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STRESS ANALYSIS FOR SCLERAL BUCKLING OF THE EYE 

Raed Aldhafeeri, M. S. 

University of Pittsburgh, 2015 

Scleral buckling is a process in which a buckle or band is wrapped around the eye and tightened 

and is used to treat different eye disorders. The procedure can result in induced myopia by 

increasing the axial length of the human eye. This study was performed to assess how the 

application of a scleral buckle of various widths and tightness on eyes with decreased corneal 

thicknesses affects stresses and strains in the tissue and the anterior-posterior dimension. For this 

purpose, an axisymmetric finite element model of the eye was created where the mechanical 

properties of the tissues are assumed to be linearly elastic, the humors as incompressible fluid 

and the buckle as rigid. The buckles were chosen to have widths of 3, 5 and 7 mm with 

constrictions of 0.5, 1 and 1.5 mm and the reduced thicknesses of the cornea that were 

considered are 0, 25 and 50%. The results showed that as the buckle width and tightness 

increase, the axial length change of the eye increases.  The maximum stress is greater for a 

thinner buckle with greater tightness. Also, the change in corneal thickness has a minor effect on 

the axial length and maximum stress. For scleral buckle selection, increased buckle width and 

construction lead to an increase in myopia. Eyes which have thinner cornea due to disease or 

LASIK procedure for example are more susceptible to this myopic shift than eyes with a normal 

corneal thickness. 
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1.0     INTRODUCTION 

The eye is a pressurized shell with a complex geometry having multiple tissue layers. In the 

treatment of some eye diseases, the response of the eye to different surgeries may be related to 

material properties and geometry of different structures of the eye. The finite element method 

(FEM) is a common computational tool that is used to analyze stresses and displacement in 

objects with complex shapes and material properties and the method has been widely used to 

study eye biomechanics in stimulating impact, refractive surgeries, accommodation and some 

factors in eye diseases. 

 Scleral buckling is a common surgery for treatment of the retinal detachment (RD) in 

which a silicon band is placed and tighten around the circumferential globe of the eye. This 

procedure is believed to cause myopia (nearsightedness) by increasing the axial length of the eye 

(Harris et. al 1987, Smiddy et. al 1989, Okada et. al 2000). It has been proposed that different 

axial length changes may be due to the amount of the tightness and geometry of the buckle 

(Okada et. al 2000, Harris et. al 1987). This study is to assess the effect of different scleral 

buckle widths, amount of the tightness and corneal thinning on the axial length of the eye using 

finite element analysis. 

An overview of the anatomy of the eye and the mechanical properties of the cornea and 

sclera is presented. Descriptions of the previous finite element models of the eye are discussed in 

term of the geometries, material properties, loading and the main results of each study. In the 
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methods section the details of the model in terms of the geometry, materials properties of the 

included tissues and boundary conditions with loading steps are presented. Results Of the 

modeling are given in terms of pressure change, axial length change and maximum stress as 

function of the scleral buckle width, tightness and thinning of the cornea. 
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2.0    BACKGROUND 

2.1 ANATOMY OF THE EYE 

Before discussing models of the eye, the anatomy of the eye will be introduced. The eye is held 

within fatty tissues in the skull and controlled by muscles. The shape of the eye is partial sphere 

(Figure 2.1) with two chambers that contain the aqueous and vitreous humors. The aqueous 

humor is water like and the vitreous has a jelly like consistency. Both fluids are responsible for 

maintaining the intraocular pressure (IOP) in the eye. The optic nerve head (ONH) inserts into 

the vitreous chamber wall at the back of the eye and the wall has of three layers of tissue: sclera, 

choroid and retina. The sclera is the white tissue and it is thicker than choroid and retina having a 

thickness of approximately 0.5-1 mm (Norman et. al 2011). The retina is the inner layer of the 

eye where the light is captured and is converted to signals transmitted to the brain through optic 

nerve. The lens serves to focus the light on the retina and it is attached to the sclera by zonular 

fibers from the ciliary body.  
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Figure 2.1: Cross section of the eye indicating different tissue structures (Sigal et. al 2009). 

 

2.2 MECHANICAL PROPRTIES OF THE EYE TISSUE 

Biological tissues are generally viscoelastic, anisotropic materials having a nonlinear stress-

strain relationship (Bischoff et. al 2004). Of the tissues in the eye, the mechanical behaviors have 

been primarily investigated for sclera and cornea due to their significant involvement in surgeries 

and their structure importance. 

Most of the mechanical testing of the sclera tissue has been conducted at low strain rates 

and nonlinearity has been always observed in the results. Woo et. al (1972) pressurized both 

hemispheres of the eye, and using simple finite element models, the elastic modulus of the sclera 

and cornea were estimated to be tri-linear functions. On the other hand, Friberg et. al (1998) and 

Graebel et. al (1977) represented the uniaxial stress-strain relationship results of the scleral tissue 

as linear and exponential, respectively. Moreover, the sclera stiffness and anisotropy have been 

examined in different locations within the eye. Battaglioli and Kamm (1982) concluded from 

compression testing that the radial compressive modulus of the sclera is less than the 
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circumferential modulus by two orders of magnitude. Through biaxial testing of posterior scleral 

tissue, Eilaghi et. al (2010) using a Fung exponential model, found that there were no significant 

difference in properties between nasal, temporal, superior and interior directions. Elsheikh et. al 

(2010a) approximated the stress-strain relation for anterior, equatorial and posterior scleral tissue 

with exponential relationships for low and high strain rates and concluded that the stiffness 

increased away from optic nerve head.  

The mechanical properties of the corneal tissue have been also investigated 

experimentally. Andreassen et. al (1980) found that the keratoconus cornea is less stiffer than the 

normal cornea using uniaxial testing. The uniaxial tests of both Hoeltzel et. al (1992) and 

Wollensak et. al (2003) have confirmed the exponential nonlinearity of the stress-strain behavior 

of the cornea. Elsheikh et. al (2007) measured the Young’s modulus of the cornea as a function 

of the age and intraocular pressure based on inflation testing. Recently, Petsche et. al (2012) have 

done experiments to measure the transverse shear modulus of the cornea. They found that the 

shear modulus is less than the tangent modulus by 2-3 orders of magnitude.  

It can be noted that the mechanical properties of the tissues measured from the 

experiments varies among tests. One reason is that the temperature, age and hydration conditions 

of the samples before and during the tests were different and other factors are the initial stress in 

the sample and type of the mechanical loading that was applied.  
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3.0    FINITE ELEMENT STUDIES OF THE EYE 

Different finite element models of the whole or portion of eye have been developed with 

different loading conditions to stimulate surgery or to examine other factors. Some of the models 

have been used for assessing stresses and deformation caused by medical procedures on different 

structures of the eye. In refractive surgeries, the curvature of the cornea is altered to correct 

nearsightedness and farsightedness, and finite element modeling has been used to predict the 

resultant curvature. Computer modeling has been also used to predict damage to the eye caused 

blunt force trauma. Finite element analysis was applied to evaluate optic nerve head surgery for 

the treatment of the eye diseases such as retinal venous drainage. Lens accommodation is another 

area where finite element simulation was used to study deformation of the lens curvature due to 

changes in the tension of the zonular fibers for increasing the optical power.  

Bryant et. al (1987)  used a two-dimensional model of the cornea with a uniform 

thickness and linear isotropic properties attached to a rigid portion of the sclera. Radial 

keratotomy (RK) surgery with 16 incisions (90% deep) caused inward and outward deflection at 

incisions and in the central cornea. In addition to having the same mode of the deformation as in 

in-vivo studies, a decrease in cornea power was closely matched to a reported value in the 

literature.  

Hanna et. al (1989) created a shell model of the eye where the anisotropic cornea 

curvature was given by Lotmar’s equation and the sclera curvature was approximated using the 
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projection of two different ellipses to account for varying thickness. When pressurized the results 

showed that the spherical stresses have the same magnitude at the limbus where the cornea and 

sclera curvature meet and a cornea incision has more effect on the peripheral corneal profile than 

a limbus incision.  

Based on a simple fiber orientation in the stroma, Pinsky and Datye (1991) created the 

first finite element model for an anisotropic spherical cornea fixed at the limbus where different 

radial keratotomy incisions were applied to the cornea. Their results showed that increasing 

depth and optical zone diameter of the incision decreases the optical power with internal 

deflections and the results approximately matched in-vivo measurements. 

  Bryant and McDonnell (1996) have investigated four constitutive models using finite 

element model of an aspheric cornea, namely: linear elastic and isotropy, linear elastic with 

transverse isotropy, nonlinear elastic with isotropy and hyperelastic (Ogden’s law). To 

investigate the effect of nonlinear strain measures, the linear elastic model was analyzed with 

linear and nonlinear strain measures. By comparing the results to experimental tests with an 

applied pressure of 40 mmHg, the nonlinear isotropic model had the best fit to the experimental 

data. Furthermore, the effect due to the geometric nonlinearity was less significant than the 

nonlinearity in properties, and there was not a significant difference between isotropic and 

transverse isotropic model.  

Uchio et. al (1999) have created a dynamic model that included more structures of the 

eye, such as the iris, choroid, lens, vitreous and aqueous humor, where the humors were modeled 

as solids and tissues as part of both sclera and cornea shell. They did experimental tests to 

determine the nonlinear stress-strain relationships, Poisson’s ratios, and failure limit of the 

cornea and sclera. Because cornea and sclera were modeled as single body and the internal 
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tissues as another body, the contact between them was modeled as a frictional contact and the 

whole model was constrained at the optic nerve head. A nonlinear explicit finite element solver 

results identified the size and velocity of missiles that would cause the rupture of the cornea and 

sclera.  

Bellezza et. al (2000) have created simple models of the eye with different geometries, 

sclera thicknesses and cross section areas of the optic nerve head (Figure 3.1). For optic nerve 

head, the material properties were linear and approximated relative to sclera. With an applied 

intraocular pressure, their results showed that increased radius of the eye will just increase the 

stress in sclera. However, models with a smaller sclera thickness and optic nerve head cup with 

elliptical shape will have larger stresses on posterior sclera.  

 

 

Figure 3.1: The posterior model of the sclera (Bellezza et. al 2000). 

 

The VTEM model (Figure 3.2) is the more validated dynamic model generated in the 

impact biomechanics laboratory at Virginia Tech (Stitzel et. al 2002). The axisymmetric model 
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which is fixed at the optic nerve head involves more detailed geometry, and the humors were 

modeled using equation of state. Detailed properties of structures were implemented where 

nonlinear data of cornea and the sclera were extracted from the experiments done by Uchio et. al 

(1999) for their  model. The dynamic model used experiments done in the same research work 

where human eyes were subjected to impact by different objects and recorded the displacement 

with high speed camera. The dynamic experimental and finite element displacement 

approximately matched at some values. Since then, VITEM model is still widely in used for 

blunt trauma with some modifications. Weaver et. al (2011) have used the model for simulating 

many experimental eye impact tests that exist in literature where different projectiles made of 

different materials were used such as: airsoft pellets, baseball, air gun pellets, paintball, foam, 

and rods. Liu et. al (2013) have included retina tissue in the model with adhesion criterion for 

modeling retinal detachment in blunt trauma. Rossi et. al (2011) have also used the same model 

where the sclera was modeled as linear elastic material and the other tissues with a linear 

equation of state for investigating the effects of the blunt trauma shockwave on the eye. The 

results showed that posterior retina has larger wave propagation which may cause macular and 

peripheral retinal injuries. 
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Figure 3.2: VTEM model (Stitzel et. al 2002). 

 

Sigal et. al (2004) have created simple eye models fixed at the optic nerve, and included 

complex optic nerve head tissues with approximated properties relative to sclera where all of the 

tissue are assumed as linear elastic isotropic. Along with experimental tests, they clarified that 

optic cup shape (Figure 3.3) has a major effect on strain and stress level in different optic nerve 

head tissues. A three-dimensional version of this model was used again by the same research 

group for investigating the dominated mode of the strain within optic nerve head tissues as the 

intraocular pressure increase (Sigal et. al 2007). With an intraocular pressure increase up to 50 

mmHg, they concluded that compressive strain is higher than shear and extension where higher 

compressive strain was in neural tissue.  
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Figure 3.3: The three proposed geometries of the nerve cup and the eye model (Sigal et. al 2004). 

 

Liu et. al (2006) created two models of the detailed geometry of composite lenses radially 

fixed and attached to three zonular fibers  (Figure 3.4). All the model parts were assumed to be 

linear elastic where the elastic constants of the composite lens layers were extracted from 

previous experimental tests and the properties for zonular fibers were approximated. The first 

model indicated that an increase in intraocular pressure and movement of ciliary body will cause 

thinning of the lens which changes its optical power. The other model demonstrated the 

mechanism of accommodation where the lens becomes thicker because of relaxed anterior and 

posterior lens and extension of equatorial fiber.  
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Figure 3.4: Original and deformed profile of the lens under displacement of the fibers (Liu et. al 

2006). 

 

Friberg et. al (2008) investigated the effects of radial optic neurotomy (RON) on retina 

vein within optic nerve head. Three-dimensional linear elastic hemispherical model was created 

for this purpose. With constant intraocular pressure inside the model and different pressure levels 

up to 75 mmHg in the vein, the model showed that the vein diameter was not significantly 

affected by the surgical procedure. 

To study cornea refractive correction, Roy and Dupps (2009) have created an 

axisymmetric eye model with most of the eye structures to account for the limbus and lens 

movement during elevated intraocular pressure. The model all structures with isotropic linear 

elastic materials except for the cornea and the LASIK wound. They used weak and stiff 

properties reported in literature for the cornea linear hyperplastic model. For studying the effect 

of the boundary conditions, they used a simple model of the cornea fixed at the limbus and a 

whole eye model constrained at the optic nerve. The results showed that by increasing the 

intraocular pressure up to 30 mmHg for different cornea cut thicknesses, the displacement of the 
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cornea curve had a significant difference between the fixed cornea and the whole eye model. 

Moreover, the anterior chamber depth was decreasing for the stiff cornea but increasing for the 

weak cornea. 

In the summary the finite element method has been widely used for simulating eye 

biomechanics under different loadings or surgical treatments. The finite element method can give 

insight into the mechanical response under these different conditions. The models varied 

according to the tissue constitutive models used and the structures of that were modelled. 
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4.0    METHODS 

In this section the methods for modeling the effect of the sclera buckling on the eye with a 

normal and thin cornea using finite element software (ANSYS 16.0) will be discussed. Using a 

two-dimensional axisymmetric model of the eye, the eye structures included in this study with 

their geometries will be illustrated. The constitutive models and constants are defined along with 

the boundary conditions and loading steps.  

 

4.1 EYE STRUCTURES 

The eye axial diameter and the thickness of anterior, equatorial and posterior sclera (Figure 4.1) 

were taken to be average values measured by Norman et. al (2010) of 23.78, 0.8, 0.5 and 1 mm, 

respectively. The cornea profile was created using Lotmar’s Equation (Lotmar 1971): 

𝑦𝑦 =
𝑥𝑥2

𝑟𝑟0
 �1 + 𝑎𝑎 �

𝑥𝑥
𝑟𝑟0
�
2

+ 𝑏𝑏 �
𝑥𝑥
𝑟𝑟0
�
4
� 

where 𝑦𝑦 describes the profile of the cornea along the geometrical axis as a function of its height 

𝑥𝑥 from the axis, 𝑟𝑟0 is the radius of central curvature of the cornea and a and b are coefficients 

equal to 5/28 and 1/12, respectively. The cornea diameter was 11.7 mm and its thickness at 
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center is 0.587 mm. The anterior and posterior curvature radii are 7.8 and 6.6 mm, respectively 

(Hanna et. Al 1989). 

The lens anterior and posterior curvatures can be also generated using equations 

(Fincham’s profile) given by (Chien et. al 2003): 

 

𝑦𝑦𝑎𝑎(𝜃𝜃) = (1.385901742692342 − 0.2185006863066996 + 0.04529598259932557𝜃𝜃4)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑦𝑦𝑝𝑝(𝜃𝜃) = (2.419123934364831 − 0.484144752446502 − 0.01675518352299585𝜃𝜃4)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑟𝑟 = 4.3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      all in mm 

 

where 𝑦𝑦𝑎𝑎, 𝑦𝑦𝑝𝑝 define the anterior and posterior lens curvatures along the geometrical axis, 

respectively, and 𝑟𝑟 is the radius of each curvature. 𝜃𝜃 is the angle between the coincide point of 

both curvatures and the geometrical axis where it is 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋 2⁄  for an axisymmetric lens. 

The retina was assumed to have a constant thickness of 0.2 mm (Liu et. al 2013). The 

dimensions of ciliary body and zonouls fibers were estimated to their in vivo shapes and for 

connecting the cornesclera shell with the lens. The dimensions of the eye are shown in 

Figure 4.1.  
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Figure 4.1: Dimensions of eye structures (mm). 

 

4.2 TISSUE MATERIAL PROPRTIES 

In previous models, most structures of the eye were considered as linearly elastic, isotropic 

materials. However, the constitutive model of the cornea and sclera have been modelled as 

linearly elastic and isotropic (Bryant et. al 1987, Bryant and McDonnell 1996, Bellezza et. al 

2000, Sigal et. al 2004 and Friberg et. al 2008), linearly elastic with transverse isotropic (Hanna 

et. al 1989 and Bryant and McDonnell 1996) or as isotropic hyperelastic (Bryant and McDonnell 

1996 and Uchio et. al 1999) materials. 

For the linearly elastic, transversely isotropic model, the radial modulus was 

approximated relative to the in-plane modulus based on the Battaglioli and Kamm (1982) 

experiment and a shear modulus with Poisson ratio were based on assumptions. For all of the 
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material constants in the isotropic hyperelastic constitutive model to be defined, other types of 

experimental tests needed, for example, biaxial, shear and volumetric tests.  

Due to a lack of full data on material constant, in this study, the cornea and sclera were 

taken to be isotropic linearly elastic materials. Similarly, the other tissue were taken to be 

linearly elastic. The values of the linear elastic properties for all tissues are given in Table 4.1. 

Due to their high content of water, the aqueous and vitreous humors were assumed to be 

incompressible fluids having same density as for water (1000 𝐾𝐾𝐾𝐾/𝑚𝑚3 ).  

 

Table 4.1: Mechanical properties of different eye tissues. 

Tissue E (MPa) v Reference 

Sclera 3 0.47 Sigal et. al 2004, Uchio et. al 1999 

Cornea 1.5 0.42 Rossi et. al 2011, Uchio et. al 1999 

Retina 0.02 0.4999 Jones et. al 1992 

Lens 6.88 0.4999 Czygan and Hartung 1996 

Zonulus  0.35 0.4 Michael et. al 2012, Power et. al 2002 

Ciliary Body 11 0.4 Power et. al 2002 

 

4.3 BOUNDARY CONDTIONS AND LOADING 

The finite element axisymmetric two-dimensional model of the eye is shown in Figure 4.2 for the 

cross section of the eye. Axisymmetric 6-node triangular elements are used for all solid tissues 

and aqueous and vitreous humors were represented by axisymmetric hydrostatic fluid elements. 

Since the buckle band is stiffer relative to the tissue, it is assumed to be a rigid material (Figure 

4.3). A contact analysis is used between the sclera and the bands with zero friction coefficient. 
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Figure 4.2: The finite element model of the eye and the buckle. 

 

 

 

Figure 4.3: Cross-sectional geometry of the scleral buckle strip. 
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The axisymmetric model is constrained at the middle of equatorial sclera and along the 

axisymmetric axis. The main steps in applying loads are shown in Figure 4.4. To pressurize the 

model, an intraocular pressure of 2 kPa is applied in both humors. After pressurization, elements 

are removed from the cornea to consider reduced thickness cases. The reductions are 25% and 

50% of the central cornea thickness with the same optical zone radius of 3 mm. At the final 

loading stage, the eyes are constricted by either a 3, 5 or 7 mm width band to include the effect 

of scleral buckling tightness. The constriction of the band that were considered were 0.5, 1 and 

1.5 mm. 

 

 

Figure 4.4: The main steps of the analysis. 
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5.0    RESULTS  

The main items of interest in the results are the stress in the sclera and the change in the axial 

length of the eye. The stress in the sclera is relevant since it is the main structural element of the 

eye and the axial length of the eye has an effect on vision. 

Before considering the specific results mentioned, some general results were considered 

to evaluate if the mechanics of the model had the behavior that was expected. When the 

thickness of the cornea was reduced on the pressurized eye, the curvature changed and displaced 

in the reduction region as shown in Figure 5.1. In addition to the change of the curvature, the 

reduction in thickness resulted in a less than 1.5% drop in the intraocular pressure in vitreous and 

aqueous humors. For the final step which is of major interest, the applied radial displacements of 

0.5, 1, 1.5 mm to each band on the normal and reduced corneal thickness eye resulted in 

increases in the pressure of both chambers, the axial length of the eye and the concentrated 

stresses at the edges of the buckle. A sample result showing the stress distribution is given in 

Figure 5.2. 
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Figure 5.1: Deformation profile due to 25% reduction of the axisymmetric cornea. 

 

 

Figure 5.2: Von Mises stress (in MPa) and deformation profile for 25% cut, 5mm band with 

1.5mm displacement model. 
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The numerical values of the pressure in each humor due to the displacements of the 

buckles are given in Table 5.1 for the standard thickness cornea eye model. It shows that the 

pressure increases as the tightness and buckle width increase especially in the vitreous humor 

since the vitreous chamber has more deformation than the aqueous chamber. It can be also noted 

that the pressure values are similar for all buckle widths with 0.5 mm constriction and this can be 

explained by the equality of the contact area at this small displacement between the buckle and 

the sclera. 

 

Table 5.1: Pressure in the humors (kPa) 

Buckle Width 3mm 5mm 7mm 

Displacement vitreous aqueous vitreous aqueous vitreous aqueous 

0.5 mm 7.29 6.6 7.87 7.1 7.88 7.1 

1 mm 16.46 14.14 20.19 17.09 22.22 18.67 

1.5 mm 28.21 23.08 35.99 28.73 42.43 33.27 

 

 

The initial axial length is taken to be the distance between the anterior of the retina and 

the anterior of the inflated normal or thinned cornea which is measured for 0, 25, and 50% 

thickness reductions as 23.84, 23.71 and 23.58 mm, respectively. The percent change of the axial 

length of the eye is given in Figure 5.3 as a function of buckle width, buckle construction and 

corneal thickness reduction. It shows that the percent change of the axial length increases as the 

buckle width and the amount of the tightness increases. In comparing the percent change 

between different cornea thicknesses, the differences are less than 1%.  

22 
 



 

The maximum scleral von Misses stress are given in Figure 5.4 as a function of buckle 

width, buckle construction and corneal thinning. In all cases, the maximum stress is located at 

the edges of the buckle is higher for the thin band and small tightness and it is almost same for 

each corneal thickness. 

 

         

 

 

Figure 5.3: Percent change of the axial length as a function of buckle width, construction and 

corneal thickness reduction, (a) 0% reduction, (b) 25% reduction, (c) 50% reduction. 
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Figure 5.4: Maximum von Mises stress as a function of buckle width, construction and corneal 

thickness reduction, (a) 0% reduction, (b) 25% reduction, (c) 50% reduction. 
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elements. Comparison of the results showed that the axial length change varied from 2.62 to 2.58 

mm (1.65%) and the maximum von Mises stress increased from 721 to 750 kPa (4%). Based on 

this result, the model with 8 elements across the thickness of the sclera was deemed sufficient for 

the study. 
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6.0    CONCLUSIONS  

The stress analysis for the scleral buckling of the eye was explored using finite element analysis 

and the effect of the scleral buckling selection and corneal thinning on the axial length of the eye 

was evaluated.  

An axisymmetric finite element model of the human eye was constructed in terms of the 

known geometries and material properties.  The eye structures included the sclera, cornea and 

lens.. The properties of the tissue were chosen to be linear elastic based on properties available in 

the literature and the humors were considered incompressible fluids. The scleral band was 

modeled as rigid. The effect of different band widths and constrictions and different corneal 

thickness on the axial length of the eye were evaluated. 

Based on this model, the results showed that the axial length of the eye increases as the 

width of the buckle and the amount of the tightness increase and a thinner buckle with greater 

constriction will produce higher the maximum stress concentration at the edges than wider 

buckle. Cornea thinning shows less effect on the axial length and the maximum stress.  

Because of the lack of the materials constants, one limitation of the model is the linear 

elastic properties used for the tissue. Experimental characterizations of the hyperelastic constants 

for the eye tissue especially for the sclera and cornea would be very advantageous in modeling 

the eye using finite element analysis. 

26 
 



 

BIBLIOGRAPHY 

Andreassen, T. T., Simonsen, A. H., & Oxlund, H. (1980). Biomechanical properties of 
keratoconus and normal corneas. Experimental Eye Research, 31(4), 435–41.  

Battaglioli, J. L., & Kamm, R. D. (1984). Measurements of the compressive properties of scleral 
tissue. Investigative Ophthalmology and Visual Science, 25(1), 59–65. 

Bellezza, A., Hart, R., & Burgoyne, C. (2000). The optic nerve head as a biomechanical 
structure: initial finite element modeling. Investigative Ophthalmology & Visual Science, 41(10), 
2991–3000.  

Bischoff, J. E., Arruda, E. M., & Grosh, K. (2004). A rheological network model for the 
continuum anisotropic and viscoelastic behavior of soft tissue. Biomechanics and Modeling in 
Mechanobiology, 3(1), 56–65.  

Bryant, M. R., Velinsky, S. A., Plesha, M. E., & Clarke, G. P. (1987). Computer-aided surgical 
design in refractive keratotomy. The CLAO Journal : Official Publication of the Contact Lens 
Association of Ophthalmologists, Inc, 13(4), 238–42.  

Bryant, M. R., McDonnell, P. J. (1996). Constitutive laws for biomechanical modeling of    
refractive surgery. Journal of Biomechanical Engineering, 118(4), 473-81. 

Chien, C.H., Huang, T., Schachar, R.A., (2003). A mathematical expression for the human 
crystalline lens. Comprehensive Therapy, 29 (4), 245–258. 

Czygan, G., Hartung, C. (1996). Mechanical testing of isolated senile human eye lens nuclei. 
Medicine Engineering and Physics, 18(5): 345-349. 

Eilaghi, A., Flanagan, J. G., Tertinegg, I., Simmons, C. a, Wayne Brodland, G., & Ross Ethier, 
C. (2010). Biaxial mechanical testing of human sclera. Journal of Biomechanics, 43(9), 1696–
701. 

Elsheikh, A., Wang, D., Pye D. (2007). Determination of the modulus of elasticity of the human 
cornea. Journal of Refract Surgery,23(8),808-18. 

27 
 



Elsheikh, A., Geraghty, B., Alhasso, D., Knappett, J., Campanelli, M., & Rama, P. (2010). 
Regional variation in the biomechanical properties of the human sclera. Experimental Eye 
Research, 90(5), 624–33.  

Friberg, T. R., & Lace, J. W. (1988). A comparison of the elastic properties of human choroid 
and sclera. Experimental Eye Research, 47(3), 429–36.  

Friberg, T. R., Smolinski, P., Hill, S., & Kurup, S. K. (2008). Biomechanical assessment of 
radial optic neurotomy. Ophthalmology, 115(1), 174–80. 

Graebel, W. P., & van Alphen, G. W. H. M. (1977a). The Elasticity of Sclera and Choroid of the 
Human Eye, and Its Implications on Scleral Rigidity and Accommodation. Journal of 
Biomechanical Engineering, 99(4), 203–208.  

Hannn, K. D., & Jouve, E. (1989). Computer Simulation of Arcuate and Radial Incisions 
Involving the Corneosc1eral Limbus. Eye 227–239. 

Hoeltzel, D.A., Altman, P., Buzard, K., Choe, K., (1992). Strip extensiometry for comparison of 
the mechanical response of bovine, rabbit, and human corneas. Journal of Biomechanical 
Engineering,114 (2), 202–215. 

Harris, M.J., Blumenkranz, M.S., Wittpenn, J., Levada, A., Brown, R., Frazier-Byrne, S., (1987). 
Geometric alterations produced by encircling scleral buckles: biometric and clinical 
consideration. Retina, 7:14–9. 

Jones, I.L., Warner, M., Stevens, J.D., (1992). Mathematical modeling of the elastic properties of 
retina: a determination of Young’s modulus. Eye (Lond) 6, 556–559. 

Liu, X., Wang, L., Wang, C., Sun, G., Liu, S., & Fan, Y. (2013). Mechanism of traumatic retinal 
detachment in blunt impact: a finite element study. Journal of Biomechanics, 46(7), 1321–7.  

Liu, Z., Wang, B., Xu, X., & Wang, C. (2006). A study for accommodating the human 
crystalline lens by finite element simulation. Computerized Medical Imaging and Graphics : The 
Official Journal of the Computerized Medical Imaging Society, 30(6-7), 371–6.  

Lotmar W. (1971). Theoretical eye model with aspherics. Journal Optical Society of America, 
61: 1522-9. 

Norman, R. E., Flanagan, J. G., Sigal, I. a, Rausch, S. M. K., Tertinegg, I., & Ethier, C. R. 
(2011). Finite element modeling of the human sclera: influence on optic nerve head 
biomechanics and connections with glaucoma. Experimental Eye Research, 93(1), 4–12.  

28 
 



Michael, R., Mikielewicz, M., Gordillo, C., Montenegro, G. a, Pinilla Cortés, L., & Barraquer, R. 
I. (2012). Elastic properties of human lens zonules as a function of age in presbyopes. 
Investigative Ophthalmology & Visual Science, 53(10), 6109–14. 

Okada, Y., Nakamura, S., Kubo, E., Oishi, N., Takahashi, Y., Akagi, Y. (2000). Analysis of 
Changes in Corneal Shape and Refraction Following Scleral Buckling Surgery. Japan Journal of 
Ophthalmology, 44, 132–138. 

Petsche, S.J,, Chernyak, D., Martiz, J., Levenston, M.E., Pinsky, P.M. (2012). Depth-dependent 
transverse shear properties of the human corneal stroma. Investigative Ophthalmology &Visual 
Science, 53(2), 873-80. 

Pinsky, P. M., & Datye, D. V. (1991). A microstructurally-based finite element model of the 
incised human cornea. Journal of Biomechanics, 24(10), 907–22.  

Power, E.D., Duma, S.M., Stitzel, J.D., Herring, I.P., West, R.L., Bass, C.R., Crowley, J.S., 
Brozoski, F.T., (2002). Computer modeling of airbag-induced ocular injury in pilots wearing 
night vision goggles. Aviation, Space, and Environmental Medicine, 73, 1000–1006 

Rossi, T., Boccassini, B., Esposito, L., Iossa, M., Ruggiero, A., Tamburrelli, C., & Bonora, N. 
(2011). The pathogenesis of retinal damage in blunt eye trauma: finite element modeling. 
Investigative Ophthalmology & Visual Science, 52(7), 3994–4002.  

Roy, A.S., Dupps, W.J. Jr. (2009). Effects of altered corneal stiffness on native and postoperative 
LASIK corneal biomechanical behavior: a whole-eye finite element analysis. Journal of 
Refractive Surgery, 25(10), 875-87.              

Sigal, I. a, Flanagan, J. G., Tertinegg, I., & Ethier, C. R. (2004). Finite element modeling of optic 
nerve head biomechanics. Investigative Ophthalmology & Visual Science, 45(12), 4378–87.  

Sigal, I. a, Flanagan, J. G., Tertinegg, I., & Ethier, C. R. (2007). Predicted extension, 
compression and shearing of optic nerve head tissues. Experimental Eye Research, 85(3), 312–
22.  

Sigal, I. a, Flanagan, J. G., Tertinegg, I., & Ethier, C. R. (2009). Modeling individual-specific 
human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of 
geometry. Biomechanics and Modeling in Mechanobiology, 8(2), 85–98.  

Smiddy, W.E., Loupe, D.N., Michels, R.G., Enger, C., Glaser, B.M., deBustros, S. (1989). 
Refractive changes after scleral buckling surgery. Archives of Ophthalmology, 107(10):1469-71. 

29 
 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Smiddy%20WE%5BAuthor%5D&cauthor=true&cauthor_uid=2803094
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loupe%20DN%5BAuthor%5D&cauthor=true&cauthor_uid=2803094
http://www.ncbi.nlm.nih.gov/pubmed/?term=Michels%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=2803094
http://www.ncbi.nlm.nih.gov/pubmed/?term=Enger%20C%5BAuthor%5D&cauthor=true&cauthor_uid=2803094
http://www.ncbi.nlm.nih.gov/pubmed/?term=Glaser%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=2803094
http://www.ncbi.nlm.nih.gov/pubmed/?term=deBustros%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2803094


Stitzel, J. D., Duma, S. M., Cormier, J. M., & Herring, I. P. (2002). A Nonlinear Finite Element 
Model of the Eye with Experimental Validation for the Prediction of Globe Rupture, 
46(November). 

Uchio, E., Ohno, S., Kudoh, J., Aoki, K., & Kisielewicz, L. T. (1999). Simulation model of an 
eyeball based on finite element analysis on a supercomputer. British Journal of Ophthalmology, 
83(10), 1106–1111.  

Weaver, A. a, Kennedy, E. a, Duma, S. M., & Stitzel, J. D. (2011). Evaluation of different 
projectiles in matched experimental eye impact simulations. Journal of Biomechanical 
Engineering, 133(3), 031002.  

Wollensak, G., Spoerl, E., Seiler, T. (2003) Stress-Strain measurements of human and porcine 
corneas after riboflavin-ultraviolet-A-induced cross-linking. J. Cataract Refractive Surgery.         
29(9), 1780-5.                          

Woo, S., Kobayashi, A., Schlegel, W. A., & Lawrence, C. (1972). Nonlinear material properties 
of intact cornea and sclera. Experimental Eye Research, 14(1), 29–39.  

 

 

30 
 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	4.1. Mechanical properties of different eye tissues
	5.1. Pressure in the humors

	LIST OF FIGURES
	2.1. Cross section of the eye
	3.1. The posterior model of the sclera
	3.2. VTEM model
	3.3. The three proposed geometries of the nerve cup and the eye model
	3.4. Original and deformed profile of the lens under displacement of the fibers
	4.1. Dimensions of eye structures
	4.2. The finite element model of the eye and the buckle
	4.3. Cross-sectional geometry of the scleral buckle strip
	4.4. The main steps of the analysis
	5.1. Deformation profile due to 25% reduction of the axisymmetric cornea
	5.2. Von Mises stress  and deformation profile 
	5.3. Percent change of the axial length
	5.4. Maximum von Mises stress

	1.0     INTRODUCTION
	2.0    BACKGROUND
	2.1 ANATOMY OF THE EYE
	2.2 MECHANICAL PROPRTIES OF THE EYE TISSUE

	3.0    FINITE ELEMENT STUDIES OF THE EYE
	4.0    METHODS
	4.1 EYE STRUCTURES
	4.2 TISSUE MATERIAL PROPRTIES
	4.3 BOUNDARY CONDTIONS AND LOADING

	5.0    RESULTS
	6.0    CONCLUSIONS
	BIBLIOGRAPHY



