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COORDINATED CONTROL OF VSC BASED MULTI-TERMINAL DC

(VSC-MTDC) POWER GRID

Shimeng Huang, PhD

University of Pittsburgh, 2015

Voltage source converter based multi-terminal DC (VSC-MTDC) system has raised great

interest in academia and power industry. The maturing VSC technology has made such

system possible for future medium and high voltage applications. Inspired by the success of

DC based power distribution on electric ships, a number of VSC-MTDC systems have been

proposed in literature for power grid innovation. However, there are still major technology

obstacles to overcome before a VSC-MTDC grid come to utilization. Compared to the

maturing technology on device level, research is still needed on the system and operation

level. High dynamics and controllability of the VSC brings both opportunity and risks.

Controllers must be carefully designed on grid level to fulfill multiple control objectives and

coordinate local converter actions.

This work provides a comprehensive solution for MTDC system from modeling to control

design. The procedure and tool sets are designed to be applied to various system setups and

control schemes, so that it can be applied to multiple MTDC applications. First, thorough

study on the VSC-MTDC system is conducted through analytical modeling and simulation.

A systematic modeling method for general VSC-MTDC system is proposed. It contains a

two-stage procedure that is generalizable to arbitrary system setup and configuration. A

small signal state space representation which includes local and network dynamics can be

obtained. A novel reconfigurable controller concept is then proposed to address multiple

control strategies and communication constraints in system level. Design of such controller

is formulated into a standard LMI optimization problem so it can be efficiently solved even
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for large scale system. Using the proposed control design method, different control schemes

can be easily explored through unified methodology and procedure. We demonstrated that

existing control schemes for MTDC power balancing can be covered by this control structure.

The proposed modeling and control design method is applied to four-terminal HVDC

systems of multiple grid applications. Different control topologies and operation modes are

evaluated and compared. Practical aspects such as LMI parameter tuning guideline and

specifications for different applications are discussed.
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1.0 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The past two decades witness the emerging of DC based power technology. With an ever

increasing number of installation, systems like high-voltage DC (HVDC) and static compen-

sator (STATCOM) have proved their merit in today’s power industry. Inspired by the fast

development in power electronics and the worldwide growing demand on upgrading existing

power systems, more innovative DC systems have been proposed. As a promising solution

for renewable power integration, Multi-terminal DC(MTDC) system is one of the technology

that is becoming a vibrate research area while also raise interests in power industry.

It is generally believed that the AC-DC voltage source converter (VSC) is to be used

to construct a MTDC grid. This type of converter is a relatively new invention that utilize

insulated gate bipolar transistor (IGBT) to have full control of gate switching. Compared

to conventional current source converter (CSC), a.k.a line-commutated converter (LCC),

VSC allows easier extension to MTDC and support various network topologies. Even in a

back-to-back DC setup, VSC has the advantage of reducing requirement on AC stiffness and

supporting change of power flow direction. In recent years, VSC has reached to maturity with

increased power rating and efficiency, making VSC-MTDC possible for multiple high-voltage

and medium-voltage applications.

The idea of medium-voltage MTDC power distribution was first proved on electric ship

design, and is now taken to distribution grid by pioneering researchers [1]. The light-weight

interface with AC and DC renewable source has made it an attractive alternative for micro-

grid backbone. Quite a number of publications on VSC-MTDC are devoted to the application

for off-shore wind power collection [2, 3, 4, 5, 6]. It becomes competitive choice against AC
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grid due to the better property of underwater DC transmission cable. In the transmission

area, some recent conceptual designs propose to use MTDC system for power sharing and

frequency support among multiple AC areas [7, 8, 9]. A meshed MTDC supergrid is also

believed to be the most possible backbone of a pan-European interconnected system that

allows the massive integration of renewable energy sources in the system [10, 11].

Despite its great potential in the future power grid, VSC-MTDC still need to overcome

major obstacles before coming to reality [10, 7]. Besides fundamental technical barrier like

DC circuit protection, there are still many unknowns from the control and operation per-

spective:

• Compared to existing power system structures, MTDC’s are mostly in conceptual and

planning stage, we are in general lack of data, models and simulation tools to understand

the system dynamics. There is also little knowledge on system’s transient and steady-

state response to disturbance and faults.

• There is no determined control and communication architecture. It is a large design space

to explore for engineering the system to desired function within realistic constraints.

• There is no standard for DC grid. Control and operation objectives are not as well

defined as in AC grid.

• We are still lack of knowledge on the interaction between a MTDC and existing AC grid,

and how it will impact the grid stability.

Generally speaking, high dynamics and controllability on the VSC terminals brings both op-

portunity to improve dynamics of existing grid as well as risk of introducing undesired control

conflicts, which may end up disturbing the overall system stability. Therefore, systematic

procedure need to be developed to determine and weigh control objectives and design control

and communication accordingly. Stability need to be considered carefully on the grid level.

And control and communication structure must be able to coordinate the control action of

all converters.
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1.2 RESEARCH OBJECTIVE

The objective of this study is to modeling and study interactions among converters in a DC

grid, develop a control design method that can coordinate local controllers to stabilize the

grid and achieve optimal operation in system level.

The subject under study is a VSC-MTDC network, which can be connected with varieties

of AC components, including local wind generation, loads(constant power loads and motors),

and AC transmission lines connecting with other AC areas. Such system (Figure 1(a)) can be

applied as backbone of a microgrid or a DC segmentation out of future transmission network.

The basic structure of the research subject is a meshed DC network shown in Figure 3(a). It

has VSC’s on edge nodes, serving the connection between DC and AC systems. And within

the DC system, connections without converter are possible. This structure cannot support

arbitrary DC voltage level transforming. Therefore DC-DC converters will be required when

transmission is merging to distribution, or when the system contains DC storage or DC

renewable sources (e.g. solar power). This leads to a more complex network with a hybrid

of DC-DC and DC-AC converters (Figure 1(c)). Due to the lack of mature design of grid

level DC-DC converter, existing research on multi-terminal DC system mainly focused on

the basic DC network in Figure 3(a).

The essence of the problem is that there are multiple interconnected but physically

distributed devices with fast dynamics and high controllability, each serves its own local

performance objectives. Control must be designed in a way to coordinate their actions, so

the local objectives can be achieved without threatening stability of the networked system.

The feature of this work is that we consider the physically interconnected system as a whole

instead of decomposing it into local subsystems. Stability issues imposed by interconnections

will be studied. We then design a hierarchical control structure to both fit the distributed

nature of the MTDC grid and coordinate the subsystems to stabilize the overall networked

system. The main goal of this thesis is to:

First Establish analytical model for the full VSC-MTDC system. Then conduct thorough

study on its dynamics.
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Second Design a reconfigurable control architecture with corresponding optimization al-

gorithm. So we can explore different control schemes through a unified methodology,

and find the proper controller for the VSC-MTDC system to coordinate the converters’

action.

1.3 CONTRIBUTIONS OF THE THESIS

This study proposes a systematic and innovative procedure to model VSC-MTDC system and

formulating control problems. The principles, procedure and controller structure developed

from this study can be generalized to multiple MTDC applications. The main contributions

of the thesis are:

• A systematic modeling method for general VSC-MTDC system. The procedure contains

two stages that decouples modeling on local and network level. Moreover, all directional

quantities are defined without loss of generality. So it can be applied to arbitrary system

configurations with different network topology and various AC-side components. Addi-

tional routines such as model assembling, adjustment and operating point solution are

proposed to deal with various practical modeling issues.

• Identify local and global control objectives of MTDC systems, understand their couplings

from a thorough study of existing local controls and applications of VSC.

• A novel reconfigurable controller concept based on state feedback control. It addresses

multiple control topologies and communication constraints by setting feedback gain ma-

trix into a set of nonzero patterns. Several existing control schemes can be covered under

this unified formulation.

• Formulating the control problem into a standard LMI optimization so it can be efficiently

solved efficiently by several third party tools. Practical aspects such as specification for

different MTDC applications and convergence improvement are discussed.

• A detailed guideline of LMI parameters tuning for MTDC system control design. By

tracking the movement of eigenvalues, different sets of parameters are identified to address
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two main pair of trade-off: trade-off between control performance and cost; and trade-off

between local and global control objectives.

In summary, this thesis provides a comprehensive solution for MTDC system from mod-

eling to control design. The whole procedure and tool sets are designed to be applied to

various system setups and control schemes, so that it can be applied to general MTDC

studies.

1.4 OUTLINE OF THE THESIS

The study is conducted by analytical modeling, theoretical analysis and time domain simu-

lations. The outline of the thesis is:

Chapter 2 A short literature review on converter technologies, VSC-MTDC control meth-

ods and general control theories on interconnected systems.

Chapter 3 Propose a systematic and unified modeling method for general VSC-MTDC

systems. It is a two-stage procedure that provides proper isolation between modeling at

subsystem level and network level, so that it can be applied to arbitrary system configu-

ration with different network topologies and various AC-side components. At subsystem

level, existing VSC control schemes and applications are thoroughly reviewed, modeled

and simulated. At system level, small signal state-space representation is derived.

Chapter 4 Several state space tools are introduced for MTDC analysis and control design.

A reconfigurable state-feedback controller for MTDC system is proposed to address differ-

ent control topologies and communication constraints. And a LMI optimization problem

is formulated to solve the controller.

Chapter 5 The proposed modeling and control design method is applied on a four-terminal

HVDC system. Four different control topologies is tested by configuring the gain matrix

6



K into different nonzero patterns in LMI algorithm. Under each control schemes, we

demonstrate the tuning of LMI coefficients and study the resulting close-loop eigenval-

ues and time domain performance.

Chapter 6 Another test case of off-shore wind integration is studied. The slow local dy-

namics of wind farm connected VSC is modeled using our two-stage modeling procedure.

The proposed control design method is then applied to address 3 possible operation

modes of wind integration system.

Chapter 7 Summarizes the thesis and provides suggestions for future work.
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2.0 LITERATURE REVIEW

2.1 CONTROL OF VSC-MTDC SYSTEM

Modeling and control of a single VSC has been extensively studied in the past two decades [12,

13, 14]. The most outstanding achievement is enabling the independent control of real and

reactive power exchange, which has become the key feature of the converter. VSC-based

technology on STATCOM and back-to-back power transmission has been proven to be of

great merit. It is generally believed that DC technology can help improve the controllability

of the power system. For instance, Clark et al. [15] propose to segment large AC grid with

back-to-back HVDC interconnection, and use its controllability on power flows to prevent

propagation of disturbance. However, when extended to multi-terminal system, the network

topology somewhat downgrade the controllability on power flow. Van Hertem et al. [10]

pointed out that though each terminal can independently control the power exchange between

its AC and DC sides, flow congestion and DC voltage instability are still possible to occur.

In fact, accurate power flow control is considered a major challenge of some MTDC system.

In a DC power network, change of voltage is in fact capacity charging and discharging

due to the change of power flow. In a back-to-back HVDC system, balancing of input and

output power is done by setting one converter to DC voltage control mode [14]. It has long

been suggested to extend this strategy to MTDC system by having one slack converter in

DC voltage control mode so that the others can freely decide its power injection [6, 16,

8]. However, this design requires the slack converter to swallow all input/output power

difference. Besides, there is no guarantee that the DC voltage on the rest converters would

stay within a proper range for the VSC to operate [14].
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Some other works [17, 18] propose a distributed control scheme for the DC voltage, which

let all converters share the task of power balancing. These works point out the similarity

between AC frequency control and DC voltage control, and propose a simple droop control

to achieve global power balancing by local observation and control. The benefit of droop

control is to avoid conflicts between set values on distributed converters. However, unlike AC

system, there does not exist a nominal voltage in a DC system. Chaudhuri et al. [19] have

shown that local droop control may perform poorly because of this reason. To tackle this

problem, Berggren et al. and Chaudhuri et al. [20, 19] propose to use global observation,

which requires communication between converters.

Despite these efforts to improve droop control performance, it is after all a P controller.

In AC system, secondary control (i.e. automatic generation control (AGC)) is required to

complement its static error. The same control scheme is briefly suggested for DC system

in [10]. However, the essential assumption of AGC is that the nominal frequency is the same

in the entire interconnected system [21]. It can be implied that it is unlikely to directly

transfer the primary and secondary control scheme onto DC system, especially for large

scale DC grid. In a word, we believe there are great opportunities to explore innovative

control design for the future MTDC grid. And it must be carefully designed to coordinate

the control actions on all converters.

2.2 CONTROLLER STRUCTURE OF INTERCONNECTED SYSTEM

An MVDC system generally is a large, interconnected network. Mathematical description of

this network involves differential and algebraic equations with a high-dimensional variable

space. The network also requires the coordination of a large number of local actions. Either

an entirely decentralized or centralized control structure cannot handle the high dimension-

ality in MVDC control satisfactorily. Existing methods for on-line control are focused at the

local level and are mostly decentralized, non-cooperative designs (Figure 2(a)). These de-

signs can reduce dimensionality in control, but local controllers lack global observation of the

subsystems in the MVDC grid and thus cannot achieve high performance network-wide [22].

9



(a) (b)

Figure 2: Abstract network representations of (a) a decentralized, non-cooperative control

architecture and (b) an entirely centralized control architecture

In contrast, centralized control (Figure 2(b)) can achieve globally optimal performance, as-

suming that the central controller has sufficient power of computation and there are no delays

or losses of data during communication. However, the reality is that the control system must

face both computational and communicational constraints. In particular, when communi-

cation constraints such as time delays are present, a centralized architecture of control is

potentially inferior to a tmore decentralized one [23].

Compared with entirely decentralized or centralized control, hierarchical control with

cooperative components has been a more popular choice of control architecture [24]. A large

body of existing literature has been contributed to the decentralized, cooperative control for

large-scale systems (e.g., see survey papers and books [25, 26, 27, 28]). The optimal design

of decentralized and cooperative control has been widely studied since at least the 1970s

(e.g. [29, 30, 31]). In recent years, a trend has been to converge control, communication, and

computation in the design of decentralized structure for networked control systems [32, 33].

In most of the existing research works, the topology of the control and communication

10



structure is known prior to synthesis, and optimal design for decentralized or distributed

control is performed subject to this particular structure.
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3.0 MODEL OF MTDC SYSTEM

In this chapter, we introduce a systematic procedure to obtain small signal representation of

MTDC systems. Figure 3(a) illustrates a typical MTDC system, which consists of multiple

converters interconnected through DC cables. We assumed that all converters are VSC’s,

and they each could connect to a different type of AC system, such as AC power grid, wind

farm, and load, etc. The entire MTDC network can be divided into subsystems that are

coupled through DC grid. A subsystem, as shown in Figure 3(b), is defined to represents

the local dynamic of a converter together with its AC-side component. To obtain analytical

model of the MTDC network, we follow a two-stage procedure: converter modeling and DC

grid modeling. It provides proper isolation between modeling at subsystem level and network

level, so that the modeling method is generalizable to arbitrary system configuration, such

as different network topologies and various AC-side components for individual converters.

Besides, the resulting model can be easily reconfigured when the system is changed, making

it convenient to explore different designs of a MTDC.

In Section 3.1, state space models of various VSC subsystems is derived and simulated. In

Section 3.2, DC network model is introduced, and subsystem models are assembled together

into the overall system model. Finally in Section 3.3, a numerical routine is presented to

solve the operating point of the small signal model.

3.1 MODEL OF VSC SUBSYSTEM

In the first stage of our modeling procedure, state space representations of each subsystem

are derived. Note that subsystem-level control is also modeled at this stage. The state space

12
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model is a set of first-order differential equations describing the subsystem’s small signal

dynamic behavior, which can be expressed in a matrix form of

ẋk = Akkxk + Bkuk + Bckuck, (3.1)

where k is the index of the kth terminal in MTDC. In (3.1), xk is local state variables of the

subsystem, which are obtained from both AC-side and DC-side equations of terminal k. The

inputs are divided into two groups: uk represents local inputs that can be determined within

a subsystem; uck are inputs that are influenced by other terminals, such as DC current flows

into or out of a converter. Variables in uck are temporarily modeled as input at this stage,

their dynamic behavior will be studied in Section 3.2.

Mathematical modeling for VSC connecting to varieties of AC systems can be found in

the literature. These include stiff or weak AC grid [34, 35, 16], wind generation [36], and

constant power load [37]. Like these works, we use average model [38, 13] to represent the

converters in this paper. Switching of power electronics inside VSC is not modeled, because

it is much faster than AC or DC-side dynamics under study. Converter’s average model

provides sufficient approximation for the purpose of system stability analysis and control

design while greatly reduced model’s complexity. In this section, VSC subsystem models for

several major converter applications is introduced.

3.1.1 VSC connecting to AC power grid

We follow a modeling procedure similar to [13] to obtain (3.1) for VSC connecting to AC

power grid. Equivalent circuit of the subsystem is shown in Figure 4. On the AC-side, VSC

is connected to the grid through a phase reactor and a transformer. Together they can be

represented by a combined impedance Z = R + jωL. On its AC-side, VSC can be viewed

as a three-phase AC voltage source Vt. So the basic equation of this circuit is :

Vt − Vs = Ri+ L
di

dt
,

in which Vs is the AC system voltage at the point of common coupling(PCC).
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The equation is then transformed to a synchronized rotating dq reference frame:

did
dt

= −R
L
id + ωiq +

1

L
(Vtd − Vsd)

diq
dt

= −ωid −
R

L
iq +

1

L
(Vtq − Vsq)

(3.2)

Note that the dq transformation projects three-phase quantities onto two orthogonal axes

d and q, which are rotating synchronically with PCC voltage Vs. The synchronization is

implemented by a phase-lock loop(PLL) that align Vs with one of the axes. In this paper, it

is arbitrarily assumed to be the d axis. As long as PLL remains stable, equation:

Vsd = |Vs| and Vsq = 0 (3.3)

always hold. The purpose of dq transformation is to reduce control complexity: First, it

brings the three-phase quantities down to two-dimensional, leading to simpler control struc-

ture; Second, the rotating reference frame transform sinusoidal signals to DC like quantities,

which greatly reduces the requirement on controller bandwidth. As a result, control on dq

reference frame is widely deployed in VSCs.
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Real and reactive power output to AC grid can be expressed in dq-frame quantities by

the following derivation:

P + jQ = Vs · i∗

= (Vsd + jVsq)(id − jiq)

= (Vsdid + Vsqiq) + j(Vsqid − Vsdiq)

(3.4)

Substitute (3.3), we got

P = Vsdid

Q = −Vsdiq
(3.5)

AC and DC-side dynamics of VSC is related through the conservation of real power.

As shown in Figure 4, when ignoring the loss on switching and phase reactor, real power

entering the converter’s DC-side should equal to that being injected to AC grid, i.e.

Pdc = Pac = P.

While P is expressed in (3.5) on the AC-side, it should subject to the following relation on

DC-side: real power taken from DC grid at terminal k is the sum of the power converted to

AC and the instant charging on large capacitor Ck. This derives:

dUk
dt

= − 1

Ck

P

Uk
+

1

Ck
Ik.

The nonlinear DC-side equation can be linearized around operating point P0 and Uk0 as

dUk
dt

= − 1

CkUk0
P +

P0

CkU2
k0

Uk +
1

Ck
Ik (3.6)

Combining (3.2),(3.5),and (3.6), we have the open-loop state space model of a converter

connecting to a strong AC grid in form of (3.1):
i̇dk

i̇qk

U̇k

 =


−Rk

Lk
ωk 0

−ωk −Rk

Lk
0

− Vsdk
CkUk0

0 Pk0

CkU
2
k0



idk

iqk

Uk

 +


1
Lk

0

0 1
Lk

0 0


Vtdk − Vsdk
Vtqk − Vsqk

 +


0

0

1
Ck

 Ik (3.7)

Since the object of this research is MTDC grid-level control, the converter-level controllers

are considered as part of the modeling work. Instead of designing innovative control scheme
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Figure 5: Control diagram of the inner-loop current controller

for converters, we just model the behavior of existing controllers that are commonly used

in VSCs. A common control design for VSC contains two cascaded control loops: a current

control inner-loop and an application-specific outer-loop. Feedforward decoupling technique

and PI controller are used to achieve independent control of real and reactive power that is

being exchanged with the AC grid. The controllers are introduced and close-loop model of

the subsystem is derived in the following sections:

3.1.1.1 Current control inner-loop We first assume the AC system is stiff, so voltage

Vsd and Vsq remains constant. The current i that flow through phase reactor can then be

controlled through converter’s AC voltage Vtd and Vtq, which is the control input of VSC.

Figure 5 shows the block diagram of inner controller. It contains a cross feedforward

compensate path to cancel out the coupling term between d axis and q axis in (3.7). The

decoupled open-loop system has first order dynamics between i and Vt on both axes, each

can be controlled by a PI controller. On d axis, to have id tracking a reference value i∗d, inner

controller takes the control error and output a set value V ∗td. The same structure is also used

on q axis. The two control outputs can then be transformed back to a three-phase quantity.

Note that the set value of Vt still need to be transformed into PWM signal and executed by

converter. But the delay of this procedure is negligible compared to the dynamics of (3.7).
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To model the close-loop system with inner PI controller in state space, augment the

open-loop model (3.7) with states z introduced by the I controllers, i.e. the integrated errors

on d and q branch: ẋ
ż

 =

Ax + Bu

y − r

 =

A 0

C 0

x
z

 +

B 0

0 I

u
r

 (3.8)

in which r =
[
i∗d i∗q

]>
is the reference in Figure 5 and

x =
[
id iq U

]>
, u =

[
Vtd Vtq

]>

A =


−Rk

Lk
0 0

0 −Rk

Lk
0

− Vsdk
CkUk0

0 Pk0

CkU
2
k0

 , B =


1
Lk

0

0 1
Lk

0 0

 , C =
[
I 0

]

are from (3.7). Since inner-loop control is purely local, all terminal indexes are removed

from states for simplification, and the coupling term with other terminals is also omitted.

Moreover, compared to (3.7), term ωk is canceled in A by the cross feedforward paths shown

in Figure 5, and AC system voltage Vs is also cancelled in u.

Next introduce control parameters kP and kI, so that the PI controllers in Figure 5 are

written in form kP +
kI
s

. In the close-loop system, we can then express u in (3.8) as a linear

combination of states and references:

u = −

kP 0 0

0 kP 0

x−

kI 0

0 kI

 z +

kP 0

0 kP

 r

= −
[
kPI 0

]
x− kIIz + kPIr

(3.9)

Substitute (3.9) into the augmented system (3.8), we can derive the state space expression

of close-loop system

ẋc = Acxc + Bcr, (3.10)

in which xc =
[
x z

]>
is the augmented states, and
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Ac =

A 0

C 0

−
B

0

[
kPI 0 kII

]
, Bc =

kPB
−I


At this point, we get the model of VSC with inner-loop control. While other parameters

are from system specification, control gains kP and kI need to be picked. And they can

be chosen following a well established method [13, 14]. It is introduced next as part of

subsystem modeling. From (3.10), we can derive the close-loop transfer function between id

and iq and their references. Since close-loop dynamics on d and q axes are decoupled and

identical, we arbitrarily use id in the following derivation:

Id(s)

I∗d(s)
=

G(s)

1 +G(s)

in which the loop gain is

G(s) = (kp +
ki
s

)
1

Ls+R
= (

kp
Ls

)
s+ ki/kp
s+R/L

.

Note in the denominator that the VSC has a pole determined by phase reactor parameters:

s = −R
L
.

Common values of R and L make this pole very close to zero. So a compensator zero is

usually used to cancel it out, and thus we have

ki
kp

=
R

L
(3.11)

After the zero pole cancellation, the close-loop transfer function of id becomes

Id(s)

I∗d(s)
=

1

(L/kp)s+ 1
,

a first order system with time constant

τi = L/kp. (3.12)
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From (3.11) and (3.12), we can derive the rule by which proportional and integral gains

of inner control can be calculated from phase reactor parameters and expected close-loop

time constant:

kP =
L

τi
, kI =

R

τi
. (3.13)

Time constant τi is usually selected very small for fast current tracking response. It

can be arbitrarily small with the only constraint that the current controller dynamics must

be sufficiently slower than switching frequency of power electronics. It is suggested that

bandwidth of the close-loop system is smaller than 1/10 of the VSC’s switching frequency

in rad/s. Typically, τi ranges from 0.5ms to 5ms for a VSC [14].

Figure 6 shows the step response of an example VSC with R=0.0015p.u., L=0.15p.u. at

base value 100kV, 200MVA and 60Hz. A 5ms time constant is used for inner controller. It

shows that, under inner-loop control, id and iq are fully decoupled, and each can track its

reference at expected speed.

Now we have fully derived the average model of VSC with inner-loop current control

which can be used for subsystem simulation. However, it may not be controllable due to

the zero pole cancellation in(3.11). To apply state space design methods to the system, an

equivalent minimal realization is also derived to guarantee controllability and observability.

Written in form of (3.1), we have:


i̇dk

i̇qk

U̇k

 =


− 1
τik

0 0

0 − 1
τik

0

− Vsdk
CkUk0

0 Pk0

CkU
2
k0



idk

iqk

Uk

 +


1
τik

0

0 1
τik

0 0


i∗dk
i∗qk

 +


0

0

1
Ck

 Ik. (3.14)

3.1.1.2 Real and reactive power control outer-loop Reference value of the inner

controller id and iq is set by the outer controller. The purpose of this outer-loop is to control

real and reactive power P and Q being exchanged between VSC and its AC side. Based

on (3.5), as long as Vsd is relatively well regulated, real power P is determined by id while

reactive power Q is determined by iq. As a result, P and Q can be independently controlled

through the decoupled d and q axes.
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Figure 6: Step response of an example VSC’s inner-loop control

Figure 7 shows the diagram of VSC’s outer controller. Either real or reactive power

control contains two parts: 1) a feedforward branch that directly calculates reference current

using (3.5); 2)an optional feedback control loop that eliminates control error in case mea-

surement of Vsd is not accurate. The two controllers work in parallel, or only the open-loop

control is used for simplicity. In general, dynamics of real and reactive power control is

dominated by the faster feedforward control.

i∗d =
P ∗

Vsd
+ (kpp +

kii
s

)(P ∗ − P )

i∗q = −Q
∗

Vsd
− (kpp +

kii
s

)(Q∗ −Q)

(3.15)

(3.15) is the mathematical description of Figure 7. Due to the immediate reaction of

feedforward control, PI control parameters kpp and kii are usually picked small and can be

easily tuned as long as no major overshoot is introduced. The two integrators in outer control
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Figure 8: Step response of an example VSC’s outer-loop control
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also introduce two extra states. The state space expression of the close-loop system can be

obtained using the same augmented equation in (3.10). For outer control, plant matrices A

and B are that of the close-loop inner system, while

C =

Vsd Vsq 0

Vsq −Vsd 0


is the observation matrix for real and reactive power. For close-loop system of outer control,

the new input u =
[
P ∗ Q∗

]>
is the power references. And the feedforward branches can

be easily added to input coefficient matrix Bc of the close-loop model.

Figure 8 shows the outer-loop response to step change of real and reactive power reference.

It is the same example VSC in section 3.1.1.1, with R=0.0015p.u., L=0.15p.u. And a 5ms

time constant is selected for the inner controller. It shows that P and Q can be controlled

independently by the outer controller. And they each track their references at the same

speed of inner controller. This is because of the feedforward control can instantly calculate

the input to inner controller.

It is noted that this fast open-loop effect cannot be represented by eigenvalues of close-

loop system matrix. To capture this first order dynamics in further system analysis and

control design, we also derive an equivalent minimal realization:
Ṗk

Q̇k

U̇k

 =


− 1
τik

0 0

0 − 1
τik

0

− Vsdk
CkUk0

0 Pk0

CkU
2
k0



Pk

Qk

Uk

 +


1
τik

0

0 1
τik

0 0


P ∗k
Q∗k

 +


0

0

1
Ck

 Ik. (3.16)

3.1.1.3 AC voltage regulation Reactive power tracking is usually not a direct control

goal for a VSC subsystem. When connecting to stiff AC systems, reference Q∗ is usually

constant zero. However, when it is connected to a weak AC network, of which the AC voltage

level is not constant at PCC, the reactive power control on q axis can be used to regulate

AC voltage Vs.

Figure 9 shows the circuit we use to simulate a weak AC connection. Inductor Lg is

added between PCC and the ideal voltage source so Vs at PCC becomes a variable. And a

simple load is added in parallel to VSC to create disturbance on Vs.
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Figure 9: Equivalent circuit of a VSC connected to a weak AC system

The strength, or weakness, of an AC system is measured by short circuit ratios(SCR).

It is defined by SCR = S/Pd, in which S is PCC’s three phase short circuit level in MVA

at nominal AC system voltage Vs0, and Pd is the VSC’s rated DC power in MW. An AC

system is considered stiff when SCR > 3.0, weak when 2.0 < SCR < 3.0, and very weak

when SCR < 2.0. From its definition, we can derive that the test circuit’s SCR is determined

by per unit value of Lg (base value Vs0, Pd and ω0, where ω0 is the nominal value of angular

velocity at PCC):

SCR =
V 2
s0

ω0Lg · Pd

=
1

Lg(p.u.)
.

For a weak AC connection, when the PLL remains stable, an extra I controller on the

q axis control branch(Figure 10) can regulate AC voltage Vs [39, 14]. With the assumption

that PLL is stable, (3.3) is still valid. So Vs regulation is equivalent to Vsd regulation. The

compensator shown in Figure 10 is to be in cascade with the reactive power control outer

loop. The output of the I controller sets the reference value Q∗ for the outer controller.

In this design, the outer and inner controller structure remains the same as for stiff AC

system. Even though the inner loop control (Figure 5) treats ω and Vsd as constant for

decoupling an compensation, these two variables can also be measured in real-time for this

purpose. It is also mentioned in [14] that nominal value ω0 can be used instead to still

get good decoupling result. However, this requires good regulation of Vs. The close-loop

dynamics of Vsd need to be significantly slower than the time constant of inner controller.
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Figure 10: Diagram of AC voltage regulation compensator

The AC voltage regulator in Figure 10 is verified in our test circuit. The same example

VSC is used, parameters: R=0.0015p.u.,L=0.15p.u. at base value 100kV, 200MVA and

60Hz. Real and reactive power controller is tuned to have 5ms time constant. For the

weak AC circuit, set Lg=0.5p.u. so SCR is 2.0. And the integration gain for Vsd control is

tuned by Bode plot of the system, shown in Figure 11(a). Considering the characteristics of

disturbance on load is often unknown in practice, large phase margin of about 90◦ is chosen

for good robustness. Figure 11(b) plots the simulation result. A set of events is tested in

this run:

• At 0.1s a 0.1p.u. step change is placed on V ∗sd to show the step response of voltage

regulation. It shows slower response than inner controller to reduce its influence on

current control.

• At 0.7s a 0.1p.u. step change happens on P ∗ to show that the real and reactive power

control is still decoupled around the operating point.

• At 1s a gradual and then at 1.8s a step load current disturbance are introduced to show

AC voltage can be regulated under small disturbance.

It is noted that there are limitations and conditions for this AC voltage control to work

well. First it uses PLL, so dynamics of Vs cannot exceed the bandwidth of PLL or it becomes

unstable. Second its stability is proved around an operating point of Vs and P . While Vs

is supposed to be regulated to a certain value, this condition limits the capability of real

power tracking to relatively small bias from the real power operating point. Even though the

real and reactive power control is still independent in the inner controller’s perspective, fast
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Figure 11: AC voltage regulation of example VSC connecting to a weak AC system. (a)

Bode plot of the system with AC voltage compensator (b) Simulation result
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and large real power change at PCC imposes disturbance on Vs that can cause instability

on PLL. As a result, this voltage regulator is most commonly used on STATCOM, a VSC

for the sole purpose of AC voltage regulation instead of real power exchange. Stand alone

AC voltage regulation equipment like STATCOM is often added to a weak AC connection

in addition to the converter to improve stiffness on the AC side. We find this AC voltage

control through q axis works well in simulation with proper ramping or saturation of ∆P ∗

for SCR > 2.0. For very weak AC system, real power transmission level is further limited,

VSC connecting to system with SRC = 1 can only transmit 0.4p.u. power using traditional

controller [40].

When connecting to a very weak AC system whose SCR < 2.0, innovative control of

VSC is still an active research topic. The main difficulty is to understand and control PLL’s

transient under large disturbance of Vs. Durrant et al. [41] derived an average VSC model

which includes linearized PLL dynamics. However, due to the high order and nonlinear

nature of PLL, such model stands only within very tight operating boundary. In our simu-

lation, we also find it very hard to get good approximation of very weak AC system using

just one linear model. Farag et al. [42] uses a similar linearization method but obtained

multiple linear models around 52 operating points. An LMI method is then used to design a

robust controller for these operating points. Such method requires intensive modeling effort

on a single subsystem, thus can be very challenging to generalize for multi-terminal system.

Besides the effort on detailed PLL modeling and control, another recent trend is to find

alternatives to PLL [35, 43, 40, 44]. In [40] a model predictive control approach is intro-

duced by Beccuti et al. to achieve real power control, AC voltage regulation and dq frame

synchronization through one MIMO controller. While in [35, 43], Zhang et al. proposed to

directly control the phase and magnitude of Vs so that dq frame alignment is not needed.

Under this control, the VSC shows similar dynamics as a synchronous machine and enables

0.86p.u. power transmission from a system with SCR = 1.2 in simulation. This controller

is verified in [44] through simulation to integrate offshore wind generation by a VSC-HVDC

link to a weak AC.

Since these new control concepts are still evolving and to be verified in industrial im-

plementation. Only the traditional control method in Figure 10 is modeled in this work.
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AC voltage regulation is considered a local control goal and is not coupled to real power

control because detailed transient of PLL is not modeled. Instead, limitation on real power

operating point and magnitude of ∆P ∗ is considered as extra control requirements on the

subsystem containing a weak AC. Moreover, ramping of P ∗, if wanted, can be equivalently

modeled by a larger time constant on the real power control.

3.1.1.4 DC voltage regulation Voltage regulation on DC side plays an important role

in a VSC based DC system. One can see on the DC side of Figure 4 that voltage Uk indicates

the charging of large capacitor Ck. When Uk increase, Ck is charging, implying that the

DC grid is accumulating power. On the other hand, when Uk decrease, Ck is discharging,

implying that the DC grid is loosing power. In other word, DC voltage is the indicator of

power balance in a DC network, comparable to frequency in an AC grid. And thus the DC

voltage regulation is thus as critical as primary control in AC system.

Since only real power is exchanged between AC and DC side of a VSC, DC voltage can be

controlled through P control branch on d axis. This means that the two important control

goals: real power tracking and DC voltage regulation, are controlled through the same input

V ∗td of VSC. So some mechanism is needed to select or weigh between the two.

In a two terminal DC system, such as traditional HVDC or MVDC connection, power

control and voltage regulation can be simply divided onto rectifier and inverter. Since the

system is to transmit desired amount of power stably through a single DC link, it is common

to have one terminal working in power tracking mode and the other in DC voltage regulation

mode. In DC voltage regulation mode, outer controller on d axis is replaced by a PI feedback

control of Uk, which is shown in Figure 12(a). This controller directly set reference for inner

id controller. And a negative sign is added to control error because our defined positive

direction of id and P is discharging the DC side.

In an MTDC system, control strategies for power balancing is still an active research

topic:

• One earlier control scheme is the slack converter method, which is directly generalized

from two terminal technology. Using this method, we have N − 1 converters out of a

N -terminal system working fully in real power tracking mode, and set the rest one VSC
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Figure 12: Two control schemes of DC voltage regulation: (a) DC voltage PI control in d

axis outer loop (b) DC voltage droop control

to be the “slack” that works solely on DC voltage regulation. The control of the slack

converter is the same as that in traditional HVDC system (Figure 12(a)). This is the

basic power balancing scheme commonly adopted in MTDC researches [6, 45, 16, 46]. It

is very simple but with obvious disadvantages. First the voltage regulation VSC takes all

power disturbance in the system, which can impose great stress to its AC side frequency

and voltage stability. Second, no power transmission can be scheduled for this voltage

regulation VSC. Last but not least, there is no redundancy for DC voltage regulation in

the system in case of fault or failure on the slack converter.

• To share the task of power balancing among multiple terminals, a voltage droop control

method has been proposed in several papers[18, 17]. This control structure is adopted

from primary control of AC frequency regulation. Figure 12(b) shows one implementation

of such droop controller. The droop gain kdroop is basically a P controller which take
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the DC voltage error and generate a small adjustment ∆P on scheduled power reference

Pschedule. The two are combined as real power reference P ∗ for the outer controller. The

reason for using only a P controller is to allow some control error. Due to their tightly

coupled DC sides, such control error can avoid conflict among terminals. This allows the

controller in Figure 12(b) to be deployed on multiple VSCs in an MTDC system.

DC side dynamics is determined by the overall MTDC system, so we consider DC voltage

regulation as a global control goal. The control design and performance will be studied after

deriving the full model of MTDC.

3.2 MODEL OF DC CABLE NETWORK

In the second stage, models of subsystems are assembled into one system level model. At this

stage, we first use circuits laws to derive state space model of the DC cable network. This

introduces a new set of state variables xc, which represents the couplings among subsystems.

An example of this type of state variables is the current on DC cables. Based on the coupling

model, uck from stage one can now be expressed as a set of functions of xc:

uck = F (xc).

Then we can connect the subsystems by substituting these equations to (3.1).

In this paper, π-circuit is used to model DC connection between two nodes in the network.

The capacitors in the π-circuits combines both cable capacitor and VSC’s DC side capacitor,

while value of the later is dominant. Equivalent circuit of the DC cable network is shown on

the DC side of Figure 4. without loss of generality, we define all current flows from nodes

with lower index to nodes with higher index. If the actual current is in the opposite direction,

its value will be negative in our model. For the DC circuit network, current through inductor

and voltage across capacitor are the natural choice of state variables. As dynamics of Uk is

already modeled in subsystem level, we only introduce new states:

xc =
[
· · · ijk · · ·

]>
.
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Each DC connection will introduce one state variable. So the length of vector xc equals to

the total number of DC branches, nbranch, in the network. We then derive the dynamics of

all Ijk, and use them to re-express the coupling input Ik in the subsystem model:

dIjk
dt

= −Rjk

Ljk
Ijk +

1

Ljk
(Uj − Uk)

Ik =
k−1∑
j=1

Ijk −
nbranch∑
j=k+1

Ikj

(3.17)

For a general network topology, it is possible to have intermediate nodes that are in the joint

of multiple DC cables but not in connect to a VSC. However such topology is rarely used

in existing MTDC design and studies. So such intermediate nodes are not considered in our

model for simplification of expression.

State space representation of a N -terminal DC system can be assembled by stacking up

local states xk from index 1 to N , then arranging coupling states xc at the end of the state

vector. The resulting linear model would take the form:



ẋ1

ẋ2

...

ẋN

ẋc


=



A11 0 · · · 0 A1c

0 A22 · · · 0 A2c

...
...

. . .
...

...

0 0 · · · ANN ANc

Ac1 Ac2 · · · AcN Acc





x1

x2

...

xN

xc



+



B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BN

0 0 · · · 0




u1

u2

...

uN

 .

(3.18)

In (3.18), system matrix is mostly block diagonal with sparse coupling elements on the side.

Subsystem matrix Aii can be of different dimension depending on type of AC system and

level of modeling detail of terminal i. Input matrix is also a block matrix because all control

inputs are local and cannot directly effect states of other terminals. The all zero rows at the
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bottom have the same number of rows as xc’s dimension. This indicates that no input can

directly affect coupling states in DC network.

The two-stage model generation method is implemented in a MATLAB script and can be

applied to arbitrary MTDC setup. Moreover, the resulting state space model can be easily

adjusted or reconfigured. When there is a change in subsystem i, we can simply change Aii

and Bi. Even dimension change in Aii can be easily handled with adding or removing all

zero rows in Aic and columns in Aci. Similarly when change is wanted on DC network, either

parameter or topology, it can be implemented by adjusting a few coupling elements on the

side of system matrix without disturbing the subsystem models. This enables researchers to

conveniently explorer different system setups and make adjustment on their MTDC design.

3.3 OPERATING POINT

For an N -terminal MTDC system, (3.18) is a linear small signal model around operating

point [
P10 · · · PN0 U10 · · · UN0

]>
,

in which Pk0 and Uk0 are the steady state power and DC voltage at terminal k, k = 1 · · ·N .

While Pk0’s are usually specified by grid operator during scheduling, most Uk0’s are to be

determined. This is a special property of DC power grid comparing to an AC grid. While

there is only one nominal frequency in an AC network, power flow in DC grid is driven by

voltage difference between two nodes. Thus the steady state DC voltage is different from one

terminal to another. Interestingly, voltage in DC grid is not only indicator of power balance

but also key factor for power flow control. In other word, it plays both roles of frequency

and phase in an AC system. In this section, we introduce the method being used to solve

the operating point.

In steady state, Pk0’s and Uk0’s should obey the following circuit law:

IDC = −YUDC

Pk = UkIk

(3.19)
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in which Y is the admittance matrix of the DC network, IDC =
[
· · · Ik · · ·

]>
, and UDC =[

· · · Uk · · ·
]>

. Remind that definition of Ik, Uk and Pk can all be find in Figure 4.

Matrix Y can be constructed based on (3.17). In steady state, we can derive

Ik =
k−1∑
j=1

Uj − Uk
Rjk

−
N∑

j=k+1

Uk − Uj
Rkj

=

[
R−11k · · · R−1k−1,k −

N∑
j=1

R−1jk R−1k,k+1 · · · R−1k,N

]
UDC

(3.20)

In (3.20), Rjk = Rkj because connection between any two terminals is single and bidirec-

tional. If connection does not exist between terminal j and k, Rjk = ∞. Finally, Rkk = 0

as connection is not defined from a terminal to itself. From (3.20), we have the kth row of

matrix Y as

Yk = −

[
R−11k · · · R−1k−1,k −

N∑
j=1

R−1jk R−1k,k+1 · · · R−1k,N

]

Cancelling IDC from (3.19), we get a set of N equations between Pk0’s and Uk0’s:

YUDC +


...

PkU
−1
k

...

 = 0 (3.21)

For an N -terminal, it is common to specify operating power for N − 1 terminals and select

DC voltage level for the rest one terminal. Without loss of generality and for the purpose

of notation simplification, set terminal N to be the one with known UN0. So the goal is to

solve Ux =
[
· · · Uk0 · · ·

]>
, k = 1, · · · , N − 1 and PN0.

Partition matrix Y from the last row and column:

Y =

Y11 y12

y21 y22

 (3.22)
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We can rewrite (3.21) in two parts:

Y11Ux + y12UN0 +


...

Pk0U
−1
k0

...

 = 0 k = 1, · · · , N − 1

y21Ux + y22UN0 + U−1N0PN = 0

(3.23)

The first part contains N−1 nonlinear equations of unknown vector Ux. It can be solved

by Newton method. Substitute the solved Ux back into (3.23), we can directly get the last

unknown PN in the second part.

To solve the first part, define

f(Ux) = Y11Ux + y12UN0 +


...

Pk0U
−1
k0

...

 .

We get its Jacobian matrix:

Jf (Ux) = Y11 − diag(P10 · · · PN−1,0)


U−210

...

U−2N−1,0

 .

Initial all elements of Ux with UN0, the solution can then be numerically searched by the

following iterative process:

• Solve Jf (U
(i)
x )∆Ux = −f(U(i)

x ) for ∆Ux.

• Let U
(i+1)
x = U

(i)
x + ∆Ux

Since the given UN0 provides good initial guess to all terminals’ DC voltages. The Newton

algorithm can converge very fast within a few iterations. Solving (3.23) is equivalent to a

DC analysis on a circuit of N − 1 power source and one voltage source. Since power source

is not available in most circuit simulators, this routine of Newton algorithm becomes quite

helpful to MTDC model generation.
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3.4 SUMMARY

In this chapter, a systematic method is proposed to obtain small signal state space model

of MTDC systems. It is a two-stage procedure that provides proper isolation between mod-

eling at subsystem level and network level, so that it can be applied to arbitrary system

configuration with different network topologies and various AC-side components.

In Section 3.1, models of a VSC subsystem is derived. A subsystem contains a VSC and

its AC side components, so all local dynamics and control goals can be addressed. Detailed

literature review is conducted on multiple VSC applications at subsystem level. Average

circuit simplification and the basic double loop control structure of VSC are described and

modeled. Extensions for different AC and DC side control applications is also presented.

Correctness of these subsystem models are verified in simulation.

In Section 3.2, the DC network model is derived. The model assembling procedure is

then introduced and the overall system model is presented.

In Section 3.3, dimension of operating point and its degree of freedom is discussed. Steady

state equations are derived from circuit laws that the operating point must obey. Due to

the nonlinearity of the set of equations, an numerical routine based on Newton method is

proposed to solve the operating point.
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4.0 LMI-BASED CONTROL DESIGN

Obtaining the state space model opens up the door to many control design techniques in

modern control theory. But due to the distributed nature of MTDC system, information

constraints must be imposed to get feasible controllers. We decide that LMI-based design

method is the proper tool for this problem. In this section, we will introduce how different

control structures are modeled. It is also explained why and how the control design is

formulated as a LMI optimization problem, which can be efficiently solved in Matlab [47, 48].

4.1 RECONFIGURABLE STATE-FEEDBACK CONTROL FOR MTDC

SYSTEM

To have a reconfigurable controller model, we consider the most commonly used control law:

constant-gain, full-state feedback control.

u = Kx (4.1)

The system under control is now described by

ẋ = (A + BK)x (4.2)

Different controller structures can be indicated by different nonzero patterns of the con-

trol gain matrix K. Figure 13 illustrates some possible control schemes in form of K’s

nonzero pattern. The white regions in K are all zeros, while the shaded regions can have

nonzero elements.
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(a) (b) (c)

Figure 13: Use K’s nonzero patterns to represent different controller structures

Figure 13(a) represents a set of distributed controllers. Each nonzero block of K can

be seen as a local controller, because when applying control law (4.1), local control outputs

uk is obtained merely through linear combination of local states xk. Note that the all-

zero columns in K means that coupling states on DC cables are not used by controllers,

considering the scenario where sensor is not available on cables or communication is not fast

enough to feedback these data in real time. The basic droop control of DC voltage falls

into this category, as a special case with only one nonzero element (droop gain) in the local

control gain matrix. If a subsystem does not participate in droop control, for example a

CPL or a wind generator in MPPT mode, the columns in K corresponding to its local states

will be all zeros, like for the coupling states.

Similarly, Figure 13(b) describes the control scheme when communication between ter-

minals is available. In this case, controller can determine local control output based on states

of multiple subsystems. Control methods with global observation [20, 19] can be modeled

with such K.

Last but not least, Figure 13(c) is a full-state feedback control structure, which further

requires sensors or estimator for the coupling states. The physical meaning of the later

two nonzero patterns can be two-fold: enabling cooperative behavior among distributed

controllers through communication, or serving as a slower higher level centralized controller

for the purpose of secondary control and power flow management.

To summarise, specification on matrix K’s nonzero pattern constrains the information

structure of our distributed MIMO system, so we can easily configure the control architecture

based on what’s available in the real system. Furthermore, it provides an efficient way to
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study the trade-off between performance and communication cost, as various communication

topologies can be easily modeled in an unified method.

4.2 LMI-BASED CONTROL DESIGN

To design control for the MTDC system, we need to find feedback gain matrix K that: (1)

can stabilize the system; (2) has practical control gains; (3) matches with specified nonzero

pattern. Because of the third requirement, popular design techniques based on full-state

feedback, such as LQR, cannot be directly applied. In this paper, we choose a LMI-based

method that can numerically search for the desired K.

Starting with the first requirement, to ensure the global asymptotic stability of the

closed-loop system (4.2), we need to search for a control gain K and Lyapunov function

V (x) = x>Px (4.3)

with matrix P being symmetric so that P > 0 (positive definite) and

(A + BK)>P + P(A + BK) < 0. (4.4)

Note that (4.4) is not linear in the unknown P and K, so it is generally difficult to solve

this matrix inequality. To avoid such difficulty, we follow a procedure proposed in [25] and

introduce new matrices:

Y = τP−1 (τ > 0) and L = KY

with which we can rewrite P > 0 and (4.4) as

Y > 0 and YA> + AY + L>B> + BL < 0.

Any feasible Y and L subject to the above inequalities can produce a control gain matrix

K = LY−1

which ensures global asymptotic stability of system (4.2).
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In order to prevent control gains from becoming unacceptably large, we need to add

conditions to bound the norm of K. We include the following inequalities about L and Y

to bound ‖K‖2 implicitly:

−κLI L>

L −I

 < 0 and

Y I

I κYI

 > 0 (4.5)

where κL and κY represent scalar variables, while I refers to identity matrix. Using the

Schur complement formula [49], it can be seen that (4.5) is equivalent to the constraints

‖L‖2 <
√
κL and ‖Y−1‖2 < κY, which imply ‖K‖2 ≤ ‖L‖2‖Y−1‖2 <

√
κLκY.

Furthermore, to satisfy an arbitrary nonzero pattern of K, we can require that matrix L

has the identical nonzero pattern as that of matrix K and matrix Y has a diagonal form [50].

Finally, to improve robustness of the close-loop system, an extra term α2x>H>Hx is

introduced to measure the level of uncertainty system (4.2) can tolerate.Note that H is a

constant square matrix, and α is a scalar parameter. For a given H, the larger α is, the

more robust the system will be.

Taking into account the bound of ‖K‖2 and the robustness measurement, the original sta-

bilization problem (4.4) is converted to the following LMI optimization problem in variables

γ, κY, κL, Y, and L:

Minimize a1γ + a2κY + a3κL, subject to


YA> + AY + L>B> + BL I YH>

I −I 0

HY 0 −γI

 < 0

Y > 0,

−κLI L>

L −I

 < 0, and

Y I

I κYI

 > 0

(4.6)

in which γ is defined by γ = 1/α2, so that minimizing γ is equivalent to maximizing the mar-

gin α. As one can see, the cost function contains one term γ for improving performance and

two terms κY and κL for reducing control effort. They are weighted by positive coefficients

a1, a2 and a3. In addition to the three weights, H is another important set of parameters
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that can greatly influence the close-loop system response. Not only does it set the toler-

ance of uncertainty for each state, it can be used to differentiate relative importance among

the states. If certain state needs more effort to be stabilized or reach to desired response

speed, we can increase its corresponding elements in H. Placement of close-loop eigenvalues

can also be adjusted through H, by studying participation factor of states. Guidelines for

choosing H will be further demonstrated in Section 5.1.

The LMI-based design method provides a numerical alternative for finding control gain

matrix K under information constraints, which cannot be solved by standard LQR. However,

arbitrary nonzero pattern is achieved at the cost of a reduced solution space. Recall that

matrix Y = τP−1 is forced into diagonal form, which greatly limits the choice of Lyapunov

function (4.3). One can often relax Y to be in block-diagonal form, when specified nonzero

pattern can be preserved after multiplied by inverse of such Y. Most block-wise nonzero

pattern, for instance in Figure 13(a) and Figure 13(b), satisfies this condition. In this case, we

can still specify communication topology among subsystems but not the controller structure

inside. The later is in general insignificant, because the resulting control effort within a

nonzero block will concentrate only on a few critical gains, which are usually consistent with

manually-designed controllers. We will show in Section 5 that the proposed method can be

used for droop gain selection, with K specified in structure of Figure 13(a).
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Figure 14: Study case of a four-terminal system.

5.0 CASE STUDY OF A FOUR-TERMINAL SYSTEM

INTERCONNECTING AC AREAS

In this chapter, a four-terminal HVDC system presented by Prieto-Araujo et al. [18] is used

to demonstrate the proposed method. Compare to the study in [18], which treats all VSCs

as ideal sources in the DC network, we consider a more detailed model that includes local

dynamics of VSC subsystems. The test case was originally for off-shore wind power integra-

tion. However in this chapter, we start with a simpler application of four interconnected AC

grids. And the full test case will be studied in Chapter 6.
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As shown in Figure 14, the terminals each ties to an AC grid, and they are interconnected

through HVDC backbone. The system parameters and operating points are shown in Table 1.

All per unit values are based on nominal value of 100MW, 150kV and 50Hz. The power

operating points indicate that terminal 1 and 4 are exporting power from the DC system,

while terminal 2 and 3 are injecting power. The DC voltage operating points are solved by the

numerical routine described in Section 3.3. For the AC components, real and reactive power

exchange with converters are controlled locally by controller described in Section 3.1.1.2.

The local close-loop dynamic can be determined by time constants τdk and τqk, due to the

zero-pole cancellation caused by local current controller.

Table 1: Table of parameters

DC grid parameters

Parameter Value (p.u.) Parameter Value (p.u.)

R12 0.0022 L12 0.0070

R23 0.0011 L23 0.0035

R34 0.0018 L34 0.0056

Ck, k = 1, . . . , 4 11

Operating point

Parameter Value (p.u.) Parameter Value (p.u.)

P10 0.6000 U10 0.9659

P20 -0.5000 U20 0.9673

P30 -0.5000 U30 0.9674

P40 0.3988 U40 0.9667

AC current control close-loop parameters

Parameter Value Parameter Value

τdk, k = 1, . . . , 4 1 ms τqk, k = 1, . . . , 4 1ms

Eigenvalue and participation factor of the open-loop MTDC system are studied to un-

derstand its dynamic response. Here, the open-loop system is defined as the MTDC grid

without DC voltage regulation. Its input,
[
· · · P ∗k · · ·

]>
, are reference values of real power,
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which are controlled locally at the converters. Figure 15 shows eigenvalues of the system’s

minimal realization, which has 15 states. For each real or complex conjugate pair of eigen-

values, their related states are listed in the attached text boxes. Note that in this paper, all

eigenvalues are plotted in per-unitized scale, so real and imaginary axises are scaled by 2πf0,

in which f0 is the nominal frequency. There are 8 overlapping real eigenvalues on the left

of Figure 15. These fast first-order modes each independently represents a local close-loop

control on d or q axis of the four converters. The rest eigenvalues, one real and three complex

conjugate pairs, are related to the open-loop dynamic of the DC grid. Among them, the

marginally stable pole on origin is participated equally by the four DC voltages on terminals.

On the other hand, the complex eigenvalues, of which each conjugate pair corresponds to

an oscillation mode, get various participation among DC-side states. So in Figure 15, these

participating states are listed in descending order of absolute participation factor. Based

on this modal analysis, we need to stabilize and properly damp the DC related modes, in

order to regulate the MTDC system. The participation factor will also be useful for the fine

tuning of our control design algorithm.

In the following sections, we use the proposed LMI-based method to design control for

the four-terminal study case. Different control structures are considered for the control goal

of DC voltage regulation.

5.1 DISTRIBUTED VOLTAGE REGULATION

We first consider a distributed control scenario, where nonzero pattern of K is in the form

of Figure 13(a). In this case, all terminals are participating the DC voltage regulation but

only use feedback of local measurements.

To solve problem (4.6) we use YALMIP, a toolbox for specifying and solving optimization

problems [48]. Nonzero pattern of matrix L and Y can be specified by defining only their

nonzero entries as optimization variables. For choice of parameters, we start with a1 = a2 =

a3 = 1 and H = I. Note that matrix H has the same dimension as the system matrix. Here,

we limit it to diagonal form diag(. . . , hii, . . . ) to reduce number of parameters. Because
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Figure 15: Eigenvalues of the open-loop system and their participating states

the uncertainty term α2x>H>Hx is scaled by α, which has been addressed by the weighted

cost function in (4.6), norm of H becomes less important. However, since parameter hii

corresponds solely to state xi, it is useful for adjusting the behavior of an arbitrary state.

For the studied system under distributed control scenario, state feedback gain K is a

8-by-15 matrix with four nonzero blocks Kk, k = 1, . . . , 4, each represents the distributed

controller for its corresponding Terminal k. Here we use entries of K1 from the solved K to

illustrate the inside of a nonzero block:

K1 =


∆P1 ∆Q1 ∆U1

∆P ∗1 0.3 0 −77

∆Q∗1 0 −0.003 0

.
Notice that there is one dominant entry, which is the gain of DC voltage increment ∆U1

to control input ∆P ∗1 . The same is observed in all other Kk’s, each representing the local
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Figure 16: Close-loop dynamics of the MTDC system with K in distributed form solved by

LMI optimization: (a)Eigenvalues (b)Simulation
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Figure 17: Participating states for close-loop eigenvalues in Figure 16(a)

control gain matrix of terminal k. If ignore the other very small entries, the distributed

controllers are equivalent to droop controller:

∆P ∗k = Kdroop∆Uk.

This implies that the LMI algorithm will automatically concentrate control effort on relevant

states even without further nonzero specification within Kk. So the LMI design approach

can be used for droop gain selection, in case a simpler droop controller is preferred over state

feedback controller in application.

After applying the solved gain matrix K, close-loop dynamics of the studied system is

shown in Figure 16: Close-loop eigenvalues are plotted in Figure 16(a) in red stars. while

their related states is listed in Figure 17. Comparing with the open-loop eigenvalues (plotted

in black circles), one can have the following observations:
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• For the close-loop complex eigenvalues, which are all related to DC grid, their real parts

are more negative compared to the open-loop ones. This results from the stabilizing

effect from control gain matrix K.

• The four real eigenvalues related to local reactive power control are not influenced by

DC voltage control, due to the decoupling of real and reactive power control in local

controllers. It can also be seen from entries of K that the controller has almost no effect

on reference reactive power Q∗i .

• The rest eigenvalues are originally one-to-one related to local control of Pi in open-loop

system. But in close-loop system, K couples local DC voltages with real power con-

trollers, which further introduce the physical coupling of DC grid. As a result, we could

see participation of multiple terminals’ and DC cables’ states on these modes. Slower

dynamics of the DC grid drags these eigenvalues toward right, i.e. larger time constant.

It is the reason why there are three close-loop real eigenvalues closer to origin, compared

with their open-loop counterparts. The fourth open-loop real eigenvalue related to Pi

has merged with the one on origin, and they together become a complex conjugate pair

in the close-loop system, which is related to all real power and DC voltage states.

• Control gain matrix K does not impose any mode that is faster than the inner controllers

on VSCs.

Simulation of the close-loop system is shown in Figure 16(b). The analyzed scenario

corresponds to disturbance on power extracted by Terminal 2, which brings P ∗2 down by 0.2

p.u. at 0.1 second, then increase it by 0.4 p.u. at 0.3 second. It can be observed that all

converters adjust their real power to compensate for the disturbance. DC states is regulated

fairly well despite small high order oscillation on DC voltages. Maximum overshoot of voltage

is 0.0014 p.u., while settling time being smaller than 17ms.

For the rest of this section, we are going to discuss the tuning of LMI parameters. The

same MTDC system and control structure, i.e. nonzero pattern of gain matrix K, is used

to illustrate how to trade-off between control effort and performance, and how to adjust

behavior of certain state or mode.

We first look at the three coefficients a1, a2, and a3 in LMI cost function. Since both a2

and a3 are related to ‖K‖, one can trade-off control effort and performance by adjusting them
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Table 2: Control effort and performance with different values of weight coefficient

[a1, a2, a3] ‖K‖ α
max(|Uk∞ − Uk0|)

(p.u.)

Uk overshoot

(p.u.)
Settling time (s)

[0.05, 1, 1] 10 0.009 0.0053 0.00022 0.0162

[0.1, 1, 1] 16 0.010 0.0032 0.00038 0.0157

[0.5, 1, 1] 49 0.012 0.0011 0.00040 0.0153

[1, 1, 1] 77 0.014 0.00074 0.00052 0.0099

[1, 0.5, 0.5] 119 0.015 0.00050 0.00057 0.0101

[1, 0.1, 0.1] 287 0.018 0.00024 0.00045 0.0097

as a group. The same disturbance on Terminal 2 is applied in simulation. Table 2 summarizes

control effort and performance measurements using different [a1, a2, a3] combinations when

H = I. It can be seen that larger a1 leads to larger control gains but better response. Note

that larger control gain does not lead to larger static real power bias from the system’s

operating point. The converters end up sharing the disturbance on real power to achieve the

balance of input and output power. Close-loop eigenvalues of the same set of coefficients is

shown in Figure 18, from which one can observe the following two trends of movement as

‖K‖ increases:

• The complex eigenvalues (DC grid related) move toward the left with larger control gain.

This is in accordance with the DC voltage response in Table 2, showing smaller overshoot

and faster settling time.

• The real eigenvalues that are originally related to real power control in open-loop system

will first shift to left when small ‖K‖ is used. But they become less negative with higher

value of control gains. This is because larger ‖K‖ imposes stronger coupling between

the fast real power control loop and the slow dynamics of DC grid. Remind that the

DC voltage is regulated through small adjustment ∆P ∗k on real power set values P ∗k0,

making the overall reference value of real power control P ∗k = P ∗k0 + ∆P ∗k . the rightward

movement of these real eigenvalues implies that the more converter k contributes to
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Figure 18: Close-loop eigenvalue with different values of ‖K‖ listed in Table 2.
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Table 3: Control effort and performance with different H

Parameters ‖K‖ max(|Uk∞ − Uk0|)(p.u.) Uk overshoot (p.u.)

Baseline 16.2 0.0032 0.0004

Hq−axis = 5 16.2 0.0032 0.0004

Hd−axis = 5 11.1 0.0047 0.0003

HU = 5 16.4 0.0032 0.0004

HI = 5 156 0.0004 0.0005

HI12 = 5 106 0.0006 0.0005

HI23 = 5 159 0.0004 0.0005

HI34 = 5 124 0.0005 0.0006

DC voltage regulation, the slower it will get to trace its own set value P ∗k0. This is

demonstrated in Figure 19, showing Terminal 2’s response to step change of P ∗2 at 0.1

second using different K’s solved by LMI optimization.

The next set of parameters to study is matrix H. So far it’s been set as identity matrix,

which set the same uncertainty tolerance to all states. Influence of individual state’s tolerance

setting is discussed in this paragraph. Experimental results are summarized in Table 3. For

comparison, we use the K solved by parameters a1 = 0.1, a2 = 1, a3 = 1, and H = I

as baseline. Remind that H is set in diagonal form diag(. . . , hi, . . . ), so that uncertainty

tolerance of the ith state can be independently adjusted by entry hi. In our study case, we

found his that are matching to the same type of states show similar effect to LMI result. So

in Table 3, entries of H are tuned in groups, and one group at a time (a row). For example,

Hq−axis is defined as a set of hi’s, of which the corresponding states are on the q-axis of

AC subsystems. So Hq−axis = 5 means only hi’s corresponding to AC-side q-axis states are

changed to 5 while the rest parameters stay the same as baseline. From Table 3, we can tell

the influence of each group of states’ matching entries in H:
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• q-axis states of AC subsystems: These states are for reactive power. Due to the decou-

pling of real and reactive power control, tuning the corresponding entries Hq−axis in H

does not influence the resulting K.

• d-axis states of AC subsystems: These states are for real power. Increasing their cor-

responding entries Hd−axis reduces ‖K‖. This is in accordance to what we observed in

Figure 18, where smaller ‖K‖ drives a group of real poles more negative. These poles are

contributed by states for AC real power in open-loop system, according to participation

analysis in Figure 15.

• DC voltages at terminals: Entries of H corresponding to DC voltages are included in set

HU. Increasing these parameters leads to slightly higher ‖K‖.

• DC currents on cables: Entries of H corresponding to DC currents are included in set

HI. The solved K shows the most sensitivity to this set of parameters. Increase these

entries leads to tremendously higher ‖K‖. To further study their effects, the last three

rows show the result when entries in this set are tuned individually, i.e. only one entry

is set to 5 while the others stay the same as baseline. Notice the difference in sensitivity,

which we find in consistent with the norm of corresponding row in A (Table 4).

• Figure 20 compares the resulting eigenvalues obtained by parameters in line 1 and line

3 to 5 of Table 3. As we’ve observed in Table 3, parameters in HI and Hd−axis have the

opposite effect, while the same change on HU shows very little influence. When scale

the whole uncertainty term α2x>H>Hx by a1 instead of tuning entries in H, the result

(legend a1 = 0.5 in Figure 20) will trade-off between the effect of HI and Hd−axis.

After synthesizing the experimental results of parameter tuning, we find the following

topics worth further discussion:

The first is about sensitivity of LMI result to different entries in H. Why do the match-

ing entries of one group of states has significantly stronger influence compared to those of

another group? Remind tchat in the LMI problem formulation (4.6), the term α2x>H>Hx

is introduced as a boundary of uncertainty for the state space model. Does Table 3 implies

that the controller or the close-loop system is highly sensitive to DC current’s uncertainty?

The following discussion shows that such implication is not correct.
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Figure 20: Close-loop eigenvalue with different parameter matrix H and coefficient a1

It has been mentioned that the level of effect of hi toward control matrix K is in consistent

with norm of the ith row in system matrix A. In other words, the higher absolute value

the entries in row i have, the bigger effect hi will impose on solved K. This suggests

strong dependence on system parameters and their units. For example, in per-unit system,

coefficients for DC current dynamics are in general much larger than that of DC voltage;

however, when using SI units for the same study case, it is the opposite. Table 4 lists the

norm of selected A’s row for the same study case in per unit and SI unit, demonstrating the

difference caused by choices of unit. When applying LMI algorithm in the same system in

SI unit, K’s sensitivity to hi changes accordingly. Thus we can conclude that hi’s effect to

LMI result depends on unit and scaling of physical quantities, and cannot indicate system’s

robustness by itself. To further demonstrate that LMI algorithm’s sensitivity to hi is different

from controller’s sensitivity to disturbance on the ith state, a 0.01 p.u. disturbance is added

to U1 (Figure 21(a)) and I12 (Figure 21(b)) in simulation at initial condition. The control
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Table 4: Norm of A’s row for state P1, U1, and DC currents

‖A(P1, :)‖ ‖A(U1, :)‖ ‖A(I12, :)‖ ‖A(I23, :)‖ ‖A(I34, :)‖

Per unit 3.2 0.15 203 405 253

SI unit 1000 6667 300 574 367

matrix K is solved by baseline parameter a1 = 0.1, a2 = a3 = 1 and H = I. Result

in Figure 21 shows that both types of disturbance are mitigated in the close-loop system.

Disturbance on U1 results in larger system response, because it introduces a much larger

change in real power considering the size of capacitor on DC side.

Now we know that effect of hi depends on unit and scaling of physical quantities, we can

use elements in the ith row of system matrix A as a rough guideline for choosing the tuning

step of hi: small norm of row i requires large changing step of hi. Note that another way

to obtain H is to derive model of uncertainty for each state and then try to find an upper

bound in quadratic form. In this case, H is no longer parameter but part of the model.

However, this could involve nonlinearity of system, uncertainty of measurement, as well as

stochastic characteristic of power system, which are out of the scope of this work. Here, H

is merely used as parameters that would influence the placement of close-loop eigenvalues.

The second discussion is on H’s influence to close-loop eigenvalues. Remind that the

reason to tune individual entries of H in addition to coefficient a1 in (4.6) is to adjust response

of a certain state. In terms of pole placement, it is also expected to help improve specified

eigenvalues by tuning the matching hi’s found through participation analysis. Even though

the mapping between eigenvalues and hi is not one-to-one, it should provide more flexibility

in placement of eigenvalues, comparing to tuning just a1, which scale the uncertainty term

as a whole. However, the result shows such flexibility is not achieved when using distributed

control structure, i.e. K’s nonzero pattern in form of Figure 13(a):

Figure 22 shows the close-loop eigenvalues resulted from tuning entries in set HI, which

are corresponding to current on DC cables. Note that we are looking at this set of parameters

because: 1)their corresponding states are closely related to the crucial complex eigenvalues,
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Figure 21: Close-loop system response to disturbance on different states at initial condition:

(a) 0.01 p.u. disturbance is added on U1 (b) 0.01 p.u. disturbance is added on I12
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which locate close to imaginary axis; 2)they are in the same unit, and thus have comparable

influence on LMI result according to the first discussion. In Figure 22, the last four in

legend are matching with the last four rows in Table 3. It can be observed that by changing

individual entries in HI (last three in legend), we end up influence all eigenvalues, instead

of just the subset that are participated by hi’s matching state. Note that when only HI23 is

changed, the resulting eigenvalues overlap with the ones when all entries in HI are changed at

the same time. This is a sign that some poles are pushed further left then what is necessary

to satisfy the linear inequality conditions in (4.6). Moreover, movement of all poles are

following the trend that has been observed in Figure 18 when ‖K‖ changes. In other word,

the same pole placement can be achieved by simply tuning coefficients a1 in (4.6). So in this

case, we do not get any benefit from tuning H.

This can be explained by the reduced controllability caused by information constraint on

matrix K. Despite the MTDC system model is controllable, when using distributed control

on the test case, we cannot improve behavior of a given state or a subset of modes without

influence the rest. For example, if more damping is required on the complex eigenvalues,

the resulting controller will also lead to faster response of DC voltage regulation and slower

tracking of local real power reference. If such result is not satisfying, one should either

turn to non-control method that improve open-loop system dynamics or consider adding

communication between terminals. The later option will be further studied in this work.

Last but not least, a general guideline for LMI parameter tuning for distributed K is

given in this paragraph. One can first adjust the relative importance of performance and

control effort through coefficient a1, while a2 and a3 are fixed as a group. When improvement

is wanted on certain state or eigenvalue, one can proceed to tune the corresponding entries in

H. However, according to our second discussion, it is very likely that the resulting controller

can also be obtained by tuning a1, when controllability is limited by distributed K. In this

case, the function of H is merely for the convenience of user by providing a straightforward

mapping to close-loop performance of individual states, which is beneficial when scale of

system reach to a point that thorough analysis on pole movement becomes difficult. For

example, it is shown in Figure 20 that LMI algorithm will balance the inherent trade-off

between local and grid-level control performance when a1 is tuned. One can adjust this
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Figure 22: Close-loop eigenvalue with different choices of H

balance through parameters in set Hd−axis and HI, without having to understand ‖K‖’s

effect on each group of eigenvalues and their related states.

To summarize this section, we use the proposed LMI-based method to design distributed

controller for the study case of a four-terminal system, of which the non-zero pattern of K

is set in the form of Figure 13(a). Simulation result and close-loop eigenvalue shows that

the solved controller can successfully regulate DC voltage and maintain power balance of

the system. A closer look inside the resulting K shows that control effort will concentrate

on the gain between relevant state and control output within a non-zero block. So the LMI

optimization algorithm can also be used to choose droop gains when simple droop controller

is preferred. To further understand the influence of LMI parameters, we tune the coefficients

a1, a2, and a3, as well as parameter matrix H and study the results. These results verify that

trade-off between control performance and effort can be adjusted through the three coeffi-

cients. Furthermore, by studying participation factor and movement of eigenvalues as ‖K‖
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increases, we find the inherent trade-off between performance of local real power tracking

and system DC voltage regulation, for which the LMI optimization will automatically find

a balance. We then show that such balance can be adjusted through tuning entries in H.

Towards the end of this section, the tuning procedure is thoroughly discussed and summa-

rized. We conclude that constraints on gain matrix K’s structure reduces controllability of

system, and thus limit the flexibility on pole placement.

5.2 PARTIALLY PARTICIPATING VOLTAGE REGULATION

In this section, we consider a special case of distributed control, in which only a subset of

terminals participate in DC voltage regulation. This scenario allows the terminals that are

not in charge of grid stability to focus on their local control goals. An example of such

partially participating voltage regulation was proposed in [51] for offshore wind integration.

This control scheme includes several operating modes for normal operation and fault events.

In each mode, DC voltage is regulated by either grid-side inverters or wind farm rectifiers,

while the rest converters only control their local performance, such as MPPT or limiting

fault current/voltage.

The described scenario can be achieved by configuring the matching non-zero pattern

for gain matrix K in our LMI formulation. For demonstration, we consider the case that

DC voltage is regulated by the two output terminals: Terminal 1 and Terminal 4, and they

each use local measurement for feedback. In this case, non-zero pattern of gain matrix K is

set in form of Figure 23(a), in which non-zero entries are denoted by dark gray. Compared

to the basic distributed control case (Figure 13(a)) that we considered in Section 5.1, non-

zero blocks for Terminal 2 and 3 are replaced by zeros as they do not contribute to system

stabilization.

Applying the solved controller to our four-terminal test case, we get the time-domain

response shown in Figure 23(b). In the top plot, when P ∗2 is changed at 0.1s and 0.3s, only

P1 and P4 react to balance the disturbance, meanwhile Terminal 2 and 3 are merely tracking

their local references. In the lower two plots, it can be seen that the system is successfully
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Figure 23: Partially participating DC voltage regulation by Terminal 1 and 4. (a) Non-zero

pattern of gain matrix K (b) Simulation result
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Figure 24: Corresponding eigenvalues for Figure 23(b) and their participating states

stabilized by the two output terminals. Close-loop eigenvalues of this system is plotted in

Figure 24 to further verify that the system is stable. Through participation factor between

the poles and the states, we observe two major differences comparing to the basic distributed

controller (Figure 13(a)) studied in Section 5.1:

• Eigenvalues corresponding to real power control of Terminal 2 and 3 are not changed by

solved K, which is clearly expected as the two do not contribute to voltage regulation,

i.e. grid power balancing. It confirms that the two terminals are fully operated for their

local control goals.

• One conjugate pair of complex eigenvalues related to U2, U3, I23, and I34 are hardly

moved by the controller. Corresponding to time-domain response in Figure 23(b), DC

voltage U2 and U3 have longer settling time than U1 and U4. It implies that their related

poles are not as well damped.
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Figure 25: Close-loop eigenvalue with different values of ‖K‖, when Terminal 1 and 4 regulate

DC voltage

Same as we studied in Section 5.1, trade-off between performance and control effort can be

adjusted through LMI parameters in (4.6). To avoid duplication, we only compare the close-

loop eigenvalues resulting from different norm value of solved K in this section (Figure 25).

All controllers have the same non-zero pattern of Figure 23(a). Despite the uninfluenced

poles for reactive power and input terminals’ real power, we observe the inherent trade-off

between local (poles related to P1 and P4) and grid-level (complex poles participated only

by DC-side states) control performance. Same as what is found in Section 5.1 Figure 18,

when ‖K‖ increases, the later group of poles move toward left while poles in the prior

group move toward right. Compared to the controller in Section 5.1 , the major difference

is the conjugate complex poles participated by U2, U3, I23, and I34. It is barely moved

even with large control effort, which is sign of further loss of controllability. Because this

pair of eigenvalue becomes almost uncontrollable with too little non-zero entries in K, LMI

algorithm sometimes encounter problem with certain parameters.
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To sum up, we study the partially participating DC voltage regulation in this section.

It is a special case of distributed control, in which only a subset of terminals contribute

to grid-level control, allowing the rest terminals fully operated for their local control goals.

Simulation result shows that the LMI-based approach still manage to stabilize the test case

with only the two output terminals, despite longer settling time on some of the states. A

further eigen analysis reveals that this level of limitation on K make some critical poles

almost uncontrollable. As a result, their corresponding mode in system dynamics cannot be

improved through controller.

5.3 COORDINATED VOLTAGE REGULATION

This section studies coordinated voltage regulation, in which communication is available

among terminals. With the advantage of our configurable controller model, various network

configurations can be easily implemented by just changing the nonzero pattern of gain ma-

trix K. In practice, the resulting K can be implemented at local control level, in which

controller of each terminal receive feedback from multiple terminals. The other possible im-

plementation is to have a higher level central controller that has global observation, which,

similar to secondary control in AC system, compensates the local distributed controllers. In

this section, the same test case of Figure 14 is used, so results can be compared with the

distributed scheme.

5.3.1 Voltage regulation by communicating local measurement

We first consider the case that each converter shares its local measurement with the other.

The corresponding nonzero pattern is in form of Figure 13(b). Remind that, when assembling

the system level state space model, the subsystems’ states are stacked up on top while the

coupling states are arranged at the end. So in Figure 13(b), the nonzero columns on the left

are corresponding to the subsystems, meaning that measurements of local states are globally

available to other terminals; on the other hand, the zero columns on the right indicate that
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Figure 26: Coordinated DC voltage regulation: (a) Close-loop eigenvalue with different

values of coefficient a1 (b) Simulation result when a1 = 0.4
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current on DC cables are either not measured or the measurements are not feedback in real

time to controllers in terminals.

As described in Section 4.2, specified nonzero pattern of gain matrix K is obtained by

setting nonzero pattern of matrix L and Y accordingly in LMI optimization. While L is

having identical nonzero pattern as K, matrix Y has several options: diagonal nonzero

entries, block-diagonal pattern with the same block-wise dimension as subsystems, and last

but not least, one large nonzero block that covers all subsystems. All these nonzero patterns

preserve L’s pattern after right-multiplied by inverse of Y, while the later has more variables

to search than the prior. After experimenting with these possible non-zero patterns, only

the last option gives non-negligible off block-diagonal entries in solved K, which means the

non-distributed control scheme is actually deployed. As a result, the last option of Y’s

nonzero pattern is used in all LMI optimization in this subsection. Even though it has the

most nonzero entries to search, better result is found in this extended solution space.

Table 5: Coordinated control effort and performance with different values of a1

a1 ‖K‖
max(|Uk∞ − Uk0|)

(p.u.)

Uk overshoot

(p.u.)

Uk settling

time (s)

Ijk overshoot

(p.u.)

Ijk settling

time (s)

0.1 17 0.027 0 0.081 0.073 0.035

0.4 43 0.020 0 0.058 0.042 0.022

0.7 62 0.016 0 0.048 0.030 0.017

1 78 0.014 0 0.045 0.023 0.011

We start with adjusting coefficient a1 to roughly find a balance between system response

and control effort. Meanwhile, the other parameters are fixed at: a2 = a3 = 1, HU = 10, and

the rest of H’ diagonal entries is 1. The results are summarized in Table 5 and Figure 26(a).

In Table 5, settling time is measured when a controlled output reaches and stays within the

2% error band of its final value.

In Table 5, when a1 is increased, DC-side response is getting faster at the cost of larger

control effort. However, in this case, what can be achieved in voltage regulation speed is

relatively limited. This can be seen in Figure 26(a), where the DC voltage related eigenvalue
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on real axis displays sluggish movement as a1 increase. Having this voltage related eigenvalue

remain on real axis also implies smooth first order response on all terminals’ DC voltage,

which is why we see zero overshoot for voltage in Table 5. Figure 26(b) plots close-loop

simulation result when a1 = 0.4. One can see the first order dynamic on DC voltages in the

middle plot. In the upper plot, all terminals contribute to counterbalance disturbance on P2

at 0.1s and 0.3s. And the system is successfully stabilized with regulated DC voltage.

It has been shown that communication among terminals leads to smoother control com-

pared to the distributed case in Section 5.1. In the following paragraphs, we further tune

the LMI algorithm to solve for different speed of response. Since a1 along has little influ-

ence on DC voltage related eigenvalue, we use corresponding entries in matrix H to specify

the relative importance of these states. For baseline, we take the LMI parameters that

solved controller used in Figure 26(b), and only change entries in H. Table 6 and Figure 27

summarize the close-loop performance of the resulting controllers.

The results shows that larger DC voltage related entries in H leads to solution with

faster response of these states. Moreover, in this control structure, DC voltages preserve

their smooth first order behavior even at high control speed. In Table 6, voltage overshoot

remains zero for settling time as small as about 10 milli-seconds, which cannot be achieved

using distributed controller in Section 5.1. Figure 27(a) shows the same characteristics of this

coordinated control scheme in form of eigenvalue: with increased performance specification

on DC voltages, their most related eigenvalue moves toward left along the real axis. Also

observed in eigenvalues, oscillating poles can be further reduced when DC current related

entries in matrix H are increased. An example is shown in Figure 27(a) by diamond markers.

Comparing to the eigenvalues in star, one complex conjugate pair is moved onto real axis

when DC current corresponding entries are raised from 1 to 2, leaving only two oscillating

modes compared to four when using droop control.

Compared to distributed control scheme in Section 5.1, communication among terminals

introduces two distinguish features in performance:

• The first is lower order dynamics on DC voltage. In eigenvalue analysis, DC voltage

is consistently dominated by first order modes. The difference can be explained by

comparing movement of poles under the two control schemes.
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Figure 27: Coordinated DC voltage regulation under different choices of H: (a) Close-loop

eigenvalue with different H (b) Simulation result when HU = 50 and HI = 2
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Table 6: Coordinated control effort and performance with different H

Parameters ‖K‖
Max voltage

bias (p.u.)

Uk over-

shoot(p.u.)

Uk settling

time (s)

Ijk over-

shoot(p.u.)

Ijk settling

time (s)

Baseline 43 0.020 0 0.058 0.042 0.022

HU = 30 51 0.0055 0 0.018 0.026 0.018

HU = 50 66 0.0033 0 0.011 0.021 0.013

HU = 70 84 0.0023 0 0.0078 0.010 0.012

HU = 50,

HI = 2
123 0.0047 0 0.014 0.0084 0.010

Let’s first remind the trade-off between real power and DC voltage control. It has been

observed in all scenarios that once feedback of DC voltage is introduced, some power

related real poles will shift toward right as the voltage related real pole moves left.

When control gain is increased, the voltage related pole will at some point merge with

one of the power related pole and form an extra pair of complex poles, in other word,

introducing one more oscillating mode.

Now comparing Figure 18 and Figure 27(a) for eigenvalue movement. When distributed

control is applied, the extra oscillating mode forms at a relatively lower control speed

and control gain. In contrast, when terminals communicate their local measurement, the

merge of real poles does not happen during the tuning experiment at the same settling

time range. Even though two real pole has come very close at the highest control speed

that we tested. It is a sign that the local controllers are coordinated to reduce the right

shift of power related poles, thus mitigate the side effect on local real power control and

avoid unwanted oscillation.

• The second is the increased independence between DC voltages and DC currents related

poles. Figure 27(a) has shown the different effects of DC voltage and current related

entries in matrix H. It is possible to improve the position of a subset of poles by fine
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tuning on H without pushing all poles unnecessarily faster. Although it is not possible to

achieve individual pole placement due to limited control structure, we have more control

over position of poles compared to the distributed control scheme.

Finally, the solved control gain K is examined. Using nonzero pattern as Figure 13(b),

K’s dominant entries are the gains of DC voltage increments at each terminal ∆Ui, i =

1, . . . , 4 to a local control signal ∆P ∗k . If ignore the other very small entries, the solved

controllers are equivalent to weighted feedback of communicated measurements:

∆P ∗k =
N∑
i=1

Ki∆Ui.

This control structure was proposed by Berggren et al. [20] in their patent for power flow

control in DC network. This again verifies that the solved K converges to a solution in

accordance with engineering designed control structure. If one want to use such weighted

droop controller, the LMI-based algorithm provides a convenient way to determine control

gains. Meanwhile, manual tuning of such controller can be challenging, if possible, due to

increased number of parameters.

To summarize this section, we apply the proposed LMI-based method to the four-terminal

study case with K’s non-zero pattern in form of Figure 13(b). Such control structure allows

communication of local states among terminals. Simulation result and close-loop eigenvalue

shows that the solved controller can successfully stabilize the system. Following the tuning

procedure discussed in Section 5.1, we tune the close-loop system in different speed and

study the resulting eigenvalues. Compared to distributed control scheme in Section 5.1,

communication among terminals introduces two distinguish features: 1. First order DC

voltage dynamic; 2. Increased capability of adjusting eigenvalue positions. Both effects

benefit from coordination among terminals. In the end of this section, elements inside the

non-zero block is studied to show the LMI-based method only assign gains between most

relevant states and control signal. The resulting structure of gain matrix K is very similar

to human designed controller when the same communication is available.
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5.3.2 Voltage regulation by full-state feedback

In this section, we consider the case in which all measurements can be communicated. The

corresponding nonzero pattern is in form of Figure 13(c), which is a full state feedback.

Compared to scenario in previous section, control signal is decided not only based on states

at each terminal but also measurements on cables. Such control scheme requires sensors and

real-time communication available on cables. When full state feedback is possible, classic

design methods like pole placement and linear-quadratic regulator(LQR) can also be used.

Comparing to LMI-based algorithm, which numerically search for suboptimal solution, LQR

can solve the optimal controller for a given set of weighting factors. So the purpose of this

scenario is less for practical application but more for verification of LMI’s solution against

the optimal controller solved by LQR method.

Since the two optimization methods have different formulation and parameter sets, we

compared the two by tuning them to the same desired pole position. For this experiment, the

goal is to have the nominal mode, i.e. the DC voltage related real pole, close to -1.4, which

leads to time constant of about 2.5ms.Then fine tuning is performed on DC current related

parameters to mitigate oscillation caused by complex poles. The resulting LMI parameters

are a1 = 0.1, a2 = a3 = 1, HU = 50, H13 = 0.5 while the other diagonal entries of H is 1.

On the other hand, LQR parameters that leads to comparable time domain performance are

R = 5I, QU = 1000 while the other diagonal entries of Q is 1.

Using resulting gain matrix Ks solved by the two design methods, eigenvalues of close-

loop systems are plotted in Figure 28. And the time domain simulation result are shown

in Figure 29. The two sets of poles can be compared in three groups according to their

open-loop participation factors in Figure 15.

• The first group is the single DC voltage related real pole, which is the nominal mode of the

system. Both controllers can place it to desired position. This is consistent with what’s

observed in Section 5.3.1. When communication between terminals exists, it is relatively

easy to adjust this pole along real axis without introducing extra oscillation modes. In

practice however, control speed can be achieved is also limited by communication delay,

which is not modeled in this work.
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Figure 28: Close-loop eigenvalues using full state feedback solved by LMI and LQR methods

• The second is the group of DC current related complex poles, which are the oscillation

modes of the system. Figure 28 shows that slightly better pole positions can be achieved

by LQR the LMI solved control gain K. However, when comparing simulation results of

the two in Figure 29, the difference in time domain performance is small enough that no

obviously larger oscillation can be observed.

• The last group is the AC power and reactive power related real poles, which are al-

ready stabilized and controlled by local controllers. Comparing to LQR, LMI solved

controller locates poles in this group a bit more toward left. This is considered a waste

of control effort. Because these modes are already tuned sufficiently fast by local con-

trol. Further speeding up these modes is unnecessary and has little improvement on time

domain performance (Figure.29), as the system’s dynamic is dominated by the slower

DC related modes. This implies that LMI solved controller is not as efficient as LQR.

In this test case, ‖K‖ solved by LMI is 34.7% larger than that of LQR. It shows the
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LMI-based method cannot guarantee optimal solution, which is the major limitation of

this numerical method comparing to LQR.

In summary, this section studies coordinated voltage regulation, in which communication

is available on all terminals and cables so that full-state feedback is possible. We use this

test case to compare LMI and LQR solved controllers. By comparing close-loop eigenvalues

and time domain simulation, the two can achieve the same performance on DC voltage

regulation, and comparable close-loop dynamic on DC currents. However, the numerically

solved controller by LMI is not as efficient as LQR, due to its unnecessary control effort on

less critical modes that are already well controlled by local inner controllers.

5.4 SUMMARY

In this chapter, the proposed modeling and control design method is applied on a four-

terminal HVDC system. Four different control topologies is tested by configuring the gain

matrix K into different nonzero patterns in LMI algorithm. Under each control schemes,

we demonstrate the tuning of LMI coefficients and study the resulting close-loop eigenvalues

and time domain performance. It is concluded that the LMI method can find proper control

gains under specified communication limitation and successfully stabilize the MTDC system

under test. It is also demonstrated that the proposed method can be easily configured into

various system and control topology settings.

To further understand how internal dynamics of the system is influenced by LMI pa-

rameters, eigenvalues are grouped and studied using the participation factor technique. By

tracking the movement of poles, we reveal the two key pairs of trade-off in a MTDC system:

1. trade-off between control performance and effort; 2. trade-off between local real power

tracking and system voltage regulation. We conclude that the LMI method can find a bal-

ance in both, and show how each can be adjusted through LMI parameters: the former by

tuning weights in cost function and the later by adjusting elements in parameter matrix H.

A detailed tuning procedure is then summarized and verified under different control schemes.
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Figure 29: Simulation result, K solved by (a)LMI method (b)LQR method
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The capability of different control topologies is also studied and compared. While dis-

tributed controller can already stabilize the system, it shows limited capability in pole ad-

justment due to the reduced level of controllability. When communication is allowed between

terminals, the LMI algorithm is able to coordinate the terminals to greatly reduce oscillation

and increase control of eigenvalue positions.
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Figure 30: Study case of a four-terminal system with wind generation.

6.0 CASE STUDY OF A FOUR-TERMINAL SYSTEM FOR OFFSHORE

WIND INTEGRATION

In this chapter, we study a second test case of off-shore wind integration. It is a variation of

the test system investigated in Chapter 5. Figure 30 shows the setup of the system, terminal

1 and 4 are connected to AC grids while terminal 2 and 3 are connected to wind farms. The

system parameters and operating points are shown in Table 7. All per unit values are based

on nominal value of 100MW, 150kV and 50Hz. As it can be seen from operating power,

the AC grid side terminals are exporting power from the DC system, while wind farm side
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terminals are injecting power. Operating voltage and power are solved by the numerical

routine described in Section 3.3.

Table 7: Table of parameters for the offshore wind integration test case

DC grid parameters

Parameter Value (p.u.) Parameter Value (p.u.)

R12 0.0022 L12 0.0070

R23 0.0011 L23 0.0035

R34 0.0018 L34 0.0056

Ck, k = 1, . . . , 4 11

Operating point

Parameter Value (p.u.) Parameter Value (p.u.)

P10 0.6000 U10 0.9659

P20 -0.5000 U20 0.9673

P30 -0.5000 U30 0.9674

P40 0.3988 U40 0.9667

Power control close-loop parameters

Parameter Value Parameter Value

τdk, k = 1, 4 1 ms τqk, k = 1, 4 1 ms

τk, k = 2, 3 0.6 s

Compared to Table 1 in Chapter 5, the main difference in this model is the subsystem of

terminal 2 and 3 are replaced by simplified wind farm model, which has much slower power

dynamics due to the large mechanical inertia of wind turbines [36, 52, 53, 54].

6.1 NATURAL DYNAMICS ANALYSIS

Same as in Chapter 5, eigenvalue and participation factor of the open-loop system are studied

to understand its dynamic response. Remind that the open-loop system is defined as the
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Figure 31: Eigenvalues of the offshore wind integration system, and their participating states

MTDC grid without system level power balancing control. Its input,
[
· · · ∆P ∗k · · ·

]>
,

are adjustment to the scheduled real power references. Figure 31 shows eigenvalues of the

system’s minimal realization. Remind that all eigenvalues are plotted in per-unitized scale,

so real and imaginary axises are scaled by 2πf0, in which f0 is the nominal frequency.

Related states are listed in the attached text boxes of each real or complex conjugate pair of

eigenvalues. From Figure 31, we can learn the following about the natural dynamics of the

system:

• On the far left, there are 4 overlapping real poles. These fast first-order modes each inde-

pendently represents a local close-loop control on d or q axis of the grid side converters.

• The three complex conjugate pairs are related to the natural dynamics of DC grid. These

modes are the same as the test case in Chapter 5, because the same DC network is used.

• There are multiple poles near origin, which can be seen in the zoom-in plot on the right.

The one marginal stable pole is related to DC voltages, which are not yet regulated. The

rest overlapping poles are the very slow local mode of the wind generation side terminals.
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6.2 POWER BALANCING CONTROL DESIGN

In the following sections, we use the proposed LMI-based method to design control for this

test case. The following operation modes of wind integration MTDC system are considered:

Mode 1 Wind side terminals are fully in maximum power point tracking(MPPT) control,

only grid side terminals contribute to power balancing and DC voltage regulation. This

is the most common scheme for maximum power integration.

Mode 2 Only wind side terminals are in charge of power balancing. This is a safe mode to

maintain system stability when there is a fault on grid side. It requires wind side VSCs

operating on a bias from the maximum power point to reserve some generation capacity.

Mode 3 All terminals are contributing to voltage regulation. This scheme is for high pen-

etration rate or limited grid side stability, such as a weak AC connection. It reduces the

disturbance on grid side by sacrificing some efficiency on the wind side.

These control schemes can be easily modeled and design using our configurable controller

model proposed in Chapter 4. Both mode 1 and 2 are partially participating voltage regu-

lation schemes that can be specified using nonzero pattern of K similar in Section 5.2. And

mode 3 is a standard distributed control which can be specified by nonzero pattern as Fig-

ure 13(a). The corresponding control gain matrix K can then be solved efficiently using the

proposed LMI-based method. Close-loop analysis and simulation results for each operating

mode are discussed in the following sections.

6.2.1 Grid side voltage regulation

Figure 32 shows the analysis on close-loop eigenvalues. To simplify the discussion, only LMI

weight coefficient a1 is swiped. And all other parameters are fixed. When a1, which is the

weight of stability boundary, is increased, the LMI algorithm is trying to find larger margin

between the overall eigenvalues and the imaginary axis. From Figure 32, we can learn the

following trends of close-loop dynamics under operating mode 1:

• On the right of Figure 32(a), one can see the slow real poles of wind side VSCs are

untouched in close-loop. This indicates that their local MPPT control is not influenced.
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Figure 32: In operation mode 1, close-loop eigenvalues when weight coefficient a1 increases:

(a) a1 from 0.001(blue) to 0.01(red) (b) a1 from 0.01(blue) to 0.1(red)
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Figure 33: Simulation of operation mode 1: (a) a1 = 0.01 (b) a1 = 0.07
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This is expected in this control scheme as terminal 2 and 3 are not participating in the

system level control.

• For the critical real pole of DC voltages, it moves from marginal to stable as soon as

a small voltage regulation control gain kicks in (see the right of Figure 32(a)). As a1

getting larger in Figure 32(b). it moves left until joining with a grid side power related

eigenvalue and formulate a new complex conjugate pair.

• From the fast real modes related to grid side VSC power control, we can again see in

Figure 32(b) the trade-off between local and global control objectives. They are getting

slower as the grid side VSCs contributing more to power balancing. Their local tracking

of scheduled power transmission also expects larger bias.

• The 3 pairs of complex eigenvalues, which corresponds to higher order DC dynamics,

are moving left but not showing the same level of change. The two pairs closer to real

axis are much more sensitive to larger a1. While the rest pair hardly moves. This is

because the limited controllability with two terminals missing the global control, same

as we concluded in Chapter 5

• When a1 is increased above a certain point, the faster modes are turning around and

move towards right. This implies that the capacities of grid side VSCs is almost used

up. And the LMI algorithm can only sacrifice some more faster mode to keep dragging

the slower modes leftwards. However, due to the limited controllability, we can get little

performance improvement. So we should avoid a1 entering the orange and red region.

Time domain simulation is presented in Figure 33 for two a1 values. Figure 33(a) uses

control gains solved when a1 = 0.01, the corresponding eigenvalues are the dark blue points

in Figure 32(b). And Figure 33(b) uses control gains solved when a1 = 0.07, which is

corresponding to yellow poles in Figure 32(b).
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Figure 34: In operation mode 2, close-loop eigenvalues when weight coefficient a1 increases

from 0.001(blue) to 0.05(red).

6.2.2 Wind side voltage regulation

Figure 34 shows the analysis on close-loop eigenvalues for operating mode 2. Same as in

mode 1, only LMI weight coefficient a1 is swiped. Warmer color indicates larger value of

a1. From Figure 34, we can learn the following about close-loop dynamics under operating

mode 2:

• On the most left, the fast real poles of grid side VSCs are not changed in close-loop.

This shows that terminal 1 and 4’s local control is not influenced because they are not

participating in the system level control in this operation mode.

• Due to the limitation of response speed. Wind side terminals alone have no influence

on the eigenvalues that are faster than themselves. That is why one can hardly observe

any change in the full plot on the left. The natural oscillation poles corresponding to

DC currents cannot be improved in this operating mode regardless how large the control

effort is given by wind side terminals, because these dynamics are much faster.
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Figure 35: Simulation of operation mode 2: (a) a1 = 0.001 (b) a1 = 0.05
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• The only eigenvalue can be improved is the critical marginal stable real pole. This mode

cannot get faster then the dynamics of wind side VSCs. As a result we cannot expect

good performance in this control scheme. But this safe mode does help stabilize the

system when grid side terminals cannot.

Time domain simulation is presented in Figure 35 for two a1 values. Figure 35(a) uses

control gains solved when a1 = 0.001, the corresponding eigenvalues are the blue points in

Figure 34. And Figure 35(b) uses control gains solved when a1 = 0.05, which is corresponding

to red poles in Figure 34.

Note that when there are multiple grid connecting terminals, the chance that the MTDC

system is regulated solely by wind side VSCs is very small. This scenario can be viewed as

a worst case situation for grid side failure.

6.2.3 Full participating voltage regulation

Figure 36 shows the analysis on close-loop eigenvalues for operating mode 2. Again, in this

section, only LMI weight coefficient a1 is swiped.

It can be seen that the eigenvalue movements in Figure 36 is almost identical to Figure 32.

This is because the slow wind side VSCs cannot improve any dynamic modes that are faster

than themselves, as we have shown in Figure 34.

The only difference can be observed is on the critical real pole. Thus the zoom-in plots

are compared in Figure 37. In grid side voltage regulation (Figure 37(a)), the critical pole is

getting faster and faster towards left when a1 increases. However, when wind side VSCs join

the effort, this dynamic mode splits into two real poles, with one dragged towards the slower

wind turbine dynamics. The more wind side terminals participate, the slower this pole will

get.

This shows that when grid side terminals have enough capacity, bring in the wind side

terminals to system level control is not a good idea in term of performance.
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Figure 36: In operation mode 3, close-loop eigenvalues when weight coefficient a1 increases:

(a)a1 from 0.001(blue) to 0.01(red) (b)a1 from 0.01(blue) to 0.1(red)
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Figure 37: Compare critical poles in operation mode 1(a) and 3(b), when weight coefficient

a1 changes from 0.001(blue) to 0.01(red)
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6.3 SUMMARY

In this chapter, a 4-terminal MTDC system for off-shore wind integration is studied. It is a

variance of the case used in Chapter 5. The slow local dynamics of wind farm connected VSC

is modeled using our two-stage modeling procedure. The proposed control design method

is then applied to address 3 possible operation modes of wind integration system. Close-

loop performance of the three control scheme is studied through analytical analysis and

simulation.
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7.0 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

VSC-MTDC systems are showing great potential on several crucial grid applications: On

transmission level, integrating massive renewables; and provide better isolation between dif-

ferent AC areas On micro-grid level, it can serve as an efficient backbone to tie in distributed

generation and storage to loads. Compared to the maturing technology on device level, more

research effort is needed on the system and operation level.

In this thesis, the modeling and control problems for a general VSC-MTDC are inves-

tigated. A comprehensive solution for MTDC systems from modeling to control design is

introduced. Our methodology contains:

• A two-stage modeling procedure derived for arbitrary MTDC setups. It is a small signal

average modeling method in state space. The first stage models the local dynamics, while

system dynamics and coupling are considered in the second stage. The procedure can be

applied to various MTDC applications.

• A reconfigurable controller that can represent different control structure and commu-

nication constraints. In our case study, we have shown that multiple existing control

strategies in literature can be described by our control formulation.

• A LMI-based control design algorithm. The control problem is formulated into a standard

LMI problem, which can be efficiently solved by multiple convex optimization tools.

Detailed guidelines on LMI parameter tuning is introduced and demonstrated in multiple

use cases
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We have demonstrated in our test cases that the proposed method can help one easily

explore a large design space of various system setups, applications, and control strategies.

Benefit of the proposed method includes:

• Solve different MTDC problems in one unified procedure: modeled and formulated into

the same form, and solved by the same optimization method.

• Transfer controller tuning problem from a large set of control gains to a few LMI pa-

rameters with clear performance indication. Make the complex MIMO control problem

more manageable.

Two MTDC systems for different application are studied. For each application, multiple

control structures are designed and evaluated. These forms a good set of use cases for the

proposed method. From these examples, we obtain the following understanding for MTDC

control problems:

• There are two key pairs of trade-off in a MTDC system: 1. trade-off between control

performance and effort; 2. trade-off between local real power tracking and system voltage

regulation. We conclude that the LMI method can find a balance in both, and show

how each can be adjusted through LMI parameters: the former by tuning weights in

cost function and the later by adjusting elements in parameter matrix H. The detailed

tuning procedure is summarized and verified under different use cases.

• The capability of different control topologies is also studied and compared. While dis-

tributed controller can already stabilize the system, it shows limited capability in pole

adjustment due to the reduced level of controllability. When communication is allowed

between terminals, the LMI algorithm is able to coordinate the terminals to greatly

reduce oscillation and increase control of eigenvalue positions.

• When fast and slow VSC subsystems co-exist in one MTDC system. The slow ones won’t

contribute to the system dynamics that is faster then itself. Natural dynamics of the

system can only be changed by a terminal whose local control is faster.
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7.2 FUTURE WORK

The following is a list of possible future work:

• Formulate and solve secondary DC voltage control and DC power flow control using the

proposed control design method. Both problems are proved to be very important in AC

grid, and could be useful in an MTDC system when its scale gets larger and topology

gets more complex. The general control architecture is supported by our controller

formulation.

• Evaluate the change of system’s natural dynamics in different operating points. Current

small signal analysis is only good for a specified operating condition. However, a key

potential of MTDC systems is to support different power transmission or deliver direction.

Understand the influence of changing operating point and design control accordingly can

be a promising direction for advanced MTDC systems.
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