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ABSTRACT 

Purpose  

Infectious disease modeling has a long history in helping researchers to understand the complex 

spread pattern of infectious disease. Social contact networks and agent-based models can be used 

to conceptualize social contact pattern and spread process of infectious disease. The goal of this 

research is to investigate the relationship between network measurements and individual infection 

risk using statistical analysis.  

Public Health significance  

This research will help in gaining a better understanding of the important factors of infection risk 

in a population. Identification of central people may be used to inform building an efficient 

surveillance and prevention program.  

Methods  

Three social contact network models were used in this thesis, Erdos-Renyi network, Barabasi-

Albert network and Jefferson County contact network using FRED platform. We simulated mild 

and severe epidemic outbreaks on them and calculated infection risk and infection speed of each 

individual. Network measurements, degree, betweenness centrality, closeness centrality, 

eigenvector centrality, PageRank, and clustering coefficient were measured on the ability to 
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identify groups of different infection risk level and infection speed. Random Forest and variable 

importance were used to estimate the most important factors in predicting infection risk 

Results 

For Barabasi-Albert and Erdos-Renyi networks, centrality measurements are critical factors in 

identifying infection risk. Degree is the most important factor in Barabasi-Albert network while 

closeness and degree are the most important in the mild outbreak and severe outbreak respectively 

in the Erdos-Renyi network. Results of Jefferson County contact network in FRED find out the 

importance of location sizes. The highly clustered structure of location-based model makes 

betweenness centrality and clustering coefficient important in predicting infection risk. 

Conclusion  

Different network structures and characteristics of the disease will influence the importance of 

network measurements. Network structures also influence the correlations between network 

measurements. Random forest is a powerful tool for classifying infection risk. Centrality network 

measurements may help in identifying high infection risk people. 
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1.0  INTRODUCTION 

Infectious disease is one of the leading factors of illness and death worldwide. Even after many 

notable successes in prevention and control, it continues to be a threat to public health. In recent 

years, the increasing movements of people facilitate the spread of infectious disease. Moreover, 

the adaptation and evolution of agents lead to the emergence of new infectious disease and the 

reemergence of some existing infectious disease [1]. Several epidemics surprised the global 

community, including HIV, SARS, H1N1 pandemic influenza, and Ebola. The complex 

transmission and spread route among the human population challenge the efforts to prevent and 

control infectious disease. One of the major control methods is through the development of strong 

surveillance systems, which need a clear understanding of the transmission pattern of infectious 

disease on human population [2]. 

Faced with the complexity of these infectious diseases, mathematical and computational 

models offer valuable tools for understanding the transmission of infections and evaluating the 

potential impact and to control. In recent years, infectious disease modeling studies were 

conducted to characterize the population and to estimate individuals’ risk of infection using 

network analysis. Studies in Human Immunodeficiency Virus (HIV) found that the virus transmits 

through a contact network of sexual contact and intravenous drug use [3]. Complex heterogeneous 

contact networks are of great importance in understanding the transmission pattern in these studies. 
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They can be conceptualized by using simple social contact network models. Epidemic outbreaks 

can be described using agent-based models.  

Finding the target group with high infection risks in an outbreak will help to improve the 

efficiency of targeted surveillance and prevention programs for efficiency. Social contact network 

measurements provide a way to determine the role of an individual within one population in one 

outbreak. The concept of “centrality” in network analysis describes the relative importance of one 

individual in one population according to some criteria. In a study of Syphilis in human population, 

centrality measurements were used to identify the important individuals in infection spread 

process. Studies also suggested that many network parameters have linear relationships with 

infection risk [4]. 

Several studies have been done on exploring the factors of individual infection risk. 

Christley [5] used random and small-world network models to explore the relationship between 

network measurements and infection risk. Their results showed that centrality measurements 

including degree, betweenness centrality and closeness centrality were associated with infection 

risk. However, the limitations of this paper are that it generated networks with only 100 nodes and 

conducted limited statistical analyses.  

Some other studies are focused on exploring the relationships among network 

measurements. Chang-Yong Lee did research on some complex networks in social science and 

found out that degree and betweenness centrality are highly correlated [6]. Valente studied 58 

different real network datasets and found out that the centrality measurements are correlated with 

different Pearson correlation coefficients [7].  

In this thesis, our first goal is to investigate the relationship between network measurements 

and infection risk of each individual in theoretical social contact network models. Our aim is 
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finding the important network measurements that could help in classifying the high-risk group. 

Erdos-Renyi network, Barabasi-Albert network and Jefferson County contact network were used 

to represent three kinds of social contact patterns. Our second goal is to further research the vital 

factors in predicting infection risk of each individual. Besides the network measurements, other 

geographic characteristics are also included as predictors. For this part of the thesis, we used a 

large-scale epidemic simulation system FRED that was developed at Pitt Public Health. 
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2.0  METHOD 

2.1 SOCIAL CONTACT NETWORK 

A social contact network consists of nodes and edges, where nodes represent individuals that we 

want to study and edges represent the contacts between individuals. For simplicity, we assumed 

that the edges of networks are undirected (the contacts are mutual) and have no weights (all are 

equivalent). We generated Erdos-Renyi and Barabasi Albert networks using the iGraph package 

in Python [10].  

2.1.1 Erdos-Renyi network 

Erdos-Renyi network (ER network) [8] network is also referred as the random network. It is 

constituted by N node connected by M edges, which are chosen randomly from all possible edges. 

The probability that two nodes are connected is independent of nodes’ degree. The degree 

distribution of ER network follows Poisson distribution. We define the expected value of degree 

as the average degree K, thus M= KN/2, see Fig 1.  

ER network is considered as a benchmark network for its pure random structure. Complex 

networks with complicated topology and principles often appear random. It is a simple but helpful 

tool in studying complex networks. 
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2.1.2 Barabasi–Albert network 

Barabasi–Albert network (BA network) [9] is a kind of scale-free network in which the degree 

distribution has no scale. Empirical studies showed that many large complex networks are scale-

free. Barabasi and Albert argued that the scale-free nature has two mechanisms which are common 

in many real complex networks [9]. First, small clusters of nodes are firstly formed and then the 

network expands to some size. Second, the likelihood of connecting incoming nodes to nodes is 

done with the probability proportional to their degrees, which represent a phenomenon known as 

preferential attachment.  

This attachment mechanism creates a power-law degree distribution. Thus, BA network is 

also considered as a type of “power-law network”. BA networks have some high-degree nodes 

that are absent in ER networks in which the degree distribution is centered around the average 

value (see Fig. 1). Rather than focus on topology like a random network, Barabasi-Albert network 

emphasizes on capturing the network dynamics. 

 

 

  

Figure 1: The visualizations of ER network and BA network. Both networks have 100 nodes and average 

degree K=6. 
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2.2 SOCIAL CONTACT NETWORK MEASUREMENTS   

Network measurements were calculated using the iGraph package in Python[10]. 

2.2.1 Centrality measurements 

The concept of centrality represents the relative importance of a node inside a network. There are 

many different definitions of centrality to describe the different structural importance of nodes. 

Degree, for example, pays more attention to “local” patterns while betweenness centrality, 

closeness centrality, eigenvector centrality, and page rank are more focused on “global” or 

“overall” structure of the network. Below are the centrality measurements that were studied in this 

thesis. 

2.2.2 Degree 

Degree is short for ‘the degree of connectedness’. The degree of a node i is equal to the directly 

connected nodes’ number. Degree distribution is defined as the distribution of probability that a 

randomly chosen node has a degree k.   

A node with high degree is an important node that in a large number of interactions. In the 

Erdos-Renyi network, degree follows Poisson distribution, while, degree distribution follows the 

power law in the Barabasi-Albert network. Christley’s study suggested that the degree is associated 

with infection risk [5]. 
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2.2.3 Closeness centrality 

Closeness centrality is based on geodesic distance. It is defined as the inverse of the sum of the 

shortest path lengths from node i to all other nodes in the network [11]. The closeness centrality 

of node i is: 

C(i) =
1

∑ 𝑑(𝑖, 𝑗)𝑁
𝑗=1

 

Where d (i, j) =the shortest path length between node i and node j. 

This measurement regards a node as central if this node has a shorter distance to all other 

nodes in networks. A node with higher closeness centrality value can communicate more quickly 

with the other nodes in the network.  

To make closeness centrality comparable in models of different node sizes, closeness 

centrality is normalized by the number of connected nodes excluding the vertex itself.  

2.2.4 Betweenness centrality 

The betweenness centrality [12] of a node i is defined as the proportion of the shortest paths passing 

through it. Betweenness centrality describes the importance of nodes as the proportion of paths 

between other nodes in the network. It measures the information flow between different nodes 

based on the assumption that information flow follows the shortest path route. Christley’s study 

suggested betweenness centrality is also an important factor for infection risk [5]. 

To make betweenness centrality comparable in models with different node sizes, 

betweenness centrality values are normalized by (N-1) *(N-2)/2 (N is the total number of nodes). 
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(N-1) *(N-2)/2 is the number of pairs of vertices excluding the vertex itself when every node is 

connected with each other.  

2.2.5 Eigenvector Centrality 

Eigenvector centrality is also known as Bonacich centrality.  Its assumption is based on the concept 

that central nodes have more connections to high-scoring nodes. It is calculated based on 

eigenvectors of adjacency matrices. A is adjacency matrix with a unique all positive eigenvector 

v satisfying Av = λv. v will be the eigenvector corresponding to the largest eigenvalue λ. The 

eigenvector centrality value for the ith node will be the ith element of v, satisfying the recursive 

equation. j is a set of the neighbors of node i. 

𝐶𝐸(𝑖) =
1

𝜆
∑ 𝐴𝑖𝑗𝐶𝐸(𝑗)

𝑗

 

2.2.6 PageRank 

PageRank [14] is a variant of eigenvector centrality. Compared to eigenvector centrality, it adds a 

scaling factor and an attenuation factor. The formula for PageRank is: 

𝐶𝐸(𝑖) = 𝛼 ∑
𝐴𝑗𝑖𝐶𝐸(𝑗)

𝐿(𝑗)
+

1 − 𝛼

𝑁
𝑗

 

 

α is an attenuation factor with a range from 0 to 1. L(j) is a scaling factor which equal the number 

of neighbors of node j. It was developed by Larry Page and Sergey Brin in Stanford University 

and used by Google as an algorithm to rank the websites. The basic idea of PageRank is quite 
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similar to eigenvector centrality that “more important nodes are likely to receive more connection 

from other nodes”. It is calculated by summing up the neighbor nodes’ number and quality of 

connections. It is widely used as a famous rank algorithm in information technology. 

2.2.7 Clustering coefficient 

We also consider some other popular network measurements in our study. 

Clustering coefficient [15] is defined as the ratio between the number of loops of length 

three and the number of connected triples. In other words, it shows how clustered the nodes are. 

Clustering coefficient is a purely local network measurement but useful in quantifying the local 

“strength” of connectivity. 

2.3 AGENT-BASED SIMULATION OF AN SIR EPIDEMIC ON A 

NETWORK 

In order to simulate an epidemic outbreak such as influenza, we need to model the natural history 

of the infection. For one epidemic outbreak, the basic assumption is that the population of interest 

is divided into several compartments based on their infection status (e.g. susceptible S, infectious 

I, or recovered R) and ignore any other demographic process (e.g birth, death, migrations) for 

simplicity. In the simplest SIR model, susceptible individuals become infectious immediately upon 

infection, thus start infecting others and recover after some time period [16]. In this thesis, we 

assume that the infectious period is 4 days for each individual. Once the individual recovers, he/she 

is immune to the disease. The process can be described as below: 
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β 

γ 

 

 

 

 

Figure 2: The SIR model of infectious disease 

 

In a differential equation model of SIR, β is the rate of infection per effective contact 

(transmission or infection probability in our agent-based simulations) and γ is the recovery rate, 

which determines the average infectious period (for an infectious period of four days γ=0.25). 

There is a threshold that whether an infectious disease will be an outbreak or not. If the rate of new 

infections appears is greater than the rate of infected individuals recovers, then there is likely to 

have an outbreak. In order to describe this characteristic, a number called “reproduction number” 

(R0= β/γ) is introduced, i.e., if R0>1 an outbreak almost surely happens, otherwise the disease will 

die out before causing an outbreak. The reproduction number is also considered as a measure of 

severity of the epidemic.  

In agent-based simulations of SIR model on networks, the reproduction number cannot be 

calculated exactly but an approximate formula is used, i.e., R0=βKδ, where β is the transmission 

probability, K is the average degree and δ is the length of the infectious period. 

Another important measure for the severity of the epidemic is the proportion of infected 

people after a disease outbreak, also known as “attack rate”. In one outbreak, the total number of 

people that got infected divided by the total number of people in the network is the attack rate. In 

our study, we simulated two levels of epidemic outbreaks according to the attack rate. 

 

S

•Susceptible

I

•Infectious

R

•Recovered
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2.4 INFECTION RISK AND SPEED 

Infection risk is defined as the probability of infection for an individual in an epidemic outbreak. 

In order to calculate the infection risk, we simulated an infectious disease outbreak on a social 

network numerous times up to ten thousand starting in each of them with a random index case.  

Then we calculated the risk of infection of an individual as the ratio of the number of runs that 

his/her got infected to the total number of runs. 

 

Another measurement which is related to the risk of infection is the speed of infection for 

the individual measured as the average of the inverse of the numbers of steps passed for infection 

to reach that individual since the beginning of the outbreak with an index case. 

2.5 FRED 

FRED (A Framework for Reconstructing Epidemic Dynamics) is an open source platform 

developed by the University of Pittsburgh's National Center of Excellence for the Models of 

Infectious Disease Agent Study (MIDAS)[17]. It is an agent-based simulation model with the 

purpose of facilitating infectious disease research. 

The populations of FRED use realistic data and are based on the US Census Bureau’s 

Public Use Microdata files (PUMs) and Census aggregated data. Some socio-demographic 

characteristics and daily behaviors are recorded for each agent in FRED. For a specific geographic 

location, house, school, neighborhood, and workplace are also reflected with the actual distance. 
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Each individual in FRED also has health information recorded (e.g., current health status, date of 

infection, and susceptibility) [17]. 

In FRED, the neighborhood is defined by dividing the whole area into a 1km*1km square. 

School data is real survey data while classroom size is artificially chosen. First we separate all 

students to separate age groups and each age group is divided into classroom groups of up to 40 

students. Students interact with the students assigned to the same classroom and the same school 

with different probabilities. Same with workplace and offices, offices are defined by dividing up 

all the workers in given workplace groups of up to 50 workers.  

FRED is an agent-based model that can be used to simulate the daily activities’ interactions 

of millions of target agents in a specific geographical region during an epidemic and measure the 

effects of intervention strategies for the infectious disease. Within one day, each agent interacts 

only with the other agents that share the same locations and have a possibility of transmission of 

disease. For each simulated epidemic in FRED, the spread of disease is tracked during a period of 

time, usually several months or years.  

The transmission model in FRED is an agent-based model. Two sets of numeric parameters 

determine the spread of infection: the number of contacts per infectious person per day, and the 

probability that a contact transmits an infection. Each place has different values of parameters.  

The transmission probability for a given place is determined by the agent’s age and health 

status. For the contacts number of infectious person per day, it has the following formula: 

Number of contacts(i) = Trans(D) * CR(P) * Inf(i) * S(P)/N(P)  

where:  Trans(D) = the transmissibility factor for disease D,  

CR(P) = the contact rate for place P, the number of potentially infective daily 

contacts 
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              Inf(i) = the infectivity of agent i,  

              S(P) = the number of susceptible agents visiting place P,  

              N(P) = the number of total agents who usually visit place P 

The Pitt MIDAS group has used FRED to evaluate responses to influenza pandemics, 

including vaccination policies [18], school closure [19], and the recent publication discussing 

vaccine coverage [20]. 

In this paper, the contact network of Jefferson County is constructed based on location. 

Only household, classroom and office are considered as contacts in our network in order to to 

control the density of the network. For example, if one agent has a probability of staying at home 

and school, this agent has contact with all the agents that located in the same house and the same 

classroom (not same school).  

We conducted epidemic simulations in FRED using Jefferson County data in Pennsylvania. 

Demographic characteristic (age, gender and race), the number of people in places (households, 

neighborhoods, school, classrooms, workplaces, and offices) and network measurements are 

considered in this thesis 
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2.6 STATISTICAL ANALYSIS 

2.6.1  Spearman’s rank correlation coefficient 

Spearman’s rank correlation coefficient is a non-parametric measure of dependency between two 

variables. It is defined as Pearson correlation coefficient by rank. It can assess whether there is a 

relationship between two variables using monotone functions.  

To calculate Spearman’s rank correlation coefficient between the variable of x and y, we 

first rank x and y by ascending order and calculate the differences d between the two ranks. 

ρ = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

 

The sign of Spearman’s rank means the direction of their association between two 

variables. It has a range of -1 to 1. Compared to Pearson correlation coefficient, Spearman 

correlation coefficient can better assess whether the two variables are monotonically related 

especially when their relationship is not linear. 

Spearman’s rank correlation coefficient was calculated using the “psych” package of 

version 1.5.1 in R  

2.6.2 Classification  

The whole population is split into three groups (low risk, medium risk and high risk) based on the 

value of infection risk. We split the group based on Quantile. Our goal is to classify three groups 

with network measurements using Random Forest[22h].  
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Random forest evolves from the classification tree and attempts to solve the classification 

tree’s problems of high variance and high bias and find a natural balance between the two 

extremes. It has been proven to outperform the bagging classification tree and boosting 

classification tree [22]. To better understand Random forest, we first start from how to grow a 

classification tree. 

2.6.3 Classification tree 

Classification tree is a condensed classification statement of the scheme, and can analyze those 

models which contain a categorical dependent variable. It starts with a root node, and then finds 

the most informatics binary split. Taking each of the resulting new nodes and repeating the process, 

the recursion will end until there is only one observation at each node. This classification tree is 

constructed using the Gini measure of impurity [23]. For node τ, Gini index is used as the following 

equation, 

𝑖(𝜏) ≔ ∑ 𝑝𝑗𝑝𝑘

𝑗≠𝑘

= 1 − ∑ 𝑝𝑗
2

𝑘

𝑗=1

 

For each variable j and at each node τ, any split s would find a partition for  

𝜏 = 𝜏𝐿 ∪ 𝜏𝑅 

The goodness-of-split is measured by the reduction in impurity caused by the split s on the 

jth variable, from node τ to two separated 𝜏𝐿 and𝜏𝑅: 

∆𝑖(𝜏, 𝑗, 𝑠) ≔ 𝑖(𝜏) − [𝑝𝐿𝑖(𝜏𝐿) + 𝑝𝑅𝑖(𝜏𝑅)] 

Since i(τ) is independent of the split that is yet to happen, to maximize ∆𝑖(𝜏, 𝑗, 𝑠) is to 

minimize 𝑝𝐿𝑖(𝜏𝐿) + 𝑝𝑅𝑖(𝜏𝑅). 
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2.6.4 Random forests  

Random forest [22] grow many classification trees and try to reduce bias by bootstrap aggregation 

and randomly selecting variables in individual tree level. To classify a new observation, we put 

the input data down the forest model. Each tree in the forest has a result group, and the final group 

is the one receiving the most votes  

2.6.5 Out of bag (OOB)  

To get tree model, we first need to bootstrap original data and build models based on each bootstrap 

data. The observations which are left out of the bootstrap sample will not be used in the tree model 

building. They are called out of bag observations. They will be used as a test set to be put on the 

tree model and get prediction of class. The proportion of whose predicted class is not equal to the 

true class of all the out of bag observations is the OOB error estimate. In random forests, there is 

no need for external cross-validation because the out of bag error in Random Forest has proven to 

be unbiased in many tests [22]. 

2.6.6 Variable Importance 

To get the variable important scores of variable V, we first randomly permuted the values of 

variable V and put all the OOB observations to the forest model. Then we subtracted the OOB 

error estimate in the variable V permuted OOB data from the OOB error estimate in the original 

OOB data. We averaged all trees in the forest and get the variable importance value of variable V. 

According to several studies of variable importance, the calculation of variable importance by 
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permutation performs better than other tests such as Gini importance. It has lower bias even with 

multi-valued attributes [24] [25].   

2.6.7 Random Forest Algorithm 

The algorithm of random forest with n trees and m input variable is: 

Step1: Bootstrap the original dataset and generate n bootstrap sample. 

Step2: For each tree, randomly select m input variables from M total variables and use the 

bootstrap sample as training data to fit a tree model without prune. 

Step3: For each tree, put down the left out cases and count the number of trees with the 

wrong class. Calculate the misclassification rate as out of bag error rate. 

Step4:  For each tree, permute one variable value each time and keep other variables fixed, 

refit the tree and calculate the out of bag errors. Deducting from the original OOB error, the 

increased OOB error is the variable importance. 

Step5: The final classification results are class votes by most trees. Aggregate out of bag 

error and importance measures from all tree to calculate the overall out of bag error rate and 

variable importance. 

 

According to Breiman’s paper [22], two characteristics will affect the overall performance 

of Random Forest. One is strength, which measures the prediction power of the model, and the 

other is the correlations between each tree. High strength and lower correlation will improve the 

performance and minimize the generalization error. Using bootstrap aggregation (bagging) is able 

to enhance accuracy and improve unstable procedures [22]. In the randomForest package, 

parameter “ntree” means how many tree models will be build. More ntrees will increase the 
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strength without consideration of overfitting problems, but the large number of tree models 

demand high computational cost. There is another important parameter in random forest model 

which make it outperforms bagging Classification tree, it is “mtry”. Randomly selecting variable 

in the tree model building process will decrease the correlation but also decrease the strength. An 

optimized mtry will be determined by 5-fold cross-validation results with minimized OOB error 

rate. 

All the random forest analyses were done using the randomForest package version 4.6-10 

in R [26]. 
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3.0  RESULTS 

3.1 NETWORK AND ATTACK RATE 

In this section we will present results for network characteristics. We worked on two different 

network models: ER and BA networks. We constructed ER and BA networks with 10,000 nodes 

and an average degree K=10. The density of two networks are 0.01 and the total number of edges 

are 50000. 

According to the results in Table 1, with the same network density, there are differences 

between network measurements of BA network and ER Network. This indicates the different 

structure of the two networks. The BA network is highly clustered with larger average clustering 

coefficient (mean: 0.0055) compared to the ER network (mean: 0.0011). There are some hubs in 

the BA network which are located in the core and have a high degree. Hubs can act as bridges and 

help other nodes more easily reach each other. Thus, the BA network has higher average closeness 

centrality value than the ER network. Hubs in the BA network have extremely high values of 

almost all centrality measurements. Besides hubs, The BA network also have some nodes located 

in the periphery and are not easily reached because of low degree. Those nodes have relatively low 

centrality measurements value. Because of those special characteristics, the BA network has 

broader distributions of centrality measurements than the ER network.  

 

. 
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Table 1: Summary of network measurements in the Barabasi-Albert and Erdos-Renyi network 

Variable Barabasi-Albert Network Erdos-Renyi Network 

Mean Median Min-Max SD Mean Median Min-Max SD 

Degree 10 7 5-273 11.6 10 10 0-25 3.17 

Clustering Coefficient 0.0055 0 0-0.2 0.019 0.0011 0 0-0.33 0.006 

Betweenness Centrality 0.00027 0.000068 0.00065-0.057 0.0015 0.00032 0.00029 0-0.0017 0.0002 

Closeness Centrality 0.27 0.27 0.22-0.40 0.019 0.19 0.19 0.0001-0.2072 0.006 

Eigenvector Centrality 0.021 0.013 0.001-1 0.034 0.3509 0.33 0-0.43 0.013 

PageRank 0.0001 0.000075 0.000052-0.0023 0.000098 0.0001 0.0001 0.00001-0.00025 0.000027 
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To explore the relationship between network measurements, Spearman’s correlation matrix 

is constructed. The Histogram plot and density distribution of network measurements were plotted 

on diagonal panels. Spearman’s correlation coefficient and the scatterplots between two network 

measurements are in upper and lower diagonal panels respectively. 

In the Barabasi-Albert network, degree, betweenness centrality, eigenvector centrality and 

PageRank have a similar distribution of power law. Degree and PageRank, closeness centrality 

and eigenvector centrality are perfectly correlated with Spearman’s correlation coefficient of 0.99. 

Betweenness centrality is highly correlated with other four network measurements with 

Spearman’s correlation coefficients from 0.8 to 0.88. 

In an Erdos-Renyi network, degree, betweenness centrality, eigenvector centrality and 

PageRank have distributions similar to a Poisson. All network measurements are highly correlated 

with each other with Spearman correlation coefficients range from 0.9 to 1.0. Two pairs, degree 

and PageRank, closeness and eigenvector are perfectly correlated with coefficients equal to 1.0.  
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Figure 3: The Spearman’s correlation matrix of the Barabasi-Albert network. Degree, betweenness, closeness, eigenvector and PageRank are log-

transformed. Upper-matrix shows the Spearman’s correlation coefficients and lower matrix shows the scatterplots between network measurements. 
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Figure 4: The Spearman’s correlation matrix of the Erdos-Renyi network 
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Network structure influences the Spearman correlation coefficient between centrality 

measurements. The ER network is a random graph structure that thus all centrality measurements 

are closely correlated with each other. This suggests that nodes that have more connection in the 

ER network tend to be closer to the center of information flow, have shorter distances with other 

nodes and connect with more important neighbors. Degree and PageRank, closeness centrality and 

eigenvector centrality are highly correlated in both networks. Many studies have been done on 

approximating PageRank using degree by mathematic analysis and experiments [29]. The two 

measurements are only different in the multiplicity factor under some assumptions. In a recently 

published paper of José Ricardo [30], closeness centrality and eigenvector centrality were also 

shown to be highly correlated in the ER and BA network. This suggests that in both network model, 

the nodes that are closer to their neighbors are more likely to have important neighbors.  

Clustering coefficient have very low Spearman correlation correlation with all other 

centrality measurements. However, Spearman correlation coefficients between clustering 

coefficient and centrality measurements are higher in the BA network than ER network. This may 

be explained by the BA network structure. Nodes in the core of the BA network are more clustered 

with high clustering coefficient. Those nodes also have higher centrality measurements.  

3.2 NETWORK MEASUREMENTS 

10,000 times simulation with two different infection probability β values 0.035 and 0.05 were done 

on the BA and ER network, corresponding to mild and severe outbreaks. The attack rate is defined 

as the proportion of people infected in each outbreak. We took an average of the attack rate on 
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10,000 times simulations and get the average attack rate. Kernel density plots showed the 

distribution of all the attack rate values. 

Table 2: The average attack rate for the Erdos-Renyi and Barabasi-Albert network 

Erdos-Renyi Barabasi–Albert 

K=10 

 β =0.035 

K=10 

β =0.05 

K=10 

β =0.035 

K=10 

β =0.05 

MEAN 0.20 0.56 0.25 0.48 

SD 0.22 0.33 0.25 0.32 

Figure 5: The kernel density plots of attack rate in the ER and BA network with β=0.035(Gray) and 

β=0.05(Black).  

In both ER and BA network, there are two peaks in attack rate distribution. There is one 

small peak on the interval (0, 0.1) which shows there is no global epidemic in this network. This 

may because that when index cases happen in the periphery area, they have very limited 

connections to induce an epidemic. 
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3.3 DESCRIPTIVE ANALYSIS 

In this section we present the results of infection risk and speed of infection and their relationship 

with network measurements. We worked on two different network models: ER and BA networks 

with an average degree K=10 and two different infection probability β values 0.035 and 0.05, 

corresponding to mild and severe outbreaks. 

3.3.1 Barabasi-Albert Network 

Figure 6: Kernel density plot of infection risk and speed in the  BA network for β=0.035(Gray) and 

β=0.05(Black)  

In the BA network, there are two peaks in infection risk distribution. Several nodes which have 

very high infection risk are the hub nodes. When β=0.035, the infection risk distribution has a 

sharper peak and fatter tail, while the infection risk distribution with β=0.05 has a more rounded 

peak and thinner tail. 
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Figure 7:  Log-log transformed scatterplots between network measurements and infection risk or speed in 

the BA network (β =0.035(Grey) β =0.05(Black) 
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From the log-log scatterplot of Barabasi-Albert network measurements, degree, 

betweenness centrality, and closeness centrality have exponential relationships with infection risk, 

and then the increasing rate decrease to zero.  Degree and speed have an exponential relationship 

with infection risk with a changing point in the middle. The shapes of the curves do not change 

much from β=0.035 to β=0.05. When outbreaks become more severe, for the nodes with the same 

network measurements, the infection risk increases. 

Figure 8: The kernel density plots of infection risk in the ER network for β =0.035 and β =0.05 

3.3.2 Erdos-Renyi Network 

In the ER network, when β=0.035, the infection risk distribution has a sharper peak and fatter tail, 

while the infection risk distribution under β=0.05 has a more rounded peak and thinner tail. 
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Figure 9:  Log-log transformed scatterplots between network measurements and infection risk or speed in 

the BA network with β =0.035 and β =0.05. 

Xuan Li
打字机
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In log-log transformed scatterplot of Erdos-Renyi network measurements, degree has an 

exponential relationship with infection risk, same between degree and speed. When the outbreaks 

become more severe, for the nodes with same network measurements, the infection risk increases. 

3.4 CLASSIFICATION 

Since the infection risk has only one peak, we sorted the whole population in ascending order by 

infection risk and separated into three groups with equal numbers. The first one third people were 

the low-risk group, the last one third people were the high-risk group, and others were the medium-

risk group. 

Random forest was used for the classification of infection risk. We calculated the variable 

importance of each variable for the ER network and the BA network with β=0.035 and β=0.05. To 

eliminate and the variation of variable importance estimation, we repeated the classification 

procedure 50 times and then took an average to get final results. 
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Table 3: The mean raw important scores of network measurements in the ER network with β=0.035. OOB 

error =1.96% 

Mean Raw Important Score 

Variable Low-Risk 

Group 

Medium-Risk 

Group 

High-Risk 

Group 

Overall 

Degree 0.090 0.081 0.22 0.13 

PageRank 0.02 0.08 0.09 0.06 

Betweenness Centrality 0.084 0.058 0.14 0.095 

Closeness Centrality 0.22 0.15 0.28 0.22 

Eigenvector Centrality 0.17 0.14 0.23 0.18 

Clustering Coefficient <0.0001 <0.0001 <0.0001 <0.0001 

Table 4: The mean raw important scores of network measurements in the ER network with β=0.05. OOB 

error =1.49% 

Mean Raw Important Score 

Variable Low-Risk 

Group 

Medium-Risk 

Group 

High-Risk 

Group 

Overall 

Degree 0.26 0.23 0.37 0.28 

PageRank 0.07 0.15 0.17 0.13 

Betweenness Centrality 0.13 0.12 0.19 0.15 

Closeness Centrality 0.12 0.11 0.18 0.13 

Eigenvector Centrality 0.07 0.08 0.10 0.08 

Clustering Coefficient <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 10: The boxplot of mean raw important score of network measurements in the ER network with 

β=0.035(Red) and β=0.05(Black) 

The mean raw important score is defined as the average of the decrease in accuracy when 

permuting current variable and fix other variables. It shows the importance of the variable in 

classifying groups in the random forest model. In both mild outbreaks and severe outbreaks 

random forest models, all centrality measurements have a relatively high mean raw important score 

but different in levels. The mean raw important scores of clustering coefficient are extremely low 

(<0.0001). 

In mild outbreaks, closeness centrality is the most important variables (See Table 3). 

Eigenvector centrality and degree are the second and third most important variables respectively. 

They play important a role, especially in classifying the high-risk group. It is interesting to find 

that clustering coefficient have little effect at all in classifying the groups. Scatterplots in Fig 7 

shows some negative exponential relationship with infection risk. The main reason is because 
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clustering coefficient have too many zero values (94%) in the ER network.  Compared to the mild 

outbreaks (See Fig.10), degree becomes the most important variables in severe outbreaks. 

Betweenness and PageRank become more important and ranked as the second and third important 

variables compared to mild outbreaks. 

Higher Closeness means the node is closer to other nodes in the network. When the 

outbreak happens, nodes with higher closeness may be quickly reached because it has a shorter 

shortest path with infected nodes. Because ER is a random graph network with no hubs, infection 

cases will grow slowly within small areas when β=0.035. Only 20% of nodes are infected in 

average. Thus, those nodes that can be quickly reached will have a higher risk. However, when 

β=0.05, more than half of the nodes are infected in the ER network. In this case, closeness 

centrality becomes less important because outbreak spreads in larger areas while degree becomes 

more important because nodes with a higher degree will have a higher probability of contacting 

infected nodes. 

Table 5: The mean raw important scores of network measurements in the BA network with β=0.035. OOB 

error =1.99% 

Mean Raw Important Score 

Variable Low-Risk Group Medium-Risk Group High-Risk Group Overall 

Degree 0.32 0.35 0.52 0.40 

PageRank 0.16 0.39 0.20 0.25 

Betweenness Centrality 0.053 0.082 0.14 0.087 

Closeness Centrality 0.12 0.10 0.12 0.11 

Eigenvector Centrality 0.036 0.051 0.043 0.045 

Clustering Coefficient 0.001 0.001 0.001 0.001 
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Table 6: The mean raw important score of network measurements in the BA network with β=0.05. OOB 

error =4.24% 

Mean Raw Important Score 

Variable Low-Risk Group Medium-Risk Group High-Risk Group Overall 

Degree 0.40 0.43 0.54 0.46 

PageRank 0.23 0.33 0.21 0.26 

Betweenness Centrality 0.040 0.046 0.09 0.064 

Closeness Centrality 0.072 0.059 0.064 0.063 

Eigenvector Centrality 0.032 0.041 0.015 0.03 

Clustering Coefficient 0.001 0.002 0.001 0.0017 

Figure 11: The boxplot of mean raw important score of network measurements in the BA network with 

β=0.035(Red) and β=0.05(Black) 
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Similar to the ER network, centrality measurements are important variables in random 

forest models of the BA network. Clustering coefficient has limited effect in classifying groups 

because 82% nodes have a clustering coefficient value of zero. 

Based on the boxplot of variable importance in the BA network (see Fig.10), the rank of 

variable importance does not change much between the mild outbreak and the severe outbreak. 

The BA network has hubs that can act as bridges and facilitate the outbreak spread. Whether in 

mild outbreaks or severe outbreaks, the infectious disease starts from index nodes, quickly reaches 

hub nodes in the center and then spread to other parts of the network. 

In the BA network RF models, degree is the most important variable in classification (mean 

raw importance score is 0.40 for β =0.035 and 0.45 for β =0.5), while PageRank is the second most 

important. Moreover, degree and PageRank become more important in classification when the 

epidemic becomes severe.  Degree and PageRank are highly correlated thus both of them are most 

important variables and have similar trends when the epidemic becomes severe. 

In the BA network (see Fig.3), degree and PageRank have broader power law distribution 

and are highly skewed with a thinner peak than closeness centrality, eigenvector centrality and 

betweenness centrality. The hubs in the BA network shorten the paths between nodes and narrow 

down the value range of closeness centrality, eigenvector centrality and betweenness centrality. In 

this case, degree and PageRank are more important in classifying different infection risk groups. 

The boxplots show that variable importance measures are stable within 50 run times in 

both ER and BA network (see Fig.10 and Fig.11). The OOB error rate is 1.99% and 1.46% in the 

ER network corresponding to the mild outbreak and severe outbreak respectively, while in the BA 

network, the OOB error rate is 1.99% and 4.24% for mild outbreak and a severe outbreak. The 

error rates are very low and indicate the great prediction power of Random Forest in our datasets. 
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3.5 NETWORK SIZE AND STABLITIZATION 

Further exploration of network size was conducted using the random forest. We generated five 

networks with the number of nodes range from 100 to 10,000 and used random forests to get the 

mean raw important scores. The stack plot of mean raw important scores in the BA network shows 

that how the ratios between network measurements change with an increasing number of nodes. 

Degree and PageRank become more important with an increasing number of nodes. The ratio 

between any two network measurements become stable when the number of nodes is larger than 

5,000. We finally chose 10,000 nodes as an optimum network size for the purposes of removing 

small network effects and decreasing computation cost. 

Figure 12: The stack plot of the mean raw important scores of network measurements in the BA network 

with different nodes number. β=0.035 
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To further test the stability of random forest, we varied the simulation times from 1,000 to 

100,000. The stack plot shows that, although there is a small fluctuation, the rank of importance 

of network measurements do not change. However, increasing simulation times can help decrease 

OOB error in both ER and BA network (see Fig.13). For example, in the BA network with 

beta=0.035, OOB error decreases from 7.44% in 1000 runs nodes to 1.99% in 100,000 runs. 10,000 

runs is our final choice with consideration of both the low OOB error rate and low computational 

cost. 

 

 

 

Figure 13: The stack plot of mean row important scores of network measurements with different run times 
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3.6 CONTACT NETWORK IN FRED 

We used Jefferson County data in FRED as our research object. There are totally 45,318 people in 

Jefferson County synthetic population (See Table 7), 7,746 individuals at schools with 7662 

students (age range from 0 to 20) and 84 teachers (age from 40 to 50), 19,927 at workplaces.  Other 

than that, there are 2094 children (age from 0 to 5) and elderly people (age larger than 60). Gender 

is balanced in all subgroups. 97% of the population is white and most of the surveys are filled by 

the head of the household. There are 3 people in one house and 114 people on average in the 

neighborhood area (1km*1km).  There are 26 schools in Jefferson County with an average size of 

300. A total of 4,140 workplaces is located in Jefferson County with an average of 5+-SD people 

in each place. 

Table 7:  Summary of Jefferson County Synthetic Population Characteristics 

Variable Type Number Mean/Quantile Comment 

Age Continuous 45316 Mean:41.14  SD:27.3 

Sex Binary 45316 Female:51% Male:49% 

Race Category 45316 97% White 3%   Other 10  races 

Relationship Category 45316 42% Header 58% Other 14 types 

Household Size Continuous 18987 Mean:2.38  SD:1.36 

Neighborhood Size Continuous 870 Mean:52  SD: 110 

School Size Continuous 26 Mean:298  SD:314.4 7746 people 

Classroom  Size Continuous 291 Mean: 26.46 SD:11.28 7662 students 

Workplace Size Continuous 4140 Mean:5 SD:23.96 19927 workers 

Office Size Continuous 4262 Mean:4.68 SD:9.25 19927 workers 
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Table 8: Summary of Subgroups in the the Jefferson County 

Students Staff In School Workers Others 

Number 7662 84 19926 17912 

Age Mean: 11.31 

Range:0-18 

Mean:43.18 

Range:20-71 

Mean:43.56 

Range:16-100 

0-5: 2094 

>60:8384 

Others:7484 

Gender 50% Female 

50% Male 

43% Female 

57% Male 

47.5% Female 

52.5% Male 

55% Female 

45% Male 

Contact network of Jefferson County was constructed based on location. Everyone in the 

same location in the household, classroom and office was connected with each other. We didn’t 

consider neighborhood connection because it will make extremely high and unrealistic degree 

value. Network measurements were calculated and summarized below. 

Table 9: Network measurements of Jefferson County Contact network 

Network Measurements Jefferson County  

Variables Mean Median Min-Max SD 

Degree 432 261 0-2952 597.9 

Clustering Coefficient 0.87 0.98 0-1 0.18 

Betweenness Centrality 0.013 0.00055 0-1 0.031 

Closeness Centrality 0.013 0.013 0.00002-0.13 0.0005 

Eigenvector Centrality 0.051  0.00094 0-1 0.199 

Page Rank 0.000022 0.000021 0.0000003-0.00007 0.00001 
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The contact network in Jefferson County is dense and highly clustered. Average clustering 

coefficient (mean: 0.87) and degree (mean: 600) are much higher than the BA and ER network 

model (See Table 9). 44% nodes have clustering coefficient and betweenness centrality equal to 

1. In this case, the nodes are fully connected. 89% of those people don’t have a workplace or go

to school. They form a small group in their household. 

The special structure of the Jefferson County contact network contributes to the special 

results above. When generating the network, we considered that all individuals sharing a location 

are connected to each other.  It is a location-based network. 

We constructed Spearman correlation matrix to explore the correlation between network 

measurements in the Jefferson County contact network.  Histogram and kernel density distribution 

are listed in diagonal panels. The upper panels and lower panels contain Spearman correlation 

coefficients and scatterplot between measurements respectively.
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Figure 14: Spearman’s correlation matrix of network measurements in Jefferson County contact network 
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In the Jefferson County contact network, degree and PageRank are highly correlation with 

Spearman’s correlation coefficient of 0.96(See Fig.14). This result is similar to Barabasi-Albert 

and Erdos-Renyi networks. Three pairs, degree and betweenness centrality, closeness centrality 

and eigenvector centrality, closeness centrality and PageRank, are also highly correlated with each 

other with Spearman’s correlation coefficients 0.84, 0.83 and 0.90, respectively. 

Different from BA and ER network, clustering coefficient is negatively correlated with all 

centrality measurements, especially betweenness centrality (Spearman’s correlation coefficients 

equal to -0.84) in the Jefferson County contact network. Nodes in the contact network are 

connected by location and form many small clusters in the network. Nodes with high clustering 

coefficient are fully connected and have limited outgoing connection. Betweenness centrality 

measures the paths that going through, thus highly clustered nodes will have lower betweenness 

centrality. 

3.7 ATTACK RATE AND INFECTION RISK IN JEFFERSON 

Two kinds of outbreaks with different transmission parameters were simulated using FRED on 

Jefferson County population data. Mild outbreaks (transmission parameters of 0.6) have an 

average attack rate of 0.2, while the average attack rate of the severe outbreaks (transmission 

parameter of 1.0) is 0.5. 
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Figure 15: Kernel Density plot of infection risk in the two outbreaks of Jefferson County contact network 

 The infection risk distributions of mild and severe outbreaks are different both in shape 

and range (shown in Fig. 15). In mild outbreaks, there is one main sharp peak around 0.7 and 

smaller peaks in the long tail on around 0.22, 0.55 and 0.58. Whereas in severe outbreaks, there 

are three main peaks, around 0.25, 0.38 and 0.95, and a small peak around 0.4. 

  Further research on the high-risk population and low-risk groups gave us more interesting 

findings. We ranked the individual according to the infection risk and picked the top 7,000 cases 
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with the highest infection risk. Most of the cases overlap between the mild outbreak and severe 

outbreak. 

Among the overlapped people, 96% of the high-risk people are students, 98% are within 

the age 0-18 years old. More interestingly, outbreak. 97% of these people are students. We ploted 

a histogram of these people’s age (see Fig.16). There are 9 staffs in the school, 55 workers and 27 

unemployed other than students. 

Figure 16: Histogram of age in the top 7,000 infection risk people in both mild and high outbreaks. 

3.8 CLASSIFICATION RESULTS OF JEFFERSON COUNTY 

CONTACT NETWORK 

Same grouping methods were used on mild outbreaks and severe outbreaks data of Jefferson 

County contact network. We sorted the whole population in ascending order by infection risk and 

separated into three groups with equal numbers. The first one third were the low-risk group, the 

last one third were the high-risk group, and others were in the medium-risk group. 
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We ran random forest classification algorithm on data and got the mean raw importance 

scores for each variable and three classification groups. We also plotted a boxplot comparing the 

mild break and severe outbreak with 50 running times. 

Table 10: The mean raw importance score of variables in mild outbreak, Jefferson County OOB error 12% 

Mean Raw Important Score 

Variables Low-Risk Group Medium-Risk Group High-Risk Group Overall 

Household Size 0.3271 0.1807 0.2176 0.2419 

School Size 0.0528 0.0601 0.1445 0.0858 

Betweenness Centrality 0.1404 0.0693 0.0369 0.0823 

Workplace Size 0.0823 0.1463 0.0108 0.0798 

Office Size 0.0899 0.1400 0.0082 0.0793 

Clustering Coefficient 0.0966 0.0614 0.0313 0.0632 

Age 0.0190 0.0191 0.0949 0.0443 

Classroom Size 0.0308 0.0283 0.0556 0.0383 

Closeness Centrality 0.0323 0.0511 0.0164 0.0333 

Relationship 0.0082 0.0154 0.0463 0.0233 

Degree 0.0190 0.0282 0.0130 0.0201 

Eigenvector Centrality 0.0163 0.0338 0.0097 0.0199 

PageRank 0.0147 0.0265 0.0122 0.0178 

Neighborhood Size 0.0151 0.0214 0.0067 0.0144 

Race 0.0162 0.0034 0.0009 0.0068 

Sex 0.0006 0.0051 0.0034 0.0030 
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Table 11: The mean raw important score of variables in severe outbreaks. Jefferson County, OOB error 9.9% 

Mean Raw Important Score 

Variables  Low-risk Group Medium-risk Group High-risk Group Overall 

Household Size 0.3532 0.2517 0.2523 0.2858 

Betweenness Centrality 0.1660 0.0850 0.0532 0.1015 

Workplace Size 0.0933 0.1612 0.0163 0.0904 

Office Size 0.0803 0.1425 0.0134 0.0788 

School Size 0.0580 0.0602 0.1100 0.0760 

Clustering Coefficient 0.0799 0.0561 0.0316 0.0559 

Age 0.0184 0.0201 0.0692 0.0359 

Closeness Centrality 0.0266 0.0596 0.0164 0.0342 

Classroom Size 0.0307 0.0384 0.0245 0.0312 

Degree 0.0182 0.0351 0.0132 0.0221 

Eigenvector Centrality 0.0122 0.0305 0.0083 0.0170 

Relationship 0.0110 0.0100 0.0292 0.0167 

Neighborhood Size 0.0142 0.0286 0.0072 0.0166 

PageRank 0.0098 0.0264 0.0111 0.0157 

Race 0.0153 0.0025 0.0007 0.0062 

Sex 0.0003 0.0039 0.0019 0.0020 

Figure 17:  Boxplots of the mean raw important scores in mild and severe outbreaks of Jefferson County. 

10 repeated runs. 
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Based on the results of mean raw important score on both mild outbreaks and severe 

outbreaks RF model, household size, school size, classroom size, office size and workplace size 

rank are important variables in RF model. 

The infectious disease model in FRED is a location-based agent model. The infection 

spreads when people share the same location. According to the paper of Cooley [31], contact 

patterns of n house, class and work are different. FRED set different contact rate and infectivity 

for house, neighborhood, class, school, workplace and school. Infectivity also varies based on age. 

Default parameters are calculated using Allegheny County as an example (See Table 12). The 

neighborhood has the highest contact rate, but the lowest infectivity. People encounter a lot of 

neighbor every day but only have short time contact which makes the infectivity extremely low. 

Not only because limited numbers in the house, but also tuning of parameters, the household has 

lowest contact rate. However, the household has the highest infectivity since they have more 

frequently interactions. 

The results in severe outbreaks are similar to those in mild outbreaks. The boxplot also 

shows the mean raw important scores are stable (see Fig.17). Betweenness, clustering coefficient 

and closeness centrality are relatively important than other network measurements in the Jefferson 

County contact network. This is very different from results in the BA and ER network where 

degree is very important and clustering coefficient has the lowest score. The main reason is that 

the spatial and location-based structure of contact network constructed in FRED is very different 

from the BA and ER network models which are not spatial nor location-based.  
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Table 12: Contact rate and infectivity parameters in FRED for different places. 

Places Contact Rate Infectivity 

Household 0.198 0.3-0.6 

Neighborhood 42.4 0.0048 

Classroom 28.64 0.0315-0.0575 

School 14.32 0.0315-0.0575 

Office 3 0.0575 

Workplace 1.5 0.0575 

When an outbreak happens, the disease will spread in small clusters and also spread to 

other locations by some connections. Nodes in fully connected clusters have extreme high 

clustering coefficient and extreme low betweenness centrality while nodes with high betweenness 

and low clustering coefficient will have more connections to other locations. If an outbreak 

happens in clusters, typically nodes in a fully connected cluster will have a higher chance to be 

infected. However, if an outbreak happens outside clusters, fully connected clusters will hardly be 

reached because they have limited connections with nodes in other locations. Nodes with high 

betweenness centrality will be more likely reached in this case. However, the form of relationship 

between infection risk and betweenness centrality or clustering coefficient is complex (See Fig 

18). 
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Figure 18: Scatterplot between infection risk and betweenness centrality/clustering coefficient 
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4.0 CONCLUSION AND DISCUSSION 

With years of development in infectious disease modeling, many sophisticated mathematical 

models have been used in understanding the spread of infectious disease. Although we have 

learned a lot about disease dynamics, the use of social contact network to predict infection risk has 

received limited attention. It is easy to understand that more central individuals are at the greatest 

risk of infection during epidemic outbreaks. However, there are many different measurements of 

“centrality” and it might be difficult to determine which one is the most important one? 

The results of BA, ER and FRED network all prove centrality measurements are of great 

importance in predicting infection risk. However, the structure of contact network and 

characteristics of a disease have an effect on the importance of network measurements in predicting 

infection risk. BA and ER network models are representatives of random and power-law network 

respectively while FRED network is location based network model. The ER network is a 

combination of graph theory and probability theory. It is easy to research with quite mature 

underlying mathematical theory and simple calculation. Some complex network, for example, ad 

hoc sensor network, share similar properties with the ER network. The BA network incorporates 

the dynamic into graph theory. The scale-free nature of the BA network broadens its application 

in real life. These two models have been studied extensively for their application in epidemiology. 

For the random network and scale-free network, random forest results show that degree is the most 

important variable in the Barabasi-Albert network for both mild and severe outbreak whereas in 

the Erdos-Renyi network it becomes important when outbreak becomes severe. It is quite 

intuitionally that people who have a lot of contacts will have a higher chance to be infected because 

the disease has more ways to directly transmit to him/her. When the mild outbreak happens on the 
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Erdos-Renyi network, closeness centrality is the most important variable. This result indicates that 

when the disease can only spread in the limited area, people who can be quickly reached will have 

a higher risk of being infected. 

The results also suggest important applications in real life. Degree measures the direct 

contacts of each individual and very convenient to calculate in real life. Since degree has a 

monotonically increasing relationship with infection risk and plays a vital important role in 

classifying high-risk group in both ER and BA network, it gives a hint that if the population has a 

similar contact structure with the ER and BA network we can target on the people with lots of 

contacts as high-risk group. Unlike the “local” measurement degree, other centrality 

measurements, for example, betweenness centrality, closeness centrality, eigenvector centrality 

and PageRank are more concentrate on “global” structure. They are very difficult to calculate in 

real life. They require a clear and complete picture of the real life contact network which is hard 

to construct a contact network without tracking all the people’s daily activities. Moreover, the 

calculation algorithm is very computational cost and time-consuming for a complex network.  

However, we still can get some information from the definition of those centrality measurements. 

Take the betweenness centrality as an example, the nodes with large betweenness usually hold the 

vital positions in the pathways between pairs of nodes. Hubs in the BA networks and the nodes 

connecting two separate communities also have large betweenness centrality. Such nodes, 

although not necessarily having a high degree, play the role of bridges which are connecting the 

nodes in two communities. Some examples can be found in real life which sharing similar 

characteristics with those large betweenness centrality nodes, such as public transportation. 

Consequently, results of betweenness centrality indicate that transportation need more attention on 

disease prevention for the disease spreading through direct people to people contact. 
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There is a different story in FRED network. The structure of the Jefferson County contact 

network limited the influences of degree, but betweenness centrality and clustering coefficient 

become more important. Although the relationship forms between betweenness centrality and 

infection risk, closeness centrality and infection risk, are not monatomic and very complex, the 

role of betweenness centrality and clustering coefficient in disease spreading in of great 

importance. 

The disease model of FRED considers lots of factors, for example, the transmissivity of 

disease, contact rate and infectivity of places, age and health status. The network of FRED has 

many small and large clusters due to the classroom, school, office, workplace and household share. 

The results of RF model shows that location size is important in classifying infection risk in the 

Jefferson County contact network. Thus in real life, a larger company and school are under higher 

risk and need more attention on the disease prevention program. 

Correlations among network measurements are also influenced by the network structure. 

In the Erdos-Renyi network, i.e., all measurements are highly correlated, but this is not the case in 

the Barabasi-Albert network. Also, degree and PageRank are highly correlated with similar 

distributions in all three network models.  In the paper of Jose, they came up with an idea to collect 

correlations between network measurements and build profiles of different types of networks [30]. 

The similarity and differences of correlations between network measurements may give some 

clues on the topology of networks. Besides, for the complex network and some real life network 

with unclear organizing rules, profiles of different types of network can give some important 

information about their type and structure. 



53 

Public Health Impact 

The important variables that we find in this thesis will help build an efficient surveillance system. 

Rather than conducting a prevention program that covers all the susceptive people, a targeted 

prevention program can focus more on the high-risk population with some certain characteristics. 

Degree suggests targeting people with more contacts while betweenness centrality focuses on the 

people who act as connecting bridges. Results in FRED suggests school, workplace and house 

with larger size are under higher risk. The Larger company and school should receive more 

attention on disease prevention. 
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5.0 LIMITATION AND FUTURE WORK 

5.1.1 Highly Correlated Variable 

The highly-correlated variable is a difficult subject to handle in statistics. According to Robin’s 

studies [27], variable importance in the random forest may have a preference of highly correlated 

variables. An improved random forest method called “conditional inference tree” using the cforest 

package has been developed to deal with the highly correlated variable issue and has been proven 

effective by several studies. However, it requires enormous computational resources and cannot 

handle the large dataset we study in this thesis. 

5.1.2 Statistical Inference of variable importance 

 Variable importance has been widely used in many fields for variable selection, such as genomic 

analysis and pattern recognition. Some researchers realize the importance of interpreting variable 

importance using statistic languages and make some contributions [28]. However, limited 

researches have been done by statisticians. 

5.1.3 FRED network 

It is very difficult to get a real epidemic disease and contact network data, thus FRED is a valuable 

tool which provides real population information and use computers to simulate the epidemic. 

However, in our studies, it is challenging to construct a network using FRED. The simple 
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assumption that everyone is connected with each other if they share a location is not easy to make 

in real life, depending on the size and nature of the interaction of individuals. Weighted networks 

with degree proportional to the contact rate in different places may be a solution in solving large 

degree problems. 
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 APPENDIX:  R CODE 

I. BA and ER Network  
####Attack Rate Summarize#### 

library(ggplot2) 

BA.0.035$β<-0.035 

BA0.05$β<-0.05 

BA0.07$β<-0.07 

BA<-rbind(BA.0.035,BA0.05) 

m1<-ggplot(BA,aes(x=V1,group=β)) 

m1+geom_density(aes(fill=factor(β)), size=0.8,alpha=0.5)+xlab("Attack Rate") +ylab("Kernel Density") +ggtitle("Kernel Density Plot for Attack Rate in 

Barabasi-Albert Network") 

ER0.035$β<-0.035 

ER0.05$β<-0.05 

ER<-rbind(ER0.035,ER0.05) 

m2<-ggplot(ER,aes(x=V1,group=β)) 

m2+geom_density(aes(fill=factor(β)), size=0.8,alpha=0.5)+xlab("Attack Rate") +ylab("Kernel Density") +ggtitle("Kernel Density Plot for Attack Rate in 

Erdos-Renyi Network") 

##### Network Characteristics 

summary(BA0.035) 

apply(BA0.035,2,sd) 

summary(ER0.035) 

apply(ER0.035,2,sd) 

#####Decriptive Analysis 

BA0.035$β<-0.035 

BA0.05$β<-0.05 

BA0.05<-BA0.05[,c(1:10,12,13)] 

BA<-rbind(BA0.035,BA0.05) 

ER0.035$β<-0.035 

ER0.05$β<-0.05 

ER20.05<-ER0.05[,c(1:10,14,15)] 

ER<-rbind(ER0.035,ER20.05) 

library(ggplot2) 

m1<-ggplot(BA,aes(x=V1,group=β)) 

m1+geom_density(aes(fill=factor(β)), size=0.8,alpha=0.5)+xlab("Infection Risk") +ylab("Density") +ggtitle("Kernel Density Plot for Infection Risk") 

m2<-ggplot(BA,aes(x=V2,group=β)) 

m2+geom_density(aes(fill=factor(β)), size=0.8,alpha=0.5)+xlab("Speed") +ylab("Density") +ggtitle("Kernel Density Plot for Speed") 

p<-ggplot(BA,aes(x=Degree,y=InfectionRisk,group=β)) 

p+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log(Degree)") +ylab("log(Infection Risk)j") 

+ggtitle("log-log Scatter Plot between Infection Risk and Degree") 

p1<-ggplot(BA,aes(x=log(ClusteringCoefficient),y=log(InfectionRisk),group=β)) 

p1+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Clustering Coefficient") +ylab("log 

Infection Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Clustering Coefficient") 

p2<-ggplot(BA,aes(x=log(Betweenness),y=log(InfectionRisk),group=β)) 

p2+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Betweenness") +ylab("log Infection 

Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Betweenness") 

p3<-ggplot(BA,aes(x=log(Closeness),y=log(InfectionRisk),group=β)) 

p3+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Closeness") +ylab("log Infection Risk") 

+ggtitle("Log-Log Scatter Plot between Infection Risk and Closeness") 

p4<-ggplot(BA,aes(x=log(Eigenvectorcentrality),y=log(InfectionRisk),group=β)) 

p4+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Eigenvector centrality") +ylab("log 

Infection Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Eigenvector Centrality") 

p5<-ggplot(BA,aes(x=log(PageRank),y=log(InfectionRisk),group=β)) 

p5+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log PageRank") +ylab("log Infection Risk") 

+ggtitle("Log-Log Scatter Plot between Infection Risk and PageRank") 

p6<-ggplot(BA,aes(x=log(PageRank),y=log(Speed),group=β)) 



57 

p6+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Degree") +ylab("log Speed") 

+ggtitle("Log-Log Scatter Plot between Speed and Degree") 

m1<-ggplot(ER,aes(x=V1,group=β)) 

m1+geom_density(aes(fill=factor(β)), size=0.8,alpha=0.5)+xlab("Infection Risk") +ylab("Density") +ggtitle("Kernel Density Plot for Infection Risk") 

m2<-ggplot(ER,aes(x=V2,group=β)) 

m2+geom_density(aes(fill=factor(β)), size=0.8,alpha=0.5)+xlab("Speed") +ylab("Density") +ggtitle("Kernel Density Plot for Speed") 

p<-ggplot(ER,aes(x=log(Degree),y=log(InfectionRisk),group=β)) 

p+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log(Degree)") +ylab("log(Infection Risk)j") 

+ggtitle("log-log Scatter Plot between Infection Risk and Degree") 

p1<-ggplot(ER,aes(x=log(ClusteringCoefficient),y=log(InfectionRisk),group=β)) 

p1+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Clustering Coefficient") +ylab("log 

Infection Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Clustering Coefficient") 

p2<-ggplot(ER,aes(x=log(Betweenness),y=log(InfectionRisk),group=β)) 

p2+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Betweenness") +ylab("log Infection 

Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Betweenness") 

p3<-ggplot(ER,aes(x=log(Closeness),y=log(InfectionRisk),group=β)) 

p3+coord_cartesian(xlim = c(-2.0, -1.5)) + geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log 

Closeness") +ylab("log Infection Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Closeness") 

p4<-ggplot(ER,aes(x=log(Eigenvectorcentrality),y=log(InfectionRisk),group=β)) 

p4+ coord_cartesian(xlim = c(-4.2, 1)) +geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log 

Eigenvector centrality") +ylab("log Infection Risk") +ggtitle("Log-Log Scatter Plot between Infection Risk and Eigenvector Centrality") 

p5<-ggplot(ER,aes(x=log(PageRank),y=log(InfectionRisk),group=β)) 

p5+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log PageRank") +ylab("log Infection Risk") 

+ggtitle("Log-Log Scatter Plot between Infection Risk and PageRank") 

p6<-ggplot(ER,aes(x=log(PageRank),y=log(Speed),group=β)) 

p6+ geom_point(aes(colour = factor(β),shape = factor(β)))+theme(legend.text=element_text(size=16))+xlab("log Degree") +ylab("log Speed") 

+ggtitle("Log-Log Scatter Plot between Speed and Degree") 

###############Network Measurements degree betweenness cc, closeness, eigenvectore centrality and PageRank 

library(psych) 

pairs.panels(BA0.035[,c(3,5,6,7,8)], smooth=FALSE,density=TRUE,ellipses=FALSE,digits =2,method="spearman", pch = 20, 

cor=TRUE,hist.col="Grey") 

pairs.panels(ER0.035[,c(3,5,6,7,8)], smooth=FALSE,density=TRUE,ellipses=FALSE,digits =2,method="spearman", pch = 20, 

cor=TRUE,hist.col="Grey") 

#####Network 

colnames(BA0.035)[1]<-"InfectionRisk" 

colnames(BA0.035)[2]<-"Speed" 

colnames(BA0.035)[3]<-"Degree" 

colnames(BA0.035)[4]<-"ClusteringCoefficient" 

colnames(BA0.035)[5]<-"Betweenness" 

colnames(BA0.035)[6]<-"Closeness" 

colnames(BA0.035)[7]<-"Eigenvectorcentrality" 

colnames(BA0.035)[8]<-"PageRank" 

colnames(BA0.035)[9]<-"Kcore" 

colnames(BA0.035)[10]<-"Knn" 

colnames(BA0.05)[1]<-"InfectionRisk" 

colnames(BA0.05)[2]<-"Speed" 

colnames(BA0.05)[3]<-"Degree" 

colnames(BA0.05)[4]<-"ClusteringCoefficient" 

colnames(BA0.05)[5]<-"Betweenness" 

colnames(BA0.05)[6]<-"Closeness" 

colnames(BA0.05)[7]<-"Eigenvectorcentrality" 

colnames(BA0.05)[8]<-"PageRank" 

colnames(BA0.05)[9]<-"Kcore" 

colnames(BA0.05)[10]<-"Knn" 

colnames(BA0.07)[1]<-"InfectionRisk" 

colnames(BA0.07)[2]<-"Speed" 

colnames(BA0.07)[3]<-"Degree" 

colnames(BA0.07)[4]<-"ClusteringCoefficient" 

colnames(BA0.07)[5]<-"Betweenness" 

colnames(BA0.07)[6]<-"Closeness" 

colnames(BA0.07)[7]<-"Eigenvectorcentrality" 

colnames(BA0.07)[8]<-"PageRank" 
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colnames(BA0.07)[9]<-"Kcore" 

colnames(BA0.07)[10]<-"Knn" 

colnames(ER0.035)[1]<-"InfectionRisk" 

colnames(ER0.035)[2]<-"Speed" 

colnames(ER0.035)[3]<-"Degree" 

colnames(ER0.035)[4]<-"ClusteringCoefficient" 

colnames(ER0.035)[5]<-"Betweenness" 

colnames(ER0.035)[6]<-"Closeness" 

colnames(ER0.035)[7]<-"Eigenvectorcentrality" 

colnames(ER0.035)[8]<-"PageRank" 

colnames(ER0.035)[9]<-"Kcore" 

colnames(ER0.035)[10]<-"Knn" 

colnames(ER0.05)[1]<-"InfectionRisk" 

colnames(ER0.05)[2]<-"Speed" 

colnames(ER0.05)[3]<-"Degree" 

colnames(ER0.05)[4]<-"ClusteringCoefficient" 

colnames(ER0.05)[5]<-"Betweenness" 

colnames(ER0.05)[6]<-"Closeness" 

colnames(ER0.05)[7]<-"Eigenvectorcentrality" 

colnames(ER0.05)[8]<-"PageRank" 

colnames(ER0.05)[9]<-"Kcore" 

colnames(ER0.05)[10]<-"Knn" 

colnames(ER0.07)[1]<-"InfectionRisk" 

colnames(ER0.07)[2]<-"Speed" 

colnames(ER0.07)[3]<-"Degree" 

colnames(ER0.07)[4]<-"ClusteringCoefficient" 

colnames(ER0.07)[5]<-"Betweenness" 

colnames(ER0.07)[6]<-"Closeness" 

colnames(ER0.07)[7]<-"Eigenvectorcentrality" 

colnames(ER0.07)[8]<-"PageRank" 

colnames(ER0.07)[9]<-"Kcore" 

colnames(ER0.07)[10]<-"Knn" 

library(party) 

library(randomForest) 

#####Parameters optimization 

rf_model<-train(class~.,data=BA0.05.tree,method="rf",trControl=trainControl(method="cv",number=5), prox=TRUE,allowParallel=TRUE) 

print(rf_model) 

#mtry select 

#####function for 50 runs time 

rfbox<-function(dataset,runs=50,mtr=4,ntr=501){ 

  myVarsum=matrix(,ncol=50,nrow=6) 

  confusion<-matrix(,ncol=) 

  errors<-dim(runs) 

  for(i in 1:runs){ 

  set.seed(i+50) 

  rf<-randomForest(formula=class~.,data=dataset,ntree=ntr,replace=T,mtry=mtr, importance=T,na.action = na.omit) 

  pro<-predict(rf) 

  obs<-dataset$class 

  confusionmatrix<- 

  error<-mean(rf$err.rate[,1]) 

  errors[i] = error 

  set.seed(i+50) 

  myVar<-importance(rf,scale=F,type=1) 

  myVarsum[,i]=myVar  

  } 

  myVarsum=t(myVarsum) 

  err<pmean(errors) 

  print(err) 

  return(myVarsum) 

} 

###categorized the infection risk 

BA0.035$class<-cut(BA0.035$InfectionRisk,quantile(BA0.035$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

BA0.05$class<-cut(BA0.05$InfectionRisk,quantile(BA0.05$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

BA0.07$class<-cut(BA0.07$InfectionRisk,quantile(BA0.07$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

ER0.035$class<-cut(ER0.035$InfectionRisk,quantile(ER0.035$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

ER0.05$class<-cut(ER0.05$InfectionRisk,quantile(ER0.05$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

ER0.07$class<-cut(ER0.07$InfectionRisk,quantile(ER0.07$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 
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###Select interest features 

BA0.035.tree<-BA0.035[,c(3:8,11)] 

BA0.05.tree<-BA0.05[,c(3:8,14)] 

BA0.07.tree<-BA0.07[,c(3:8,14)] 

ER0.035.tree<-ER0.035[,c(3:8,11)] 

ER0.05.tree<-ER0.05[,c(3:8,14)] 

ER0.07.tree<-ER0.07[,c(3:8,14)] 

 

#####run the random forest function 

 

rf1<-rfbox(dataset=BA0.035.tree) 

rf2<-rfbox(dataset=BA0.05.tree) 

rf3<-rfbox(dataset=BA0.07.tree) 

rf4<-rfbox(dataset=ER0.035.tree) 

rf5<-rfbox(dataset=ER0.05.tree) 

rf6<-rfbox(dataset=ER0.07.tree) 

 

#####graph reuslts 

colnames(rf1)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

colnames(rf2)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

colnames(rf3)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

colnames(rf4)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

colnames(rf5)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

colnames(rf6)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

rf1<-rf1[,c(1,6,3,4,5,2)] 

rf2<-rf2[,c(1,6,3,4,5,2)] 

rf5<-rf5[,c(1,6,3,4,5,2)] 

rf4<-rf4[,c(1,6,3,4,5,2)] 

 

library(ggplot2) 

rf1_means <- (colMeans(rf1, na.rm = TRUE)) 

boxplot(rf1,xlab="Network Measurements",ylim=c(0,0.5),ylab="Variable Importance",main="Boxplot of Variable Importance of Network Measurements 

in BA ",col="light grey", border="red") 

par(new=TRUE) 

rf2_means <- (colMeans(rf2, na.rm = TRUE)) 

boxplot(rf2,col="light grey", border="black",ylim=c(0,0.5),) 

legend("topright", title="Β  ",c("0.035","0.05"), cex=1,pch=c(15,15),col=c("RED","BLACK"), horiz=FALSE) 

 

rf4_means <- (colMeans(rf4, na.rm = TRUE)) 

boxplot(rf4,xlab="Network Measurements",ylim=c(0,0.3),ylab="Variable Importance",main="Boxplot of Variable Importance of Network Measurements 

in ER ",col="light grey", border="red") 

par(new=TRUE) 

rf5_means <- (colMeans(rf5, na.rm = TRUE)) 

boxplot(rf5, col="light grey", border="black",ylim=c(0,0.3),) 

legend("topright", title="Β  ",c("0.035","0.05"), cex=1,pch=c(15,15),col=c("RED","BLACK"), horiz=FALSE) 

} 

 

 

Network Size/Run times/ Β 

 
###########R code#Code for final thesis 

library(party) 

library(randomForest) 

N100$class<-cut(N100$InfectionRisk,quantile(N100$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

N200$class<-cut(N200$InfectionRisk,quantile(N200$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

N500$class<-cut(N500$InfectionRisk,quantile(N500$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

N1000$class<-cut(N1000$InfectionRisk,quantile(N1000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

N2000$class<-cut(N2000$InfectionRisk,quantile(N2000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

N5000$class<-cut(N5000$InfectionRisk,quantile(N5000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

N10000$class<-cut(N10000$InfectionRisk,quantile(N10000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

 

rfav<-function(dataset,runs=10,mtr=2,ntr=501){ 

  myVarsum=c(0,0,0,0,0,0) 

  errors<-dim(runs) 

  for(i in 1:runs){ 

    set.seed(i) 

    rf<-randomForest(formula=class~.,data=dataset,ntree=ntr,replace=T,mtry=mtr, importance=T,na.action = na.omit) 

    error<-mean(rf$err.rate[,1]) 

    errors[i] = error 

    set.seed(i) 

    myVar<-importance(rf,scale=F,type=1) 

    myVarsum=myVarsum+myVar  

  } 

  myVarav=myVarsum/runs 

  err<-mean(errors) 

  print(myVarav) 

  print(err) 

} 

 



60 

rfbox<-function(dataset,runs=50,mtr=2,ntr=501){ 

  myVarsum=matrix(,ncol=50,nrow=6) 

  errors<-dim(runs) 

  for(i in 1:runs){ 

    rf<-randomForest(formula=class~.,data=dataset,ntree=ntr,replace=T,mtry=mtr, importance=T,na.action = na.omit) 

    error<-mean(rf$err.rate[,1]) 

    errors[i] = error 

    myVar<-importance(rf,scale=F,type=1) 

    myVarsum[,i]=myVar  

  } 

  myVarsum=T(myVarsum) 

  return(myVarsum) 

} 

 

#bootstap random forest 

N100.tree<-N100[,c(3:8,11)] 

N200.tree<-N200[,c(3:8,11)] 

N500.tree<-N500[,c(3:8,11)] 

N1000.tree<-N1000[,c(3:8,11)] 

N2000.tree<-N2000[,c(3:8,11)] 

N5000.tree<-N5000[,c(3:8,11)] 

N10000.tree<-N10000[,c(3:8,11)] 

 

 

dfit<-rpart(formula=class~.,data=ba3.tree,method="class",control=rpart.control(cp=0,xval=10)) 

dfit<-rpart(formula=class~.,data=ba5.tree,method="class",control=rpart.control(cp=0,xval=10)) 

 

plot(dfit) #main="Complete Tree for binary outcome" 

text(dfit,use.n=T,xpd = TRUE) 

printcp(dfit)   ###complexity parameter 

plotcp(dfit) 

 

 

####  ABOVE is the full tree##### 

 

 

#### Below is Pruning the tree##### 

fit3<-prune(dfit,cp= 2.4180e-03 ) 

plot(fit3) #,main="Optimized Tree for Binary outcome" 

text(fit3,use.n=T,xpd = TRUE) 

 

 

##### Imprtance of Variable on bootstrap samples##### 

 

rf1<-rfav(dataset=N100.tree) 

rf2<-rfav(dataset=N200.tree) 

rf3<-rfav(dataset=N500.tree) 

rf4<-rfav(dataset=N1000.tree) 

rf5<-rfav(dataset=N2000.tree) 

rf6<-rfav(dataset=N5000.tree) 

rf7<-rfav(dataset=N10000.tree) 

 

######K 

 

k6$class<-cut(k6$InfectionRisk,quantile(k6$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

k10$class<-cut(k10$InfectionRisk,quantile(k10$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

k20$class<-cut(k20$InfectionRisk,quantile(k20$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

k40$class<-cut(k40$InfectionRisk,quantile(k40$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

k100$class<-cut(k100$InfectionRisk,quantile(k100$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

k200$class<-cut(k200$InfectionRisk,quantile(k200$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

 

 

#bootstap random forest 

k6.tree<-k6[,c(3:8,12)] 

k10.tree<-k10[,c(3:8,12)] 

k20.tree<-k20[,c(3:8,12)] 

k40.tree<-k40[,c(3:8,12)] 

k100.tree<-k100[,c(3:8,12)] 

k200.tree<-k200[,c(3:8,12)] 

 

rf1<-rfav(dataset=k6.tree) 

rf2<-rfav(dataset=k10.tree) 

rf3<-rfav(dataset=k20.tree) 

rf4<-rfav(dataset=k40.tree) 

rf5<-rfav(dataset=k100.tree) 

rf6<-rfav(dataset=k200.tree) 

 

###Β 
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b0.035$class<-cut(b0.035$InfectionRisk,quantile(b0.035$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

b0.03$class<-cut(b0.03$InfectionRisk,quantile(b0.03$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

b0.05$class<-cut(b0.05$InfectionRisk,quantile(b0.05$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

b0.07$class<-cut(b0.07$InfectionRisk,quantile(b0.07$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

b0.02$class<-cut(b0.02$InfectionRisk,quantile(b0.02$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

 

 

#bootstap random forest 

b0.02.tree<-b0.02[,c(3:8,14)] 

b0.03.tree<-b0.03[,c(3:8,11)] 

b0.035.tree<-b0.035[,c(3:8,11)] 

b0.05.tree<-b0.05[,c(3:8,14)] 

b0.07.tree<-b0.07[,c(3:8,14)] 

 

rf1<-rfav(dataset=b0.02.tree) 

rf2<-rfav(dataset=b0.03.tree) 

rf3<-rfav(dataset=b0.035.tree) 

rf4<-rfav(dataset=b0.05.tree) 

rf5<-rfav(dataset=b0.07.tree) 

 

 

###N β=0.035 runs varies 

 

n1000$class<-cut(n1000$InfectionRisk,quantile(n1000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

n5000$class<-cut(n5000$InfectionRisk,quantile(n5000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

n10000$class<-cut(n10000$InfectionRisk,quantile(n10000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

n50000$class<-cut(n50000$InfectionRisk,quantile(n50000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

n100000$class<-cut(n100000$InfectionRisk,quantile(n100000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

 

 

n1000.tree<-n1000[,c(3:8,11)] 

n5000.tree<-n5000[,c(3:8,11)] 

n10000.tree<-n10000[,c(3:8,11)] 

n50000.tree<-n50000[,c(3:8,11)] 

n100000.tree<-n100000[,c(3:8,11)] 

 

rf1<-rfav(dataset=n1000.tree) 

rf2<-rfav(dataset=n5000.tree) 

rf3<-rfav(dataset=n10000.tree) 

rf4<-rfav(dataset=n50000.tree) 

rf5<-rfav(dataset=n100000.tree) 

 

 

;####β=0.07 

 

 

r1000$class<-cut(r1000$InfectionRisk,quantile(r1000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

r5000$class<-cut(r5000$InfectionRisk,quantile(r5000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

r10000$class<-cut(r10000$InfectionRisk,quantile(r10000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

r50000$class<-cut(r50000$InfectionRisk,quantile(r50000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

r100000$class<-cut(r100000$InfectionRisk,quantile(r100000$InfectionRisk,probs = c(0,1,2,3)/3),label=c("low","medium","high")) 

 

 

r1000.tree<-r1000[,c(3:8,11)] 

r5000.tree<-r5000[,c(3:8,11)] 

r10000.tree<-r10000[,c(3:8,14)] 

r50000.tree<-r50000[,c(3:8,11)] 

r100000.tree<-r100000[,c(3:8,11)] 

 

rf1<-rfav(dataset=r1000.tree) 

rf2<-rfav(dataset=r5000.tree) 

rf3<-rfav(dataset=r10000.tree) 

rf4<-rfav(dataset=r50000.tree) 

rf5<-rfav(dataset=r100000.tree) 

 

 

FRED 
 

 

 

###########R code for FRED 

jeff1.0 <- read.table("F:/Files/Project/Thesis/fred/inf_risk_jefferson_tr1.0.dat", quote="\"",fill = TRUE) 

jeff0.6 <- read.table("F:/Files/Project/Thesis/fred/inf_risk_jefferson_tr0.6.dat", quote="\"",fill = TRUE) 

jeff1.5 <- read.table("F:/Files/Project/Thesis/fred/inf_risk_jefferson_tr1.5.dat", quote="\"",fill = TRUE) 

jeff0.6<-na.omit(jeff0.6) 

jeff1.0<-na.omit(jeff1.0) 

jeff1.5<-na.omit(jeff1.5) 
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for (i in 5 :10) { 

  jeff0.6[,i]<-as.numeric(levels(jeff0.6[,i])[jeff0.6[,i]]) 

} 

for (i in 5 :10) { 

  jeff1.0[,i]<-as.numeric(levels(jeff1.0[,i])[jeff1.0[,i]]) 

} 

 

 

colnames(jeff0.6)[1]<-"id" 

colnames(jeff0.6)[2]<-"infectionrisk" 

colnames(jeff0.6)[3]<-"age" 

colnames(jeff0.6)[4]<-"sex" 

colnames(jeff0.6)[5]<-"race" 

colnames(jeff0.6)[6]<-"relationship" 

colnames(jeff0.6)[7]<-"degree" 

colnames(jeff0.6)[8]<-"household" 

colnames(jeff0.6)[9]<-"neighborhood" 

colnames(jeff0.6)[10]<-"school" 

colnames(jeff0.6)[11]<-"classroom" 

colnames(jeff0.6)[12]<-"workplace" 

colnames(jeff0.6)[13]<-"office" 

 

colnames(jeff1.0)[1]<-"id" 

colnames(jeff1.0)[2]<-"infectionrisk" 

colnames(jeff1.0)[3]<-"age" 

colnames(jeff1.0)[4]<-"sex" 

colnames(jeff1.0)[5]<-"race" 

colnames(jeff1.0)[6]<-"relationship" 

colnames(jeff1.0)[7]<-"degree" 

colnames(jeff1.0)[8]<-"household" 

colnames(jeff1.0)[9]<-"neighborhood" 

colnames(jeff1.0)[10]<-"school" 

colnames(jeff1.0)[11]<-"classroom" 

colnames(jeff1.0)[12]<-"workplace" 

colnames(jeff1.0)[13]<-"office" 

 

colnames(jeff1.5)[1]<-"id" 

colnames(jeff1.5)[2]<-"infection risk" 

colnames(jeff1.5)[3]<-"age" 

colnames(jeff1.5)[4]<-"sex " 

colnames(jeff1.5)[5]<-"race" 

colnames(jeff1.5)[6]<-"relationship " 

colnames(jeff1.5)[7]<-"degree " 

colnames(jeff1.5)[8]<-"household" 

colnames(jeff1.5)[9]<-"neighborhood" 

colnames(jeff1.5)[10]<-"school" 

colnames(jeff1.5)[11]<-"classroom" 

colnames(jeff1.5)[12]<-"workplace" 

colnames(jeff1.5)[13]<-"office" 

 

####Descriptive Statistics 

###Student 

 

class<-jeff0.6[which(jeff0.6$classroom>0),] 

summary(class$classroom) 

sd(class$classroom) 

school<-jeff0.6[which(jeff0.6$school>0),] 

sd(school$school) 

summary(school$school) 

id<-class$id 

classnot<-school[which(!(school$id %in% id)),] 

 

###Work 

work<-jeff0.6[which(jeff0.6$workplace>0),] 

summary(work$workplace) 

office<-jeff0.6[which(jeff0.6$office>0),] 

 

summary(office$office) 

###Home 

mean(jeff0.6$household) 

sd(jeff0.6$household) 

summary(jeff0.6$neighborhood) 

sd(jeff0.6$neighborhood) 

 

####Network 

jeff0.6net <- read.table("F:/Files/Project/Thesis/fred/jefferson-tr0.6-inf-risk-net-measurements.dat", quote="\"") 

jeff1.0net <- read.table("F:/Files/Project/Thesis/fred/jefferson-tr1.0-inf-risk-net-measurements.dat", quote="\"") 

colnames(jeff0.6net)[1]<-"id" 

colnames(jeff0.6net)[2]<-"infectionrisk" 
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colnames(jeff0.6net)[3]<-"degree.2" 

colnames(jeff0.6net)[4]<-"clusteringcoefficient" 

colnames(jeff0.6net)[5]<-"betweenness" 

colnames(jeff0.6net)[6]<-"closeness" 

colnames(jeff0.6net)[7]<-"eigenvector" 

colnames(jeff0.6net)[8]<-"PageRank" 

colnames(jeff0.6net)[9]<-"coreness" 

colnames(jeff0.6net)[10]<-"knn" 

 

colnames(jeff1.0net)[1]<-"id" 

colnames(jeff1.0net)[2]<-"infectionrisk" 

colnames(jeff1.0net)[3]<-"degree.2" 

colnames(jeff1.0net)[4]<-"clusteringcoefficient" 

colnames(jeff1.0net)[5]<-"betweenness" 

colnames(jeff1.0net)[6]<-"closeness" 

colnames(jeff1.0net)[7]<-"eigenvector" 

colnames(jeff1.0net)[8]<-"PageRank" 

colnames(jeff1.0net)[9]<-"coreness" 

colnames(jeff1.0net)[10]<-"knn" 

 

jeff0.6net<-jeff0.6net[,-2] 

jeff1.0net<-jeff1.0net[,-2] 

 

summary(jeff0.6net) 

apply(jeff0.6net,2,sd) 

 

 

 

###Merge two dataset 

jeff6<-merge(jeff0.6,jeff0.6net,by="id") 

jeff6<-na.omit(jeff6) 

 

jeff10<-merge(jeff1.0,jeff1.0net,by="id") 

jeff10<-na.omit(jeff10) 

 

jeff6$class<-cut(jeff6$infectionrisk,breaks=c(0,0.08,0.4,1),label=c("low","medium","high")) 

jeff10$class<-cut(jeff10$infectionrisk,breaks=c(0,0.3,0.8,1),label=c("low","medium","high")) 

 

 

jeff6$race<-factor(jeff6$race) 

jeff6$relationship<-factor(jeff6$relationship) 

jeff10$race<-factor(jeff10$race) 

jeff10$relationship<-factor(jeff10$relationship) 

library(plyr) 

jeff6$sex<-revalue(jeff6$sex, c("F"=0, "M"=1,"is"=2)) 

jeff10$sex<-revalue(jeff10$sex, c("F"=0, "M"=1,"is"=2)) 

 

###descriptive graph 

###Find each sub population 

 

school<-jeff6[which(jeff6$school>0),] 

work<-jeff6[which(jeff6$workplace>0),] 

student<-jeff6[which(jeff6$classroom>0),] 

nooffice<-jeff6[which(jeff6$office==0),] 

nothing<-office[which(office$school==0),] 

teacher<-school[which(school$classroom==0),] 

 

schoolsize<-unique(school$school) 

schoolsize[26]<-5 

summary(schoolsize) 

 

##worksize 

worksize<-unique(work$workplace) 

table<-table(work$workplace) 

a<-as.vector(table) 

name<-as.numeric(names(table)) 

size<-NULL 

b<-0 

for(i in 1:90 ){ 

  j<-a[i]/name[i] 

  size[b:(b+j)]<-name[i] 

  b<-b+j  

} 

 

##classroom size 

classsize<-unique(student$classroom) 

table<-table(student$classroom) 

a<-as.vector(table) 

name<-as.numeric(names(table)) 

size<-NULL 
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b<-0 

for(i in 1:length(classsize) ){ 

  j<-a[i]/name[i] 

  size[b:(b+j)]<-name[i] 

  b<-b+j  

} 

##office size 

officesize<-unique(work$office) 

table<-table(work$office) 

a<-as.vector(table) 

name<-as.numeric(names(table)) 

size<-NULL 

b<-0 

for(i in 1:length(officesize) ){ 

  j<-a[i]/name[i] 

  size[b:(b+j)]<-name[i] 

  b<-b+j  

} 

mean(size) 

sd(size) 

#### 

##neighborhood size 

neisize<-unique(jeff6$neighborhood) 

table<-table(jeff6$neighborhood) 

a<-as.vector(table) 

name<-as.numeric(names(table)) 

size<-NULL 

b<-0 

for(i in 1:length(neisize) ){ 

  j<-a[i]/name[i] 

  size[b:(b+j)]<-name[i] 

  b<-b+j  

} 

mean(size) 

sd(size) 

#### 

 

##neighborhood size 

housesize<-unique(jeff6$household) 

table<-table(jeff6$household) 

a<-as.vector(table) 

name<-as.numeric(names(table)) 

size<-NULL 

b<-0 

for(i in 1:length(housesize) ){ 

  j<-a[i]/name[i] 

  size[b:(b+j)]<-name[i] 

  b<-b+j  

} 

mean(size) 

sd(size) 

#### 

teacher<- 

g6<-jeff6 

g6$β<-0.6 

g10<-jeff10 

g10$β<-1.0 

g<-rbind(g6,g10) 

m<-ggplot(g6,aes(x=infectionrisk)) 

m+geom_density(fill=(col="red"),size=0.8,alpha=0.5)+xlab("Infection Risk") +ylab("Density") +ggtitle("Kernel Density Plot for Infection Risk in Mild 

Outbreak") 

 

n<-ggplot(g10,aes(x=infectionrisk)) 

n+geom_density(fill=(col="blue"),size=0.8,alpha=0.5)+xlab("Infection Risk") +ylab("Density") +ggtitle("Kernel Density Plot for Infection Risk in Severe 

Outbreak") 

library(psych) 

pairs.panels(jeff6.tree[,c(12:17)], smooth=FALSE,density=TRUE,ellipses=FALSE,digits =2,method="spearman", pch = 20, cor=TRUE,hist.col="Grey") 

 

 

####random forest parameter optimization 

library(party) 

library(caret) 

library(randomForest) 

 

jeff6.tree<-jeff6[,-c(1,2)] 

jeff6.tree$sex<-factor(jeff6.tree$sex) 

jeff6.tree<-na.omit(jeff6.tree) 

 

jeff10.tree<-jeff10[,-c(1,2)] 

jeff10.tree$sex<-factor(jeff10.tree$sex) 
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jeff10.tree<-na.omit(jeff10.tree) 

 

rf1<-randomForest(formula=class~.,data=jeff6.tree,ntree=201,replace=T,mtry=5, importance=T,na.action = na.omit) 

importance(rf1,scale=F) 

 

rf2<-randomForest(formula=class~.,data=jeff10.tree,ntree=201,replace=T,mtry=5, importance=T,na.action = na.omit) 

importance(rf2,scale=F) 

 

rf.rep<-function(dataset,runs=10,mtr=5,ntr=201){ 

  myVarsum<-matrix(,ncol=4,nrow=19) 

  myVar<-matrix(,ncol=19,nrow=4) 

  confusions<-matrix(,ncol=3,nrow=3) 

  importancematrix<-matrix(,nrow=19,ncol=10) 

  errors<-dim(runs) 

  for(i in 1:runs){ 

    set.seed(i+450) 

    rf<-randomForest(formula=class~.,data=dataset,ntree=ntr,replace=T,mtry=mtr, importance=T,na.action = na.omit) 

    pro<-predict(rf,type="response") 

    obs<-dataset$class 

    #confusion<-table(obs,pro) 

    #confusions<-c(confusions,confusion 

    error<-mean(rf$err.rate[,1]) 

    errors[i] = error 

    set.seed(i+450) 

    #myVar<-importance(rf,scale=F)[,1:4] 

    importancematrix[,i]<-importance(rf,scale=F,type=1) 

    #myVarsum=myVarsum+myVar  

  } 

   

  #myVarsum=myVarsum/10 

  err<-mean(errors) 

  #confusions<-confusions/10 

  cat('error',errors,'\n', 'average error',err,'\n') 

  #cat(myVarsum) 

  #print(confusions) 

  return(importancematrix) 

  

} 

 

results6<-rf.rep(jeff6.tree) 

results.10<-rf.rep(jeff10.tree) 

####Plot the random forest results 

 

colnames(rf1)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

colnames(rf2)<-c("Degree","Clustering Coefficient","Betweenness","Closeness","Eigenvector centrality","Page Rank") 

rf1<-rf1[,c(1,6,3,4,5,2)] 

rf2<-rf2[,c(1,6,3,4,5,2)] 

library(ggplot2) 

rf1_means <- (colMeans(rf1, na.rm = TRUE)) 

boxplot(rf1,xlab="Network Measurements",ylim=c(0,0.5),ylab="Variable Importance",main="Boxplot of Variable Importance of Network Measurements 

in BA ",col="light grey", border="red") 

par(new=TRUE) 

rf2_means <- (colMeans(rf2, na.rm = TRUE)) 

boxplot(rf2,col="light grey", border="black",ylim=c(0,0.5),) 

legend("topright", title="Β  ",c("0.035","0.05"), cex=1,pch=c(15,15),col=c("RED","BLACK"), horiz=FALSE) 
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