
SHARED RESOURCE MANAGEMENT FOR

NON-VOLATILE ASYMMETRIC MEMORY

by

Miao Zhou

B.S., Huazhong University of Science and Technology, 2004

M.S., Huazhong University of Science and Technology, 2007

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Miao Zhou

It was defended on

April 30, 2015

and approved by

Rami Melhem, PhD, Computer Science Department

Bruce R. Childers, PhD, Computer Science Department

Daniel Mossé, PhD, Computer Science Department

Yiran Chen, PhD, Electrical and Computer Engineering Department

Dissertation Director: Rami Melhem, PhD, Computer Science Department

ii

SHARED RESOURCE MANAGEMENT FOR NON-VOLATILE ASYMMETRIC

MEMORY

Miao Zhou, PhD

University of Pittsburgh, 2015

Non-volatile memory (NVM), such as Phase-Change Memory (PCM), is a promising energy-

efficient candidate to replace DRAM. It is desirable because of its non-volatility, good scalabil-

ity and low idle power. NVM, nevertheless, faces important challenges. The main problems are:

writes are much slower and more power hungry than reads and write bandwidth is much lower than

read bandwidth. Hybrid main memory architecture, which consists of a large NVM and a small

DRAM, may become a solution for architecting NVM as main memory. Adding an extra layer

of cache mitigates the drawbacks of NVM writes. However, writebacks from the last-level cache

(LLC) might still (a) overwhelm the limited NVM write bandwidth and stall the application, (b)

shorten lifetime and (c) increase energy consumption.

Effectively utilizing shared resources, such as the last-level cache and the memory bandwidth,

is crucial to achieving high performance for multi-core systems. No existing cache and bandwidth

allocation scheme exploits the read/write asymmetry property, which is fundamental in NVM. This

thesis tries to consider the asymmetry property in partitioning the cache and memory bandwidth

for NVM systems.

The thesis proposes three writeback-aware schemes to manage the resources in NVM systems.

First, a runtime mechanism, Writeback-aware Cache Partitioning (WCP), is proposed to partition

the shared LLC among multiple applications. Unlike past partitioning schemes, WCP considers the

reduction in cache misses as well as writebacks. Second, a new runtime mechanism, Writeback-

aware Bandwidth Partitioning (WBP), partitions NVM service cycles among applications. WBP

uses a bandwidth partitioning weight to reflect the importance of writebacks (in addition to LLC

iii

misses) to bandwidth allocation. A companion Dynamic Weight Adjustment scheme dynamically

selects the cache partitioning weight to maximize system performance. Third, Unified Writeback-

aware Partitioning (UWP) partitions the last-level cache and the memory bandwidth cooperatively.

UWP can further improve the system performance by considering the interaction of cache parti-

tioning and bandwidth partitioning. The three proposed schemes improve system performance by

considering the unique read/write asymmetry property of NVM.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Problem statement . 3

1.2 Solution Overview . 4

1.3 Contributions . 4

2.0 BACKGROUND AND RELATED WORK . 6

2.1 Phase Change Memory . 6

2.1.1 Phase Change Memory Background . 6

2.1.2 Architectural techniques for PCM . 11

2.2 Management of Shared Caches . 16

2.2.1 Cache Replacement . 16

2.2.2 Cache Partitioning . 17

2.3 Bandwidth Partitioning . 18

2.4 Coordinated Cache and Bandwidth Partitioning 19

2.5 Non-volatile Main Memory Architectures . 20

3.0 CACHE PARTITIONING USING WRITEBACK INFORMATION 22

3.1 Motivation for Writeback-aware Cache Partitioning 22

3.2 Writeback-aware Cache Partitioning . 24

3.2.1 Monitoring of Writebacks . 24

3.2.2 Extended Utility Monitors (E-UMON) . 26

3.2.3 Cache Partition Selection . 28

3.2.4 Weight Computation for Performance Optimization 29

3.3 Write Buffer Balancing Replacement . 32

v

3.4 Experimental Methodology and Metrics . 33

3.5 Evaluation Results and Analysis . 35

3.5.1 Dynamic Weight Adjustment for WCP . 35

3.5.2 Unbalanced Write Buffers . 37

3.5.3 Memory Lifetime . 37

3.5.4 Energy Consumption . 38

3.5.5 Performance . 39

3.5.6 Sensitivity Study . 41

3.5.7 Hardware Overhead . 44

3.6 Conclusion . 44

4.0 BANDWIDTH PARTITIONING USING WRITEBACK INFORMATION 45

4.1 Limited Memory Device Bandwidth . 45

4.2 Architecture Support for Writeback-Aware Bandwidth Partitioning 47

4.2.1 Bandwidth Partitioning . 47

4.2.2 Architecture Overview . 50

4.3 Writeback-aware Bandwidth Partitioning . 52

4.3.1 CPI Formula Extension . 53

4.3.2 Queuing Delay Derivation . 54

4.3.3 Maximizing Weighted Speedup . 54

4.4 Dynamic Weight Adjustment . 56

4.5 Evaluation Results . 58

4.5.1 Performance . 58

4.5.2 Effective Read Latency . 61

4.5.3 Dynamic Weight Adaptation Granularity 61

4.5.4 Sensitivity Study . 62

4.6 Conclusion . 64

5.0 COORDINATING THE PARTITIONING OF CACHE AND BANDWIDTH 65

5.1 Interaction of Cache and Bandwidth Partitioning 65

5.2 Coordinated Partitioning of Cache and Bandwidth 68

5.2.1 Problem Definition . 68

vi

5.2.2 Search Driven Partitioning . 69

5.2.3 Model Driven Partitioning . 70

5.2.4 Architecture of UWP . 75

5.3 Evaluation Results . 76

5.3.1 Search Driven Partitioning . 76

5.3.2 Performance . 77

5.3.3 Memory Lifetime . 80

5.3.4 Energy Consumption . 81

5.3.5 Sensitivity Study . 81

5.4 Conclusion . 84

6.0 CONCLUSION . 85

BIBLIOGRAPHY . 87

vii

LIST OF TABLES

1 Basic attributes of different memory technologies 2

2 Partitioning weights for different optimization objectives 28

3 Baseline configuration . 33

4 Benchmark classification based on writebacks per 1000 instructions 34

5 Multiprogrammed workloads of Light, Medium and High 34

6 Storage overhead of WCP in a 8-core system . 44

7 Parameters for the analytic model . 49

8 Latency overhead of search driven schemes and UWP 77

viii

LIST OF FIGURES

1 PCM cell structure . 7

2 The process of PCM write operations . 8

3 Example current-voltage behavior of PCM cells 9

4 Hybrid Main Memory Architecture . 20

5 Architectural components to enable WCP . 23

6 An example of tracking writebacks from a cache 25

7 Performance impact of cache partitioning weight 36

8 Average occupancy of write buffers when there are congested write buffer(s) 37

9 Impact on memory lifetime . 38

10 Impact on memory energy consumption . 38

11 Impact on weighted speedup . 39

12 Impact on system throughput . 40

13 Impact on fairness . 40

14 Sensitivity of WCP and WBB to memory write latency 41

15 Sensitivity of WCP and WBB to # of memory channels 42

16 Sensitivity of WCP and WBB to write buffer size 42

17 Sensitivity of WCP and WBB to # of cores . 43

18 Percentage of device bandwidth for DRAM and hybrid memory systems 46

19 Throughput of RBP normalized to SHARE . 47

20 Architecture abstractions for bandwidth partitioning 48

21 Components added to memory controller and OS to support WBP 51

22 Writeback-aware bandwidth partition steps/timeline 52

ix

23 Weighted speedup normalized to SHARE . 59

24 Throughput normalized to SHARE . 60

25 Fairness normalized to SHARE . 60

26 Average effective read latency normalized to SHARE 61

27 Performance impact of dynamic weight adaptation granularity 62

28 Sensitivity of bandwidth partitioning schemes to memory write latency 63

29 Sensitivity of bandwidth partitioning schemes to # of memory channels 63

30 Sensitivity of bandwidth partitioning schemes to # of cores 64

31 Performance of mcf-bzip2 . 66

32 Number of workloads favoring each static partitioning configuration 67

33 Architectural components to support UWP . 74

34 Weighted speedup of search driven partitioning and UWP normalized to SHARE . . 76

35 Weighted speedup of WBP, WCP, WBP+WCP and UWP normalized to SHARE . . 78

36 Throughput of WBP, WCP, WBP+WCP and UWP normalized to SHARE 79

37 Fairness of WBP, WCP, WBP+WCP and UWP normalized to SHARE 79

38 WBPKI of WBP, WCP, WBP+WCP and UWP normalized to SHARE 80

39 Energy consumption of WBP, WCP, WBP+WCP and UWP normalized to SHARE . 81

40 Sensitivity of UWP to memory write latency . 82

41 Sensitivity of UWP to number of memory channels 83

42 Scalability of UWP . 83

x

LIST OF EQUATIONS

3.1 Equation (3.1) . 28

3.2 Equation (3.2) . 28

3.3 Equation (3.3) . 28

3.4 Equation (3.4) . 28

3.5 Equation (3.5) . 29

3.6 Equation (3.6) . 35

3.7 Equation (3.7) . 35

3.8 Equation (3.8) . 35

4.1 Equation (4.1) . 50

4.2 Equation (4.2) . 53

4.3 Equation (4.3) . 53

4.4 Equation (4.4) . 53

4.5 Equation (4.5) . 54

4.6 Equation (4.6) . 54

4.7 Equation (4.7) . 54

4.8 Equation (4.8) . 54

4.9 Equation (4.9) . 55

4.10 Equation (4.10) . 55

4.11 Equation (4.11) . 55

4.12 Equation (4.12) . 55

4.13 Equation (4.13) . 56

4.14 Equation (4.14) . 57

xi

4.15 Equation (4.15) . 57

4.16 Equation (4.16) . 57

4.17 Equation (4.17) . 58

5.1 Equation (5.1) . 68

5.2 Equation (5.2) . 69

5.3 Equation (5.3) . 71

5.4 Equation (5.4) . 71

5.5 Equation (5.5) . 71

5.6 Equation (5.6) . 71

5.7 Equation (5.7) . 72

5.8 Equation (5.8) . 72

5.9 Equation (5.9) . 72

5.10 Equation (5.10) . 72

5.11 Equation (5.11) . 72

5.12 Equation (5.12) . 72

5.13 Equation (5.13) . 73

xii

LIST OF ALGORITHMS

3.1 Monitoring Hits . 27

3.2 Monitoring Writebacks . 27

3.3 Adjusting Cache Partitioning Weight (wc) Dynamically 30

3.4 Write Buffer Balancing Replacement . 32

5.1 Search Driven Partitioning . 70

5.2 Lookahead Cache Partitioning Algorithm . 73

xiii

1.0 INTRODUCTION

Designing large capacity and energy-efficient memory systems becomes an increasingly important

issue nowadays due to the high demands of modern data-intensive applications, the adoption of

multicore processors and virtualization. Improving the energy efficiency of computing systems is

a vital part towards a green society as the power consumed by computing systems is substantial.

The U.S. Environmental Protection Agency estimated that the annual energy cost for data centers in

2011 was $7.4 billion. The energy/power demand of modern processors has been lowered through

numerous architectural and design techniques, such as dynamic voltage and frequency scaling

(DVFS) [39]. With energy efficient processors and the increasing size of the memory systems,

main memory becomes a significant system power consumer [44, 1].

In past decades, DRAM has been the best candidate for main memory due to its low cost per

bit. However, the memory capacity of data centers and servers has increased tremendously due to

the large footprints of modern applications and the advent of multi-core systems. In these systems,

DRAM static power accounts for a substantial portion of energy. As a result, the memory sub-

system has become a major consumer of power, which has fueled research in alternative memory

technologies. Non-volatile memory (NVM) is proposed as a replacement for DRAM or in addition

to DRAM (using a smaller DRAM as a cache for the larger NVM). NVM is a desirable technology

because of its non-volatility, low power for reads and very low idle power. Some of the NVM tech-

nologies include NAND Flash, Change Memory (PCM) [33, 15] and Spin-Transfer Torque RAM

(STT-RAM) [50, 78, 20, 8, 36, 10].

NAND Flash is not suitable for serving as the main memory. It has very limited number of

write/erase cycles: 105 rewrites [19] as opposed to 1016 for DRAM. NAND Flash also requires

a block to be erased before writing into that block, which introduces considerably extra delay

and energy. Moreover, NAND Flash can only be accessed in blocks and is not byte-addressable.

1

Attribute DRAM NAND Flash PCM STT-RAM

Non-Volatile No Yes Yes Yes

Byte-addressable Yes No Yes Yes

Read Latency 20-50 ns 25 µs 50 ns 2 ns

Write Latency 20-50 ns 500 µs 1 µs 10 ns

Endurance 1016 104-105 107-108 1012

Cell Area 6 F 2 5 F 2 5-8 F 2 37-40 F 2

Table 1: Basic attributes of different memory technologies

Therefore, NAND flash has been proposed as a disk cache [4, 35] or a replacement for disks [86]

where writes are relatively infrequent, and happen mostly in blocks.

The other two NVM technologies, PCM and STT-RAM, are promising candidates for energy-

efficient memory technology. Both of them share the common advantages of non-volatility, byte-

addressability and scalability [24, 32]. STT-RAM is faster than PCM, and has nearly the same

endurance as DRAM [79]. PCM, on the other hand, is much denser than STT-RAM. The cell area

for DRAM, PCM and STT-RAM are 6F 2 [81], 5-8F 2 [41], and 37-40F 2 [12] respectively, where

F is the feature size. PCM also has excellent scalability within current CMOS fabrication method-

ology [71, 68, 41, 60, 70]. PCM’s attributes, along with the common advantages of emerging

memory technologies, make it a promising candidate of main memory [6, 42, 64].

Table 1 compares the basic attributes of NAND Flash, PCM and STT-RAM against DRAM [12,

22, 9, 41, 45, 79, 81, 96]. Unlike DRAM, NVM has a unique read/write asymmetry property (in

terms of access latency, energy consumption and endurance).

In this dissertation, I explore using of PCM as main memory. Although PCM has many promis-

ing properties, it faces important challenges. It is wearable such that only 107 to 108 writes can be

performed. A PCM device would fail in days or even hours without wear-leveling [96, 65, 7, 18].

Moreover, PCM is slower and consumes more energy on writes than DRAM. Hybrid main mem-

ory architectures [42, 17, 64] have been proposed to alleviate the problem. The hybrid architecture

2

introduces a small DRAM as the last-level cache (LLC) before a large PCM, and is the baseline

memory architecture in this thesis.

Last-level cache and memory bandwidth are two important resources impacting system per-

formance. In a single-core system, cache reduces the average access latency and off-chip memory

traffic, while the available memory bandwidth determines the processing rate of off-chip accesses.

In a multi-core system, cores compete for these resources, drastically increasing their performance

impact. Qureshi and Patt showed that cache partitioning improves the cache utility and system

performance. They proposed to partition the LLC to minimize the total number of LLC misses

to achieve better system performance, based on the observation that a reduction in LLC miss rate

correlates with an improvement in IPC [63].

Bandwidth partitioning has also been shown to be beneficial for system performance. Liu

et al. [47] proposed an analytic model to understand how off-chip bandwidth partitioning affects

system performance. By allocating bandwidth according to the analytic model, they were able to

improve the weighted speedup by up to 20% in a DRAM memory system.

The existing cache partitioning and bandwidth partitioning techniques [63, 47] do not consider

the unique read/write asymmetry property of NVM. In this dissertation, we propose cache parti-

tioning and bandwidth partitioning techniques that are tailored for NVM main memory systems by

considering the read/write asymmetry property of NVM.

The rest of this dissertation is organized as follows: Chapters 1.1, 1.2 and 1.3 describe the

problem we are solving, present our solution and contributions, respectively. Chapter 2 presents

background information and related work. The proposed techniques are presented in Chapter 3

through Chapter 5. Chapter 6 concludes the thesis.

1.1 PROBLEM STATEMENT

Computing systems are part of our lives today, not only in a recognizable form but ranging from the

large clusters in data centers to embedded systems in handy devices. Building energy-efficient and

large capacity memory systems is very important. NVM technologies are promising candidates for

energy-efficient memory. However, typical NVMs face certain challenges due to undesirable write

3

properties. It is our goal to propose techniques to better utilize the shared resources (last-level

cache capacity, and memory bandwidth) to mitigate the undesirable impacts of memory writes by

exploiting the unique read/write asymmetric property of NVM. This work is important for enabling

energy-efficient NVM as the main memory.

1.2 SOLUTION OVERVIEW

In this dissertation, we propose three techniques to improve the shared resource utility and miti-

gate the negative effects of non-volatile memory’s write operations. First, writeback-aware cache

partitioning (WCP) is proposed to divide the last-level cache among competing applications such

that the number of misses and writebacks are reduced. A companion scheme, write buffer bal-

ancing (WBB) replacement, spreads writeback traffic among memory banks to reduce the delay

due to congested memory write requests. Second, writeback-aware bandwidth partitioning (WBP)

splits memory device service cycles among competing applications to optimize the overall system

performance. Finally, we study the interaction between cache partitioning and bandwidth parti-

tioning. Unified Writeback-aware Partitioning (UWP) allocates the cache and memory bandwidth

cooperatively to further improve the shared resource utility.

1.3 CONTRIBUTIONS

This dissertation makes the following contributions:

• It introduces the concept of writeback-aware partitioning which is suitable for shared resource

management in NVM systems.

• It proposes Writeback-aware Cache Partitioning (WCP) to partition the LLC of NVM. WCP

takes into account writeback information, and outperforms a seminal technique, UCP, in terms

of system throughput, fairness, memory lifetime and energy efficiency. It also proposes WBB

to manage the cache partition of each application to ensure that the writeback traffic to write

buffers is balanced.

4

• It proposes Writeback-aware Bandwidth Partitioning (WBP) to account for writeback informa-

tion to partition the memory bandwidth. A companion scheme, Dynamic Weight Adjustment

(DWA), is proposed to find the best bandwidth partitioning weight at runtime based on work-

load behavior.

• It demonstrates the benefits of managing the last-level cache and memory bandwidth coopera-

tively. An analytic model is introduced to quantify the performance impact of cache partition-

ing coordinated with bandwidth partitioning. Based on the analytic model, Unified Writeback-

aware Partitioning (UWP) is proposed to partition cache and memory bandwidth coopera-

tively.

In conclusion, this thesis finds that LLC writeback information is important in managing the

shared resources (e.g., LLC capacity and memory bandwidth) for systems with NVM due to the

unique asymmetric property. By intelligently considering the LLC writeback information, we can

improve the utility of the shared resources and achieve better system performance. The thesis

also finds that coordinated management of the LLC capacity and memory bandwidth can further

improve the overall shared resource utility and system performance. Although the thesis specif-

ically considers PCM, most of the results can equally apply to other NVM technologies such as

STT-RAM.

5

2.0 BACKGROUND AND RELATED WORK

2.1 PHASE CHANGE MEMORY

2.1.1 Phase Change Memory Background

Phase Change Memory (PCM) is a non-volatile memory that exploits the unique behavior of phase

change material to store information. Although the technology emerged recently, the theory of

phase change material has its origins early in 1960s when Ovshinsky reported a reversible change

in resistivity upon a change in phase in certain glasses [58]. The first Phase Change Memory

device was announced in Electronics by Neale et al. [66]. In the following years, the advance of

semiconductor manufacturing technology enabled the development and application of PCM. Phase

change material is already widely used in rewritable CDs and DVDs, in which the same alloy is

used as the PCM memory developed by Numonyx. By exploiting the electrical resistivity of phase

change material, PCM is drawing increasing interest recently, as it can be used as a memory cell

and organized into memory array similar to DRAM.

A conventional DRAM cell uses a capacitor to store a bit of information. Analogously, a

PCM cell uses phase change material to remember a bit. The phase change material is one type of

chalcogenide alloy, such as Ge2Sb2Te5 (GST), which has two stable physical states: amorphous

and crystalline. In the amorphous state, the material is highly disordered and exhibits high re-

sistivity. In the crystalline state, the material has a regular crystalline structure and exhibits low

resistivity. PCM exploits the difference in resistivity between these two states of the material to

6

Figure 1: PCM cell structure

store data. Typically, a cell in the amorphous state (high resistance) is regarded as a logic “0”

(RESET state), and a cell in crystalline state (low resistance) is regarded as a logic “1” (SET state).

Unlike DRAM that relies on constant refresh to retain its data, the state of GST is preserved even

after the cell is powered off, meaning that PCM is non-volatile.

A PCM cell is composed of several components (Figure 1). A layer of chalcogenide (GST)

is sandwiched between two electrodes. A joule heater is placed between GST and the bottom

electrode. The structure forms a PCM cell, which appears as a resistance in the circuit. Reading

data from a PCM cell involves sensing the resistance level of the cell. This is done by applying

a small voltage across the two electrodes so that the resistance of GST can be measured. This

process is non-destructive and has negligible heat stress compared to write operations.

PCM write operations are done by changing the physical state of the GST material. The writing

process requires controlling the temperature of the material to achieve the desired state. When

heated above its crystallization temperature (−300◦C) but below its melting temperature (−600◦C)

over a period of time, GST turns into a low-resistance crystalline state (which corresponds to logic

“1” or SET state). When heated above its melting point and quenched quickly, GST turns into

a high-resistance state (which corresponds to logic “0” or RESET state). Figure 2 illustrates the

two process of PCM write operations. Figure 3 shows the example current-voltage behavior of

PCM cells. Though writing a PCM cell incurs high operating temperature, the thermal cross-

7

Figure 2: The process of PCM write operations

talk between adjacent cells at 65nm is shown to be negligible even without thermal insulation

material [60]. Similar to the multi-level flash memory, the phase change material can also be

programmed into four or more distinct states, forming a multi-level PCM cell that can represent

four or more values [60, 9].

Despite the differences with DRAM cells, PCM can still use a similar array structure as DRAM

arrays. It can use the same peripheral logic such as decoders, row buffers, request/reply networks

etc. as the DRAM array [43]. In a typical PCM cell array structure, each PCM cell is connected

between an access transistor and a bitline (BL). The access transistor is controlled by the wordline

(WL). In order to access a PCM cell, its wordline is selected to enable the access transistor, which

forms a path between the cell’s bitline and ground. Read or write operations on the PCM cell are

then done by applying different voltage pulses on the bitline. Selecting a wordline enables the

access transistor of a series (“row”) of PCM cells. By controlling the bitlines using a column mux,

read or write operations can be performed on selected cells in that row.

There are two main options for the access of the device in a PCM cell: a transistor or a diode.

A diode has a simpler structure, and hence is good for cell density. However, a diode cannot satisfy

the high write current requirement beyond sub-100nm technology [84]. Also the scaling rule for a

8

Figure 3: Example current-voltage behavior of PCM cells

diode is not as clear as in NMOS [60]. Lastly, the diode-based cell has been reported to be more

vulnerable to errors induced by writing data to adjacent cells because of bipolar turn-on of the

nearest-neighbor cells [29]. Taking all of the above, especially the scalability, into consideration, I

assume transistor-based PCM cells in my experiments. My assumption was also confirmed by Li

et al. [26].

PCM’s advantages. Like DRAM, PCM memory is byte-addressable, giving it a big advantage

over current NAND Flash technology that only supports block accesses. PCM offers comparable

read latency as DRAM. Typical area size of PCM cell is 5-8F 2 [41], meaning that PCM has similar

density to DRAM.

With shrinking feature size, DRAM is facing serious scaling problems as it is bounded by the

limitation in cell-bitline capacitance ratio. DRAM has been found to be difficult to scale below

40nm [82]. PCM, on the other hand, offers much better scalability: When a PCM cell shrinks, the

volume of the GST material shrinks as well, resulting in less write current. Hence PCM provides

9

a truly scalable solution compared to conventional DRAM. A recent prototype by Liang et al.

demonstrated the viability of the PCM cell reaching 2.5nm technology node [26].

Like NAND Flash, PCM is non-volatile. In theory, a PCM cell only consumes energy when it

is accessed (read or write). This makes it possible to build memory chips with low leakage, which

is crucial to meet the low-power requirements of future memory systems. Moreover, PCM uses

physical states instead of electrical charge to represent data, making it much less vulnerable to the

soft errors caused by alpha particles or cosmic radiation.

PCM’s disadvantages. Due to repeated heat stress applied to the phase change material, PCM

has limited number of write cycles (i.e., write endurance). A single cell can typically sustain 107-

109 writes before a failure occurs [19, 9, 16]. While this is much better than NAND Flash, it could

be a big concern if PCM is used in main memory. A PCM device without any lifetime improvement

technique may last only about 100 days running a typical SPEC CPU program.

PCM’s write operation is also slower than its read operation due to the heating/cooling process

during a write. What makes things worse is that PCM write incurs high current injection (e.g., 0.6-

1mA), resulting in high write power (2.88-4.8mW per bit) [43]. When PCM is used as memory,

a multi-bit memory write (e.g., writing a 512-bit memory line) is usually completed in several

rounds, with each round writing part of the line. This makes PCM’s per-access write latency even

longer. For example, Numonyx reported a 1us page write latency for its PCM prototype. This long

per-access write latency and high write power have created some major issues when using PCM in

main memory.

Another issue is the resistance drift in multi-level cells (MLC) [88, 23]. After a multi-level

PCM cell is programmed, its resistance may increase and saturate over time, which is termed “re-

sistance drift” [90]. Previous studies have indicated that the phenomena is caused by the structural

relaxation of chalcogenide material, which is a thermally-activated, atomic rearrangement of the

amorphous structure [88]. Resistance drift can cause a PCM cell to change to another state at run-

time, causing a soft error. A study by Awasthi et al. has shown that the drift may occur as soon as

1.81 seconds after a cell is programmed [52]. In response to this problem, architectural techniques

have been proposed to mitigate the issue without high overhead [52, 90]. In this thesis, I assume a

single-level cell PCM which does not have the resistance drift issue. However, the techniques pro-

posed in this thesis are independent of PCM cell technology. They can be extended to multi-level

10

cell (MLC) and are orthogonal to the drift-mitigating schemes.

While PCM is favored due to its non-volatility, high scalability and low power consumption,

it suffers from the undesirable properties such as its slow, power hungry and destructive write

operation. Next, we will described the existing architectural techniques to mitigate the endurance

and performance problem of PCM.

2.1.2 Architectural techniques for PCM

PCM has an endurance of 107 to 109 writes per cell [19, 9, 16]. If a specific cell is written once a

second, it will take only 115 days for that cell to pass 107 writes. This shows that, even with a very

low write rate per cell of one write per second, PCM endurance is not enough to sustain a lifetime

of 7 to 8 years. which is the expected lifetime of a server assuming obsolescence and capacity

limits.

A number of techniques have been proposed to increase lifetime of PCM devices and PCM

memory systems. These techniques vary from write minimization (avoiding unnecessary writes),

to various forms of wear-leveling, to changes in bit encoding. Some important techniques are

presented in the following subsections.

The goal of the techniques presented below is to remove writes that are redundant or modify

the value to be written to reduce the number of bits to be altered. This can be done at the cell, row

or even at higher levels of aggregation.

Read-before-write. A read is executed before the write and only the cells that store values

different from the values to be written are updated, and the cells that already have the final value

are not modified. Many PCM devices [33, 37, 43] implement this scheme at the cell level.

Partial writes. In this technique [42], higher level caches (the one closest to the main memory)

track dirty word or line and pass that information to the main memory. This additional information

allows the PCM memory controller and devices to ignore the unmodified portions of the cache.

In [64], a similar technique, called Line-Level Writes, is proposed that stores dirty information per

cache line.

Flip-N-Write. Flip-N-Write uses an additional bit in each row to determine if the value is

stored in a normal encoding or inverted [7]. The decision of which way to store is taken based

11

on the lowest number of changed bits between the already stored data and the new data. This

technique reduces the number of bits to write, thus increasing write bandwidth to the memory.

PCM write performance is power limited so more bits can be written simultaneously within the

same power budget. Less energy is consumed per transaction increasing energy-efficiency of the

memory.

In a system in which all the cells have the same endurance, an uneven distribution of wear can

cause cells that have more wear to fail prematurely, causing the whole memory to fail even though

most of the cells are still healthy. Wear-leveling has the objective of distributing the wear evenly

over the cells, avoiding premature cell failures and consequently increasing the memory lifetime.

The memory access pattern of applications does not normally follow a regular pattern of an even

distribution of writes over the whole memory, but it is highly skewed (see Chapter 3) directing a

higher number of writes to a small number of memory locations. The memory subsystem have

to counteract that access pattern to avoid premature failures and achieve a higher lifetime. Wear-

leveling is applied to achieve this goal and can be implemented using different algorithms and

granularities. A common implementation disconnects the physical address from a logical address

using a mapping function that translates a logical address to the corresponding physical address.

This mapping function allows the translation to be changed, pointing a logical address to different

physical locations, throughout the lifetime of the memory effectively distributing the writes to the

logical address over a larger number of physical addresses. Some of the wear-leveling algorithms

use a configurable mapping function, while others implement a mapping table. Some of the al-

gorithms require the physical memory to be larger than what is addressable by a logical address

(excess capacity), while others do not require but support this implementation. The wear-leveling

algorithms proposed to be used in PCM memories are described below.

Row Shifting. This technique implements wear-leveling at the row level [96]. The mapping

of the physical cells and the logical cells in a row is shifted by a certain amount at each write,

This technique is designed to mitigate the difference in wear of cells in a row. In [96], it is shown

that writes to a specific row in general do not modify all bits in the row but tend to affect only a

small subset (low order bits for example). By shifting the row, the physical location of a particular

bit changes, hence distributing the writes to a single bit over a number of physical cells. It is

proposed to use coarser shift instead of small ones (closer to 1bit shift), since modified bits tend to

12

cluster [96].

Segment Swapping. In segment swapping, each bank of memory is subdivided into fixed

size segments. Each segment is composed of a number of rows. By using of a mapping table,

the mapping of a logical segment and a physical segment can be made flexible, thus allowing any

logical segment to map to any physical segment in that bank. Segment swapping exchanges both

the mapping between logical segments and the data, preserving the information but exchanging

the physical segment that now holds the data. Segment swapping is proposed in [96] to create a

more coarse level wear-leveling. The key to the technique is the selection of the segments that are

swapped. The segments chosen in [96] are the ones with the least number of writes since the last

swap (above a threshold). Segments that are 1MByte in size are used to reduce the overhead in

counters and the size of the mapping table. The memory is unable to respond to requests whenever

a segment is being swapped, so even when the number of swaps is small (every 2 · 106 writes) the

latency of copying the data can be significant, since 2MBytes have to be transferred.

Fine-Grained Wear-Leveling. This technique is used to achieve intra-page wear-leveling [64].

Each page of 4KBytes is divided into 16 sub-pages and a shift number is added to the logical sub-

page number to map to the corresponding physical sub-page. In [96], this shift number is changed

only when the page is allocated by the operating system and it is not changed until the page is

freed. The shift number is allocated randomly whenever it is changed.

Start-Gap. Start-gap is a low overhead wear-leveling technique [65]. The low overhead is

achieved by using a programmable mapping function instead of a mapping table. The mapping

function uses two counters, the start and gap counters. The start counter marks which physical

address corresponds to the logical address 0 and the gap marks the start of the gap, a sequence of

physical addresses that are not currently mapped to any logical address. The physical pages work

as a circular buffer with the mapping determined by a start and gap counters. Periodically, based on

number of writes, the gap counter is incremented and the information stored at the previous end of

the gap is copied to the physical address pointed by the gap counter. This action remaps the logical

address that corresponds to the gap entry to a new physical address. Since the physical memory is

treated as a circular buffer, a particular logical address will point to all physical addresses during

the lifetime of the memory.

Some memories utilize error correction, and in NAND Flash and PCM, ECC has been proposed

13

as a way to deal with cell failures. ECC reserves additional bits to store redundant information

allowing errors to be detected and corrected. ECC is heavily used in servers DRAM main memory

where memory errors cannot be tolerated. In a write, the error correcting code is generated and

stored in addition to the original information. In a read, the stored error correcting code is compared

to the one generated on the fly, if the original error correcting code and the newly generated code

do not agree, an error has occurred. The ECC is capable of correcting errors up to a determined

number of incorrect bits and detecting but not correcting a larger number of incorrect bits. The

limits are determined by the number of additional bits used for ECC. In [69], ECC is determined

to be detrimental to PCM and Error-Correcting Pointers (ECP) is proposed. ECC is detrimental to

PCM because it requires more bits to be written for each write, increasing power consumption and

decreasing write bandwidth. ECC also increases the number of bits modified in each write, because

a single data bit changed will affect some or all bits in the error correcting code. ECC is used to

detect bits that changed after writes which is useful in DRAM or flash, but not so useful in case of

PCM since after a bit is successfully written it will not fail. ECP repurposes the excess bits to be

used as pointers and replacements bits. When a write to a memory cell fails, a set of pointer and

replacement bit is allocated and the correct value is stored in the replacement bit and the pointer

contains the number of the failed bit. This removes the need of computing the error correcting code

both in the write and the read, and reading the correct bit is a matter of swapping the incorrect bits

pointed by the ECP code. ECP also avoids increasing the number of bits to be written by changing

the pointer only when a new failure is detected otherwise the pointer and replacement bits are kept

at 0. It is shown that ECP leads to a longer lifetime than ECC.

PCM write latency is one of the major limitations of the technology. Even though PCM reads

are expected to be several times slower than DRAM reads, PCM writes are one or more orders of

magnitude slower than PCM reads [42, 96]. Write bandwidth is also severely limited by power,

since each cell written consumes a significant amount of power, limiting the total number of cells

that can be written simultaneously. Read bandwidth does not suffer from that limitation and it

is one to two orders of magnitude higher than write bandwidth. One of the simple solutions that

has been adopted is write avoidance: to reduce the number of writes to PCM, by both reducing

the total number of write operations and the number of bits that are written. Write avoidance

has a significant energy and latency impact. Other performance improving techniques have been

14

proposed such as write cancellation and a improved PCM requests scheduler.

Write Avoidance. Flip-N-Write can reduce the write access traffic to the PCM devices by

reducing the number of bits that are simultaneously written to the memory [7]. Partial writes and

Read-before-write when used at a line/row level potentially can remove unnecessary writes [96].

The drawback of partial writes is the requirement of additional dirty bits to store the dirty status in

a higher granularity. Read-before-write requires a read operation before a write and in worst case

can have a small increase in latency since reads are much faster than writes.

Request Preemption and Pausing. PCM Request preemption is used to improve performance

by reducing the impact of high latency operations. Both reads and writes can be preempted [61, 95].

The advantage of preemption is reduction of latency for higher priority requests even if another

operation is already ongoing for that bank. Read preemption increases energy consumption since

the operation has to be reexecuted in the future. Writes are the large latency offender in PCM,

they are up to 10x slower than reads and are often not in the critical path. Write preemption (write

cancellation) has the potential to improve latency at the cost of energy efficiency and memory

lifetime [61]. The additional energy and wear are consequences of the reexecution of the write

since the previous write was not completed and the stored value differs from the expected. These

techniques try to limit the impact by not allowing preemptions to occur to the same request too

many times [61, 95]. An alternative scheme, write pausing, is proposed to pause the write operation

between steps in the loop (overprogramming) and resume the write later [61]. This operation does

not incur in energy overhead, since the operation is not repeated but restarted from the point it was

stopped. The request is paused so no additional latency is necessary beyond the delay caused by

the requests interposed to the paused one.

Memory Request Scheduling. A new memory controller is proposed to implement a schedul-

ing algorithm that is more amenable to PCM [95]. The scheduling algorithms proposed in [95] are

a modification of PAR-BS [56], which is a fair scheduling algorithm designed for CMP systems

and is modified to include write and read preemption in an effort to improve latency for higher

priority requests. The preemption of requests that can be close to finishing does not improve la-

tency significantly and can be detrimental to energy efficiency. Threshold limits are implemented

to preclude preemption to requests that will take less than the threshold to finish. The advantage

of specializing the memory controller to PCM is the ability to explore the difference in internal

15

operations between PCM and DRAM. DRAM, contrary to PCM, requires that a read be followed

by a write in a row, since reads are destructive while PCM reads are harmless. PCM can have pre-

emptable reads or writes, while preemption in DRAM are not possible since that would provoke

information loss in reads and a single write buffer prevents simultaneous operation (read with a

write date buffered). This is possible in PCM since read data do not have to be stored to preserve

information.

Zhou et al. [92] studied the memory scheduling algorithms suitable for embedded systems with

PCM main memory. It is proposed to reorder PCM requests based on criticality of the requests to

reduce latency and the number of missed deadlines.

2.2 MANAGEMENT OF SHARED CACHES

Cache is an important resource that impacts the application/system performance. For an applica-

tion, the cache replacement policy decides which cache block to evict to make room for an inserted

cache block. An effective cache replacement policy can keep the highly reusable data in the cache

longer to achieve better cache utility and application performance. In a CMP system with a shared

cache, the allocation of the shared cache capacity on applications/cores can greatly influence the

overall utility of the shared cache. In this dissertation, we consider both cache replacement and

cache partitioning policies which are effective and suitable for asymmetric NVM memory systems

by taking into consideration the LLC writeback information. This section discusses the existing

cache replacement and cache partitioning techniques.

2.2.1 Cache Replacement

TADIP [27] is a dynamic insertion policy (DIP) that dynamically identifies the application charac-

teristic and inserts single-use blocks (dead on fill) in the LRU position to evict as early as possible.

PIPP [87] pseudo partitions cache space to each application by having a different insert position

for each application, which is determined using a utility monitor as in UCP. Upon hits, each block

is promoted toward the MRU by one position. PIPP also considers the streaming behavior of an

16

application. When an application shows streaming behavior, PIPP assigns only one way and allows

promotion with a very small probability (1/128).

Pseudo-LIFO mechanisms are a new family of replacement policies based on the fill stack

rather than the recency stack of the LRU [3]. The intuition of pseudo-LIFO is that most hits are

from the top of the fill stack and the remaining hits are usually from the lower part of the stack.

Pseudo-LIFO exploits this behavior by replacing blocks in the upper part of the stack, which are

likely to be unused.

Jaleel et al. proposed re-reference interval prediction (RRIP) [28]. Cache replacement poli-

cies use some method of future reference prediction. For example, LRU predicts that all caches

hits and misses will be re-referenced near-immediate. Dynamic insertion policies detect either a

near-immediate or distance re-reference pattern in runtime, but not both at the same time. If an ap-

plication shows a mixed pattern of temporal and non-temporal data, dynamic policies cannot hold

near-immediate blocks in the cache. RRIP solves the problem of this mixed pattern by inserting in-

coming blocks in the not near-immediate position and promote blocks toward the near-immediate

position upon hits. RRIP also uses a dynamic insertion policy to filter out non-temporal accesses.

Wu et al. proposed prefetch-aware cache management [85], which is built on RRIP.

There is limited study on cache replacement for Non-volatile main memory systems. Ferreira

et al. [18] proposed a clean-preferred page replacement algorithm named N-Chance for the DRAM

cache in a PCM main memory system. N-Chance gives preference to evict clean pages, which

reduces writebacks to PCM by coalescing writes in the DRAM cache.

2.2.2 Cache Partitioning

In an associative cache, the cache capacity can be partitioned by allocating either the cache ways

or the cache sets. Existing cache partitioning techniques can be classified into two categories:

way partitioning [63, 93] and set partitioning [30, 46]. This thesis studies the way partitioning

techniques that are effective for NVM memory systems.

Suh et al. first proposed dynamic cache partitioning schemes in chip multi-processors that

consider the cache utility (number of cache hits) using a set of in-cache counters to estimate the

cache-miss rate as a function of cache size [75, 74]. However, since the utility information is

17

acquired within a cache, information for an application cannot be isolated from other applications’

intervention.

Utility-based cache partitioning (UCP) [63] addressed this problem by proposing a utility mon-

itor (UMON) that uses separate structures, including ATD (auxiliary tag directory) and way coun-

ters. ATD maintains strict LRU-stack per application. Upon hits in ATD, the corresponding way

counters will be incremented. The optimal partition for all applications is determined to maximize

the overall number of cache hits.

Kim et al. considered the fairness problem from cache sharing such that slowdown due to

the cache sharing is uniform to all applications [38]. Moreto et al. proposed MLP-aware cache

partitioning, where the number of overlapped misses will decide the priority of each cache miss,

so misses with less MLP will have a higher priority [55]. IPC-based cache partitioning [77] con-

sidered performance as the miss rate varies. Even though the cache miss rate is strongly related

to performance, it does not always match the performance. However, since the baseline perfor-

mance model is again based on the miss rate and its penalty, it cannot distinguish GPGPU-specific

characteristics. Yu and Petrov considered bandwidth reduction through cache partitioning [89].

Srikantaiah et al. proposed the SHARP control architecture to provide QoS while achieving good

cache space utilization [73]. Based on the cache performance model, each application estimates

the cache requirement and central controllers collect this information and coordinate requirements

from all applications.

2.3 BANDWIDTH PARTITIONING

Similar to shared cache, memory bandwidth is also a critical shared resource for CMP systems.

More specifically, memory bandwidth can be referred to as two different resources: the bus band-

width and the bank bandwidth. In a DRAM system, the bus bandwidth is more likely to be the sys-

tem bottleneck due to the fact that DRAM banks can process request at a relative high speed [47].

In contrast, the bank bandwidth becomes the system bottleneck for a system with NVM (e.g.,

PCM) [94]. An intelligent bandwidth partitioning policy should always target the system bottle-

neck. This thesis studies the partitioning of the bank bandwidth. This section discusses the existing

18

memory bandwidth management techniques.

Past studies on bandwidth management took two directions. One direction focuses on memory

request scheduling. Rixner et al. [59] proposed the FR-FCFS policy to favor requests that hit in the

row buffer over other requests, and older over younger requests. Nesbit et al. [57] proposed Fair

Queuing Memory Scheduler to prioritize requests according to the QoS objectives. Ipek et al. [25]

proposed a reinforcement learning memory controller to adapt scheduling decisions. The other di-

rection manages off-chip bandwidth allocation among applications. Liu et al. [47] used an analytic

model to understand how off-chip bandwidth partitioning affects system performance. They also

considered the impact of prefetching on bandwidth partitioning in [48]. Wang et al. [83] proposed

a different model to reveal the relationship between various bandwidth partitioning schemes and

system objectives. Kaseridis et al. [34] balanced bandwidth requirements among chips through

workload migration. Ebrahimi et al. [13] proposed Fairness via Source Throttling (FST) to enable

fair sharing of the memory. FST throttles cores causing unfairness by limiting the memory requests

from the cores. FST is similar to WBP in certain ways. FST achieves fairness by throttling the

most aggressive thread (with the smallest slowdown). WBP partitions memory bandwidth such

that threads with higher bandwidth utility get more allocation, while threads with lower utility

get less bandwidth share. FST throttles aggressive threads (with small slowdown), while WBP

“throttles” less efficient threads (with small bandwidth utility). No existing research tries to incor-

porate writeback information in bandwidth partitioning decisions for non-volatile memory. The

techniques proposed by Liu et al. [47] are the most related to ours. Our work differs in two as-

pects. First, we study partitioning of PCM device bandwidth which is the performance bottleneck

in non-volatile memory. Second, our proposal takes into account writeback information which we

show to be important to bandwidth partitioning.

2.4 COORDINATED CACHE AND BANDWIDTH PARTITIONING

Bitirgen et al. [2] proposed a global resource manager that uses Artificial Neural Networks (ANNs)

to manage the allocation of shared cache capacity and off-chip bandwidth. The study showed that

coordinated cache and bandwidth partitioning can outperform unmanaged cache and bandwidth

19

Figure 4: Hybrid Main Memory Architecture

partitioning. As ANN is a black box optimizer, fundamental insights of how cache and bandwidth

partitioning interact remain undiscovered. Also, Bitirgen et al. [2] did not consider the unique

asymmetry property of non-volatile memory.

2.5 NON-VOLATILE MAIN MEMORY ARCHITECTURES

To mitigate the shortcomings of non-volatile memory, many researchers propose to add an extra

cache layer in front of the non-volatile memory [42, 17, 64]. This cache layer can be used in two

ways. It can cache clean and dirty blocks for the memory. It could also be used as a write cache to

store dirty blocks. The architecture that we study applies the first method because it benefits both

read and write accesses, while the latter approach benefits only writes.

Figure 4(a) shows the main memory architecture that we consider throughout the thesis. Mem-

ory operations issued by the CPU are serviced by private L1 and L2 caches. Misses to the L2

cache, as well as writebacks from the L2 cache, are sent to the shared L3 cache, which is the last-

level cache. The LLC works as a traditional write-allocate cache with a write-back policy (to the

non-volatile memory). That is, when a modified cache line is evicted from the LLC, it must be

written to the memory. The LLC is beneficial to PCM main memory: by coalescing a sequence of

20

writes to the same line in the cache, the LLC partially mitigates the negative impacts of memory

writes.

The hybrid main memory architecture can benefit non-volatile memory that suffers from the

disadvantages of write operations. In this thesis, we study the hybrid memory architecture using

Phase Change Memory as the main memory. Figure 4(b) presents the organization of PCM main

memory with c channels of b banks each. Each bank has a r-entry read buffer (RDB) and a w-entry

write buffer (WRB) for pending requests. When a writeback of a cache line from the LLC occurs,

a write request is sent to the PCM, which is queued at a write buffer. The application progresses

without delay if the write buffer has available entries since the writebacks are not on the critical

path. However, the application stalls when the write buffer is full and cannot accept the request.

21

3.0 CACHE PARTITIONING USING WRITEBACK INFORMATION

3.1 MOTIVATION FOR WRITEBACK-AWARE CACHE PARTITIONING

Efficiently using the last-level cache (LLC) is crucial to improve system performance. For DRAM

systems, Qureshi and Patt show that a reduction in LLC miss rate correlates with an improvement

in IPC [63]. In their work, they classify applications as low utility, high utility and saturating utility

depending on whether and how much an application benefits from a larger cache. A low-overhead

circuit named UMON is introduced to monitor the utility information of each application. They

propose Utility-based Cache Partitioning (UCP) to partition the LLC in a way that applications

with high utility are given more cache quota, while applications with low utility get a small portion

of the LLC. In this way, UCP outperforms LRU.

For hybrid main memory, however, reducing miss rate is insufficient to achieve high system

performance. Reducing the number of LLC writebacks is also important due to the asymmetric

property of non-volatile memory. In a hybrid memory architecture, memory writes are much

slower than reads, and the memory write bandwidth is much lower than read bandwidth. These

characteristics make it likely that the write buffers will become congested. Once the write buffers

are full, the application stalls when a writeback from the LLC occurs. In this case, a writeback is

more harmful than a cache miss because a memory write is much slower than a read.

Writebacks can also negatively affect memory lifetime and energy consumption. Non-volatile

memory, such as NAND Flash, PCM and STT-RAM, has limited write endurance, and memory

writes are more power hungry than reads. As a result, too many writebacks from the LLC shorten

the memory lifetime and consume more energy.

To the best of our knowledge, no existing cache partitioning and replacement scheme accounts

for writeback information. Figure 5 shows the architectural overview of my approach to support

22

Set 0
Set 1
Set 2

Set S-1

Hit and writeback information

(# hits and # avoided writebacks on

each LRU recency position)

Requested address

from Core 0:

Core N-1

E-UMON

Partition

Selection

Weight

Computation

LRU/VALID/

DIRTY Bits
Tag Data

Way 0

Tag Data

Way 1

Tag Data Tag Data

Way M-1Way 2

Tag Index Offset

= = =

Write Buffer Balancing (WBB)

Replacement Logic

Core 0
Core 1

One per core

WRQ Congestion

Time

Average WRQ

Occupancy

Memory Monitor

(MMON)

Sampled WRQ

Occupancy

Memory Controller

Writeback-aware Cache Partitioning (WCP) Logic

Cache partitioning Configuration

Shared LLC

CLR

CLR

Cache partition for Core 0

Figure 5: Architectural components to enable WCP

writeback-aware cache partitioning and replacement. It presents four major architectural com-

ponents (gray colored in Figure 5), as follows. The extended utility monitor (E-UMON) is an

extension of UMON that tracks hit and writeback information about an application. The mem-

ory monitor (MMON) tracks information about the write buffers of the memory devices. The

writeback-aware cache partitioning logic uses information collected by E-UMON and MMON to

select a cache partitioning configuration. It includes two modules: partition selection and weight

computation. The write buffer balancing replacement logic uses information from MMON to pick

a victim entry when a cache miss occurs. Chapter 3.2.2 describes E-UMON. Chapter 3.2.3 explains

23

the cache partition selection scheme. Chapter 3.2.4 describes MMON and the weight computation.

WBB replacement is described in Chapter 3.3.

3.2 WRITEBACK-AWARE CACHE PARTITIONING

Writeback information is important for efficient partitioning of the LLC in a hybrid main memory.

This section describes the mechanism to track writeback information, and proposes writeback-

aware cache partitioning.

3.2.1 Monitoring of Writebacks

The writeback information that E-UMON monitors is based on the concepts of stack distance

and stack property. Stack distance was introduced to study the behavior of storage hierarchies by

Mattson et al. [53]. In a replacement policy that has the stack property, such as Least Recently

Used (LRU) replacement, each set of a set-associative cache is viewed as a stack. All cache lines

in the set are ordered by the last access time, where the top of the stack is the Most Recently Used

(MRU) cache line, and the bottom is the LRU cache line. Stack distance is defined as the LRU

recency position of a cache line when it is accessed again. It is critical for monitoring miss rate.

An access is a hit if the cache associativity is no less than the stack distance.

Figure 6 shows a sequence of references to an M-way set-associative cache. The five accesses

are to the same cache line X . Assume that a write-back policy is used by the cache. A dirty cache

line X exists in the cache after time t1 when the first write access to X happens. Assume also that

subsequent reads to the same cache line occur at t2, t3 and t4, and another write access occurs at

t5. The stack distances for these five accesses are 4, 3, 5, 2 and 7. For instance, the cache line X

has a LRU recency position of 3 before the read access happens at t2, and is promoted to the top of

the LRU stack after t2. The following are some observations about the five references to the same

cache line X:

• If 1 ≤ M < 3, then the dirty cache line X is evicted from the cache. The eviction causes a

writeback to the next level cache/memory between t1 and t2.

24

Figure 6: An example of tracking writebacks from a cache

• If 3 ≤ M < 5, then the writeback of cache line X happens between t2 and t3.

• Finally, if 5 ≤ M < 7, then cache line X is written back to the next level cache/memory

between t4 and t5.

Hence, to avoid the writeback of cache line X between t1 and t5, the cache associativity should be

at least 7, which is the maximum value among 3, 5 and 7.

Here are two conclusions derived from the example. First, each write access leads to a potential

writeback. A dirty line exists in the cache after a write access. The dirty line might eventually be

evicted and cause a writeback. Second, a writeback is avoided if the dirty line stays in the cache

until the next write access happens to the same line.

Consider a general example for an M-way set-associative cache. There is a sequence of ac-

cesses to the same cache line X , {W0, R1, R2, ..., Rn,Wn+1}, including two write accesses (W0

and Wn+1) and n read references (R1, R2, ..., Rn). The stack distances for these accesses are

25

SD0, SD1, SD2, ..., SDn, SDn+1. Write access W0 causes a writeback when the dirty cache line

X is evicted before the next write access W1 arrives. Cache line X will not be written back

to the next level cache/memory between two write accesses W0 and W1 if and only if accesses

R1, R2, ..., Rn and Wn+1 are hits on the cache. In other words, a writeback of the cache line X

could be saved if and only if M ≥ max(SD1, SD2, ..., SDn, SDn+1).

The writeback avoidance distance of write access W0 to cache line X is defined as the max-

imum stack distance of all the accesses to cache line X which happens between W0 and the next

write access to cache line X . A write access causes a writeback if the cache associativity is less

than its writeback avoidance distance.

It is known that the LRU policy obeys the stack property, which means that an access that hits

in a LRU managed cache containing M ways is guaranteed to also hit if the cache has more than

M ways. The stack property also applies to writebacks: a write that does not cause a writeback in

an M-way cache is guaranteed to also not cause a writeback in a cache with more than M ways.

The reason is that all accesses between two consecutive writes are hits on a cache with more than

M ways, if they are all hits on an M-way cache.

3.2.2 Extended Utility Monitors (E-UMON)

To make cache partitioning decisions among applications, the partitioning scheme needs to know

the hit and writeback information of applications with different number of ways. Since LRU obeys

the stack property, it is possible to track this information with a shadow tag array containing the

same number of ways as the shared cache.

Mechanisms to monitor hit information have been described by many researchers [54, 63].

Similar to UMON [63], E-UMON monitors hit information of an application executing on core c

through a shadow tag array and hit counters. The shadow tag array has the same associativity as

the shared LLC. Each shadow tag entry has three fields: valid bit (V), tag address (TAG) and LRU

bits (LRU) that track stack distance of each access. Dynamic set sampling [62] is applied to reduce

the hardware overhead. Our evaluation shows that sampling 32 sets is sufficient for a cache with

2048 sets.

The shadow tag array is updated on every access to the LLC, using LRU replacement. Of

26

Algorithm 3.1 Monitoring Hits
parameters:

i: Core id

st: The accessed shadow tag entry

addr: The accessed address

if st.TAG == GetTagAddress(addr) then

st.SD ← GetLruRecencyPosition()
HIT i

st.SD ← HIT i
st.SD + 1

end if

Algorithm 3.2 Monitoring Writebacks
parameters:

i: Core id

st: The accessed shadow tag entry

addr: The accessed address

if st.TAG == GetTagAddress(addr) then

st.SD ← GetLruRecencyPosition()
if st.D == TRUE then

st.WAD ← max(st.WAD, st.SD)
end if

if the access is a write operation then

AWBi
st.WAD ← AWBi

st.WAD + 1
st.WAD ← 0

end if

else

st.WAD ← 0
end if

course, E-UMON only updates the tag entries that belong to the sampled sets. E-UMON tracks

the hit information through a set of counters, based on the information in the shadow tag array (see

Algorithm 3.1). For an M-way cache, M counters HIT i
0, HIT i

1, ..., HIT i
M−1 are used to get hit

information. HIT i
c is the number of additional hits when the cth way is available for core i, where

0 ≤ c ≤ M − 1. Counter HIT i
sd is incremented on each hit on the shadow tag array, where sd is

the stack distance.

To obtain writeback information, E-UMON adds two additional fields to each shadow tag en-

try: dirty bit (D) and the writeback avoidance distance (WAD). Writeback information is recorded

through the avoidable writeback counters AWBi
0, AWBi

1, ..., AWBi
M−1, where AWBi

c is the

number of avoidable writebacks if the cth way is available for 0 ≤ c ≤ M −1 (see Algorithm 3.2).

The writeback avoidance distance for each write access is tracked through the WAD field of the

shadow tag entry. Initially, the WAD fields of all shadow tag entries are initialized to 0. Once

the shadow tag entry is modified (i.e., the dirty bit D has been set), WAD records the maximum

stack distance of the following accesses to the entry until the next write occurs. When a write hit

happens, counter AWBi
wad is incremented, where wad is the writeback avoidance distance. The

WAD field is reset after each write hit, and starts tracking the writeback avoidance distance of the

newly-arrived write access.

With the knowledge of hit and writeback information, the partitioning scheme can compute the

27

Optimization Objective Partitioning Weights

Cache Miss Rate [63] wHit = 1, wAwb = 0
Memory Dynamic Energy wHit : wAwb = ER : EW ,

where ER and EW are energy consumption of a

memory read and write request.

Memory Writes wHit = 0, wAwb = 1

Table 2: Partitioning weights for different optimization objectives

number of hits (hitsM ′) and avoidable writebacks (avoidablewritebacksM ′) for an M ′-way cache,

where M ′ < M , as follows.

hitsM ′ =
M ′

−1
∑

c=0

HIT i
c (3.1)

avoidablewritebacksM ′ =

M ′
−1

∑

c=0

AWBi
c (3.2)

3.2.3 Cache Partition Selection

Let πi be the number of the ways used by core i. For cache way partitioning, π̄ = {π0, ..., πN−1} is

a valid partition for a system with N cores and an M-way shared LLC, when it satisfies:

N−1
∑

i=0

πi = M,where 1 ≤ πi ≤M −N + 1. (3.3)

Based on the hit and avoidable writeback counters in E-UMON, Writeback-aware Cache Par-

titioning (WCP) tries to select a valid partition that maximizes a weighted sum of the number of

misses and the number of writebacks:

N−1
∑

i=0

πi−1
∑

c=0

(wHit ·HIT i
c + wAwb ·AWBi

c) (3.4)

Two parameters wHit and wAwb are partitioning weights assigned to hit counters and write-

back counters. These two parameters determine the relative importance of reducing misses and

minimizing writebacks. The suitable partitioning weights differ for various system optimization

objectives.

28

Table 2 gives the partitioning weights for three optimization objectives. UCP was proposed to

improve the system performance of a DRAM system by reducing the overall LLC miss rate [63].

UCP is a specific case of WCP with wHit = 1 and wAwb = 0. If the dynamic power efficiency of

the memory is the criteria, then the partitioning weights should satisfy wHit : wAwb = ER : EW ,

where ER and EW are energy consumption of a memory read and write request. The reason is that

a memory read is avoided for a hit, while a memory write is saved for each avoided writeback. If

reduction of memory writes is the objective, then wHit = 0 and wAwb = 1 should be used.

3.2.4 Weight Computation for Performance Optimization

The appropriate partitioning weights for performance optimization are not obvious. Different

workloads might favor different weights. Consider two extreme scenarios. For applications with

few write memory accesses, there are limited writebacks from the LLC, which is not enough to

saturate the memory write bandwidth. In this case, the system performance is affected by the hit

rate—not the number of writebacks, and thus, the best choice is wHit = 1 and wAwb = 0 (WCP

behaves the same as UCP). At the other extreme, for applications with many write accesses, many

writebacks cause applications to stall due to overwhelmed memory bandwidth. The penalty of in-

curring a writeback is much higher than a cache miss as a memory write operation is much slower

than a read. Therefore, the parameters should satisfy wAwb > wHit. More importantly, these two

cases might happen for the same applications from one execution phase to another. To simplify

the problem, a new parameter wc is defined as wc = wAwb/wHit, which is used in the following

maximization problem:

N−1
∑

i=0

πi−1
∑

c=0

(HIT i
c + wc · AWBi

c) (3.5)

It is experimentally shown in Chapter 3.5.1 that a universal partitioning weight does not exist.

A partitioning weight that works the best for one workload might be a bad choice for another

workload. A good solution should adjust wc dynamically for different workloads, or even for

different phases of the same workload. The adaptation of the cache partitioning weight is based on

two observations.

First, wc should be proportional to the urgency of reducing writebacks. It is not desirable

to reduce (or increase) the total number of misses at the cost of much higher (lower) number of

29

Algorithm 3.3 Adjusting Cache Partitioning Weight (wc) Dynamically
parameters:

WB: Number of write buffers

AWBOi: The average occupancy of write buffer i
WBCT : Number of cycles when there exists a congested write buffer

EPOCH CY CLES: Number of cycles per epoch

MaxAWBO =
WB−1

max
i=0

AWBOi

if MaxAWBO ≥ ThreshOccuHigh then

if (WBCT/EPOCH CY CLES ≥ ThreshWBCongest) and (wc < wBoostV alue) then

wc ← wBoostV alue
else

wc ← wc + 1
end if

else if MaxAWBO ≤ ThreshOccuLow then

wc ← wc − 1
end if

writebacks. For example, if the write buffers are rarely congested, then it is unimportant to reduce

the number of writebacks for performance optimization. In this case, a small weight is favorable.

However, a large weight should be used to reduce miss rate as well as writeback rate, if the write

buffers are congested.

Second, applications tend to have bursts of writes that cause bursts of writebacks from the

LLC. It is beneficial to recognize the burst periods as soon as possible and choose a big weight to

mitigate the negative impact of saturated memory bandwidth.

The cache partitioning weight wc is adjusted periodically at epochs that last 5 million cycles.

The weight computation module selects a weight at the beginning of each epoch based on informa-

tion from MMON. MMON has three types of information about the phase change main memory:

write buffer congestion time, sampled write buffer occupancy, and average write buffer occupancy.

Write buffer congestion time (WBCT) is the number of cycles when a write buffer is full. Sam-

pled write buffer occupancy (SWBO) records the occupancy of write buffers. The occupancy of a

write buffer is defined as the ratio of the number of pending requests to its capacity. Average write

buffer occupancy (AWBO) is the average occupancy of write buffers during an epoch. WBCT

and AWBO are reset at the beginning of each epoch, while SWBO is updated at fixed-length time

intervals called quanta (i.e., 10 thousand cycles).

The weight is initialized to 0 when the system starts and changed by the cache partitioning

30

weight adjustment policy as described in Algorithm 3.3. The proposed scheme uses the parameters

ThreshOccuHigh = 80%, ThreshOccuLow = 50%, wBoostV alue = 5 and ThreshWBCongest =

20%.

• If there is a write buffer with high occupancy (AWBO ≥ ThreshOccuHigh) and the write

buffers are congested for a long time (WBCT/EPOCH CY CLES ≥ ThreshWBCongest),

then the weight is either boosted to wBoostV alue or incremented. If the weight is already

larger than wBoostV alue, then it is incremented. Otherwise, the weight is set to wBoostV alue.

• If a write buffer has high occupancy (AWBO ≥ ThreshOccuHigh) but the write buffers are

not congested for a long time (WBCT/EPOCH CY CLES < ThreshWQCongest), then the

weight is incremented.

• If all write buffers are underutilized (AWBO < ThreshOccuHigh), then the weight is decre-

mented.

WCP partitions the LLC after the selection of the partitioning weight. WCP selects the cache

partition that produces the maximum weighted sum of total hits and saved writebacks (Equation

(3.5)). Our scheme guarantees that each partition has at least one way (πi ≥ 1 for 0 ≤ i ≤ N − 1).

To better blend past and recent information, the hit counters and saved writeback counters in E-

UMONs are halved after each epoch.

To enforce the cache partitioning decisions of WCP, a (logN)-bit core identifier field is intro-

duced to the tag-store entry of each cache line for a N-core processor. The core identifier indicates

which core owns the cache line. The cache replacement engine ensures that each core does not use

more cache resources than its quota. On a cache miss, the replacement engine counts the number

of cache blocks within the set that belong to the application that causes the miss. If the application

uses more cache blocks than its quota, the replacement engine replaces the LRU block among all

the blocks that belong to that application. Otherwise, the LRU block among all the blocks that do

not belong to the application is evicted.

31

Algorithm 3.4 Write Buffer Balancing Replacement
output:

V ictimEntry: the victim entry

Populate S with candidate entries

Set S ⇐ SortByLastT imeUsed(S) {S[1]← LRU}
if there exists invalid entries then

V ictimEntry ← an invalid entry

else

V ictimEntry ← S[1]
for i← 1 to LengthOf(S) do

WriteBufferId← GetMappedWriteBufferId(S[i])
if (IsEntryClean(S[i]) == TRUE) or

(GetSampledOccupancy(WriteBufferId) < ThreshOccuHigh) then

V ictimEntry ← S[i]
break

end if

end for

end if

3.3 WRITE BUFFER BALANCING REPLACEMENT

When a dirty cache line is evicted from the LLC, it will cause a memory write. The memory

write request will be queued in the corresponding write buffer when possible, and the application

continues without stalling. However, the application stalls if the corresponding write buffer is full.

Write Buffer Balancing (WBB) replacement avoids these delays by evicting (a) a clean line or (b)

a dirty cache line which is mapped to a write buffer with fewer pending requests. By distributing

writebacks evenly among write buffers, WBB reduces the delays due to writebacks from LLC. Note

that WBB is in charge of replacing cache lines within cache partition (i.e., for each application)

and is orthogonal to the cache partitioning policy.

Algorithm 3.4 shows the pseudo-code for WBB that finds a victim entry. When a cache miss

happens, an invalid entry is used whenever possible. When all entries are valid, starting from the

LRU to the MRU entry, WBB searches the candidate entries, and checks whether there exists one

that is (a) clean or (b) mapped to a write buffer under relatively low load (i.e., with a sampled oc-

cupancy less than ThreshOccuHigh). Such an entry is selected as a victim, if it exists. Otherwise,

the LRU entry is selected as the victim. WBB behaves the same as LRU when the applications

generate few writes. In this case, each write buffer has few pending requests.

32

3.4 EXPERIMENTAL METHODOLOGY AND METRICS

Simics [51] is used to model the processor, L1 and L2 caches, and generate memory traces, which

are input to an in-house cycle-accurate simulator that models the shared DRAM last-level cache

and PCM. Our baseline system is a 8-core CMP with a three level cache hierarchy. The L1 and

L2 caches are private to each core. Each L1 instruction and data cache is a 4-way 64KB cache

and each L2 cache is a unified 2MB 8-way associative cache. The sizes of the L1 and L2 caches

are unchanged throughout our study. The DRAM cache for a 8-core system is a 64-way 32MB

shared last-level cache (4MB per core). Each core issues two instructions per cycle, and has a 168-

entry instruction window. An evaluation of the proposed schemes on 2-, 4- and 16-core systems is

included to validate the scalability of the proposed schemes. The DRAM LLC size (associativity)

is proportional to the number of cores. For example, a 4-core system has a 32-way 16MB DRAM

cache. Table 3 shows the parameters in the default configuration. The permutation-based page

interleaving scheme [91] is used as the address mapping scheme for phase change main memory.

Assuming there are 2q write buffers, the lower order q bits of the DRAM LLC tag and the lower

order q bits of the DRAM cache set index are used as the input to a q-bit bitwise XOR logic

to generate the write buffer index. This interleaving scheme requires negligible area overhead

compared to E-UMON and WCP, which dominate in total overhead (see Chapter 3.5.7). Note that

Processor
8-core CMP, 4GHz, Out-of-Order

168-entry instruction window, 2 instructions per cycle in each core

L1 Icache, Dcache private, 64KB, 64B line, 4-way, LRU

L2 Cache
private, 2MB, 256B line, 8-way, LRU

15 cycles access latency

DRAM LLC
shared, 32MB, 256B line, 64-way, writeback policy

50 cycles access latency

Main Memory

64GB PCM, 4 channels of 8-banks each

32-entry write buffer per bank

8-entry read buffer per bank

read priority scheduling via write pausing [61]

PCM
read: 200 cycles (50ns) latency, 1 J/GB energy consumption

write: 4000 cycles (1µs) latency, 6 J/GB energy consumption

Table 3: Baseline configuration

33

Type Benchmark

W-L 400.perlbench, 403.gcc, 416.gamess, 434.zeusmp, 435.gromacs,

436.cactusADM, 444.namd, 447.dealII, 453.povray, 454.calculix,

456.hmmer, 458.sjeng, 464.h264ref, 465.tonto, 471.omnetpp, 481.wrf,

482.sphinx, 483.xalancbmk

W-ML 401.bzip2, 410.bwaves, 433.milc, 437.leslie3d, 445.gobmk, 473.astar

W-MH 450.soplex, 459.GemsFDTD, 463.libquantum

W-H 429.mcf, 470.lbm

Table 4: Benchmark classification based on writebacks per 1000 instructions

the NVM is provisioned with write pausing [61] to enable fast processing of the memory reads.

Benchmarks. The SPEC CPU2006 benchmarks are used for evaluation. Table 4 characterizes

the benchmarks in terms of writebacks. Based on writebacks per 1K instructions (WBPKI), the

benchmarks are classified into four types: Heavy (W-H), Medium-Heavy (W-MH), Medium-Light

(W-ML), and Light (W-L). From this classification, fifteen workloads are created, as described

in Table 5. The WBPKI and the percentage of memory bandwidth consumed by write requests

(WB%) for each workload for the baseline scheme (UCP) are also listed. Light, Medium, and

Workload WBPKI WB% Benchmarks

Light1 1.42 11.3% cactusADM, hmmer(3), perlbench(2), sjeng(2)

Light2 1.51 12.1% cactusADM(2), bwaves(2), hmmer, sjeng(3)

Light3 1.98 16.7% bzip2(2), bwaves, zeusmp(3), xalancbmk(2)

Medium1 5.38 22.1% astar, bzip2(3), GemsFDTD(3), libquantum

Medium2 5.42 22.9% bzip2(3), leslie3d, libquantum(2), soplex(2)

Medium3 5.63 23.7% astar(2), leslie3d(2), soplex(2), GemsFDTD(2)

Medium4 6.10 25.4% astar(2), cactusADM(2), GemsFDTD(2), libquantum(2)

Medium5 6.68 27.5% bzip2(2), bwaves, GemsFDTD(3), libquantum(2)

Medium6 7.29 34.8% GemsFDTD(2), lbm(2), soplex(2), xalancbmk(2)

Medium7 7.89 36.3% bwaves(3), mcf(3), xalancbmk, zeusmp

Medium8 8.87 38.4% mcf(2), soplex(2), xalancbmk(2), zeusmp(2)

Medium9 9.71 43.2% leslie3d, mcf(3), soplex(3), xalancbmk

High1 13.11 67.5% lbm(2), mcf(2), omnetpp(2), xalancbmk(2)

High2 19.37 74.2% mcf(2), omnetpp(3), xalancbmk(3)

High3 22.41 89.4% gobmk(3), mcf(3), xalancbmk(2)

Table 5: Multiprogrammed workloads of Light, Medium and High

34

Heavy are workloads with light, medium and heavy LLC writebacks.

Each benchmark was run in Simics. Simulation for a 8-core system is continued until each

benchmark executes at least 1 billion instructions. If one benchmark finishes its 1 billion instruc-

tions before the other benchmarks finish, it is restarted so that the eight benchmarks continue

competing for shared resources such as DRAM LLC and the memory bandwidth.

Evaluation Metrics. To understand the performance impact, three performance metrics are

measured in the experiments. The three performance metrics are weighted speedup [72], through-

put and fairness, which are defined as follows:

Weighted Speedup =
∑

(CPIalone,i/CPIi); (3.6)

Throughput =
∑

1/CPIi; (3.7)

Fairness = N/
∑

(CPIi/CPIalone,i), (3.8)

where CPIi is the CPI (average number of cycles per instruction) of application i when it executes

with other applications, and CPIalone,i is the CPI of the same application when it executes alone.

The weighted speedup metric indicates reduction in execution time. The throughput of the system

is indicated by the sum of the IPCs (e.g., the inverse of CPI). The fairness metric is the harmonic

mean of normalized IPCs [31]. This section also evaluates the impact of the proposed schemes on

memory lifetime and energy consumption.

3.5 EVALUATION RESULTS AND ANALYSIS

To understand the effectiveness of our schemes, WCP is compared against the state-of-the-art LLC

partitioning policy, UCP [63]. Sensitivity studies on memory write latency, number of memory

banks, write buffer length and the epoch length are also included.

3.5.1 Dynamic Weight Adjustment for WCP

Figure 7 shows the weighted speedup and throughput of WCP with different partitioning weights

normalized to SHARE. SHARE is the baseline scheme which allows all applications compete for

35

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+

345+ ,4567+ ,45689+ ,456:;!+

<%=+

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!
"
#$

%
&'
()
*
+>
.
#"
2
-
.
1
2
/+

<?=+

Figure 7: Performance impact of cache partitioning weight

the shared LLC capacity and memory bandwidth without management. That is, SHARE assumes

LRU as the cache replacement policy. Results are shown normalized to SHARE, unless otherwise

noted. The bar labeled “average” is the average result of all 15 workloads. Note that WCP with

w = 0 is identical to UCP. The results clearly show that there is no universal static weight for

different workloads. From the weighted speedup perspective, there are four workloads that favor a

static weight of 5, four benefit from a weight of 20, and seven workloads perform similarly with a

weight of 5 or 20. WCP DYN (WCP with dynamic weight adjustment) outperforms UCP, WCP 5

and WCP 20 for all but three workloads. On average, WCP 5 improves weighted speedup by

6.5%, WCP 20 improves weighted speedup by 8.3%, and WCP DYN improves weighted speedup

by 11.1%, compared to UCP. For High1, the dynamic weight adjustment policy outperforms the

best static weight by more than 10%. This is because WCP DYN adapts to different workloads

and different execution phases of the same workload. This illustrates the importance of adjusting

partitioning weight based on the urgency of reducing writebacks. For the remainder of the thesis,

WCP by default means WCP DYN.

36

!"!#

!"$#

!"%#

!"&#

!"'#

("!#
!
"
#
$%

&
'
$(
)
)
*
+
,
-
)
.
$

/01$ %01$ /012%''$ %012%''$

Figure 8: Average occupancy of write buffers when there are congested write buffer(s)

3.5.2 Unbalanced Write Buffers

Figure 8 shows the average occupancy of all write buffers when at least one write buffer becomes

congested. The instantaneous occupancy of a write buffer is defined as the ratio of the number

of pending requests to its capacity. Each time a write buffer becomes full, the instantaneous oc-

cupancy of the write buffers are averaged. The average instantaneous occupancy of write buffers

are then averaged over time. The result shows that the distribution of writebacks among write

buffers is highly skewed without write buffer balancing. On average, when one write buffer is full,

the other write buffers are underutilized (with occupancy less than 0.4) for UCP and WCP. When

applying WBB, all write buffers are evenly utilized. WBB helps both UCP and WCP to reduce

the chances of filling up write buffers. For the remainder of the thesis, WBB is the default cache

replacement policy unless otherwise specified.

3.5.3 Memory Lifetime

Figure 9 shows the writebacks per 1K instructions (WBPKI) of UCP, WCP, UCP+WBB and

WCP+WBB normalized to SHARE. On average, UCP has similar WBPKI as SHARE. As an

extreme example, for Medium5, UCP incurs more than 20% more writebacks than SHARE. This

result happens because UCP tries to minimize the total number of misses at the cost of possibly

generating more writebacks. Unlike UCP, WCP takes into account information of both misses and

writebacks, and reduces the total number of misses and writebacks. For eight out of the fifteen

37

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#
!
"
#
$
%
&'
(
)
*
+,

-
.
/
0+

12.+ ,2.+ 12.3,--+ ,2.3,--+

Figure 9: Impact on memory lifetime

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

!
"
#$

%
&'
()
*
+,
-
)
#.
/
+0
"
-
12
$
3
4
"
-
+

506+ 706+ 5068799+ 7068799+

Figure 10: Impact on memory energy consumption

workloads, WCP reduces WBPKI by at least 25% over UCP. For Medium7, WCP achieves a re-

duction of 80% on WBPKI over UCP. Intuitively, for workloads with few writebacks, WCP is not

very effective in reducing writebacks. Assuming that a perfect wear-leveling scheme is applied, the

reduction in writebacks directly translates into a prolonging of the memory lifetime. As a result,

on average, WCP improves lifetime by almost 56% compared to UCP.

3.5.4 Energy Consumption

Figure 10 shows the energy consumption of UCP, WCP, UCP+WBB and WCP+WBB normalized

to SHARE. Overall, SHARE and UCP have similar energy consumption. WCP saves energy by

38

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+

345+ ,45+ 3456,77+ ,456,77+

Figure 11: Impact on weighted speedup

minimizing writebacks (i.e., memory writes) over both SHARE and UCP. WCP reduces the energy

for eight of the fifteen workloads by reducing memory writes which are energy hungry. WBB saves

energy for nine workloads, and increases energy consumption marginally for three workloads. It

is noticable that UCP+WBB can also reduce energy consumption. The reason is that applications

with many writebacks stall less frequently, and get a relatively larger cache quota when WBB is

applied. The writebacks generated by these applications are reduced as a result of a larger cache

partition. On average, WCP, UCP+WBB and WCP+WBB reduce energy by 14.8%, 7.3% and

15.5% over UCP, respectively.

3.5.5 Performance

Figure 11 shows the weighted speedup for different policies normalized to SHARE. On average,

UCP outperforms SHARE by 11.2% in terms of weighted speedup. For High1, however, UCP

reduces performance marginally compared to SHARE. This result happens because UCP changes

the cache partition configurations once every epoch (5 million cycles [63]) and, therefore, it cannot

respond to the phase changes that occur at a finer granularity. LRU (SHARE), on the other hand,

naturally responds to such a fine-grained phase change. WCP improves weighted speedup by

more than 15% for six out of the fifteen workloads over UCP. For High2, WCP outperforms UCP

by 21%. The benefits of using WBB are as follows. By distributing writebacks evenly among write

buffers, WBB benefits the weighted speedup in spite of the cache partitioning policy. When UCP

39

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#
!
"
#$

%
&'
()
*
+,
-
#"
.
/
-
0
.
1+

234+ 534+ 2346577+ 5346577+

Figure 12: Impact on system throughput

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!
"
#$
%
&
'
'
(

)*+(,*+()*+-,..(,*+-,..(

Figure 13: Impact on fairness

is used to partition the cache, WBB improves the weighted speedup by 10% on average. When

WCP is applied as the cache partitioning policy, WBB result in an average improvement of 7.4%

in weighted speedup.

Figure 12 shows the throughput of the proposed schemes normalized to SHARE. UCP achieves

an average of 11.7% throughput improvement over SHARE. WCP further improves the throughput

over UCP by 12.7% on average. For nine out of the fifteen workloads, WCP improves the through-

put by more than 10% over UCP. WCP+WBB improves the throughput by 21.1% on average over

UCP.

Cache partitioning and replacement policies might improve the performance of some applica-

tions by severely penalizing others. The harmonic mean of the normalized IPCs considers both

40

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!"""# $"""# %"""# &"""#

'
(
)*

+
,-
./
0
#1

/
-2
3
4/
0
#5
6
/
/
0
7
6
#

8/*()9#1)-4/#:+4/;<9#=>9<,/?@#

A>B# 1>B# A>BC1DD# 1>BC1DD#

Figure 14: Sensitivity of WCP and WBB to memory write latency

fairness and performance [31]. Figure 13 shows the performance of UCP, WCP, UCP+WBB and

WCP+WBB in terms of fairness. On average, WCP+WBB improves the fairness metric by 48.8%

compared to UCP.

3.5.6 Sensitivity Study

To analyze the benefit of our schemes under different system configurations, this section describes

a study of sensitivity to the memory write latency, the number of memory channels, the write

buffer size and the epoch length. This section shows only the results for weighted speedup since

the trends for throughput, fairness, lifetime and energy consumption are similar.

The write latency of the memory devices is varied to analyze the impact of the proposed

schemes. The memory read latency is unchanged (i.e., 200 cycles). The memory write latency

is varied from 1000 cycles (5x read latency) to 6000 cycles (30x read latency). Figure 14 shows

the weighted speedup of UCP, WCP, UCP+WBB and WCP+WBB normalized to SHARE as the

write latency varies. It only shows the average weighted speedup among 15 workloads. The im-

provement in weighted speedup decreases as memory writes become faster. This is expected as

the importance of using writeback information is proportional to the write latency, which is the

penalty of incurring a writeback when the memory bandwith is saturated. The weighted speedup

improvement of WCP+WBB over UCP is 5.3% when the write latency is 1000 cycles, 10.6% for

41

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!" #" $" %&"

'
(
)*

+
,-
./
0
"1

/
-2
3
4/
0
"5
6
/
/
0
7
6
"

'7*8/)"(9":/*();"<3+==/,>"

?<@" 1<@" ?<@A1BB" 1<@A1BB"

Figure 15: Sensitivity of WCP and WBB to # of memory channels

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!"# $%# "&# !%'#

(
)
*+

,
-.
/0
1
#2

0
.3
4
50
1
#6
7
0
0
1
8
7
#

2*.50#98:0*#6./0#

;<=# 2<=# ;<=>299# 2<=>299#

Figure 16: Sensitivity of WCP and WBB to write buffer size

2000 cycles, 19.3% for 4000 cycles and 21.1% for 6000 cycles.

Our baseline configuration assumes 4 memory channels. Figure 15 shows the weighted speedup

impact as the number of memory channels is varied from 2 to 16. All policies benefit from more

memory channels, as the number of write buffers is increased. The effectiveness of the proposed

schemes reduces as the number of channels increases because more memory channels can natu-

rally reduce the likelihood of congested write buffers. On average, WCP+WBB improves weighted

speedup by 21.1%, 19.3%, 13.3% and 7.3% for 2, 4, 8 and 16 memory channels, respectively.

The baseline contains a 32-entry write buffer for each memory bank. Figure 16 shows the

42

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!" #" $" %&"

'
(
)*

+
,-
./
0
"1

/
-2
3
4/
0
"5
6
/
/
0
7
6
"

'7*8/)"(9":()/;"

<:=" 1:=" <:=>1??" 1:=>1??"

Figure 17: Sensitivity of WCP and WBB to # of cores

weighted speedup for UCP, WCP, UCP+WBB and WCP+WBB normalized to SHARE as the

write buffer size is varied from 16 to 128. All policies benefit very little when the write buffer size

increases, and the improvement of WCP+WBB over UCP varies slightly for various write buffer

sizes. The average weighted speedup improvement of WCP+WBB compared to UCP is 20.2%,

19.3%, 17.9% and 17.1% for 16-, 32-, 64- and 128-entry write buffers.

A sensitivity study on epoch length by varying it from 1 million to 10 million cycles shows

that the results are similar for different epoch lengths. The average weighted speedup improvement

of WCP+WBB compared to UCP is 22.1%, 18.9%, 19.3% and 21.7% for 1, 2, 5 and 10 million

cycles epoch length, respectively.

To understand the scalability of the proposed schemes, we evaluate WCP and WBB for a large

number of workloads on 2-, 4-, 8- and 16-core systems with a shared DRAM cache of size 8MB,

16MB, 32MB and 64MB respectively. For each CMP configuration, we use 30 randomly generated

workloads. WCP uses the lookahead algorithm [63] when scaled to systems with more than 4

cores. Figure 17 shows the summarized weighted speedup among all workloads. On average,

WCP+WBB improves weighted speedup for 2-, 4-, 8- and 16-core systems by 18.1%, 20.1%,

19.3% and 18.5% over UCP respectively. These results show that WCP and WBB are scalable.

43

Component Description Storage Overhead

Shadow tag array per core 32 sets, 64 entries per set, each entry (V 1b, D 1b, TAG 21b,

LRU 6b, WAD 6b)

8960 B

HIT counters per core 64 counters, 4B for each counter 256 B

AWB counters per core 64 counters, 4B for each counter 256 B

E-UMON per core shadow tag array, HIT counters, AWB counters 9472 B

Total E-UMON overhead 8 E-UMONs 75776 B

WRB congestion time 4 B

Average WRB occupancy 4 memory channels, 8 WRBs per channel, 4B for each WRB 128 B

Sampled WRB occupancy 4 memory channels, 8 WRBs per channel, 4B for each WRB 128 B

Total MMON overhead 260 B

WCP 2048 sets, 64 tag entries per set, 3b core id in each tag entry 49152 B

Overall overhead 125188 B

Table 6: Storage overhead of WCP in a 8-core system

3.5.7 Hardware Overhead

E-UMON and WCP are the two largest sources of hardware overhead in our scheme. Table 6

details the storage overhead of E-UMON, MMON and WCP, assuming a 40-bit physical address

space. Recall that our design of E-UMON only samples 32 sets. For the baseline 8-core configu-

ration with 32MB shared LLC, our schemes require less than 0.4% storage overhead. None of the

structures or operations required by WCP are on the critical path for cache hits. WBB introduces

negligible latency overhead to cache replacement.

3.6 CONCLUSION

In this chapter, we study the intelligent cache partitioning and cache replacement techniques to

better utilize the shared cache resource for asymmetric NVM systems. It is shown that LLC write-

back information is important and should be taken into consideration. WCP reduces the number of

overall LLC writebacks and LLC misses to improve the system performance. By distributing the

slow memory write requests more evenly among write queues, WBB further improves the system

performance.

44

4.0 BANDWIDTH PARTITIONING USING WRITEBACK INFORMATION

4.1 LIMITED MEMORY DEVICE BANDWIDTH

Non-volatile memory is a promising candidate for energy efficient memory due to its nonvolatil-

ity, scalability and low energy consumption. However, due to limited power, the memory access

operations of non-volatile memory are usually slower than DRAM. For instance, PCM writes are

10-30 times slower than DRAM, while reads are 2-4 times slower [5]. As a result, non-volatile

memory devices have extremely limited write bandwidth compared to DRAM.

With increasing core count in multi-core processors, performance is limited by the bandwidth

of the off-chip bus and memory devices. For DRAM systems, the off-chip bus bandwidth is the

bottleneck due to DRAM’s relatively small access latency. Figure 18 shows device bandwidth

utilization (percentage) for several SPEC CPU2006 benchmarks in DRAM and hybrid memory

systems1. The bandwidth utilization is defined as the ratio of the consumed memory bandwidth

to the available memory bandwidth. The figure plots the benchmarks in two groups with different

y-axis scales (left: 0–5%, right: 0–40%). Each benchmark has two bars: the utilization for DRAM

memory (first bar) and the utilization for hybrid memory (second bar). Each bar is divided into the

amount of bandwidth consumed by reads (light shading) and writes (dark shading).

As the figure shows, for the DRAM system, all benchmarks, except omnetpp, have very small

device bandwidth utilization (< 2%). The low utilization indicates that device bandwidth for

DRAM is not likely to be a system bottleneck. However, there are cases, illustrated by omnetpp,

in which bandwidth utilization can be problematic. In these situations, memory reads typically

consume the majority of the bandwidth due to the higher rate of read access. To address these

problematic cases in DRAM main memory, Liu et al. propose off-chip bus bandwidth partition-

1Simulation details are described in Chapter 3.4.

45

Figure 18: Percentage of device bandwidth for DRAM and hybrid memory systems

ing to maximize the overall weighted speedup with read information [47]. We call this class of

technique “Read-only Bandwidth Partitioning” (RBP) as it takes into account only reads, ignoring

LLC writebacks.

In hybrid main memory, the situation is different: the limited bandwidth available for write

requests is a system bottleneck due to long write access latency. Figure 18 illustrates that device

bandwidth utilization is much higher for PCM than DRAM. Although each benchmark consumes

less than 37% of the device bandwidth, the overall bandwidth utilization of multiple applications

in a multi-core system (i.e., 8-core) can be very high. This indicates that bandwidth is considerably

more likely to be a system performance bottleneck, particularly as multi-core systems simultane-

ously execute multiple applications or threads. In addition, writes consume a substantial portion

of device bandwidth. As a result, the device bandwidth consumed by writes is no longer negligible

and must be taken into consideration in bandwidth partitioning.

To demonstrate that RBP is not always a good solution for hybrid memory, we evaluate the

throughput of RBP [47] relative to the conventional sharing scheme in a 8-core baseline system

for 15 workloads (see Figure 19). We characterize the workloads by the percentage of device

bandwidth which are consumed by memory write requests (ranging from 10% to 90% from left

to right). For workloads with a small portion of memory write traffic, RBP achieves good per-

formance. For workloads with higher writeback traffic, however, RBP hurts performance due to

inappropriate partitioning of the memory bandwidth using only read information. To better utilize

the bandwidth, the writeback information is taken into consideration in partitioning decisions. For

46

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+"
3+
4
5
6
+

789+ :89+
6)#;)</%-)+"3+=)>';)+5%<*?'*/.+@"<A2$)*+BC+D)$"#C+,#'/)A+EFF@+,#'/)B%;GAH+

Figure 19: Throughput of RBP normalized to SHARE

the remainder of the thesis, “bandwidth” refers to the collective bandwidth of the memory devices.

4.2 ARCHITECTURE SUPPORT FOR WRITEBACK-AWARE BANDWIDTH

PARTITIONING

4.2.1 Bandwidth Partitioning

Figure 20 shows an abstraction of a hybrid main memory architecture. DRAM is the LLC for

hybrid main memory. Figure 20(a) shows the baseline memory architecture without bandwidth

partitioning. Multiple cores share the bandwidth of the memory devices through the memory

controller. Memory requests are served in First Come First Serve (FCFS) order.

Figure 20 (b) shows the baseline augmented with bandwidth partitioning. Instead of sharing

bandwidth in a “free for all” fashion, bandwidth partitioning allocates and enforces specific shares

(fractions) of the bandwidth for applications. For bandwidth partitioning, we use the token bucket

algorithm [80].

From the token bucket algorithm, we derive an analytic model to determine the impact of

bandwidth partitioning. The model establishes the relationship between token allocation and per-

formance. The model uses the following terminology and assumptions. A token refers to a memory

47

Figure 20: Architecture abstractions for bandwidth partitioning

device service cycle, that is, one service unit of the memory device. We use “device service cycle”

and “token” interchangeably. Assuming read latency is dr cycles and write latency is dw (dw > dr)

cycles for the non-volatile memory, each read request requires dr tokens and each write request

requires dw tokens. A memory request from application i must acquire the necessary service to-

kens before it can be sent to the memory. Otherwise, pending requests are stored in either the read

queue (RQ) or the write queue (WQ) of the corresponding core, depending on request type. The

application stalls if a read request is pending. When a write request is pending, the corresponding

application i continues unless there is no slot available in WQi. In other words, application i is

delayed by pending read requests in RQi, and might be delayed by pending write requests when

WQi is overwhelmed. Table 7 summarizes the notation.

48

System Parameters

N Number of cores

fclk CPU clock frequency of each core (Hz)

R Number of memory ranks

K Cache block size of the last-level cache (Bytes)

T Peak device service token rate (Cycles/sec)
dr memory read latency (cycles)

dw memory write latency (cycles)

p Probability that memory write stalls the computation

Application-specific Parameters for Application i
Mi LLC miss ratio

Wi LLC writeback ratio

Ai LLC access rate (sec−1)

λm,i rate of LLC misses (sec−1); λm,i = MiAi

λw,i rate of LLC writebacks (sec−1); λw,i = WiAi

CPILLC∞,i CPI with an infinite LLC size

tm,i Average LLC miss penalty (Cycles)

αi Bandwidth allocated to application i for read requests

βi Bandwidth allocated to application i for write requests

πi Number of cache ways allocated to application i

Table 7: Parameters for the analytic model

Bandwidth is measured by the amount of data that can be served in a unit of time [47], i.e.,

Bytes/sec. For DRAM memory, the bandwidth does not distinguish between read and write re-

quests because the operations can be served at the same speed. However, a non-volatile memory

device serves read requests faster than write requests. That is, a write request consumes more

device service cycles than a read. As a result, in non-volatile memory, typically, the bandwidths

for reads and writes are treated independently. Tokens are allocated to applications as a proxy for

a share of the read and write bandwidth. The read and write token service rates are defined as

the maximum rates at which reads and writes can be served. For hybrid main memory with R

memory ranks, the total available token rate is T = R ·fclk tokens/sec, where fclk is the CPU clock

frequency.

The read and write service token rates are divided among applications to partition bandwidth.

Let αi and βi denote the token rate allocated to application i for read and write requests, respec-

tively. The bandwidth for application i can be expressed as K · (αi

dr
+ βi

dw
) Bytes/sec, where each

memory request size is K Bytes. The overall bandwidth can be expressed as K ·
∑N−1

i=0
(αi

dr
+ βi

dw
)

49

Bytes/sec. Under the assumption that 100% of the service tokens are consumed, a partition of the

bandwidth requires αi and βi to be determined, subject to

N−1
∑

i=0

(αi + βi) = T, (4.1)

where T is the peak memory device service token rate. Because memory read and write requests

operate at different rates (i.e., dr 6= dw), the overall bandwidth for both request types can change.

As a result, bandwidth partitioning must distribute tokens at rates proportional to the needs of each

application.

By varying the fraction of the token rate allocated to application i, the application experiences

delays due to pending requests in RQi and WQi to different degrees. Therefore, the token rate

must be allocated wisely to ensure that the applications which can benefit the most receive more

tokens.

The goal of bandwidth partitioning is to find a bandwidth allocation, ᾱ = {α0, ..., αN−1} and

β̄ = {β0, ..., βN−1}, to maximize the system weighted speedup (Equation (3.6)) under the con-

straint of Equation (4.1). It is known that cache partitioning improves performance by reducing

cache misses and memory traffic [63, 93]. Bandwidth partitioning can further improve perfor-

mance by allocating bandwidth intelligently among applications. In this chapter, it is assumed that

the LLC is shared among cores. Coordinating bandwidth and cache partitioning is discussed in

Chapter 5.

4.2.2 Architecture Overview

Due to the bursty nature of memory requests and the fact that memory traffic changes from time to

time, it is natural to partition the bandwidth periodically in epochs. Figure 21 depicts our architec-

ture for bandwidth partitioning. The architecture adds two components to the memory controller

and two components to the Operating System (OS): (1) the bandwidth utility monitor (BUMon),

(2) the weight selection logic, (3) the bandwidth partitioning logic, and (4) the bandwidth regula-

tor. These components are shaded in the figure.

The bandwidth partitioning approach has four steps. Each step uses one of the architecture

components from Figure 21. Figure 22 shows the steps for the kth epoch on a timeline. First,

BUMon tracks the number of executed instructions, cache misses and writebacks for the previous

50

Figure 21: Components added to memory controller and OS to support WBP

epoch. Second, at the beginning of the kth epoch, the weight selection component, DWA, uses the

information collected by BUMon to select a bandwidth partitioning weight that reflects the relative

importance of misses and writebacks to partitioning. Third, the bandwidth partitioning weight is

fed into the bandwidth partitioning component, WBP, to allocate the bandwidth. Finally, the band-

width partition is enforced by the bandwidth regulator which includes the token generator and one

token bucket per core. The token generator distributes the tokens (memory device service cycles)

among token buckets based on decisions from WBP. A memory request is ready for scheduling

when the corresponding bucket has enough tokens to fulfill the request.

Figure 22 also shows how bandwidth allocation progresses in time and can be overlapped with

workload execution. In the figure, each epoch lasts for te. DWA and WBP take ∆t. Note that

applications will not be interrupted or delayed during allocation. The allocation is computed con-

51

Figure 22: Writeback-aware bandwidth partition steps/timeline

currently with application execution by the OS and applied immediately once computed. However,

the length of ∆t impacts the responsiveness of bandwidth partitioning. For large ∆t, the bandwidth

has the potential to be allocated inappropriately due to stale application information (gathered by

BUMon).

We experimentally examine the importance of responsiveness, as it is an indicator of the la-

tency requirements for the OS to compute the bandwidth allocation. We measure the time to

compute the partitioning configuration in the OS, which is less than 0.05te for te = 5M cycles. By

varying the responsiveness (i.e., the length of ∆t) from 0 to 0.1te, the evaluation results show that

the weighted speedup for the evaluated workloads differs by no more than 3% between ∆t = 0

and ∆t = 0.1te. Thus, implementing DWA and WBP in the OS avoids additional hardware cost

without sacrificing the responsiveness and effectiveness of bandwidth partitioning.

4.3 WRITEBACK-AWARE BANDWIDTH PARTITIONING

In this chapter, an analytic model is proposed to derive the allocation strategy of WBP (see Fig-

ure 21) in three steps. First, we extend the additive CPI formula used in analyzing cache perfor-

52

mance of uniprocessor systems [14, 49] to multi-core systems by considering contention on band-

width. Second, RQ/WQ are modeled as queuing systems, in which contention results in queuing

delay. Lastly, the weighted speedup maximization problem is solved using Lagrange multipliers.

4.3.1 CPI Formula Extension

The additive CPI formula [14, 49] expresses the average number of cycles to execute an instruction

in a uniprocessor as the sum of the CPI assuming an infinite LLC (CPILLC∞) and the extra CPI

due to LLC misses (hm · tm), where hm is the average number of LLC cache misses per instruction,

and tm is the average LLC miss penalty.

CPI = CPILLC∞ + hmtm (4.2)

Equation (4.2) is extended to multiple applications with separate pending queues for misses

and writebacks. For application i, RQi and WQi can be viewed as independent single-server

queuing systems. Therefore, the impact of bandwidth contention can be expressed as the extra

queueing delay on these queues. However, the two queues impact applications differently. Every

memory read request is on the critical path. Therefore, the queuing delay of RQi directly delays

the application. On the other hand, memory write requests are on the critical path when write

buffers are full or almost full. Qureshi et al. [61] propose write pausing to prioritize memory reads

over writes when the occupancy of the write buffer is below a threshold (e.g., 85%). Otherwise,

writes are serviced ahead of read requests. Memory writes are also on the critical path when WQi

is overwhelmed. To derive a more accurate formula, it is assumed that memory writes are on the

critical path with a probability p (0 ≤ p ≤ 1). Chapter 4.4 discusses estimating the effect of p.

Let ∆tm,i and ∆tw,i be the average expected queuing delay of the queues. The CPI for appli-

cation i can be formulated as:

CPIi = CPILLC∞,i + hm,i(tm,i +∆tm,i) + p hw,i∆tw,i , (4.3)

where hm,i and hw,i are the average number of LLC misses and writebacks (i.e., memory reads

and writes) per instruction. Let λm,i and λw,i denote the rate of LLC misses and writebacks as

measured by the BUMon (see Table 7). Expression hm,i and hw,i can be expressed as:

hm,i =
λm,iCPIi

fclk
; hw,i =

λw,iCPIi
fclk

. (4.4)

53

By substituting hm,i and hw,i into Equation (4.3), the CPI of application i can be expressed as:

CPIi =
CPILLC∞,i

1−
λm,i

fclk
(tm,i +∆tm,i)− p

λw,i

fclk
∆tw,i

. (4.5)

4.3.2 Queuing Delay Derivation

Little’s law states that the average queue length is equal to the arrival rate multiplied by the system

service time. The average waiting time of an request in the system is the total service time of the

requests that are ahead of it in the queue.

For application i, the service time of a memory request on queues RQi and WQi are dr/αi

and dw/βi. Hence, applying Little’s law, the average queuing delay in RQi and WQi are:

∆tm,i =
λm,id

2
rfclk

α2
i

; ∆tw,i =
λw,id

2
wfclk

β2
i

. (4.6)

By substituting ∆tm,i and ∆tw,i into Equation (4.5), the CPI expression is derived as:

CPIi =
CPILLC∞,i

1−
λm,itm,i

fclk
−

λ2

m,i·d
2
r

α2

i

− p
λ2

w,i·d
2
w

β2

i

. (4.7)

From the above discussion, it is possible to reduce the queuing delay of requests and, in turn,

improve the IPC of application i by allocating more bandwidth to it (i.e., αi and βi). However,

with limited overall bandwidth, it might be unable to allocate enough bandwidth to all applications.

Instead, we try to partition the bandwidth efficiently among applications to achieve good overall

system performance.

4.3.3 Maximizing Weighted Speedup

As explained in Chapter 4.2.1, the goal is to optimize weighted speedup, which by substituting

Equation (4.7) into Equation (3.6) is expressed as:

N−1
∑

i=0

CPIalone,i
CPILLC∞,i

(1−
λm,itm,i

fclk
−

λ2
m,id

2
r

α2
i

− p
λ2
w,id

2
w

β2
i

). (4.8)

Given that the first and second terms of expression (5.1) are not affected by bandwidth parti-

tioning, minimizing the sum of the third and fourth terms is equivalent to maximizing the weighted

speedup. To simplify the derivation, we assume that
CPIalone,0

CPILLC∞,0
≈ ... ≈

CPIalone,N−1

CPILLC∞,N−1

≈ 1. This

approximation is reasonable because, in a system with N (e.g., N = 8) cores, the LLC capacity

54

allocated to an application when it executes alone is N times larger than when it competes with

others. In such a case, the miss rate and the CPI of an application by itself (executes alone) is close

to that of the application running with an infinite size LLC. As a result, maximizing weighted

speedup is equivalent to minimizing the function F (ᾱ, β̄):

F (ᾱ, β̄) =

N−1
∑

i=0

λ2
m,id

2
r

α2
i

+ p
λ2
w,id

2
w

β2
i

. (4.9)

Minimizing F (ᾱ, β̄) is a constrained optimization problem, with the objective function in

Equation (4.9) and the constraints on αi and βi given by Equation (4.1). To solve this problem, we

apply Lagrange multipliers by introducing a new variable (γ) and a Lagrange function:

L(ᾱ, β̄, γ) = F (ᾱ, β̄) + γ
(

N−1
∑

i=0

(αi + βi)− T
)

. (4.10)

By differentiating L(ᾱ, β̄, γ) with respect to αi, βi and γ, and solving the differential equations,

we arrive at the bandwidth allocation (ᾱ and β̄) to maximize weighted speedup for application i :

αi =
T · λ

2

3

m,id
2

3
r

∑N−1

j=0
(λ

2

3

m,id
2

3
r + wbλ

2

3

w,id
2

3
w)

; (4.11)

βi =
T · wbλ

2

3

w,id
2

3
w

∑N−1

j=0
(λ

2

3

m,id
2

3
r + wbλ

2

3

w,id
2

3
w)

, (4.12)

where wb = p
1

3 . wb is the bandwidth partitioning weight. In the above equations, λm,i and λw,i

are monitored by BUMon, while dr and dw are system parameters known at design time. wb is the

only unknown parameter.

To reflect the dependences of αi and βi on wb, we use αi(wb) and βi(wb) to denote the allocated

tokens to read and write requests for application i. WBP (see Figure 21) selects a bandwidth

partition that maximizes system performance by allocating αi(wb) + βi(wb) tokens to application

i according to Equations (4.11) and (4.12). WBP computes these equations, given the monitored

information and wb. The next chapter discusses how to select the bandwidth partitioning weight

(wb).

55

4.4 DYNAMIC WEIGHT ADJUSTMENT

An issue for WBP is the difficulty of estimating the probability, p, that a write request will cause

the computation to stall, and hence finding a good partitioning weight wb statically. Different work-

loads prefer different weights. Consider two extreme scenarios. For applications with few write

accesses, there are limited LLC writebacks, which are not enough to saturate the write buffers. In

this case, the probability p that a writeback stalls the computation is zero, and hence wb = 0. In this

case, writeback-aware bandwidth partitioning behaves the same as read-only bandwidth partition-

ing [47] by ignoring memory writes. For applications with many write accesses, the writebacks

cause applications to stall due to limited write bandwidth with a probability p > 0. More impor-

tantly, the probability p, and hence, the choice of weight wb will change as applications go through

phases. While the cache partitioning weight (wc) indicates the performance impact of LLC write-

backs in cache partitioning, the bandwidth partitioning weight (wb) reflects how LLC writebacks

influence the system performance in bandwidth partitioning.

A universal bandwidth partitioning weight does not exist as shown in Chapter 4.5.1. A band-

width partitioning weight that works the best for one workload might be a bad choice for another

workload. A good solution is to adjust wb at run-time.

The weight wb is adjusted dynamically at epoch boundaries. The weight selection module,

DWA, picks a weight at the beginning of each epoch based on the information from BUMon.

During the (k− 1)th epoch, BUMon tracks the number of misses and writebacks for each applica-

tion. At the end of the (k − 1)th epoch, the weight selection module computes the rate of misses

and writebacks (λk−1

m,i and λk−1

w,i) which are used to compute three additional metrics: consumed

bandwidth (CB), instruction per device service token (IPT) and bandwidth utilization ratio (BU).

To better blend past and recent information, the counters for the number of executed instructions,

misses and writebacks in BUMon are halved every epoch.

CB records bandwidth using device service tokens consumed by the application. The con-

sumed bandwidth of application i in epoch k is:

CBk
i = λk

m,idr + λk
w,idw. (4.13)

IPT is a metric defined as the number of executed instructions divided by the consumed device

56

service tokens. It reflects the bandwidth utility of an application. For application i in epoch k, the

number of executed instructions per second is expressed as fclk/CPIki . Therefore, IPT could be

expressed as:

IPT k
i =

fclk

CPIki CBk
i

. (4.14)

An intelligent bandwidth partitioning policy that maximizes system performance should allo-

cate the bandwidth such that the application with a higher bandwidth utility (i.e., IPT) receives a

larger share of the memory bandwidth. For application i, the expected number of executed instruc-

tions is the product of its bandwidth utility and the allocated bandwidth, which could be expressed

as IPT k−1

i ·
(

αk
i (wb) + βk

i (wb)
)

.

We try to find the weight wb that maximizes the expected number of executed instructions

(EEI) of the overall system, which can be expressed as

EEIk(wb) =

N−1
∑

i=0

IPT k−1

i

(

αk
i (wb) + βk

i (wb)
)

. (4.15)

However, maximizing Equation (4.15) might lead to a pathological problem. Assume applica-

tions A1 and A2 compete for memory bandwidth. A1 is allocated a large portion of the bandwidth

while A2 gets a small portion of the bandwidth in an epoch. A1 has the potential of executing

more instructions than A2. Maximizing Equation (4.15) results in a larger bandwidth allocation to

A1 and a smaller allocation to A2 in the next epoch. This feedback loop can have a detrimental

effect, leading to the starvation of A2 while A1 is allocated more bandwidth than it can utilize. To

resolve this problem, we consider how well an application uses its allocated bandwidth in the past.

Specifically, the bandwidth utilization ratio, BU, is defined as the ratio of consumed bandwidth to

allocated bandwidth. Given the allocated bandwidth for reads and writes in the kth epoch (αk
i and

βk
i), the bandwidth utilization ratio of application i in epoch k is expressed as

BUk
i =

CBk
i

αk
i + βk

i

. (4.16)

The feedback loop is prevented by bounding the bandwidth allocated to an application in epoch

k by its allocation in epoch k−1, if the application did not effectively utilize the bandwidth in epoch

k− 1 (e.g., with a bandwidth utilization < 85%). Moreover, even if the application had effectively

utilized its allocated bandwidth in epoch k − 1 (e.g., with a bandwidth utilization ≥ 85%), the

57

increase in bandwidth allocation is limited to 20% to dampen the positive re-enforcement of the

feedback loop. Specifically, we find wb that maximizes

EEIk(wb) =

N−1
∑

i=0

IPT k−1

i min(αk
i (wb) + βk

i (wb), si CBk−1

i), (4.17)

where si = 1 when BUk−1

i < 85% and si = 1.2 otherwise.

At runtime, DWA selects the weight wb from a candidate list {w0
b , ..., w

q−1

b }. For each candi-

date wi
b (i = 0, ..., q − 1), DWA computes the expected number of executed instructions for the

overall system EEIk(wi
b). Finally, DWA selects the partitioning weight as the candidate that has

the highest expected number of executed instructions. The partitioning weight is input to WBP to

allocate the memory bandwidth.

4.5 EVALUATION RESULTS

To validate the effectiveness of our schemes, WBP is compared against the state-of-the-art band-

width partitioning policy [47]. Sensitivity studies are also included. The experimental methodol-

ogy and system parameters are the same as described in Chapter 3.4.

4.5.1 Performance

We compared the performance of several bandwidth allocation schemes to a non-partitioned base-

line scheme (SHARE) to estimate the benefit of bandwidth partitioning. The proposed writeback-

aware bandwidth partitioning with a partitioning weight of wb is denoted as WBP wb. We show

results for (1) read-only bandwidth partitioning (RBP, equivalent to WBP 0) [47], (2) WBP 0.5

that gives partial weights to memory writes, (3) WBP 1.0 that treats memory reads and writes with

equal importance, and (4) WBP with dynamic weight adjustment (WBP+DWA), where for DWA

wb ∈ {0, 0.25, 0.5, 0.75, 1}. The partitioning schemes allocate bandwidth among applications at

the beginning of each epoch which lasts 5 million cycles (te = 5M). Figure 23 shows weighted

speedup normalized to the SHARE baseline for the workloads from Table 5.

On average, RBP outperforms the baseline by 6%. For workloads with high memory write

traffic, RBP has worse performance than the baseline because memory writes consume a substan-

58

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

("'#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+

345+ ,456789+ ,456:87+ ,45;<,=+

Figure 23: Weighted speedup normalized to SHARE

tial memory bandwidth (e.g., > 59% of the overall bandwidth) and RBP ignores the writeback

information.

Among the policies with static partitioning weights (i.e., RBP, WBP 0.5 and WBP 1.0), each

policy performs the best in one group of workloads. For Light workloads, memory reads consume

a significant portion (i.e., > 80%) of the memory device service cycles. For these workloads,

memory writes should be ignored in bandwidth partitioning, and thus, RBP (WBP 0) is the best.

On the other hand, WBP 0.5 is best for Medium1 and Medium3 because memory writes consume

more bandwidth. Lastly, the memory bandwidth consumption due to writes accounts for more than

60% of the overall bandwidth for the High workloads. WBP 1.0 considers both memory reads and

writes and gives them the same importance in the partitioning decision, and hence, it is the best

choice.

These results demonstrate that there is no universal partitioning weight suitable for all work-

loads. By dynamically adapting the weight, WBP+DWA matches the performance of the best

static partitioning weight wb. Further examination of wb over time reveals that WBP+DWA picks

the best static partitioning weight more than 90% of the time. On average, WBP 0.5, WBP 1.0

and WBP+DWA improve weighted speedup by 11.1%, 14.0% and 20.1%, compared to RBP.

Figure 24 shows the impact on throughput. This metric has similar result as the weighted

speedup. By avoiding interference among applications, RBP achieves an average of 6.5% through-

put improvement over the baseline. WBP 1.0 improves the throughput by an average of 23.4%

59

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

("'#
!
"
#$

%
&'
()
*
+,
-
#"
.
/
-
0
.
1+

234+ 5346789+ 5346:87+ 534;<5=+

Figure 24: Throughput normalized to SHARE

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!
"
#$
%
&
''
(

)*+(,*+-./0(,*+-1/.(,*+23,4(

Figure 25: Fairness normalized to SHARE

over the baseline, and an average of 15.9% over RBP.

For seven of the fifteen workloads, WBP 1.0 improved throughput by more than 25% over

RBP. WBP 1.0 does worse than RBP for four benchmarks. By selecting the partitioning weight

dynamically, WBP+DWA improves throughput by 21.9% over RBP, and by 29.8% over the base-

line on average.

Figure 25 shows the normalized performance of RBP, WBP 0.5, WBP 1.0, WBP+DWA in

terms of fairness. On average, WBP+DWA improves the fairness metric by 47.8% compared to

RBP.

60

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#
!
"
#$

%
&'
()
*
+,
-
)
./
0+
1
)
%
*
+2
%
/)
3
.4
+

156+ 756890:+ 7568;09+ 756<=7>+

Figure 26: Average effective read latency normalized to SHARE

4.5.2 Effective Read Latency

Bandwidth partitioning impacts the memory request processing speed of an application by dis-

tributing available memory bandwidth among applications. It is evaluated how bandwidth parti-

tioning influences memory latency. The effective read latency is defined as tcomplete−tarrive, where

tcomplete and tfinish are the time when a read request arrives and completes.

Figure 26 shows average effective read latency for the bandwidth partitioning policies normal-

ized to SHARE. For all workloads, WBP+DWA reduces the effective read latency by 32% over

RBP, while the gains of the static WBP algorithms are slightly smaller. Our WBP algorithms re-

duce latency because they consider writebacks that are crucial for write-intensive workloads. By

reducing the effective read latency, the system can process applications faster, and thus, improve

overall performance (see Chapter 4.5.1).

4.5.3 Dynamic Weight Adaptation Granularity

Chapter 4.5.1 shows that WBP+DWA outperforms static WBP by selecting the cache partitioning

weight wb among {0, 0.25, 0.5, 0.75, 1} dynamically. That is, DWA adapts wb ∈ [0, 1] with a step

of 0.25. We examine how the step size influences performance. A large step is desirable as it

reduces the number of iterations for the DWA algorithm. However, a small step may lead to a

better allocation from a finer granularity of sharing. We consider several granularities: DWA 2

61

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

("'#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+

,3456,789+ ,3456,78:+ ,3456,78;;+ ,3456,789;+

Figure 27: Performance impact of dynamic weight adaptation granularity

picks wb from {0, 1}; DWA 5 selects wb among {0, 0.25, 0.5, 0.75, 1}; DWA 11 adapts wb among

{0, 0.1, ..., 1}; and DWA 21 chooses wb from {0, 0.05, ..., 1}.

Figure 27 shows the effect of weight adaptation granularity on the weighted speedup. On av-

erage, WBP+DWA 2, WBP+DWA 5, WBP+DWA 11 and WBP+DWA 21 improves the weighted

speedup by 20.5%, 27.3%, 30% and 31%, respectively, over SHARED. As expected, a fine granu-

larity (small step) for the candidate list leads to better performance. However, we consider DWA 5

to be the point of diminishing return.

4.5.4 Sensitivity Study

To analyze the benefit of the proposed schemes under different system configurations, we study the

sensitivity of different schemes to memory write latency, the number of memory channels and the

number of cores. We show only the results for weighted speedup since the results for throughput

and fairness are similar.

The memory write latency is varied from 1000 cycles (5× read latency) to 6000 cycles (30×

read latency). The read latency is unchanged (i.e., 200 cycles). Figure 28 shows the normalized

weighted speedup (average over 15 workloads) of RBP, WBP 0.5, WBP 1.0 and WBP+DWA as

the write latency varies. The benefit of our WBP schemes increase as memory writes become

slower. This result is expected as the importance of writeback information is proportional to write

latency, which is the penalty of incurring a writeback when the memory bandwidth is saturated.

62

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

!"""# $"""# %"""# &"""#

'
(
)*

+
,-
./
0
#1

/
-2
3
4/
0
#5
6
/
/
0
7
6
#

8/*()9#1)-4/#:+4/;<9#=>9<,/?@#

ABC# 1BCD"EF# 1BCD!E"# 1BCGH1I#

Figure 28: Sensitivity of bandwidth partitioning schemes to memory write latency

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!" #" $" %&"

'
(
)*

+
,-
./
0
"1

/
-2
3
4/
0
"5
6
/
/
0
7
6
"

'7*8/)"(9":/*();"<3+==/,>"

?@A" 1@ABCDE" 1@AB%DC" 1@AFG1H"

Figure 29: Sensitivity of bandwidth partitioning schemes to # of memory channels

Compared to RBP, WBP+DWA is 4.1%, 10%, 20.1% and 21.3% better when the write latency is

1000, 2000, 4000 and 6000 cycles, respectively.

The baseline assumes 4 channels with 8 memory banks per channel. Figure 29 shows the

performance impact by varying the number of channels. The effectiveness of our schemes re-

duces with more channels; with more channels (more memory banks), there is more available

bandwidth, which reduces the likelihood of bandwidth saturation. On average, WBP+DWA im-

proved weighted speedup by 21.7%, 20.1%, 14.8% and 6.9% for 2, 4, 8 and 16 channels over RBP,

respectively.

63

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!" #" $" %&"

'
(
)*

+
,-
./
0
"1

/
-2
3
4/
0
"5
6
/
/
0
7
6
"

'7*8/)"(9":()/;"

<=>" 1=>?@AB" 1=>?%A@" 1=>CD1E"

Figure 30: Sensitivity of bandwidth partitioning schemes to # of cores

To understand the scalability of our schemes, we evaluate them on 2-, 4-, 8- and 16-core

systems with a hybrid memory of 1, 2, 4 and 8 memory channels, respectively. For each CMP con-

figuration, we use 30 randomly generated workloads. On average, WBP+DWA improves weighted

speedup for 2-, 4-, 8- and 16-core systems by 16.1%, 18.9%, 20.1% and 19.2% over RBP, respec-

tively (see Figure 30).

WBP partitions the bandwidth at epochs which last for 5 million cycles. In order to understand

the impact of epoch length, the epoch length is varied from 2 million to 10 million cycles. The

results differ by less than 3% over these epoch lengths.

4.6 CONCLUSION

This chapter explores effective techniques to partition the memory bandwidth to achieve better

system performance for asymmetric NVM systems. The LLC writeback information is shown to be

important and beneficial to manage the memory bandwidth. By allocating the memory bandwidth

based on an analytic model that considering the LLC writeback information, WBP outperforms

the stat-of-the-art bandwidth partitioning techniques.

64

5.0 COORDINATING THE PARTITIONING OF CACHE AND BANDWIDTH

5.1 INTERACTION OF CACHE AND BANDWIDTH PARTITIONING

A well-known theory about the relationship between cache and bandwidth partitioning is that the

performance impact of bandwidth partitioning is secondary to that of cache partitioning [76, 47].

The reason is that while cache partitioning can significantly reduce the total number of cache

misses and writebacks, thus reducing the memory traffic, bandwidth partitioning cannot reduce the

memory traffic. It seems natural to only consider the performance impact of cache partitioning

while ignoring that of bandwidth partitioning. A closer examination of the interaction between

cache and bandwidth partitioning, however, raises questions on such claim.

The management of the last-level cache and the memory bandwidth interact with each other.

On the one hand, cache partitioning can reduce the total number of cache misses and writebacks,

thus reducing the overall memory access traffic and alleviating the pressure on the memory system.

On the other hand, although bandwidth partitioning does not directly impact the total number of

cache misses and writebacks, it decides the speed of processing the off-chip memory requests for

each application and, in turn, affects the rate at which each application accesses the cache. In a

given time period, an application would benefit more from its cache partition by absorbing more

cache misses and writebacks when the requests of the application are issued and processed at a

higher rate. In other words, bandwidth partitioning affects the cache utility.

In order to demonstrate the interaction between cache and bandwidth partitioning, Figure 31

shows the throughput (sum of IPCs) of a workload, mcf -bzip2, under different static cache and

bandwidth partition configurations on a 2-core system where one core runs mcf and the other

core runs bzip22. Not surprisingly, the system performance varies under different partition con-

2Simulation details are described in Chapter 3.4.

65

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

!"#$%"& %"#$!"& '"#$("&)"#)"& $("#'"& $!"#%"& $%"#!"&

*
+
,-
.
/
+
0
.
1&

234+5&63,77-8&2-89/.,37-8&

$(:#;(:& <(:#=(:& >(:#>(:& =(:#<(:& ;(:#$(:&

?38@"A@1+&63,77-8&2-89/.,37-8&

Figure 31: Performance of mcf-bzip2

figurations. The best performance is obtained when mcf and bzip2 get 90% and 10% share of

the bandwidth (90%-10%), respectively, when 2 ways of the cache are allocated to mcf and 14

ways are used by bzip2 (2w-14w). Interestingly, the best choice of bandwidth partition changes

under different cache partition configurations. The reason is that the off-chip memory traffic and

bandwidth demand of each application changes under different cache sizes, which impacts the best

bandwidth partitioning decision. This validates our reasoning that the choice of cache partitioning

influences the bandwidth partitioning decision, and vice versa.

Given that the best static partition configuration for mcf -bzip2 is 90%-10% and 2w-14w, a

natural question would be whether other workloads favor the same partition configuration. Towards

that end, I measured the performance of 150 randomly selected workloads under different static

cache and bandwidth partition configurations on a 2-core system. Figure 32 shows the number

of workloads that perform the best under particular static partition configurations. For instance,

9 workloads perform the best with a 10%-90% and 4w-12w configuration. The important point

to retain is that most workloads benefit the most when the cache is partitioned in an unbalanced

fashion. This is reasonable when one of the applications dominates the cache accesses, or when

one application is cache friendly while the other is a streaming application. It is also clear that

66

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

!"#$%"& %"#$!"& '"#$("&)"#)"& $("#'"& $!"#%"& $%"#!"&

*
&+
,&
-
+
./
0+
1
2
3&
4
1
5
+
.&
67
8
&9
+
:
;
<
=
.1
>
+
:
&

91?78&@1.>>+:&9+:;<=.1>+:&

$(A#B(A& C(A#D(A& E(A#E(A& D(A#C(A& B(A#$(A&

F1:2"G267&@1.>>+:&9+:;<=.1>+:&

Figure 32: Number of workloads favoring each static partitioning configuration

different workloads favor different static partition configurations. As a result, a dynamic scheme

is necessary to better partition the cache and bandwidth.

Unfortunately, simply adopting both WCP and WBP does not guarantee good system perfor-

mance because doing so ignores the interaction between cache and bandwidth partitioning, and

each of these schemes makes decisions based on different information. WCP manages the cache

relying solely on information about cache misses and writebacks (i.e., HIT i
c and AWBi

c from E-

UMON) without any knowledge about bandwidth allocation. Similarly, WBP allocates memory

bandwidth based on information about the measured rates of LLC misses and writebacks of each

application (i.e., λm,i and λw,i from BUMon) without any knowledge about the effect of changing

the cache partition on λm,i and λw,i.

Another reason is because WBP assumes that the memory traffic information, λm,i and λw,i,

does not change much between consecutive epochs, which is reasonable if the cache partition does

not change. However, the assumption is no longer valid when both the cache and bandwidth are

partitioned dynamically as proposed in this paper. Therefore, a new coordinated way of partition-

ing the cache and memory bandwidth is needed.

67

5.2 COORDINATED PARTITIONING OF CACHE AND BANDWIDTH

This section defines the problem of coordinated partitioning and introduces two approaches to

solve it: (a) a search driven technique; (b) a scheme based on an analytic model.

5.2.1 Problem Definition

In a N-core system with M-ways of shared cache and memory bandwidth of T , the problem of

Coordinated Partitioning is to find a cache partition π̄ = {π0, ..., πN−1} and a bandwidth partition,

ᾱ = {α0, ..., αN−1} and β̄ = {β0, ..., βN−1}, to maximize the system weighted speedup (Equa-

tion (3.6)), under two constraints specified in Equations (3.3) and (4.1). Note that πi is the number

of cache ways allocated to application i, and αi and βi are the bandwidth allocation for memory

reads and writes of application i.

By decoupling the additive CPI formula and modeling the memory system as queuing systems

(see Section 4.3), the coordinated partitioning problem is transformed to the problem of minimizing

a function F (π̄, ᾱ, β̄):

F (π̄, ᾱ, β̄) =

N−1
∑

i=0

(
(λm,i(πi))

2 d2r
α2
i

+ p
(λw,i(πi))

2 d2w
β2
i

) (5.1)

where dr and dw are latencies for memory reads and writes, λm,i(πi) and λw,i(πi) are the rates of

LLC misses and writebacks for application i with an allocation of πi cache ways, p is the probabil-

ity that memory writes are on the critical path (the relative importance of writeback information),

and αi and βi are the bandwidth allocation for memory reads and writes of application i, respec-

tively. In the above equation, dr and dw are system parameters known at design time, while p can

be determined dynamically at runtime (see Section 4.4). The rates of LLC misses and writebacks,

λm,i(πi) and λw,i(πi), are the only unknown parameters. For presentation, we abbreviate these

functions as λm,i and λw,i, given a partition of πi ways.

We can measure values of λm,i and λw,i periodically (in epochs) when executed with a cache

partition of πi ways, and use the measured values in one epoch to estimate their values for the next

epoch. However, as mentioned above, this relies on an implicit assumption that the cache partition

does not change from epoch to epoch.

68

Given a cache management scheme, bandwidth allocation can be applied as long as λm,i and

λw,i reflect the rates of cache misses and writebacks for the incoming epoch. One way of coordi-

nating cache partitioning and bandwidth allocation is to estimate λm,i and λw,i for different cache

partition configurations, π̄ = {π0, ..., πN−1}, use the estimated values of λm,i and λw,i to derive the

corresponding bandwidth allocations and then chose the cache partition and bandwidth allocation

that maximizes Equation (5.1). The search method relies on runtime measurements to estimate the

relation between λm,i, λw,i and π̄, and the model-driven method relies on an analytic approximation

of λm,i and λw,i as functions of π̄.

5.2.2 Search Driven Partitioning

This scheme optimizes Equation (5.1) by searching many different cache partition configurations.

To estimate λm,i and λw,i for different cache partition configurations, we rely on monitoring the

number of hits and avoidable writebacks on each cache way using the well known technique of

emulating the LRU stack for each application [76, 63, 93]. Specifically, using a shadow tag array,

we can record the number of additional hits (HIT i
c) and avoidable writebacks (AWBi

c) on way

c for 0 ≤ c ≤ W − 1. In other words, by allocating the cache way c to application i, we can

increase the cache hits by HIT i
c and reduce the cache writebacks by AWBi

c. Note that the number

of additional hits and avoidable writebacks for application i is still non-zero even when all W

cache ways are allocated to application i. With such information, we can estimate λm,i and λw,i

more accurately. Using the cache partition configuration {π0, ..., πN−1} and the epoch length,

EpochLength, we estimate the rate of LLC misses and writebacks:

λm,i =

M
∑

c=πi

HIT i
c/EpochLength; λw,i =

M
∑

c=πi

AWBi
c/EpochLength. (5.2)

Algorithm 5.1 shows the search-driven approach to examine all possible cache partition con-

figurations (Line 2). For each cache partition configuration, the algorithm computes λm,i and λw,i

according to Equation (5.2) based on information from the shadow tag arrays (Line 3). It then

calculates the bandwidth allocation by applying Lagrange multipliers to solve the minimization

problem of function F (Equation (5.1)) (Line 4) and computes the value of function F (Line

5). Finally, after iterating over all possible cache partition configurations, the algorithm finds the

69

Algorithm 5.1 Search Driven Partitioning
1: Fmin ←MAX VALUE
2: for every possible cache partition configuration π̄′ do

3: Compute λm,i and λw,i under partition π̄′ according to Equation (5.2).

4: Calculate bandwidth allocation ᾱ′, β̄′ by minimizing function F (Equation (5.1))

5: Compute the value of function F (π̄′, ᾱ′, β̄′) using Equation (5.1)

6: if F (π̄′, ᾱ′, β̄′) < Fmin then

7: π̄ ← π̄′, ᾱ← ᾱ′, β̄ ← β̄′

8: Fmin ← F (π̄′, ᾱ′, β̄′)
9: end if

10: end for

cache partition and bandwidth allocation that minimizes function F (π̄, ᾱ, β̄), yielding the maxi-

mum weighted speedup (Lines 6-10).

A possible problem for the search-driven partitioning scheme is the long search process. The

algorithm needs to compute the bandwidth allocation under all possible cache partition configura-

tions. For example, for a 8-core system with 32-ways shared cache, it needs to iterates over more

than 10 million cache partition configurations. The resource allocation decision will probably be

obsolete after such a long computational delay.

To limit the search space, we start the search from the cache partition configuration used in

the last epoch (epoch k-1), {π0,k−1, ..., πN−1,k−1}, with a limited search radius of r. A radius of r

means SCRAM searches only partition configurations {π′

0, ..., π
′

N−1} when |π′

i − πi,k−1| ≤ r for

0 ≤ i ≤ N − 1. In other words, the algorithm examines allocations that vary (up or down) up to r

ways for each application. Section 5.3.1 details the latency overhead for various values of r.

5.2.3 Model Driven Partitioning

To avoid the long search process, we devise an analytic model that considers the performance

impact of cache partitioning and bandwidth allocation together. Using the analytic model, we

propose a novel coordinated scheme, Unified Writeback-aware Partitioning (UWP). In comparison

to the search driven method, the trade-off is UWP relies on approximation and may not always

find the best partitioning decision but it has much less overhead. We examine this trade-off in

Section 5.3.1.

Hartstein et al. [21] predicted that the cache miss rate should vary with cache size as an inverse

70

power law, and the exponent in the power law is (between −0.3 and −0.7) directly related to the

time dependence of cache accesses. The writeback traffic is a proper subset of the cache misses,

and the cache writeback rate should also follow an inverse power relation to the cache size. By

reasonably approximating the cache miss and writeback rates, we avoid the search process. The

rates of LLC misses and writebacks, λm,i and λw,i, can be expressed as the product of the rate of

LLC accesses, Ai, and the LLC miss and writeback rates, which can themselves be approximated

as exponential functions of the number of dedicated cache ways:

λm,i = Aiuiπ
si
i ; λw,i = Aiviπ

ti
i . (5.3)

Note that si, ti, ui and vi are application-specific coefficients that are obtained through a curve

fitting process. Substituting λm,i and λw,i in Equation (5.3) into the expression in Equation (4.9),

function F can be expressed as:

F (π̄, ᾱ, β̄) =

N−1
∑

i=0

fi(πi, αi, βi), (5.4)

where fi(πi, αi, βi) is defined as:

fi(πi, αi, βi) =
A2

iu
2
i π

2si
i d2r

α2
i

+ p
A2

i v
2
i π

2ti
i d2w

β2
i

. (5.5)

As explained in Section 4.3.3, maximizing the weighted speedup is transformed to the problem

of minimizingF (π̄, ᾱ, β̄), which is a constrained optimization problem, with the objective function

in Equation (5.4) and the constraints on πi, αi and βi given by Equations (3.3) and (4.1). To

solve this problem, we apply Lagrange multipliers by introducing two new variables (γ1, γ2) and a

Lagrange function:

L(π̄, ᾱ, β̄, γ1, γ2) = F (π̄, ᾱ, β̄) + γ1
(

N−1
∑

i=0

(αi + βi)− T
)

+ γ2
(

N−1
∑

i=0

πi −M
)

. (5.6)

Because the problem of coordinated management involves way partitioning which is a discrete

problem, and Lagrange multipliers is used to solve the maximization (minimization) problem of

continuous functions, it is impossible to directly solve the coordinated management problem by

Lagrange multipliers. Instead, we use Lagrange multipliers to derive the relations between way

partitioning and bandwidth allocation decisions, and then find a near-optimal solution using a

look-ahead algorithm. By differentiating L(π̄, ᾱ, β̄, γ1, γ2) with respect to πi, αi, βi, γ1 and γ2,

71

and solving the differential equations, we can express the bandwidth allocation configuration as

functions of the way partition configuration:

αi(πi) = T · gi(πi)/
N−1
∑

j=0

(

(1 + hj(πj)) · gj(πj)
)

; (5.7)

βi(πi) = T · hi(πi) · gi(πi)/
N−1
∑

j=0

(

(1 + hj(πj)) · gj(πj)
)

, (5.8)

where

gi(πi) =

√

siA
2
iπ

2

3
si+

4

3
ti−1

i u
2

3

i d
2

3
r v

4

3

i d
4

3
wp

2

3 + tiA
2
iπ

2ti−1

i v2i d
2
wp, (5.9)

hi(πi) = π
2

3
si−

2

3
ti

i u
2

3

i d
2

3
r v

−2

3

i d
−2

3
w p

−1

3 . (5.10)

In the above equations, dr and dw are system parameters known at design time, Ai can be

monitored and estimated at runtime, while si, ti, ui and vi are application-specific coefficients

computed by fitting curves of the LLC miss and writeback rates into exponential curves of the

number of cache ways. Similar to WBP, p is determined by maximizing the expected number of

executed instructions (see Section 4.4 for details). However, the value of πi remains unknown.

Given Equations (5.7)-(5.10), cache partitioning remains an unsolved problem. A lookahead algo-

rithm is introduced to solve the problem.

In Equations (5.7) and (5.8), the bandwidth allocated to an application could be expressed as

a function of πi, that is, α(πi) and β(πi). By substituting αi and βi in Equations (5.7) and (5.8)

into Equation (5.4), function F can be expressed as a function of only the cache partition π̄ =

{π0, ..., πN−1}:

F (π̄) =
N−1
∑

i=0

fi(πi), (5.11)

where fi(πi) is derived by substituting αi and βi in Equations (5.7) and (5.8) into the expression in

Equation (5.5).

The problem of minimizing F (π̄) in Equation (5.11) could be translated into a problem of

allocating a total of M ways among N applications to maximize the overall utility, where the

utility of application i, Ui, is defined as the negative of the function fi(πi) in Equation (5.5).

Ui(πi) = −fi(πi). (5.12)

72

Algorithm 5.2 Lookahead Cache Partitioning Algorithm
1: for i = 0 to N − 1 do

2: π[i]← 1
3: end for

4: while M >
∑N−1

i=0
π[i] do

5: AppToAlloc← 0
6: WaysToAlloc← 0
7: MaxMarginalUtility←MIN V ALUE
8: for i = 0 to N − 1 do

9: for δ = 1 to M −
∑N−1

i=0
π[i] do

10: Compute marginal utility ∆Ui(π[i], δ)
11: if ∆Ui(π[i], δ) > MaxMarginalUtility then

12: AppToAlloc← i
13: WaysToAlloc← δ
14: MaxMarginalUtility← ∆Ui(π[i], δ)
15: end if

16: end for

17: end for

18: π[AppToAlloc]← π[AppToAlloc] +WaysToAlloc
19: end while

Marginal Utility is defined as the utility per unit allocation resource. Given that the utility for

application i with πi cache ways is −fi(πi), the marginal utility of increasing the cache allocation

from πi to πi + δ for application i is defined as:

∆Ui(πi, δ) =
fi(πi)− fi(πi + δ)

δ
. (5.13)

While the classic greedy algorithm allocates one unit of resource at each step, a lookahead

algorithm is able to find a better solution by enabling allocating more than one unit of resource if

it achieves a higher marginal gain. Algorithm 5.2 shows the process of the lookahead algorithm to

partition the cache among applications. First, the cache partition is initialized such that each ap-

plication gets 1 allocated cache way (Lines 1-3), assuming that each application should use some

cache. Then, the remaining cache ways will be allocated among applications iteratively (Lines

4-18). In each allocation iteration, the marginal utility of each application, ∆Ui(π[i], δ), with dif-

ferent number of additional allocated cache ways, δ, is computed (Line 10). Among all the possible

allocation decisions, the allocation decision with the highest marginal gain is chosen (Lines 8-17).

The cache is allocated according to the allocation decision (Line 18). After the necessary iterations

to allocate all the cache ways, it arrives at a cache partitioning decision {π[0], ..., π[N − 1]}.

73

Figure 33: Architectural components to support UWP

After deciding on the cache partitions, the corresponding bandwidth partitioning decision can

be computed by solving the expressions in Equations (5.7) and (5.8). Clearly the complexity of

Algorithm 5.2 in UWP is smaller than that of Algorithm 5.1 in the search driven technique. The

overhead of both techniques is evaluated experimentally in Section 5.2.2.

74

5.2.4 Architecture of UWP

Due to the bursty nature of memory requests and dynamic nature of memory traffic, it is natural to

partition the cache and bandwidth periodically in epochs. Figure 33 depicts the necessary architec-

tural components to support UWP. The architecture adds two components to the operating system

(OS), namely CF (the logic of curve fitting for LLC misses and writebacks) and the UWP (uni-

fied writeback-aware partitioning) logic. Three components are added in the memory controller,

namely PMon (the partitioning monitor), the cache regulator and the bandwidth regulator.

UWP operates in four steps. First, PMon collects information that is necessary to make parti-

tioning decisions. More specifically, the LRU stack monitor tracks the cache miss and writeback

information in the past epoch (epoch k-1) using shadow tag arrays and estimates the rates of cache

misses and writebacks for epoch k. The number of executed instructions of each application in

epoch k-1 is also monitored. Second, the CF logic approximates the miss and writeback rates in

epoch k-1 as exponential functions of the allocated cache ways and produces the coefficients (si,

ti, ui and vi in Equations (5.9) and (5.10)). Third, the UWP determines the allocation of the cache

capacity and the memory bandwidth for epoch k based on information from CF and PMon accord-

ing to the unified analytic model. Lastly, the cache and bandwidth partition decisions for the epoch

k are enforced by the cache regulator and bandwidth regulator, respectively.

Many of the architecture components of UWP have similar functionalities as those of WCP

(Chapter 3) and WBP (Chapter 4). PMon monitors the system and collects information which is

used by UWP to make partitioning decisions, while E-UMON and MMON (Chapter 3) gathers

information for WCP and BUMon (Chapter 4) provides information for WBP. The UWP logic

makes decisions to partition the last-level cache and the memory bandwidth, while the WCP logic

(Chapter 3) computes the cache partition and the WBP logic (Chapter 4) allocates the memory

bandwidth.

75

!"!#

!"$#

%"!#

%"$#

&"!#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+

0)%#3.45+ 0)%#3.46+ 0)%#3.4%&&+ 7,8+

Figure 34: Weighted speedup of search driven partitioning and UWP normalized to SHARE

5.3 EVALUATION RESULTS

To validate the effectiveness of the proposed UWP scheme, UWP is compared against a non-

partitioned baseline scheme (SHARE) that does not partition the cache nor the bandwidth, the

cache and bandwidth partitioning schemes, namely WBP only (Chapter 4), WCP only (Chapter 3),

and the combination of WBP and WCP together (WBP+WCP). The partitioning schemes allocate

the cache and/or bandwidth at the beginning of each epoch, which lasts 5 million cycles. The parti-

tioning decisions of cache capacity and/or memory bandwidth are enforced in the same manner as

described in Chapters 3 and 4. Results are shown normalized to SHARE, unless otherwise noted.

The experimental methodology and system parameters are the same as described in Section 3.4.

Sensitivity studies with various memory read and write latencies, number of memory channels

(between 2 and 16 channels) and number of cores are also performed in Section 5.3.5.

5.3.1 Search Driven Partitioning

Figure 34 shows the normalized weighted speedup of search driven partitioning with search radius

of r = 1 (Search 1) and r = 2 (Search 2), an exhaustive search method (Search all) and UWP. It is

obvious that a larger search radius is favorable to improve the performance. On average, Search 1,

Search 2 and Search all improve the weighted speedup by 48.7%, 51.2% and 56.8% compared to

SHARE. The intuition is that a larger search radius increases the probability of finding the best

76

Partitioning Scheme # of Iterations Time (epochs)

Search 1 6, 561 2.6
Search 2 390, 625 156.2

Search all > 4 billion > 1 million

UWP 1 < 0.1

Table 8: Latency overhead of search driven schemes and UWP

cache and bandwidth partition configuration, and thus produces a better performance.

The proposed scheme, UWP, outperforms Search 1 and Search 2, but not Search all. Clearly,

the exhaustive search method performs the best, but it is not scalable. In a system with N cores,

Search r needs to iterate over (2r+1)N different cache partition configurations, because the cache

partition for each core has 2r + 1 possibilities. An exhaustive search method needs to test all

possible cache partitions. For a 8-core system with 64-way cache, Search all takes more than 4

billion iterations to compute the partition configuration.

The computational latencies of the search driven partitioning schemes and UWP are evaluated

on a machine with a 4GHz processor. Table 8 lists the computational latencies of the search driven

partitioning schemes and UWP for the baseline 8-core system. Search 1 and Search 2 take about

2.6 and 156.2 epochs, respectively, to calculate the partition configuration. It takes more than 1

million epochs for Search all to make the partitioning decision. The long computational latencies

of the search driven schemes are unaffordable because the partitioning decisions based on stale

information are obsolete. Unlike the search driven schemes, UWP does not need to iterate over

different cache partition configurations and can finish the computation fast enough (within 10% of

the epoch). For the remaining evaluation, the thesis only shows the results for the feasible scheme,

UWP.

5.3.2 Performance

Figure 35 shows weighted speedup of WBP, WCP, the combined application of WBP and WCP

(WBP+WCP) and UWP normalized to the SHARE scheme for the workloads from Table 5. On

average, WBP and WCP outperform the baseline by 27.3% and 32.7%, respectively. WCP outper-

77

!"!#

!"$#

%"!#

%"$#

&"!#
!
"
#$

%
&'
()
*
+,

)
'-
.
/)
*
+0
1
)
)
*
2
1
+

,34+ ,54+ ,346,54+ 7,4+

Figure 35: Weighted speedup of WBP, WCP, WBP+WCP and UWP normalized to SHARE

forms WBP for the Light workloads. For the Light workloads, WBP and WCP outperforms the

non-partitioned scheme by an average of 30.9% and 39.3%, respectively. For the Medium and High

workloads, WBP and WCP improve the weighted speedup by an average of 26.4% and 31.1%, re-

spectively, over SHARE. Bandwidth partitioning by itself (WBP) can dramatically improves the

system performance when the bandwidth is extremely limited, while it has insignificant effect

when the bandwidth is not the system bottleneck. By partitioning both the cache and bandwidth,

the combination of WBP and WCP can further improve the performance for most workloads. On

average, WBP+WCP outperforms SHARE by 42.1%. However, note that WBP+WCP performs

worse than WBP or WCP for Medium9 and High3. The reason is that WBP and WCP may make

decisions that negatively impact the effectiveness of each other. For instance, allocating very lim-

ited bandwidth to an application that gets a large cache partition results in inefficient utilization of

the cache and bad overall system performance.

Unlike WBP+WCP, UWP considers the interaction of cache and bandwidth partitioning, rely-

ing on an unified analytic model. UWP performs better than WBP+WCP, WBP, and WCP for all

workloads. On average, UWP outperforms WBP+WCP by 8.3%, WBP by 20.9%, WCP by 15.9%

and SHARE by 53.9%, in terms of weighted speedup.

Figure 36 shows the throughput for different policies. By reducing the interference among

applications through bandwidth partitioning and cache partitioning, WBP and WCP improve the

throughput by an average of 29.4% and 35.3%, respectively, compared to SHARE. Comparing

78

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#
!
"
#$

%
&'
()
*
+,
-
#"
.
/
-
0
.
1+

234+ 254+ 2346254+ 724+

Figure 36: Throughput of WBP, WCP, WBP+WCP and UWP normalized to SHARE

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

!
"
#$
%
&
'
'
(

)*+(),+()*+-),+(.)+(

Figure 37: Fairness of WBP, WCP, WBP+WCP and UWP normalized to SHARE

to WBP and WCP, WBP+WCP benefits the system throughput for most workloads, similarly to

the weighted speedup results (and due to the same reason). UWP manages cache and memory

bandwidth cooperatively so that cache partitioning and bandwidth partitioning influence each other

positively, resulting in better system performance. UWP improves the throughput by 8.8% on

average over WBP+WCP.

Partitioning of the cache and bandwidth might improve the performance of some applications

by severely penalizing others. The fairness metric is introduced to reflect whether the partition-

ing schemes benefit all applications uniformly. Figure 37 shows the performance of WBP, WCP,

WBP+WCP and UWP in terms of fairness. On average, UWP improves the fairness metric by

2.4% compared to WBP+WCP.

79

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#
!
"
#
$
%
&'
(
)
*
+,

-
.
/
0+

,-.+ ,1.+ ,-.2,1.+ 3,.+

Figure 38: WBPKI of WBP, WCP, WBP+WCP and UWP normalized to SHARE

5.3.3 Memory Lifetime

Given that non-volatile memory has limited endurance, the number of memory writes (due to cache

writebacks) is an important metric to evaluate. Assuming that a perfect wear-leveling scheme [65,

18, 11] is applied, the reduction in writebacks directly translates into memory lifetime extension.

Figure 38 shows the writebacks per 1K instructions (WBPKI) of different policies. WBP has little

impact on WBPKI. This is intuitive because bandwidth partitioning only influences the processing

speed of memory requests, and has insignificant impact on the number of cache writebacks. Unlike

WBP, WCP influences WBPKI by allocating the cache among applications. By minimizing a

weighted sum of the number of cache misses and the number of writebacks, WCP reduces WBPKI

by 37% over the non-partitioned scheme. For the workloads with high memory traffic, the High

workloads, WCP achieves a reduction of 63% on WBPKI.

On average, UWP reduces the WBPKI by 8.5%, resulting in an memory lifetime extension of

9.2%, compared to WBP+WCP. While bandwidth partitioning cannot impact the memory traffic

directly, it influences the effectiveness of cache partitioning and, in turn, indirectly affects the

number of memory writes. By positively influencing cache partitioning through better bandwidth

partitioning decisions, UWP reduces the WBPKI over WBP+WCP.

80

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#
!
"
#$

%
&'
()
*
+,
-
)
#.
/
+0
"
-
12
$
3
4
"
-
+

567+ 507+ 5678507+ 957+

Figure 39: Energy consumption of WBP, WCP, WBP+WCP and UWP normalized to SHARE

5.3.4 Energy Consumption

Figure 39 shows the memory energy consumption of WBP, WCP, WBP+WCP and UWP normal-

ized to SHARE. The memory energy consumption is defined as the sum of the energy consumed

by memory reads and the energy consumed by memory writes. The memory energy consumption

results follow the same pattern as that of WBPKI because memory writes are more energy hungry

than reads and dominate the energy consumption. Overall, SHARE and WBP have similar energy

consumption. WCP saves energy by reducing cache writebacks (i.e., memory writes) over SHARE

and WBP. On average, WCP, WBP+WCP and UWP reduce energy by 15.5%, 11.3% and 18.9%

over SHARE, respectively. Note that the results are conservative as UWP can also improve the en-

ergy consumption of other system components (e.g., the cores and the DRAM LLC) by reducing

the processing time of applications.

5.3.5 Sensitivity Study

To analyze the benefit of UWP under different system configurations, this section studies the

sensitivity of the proposed schemes to memory read and write latencies, the number of memory

channels and the number of cores. Only the results for weighted speedup are shown for brevity.

The trends for throughput, fairness, lifetime and energy are similar.

81

!"#$

%"!$

%"&$

%"'$

%"($

%"#$

!"#!$%&' !"#!$%(' !"#!$%&)'!"#!$%*)'!"#!$%+)'!"#!$%&' !"#!$%(' !"#!$%&)'!"#!$%*)'!"#!$%+)'!"#!$%&' !"#!$%(' !"#!$%&)'!"#!$%*)'!"#!$%+)'

!$%()',-,./0' !$%*))',-,./0' !$%&)))',-,./0'

1
2
$3

4
.5
6/
!
'7

/
58
9
:/
!
';
<
/
/
!
=
<
'

7>?' 7@?' 7>?A7@?' B7?'

Figure 40: Sensitivity of UWP to memory write latency

Different NVM technologies finish read and write requests at different speeds. Typically, STT-

RAM processes reads in 30ns and writes in 40ns [40], a typical PCM device has a read latency

of 50ns and a write latency of 1µs [93, 94], while a ReRAM device services read request in 2µs

and write request in 10µs [67]. To understand whether UWP benefits different NVM technologies,

we vary the memory read and write latencies. The read latency (dr) is varied between 50 cycles

and 1000 cycles, and the ratio of write latency to read latency (dw/dr) is varied between 1 and 30.

Figure 40 shows the normalized weighted speedup (average over all 15 workloads) of WBP, WCP,

WBP+WCP and UWP under different memory read and write latencies. WBP failed to achieve

comparable performance to WCP when the read latency is fast (dr = 50 cycles). The reason is

that, for memory systems with relative fast access speed, the bandwidth bottleneck is the bus, not

the bank bandwidth.

The benefit of WCP, compared to SHARE, increases as memory writes become slower. This

result is expected as the importance of WCP is proportional to the write latency, which is the

penalty of incurring a writeback when the memory is saturated. The benefit of UWP over all

schemes, including WBP+WCP, is stable across different memory access latencies. This shows

that coordinated management is beneficial for different NVM technologies.

The baseline assumes 4 channels with 8 banks per channel. Figure 41 shows the performance

impact by varying the number of channels while keeping the same number of banks per channel,

82

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

("'#

!" #" $" %&"

'
(
)*

+
,-
./
0
"1

/
-2
3
4/
0
"5
6
/
/
0
7
6
"

'7*8/)"(9":/*();"<3+==/,>"

1?@" 1<@" 1?@A1<@" B1@"

Figure 41: Sensitivity of UWP to number of memory channels

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

("'#

!" #" $" %&"

'
(
)*

+
,-
./
0
"1

/
-2
3
4/
0
"5
6
/
/
0
7
6
"

'7*8/)"(9":()/;"

1<=" 1:=" 1<=>1:=" ?1="

Figure 42: Scalability of UWP

that is, varying the total memory bandwidth. The benefit of WBP, compared to SHARE, decreases

as the number of memory channels increases. This is because the importance of bandwidth parti-

tioning is proportional to the scarceness of memory bandwidth, which naturally decreases as the

system has more memory channels (banks). However, the effectiveness of UWP over WBP+WCP

is unchanged under different number of memory channels. On average, UWP improves weighted

speedup by 8.1%, 8.3%, 8.9% and 8.2% for 2, 4, 8 and 16 channels over WBP+WCP, respectively.

To understand the scalability of the proposed scheme, UWP is evaluated on 2-, 4-, 8- and

16-core systems with a shared DRAM LLC of size 8MB, 16MB, 32MB and 64MB and a hybrid

83

memory of 1, 2, 4 and 8 memory channels, respectively. For each CMP configuration, UWP is

evaluated using 30 randomly generated workloads. Figure 42 shows the summarized weighted

speedup among all workloads. On average, UWP improves weighted speedup for 2-, 4-, 8- and

16-core systems by 7.7%, 9.8%, 8.3% and 8.2% over WBP+WCP, respectively. These results show

that UWP is scalable.

5.4 CONCLUSION

In this chapter, we experimentally show that cache partitioning and bandwidth partitioning are

dependable on each other. The partitioning decision on one resource impacts the effectiveness

of partitioning the other resource. Based on such observation, we propose a coordinated analytic

model the consider the performance impact of both cache partitioning and bandwidth partition-

ing. UWP is proposed to partition the cache and memory bandwidth cooperatively, improving the

system performance effectively.

84

6.0 CONCLUSION

Non-volatile memory technologies (NVM) are promising candidates for energy-efficient main

memory due to their promising features such as non-volatility, good scalability and energy effi-

ciency. Phase Change Memory (PCM) is one of the NVMs that has been proposed as a replace-

ment for (or in addition to) DRAM by many researchers. Unlike DRAM, most NVMs have a

unique read/write asymmetry such that the write operations take longer time and consume higher

energy/power than memory reads. Existing resource partitioning techniques have been shown to

be beneficial for the system performance by reducing the interferences between competing appli-

cations. However, these techniques are designed for symmetric memory (e.g., DRAM) and fail

to take into consideration the read/write asymmetry property of NVM. In this dissertation, we

study shared resource management schemes that are tailored to non-volatile asymmetric memory

by considering NVM’s asymmetric property.

The last-level cache (LLC) and memory bandwidth are two important shared resources in the

memory hierarchy. First, we propose a Writeback-aware Cache Partitioning (WCP) scheme to

better partition the LLC among applications. Under the observation that both memory writes (due

to LLC writebacks) and memory reads (due to LLC misses) impact the system performance, WCP

improves the overall system performance by reducing the LLC misses as well as LLC writebacks.

Second, we use an analytic model to study the management of memory bandwidth in NVM

systems. Based on the analytic model, we propose a Writeback-aware Bandwidth Partitioning

(WBP) scheme to allocate the memory service cycles among applications. Comparing to existing

techniques such as Utility-based Cache Partitioning (UCP), WBP is more suitable and achieves

better performance for NVM systems by (a) allocating the bank bandwidth rather than the bus

bandwidth; and (b) considering the bandwidth consumption by the memory write requests.

85

Finally, we study the interactions between cache partitioning and bandwidth partitioning. We

validate the bidirectional relationship between cache and bandwidth partitioning such that the man-

agement policy of one shared resource affects the effectiveness of the other shared resource man-

agement scheme. A coordinated analytic model is proposed to study the performance impacts

of cache partitioning coordinated with bandwidth partitioning. We propose a Unified Writeback-

aware Partitioning (UWP) to partition the last-level cache and the memory bandwidth coopera-

tively. UWP can further improve the system performance by considering the interaction of cache

partitioning and bandwidth partitioning.

NVM technologies provide an alternative solution for main memory to achieve higher energy

efficiency. The undesirable characteristics, such as slow and energy hungry writes and low write

bandwidth, might hinder the application of NVMs as main memory. The three techniques proposed

in this thesis are shown to improve the system performance through better management of the

shared resources (i.e., LLC and memory bandwidth). The proposed techniques partially alleviate

the negative impacts of NVM’s undesirable characteristics. More architectural techniques are still

needed to make NVM a viable solution for energy-efficient main memory.

86

BIBLIOGRAPHY

[1] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An introduction to the

design of warehouse-scale machines. Synthesis lectures on computer architecture, 4(1), 2009.

[2] Ramazan Bitirgen, Engin Ipek, and Jose F Martinez. Coordinated management of multiple

interacting resources in chip multiprocessors: A machine learning approach. In MICRO ’08,

2008.

[3] Mainak Chaudhuri. Pseudo-lifo: the foundation of a new family of replacement policies for

last-level caches. In MICRO ’09, 2009.

[4] Feng Chen, Song Jiang, and Xiaodong Zhang. Smartsaver: turning flash drive into a disk

energy saver for mobile computers. In ISLPED ’06, 2006.

[5] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms for phase

change memory. In CIDR ’11, 2011.

[6] YC Chen, CT Rettner, S Raoux, GW Burr, SH Chen, RM Shelby, M Salinga, WP Risk,

TD Happ, GM McClelland, et al. Ultra-thin phase-change bridge memory device using gesb.

In International Electron Devices Meeting, 2006.

[7] Sangyeun Cho and Hyunjin Lee. Flip-N-Write: a simple deterministic technique to improve

PRAM write performance, energy and endurance. In MICRO ’09, 2009.

[8] CJ Lin et al. 45nm low power cmos logic compatible embedded stt mram utilizing a reverse-

connection 1t/1mtj cell. In IEDM ’09, 2009.

[9] DH Kang et al. Two-bit cell operation in diode-switch phase change memory cells with 90nm

technology. In VLSIT ’08, 2008.

[10] Dmytro Apalkov et al. Spin-transfer torque magnetic random access memory (stt-mram).

JETC, 9(2), 2013.

[11] Jianbo Dong, Lei Zhang, Yinhe Han, and Xiaowei Li. Wear rate leveling: Lifetime enhance-

ment of PRAM with endurance variation. In DAC ’11, 2011.

87

[12] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Helen Li, and Yiran Chen. Circuit

and microarchitecture evaluation of 3d stacking magnetic ram (mram) as a universal memory

replacement. In DAC ’08, 2008.

[13] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via source throttling:

a configurable and high-performance fairness substrate for multi-core memory systems. In

ASPLOS ’10, 2010.

[14] P. G. Emma. Understanding some simple processor-performance limits. IBM J. Res. Dev.,

41(3), 1997.

[15] F. Pellizzer et al. A 90nm phase change memory technology for stand-alone non-volatile

memory applications. In Symp. on VLSI Tech., 2006.

[16] Fai Yeung et al. Ge2sb2te5 confined structures and integration of 64 mb phase-change random

access memory. Japanese Journal of Applied Physics, 44(4S), 2005.

[17] Alexandre P. Ferreira, Bruce Childers, Rami Melhem, Daniel Mosse, and Mazin Yousif. Us-

ing PCM in next-generation embedded space applications. In RTAS ’10, 2010.

[18] Alexandre P. Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem, and Daniel

Mosse. Increasing PCM main memory lifetime. In DATE ’10, 2010.

[19] International Technology Roadmap for Semiconductors. Process integration, devices, and

structures. http://www.itrs.net/links/2007itrs/2007_chapters/2007_

PIDS.pdf, 2007.

[20] David Halupka, Safeen Huda, William Song, Ali Sheikholeslami, Koji Tsunoda, Chikako

Yoshida, and Masaki Aoki. Negative-resistance read and write schemes for stt-mram in

0.13µm cmos. In ISSCC ’10, 2010.

[21] Allan Hartstein, Viji Srinivasan, Thomas R. Puzak, and Philip G. Emma. Cache miss behav-

ior: is it sqrt(2)? In Conf. Computing Frontiers, 2006.

[22] Yenpo Ho, Garng M Huang, and Peng Li. Nonvolatile memristor memory: device character-

istics and design implications. In ICCAD ’09, 2009.

[23] D Ielmini, S Lavizzari, D Sharma, and AL Lacaita. Physical interpretation, modeling and

impact on phase change memory (pcm) reliability of resistance drift due to chalcogenide

structural relaxation. In IEDM ’07, 2007.

[24] Intel. Intel, stmicroelectronics deliver industry’s first phase change memory prototypes.

http://www.intel.com/pressroom/archive/releases/20080206corp.

htm, 2008.

[25] Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich Caruana. Self-optimizing memory con-

trollers: A reinforcement learning approach. In ISCA ’08, 2008.

88

http://www.itrs.net/links/2007itrs/2007_chapters/2007_PIDS.pdf
http://www.itrs.net/links/2007itrs/2007_chapters/2007_PIDS.pdf
http://www.intel.com/pressroom/archive/releases/20080206corp.htm
http://www.intel.com/pressroom/archive/releases/20080206corp.htm

[26] J. Liang, R.G.D. Jeyasingh, H.-Y. Chen, and H.-S.P. Wong. A 1.4ua reset current phase

change memory cell with integrated carbon nanotube electrodes for cross-point memory ap-

plication. In VLSIT ’11, 2011.

[27] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon Steely Jr, and

Joel Emer. Adaptive insertion policies for managing shared caches. In PACT ’08, 2008.

[28] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High performance

cache replacement using re-reference interval prediction (rrip). In ISCA ’10, 2010.

[29] JH Oh et al. Full integration of highly manufacturable 512mb pram based on 90nm technol-

ogy. In IEDM’06, 2006.

[30] Norman P Jouppi, Sarita Adve, and Parthasarathy Ranganathan. Reconfigurable caches and

their application to media processing. In ISCA ’00, 2000.

[31] J. Gummaraju K. Luo and M. Franklin. Balancing throughput and fairness in smt processors.

In ISPASS ’01, 2001.

[32] Michael Kanellos. Ibm changes directions in magnetic memory. http://news.

cnet.com/IBM-changes-directions-in-magnetic-memory/2100-1004_

3-6203198.html, 2007.

[33] Kang et al. A 0.1 µm 1.8V 256Mb 66MHz Synchronous Burst PRAM. In ISSCC ’06, 2006.

[34] Dimitris Kaseridis, Jeffrey Stuecheli, Jian Chen, and Lizy Kurian John. A bandwidth-

aware memory-subsystem resource management using non-invasive resource profilers for

large CMP systems. In HPCA ’10, 2010.

[35] Taeho Kgil, David Roberts, and Trevor Mudge. Improving nand flash based disk caches. In

ISCA ’08, 2008.

[36] Ki Chul Chun et al. A scaling roadmap and performance evaluation of in-plane and perpen-

dicular mtj based stt-mrams for high-density cache memory. IEEE Journal of Solid-State

Circuits, 48(2), 2013.

[37] Kinam Kim and Su Jin Ahn. Reliability investigations for manufacturable high density pram.

In Reliability Physics Symposium ’05, 2005.

[38] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and partitioning in a

chip multiprocessor architecture. In PACT ’04, 2004.

[39] Joonho Kong, Jinhang Choi, Lynn Choi, and Sung Woo Chung. Low-cost application-aware

DVFS for multi-core architecture. In ICCIT ’08, 2008.

[40] Emre Kultursay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu. Evaluating

stt-ram as an energy-efficient main memory alternative. In ISPASS ’13, 2013.

89

http://news.cnet.com/ IBM-changes-directions-in-magnetic-memory/2100-1004_3-6203198.html
http://news.cnet.com/ IBM-changes-directions-in-magnetic-memory/2100-1004_3-6203198.html
http://news.cnet.com/ IBM-changes-directions-in-magnetic-memory/2100-1004_3-6203198.html

[41] Stephan Lai and Tyler Lowrey. Oum-a 180 nm nonvolatile memory cell element technology

for stand alone and embedded applications. In IEDM’01, 2001.

[42] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change

memory as a scalable DRAM alternative. In ISCA ’09, 2009.

[43] Lee, Kwang-Jin et al. A 90nm 1.8v 512mb diode-switch pram with 266mb/s read throughput.

In ISSCC ’07, 2007.

[44] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and

Tom W Keller. Energy management for commercial servers. Computer, 36(12), 2003.

[45] Dean L Lewis and H-HS Lee. Architectural evaluation of 3d stacked rram caches. In 3DIC

’09, 2009.

[46] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan.

Gaining insights into multicore cache partitioning: Bridging the gap between simulation and

real systems. In HPCA ’08, 2008.

[47] Fang Liu, Xiaowei Jiang, and Yan Solihin. Understanding how off-chip memory bandwidth

partitioning in chip multiprocessors affects system performance. In HPCA ’10, 2010.

[48] Fang Liu and Yan Solihin. Studying the impact of hardware prefetching and bandwidth

partitioning in chip-multiprocessors. In SIGMETRICS ’11, 2011.

[49] Yong Luo, Olaf M. Lubeck, Harvey Wasserman, Federico Bassetti, and Kirk W. Cameron.

Development and validation of a hierarchical memory model incorporating CPU- and

memory-operation overlap model. In WOSP ’98, 1998.

[50] M Hosomi et al. A novel nonvolatile memory with spin torque transfer magnetization switch-

ing: Spin-ram. In IEDM ’05, 2005.

[51] Magnusson, Peter S. et al. Simics: A full system simulation platform. Computer, 35, 2002.

[52] Manu Awasthi et al. Handling pcm resistance drift with device, circuit, architecture, and

system solutions. In NVMW ’11, 2011.

[53] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger. Evaluation techniques for storage

hierarchies. IBM Systems Journal, 9(2), 1970.

[54] M. Moreto, F.J. Cazorla, A. Ramirez, and M. Valero. Online prediction of applications cache

utility. In IC-SAMOS ’07, july 2007.

[55] Miquel Moreto, Francisco J Cazorla, Alex Ramirez, and Mateo Valero. Mlp-aware dynamic

cache partitioning. In HiPEAC ’08. 2008.

[56] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling for chip

multiprocessors. In MICRO ’07, 2007.

90

[57] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and James E. Smith. Fair queuing memory

systems. In MICRO ’06, 2006.

[58] Stanford R. Ovshinsky. Reversible electrical switching phenomena in disordered structures.

Phys. Rev. Lett., 21, 1968.

[59] John D. Owens, Peter Mattson, Ujval J. Kapasi, William J. Dally, and Scott Rixner. Memory

access scheduling. ISCA ’10, 2000.

[60] A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez. Scaling

analysis of phase-change memory technology. In IEDM ’03, 2003.

[61] M. K. Qureshi, M.M. Franceschini, and L.A. Lastras-Montano. Improving read performance

of phase change memories via write cancellation and write pausing. In HPCA ’10, 2010.

[62] M. K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. A case for MLP-aware cache

replacement. In ISCA ’06, 2006.

[63] M. K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches. In MICRO 39, 2006.

[64] M. K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high performance

main memory system using phase-change memory technology. In ISCA ’09, 2009.

[65] Qureshi, M. K. et al. Enhancing lifetime and security of PCM-based main memory with

start-gap wear leveling. In MICRO ’09, 2009.

[66] R. G. Neale, D. L. Nelson, and G. E. Moore. Nonvolatile and reprogramable, the read-mostly

memory is here. Electronics, 1970.

[67] Richard Fackenthal et al. 19.7 a 16gb reram with 200mb/s write and 1gb/s read in 27nm

technology. In ISSCC ’14, 2014.

[68] SangBum Kim et al. Generalized phase change memory scaling rule analysis. In Non-Volatile

Semiconductor Memory Workshop, 2006.

[69] Stuart Schechter, Gabriel H. Loh, Karin Straus, and Doug Burger. Use ecp, not ecc, for hard

failures in resistive memories. In ISCA ’10, 2010.

[70] Simone Raoux et al. Phase-change random access memory: A scalable technology. IBM

Journal of Research and Development, 52(4.5), 2008.

[71] SL Cho et al. Highly scalable on-axis confined cell structure for high density pram beyond

256mb. In VLSIT ’05, 2005.

[72] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. Symbiotic jobscheduling with priorities

for a simultaneous multithreading processor. In SIGMETRICS ’02, 2002.

91

[73] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. Sharp control: controlled shared

cache management in chip multiprocessors. In MICRO ’09, 2009.

[74] G Edward Suh, Srinivas Devadas, and Larry Rudolph. A new memory monitoring scheme

for memory-aware scheduling and partitioning. In HPCA ’02, 2002.

[75] G Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic partitioning of shared cache

memory. The Journal of Supercomputing, 28(1), 2004.

[76] G. Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic partitioning of shared cache

memory. The Journal of Supercomputing, 28, 2004.

[77] Guang Suo, Xuejun Yang, Guanghui Liu, Junjie Wu, Kun Zeng, Baida Zhang, and Yisong

Lin. Ipc-based cache partitioning: An ipc-oriented dynamic shared cache partitioning mech-

anism. In ICHIT’08, 2008.

[78] T Kishi et al. Lower-current and fast switching of a perpendicular tmr for high speed and

high density spin-transfer-torque mram. In IEDM ’08, 2008.

[79] Farhad Tabrizi. The future of scalable stt-ram as a universal embedded memory. Embed-

ded.com, February, 2007.

[80] Andrew S. Tanenbaum. Computer Networks, 3rd Edition. Prentice Hall, 1996.

[81] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B Brockman, and Norman P

Jouppi. A comprehensive memory modeling tool and its application to the design and analysis

of future memory hierarchies. In ISCA ’08, 2008.

[82] W Mueller et al. Challenges for the dram cell scaling to 40nm. In IEDM ’05, 2005.

[83] Ruisheng Wang, Lizhong Chen, and Timothy Pinkston. An analytical performance model for

partitioning off-chip memory bandwidth. In IPDPS ’13, 2013.

[84] Woo Yeong Cho et al. A 0.18-um 3.0-v 64-mb nonvolatile phase-transition random access

memory (pram). IEEE JSSC, 40, 2005.

[85] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C Steely Jr, and Joel Emer. Pac-

man: prefetch-aware cache management for high performance caching. In MICRO ’11, 2011.

[86] Michael Wu and Willy Zwaenepoel. envy: a non-volatile, main memory storage system. In

ACM SigPlan Notices, volume 29, 1994.

[87] Yuejian Xie and Gabriel H. Loh. Pipp: Promotion/insertion pseudo-partitioning of multi-core

shared caches. In ISCA ’09, 2009.

[88] Yi-Hsuan Chiu et al. Impact of resistance drift on multilevel pcm design. In ICICDT ’10,

2010.

92

[89] Chenjie Yu and Peter Petrov. Off-chip memory bandwidth minimization through cache parti-

tioning for multi-core platforms. In DAC ’10, 2010.

[90] Wangyuan Zhang and Tao Li. Helmet: A resistance drift resilient architecture for multi-level

cell phase change memory system. In DSN ’11, 2011.

[91] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based page interleaving

scheme to reduce row-buffer conflicts and exploit data locality. In MICRO ’00, 2000.

[92] Miao Zhou, Santiago Bock, Alexandre P Ferreira, Bruce Childers, Rami Melhem, and Daniel

Mossé. Real-time scheduling for phase change main memory systems. In TrustCom ’11,

2011.

[93] Miao Zhou, Yu Du, Bruce Childers, Rami Melhem, and Daniel Mossé. Writeback-aware

partitioning and replacement for last-level caches in phase change main memory systems.

TACO, 8(4), 2012.

[94] Miao Zhou, Yu Du, Bruce R. Childers, Rami Melhem, and Daniel Mosse. Writeback-aware

bandwidth partitioning for multi-core systems with pcm. In PACT ’13, 2013.

[95] Ping Zhou, Yu Du, Youtao Zhang, and Jun Yang. Fine-grained qos scheduling for pcm-based

main memory systems. In IPDPS ’10, 2010.

[96] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main

memory using phase change memory technology. In ISCA ’09, 2009.

93

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Basic attributes of different memory technologies
	2. Partitioning weights for different optimization objectives
	3. Baseline configuration
	4. Benchmark classification based on writebacks per 1000 instructions
	5. Multiprogrammed workloads of Light, Medium and High
	6. Storage overhead of WCP in a 8-core system
	7. Parameters for the analytic model
	8. Latency overhead of search driven schemes and UWP

	LIST OF FIGURES
	1. PCM cell structure
	2. The process of PCM write operations
	3. Example current-voltage behavior of PCM cells
	4. Hybrid Main Memory Architecture
	5. Architectural components to enable WCP
	6. An example of tracking writebacks from a cache
	7. Performance impact of cache partitioning weight
	8. Average occupancy of write buffers when there are congested write buffer(s)
	9. Impact on memory lifetime
	10. Impact on memory energy consumption
	11. Impact on weighted speedup
	12. Impact on system throughput
	13. Impact on fairness
	14. Sensitivity of WCP and WBB to memory write latency
	15. Sensitivity of WCP and WBB to # of memory channels
	16. Sensitivity of WCP and WBB to write buffer size
	17. Sensitivity of WCP and WBB to # of cores
	18. Percentage of device bandwidth for DRAM and hybrid memory systems
	19. Throughput of RBP normalized to SHARE
	20. Architecture abstractions for bandwidth partitioning
	21. Components added to memory controller and OS to support WBP
	22. Writeback-aware bandwidth partition steps/timeline
	23. Weighted speedup normalized to SHARE
	24. Throughput normalized to SHARE
	25. Fairness normalized to SHARE
	26. Average effective read latency normalized to SHARE
	27. Performance impact of dynamic weight adaptation granularity
	28. Sensitivity of bandwidth partitioning schemes to memory write latency
	29. Sensitivity of bandwidth partitioning schemes to # of memory channels
	30. Sensitivity of bandwidth partitioning schemes to # of cores
	31. Performance of mcf-bzip2
	32. Number of workloads favoring each static partitioning configuration
	33. Architectural components to support UWP
	34. Weighted speedup of search driven partitioning and UWP normalized to SHARE
	35. Weighted speedup of WBP, WCP, WBP+WCP and UWP normalized to SHARE
	36. Throughput of WBP, WCP, WBP+WCP and UWP normalized to SHARE
	37. Fairness of WBP, WCP, WBP+WCP and UWP normalized to SHARE
	38. WBPKI of WBP, WCP, WBP+WCP and UWP normalized to SHARE
	39. Energy consumption of WBP, WCP, WBP+WCP and UWP normalized to SHARE
	40. Sensitivity of UWP to memory write latency
	41. Sensitivity of UWP to number of memory channels
	42. Scalability of UWP

	LIST OF EQUATIONS
	3.1. Equation (3.1)
	3.2. Equation (3.2)
	3.3. Equation (3.3)
	3.4. Equation (3.4)
	3.5. Equation (3.5)
	3.6. Equation (3.6)
	3.7. Equation (3.7)
	3.8. Equation (3.8)
	4.1. Equation (4.1)
	4.2. Equation (4.2)
	4.3. Equation (4.3)
	4.4. Equation (4.4)
	4.5. Equation (4.5)
	4.6. Equation (4.6)
	4.7. Equation (4.7)
	4.8. Equation (4.8)
	4.9. Equation (4.9)
	4.10. Equation (4.10)
	4.11. Equation (4.11)
	4.12. Equation (4.12)
	4.13. Equation (4.13)
	4.14. Equation (4.14)
	4.15. Equation (4.15)
	4.16. Equation (4.16)
	4.17. Equation (4.17)
	5.1. Equation (5.1)
	5.2. Equation (5.2)
	5.3. Equation (5.3)
	5.4. Equation (5.4)
	5.5. Equation (5.5)
	5.6. Equation (5.6)
	5.7. Equation (5.7)
	5.8. Equation (5.8)
	5.9. Equation (5.9)
	5.10. Equation (5.10)
	5.11. Equation (5.11)
	5.12. Equation (5.12)
	5.13. Equation (5.13)

	LIST OF ALGORITHMS
	3.1. Monitoring Hits
	3.2. Monitoring Writebacks
	3.3. Adjusting Cache Partitioning Weight (wc) Dynamically
	3.4. Write Buffer Balancing Replacement
	5.1. Search Driven Partitioning
	5.2. Lookahead Cache Partitioning Algorithm

	1.0 INTRODUCTION
	1.1 Problem statement
	1.2 Solution Overview
	1.3 Contributions

	2.0 BACKGROUND AND RELATED WORK
	2.1 Phase Change Memory
	2.1.1 Phase Change Memory Background
	2.1.2 Architectural techniques for PCM

	2.2 Management of Shared Caches
	2.2.1 Cache Replacement
	2.2.2 Cache Partitioning

	2.3 Bandwidth Partitioning
	2.4 Coordinated Cache and Bandwidth Partitioning
	2.5 Non-volatile Main Memory Architectures

	3.0 CACHE PARTITIONING USING WRITEBACK INFORMATION
	3.1 Motivation for Writeback-aware Cache Partitioning
	3.2 Writeback-aware Cache Partitioning
	3.2.1 Monitoring of Writebacks
	3.2.2 Extended Utility Monitors (E-UMON)
	3.2.3 Cache Partition Selection
	3.2.4 Weight Computation for Performance Optimization

	3.3 Write Buffer Balancing Replacement
	3.4 Experimental Methodology and Metrics
	3.5 Evaluation Results and Analysis
	3.5.1 Dynamic Weight Adjustment for WCP
	3.5.2 Unbalanced Write Buffers
	3.5.3 Memory Lifetime
	3.5.4 Energy Consumption
	3.5.5 Performance
	3.5.6 Sensitivity Study
	3.5.7 Hardware Overhead

	3.6 Conclusion

	4.0 BANDWIDTH PARTITIONING USING WRITEBACK INFORMATION
	4.1 Limited Memory Device Bandwidth
	4.2 Architecture Support for Writeback-Aware Bandwidth Partitioning
	4.2.1 Bandwidth Partitioning
	4.2.2 Architecture Overview

	4.3 Writeback-aware Bandwidth Partitioning
	4.3.1 CPI Formula Extension
	4.3.2 Queuing Delay Derivation
	4.3.3 Maximizing Weighted Speedup

	4.4 Dynamic Weight Adjustment
	4.5 Evaluation Results
	4.5.1 Performance
	4.5.2 Effective Read Latency
	4.5.3 Dynamic Weight Adaptation Granularity
	4.5.4 Sensitivity Study

	4.6 Conclusion

	5.0 COORDINATING THE PARTITIONING OF CACHE AND BANDWIDTH
	5.1 Interaction of Cache and Bandwidth Partitioning
	5.2 Coordinated Partitioning of Cache and Bandwidth
	5.2.1 Problem Definition
	5.2.2 Search Driven Partitioning
	5.2.3 Model Driven Partitioning
	5.2.4 Architecture of UWP

	5.3 Evaluation Results
	5.3.1 Search Driven Partitioning
	5.3.2 Performance
	5.3.3 Memory Lifetime
	5.3.4 Energy Consumption
	5.3.5 Sensitivity Study

	5.4 Conclusion

	6.0 CONCLUSION
	BIBLIOGRAPHY

