− + p−d C

d
−

p+
uC

u
+ + p+

d C
d
+

AFB ≡
F −B
F +B

=
3

4

P−u C
u
− + P−d C

d
−

P+
u C

u
+ + P+

d C
d
+

,

(VI.D.25)

for which the ΓZ′ , luminosity, and some of the PDF uncertainties cancel. Of course, AFB(0) =

0 for pp since pi− = 0, but AFB(y) can be nonzero for y 6= 0 [220]. For large positive y, for

example, the cross section is dominated by qiq̄i, with little dilution from q̄iqi, leading to the

possibility of a large asymmetry. Of course, the cross section is smaller at high y, so that

one should try to optimize the y1,2 range.

The forward-backward asymmetry is equivalent to the charge asymmetry Ac defined by

AFB = Ac ≡
σ(|yf | > |yf̄ |)− σ(|yf | < |yf̄ |)
σ(|yf | > |yf̄ |) + σ(|yf | < |yf̄ |)

, (VI.D.26)

at least in the absence of cuts.
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3. Final State Polarization

One can also consider final state polarizations5, defined as

Pf =
σfR − σfL
σfR + σfL

, (VI.D.27)

where σfR and σfL are respectively the rates for producing right and left-helicity f .

In addition to (VI.D.18) it is convenient to define the combinations

Ci
L ≡ Ci

LL + Ci
LR, Ci

R ≡ Ci
RL + Ci

RR

Ĉi
L ≡ Ci

LL + Ci
RL, Ĉi

R ≡ Ci
LR + Ci

RR,
(VI.D.28)

and

Ci
P ≡ Ci

L − Ci
R = Ci

LL − Ci
RR + Ci

LR − Ci
RL

Ĉi
P ≡ Ĉi

L − Ĉi
R = Ci

LL − Ci
RR − Ci

LR + Ci
RL,

(VI.D.29)

with

Ci
L + Ci

R = Ĉi
L + Ĉi

R = Ci
N + Ci

F = Ci
+. (VI.D.30)

Then, ignoring the mass of f ,

Pf = −
∑

i=u,d

{
p+
i Ĉ

i
P (1 + z2) + 2p−i C

i
P z
}

∑
i=u,d

{
p+
i C

i
+(1 + z2) + 2p−i C

i
−z
} . (VI.D.31)

One can integrate the numerator and denominator separately over the desired ranges of y

and z. The polarization of f̄ is opposite to that of f for mf ∼ 0.

5Here we list just the polarizations. In practice, it might be best to consider the actual observables that
depend on the polarization, i.e., the angular distributions of the f and f̄ decay products.
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4. Beyond the Narrow Width Approximation

Define the combinations Gi
N,F , G

i
±, G

i
L,R, Ĝi

L,R, G
i
P , and Ĝi

P of the parameters Gi
ab(ŝ) in

(VI.D.11) in analogy with the combinations of Ci
ab in (VI.D.18), (VI.D.28), and (VI.D.29).

Then

dσ

dŝ dy dz
=

Cf
384πŝ2

∑
i=u,d

{[
piG

i
N + p̄iG

i
F

]
(1 + z)2 +

[
piG

i
F + p̄iG

i
N

]
(1− z)2

}
=

Cf
384πŝ2

∑
i=u,d

{
p+
i G

i
+(1 + z2) + 2p−i G

i
−z
}
,

(VI.D.32)

Other relevant observables (for mf = 0) are then

dσ

dŝ dz
=

Cf
192πŝ2

∑
i=u,d

{
P+
i G

i
+(1 + z2) + 2P−i G

i
−z
}

dσ

dŝ dy
=

Cf
144πŝ2

{
p+
uG

u
+ + p+

dG
d
+

}
dσ

d
√
ŝ

= 2
√
ŝ
dσ

dŝ
=

Cf
36πŝ3/2

{
P+
u G

u
+ + P+

d G
d
+

}
AFB(ŝ, y) =

3

4

p−uG
u
− + p−dG

d
−

p+
uG

u
+ + p+

dG
d
+

Pf = −
∑

i=u,d

{
p+
i Ĝ

i
P (1 + z2) + 2p−i G

i
P z
}

∑
i=u,d

{
p+
i G

i
+(1 + z2) + 2p−i G

i
−z
} .

(VI.D.33)

One can separately integrate the numerator and denominator of AFB over the desired ranges

of ŝ and y to obtain the integrated asymmetry. Similarly, the numerator and denominator

of Pf can be separately integrated over the desired ranges of ŝ, y, and z. The polarization

of f̄ is opposite to that of f for mf ∼ 0.
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E. Z ′ AT THE ILC

We now consider e−e+ → ff̄ at CM energy
√
s. The final fermion f can be µ, τ, b, t or

possibly c, s, or unidentified quark. (We do not consider f = e because that involves t

channel exchange as well as s channel.) Define

Ge
ab(s) =

∣∣∣∣∣e2 qeqf +
g1e
a g

1f
b s

s−M2
Z + iMZΓZ

+
g2e
a g

2f
b s

s−M2
Z′ + iMZ′ΓZ′

∣∣∣∣∣
2

, (VI.E.34)

in analogy to (VI.D.11). We assume MZ �
√
s�MZ′ , so we can ignore ΓZ and ΓZ′ .

1. No Polarization

In the absence of polarization for the e∓ the observables are

dσ(s)

dz
=

Cf
128πs

{
[Ge

LL +Ge
RR] (1 + z)2 + [Ge

LR +Ge
RL] (1− z)2

]
=

Cf
128πs

{
Ge

+(1 + z2) + 2Ge
−z
}

σ(s) =
Cf

48πs
Ge

+

AFB(s) =
3

4

Ge
−

Ge
+

Pf = −Ĝ
e
P (1 + z2) + 2Ge

P z

Ge
+(1 + z2) + 2Ge

−z
,

(VI.E.35)

where the various Ge
ab combinations are defined in analogy to the combinations of Ci

ab in

(VI.D.18), (VI.D.28), and (VI.D.29). As usual, one can integrate numerator and denominator

of Pf over z to obtain the average polarization Pf = −Ĝe
P/G

e
+.

Although we are mainly concerned with the regime MZ �
√
s� MZ′ it is nevertheless

useful to display the asymmetries and polarizations at the Z or Z ′ pole, ignoring interferences.

For s = M2
Z ,

AFB(M2
Z)→ 3

4
A1
eA

1
f

Pf (M
2
Z)→ −Af (1 + z2) + 2Aez

(1 + z2) + 2AeAfz
→ −A1

f

(VI.E.36)
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with

A1
f ≡

(g1f
L )2 − (g1f

R )2

(g1f
L )2 + (g1f

R )2
=

2 g1f
V g1f

A

(g1f
V )2 + (g1f

A )2
. (VI.E.37)

The second form for Pf is the average polarization. Similar expressions hold at the Z ′ pole,

with A1
f → A2

f and g1f
a → g2f

a .

2. Fixed Initial State Polarization

For V and A interactions (and ignoringme), only the combinations e−Le
+
R and e−Re

+
L contribute

yield nonzero amplitudes (unlike, S, P, and T , which are sensitive to e−Le
+
L and e−Re

+
R). We

define the initial state polarizations

P− = η−L − η−R , P+ = η+
R − η+

L , (VI.E.38)

where η−L and η−R = 1−η−L are respectively the fractions of L and R-helicity e−, and similarly

for e+. Note that (neglecting me) P− = P+ ∼ 1 for e∓ produced in weak charge current

processes. Also note that the definition of P− is conventional for e−e+, though it is opposite

in sign from usual polarization definitions. Some useful relations are

η−L,R =
1± P−

2
, η+

L,R =
1∓ P+

2
(VI.E.39)

η−L η
+
R

η−L η
+
R + η−Rη

+
L

=
1 + Peff

2
,

η−Rη
+
L

η−L η
+
R + η−Rη

+
L

=
1− Peff

2
, (VI.E.40)

where the effective polarization is defined as

Peff ≡
P− + P+

1 + P−P+
=
η−L η

+
R − η−Rη+

L

η−L η
+
R + η−Rη

+
L

. (VI.E.41)

For example, P− = 0.80 and P+ = 0.30 yields Peff ∼ 0.89, while (P−,P+) = (0.80, 0.60)⇒
Peff ∼ 0.95.
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The relevant observables for fixed polarizations are

dσ

dz
=

Cf
32πs

{[
η−L η

+
R G

e
LL + η−Rη

+
L G

e
RR

]
(1 + z)2

+
[
η−L η

+
R G

e
LR + η−Rη

+
L G

e
RL

]
(1− z)2

}
σ =

Cf
12πs

[
η−L η

+
R G

e
L + η−Rη

+
L G

e
R

]
AFB =

3

4

Ge
− + Peff Ĝe

P

Ge
+ + Peff Ge

P

→ 3

4
Af

Ae + Peff
1 + Peff Ae

Pf = −
[
Ĝe
P + Peff Ge

−
]
(1 + z2) + 2

[
Ge
P + Peff Ge

+

]
z[

Ge
+ + Peff Ge

P

]
(1 + z2) + 2

[
Ge
− + Peff Ĝe

P

]
z

→ − [Af + Peff AeAf ] (1 + z2) + 2 [Ae + Peff ] z
[1 + Peff Ae] (1 + z2) + 2 [AeAf + Peff Af ] z

→ −Af .

(VI.E.42)

The second forms for AFB and Pf are valid at the Z or Z ′ pole (the superscript 1 or 2 on Ae,f

is implied). The third form for Pf is obtained by integrating the numerator and denominator

over z.

3. Polarization Asymmetries

Denote the cross sections for the polarizations P∓ defined in the previous section by σL, and

let σR represent the cross section for reversed polarizations

η−L,R → η̄−L,R, η+
L,R → η̄+

L,R, (VI.E.43)

with

η̄−L,R = η−R,L, η̄+
L,R = η+

R,L, (VI.E.44)

so that P∓ → −P∓. For example,

σL =
Cf

12πs

{
η−L η

+
RG

e
L + η−Rη

+
LG

e
R

}
σR =

Cf
12πs

{
η̄−L η̄

+
RG

e
L + η̄−R η̄

+
LG

e
R

}
=

Cf
12πs

{
η−Rη

+
LG

e
L + η−L η

+
RG

e
R

}
.

(VI.E.45)

For P± = 0 these both reduce to the unpolarized cross section σ.
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The polarization (left-right) asymmetry is defined as

ALR ≡
σL − σR
σL + σR

= Peff
Ge
P

Ge
+

→ PeffAe, (VI.E.46)

where the second form is valid on the Z or Z ′ pole. (At the pole, ALR is independent of

the final state, allowing the determination of Ae from the total cross section polarization

asymmetry.) It is also useful to define the total polarization asymmetry

AtotLR ≡
σtotL − σtotR
σtotL + σtotR

= Peff
∑

f CfG
ef
P∑

f CfG
ef
+

→ PeffAe, (VI.E.47)

where we have added the superscript to emphasize the final state f . The sum can be taken

over f = µ, τ, u, d, c, s, b, and t (if one ignoresmt). AtotLR is convenient in that one does not have

to identify the final state (other than removing f = e, which also has t-channel contributions)

and because one therefore has much higher statistics. However, the asymmetries between

different final states may partially cancel away from the poles.

Assuming that the e− and e+ polarizations can each be turned off or reversed without

affecting the magnitudes, one could in principle determine Ge
P/G

e
+ (or the analogous quantity

in (VI.E.47)), Peff , P−, and P+ experimentally by measuring the asymmetries obtained by

reversing the polarizations (P−,P+), (P−, 0), and (0,P+) (the Blondel scheme [554]).

Another useful observable is the left-right forward-backward asymmetry

AFBLR ≡
FL −BL − FR +BR

FL +BL + FR +BR

=
3

4
Peff

Ĝe
P

Ge
+

→ 3

4
PeffAf , (VI.E.48)

where

FL,R ≡
∫ 1

0

dσL,R
dz

dz, BL,R ≡
∫ 0

−1

dσL,R
dz

dz. (VI.E.49)

One can also define the final state polarization left-right asymmetry:

PLR
f ≡ σfRL − σfLL − σfRR + σfLR

σfRL + σfLL + σfRR + σfLR
= −Peff

Ge
−(1 + z2) + 2Ge

+z

Ge
+(1 + z2) + 2Ge

−z

→ −Peff
AeAf (1 + z2) + 2z

(1 + z2) + 2AeAfz
→ −Peff AeAf .

(VI.E.50)

The set of recastings performed in section II.F are all based on a small set of custom

detector simulation codes. These are meant to capture the main features relevant to each

analysis while bypassing the many highly complex details of the real detector response.
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Since the displaced SUSY models studied here have never appeared in public collaboration

results, calibration of our simulations must rely on the specific physics models that appear

in the experimental literature. Our aim has been to build simulations that reproduce the

known experimental acceptances for new physics at the O(1) level, which we are often able

to accomplish even with very minimal treatment of detector issues. In most cases this level

of agreement is adequate to define reasonable estimates of the true sensitivity contours in the

mass-lifetime plane, as the sensitivity can be an extremely steep function in both variables.

However, typically we can achieve even O(10%) agreement with the experimental results,

either “out of the box” or by adjusting ad hoc efficiency factors. A single tuning of the latter

type is often able to reproduce the results for a broad range of models.

Below, we provide complete descriptions of our detector simulations and their calibra-

tions.

4. CMS Heavy Stable Charged Particles

The simulation required for the CMS heavy stable charged particle search [129] can be quite

minimal, since CMS searches for the same physics signal that we do: long-lived stop and

gluino R-hadrons. The only novelty that we introduce is the finite lifetime, which effectively

adds an additional factor to the overall R-hadron acceptance. Decays must occur completely

outside of the muon system, with no visible particles from the decay pointing back. We

define the outer edge of this active volume simply as a cylinder with 8 m radius and 10 m

half-length.6

Calibration is trivial, as we define our analysis in Section II.F.1.a to reproduce the results

of [129] for long lifetimes.

5. CMS Displaced Dijets

The CMS displaced dijet search [138, 435] utilizes that detector’s highly precise tracking

capabilities. Nonetheless, the tracker is not perfect, especially in the extreme cases of O(m)

6Reference [130] recommends using a slightly smaller radius of 7 m and a slightly longer half-length of
11 m.
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displacements. At such large displacements, particles may not traverse enough detector

layers to furnish a reconstructable string of hits, or may lead to hit patterns that not usable

given a detector geometry and track-finding software that is highly optimized for tracks

originating very close to the beampipe. In particular, CMS observes a dramatic drop in

tracking efficiency versus vertex radius in simulation [555], falling to zero beyond 60 cm. The

tracker also becomes highly inefficient for soft particles, especially for transverse momenta

that are small enough for the particles to spiral-out. The efficiency experiences a rapid

turn-on near 1 GeV.

It is not possible to reproduce the tracking and vertex-finding performance in detail

here. Instead, we rely on simplistic parametrizations, and validate them against the results

presented in the analysis note [435]. As a “zeroth-order” approximation, we could consider

the tracker to be perfect within some fiducial volume. Our most naive version applies hard

cutoffs at r = 60 cm and pT = 1 GeV. Based on the discussions in [139, 435], and Fig. 3

in [139], we also include a corresponding longitudinal position cutoff at z = 55 cm, as

well as a cutoff in transverse impact parameter at 30 cm. However, we have found by

comparing to [435] that this zeroth-order treatment is far too idealized. CMS’s new physics

models with O(cm) lifetimes are reproduced fairly well, with reconstruction rate estimates

already typically within about 25% of CMS’s. (This result by itself indicates the amazing

performance of the CMS tracker system for charged particles originating near the beampipe.)

But the efficiencies for the longer O(m) lifetimes come out too large by up to a factor of

3.5, and distributions of variables such as the reconstructed vertex radius often significantly

disagree.

We therefore use a slightly more aggressive parametrization for our nominal detector

simulation. We continue to apply a hard cutoff at pT = 1 GeV. For the geometric limitations,

instead of hard cutoffs, we apply a nontrivial track-finding probability. We construct this

probability by starting off with a prompt tracking efficiency of 90%, and multiplying it by

the product of three linearly-falling probability factors, one each for r, z, and transverse

impact parameter. Each factor starts at unity, and falls to zero at the geometric cutoff.

Finally, in addition to these track-by-track efficiencies, we apply an efficiency for identifying

each candidate vertex. This efficiency is the square of a linear falloff function versus radius,
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intercepting zero at 60 cm. The combination of these ad hoc efficiency factors significantly

improves our predicted rates and distributions relative to CMS.7

For the rest of the detector, we use a very minimal treatment to capture the essential

elements of the geometry. The tracker is surrounded by imaginary surfaces corresponding

the ECAL and HCAL faces. The ECAL face corresponds to a closed cylinder of radius 1.3 m

and half-length 3 m. The HCAL face corresponds to a closed cylinder of radius 1.8 m and

half-length 3.75 m. Charged particles that fail tracking due to the above inefficiencies are

analytically propagated through the 3.8 T magnetic field to the appropriate calorimeter face:

ECAL for electrons, HCAL for charged hadrons (failed muon tracks are discarded). Photons

and neutral hadrons are propagated to the appropriate calorimeter face along straight lines.

Particles are absorbed at the calorimeter face, and replaced by anonymous massless pseu-

doparticles carrying the original particle energy, but with momentum oriented to toward the

impact point.8 For successfully reconstructed tracks, we use the momentum vector at their

extrapolated point of closest transverse approach to the beamline (where the 2D impact

parameter is defined). Track and calorimeter energy/momentum measurements are treated

as perfect, since the effects of energy smearing are subdominant to our other modeling un-

certainties. The tracks and calorimeter pseudoparticles are the inputs into our jet clustering,

excluding any identified isolated electrons or muons as defined in the next subsection.

We plot our calibration results of the per-decay reconstruction rate (“acceptance times

efficiency” in CMS’s language) relative to CMS in Fig. VI.2. These comparisons are based

on the set of Hidden Valley [557] inspired simplified models used by CMS, consisting of a

heavy Higgs-like scalar, produced through gluon fusion, that decays into a pair of long-lived

pseudoscalars. The pseudoscalars then undergo displaced decays into dijets. (We have not

undertaken calibrations against the χ̃0 → µjj signatures that are studied in the more recent

7The additional ad hoc vertexing efficiency causes a more rapid degradation of reconstruction rates versus
radius than what is reported by CMS in their supplementary online materials [556]. However, an alternative
approach of convolving the reported rates versus radius with our simulated number of decays versus radius
similarly disagrees with the CMS analysis note [435]. We do not attempt to resolve this apparent discrepancy,
but haven chosen to parametrize our simulation to reproduce the integrated rates of the note, rather than
the differential rates of the online material. This is in any case the more conservative choice.

8For photons and electrons produced from displaced vertices in between the ECAL and HCAL faces,
the energy is deposited without propagation, and the momentum vector pointed towards the vertex. Any
particle produced within the HCAL body is also absorbed in this way. For this purpose we assign an outer
HCAL surface of radius 2.8 m and half-length 5.5 m. Particles produced outside of this volume are ignored.
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Figure VI.2: A comparison of our detector simulation to the CMS displaced dijet analysis,

illustrating the ratio of individual displaced decay reconstruction rates to CMS for light

quark decays (left) and the ratio of ratios between b-quarks and light quarks (right). The

14 benchmark models are labeled by scalar / pseudoscalar masses in GeV and by cτ in cm.

On the left plot, we show our nominal simulation (black), our nominal simulation without

the vertexing efficiency factor (pink), and our “zeroth-order” simulation with perfect tracking

within the fiducial volume (red). Error bars are monte carlo statistics from our simulations.

Grey bands indicate CMS’s efficiency uncertainties.
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preprint [138].) The steep slopes for our zeroth-order detector’s reconstruction rates rela-

tive to CMS indicates that simulation’s failure to correctly account for inefficiencies at high

displacements. A remnant of this slope remains after applying our tracking efficiencies but

before applying our vertexing efficiencies. The nominal detector is generally in agreement

with CMS for all lifetimes to within 20%, with the notable exception of the 200 GeV scalar

model. We do not consider this a serious issue, as this model has high sensitivity to initial-

state radiation modeling. The other models exhibit a good spread of overall masses, mass

hierarchies, and lifetimes. In particular, the 400/50 and 1000/150 models tend to produce

dijets near the edge of the jet clustering radius, and we see that we tend to slightly underes-

timate their reconstruction rates relative to models with widely-separated jets. Nonetheless,

the highest dijet mass covered is 350 GeV, whereas some of our SUSY models go above 1 TeV.

We assume that there are no dramatic changes in efficiencies as we scale up in mass, though

a broader set of simulated models from CMS would help to clarify the actual behavior.

Fig VI.2 also indicates our ability to reproduce reconstructions with heavy flavor, by

showing a double-ratio of reconstruction rates. The numerator is our estimated ratio of

rates for X → bb̄ relative to X decays to light flavors. The denominator is CMS’s estimate

of the same ratio. For this analysis, we pretend that the secondary displacements from

the bottoms either cannot be resolved or are effectively ignored by the adaptive vertex

finder. The agreement is generally seen to be quite reasonable, with a handful of outliers

disagreeing at more than 20%. The fact that we achieve such good agreement without

separately displacing the bottoms strongly suggests that the dominant differences in light

flavor and heavy flavor efficiencies stems from the different visible particle multiplicities and

kinematics. There remains a question of whether small primary displacements at the mm-

level may have resolvable secondary displacements according to CMS’s adaptive vertex fitter,

such that only the “best” of the truth vertices from each decay actually contributes. (E.g.,

t̃ → b̄b̄ could produce up to three separate vertices, one from the radiation before the b’s

hadronize, and two more from the b-hadron decays.) Presumably, this would degrade the

efficiency, since fewer tracks would be usable from any given decay. However, CMS does not

provide enough information to infer exactly what happens for primary displacements below

the cm-scale. In the main results in section II.F, we only consider the extremely conservative
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assumption that vertices with bottom/charm quarks and sub-cm displacements experience

complete reconstruction failure.

Finally, we comment on our modeling of the variables that go into CMS’s multivariate

vertex/cluster discriminant variable. The discriminant is defined as a ratio of products of

normalized p.d.f.’s over four variables: vertex track multiplicity, vertex positive IP fraction,

cluster track multiplicity, and cluster RMS. The “cluster” is formed as described in Sec-

tion II.F.1.b. We plot our predicted Hidden Valley signal distributions for the four variables

and the multivariate discriminant in Fig. VI.3, along with the CMS predictions. For both

our own simulation and CMS’s, we form the discriminant using CMS’s p.d.f.’s. (The signal

discriminant distribution that would be predicted by CMS is generated by us through toy

monte carlo from the individual variables’ histograms.) The agreements are mostly rea-

sonable, though there can be differences in the tails. The fraction of events passing the

discriminant cuts are nonetheless nearly identical to CMS. The signal’s discriminant distri-

butions at high values appear to be mostly driven by the multiplicity variables, which we

model relatively well.

6. CMS Displaced Dileptons

For the CMS displaced dilepton search [139], we use the same detector simulation discussed

in the previous subsection, though without the vertex reconstruction penalty as a function

of radius. We also apply the pT -dependent lepton ID efficiencies provided in the appendix

of [558], though we divide these by 0.9 to approximately deconvolve the prompt track-finding

efficiency which we have already accounted for.

Similar to the displaced dijet search, the benchmark models feature a Higgs-like scalar

decaying to a pair of long-lived pseudoscalars, but with the latter decaying to e+e− or µ+µ−.

Unlike the displaced dijet search, detailed tables of acceptances and efficiencies are not

provided. However, a handful of specific numbers are given, and the observed cross section

limits can also be used to infer overall reconstruction rates.

For the 1000 GeV / 150 GeV models, CMS’s individual pseudoscalar reconstruction rates

for cτ = 1 cm in the electron (muon) decay channel are given as 36% (46%). Our predictions
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Figure VI.3: A comparison of our detector simulation to the CMS displaced dijet analysis,

illustrating expected reconstructed dijet counts versus several discriminator variables (Fig. 1

of [435]). Continuous histograms indicate CMS predictions for QCD background (blue) and

different scalar / pseudoscalar masses: 1000 GeV / 350 GeV with cτ = 35 cm (red), 400 GeV /

150 GeV with cτ = 40 cm (green), and 200 GeV / 50 GeV with cτ = 20 cm (black); all with

σ → 10 µb for visualization. Data points with error bars are our simulation predictions,

and are color-matched and normalized to the corresponding CMS model histogram. The

multivariate discriminant cuts for High-Lxy and Low-Lxy signal regions are also indicated.
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are in decent agreement, at 36% (40%). For cτ = 20 cm in the electron (muon) decay

channel, CMS gives 14% (20%). Our predictions here are 9% (10%), indicating too-low

reconstruction rates by O(1). This is likely due to our ad hoc track-finding efficiency’s linear

falloff being too steep for this analysis. Indeed the supplementary online material of [559]

indicates fairly stable reconstruction efficiency for this model out to r ' 50 cm, where our

simulation would predict nearly zero. It seems quite likely that the low track multiplicity of

the decay contributes to a higher rate of successful displaced track reconstructions, relative

to that of the displaced dijets. However, we conservatively continue to use our tracking

efficiency factors derived for the latter analysis, especially as in some SUSY models the

lepton pair may be produced in association with hadronic tracks from the same vertex. This

does not lead to a runaway loss of efficiency at high lifetime for simple dilepton decays, as

we will see.

The calculation of limits from the signal reconstruction rates is in principle nontrivial,

involving incorporation of backgrounds and various sources of systematic errors. However,

given that the analysis is ultimately both background-free (as inferred from a control region)

and has zero observed events, and that the naive Poissonian 95% C.L. limit for such an

experiment is ≈ 3 signal events, we can perform a back-of-the-envelope estimate of the

reconstruction rates. The explicit CMS per-candidate rates discussed above are reproduced

at the 10% level using this method, providing a good cross-check. Fig. VI.4 illustrates

our estimated relative rates for a few example models. The general behavior is that our

simulation appears to be less efficient than reality, especially at very low and very high

lifetimes. The former is perhaps unsurprising given our coarse modeling of the impact

parameter cut, and the latter could be due to our overzealous tracking efficiency falloff.

Nonetheless, some of the model points still appear to exceed the CMS rate, even at higher

lifetimes, motivating us to keep these somewhat artificial effects to help prevent us from

inferring too-strong limits on SUSY models.
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Figure VI.4: A comparison of our detector simulation to the CMS displaced dilepton analysis

by inverting their reported limits, illustrating the approximate ratio of event reconstruction

rates to CMS for 1000 GeV scalar cascade decays to electrons (left) and 200 GeV scalar

cascade decays to muons (right) versus pseudoscalar lifetime (based on the limits presented

in Figs. 4 and 5 of [139]). On the left plot, we show pseudoscalar masses of 20 GeV (pink),

50 GeV (blue), 150 GeV (red), and 350 GeV (black). On the right plot, we show pseudoscalar

masses of 20 GeV (red) and 50 GeV (black). Error bars are monte carlo statistics from our

simulations. All models are evaluated at cτ in powers of 10, but are offset slightly horizontally

for clarity.
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Figure VI.5: A comparison of our detector simulation to the CMS displaced electron and

muon analysis, illustrating the ratio of individual displaced decay reconstruction rates to

CMS for the 500 GeV stop benchmark model. The bins are labeled by analysis signal region

(SR1 for lower impact parameters, through SR3 for higher impact parameters) and by the

stop’s cτ in cm. Grey bands indicate CMS’s efficiency uncertainties, with the stop cross

section uncertainty quadrature-subtracted.

7. CMS Displaced Electron and Muon

For the CMS displaced electron and muon search [136], we continue to use the detector

simulation described in Appendix VI.E.5. To better match the efficiencies reported by CMS

in the present analysis, we apply a flat event-by-event weight of 0.80.

The physics model studied by CMS is RPV stop pair production, but with each stop

decaying into bl+, with equal branching fractions into each of the three lepton generations.

It is not explicitly stated in this analysis whether the displaced leptons could suffer any loss

of efficiency if produced from the decay of a charged stop-hadron, leading to an “exploding

track” topology rather a displaced vertex with no string of hits tracing back to the primary

vertex. In any case, since the analysis focuses on impact parameters below 2 cm, it is

mostly sensitive to decays that occur before reaching the pixels. We treat charged and

neutral stop-hadrons identically, assuming that this is not a major issue. CMS gives explicit

reconstruction rates for a 500 GeV stop at lifetimes of 0.1 cm, 1 cm, and 10 cm. Our detector
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simulation does a good job of reproducing all of these numbers to 20% accuracy, as indicated

in Fig. VI.5.

8. ATLAS Muon Spectrometer

The ATLAS muon spectrometer search [141] is again very difficult to model without access

to both a full ATLAS detector simulation and the exact reconstruction algorithms. Here,

we simply parametrize all of these with fixed efficiency factors. Our simulation defines an

active trigger volume within r = [4.0, 6.5] m and |η| < 1.0. Displaced particles that decay

in this region are given a 50% chance to fire the muon RoI cluster trigger. For events

passing the trigger, two displaced decays must be reconstructed in either the muon barrel

or muon endcap, respectively defined as the volumes r = [4.0, 7.5] m and |η| < 1.0, or

|η| = [1.0, 2.5] and z = [8, 14] m. Both of these decays must also occur within the data

acquisition timing window, designed to follow particles moving through the detector at the

speed of light. We choose a maximum delay of 7 ns, which we have independently calibrated

to the extremely timing-sensitive ATLAS 120 GeV/ 40 GeV model results. Our calibrated

choice of maximum delay indeed corresponds to the end of the efficiency plateau versus time

for the trigger [560]. We assign each displaced vertex that survives this cut a reconstruction

rate of 40%, irrespective of which ones were capable of firing the RoI trigger. Finally, in

order to very approximately account for possible isolation failures when a displaced decay

points back to the detector volume, we limit the amount of visible transverse energy flowing

back into the HCAL to 15 GeV. For this purpose, we define the outer surface of the HCAL

as a cylinder of radius 4.25 m and half-length 6 m. This cut tends to have only modest effect

on ATLAS scalar models, but could become important for our SUSY models at higher mass.

Similar to the CMS displaced dilepton analysis above, we calibrate against the ATLAS

models by extracting their overall efficiencies from the reported limits. Given that this

analysis is background-free, the limits are assumed to correspond to ≈ 3 signal events. The

result of this comparison is shown in Fig. VI.6. We are able to reproduce all of the ATLAS

results to within about 20%. (The one outlier point occurs on a very steep part of the

efficiency curve.)
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Figure VI.6: A comparison of our detector simulation to the ATLAS muon chamber analysis

using their reported limits, illustrating the ratio of event reconstruction rates to ATLAS

versus pseudoscalar lifetime (based on the limits presented in Fig. 3 of [141]). We show

scalar / pseudoscalar masses of 120 GeV / 20 GeV (solid black), 120 GeV / 40 GeV (dashed

black), 140 GeV / 20 GeV (solid red), and 140 GeV / 40 GeV (dashed red). Error bars

are monte carlo statistics from our simulations. All models are evaluated at common cτ of

(0.5,1,1.5,2,3,4,5,10,15,20) m, but are offset slightly horizontally for clarity.
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9. ATLAS Low-EM Jets

For our SUSY models to pass the ATLAS low-EM jets search [140], both displaced decays

must occur within an effective HCAL volume: a “barrel” with |η| < 1.7 and r = [2.25, 3.35] m;

or an “endcap” with |η| < 2.5, r < 2.0 m, and z = [4.25, 5.0] m. To approximate ATLAS’s

isolation cuts against activity in the ECAL and tracker, we apply a flat efficiency factor of

0.55 per displaced decay.9 (As usual, events with one or two charged displaced particles,

which would leave high-pT tracks, are not considered.)

Our detector simulation assumes perfect and immediate absorption of the visible decay

energy within our active HCAL volume. However, we conservatively veto events where any

visible final-state particle from either displaced decay points back towards the ECAL volume,

which we take to be r < 2.0 m and |z| < 4.0 m. The effect of this veto is modest for most of

ATLAS’s Hidden Valley models, but notably has a nearly 50% effect on the acceptance for

the highest mass models, actually improving our agreement (see below). The cut is especially

relevant for our SUSY models, which generally contain many more decay particles produced

at large angles. Practically, for us the cut serves as a proxy for any number of unknown

requirements on the energy pattern and timing in the HCAL, in addition to the explicit

limits on the nearby ECAL activity. As such, it serves as our largest source of modeling

uncertainty on this analysis.

To validate our detector simulation and calibrate the efficiency factor, we compare to AT-

LAS’s physics models, which again feature singly-produced Higgs-like scalars that promptly

decay into a pair of pseudoscalars with displaced decays. The pseudoscalars dominantly

decay into heavy quarks, with an O(10%) branching ratio to τ -leptons, though we use a

simpler model with decays only to light quarks. (Our model therefore does not include en-

ergy losses to neutrinos, which we do not expect to be a major effect.) We have found good

agreement with the reconstruction efficiencies of the eight benchmark models, detailed in

the appendix of [140], though for 100 GeV scalars our efficiencies come out O(1) smaller. In

any case, these models barely pass the ET cuts, and are significantly more sensitive to the

detailed turn-on of the efficiency with scalar mass. We have also studied the efficiency versus

9ATLAS’s reported efficiencies are smaller than this. However, those also fold in the efficiencies for passing
the pT cuts within their studied physics models.
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Figure VI.7: A comparison of our detector simulation to the ATLAS low-EM jet analysis,

illustrating expected event counts versus pseudoscalar lifetime (Fig. 4 of [140]). Curves

indicate ATLAS predictions for different scalar / pseudoscalar masses: 126 GeV / 10 GeV (red

solid), 126 GeV / 25 GeV (black dashed), and 140 GeV / 40 GeV (pink dotted). Data points

with error bars are our simulation predictions, and are color-matched to the corresponding

ATLAS model curve.
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pseudoscalar lifetime for three of the mass points. The agreement is illustrated in Fig. VI.7,

and is typically at the 10% level.

10. ATLAS Displaced Muon Plus Tracks

Similar to our simulation of the CMS displaced dijet analysis, for the ATLAS muon plus

tracks search [135] we assign each track a reconstruction probability. We ignore all tracks

from vertices with r > 18 cm or z > 30 cm, as well as cylindrical regions near the beampipe

or the pixel layers: r = [2.5, 3.8] cm, [4.5, 6.0] cm, [8.5, 9.5] cm, and [12, 13] cm. Within

the active tracking volume, we use a tracking efficiency of 0.85 × (1 − r/(24 cm)) × (1 −
z/(30 cm)). For muon identification, which requires a very high-quality inner track, we

apply an additional fixed efficiency factor of 70%. We apply another fixed factor of 70%

for successfully matching a muon to a displaced vertex. These ad hoc factors reproduce

the qualitative vertex reconstruction efficiency behavior versus (r, z) in Fig. 3 of [135], as

well as the ratio between event selection efficiencies before/after the muon-vertex matching

requirement in Table 5 of that note.10 The latter is particularly relevant for the version of

the analysis that we run for our recasts, which does not require the muon-vertex matching

used in the nominal analysis.

ATLAS studies a set of SUSY models with leptonic RPV, where squark pairs promptly

decay into jets plus long-lived LSP neutralinos, which then each undergo a displace decays

into a muon plus two quarks. Three mass points are considered: MH (700 GeV / 494 GeV),

ML (700 GeV / 108 GeV), and HL (1000 GeV / 108 GeV). Fig. VI.8 shows the event recon-

struction efficiencies versus lifetime for these models after full selection cuts, as predicted

by our simulation and by ATLAS’s full simulation. (The individual vertex reconstruction

efficiencies are approximately half of the event reconstruction efficiencies, and show nearly

identical behavior.) The large gap in efficiencies between MH and ML/HL is reproduced, as

is the shift in the peak versus lifetime and the falloffs at low and high lifetimes. However,

the ≈ 30% gap between ML and HL is not reproduced, except at higher lifetimes, where

10The table suggests that the vertex reconstruction efficiencies, before track multiplicity and vertex mass
cuts, are close to one. However, matching between outer muons and inner tracks, as well as between muons
and vertices, exhibits these nontrivial efficiencies.
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Figure VI.8: A comparison of our detector simulation to the ATLAS muon plus tracks anal-

ysis, illustrating expected event reconstruction efficiencies versus neutralino lifetime (Fig. 4

of [135]). Colored bands indicate ATLAS predictions for different squark / neutralino masses:

700 GeV / 494 GeV (blue), 700 GeV / 108 GeV (red), and 1000 GeV / 108 GeV (purple).

Data points with error bars are our simulation predictions, and are color-matched to the

corresponding ATLAS model curve.
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the higher boost of HL tends to feel the tracking efficiency losses at large radii. (The higher

boost would also lead to smaller impact parameters at a given decay radius, but this is largely

offset by the time-dilated decay length.) The difference in modeling is possibly attributable

to the fact that our simulation does not account for how displaced tracking and vertexing

efficiencies change with track density, nor to possible issues in impact parameter reconstruc-

tion at small angles, all of which the lighter neutralino could be particularly sensitive to. (To

get a sense of this sensitivity, deleting one track from each vertex would cause the efficiency

to fall by 20% due to failures of the cut on the number of tracks.) There could also be effects

on the global muon reconstruction. Nonetheless, the size of the mismodeling is below O(1),

and appears to be mainly relevant for relatively low-mass decays at relatively high boost.

F. RELIC DENSITY CALCULATION

When the Hubble expansion H = ȧ/a became much larger than the interaction rate Γ =

nχ〈σav〉, the WIMPs (χ0), once in thermal equilibrium with the rest of the Universe, de-

coupled from equilibrium. The number density of WIMPs at a time t, nχ(t), is obtained by

solving the Boltzmann equation

1

a3

d (a3nχ)

dt
= −〈σav〉

[
n2
χ − n2

eq

]
, (VI.F.51)

where 〈σav〉 is the WIMP annihilation rate averaged over velocities, and neq is the equilibrium

number density of WIMPs:

neq =
g

2π2

∫ ∞
mχ

dE
E
√
E2 −m2

χ

1 + eE/T
. (VI.F.52)

g measures the number of relativistic degrees of freedom, and T is the temperature.

Define the dimensionless variables Y = nχ/s and x = mχ/T , where s is the entropy

density given by

s =
2π2

45
gsT

3. (VI.F.53)

Here and henceforth, we adopt the natural units kb = ~ = c = 1. gs is different from g only

at late times, after neutrinos have decoupled from equilibrium, and e± annihilation leads to
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the photons being heated relative to the neutrinos. However, dY/dx is very small at late

times, and with good accuracy, we may set g = gs when computing the relic abundance. The

entropy per comoving volume is conserved, and hence

d(a3s)

dt
=
d (ga3T 3)

dt
= 0 (VI.F.54)

We may then rewrite eq. (VI.F.51) in terms of Y as:

dY

dt
= −〈σav〉s

[
Y 2 − Y 2

eq

]
, (VI.F.55)

where Yeq = neq/s. From eq. (VI.F.54), we see that ga3T 3 = constant, and therefore,

− Ṫ
T

= H +
ġ

3g
. (VI.F.56)

The Hubble parameter H(T ) is given by the expression

H =

[
8πG

3
ργ

]1/2

=

[
8π3G

90

]1/2

g1/2 T 2 (VI.F.57)

Differentiating x = mχ/T with respect to time, we find

ẋ =
(
−Ṫ /T

)
x = Hx

[
1 +

ġs
3Hgs

]
≈ Hx

[
1− 1

3

d(ln gs)

d(lnT )

]
, (VI.F.58)

where we simplified the second term on line 1 by substituting ẋ ≈ Hx (provided ġs � 3Hgs),

and therefore ġ ≈ −HT (dg/dT ) [561]. Note that g changes significantly at the epoch of

quark-hadron transition. We may now rewrite eq. (VI.F.55) in terms of x:

dY

dx
=

−〈σav〉s(x)

H(x)x
[
1− 1

3
d(ln g)
d(lnT )

]
= −

√
π

45G
〈σav〉mχ

g1/2[
1− 1

3
d(ln g)
d(lnT )

] Y 2 − Y 2
eq

x2
. (VI.F.59)

We solve eq. (VI.F.59) numerically to obtain the present day value Y0, once the form of

g(T ) and 〈σav〉 are known. The dark matter relic density is then computed as:

Ωχh
2 =

mχY0s0

(ρcrit/h2)
, (VI.F.60)
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Figure VI.9: Evolution with temperature and yielding the correct WIMP relic density Ωχh
2

= 0.11 with illustrative values of the WIMP mass mχ = 5, 100, and 1000 GeV, (a) WIMP

number density, and (b) WIMP mass density. The equilibrium lines are for mχ = 100 GeV.

where s0 ≈ 2893 cm−3 is the present day entropy density and ρcrit ≈ 1.054×10−5 h2 GeV/cm3

is the critical density.

After performing a numerical integration of the Boltzmann equation as formulated in

eq. (VI.F.59), we show the WIMP number density in Fig. VI.9(a) and the WIMP relic

(mass) density in Fig. VI.9(b), for various WIMP mass values. The dark straight-falling

line gives the densities if the particle keeps in thermal equilibrium with the environment for

mχ = 100 GeV. It is known that the freeze-out temperature for a relatively light WIMP

particle is

xf = mχ/T ≈ 20. (VI.F.61)

The horizontal curves in Figs. VI.9(a) and (b) present the WIMP number density and mass

density after freeze-out for mχ = 5− 1000 GeV, leading to the correct relic density.
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G. COMBINATION METHOD AND χ2 DEFINITION

We list the LHC projections for most relevant modes in Table III.5. All ATLAS and CMS

projections are shown in ranges corresponding to different assumptions about systematic

and theoretical uncertainties. For ATLAS, the ranges represent projections with and with-

out theoretical uncertainties. For CMS, the ranges represent projections with and without

reductions of systematic and theoretical uncertainties. The lower range corresponds to as-

sumptions that systematical uncertainties will scale as 1/
√
L and theoretical uncertainties

will be halved. We estimate the theoretical and systematic uncertainties based on these

ranges, for example, range a − b indicates theoretical uncertainty is
√
b2 − a2 for ATLAS.

Similarly, for CMS projections in range a − b,
√
b2 − a2 is approximately the theoretical

uncertainty plus the systematic uncertainty added in quadrature. We take the lower of these

two quantities from ATLAS and CMS as an estimated systematic plus theoretical uncer-

tainty. We combine both experimental results from the lower range to approximate the

statistical gain and add in the estimated theory plus systematics term quadratically. These

conservative combined result are shown in Table III.5. As one can see, most of them are

only slightly better than conservative individual experimental projections, indicating the

large contribution from systematic and theoretical uncertainties. We use these combined

results as our input for LHC measurement for the fitting described below. Note that some

portion of the theoretical uncertainties, including PDF and scaling effects, can be cancelled

when taking the ratios of measurements from the LHC. Once these projections on ratios

from experiments become available, LHC input in form of ratios will further help determine

the Higgs couplings.

For the model-independent fittings, we have 9 parameters, these are Γh, gb, gc, gg, gW ,

gτ , gZ , gγ, and Brinv. In the absence of actual experimental data, we take the central values

of the measured cross sections to be equal to their standard model values. Let ĝA be the

fitted parameter normalized by its standard model value. All of these take a central value

of one.

For the model-independent fittings, the χ2 we used can be expressed in Eq. (VI.G.62),

where sum over σ means summing over all the independently measured cross sections. These
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cross sections includes LHC, ILC at 250 GeV and 500 GeV. σincZ is the inclusive Zh as-

sociated production cross section measured at 250 GeV ILC. For the LHC measurements,

we take all of the sensitivity projections for γγ, WW ∗ and ZZ∗ from glu-glu-fusion and bb̄

from ZH associated production. As for τ+τ−, we take half the sensitivity to be from glu-

glu-fusion and the other half from weak boson fusion [263, 562]. For ILC input, we take the

conservative value as well. For example, we take σZγ to be 38% where the estimation is in

the range of 29%− 38%.

χ2 =
∑
σ

(
1− ĝ2

Aĝ
2
B/Γ̂h

δσAB

)2

+

(
1− ĝ2

Z

δσincZ

)2

+

(
1− ĝ2

ZB̂rinv
δσZh→Z+inv

)2

(VI.G.62)

For model-dependent fittings, we have 8 parameters, these are Brinv, gb, gc, gg, gW , gτ ,

gZ , and gγ. Again, all of the couplings are normalized to one. Brinv has a central value of

zero. Notice that Γh is no longer a fitting parameters here, instead it is determined by the

other fitting parameters, as shown in Eq. (VI.G.63). This is a result of assuming that a sum

over all Br gives the normalized total width. χ2 for the model-dependent case can be written

as in Eq. (VI.G.64).

Γ̂h = (
∑
i

Briĝ
2
i + (1−

∑
i

Bri))(1− Brinv) + Brinv (VI.G.63)

χ2 =
∑
σ

(
1− ĝ2

X ĝ
2
Y /Γ̂h

δσAB

)2

+

(
1− ĝ2

Z

δσincZ

)2

+

(
ĝ2
ZBrinv

δσZh−>Z+inv

)2

(VI.G.64)

We note here that ILC measurements include systematic but not theoretical uncertain-

ties. For our results shown in Tables III.13 and III.7, theoretical errors should be included

for a consistent comparison with models.

H. ANALYSIS FOR BB BACKGROUNDS

A potential complication to our signal which we do not explicitly include is the “background”

coming from h→ bb decays. Kinematically, these events are very similar to the WW signal
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Table VI.1: Additional events expected from h→ bb with the cuts described in Sec. III.B.2.b.

No b-tagging has been applied for this table.

All Hadronic Semi-leptonic

Higgstrahlung ZZ Fusion Higgstrahlung ZZ Fusion

eeh→ eebb 100 112 33 42

except for the details of the 4-jet substructure. With the cuts described above, a SM-like

h→ bb process would contribute events as in the Table VI.1.

Although adding to the excess over non-Higgs SM backgrounds, these events would de-

grade our ability to precisely measure the gW coupling. However, we can make use of the

strong b-tagging capabilities expected at the ILC to reduce this problem [563]. Tagging algo-

rithms can be characterized in terms of their b-acceptance efficiency, εb, vs. their mistagging

efficiency, which it is useful to divide into c-mistagging, εc, and light-jet-mistagging εj. These

efficiencies describe the percentage of true b-quark (or c-quark or light parton) originating

jets which are positively tagged by the algorithm. The efficiencies are generally a function

of a cut parameter in the tagging algorithm which can be adjusted to favor greater purity

or greater inclusiveness in the tagging.

We can exclude much of the bb background by instituting a veto on events with one

or more b-tags. Based on simulations of ILC tagging efficiency, we take εb = 0.7, εc = 0.1

and εj = 0.005 as a plausible working point. Then for a bb background resolved to two

jets only 10% of events will pass the b-tag veto. This also applies to roughly a fifth of the

large ee → qq background. (Backgrounds from cc will be reduced by a factor of ∼ 20% as

well.) Thus, although the Higgs decays are now being added to the background, the total

number of expected background events can be slightly reduced. For the signal we would

expect a small reduction in expected events, mostly due to W s decaying to c and s quarks.

In the semi-leptonic analysis this would lead to about 5% reduction of the signal. For the

all-hadronic analysis, estimation of tagging efficiencies is somewhat ambiguous since we have
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multiple jets arising from a single b parton. If we treat each of the four jets according to the

efficiencies above, with all jets arising from the bb backgrounds having a “true” identity as a

b-jet, then it is advantageous to veto events with more than one b-tag while keeping those

with up to one b-tag. This would preserve virtually all of the signal while reducing the bb

backgrounds by ∼ 92%.

The net result of adding h→ bb decays and b-tagging is thus a very small change to the

expected cross-section sensitivity, on the order of 1− 2% correction.
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