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ABSTRACT

With the development of peta-scale computers and exa-scale only a few years away, the 

quantum Monte Carlo (QMC) method, with favorable scaling and inherent parrallelizability, is 

poised to increase its  impact  on the electronic  structure community.   The most  widely used 

variation of QMC is the diffusion Monte Carlo (DMC) method.   The accuracy of the DMC 

method is only limited by the trial wave function that it employs.  The effect of the trial wave 

function is studied here by initially developing correlation-consistent Gaussian basis sets for use 

in DMC calculations.  These basis sets give a low variance in variance Monte Carlo calculations 

and improved convergence in DMC.  The orbital type used in the trial wave function is then 

investigated, and it is shown that Brueckner orbitals result in a DMC energy comparable to a 

DMC energy with orbitals from density functional theory and significantly lower than orbitals 

from Hartree-Fock theory.  Three large weakly interacting systems are then studied; a water-16 

isomer, a methane clathrate, and a carbon dioxide clathrate.  The DMC method is seen to be in 

good agreement  with  MP2 calculations  and provides  reliable  benchmarks.   Several  strongly 

correlated systems are then studied. An H4 model system that allows for a fine tuning of the 

multi-configurational  character  of  the  wave function  shows when the  accuracy  of  the  DMC 

method with a single Slater-determinant trial  function begins to deviate from multi-reference 

benchmarks.   The weakly interacting face-to-face ethylene dimer is studied with and without a 

rotation around the  π bond, which is used to increase the multi-configurational nature of the 
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wave function.   This  test  shows that  the  effect  of  a  multi-configurational  wave  function  in 

weakly interacting systems causes DMC with a single Slater-determinant to be unable to achieve 

sub-chemical  accuracy.   The  beryllium dimer  is  studied,  and  it  is  shown that  a  very  large 

determinant expansion is required for DMC to predict a binding energy that is in close agreement 

with experiment.  Finally, water interacting with increasingly large acenes is studied, as is the 

benzene and anthracene dimer.  Deviations from benchmarks are discussed.
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1.0 INTRODUCTION

A fundamental  problem in  modern  quantum mechanics  is  the  inability  to  exactly  solve  the 

Schrödinger  equation  for  a  system with  more  than  one  electron.   This  has  not  limited  the 

practical uses for  ab initio methods, however, and development of new approximations along 

with the continued increase in  computing power has made quantum mechanical  applications 

routine.  

One of the earliest methods developed to approximately solve the Schrödinger equation 

that is still in wide use today is the Hartree-Fock (HF) method.  This basic but powerful approach 

leads to the development of molecular orbital theory that is familiar to every chemist.  The HF 

method removes the problem of solving the Schrödinger equation for more than one electron by 

treating  each  electron  in  a  field  of  the  remaining  electrons.1–3  Thus,  the  solutions  to  the 

approximation are said to be uncorrelated, as each electron is moving independently of the other 

electrons.  (Technically, the determinant introduces correlation of same-spin electrons, but the 

opposite spin electrons remain uncorrelated.)  This lack of electron correlation results in a small 

fraction of the overall energy of a system but is incredibly important for practical applications. 

Capturing the remaining energy missing in HF theory has spurred the development of a wide 

array  of  post  HF methods,  where  the  HF result  is  used  as  a  starting  point.   Configuration 

interaction (CI), Møller-Plesset second order perturbation theory (MP2), and Coupled Cluster 

theory (CC) are a few of the most common methods used to recover correlation energy missing 
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in the HF solution.  Post HF methods are not without their own flaws, however.  For example, 

the  gold  standard  in  quantum  chemistry  is  the  coupled  cluster  with  singles,  doubles,  and 

perturbative  triples  (CCSD(T)),  which  formally  scales  as  N7 (where  N is  the  number  of 

electrons), which means that it can only be used for very small systems.  Additionally, HF and 

most of the post-HF methods require a basis set, which can lead to basis set superposition error 

(BSSE) and limits the overall accuracy of the method.   

An alternative to HF based methods is density functional theory (DFT).4 This approach 

recasts the problem of solving the Schrödinger equation for many electrons into solving for the 

property  of  interest  as  a  functional  of  the  electron  density.   DFT  has  been  widely  used, 

particularly over the past quarter century, as functionals have improved and high quality results 

can be obtained for a wide range of systems.  DFT offers several advantages over HF theory.  

The most important advantage is that DFT includes correlation effects in the calculation of the 

energy.  The practical implementation of DFT rests with the exchange-correlation functional; in 

principle, an exact functional exists,5 but in practice it is unknown and must be parameterized. 

Libraries of advanced functionals have been developed, and each functional can provide highly 

accurate results for particular systems.  

HF and DFT both have successes and limitations.  One major limitation of these methods 

are  their  inability  to  accurately  calculate  van der  Waals  interactions,  which are dominant  in 

weakly interacting systems such as water clusters.  For DFT, remedies for this problem have 

been proposed in the form of dispersion corrections.6,7  Various schemes for correcting DFT for 

dispersion are available but are not highly accurate for a range of systems.  The post-HF methods 

described above can accurately predict  van der Waals interactions for many systems, but the 

limitations of the basis set and high computational cost remain a road block to simulations on 
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systems with  hundreds  of  electrons.   An additional  flaw for  these  methods  is  that  they  are 

incapable  of  accurately  representing  systems that  have  a  degenerate  ground state.   Post  HF 

methods like multi-configurational self-consistent field theory and configuration interaction are 

capable of building on the HF wavefunction to include the effects of degenerate ground states, 

but  are  computationally  demanding  and  can  only  be  applied  to  systems  of  several  tens  of 

electrons.  DFT  functionals  that  correctly  represent  simple  degenerate  systems  have  been 

proposed,8 but their applicability to a wider range of systems remains unclear.  It is evident that 

studying  weakly  interacting  systems  and  systems  with  degenerate  ground  states  is  very 

challenging and requires an alternative approach to HF or DFT.  

The diffusion Monte Carlo method9 (DMC) has many advantages  over DFT and HF. 

The formal scaling of N3 means that it can be applied to very large systems, and DMC has been 

used to study systems as large as hundreds of atoms.  The inherent parallelizability makes DMC 

methods uniquely suited to modern supercomputers, which are built with increasing numbers of 

processors.  DMC is also less sensitive to the basis set than the traditional approaches, and is free 

of basis set superposition error.10  It has been shown that DMC can achieve accuracy similar to 

CCSD(T)11,12  and complete  basis  set  limit  MP213  for weakly interacting systems with non-

degenerate ground states.  An additional advantage of DMC over HF and DFT is that DMC is 

capable of using more than one Slater-determinant to represent the ground state, which means 

that it can be used to calculate the energy of multi-configurational systems.

Like HF and DFT, DMC is not without its flaws.  As is discussed in section 1.4, the only 

uncontrolled  approximation  in  DMC  is  the  fixed-node  error  (FNA).14  There  are  several 

approaches to improving the FNA.15  The basis set and the type of orbitals used in the trial wave 

function can determine the accuracy of the FNA.16  The use of a single determinant may not be 
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adequate  in  many  cases.17  Improving  the  nodes  of  the  wave  function  by  adding  more 

determinants is a difficult task.18  Generating a trial wave function with enough determinants to 

capture the multi-configurational nature of the ground state can be demanding for large systems. 

Evaluation of the derivative of the wave function with many determinants is a formidable task 

for DMC, and although algorithms19 have been developed to expedite this process, it remains 

computationally intensive.  Therefore, in general,  all of the determinants from the trial  wave 

function cannot be used, and a selection criteria must be applied to the determinants to make a 

trial wave function.  This can be based on excitations or can be applied as a cutoff threshold to 

the  CI  coefficients.   It  is  not  always  clear  which,  if  any,  method  is  the  best  for  selecting 

determinants,  and  so  the  application  of  DMC  to  multi-configurational  systems  remains 

challenging.

DMC clearly has advantages over traditional quantum chemistry methods that have made 

it more popular in recent years, but problems remain.  This thesis is dedicated to showing the 

advantages  of  DMC and elucidating  the  challenges.   The rest  of  this  thesis  is  structured  as 

follows:   the  remaining  sections  of  the  introduction  will  give  an  overview  of  the  methods 

mentioned  above,  namely  HF,  DFT,  and  quantum  Monte  Carlo,  including  variational  and 

diffusion Monte Carlo.  Chapter two will evaluate the effect of the trial wave function on QMC 

calculations.   Chapter 3  will apply DMC calculations to studies of large weakly interacting 

systems.  Chapter 4 will highlight several successes for multi-configurational systems.  Chapters 

5 and 6 will address a current area of difficulty; weakly interacting systems with a moderately 

degenerate ground state.  Chapter 7 will present the conclusions.
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1.1 ATOMIC ORBITALS AND SLATER DETERMINANTS

1.1.1 Atomic orbitals

For a spherical one-electron system, the wave function for an atomic orbital can be defined as a 

product of a radial and an angular function:

ψnlm =Rnl (r )Y lm (θφ )                                                         (1.1)

where n, l, and m are the principle, azimuthal, and magnetic quantum numbers, respectively, and 

r,  θ, and  φ take their standard polar coordinate definitions.  The angular portion of the wave 

function is a product of a function of θ, and φ:

Φm (φ )=
1

√(2π )
exp (i mφ) (1.2)

Θlm (θ )=[ (2l+1 )

2
(l−∣m∣)!

(l+∣m∣)! ]
1
2 Pl

∣m∣(cosθ )
(1.3)

Equation 1.2 are the solutions to the Schrödinger equation for a particle on a ring.  The term in 

square brackets in equation 1.3 is a normalizing factor and the  P l
∣m∣(cosθ ) term is a Legendre 

polynomial.  The radial function is given by:

Rnl (r )=−[(2Z
na0 )

3 (n−l−1 )!

2n [ (n+l )! ]3 ]
1
2 exp(−ρ

2 ) ρl Ln+1
2l+1 ( ρ )

 (1.4)

where the term in brackets is a normalizing factor and second term can be simplified by writing 

it in terms of the orbital exponent  ζ=Z/n.  This simplifies the radial term to what is typically 

referred to as a Slater-type orbital (STO): 

Rnl (r )=(2ζ )
n+

1
2 [ (2n ) ! ]

−1
2 r n−1 e−ζr

 (1.5)
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Evaluating the atomic orbitals defined in equation 1.1 is straightforward when when the atomic 

orbitals are located on the same atom.  However, if the orbitals are located on different nuclei, 

evaluating the radial  portion defined in equation 1.5 can be very difficult.   It  is common to 

alleviate this problem by replacing the STO by a linear combination of Gaussian-type orbitals 

(GTO):

ψ =∑
i=1

L

d i [ x
a yb zc exp (−αr2 ) ]

(1.6)

where di is the contraction coefficient, and L is the length of the contraction, and a, b, and c are 

used to determine the order of the function and replace the angular portion from above.  

The replacement of the Slater-type orbital with a Gaussian-type orbital makes the 

calculation more efficient, but introduces several limitations.  First, the different behavior of each 

function at  the origin means that there is no nuclear cusp when using a GTO, which will present 

a problem for quantum Monte Carlo simulations (section 1.4).20  Second, the tail of the GTO 

wave function decays to zero much more quickly than a STO.  

The functions used to represent the one electron orbitals of 1.5 and 1.6 are commonly 

referred to as a basis set. In a many-electron system, the minimum number of basis functions will 

be equal to the total number of electrons.  For greater accuracy, more functions can be added to 

the basis set.  The exponents and contraction coefficients are optimized for each atom, or each 

pseudopotential for each atom. Development of Gaussian basis sets for use in quantum Monte 

Carlo calculations is the focus of section 2.1.1. 

Gaussian-type orbitals are the most commonly used basis sets in ab initio calculations of 

gas phase molecules.  In periodic systems, the wave function takes a plane-wave form:

ψ i
k
=∑

G

ai,k+G exp (i ( k+G )⋅r )
(1.7)
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where G is a reciprocal lattice vector, k is the wavevector, a are the orbital coefficients, and r is a 

positional vector.  The plane-wave basis set offers the advantage of being systematically 

improved by increasing the kinetic energy cutoff (( ℏ/2m )∣k+G∣2) to include more plane-waves.  

Additionally, the Fourier transform of the plane-waves makes them computationally efficient.

To completely describe the electron, the wavefunction must be a combination of the 

spatial component given above and a spin term.  For an N electron system, the spatial term can 

be combined with a spin component, α or β, and a spin orbital can be defined as:

χ1 ( N )=ψ (N )α ( N )and χ 2 (N )=ψ (N ) β ( N ) (1.8)

In a many electron system, the molecular orbitals, represented by basis functions, can be 

recast as a linear combination of the atomic orbitals:

ψ=∑
i

K

ci ψ i
(1.9)

where the sum runs over the K basis functions and ci are the atomic orbital coefficients.

1.1.2 The Slater Determinant

For an N electron  system,  the Hartree  product  is  a  wave function  that  is  simply the 

product of each spin orbital for each electron:

Ψ
HP =χ i (1 ) χ i (2 )⋯ χ i ( N ) (1.10)

The square of the Hartree product gives the simultaneous probability of finding one electron in a 

region  of  space  independent  of  the  other  electrons.   The  Hartree  product  violates  the 

antisymmetry principle which requires each particle to be indistinguishable and that the wave 

function must change sign upon interchange of two electrons.  This can be remedied by taking 
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the appropriate linear combination of permutations of spin orbitals.   Consider a two-electron 

system  with  spin  orbitals  i  and  j and  electrons  1  and  2.   Clearly,  the  Hartree  products, 

Ψ1
HP =χ i (1 ) χ j (2 ) and Ψ2

HP =χ i (2 ) χ j (1 ) are identical.  However, the linear combination, 

Ψ=
1

√2
[ χ i (1 ) χ j (2 )− χ j (1 ) χ i (2 ) ]        (1.11)

ensures that the wave function changes sign upon interchange of the electrons.  The 2 -1/2 term is a 

normalizing factor, and the term in the square brackets is a Slater determinant of the matrix:

Ψ=
1
√2 [ χ i (1 ) χ j (1 )

χ i (2 ) χ j (2 ) ]  (1.12)

This form of the wavefunction ensures that the Pauli exclusion principle is enforced for any N-

electron wavefunction.  

1.2 HARTREE-FOCK THEORY

1.2.1 Self-Consistent Field 

Hartree-Fock (HF) theory gives an approximate solution to the non-relativistic time-independent 

electronic Schrödinger equation for an N electron system by moving each electron in a potential 

created  by the remaining electrons  and the nuclei.   The Hartree-Fock method  calculates  the 

energy of electron 1  through the equation 

 
{−1

2
∇ 1

2−∑
I

Z I

r1I

+∑
j=1

N

[ J j (1 )−K j (1 ) ]} χ i (1 )=εi χ i (1 )

(1.13a)

J j (1 )=∫ d τ 2 χ j (2 )
1

r12

χ j (2 )
(1.13b)
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K j (1 ) χi (1 )=[∫d τ2 χ j ( 2 )
1

r12

χ i (2 )] χ j (1 )
                           (1.13c)

where i, j, denotes an orbital,  (1), (2) denotes an electron, I denotes a nucleus, and the sum over 

j is over all of the orbitals.  The first term of equation 1.13a is the kinetic energy of electron 1, 

the second term is the interaction of electron 1 and nucleus I, the third term is the Coulombic 

interaction of an electron and the other electrons given by equation 1.13b, and the fourth term 

accounts for the exchange of electron 1 with the other electrons and is given in equation 1.13c.  

The term in braces on the left side of equation 1.13a is known as the Fock operator.  

When the atomic orbitals  are expressed as a linear combination of basis  functions  as 

outlined 1.1.1, the energy of the wave function can be calculated as a simple eigenvalue problem,

FC=SCε      (1.14)

where F is the Fock matrix, C is the density matrix made of the coefficients of the orbitals (see 

equation 1.9), ε is the energy matrix, and S is the overlap matrix.  This is known as the Roothan-

Hall equation, and it gives a solution to many electron Schrödinger equation within the confines 

of Hartree-Fock theory.  The solution is a wavefunction in the form of a Slater determinant, 

where the coefficient  matrix  has been optimized to produce the lowest energy.   It  is  solved 

iteratively, with an initial guess supplied for the density matrix which is operated on by the Fock 

matrix such that an energy and a new density matrix is produced.  This new value for C replaces 

the initial guess, and the equation is solved to self consistency.

In the absence of relativistic effects, the difference between the energy calculated in HF 

theory and the true ground state energy is known as the correlation energy.  As mentioned, many 

post Hartree-Fock methods have been introduced to recover correlation energy and the two that 

are the most relevant to this thesis are discussed in greater detail  in sections 1.2.2-1.2.3.  In 
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general, the self consistent field (SCF) procedure described above scales as ~N4, where N is the 

number of basis functions, with number of integrals being the most time consuming step.

1.2.2 Configuration Interaction

One method to add correlation to the Hartree-Fock solution is configuration interaction (CI), in 

which determinants with swapped occupied and virtual orbitals are added to the ground state 

wave function calculated with Hartree-Fock theory.  In this method, the wave function takes the 

form:

Ψ=C0Ψ 0 +C 1 Ψ 1+C 2Ψ 2+⋯ (1.15)

where  Cn are  expansion  coefficients.   Ψ0 is  the  Hartree-Fock  determinant,  and  Ψn are 

determinants  that have one or more occupied orbitals swapped with an equal number of virtual 

orbitals.   The Slater  determinants  will  form an orthonormal set  and so the overlap integrals 

become unity, and the CI wave function can be solved by standard diagonalization methods. If 

all of the possible combinations of electrons in all orbitals are added to the wave function, this 

method, then known as full CI, will give the exact energy for the system, limited only by the size 

of the basis set used to represent the atomic orbitals.  For  N electrons and K orbitals, the total 

number  of  determinants  that  can  be  created  is  (2K!)/[N!(2K-N)!].   Clearly,  this  problem  is 

intractable for large values of N or K.  The number of required determinants can be reduced by 

considering symmetry constraints for the wave function, but it still remains large for all but the 

smallest  systems.    Another  method  to  reduce  the  number  of  determinants  is  to  limit  the 

excitations,  ie  only allowing single or  single  and double  excitations.   While  this  effectively 

reduces the number of determinants, it has the drawback of not being size-consistent.  
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1.2.3 Multi-Configuration Self Consistent Field 

In the CI treatment discussed above, a Hartree-Fock calculation proceeds the CI calculation, and 

the orbital coefficients,  ci of equation 1.9, are held fixed while the determinant coefficients,  Ci 

are  optimized.   In  multi-configuration  self-consistent  field  (MCSCF)  calculations,  both  the 

orbital coefficients and the determinant coefficients are optimized, in a similar manner (though 

more complicated) to the Roothan-Hall equations.  This is a computationally demanding task, 

but offers a distinct advantage over the two methods above: a full  CI in the restricted space 

restores size-consistency to the calculation.

There  are  several  ways of  performing an MCSCF calculation,  though many of  them 

involve  dividing  the  orbitals  of  a  Hartree-Fock  determinant  into  three  separate  spaces:  an 

inactive space, where the lowest energy orbitals are doubly occupied in all determinants, a virtual 

space, where the highest energy orbitals are unoccupied in all determinants, and an active space, 

where the orbitals are of intermediate energy.  If all excitations are allowed within the active 

space, ie a full CI in the active space, the calculation is considered a Complete Active Space 

SCF, or CASCF.  Excitations within the active space can be further restricted to reduce the 

number of determinants.  Clearly, a judicious choice of orbital partitioning is paramount to the 

success of MCSCF calculations. 

1.3 DENSITY FUNCTIONAL THEORY

Hohenberg and Kohn proved that the ground state energy and all other ground-state properties 

are uniquely determined by the electron density.5  This theorem guarantees that there exists a 
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functional for which the exact energy can be found, but does not state what the functional is. 

The functional is known exactly with the exception of two terms:  the kinetic energy and the 

exchange-correlation.   In  order  to  alleviate  the  first  problem and generate  a  set  of  solvable 

equations, Kohn and Sham21 introduced the idea of using orbitals that are eigenfunctions of a 

one-electron  Hamiltonian.   Similar  to  the  HF  method  discussed  above,  these  orbitals  are 

collected into a Slater-determinant and leads to a solvable equation similar in form to equation 

1.13a: 

 {−1
2
∇1

2−(∑
I= 1

M Z I

r1I
)+∫

ρ (r 2)
r 12

dr 2+V XC (r 1)} χ i (r1)=ϵi χ i (r1 ) (1.16)

where the first term is the kinetic energy and the second term is the interaction of of electron 1 

with nucleus I, similar to equation 1.13a.  However, in equation 1.16, the Coulomb operator is an 

integral over the charge density.  These leads to a self-interaction error, where the interaction of 

electron 1 is affected by the net density, which includes the charge of electron 1.  Additionally, 

there is no exact exchange term, which exactly cancels the self interaction error in the Hartree-

Fock expression.   This  has a computational  advantage,  however:   the Coulomb term can be 

related to the second derivative of the electric potential through Poisson's equation, and thus can 

be solved numerically on a grid, which is a much more efficient way to evaluate the integral.  

The additional Vxc potential is the exchange-correlation potential and is related to the exchange-

correlation (xc) functional by 
δExc [ρ(r )]
δρ(r )

.  To solve equation 1.16, it is necessary to define 

the xc functional.   It is important to note that solving equation 1.16 makes DFT variational; 

however, parameterization of the xc functional may lead to a solution to equation 1.16 that is 

lower than the true ground state energy.  
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The  most  basic  definition  for  xc  functional  is  the  local  density 

approximation(LDA),22 where  the  exchange-correlation  functional  is  parameterized  from the 

density of the homogeneous electron gas.  In the LDA, Exc takes the form:

E xc [ρ(r )]=A∫ρ(r )
4
3 dr (1.17)

where A is a parameter derived from the homogeneous electron gas.  While this is a simple 

approximation, it can give accurate results for many systems.  Accuracy can be improved by 

going beyond the local density approximation and including the gradient of the density at a point, 

known as the generalized-gradient approximation (GGA).   This can be extended to include the 

second derivative of the density, though in many cases this offers little improvement.  Another 

path to increase the accuracy of DFT is to consider the exchange-correlation functional as a sum 

of an exchange functional and a correlation functional.  Then, the exchange functional can be 

further considered as a sum of functionals, where a fraction of exact exchange from Hartree-

Fock  theory  is  mixed  in  with  the  exchange  from  LDA.   These  are  referred  to  as  hybrid 

functionals,  and they  can  give  very  high  accuracy  for  certain  properties,  such as  geometric 

parameters, for many systems.   A generic example is:

E xc =E XC
LDA+A (E X

HF−E X
LDA )+BΔE X

GC +CΔEC
GC (1.18)

Where the A, B, and C, are parameters that can be adjusted based on fitting to a data set, EHF  , 

and  ΔEx
 and  ΔEC

 are gradient corrected (GC) exchange and correlation terms.  Including exact 

exchange into the DFT functional makes the calculation much more computationally demanding.
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1.4 QUANTUM MONTE CARLO

A third method to solve the Schrödinger equation for a many electron system is by use of 

Monte Carlo methods.  Monte Carlo is a stochastic method for the integration of an equation. 

Monte  Carlo  is  commonly  applied  as  importance  sampling  Monte  Carlo,  introduced  by 

Metropolis.23  With importance  sampling,  a probability  density function is  used to accept  or 

reject a Monte Carlo move and steer the sampling towards areas of greater importance.   There 

are two common methods for applying Monte Carlo simulations to quantum systems; variational 

Monte Carlo (VMC) and diffusion Monte Carlo (DMC).  The details are discussed below.

1.4.1 Variational Monte Carlo

Variational Monte Carlo (VMC) uses a trial  wave function to compute molecular  properties. 

The trial wave function is one (or many) Slater determinant of orbitals taken from a HF or DFT 

calculation as outlined above.  The variational energy of any wave function is given by:

Ev=
〈Ψ∣Ĥ∣Ψ 〉
〈Ψ∣Ψ 〉

(1.19)

To evaluate the above energy using VMC, the Hamiltonian and overlap integrals are rewritten as 

a summation with the trial wave function acting as a probability distribution function:

Ev=∫
Ψ T

2

∫Ψ T
2

Ĥ Ψ T (r )

Ψ T ( r )
d r=

1
K
∑

k :rk∈Ψ
T
2

K Ĥ Ψ (r k )
Ψ (r k )

(1.20)

where   the final  term in the summation  is  EL,  the local  energy.   Samples  are  taken from a 

Gaussian distribution function from any point in r for K points.  Figure 1 shows a simple flow 

chart that illustrates a VMC simulation.
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VMC  is  a  computationally  efficient  method,  but  the  results  are  generally  not  an 

improvement over whatever method generated the trial wave function.  The true power of VMC 

lies in using it to optimize parameters in the trial wave function to give an initial wave function 

for DMC with lower energy and variance.

Figure 1.1.1 - Typical VMC simulation 

1.4.2 Optimization of correlation parameters in VMC

The trial wave function for use in a diffusion Monte Carlo simulation is generally written in the 

form:

ΨT =e ( J 1
α

J 2
β

J 3
γ
)∑

1

N

C N ΨN         (1.21)

15

Initial setup 

Propose a move

Evaluate probability ratio,

Metropolis accept / 
reject step

Update position

Calculate local energy,

Output result,   

acceptreject

∣ΨT (X )∣
2
/∫∣ΨT (X )∣

2 d X

E L(X )=ΨT (X )
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where J x
n

 are Jastrow factors and CN  are expansion coefficients as defined in equation 1.16. 

The Jastrow factor  can take many different  functional  forms.  In general,  J 1
α  will  be an 

electron-electron term that is a function of r1-r2 and the optimizable parameters α, J 2
β  will be 

an electron-nucleus term that is a function of r1-rI and optimizable parameters β, and J 3
γ is an 

electron-electron-nucleus term that is a function of r1-r2, r1-rI, and r2-rI and optimizable parameters 

γ. Because the Jastrow factors are positive everywhere, they have no effect on the nodal surface. 

The  addition  of  the  Jastrow  factors  has  two  main  goals,  namely  to  reduce  the  energy  and 

variance of the trial wave function and account for the electron-electron cusp.  A lower variance 

and  energy  will  lead  to  a  faster  convergence  for  the  DMC calculation.24  Historically,  the 

electron-nucleus Jastrow factor had also been used to account for the nuclear cusp, but this is 

generally a poor method.  In calculations with a pseudopotential (section 1.4.4), the nuclear cusp 

is  zero,  and  in  all  electron  calculations,  there  are  several  methods  available25 that  are 

computationally more efficient and offer a similar reduction in variance and energy.  

Historically,  optimizing  the  parameters  in  the  trial  wave  function  has  been  done  by 

choosing the variance of the wave function as the cost function to minimize:

σ E
2 (α )=

∫Ψ T
2 (α ) [E L (α )−EV (α ) ]

2
d r

∫Ψ T
2 (α )d r

(1.22)

where α is used to indicate that the trial wave function is based on some set of parameters and Ev 

is the variational energy from equation 1.19.  Minimizing the variance has been popular due to 

the stability of the algorithm.  The local energy is independent of  r for an eigenstate, so that 

eigenstates of Ĥ give the minimum value of zero variance for any set of configurations.  This is 

not true for the variational energy, and makes energy minimization more difficult. 
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The minimum of the variance generally overlaps well with the minimum of the energy, 

but because the trial wave function cannot exactly represent an eigenstate, they are  not the same 

minimum.  Direct minimization of Ev may make more sense, as a DMC calculation attempts to 

determine  the  lowest  energy  of  the  system.   There  is  another  important  advantage;  when 

optimizing parameters  that affect  the nodal surface,  such as determinant  coefficients,  energy 

minimization is essential;  minimization of Ev does not reuse the same set of configurations with 

different parameters, and so any old configurations near a new nodal surface will not introduce 

difficulties  in  the  optimization.   Recently,  progress  has  been  made  in  developing  stable 

algorithms26 for optimization of parameters using the variational energy, or a linear combination 

of energy and variance, as a cost function.  

The details  for energy minimization can be found in references  26 and  28 but a brief 

overview is given here for completeness.  The wave function Ψ T
α

can be Taylor-expanded as: 

Ψ (α (n+1 ) )=Ψ (α (n ) )+∑
i=1

p

δ αi
(n ) ∂Ψ
∂αi

∣
α (n ) +O ( [ δα(n ) ]2 )

(1.23a)

Ψ (α (n+1 ) )=∑
i= 0

p

a i φi +O ( [δα(n ) ]
2)

(1.23b)

where n+1 indicates a change in parameters by δ, and ai, φi are the parameters and the derivative 

of  the  wave  function  with  respect  to  the  parameters,  respectively.   This  form allows  ai to 

optimized by diagonalization and taking the vector of coefficients equal to the lowest eigenvalue. 

1.4.3 Diffusion Monte Carlo

The time-dependent Schrödinger equation (TDSE) is  
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−i ∂Φ
∂ t
=( 12 ∇r

2+[V (r )−ET ])Φ                      (1.24)

where the term in parenthesis is the Hamiltonian. The formal solution to the TDSE is 

Φ (r,t )=e
−it ( Ĥ−E T )Φ (r,t= 0 )       (1.25)

where ET is an energy offset. This can be expanded in eigenfunctions of Ĥ that converge to the 

ground state when the imaginary time, τ=it, becomes large:

Φ (r,τ )=e
−τ (Ĥ−ET )

(∑j

c jΨ j ( r )) (1.26a)

 lim
τ→∞

Φ (r,τ )=c0Ψ0 ( r )        (1.26b)

Thus,  the  TDSE can  be  propagated  through  imaginary  time  to  give  the  exact  ground  state 

wavefunction.  This can be solved by exploiting an isomorphism between the TDSE and a classic 

diffusion equation29,30 modified by a first order rate term, 

∂Ψ
∂ t

=D∇ 2 Ψ−kΨ    (1.27)

where the diffusion constant D is ½ and is solved to give the kinetic energy of the TDSE, and the 

rate constant k is V(r)-ET is solved for the potential energy.

Diffusion  is  solved  for  using  the  random  walk  process  established  by  Einstein  for 

describing Brownian motion.  A collection of points,  r, called walkers, is sampled from some 

initial density ρ and take an independent random step η.  The updated density function will then 

be:

ρ(r , τ)=∫ρ(r−η , τ) g (η , τ)d η (1.28)

where  g(η,τ)  is  a  Gaussian  distribution  function.   This  result  means  that  any  initial  density 

function  can  be used  to  solve  for  a  solution  to  the  diffusion  equation  using  walkers  taking 

random steps.
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The first order kinetic term is solved by a branching process.  Initially, each walker is 

assigned a unit weight that is updated at each Monte Carlo step according to:

w k (τ+Δ τ )=w k ( τ)e
(−V (r)−ET )Δ τ (1.29)

Equation 1.29 will eventually diverge31 due to a variance of the products of weights, and as such 

only a small number of walkers contribute to the average. A stochastic birth/death process is 

used to replicate walkers with a weight greater than unity and remove walkers with a weight less 

than one.  This may introduce a population bias is too small of a population of walkers is used.

The  kinetic  and  potential  energy  terms  of  the  TDSE  can  each  be  solved  by  their 

respective equations, and it is simple to combine the two by taking one diffusion step, and then 

one  branching  step.   However,  because  these  two  operators  do  not  commute,  an  error  is 

introduced  according  to  the  Trotter-Suzuki  formula  (1.30a)  known  as  time-step  bias.   This 

requires that a short time step is used, and iterative applications of this short time step are used to 

reach the large τ limit (1.30b-c).

e−(T+V ) τ=e
−

1
2

V τ
e−T τe

−
1
2

V τ
+O(τ3)              (1.30a)

Φ(r , τ)=  lim
n→∞

∏
n

e
−(T +V ) τ

n         (1.30b)

Φ(r , τ)=  lim
n→∞

∏
n

e
−

V
2
τ
n e
−T τ

n e
−

V
2
τ
n              (1.30c)

In practice,  time-step bias can be removed by calculating several different  DMC energies at 

differing time steps and extrapolating to dτ=0. 

The method outlined above can be used to solve the TDSE with Monte Carlo methods, 

albeit  with a time-step error.  This method is known as the simple-sampling32 method, and a 

straightforward  improvement  can  be  made  by  introducing  a  trial  wave  function  ΨT  as  an 
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importance sampling term.   This gives a  mixed density,  ρ=ΦΨT,  to  sample,  and multiplying 

equation 1.24 by  ΨT yields an equation by which the density can evolve:

∂
∂ τ
ρ(r , τ)=

1
2
∇

2
ρ−

1
2
∇ (2∇ ΨT (r )

ΨT(r )
ρ)−(EL(r )−ET )ρ       (1.31) 

where the first term is the diffusion equation, the second term is called the drift velocity, and the  

third term is the branching equation.

Importance sampling has several meaningful consequences.  The density of walkers will 

be  increased  in  areas  where  ΨT  is  large  and  reduced  where  it  is  small.  Additionally, the 

branching term is now based on the local energy as opposed to the potential, which leads to a 

suppression of the branching process resulting in a more stable algorithm.  Assuming a constant 

drift velocity between r and r' is equivalent to using normal ordered operators and introduces an 

error of  O(τ2).  The branching process reduces the error in the distribution by approximately 

O(τ), and so the overall error due to the time step in the DMC calculation is O(τ).

The drift term can also be used to enforce the fixed-node approximation (FNA) by killing 

a  walker  that  changes  sign,  or  by  rejecting  the  step  that  caused  the  sign  change  (although 

rejection typically gives smaller time-step errors.)  The FNA is enforced by requiring the mixed 

density  to  have  the  same  sign  as  the  trial  wave  functions  at  all  points  in  space.   This 

approximation  is  required  to  enforce  the  antisymmetry  of  the  wave  function  produced  as  a 

solution to the TDSE.  Without it, DMC would propagate out all of the Fermionic states and 

result  in  a  Bosonic  ground  state  wave  function.   While  little  is  known  about  the  3N-1 

dimensional nodal surface of an  N electron system, it has been shown14,33 that all of the nodal 

pockets of a wave function are symmetrically equivalent, and exploring one nodal pocket gives 

the  same  energy  as  any  other  nodal  pocket.   The  fixed-node  approximation  is  the  only 
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uncontrollable error in the DMC calculation.  Clearly then, it is important to minimize this error 

through a judicious choice of the trial wave function.  

1.4.4 Pseudopotentials in DMC

DMC formally scales as  O(N3),  where N is the number of electrons.  A step that is taken to 

reduce  the  computational  cost  and to  increase  efficiency  of  DMC calculations  is  the use of 

pseudopotentials.  Pseudopotentials have been used in plane wave DFT calculations for many 

years  to  reduce the high kinetic  energy oscillations  close to  the nuclei,  and thus  reduce the 

number of plane waves that are needed to accurately describe a system.  Using pseudopotentials 

in  QMC  introduces  another,  albeit  small,  error.   In  general,  pseudopotentials  are  angular 

momentum  dependent,  which  makes  them  non-local.   In  DFT  calculations,  this  does  not 

introduce any errors, but in QMC calculations, where the local energy of a walker needs to be 

calculated, the non-local character of a pseudopotential needs to be included.  To correct this, 

there  are  two schemes:  the locality  approximation34 and the T-move scheme.35  The locality 

approximation  makes  an  effective  Hamiltonian  that  splits  the  nonlocal  portion  of  the 

pseudopotential into a potential on the trial wave function and a potential on the unknown wave 

function produced throughout the simulation.  The nonlocal potential on the unknown wave is 

subsequently neglected.   This makes the effective Hamiltonian non-variational.   The locality 

approximation offers a small magnitude of localization error and small time step bias.  In the T-

move scheme, the non-local potential on the unknown wave function is reintroduced into the 

Hamiltonian, restoring the variational principle.  This potential is reintroduced through the use of 

a second accept/reject step in the branching equation, where the non-local walk is rejected if the 

wave function changes sign and the sign-flip term (the potential from the rejected step) is added 
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to the local potential.  The T-move scheme violates the detailed balance condition, but reduces 

energy instabilities in the random walk.  The disadvantages of the T-move method are that it 

introduces  larger  time  step  bias  than  the  locality  approximation  and  can  become  more 

computationally demanding.  Time step bias can be removed by extrapolation of the energy to 

zero time step.  The magnitude of the non-local error is generally not a large portion of the final 

energy in either scheme, however, and the only uncontrolled error is largely due to the fixed-

node approximation.
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2.0 EFFECT OF THE TRIAL WAVE FUNCTION ON DMC 

CALCULATIONS

2.1 CORRELATION CONSISTENT GAUSSIAN BASIS SETS FOR H, B-NE WITH 

DIRAC-FOCK AREP PSEUDOPOTENTIALS: APPLICATIONS IN QUANTUM 

MONTE CARLO CALCULATIONS

This work has been published as J. Xu, M.J. Deible, K.A. Peterson, K.D. Jordan, "Correlation 

Consistent  Gaussian  Basis  Sets  for  H,  B-Ne  with  Dirac-Fock  AREP  Pseudopotentials: 

Applications  in  Quantum Monte  Carlo Calculations,"  J.  Chem. Theory Comput.,  2013,  9(5), 

2170.  J.X. performed the water monomer and dimer calculations.  M.J.D. performed the water-

benzene  calculations.   K.A.P.  designed  the  basis  sets  and  performed  the  spectroscopic 

calculations.  All authors contributed to the discussion.

2.1.1 Introduction

Quantum Monte Carlo methods,29,30 because of their cubic scaling with the number of atoms, 

hold considerable promise for providing accurate interaction energies of molecular clusters and 

solids. Most quantum Monte Carlo electronic structure calculations make use of the fixed-node 

approximation29,30 to enforce fermionic behavior on the wave function.  The fixed nodal surface 

is enforced by a trial function, generally taken to be a single Slater determinant of Hartree-Fock 
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or DFT orbitals. In practice, the trial function also contains  Jastrow factors36 to describe short-

range  electron-electron  and  electron-nuclei interactions,  with  the  parameters  in  the Jastrow 

factors being optimized by the use of the variational Monte Carlo (VMC) procedure.  The VMC 

step is  generally  followed by diffusion Monte Carlo (DMC) calculations  where most  of the 

computational effort is spent.  The orbitals in the trial functions are most frequently represented 

in terms of plane-wave functions or Gaussian-type orbitals (GTOs). In the former case,  use of 

pseudopotentials  is essential to avoid the  prohibitively high plane-wave cutoffs that would be 

required for all-electron calculations.  Even when using GTO basis sets, it is advantageous to use 

pseudopotentials in quantum Monte Carlo calculations as this greatly reduces the computational 

effort to achieve small statistical errors.

In  exploratory  applications  of quantum  Monte  Carlo  methods employing 

pseudopotentials and trial functions expressed in terms of GTOs, we observed surprisingly large 

variances of the VMC energies. In some cases the variances were as much as a factor of six 

larger  than obtained with high cut-off plane-wave basis sets.37,38 This naturally raises concern 

about the impact of such trial functions on the interaction energies obtained from subsequent 

DMC calculations. This concern led us to design for H and B-Ne correlation consistent GTO 

basis  sets  for  use  with  the  CASINO  Dirac-Fock  average  relativistic  (AREP) 

pseudopotentials,39,40 which we test in coupled cluster calculations on H2, B2, C2, N2, and F2 and 

in quantum Monte Carlo calculations on the water monomer and dimer as well as on the water-

benzene complex.  In  addition,  we examine the  performance of  two methods  that  have  been 

designed  for  dealing  with  the  problems  associated  with  using  non-local  pseudopotentials  in 

diffusion Monte Carlo calculations. 
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2.1.2 Performance of GTO basis sets in VMC calculations

To  illustrate  the  nature  of  the  large  variance  problem  when  using  certain  GTO  basis 

set/pseudopotential combinations, we summarize in Table 2.1.1 the energies and variances from 

VMC calculations on the water molecule using the CASINO Dirac-Fock (CDF) pseudopotential 

on the H and O atoms, with the molecular orbitals in the trial functions being represented either 

by the valence double-zeta plus polarization function basis set of Burkatzki, Filippi, and Dolg 

(BFD),41 augmented with diffuse s, p, and d functions from the aug-cc-pVDZ basis set42,43 or by 

plane-wave basis sets with energy cutoffs of  60, 120, and 160 a.u. The geometry of the water 

monomer was taken from experiment,44 with OH distances of  0.9572Å and an HOH angle of 

104.52º.  In the calculations using the GTOs, the trial wave functions were taken from Hartree-

Fock calculations, and in the calculations with plane-wave (PW) basis sets, the orbitals for the 

trial  function  were  taken from local  density  approximation  (LDA) density  functional  theory 

calculations,  with  the  orbitals being  converted  to  BLIP-type  spline  functions.45 In  separate 

calculations using the augmented BFD basis set, we confirmed that the energy and variance from 

the VMC calculations are nearly the same whether using trial functions expanded in terms of 

Hartree-Fock  or  LDA  orbitals.  Three-term  (i.e.,  e-e,  e-n,  and  e-e-n)  Jastrow  factors  were 

employed,  the  parameters  in  which  were  optimized  so  as  to  minimize  the  variance  of  the 

energy.36 The  Hartree-Fock  and  the  LDA  calculations  with  the  augmented  BFD  basis  set 

calculations  were  carried  out  using  the  Gaussian 03 package,46 and the  plane-wave  DFT 

calculations  were  carried  out  using  ABINIT.47 The  quantum Monte  Carlo  calculations  were 

carried out using the CASINO code.48 
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The VMC calculations with the augmented BFD GTO basis set gave a variance of 1.25 

a.u. compared with variances of 1.63,  0.34, and 0.26 a.u. obtained using plane-wave basis sets 

with cutoffs of 60, 120, and 160 a.u., respectively.  The importance of going to very high energy 

cutoffs when using plane-wave basis sets in quantum Monte Carlo calculations has been noted 

previously in the literature.49

Table 2.1.1 - VMC energies and variances for the water monomer using the CASINO 

Dirac-Fock pseudopotential on all atoms.a

Basis set VMC energy (a.u.) Variance of the VMC 
energy (a.u.)

Augmented BFD -17.161(3) 1.25
Plane-wave/BLIP (60 a.u.)b -17.159(5) 1.63
Plane-wave/BLIP (120 a.u.)b

Plane-wave/BLIP (160 a.u.)b

-17.191(2) 0.34
-17.194(2) 0.26

aHartree-Fock and LDA calculations were used to obtain the molecular orbitals for GTO and 

plane-wave basis sets, respectively.

bThe plane-wave energy cutoff is given in parentheses.

 Adding higher angular momentum functions to the augmented BFD GTO basis set had 

little effect on the variance.  This led us to examine the variances obtained in all-electron VMC 

calculations  using  Dunning's  cc-pVDZ,  cc-pVTZ,  cc-pVQZ,  cc-pV5Z,  and  cc-pV6Z basis 

sets,42 omitting  g and higher angular momentum functions, as these are not supported by the 

CASINO code. The variances of the VMC energy of the water monomer for the above sequence 

of basis sets are 3.6, 2.4, 1.5, 1.1, and 0.8 a.u., respectively. Similar variances are obtained with 

the corresponding aug-cc-pVXZ basis sets basis sets.42,43 The variance in the complete basis set 
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limit is necessarily larger in all-electron than in pseudopotential calculations, due to the large 

contribution of the 1s electrons to the total energies in the former. These results suggest that the 

large variance found in the VMC calculations with the augmented BFD basis set is due to this 

basis set being far from optimal for use with the CASINO Dirac-Fock pseudopotential. Indeed, 

when used with BFD pseudopotentials,41 for  which  the BFD basis  sets  were  developed,  the 

variance from a VMC calculation on the water monomer using the augmented BFD basis set is 

less than 0.3 a.u.

2.1.3 Aug-cc-pVXZ-type basis sets for use with the CASINO Dirac-Fock 

pseudopotentials.

Although high quality aug-cc-pVXZ- type basis sets for use with pseudopotentials have 

been  developed  for  heavier  elements  (aug-cc-pVXZ-PP),50–54 such  basis  sets  have  not  been 

developed for B-Ne, primarily due to the fact that with traditional quantum chemistry methods, 

there  is  little  computational  advantage  to  replacing  the  1s orbitals  by  pseudopotentials. 

However, as noted above, the use of pseudopotentials to model the 1s electrons of B-Ne is more 

advantageous in quantum Monte Carlo calculations.   With this  in mind, we have designed a 

series of correlation consistent basis sets for boron, carbon, oxygen, nitrogen, fluorine, and neon 

with  the  core  1s electrons described  by  CASINO  Dirac-Fock  (CDF)  pseudopotentials. In 

addition, to facilitate comparison with calculations employing trial functions expressed in terms 

of plane-wave basis  sets,  we also developed analogous basis  sets  for use with the CASINO 

Dirac-Fock  pseudopotential for hydrogen. These basis sets are designated aug-cc-pVDZ-CDF, 

aug-cc-pVTZ-CDF, aug-cc-pVQZ-CDF, and aug-cc-pV5Z-CDF and are described in Tables S1- 

S5 in the supplemental information.
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As a test of the aug-cc-pVXZ-CDF basis sets, we have optimized the bond lengths (Re) 

and calculated the dissociation energies (De) and harmonic vibrational frequencies (ωe) of the 

electronic  ground states  of  H2,  B2,  C2,  N2,  O2,  and  F2 using  the  CCSD(T)  method.55,56  For 

comparison, all-electron CCSD(T) calculations employing the Douglas-Kroll-Hess (DKH) scalar 

relativistic  Hamiltonian57,58 and  the  aug-cc-pV5Z-DK  basis  sets42,43,59 within  the  frozen-core 

approximation  were  also  carried  out.   For  the  atoms  and  open-shell  molecules,  the  ROHF-

UCCSD(T)  method60,61 was  utilized.  The calculated  Re,  De,  and  ωe results  together  with  the 

corresponding  experimental  values  are  summarized  in  Table  2.1.2.   For  H2,  the  CCSD(T) 

calculations with the CDF pseudopotential and aug-cc-pVQZ-CDF and aug-cc-pV5Z-CDF basis 

sets as well as the CCSD(T) calculations using the DKH Hamiltonian and the aug-cc-pV5Z-DK 

basis set give bond lengths, vibrational frequencies, and dissociation energies very close to the 

experimental values.

Table 2.1.2 -  Calculated CCSD(T) spectroscopic constants for the ground states of H2, 

B2, C2, N2, O2, and F2 with the aug-cc-pVnZ-CDF basis sets.a

Basis Ee

(Eh)
De

(kcal/mol)
re

(Å)
ωe

(cm-1)
H2 aug-cc-pVDZ-CDF -1.167484 105.09 0.7566 4383.2

aug-cc-pVTZ-CDF -1.173075 108.60 0.7429 4408.2
aug-cc-pVQZ-CDF -1.174023 109.20 0.7418 4402.1
aug-cc-pV5Z-CDF -1.174295 109.37 0.7415 4403.2
aug-cc-pV5Z-DK -1.174263 109.35 0.7416 4403.1

Exptb 109.49 0.7414 4401.2

B2 aug-cc-pVDZ-CDF -5.296648 55.48 1.6378 995.0
aug-cc-pVTZ-CDF -5.321179 61.78 1.6029 1029.3
aug-cc-pVQZ-CDF -5.326409 63.26 1.5965 1036.5
aug-cc-pV5Z-CDF -5.327859 63.64 1.5954 1039.3
aug-cc-pV5Z-DK -49.319978 64.83 1.5927 1048.6
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Exptb 67.65 1.5900 1051.3

C2 aug-cc-pVDZ-CDF -10.998941 126.15 1.2761 1803.8
aug-cc-pVTZ-CDF -11.049833 138.33 1.2520 1828.8
aug-cc-pVQZ-CDF -11.062220 141.96 1.2470 1842.9
aug-cc-pV5Z-CDF -11.065867 142.96 1.2459 1846.5
aug-cc-pV5Z-DK -75.836466 144.27 1.2447 1858.0

Exptb 147.8 1.2425 1854.7
N2 aug-cc-pVDZ-CDF -19.798467 196.94 1.1228 2268.4

aug-cc-pVTZ-CDF -19.879169 215.16 1.1048 2325.0
aug-cc-pVQZ-CDF -19.900415 221.22 1.1012 2340.8
aug-cc-pV5Z-CDF -19.907062 223.06 1.1003 2345.0
aug-cc-pV5Z-DK -

109.473998
225.46 1.0993 2358.5

Exptb 228.4 1.0977 2358.6

O2 aug-cc-pVDZ-CDF -31.765110 104.53 1.2257 1551.6
aug-cc-pVTZ-CDF -31.866955 113.16 1.2165 1568.5
aug-cc-pVQZ-CDF -31.895146 116.21 1.2118 1583.0
aug-cc-pV5Z-CDF -31.904714 117.19 1.2107 1587.7
aug-cc-pV5Z-DK -

150.295526
118.89 1.2073 1598.9

Exptb 120.6 1.2075 1580.2

F2 aug-cc-pVDZ-CDF -48.139300 30.31 1.4483 844.1
aug-cc-pVTZ-CDF -48.267510 35.72 1.4226 906.2
aug-cc-pVQZ-CDF -48.305208 36.92 1.4171 917.2
aug-cc-pV5Z-CDF -48.318677 37.37 1.4151 921.7
aug-cc-pV5Z-DK -

199.558515
38.05 1.4114 926.5

Exptb 39.0 1.4119 916.6
a  H2 is  calculated  at  the  CCSD (i.e.,  FCI)  level.  Atomic  spin-orbit  effects  have been 

removed from the experimental dissociation energies in the cases of C2, O2, and F2 by using the 

experimental atomic splittings.

b  Experimental results are from Ref.  62, except for the dissociation energy of C2 which is 

taken from Ref.  63.   The reference  dissociation  energy of  B2 is  from high level  theoretical 

calculations of Ref. 64. 
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For the B2, C2,  N2,  O2, and F2 diatomics, the bond lengths from the CCSD(T)/aug-cc-

pVXZ-CDF  optimizations  systematically  shorten  as  the  basis  set  is  enlarged,  with  the 

CCSD(T)/aug-cc-pV5Z-CDF  bond  lengths  being  only  0.0026  -0.0036  Å  longer  than  the 

experimental values.  For all five diatomics, the difference of the calculated bond length from 

experiment is greater in the pseudopotential than in the all-electron calculations. The trends in 

the harmonic frequencies are consistent with those in the calculated bond lengths, with the values 

of the calculated frequencies increasing with increasing flexibility of the basis set.  The largest 

errors in the harmonic frequencies calculated at the CCSD(T)/aug-cc-pV5Z-CDF level are -12 

and -13 cm-1 for B2 and N2, respectively.  For all five dimers, the vibrational frequencies from the 

pseudopotential  calculations  are  about  10  cm-1 smaller  than  those  from  the  all-electron 

calculations.  The results for both the frequencies and the bond lengths are indicative of small 

errors caused by the CDF pseudopotentials.

As expected, the CCSD(T) values of the dissociation energies smoothly increase along 

the sequence of aug-cc-pVXZ-CDF basis sets with the CCSD(T)/aug-cc-pV5Z-CDF values of 

the dissociation energies appearing to be converged to within 1 kcal/mol of the complete basis 

set limit (CBS) values for B2, C2, O2, and F2 and to within 2 kcal/mol for N2.  (There is not an 

accurate experimental De value for B2, and as a reference we have used instead the near full-CI 

result  from Ref.  64.)  This is consistent with the well-known trends in dissociation energies 

calculated using the all-electron aug-cc-pVXZ series of basis sets. Compared to experiment, the 

errors in the CCSD(T)/aug-cc-pV5Z-CDF binding energies range from 2.6 to 4.5 kcal/mol, with 

the largest error being for N2.  The errors in the dissociation energies of the corresponding all-

electron calculations are 1.2 – 2.9 kcal/mol smaller, again indicating that small errors have been 

introduced by the CDF pseudopotentials.  The errors in the dissociation energies from the all-
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electron calculations have several origins including basis set incompleteness, the neglect of core-

valence correlation and the neglect of correlation effects not recovered at the CCSD(T) level. 

Having established the suitability of the aug-cc-pVXZ-CDF basis sets for describing the bonding 

in the diatomic species, we now turn to their performance in quantum Monte Carlo calculations. 

2.1.4 Application of the aug-cc-pVXZ-CDF basis sets in QMC calculations

A. VMC results for the water monomer

The energies  and variances  from VMC calculations  on the water  monomer  with  trial 

functions expanded in terms of the aug-cc-pVXZ-CDF basis sets for the O atom and the standard 

aug-cc-pVXZ basis sets for the H atoms are reported in Table 2.1.3.  (These calculations used the 

CASINO Dirac-Fock pseudopotentials  on the O atoms only.) Test  calculations  revealed  that 

nearly the same energies and variances result when the CDF pseudopotential and the aug-cc-

pVXZ-CDF basis set are also employed on the H atoms. For this reason, unless noted otherwise, 

in the remainder of the paper in presenting results using GTO basis sets for the trial functions, 

the CASINO Dirac-Fock pseudopotential and aug-cc-pVXZ-CDF basis sets are used only for the 

non-hydrogen atoms.  From comparison of the results in Tables 2.1.1 and 2.1.3, it is seen that the 

variance in the energy is reduced about threefold and the VMC energy is about 0.03 a.u. lower 

with the aug-cc-pVDZ-CDF basis set than when using the augmented BFD basis set for the O 

atom  in  the  representation  of  the  trial  function.  With  the  aug-cc-pVTZ-CDF basis  set,  the 

variance is further reduced to 0.29 au, which is very close to the value obtained with the plane-

wave basis set with the 160 a.u. cutoff. For the largest GTO basis set considered, aug-cc-pV5Z-

CDF, the variance is only 0.22 a.u. As for the all-electron calculations, the results for the larger 

GTO basis sets were obtained without the g and higher angular momentum functions from the O 
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basis set and the f and higher angular momentum functions from the H basis set. However, given 

the fact that the energies and variances obtained with the aug-cc-pVTZ-CDF and aug-cc-pVQZ-

CDF and aug-cc-pV5Z-CDF basis sets are very close to those obtained with large cutoff plane-

wave  calculations,  we  conclude  that  the higher  angular  momentum  functions  are  relatively 

unimportant for the VMC calculations.

Table 2.1.3 - VMC energies and variances for the water monomera

Basis set VMC energy (a.u.) Variance (a.u.)
aug-cc-pVDZ-CDFa -17.193(2) 0.42
aug-cc-pVTZ-CDFa -17.197(1) 0.29
aug-cc-pVQZ-CDFa -17.199(1) 0.23
aug-cc-pV5Z-CDFa -17.200(1) 0.22

cc-pV5Z(sp)+2d-CDFb -17.197(1)           0.25
cc-pV5Z(sp)+2df-CDFb -17.198(1) 0.23

aResults  obtained  employing  the  CDF  pseudopotential  on  the  O  atom  only,  with  the 

corresponding aug-cc-pVXZ basis set being used on the H atoms.

bResults obtained employing the CDF pseudopotentials on all atoms.

 

Table 2.1.3 also includes results obtained for two modified versions of the cc-pV5Z-CDF 

basis set denoted cc-pV5Z(sp)+2d-CDF and cc-pV5Z(sp)+2df-CDF, which differ from the full 

cc-pV5Z-CDF basis set by employing smaller sets of polarization functions, taken from the cc-

pVTZ-CDF  basis  set.  (The  cc-pV5Z-CDF  basis  set  is  derived  from  aug-cc-pV5Z-CDF  by 

deleting the most diffuse function of each angular momentum.)  The corresponding basis sets for 

hydrogen differ from the full cc-pV5Z-CDF basis set by using as polarization functions just the 

2p and 2p1d functions from the cc-pVTZ-CDF basis set.  Of particular interest is that neither the 

VMC energy nor the variance is significantly impacted by the inclusion of the f function in the 
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oxygen basis set and the d function in the hydrogen basis set.  We consider these basis sets in 

more detail later in the manuscript.

B. DMC Calculations:  Water monomer and dimer

Figure 2.1.1 reports the results of DMC calculations on the water monomer with trial 

functions expanded in terms of the augmented BFD, the aug-cc-pVDZ-CDF, and aug-cc-pVTZ-

CDF GTO basis sets, as well as in terms of the 60 and 120 a.u. cutoff plane-wave basis sets. The 

DMC calculations were run using 10,000 walkers, about 35,000 Monte Carlo steps, and for time 

steps of 0.003, 0.005, 0.012, and 0.02 a.u., using the T-move procedure.35,65 
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Figure  2.1.1  - DMC energy  of  the  water  molecule  with  trial  functions  expanded  in 

different basis sets. Results obtained using the CASINO Dirac-Fock pseudopotential and the T-

move procedure. avdz-CDF, avtz-CDF, and v5z+2d-CDF refer to aug-cc-pVDZ-CDF, aug-cc-

pVTZ-CDF, and cc-pV5Z(sp)+2d-CDF, respectively.  

Several trends are apparent from the data in this figure. First, in each set of calculations 

the  energies  from  the  various  time  steps  are  well  represented  by  linear  fits,  facilitating 

extrapolation to zero time step. Secondly, DMC calculations using trial functions with the largest 

variances, namely those expanded in terms of the augmented BFD and the 60 a.u. cutoff plane-

wave basis sets, display the steepest slopes. Thirdly, the DMC calculations with different trial 
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functions give different total energies in the t → 0 limit.  The trial function using the augmented 

BFD basis set gives the highest DMC energy, -17.20207(9) a.u., and that represented in terms of 

the plane-wave basis set with 120 a.u. cutoff gives the lowest DMC energy, -17.2186(2). The 

calculations using the aug-cc-pVDZ-CDF and aug-cc-pVTZ-CDF basis sets give extrapolated 

DMC energies of -17.2117(1) and -17.21341(9), respectively. It should be noted that most of the 

difference in the DMC energies obtained using trial functions expanded in terms of the 120 a.u. 

plane wave and aug-cc-pVTZ-CDF basis sets is not due to the use of different orbitals (LDA vs. 

HF) in the two calculations as the DMC energies of H2O calculated using the aug-cc-pVTZ-CDF 

basis set with HF and LDA orbitals agree to within 0.0005 a.u..   We note also that the slope in  

the DMC energy vs. time step curve is reduced by about a factor of two in going from the cc-

pVTZ-CDF  to  the  cc-pV5Z(sp)+2d-CDF  basis  set.   In  other  words,  the  time  step  error  is 

significantly reduced by use of a trial function represented by a basis set with a large number of s 

and p primitive functions.  The major reason the latter calculation gives an energy about 0.006 

a.u. above the result obtained using the trial function expanded in the 120 a.u. cutoff plane-wave 

basis set appears to be due to the omission of the diffuse "aug" functions in the GTO basis set.

In DMC calculations,  the use of a non-local  pseudopotential  is incompatible  with the 

fixed-node boundary condition. In this study we examine the sensitivity of the total energies to 

the strategy, T-move35 or locality approximation (LA),34 used to deal with this problem. Each 

scheme has its advantages and disadvantages. The LA method is believed to have smaller time 

step bias, but to have more stability problems,34 while the T-move procedure has the advantage 

of being variational and is generally more stable, but requires smaller time steps, especially for 

large systems.35,66 In addition, we examine the sensitivity of the DMC energies to the choice of 

Jastrow  factor.   Two  different  choices  of  the  Jastrow  factors  are  used,  one  from  variance 
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minimizations  (Varmin)  and the  other  from energy minimizations  (Emin).   Although in all-

electron calculations, DMC energies should not depend on the choice of the Jastrow factor, there 

can be a small  sensitivity of the energy to the Jastrow factor in pseudopotential  based DMC 

calculations.

Figure 2.1.2 reports the DMC total energies of water dimer obtained using different basis 

sets  and  the  two  approaches  for  dealing  with  the  non-local  pseudopotential  problem.  The 

geometry used for the water dimer was obtained by optimization at the MP2/aug-cc-pV5Z level. 

Figure 2.3 shows on an expanded scale the DMC results obtained using the aug-cc-pVTZ-CDF 

basis set.  Most significantly, it is seen that the DMC energy is more sensitive to the choice of 

Jastrow factor in the LA approach than in the T-move approach. With the LA procedure, when 

used with the aug-cc-pVTZ-CDF basis set, the two choices of Jastrow factors lead to a difference 

of 0.5 kcal/mol in the total DMC energies in the zero time step limit. The difference is slightly  

greater when using the trial function represented in the plane-wave basis set. With the T-move 

scheme, the t→0 DMC energies obtained using the two Jastrow factors agree to within the error 

bars, even though the energy differences are significant at non-zero time steps. We were unable 

to perform a stable DMC calculation with the LA approach using the trial function represented in 

terms of the augmented BFD basis set, although such calculations ran smoothly with the aug-cc-

pVTZ-CDF basis set.  The better convergence of the T-move procedure for dealing with the non-

locality of the pseudopotentials was also noted by Gurtubay and Needs67 in their quantum Monte 

Carlo study of the water monomer and dimer.

Of course, the performance of the various calculations for predicting energy differences 

is of more chemical interest than the total energies.  For this reason we have also calculated the 

binding energy of the water dimer and of the water-benzene complex. In the calculations of the 
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binding energy of the water dimer, the geometries of the water monomer and dimer were taken 

from MP2/aug-cc-pV5Z level optimizations. The binding energy of the water dimer for each 

method was calculated by subtracting twice the energy of the monomer from the energy of the 

dimer, with the results being reported in Table 2.1.4. The water-benzene calculations will be 

discussed in Section 4C.

Figure  2.1.2  -  DMC  energies  of  the  water  dimer  obtained  using  different  basis  sets  for 

representing  the  orbitals  in  the  trial  function,  two  choices  of  the  Jastrow  factors,  and  two 

strategies for dealing with non-locality of the pseudopotentials.
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Figure 2.1.3 - Energies of the water dimer on an expanded scale, from DMC calculations using 

trial functions represented in terms of the aug-cc-pVTZ-CDF basis set. 

The binding energies of water dimer obtained from the various DMC calculations agree 

to within the error bars. They are also in good agreement with the binding energies from prior 

all-electron and pseudopotential  DMC calculations,61 as well as from complete-basis-set limit 

CCSD(T)62 calculations.64 Somewhat  surprisingly,  even though the  trial  functions  employing 

orbitals expanded in terms of  the  augmented BFD basis set have much larger variances in the 

VMC step and much larger time step biases in the DMC step, they give, to within the statistical 
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errors, binding energies in agreement with those from the other calculations. However, it is not 

clear  whether  this  would also be the case for more complex systems for  which use of  trial  

functions with large variance may prove more problematical for DMC energy differences.

Table 2.1.4 - Calculated binding energy of water dimer.a

Methods Binding energy (kcal/mol)
DMC/avtz_T-move_Varmin

DMC/avtz_T-move_Emin

DMC/avtz_LA_Varmin

DMC/avtz_LA_Emin

DMC/BFD_T-move_Varmin

DMC/BFD_T-move_Emin

DMC/PL/BLIP_120_T-move_Varmin

DMC/PL/BLIP_120_T-move_Emin

DMC/PL/BLIP_120_LA_Varmin

DMC/PL/BLIP_120_LA_Emin

DMC/HF b

DMC/B3LYP b

CCSD(T) CBS limit

DMC/B3LYP c

DMC/B3LYP d

-5.15±0.18

-5.06±0.08

-5.23±0.15

-5.21±0.15

-5.00±0.15

-5.06±0.15

-5.15±0.18

-5.16±0.09

-5.16±0.18

-5.03±0.14

-5.02±0.18

-5.21±0.18

-5.02±0.05

-5.03±0.07

-5.07±0.07
a Results obtained by subtracting twice the DMC energy of the monomer from the DMC energy 

of the dimer.

bFrom all-electron calculations, Reference 62
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cFrom pseudopotential calculations using the locality approximation.

dFrom pseudopotential calculations using the T-move procedure, Reference 68

Up to this point all dimer binding energies were calculated by subtracting the energy of 

the water dimer from, the sum of energies of two isolated water monomers (strategy S1).  We 

also considered an alternative approach (designated S2), where the energy of the water dimer at 

large separation is  used in place  of the sum of the energies of the two monomers. (The S2 

approach was employed previously by Ma and co-workers in their of water-benzene.69) In the S1 

method the energies of the individual species are extrapolated to the zero time step limit, and 

these extrapolated results are used to calculate the zero-time-step binding energies. In the S2 

method, the zero time step binding energies were obtained by extrapolating the binding energies 

at different time steps. Here, we are interested in determining whether the errors due to the finite 

time step bias largely cancel in the S2 strategy.
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Figure  2.1.4 -  Binding  energy  of  the  water  dimer  calculated  using  the  DMC method  with 

different trial functions and strategies for calculating the reference energy of two monomers. All 

results obtained using the T-move procedure.

As  shown  in  Figure  2.1.4,  the  extrapolated  zero-time-step  energies  obtained  using 

different trial functions and strategies for each basis set are essentially identical within the error 

bars. With the S1 procedure, there is a large time step bias for the binding energy with the aug-

BFD basis set, while the time step bias is much smaller when using the aug-cc-pVTZ-CDF basis 

set. However, when using the S2 procedure to calculate the binding energy, most of the bias due 

to the use of finite time steps is  removed when using the aug-BFD basis set together with the 
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CASINO Dirac-Fock pseudopotential. This is most encouraging because it indicates that with the 

S2 procedure  one can use longer time steps and, perhaps also, that only one or two time steps 

may suffice, depending on the system of interest, greatly reducing the computational effort.

C. DMC results for the water-benzene complex

As a second test system, we have calculated the binding energy of the water-benzene 

complex using the geometry of Ref. 70.  The binding energy of the complex was calculated using 

as the reference a water-benzene dimer with a 12 Å separation between the O atom of the water  

molecule and the center of the benzene ring, and using the S2 strategy described in Section 2.1.3. 

The DMC calculations were run using 30,000 walkers, about 90,000 Monte Carlo steps, and for 

time steps of 0.005, 0.007, and 0.01 a.u., using the T-move procedure.  The CASINO Dirac-Fock 

pseudopotentials  were used on all  atoms. The trial  functions  were expanded in terms of HF 

orbitals calculated with the cc-pVDZ-CFD and the cc-pV5Z(sp)+2d-CDF basis sets described in 

Section 2. The DMC energies for the short and long distances are reported in Fig. 2.1.5 from 

which it is seen that the time-step error is significantly reduced in going from the cc-pVDZ-CDF 

to the cc-pV5Z(sp)+2d-CDF basis set for the expansion of the orbitals in the trial function.  The 

DMC values of the binding energy obtained with the cc-pVDZ-CDF and cc-pV5Z(sp)+2d-CDF 

basis  sets  are  -3.6(1)  and -2.9(2)  kcal/mol,  respectively,  with  the  later  value  being  in  good 

agreement with the -3.2 kcal/mol CCSD(T)-F1271 result of Ref.  72.  For comparison, we note 

that Ma and coworkers obtained a binding energy -2.9 kcal/mol using the DMC method together 

with a LDA trial function expanded in terms of planewave/BLYP functions, but employing a 

geometry slightly different from that used here.69
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Figure 2.1.5  - DMC energies of the benzene water complex obtained using different 

basis sets for representing the orbitals in the trial functions. vdz-CDF and v5z+2d-CDF refer to 

cc-pVDZ-CDF and  cc-pV5Z(sp)+2d-CDF basis  sets,  respectively.   All  results  were obtained 

using the T-move procedure.  
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2.1.5 Conclusions

In this study, we reported correlation consistent basis sets for H and B-Ne for use with 

Casino  Dirac-Fock  pseudopotentials  and  showed  that  these  perform well  in  coupled  cluster 

calculations.  The H, O, and C basis sets were tested in quantum Monte Carlo calculations on 

H2O,  (H2O)2,  and  water-benzene.  Although  it  is  common  practice  in  traditional  quantum 

chemistry  calculations  employing  pseudopotentials  to  use  basis  sets  with  relatively  small 

numbers of primitive GTOs, our results indicate that to reduce time step errors and to improve 

convergence of DMC calculations, it is desirable to use large contracted sets of primitive s and p 

functions.  We also found that the DMC energies obtained from the T-move procedure are less 

sensitive to the choice of Jastrow factor  than are the corresponding values from the locality 

approximation.   We note that the DMC method has recently been applied to obtain accurate 

interaction energies of water clusters up to the hexamer.73 The availability of the aug-cc-pVXZ-

CDF basis sets reported in the present study should facilitate quantum Monte Carlo calculations 

on significantly larger systems.
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2.2 EXPLORATION OF BRUECKNER ORBITAL TRIAL WAVE FUNCTIONS IN 

DMC CALCULATIONS

This work has been submitted to the Journal of Chemical Theory and Computation as M. J. 

Deible,  K.  D.  Jordan,  “Exploration  of  Brueckner  Orbital  Trial  Wave  Functions  in  DMC 

Calculations.”  M.J.D. performed the calculations. All authors contributed to the discussion.

2.2.1 Introduction

The  diffusion  Monte  Carlo  (DMC)  method9,74 is  capable  of  giving  exact  electronic 

energies within the fixed-node approximation.29,30 A trial wave function, generally taken to be a 

Slater  determinant  of  orbitals  from   density-functional  theory  (DFT)  or  Hartree-Fock  (HF) 

calculations,  is  used to enforce the fixed-node approximation.   This condition is  required to 

prevent the ground state wave function from collapsing on a Bosonic state.  If the trial wave 

function were to exactly describe the nodal surface for exchange of electrons, the DMC method, 

if used in all-electron calculations and run for sufficiently large number of moves and corrected 

for time step bias, would give the exact non-relativistic ground state energy.14  In general, trial 

functions employing a Slater determinant of DFT orbitals give lower total energies than do trial 

functions employing a Slater determinant of Hartree-Fock  orbitals, which implies that the use of 

DFT orbitals  provides a better  description of the nodal surface.16,69  In the present study, we 

explore  the  use  of  trial  functions  comprised  of  a  Slater  determinant  of  Brueckner  orbitals 

(BO).75,76 One might expect that such trial wave functions would give a nodal surfaces superior to 

a Slater determinant of DFT orbitals, as the Slater determinant of BOs is that with the maximum 

overlap with the exact wave function for the basis set employed.77
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There has been considerable discussion in the literature concerning the similarity  and 

differences  between  HF,  DFT,  and  Brueckner  orbitals.   Scuseria78 has  shown that  the  DFT 

equations can be derived through approximations made to the Brueckner equations.  Lindgren 

and Salmonson79 have argued that DFT and Brueckner orbitals are closely related.  Heßelmann 

and Jansen have shown that Brueckner orbitals offer an improvement over Hartree-Fock orbitals 

when calculating first-order intermolecular interaction energies,80 whereas DFT orbitals may or 

may not give an improved description of the first-order Coulomb and exchange energies, with 

the  performance  depending  on  the  functional  used  to  generate  the  orbitals.81  Jankowsi  et.  

al.82,83 calculated the distance between orbital subspaces, and based on this measure, concluded 

that DFT orbitals can differ appreciably from both HF and Brueckner orbitals.  An alternative 

method for testing the quality of various types of orbitals is how well they describe the nodal 

surface for exchange of electrons which can be evaluated by assessing their performance when 

used as trial functions for DMC calculations.  In this study, we investigate the performance of 

trial  functions  using  HF,  DFT,  and  Brueckner  orbitals  in  DMC calculations  on  a  series  of 

diatomic molecules and on a bent CO2
- ion to determine whether the use of Brueckner orbitals 

leads to lower DMC energies than obtained using trial functions comprised of DFT orbitals.

2.2.2 Methodology

The diatomic molecules  studied include BeO,62 N2,64 O2,64  F2,64  and CN,64  with the 

equilibrium geometries  being  taken  from the  respective  references.    To  obtain  dissociation 

energies, calculations were also carried out on the atoms in their ground electronic states.  For 

these test systems, both pseudopotential and all-electron calculations were carried out.  In the all-

electron  calculations  the orbitals  were expanded in terms  of  the  cc-pVTZ basis  set.84 In  the 
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calculations  using  pseudopotentials  for  all  species  other  than  Be  the  Trail-Needs  AREP 

pseduopotentials85 and basis sets of Xu et al.86 were used.  Specifically, for N, F, and C, the spd 

portions of the triple-zeta basis set of Xu et al. were used and for oxygen the sp portion of the 

quintuple basis set was combined with the d functions from the triple-zeta basis set.  For Be, the 

pseudopotential  and valence triple-zeta basis set  of Burkatzki,  Filippi,  and Dolg (BFD) were 

used.41  The CO2 calculations also made use of the Trail-Needs pseudopotentials85 and an 8s8p3d 

contracted Gaussian basis set formed by adding to the 6s6p portion of the quintuple-zeta basis set 

of Xu et al.86 two diffuse s and two diffuse p functions with exponents determined by dividing 

the  exponents  of  the  most  diffuse  primitive  functions  in  the  6s6p set  by  three  and  nine.  d 

functions with exponents of 0.5586, 0.2271, and 0.1024 and 1.2192, 0.4904, and 0.2053 were 

included for carbon and oxygen atoms, respectively, which are the d functions of the double and 

triple-zeta basis set of Xu et. al. and the d function of the aug-cc-pVDZ basis set of Xu et. al. 

scaled  by  a  factor  of  1.5.   The  hybrid  Becke3LYP87,88 functional  was  used  for  the  DFT 

calculations on the all-electron systems, and both the Becke3LYP and PBE089 functionals were 

used for the pseudopotential calculations of the diatomics.  The Brueckner orbitals were obtained 

from coupled-cluster  calculations  in  which  the  orbitals  are  rotated  so  as  to  eliminate  single 

excitations  to  all  orders.   For  one system, N2,  we also considered  a  trial  function  based on 

PBE90 orbitals  and also employed the more flexible  cc-pVQZ-g basis  set for the all-electron 

calculations.84  In addition to the diatomic test cases described above, we also considered CO2 and 

CO2
- with CO bond lengths of 1.215 Å and an OCO angle of 147°.  This geometry was chosen 

because earlier studies have shown that the anion, while bound (i.e., lying energetically below 

the  neutral  at  the  same  geometry)  is  non-valence  correlation  bound91 and  is  not  properly 

described with either the B3LYP, PBE, or PBE0 DFT functionals.  All open-shell systems were 
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described using spin-unrestricted orbitals.  The trial functions were generated using the Gaussian 

09 code,92  and the diffusion Monte Carlo calculations  were carried  out  using the CASINO 

code.48

The correction scheme of Ma et al.93 was used in the DMC calculations to account for 

electron-nuclear cusps in the all-electron calculations.  The DMC calculations were preceded by 

variational  Monte  Carlo  (VMC)  calculations  to  optimize  (via  energy  minimization)  the 

parameters in the Jastrow factors36 which include explicit electron-nuclear (e-n), electron-electron 

(e-e), and e-e-n terms.  The all-electron DMC calculations were carried out for time steps of 

0.001, 0.003, 0.005, and 0.007 a.u., and the resulting energies were extrapolated to zero time step 

by use of quadratic fits.  The calculations were carried out with 40,000 walkers and for sufficient 

number of steps so as to reduce the statistical errors in the extrapolated DMC energies of the 

diatomics and their atomization energies to under 0.3 and 0.5 kcal/mol, respectively.   The errors 

in  the  atomization  energies  are  defined  as  the  differences  between the  experimental  values, 

corrected for vibrational zero-point energy (ZPE), and the corresponding DMC results.  For N2, 

O2, F2, and CN,  the experimental atomization energy values and zero-point energies are taken 

from reference  94.   For  BeO, the experimental  atomization energy and ZPE are taken from 

cccbdb.nist.gov.

The parameters of the Jastrow factors for the diatomics with pseudopotntials and for the 

CO2 test system were optimized  via variance minimization.  Time steps of 0.005, 0.0075, and 

0.01 a.u. were used in the DMC calculations on the diatomic species with pseudopotentials, and 

time steps of 0.0125, 0.005, and 0.003 a.u. were used for the CO2 test system. Linear fits were 

used to extrapolate to zero time step.  The T-move procedure was used  in the pseudopotential 

calculations to correct for the localization error.35
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2.2.3 Results

Table 2.2.1  - Total energies from DMC calculationsa using Hartree-Fock, B3LYP, and 

Bruckner orbitals. 

Energy (a.u.)b

Species Hartree-Fock B3LYP Brueckner Brueckner(cc)c

Beryllium -14.6575(1) -14.6572(1) -14.6575(1) - 

Carbon -37.8296(2) -37.8301(2) -37.8296(2) - 

Nitrogen -54.5759(2) -54.5765(2) -54.5757(2) - 

Oxygen -75.0512(2) -75.0518(2) -75.0518(3) - 

Fluorine -99.7161(3) -99.7169(3) -99.7161(3) -99.7163(2)

N2 -109.5007(6) -109.5047(4) -109.5042(4) - 

O2 -150.2808(5) -150.2873(5) -150.2856(5) - 

F2 -199.4740(5) -199.4850(2) -199.4812(5) -199.4816(3)

BeO -89.8823(4) -89.8849(3) -89.8845(3) - 

CN -92.6668(5) -92.6888(5) -92.6876(5) - 
a Results extrapolated to dt=0 as described in the text.
b Statistical errors (one standard deviation) are given in parentheses.
c These  results  obtained using Brueckner  orbitals  obtained from coupled  cluster  calculations 
including core correlation.

The total energies from the all-electron DMC calculations on the diatomic species and 

associated atoms are summarized in Table 2.2.1.  For the atoms, DMC calculations with the 

Hartree-Fock, B3LYP, and Brueckner orbitals give total energies that essentially agree to within 

statistical error.  This is consistent with earlier studies16 that found that for atoms DMC energies 

were largely insensitive to whether DFT or HF orbitals are used for the trial functions.  The 

situation is quite different for the diatomics:  going from HF orbitals to B3LYP orbitals leads to 

an energy decrease from 1.63 kcal/mol for BeO to 13.8 kcal/mol for CN. The DMC energies 

obtained using B3LYP and Brueckner orbitals agree to within one standard deviation for N2 and 

BeO, but for O2, F2, and CN, significantly lower DMC energies are obtained when using B3LYP 
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orbitals in the trial function.  It should be noted that the use of spin-unrestricted calculations 

introduces spin contamination in the wave function.  This has a larger effect on the Hartree-Fock 

orbitals than it does for the B3LYP and Bruckner orbitals.  The largest spin contamination is 

found for the CN molecule, which has S2 expectation values of 1.158, 0.758, and 0.764 for the 

HF, B3LYP, and Brueckner orbital wave functions, respectively, compared to the exact value of 

0.750.  While using RHF rather than UHF orbitals can result in lower DMC energies for open-

shell systems,16,17 it would not change the qualitative result that lower DMC energies result when 

using B3LYP and Brueckner orbitals than when using HF orbitals (whether RHF or UHF), and 

that use of  B3LYP orbitals generally give a lower DMC energy, thus superior nodal surface, 

than use of Brueckner orbitals.  Our DMC calculations using Hartree-Fock and B3LYP orbitals 

for the atoms give slightly higher DMC energies than obtained by Per et al.16 using the same trial 

wave functions.   However,  for  the  diatomics,  Per  et  al's  DMC energies  are  lower  than  our 

energies by up to 2.4 kcal/mol.  These differences are due to the greater flexibility of the atomic 

basis sets used to represent the orbitals in the study of Per et al.  Indeed, for N2, our DMC energy 

using the trial function of B3LYP orbitals is 1.7 kcal/mol lower in energy when using the cc-

pVQZ-g rather than the cc-pVTZ basis set.

Table 2.2.2 – Errors in the atomization energies calculated using the DMC method with single 

determinant trial functions and different orbital choices.

Atomization energy error (kcal/mol)a

Species Hartree-Fock B3LYP Brueckner

N2 -9.52(45) -7.76(35) -7.07(35)

O2 -8.26(40) -4.94(40) -6.00(49)

F2 -11.97(49) -6.07(40) -7.45(49)
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BeO 3.47(29) 4.91(23) 4.47(27)

CN -17.08(36) -3.97(36) -3.90(36)

a Statistical errors (one standard deviation) are given in parentheses.

Figure 2.2.1 – Errors in the dimer atomization energies for different trial functions.

Table 2.2.2 and Figure 2.2.1 report the  errors in the calculated atomization energies as 

previously defined.  Consistent with the results discussed above for the total energies, the errors 

in the atomization energies tend to be smaller when calculated using either DFT or Brueckner 

orbitals  than  HF  orbitals,  with  the  errors  obtained  using  the  DFT orbitals  being  somewhat 

smaller.   The  exception  is  BeO,  for  which  the  DMC  calculations  using  a  Hartree-Fock 

determinant as the trial function give the smallest error in the atomization energy.  As seen from 

Table 2.2.2, of the molecules considered, this is the only one for which the DMC calculations 

overestimate the atomization energy.  The reason for this is well understood, namely, that the Be 
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atom has significant multiconfigurational character, which is important for describing its nodal 

surface in all-electron DMC calculations.33  Thus, using a single determinant trial function results 

in too high a value of the DMC energy of the Be atom and an overestimation of the atomization 

energy of BeO.

In  analyzing  these  results,  it  is  important  to  note  that  the  Brueckner  orbitals  were 

obtained from calculations using frozen 1s cores.  As a check on whether relaxing this constraint 

significantly impacts the DMC energies in the case of F2, we also carried out DMC calculations 

using Brueckner orbitals generated by correlating all electrons and using the cc-pCVTZ basis 

set84,95 which includes functions for correlating the core.   The error in the DMC value of the 

atomization energy  using the Brueckner orbitals generated correlating all electrons is essentially 

identical to that using Brueckner orbitals generated in the frozen-core approximation.

For all diatomic molecules considered, the single-determinant based DMC calculations 

are unable to achieve chemical accuracy (+1 kcal/mol) in the atomization energies regardless of 

the orbitals used. Part of the error is due to the limitations of the basis set used to represent the 

orbitals, but most of the error is due to the inadequacy of single Slater determinant trial functions 

for calculating atomization energies which has been noted several times in the past, and reflects 

the inadequacy of a single determinant trial function for describing the nodal surface regardless 

of  the  choice  of  orbitals.16,96,97 (In  the case  of  N2,  the  error  in  the  atomization  energy using 

B3LYP orbitals is reduced from -7.83 to -6.28 kcal/mol in going from the cc-pVTZ to the cc-

pVQZ-g basis set.  In contrast, the same atomization is obtained whether using PBE or B3LYP 

orbitals.)  Indeed, it has been found that significantly improved results are obtained by use of 

full-valence CASSCF trial functions, particularly when optimizing the CI coefficients, orbitals, 
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and Jastrow factors simultaneously.17 Also, it  has been shown that chemical accuracy can be 

achieved by using large trial functions from CI calculations employing natural orbitals.98
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Table 2.2.3 - Total energies from DMC calculationsa using Hartree-Fock, Becke3LYP , PBE0, 

and Bruckner orbitals with a pseudopotential.

Energy (a.u.)b

Species HF B3LYP PBE0 BD

N2 -19.8688(2) -19.8715(2) -19.8723(3) -19.8721(3)

O2 -31.8668(3) -31.8707(3) -31.8715(3) -31.8717(3)

F2 -48.2722(3) -48.2768(3) -48.2781(3) -48.2788(3)

CN -15.4266(2) -15.4476(2) -15.4480(2) -15.4478(2)

BeO -17.0119(3) -17.0142(3) -17.0146(3) -17.0149(3)

a Results extrapolated to dt=0 as described in the text.
b Statistical errors (one standard deviation) are given in parentheses.

We now consider the results obtained for BeO, CN, O2, F2, and N2 in the calculations 

employing pseudopotentials.  The total energies obtained from DMC calculations using various 

types of orbitals in the single determinant trial functions are summarized in Table 2.2.3. From 

this table it is seen that the DMC calculations using trial functions employing Brueckner orbitals 

give energies for the N2, O2, and F2 dimers lower than the Becke3LYP orbitals, but statistically 

similar results to those obtained using PBE0 orbitals. The total DMC energies for CN and BeO 

calculated using the three sets of orbitals agree to within statistical uncertainty.  This indicates 

that when pseudopotentials are used to eliminate the 1s core orbitals, Brueckner orbitals are more 

effective at describing the nodal surfaces than are Becke3LYP orbitals and are equally effective 

as PBE0 orbitals.
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Table 2.2.4 – DMC energies (a.u.) of CO2 and CO2
- at an OCO angle of 147o.a,b

Orbitals Anion Neutral Energy difference (eV)

B3LYP -37.6811(2) -37.6691(2) -0.327(8)

PBE0 -37.6809(3) -37.6696(2) -0.31(1)

PBE -37.6781(3) -37.6691(2) -0.24(1)

BD -37.6825(2) -37.6688(2) -0.378(8)

HF -37.6745(2) -37.6608(2) -0.373(8)

a The CO bond lengths are set to 1.215 Å.
bStatistical errors (one standard deviation) are given in parentheses .

Table 2.2.4 summarizes the results of the DMC calculations on CO2 and CO2
-, as well as 

the energies of the various single determinant wave functions.  It is seen from the table that for  

neutral  CO2,  the DMC calculations  using trial  functions  of  DFT orbitals  (B3LYP, PBE0,  or 

PBE), give comparable or slightly lower energies than obtained using a trial function represented 

in  terms of Brueckner orbitals.   In contrast,  for the anion,  the DMC calculations  using trial 

function in terms of Brueckner orbitals  give appreciably lower energies than the calculations 

using trial functions represented in terms of DFT orbitals, with the energy difference being much 

more pronounced for the case of PBE than for the B3LYP or PBE0 orbitals.

2.2.4 Conclusion

In summary, we have demonstrated that DMC calculations using trial functions with a 

single  Slater  determinant  of  Brueckner  orbitals  gives  atomization  energies  of  a  set  of  test 

diatomics much closer to experiment than DMC calculations employing Slater determinants of 

HF orbitals.   When pseudopotentials are employed the DMC energies obtained using Brueckner 

orbitals are essentially identical to  those employing PBE0 orbitals and give lower energies than 
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those using Becke3LYP orbitals.  It is well known that DFT methods do not properly describe 

certain types of anions, and for these there can be a significant advantage to using Brueckner 

rather than DFT orbitals in the trial function.  For example, for a bent CO2
- test system, the DMC 

calculations using as a trial function Slater determinant of Brueckner orbitals give a lower energy 

than when employing DFT orbitals thereby establishing that the Slater determinant of Brueckner 

orbitals better describes the nodal surface in this case.
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3.0 WEAKLY CORRELATED SYSTEMS

3.1 BENCHMARK STUDY OF THE INTERACTION ENERGY FOR AN (H2O)16 

CLUSTER: QUANTUM MONTE CARLO AND COMPLETE BASIS SET LIMIT MP2 

RESULTS

This work has been published as F. Wang, M.J. Deible, K.D. Jordan, “Benchmark Study of the 

Interaction Energy of an (H2O)16 Cluster: Quantum Monte Carlo and Complete Basis set Limit 

MP2 results,”  J. Phys. Chem. A, 2013, 117 (32), 7606.  F.W. Performed the many-body and 

force-field calculations.  M.J.D. Performed the QMC calculations.  All authors contributed to the 

discussion.

3.1.1 Introduction

In  recent  years,  much  attention  has  been  devoted  to  the  calculation  of  accurate  interaction 

energies of water clusters.99–102  The results of these studies have proven especially valuable in 

testing and refining force fields for describing water and for evaluating the performance of more 

approximate electronic-structure methods for describing hydrogen bonding.  In this work, we 

demonstrate that the quantum Monte Carlo method is a viable method for predicting accurate 

interaction  energies  of  (H2O)n clusters  for  which  large-basis  set  supermolecule 

CCSD(T)103 calculations would be computationally prohibitive.  As our test system, we choose 
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an (H2O)16 cluster that has been the subject of four recent theoretical studies.73,104–106  For this 

cluster, we calculate the binding energy using the diffusion Monte Carlo (DMC) and complete-

basis-set (CBS) limit MP2 methods.  The resulting binding energies are compared with the ab 

initio results of Góra et al.105 as well as with the results for several model potentials.

3.1.2 Test system and Methodology

Figure 3.1.1 - The 4444-a isomer of (H2O)16

                                        

The (H2O)16 cluster considered in this study is depicted in Figure 3.1.1.  It is comprised of fused 

water cubes and is designated 4444-a using the nomenclature of Yoo et al.104 Although such an 

arrangement of water molecules is not realized in any of the ices of water and is highly unlikely 

to be sampled in liquid water, it can be realized in appropriate diameter confining pores, e.g., in a 

(14, 0) carbon nanotube.107 The geometry of the 4444-a cluster was optimized at the MP2/aug-cc-

pVTZ84 level by Yoo et al.,104 and their geometry was employed in the present study as well as in 

the study of Góra et al.,105 who estimated  MP2 and CCSD(T) level interaction energies using an 
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N-body decomposition  procedure.108 The  4444-a  cluster  was  also  investigated  by  Wang  and 

coworkers using their analytical WHBB potential73 which also exploits  N-body decomposition. 

Levenentz et al. employed the 4444a clusters in their study evaluating the performance of several 

density functional methods.109

The quantum Monte Carlo calculations of the interaction energy of 4444-a followed the 

usual two-step procedure of first doing a variational Monte Carlo (VMC) calculation followed by 

diffusion Monte Carlo calculations.74 Specifically, for the geometry of interest,  a B3LYP110,111 

calculation was carried out using a basis set formed by combining the sp functions from the aug-

cc-pV5Z-CDF  basis  set86 of  Xu  et  al. augmented  on  oxygen  with  the  d functions  and  on 

hydrogen  with  the  p functions  from the  aug-cc-pVDZ-CDF  basis  set  of  these  authors.  In 

addition,  the  exponents  of  the  most  diffuse  d functions  on  oxygen,  and the  most  diffuse  p 

function  on  hydrogen,  were  multiplied  by  a  factor  of  1.5  to  minimize  linear  dependency 

problems.  The  Slater  determinant  of  B3LYP  orbitals  was  then  multiplied  by  a  three-term 

(electron-nuclear,  electron-electron,  and  electron-electron-nuclear)  Jastrow  factor.36  The 

parameters in the Jastrow factor were optimized by VMC minimization of the variance in the 

energy.  The VMC wave function was then used as a trial function in the DMC calculations. The 

Dirac-Fock AREP pseudopotentials85 were employed on the H and O atoms in each of the steps 

described above. The DMC calculations made use of the T-move procedure35 to correct for errors 

due to non-locality of the pseudopotentials and were carried out for time steps of 0.0025, 0.005, 

and 0.0075 au. In order to calculate the binding energy of 4444-a, DMC calculations were also 

carried out on the water monomer using the MP2/aug-cc-pVTZ104 optimized geometry. Sufficient 

numbers of moves were employed in the DMC calculations so that the statistical error in the 

extrapolated zero time-step binding energy was less than 1 kcal/mol.
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In order to obtain the CBS-limit MP2-level interaction energy for the  4444-a cluster, 

Møller-Plesset  perturbation112 theory  with  density  fitting113,114 (DF-MP2)115 calculations  were 

carried  out  with  the  aug-cc-pVDZ,  aug-cc-pVTZ,  and  aug-cc-pVQZ  basis  sets,43,84 with 

extrapolation  to  the  CBS  limit  being  accomplished  using  the  approaches  of  Feller116 and 

Helgaker  et  al.117 for  the  Hartree-Fock  and  correlation  contributions,  respectively.   These 

calculations did not apply a correction for basis set superposition error (BSSE).  In addition, one- 

through  three-body  energies  were  calculated  using  the  CCSD(T)-F12b  method,118 and  one- 

through  four-body  energies  were  calculated  using  the  DF-MP2-F12  method.119  The  VQZ-

F12120 basis set was used for the F12 calculations of the one- and two-body energies, and the 

VTZ-F12 basis set120 was used in the F12 calculations of the three- and four-body energies.  The 

n-body contributions were corrected for BSSE using the counterpoise method.121 The MP2 and 

CCSD(T) calculations were carried out in the frozen-core approximation.

The B3LYP calculations for the generation of the trial functions were carried out using 

Gaussian 09,92 the quantum Monte Carlo calculations were carried out using the CASINO48 code. 

The MP2 and CCSD(T) calculations were performed using MOLPRO.122
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3.1.3 Results

Table 3.1.1 - Binding energy (kcal/mol) of the 4444-a isomer of (H2O)16 obtained using different 

theoretical methods.

Method Binding energy
DMC -165.1(8)
MP2/CBS -164.1
MP2 (Ref. 105)a -161.6
CCSD(T) (Ref. 105)b -162.8
CCSD(T) (Ref. 104) -171.1
M06-2X (Ref. 123) -172.0
M06-L (Ref. 123) -164.5

a Estimated in Ref. 105 using one- and two-body CBS-limit MP2 energies and three- and 

four-body MP2 energies calculated with the aug-cc-pVDZ basis set

b Estimated in Ref. 105 as described in footnote a except that the CCSD(T) energies are 

used for the one- to three-body energies, and MP2 energies are used for the four-body energy.
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Figure 3.1.2 - DMC results of the binding energy of 4444-a. Binding energies at each time step 

are shown as solid blocks with error bars.  The dashed line shows the linear extrapolations.

Figure 3.1.2 reports the results of the DMC calculations of the binding energy of 4444-a, 

and  Table  3.1.1  summarizes  the  binding  energies  obtained  using  the  different  theoretical 

methods.  The DMC value of the binding energy obtained from a linear fit to the results at the 

three time steps and extrapolation to zero time step is 165.1(8) kcal/mol, which is very close to 

our CBS-limit MP2 result of -164.1 kcal/mol.  (A quadratic fit to the DMC data gives a binding 

energy greater in magnitude but with a much larger error bar.) Both the CBS-limit MP2 and 

DMC values of the binding energy are slightly larger in magnitude than the MP2 and CCSD(T) 

estimates (-161.6 and -162.8 kcal/mol,  respectively)  of Góra  et al.105  The CCSD(T) binding 

energy  of  Góra  et  al. was  obtained  by  combining  CBS-limit  CCSD(T)  one-  and  two-body 

energies with CCSD(T) three-body and MP2 four-body energies both calculated using the aug-
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cc-pVDZ basis set.  The MP2 interaction energy of Góra et al. was obtained in a similar manner,  

except that MP2 energies were used for the one- through four-body contributions.

Table 3.1.2 - Many-body interaction energies (in kcal/mol) of 4444-a.

Ab initio Present Study Ab Initio Ref. 105 Model potentials
Contribution HFa MP2b CCSD(T)c MP2d CCSD(T)e TTM3-F AMOEBA WHBB

One-body 17.56 7.12 7.10 7.53 7.42 7.52 8.85 7.50
Two-body -74.66 -133.95 -134.67 -134.37 -136.93 -147.83 -130.20 -134.00
Three-body -34.41 -34.12 -32.71 -33.89 -32.42 -20.48 -36.63 -32.65
Four-body -0.73 -0.89 -0.92 -0.83 -2.72 -0.83

Five-body 0.38 0.28 0.87 0.28

N > 6 -1.08 -0.02 -0.17 -0.02

Net -92.94 -164.14 -161.65 -162.85 -161.36 -159.99 -159.74
a One- and two-body energies calculated using the VQZ-F12 basis set, and three-, four-, and five-

body energies  calculated using the VTZ-F12 basis set.  The net interaction energy is at the HF/CBS level.  

The N-body energies include the couterpoise correction for BSSE.

b One- and two-body energies are at DF-MP2-F12/VQZ-F12 level, three- and four-body energies 

are at DF-MP2-F12/VTZ-F12 level, and the net interaction energy is at the DF-MP2/CBS level using a 

supermolecular calculation.  The five- and higher-body interaction energy obtained from the DF-MP2 

calculations is -2.30 kcal/mol.  The N-body energies include the counterpoise correction for BSSE.

 c One- and two-body energies calculated using the CCSD(T)-F12/VQZ-F12 method,  three-body 

energy  calculated  using  the  CCSD(T)-F12/VTZ-F12  method.   The  N-body  energies  include  the 

counterpoise correction for BSSE.

d  One- and two-body energies from CBS-limit MP2 calculations, with the three- and four-body 

energies being calculated at the MP2/aug-cc-pVDZ level.

e  One- and two-body energies from CBS-limit CCSD(T) calculations, three-body and four-body 

energies from CCSD(T)/pVDZ the MP2/aug-cc-pVDZ calculations, respectively.

f  Using the WHBB water model (fifth-order fit for the three-body energies with the 5-6 cutoff ) of 

Ref. 124.
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Table  3.1.2  reports  the  N-body  contributions  to  the  interaction  energy  of  4444-a 

calculated  using  different  theoretical  methods.   For  the  one-,  two-,  three-,  and  four-body 

energies, our DF-MP2 results are close to the MP2 results of Góra et al.105  The sum of our one-, 

two-, three-, and four-body DF-MP2 energies is -161.84 kcal/mol compared to our CBS-limit 

DF-MP2 value of -164.1 kcal/mol for the net interaction energy.  This leads us to conclude that 

at the MP2 level of theory, the five- and higher-body interactions contribute about -2.3 kcal/mol 

to  the  net  interaction  energy of  4444-a.   Table  3.1.2  also  lists  the  Hartree-Fock interaction 

energies  through five-body contributions.   The MP2 and Hartree-Fock methods  give similar 

values of the three- and four-body interaction energies as expected based on previous studies of 

water  clusters.125–127  At  the  Hartree-Fock  level  of  theory,  the  five-body  energy  is  only  0.4 

kcal/mol and the six- and higher-body energies combine to -1.1 kcal/mol.  Assuming that the 

value of the five-body energy at the MP2 level is close to the Hartree-Fock result, this would 

imply that the n > 6 body interactions contribute -2.7 kcal/mol to the net interaction energy in the 

supermolecule MP2 calculations. 

Our CCSD(T)-F12b value for the two-body energy is -134.67 kcal/mol, 2.26 kcal/mol 

smaller in magnitude than the CCSD(T) result of  Ref. 105 which was obtained by extrapolating 

the results obtained using the aug-cc-pVTZ and aug-cc-pVQZ basis sets.  To understand the 

source of this discrepancy we examined the sensitivity of the MP2 and CCSD(T) values of the 

binding energy of the water dimer to the procedure used to extrapolate to the complete basis set  

limit.  Specifically, we did two-point extrapolations using the results using the aug-cc-pVTZ and 

aug-cc-pVQZ basis sets and three-point extrapolations  using the results of the aug-cc-pVTZ, 

aug-cc-pVQZ, and aug-cc-pV5Z basis sets.  The former extrapolation procedure is that used in 

Ref.  105. In addition, the dimer binding energy was also calculated using the MP2-F12/VQZ-
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F12 and CCSD(T)-F12b/VQZ-F12 methods.  The three-point extrapolated binding energies at 

both the MP2 and CCSD(T) levels are close to their MP2-F12 and CCSD(T)-F12b counterparts, 

leading us to conclude that these results are indeed close to their CBS-limit values. Whereas 

essentially  the  same value  of  the  binding  energy is  obtained  from the  two-  and  three-point 

extrapolation methods when using the MP2 method, the dimer binding obtained using the two-

point extrapolation procedure is about 0.05 kcal/mol larger in magnitude than the value obtained 

using the three-point extrapolation procedure when using the CCSD(T) method.  Thus, it appears 

that the ~2.3 kcal/mol difference between the CCSD(T) two-body energy of 4444-a obtained in 

this study and that reported in Ref. 105 is mainly the result of the inadequacy of using only the 

aug-cc-pVTZ and aug-cc-pVQZ basis sets in the extrapolation to the CBS limit in Ref. 105

Reference  104 reported the total energy of 4444a at the CCSD(T)/aug-cc-pVTZ level of 

theory, and, to obtain the corresponding interaction energy we subtracted 16 times the energy of 

the monomer obtained at the same level of theory.  The resulting CCSD(T) interaction energy is 

much larger (~7 kcal/mol) in magnitude than that obtained in Ref. 105 and in the present study. 

This is a consequence of the sizable BSSE due to the use of the aug-cc-pVTZ basis set.  Table 

3.1.1 also includes the results of DFT calculations using the M06-2X and M06-L functionals 

taken from Ref. 123, using the jun-cc-pVTZ basis set.128  The authors of that study concluded 

that the M06-2X functional performed the best for calculating binding energies of water clusters. 

However, this conclusion was based on comparison with the results of CCSD(T) calculations of 

Ref.  104, which, as noted above, considerably overbinds due to BSSE. In fact, it is the M06-L 

functional that gives a binding energy closest to our DMC result.

Table  3.2.2  also  includes  results  obtained  using  the  AMOEBA,129 TTM3-F,130 and 

WHBB124 water models.  It is seen that while the AMOEBA model underestimates the magnitude 
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of  the  two-body  interaction  energy  of  4444-a  by  nearly  2  kcal/mol,  it  overestimates  the 

magnitude  of  the  three-  and  four-body  interaction  energies  by  about  4.2  and  2.8  kcal/mol, 

respectively.   This  is  consistent  with  an  earlier  observation  that  the  AMOEBA  model 

overestimates polarization.131 The underestimation of the net two-body interaction energy in the 

AMOEBA  model  is  due,  in  part,  to  its  neglect  of  charge-transfer.  The  TTM3-F  model 

overestimates  the magnitude of the two-body energy by 13 kcal/mol and underestimates  the 

magnitude  of  the three-body energy by a  comparable  amount.  The TTM3-F and AMOEBA 

models give negligible contributions for the six- and higher-body interaction energies, although 

our MP2 calculations indicate these are sizable (~-2.7 kcal/mol).

We  now  turn  to  the  results  for  the  WHBB  model  which  employs  the  Partridge-

Schwenke132 one-body potential and two- and three-body potentials fit to CCSD(T)/aug-cc-pVTZ 

energies at a large number of geometries. The N > 4 body contributions in the WHBB model are 

described using the TTM3-F force field. The WHBB model (fifth-order fit for the three-body 

energies with the 5-6 cutoff)124 gives a net interaction of energy of 4444-a about 4.4 kcal/mol 

smaller in magnitude than our supermolecular DF-MP2 and DMC (linear extrapolation) values. 

Comparison of the individual  N-body contributions  from the WHBB model  with those from 

CCSD(T)  calculations  (Table  2.1.2)  reveals  that  1.2  kcal/mol  of  discrepancy  of  the  net 

interaction energies obtained with these two approaches derives from the one- through three-

body contributions  which should be better  described in our study due to the use of the F12 

procedure with the F12-VQZ basis set. The remaining ~3 kcal/mol discrepancy between the net 

interaction energy from the WHBB model and the net interaction energies from our MP2 and 

DMC calculations is due to fourth- and higher-order interactions that are not recovered by the 

TTM3-F model used by the WHBB potential to describe these contributions.  Calculating the full 
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four-body energy of 4444-a at the CCSD(T)-F12b/VTZ-F12 method would be very demanding 

computationally.   However,  we  did  carry  out  CCSD(T)-F12b/VTZ-F12  calculations  of  ten 

tetramers extracted from 4444-a, and, for these tetramers, the values of the four-body interaction 

energies tend to be more negative when calculated with the CCSD(T)-F12b/VTZ-F12 method 

than  with  the  MP2-F12/VTZ-F12 method,  with  the  largest  difference  being  0.005 kcal/mol. 

Based on these results, we conclude that the CBS-limit CCSD(T) four-body energy of 4444-a 

could be a few tenths of a kcal/mol larger in magnitude than the corresponding MP2 result and 

that five- and higher-body contributions are the major cause of the difference between the net 

interaction energies from the WHBB model and our DMC result.

Figure 3.1.3 - Trimer extracted from 4444-a, used for energy decomposition analysis.
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Table 3.1.3 - Contributions to the three-body energy (in kcal/mol) for the water trimer 

shown in Figure 3.1.3.

Contributions Energya

Exchange -0.25
Inductionb -1.39
    Charge-transferc -0.25
     Polarizationc -0.89
     δ(HF) -0.25
Dispersion 0.13
NET -1.51

a Calculated with the three-body SAPT(DFT) method.45  bThe induction and dispersion energies include the exchange-

induction and exchange-dispersion, respectively.   Also, the δ(HF) contribution of -0.25 kcal/mol has been absorbed into the 

induction term.  cThe three-body polarization energy was obtained by subtracting the ALMO-EDA three-body charge-transfer  

energy from the three-body induction energy.

In interpreting these results, we note that the TTM3-F and AMOEBA models, like most 

other polarizable force fields for water, describe the three- and higher-body interactions derive 

solely in terms of polarization. In fact, charge-transfer, exchange, and dispersion interactions, as 

well as various cross terms between these, all contribute to the three- and higher-body interaction 

energies.  To some extent, exchange-polarization can be accommodated in an effective manner 

via the Thole-type133 damping used in  the  TTM3-F and AMOEBA force fields.  Table  3.1.3 

reports the exchange induction, polarization, charge-transfer, and dispersion contributions to the 

three-body energy for a water trimer (shown in Figure 3.1.3) that was extracted from 4444-a. 

The  three-body  induction,  exchange,  and  dispersion  (including  exchange-dispersion) 

contributions calculated using the three-body SAPT(DFT)134 method are -1.14, -0.25, and 0.12 

kcal/mol, respectively.  Here the induction contribution includes both polarization and charge 

transfer,  as well  as their  cross terms with exchange.   Using an ALMO-EDA135 analysis,  the 

polarization and charge-transfer components of the induction energy are estimated to be -0.89 

68



and -0.25 kcal/mol,  respectively.   Although the dissection of induction  into polarization and 

charge-transfer components is sensitive to the procedure used, it is clear that the charge-transfer 

contribution to the three-body energy of this trimer is sizable.  Based on the results of the SAPT 

and ALMO-EDA calculations, we conclude that polarization accounts for only about 75% of the 

net three-body energy of the selected trimer.  Thus, it is not surprising that force field models 

that  treat  only  the  polarization  part  of  the  N > 3  body  interactions  are  inadequate  for 

quantitatively describing the many-body interactions in the 4444-a cluster.  Indeed, it would be 

fortuitous  if  a  force  field  including  only  polarization-type  many-body  interactions  were  to 

quantitatively reproduce the CCSD(T) value of the three-body energy.

The  fact  that  the  six-  and  higher-body  interaction  energies  from  the  TTM3-F  and 

AMEOBA models  are  only  -0.02  and -0.17  kcal/mol,  respectively,  while  the  corresponding 

result  from  the  Hartree-Fock  calculations  is  -1.08  kcal/mol  indicates  that  the  N > 6-body 

exchange  and/or  charge  transfer  interactions,  which  are  treated  explicitly  in  the  simple 

polarizable force field models,  are significant  in 4444a. As noted above, the  N = 6-16-body 

interactions combined appear to be about twice as important in the MP2 than in the Hartree-Fock 

calculations, which raises the possibility that cross terms involving dispersion also play a non-

negligible role. 

In  summary,  for  an  (H2O)16 cluster  that  has  been  the  subject  of  four  other  recent 

theoretical  studies,  we find that  CBS-limit  MP2 calculations  give a  binding energy of about 

-164.1 kcal/mol, 2.5 kcal/mol larger in magnitude than the N = 1~4 -body MP2 result of Góra et 

al.105  Our DMC calculations give an interaction energy of  ≈ -165 kcal/mol, as compared to 

the -162.8 kcal/mol  N = 1-4 -body CCSD(T) result of Góra et al.   Our calculations give the 

surprising result that the  N > 5-body contributions are significant, being  ≈  -2.3 kcal/mol at 
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the MP2 level.  Based on the results of our DMC calculations, it appears that the  N > 5 body 

interactions may be even more important when high-order correlation effects are included. The 

ab initio-based WHBB model of Bowman and coworkers124 gives an interaction energy of the 

4444-a isomer of (H2O)16, about 4.4 kcal/mol smaller in magnitude than the interaction energies 

obtained from our MP2 and DMC calculations.  We conclude that the N > 5-body interactions 

are more important than indicated by the WHBB model.  

Finally, we note that converging the DMC calculations reported in this study were carried 

out using 128 cores on a local computer cluster.  Given the O(N3) scaling and high parallelization 

of the DMC method, it is clear that the DMC approach can be used to obtain accurate interaction 

energies  of  much  larger  water  clusters  for  which  large  basis  set  supermolecule  CCSD(T) 

calculations would not be feasible.
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3.2 THEORETICAL STUDY OF THE BINDING ENERGY OF A METHANE 

MOLECULE IN A (H2O)20 DODECAHEDRAL CAGE

This work has been published as M.J. Deible, O. Tuguldur, K.D. Jordan, “Theoretical Study of 

the Binding Energy of a Methane Molecule in a (H2O)20 Dodecahedral Cage,” J. Phys. Chem B, 

2014, 118 (28),8257.  MJD performed the DMC and many body calculations.  OT performed the 

three-body SAPT calculations.  All authors contributed to the discussion.

3.2.1 Introduction

It  is  estimated that  there are about  1016  Kg of methane trapped in methane hydrate clathrate 

deposits  on  the  ocean  floor  and  in  the  permafrost.136  As  a  result,  methane  hydrate  has  attracted 

considerable attention as a possible source of natural gas and because of the environmental consequences 

of its decomposition;  the later concern derives from the fact that CH4 is a potent greenhouse gas.

The most common form of methane hydrate crystal has a type I hydrate structure, with the unit 

cell consisting of two 512 and six 51262 water cages,137,138 with a methane molecule in the center of each 

cage.  The 512 cage has a dodecahedral structure, while the 24 molecule 51262 cage has 12 pentagonal faces 

and  two  opposing  hexagonal  faces.   Numerous  computational  studies  have  been  carried  out  on  the  

properties of methane hydrate crystal (for example, see reference 139 and references therein) as well as on 

the  CH4@(H2O)20 gas-phase  cluster  with  a  methane  encapsulated  in  an  (H2O)20  dodecaheral  cage.140–

143  The  isolated  CH4@(H2O)20 system  has  been  studied  using  a  wide  range  of  electronic-structure 

methods,  with  various  dispersion-corrected  density  functional  theory  (DFT)  methods  giving  binding 

energies between -4 and -7 kcal/mol.140–143  The complete-basis-set (CBS) limit MP2 binding energy has 

been estimated to be -6.1 kcal/mol.140  However, the extrapolation to the CBS limit in Ref. 140 was done 

using energies obtained with only the aug-cc-pVDZ and aug-cc-pVTZ basis sets, 84 a strategy which is 
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known to be inadequate.144  In the force field studies of crystalline methane hydrate, it has generally been 

assumed that three- and higher-body interactions are not important for describing the interaction of the  

methane molecule with the water cage, although, in a paper from our group, it was reported that inclusion 

of polarization effects significantly impacts the thermal conductivity.145  

The lack of agreement of the various theoretical results for the stability of a methane molecule in  

the (H2O)20 cage and the paucity of information on the role of three-body interactions on the binding of  

the methane in the water cage has motivated us to undertake diffusion Monte Carlo and near CBS-limit  

MP2 and MP2C119,146 calculations of the binding energy as well as to calculate the two- and three-body 

contributions to the methane-(H2O)20 binding energy at  various levels of  theory,  including CCSD(T)-

F12,118,147 DF-MP2-F12,119 DF-MP2C-F12,119,146 and symmetry-adapted perturbation theory (SAPT).148–150  

3.2.2 Computational details

The dodecahedral water cage has 30026 symmetry distinct isomers with different arrangements 

of the protons.151  In the present  study,  we employ the lowest  energy isomer identified by Kirov et. 

al152 which corresponds to structure 15 in a  study by Wales and Hodges. 153  The geometry of the empty 

water  cage  and of  the  isolated  methane  molecule  were  optimized  using  second-order  Møller-Plesset  

theory112 with  density  fitting  (DF-MP2)115 together  with  the  aug-cc-pVDZ  basis  set.   The  methane 

molecule  was  then  placed  in  the  water  cage  with  the  carbon  located  at  the  cage's  center,  and  the  

orientation of the methane was optimized at the M06-2X154/aug-cc-pVDZ level of theory, keeping all 

other degrees of freedom frozen.  The resulting geometry parameters are similar to those of earlier  ab 

initio studies of CH4@(H2O)20,140 and are reported in the supporting information.  These geometries were 

used for all subsequent calculations.  The optimized structure of CH4@(H2O)20 is shown in Figure 3.2.1.

Net interaction energies were calculated using:

4 2 20 2 20int @( ) ( ) 4CH H O H O CHE = E E E− − (3.2.1)
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The DFT calculations made use of the BLYP,110,155 M06-2X,154 PBE,90 and PBE0156  functionals 

together with the aug-cc-pVTZ basis set and density fitting. The PBE0 functional is a hybrid functional  

with 25% exact exchange,  and M06-2X is a hybrid meta functional with 54% exact exchange.  The  

BLYP, PBE, and PBE0 calculations were carried out with and without the D3 dispersion correction of 

Grimme et al.157  In addition, supermolecule calculations were carried out using the DF-MP2 and DF-

MP2C-F12146,158 methods,  where DF refers to the use of density fitting,113,114 and F12118,119,147 refers to an 

explicitly correlated method that give energies that would otherwise require much larger Gaussian basis  

sets.  The dispersion energy at the MP2 level can be shown to be equivalent to the use of uncoupled  

Hartree-Fock (HF) monomer polarizabilities in the Casimir-Polder expression.146  The MP2C method 

replaces the uncoupled HF polarizabilites in the MP2 contribution to the dispersion energy with coupled 

Kohn Sham polarizabilities and, thus, can yield accurate interaction energies for systems for which the  

MP2 method fares poorly.146 The DF-MP2C-F12 calculations were carried out using the aug-cc-pVTZ 

basis set.84  For the DF-MP2 calculations, complete basis-set-limit results were obtained by extrapolating 

the energies from calculations using the aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets.84 The 

methods of Feller116 and Helgaker et al.117 were used for extrapolation of the Hartree-Fock and correlation 

contributions, respectively. The interaction energies calculated using the various DFT and wavefunction 

methods listed above were corrected for  basis set  superposition error  (BSSE) using the counterpoise  

method.121  These calculations were carried out using the MOLPRO122 code.

The diffusion Monte Carlo (DMC) method was also used to obtain an accurate value of the net 

binding energy.  For the trial wave functions, Slater determinants of B3LYP110,111 orbitals were generated 

using  the  Trail-Needs  pseudopotential85 on  all  atoms and the  valence  triple-zeta  basis  sets  of  Xu et 

al.86 without the f functions or supplemental diffuse functions.  These basis sets were designed for use 

with  the  Trail-Needs  pseudopotentials.   The  Slater  determinants  were  combined  with  Jastrow 

factors36 with electron-electron, electron-nucleus, and electron-electron-nucleus terms, optimized via the 

variational Monte Carlo (VMC) procedure with variance minimization.  The trial functions impose the 

fixed-node  approximation,  which  should  cause  a  negligible  error  in  the  binding  energy.   The  T-

73



move35 scheme was used to account for the non-locality of the pseudopotentials.  Time step bias was 

removed by use of three time steps of 0.0025 a.u., 0.005 a.u., and 0.0075 a.u. for extrapolation to zero 

time step.  The B3LYP calculations for the generation of the trial function were carried out with Gaussian  

09,92 and the DMC calculations were carried out with the CASINO48 code.

The two- and three-body energies were calculated using:

   ( ) ( ) ( )j
2ΔE = E m, j E m E j− −                                     (3.2.2)

and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j,k
3ΔE = E m, j,k E m, j E m,k E j,k + E m + E j + E k ,− − −             (3.2.3)

where  m refers to the methane molecule, and  j and  k refer to water monomers. Because each 

monomer was held to a rigid geometry, there is no one-body contribution.  The two- and three-body 

contributions to the binding energy were calculated at the CCSD(T)-F12b118 and DF-MP2-F12119 level 

with the VTZ-F12120 basis set as well as with each of the density functional methods considered using the  

aug-cc-pVTZ  basis  set.   The  two-  and  three-body  energies  were  corrected  for  BSSE  using  the  

counterpoise method.  The two-body contribution was also calculated using the DF-MP2c-F12 method 

together with the VTZ-F12 basis set.

The two- and three-body energies were dissected into physical contributions by use of the DF-

DFT-SAPT148 and HF-based SAPT149,150 methods, respectively.  The DF-DFT-SAPT and HF-based SAPT 

calculations were carried out using the aug-cc-pVTZ basis set and aug-cc-pVDZ basis set respectively  

and, by design, are free of BSSE.  The two-body SAPT calculations dissect the net two-body energy into  

electrostatics,  exchange,  induction,  exchange-induction,  dispersion,  and  exchange-induction 

contributions.  There is also a so-called δHF contribution which we combine with induction and exchange 

induction to obtain an estimate of the net induction.  For the two-body DF-DFT-SAPT calculations, the 

PBE0 functional156 was used with an asymptotic correction for the ionization potential.  The adiabatic 

local  density  approximation (ALDA)159 kernel  was  used  in  the  calculation of  the  response  functions 

employed to evaluate  the dispersion contribution.   The three-body SAPT energies  include exchange,  
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induction,  exchange-induction,  dispersion,  and  exchange-dispersion  contributions.   There  are  both 

second- and third-order contributions to the three-body induction  contribution, and, again, there is a δHF 

correction which we incorporate in the net induction.

In calculating the net two-body SAPT contributions, two different strategies were pursued, one 

following the usual approach which involves summing the contributions for each methane-water dimer in 

the CH4@(H2O)20 complex and the second treating the (H2O)20 cluster as a single molecule.  For the first 

strategy, experimental IPs for methane and H2O were used for the asymptotic correction.  For the second 

strategy,  the  experimental  IP  of  methane  was  again  used,  but  the  Hartree-Fock  Koopmans’ 

theorem160 estimate of the IP was used in the asymptotic correction for the (H2O)20 cluster.  The three-

body  SAPT  energy  was  calculated  by  considering  all  methane-(H2O)2 trimers  extracted  from  the 

CH4@(H2O)20 system.  
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Figure 3.2.1 – Geometry of the methane hydrate structure studied.  Red atoms are oxygen, white 

are hydrogen, and gray is carbon.  (Color online.)
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3.2.3 Results and discussion

Supermolecule interaction energies.

Figure 3.2.2 – Time step extrapolation of the DMC interaction energy.  Interaction energy is solved for as  

in equation (1) at each time step (solid blocks, with error bars), and a linear fit is used to extrapolate to 

zero time step (dashed line).  
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Table 3.2.1 – Energy (kcal/mol) for binding of a methane molecule in a (H2O)20 cage with the structure 

given in Figure 3.2.1.

Methoda Interaction energy

DF-HFb 4.13

PBE  1.31

PBE-D3 -6.61

PBE0  1.07

PBE0-D3 -6.89

BLYP  5.92

BLYP-D3 -6.72

M06-2X -5.70

DF-MP2b -5.04

DF-MP2C-F12 -4.60

DMCc    -5.3(5)
a.The DFT and DF-MP2C-F12 calculations used the aug-cc-pVTZ basis set and the binding energies  

include the counterpoise correction for BSSE.  b.Extrapolated to the complete-basis-set limit as described in the 
text.  c.The DMC calculations were carried out as described in the text.

Table 3.2.1 summarizes the net methane-(H2O)20 binding energies obtained at the various levels 

of theory.  The DMC calculations give a binding energy of -5.3 + 0.5 kcal/mol, which, to within statistical 

uncertainty,  agrees  with  our  CBS  MP2  binding  energy  of  -5.04  kcal/mol.   (The  data  used  in  the 

extrapolation of the DMC results to zero time step are shown in Figure 3.2.2.)  We note that our methane 

binding energy for the CH4@(H2O)20 cluster system is also in excellent agreement with a recent DMC 

result  of 5.6  + 0.3 kcal/mol for crystalline methane hydrate.161  Our best estimate of binding energy, 

derived from the N-body decomposition discussed below, is -5.2 kcal/mol.  The close agreement of the 

MP2 result with the DMC and best estimate values is, in part, fortuitous as the MP2 method has errors of 

about  +0.8 and -0.9 kcal/mol  in  the  two-  and three-body interactions,  respectively.   The MP2C-F12 

method with the aug-cc-pVTZ basis set gives a net binding energy of -4.6 kcal/mol, but this result may be 

slightly underestimated in magnitude due to the basis set employed.  
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As noted in the Introduction, Kumar and Sathyamurthy140 have reported a CBS MP2 value of -6.1 

kcal/mol for the binding of a methane molecule in an (H2O)20 dodecahedral cage.  This is significantly 

more attractive than our CBS-limit MP2 value of -5.04 kcal/mol.  Much of the difference between these  

two CBS-limit MP2 results is likely due to differences in the geometries used in the two studies.  (The  

key geometrical parameters are reported in the supporting information.)  However, part of the difference 

between the  two  CBS-limit  MP2 results  could  be  a  consequence  of  the  different  strategies  used  to  

extrapolate to the CBS limit in the two studies, with the extrapolation procedure used in the present study  

being expected to give more accurate results.

As seen from Table 3.2.1, of the DFT functionals considered, only the M06-2X functional gives a 

binding energy close to our best estimate -5.2 kcal/mol value.  The PBE, PBE0, and BLYP functionals  

fail to give a bound complex, while with the inclusion of the D3 dispersion correction they overbind the  

complex by about 1.5 kcal/mol.  It should be noted that the D3 corrections did not include a three-body 

Axilrod-Teller162 contribution, which is repulsive.  
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Table 3.2.2 – Two body interaction energies (kcal/mol).

Methoda Interaction energy

DF-HF   3.85

PBE  -3.88

PBE-D3 -11.81

PBE0  -2.36

PBE0-D3 -10.28

BLYP    6.31

BLYP-D3  -6.34

M06-2X  -5.22

DF-MP2-F12  -4.95

DF-MP2c-F12  -5.54

CCSD(T)-F12b  -5.85

a.The HF and DFT calculations were carried out using the aug-cc-pVTZ basis set, 
while the DF-MP2C-F12, DF-MP2-F12, and CCSD(T)-F12b calculations were carried out 
using the VTZ-f12 basis set.   All results are corrected for BSSE with the counterpoise  
method.
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Table  3.2.3 –  DF-DFT-SAPT  energy  (kcal/mol)  decomposition  of  the  two-body  interaction 

energy of CH4@(H2O)20. 

Contribution
a

treating each H2O-methane 
pair separately

treating the (H2O)20 as a 
single molecule

Ees
(1 )

-3.15 -3.08

Eexch
(1 )

10.04 9.74

E ind
(2 )

-3.15 -2.29

Eexch−ind
(2 )

1.97 2.24

Eδ HF -0.38 -0.30

E ind
net

-1.57 -0.36

Edisp
(2 )

-12.64 -11.60

Eexch−disp
(2 )

1.25 1.40

Edisp
net

-11.39 -10.19

ESAPT -5.88 -3.88
a.The DF-DFT-SAPT calculations were carried out using the aug-cc-pVTZ basis set.

Two-body interaction energies.

Table 3.2.2 lists, for the various theoretical methods considered, the two-body contributions to the 

methane-(H2O)20 interaction energy.  The CCSD(T)-F12 value for the two-body interaction energy, which 

is expected to be the most accurate result, is -5.85 kcal/mol.  In comparison, the DF-MP2-F12 and DF-

MP2C-F12 methods give two-body interaction energies of -4.95 and -5.54 kcal/mol, respectively.  Thus, 

it is seen that the MP2 method significantly (by 0.9 kcal/mol) underestimates the magnitude of the two-

body interaction energy, while the MP2C method fares much better.

The only DFT methods that give two-body contributions within 0.6 kcal/mol of the CCSD(T)-

F12 result are BLYP-D3 and M06-2X which give two-body contributions of -6.34 and -5.22 kcal/mol,  

respectively.  Both the PBE and PBE0 functionals give a bound CH4@(H2O)20 complex at the two-body 

level, albeit underestimating the binding.  In contrast, at the HF level of theory, the two-body contribution 

is repulsive by 3.85 kcal/mol.  While some of the binding with the PBE and PBE0 functionals at the two-
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body level could be due to their recovering short-range (ie., overlap dependent) intermonomer correlation 

effects, much of the binding found with these two functionals is due to their  underestimating exchange-

repulsion.163  Not  surprisingly,  the  PBE-D3 and PBE0-D3 methods  give  far  too  attractive  two-body 

contributions to the binding energy.

The DFT-SAPT analysis of the two-body contribution to the binding energy is reported in Table 

3.2.3, from which it is seen that the electrostatics, exchange-repulsion, induction, and exchange-induction 

contributions to the two-body energy are -3.15, 10.04, -3.15, and 1.97 kcal/mol, respectively.  There is  

also  a  small  δHF contribution  of  -0.38  kcal/mol.   The  net  induction  contribution,  defined  as

net
ind indδHFE = E + E , to the two-body interaction energy is -1.57 kcal/mol. Thus, two-body induction is 

surprisingly important in the interaction of the methane molecule with the  (H2O)20 cage.

The  sum of  the  DFT-SAPT interactions  considered  thus  far  is  5.71 kcal/mol,  which is  1.86 

kcal/mol more repulsive than the HF value of the two-body interaction energy.  Thus, electron correlation 

effects significantly destabilize the electrostatics + exchange-repulsion + induction contribution to the  

two-body binding energy of CH4@(H2O)20.  The DFT-SAPT calculations give two-body dispersion and 

exchange-dispersion  contributions  of  -12.64  and  1.25  kcal/mol,  respectively.   Adding  these  two 

contributions  to  the  non-dispersion  contributions  discussed above,  gives  a  net  two-body contribution 

energy of -5.88 kcal/mol, nearly identical to the CCSD(T)-F12b result.

We also carried out DFT-SAPT calculations treating the entire (H2O)20 cage as a single molecule. 

The  DFT-SAPT  calculations  treating  the  (H2O)20 as  a  single  molecule  give  essentially  the  same 

electrostatics energy, and a value of the exchange-repulsion energies only 0.3 kcal/mol smaller than that  

obtained  by  treating  the  water  molecules  individually.   On  the  other  hand,  the  net  induction  and  

dispersion contributions are each about 1.2 kcal/mol less stabilizing in the former approach.  The different 

induction and dispersion contributions obtained from the two types of “two-body” DFT-SAPT analysis 

can be understood in terms of  the  fact  that  treating (H2O)20 as  a  single  molecule  incorporates  some 

contributions that would be considered many-body in a procedure where one builds up the cluster one 
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molecule at a time.  We return to the issue of the similar exchange-repulsion interactions obtained using 

the two SAPT approaches described above after considering the three-body interaction energies.

Three-body interaction energies

Table 3.2.4 –  Three-body contributions to the binding energy (kcal/mol) of a methane molecule in the 

(H2O)20 cage.   

Methoda 30 H-bonded 
dimer pairs

160 dimer pairs 
without H-bonds

Total 3-body 
interaction energy

HF -1.48 1.20 -0.28

PBE  3.17 4.36 7.53

PBE0  1.50 2.95 4.45

BLYP -2.37 -0.41 -2.79

M06-2X -1.23 2.87 1.64

DF-MP2-F12 -0.96 1.21 0.251

CCSD(T)-F12b -0.42 1.43 1.01

HF-SAPT energy decomposition

Eexch
(1 )

-1.31 -0.01 -1.32

E ind
(2 )

-0.05 0.85 0.80

E ind
(3 )

-0.41 0.01 -0.40

Eexch−ind
(2 )

-0.02 0.06 0.04

Eδ HF 0.29 0.33 0.62

E ind
net

-0.19 1.25 1.06

Edisp
(3 )

0.41 0.22 0.63

Eexch−disp
(2 )

0.71 0.13 0.84

Edisp
net

1.12 0.35 1.47

HF-SAPT -0.37 1.57 1.21
a.The HF-SAPT calculations were carried out using the aug-cc-pVDZ basis set. 

The DF-MP2-F12 and CCSD(T)-F12b calculations were carried out using the VTZ-f12 

basis set and the DFT calculations were carried out using the aug-cc-pVTZ basis set. 

These results include the counterpoise correction for BSSE. 
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The  three-body  interaction  energies  are  summarized  in  Table  3.2.4.   The  net  three-body 

interaction  energy  is  calculated  to  be  -0.28,  0.25  and  1.01  kcal/mol  at  the  HF,  DF-MP2-F12,  and 

CCSD(T)-F12b levels of theory, respectively.  The CCSD(T)-F12b value of the net three-body energy is 

0.76 kcal/mol more repulsive than the corresponding MP2-F12 value, consistent with the importance of 

the Axilrod-Teller three-body dispersion contribution which appears at third-order perturbation theory. 

The various DFT methods give values of the three-body interaction energies ranging from -2.79 to 7.53 

kcal/mol, with only the M06-2X functional giving a three-body interaction energy within 1 kcal/mol of 

the CCSD(T) result.  

Table 3.2.4 also summarizes the results of the three-body SAPT calculations on the CH 4@(H2O)20 

system.  The exchange, induction, and exchange-induction three-body contributions are -1.3, 0.4, and 0.0 

kcal/mol, respectively, while the δHF contribution is 0.6 kcal/mol.  Combining the induction, exchange-

induction, and δHF contributions, we obtain a net three-body induction contribution of 1.1 kcal/mol for  

the binding of the methane molecule in the (H2O)20 cage.  Recalling that the net two-body induction 

contribution  was  about  -1.6  kcal/mol,  we  see  that  the  combined  two-  plus  three-body  induction 

contribution is only -0.5 kcal/mol.  The three-body dispersion and exchange-dispersion contributions are 

0.6 and 0.8 kcal/mol, respectively.  The overall three-body contribution to the methane binding obtained 

using the SAPT method is 1.3 kcal/mol in reasonable agreement with to the CCSD(T)  result  of 0.9  

kcal/mol. If we simply add the SAPT three-body dispersion and exchange-dispersion contribution to the  

DFT three-body energies, the PBE and PBE0 results would be even further removed from the CCSD(T)-

F12b result,   while the BLYP result  for the three-body interaction energy would still  differ from the 

CCSD(T)-F12b result by 2.4 kcal/mol.  It is clear that some deficiency other than the neglect of long-

range dispersion interactions is responsible for the large errors in the PBE, PBE0, and BLYP three-body 

contribution of the binding of CH4 in the (H2O)20. 

It is instructive to further decompose the three-body contributions into two parts, that due to the 

thirty trimers with the two water monomers H-bonded to one another, referred to as set A,  and that due to 
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the 160 trimers without H-bonding between the two water monomers, referred to as set B.  From Table  

3.2.3, it is seen that while the CCSD(T) three-body energy is -0.4 kcal/mol for set A trimers, it is 1.5 

kcal/mol for set B.  The corresponding MP2-F12 results are -1.0 and 1.2 kcal/mol.  None of the DFT  

methods considered closely reproduces the CCSD(T) values of the three-body interaction energy of either 

the A- or B-type trimers.  Table 3.2.4 also reports the three-body SAPT contributions for the two types of 

trimers.  From the Table, we see that the three-body exchange contribution derives almost entirely from  

the set-A trimers, while the three-body induction (including the  δHF term) is dominated by the set B 

trimers.  The three-body dispersion is dominated by the A-type trimers.  

It was noted in the previous section that the differences in the SAPT values of the two-body 

induction, exchange, and dispersion contributions to the methane binding energy as calculated treating 

each monomer separately and treating the (H2O)20 cage as a single molecule are 1.24, -0.30, and 1.18 

kcal/mol, respectively.  From Table 3.2.4, it is seen that for induction and dispersion these differences are 

comparable to the corresponding three-body contributions (calculated using all methane-(H2O)2 trimers). 

This is consistent with the fact that the DFT-SAPT “two-body” calculations, treating the entire (H2O)20 as 

a single monomer  include a subset of the n  > three-body interactions as evaluated treating the water 

monomers as separate molecules.  On the other hand, the three-body exchange-repulsion contribution of  

-1.32 kcal/mol, is about 1.0 kcal/mol larger in magnitude than the difference of the two-body exchange 

contributions  calculated  using  the  two  strategies  described  above.   Examination  of  the  various 

contributions to the three-body exchange energy reveals that about half of this discrepancy is due to the 

three-body exchange contributions that are not recovered in the “two-body” SAPT calculations treating 

the (H2O)20 as a single monomer.   
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Table 3.2.5 – Energy (kcal/mol) of the n-body decomposition.

N-body contributions

Method Full 2 3 N≥4

HF 4.13 3.85 -0.28 0.56

PBE 1.31 -3.88 7.53 -2.34

PBE0 1.07 -2.36 4.45 -1.02

BLYP 5.92 6.31 -2.79 2.40

M06-2X -5.70 -5.22 1.64 -2.12

DF-MP2-F12 -5.04a -4.95 0.25 -0.34

CCSD(T)-F12b (-5.3)b -5.85 1.01 (-0.46)c

a.CBS-limit DF-MP2 result

b.DMC result

c.Estimated using the DMC value of -5.3 for the full interaction energy.

Table  3.2.5  summarizes  the  two-,  three-,  and higher-body contributions  for  the  binding of  a 

methane molecule in the (H2O)20 cage.  At the HF and DF-MP2 levels of theory, the N≥4 contributions are 

only 0.6 and -0.3 kcal/mol, respectively.  CCSD(T) calculations for the entire complex with the basis sets 

used here would be computationally prohibitive.  However, if we use the DMC result for the net binding 

energy we can obtain an estimate of the CCSD(T)-F12 higher-body contribution to the binding energy. 

Using this strategy, we obtain a value of -0.5 kcal/mol for the  N≥4 contribution to the binding energy. 

However, this is subject to a ±0.5 kcal/mol statistical uncertainty due to the uncertainty in the DMC value 

of the  net  binding energy.   In  contrast  to  the small  N≥4-body contribution obtained using the wave 

function  methods,  the  PBE,  M06-2X,  and  BLYP  density  functional  methods  give  higher-body 

contributions of -2.3, -2.1, and 2.4 kcal/mol, respectively.  The PBE0  method, on the other hand, gives a 

higher-body interaction energy of -0.9 kcal/mol, consistent with our expectation that self-interaction is 

primarily responsible for the large overestimation of the three-body energy by the PBE method.  The MP2 

and CCSD(T) results presented in Table 3.2.5 can be combined to obtain an improved estimate of the net  

binding energy.  In particular, by adding the differences of the CCSD(T) and MP2 values of the two- and 
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three-body interaction energies to the CBS-limit DF-MP2 value of the net binding energy  we obtain a 

value of -5.2 kcal/mol, which is nearly identical to the DMC result.   

3.2.4 Conclusion 

The binding energy of a methane molecule in a (H2O)20 dodecahedral cage was calculated using a 

variety of electronic structure methods.  Diffusion Monte Carlo calculations give a binding energy of -5.3 

±0.5  kcal/mol,  in  excellent  agreement  with  our  best  estimate  value  of  -5.2  kcal/mol,  obtained  by 

correcting the CBS-limit MP2 result with the CCSD(T)-F12b - MP2-F12 differences for the two- and 

three- body binding energies.  Of the density functional methods tested, only M06-2X gives a binding 

energy within 1 kcal/mol of our best estimate value.   The PBE-D3, PBE0-D3, and BLYP-D3 methods 

overbind the methane molecule by 1.5-1.8  kcal/mol.  

A SAPT analysis reveals that exchange, induction, and dispersion all  make important 

contributions to the three-body interaction energy.  Thus, for force field methods to accurately describe 

the interaction of a methane in an (H2O)20 cage, it will be necessary to include explicit terms for three-

body exchange, induction, and dispersion.  However, because the net three-body exchange contribution is 

negative and the three-body induction and dispersion contributions are positive and the three terms are 

roughly  comparable  in  magnitude,  a  force  field  with  only  induction  or  dispersion,  for  three-body 

interactions could fortuitously give a three-body energy close to the  ab initio  result.  We also find that 

none of the density functional methods considered fare well at predicting the two-, three-, and higher-

body contributions to the binding energy.  It is clear from comparison of the DFT and SAPT results for  

the two- and three-body contributions to the binding energies that the DFT methods have shortcomings 

other than those associated with the neglect of long-range dispersion interactions.  Strikingly, with the 

PBE functional, the three-body contribution to the binding energy of the CH4@(H2O)20  is too large by a 

factor of seven.  To a large extent this is a result of self-interaction error in the DFT methods.  The failure 

of standard DFT methods to accurately describe the terms in the N-body expansion of water clusters and 
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ice has been noted in other recent studies.73,125 In addition, in a very recent study Cox and co-workers 

reported that none of the density functional methods that they examined performed well for the methane  

hydrate crystal.161  
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3.3 THEORETICAL STUDY OF CARBON DIOXIDE HYDRATE

3.3.1 Introduction

Clathrate hydrates can form at low temperature and moderate pressure, where a ice-like 

solid is formed with an encapsulated guest molecule in an appropriate water cage.  The non-

covalent interactions of the guest gas molecule and the host water cage are strong enough to 

affect  the  structure  of  the  cage  and the  stability  of  the  clathrate.164,165  This  has  lead  to  the 

proposal of mitigating the greenhouse effect through carbon dioxide sequestration by clathrate 

formation.166  In a similar vein, the replacement of the methane in methane clathrates with carbon 

dioxide  would  simultaneously  release  valuable  natural  gas  and  store  carbon  dioxide.167

Therefore,  it  is  relevant  to  understand  the  nature  of  the  interaction  of  a  CO2 molecule 

encapsulated in a water dodecahedral cage. 

Previously, this system has been investigated with molecular dynamics168  and force fields 

or the interaction energy has been studied with density functional theory (DFT).169   Kumar and 

Sathyamurthy140 have  used  a  high  level  of  theory,  namely  Møller-Plesset  second  order 

perturbation theory (MP2) at the complete basis set limit (CBS), to estimate the binding energy 

of the CO2 in the (H2O)20 cage.  This study predicted an interaction energy of a CO2 encapsulated 

in  a  (H2O)20 cage  of  -9.18  kcal/mol.   However,  this  is  based  on an  extrapolation  that  only 

considers the double- and triple-zeta basis set, which is known to be inadequate.144   It should 

also be pointed out that the authors gave an estimate of the interaction energy of -6.01 kcal/mol 
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when  an  aug-cc-pvdz  basis  set  is  used  and  corrected  for  basis  set  superposition  error. 

Additionally, various DFT estimates have ranged from 3.47 to -13.38 kcal/mol for the interaction 

energy.  Clearly, a more accurate picture of the interaction energy for this important system is 

required in order to provide reliable benchmarks for DFT and force fields used in molecular 

dynamics.   To  this  end,  we  have  undertaken  diffusion  Monte  Carlo  calculations  of  the 

supermolecular interaction energy of CO2 in the dodecahedral (H2O)20 cage as a benchmark, and 

compared it to MP2 calculations at the complete basis set limit using aug-cc-pvdz, aug-cc-pvtz, 

and aug-cc-pvqz basis sets for the extrapolation.  Additionally, we have used MP2 and the “gold 

standard”  coupled  cluster  with  singles,  doubles,  and  perturbative  triples  with  an  explicitly 

correlated method in a many body decomposition procedure to determine the role of two- and 

three- body interactions to the net binding energy of the CO2 in the dodecahedral water cage. 

Symmetry adapted perturbation theory is used at the two- and three-body level to lend insight 

into the contributions to the interaction energy.

3.3.2 Computational details

The  geometry  of  the  water  cage  is  the  same  used  in  a  previous  study  of  methane 

clathrate.170  This is  the lowest energy water  dodecahedron identified  by Kirov et.  al.152 The 

geometry of the CO2 clathrate was found by placing the carbon atom of CO2 at the center of mass 

of the cage and fixing the carbon-oxygen bond length at the experimental value of 1.162 Å.  The 

orientation  of the the CO2 was optimized at the M06-2X154 level of theory with the aug-cc-pvdz 

basis set. 171 This geometry was used for all subsequent calculations.

The DFT calculations made use of the BLYP,88,155 M06-2X, and PBE172  functionals with 

the aug-cc-pvtz basis set and were corrected for basis set superposition error (BSSE) using the 
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counterpoise  correction.121  For  the  supermolecular  calculations,  DF-MP2  calculations  were 

carried out and extrapolated to the complete basis set limit with the methods of Feller116  and 

Helgaker et. al.117 DF refers to the use of density fitting.113,114   To evaluate the two- and three-

body interaction energies, the CCSD(T)-F12b118  method was used along with the DF-MP2-F12 

method, where F12 refers to an explicitly correlated method.118,119,147 At the N-body level, the DF-

MP2-F12 method and MP2C-F12 method, in which the uncoupled polarizability of the MP2 

method is replaced by the coupled polarizability from a time-dependent DFT calculation,  and 

CCSD(T)-F12b calculations all make use of the vtz-f12120 basis set and are corrected for BSSE. 

The above calculations were carried out with the  MOLPRO code.122 

Symmetry adapted perturbation theory based on density functional theory with density 

fitting, DF-DFT-SAPT,148  was used at the two-body level with the aug-cc-pvtz basis set and is 

free of BSSE.  The PBE0173  functional was used with an asymptotic correction for the ionization 

potentials of the monomers.  The experimental IPs for water and carbon dioxide were taken from 

http://cccbdb.nist.gov.   The  adiabatic  local  density  approximation  kernel159 was  used  in  the 

calculation of the response functions  to estimate the dispersion contribution.  The three-body 

SAPT174  is based on Hartree-Fock and is carried out with the SAPT program;149,150 the two-body 

SAPT is carried out with the MOLPRO code.

The diffusion Monte Carlo (DMC) calculations used trial wave functions composed of a 

single  Slater  determinant  of  B3LYP87,88  orbitals  and  a  three  term  Jastrow  factor36  with 

parameters  optimized  via  variance  minimization.   The  trial  functions  were  generated  in  the 

Gaussian09B92  software package and used the pseudopotential of Trail and Needs85  along with 

the corresponding triple-zeta basis set of Xu et al. The basis sets consisted of the quintuple-zeta s 

and  p functions  and the  triple-zeta  d  functions  without  the  diffuse  augmented  functions,  as 
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described  previously.13 The  localization  of  the  pseudopotential  was  treated  with  the  T-move 

scheme.35  Time step bias was removed via extrapolation to zero time step using a linear fit to the 

0.0025, 0.005, and 0.0075 a.u. time steps.  The quantum Monte Carlo calculations were carried 

out using the CASINO48 code. 

3.3.3 Results and discussion

Table 3.3.1 -  Interaction energy in kcal/mol for the CO2 in the dodecahedral water cage using 

the supermolecular and two-body  schemes.  

a.aug-cc-pvtz basis set.
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supermolecule
6.26
-6.52
-5.95
8.12

DMC 

2-body

6.12

-6.05

-5.58

-6.41

8.21

-5.27

-6.06

16.33

-6.60

4.90

-0.67

Net induction -2.37

-15.87

1.72
Net dispersion -14.16
DF-DFT-SAPT -5.81

DF-HFa

DF-MP2b

M06-2Xa

BLYPa

-5.4(4)

DF-HFc

MP2-F12c

MP2C-F12c

CCSD(T)-F12bc

BLYPa

M06-2Xa

DF-DFT-SAPTa

E1
Electrostatic

E1
Exchange

E2
Induction

E2
Exchange-Induction

δHF

E2
Dispersion

E2
Exchange-Dispersion



b.Complete basis set limit.

c.vtz-f12 basis set.

Table 3.3.2 -  Three-body interaction energy in kcal/mol for the CO2 in the dodecahedral water 

cage.

a. vtz-f12 basis set.

b.aug-cc-pvtz basis set.

c.aug-cc-pvdz basis set.

The  results  of  the  supermolecular  calculations  are  given  in  Table  3.3.1.   The  DMC 

benchmark energy -5.4(4) kcal/mol is slightly lower than the complete basis set limit MP2 value 
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3-body

Total 

-1.84 1.43 -0.41

-1.19 1.56 0.37

-0.56 1.80 1.24

-2.49 -0.11 -2.60

-2.11 3.45 1.34

-0.21 2.05 1.39

-1.79 0.02 -1.76

-0.17 1.16 0.99

-0.46 0.09 -0.37

-0.01 0.02 0.02

0.55 0.26 0.35

Net induction -0.08 1.53 0.99

0.75 0.35 1.10

0.91 0.15 1.06

Net dispersion 1.66 0.49 2.16

HF-SAPT -0.21 2.05 1.39

H-Bonded 
dimer

Not H-Bonded 
dimer

HFa

MP2-F12a

CCSD(T)-F12ba

BLYPb

M06-2Xb

HF-SAPTc

HF-SAPTc

E1
Exchange

E2
Induction

E3
Induction

E2
Exchagne-Induction

δHF

E3
Dispersion

E2
Dispersion-Exchange



of  -6.52  kcal/mol.   This  deviation  will  be  discussed  below,  in  the  context  of  the  N-body 

decomposition.  Neither the HF nor BLYP method predict a repulsive interaction between the 

CO2 and the water cage.  On the other hand the M06-2X method gives a binding energy -5.95 

which is close the DMC benchmark value.  

The two-body interaction energy is also given in Table 3.3.1.  Here, the CCSD(T)-F12b 

value of -6.41 kcal/mol is taken as the benchmark.  The HF and BLYP methods give two-body 

energies nearly equal to the full supermolecule results.  The M06-2X and the MP2-F12 method 

underestimates the two-body energy by 1.14 and 0.36 kcal/mol, respectively.  Turning to the DF-

DFT-SAPT results, the net induction energy is surprisingly important to the stabilization of the 

cluster,  contributing  -2.37  kcal/mol  to  the  interaction  energy.   The  sum  of  the  induction, 

electrostatic,  and exchange two-body contributions  is  7.9 kcal/mol,  which 1.8 kcal/mol more 

repulsive than the corresponding DF-HF result but very close to the BLYP result.  The net DF-

DFT-SAPT interaction energy is -5.81,  0.6 kcal/mol smaller in magnitude than the CCCSD(T)-

F12b result.  This may be a result of the dispersion contribution being to small in magnitude. 

This is corroborated by the MP2C-F12 method, which is 0.83 kcal/mol smaller in magnitude 

than the CCSD(T)-F12b result and 0.47 kcal/mol smaller in magnitude than the MP2-F12 two-

body energy.

The three-body interaction energies is broken down into two groups, those that involve 

water dimer pairs that are hydrogen bonded and those that do not.  These results are given in 

Table 3.3.2.  Adding the CCSD(T)-F12b energy for the two- and three-body decomposition gives 

a binding energy for the supermolecular system of -5.17 kcal/mol, in excellent agreement with 

the DMC estimate of -5.4(4) kcal/mol.  The DF-MP2-F12 method gives a three-body energy of 

0.37 kcal/mol as compared to the CCSD(T)-F12b result of 1.24 kcal/mol.  This is largely due to 
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the MP2 method failing to recover the three-body Axilrod-Teller162 type dispersion effects. If we 

add  to the supermolecular MP2-CBS interaction energy a correction derived from the  difference 

of the MP2-F12 method and CCSD(T)-F12b at both the two- and three-body level, we get an 

estimate of -6.01 kcal/mol for the net binding energy, in reasonable agreement with the DMC 

result  of  -5.4(4)  kcal/mol.   The  BLYP  functional  over  binds  both  types  of  trimers.  When 

considering the interaction energy of all 190 water dimers and the CO2, the M06-2X results look 

promising  giving  a  three-body  energy  within  0.1  kcal/mol  of  the  CCSD(T)-F12b  result. 

However, upon inspection of the interaction energy by water dimer type, it is clear that this result 

is due to a cancellation of errors, as the trimers with hydrogen bonded water monomers are too 

strongly  bonded,  while  the  interaction  in  the  trimers  without  the  hydrogen  bonded  water 

momoners are predicted to be too repulsive.  Turning to the HF-SAPT results, there is good 

agreement for the trimers with hydrogen bonded and non-hydrogen bonded water monomers. 

The exchange and dispersion energy are dominated by the trimers with hydrogen bonded dimers, 

but the trimers with non-bonded water dimers are the largest contributer to the induction energy. 

It  is  striking  to  note  that,  even  at  the  three-body  level,  the  induction  contributes  about  ~1 

kcal/mol  to  the  net  interaction,  and  the  dispersion  and  exchange  contribute  2.16  and  -1.76 

kcal/mol, respectively.

In  summary,  the  diffusion  Monte  Carlo  method  gives  a  binding  energy  of  -5.4(4) 

kcal/mol for a CO2 in the (H2O)20 cage.  The N-Body decomposition scheme was used to further 

analyze the interactions.  CCSD(T)-F12b two- plus three-body energies result in a net binding 

energy of -5.17 kcal/mol,  in close agreement with the DMC result.   None of the three DFT 

methods considered properly describes the individual  N-body contributions. The SAPT method 

was used at both the two- and three-body level to determine the contributions to the binding 
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energy.  This shows that at the two-body level, exchange and dispersion have large contributions 

of 16.33 and -14.16 kcal/mol, respectively.  The electrostatics and induction are also important to 

the net interaction energy but give slightly smaller contributions of -6.06 and -2.37 kcal/mol, 

respectively.  At the three-body HF-SAPT level, the energy contributions are  much smaller in 

magnitude but similar trends remain. The dispersion and exchange give the largest contributions 

to the energy of -1.76 and 2.16 kcal/mol, respectively, while the induction contribution is only 

0.99 kcal/mol.
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4.0 STRONGLY CORRELATED SYSTEMS

The  DMC  method  is  can  make  use  of  a  trial  wave  function  comprised  of  many  Slater 

determinants to give a better description of the nodal surface.  Recent algorithm improvements 

have  made  the  evaluation  of  many  determinant  trial  wave  functions  more  computationally 

efficient.19,175,176 Still, important questions remain about the implementation of multideterminant 

trial wave functions in DMC.  As is stated in section 1.2.2, there is a well know size consistency 

problem in truncated CI calculations, and it is unclear what the consequences of this are on a 

DMC calculation.  A full CI calculation, which will not have a size consistency error, in a limited 

number of orbitals will produce (2K!)/[N!(2K-N)!] determinants for N electrons and K orbitals. 

Even with improved algorithms offering computational efficiency, DMC simulations on systems 

with more than a few atoms cannot include all of the determinants of the trial wave function. 

One possibility for selecting a subset of determinants to keep from the trial wave function is to 

apply a threshold to the CI coefficients of the trial wave function.  The implications for the nodal 

surface of retaining some determinants via a CI cutoff and rejecting others remains an active area 

of research.  

There have been several successful DMC calculations  on small  systems that  use trial 

wave functions comprised of many determinants. There is no hard definition for when a system 

requires a multi-configurational trial  wave function,  though as a general trend it  is seen that 

adding more determinants results in a lower DMC energy.17,19,98,177,178  In this chapter, we will 
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investigate the effect of the multi-reference trial functions on the DMC energy for simple test 

systems and compare it to other benchmark methods.  In the first subsection, two systems will be 

studied; each has a ground state that can be easily tuned from being well described by a single 

Slater determinant to requiring many determinants.  The square H4 system will give an indication 

of how well a single reference trial wave function performs for DMC, and the interaction energy 

of the ethylene dimer will show how well a single reference describes weakly interacting systems 

as the degeneracy is increased.  In the second section, a prototypical multi-reference system, the 

interaction energy of beryllium dimer, is investigated with DMC.  This system has been studied 

several  times  with  quantum  Monte  Carlo.15,179,180 We  obtain  the  closest  agreement  with 

experimental results for the binding energy achieved with DMC to date.  

4.1 H4 AND THE TWISTED ETHYLENE DIMER

4.1.1 Introduction

The majority of DMC calculations employ a single-determinant trial wave functions.  It has been 

shown  17,96–98 that  this  approximation  cannot  reach chemical  accuracy  for  a  large  test  set  of 

atomization energies of polyatomic molecules, regardless of orbital choice, but that a trial wave 

function of many determinants can reach chemical accuracy.17,98  However, for some systems 

dominated  by  weak  interactions,  a  single-determinant  can  achieve  sub-chemical  accuracy.181 

This raises the important question of whether this is always true for weakly interacting systems.

An initial test presented here will use a system of two H2 molecules as a function of their 

separation to   tune the degeneracy of the wave function to benchmark DMC with a single or 
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multi-reference  trial  wave function  against  standard  methods.   To determine  the  effect  of  a 

degenerate ground state on weakly interacting systems, a second test system will be considered: 

stacked ethylene dimers rotated around the π-bond to tune the degeneracy.

Figure 4.1.1 – Energy of the square hydrogen system studied with several methods.  The 

inset shows the geometry.  The H2 bond length (r) is set to 1.27 Å.

4.1.2 Computational details

For the square hydrogen system, the geometrical parameters are given in the inset of Figure 4.1. 

The distance R between the molecules was varied to tune the degeneracy of the ground state. The 

trial wave functions were generated with the Gaussian 09 code.  The pseudopotential of Trail and 

Needs85  was  used together  with  the basis  set  of  Xu et  al.86 that  was formed by taking the 
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quintuple-zeta  s functions  and  the  triple-zeta  p functions. The  T-move35 scheme  with  an 

asymmetric branching factor is used for the DMC calculations.  All calculations employed e-e, e-

n, and e-e-n Jastrow factors optimized by minimization of the energy.  For the multi-determinant 

calculations, determinant coefficients were optimized simultaneously with the parameters of the 

Jastrow factors36 via  energy minimization.   All  QMC calculations  were carried out  with the 

CASINO code.48   The  CCSD(T)  and full  CI  (FCI)  calculations  were  carried  out  using the 

MOLPRO122 code with the cc-pVTZ Dunning basis set.84

For the ethylene dimer, the geometry of the monomer is taken from the S-22182 set and 

replicated in the face-to-face configuration to form the dimer.  The TN pseudopotential was used, 

and the basis set uses the quintuple-zeta s and p functions and triple-zeta d functions of Xu et al. 

for carbon, and the same basis set for hydrogen described above. The T-move scheme with a 

symmetric branching factor66  is used for the DMC calculations.  The trial wave functions were 

generated with the Gaussian 09 code.  All calculations employed e-e, e-n, and e-e-n Jastrow 

factors  optimized  by  minimization  of  the  energy.   For  the  multi-determinant  calculations, 

determinant  coefficients  were  optimized  simultaneously  with  the  Jastrow factors  via energy 

minimization.  CASSCF calculations used an active space comprised of the  π electrons and π* 

orbitals; thus, a CAS(4,4) was used for the dimer calculations, and a CAS(2,2) was used for the 

monomer calculations.  All QMC calculations were carried out with the CASINO code.  The 

time-steps used were 0.01, 0.025, 0.05, and 0.1, and were extrapolated to zero time step by a 

quadratic fit.  The CCSD(T)-F12a, MP2C-F12, and MP2-F12 calculations were carried out using 

the  MOLPRO  code,  were  corrected  for  basis  set  superposition  error  (BSSE)  with  the 

counterpoise correction,183 and used  a vtz-f12 basis set.120  DF-DFT-SAPT was also carried out 

in MOLPRO and used the aug-cc-pVTZ basis set.  An asymptotic correction is applied in the 
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DF-DFT-SAPT calculation,  which is found by subtracting the DFT HOMO energy from the 

experimental ionization potential.  For the ethylene with zero rotation around the  π bond, the 

experimental  ionization  potential  is  taken  from  http://cccbdb.nist.gov/.   In  lieu  of  an 

experimental  value  for  the  ethylene  with  an  80O rotation  about  the  π  bond,  the  ionization 

potential is estimated from Koopmans theorem.160  In all calculations, the binding energy was 

calculated by subtracting twice the energy of the monomer from the dimer.

4.1.3 Results and discussion - H4

The energies of H4 from DMC calculations with several trial wave functions are compared to 

CCSD(T) and FCI in Figure 4.1.1.  Over the entire range of R, the DMC calculation with a 

single-determinant  of  HF,  BD,  or  B3LYP  orbitals  result  in  similar  energies,  showing  no 

preference for orbital type.  The CCSD(T) curve is roughly the same distance from the FCI over 

the entire range of R, with the exception of the square structure at R = r = 1.27 Å.  The method 

that gives the lowest energy over the entire range is DMC with a CAS(4,4) trial wave function. 

This is lower in energy than the FCI and CCSD(T) curve due to the sensitivity to the limited 

basis set for FCI and CCSD(T).  The FCI and CAS(4,4) calculations also give a smooth curve. 

For the H4 system, the ground-state at the R = r is well described by two determinants.  Thus, an  

unrestricted Hartree-Fock calculation and a CAS(2,2) calculation will give a smooth curve over 

the entire range of R, albeit higher in energy than the DMC with a CAS(4,4) trial wave function 

or the FCI calculation.   For the remainder  of the discussion of the square H4 model system, 

unrestricted trial wave functions will not be considered.

At a distance of R = 1.0 Å,  the DMC single-determinant calculations give a lower energy 

than both the FCI and CCSD(T) results, largely due to the sensitivity of the FCI and CCSD(T) 
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results to the basis set truncation.  This result demonstrates the advantages of the DMC method. 

For non-degenerate ground-states, DMC can give very accurate estimates of the energy.

As the  distance  between the  H2 molecules  increases  and becomes  closer  to  a  square 

geometry, the multiconfigurational character of the ground-state increases, as shown by the plot 

of the leading CAS(4,4) vector.  The single-determinant DMC results cross the other benchmark 

results at R = 1.06 Å.  At this distance, the leading CAS coefficient is 0.95.  This indicates the 

limit for DMC calculations with a single determinant to achieve accuracy similar to FCI and 

CCSD(T).  As R continues to increase, the departure of the single-determinant DMC calculations 

from the CCSD(T) and FCI results is striking.  At a R = 1.158, the leading CAS coefficient 

becomes  0.90,  and the  energy is  noticeably  higher  with  all  of  the  single-determinant  DMC 

calculations than CCSD(T), FCI, and DMC with a CAS(4,4) trial wave function.  At R = 1.21 

Angstrom, the leading CAS coefficient becomes 0.83, and the DMC single-determinant methods 

fail to accurately represent the ground-state compared to the other benchmark methods.  It is 

striking to note that the Brueckner coupled cluster method performs similar to the CCSD(T) 

method at R = 1.21 Angstrom, but that the DMC with Brueckner orbitals deviates strongly from 

the benchmark calculations.  Clearly, the coupled cluster method is recovering more correlation 

energy than  the  DMC method  can  when the  nodal  surface  is  poorly  described  by a  single-

determinant.

At the square geometry of R = r = 1.27 Å, only the FCI and DMC with a CAS(4,4) trial 

wave  function  are  able  to  accurately  describe  the  ground-state  of  the  H4 system.   At  this 

geometry,  the  leading  CAS  coefficient  has  fallen  to  0.68.   The  single-determinant  DMC 

calculations  out  perform  the  CCSD(T)  calculations  at  this  point  due  to  the  sensitivity  of 

CCSD(T) to the truncation of the basis set.
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4.1.4 Results and discussion – Ethylene dimer

The  monomer  is  twisted  around  the  π bond to  tune  the  separation  of  the  highest  occupied 

molecular  orbital  (HOMO)  and  lowest  occupied  molecular  orbital  (LUMO);  at  90  degrees 

rotation, the HOMO and LUMO become degenerate and the ground state is a singlet diradical. 

A CAS(2,2) calculation with the two electrons in the π orbital and the π* orbital was carried out at 

every five degrees of rotation from zero to ninety degrees on the monomer, where the active 

space is the.  At eighty degrees rotation, the leading CAS coefficient is 0.864. With the results 

demonstrated  for  H4 in  the  previous  section,  this  appears  to  be  an  ideal  test  of  the  near 

degeneracy  effects  on  weakly  interacting  systems.   This  degeneracy  should  not  impact  the 

CCSD(T) results and the single-determinant based DMC results become questionable.  DF-DFT-

SAPT was used to calculate the interaction energy of two monomers each rotated 80 degrees 

around the π bond. This gave a minimum energy at a separation of 3.50 Å.  This distance was 

subsequently  set  as  the  dimer separation  for  the  dimer  with monomers  rotated  zero  degrees 

around the π bond.  The geometry of the each set of dimers is shown in figure 4.1.2.

Figure 4.1.2  -  Dimers with each monomer twisted 0 (A) and 80O (B) around the π-bond, 

with a separation of  3.50 Å.                 

     (A)           (B)
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Table  4.1.1 – Interaction energy for the ethylene dimer at 0o and 80o twist angles.  All 

energies are in kcal/mol.  The number in parenthesis after the DMC energies indicates the error 

bar. (One standard deviation)

Table 4.1.1 gives the interaction energy for each set of dimers using various methods. 

Given  the  results  shown  above  for  the  H4 test  system,  it  is  reasonable  to  assume  that  the 

CCSD(T)-F12a method can be taken to be the benchmark for the interaction of this system, as 

CCSD(T) was shown above to be accurate for systems where the leading CAS coefficient is as 

small as 0.864.  

The DF-DFT-SAPT result gives close agreement to the CCSD(T)-F12a result for both 

dimers,  over binding by only 0.07 kcal/mol for dimer A and under binidng by 0.07 kcal/mol for 

dimer B.  Comparing dimers A and B, the electrostatic contribution increases by ~1.5 kcal/mol in 

magnitude for the twisted dimer.  The exchange contribution is 0.9 kcal/mol more attractive for 
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Leading coefficient for monomer 0.978 0.864

Leading coefficient for dimer 0.956 0.744

MP2-F12 0.698 -1.028

MP2C-F12 1.030 -0.341

CCSD(T)-F12a 0.988 -0.593
DF-DFT-SAPT

-0.492 -2.002

3.939 4.806

-1.429 -2.336

1.365 2.407

-3.069 -3.803

0.594 1.040

SAPT Interaction 0.911 -0.532

DMC/HF 1.3(1)

DMC/B3LYP -0.13(9)

DMC/BD

DMC/CAS -0.46(9)

Zero degree 
rotation

80 Degree 
rotation

E1
Electrostatic

E1
Exchange

E2
Induction

E2
Exchange-Induction

E2
Dispersion

E2
Dispersion-Exchange

-0.2(1)

1.2(1)

1.2(1) -0.18(9)

0.9(1)



dimer B, but this is offset  by the induction term being more repulsive by 0.9 kcal/mol.  The 

dispersion energy is more attractive for dimer B, due to the smaller HOMO/LUMO gaps of the 

monomers.

For the dimer comprised of monomers with no rotation around their  π bonds, MP2-F12 

gives an interaction energy that is to attractive, which is expected for MP2 applied to dispersion-

bound  π systems.92  The  MP2C-F12 method  corrects  this  over  binding,  and gives  excellent 

agreement with the CCSD(T)-F12a result.  The under binding of the DMC method when using a 

HF trial wave function is more than two standard deviations from the CCSD(T)-F12a result.  The 

DMC result when using a B3LYP or Brueckner trial wave function is more reasonable, and is 0.2 

kcal/mol from the CCSD(T)-F12a result.  The superiority of a correlated set of orbitals, with 

DFT orbitals  generally  performing  the  best,  is  a  result  that  has  been  pointed  out  by  other 

researchers.184  However, a simple CAS trial wave function, which correlates only the π electrons 

and  the  π orbitals,  corrects  the  nodal  surface  enough  to  give  excellent  agreement  with  the 

CCSD(T)-F12a result. 

For dimer B the trends are similar.   The MP2-F12 method again over binds, and the 

MP2C-F12 method gives an interaction energy close to the CCSD(T)-F12a result though still 

0.25 kcal/mol too small  in magnitude.    The DMC calculations  with single-determinant  trial 

wave functions are underestimating the interaction energy.  The CAS trial wave function allows 

for a much better description of the nodal surface, and this results in sub-chemical accuracy in 

comparison to the CCSD(T)-F12a result.

The DMC method with a single determinant trial wave function under binds for each set 

of dimers.  However, the error for the twisted monomers is more egregious.  This should not be 

surprising,  given  that  the  leading  CAS coefficient  for  the  dimer  is  lower  than  it  is  for  the 
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monomer.  This fact aside, it is reassuring to note that a small CAS(4,4) calculation on the dimer  

and CAS(2,2) calculation on the monomers,  taking into account only the  π electrons and  π* 

orbitals, allows for a superior nodal surface that gives an excellent agreement with the CCSD(T)-

F12a result.  

This system is also demonstrative of a larger problem in using multi-determinant trial 

wave functions.   For  the  ethylene  dimer,  the  active  space  of  four  electrons  in  four  orbitals 

generates only twelve non-zero determinants, and the two electrons in two orbitals makes only 

two non-zero determinants for the monomer.  Table 4.1.2 gives the determinants for structure A 

at the equilibrium distance, a “long distance,” where the monomers are separated by 20 Å, and 

the determinants for the monomer.  Twelve determinants is a compact determinant expansion to 

use  as  a  trial  wave  function  in  DMC;  however,  for  a  larger  system  where  the  number  of 

determinants grows, a cutoff is generally applied as a selection criteria for which determinants to 

keep in the trial wave function.  As can be seen from Table 4.1.2, applying a threshold of 0.01 to 

the magnitude of determinant coefficients would keep every determinant for the monomer but 

truncate the expansion for the equilibrium structure at only eight determinants, resulting in a 

possibly unbalanced description of the nodal surface.  Additionally, if the binding energy were 

calculated as the energy of the equilibrium structure minus the energy of the monomers at long 

distance,  applying a threshold of 0.001 would result in twelve determinants for the equilibrium 

structure  and  only  ten  determinants  for  the  long  distance  structure,  again  resulting  in  an 

unbalanced description of the nodal surface for one structure.  
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Table 4.1.2 – Determinants and coefficients from a CAS(4,4) calculation on structure A, 

where long refers a  20 A separation between the monomers,  short  refers  to  the equilibrium 

structure, and monomer is for a CAS(2,2) calculation on an isolated ethylene monomer. a and b 

refer to the electron occupation of each orbital,  1 shows that both electrons are in the same 

orbital, and 0 shows that no electrons occupy the orbital.

4.1.5 Conclusions

The DMC method is commonly employed with a single determinant trial wave function, and has 

been  shown to  give  lower  DMC energies  when the  determinant  is  formed  using  correlated 

orbitals,   than when HF orbitals  are  used.   It  has been shown here that  this  is  a  very good 
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approximation  when  the  system  being  studied  has  very  little  multi-determinant  character. 

However, a simple model system H4 test demonstrates that as the frontier orbitals become more 

nearly degenerate, the quality of the nodal surface given by a single determinant, regardless of 

the orbitals employed, decreases.  Taking the twisted ethylene as an example, this ground-state 

multi-configurational  nature  has  been  shown  to  impact  the  interaction  energy  of  weakly 

interacting systems.  Additionally, the difficulty of using multi-determinant trial wave functions 

due to the CI threshold has been discussed.

4.2 QAUNTUM MONTE CARLO CALCULATION OF THE BINDING ENERGY OF 

THE BERYLLIUM DIMER

This work has been submitted to the Journal of Chemical Physics as M.J. Deible, M. Kessler,  

and K.D. Jordan, “Quantum Monte Carlo Calculation of the Binding Energy of the Beryllium 

Dimer.”   M.J.D.  Performed  the  single-determinant  and  several  of  the  multi-determinant 

calculations.  M.K.  performed  several  of  the  multi-determinant  calculations.   All  authors 

contributed to the discussion.

4.2.1 Introduction

The  beryllium  dimer  has  been  the  subject  of  numerous  experimental  and  theoretical 

studies.27,179,180,185–209 In 1984, Bondybey and English, using ro-vibrational data from near the bottom of the 

ground state 1Σg
+ potential of Be2, deduced a value of 790 + 30 cm-1 for the binding energy (here defined 

from the  potential  energy minimum,  i.e.,  neglecting  vibrational  zero-point  energy).188,210,211 Based  on 

rotational structure in the v=0 level, Bondybey and England determined a bond length of 2.45 Å.   More 

108



recently, Merritt and coworkers experimentally observed eleven vibrational levels of Be2, allowing them 

to obtain a more refined estimate of 929.74 cm-1  for the well depth.186
  

This was subsequently revised to 

934.9 cm-1 upon further analysis of the experimental data.185 Over the past few years, several electronic 

structure  calculations  have  been  reported  that  obtained  well  depths  close  to  the  recent  experimental  

value.179,202–207,212–214  The keys to the successful calculations are the use of large, flexible basis sets and the 

recovery of a large portion of the correlation energy including contributions from the 1s core orbitals.  To 

illustrate the difficulty of calculating an accurate binding energy of Be2, we note that a complete basis set 

limit  CCSD(T)  calculation  including  correlation  of  the  1s core  electrons  underestimates  the  binding 

energy by 224 cm-1.208  Moreover, basis functions beyond those included in the aug-cc-pVCQZ basis 

set215–217 contribute 79 cm-1 to the CCSD(T) value of the binding energy.208

In this study, we apply the diffusion Monte Carlo (DMC) method9,29,30,74 to the Be dimer.  The 

DMC method is capable of giving the exact ground state energy under the constraint of the fixed-node 

approximation,10,12,33,218,219 which is required to maintain the fermionic nature of the wave function.  The  

constraint  is  imposed by use of a trial  function generally taken to be a single  Slater  determinant  of  

Hartree-Fock or density functional theory (DFT) orbitals.  If the nodal surface of the trial wave function 

were exact, then the DMC method, if run for a sufficient number of steps, and extrapolated to zero time  

step,  would give the exact  ground state  energy.  It  is  generally  assumed10 that  for weakly interacting 

dimers the errors introduced by the use of single determinant trial functions to impose the fixed nodes 

largely cancel  when the  interaction energy is  calculated by subtracting  twice the  energy of  the  two 

monomers from that of the dimer, and this has been confirmed for systems such as the water dimer and  

the methane dimer.11 However, it is not clear that this will be the case for weakly interacting species for  

which static correlation effects are important.  The Be dimer is thus a particularly interesting test system, 

as the ground state wavefunction of Be has considerable 2s2 → 2p2 character.  Indeed, all-electron DMC 

calculations on Be using a CAS(2,4) complete active space trial function allowing for 2s2 → 2p2 mixing 

give a significantly lower total energy than do DMC calculations using a single Slater determinant trial  
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function.179,220 10  However,  DMC calculations  using  a  CAS(4,8)  trial  function  for  the  dimer  and  a 

CAS(2,4) trial function for the atom considerably underestimates the binding of the dimer. 221  Harkless 

and Irikura179 used a truncated CAS(4,8) space and Anderson and  Goddardg180 used a GVB trial function 

and each reported DMC values of the binding energy of Be2 in good agreement with experiment.  As will 

be discussed later in the manuscript, the good agreement of the binding energy obtained from these two 

DMC studies and experiment is likely fortuitous.  In the present study, we calculate the binding energy of 

Be2 using the DMC method in conjunction with more flexible multiconfigurational trial functions than 

were employed in earlier studies.

4.2.2 Computational Details

The experimental value of the equilibrium bond length, 2.4536 Å,186 was used for all calculations 

on the beryllium dimer.  In the first set of calculations, single determinant trial functions were considered,  

with the orbitals being obtained from the HF approximation and from several DFT methods including the 

local density approximation (LDA), the PBE90 and BLYP110,222 generalized gradient approximation (GGA) 

functionals, and the Becke3LYP,110,111 PBE0,156 and BHandHLYP hybrid functionals,92 which contain 20, 

25, and 50% exact  exchange,  respectively.   In addition,  a trial  function comprised of a single Slater  

determinant  of  Brueckner  orbitals  determined  from  Brueckner  coupled  cluster  singles  plus  doubles 

(CCSD)  calculations223,224 was considered.   The cc-pVQZ 5s4p3d2f  contracted Gaussian-type orbital 

basis set84 was used to represent the orbitals in the single Slater determinant trial functions.  Both cc-

pVQZ-fg and cc-pVQZ-g basis sets were used in  generating the multiconfigurational trial  functions. 

Here –fg indicates that both the f and g functions were omitted from the basis set, while –g indicates that 

only the g functions were omitted.

DMC calculations were also carried out using multiconfigurational trial functions generated from 

CAS  and  configuration  interaction  (CI)  calculations.   For  the  beryllium  dimer,  both  CAS(4,8)  and 

CAS(4,16) trial functions were considered.   The CAS(4,8) wave function allows all arrangements of the  
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four valence electrons in the space of the molecular orbitals (MOs) derived from the 2s and 2p atomic 

orbitals  (AOs).   The  CAS(4,16)  wavefunction expands the active space to  include  the  πg,  πu,  σg,  σu 

molecular orbitals derived from the 3s and 3p atomic orbitals and has 816 configuration state functions 

(CSFs).  The DMC calculations were carried out retaining all CSFs with coefficients greater than 0.001,  

0.0025, 0.005, and 0.01 in magnitude, and these results were used to extrapolate the energies to the value  

for the full configuration space.  The extrapolation is shown in Figure 4.2.2.  With the 0.001 coefficient 

threshold 341 CSFs are retained from the CAS(4,16) space. 

CI trial functions were generated by carrying out configuration interaction calculations, allowing 

for  up to  four  electron excitations  from the valence space into the  full  virtual  space and employing 

CAS(4,8) orbitals.  Natural orbitals were then generated and used to carry out a subsequent CI calculation 

allowing up to quadruple excitations in the space of all natural orbitals with occupations greater than  

0.0001 in the first CI calculation (again keeping the 1σg and 1σu orbitals frozen).  Thresholds of 0.01, 

0.005, 0.0025, and 0.001 were applied to the resulting CI expansion and gave 484 CSFs for the dimer at  

the 0.001 cutoff (out of a total of 4500 CSFs).    For calculating the binding energy, a single plus double  

excitation CI (SDCI) calculation was carried out on the atom using CAS(2,8) orbitals and followed by a 

subsequent SDCI calculation using natural orbitals with occupations greater than 0.0001.

Each of the trial functions was combined with a Jastrow factor36 with electron-electron, electron-

nucleus, and electron-electron-nucleus terms.  Variational Monte Carlo (VMC) calculations were used to 

optimize the Jastrow factors  via energy minimization. For the multiconfigurational trial  functions, the 

coefficients of the CSFs were optimized simultaneously with the parameters in the Jastrow function.  The  

resulting trial functions, including the Jastrow factors, were then  98used to carry out DMC simulations 

using 40,000-50,000 walkers at a single time step of 0.001 a.u.  The correction scheme of Ma et al.225 was 

used to account for the electron-nuclear cusps.  For one set of DMC calculations using the CAS(4,16) trial 

function,  time  steps  of  0.0005,  0.003,  and  0.005  a.u.  were  also  used,  allowing  extrapolation  of  the 

energies to the zero time-step limit.  This extrapolation is shown in Figure 4.2.3.
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The  single  determinant  trial  functions  were  generated  using  Gaussian0992 and  the 

multiconfigurational  trial  functions  were  generated  using  GAMESS.226  The  quantum  Monte  Carlo 

calculations were carried out using the CASINO48 and QMCPack227 codes for the single determinant and 

multideterminent trial functions, respectively. QMCPack was used for the latter calculations due to its  

implementation of an efficient algorithm for handling multideterminent trial functions. 
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4.2.3 Results

Table 4.2.1 -  Total energies of Be and Be2 and the Be2 dissociation energy computed 

with DMC using various trial functions.  

Trial functiona Total energy (a.u.) De (cm-1)

Be Be2

HF/QZ -14.65730(4) -29.31789(6) 724(21)

LDA/QZ -14.65721(4) -29.31977(7) 1174(25)

PBE/QZ -14.65731(5) -29.31960(8) 1094(26)

BLYP/QZ -14.65725(4) -29.31956(8) 1113(26)

B3LYP/QZ -14.65727(3) -29.31946(8) 1079(23)

PBE0/QZ -14.65728(3) -29.31907(8) 992(21)

BHandH/QZ -14.65726(5) -29.31891(7) 966(26)

BD/QZ -14.65718(4) -29.31872(7) 955(24)

CAS(4,8)/QZ-fgb -14.667228(9) -29.33707(3) 573(8)

CAS(4,16) /QZ-fgb -14.66730(1) -29.33832(3) 819(8)

Ext. CAS(4,16)/QZ-fgb -14.66730(1) -29.33841(2) 838(7)

CAS(4,16)/QZ-gb -14.66727(2) -29.33838(3) 845(8)

Ext. CAS(4,16)/QZ-gb -14.66727(2) -29.33844(2) 857(9)

CI/QZ-gb -14.667250(9) -29.33848(2) 873(6)

Ext. CI/QZ-gb -14.667250(9) -29.33864(2) 908(6)

Experimentalc -14.667356 -29.33897 934.9
aTZ and QZ refer  to  the  cc-pVTZ and cc-pVQZ basis sets,  respectively.   The "-g" and –fg" 

indicate, respectively, that the g functions, and f and g functions were omitted from the basis sets.  Ext. 
refers to CAS and CI results extrapolated to the full  configuration space for the active orbital list  as  
described in the text. 

b0.001 threshold on CI coefficients
cThe experimental De value for Be2 is from Ref. 185.  The non-relativistic energy of the Be atom 

is from Ref. 228, and the energy for Be2 subtracting the experimental value of the dimer binding energy 
from twice the energy of Be.

The results of the DMC calculations at the 0.001 a.u. time step are reported in Table 4.2.1.  With  

the HF trial function, the DMC calculations give a binding energy of 724 cm -1, significantly smaller than 

the experimental value of 935 cm-1.     On the other hand, the DMC calculations using trial functions 
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employing LDA or GGA orbitals considerably overestimate the binding energy of Be2.   Significantly 

improved agreement with experiment is obtained when using orbitals from hybrid functionals containing 

a  component  of  exact  exchange  or  from  Brueckner  CCSD  calculations.   Specifically,  the  DMC 

calculations using PBE0, BHandH, and Brueckner orbitals result in binding energies of 992, 966, and 955 

cm-1, respectively.  The result obtained using Brueckner orbitals, in particular, is in excellent agreement  

with experiment.  In contrast, we note that Toulouse et al.,26 obtained a binding energy of 618 cm-1 when 

using single determinant trial functions but optimizing the orbitals and basis functions of the atom and  

dimer in the VMC optimization steps.  For both Be and Be2, regardless of the orbitals used, the DMC 

calculations using single determinant trial functions give energies considerably above the exact energies 

of these species, suggesting that the good agreement with experiment of the binding energies obtained 

using  trial  functions  based  on  a  single  determinant  of  hybrid  DFT  or  Brueckner  orbitals  is  likely  

fortuitous.  Support for this conjecture is provided by Fig. 4.2.1 from which it is seen that the calculations 

that give the binding energies closest to experiment do so because they give a higher energy for the dimer.

Figure  4.2.1-   DMC energy  of  twice  the  beryllium atom and  the  dimer  for  several  single-
determinant trial wave functions.
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As expected,  based on  earlier  studies,179 221 DMC calculations  using valence-space  CAS trial 

functions give significantly lower energies for the Be atom and dimer than do the DMC calculations using 

the  trial  functions  based  on  single  Slater  determinants.   However,  the  DMC calculations  using  the  

CAS(4,8) trial function for the dimer and CAS(2,4) for the atom give a binding energy of only 573 cm-1, 

which is even smaller than that obtained using HF trial functions.  This indicates that use of valence space  

CAS trial  functions  does  not  result  in  a  balanced  treatment  of  the  nodal  surfaces  of  the  atom and  

molecule.  Most of error must be due to the inadequacy of the CAS(4,8) space in describing the nodal 

surfaces of the dimer since the DMC calculations on the atom using the CAS(2,4) trial function give an  

energy very closest to the current best estimate228 of the energy of Be (-14.667228 vs. -14.667356 a.u.). 

Expanding the CAS space to include also the MOs derived from the 3s and 3p AOs, giving CAS(2,8) and 

CAS(4,16) for the atom and dimer, respectively, lowers the DMC energies of the atom and dimer, by 10 

and 300  cm-1, respectively, and results in a dimer binding energy of 845 cm -1, at the 0.001 coefficient 

threshold and using the cc-pVQZ-g basis set.  The corresponding binding energy obtained using the cc-

pVQZ-fg basis set is 819 cm-1, indicating that the nodal surface of Be2 is slightly improved by including f 

functions in the basis set.   Extrapolating these results along the sequence of coefficient cutoffs gives  

binding energies of 838 and 857 cm-1 for trial functions expanded in terms of the cc-pVQZ-fg and cc-

pVQZ-g basis  sets,  respectively  (see  Fig.  4.2.2).  The  extrapolation  to  zero  time  step  of  the 

DMC/CAS(4,16) results obtained with the 0.001 coefficient threshold and using the cc-pVQZ-g basis set 

gives a DMC binding energy of 849 cm-1 (see Fig. 4.2.3), vs. the 845 cm-1 value obtained with the 0.001 

a.u. time step.  Thus, we conclude that the error due to the use of the finite time step is inconsequential.
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Figure 4.2.2-  Extrapolation of the DMC energy of the beryllium dimer to zero CI coefficient in 
the calculations using the CI/cc-pVQZ-g trial function.  The dashed red line is a linear fit to the DMC 
energies (blue squares).

Figure 4.2.3-  Extrapolation  to  zero  time  step for  DMC on the  CI  natural  orbitals  for  Be dimer  at 
equilibrium bond length using the CI trial wave function.  A linear fit was used for the extrapolation. 
Results obtained for the CAS(4,16) trial function.

116

0 0.001 0.002 0.003 0.004 0.005 0.006
-29.33850

-29.33845

-29.33840

-29.33835

-29.33830

dt (a.u.)

E
ne

rg
y 

(a
.u

.)

0 0.002 0.004 0.006 0.008 0.01 0.012
-29.3385

-29.3383

-29.3381

-29.3379

-29.3377

-29.3375

CI cutoff

E
ne

rg
y 

(a
.u

.)



The DMC calculations using the CI trial function with the 0.001 coefficient cutoff and cc-pVQZ-

g basis set yielded a dimer binding energy of 873 cm -1, while the corresponding result extrapolated using 

the different coefficient thresholds is 908 cm -1, which is only 27 cm-1 smaller than the experimental value 

of the binding energy.  These results demonstrate that correlation effects involving configurations outside 

the CAS(8,16) space are important for describing the nodal surface of Be2.

It should be noted that the SDTQ CI calculations using the cc-pVQZ-g basis set and freezing the 

1s orbitals give a binding energy of only 601 cm -1, which is 334 cm-1 lower than the experimental value. 

About 70 cm-1 of the error in this result is due to the neglect of the correlation effects involving the core  

1s orbitals.229 while the remaining error is due to correlation effects that are not captured due to the basis 

set  truncation.   This  underscores  one  of  the  major  advantages  of  the  DMC method,  namely,  that  it  

achieves convergence with much smaller basis sets (for the trial functions) than required for traditional  

quantum chemistry methods.

4.2.4 Conclusions

In conclusion, the binding energy of the beryllium dimer has been calculated using the diffusion 

Monte Carlo method in conjunction with a wide variety of trial wave functions.  Even DMC calculations  

with a trial wave function as large as CAS(4,16) considerably underestimate the binding energy of the 

beryllium dimer.  CI trial functions allowing excitations from the valence space into the entire virtual 

space give a binding energy within 27 cm -1 of  the experimental  value.  It  is possible that  this  small 

remaining discrepancy from experiment is due to the neglect of excitations from the 1s orbitals in the trial 

functions used for the DMC calculations.  Although DMC calculations using small configurational spaces 

that give binding energies close to experiment have been reported for Be2, they also give energies for the 

atom and dimer that are appreciably higher than those obtained using the CI trial functions employed 

here.  Thus, the good agreement of the binding energy of Be2 with the experimental value obtained with 
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small configuration trial functions could be fortuitous.  We believe our findings are relevant for a wide 

range of other dimers, e.g., the benzene dimer, where there is appreciable configuration mixing in the 

wavefunctions  of  the  monomers.   In  particular,  achieving  well  converged binding  energies  for  such 

systems  is  likely  to  require  the  use  of  multiconfigurtional  trial  functions  allowing  for  high-order  

excitations as well as excitations outside the valence space.
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5.0 DIFFUSION MONTE CARLO CALCULATIONS OF THE WATER 

ACENE INTERACTION ENERGY

5.1.1 Introduction

The interaction  of  molecules  with  acenes  has  attracted  considerable  interest  for  a  variety  of 

reasons, including the use of such systems as models for understanding molecular adsorption on 

graphene and graphite and for testing theoretical approaches for describing weak interactions. 

Of particular interest is the magnitude of the interaction of a water molecule with the graphene 

surface.  This question has been addressed in numerous theoretical studies, with most of these 

concluding  that  the  binding  energy  of  a  water  molecule  to  a  graphene  sheet  is  about  -3.1 

kcal/mol.181  However,  diffusion Monte Carlo (DMC)229–231 and random-phase approximation 

(RPA)29,30,74 calculations  give  significantly  smaller  (in  magnitude)  binding energies  (-1.6 and 

-2.3, respectively.232–234  In studies using extrapolation of the results of calculations of water-

acene systems to obtain the water-graphene limit,  water-benzene and water-coronene systems 

play an important role.  Based on the highest level calculation available for these systems, the 

binding  energies  of  water-benzene  and  water-coronene  are  about  -3.2  and  -3.05  to  -3.35 

kcal/mol, respectively.235  In the case of water-benzene, the theoretical estimates are in excellent 

agreement with the values deduced from experiment, while there is no experimental value for the 

binding energy of the water-coronene system.
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There are multiple challenges in extending electronic structure calculations to the larger 

acenes needed to realistically model water interacting with graphene.  Foremost among these is 

the  fact  that  dispersion  interactions  play  a  major  role  in  the  binding.229,231,236  As  a  result, 

traditional  generalized  gradient  or  hybrid  density  functional  theory  (DFT)  methods  are  not 

suitable.  This problem is partially overcome by the use of dispersion-corrected DFT approaches. 

However, several such approaches were recently tested for water-coronene and none were found 

to  give  a  quantitatively  accurate  description  of  the  interaction  potential.231  The  MP2 

method231 does include dispersion interactions, but can overestimate their importance.  Although 

this problem can be solved by use of the CCSD(T) method,112,237 this approach (as traditionally 

formulated) is computationally prohibitive for large acenes.  In addition to the challenges posed 

by dispersion interactions, traditional quantum chemistry methods using Gaussian-type orbitals 

are plagued by near-linear dependency and basis set superposition error (BSSE)238–240 problems 

when applied to molecules interacting with large acenes.  Two of the most promising methods 

for  characterizing  the  interaction  of  water  and  other  molecules  with  acenes  are  DFT-based 

symmetry-adapted  perturbation  theory  with  density  fitting241,183 and  the  MP2C  method  of 

Hesselmann.148,242  There are two implementations of the former – the DF-DFT-SAPT approach 

of  Hesselmann148,184 and  co-workers  and the  DF-SAPT (DFT) method  of  Szalewicz  and co-

workers.148  These methods display O(N5) scaling, where N is the number of electrons, and thus 

are  computationally  attractive  compared to CCSD(T).   However,  they still  suffer from near-

linear dependency problems when flexible basis sets containing diffuse functions are employed. 

Moreover,  the  MP2,  MP2C,  and  other  methods  that  involve  perturbative  corrections  to  the 

Hartree-Fock  wavefunction  might  not  be  appropriate  for  large  acenes  due  to  their  small 

HOMO/LUMO gaps.
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An alternative approach for calculating interaction energies, which is free of the problems 

described above, is the diffusion Monte Carlo (DMC) method.242,243  This method has already 

been applied to several weakly interacting systems, including water clusters,29,30 and the water-

benzene dimer,13,38,73,86 and, as noted above, the water-graphene system.235  In the usual fixed-

node  implementation,  DMC  calculations  make  use  of  a  trial  function  –  generally  a  Slater 

determinant comprised of Hartree-Fock (HF) or DFT orbitals multiplied by Jastrow factors69,86 to 

describe  the  electron-electron,  electron-nuclear,  and  electron-electron-nuclear  correlations. 

DMC calculations afford the advantages of being relatively insensitive to the basis set used for 

the trial function and having a relatively low, ~O(N3) scaling, albeit with a large prefactor.  The 

large prefactor is “compensated” by the fact that the DMC calculations are highly parallel. 

In this paper, we use the DMC method with a B3LYP trial wave function to calculate the 

interaction  energies  of  the  water-benzene,  water-anthracene,  water-triphenylene,  and  water-

coreonene complexes.  The binding energies calculated with the DMC method will be compared 

to  other  benchmark  methods.   CCSD(T)-F12b  calculations  for  benzene  and  anthracene  will 

establish the benchmark for these smaller system.  The close agreement of MP2C-F12 and DF-

DFT-SAPT to CCSD(T)-F12b for the small acenes will give confidence to using the MP2C and 

DF-DFT-SAPT methods as benchmarks for the triphenylene and coronene complexes. 

5.1.2 Computational details

The structure of the water-coronene complex considered in this study is shown in Figure 

5.1.1.  The geometries employed are the same as those in used in Ref. 70.  For the acenes, the 

experimental  C-C  bond  length,  1.420  Å,  and  C-C-C  angles,  120o,  for  graphite  are 

employed.231  The acene C-H bond lengths and C-C-H angles were taken to be 1.09 Å and 120o, 
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respectively.  The experimental gas-phase geometry is employed for the water monomer, i.e., the 

O-H bond lengths are 0.9572  Å and the H-O-H angle is 104.52o.244  The water molecule was 

placed above and perpendicular to the middle of the central ring, with both OH groups pointing 

towards the acene, and an oxygen-ring distance of 3.36 Å as shown in Figure 5.1.1  This distance 

came  from  an  optimization  of  the  geometry  of  water-coronene  using  the  DF-DFT-SAPT 

method.231  The  experimentally  observed  water-benzene  complex  has  a  minimum  energy 

structure with a “tilted” water molecule with one OH group pointed toward the center of the 

ring.231  However, the energy difference between the one H-down minimum and the two H-down 

saddle point structure is less than 0.2 kcal/mol.245   

The DMC calculations  were carried out using single-determinant  trial  wave functions 

obtained from HF or B3LYP110,111 calculations, combined with three-term Jastrow factors36 to 

describe the electron-electron, electron-nuclear, and electron-electron-nuclear correlations.  The 

parameters in the Jastrow factors were obtained by minimization of the variance of the local 

energy.  The Dirac-Fock pseudopotentials of Trail and Needs36 were employed on all atoms and 

the basis sets of Xu et. al86 that have been designed for use with these pseudopotentials.  The 

basis set for the oxygen and carbon atoms consist of the s and p functions of the quintuple-zeta 

basis  set  together  with  the  two  d functions  from  the  double-zeta  basis  set  of  Xu  et  al. 

Additionally, the most diffuse d functions were scaled by a factor of 1.5 in order to avoid linear 

dependency in the trial  wave function.   For  the hydrogen atoms,  the quintuple-zeta  set  of  s 

functions was combined with the double-zeta p functions, and the most diffuse p was scaled by a 

factor of 1.5.  The pseudopotential localization error in the DMC calculations was treated with 

the T-move scheme85 and used a symmetric branching factor.35  Time steps of 0.01, 0.025, 0.05, 

and 0.1 a.u. were used in the DMC calculations, and all binding energies were extrapolated to 
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zero time step by use of quadratic fits.   Too calculate the binding energy, two structures were 

considered; the equilibrium structure described above, and a long-distance structure, where the 

water molecule is moved 15 Å away from the acene.  The DMC simulations were run using a 

target  population  of  60,000  walkers  for  up  to  30,000  Monte  Carlo  steps.   The  trial  wave 

functions were generated using the Gaussian09B code.70  All QMC calculations were carried out 

with the CASINO92 code.

The DF-MP2C-F12119,146calculations used the aug-cc-pvtz84 basis set and are corrected for 

basis  set  superposition  error  (BSSE)  using  the  counterpoise  method.121 The  DF-DFT-SAPT 

calculations  on the water-benzene,  water-anthracene,  and water-triphenylene  complexes  were 

carried out using the aug-cc-pvtz basis set and are free of BSSE by definition. These calculations 

were carried out using the MOLPRO122 code as outlined in Ref. 231 .  For water-coronene, the 

DFT-SAPT results  are  taken from reference  231 and used a  truncated  aug-cc-pvtz basis  set 

described therein.   The CCSD(T)-F12b results for benzene and anthracene are also taken from 

reference 231 and use the vtz-f12 basis set.  

Figure 5.1.1 – Structure of the water-coronene system studied.

123

R



5.1.3 Results and discussion

Table 5.1 – Binding energy of a water molecule to an acene.  All energies are given in kcal/mol.

The results of the DMC, CCSD(T)-F12b, MP2C, and DF-DFT-SAPT calculations are given in 

Table  5.1.1   For  all  systems  considered,  the  CCSD(T)-F12b,  DF-MP2C-F12,  and  DF-DFT-

SAPT methods give essentially the same binding energies;  CCSD(T)-F12b calculations were 

carried out only for the two smallest systems.  This gives confidence in using the DF-MP2C-F12 

method as the benchmark result for the larger acenes interacting with the water. The vibrational 

zero-point energy correction to the dissociation energy of water-benzene has been estimated to 

be about 1.0 kcal/mol.69,86  Applying this correction to binding energies from DMC calculations 

gives a D0 value of -1.8(1) kcal/mol, which are in close agreement with the experimental value of 

-2.44(9) and -2.25(28) kcal/mol.  236,246

For water-anthracene, DMC value of the binding energy obtained using the B3LYP trial 

wave function is in excellent agreement with the three reference values, giving a binding energy 

of -3.4(2) kcal/mol, compared to the CCSD(T)-F12b value of -3.37 kcal/mol.  

For  water-triphenylene,  the  DMC  calculation  with  a   B3LYP  trial  wave  function 

underestimates by 0.3 kcal/mol the binding energy, using the DF-MP2C-F12 method is taken as 

the benchmark.  

In the case of water-coronene, the DMC calculations with a B3LYP trial wave function 

gives a binding energy of -2.6(3) kcal/mol, which is beyond one standard deviation from the DF-
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Benzene -2.9(1) -3.17 -3.24 -3.20

-3.4(2) -3.37 -3.34 -3.34
-2.8(2) - -3.21 -3.15

Coronene -2.6(3) - -3.13 -3.05
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MP2C-F12 result of -3.13 kcal/mol.  The DMC results is underestimating the binding energy by 

0.5 kcal/mol.

It has been shown for linear acenes that the ground-state wavefunction becomes more 

multi-configurational as more rings are added.212,247  The leading coefficient of a CAS(14,14) 

calculation on anthracene, using all of the π and π* orbitals as the active space, is 0.86211 which 

indicates  a  significant  multi-configurational  character.   For  triphenylene  and  coronene,  a 

CAS(14,14) active space results in a leading coefficient of 0.90 and 0.83, respectively, on the 

leading coefficient.  However, a CAS(14,14) active space does not include all of the  π and π* 

orbitals  for  triphenylene  or  coronene,  and  it  is  likely  that  the  coefficient  of  the  leading 

configuration is smaller in magnitude than the above estimates.

Table 5.1.2 shows the DF-DFT-SAPT energy decomposition for each acene interacting 

with a water molecule.   The electrostatic contribution to the energy decreases as the acene grows 

in size, but is compensated for by an increase in the dispersion energy.  The exchange energy 

decreases going from benzene to anthracene, but remains constant from anthracene to coronene. 

The induction energy and higher-order induction terms, accounted for in the δHF term, remains 

largely constant across all  sizes of the acenes.   These results  are consistent with those from 

earlier work,70,231  all though these two studies did not include triphenylene.  The electrostatic 

term  decreases  by  0.43  kcal/mol  going  from anthracene  to  triphenylene,  and  only  by  0.13 

kcal/mol when going from triphenylene to coronene.  
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Table 5.1.2 – DF-DFT-SAPT interaction energy decomposition, in kcal/mol.

5.1.4 Conclusions

In this study, it has been shown that the DMC method is capable of predicting accurate binding 

energies for water and small acenes if a B3LYP trial function is used.  The increasing size of the 

acene does not change the interaction energy for the benchmark calculations of CCSD(T)-F12a, 

DF-DFT-SAPT, and DF-MP2C-F12.   At  first  sight  it  may seem surprising  that  the  binding 

energy  of  water  on  acenes  remains  constant  despite  the  size  of  the  acene.   However,  the 

dispersion  energy grows with  the  acene  size  and is  roughly  compensated  by the  decreasing 

electrostatic contribution,70,231  which is demonstrated by the energy decomposition afforded by 

the DF-DFT-SAPT procedure.

It  was noted in  the Introduction  that  a  recent  DMC calculation  gave a  value of  -1.6 

kcal/mol for the binding of a water molecule to the graphene surface.70,248  This value is about 1.4 

kcal/mol  smaller  in  magnitude  than  obtained  in  other  recent  theoretical  studies  of  water-

graphene.229–231 The DMC calculations of reference 235 were carried out using periodic boundary 
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conditions, a single k point, and with a supercell  containing 50 carbon atoms.  Based on the 

results of RPA calculations, the authors of reference 235 established that the error due to the use 

of the Γ only for k-point sampling is about 0.5 kcal/mol.  Applying this correction to their DMC 

result gave a binding energy of -2.1 kcal/mol, which is still appreciably smaller in magnitude 

than other recent estimates of the binding energy of water-graphene.  Possible remaining errors 

include the interactions between water molecules in adjacent cells and the inadequacy of a single 

determinant  wavefunction for describing the nodal surfaces.   Given the spacing between the 

water molecules, the error in the binding energy due to water-water interactions should be less 

than 0.2 kcal/mol.  This suggests that the use of a single determinant trial function introduces an 

error of about 0.9 kcal/mol in the DMC value of the interaction energy for water-graphene.  
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6.0 DIFFUSION MONTE CARLO CALCULATIONS OF THE BENZENE 

AND ANTHRACENE DIMERS

6.1.1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are molecules with fused benzene rings that 

are hydrogen terminated.  These are important molecules in many fields; they are known to be 

carcinogenic;249   in  materials  science,  they  are  constituent  molecules  for  many  organic 

semiconductors  due to their  high conductivity.250    Also,  large PAHs can serve as a model 

system for graphene.251 

The  interaction  between  two  PAH  molecules  is  dominated  by  dispersion  forces. 

Traditional  DFT  methods  without  dispersion  corrections  do  no  adequately  describe  the 

interaction  between  PAHs.   Additionally,  it  is  well  known that  second-order  Møller-Plesset 

perturbation  theory  (MP2),  overestimates  the  magnitude  of  the  dispersion  interaction  in  the 

“stacked” (i.e.  face-to-face)  arrangement  of the benzene dimer.   The CCSD(T) method does 

properly describe the dispersion interaction in such systems but is computationally prohibitive 

for the interaction between two large PAH molecules.  An alternative method is diffusion Monte 

Carlo (DMC).74  DMC has several advantages over the above methods for studying pi-stacked 

systems.  DMC is free of basis set superposition error (BSSE),10 has very favorable scaling with 

system size, and is capable of sub-chemical accuracy for weakly interacting systems.12 
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The benzene dimer is the most commonly studied251–255  (also see two recent reviews256,257 

and references therein) system to model interacting PAHs.  Several studies of the anthracene 

dimer  have  appeared,258–263 attempting  to  increase  the  size  of  the  acene  for  which  reliable 

benchmarks can be obtained.  

Experimental  results264,265 for  the  anthracene  dimer  indicate  two  structurally  different 

isomers for the dimer, though the structures were not resolved and the binding energy was not 

measured.  For the benzene dimer, two minimum, the tilted T-shape dimer and parallel-displaced 

dimer are only separated by 0.1 kcal/mol with the T-shape dimer being lower in energy.266  This 

is consistent with experimental results, which can resolve each structure dependent on the carrier 

gas.267 

Here,  the  benzene dimer and the anthracene  dimer  are  considered in the face-to-face 

(AA) stacking conformation.  This is not the global minimum for either structure; for benzene, 

the titled T-shaped dimer is the global minimum,266 and the crossed dimer (where a monomer in 

the AA conformation is rotated ninety degrees about the principle axis) is the minimum for the 

anthracene dimer.261 (It should be noted that only four geometries were tested for the anthracene 

dimer.)  However, the face-to-face dimer arrangements of acene dimers are particularly valuable 

for  benchmarking  methods  for  describing  strong  dispersion  interactions.   The  DF-DFT-

SAPT148 method is used to better  understand the components of the interaction energy.  The 

MP2C184  method  of  Heßelmann,  which  replaces  the  uncoupled  polarizability  in  the  MP2 

expression  with  the  coupled  polarizability  from a  time-dependent  DFT calculation,  and  the 

However, using DMC with a single determinant trial wave function may not always be the best 

method for studying systems where the monomers are strongly correlated.
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Figure 6.1.1 – Binding energy curve of the anthracene dimer calculated using the DF-MP2C-

F12 method with a  vdz-f12 basis  set.   The inset  shows the binding energy minimum.   The 

geometry and description of R are also shown.

6.1.2 Computational details

The geometry for the benzene dimer is taken from reference 253, where the carbon-carbon bond 

length and carbon-hydrogen bond length are set at  1.3915 and 1.08  Å, respectively,  and the 

distance between the rings is 3.9  Å.  The geometry of the anthracene monomer was optimized at 

the MP2 level with the Dunning aug-cc-pVTZ basis set84 and no geometrical constraints. The 

equilibrium  distance  for  the  anthracene  dimer,  shown  in  Figure  6.1.1,  was  determined  by 

calculating an interaction curve at the DF-MP2C-F12 level of theory with the VDZ-F12 basis 

set120 using the  monomer optimized geometry for both monomers in the dimer.  The DF-DFT-

130

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3
-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

Monomer separation R (Å)

B
in

d
in

g
 E

n
e

rg
y,

 (
K

ca
l/m

o
l)

R



SAPT calculations used the aug-cc-pVTZ basis set.  The above calculations were performed with 

the MOLPRO code.122

The trial wave functions for the DMC calculations were generated in the MOLPRO code, 

and the DMC calculations were performed with the CASINO48  code.  The trial wave functions 

consisted  of  a  three-term Jastrow factor36 with  parameters  that  were  optimized  via  variance 

minimization  in  a  Variance  Monte  Carlo  (VMC)  calculation.   The  Trail-Needs 

pseudopotential85 and a basis set of Xu et al.  was used for the trial wave function.  The basis set 

consists of the quintuple-zeta s and p functions for each carbon and the triple-zeta d functions. 

For hydrogen, the quintuple-zeta  s functions were used with the triple-zeta p functions. Orbitals 

from both Hartree-Fock and B3LYP87,88 calculations are used for the trial wave function.  The 

binding energy is calculated as the energy of the equilibrium structure minus the energy of the 

two molecules at 15.0  Å separation (10 Å for benzene).  The localization of the pseudopotential  

was treated beyond the locality approximation.35 A symmetric66 branching factor was used in the 

DMC calculation.  Time steps of 0.1, 0.05, 0.025, and 0.01 a.u. are used and a quadratic fit to the 

binding energy is used to extrapolate to zero time step.

Complete active space (CAS) calculations were carried out with the GAMESS226 program 

package, and the QMCPACK227 code was used for the DMC calculations on the benzene dimer 

with a multi-determinant trial wave function.  The trial wave functions used the pseudopotential 

and corresponding basis sets of Burkatzki, Filippi, and Dolg (BFD).41  The basis set for carbon is 

constructed  from the  quintuple-zeta  s and  p  functions,  and the  triple-zeta  d functions.   For 

hydrogen, the basis set consisted of the quintuple-zeta s functions and the triple-zeta p functions. 

The Jastrow factor and CI coefficients were simultaneously optimized in a VMC calculation via 

energy minimization.  For this calculation, the binding energy is calculated as the equilibrium 
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structure minus twice the monomer.  This is a more efficient method than using the long-distance 

structure, as it reduces the number of determinants to be evaluated.  A time step of 0.01(a.u.) is 

used for this calculation.

6.1.3 Results and discussion

Table 6.1.1 – SAPT energy components and binding energy (kcal/mol) for the benzene 

and anthracene dimer.

a. Reference 253 

The results of the DF-DFT-SAPT, MP2C-F12, and DMC calculations are summarized in table 

6.1.1. The MP2C-F12 and DF-DFT-SAPT methods are in excellent agreement.  Additionally, for 

the benzene dimer, the MP2C-F12 and DF-DFT-SAPT methods are in very close agreement with 

the complete-basis-set limit CCSD(T) calculations of Sherril and coworkers.253  As mentioned in 

the introduction, the dispersion energy is the main contribution to the interaction energy. 

The DMC method consistently underestimates the binding energy of these systems with 

respect to the MP2C-F12 and DF-DFT-SAPT benchmark methods.  It has been shown181 that the 

132

Benzene

0.142 -0.844

2.892 8.272

-0.995 -2.921

0.873 2.698
Net induction -0.122 -0.222

-5.165 -15.392

0.600 1.761
Net dispersion -4.565 -13.632
DF-DFT-SAPT -1.653 -6.426
MP2C-F12 -1.670 -6.530

-1.660 -
B3LYP/DMC -0.7(2) -5.5(3)

Anthracene
E1

Es

E1
Ex

E2
Ind

E2
Ex-Ind

E2
Disp

E2
Disp-Ex

CCSD(T) CBSa



the B3LYP trial  function is in general more suitable  for high accuracy DMC calculations of 

weakly interacting systems.  For the benzene and anthracene dimers, this does not appear to be 

the case, as it underestimates the binding energy by nearly one kcal/mol in both cases.  The 

DMC calculation of the binding energy of the benzene dimer that uses the B3LYP trial wave 

function is in very close agreement with a previous DMC calculation268 of the benzene dimer; 

however, it was noted in that study, as it is here, that this estimate is more repulsive compared to 

other high level calculations.  

One  possible explanation for why the DMC method predicts an underestimate of the 

binding energy of the acene dimers is due to the multi-configurational nature of the benzene and 

anthracene monomers.  For each monomer, a complete active space SCF (CAS-SCF) calculation 

is possible for an active space that consists only of the π electrons and the π* orbitals.  This CAS 

calculation  with a  cc-pVDZ basis  set  gives  a  leading CAS coefficient  of  0.94 and 0.86 for 

benzene and anthracene,  respectively.   For the benzene dimer,  a CAS(12,12) calculation will 

include  the  π electrons  and the  π*  orbitals  of  each  monomer  and results  in  a  leading  CAS 

coefficient of 0.88;  clearly, the CASSCF calculation including the π electrons and the π* orbitals 

of each monomer for the anthracene dimer is intractable, as it would be require a CAS(28,28) 

calculation.  Because the CAS(12,12) calculation produces more than 200,000 determinants,  a 

trial  wave  function  for  a  DMC  calculation  requires  a  threshold  to  be  applied  to  the  CI 

coefficients.  This threshold is chosen to be 0.005, which retains 2139 determinants and gives a 

normalized CI vector of 0.9906.  For the monomer, the CAS(6,6) trial wave function is used, and 

at the same CI threshold of 0.005, 117 determinants are retained and give a normalized CI vector 

of  0.9999.   The  binding  energy  that  results  from  this  calculation  is  0.23(17)  kcal/mol, 

qualitatively incorrect and clearly an underestimate compared to the benchmark methods given 
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in  table  6.1.   This  is  largely  a  result  of  the  large  threshold  applied  to  the  CI  coefficient. 

However,  a CI threshold of 0.0025 results  in  7478 determinants  for the trial  wave function. 

Clearly, this problem very quickly becomes computationally demanding.  However, the concerns 

raised in section 4.1.1 about the multi-determinant trial wave function for ethylene dimer are 

relevant here.  Indeed, the lack of agreement between the normalized CI vector in the dimer and 

monomer indicate that the arbitrary CI threshold of 0.005 is not having a similar effect on the 

nodal surface of the monomer as it is on the dimer.

In conclusion, the interaction energy of the face-to-face benzene dimer and anthracene 

dimer were studied.  It was shown that for the benzene dimer, the DF-DFT-SAPT and MP2C-

F12 methods are in very good agreement with complete-basis-set limit CCSD(T) calculations. 

For  the  anthracene  dimer,  the  DF-DFT-SAPT  and  MP2C-F12  methods  agree  very  well  in 

predicting a binding energy of -6.5 kcal/mol.   The DMC method was also used to study the 

interaction energy of these two dimers.  It is seen that for two different single-determinant trial 

wave functions, the DMC method underestimates the magnitude of the binding energy.  This 

may be due to the multi-configurational nature of the monomers, but a DMC calculation that 

retains  only a  small  number of determinants  in  the trial  wave function did not  improve the 

binding energy.
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7.0 CONCLUSIONS

In my dissertation research, I carried out several electronic structure calculations in support of 

diffusion  Monte  Carlo  studies.   I  studied  large  systems  of  environmental  and  economical 

importance as well as small model systems that help to further develop the successful application 

of diffusion Monte Carlo.

Newly designed correlation consistent Gaussian basis sets have been combined with the 

Trail-Needs pseudopotentials and tested in DMC calculations.  It is shown these basis sets reduce 

the variance in VMC calculations and speed up convergence in DMC calculations.  It is further 

shown that  an expanded  s and  p space  is  required  to  accurately  describe  weakly interacting 

systems.

I also explored the utility of a trial wave function composed of Brueckner orbitals.  It is 

shown that in all-electron calculations, Brueckner orbitals do not out perform B3LYP orbitals, 

but that for calculations with a pseudopotential, Brueckner performs as well as PBE0 and better 

than B3LYP orbitals for a test set of diatomic molecules.  Additionally, I demonstrated that a 

bent CO2
 anion is better describe by a trial wave function comprised of Brueckner orbitals than a 

trial wave function of B3LYP or PBE orbitals.  Both DFT and Brueckner orbitals result in a 

lower variational energy than Hartree-Fock orbitals for the diatomic test set and the CO2 anion 

test.
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I also studied large, weakly interacting clusters.  For the water-16 cluster, DMC was used 

to corroborate the complete-basis-set limit MP2 results.  These results are further compared to a 

many-body energy estimate, where the one-, two-, three-, and four-body energies were calculated 

using high level ab initio techniques and compared to several force-fields.  It was concluded that 

the five and higher-body interactions contribute nearly two kcal/mol to the net binding energy of 

the water-16 cluster.  

The  DMC  method  was  also  used  to  study  a  methane  molecule  encapsulated  in  a 

dodecahedral water cage.  A many-body energy estimate was again made, considering the two- 

and  three-body  interactions  of  each  water  from  the  cage  interacting  with  the  encapsulated 

methane.  The DMC calculation of the interaction energy of the supermolecular allowed for a 

refined estimate of the interaction energy from the many-body decomposition.  Additionally, the 

two- and three-body SAPT method was used to break down the contributions to the interaction 

energy.  It was found that even at the three-body level, induction, exchange, and dispersion all 

contribute approximately one kcal/mol to the interaction energy.

I used diffusion Monte Carlo to determine a benchmark interaction energy for a carbon 

dioxide  clathrate.   The  N-body  decomposition  revealed  that  the  DMC  results  are  in  good 

agreement  with  the  binding  energy  calculated  at  the  two-  and  three-body  level  with  the 

CCSD(T)-F12b method.  The SAPT method was again used to determine the contributions to the 

interaction  energy,  and  it  was  shown  that  the  dispersion,  exchange,  and  induction  are  all 

contributing to the binding energy at both the two- and three-body level.  

I also carried out all-electron calculations on the beryllium atom and dimer.  This is a 

model  system  for  strongly  correlated  weakly  interacting  systems  that  is  known  to  be  a 

challenging problem due to the ground state degeneracy of the atom.  I used single determinant 
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and  multi-determinant  trial  wave functions.   I  showed that  Hartree-Fock  underestimates  the 

binding energy, and DFT overestimates the binding.  Mixing a percent of exact exchange into the 

functional used to generate the DFT orbitals leads to a more accurate description of the binding 

energy, all though this is shown to be a fortuitous result.  Several multi-determinant trial wave 

functions with different active spaces were considered.  It was shown that a very large virtual  

space was required to generate a trial wave function that was able to accurately reproduce the 

experimental binding energy. 

To  gauge  the  effectiveness  of  DMC as  the  trial  wave  function  became  more  multi-

configurational, a model H4 system was studied.  It was shown that a single-determinant trial 

wave function does not give a good description of the nodal surface as the multi-configurational 

nature of the ground increases.  Using full CI as a benchmark, it is shown that as the leading 

coefficient from a CAS(4,4) calculation increases to approximately 0.85, the single-determinant 

trial wavefunctions are not adequately describing the nodal surface.  

To determine the effect of a multi-reference ground state on weakly interacting systems, 

stacked ethelyne dimers were studied.  As the dimers are twisted around the π bond, the ground-

state wave function becomes more multi-configurational.  At a twist angle of eight degrees, the 

monomer has a leading CAS coefficient of 0.86.  It is shown that for this dimer, a CAS trial  

wave function is required for the DMC binding energy to agree with the CCSD(T) becnchmark 

value.

Diffusion Monte Carlo studies were also carried out on the a series of acenes interacting 

with a water molecule.  It is shown that the binding energy predicted by DMC calculations with a 

single determinant trial wave function decreases as the acene grows larger, in contrast to high 

level  benchmark  ab  initio calculations  such  as  MP2C-F12  and  DF-DFT-SAPT.   A  single 
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determinant of B3LYP orbitals was used to in calculating the binding energy.  It is estimated that 

a multi-reference trial wave function would provide a better description of the nodal surface.

Finally, DMC calculations were carried out for the benzene dimer and anthracene dimer. 

It is again shown that a single-determinant is not providing an accurate description of the nodal 

surface.  A multi-configuration trial wave function for the benzene dimer indicated that a very 

large determinant expansion will be necessary to accurately describe the binding energy of large 

acenes.

QMC methods  such as  VMC and  DMC are  becoming  more  widely  recognized  as  a 

valuable tool in finding a solution to the Schroedinger equation for atoms, molecules, and solids. 

The flexibility of the trial wave function, high accuracy, and low scaling make it an ideal method 

to apply to a wide range  of systems.  Additionally, the inherent parallel nature of the method 

makes it well suited to take advantage of today's modern computer architectures. 

Besides the quantum Monte Carlo methods of VMC and DMC described here,  other 

QMC methods  are  being  developed.   Reptation  Monte  Carlo  is  a  method  used to  calculate 

unbiased expectation values of operators that do not commute with the Hamiltonian.  It has been 

successfully  used to compute  dipole moments of transition  metal  oxides that  are  difficult  to 

characterize with traditional DMC. Full CI QMC269 is another recently developed method that 

uses  the  time-dependent  Schröedinger  equation  to  project  an  answer  as  walkers  evolve  in 

determinant space, as opposed to the coordinate space typically used in DMC.  It has been used 

to  study the homogeneous electron  gas,270 cohesive energies  of  bulk solids,271 and excitation 

energies of ethene and butadiene.272  

New trial wave functions are being studied in DMC.  Aside from the single- and multi-

determinant  wave functions used in this  dissertation,  generalized valence bond (GVB)273 and 
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anti-symmetrized geminal powers274 are being used.  Further developments in the area of trial 

wave functions are expected to bring higher accuracy and greater computational efficiency to 

diffusion Monte Carlo.
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