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Head and neck squamous cell carcinoma (HNSCC), is a cancer of the upper aerodigestive tract 

epithelium. Risk factors for HNSCC are smoking, alcohol use, and infection with oncogenic 

human papillomavirus (HPV). HPV(+)HNSCC has a better prognosis than HPV(-)HNSCC in the 

absence of smoking. Multimodal therapy, combining surgery, radiation therapy, and 

chemotherapy, is the standard of care for HPV(+) and HPV(-) HNSCC. Despite improvements in 

care, all stage survival rates for HNSCC (~60% and ~50%, at 5 and 10 years respectively), have 

only modestly improved in the last 3 decades. 

 Cetuximab, an antibody against the epidermal growth factor receptor (EGFR), and only 

FDA-approved targeted therapy in HNSCC, is efficacious in only a subset of patients, and no 

known biomarkers can identify which patients will respond. Traditionally, a lack of knowledge 

regarding the genetic alterations underlying HNSCC has stymied the development of additional 

targeted agents. We conducted whole exome sequencing (WES) studies that reveal a 

compendium of genetic alterations observed in primary, metastatic, and recurrent HNSCC. 

Which, together with functional analyses in preclinical models, have identified new potential 

therapeutic targets in HNSCC.  

WES of 151 HNSCC tumors identified the phosphoinositol-3-kinase (PI3K) pathway and 

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) as the most 

commonly mutated oncogenic pathway and oncogene in HNSCC. PIK3CA alterations were 
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found to promote growth, survival, and invasion in engineered HNSCC cell lines. PI3K 

inhibitors were effective in preclinical models of HNSCC, especially in those harboring 

endogenous PIK3CA mutations.  

WES of patient-matched tumor pairs from 23 patients with metastatic or recurrent disease 

reveals a spectrum of inter-tumor genetic heterogeneity. Genetically, paired primary tumors are 

more similar to synchronous lymph node metastases than metachronous recurrent tumors. Newly 

acquired mutations in the discoidin domain receptor 2 (DDR2) gene were found in a subset of 

recurrent tumors. Mutations in this gene have been found to confer sensitivity to Src family 

kinase (SFK) inhibitors in other malignancies, and we found HNSCC cell lines with endogenous 

or engineered DDR2 mutations to be sensitive to dasatinib. These studies shed light on the 

underlying pathophysiology of HNSCC, and identify potential therapeutic targets for further 

investigation. 
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1.0  GENERAL INTRODUCTION AND REVIEW OF LITERATURE 

The Human Genome Project, initiated in 1990, represents the culmination of more than a century 

of research, dating back to Gregor Mendel’s 1865 experiments in plant hybridization. Largely 

using bacterial artificial chromosome (BAC) cloning and Sanger sequencing techniques 

originally developed in the 1970s, this international consortium of geneticists produced the first 

full sequence of the human genome over the course of 13 years, at a cost of approximately $2.7 

billion.(1) As the draft sequence was completed, a new sequencing technology, called massively 

parallel sequencing (MPS), was developed by Lynx Therapeutics.(2) This technology combined 

and miniaturized in vitro cloning/amplification and sequencing techniques, resulting in the 

simultaneous generation of millions of parallel reaction reads, and provided the framework for 

additional high-throughput next generation sequencing (NGS) technologies, developed shortly 

thereafter.(3) The profound reductions in cost and time to sequence that NGS technologies offer, 

from years and millions of dollars to days and thousands of dollars, have resulted in the 

application of genome, exome, and targeted NGS to virtually every known disease. As cancer is 

a genetic disorder, these technologies present a tremendous opportunity to expand our 

understanding of this disease and develop new therapeutics. 

Cancer is a collection of disease states characterized by uncontrolled growth of atypical 

cells with the potential to invade, overtake and damage otherwise normal tissues throughout the 

body. Specific types of cancer are diagnosed and defined by the cells and organs they originate 
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from, and increasingly, by their molecular characteristics. These underlying molecular 

characteristics, namely the genetic and epigenetic abnormalities that accumulate throughout the 

evolution of these atypical cells, are the root cause of cancer.  

Since 1998, in the United States, there has been a sustained decline in overall cancer 

mortality, and the most recent data demonstrate a 0.5% decrease in the incidence rate of cancer 

in the general population from 2002 to 2011.(4) Cancer remains however, a leading cause of 

morbidity and mortality in this country; with an estimated 1,658,370 new cases of cancer and 

589,430 deaths from cancer in the United States this year, costing in excess of $125 billion to 

treat.(5)  

1.1 HEAD AND NECK SQUAMOUS CELL CARCINOMA 

1.1.1 Epidemiology and Clinical Considerations 

Head and neck squamous cell carcinoma (HNSCC) is a cancer of the upper aerodigestive tract 

epithelium that accounts for >90% of the cancers of the head and neck.(6) It arises in the oral 

cavity (~51%), pharynx (~26%), and larynx (~23%).(7) Worldwide, HNSCC is the 7th most 

common cancer by incidence, with over 600,000 new cases each year; more than 50,000 of 

which are estimated to occur in the United States.(8) Men are at least two times more likely to be 

diagnosed with HNSCC than women, due largely to differences in behavioral risk factors, and 

the incidence rate of HNSCC has increased by ~55% in men and ~20% in women over the last 

10 years, according to US incidence data.(4) Classically, tobacco use and alcohol consumption 

are the two most important behavioral risk factors for the development of HNSCC in developed 
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countries, and their contributions to risk are synergistic. Underlying the increased incidence of 

oropharyngeal cancer, infection with oncogenic strains of the human papillomavirus (HPV), 

primarily HPV-16, is now a well-established independent risk factor; with approximately 20% of 

all HNSCC, and more than 60% of HNSCC arising in the oropharynx, being HPV(+).(4, 9-11) 

The prevalence of HPV in the general population appears to increasing as well, a recent meta-

analysis found the prevalence in the general male population to be 8.8% in studies before the 

year 2000, and 28.5% in studies conducted afterwards.(12) This virally-associated subtype of 

HNSCC has been found to have a favorable prognosis, compared to HPV(-) subtypes, in the 

absence of smoking.(13) The Epstein-Barr virus, though primarily a risk factor for 

nasopharyngeal carcinoma, has also been associated with HNSCC.(14, 15) Greatly increased 

susceptibility to HNSCC is seen in some heritable conditions of impaired genome maintenance, 

such as Fanconi Anemia.(16) 

HNSCC is staged via the tumor, node, metastasis (TNM) staging system which, along 

with HPV status and tobacco use, is strongly predictive of prognosis.(13, 17) Early-stage tumors 

generally have a favorable prognosis, and are treated with surgery or radiation therapy (RT). 

Most patients however, present with advanced stage tumors and cervical lymph node 

metastases.(18) More than 90% of these patients are treated with curative intent multimodal 

combination therapy featuring surgery, RT, and chemotherapy (CT).(19) To date, the anatomic 

site of the primary tumor has in large part dictated the treatment approach; tumors in the oral 

cavity are surgically resected, and tumors of the pharynx and larynx are treated with chemo-

radiation therapy (CRT).(17, 19) All stage survival rates in HNSCC, 61% and 50% at 5 and 10 

years respectively, have been largely stagnant over the last 3 decades.(6) Significant toxicities 

and morbidities including pain, mucositis, immunosuppression, dysphagia and dysphonia; which 
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can result in long term dependency on gastric feeding tubes, tracheostomies and voice 

prostheses, are associated with these treatment modalities.(20) HNSCC recurs in more than 25% 

of patients.(21) Recurrence in HNSCC is often resistant to standard therapy, and is generally 

considered incurable, illustrating the need for improved therapy.(21, 22)  

A major area of focus in the effort to improve HNSCC therapy is the development of 

targeted therapeutics. The most mature target to date is the epidermal growth factor receptor 

(EGFR). Overexpression and hyper activation of EGFR is known to contribute to oncogenesis, 

and is seen in >80% of HNSCC tumors; where high protein levels have been shown to correlate 

with reduced survival.(23) Cetuximab, a chimeric IgG1 monoclonal antibody (mAb) against 

EGFR, was approved in 2006 and remains the only FDA-approved targeted therapy in HNSCC 

to date. In a phase III randomized trial of 424 previously untreated HNSCC patients, median 

overall survival for patients treated with cetuximab and RT was 49.0 months versus 29.3 months 

in the RT-alone group.(24) A randomized trial of 442 patients with recurrent HNSCC found that 

the addition of cetuximab to platinum-based CT improved median overall survival from 7.4 to 

10.1 months.(25) When added to CRT in a phase III randomized trial of 891 patients, cetuximab 

failed to improve outcomes.(26) When used alone, response to cetuximab is only observed 10-

13% of patients, and resistance is known to develop.(27) Given these limitations, additional 

targeted therapies are clearly needed in HNSCC. In order to develop such agents, an improved 

understanding of the pathogenesis and molecular characteristics of HNSCC is required. 

1.1.2 Oncogenic Progression 

The field cancerization theory, proposed in 1953 by Slaughter et al., posits that HNSCC evolves 

clonally through the progressive acquisition of mutations from one or more precancerous field(s) 
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of atypical mucosal epithelium to an invasive carcinoma (Figure 1). This theory offers a partial 

explanation as to the risk of local recurrence (as high as 61% in cancers with high risk features) 

and rate of metachronous second primary tumor formation (6-9% annually for life) in 

HNSCC.(28, 29)  

Figure 1. The Field Cancerization Theory. 

Exposure of the aerodigestive mucosal tract to carcinogens, i.e. tobacco smoke, results in the presence of one or 

more mucosal areas consisting of epithelial cells with cancer-associated genetic or epigenetic alterations. A 

precursor field (light blue) is monoclonal but does not show invasive growth or metastatic behavior, which are the 

hallmarks of an invasive carcinoma (dark blue). A field is preneoplastic by definition; it may or may not have 

histological alterations characteristic of dysplasia. The clinical manifestation of a field is known as a leukoplakia, 

though most fields are clinically invisible. Additional genetic changes are needed to transform a field into a 

carcinoma. The field and primary tumor share genetic alterations and have a common clonal origin. Clinically, a 

field may be the source of local recurrences, second field tumors, and second primary tumors after surgical resection 

of the initial carcinoma. These legions are clinically distinguished on the basis of their distance from the index 

tumor, and/or the time interval after which they develop. A local recurrence (lower center) arises from residual 

tumor cells and is less than 2 cm away from, and/or occurs within 3 years of, the primary tumor. A second primary 
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tumor (lower left) is more than 2 cm away from, and/or occurs more than 3 years after, the primary tumor. Tumors 

that arise from a contiguous portion of the same field that gave rise to the original primary tumor have been 

described as second field tumors (lower right). The normal process of squamous differentiation in mucosa is 

controlled in part by a TP63 and NOTCH1 expression gradient (far right). TP63 is expressed in keratinocytes of the 

basal layer, where it maintains their proliferative potential and regulates expression of basal keratins. Expression of 

NOTCH1 results in terminal differentiation of cells in the spinous and granular layers, and the expression of 

alternative keratins. Perturbation of this gradient is believed to be a component of precancerous fields and invasive 

HNSCC legions.(30-35) This figure is artwork by Matthew Hedberg as published in The Molecular Pathogenesis of 

Head and Neck Cancer in Mendelsohn J, Howley PM, Israel MA, Gray JW, and Thompson CB (Eds), The 

Molecular Basis of Cancer. Philadelphia, PA: Elsevier Inc. 

1.1.3 Molecular Pathogenesis 

The well documented histological progression of HNSCC from leukoplakia through progressive 

phases of hyperplasia, dysplasia, carcinoma in situ and ultimately invasive carcinoma, is 

believed to correspond with the accumulation of genetic alterations.(36) In HNSCC, one of the 

earliest initiating events is likely the clonal proliferation of precancerous cells with inactive 

Tumor Protein 53 (TP53).(37) The genetic alterations that accumulate within clonal 

subpopulations following this initiation event remain the subject of active investigation. Our 

understanding of the genetic alterations that underlie the development and progression of the 

primary subtypes of HNSCC (Figure 2) is evolving rapidly with the advent of whole exome 

sequencing (WES) studies in HNSCC.  

Please note: the remaining introductory subsections provide a summary of the current 

understanding of the molecular pathogenesis of HNSCC, and are intended as a general review. 

Several components will not be addressed beyond this introduction as they do not directly pertain 
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to the materials of Chapters 2 and 3, which present the contributions made through our WES 

studies in primary, metastatic, and recurrent HNSCC.  

Figure 2. Hypothetical Model of HNSCC Development. 

An outline of the genetic alterations implicated in HNSCC oncogenesis. The model is a generalization and thus is 

varyingly accurate among subtypes of HNSCC. Three steps are critical in this model: A progenitor or adult stem cell 

acquires one (or more) genetic alterations, usually including an alteration of p53, and forms a patch containing 

clonal, genetically altered daughter cells. Then, by escaping normal growth control and/or gaining growth 

advantage, this clonal patch develops into an expanding field. Eventually, through a further accumulation of genetic 

alterations, a subclone in the field evolves into an invasive cancer and progresses to metastasis. Both aneuploidy and 

the accumulation of cancer-associated genetic changes in fields are linked to the risk of malignant progression. The 

three main clinicopathologic subtypes of HNSCC are depicted: HPV(+)HNSCC, HPV(-)HNSCC with many genetic 

changes (high CIN), and HPV(-)HNSCC with few genetic changes (low CIN). Although drawn as distinct steps for 

the purpose of illustration, the actual order of acquisition of distinct alterations is not known at this time. CDK: 

Cyclin-dependent kinase, CSMD: CUB and SUSHI multiple domain protein, NF-κB: nuclear factor-κB, PIK3CA: 

phosphoinositide-3 kinase subunit-α, TGFβ: transforming growth factor-β, VEGF: vascular endothelial growth 

factor. This figure is artwork by Matthew Hedberg as published in The Molecular Pathogenesis of Head and Neck 

Cancer in Mendelsohn J, Howley PM, Israel MA, Gray JW, and Thompson CB (Eds), The Molecular Basis of 

Cancer. Philadelphia, PA: Elsevier Inc. 
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Genetic, and epigenetic, alterations drive the manifestation of cancerous cellular 

phenotypes in HNSCC. Conceptually, six major hallmarks define our current understanding of a 

cancerous cellular phenotype: sustaining proliferative signaling, evading growth suppressors, 

resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating 

invasion and metastasis.(38) Research to date indicates that the altered oncogenes and tumor 

suppressors of HNSCC act primarily in functional pathways known to largely determine cellular 

proliferation, cell survival, squamous epithelial differentiation, and invasion and metastasis. 

Individual genes may function in more than one pathway, and the pathways themselves interface 

with, and influence, each other (Figure 3). 

Figure 3. Interfacing Genetic Alterations of HNSCC 

Putative oncogenes (green), tumor suppressors (red), and signaling pathways that mediate the hallmarks of HNSCC. 

Loss of TP53 and CDKN2A, either through mutation or expression of the HPV E6 and E7 proteins (blue), along with 
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amplification of CCND1 favors survival and permits proliferation through the increased activity of cyclin-dependent 

kinases and loss of p53-dependent apoptosis. Although intact differentiation programs and alternative apoptotic 

programs may restrict abnormal cell cycling for a time, loss of NOTCH1 and/or abnormal expression of TP63, along 

with the acquisition of alterations in other survival genes, such as CASP8, PIK3CA, and EGFR, remove additional 

barriers to tumor cell proliferation and survival. Upregulation of pro-angiogenic genes permits the growth of tumors, 

and the loss of cell adhesion genes allows for the release of cells from the mucosal lining. Invasion through the 

basement membrane is promoted by TGFβ-SMAD signaling, the loss of which initially contributes to tumorigenesis, 

and whose later reactivation drives metastasis. Several genes and signaling pathways, including TP53, TP63, and 

NOTCH1, contribute to more than one hallmark by influencing each other’s expression and/or activity. This figure is 

artwork by Matthew Hedberg as published in The Molecular Pathogenesis of Head and Neck Cancer in Mendelsohn 

J, Howley PM, Israel MA, Gray JW, and Thompson CB (Eds), The Molecular Basis of Cancer. Philadelphia, PA: 

Elsevier Inc. 

1.1.3.1 Cell Cycle and Proliferation 

The genetic pathology observed in HNSCC is characterized by a large degree of inter-tumor 

mutational heterogeneity and mutation rates that generally exceed 50 somatic mutations per 

tumor, on average, with loss of tumor suppressor gene functions and, somewhat less commonly, 

gain of proto-oncogene functions.(10, 39-41) Foremost among these tumor suppressors is the 

TP53 gene product: p53. A nuclear phosphoprotein that, among other mechanisms, promotes the 

expression of its key downstream partner: cyclin-dependent kinase inhibitor 1 (p21), p53 can 

influence both the G1 and G2 checkpoints of the cell cycle, though it is traditionally thought of 

as the primary G2 regulator. Canonically, in response to DNA damage, p53 activation inhibits 

cell cycle progression and prevents apoptosis, allowing the cell time to repair the damaged DNA. 

If the DNA damage cannot be repaired, apoptosis ensues. Loss of p53 function allows cells with 

damaged DNA to proliferate freely, resulting in the accumulation of potentially oncogenic 

mutations in the genome of affected cells.  
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In HPV(-)HNSCC, mutation of TP53 is the earliest and most frequent mutation event that 

is observed. Occurring in greater than 50% of cases, TP53 mutation is significantly associated 

with decreased survival.(42) The majority of TP53 mutations are found in exons 5-9, the DNA 

binding region, with mutations at several specific codons known to be associated with tobacco 

exposure.(43) In most HNSCC tumors without somatic TP53 mutations, the activity of p53 is 

compromised by other mechanisms including: viral E6 gene expression in HPV(+) cancers, 

which inactivates p53, and overexpression and/or amplification of the MDM2 proto-oncogene 

E3 ubiquitin ligase (MDM2), which promotes the degradation of p53. Overall, p53 function is 

believed to be downregulated through one or more mechanisms, in at least 80% of HNSCC.(10)  

Chromosomal loss of 9p21, which contains the locus encoding the cyclin-dependent 

kinase inhibitor 2A (CDKN2A), has been reported in 70-80% of dysplastic oral mucosa legions 

progressing to HNSCC.(10) Two CDKN2A protein products, p16INK4A and p14ARF/INK4B, are 

involved in cell cycle regulation. Specifically, p14ARF/INK4B is known to downregulate MDM2, 

thereby regulating p53 levels.(44) Whereas p16INK4A regulates the Retinoblastoma pathway, the 

primary G1 checkpoint regulator, by inhibiting the Cyclin D1/Cyclin-Dependent Kinase 

(CCND1/CDK) complex that normally functions to inactivate Retinoblastoma 1 (RB) encoded 

pocket proteins via phosphorylation. Phosphorylation of RB proteins permits the dissociation and 

activation of Elongation Factor-2 and subsequent entry into S phase. Inactive, phosphorylated RB 

pocket proteins are unable to block the G1 to S phase transition in the setting of p16INK4A 

loss.(44) In addition to chromosomal loss of 9p21, recent studies have demonstrated CDKN2A 

mutations in approximately 7% of HNSCC tumors and copy number losses in another 20-

30%.(39, 41) The mechanism of p16INK4A loss has been shown to be of prognostic value in oral 

SCC; with epigenetic silencing found to be associated with higher recurrence rates, and deletion 
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with increased rates of nodal metastases.(45) Analogous to the inhibition of p53 by HPV E6 

expression, viral E7 gene expression in HPV(+)HNSCC inactivates the retinoblastoma pathway 

by binding RB proteins. Inhibition of RB by E7 reduces the selective pressure for p16INK4A loss in 

HPV(+)HNSCC allowing immunohistochemical staining for p16INK4A to be utilized clinically as 

a surrogate marker for HPV infection in HNSCC, along with PCR based methods, and in situ 

hybridization.(46) Further evidence of the important role of the retinoblastoma pathway in 

HNSCC is that the commonly found amplification of 11q13, in combination with other potential 

mechanisms, results in the overexpression of CCND1 in up to 80% of HPV(-) tumors.(10)  

Intriguingly, CDKN2A loss and CCND1 gain, though seemingly redundant mechanisms 

to evade the G1 checkpoint, are not mutually exclusive events in HNSCC. Both occur frequently, 

and remain under investigation as independent and synergistic markers of poor prognosis. (47) 

Cyclin D1 has been found to sequester certain CDK inhibitors, bind transcription factors such as 

PPARγ, and various DNA repair proteins such as Rad51.(48) Whether or not any of these 

interactions contributes to a consequential non-canonical CCND1 function in HNSCC, remains 

to be established.  

Telomerase reverse transcriptase (TERT) also promotes limitless replicative potential in 

HNSCC. The activity of telomerase is detectable by immunostaining in approximately 80% of 

HNSCC cases analyzed, and 5p amplifications, overlapping TERT, are common in HNSCC.(40) 

In most in vitro HNSCC models, Telomerase activity is generally necessary for immortalization 

of cell lines. However, keratinocytes transfected with E7 have been shown to elongate their 

telomeres in the absence of detectable telomerase expression, and the exact role of TERT in 

HNSCC is under investigation.(10)                   
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1.1.3.2 Differentiation and Mesenchymal Transition 

Many of the expression profile studies in HNSCC contain a large number of genes that are 

thought to reflect the process of epithelial-to-mesenchymal transition (EMT), especially profiles 

of metastatic HNSCC.(49) EMT is a biological process, wherein cells change from an epithelial 

phenotype to a mesenchymal-like phenotype. As epithelial cells do not possess the cellular 

plasticity for metastatic dissemination, this process is a common occurrence in cancer cells.(10) 

TP63 codes for p63, a p53-related transcription factor that, via its target genes such as p57Kip2, 

regulates differentiation in stratified epithelium, lineage specification, and subsequently 

proliferative potential. Mice lacking TP63 undergo total failure of epidermal maturation.(32, 34) 

In normally differentiated mature epithelium, TP63 expression is present as a gradient; with the 

highest levels in the basal epithelial cells, where it serves to antagonize NOTCH1 expression. 

Rising superficially through the strata, TP63 levels decrease and NOTCH1 levels increase 

driving terminal differentiation of the epithelial cell type (Figure 1). In dysplastic mucosa, this 

patterning is lost, and TP63 expression is evident throughout all layers of the epithelium. 

Additionally, TP63 overexpression and/or amplification is seen in the majority of HNSCC.(35) 

An isoform of TP63, ΔNp63, is known to contribute to cell survival by inhibiting senescence, 

and modulating growth factor signaling, and has be found to be upregulated in HNSCC.(33, 41)  

NOTCH mutations are found by exome sequencing in up to 25% of HNSCC tumors, with 

NOTCH1 being the most commonly mutated family member, 12-19%.(39-41) NOTCH signaling 

has been shown to influence cell survival, self-renewal capacity, and cell cycle exit; in 

addition to driving epithelial differentiation in concert with p63 and other signaling pathways. 

Ligands on adjacent cells bind to the NOTCH receptor, resulting in the cleavage of intracellular 

portions of 
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the receptor, that subsequently translocate to the nucleus, and drive the transcription of NOTCH 

target genes such as Cyclin D1 and p21.(30) Over activation of this pathway is believed to be 

tumorigenic in diffuse large B-cell lymphoma, T-cell acute lymphoblastic leukemia, and chronic 

lymphocytic leukemia. In those hematologic malignancies, translocations and activating 

mutations within NOTCH receptor genes have been observed.(50-52) In contrast, the NOTCH 

mutations observed in HNSCC appear to be predominantly inactivating mutations (truncation 

mutations, widespread distribution of SNVs across gene length, as opposed to hotspot 

enrichment); suggesting that it acts as a tumor suppressor in HNSCC, likely due to its role in 

driving epithelial differentiation.(31, 39, 40) The exact role of NOTCH signaling in HNSCC 

remains to be elucidated, and is likely tissue and/or context dependent; as has been observed in 

mouse models of epidermal and hematopoetic malignancies.(53, 54) 

1.1.3.3 Invasion and Metastasis 

HNSCC tumors metastasize primarily to the regional lymph nodes. The number of lymph node 

metastases in the neck, distant metastases, and the presence of extranodal spread are 

important prognostic factors predictive of disseminated disease and survival. While 

expression profile signatures of primary tumors that are predictive of metastasis have been 

identified, attempts to elucidate the mechanisms driving HNSCC metastasis are preliminary, 

and in some cases conflicting.(10) Metastasis is a multi-faceted process that ultimately results 

in a primary tumor “seeding” a distant anatomical site in the body. It involves several steps, 

one of which is invasion via the degradation of the extracellular matrix surrounding the 

primary tumor, in order to gain access to other areas of the body via the bloodstream or 

lymph system. Many studies have investigated the involvement of the matrix 

metalloproteinases (MMPs), which facilitate the degradation of the extracellular matrix. To 

date, strong associations have not been found, and 



 14 

treatments targeting MMPs have not achieved appreciable success, in HNSCC, and first 

generation inhibitors generally have been plagued by a lack of specificity in most clinical 

trials.(55, 56)  

In the context of invasion, the transforming growth factor β pathway (TGFβ), which 

normally functions to inhibit growth, has been implicated in HNSCC. TGFβ ligands bind to the 

receptors TGFBR1 and TGFBR2, resulting in phosphorylation of TGFBR1, which then activates 

the proteins SMAD2 and SMAD3. A SMAD complex is formed with the addition of SMAD4. 

This complex enters the nucleus and binds transcription factors, co-activators and co-repressors, 

which modulate the expression of TGFβ target genes, several of which are known to suppress 

cell proliferation, such as the cell cycle inhibitors CDKN2A. In addition, the TGFβ pathway has 

been implicated in the EMT process.(57)  

18q deletion, containing SMAD2, SMAD3, SMAD4, and TGFBR2 is common in 

HNSCC.(10) A recent mouse model found that conditional deletion of SMAD4 in the head and 

neck epithelium was sufficient to generate invasive HNSCC. The loss of SMAD4 expression in 

these animals correlated with increased expression of TGFBR1 and increased activation of 

SMAD3, while the Fanconi Anemia DNA repair pathway was found to be downregulated.(58) 

Significant rates (~4%) of missense mutations in TGFBR2 and rare mutations in SMAD2 and 

SMAD4 have been reported in HNSCC tumors and cell lines.(39-41, 59, 60) Recently, it has 

been demonstrated that reduced activity of the TGFβ pathway correlates with increased NF-κβ 

signaling in HNSCC. The TGFβ pathway has also been implicated in tumor suppression and 

although alterations in TGFβ and NF-κβ signaling have long been implicated in cancer, the exact 

mechanism(s) of their interaction, as well as their independent and/or cooperative contributions 

to invasion and metastasis in HNSCC are still being defined.(61, 62)  
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Tumors require blood vessels in order to grow to sizes larger than a few millimeters in 

diameter. These vessels facilitate nutrient and oxygen delivery, as well as metabolic byproduct 

disposal. The exploitation of neo-angiogenesis, usually by producing angiogenic factors, is 

common to all solid tumors. Of the many inducers of angiogenesis, the strongest is vascular 

endothelial growth factor (VEGF). Many studies have linked VEGF expression to HNSCC 

prognosis, including a meta-analysis which found a significantly increased risk of mortality, as 

well as an association between VEGF expression and metastasis to lymph nodes.(10) Although 

this data suggests a link between VEGF expression and outcome, as was also seen with respect 

to EGFR expression, HPV status remains the superior prognostic indicator.(63) 

CSMD3, a putative adhesion factor, and CSMD1, a putative tumor suppressor, are altered 

in HNSCC by mutation, and by 8p deletion, which is common.(39-41) Loss of CSMD1 is 

associated with high tumor grade and poor prognosis in other cancers, and the role of these two 

genes remains an area of active investigation in HNSCC.(64)  Functional studies are required to 

determine if alterations in these genes may underlie a mechanism permitting the dissociation of 

cells from an otherwise cohesive sheet of cancerous epithelium, allowing for migration and 

metastasis of HNSCC tumors.          

1.1.3.4 Apoptosis and Survival 

Cell cycle alterations, reduced immunogenicity, promotion of angiogenesis, and inhibition of 

apoptosis are some of the many mechanisms underlying enhanced cancer cell survival in 

HNSCC. These cancerous traits are generated by genetic and epigenetic alterations in several 

pathways. Of particular importance in HNSCC, are the receptor tyrosine kinase (RTK) based 

signaling pathways. The class 1a phosphatidyl-inositol-3 kinases (PI3K) are heterodimeric 

kinases that are activated, directly or through adaptor molecules, downstream of RTKs, such as 
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EGFR. The PI3K signaling pathway mediates cellular metabolism, cell cycle progression, and 

apoptosis (Figure 4). Activated PI3K generates the lipid second-messenger phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3). Which, together with phosphoinositide-dependent kinase-1 

(PDPK1) and the MTORC2 complex, serves to activate protein kinase B (AKT). AKT is a 

serine/threonine kinase that, when activated, phosphorylates many downstream transcription 

factors, apoptotic proteins, cell cycle inhibitors, and other proteins; regulating their activity in 

a manner that ultimately promotes cell survival and proliferation. This pathway is held in check 

by the action of the tumor suppressor, phosphate and tensin homolog (PTEN), 

which dephosphorylates PIP3, thereby deactivating AKT. If PTEN activity is 

compromised, PI3K signaling can be constitutively activated by RTK stimulation.(65) 

Figure 4. The PI3K Signaling Pathway 



17 

PI3K is activated by a variety of ligand-bound surface receptors, generally a receptor tyrosine kinase, and it 

phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2) to PIP3. The reverse reaction is catalyzed by PTEN. 

PIP3 recruits several proteins to the plasma membrane by interacting with the pleckstrin homology (PH) domains of 

the recruited proteins. Two of the proteins recruited by this mechanism include the serine/threonine kinase PDPK1, 

and the primary signaling molecule downstream of PIP3, AKT. AKT is partially activated through phosphorylation 

by PDPK1, and fully activated through further phosphorylation by the mTORC2 complex. Fully activated AKT 

phosphorylates a wide range of substrates, with over 100 putative targets reported in the literature. When signaling 

through AKT is hyperactivated, via oncogenic mutations in PIK3CA or deletion of PTEN, the target proteins 

phosphorylated by AKT are either activated or inhibited in a manner that ultimately contributes to a series of cancer-

associated phenotypes such as enhanced growth, enhanced protein synthesis, enhanced proliferation and survival 

through numerous mechanisms. HNSCC tumors with mutations in PIK3CA have elevated levels of phosphorylated 

AKT, suggesting that mutations in PIK3CA can indeed hyperactivate the signaling pathway in HNSCC patients.(40) 

Inactivating PTEN mutations have been reported in about 3-10% of HNSCC, PTEN 

expression is undetectable in nearly 30% of tongue cancers, and loss of heterozygosity of the 

PTEN locus has been observed in up to 40% of HNSCC.(66) Furthermore, recent evidence 

suggests that loss of even a single PTEN allele can contribute to tumorigenesis.(67) Three 

different “hot-spot” activating mutations have been reported in PI3KCA, which codes for the 

catalytic subunit of the major PI3K isoform.(68) Notably, the frequency of PI3KCA mutations 

and amplification is higher in HPV(+)HNSCC, suggesting a possible interaction between the 

PI3K pathway and the E6/E7 proteins of HPV; which has been suggested to be contributory to 

the development of invasive SCC in cervical cancer.(39, 41, 69) The PI3K pathway is of 

consequence therapeutically, with numerous targeted inhibitors now in clinical trials.(70, 71) 

RAS family GTPases (HRAS, KRAS, and NRAS) are molecular switches that cycle 

between 2 conformational states: an active GTP bound form, and an inactive GDP bound form. 
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The first RAS effector pathway to be identified was the RAS-RAF-MEK-MAPK pathway. The 

pathway is a common and essential element of mitogenic signaling driven by RTKs, resulting in 

a diverse array of cellular responses. RAF proteins are serine/threonine kinases that bind to the 

effector region of RAS-GTP. This interaction induces translocation of the protein to the plasma 

membrane. There, RAF proteins are activated and phosphorylated by different protein kinases. 

Active RAF phosphorylates MEK that, in turn, phosphorylates and activates MAPK. Activated 

MAPK serves as the terminal effector of the pathway, influencing cellular growth, 

differentiation, inflammation, apoptosis, and senescence. Mutated, constitutively active RAS 

genes are known to be oncogenic, and are found in approximately 25% of human tumors.(72)  

Of the three prototypical RAS genes whose expression varies amongst tissue types, 

HRAS mutations are found in ~4% of HNSCC, and are more prevalent than KRAS or NRAS 

mutations.(39-41) These HRAS mutations are known to be associated with HNSCC in smokers, 

and in mouse models exposed to chemical carcinogens.(73) The exact contribution of HRAS 

mutations to oncogenesis remains under investigation in HNSCC, and there is evidence of both 

direct and indirect interaction between the RAS-MAPK and PI3K signaling pathways.(72) 

Additionally, HRAS mutations have been detected in HPV(+) tumors, allowing for the possibility 

of interaction with oncogenic viral proteins.(39, 41) Recent in vitro evidence suggests that even a 

single HRAS mutation, in the background of HPV and MYC alteration, can contribute to 

tumorigenesis.(74) Though the success of therapies targeting RAS proteins has been limited to 

date, several attempts to target their downstream effectors have shown promising results in 

preclinical models.(75)    

RTKs lie upstream of both the RAS-MAPK and PI3K pathways. One of the most 

important and well-studied RTKs in HNSCC is EGFR (7p12), which codes for the prototypical 
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ErbB family Type I RTK. Signaling through EGFR influences a variety of cellular processes, 

including survival and differentiation. EGFR has an extracellular ligand-binding domain, a 

transmembrane portion, and an intracellular kinase domain with five autophosphorylation sites. 

Ligand binding by EGFR monomers drives homodimerization or heterodimerization with 

another RTK, resulting in the initiation of downstream survival and proliferation signaling 

pathways, such as the RAS-MAPK and PI3K pathways. These two independent cascades 

converge via the ultimate upregulation of Cyclin D1. Furthermore, when bound to EGF, EGFR 

itself can translocate to the nucleus where it acts as a transcription factor for several genes 

including CCND1, and as a co-activator for other transcription factor proteins, such as the Signal 

Transducer and Activator of Transcription (STAT) proteins.(10)  

EGFR is expressed in most epithelial tissues, and its dysregulation has been repeatedly 

shown to contribute to epithelial oncogenesis. In HNSCC, EGFR expression levels are nearly 

ubiquitously elevated in tumor and tumor-adjacent tissue compared to corresponding normal 

mucosa. Higher EGFR expression levels and copy number gain correlate with decreased 

survival, and have not been predictive of improved response to EGFR directed therapy. In 

HNSCC, there are three agents in common clinical use known to inhibit EGFR; gefitinib and 

erlotinib, both TKIs, and cetuximab, a monoclonal antibody against EGFR, which is the only 

targeted agent that is FDA-approved for use in HNSCC. These agents have shown modest 

efficacy as monotherapies to date, showing activity in about 20% of patients in large multicenter 

trials, generally in combination with radiation and/or chemotherapy.(76) Expression of 

EGFRvIII, an EGFR allele harboring a large in-frame deletion of exons 2-7, can confer 

resistance to anti-EGFR therapy. The prevalence of the EGFRvIII variant remains controversial 

in HNSCC, with various studies reporting its expression to be present in anywhere from 0-42% 
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of the tumors assayed.(77-80) Investigations into EGFRvIII mechanism(s) of oncogenesis 

continue, as therapies specifically directed against EGFRvIII have shown promise in 

glioblastoma, and may be applicable in refractory HNSCC.(80) Another genetic alteration, 

reported in some cases of HNSCC, that is believed to contribute to anti-EGFR therapy resistance, 

is mutation or amplification of the MET gene, which codes for another RTK.(81, 82) MET has 

been implicated as a cancer gene in HNSCC, that influences cell growth, motility, and 

angiogenesis.(10) This too, may be of particular clinical consequence, as there are both 

monoclonal antibodies and small molecule inhibitors that are FDA-approved in other cancers, 

with the ability to inhibit MET kinase activity.(83, 84)  

In addition to the growth factor signaling pathways that indirectly influence apoptosis, 

recent studies in HNSCC have found alterations directly within apoptotic proteins. CASP8, a 

proteolyase responsible for initiating the caspase cascade that drives apoptosis, was found to be 

mutated in 5-8% of HNSCC by exome sequencing; and BCL2, which prevents apoptosis, has 

been observed to be overexpressed in some HNSCC cell lines, usually coincident with the 

reduced expression of p63.(33, 40, 41)    

1.2 SUMMARY AND RATIONALE 

HNSCC is a malignancy of the upper aerodigestive tract mucosa. Most patients present with 

advanced disease and are treated with multimodal therapy, in a manner dependent upon a variety 

of parameters specific to the clinical presentation such as stage, anatomic location, and the 

presence or absence of significant co-morbidities. HNSCC treatments are morbid, therapeutic 

options are limited for patients who relapse, and cures are only achieved in approximately 50% 
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of patients.(18) An improved understanding of the genetic alterations underlying the 

pathophysiology of HNSCC tumors is needed in order to establish predictive biomarkers to 

guide therapy, and facilitate the development of new treatments.  

As such, we and others, notably Agrawal et al., Stransky et al., and The Cancer Genome 

Atlas (TCGA) project performed a series of large-scale genomic profiling studies that have 

begun to shed light on the molecular diversity of HNSCCs, and provide data to the field for the 

generation of new hypotheses.(39-41, 85) 

As they were originally proposed, my thesis goals only included the study of primary 

HNSCC. Our analysis of the mutational profiles of 151 HNSCC tumors via whole exome 

sequencing (WES) identified the Phosphoinositol-3-Kinase (PI3K) pathway as the most 

commonly mutated mitogenic pathway in HNSCC. We proposed the following specific aims: 

Specific Aim 1: Determine the genetic alterations of PIK3CA, found in HNSCC, that 

mediate cancerous phenotypes and PI3K pathway inhibitor sensitivity in HNSCC preclinical 

models in vitro.  

To identify PIK3CA alterations that contribute to cancerous phenotypes in HNSCC, we 

engineered HNSCC cell lines, with unaltered PIK3CA, to express mutant PIK3CA or over 

express WT PIK3CA (to mimic amplification) and used proliferation assays and matrigel 

invasion assays to identify “driver” PIK3CA events. Cell lines with and without PIK3CA 

alterations (endogenous and engineered) were treated with PI3K inhibitors to assess sensitivity. 

The results of these experiments are reported in Chapter 2. We intended to use reverse phase 

protein arrays (RPPA), to define signaling pathway phenotypes generated by each driver 

mutation, and to identify signaling pathways affected by PI3K inhibitors in HNSCC cells. This 

may have elucidated how PIK3CA driver mutations effect cancerous phenotypes and aberrant 
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cell signaling in HNSCC, and evaluate the efficacy and mechanism of PI3K inhibitors in these 

cells. The RPPA analysis has not yet been performed in cell lines. While cellular phenotypes 

such as survival and invasion were reproducible, limitations of the retroviral infection system 

hindered our ability to appreciate reproducible signaling pathway alterations. We therefore 

propose to perform RPPA analyses in future studies using CRISPR/Cas9 techniques to generate 

PIK3CA altered HNSCC models which will hopefully yield more reproducible phenotypes at the 

level of cellular signaling as the engineered alterations will be under the control of endogenous 

expression mechanisms at the natural loci, as opposed to viral promoters integrated randomly 

across the genome.  

Specific Aim 2: Elucidate the in vivo sensitivity of patient-derived HNSCC tumors to 

small molecule inhibitors targeting the PI3K pathway.  

We hypothesized that PI3K alterations will enhance sensitivity to treatment with PI3K 

inhibitors. We treated mice with heterotopic tumorgrafts, implanted directly from surgically-

resected patient tumors, with and without PIK3CA mutations with the PI3K inhibitor BYL-719 

and compared the treatment sensitivities of these models and performed RPPA analysis to 

provide in vivo mechanistic insight into the predictive value of PI3K pathway status in HNSCC. 

Results to date from these experiments are reported in Chapter 2. 

Specific Aim 3: Define the spectrum of PIK3CA mutations in a prospective 

HPV(+)HNSCC cohort. 

HPV(+)HNSCC is of great interest on account of its increasing incidence and seemingly 

unique biology as outlined earlier in the introduction. HPV(+) tumors had been underrepresented 

in WES studies at the time of my original proposal. Prior to the completion of this aim however, 

a sequencing study focusing on HPV(+)HNSCC was completed by Seiwert et al, which limited 
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the contribution our efforts would have made to the field.(86) Accordingly, we modified this 

aim, and chose to invest our resources in an alternative sequencing project that aimed to 

determine if there was a therapeutic benefit of NSAID treatment in PIK3CA mutated and/or 

amplified HNSCC. Such a benefit has recently been reported in the setting of colorectal cancer, 

and would present an immediately actionable therapeutic option for patients if the same benefits 

were observed in HNSCC.(87) While data collection for this aim has been completed, the 

analysis is ongoing and is not presented in this dissertation. 

Chapter 3 of this dissertation presents an additional project in which we used WES to 

study the genetics of HNSCC metastasis and recurrence using patient-matched tumor pairs. This 

project was not formally a part of my original thesis proposal, but represents a large share of the 

work that I ultimately performed during my time as a graduate student, and is a significant 

contribution to the field which has been accepted for publication at the Journal of Clinical 

Investigation.      
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2.0  GENETIC ALTERATIONS IN PRIMARY HNSCC: THE PI3K PATHWAY 

2.1 INTRODUCTION 

HNSCC is a frequently lethal cancer with few effective therapeutic options. In an effort to 

elucidate the genetic underpinnings of this disease and identify new therapeutic targets, Agrawal 

et al., and Stransky et al., performed WES on 32 and 74 HNSCC tumor-normal pairs, 

respectively.(39, 41) These studies were published simultaneously in Science in 2011, and 

revealed a spectrum of genetic aberrations that varied widely within and between tumors. This 

pronounced mutational heterogeneity, coupled with the relatively small cohort sizes, limited the 

contributions these reports were able to make with respect to guiding and improving therapy for 

HNSCC patients.  

TP53 mutation is the only single-gene mutational event identified in an outright majority 

of HNSCC, and the loss of function of this tumor suppressor gene has remained challenging to 

exploit therapeutically. Mitogenic pathways are crucial for cancer development and progression. 

Gain of function mutations in mitogenic pathway genes have been shown to result in pathway 

activation, enhanced tumor growth, and increased sensitivity to agents targeting the mutated 

pathway. However, the potential of genomics-based therapy selection has not been widely 

investigated in HNSCC.  
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In an effort to identify mutationally-altered, targetable mitogenic pathways in HNSCC, 

we analyzed the WES results of an additional 45 HNSCC tumor-normal pairs from patients 

treated at the University of Pittsburgh, sequenced on the Illumina platform, under the auspices of 

the TCGA project. Combined with the previously published results, this cohort of 151 HNSCC 

mutation profiles allowed us to evaluate the mutations found in the genes composing three major 

mitogenic pathways that have been previously implicated in HNSCC pathophysiology; the 

mitogen-activated protein kinase (MAPK), Janus kinase/signal transducer and activator of 

transcription (JAK/STAT), and phosphoinositide-3-kinase (PI3K) pathways.(39-41, 85, 88, 89) 

These key mitogenic pathways are targetable in human cancers with a variety of agents currently 

in various stages of clinical and preclinical development.  

2.2 MATERIALS AND METHODS 

2.2.1 Cells and Reagents  

HNSCC cell lines were genotypically verified and grown in a humidified cell incubator at 37°C 

and 5% CO2. UMSCC47, CAL-33, FaDu, Detroit 562, UPCI 090, and UPCI-52 (SD-1) cells 

were maintained in DMEM containing 10% FBS and 1× penicillin/streptomycin solution 

(Invitrogen) whereas PE/CA-PJ34 cells were maintained in IDMEM containing 10% FBS, 2 mM 

L-glutamine, and 1× penicillin/streptomycin solution. HSC2 and JHU 022 cells were maintained 

in 1640 RPMI containing 10% FBS, 2 mM L-glutamine, and 1× penicillin/streptomycin solution. 

PLAT-A cells were maintained in DMEM, 10% fetal calf serum (FCS), 1 μg/mL puromycin, 10 

μg/mL blasticidin, penicillin and streptomycin. FaDu, Detroit 562 cell lines were obtained from 
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ATCC whereas PE/CA-PJ34 cells were obtained from Sigma-Aldrich. CAL-33 cells were 

obtained from Gerard Milano (Centre Antoine Lacassagne, Nice, France). HSC2 and JHU 022 

cells were obtained from Jian Yu (University of Pittsburgh Cancer Institute) UMSCC47 cells 

were obtained from Dan Johnson (University of Pittsburgh Cancer Institute) UPCI 090 cells 

were obtained from Robert Ferris (University of Pittsburgh Cancer Institute) PLAT-A cells were 

purchased from Cell Biolabs. The UPCI-52 (SD-1) cell line was obtained by clonal selection of 

the parental UPCI-52 cell line (University of Pittsburgh Cancer Institute) by rounds of graded 

serum selection. In brief, PCI-52 parental cell lines were plated as single cells, which grew as 

single clones. These single clones were subjected to serum deprivation (0% FBS) for 1–2 wk, 

followed by assessment of cell growth by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium 

bromide (MTT) assay. The PCI-52-SD1 subline was the most serum-sensitive subline, which 

died (>99.8%) upon complete serum deprivation. 

2.2.2 Mutation Databases, Comparison, and Co-mutation Analysis 

HNSCC mutation analyses were based on the published WES data from 32 and 74 tumors and 

the TCGA WES data on 45 tumors accessed through the cBio Portal.(39, 41, 90) Data was 

aggregated into Microsoft Excel where a match macros allowing for side-by-side comparison 

between multiple groups (2 or more) to identify and quantify common mutational events 

amongst the groups was used to compare the reported HNSCC mutations to reference lists 

generated for each mitogenic pathway of interest. A cancer gene list was generated in each 

subgroup of tumors by comparing the Cancer Gene Census list (COSMIC Database) with non-

synonymous mutation gene lists of each tumor subgroup (the PI3K-mutated tumors, tumors 

without PI3K-mutation, etc.) using this comparison program.  
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2.2.3 Clinical Data 

De-identified data was available to HIPPA-trained, IRB-approved researchers for the tumors 

from the University of Pittsburgh through the Head and Neck SPORE and Organ Specific 

Database.  

2.2.4 Mutation Modeling 

The PyMol Molecular Graphics System and Evolutionary Action Scoring Algorithm were used 

in collaboration with Drs. Van Houten, Kastonis, and Lichtarge to model select mutations as 

described in results.(91, 92) 

2.2.5 Cloning and Mutagenesis 

WT Human PIK3CA was cloned into the retroviral vector, pMXs-puro (Cell Biolabs, Inc., San 

Diego, CA). The pMXs-puro-PIK3CA vector was used as a template for site directed 

mutagenesis using the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla, 

CA). Mutagenesis of the PIK3CA WT gene was performed according to the manufacturer’s 

instructions. Each mutant was generated and confirmed by sanger sequencing with the primers 

outlined below. 

http://web.physics.ucsb.edu/%7Edeborah/pro/pro_pdf/Stratagene%20QuikChange.pdf
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Table 1. PIK3CA Mutation Primers 

AA Change Codon Change Forward Mutation Primer Reverse Mutation Primer
WT N/A N/A N/A

p.R38H c.(112-114)CGT>CAT 5'-gtgactttagaatgcctccatgaggctacattaataacc-3' 5'-ggttattaatgtagcctcatggaggcattctaaagtcac-3'
p.R88Q c.(262-264)CGA>CAA 5'-agaattttttgatgaaacaagacaactttgtgaccttcggctttttc-3' 5'-gaaaaagccgaaggtcacaaagttgtcttgtttcatcaaaaaattct-3'

p.E110del c.(325-327)GAAdel 5'-aaccagtaggcaaccgtgaaaagatcctcaatcga-3' 5'-tcgattgaggatcttttcacggttgcctactggtt-3'
p.R115L c.(343-345)CGA>CTA 5'-cgtgaagaaaagatcctcaatctagaaattggttttgctatcg-3' 5'-cgatagcaaaaccaatttctagattgaggatcttttcttcacg-3'
p.G118D c.(352-354)GGT>GAT 5'-tcctcaatcgagaaattgattttgctatcggcatgcc-3' 5'-ggcatgccgatagcaaaatcaatttctcgattgagga-3'
p.G363A c.(1087-1089)GGA>GCA 5'-aacaggtatctaccatgcaggagaacccttatgtg-3' 5'-cacataagggttctcctgcatggtagatacctgtt-3'
p.E542K c.(1624-1626)GAA>AAA 5'-cacgagatcctctctctaaaatcactgagcaggag-3' 5'-ctcctgctcagtgattttagagagaggatctcgtg-3'
p.E545K c.(1633-1635)GAG>AAG 5'-gagatcctctctctgaaatcactaagcaggagaaaga-3' 5'-tctttctcctgcttagtgatttcagagagaggatctc-3'
p.C971R c.(2911-2913)TGC>CGC 5'-gattagtaaaggagcccaagaacgcacaaagacaagagaattt-3' 5'-aaattctcttgtctttgtgcgttcttgggctcctttactaatc-3'
p.R975S c.(2923-2925)AGA>AGT 5'-caagaatgcacaaagacaagtgaatttgagaggtttcagga-3' 5'-tcctgaaacctctcaaattcacttgtctttgtgcattcttg-3'

p.H1047R c.(3139-3141)CAT>CGT 5'-aacaaatgaatgatgcacgtcatggtggctggacaac-3' 5'-gttgtccagccaccatgacgtgcatcattcatttgtt-3'
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Table 2. PIK3CA Sequencing Primers 

Primers for Plasmid Fragment Sequencing (Forward Primers Only)
Primer Name Primer Sequence (5'-3')

pMXs-Puro-PIK3CA-WT seq 1 tggtacctcacccttaccga
pMXs-Puro-PIK3CA-WT seq 2 cccccaagaatcctagtaga
pMXs-Puro-PIK3CA-WT seq 3 ggcatgccagtgtgtgaat
pMXs-Puro-PIK3CA-WT seq 4 gtgtgtggatgtgatgaatacttcc
pMXs-Puro-PIK3CA-WT seq 5 ttcctgatcttcctcgtgct
pMXs-Puro-PIK3CA-WT seq 6 ccacgcaggactgagtaaca
pMXs-Puro-PIK3CA-WT seq 7 ggttcgaggttttgctgttc
pMXs-Puro-PIK3CA-WT seq 8 agttgagcaaatgaggcgac
pMXs-Puro-PIK3CA-WT seq 9 gtcaatcggtgactgtgtgg
pMXs-Puro-PIK3CA-WT seq 10 cgagaacgtgtgccat  

2.2.6 Retroviral Infection  

Retroviruses were generated using the Platinum-A Retroviral Packaging Cell Line System (Cell 

Biolabs, San Diego, CA) according to manufacturer’s instructions. Briefly, 2x106 PLAT-A cells 

were plated overnight in 10cm tissue culture dishes without antibiotics and transfected the next 

day with 3 µg of retroviral vector carrying the gene of interest (pMXs-puro-EGFP as control, 

pMXs-puro-PIK3CA WT, pMXs-puro-PIK3CA mutants) using the Fugene HD kit (Promega) 
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according to manufacturer’s instructions. Two days after transfection, fresh retroviruses (in the 

supernatant of the PLAT-A cells) were collected by filtering through a 0.45 µm syringe filter. 

Fresh retroviruses were used for infection of HNSCC cells. HNSCC cells were plated to 20% 

confluence in a T25/T75 flask without antibiotics one day before infection. Infection of HNSCC 

cells was performed by adding 1.5/4.5ml of retrovirus to the cells mixed with 2.5/5.5ml of 

complete culture media without antibiotics. Then, 18-20 µl of polybrene (4 µg/µl, Sigma-

Aldrich, St. Louis, MO) was added to the cells with gentle mixing. Cells were then incubated at 

37°C and 5% CO2 for additional 72 hrs, and the infection medium was replaced with fresh 

complete medium after infection. In the case of the UPCI-52(SD-1) cells engineered to express 

PIK3CA constructs, two weeks of selection with 01.ug/ml puromycin media was performed as 

these cells were expanded for functional experiments which were performed using pooled 

puromycin resistant colonies. 

2.2.7 Western/Immuno Blotting 

Lysates were collected as described and resolved on sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) gels and transferred to nitrocellulose membranes prior to antibody 

staining. Primary antibodies for p110α, p-AKT(T308), p-AKT(Ser473), and AKT were 

purchased from Cell Signaling Technology, Inc. (Boston, MA). Anti-tubulin antibody was from 

Abcam (Cambridge, MA). Secondary antibodies were from BioRad (Hercules, CA). 

Densitometry was performed using ImageJ. 
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2.2.8 RT-PCR and Sanger Sequencing 

RNA was extracted from 1 to 2 million HNSCC cells engineered to express retroviral vectors 

using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. Isolated RNA 

was treated with DNase I, Amplification Grade (Invitrogen) according to the manufacturer’s 

instructions and used as template for RT-PCR using the SuperScript® III One-Step RT-PCR 

System with Platinum® Taq DNA Polymerase (Life Technologies) according to the 

manufacturer’s instructions. Thermocycler settings: 1 cycle--[55C for 30 min, 94C for 2min], 40 

cycles—[94C for 30 sec, Anneal 55C for 30 sec, Extend 68C for 30 sec], 1 cycle—[68C for 

5min, 4C hold]. The resulting cDNA was purified on a 1.0% agarose gel, extracted using the 

QIAquick Gel Extraction Kit (Qiagen) according to manufacturer’s instructions and assessed by 

Sanger sequencing. Results viewed with Applied Biosystems Sequence Scanner v1.0. Primers 

used for RT-PCR and sequencing below. 

 

Table 3. Primers for RT-PCR and Sequencing 

RT-PCR Primer Sequence
Non-hotspot sense 5’- ATGCCTCCAAGACCATCATC-3’

Non-hotspot anti-sense 5’- CCCTAAGATCCACAGCTTCTTT-3’
Helical hotspot sense 5'- AATTGGTCTGTATCCCGAGAAG -3'

Helical hotspot anti-sense 5'-CATAGCCTGTTCAGGTTTGATTG-3'
Kinase hotspot sense 5'-TCGACAGCATGCCAATCTC-3'

Kinase hotspot anti-sense 5'-TTGTGTGGAAGATCCAATCCAT-3'
Sequencing Primer Sequence
Non-hotspot forward 5’-CCCCCAAGAATCCTAGTAGA-3’

Helical hotspot forward 5'-AGTAACAGACTAGCTAGAGA-3'
Kinase hotspot forward 5'-GACCCTAGCCTTAGATAAAAC3'  
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2.2.9 In vitro Drug Treatments 

HNSCC cells were plated at the densities indicated in the figure legends in 48 well culture plates 

overnight and treated with various concentrations of BKM-120 or BYL-719 (Novartis, USA) 

dissolved in DMSO for the amount of time indicated in the figure legends, and assessed by 

proliferation assays or immunoblot assays as indicated in the figure legends.  

2.2.10 Proliferation Assays 

HNSCC cells were plated at the densities indicated in the figure legends in 48 well culture plates 

overnight and subjected to the treatments indicated in the figure legends, at which point, MTT or 

MTS (Sigma-Aldrich) was performed as indicated according to manufacturer’s instructions. For 

MTT, following a 30 min incubation at 37°C and 5% CO2 DMSO solubilized extracts were 

measured at 570nm, for MTS, following a 2 hour incubation at 37°C and 5% CO2 aqueous 

solutions were measured at 590nm, in a uQuant spectrophotometer, to determine formazan 

production in subject versus control cells. Each subject or control reaction was run in replicates, 

and repeated as indicated in figure legends. Average proliferation values as bar graphs and 

growth curves were generated using GraphPad Prism 6 software as outlined in the legends.  

2.2.11 Invasion Assays 

Invasion of HNSCC cells in the presence or absence of PIK3CA mutant expression was tested 

using Biocoat migration and Matrigel® coated invasion Chambers (BD Biosciences), according 

to the manufacturer’s instructions. Briefly, 3.0 x 104 UPCI-52 (SD-1) cells suspended in DMEM 
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stably expressing EGFP, WT or mutant PIK3CA constructs were plated inside migration 

(uncoated) chambers or invasion (matrigel coated) chambers submerged in 10% FBS media for 

24 hrs. Cells were counted and averaged from 4 photomicrographs (20x objective) of each 

membrane, and the invasion/migration ratios were calculated. Bar graphs and statistical analysis 

generated in GraphPad Prism 6 as outlined in the figure legend. 

 

2.2.12 Patient Derived HNSCC Xenograft Models and Drug Treatment  

Following HNSCC tumor resection, tissues are collected under the auspices of an IRB-approved 

tissue bank protocol.  Patient samples are quality controlled by UPMC surgical pathologists for a 

composition of at least 70% tumor, de-identified and delivered to the lab in 

antibiotic/antimycotic solution. Clinical correlates such as p16 status are noted and any excess 

material is stored for molecular analyses such as DNA sequencing. Approximately 25mg pieces 

of tumor are implanted into the flanks of NOD SCIDγ mice to establish PDXs. For treatment 

experiments the four indicated PDXs were selected, expanded, treated and assessed as indicated 

in the legend of Figure 17. BYL-719 (Novartis, USA.) was administered as a suspension in 1% 

(w/v) carboxymethylcellulose (CMC) + 0.5% (w/v) Tween 80. Solvent sans drug used as vehicle 

control. 

2.2.13 Proteomic Profiling by Reverse Phase Protein Array (RPPA) 

Quantitative proteomic analysis (reverse phase protein array) was performed in collaboration 

with Dr. Gordon B Mills in the RPPA Core Facility at the MD Anderson Cancer Center. The 
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platform techniques have been published.(93) An up-to-date listing of their evolving protocols 

and services is available (http://www.mdanderson.org/education-and-research/resources-for-

professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-

core/index.html) I collected and prepared BYL-719 and vehicle treated PDX samples for 

analysis by RPPA, lysing them according to the recommended protocol (see website). The 

results they deliver include normalized linear expression values for each antibody/sample 

analyzed. I plotted these values in GraphPad Prism 6 to interrogate the effects of BYL-719 

treatment on PI3K signaling and AXL expression as described in the legends of Figure 18 and 

Figure 19.  

2.3 RESULTS 

2.3.1 The PI3K Pathway is the Most Commonly Mutated Mitogenic Pathway in HNSCC 

We compiled the WES results of 106 HNSCC tumors published by Agrawal et al. and Stranksy 

et al., along with the WES results of an additional 45 HNSCC tumors collected at the University 

of Pittsburgh and sequenced as a part of the TCGA HNSCC project (Table S1 in Lui, Hedberg, 

Li, et al. 2013).(39, 41, 85) With the aim of identifying mutationally-altered, targetable 

mitogenic pathways in HNSCC, we assessed the JAK/STAT, MAPK and PI3K pathways. 

Pathway component genes were defined as follows: JAK/STAT pathway (JAK1, JAK2, JAK3, 

STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6, SOCS3, SHP2, IL6ST, IL6R and IL6), 

MAPK pathway (ERK1, ERK2, MEK1, MEK2, RAF1, ARAF, BRAF, HRAS, KRAS, NRAS, 

SHC1, SHC2, SHC3, and GRB2) and PI3K pathway (PIK3CA, PIK3AP1, PIK3C2A, PIK3C2B, 

http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
http://www.mdanderson.org/education-and-research/resources-for-professionals/scientific-resources/core-facilities-and-services/functional-proteomics-rppa-core/index.html
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PIK3C2G, PIK3CB, PIK3CD, PIK3CG, PIK3IP1, PIK3R1/2/3/4/5/6, AKT1/2/3, MTOR, PTEN, 

PDK1, TSC1/2, RICTOR and RPTOR).  

Strikingly, almost one third of all HNSCC tumors analyzed in our combined cohort 

(30.5%; 46/151 tumors) harbored PI3K-pathway mutations, while only 9.3% (14/151) and 8.0% 

(12/151) of tumors harbored mutations in the JAK/STAT or MAPK pathways, respectively 

(Figure 5A).(85) These results demonstrate that despite the mutational heterogeneity of HNSCC, 

the components of the PI3K pathway are mutated in >30% of tumors; identifying this pathway as 

a potential therapeutic target in a substantial subset of patients. Similar analyses of these 

pathways in WES data of other cancer types is reported in the supplemental data of our published 

paper.(85) 

 



 35 

 

Figure 5. Mutations in Mitogenic Signaling Pathways in HNSCC. 

(A) Mutation rates of the major mitogenic pathways (the PI3K pathway, the MAPK pathway and the JAK/STAT 

pathway) in 151 HNSCC patient tumors determined by whole exome sequencing. Components of each pathway 

examined are displayed underneath each pie chart. (B) Bar graph detailing the number of mutations (dark bars) of 

each particular component of the PI3K pathway as well as the number of HNSCC tumors harboring these mutations 

(grey bars). This figure is adapted from Lui, Hedberg, Li et al 2013. Sequencing data was obtained and analyzed as 
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outlined in the methods. I performed the data analysis and interpretation for this portion of the paper, and generated 

this figure. 

A detailed analysis of the mutations identified in the PI3K pathway revealed that 19 of 

the 151 tumors (12.6%) harbor a PIK3CA mutation, making it the most commonly mutated 

oncogene in our cohort (Figure 5). This mutation rate is higher, but similar, to rates reported 

previously by Kozaki et al. (7.4%) and Cohen et al. (10.8%), in targeted PIK3CA sequencing 

studies of HNSCC tumors.(94, 95) PIK3CG and PTEN were mutated in 4.0% (6/151) of HNSCC 

tumors; while PIK3R1, PIK3R5 and PIK3AP1 were mutated in 2.7% of tumors (4/151) (Figure 

5B). Other components of the PI3K pathway were mutated in <2% cases (Figure 5). Major 

downstream effectors of the PI3K pathway, including PDK1, AKT1 were not mutated, while 

AKT2 and MTOR were only mutated in 1.3% (2 mutations) of HNSCC tumors (Figure 5).  

Copy number variation (CNV) was analyzed in the 45 newly added tumors from the 

University of Pittsburgh using the Affymetrix Genome-Wide Human SNP Array 6.0 

platform.(40, 85) In addition to commonly being mutated in our cohort, PIK3CA was amplified 

in 24.4% (11/45) of the newly added HNSCC tumors from the University of Pittsburgh. Loss of 

PTEN (≥1 allele) was identified in 8.16% of cases (4/45) in our cohort. Compared to other 

cancers such as glioblastoma, where PTEN loss can be found in up to 60% of tumors, this 

suggests that PTEN loss is not the primary mediator of PI3K pathway alteration in HNSCC.(96, 

97)
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2.3.2 Unique Features of PI3K Pathway-Mutated HNSCC Tumors  

In the combined cohort of 151 HNSCC tumors we assessed, those with PI3K pathway mutations 

had a significantly higher mutational burden than tumors without mutations in the PI3K pathway 

(165.5 ± 24.1 vs 72.1 ± 6.6 mutations per tumor, p < 0.0001, Figure 6A). HNSCC tumors in our 

cohort harboring PI3K pathway mutations also harbored twice as many mutations in known 

cancer genes (as defined by the Cancer Gene Census, COSMIC Database) compared to those 

without PI3K pathway mutations (7.2 ± 0.8 vs 3.6 ± 0.3, p < 0.0001, Figure 6B).(98) Further, 

DNA damage/repair pathway genes, as defined by Cerami et al. 2012 (ATM, ATR, CHEK1/2, 

BRCA1/2, FANCF, MLH1, MSH2, MDC1, PARP1 and RAD51), were found to be mutated at a 

significantly higher frequency in tumors with PI3K pathway mutations, than in those without 

PI3K pathway mutations (37.0%; 17 mutations in 46 tumors vs. 15.2%; 16 mutations in 105 

tumors, p = 0.0049, Fischer’s Exact Test).(99) Taken together, these data suggest that PI3K 

pathway mutations facilitate the expansion or selection of tumor cells with high levels of 

genomic instability that harbor more genomic aberrations, including aberrations in known cancer 

genes.  
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Figure 6. Co-mutational Analyses in HNSCC 

(A) PI3K pathway-mutated HNSCC tumors have higher rate of non-synonymous mutations compared to HNSCC 

tumors without any PI3K pathway mutations. (B) PI3K pathway-mutated HNSCC tumors also have higher rates of 

non-synonymous mutations in known cancer genes when compared to HNSCC tumors without any PI3K pathway 

mutations. Significance calculated by Fisher’s Exact Test, N=151. (C) Graphical representation of the number of 

HNSCC tumors with mutation of multiple components of the PI3K, JAK/STAT, and MAPK pathways. This figure 

is adapted from Lui, Hedberg, Li et al 2013. Sequencing data was obtained and analyzed as outlined in the methods. 

I performed the data analysis and interpretation for this portion of the paper, and generated this figure. 

 

Among HNSCC tumors with PI3K pathway mutations, 21.7% (10/46), harbored 

mutations in more than one PI3K pathway gene, and all 10 of these tumors were advanced (Stage 

IV) malignancies (Figure 6C and Table 4).  In contrast, HNSCC tumors rarely, if ever, harbored 

multiple mutations in the MAPK pathway (0 tumors), or the JAK/STAT pathway (1 tumor, JAK3 

and STAT1 mutations; HN_63080) (Figure 6C and Table 4). This demonstrates that genetic 

alterations at multiple levels in the PI3K pathway are comparatively common in HNSCC, and 

suggests that concerted PI3K pathway aberrations may contribute to HNSCC progression. 

Although the association between advanced disease stage and PI3K pathway mutations was not 
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found to be statistically significant in this HNSCC cohort, published WES datasets in other 

cancers including breast, colon and lung SCC, demonstrate that only 1/25 breast tumors, 1/27 

colon carcinomas, and 0/31 lung SCCs harboring multiple PI3K pathway mutations, were stage 

IV cancers.(99) This suggests that concurrent mutation of multiple PI3K pathway components 

may be more contributory to disease progression in HNSCC than other cancers. In the absence of 

models assessing the specific impact of mutation in multiple pathway components to cellular 

phenotypes however, it is not possible to determine the precise effect of individual or combined 

mutations within the PI3K pathway in HNSCC tumors. 
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Table 4. Characteristics of HNSCC Tumors with Multiple Pathway-Gene Mutations 

 

 

Fifteen of the 151 HNSCC tumors in this cohort were HPV(+), 5/15 HPV(+) tumors 

harbored PI3K pathway mutations (33.3%). Additionally, in 3 of the 151 tumors in our cohort, 

the only mutations identified by WES in known cancer genes were in the genes coding for the 

regulatory (PIK3R1) or catalytic (PIK3CA) subunit of PI3Kα (HN_00361, HN_63027 and 

HN41PT with PIK3R1(453_454insN), PIK3CA(E542K) and PIK3CA(H1047L) mutations, 

respectively). All 3 of these tumors were HPV(+), suggesting that a subset of HPV(+)HNSCC 

tumors (20%; 3/15 cases) may be driven by PI3K-pathway alterations alone. 
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2.3.3 Hotspot and Novel PIK3CA Mutations Identified in 151 HNSCC Tumors 

PIK3CA codes for the catalytic subunit of the primary isoform of the class 1A phosphoinositol-3-

kinases, p110α, and is a critical gene in the PI3K signaling pathway. Three “hotspot” amino acid 

residues, accounting for ≈80% of all mutations in PIK3CA at 542, 545, and 1047, are the most 

common sites of oncogenic, gain of function PIK3CA mutations across all cancers, including 

HNSCC (Table S5 in Lui, Hedberg, Li, et al. 2013). Four novel, previously unreported, PIK3CA 

mutations (R115L, G363A, C971R, and R975S) were identified in our cohort of 151 HNSCC 

tumors. Under the guidance of Dr. Ben Van Houten, I used the PyMol Molecular Graphics 

System to visualize the crystal structure of p110α (crystallized in complex with niSH2 of p85α, 

resolved to 2.9Å by Miller et al.), and examined the orientation of the non-hotspot residues in 

three dimensional space relative to the three hotspot residues.(91, 100) The C971 residue was 

found to be within 10 Angstroms of the H1047 hotspot residue in the kinase domain (Figure 7).  

 

Figure 7. PIK3CA Hotspot and Novel Amino Acid Residues Mutated in HNSCC 

A three dimensional representation of the p110α subunit (left) with hotspot mutation residues (E542, E545, and 

H1047) highlighted in red, and novel, non-hotspot mutation residues (R115, G363, C971, and R975) highlighted in 

yellow. A magnification of the indicated portion of the kinase domain (right) illustrates the proximity of the C971 

residue to the H1047 hotspot residue. These images were generated under the direction of Dr. Ben Van Houten. 
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2.3.4 Hotspot and Novel PIK3CA Mutations Promote PI3K Signaling and Growth in 

HNSCC 

To assess the impact of these novel PIK3CA mutations identified in our cohort of 151 HNSCC 

tumors we selected the HNSCC cell line PE/CA-PJ34 (known by WES to be WT for all PI3K 

pathway components), for initial functional experiments.(101) We used retroviruses to infect 

these cells with EGFP (control), WT PIK3CA, each of the 4 novel, non-hotspot PIK3CA 

mutations (R115L, G363A, C971R, R975S), and the kinase domain hotspot mutation (H1047R). 

Immunoblotting of cell lysates revealed that retroviral-infection with WT PIK3CA (mimicking 

PIK3CA gene amplification), and mutant PIK3CA constructs was associated with increased PI3K 

pathway activation as evidenced by increased phosphorylation of AKT (Figure 8A). Forced 

expression of WT PIK3CA, all 4 novel, non-hotspot PIK3CA mutants, individually, and the 

hotspot PIK3CA(H1047R) mutant, resulted in significantly enhanced growth vs EGFP control 

when proliferation over 72 hours was assessed by MTT assay (Figure 8B, p < 0.0001). Only the 

PIK3CA(H1047R) hotspot mutation showed significantly enhanced growth compared to 

simulated WT PIK3CA amplification (Figure 8B, p = 0.001). The average growth rates in cells 

expressing the novel, non-hotspot PIK3CA mutations were higher when compared to simulated 

WT amplification in this cell line, but not to a statistically significant degree (Figure 8B, R115L; 

p = 0.1174, G363A; p = 0.9637, C971R; p = 0.6503, R975S; p = 0.0958). These results 

demonstrate that the novel, non-hotspot PIK3CA mutations are not loss of function mutations, as 

they can drive PI3K signaling and proliferation in HNSCC at least as well as ectopic WT 

PIK3CA. But it is not clear if a significant gain of function is associated with these mutants in 
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this experiment as their effects over ectopic WT PIK3CA did not achieve statistical significance, 

as was seen with the hotspot (H1047R) mutation. Non-hotspot PIK3CA mutations identified in 

other cancers, different from those we identified, have similarly been shown to drive PI3K 

signaling and induce oncogenic transformation to a significant, but lesser, degree than hotspot 

mutations in avian model systems, where the oncogenic capabilities of PIK3CA were first 

discovered.(102) 

 

 

Figure 8. Effects of Mutant PIK3CA Expression in PE/CA-PJ34 Cells 

 (A) A representative Western blot with densitometry values normalized to beta-tubulin for cells expressing EGFP, 

WT PIK3CA, hotspot PIK3CA mutant H1047R, and novel mutants: R115L, G363A, C971R, and R975S, by 

retroviral infection. Increased phosphorylation of AKT at the T308 and/or S473 residue was observed in HNSCC 

cells stably expressing WT or mutant PIK3CA constructs relative to the EGFP expressing HNSCC cells, indicating 

enhanced activation of the PI3K signaling pathway. Experiment repeated three times with similar results. (B) Effects 

of PIK3CA mutations on PE/CA-PJ34 cell growth. HNSCC cells stably expressing WT or 

mutant PIK3CA constructs demonstrated enhanced growth at 72 hours in media with 2% FBS by MTT assay 

compared to cells expressing EGFP vector control (p < 0.0001***). PIK3CA(H1047R) expressing cells further 

demonstrated enhanced growth when compared to simulated WT PIK3CA amplification (p = 0.001). Pooled data 

(Mean +/- SEM)  shown from three independent experiments in replicate cell lines (separate infections, n=18 for 

each group). This figure is adapted from Lui, Hedberg, Li et al 2013. I generated the vectors and engineered cell 
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lines as described in methods. I designed, optimized, and performed the experiments whose results are shown here. I 

performed data analysis and interpretation for this portion of the paper, and generated this figure. 

 

2.3.5 Hotspot and Common PIK3CA Mutations in HNSCC and Other Cancers 

In addition to our 151 HNSCC tumor cohort, other large scale WES studies are now contributing 

to our understanding of the spectrum of PIK3CA mutations that exist in HNSCC, and an 

appreciable number of PIK3CA mutations identified in HNSCC (≈20-30%) are non-hotspot 

mutations whose functional consequences are unknown (Figure 9).(39-41, 85, 103, 104)  

 

 

 

Figure 9. Schematic Diagram of PIK3CA/p110α Mutations Found in HNSCC Tumors. 

The amino acid (a.a.) positions of each domain are shown in grey numbers below each domain.  The number of 

mutational events at each site is indicated as filled triangle (▲) in the graph above. Blue triangles indicate mutations 
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that were identified in HPV(+)HNSCC tumors, grey indicates HPV(-) tumors. ABD: adaptor (p85) binding domain; 

RBD: Ras binding domain; C2 Superfamily; Helical: PIK domain; Kinase: kinase domain of p110α. 

 

Individual, non-hotspot PIK3CA mutations are only identified in a small number of cases, 

often in only 1 HNSCC patient. In an attempt to predict which of these rare non-hotspot 

mutations might be of functional consequence, I cross-referenced the PIK3CA mutations 

identified in HNSCC with those identified in other cancers from the TCGA project. From this 

composite database of 1,424 shared PIK3CA mutations I assessed the frequency of each mutation 

and respective amino acid residue, and found 11 amino acid residues with a mutational 

frequency of at least 1% (Figure 10A). Through a collaboration facilitated by Dr. Adrian Lee, 

these 11 common PIK3CA mutations were assessed and compared to all reported PIK3CA 

mutations in HNSCC using an algorithm developed by Dr. Oliver Lichtarge. Briefly, this 

algorithm calculates the importance of the WT amino acid residue by evolutionary conservation, 

and the magnitude of change with respect to size and charge between the mutant amino acid and 

the WT amino acid to determine an “Evolutionary Action Score” for mutations. This score, 

ranging from 0-100, predicts whether a mutation is likely to be deleterious (100) with respect to 

the function of the protein, neutral (0) with respect to the function of the protein, or represent a 

potential gain of function mutation (50).(92) The tighter normal distribution around gain of 

function Evolutionary Action Scores in the subset of 11 common PIK3CA mutations (Figure 

10C), compared to all HNSCC PIK3CA mutations (Figure 10B) suggests that we are selecting 

for mutations that are more likely to be gain of function mutations using these selection criteria. 
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Figure 10. Common PIK3CA Mutations across Cancers and Comparative Functional Predictions 

(A) PIK3CA mutations (n=1,424) identified in HNSCC and other cancers with mutational frequencies of ≥ 1% 

White bars represent the frequency of mutation at the specified amino acid and black bars represent the mutational 

frequency of the specific mutation listed. Comparative representations of the Evolutionary Action Scores for all 

PIK3CA mutations identified in HNSCC (B) and the common PIK3CA mutations (C), as defined in part A, suggest 

that a greater proportion of the common PIK3CA mutations are likely to be gain of function. I supplied Dr. Panos 

Kastonis of Dr. Lichtarge’s group with the mutational data that I utilized for part A of this figure (obtained through 

the cBIO portal), from which he generated parts B and C of this figure and provided interpretation.  

 

PIK3CA Mutations in HNSCC and Other Cancers (n=1,424 mutations) 



 47 

   

2.3.6 Hotspot and Common PIK3CA Mutations Enhance Survival/Proliferation and 

Invasion in UPCI-52 (SD-1) Cells, but do not Confer Enhanced Sensitivity to BYL-719 

To evaluate the impact of hotspot and common PIK3CA mutations on cancerous phenotypes in 

HNSCC, we conducted additional functional experiments. In these experiments, I utilized a 

specialized HNSCC cell line developed in our lab, UPCI-52 (SD-1). This cell line is a serum-

dependent, PIK3CA WT, subclone isolated from the HNSCC cell line UPCI-52, that 

demonstrates markedly reduced survival/rates of proliferation when cultured in reduced, or 

serum-free media (Patent Application # PCT/US2013/051866). By engineering mutations into 

this cell line and assessing their effect on survival/proliferation of these cells in reduced-serum 

media, we have used this cell line as an HNSCC-specific screening platform to identify driver 

mutations.(105) 

I used retroviruses to infect these UPCI-52 (SD-1) cells with EGFP control, WT PIK3CA 

(mimicking gene amplification), 4 of the common non-hotspot PIK3CA mutants identified in 

Figure 10 that are far removed from the more well-studied helical and kinase domains (R38H, 

R88Q, E110del and G118D), individually, and three hotspot PIK3CA mutants (E542K, E545K 

and H1047R), individually. Because they have been shown to alter the action of the p110α 

protein in published reports, no tag was utilized in the PIK3CA constructs used in these 

experiments.(106) As such, ectopic p110α cannot be readily distinguished from endogenous 

p110α by immunoblotting alone, and I therefore also performed RT-PCR and Sanger sequencing 

of the resultant cDNA, in order to confirm the expression of the appropriate mutant PIK3CA 

constructs in the respective engineered UPCI-52 (SD-1) cell lines (Figure 11). 
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Figure 11. Expression of Hotspot and Common PIK3CA Mutations in UPCI-52 (SD-1) Cells 

(A)  A representative immunoblot with densitometry values normalized to beta-tubulin for UPCI-52 (SD-1) cells 

expressing EGFP or PIK3CA constructs, as indicated, by retroviral infection. 8.0 x 105 cells were plated overnight, 

serum starved for 30 hours, harvested, and assessed by SDS-PAGE and immunoblotting for p110α and β-tubulin. 

The experiment was repeated twice with similar results. (B) Sanger sequencing of cDNA generated by RT-PCR as 

described in methods from each engineered UPCI-52 (SD-1) cell line confirming expression of the appropriate 

mutant PIK3CA construct as indicated, at the level of transcription. The experiment was repeated twice with similar 

results. I generated the vectors and engineered the cell lines as described in methods. I designed, optimized, and 

performed the experiments whose results are shown here, and did all of the data collection and analysis. Yan Zeng 

performed alongside me for some of the experiments/replicates assisting in the plating of cells, harvesting of lysates, 

and preparation of gels and reactions. 
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UPCI-52 (SD-1) cells expressing WT PIK3CA (mimicking PIK3CA gene amplification), 

3/4 common, non-hotspot PIK3CA mutants (R38H, R88Q and G118D), and all 3 hotspot 

PIK3CA mutants (E542K, E545K and H1047R) demonstrated significantly enhanced 

survival/proliferation in reduced serum media over 9 days compared to EGFP control by MTS 

assay (Figure 12). Further, cells expressing 3/4 common, non-hotspot mutants (R38H, R88Q and 

G118D), and 2/3 hotspot mutants (E542K and E545K), demonstrated significantly enhanced 

survival/proliferation in reduced serum media over 9 days compared to simulated WT PIK3CA 

amplification in the same experiments (Figure 12).  
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Figure 12. Effect of PIK3CA Mutants on Survival/Proliferation of UPCI-52 (SD-1) Cells 

5.0 x 103 UPCI-52 (SD-1) cells per well, stably expressing EGFP, WT or mutant PIK3CA constructs were plated in 

48-well plates, grown for 9 days in media with 2% and 10% FBS, and assessed by MTS assay. Shown is 

proliferation in 2% FBS media normalized by proliferation in 10% FBS media, relative to EGFP controls. *: 

significantly enhanced survival/proliferation (p < 0.05) vs EGFP, †: significantly enhanced survival/proliferation (p 

< 0.05) vs simulated PIK3CA amplification (ectopic WT PIK3CA). Pooled data (Mean +/- SEM) from 3 

independent sets of experiments plated n=8 is presented. Significance was determined by unpaired T-test with 

Welch’s correction. 
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I then assessed these engineered UPCI-52 (SD-1) cells in transwell assays to observe the 

impact of PIK3CA mutation on invasion/migration. In trends that roughly matched those seen in 

the proliferation experiments, UPCI-52 (SD-1) cells expressing WT PIK3CA (mimicking 

PIK3CA gene amplification), 3/4 common, non-hotspot PIK3CA mutants (R38H, R88Q and 

G118D), and all 3 hotspot PIK3CA mutants (E542K, E545K and H1047R) demonstrated 

significantly enhanced invasion compared to EGFP control in transwell assays over 24 hours 

(Figure 13). Further, cells expressing 2/4 common, non-hotspot mutants (R88Q and G118D), and 

all 3 hotspot mutants (E542K, E545K and H1047R), demonstrated significantly enhanced 

invasion compared to simulated WT PIK3CA amplification in the same experiments (Figure 13). 
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Figure 13. Effect of PIK3CA Mutants on Invasion of UPCI-52 (SD-1) Cells 

3.0 x 104 UPCI-52 (SD-1) cells suspended in DMEM stably expressing EGFP, WT or mutant PIK3CA constructs 

were plated inside migration (uncoated) chambers or invasion (matrigel coated) chambers submerged in 10% FBS 

media for 24 hrs. Cells were counted and averaged from 4 photomicrographs (20x objective) of each membrane, and 
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the invasion/migration ratios were calculated. (A) The average Invasion:Migration ratios for each engineered line 

relative to EGFP controls. (B) Representative images of invasion membranes. *: significantly enhanced invasion (p 

< 0.05) vs EGFP, †: significantly enhanced invasion (p < 0.05) vs simulated PIK3CA amplification (WT PIK3CA). 

Pooled data (Mean +/- SEM) from 5 independent sets of experiments plated in duplicate is presented. Significance 

was determined by unpaired T-test with Welch’s correction. 

 

Reports in other cancers suggest that tumors with PIK3CA alteration may be more 

sensitive to PI3K pathway inhibitors.(107) Having demonstrated that hotspot and several 

common, non-hotspot PIK3CA mutations can contribute to cancerous phenotypes such as 

proliferation and invasion in UPCI-52 (SD-1) cells, we hypothesized that cells expressing these 

PIK3CA mutations would be more sensitive to treatment with a targeted PI3K inhibitor. When I 

treated UPCI-52 (SD-1) cells expressing EGFP control, WT PIK3CA, the four common non-

hotspot PIK3CA mutants (R38H, R88Q, E110del and G118D), and the three hotspot PIK3CA 

mutants (E542K, E545K and H1047R), with the alpha-isoform specific p110α inhibitor BYL-

719, inhibition of PI3K signaling was observed as expected (Figure 14).(108) 
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Figure 14. Inhibition of AKT Phosphorylation by BYL-719 Treatment in Engineered UPCI-52(SD-1) Cells 

8.0 x 105 UPCI-52 (SD-1) cells expressing the indicated constructs were plated overnight, followed by 24 hours 

serum-starvation, after which they were re-exposed to full media for 6 hours in the presence of 1μM BYL-719 or 

vehicle control, harvested, and assessed by SDS-PAGE and immunoblotting. BYL-719 treatment inhibited PI3K 

signaling as evidenced by the reduced phosphorylation of AKT shown above. The experiment was repeated 3 times 

with similar results. I generated the vectors and engineered the cell lines as described in methods. I designed, 

optimized, and performed the experiments whose results are shown here, and did all of the data collection and 

analysis. Yan Zeng performed alongside me for some of these experiments/replicates assisting in the plating and 

treatment of cells, harvesting of lysates, and preparation of gels. 

 

 

Treatment of UPCI-52 (SD-1) cells expressing the various PIK3CA mutant constructs 

with BYL-719 for 72 hours did not consistently demonstrate enhanced sensitivity compared with 

EGFP controls. Only cells expressing the PIK3CA(E110del) mutant were found to be more 

sensitive to BYL-719 than controls (Figure 15). All of the other UPCI-52 (SD-1) cells expressing 

PIK3CA mutations were less sensitive to BYL-719 treatment compared to EGFP controls, some 

to a statistically significant degree [PIK3CA WT, (R38H), (G118) and (E542K)], though the 

difference in the IC50 values is modest (Figure 15). These observations are consistent with a 
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prior study where forced expression of hotspot PIK3CA mutants in the HNSCC cell line SCC25, 

resulted in resistance as opposed to sensitization to treatment with the PI3K inhibitor GDC-

0941.(109) 

 

Figure 15. Sensitivity of Engineered UPCI-52 (SD-1) Cells to BYL-719 

5.0 x 103 UPCI-52 (SD-1) cells per well, stably expressing EGFP, WT or mutant PIK3CA constructs were plated 

overnight in 48-well plates and treated with half-log doses of BYL-719 from 0μM - 30μM for 72 hours and assessed 

by MTS. Mean values +/- SEM were plotted in GraphPad Prism 6, and growth curves (left) and IC50 values (right) 

were calculated using the least squares fit log(inhibitor) vs. normalized response-variable slope equation, and 

compared using an extra sum of the squares F-test. Pooled data from 5 independent experiments plated at n=6 is 

shown. 

 

The hypothesis that cells with PIK3CA alterations will be more sensitive to PI3K 

inhibition is predicated on the theory of oncogene addiction. This theory posits that an oncogene-

addicted cancer is so highly dependent upon acquired aberrations in a cell signaling pathway for 

survival, that inhibition of said pathway results in massive amounts of cell death. UPCI-52 (SD-

1) cells are a HNSCC cell line with a set of endogenous molecular alterations that evolved over 

time allowing the cells to originally become transformed and continue to proliferate limitlessly in 
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culture. Taken together, our data suggest that while the PIK3CA constructs are able to contribute 

to cancerous phenotypes in UPCI-52 (SD-1) cells, conferring enhanced survival/proliferation in 

reduced serum media and enhanced invasion in transwell assays, the engineered cells are not 

addicted to the added oncogene under these experimental conditions.  

2.3.7 PI3K Inhibitors are Effective in Endogenous Preclinical Models of HNSCC 

In light of the potential limitations of the engineered UPCI-52 (SD-1) platform, and published 

reports suggesting that PIK3CA alteration can be predictive of response to targeted therapy, we 

proceeded to assess the predictive value of PIK3CA status in endogenous preclinical models of 

HNSCC.(107) We treated a panel of 8 HNSCC cell lines of varying PIK3CA and HPV status 

(Summarized in Table 5) with 2 targeted PI3K inhibitors currently in clinical development; 

BKM-120, and BYL-719.(101, 110, 111) Both drugs are small molecules that function as 

competitive, reversible inhibitors of PI3Ks. BKM-120 is a pan inhibitor of the α, β, γ, and δ 

isoforms of the catalytic subunits of Class 1 PI3Ks.(112) BYL-719 is an α-isoform specific 

inhibitor targeted directly against p110α, the gene product of PIK3CA.(108) HNSCC cell lines 

were varyingly sensitive to these agents and both drugs were equipotent in HNSCC cell lines 

with endogenous PIK3CA(H1047R) mutations, which were generally found to be more sensitive 

to BYL-719 treatment than cell lines without PIK3CA mutation (Table 5 and Figure 16).  
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Table 5. Characteristics and BKM/BYL Sensitivity of HNSCC Cell Lines 

Select characteristics of the 8 HNSCC cell lines used in the BKM/BYL treatment experiments are shown along with 

average IC50 values from Figure 16 (below). P-values are derived from extra sum-of-squares F tests comparing the 

logIC50 values of BKM-120 and BYL-719 for each respective cell line. 

 

 

Figure 16. Sensitivity of HNSCC Cell Lines to Targeted PI3K Inhibition 

6.5 x 103 cells per well were plated overnight in 48-well plates and treated with half-log doses of BKM-120 (left) or 

BYL-719 (right) from 0μM - 30μM for 72 hours and assessed by MTT. Mean values +/- SEM were plotted in 

GraphPad Prism 6, and growth curves and IC50 values were calculated using the least squares fit log(inhibitor) vs. 

normalized response-variable slope equation, and compared using an extra sum of the squares F-test. Pooled data 
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from three independent experiments plated in quadruplicate are displayed and IC50 results are summarized 

numerically in Table 2 (above). I designed, optimized, and performed at least one replicate of each experiment 

whose results are shown here, and did all of the data analysis. Yan Zeng performed some the experiments/replicates 

and provided raw data for my analysis. 

 

We then proceeded to assess the efficacy of BYL-719 in 4 unique, patient-derived 

HNSCC xenografts (PDXs) of varying PIK3CA and HPV status. We chose to 4 tumorgrafts to 

test BYL-719 in the setting or absence of HPV and in the setting or absence of PIK3CA 

mutation. Initially, BYL-719 treatment resulted in tumor growth inhibition in the 2 PDXs with 

WT PIK3CA, and tumor regression in the 2 PDXs harboring endogenous PIK3CA mutations 

(Figure 17). After approximately two weeks of treatment, 3/4 PDXs started to demonstrate tumor 

growth in the BYL-719 treatment arm, suggesting the potential emergence of resistance to BYL-

719. When the experiment was terminated, the average tumor volume, and fractional tumor 

volume change, between the BYL-719 and vehicle treated tumors of the HPV(-

)/PIK3CA(M1043V) PDX, was no longer statistically significant (Figure 17 and Table 6).  

 

Table 6. End Point Tumor Volumes of HNSCC PDXs Treated with BYL-719 or Vehicle 

Average tumor volumes of vehicle-treated and BYL-719-treated animals in each PDX at the end of experiment were 

calculated and compared by T-test. Statistical significance was determined using the Sidak-Bonferroni method, 

α=0.05, without assuming a consistent SD. 

PDX Treated with BYL-719 Treated with Vehicle Control p-value
HPV(-)/PIK3CA (WT) 347.6 ± 156.2 (n=10) 781.0 ± 402.7 (n=12) Yes 0.0045
HPV(+)/PIK3CA (WT) 833.9 ± 273.0 (n=11) 1354.9 ± 341.4 (n=8) Yes 0.0018

HPV(-)/PIK3CA (M1043V) 743.4 ± 642.6 (n=10) 1279.4 ± 472.4 (n=10) No -
HPV(+)/PIK3CA (E542K, F744L) 283.6 ± 78.3 (n=10) 658.3 ± 228.5 (n=10) Yes 0.00011

Mean Tumor Volume +/- SD at End of Experiment (mm3) Difference Significant by 
Bonferroni
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Figure 17. BYL-719 Treatment of HNSCC PDXs 

HNSCC PDXs, one per mouse, were implanted bilaterally into the flanks of 12 NOD SCIDγ mice. Treatment was 

initiated when tumors became palpable with 5-6 mice (8-12 tumors) per PDX receiving vehicle control and 6 mice 

(10-11 tumors) per PDX receiving BYL-719 (1mg) daily, by oral gavage. Tumors were measured 3 times per week 

by digital calipers. Fractional tumor volume change +/- 95%CI was plotted in GraphPad Prism 6 and compared 

between the BYL-719 and vehicle treated tumors at each data/time point by T-test. *: p<0.05, Statistical significance 

was determined using the Sidak-Bonferroni method, α=0.05, without assuming a consistent SD. I generated the 

vectors and engineered the cell lines as described in methods. I designed, optimized, and took part in each of the 
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experiments whose results are shown here, and did all of the data analysis. Yan Zeng worked alongside me for some 

of the initial surgeries when we expanded the PDXs up to the treatment sized cohorts, and assisted with the daily 

drug treatments when I was unavailable to administer them. Hua Li was blinded to the treatment groups I devised 

and performed the caliper tumor measurements. Providing data for my analysis. 

 

When the experiment was terminated, samples of vehicle and BYL-719 treated PDXs 

were collected, lysed, and assessed by reverse phase protein array (RPPA) in collaboration with 

Dr. Gordon B. Mill’s group at the core laboratories of the MD Anderson Cancer Center. The 

RPPA analysis of the HPV(-)/PIK3CA(WT) PDX showed statistically significant reduction in 

the phosphorylation of downstream effectors of the PI3K signaling cascade from the level of 

AKT through mTORC1 and the S6 ribosomal protein (Figure 18). This was not observed in the 

RPPA analysis of the other 3 HNSCC PDXs; and in the HPV(-)/PIK3CA(M1043V) PDX, which 

showed the strongest evidence of acquired resistance to BYL-719, there were significantly 

elevated levels of phosphorylated S6 ribosomal protein in BYL-719 treated tumors vs. vehicle 

treated tumors, by RPPA (Figure 18). These data may implicate mTORC1 signaling downstream 

of PI3K as an important mediator of response to BYL-719 treatment in these models, which 

would be consistent with previously published results in preclinical models of breast 

cancer.(113) 
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Figure 18. PI3K Signaling in BYL-719 Treated PDXs by RPPA 

Normalized linear RPPA expression values (Mean +/- SEM) for phospho-specific antibodies (or ratios of phospho-

specifc antibodies over total-specific antibodies) against downstream components of the PI3K signaling pathway 

demonstrate the level of inhibition achieved by BYL-719 treatment in each of the 4 HNSCC PDXs. Significance by 

unpaired T-tests. The data for this analysis was provided by the RPPA Proteomics Core at MD Anderson. I collected 
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all the tumor samples for this dataset at the end of the BYL-719 treatment experiments. Yan Zeng and Hua Li 

facilitated the preparation and export of lysates to Texas for analysis. 

 

  Elkabets et al. recently reported a mechanism of resistance in HNSCC to BYL-719.(114) 

In this mechanism, the AXL receptor is upregulated in response to BYL-719 treatment, it 

dimerizes with EGFR, and activates mTORC1 signaling in an AKT-independent manner through 

the activation of Phospholipase C, Gamma (PLCγ) and Protein Kinase C, Zeta (PKCζ).(114) 

Increased expression of AXL was observed across several preclinical models and patient tumor 

samples that were treated with BYL-719 in their study, and models with higher basal levels of 

AXL were more likely to be resistant to BYL-719..(114) Similarly, we observed elevated levels 

of AXL by RPPA in our BYL-719 treated PDXs vs. control, suggesting that this, or a similar 

mechanism may be implicated in our results (Figure 19). We also observed however, that the 

PDX model with the highest levels of AXL by RPPA, both basally and in the setting of BYL-719 

treatment, was responsive to BYL-719 treatment. Future studies featuring sample harvesting at 

various time intervals will be required to address the dynamics of treatment resistance as it 

evolves in the face of therapy, and at this time the interpretation of RPPA data should be viewed 

as hypothesis generating.  

 



 63 

 

Figure 19. Effect of BYL-719 Treatment on AXL Expression in PDXs 

Normalized linear RPPA expression values (Mean +/- SEM) for antibodies against AXL demonstrate the induction 

induced by BYL-719 treatment in each of the 4 HNSCC PDXs. Significance was determined by unpaired T-tests. 

The data for this analysis was provided by the RPPA Proteomics Core at MD Anderson. I collected all the tumor 

samples for this dataset at the end of the BYL-719 treatment experiments. Yan Zeng and Hua Li facilitated the 

preparation and export of lysates to Texas for analysis. 

 

2.4 DISCUSSION 

The increasing number of targeted anti-cancer agents under development presents tremendous 

opportunity for personalized cancer medicine. Selection of therapies based on the mutational 

status of molecular targets has transformed clinical management and survival of several human 

malignancies.(115) The elucidation of the mutational landscape underlying HNSCC offers an 
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opportunity to identify genetically-defined subgroups of HNSCC tumors with alterations in 

therapeutic target genes/pathways to guide treatment decisions.  

Using a pathway-level approach, we analyzed WES data from 151 HNSCC tumors to 

identify mutationally-altered, targetable mitogenic pathways in HNSCC. We found the PI3K 

pathway to be the most frequently mutated oncogenic pathway in HNSCC, with the relative 

number of PI3K-mutated tumors compared to RAS/MAPK and JAK/STAT-mutated tumors 

being approximately 3-fold greater (Figure 5). Based on TCGA data downloaded from the cBio 

Portal, similar ratios of PI3K pathway mutations (relative to RAS/MAPK or JAK/STAT) are 

seen in squamous cell carcinoma of the lung, and in cervical cancer; both of which share 

common risk factors with HNSCC, including tobacco and HPV infection, respectively.(90) In 

contrast, the RAS/MAPK pathway is more frequently mutated than the PI3K pathway in colon 

and thyroid cancers, and both the PI3K and RAS/MAPK pathways are mutated at comparable 

rates in lung adenocarcinomas.(99) The percentage of HNSCC tumors harboring multiple 

mutations in the PI3K pathway is similar to that observed in breast cancers (4.9%, 25/507 

tumors) and glioblastomas (9.1%, 25/276 tumors) , higher than in thyroid cancer (0.3%, 1/323 

tumors)  and lower than in most other cancers, including uterine carcinoma (65.7%, 163/248 

tumors), melanoma (24.9%, 63/253 tumors), and surprisingly lung squamous cell carcinoma 

(17.4%, 31/178 tumors); which otherwise shares common risk factors and similar relative rates 

of mitogenic pathway mutations with HNSCC.(85, 99) 

PI3K pathway-mutated HNSCC tumors were found to have a higher rate of non-

synonymous mutations, including an increased number of cancer gene mutations, compared to 

tumors without PI3K pathway mutations (Figure 6). It is not known if or how PI3K pathway 

alterations could contribute to genomic instability in HNSCC tumors. Conceivably, they may 
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confer a “mutator” phenotype to HNSCC tumors. Either rendering them more prone to mutation 

directly, by somehow inhibiting DNA repair; or indirectly by, for example, enhancing the rate at 

which the cells divide resulting in more opportunities for the accumulation of mutations. PI3K 

pathway alterations may simply occur at later disease stages promoting the clonal expansion of 

cancer cells already harboring high numbers of mutations. Genomic gain of PIK3CA and 

increased expression of p110α have been associated with progression from dysplasia to 

carcinoma in pathologic studies of HNSCC.(116) In this latter scenario, the PI3K alterations 

would seem to confer an “oncogenic” advantage, even in the setting of increasing genomic 

instability. The “oncogenic” advantage of PI3K pathway-mutated tumors is evidenced by the 

behavior of “driver” PIK3CA mutations observed in our experiments, where they were found to 

promote enhanced growth in engineered PE/CA-PJ34 cells (Figure 8) and enhanced 

survival/proliferation in engineered UPCI-52 (SD-1) cells, cultured in reduced serum media 

(Figure 12). While the potential “mutator” phenotype of these tumors is supported by our finding 

that PI3K pathway-mutated tumors are associated with mutations in select tumor suppressors, 

chromatin remodelers, and DNA repair genes.(99, 117-119) To the extent that they each exist, 

both the “oncogenic” and “mutator” phenotypes associated with PI3K pathway alterations are 

likely to contribute to HNSCC progression; especially when they occur in the absence of other 

genetic mutations known to contribute to carcinogenesis in HNSCC, as was seen in 3 HPV(+) 

tumors in our cohort.   

Our finding that all 10 HNSCC tumors with concurrent mutations of multiple PI3K-

pathway genes were advanced, Stage IV cancers suggests that concurrent alterations of multiple 

nodes of the PI3K pathway may be involved in HNSCC progression. This aligns with reports 

that find, in addition to PIK3CA mutation, other PI3K pathway components such as PIK3R1 and 
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PIK3R2, when mutated, can drive cell growth/survival.(120) Although the effects of multiple 

PI3K pathway mutations on cancer cell growth or progression have not been investigated, 

genetic alterations at multiple nodes in this oncogenic pathway, a common feature of many solid 

tumors, may identify a subgroup of cancer patients whose tumor biology is heavily dependent on 

the PI3K pathway, and might therefore respond to treatment with PI3K pathway inhibitors. This 

warrants future investigation in appropriate preclinical models.  

We found PIK3CA to be the most commonly mutated oncogene in our cohort. Although 

our current data does not allow for detailed mechanistic explanations of the impact of different 

PIK3CA alterations in HNSCC at this time, it does offer the opportunity to generate hypotheses 

towards such explanations. Further, we implicate this classic oncogene in the molecular 

pathophysiology of HNSCC by demonstrating that PIK3CA amplification and mutation, 

including some non-hotspot mutations, can contribute to such cancerous phenotypes as growth, 

survival, and invasion in engineered models of HNSCC (Figure 8, Figure 12, Figure 13), as has 

been widely reported in other cancers.(121)   

The frequency with which the PI3K pathway is altered in HNSCC, and the data we have 

presented showing its ability to contribute to the disease process, make it a worthwhile 

therapeutic target. Using endogenous and engineered HNSCC cell lines as well as PDXs, we 

demonstrated that the PI3K inhibitors BKM-120 and BYL-719 have cytotoxic activity in 

preclinical models of HNSCC. The evidence in these preclinical models that PIK3CA mutation 

may serve as a predictive biomarker for response to targeted PI3K inhibition, is mixed. 

Engineered UPCI-52 (SD-1) cells were not sensitized to BYL-719 treatment when expressing 

mutant PIK3CA constructs (Figure 15). However, HNSCC cell lines harboring endogenous 

PIK3CA(H1047R) mutations were generally more sensitive than PIK3CA(WT) cells to treatment 
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with BYL-719 (Figure 16). Both BYL-719 and BKM-120 demonstrated broad efficacy in vitro 

across our panel of cell lines, with IC50 values in the low μM range in almost every case (Figure 

16 and Table 5). In vivo, 4 unique HNSCC PDXs were responsive to BYL-719 treatment. That 

tumor regression vs growth inhibition alone was initially seen in the PIK3CA-mutant PDXs vs 

the PIK3CA-WT PDXs respectively, suggests that PIK3CA-mutant tumors may be more 

sensitive to targeted PI3K inhibitors, at least initially (Figure 17). But the potential for acquired 

resistance to targeted treatment that was observed, most prominently in the HPV(-

)/PIK3CA(M1043V) PDX, calls the long term efficacy of these agents in HNSCC, with or 

without PIK3CA mutations, into question (Figure 17).  

The eventual development of resistance to targeted agents, including PI3K inhibitors, 

given as monotherapy is a well-established phenomenon in cancer, especially in solid tumors 

with high levels of intra-tumor mutational heterogeneity.(122) To date, in the advanced stage 

patients who have received and initially responded to BYL-719, development of resistance has 

been seen in virtually every case.(113, 114, 123, 124) Appropriate combination therapy can 

delay and/or overcome this resistance.(113, 114) When the HPV(+)/PIK3CA(E542K,F744L) 

PDX (Figure 17) was treated with a dual PI3K/MTOR inhibitor, BEZ-235, no sign of potential 

acquired resistance was observed with prolonged treatment (Figure 3  in Lui, Hedberg, Li, et al. 

2013).(85) Early-phase clinical trial results in patients with solid tumors, and a variety of reports, 

including our own, in preclinical models of cancer, have demonstrated an association between 

response to PI3K pathway inhibitors and PIK3CA mutation, primarily hotspot mutations.(85, 

113, 114, 123, 125, 126) Here, we show that treatment with BYL-719, one of the most promising 

PI3K inhibitors currently in clinical development, is broadly effective across HNSCC cell lines 
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and PDXs. Ultimately, the validity of PIK3CA status as a predictive biomarker for response to 

targeted PI3K inhibitors must established in clinical trials, and such studies are underway. 

These cumulative findings identify the PI3K pathway as the most frequently mutated 

mitogenic pathway, and PIK3CA as the most commonly mutated oncogene, in HNSCC tumors. 

The frequency with which these alterations occur coupled with the ability of PIK3CA mutant and 

WT constructs to contribute to cancerous phenotypes such as growth, survival/proliferation, and 

invasion in engineered HNSCC cell lines suggests that this pathway is important to the biology 

of this disease. Results from experiments involving treatment with targeted PI3K inhibitors, 

taken together, suggest that PI3K-pathway inhibition may be an effective approach to treating 

HNSCC tumors, especially those with PI3K mutations. These agents are likely to be even more 

efficacious in the setting of combination therapies, though additional research and clinical 

validation of optimized combination therapies, and of PIK3CA/PI3K-pathway alterations as 

predictive biomarkers in HNSCC is required.  
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3.0  GENETIC ALTERATIONS IN METASTATIC/RECURRENT HNSCC 

3.1 INTRODUCTION 

HNSCC is the 7th most common incident cancer worldwide with more than 600,000 new cases 

each year.(8) The major risk factors for HNSCC are tobacco use, alcohol consumption, and/or 

infection with oncogenic strains of HPV.(11) Despite advances in treatment, survival has 

improved only modestly over three decades, and this persistent mortality is largely due to high 

rates of regional metastasis and locoregional recurrence.(10)   

HNSCC metastases almost always arise first in the cervical lymph nodes.(127) Most 

patients are diagnosed with locally advanced disease and more than half have cervical lymph 

node metastases present at initial diagnosis.(128) Clinically, this is classified as synchronous 

nodal metastasis, and it is a poor prognostic indicator. Five year adjusted survival rates range 

from ≈30-60% for patients with synchronous nodal metastasis, compared with ≈85% for patients 

whose cancer has not metastasized.(129) Patients with synchronous nodal metastasis are also 

more likely to develop locoregional or distant metastatic recurrence of HNSCC after completing 

curative-intent therapy.(130)  

Rates of recurrence following treatment of an index HNSCC tumor range from ≈25-50%, 

depending on the anatomical location of the primary tumor, stage at diagnosis, and HPV 

status.(21) Relapse after initial curative-intent treatment is known as metachronous recurrence. 
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In patients who do recur, ≈25-50% will recur more than once.(21) Recurrent tumors are more 

likely to be locoregional than distant.(131) Median survival following metachronous recurrence 

is <22 months in patients who are eligible for salvage surgery or re-irradiation, and <12 months 

for those receiving palliative chemotherapy alone.(21) Recurrence in HNSCC is often resistant to 

standard therapy, and is generally considered incurable.(21, 22)  

The genetic alterations underlying nodal metastasis and recurrence are incompletely 

understood, and present a fundamental challenge to the development of more effective therapies. 

Next generation sequencing of several cancers has greatly expanded our appreciation of the 

genetic heterogeneity that exists in a variety of malignancies. Cumulative evidence implicates a 

complex, nonlinear, branched evolution model of subclonal populations within tumors that 

defines dynamic processes which likely mediate the expansion of minor subclones under the 

selective pressure of therapy, culminating in metachronous recurrences that are often treatment 

resistant.(132, 133) In hematological malignancies, distinct patterns of clonal evolution in the 

development of therapeutic resistance and relapse have been reported.(134, 135) In melanoma 

treated with MEK inhibitors, sequencing of recurrent tumors has identified novel, activating 

mutations in MEK2 that confer resistance to targeted therapy.(136) WES studies have revealed 

mutational signatures induced by temozolomide, which alkylates guanine residues, in recurrent 

glioma, demonstrated inherent functional variability in recurrent clones that impact response to 

chemotherapy in colorectal cancer, and have shown that treatment can be guided by the 

sequencing of metastases or circulating tumor cells in breast cancer.(137-140)         

To date, large scale WES studies have not characterized the genetic alterations associated 

with synchronous nodal metastasis or metachronous recurrence in HNSCC. Microarray-based 

expression profiling of unmatched normal mucosa, primary tumors, lymph node metastases, and 
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recurrent HNSCC lesions identified mRNA expression signatures predictive of metastasis and 

recurrence, but the clinical impact of these observations remains unrealized.(141-144) Only one 

study included analysis of patient-matched index primary tumors and synchronous nodal 

metastases, and found that the expression profiles of primary tumors were largely preserved in 

their respective metastatic lymph nodes.(144) WES studies to date in HNSCC have been 

conducted almost entirely in newly diagnosed primary tumors.(39-41, 85, 86, 103-105) In an 

effort to define and target the genetic alterations underlying metastasis and recurrence in 

HNSCC, we performed WES of patient-matched tumor pairs in the setting of synchronous nodal 

metastasis or metachronous recurrence. 

3.2 MATERIALS AND METHODS 

3.2.1 Patient Selection and DNA Extraction 

The patient cohort consisted of HNSCC patients treated at the University of Pittsburgh Medical 

Center otolaryngology clinics who were enrolled in an observational research study supported by 

the University of Pittsburgh’s Specialized Program of Research Excellence (SPORE) in head and 

neck cancer. All participants provided written informed consent and the study was approved by 

the University of Pittsburgh Institutional Review Board. Fresh frozen tissue was banked in the 

University of Pittsburgh head and neck tissue bank, and made available for sequencing in this 

project as previously described.(41) Genomic DNA for whole exome sequencing was extracted 

from whole blood and fresh frozen tumor tissue using the DNeasy Blood & Tissue Kit (Qiagen) 

according to the manufacturer’s instructions.   
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3.2.2 Whole Exome Sequencing and Analysis 

WES in this study was performed in collaboration with Dr. Richard Lifton’s group at Yale 

University. The sequencing and bioinformatics processing described briefly below was 

conducted by Dr. Lifton’s group and the genomics CORE laboratories at Yale. Following 

sequencing, alignment, and calling of mutations and copy number changes by their automated 

pipeline, the results were conveyed to us. From that point, Dr. Gerald Goh (a graduate student in 

Dr. Lifton’s lab at the time) and I, performed independent analyses of the data and worked 

together to reach a consensus interpretation of the results which we reported together and which 

guided the functional experiments that I designed and performed. Targeted capture was 

performed using the NimbleGen 2.1 Exome reagent followed by sequencing on the Illumina 

platform, and downstream processing performed as previously described.(145, 146) Briefly, 

sequences were aligned to NCBI Build 37 of the human genome using the ELAND program 

(Illumina). Somatic mutations were called based on the significance of differences in reference 

and non-reference read distributions between tumor and matched normal samples. Under the 

assumption that few if any clonal somatic changes should occur in blood DNA, as a control the 

same test was applied to germline DNA using tumor DNA as reference, which as previously 

shown yields high validation rates of putative somatic mutations.(147) If a mutation was 

observed in a metastatic or recurrent tumor, it was considered present in the index primary tumor 

if there were at least 5 independent reads supporting the variant call, and vice-versa. Calls were 

further evaluated by manual inspection of read alignments. Additional tissue samples from 6 

tumors (the primary tumors of patients PY-1, 7, 13, 19, 24, and the recurrent tumor from patient 

PY-3) underwent whole exome sequencing under the auspices of other studies.(40, 41) The 

alternative informatics pipeline and sequencing methods are described in the published reports. 
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In these 6 tumors, 78% of the mutations detected by the sequencing and bioinformatics pipeline 

in this study were also identified in the other studies. A lack of hotspot mutations in PIK3CA 

(AAs 542, 545 and 1047) was confirmed by Sanger sequencing of the tumor samples used in this 

study (data not shown).  

MutSigCV (v1.3.01) was used to determine if genes were mutated more often than 

expected by chance.(148) CNVs were identified by comparing coverage depth ratios of tumor 

and matched normal samples after normalizing for mean coverage depth of each exome, and 

changes in minor allele frequency at informative SNPs. GISTIC2.0 was used to assess the 

significance of recurrent CNVs, and the PyClone algorithm was used to assess clonality, as 

described previously.(149, 150) 

3.2.3 Cell Cultures    

The HNSCC cell lines BICR 18 and PE/CA-PJ34(clone C12) were obtained from Sigma-

Aldrich; UPCI 15B was a kind gift from Dr. Theresa Whiteside (University of Pittsburgh Cancer 

Institute). The HNSCC cell lines were grown in the following culture mediums, each containing 

10% fetal calf serum and 1× penicillin/streptomycin solution (Invitrogen): UPCI 15B in 

Dulbecco’s Modifed Eagle Medium (DMEM), BICR 18 in DMEM with 2mM glutamine 

(Mediatech, Inc.) and 0.4 μg/mL hydrocortisone, and the PE/CA-PJ34(clone C12) cells in 

Iscove’s Modifed Dulbecco Minimum Essential Medium with 2mM glutamine (Mediatech, Inc.). 

All cell lines were maintained in a humidified cell incubator at 37°C, 5% CO2. 
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3.2.4 Drug Treatment and Survival Assays 

HNSCC cells were plated at the indicated concentrations in 48 well culture plates overnight and 

treated with the indicated concentrations of dasatinib (Bristol-Meyers Squibb) for 48 hours, at 

which point, MTT (Sigma-Aldrich) was performed according to manufacturer’s instructions as 

previously described and detailed in figure legends.(85) Growth curves were generated using 

GraphPad Prism 6 software as outlined in the statistics section.  

3.2.5 Invasion Assays 

Invasion of BICR 18 cells in the presence or absence of dasatinib was tested using Biocoat 

migration and Matrigel® coated invasion Chambers (BD Biosciences), according to the 

manufacturer’s instructions. Briefly, 2.0 x 104 BICR 18 cells suspended in DMEM were placed 

in migration (uncoated) chambers or invasion (matrigel-coated) chambers submerged in full 

media. They were treated with DMSO (n=2) or the indicated doses of Dasatinib (n=3) for 24 hrs. 

The experiment was repeated 3 times and cells were counted and averaged from 4 

photomicrographs from each membrane. Bar graphs and statistical analysis generated in 

GraphPad Prism 6 as outlined in the statistics section. 

3.2.6 DDR2 Knockdown 

BICR 18 cells were plated at 10% confluence in 96 well plates overnight, treated with 8μL 

polybrene, and infected with 15μL of MISSION® pLKO.1-puro lentiviral particles containing 

control or α-DDR2 shRNA constructs (α-EGFP control, 121117 5′-CCGGCCCATG-



75 

CCTATGCCACTCCATCTCGAGATGGAGTGGCATAGGCATGGGTTTTTG-3′, or 195105 

5′-CCGGCGAAACTGTTTAGTGGGTAAGCTCGAGCTTACCCACTAAACAGTTTCGTTT-

TTTG-3′) (Sigma-Aldrich). 72 hours later, cells were split into 96 well plates and cultured for 2 

weeks in media containing puromycin to derive subclones expressing the shRNA constructs. 

Cells were then cultured in full medium without puromycin until sufficient volumes were 

obtained for phenotypic analyses (3-6 weeks).  

3.2.7 Cloning and Mutagenesis 

WT EGFP was cloned into the retroviral vector, pMXs-puro (Cell Biolabs, Inc.). WT DDR2 

cloned into a pWZL-Blast vector was a kind gift from Dr. Peter Hammerman and was used as a 

template for site directed mutagenesis using the QuikChange XL Site-Directed Mutagenesis Kit 

(Stratagene).(151) Mutagenesis of the DDR2 WT gene was performed according to the 

manufacturer’s instructions and confirmed by Sanger sequencing using the primers below. 

Table 7. DDR2 Site Directed Mutagenesis Primers 

DDR2(I474M)_sense 5'-gacttacgatcgcatgtttccccttcgccct-3'
DDR2(I474M)_antisense 5'-agggcgaaggggaaacatgcgatcgtaagtc-3'

DDR2(R709*)_sense 5'-ctctcttaattttgttcactgagatctggccacacga-3'
DDR2(R709*)_antisense 5'-tcgtgtggccagatctcagtgaacaaaattaagagag-3'

DDR2(I724M)_sense 5'-gtgggtaagaactacacaatgaagatagctgactttggaa-3'
DDR2(I724M)_antisense 5'-ttccaaagtcagctatcttcattgtgtagttcttacccac-3'
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Table 8. DDR2 Sequencing Primers 

Primer Name Sequence
DDR2 Seq 1 5’-CTTTATCCAGCCCTCAC-3’
DDR2 Seq 2 5’-TCAATTACAGTCGGGATGGC-3’
DDR2 Seq 3 5’-CGGCTATGACTATGTGGGCT-3’
DDR2 Seq 4 5’-CCCACAACCTATGATCCAATG-3’
DDR2 Seq 5 5’-CCACTATGCAGAGGCTGACA-3’
DDR2 Seq 6 5’-TCACTGAATACATGGAGAATGGA-3’
DDR2 Seq 7 5’-CAAGAACAGCCCTATTCCCA-3’
DDR2 Seq 8 5’-CCCTCAACCAGCCATTTGTC-3’

3.2.8 Mutant DDR2 Expression 

Retroviruses were generated using the Platinum Retrovirus Expression Systems (Cell Biolabs), 

Fugene® HD (Promega), and retroviral vectors carrying the gene of interest (pMXs-puro-EGFP 

as control, pWZL-Blast-DDR2(WT), pWZL-Blast-DDR2(mutants)), according to manufacturer’s 

instructions. Briefly, 2x106 PLAT-A cells were plated overnight in 10cm tissue culture dishes 

without antibiotics and transfected the next day with 3 µg of retroviral vector carrying the gene 

of interest (pMXs-puro-EGFP as control, pWZL-Blast-DDR2(WT), pWZL-Blast-

DDR2(mutants)) using the Fugene HD kit (Promega) according to manufacturer’s instructions. 

Two days after transfection, fresh retroviruses (in the supernatant of the PLAT-A cells) were 

collected by filtering through a 0.45 µm syringe filter. Fresh retroviruses were used for infection 

of UPCI-15B cells. UPCI-15B cells were plated to 20% confluence in a T75 flasks without 

antibiotics one day before infection. Infection of UPCI-15B cells was performed by adding 4.5ml 

of retrovirus to the cells mixed with 5.5ml of complete culture media without antibiotics. Then, 

18-20 µl of polybrene (4 µg/µl, Sigma-Aldrich, St. Louis, MO) was added to the cells with
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gentle mixing. Cells were then incubated at 37°C and 5% CO2 for additional 72 hrs, and the 

infection medium was replaced with fresh complete medium after infection.   

3.2.9 Western/Immuno Blotting 

Lysates were collected as described and resolved on sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) gels and transferred to nitrocellulose membranes prior to antibody 

staining. Primary antibodies: α-DDR2 (#12133, Cell Signaling Technology, Inc.), α-β-tubulin 

(ab6046, Abcam), goat anti-rabbit IgG (H+L)-HRP conjugated secondary antibodies (#170-6515, 

BioRad), and Luminol reagent (sc-2048, Santa Cruz Biotech) were utilized. 

3.2.10 Statistics 

Mean values with SEM, from replicate experiments plated as indicated in figure legends, were 

plotted as mean values +/- SEM in Graphpad Prism 6. A sigmoidal dose response curve with 

automatic outlier elimination was applied to generate optimized datasets. The finalized datasets, 

with outliers removed, were used to generate growth curves using the least squares fit 

log(inhibitor) vs. normalized response-variable slope equation. The logIC50 values were 

compared using an extra sum of the squares F-test (null hypothesis = the logIC50 values are 

identical, the null hypothesis was rejected in cases where p < 0.05). For bar graphs, mean values 

with SEM were calculated and plotted as above, and compared using an unpaired, two-tailed T 

test with Welch’s correction. 
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3.2.11 Study Approval 

This study was approved by the University of Pittsburgh Institutional Review Board. All tissue 

samples were obtained from patients who provided written informed consent and were enrolled 

in an observational research study supported by the University of Pittsburgh’s Specialized 

Program of Research Excellence (SPORE) in head and neck cancer.  

3.3 RESULTS 

3.3.1 Patient Characteristics and WES 

The cohorts analyzed in this study were two groups of patients with HNSCC from the University 

of Pittsburgh; the “synchronous nodal metastasis” group and the “metachronous recurrence” 

group (Figure 20). The synchronous nodal metastasis group consisted of 13 patients contributing 

blood, primary tumor, and synchronous nodal metastases. The metachronous recurrence group 

consisted of 10 patients contributing blood, primary tumor, and recurrent tumor. All patients 

were treated with curative intent for the index tumor, and all metachronous recurrences 

underwent salvage therapy.  
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Figure 20. Patient Cohorts and Study Design. 

To define and interrogate the genetic alterations underlying metastasis and recurrence in HNSCC, we analyzed two 

groups of patients. The synchronous nodal metastasis group consisted of 13 HNSCC patients that contributed 

normal tissue (blood), primary tumor tissue, and metastatic lymph node tumor tissue from a single time point. The 

metachronous recurrence group consisted of 10 HNSCC patients that contributed normal tissue (blood), primary 

tumor tissue, and recurrent tumor tissue from a later time point following relapse. Genomic DNA was isolated from 

this fresh frozen tissue and assessed by whole exome sequencing. 

 

Clinical and pathologic characteristics were typical of a surgically treated HNSCC 

population, and are summarized in Table 9. Briefly, all patients were Caucasian, 83% of the 

patients were male (19/23), mean age at diagnosis was 61.9 ± 11.2 years (range: 44-79), 87% 

(20/23) had a history of significant tobacco exposure (generally >20 pack years), 74% (17/23) 

had documented alcohol use, and only 1 patient had HPV(+) disease. Of the 5 patients in the 

metachronous recurrence group with nodal disease at the time of initial diagnosis, all had 

evidence of extracapsular spread; as did 10 of the 13 patients in the synchronous nodal 

metastasis group.  
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The majority of the index primary tumors were located in the oral cavity (61%; n=14), 

with the remainder distributed between the larynx (22%; n=5) and pharynx (17%; n=4). As is 

commonly seen in HNSCC, most patients presented with advanced disease. Of the newly 

diagnosed index primary tumors, 25% and 70% were AJCC Stage III or IVA, respectively; 

metachronous recurrent tumors are not staged (Table 9).(17) All metachronous recurrences 

sequenced in this study were locoregional and, compared to their paired index primary tumors, 

7/10 were located in different anatomic subsites of the head and neck (Table 9). Median time to 

recurrence in the metachronous recurrence group was 5.5 months (range 2.2-33.9) (Table 9). 

Two of 10 patients in the metachronous recurrence group received adjuvant radiation therapy, 

and 3 received adjuvant chemotherapy in combination with radiation, after resection of the index 

primary tumor (Table 9). 
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Table 9. Clinical Characteristics of HNSCC Patient Cohort. 

All index primary tumors, synchronous nodal metastases, and metachronous recurrences were surgically resected. 

Site = anatomic location of primary tumor; OC = Oral Cavity, P = Pharynx, L = Larynx, LN = Lymph Node 

(cervical). RT = Radiation Therapy. Index primary tumors for patients PY-6, PY-8, and PY-10 were recurrences, 

which are not staged. 

Patient ID # Gender Age @ Dx (Yrs) Site Path. Stage AJCC Stage Adjuvant Treatment Time to Recurrence (Months) Site
PY-1 M 78 OC T3 N1 M0 III None 2.3 P
PY-3 F 67 OC T2 N2B M0 IVA RT 6.3 OC
PY-4 M 44 OC T4A N2B M0 IVA RT& Cisplatin & Vectibix 6.8 P
PY-5 M 52 OC T3 N0 M0 III None 4.3 L
PY-6 M 52 P TX NX MX n.a. IMRT & Cetuximab & Pemetrexed 10.5 LN
PY-7 M 49 L T4A N1 M0 IVA None 2.9 LN
PY-8 M 76 OC TX NX MX n.a. RT 33.9 P
PY-9 M 60 OC T2 N0 MX II None 4.7 LN
PY-10 M 58 OC TX NX MX n.a. None 2.2 OC
PY-11 M 74 OC T3 N2C M0 IVA RT & Cisplatin 9.7 OC

Patient ID # Gender Age @ Dx (Yrs) Site Path. Stage AJCC Stage
PY-12 F 46 OC T3 N2C M0 IVA
PY-13 M 53 OC T3 N2B M0 IVA
PY-14 M 71 L T3 N1 MX III
PY-15 M 63 L T3 N2C M0 IVA
PY-16 M 70 P T1 N2B MX IVA
PY-17 F 68 L T4A N2A MX IVA
PY-19 M 73 P T2 N1 MX III
PY-20 F 79 OC T1 N1 MX III
PY-21 M 49 L T4A N2C MO IVA
PY-22 M 49 OC T4A N2C M0 IVA
PY-23 M 56 P T4A N2B M0 IVA
PY-24 M 73 OC T4A N2C M0 IVA
PY-25 M 64 OC T1 N2 M0 IVA

General Characteristics Index Primary Tumor

Metchronous Recurrence Group
General Characteristics Index Primary Tumor Metachronous Recurrent Tumor

Synchronous Nodal Metastasis Group

 

Genomic DNA from patient matched tumor-pairs and peripheral blood mononuclear cells 

(PBMCs), was subjected to exome sequencing as described in methods. By design, tumors were 

sequenced to higher depth of coverage than normal samples (PBMCs). Normal samples were 

sequenced to a mean depth of 123 independent reads per targeted base, and tumors to a mean of 

202 independent reads (Table S1 Hedberg, Goh, Chiosea, et al., 2015 in press JCI). Somatic 

single nucleotide variants (SSNVs) and somatic copy number variants (SCNVs) were called (see 

methods), and tumor purity was estimated from deviation in minor allele frequency of 

heterozygous SSNVs in segments showing loss of heterozygosity (LOH) (Table S2 Hedberg, 



 82 

Goh, Chiosea, et al., 2015 in press JCI). In one primary tumor, two synchronous metastases, and 

one metachronous recurrence, estimated tumor purity was too low to yield high quality 

sequencing data (Table S2 Hedberg, Goh, Chiosea, et al., 2015 in press JCI). These patients 

were not included in the analysis of genetic concordance between matched tumor pairs, but the 

tumors obtained from them that did yield high quality sequencing data were included when 

reporting overall mutation rates in each tumor type (11 total synchronous metastases and 9 total 

metachronous recurrences).  

3.3.2 Genetic Profiles of Index Primary Tumors 

Among 22 primary tumors, 1,961 SSNVs were identified in 1,666 genes. Tumors averaged 89.1 

SSNVs (range 3 – 413), and the ratio of non-synonymous:synonymous variants in coding regions 

was 3.14:1. Analysis of mutation burden with MutSigCV revealed a single gene, TP53, with a 

significant excess of SSNVs (mutated in 13 tumors, q=2.66x10-6).(148) We utilized the findings 

of Vogelstein et al (n=124), the TCGA Pan Cancer Effort (n=127), and the TCGA HNSCC 

cohort (n=11), to generate a composite list of 191 genes, which have either been established as 

cancer driving genes, and/or as genes which are significantly mutated in HNSCC (Cancer driver 

genes) (Table S3 Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(40, 152, 153) Forty-seven 

nonsynonymous SSNVs were identified in 28/191 cancer driver genes, which is significantly 

greater than expected by chance (p=5.2 x 10-5, Monte Carlo) (Table S4 Hedberg, Goh, Chiosea, 

et al., 2015 in press JCI).   

GISTIC2 analysis of SCNVs in the primary tumors of our cohort identified 8 

significantly amplified regions, including portions of 3q and 8q which were amplified in a 

majority of tumors in the TCGA HNSCC cohort, as well as 3q26.32 (q=4.95x10-6), 7p11.2 
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(q=2.62x10-3), 11q13.3 (q=1.14x10-3), which were also significantly amplified in the TCGA 

HNSCC cohort, and overlap well-known cancer driver genes PIK3CA, EGFR, and CCND1, 

respectively (Figure S2 Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(40, 149) We observed 

8 segments with significant recurrent somatic deletions, including portions of 3p and 8p which 

were lost in a majority of tumors in the TCGA HNSCC cohort, as well as 9p21.3 (q=0.15), 

which was also significantly deleted in the TCGA HNSCC cohort, and overlaps CDKN2A and 

CDKN2B (Figure S2 Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(40, 149) Overall, the 

genetic profiles of the index primary tumors in this cohort are similar to those reported in other 

WES studies of primary HNSCC.(39-41, 85, 86, 103-105)  

Index primary tumors from patients in the synchronous nodal metastasis group had a 

significantly greater mutational burden than those from patients in the metachronous recurrence 

group (125.9 ± 103.2 versus 36.0 ± 31.6 SSNVs, p=9.94 x 10-3, two-tailed T-test). Even after 

excluding PY-15 (413 SSNVs) as an outlier, there is a significant difference in number of 

SSNVs between the two groups (102.0 ± 59.2 versus 36.0 ± 31.6, p=4.21 x 10-3, two-tailed T-

test). Similarly, SCNV burden in the index primary tumors differed significantly, with a higher 

fraction of the genome in index primary tumors from the synchronous nodal metastasis group 

harboring SCNVs than those in the metachronous recurrence group (0.36 ± 0.13 versus 0.19 ± 

0.13, n=13 and n=9, p=0.017, Mann-Whitney) (Table S5 Hedberg, Goh, Chiosea, et al., 2015 in 

press JCI).  
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3.3.3 Genetic Profiles of Synchronous Nodal Metastases 

In the synchronous nodal metastasis group, we obtained high quality sequencing data from the 

matched PBMCs, primary tumor, and synchronous nodal metastases of 11 patients, allowing for 

the analysis of genetic concordance within matched tumor pairs in these patients (Figure 21A). 

The nodal metastases in these patients harbored 1,499 SSNVs in 1,310 genes (Figure 21A). 

Thirty-three nonsynonymous SSNVs in the metastases were found in 23/191 cancer driver genes, 

which is significantly greater than expected by chance (p=0.0013, Monte Carlo) (Table S6 

Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(40, 152, 153) In the primary tumors of these 

11 patients, 84.8% (979/1154) of nonsynonymous SSNVs, and 94.1% (32/34) of 

nonsynonymous SSNVs in cancer driver genes, were transmitted to the nodal metastases (not a 

significantly different rate of transmission, p=0.15, Fisher test) (Figure 21A). In the nodal 

metastases of these 11 patients, 13.9% (208/1499) of the SSNVs were identified as newly arisen, 

i.e. absent in the primary tumor (see methods), including one new mutation in a cancer driver 

gene, MLL4, in PY-15 (Figure 21A, and Table S6 Hedberg, Goh, Chiosea, et al., 2015 in press 

JCI). 

The PyClone algorithm was used to identify and quantify clonal populations in the 

primary and metastatic tumors.(150) In 10 of 11 patients, ≥80% of the SSNVs identified in the 

nodal metastases were transmitted from the primary tumor. In those 10 patients, PyClone 

analysis revealed that the majority of SSNVs were transmitted in a stable fashion, with the 

primary clone (containing >50% of SSNVs) being present at similar cellular prevalence in both 

the primary and metastatic tumors (Table S7 Hedberg, Goh, Chiosea, et al., 2015 in press JCI). 

In the 11th patient, PY-16, 44% of SSNVs were unique to the metastatic tumor (clusters 4 and 5 
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in Figure 21B), which had lost 25.2% of the SSNVs found in the primary tumor (cluster 1 in 

Figure 21B).   

 

Figure 21. Somatic SSNVs in HNSCC Tumors. 

(A) Top panel: Distribution of somatic SNVs (SSNVs) in each tumor pair; synchronous nodal metastases on the left, 

metachronous recurrences on the right. Lower panel: panels describing presence of SSNVs in select cancer driver 

genes in each tumor pair. SSNVs were identified as unique to primary tumor (dark blue), shared between paired 

tumors (cornflower blue), or unique to metastasis or recurrent tumor (gold). (B) Differences in subclonal 

architecture in the primary and synchronous nodal metastatic tumors from patient PY-16. 44% of SSNVs were 

private to the metastatic tumor (clusters 4 and 5) and 25% private to the primary tumor (cluster 1). (C) SSNVs in the 

samples from patient PY-8 are unique to the primary tumor (cluster 1) or the recurrent tumor (cluster 2), shared 

SSNVs (clusters 3 and 4) are germline. VAF: Variant Allele Frequency. Sequencing data for this figure was 
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generated in collaboration with Yale University as described in methods. The consensus interpretation and figure 

preparation represents a collaborative effort between myself and Dr. Goh, based upon our independent analyses of 

the sequencing results Dr. Goh applied the PyClone algorithm to our data.   

GISTIC2 analysis of SCNVs in the synchronous nodal metastases revealed 4 regions of 

significant focal amplification and 4 regions of significant focal deletion with copy number gains 

encompassing EGFR, and CCND1, and copy number losses encompassing CDKN2A and 

CDKN2B (Figure S3 Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(149) The copy number 

profiles between matched primary tumors and synchronous nodal metastases were not 

significantly different (fraction of genome harboring SCNVs 0.38 ± 0.14 versus 0.32 ± 0.14, 

n=11, p=0.48, Mann-Whitney, Table S5 and Figure 2A Hedberg, Goh, Chiosea, et al., 2015 in 

press JCI). Many of the significant SCNV peaks identified in the nodal metastases of these 

patients arose in the primary tumor; 3/4 regions of significant focal amplification identified in the 

nodal metastases were also significantly amplified in the primary tumors (3q26.32, 7p11.2, and 

11q13.3) (Figure 2B Hedberg, Goh, Chiosea, et al., 2015 in press JCI).  

Among these 11 patients, 60 genes harbored nonsynonymous mutations in 2 or more 

patients (Figure 21A). Three of those 60 genes: TP53, FAT1, and MLL2, are cancer driver genes. 

Two genes were newly mutated in the synchronous metastases of 2 patients: C17orf104, and 

ITPR3 (p=0.37, Monte Carlo) (Table 10). The precise function(s) of C17orf104 has not been 

described. Whereas ITPR3 encodes a calcium channel receptor that binds inositol 1,4,5-

trisphosphate, mediates intracellular calcium levels, and is important to exocrine functions that 

influence metabolism and growth.(154, 155) ITPR3 has been implicated in breast cancer 

proliferation, and elevated expression levels correlate with increased invasion, metastasis and 

decreased survival in colorectal cancer, and with dissemination of gastric cancers.(156-158)      
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Table 10. Genes that are Exclusively Mutated in Two Synchronous Nodal Metastases. 

AA: amino acid, Ref: # of reference sequence reads, Nonref: # of nonreference sequence reads, MAF: minor allele 

frequency (adjusted for estimated tumor purity). 

Ref Nonref MAF Ref Nonref MAF
PY-16 H846Y 217 0 0 176 56 0.241
PY-21 Q145* 234 0 0 215 34 0.137
PY-15 R149L 44 0 0 55 32 0.368
PY-16 R64H 164 0 0 137 31 0.185

Primary Metastasis

C17orf104

ITPR3

Gene Patient AA Change

3.3.4 Genetic Profiles of Metachronous Recurrent Tumors 

In the metachronous recurrence group, we obtained high quality sequencing data from the 

matched PBMCs, primary tumor, and metachronous recurrent tumors of 8 patients, allowing for 

the analysis of genetic concordance in matched tumor pairs from these patients (Figure 21A, and 

Table S2 Hedberg, Goh, Chiosea, et al., 2015 in press JCI). The metachronous recurrent tumors 

in these 8 patients harbored 457 SSNVs in 441 genes. Nine nonsynonymous SSNVs were found 

in 6/191 cancer driver genes, this number being significantly greater than expected by chance (p 

= 0.019, Monte Carlo) (Table S9 Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(40, 152, 

153) In the primary tumors from these 8 patients, 90.1% (274/304) of SSNVs overall, and 100%

(5/5) of SSNVs in cancer driver genes, were transmitted to the metachronous recurrent tumors 

(Figure 21A). In the metachronous recurrences of these 8 patients, 40.0% (183/457) of SSNVs 

were identified as newly arisen (Figure 21A). The copy number profiles between matched 

primary tumors and metachronous recurrent tumors were not significantly different (fraction of 
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genome harboring SCNVs 0.21 ± 0.13 versus 0.34 ± 0.12, p=0.05, n=8, Mann-Whitney, Table 

S5 and Figure 2C Hedberg, Goh, Chiosea, et al., 2015 in press JCI). GISTIC2 analysis of these 8 

primary tumor-metachronous recurrence pairs identified no regions of significant focal 

amplification or deletion in the primary tumors, whereas 4 and 6 regions of significant focal 

amplification and deletion were observed in the recurrent tumors, respectively, with copy 

number gains overlapping PIK3CA, NFIB, and CCND1, and copy number losses overlapping 

TATDN2, and FAT1 (Figure 2D and Figure S5 Hedberg, Goh, Chiosea, et al., 2015 in press 

JCI).(149)  

The PyClone algorithm was used to determine if the metachronous recurrent tumors were 

largely clonal, as was observed in the synchronous nodal metastases.(150) The total mutation 

load in the tumor pairs from patients PY-3, PY-6, PY-7 and PY-10 was too low (<30 SSNVs per 

pair) for analysis with this technique. In the metachronous recurrent tumors from patients PY-1, 

PY-5, and PY-11, ≥90% of the SSNVs identified were transmitted from the primary index tumor 

and present at similar cellular prevalence (Table S7 Hedberg, Goh, Chiosea, et al., 2015 in press 

JCI). In the metachronous recurrent tumor from patient PY-4, 60.2% of the SSNVs identified 

were transmitted from the primary index tumor, and the recurrence is composed of a set of 

SSNVs seeded from the primary tumor, present at high cellular prevalence (0.9-1.0), and set of 

SSNVs unique to the metachronous recurrent tumor (40%) present at a moderate cellular 

frequency (a subclonal population) (Figure S4 Hedberg, Goh, Chiosea, et al., 2015 in press JCI). 

In patient PY-8, the metachronous recurrent tumor is genetically distinct from the index primary 

tumor, with 110 and 26 SSNVs unique to the metachronous recurrent and index primary tumors 

respectively (clusters 1 and 2); only 3 SNVs, all of which were also detected at trace levels in the 

matched normal tissue, were shared between the two tumors (clusters 3 and 4), demonstrating 
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that this is a true second primary tumor (SPT) (Figure 21C). Also, newly arisen mutations were 

identified in 4 cancer driver genes of this SPT: KDM5C, POLQ, SF3B1, and TP53 (Table S8 

Hedberg, Goh, Chiosea, et al., 2015 in press JCI).  

Among the 8 patients with high quality sequencing data from all three tissue samples, 4 

genes: DDR2, OR7A5, SYNE1, and TP53 harbored nonsynonymous mutations in 2 or more 

patients.  DDR2 was the only gene with newly acquired mutations in the metachronous tumors of 

2 patients, PY-3 and PY-8 (Table 11, Figure 22 and Figure 23). DDR2 encodes the discoidin 

domain receptor 2, which is a collagen-stimulated receptor tyrosine kinase implicated in a wide 

range of processes including regulation of epithelial to mesenchymal transition (EMT), and 

osteogenic/chondrogenic differentiation.(159, 160) Although the functional mechanisms of 

DDR2 expression and/or mutation in disease are incompletely understood, it has been implicated 

in cellular adhesion, migration, invasion, and metastasis; in prostate cancer, breast cancer, and 

recently, HNSCC.(161-164) In total, DDR2 mutations were observed in 3 of the 19 patients 

whose tumor pairs had reliable WES data (Table 11). A DDR2(I724M) mutation was identified 

in both the index primary tumor and synchronous nodal metastasis of patient PY-22 (Table 11).  

 

Table 11. DDR2 is Exclusively Mutated in Two Metachronous HNSCC Recurrences. 

AA: amino acid, Ref: # of reference sequence reads, Nonref: # of nonreference sequence reads, MAF: minor allele 

frequency (adjusted for estimated tumor purity). 

Ref Nonref MAF Ref Nonref MAF
PY-3 p.R709* 77 0 0 91 16 0.15
PY-8 p.I474M 190 0 0 141 50 0.262

Ref Nonref MAF Ref Nonref MAF
DDR2 PY-22 p.I724M 104 74 0.42 111 50 0.31

Synchronous Nodal Metastasis

DDR2

Gene Patient AA Change Primary

Gene Patient AA Change Primary Metachronous Recurrence
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Figure 22. DDR2 Mutations in HNSCC. 

The genetic alterations in DDR2 identified in our cohort, and the previously reported, transcript-altering, DDR2 

mutations identified in other sequencing studies of primary HNSCC tumors are displayed. 2/9 (22.2%) 

metachronous recurrent tumors sequenced in this study had newly arisen DDR2 mutations vs. 12/658 (1.8%) newly 

diagnosed primary HNSCC tumors in other studies. aa: amino acid 

 

Patients PY-3 and PY-8 both developed metachronous recurrences within the field of 

radiation therapy following resection of their index primary tumors. DDR2(R709*) and 

DDR2(I474M) mutations were identified in their metachronous recurrent tumors, respectively, 

and appear to be newly arisen; as they were not identified in the paired index primary tumors 

from these patients. However, the depth of sequencing achieved in this study was not sufficient 

to rule out the possibility that these mutations were present in rare subclones in the primary 

tumors. The spectrum of DDR2 mutations in human HNSCC, including the new mutations 

reported here, is shown in figure 3.(39-41, 85, 86, 103-105) Figure 23 summarizes the clinical 

history of the two patients (PY-3 and PY-8) whose recurrent tumors were found to harbor new 

DDR2 mutations. Several DDR2 mutations, identified in squamous cell carcinoma of the lung, 

have been shown to be oncogenic, and/or confer high sensitivity to Src-family kinase (SFK) 



 91 

inhibitors both in vitro and in vivo.(151, 165)  DDR2 mutations in recurrent/metastatic HNSCC 

could have important clinical implications, as significant clinical response to the SFK inhibitor, 

dasatinib, has been reported in two patients with squamous cell carcinoma of the lung harboring 

DDR2(S768R) mutations.(151, 166)  

 

 

Figure 23. Disease Evolution in Patients with Newly Arisen DDR2 Mutations 

The clinical histories of patient PY-3 (A) and patient PY-8 (B) are shown. Index primary and metachronous 

recurrent tumors assessed via WES are outlined and presented with CT imaging of the respective tumors. 

Treatments between cancer events are illustrated on the timeline, and the time to recurrence between sequenced 

tumors is indicated in months. Below each timeline is the mutational burden of each sequenced tumor for PY-3 and 

PY-8, respectively. SSNVs are defined as germline/unknown (black), unique to index primary tumor (dark blue), 

shared between paired tumors (cornflower blue), or unique to metachronous recurrent tumor (gold). XRT: radiation 

therapy, CHEMO: chemotherapy 
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3.3.5 HNSCC Cell Lines with DDR2 Mutations are Sensitive to Dasatinib 

To investigate whether DDR2 mutations might serve as predictive biomarkers of dasatinib (a 

multi-kinase inhibitor with off-target activity against DDR2) sensitivity in HNSCC, we treated a 

panel of HNSCC cell lines with dasatinib. BICR 18 harbors an endogenous DDR2(D590G) 

mutation, whereas PE/CA-PJ34 (clone C12) is known to have WT DDR2, and UPCI 15B also 

has WT DDR2, by Sanger sequencing (data not shown).(101) By MTT assay, following 48 hours 

of dasatinib treatment, these three cell lines were found to have IC50 values of 5.608 x 10-8 (M), 

5.426 x 10-7 (M), and 2.211 x 10-6 (M), respectively (Figure 24A). In addition to its potent 

cytotoxic effect on BICR 18 cells at 48 hours, administration of dasatinib in the setting of 24 

hour matrigel invasion assays significantly inhibited the invasion of BICR 18 cells in a dose-

dependent fashion (Figure 24B&C). The sensitivity of BICR 18 cells to dasatinib was attenuated 

to a statistically significant degree in the setting of DDR2 knockdown, implicating DDR2 in the 

marked sensitivity of this mutant HNSCC cell line to dasatinib (Figure 25). Similarly, when the 

most dasatinib-resistant HNSCC cell line from our panel, UPCI 15B, was engineered to express 

the DDR2(R709*) mutation, identified in the metachronous recurrent tumor of patient PY-3, 

statistically significant sensitization to dasatinib treatment compared to EGFP control and WT 

DDR2 was observed (Figure 26). Taken together, these data suggest that DDR2 status may serve 

as a biomarker for response to SFK inhibitors in HNSCC.    
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Figure 24. HNSCC Cells with an Endogenous DDR2 Mutation are Sensitive to Dasatinib. 

(A) 6.5 x 103 BICR 18 (DDR2 mutant), PE/CA-PJ34, and UPCI 15B (both DDR2 WT) cells were plated in triplicate 

in a 48-well plate, treated with half-log doses of dasatinib from 10nM to 30μM for 48 hours, and assessed by MTT. 

Pooled data (Mean +/- SEM) from 3 replicate experiments is shown and demonstrates exquisite sensitivity to 

dasatinib in the case of BICR 18. PE/CA-PJ34 and UPCI 15B cells are one and two orders of magnitude less 

sensitive, respectively, to treatment with dasatinib. (B) 2.0 x 104 BICR 18 cells suspended in DMEM were placed in 

migration (uncoated) chambers or invasion (matrigel coated) chambers submerged in full media, and treated in 

duplicate with DMSO or in triplicate with the indicated doses of dasatinib for 24 hrs. Cells were counted and 

averaged from 4 photomicrographs (20x objective) of each membrane, and the invasion/migration ratios were 

calculated. Pooled data (Mean +/- SEM) from 3 replicate experiments is shown along with representative images of 

the membranes (C). The invasion of BICR 18 cells in matrigel invasion assays is inhibited by dasatinib in a dose-
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dependent manner. Growth curves and statistics (extra sum of the squares F-test and unpaired, two-tailed T test with 

Welch’s correction) are described in methods. 

Figure 25. DDR2 Knockdown in BICR 18 Modulates Sensitivity to Dasatinib. 

BICR 18 cells (HNSCC cells with an endogenous DDR2(D590G) mutation), were engineered with lenti-viruses to 

express one of two different anti-DDR2 shRNAs, or an anti-EGFP shRNA. (A) A representative immunoblot with 

densitometry normalized to β-tubulin from 8 unique subclones demonstrates the level of DDR2 knock-down that 

was achieved. Experiment repeated at least twice with similar results observed. (B) BICR 18 cells expressing anti-

DDR2 shRNA (121117) and anti-DDR2 shRNA (195105) were 1.6x and 2.6x less sensitive, respectively, to 

dasatinib treatment than BICR 18 cells expressing anti-EGFP shRNA. Pooled data from each of the 8 subclones 

pictured in part A (Mean +/- SEM) is presented in part B from at least 8 replicate experiments per group (2-

4/subclone). Cells of each subclone were plated in triplicate overnight in a 48-well plate (10 x 10
3
 cells/well) and 

treated with half-log doses of dasatinib ranging from 30nM to 3μM for 48 hours, and assessed by MTT. Growth 

curves and statistics described in methods. 
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Figure 26. DDR2 Enhances Dasatinib Sensitivity in the HNSCC Cell Line, UPCI 15B. 

UPCI 15B cells (HNSCC cells with WT DDR2 that was the most dasatinib resistant cell line in Figure 24A were 

engineered with retroviruses to express EGFP, WT DDR2, or one of the three mutant forms of DDR2 that were 

identified in our cohort. (A) A representative immunoblot demonstrates the expression of the DDR2 constructs, 

including a downshifted band corresponding to the truncation mutation R709*, in these engineered cells. 

Experiment repeated at least twice including independent subclones showing similar results. Lanes separated by 

black dividing lines were run on the same gel but were noncontiguous. (B) UPCI 15B cells expressing WT DDR2, 

DDR2(I474M), or DDR2(I724M) were ~1.5x more sensitive to dasatinib treatment than EGFP control cells; 

whereas cells expressing the DDR2(R709*) mutant construct were ~2.3x more sensitive to dasatinib than EGFP 

control cells, and ~1.6x more sensitive to dasatinib treatment than UPCI 15B cells engineered with WT DDR2 

constructs. Pooled data (Mean +/- SEM) is presented from 5 experiments composed of both technical and biologic 

replicates (2 and 3, respectively). Cells were plated in triplicate overnight in a 48-well plate (10 x 10
3
 cells/well) and 

treated with half-log doses of dasatinib ranging from 30nM to 3μM for 48 hours, and assessed by MTT. Growth 

curves and statistics described in methods. 
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3.4 DISCUSSION 

Whole exome sequencing of patient-matched tumor pairs from 23 individuals with HNSCC 

demonstrates the inter-tumor genetic heterogeneity of this cancer. To our knowledge, this is the 

first study in HNSCC to examine inter-tumor genetic heterogeneity in synchronous nodal 

metastases and metachronous recurrence across multiple patients, and provides a model to 

determine patterns of mutation and clonal evolution that may be targetable for the treatment of 

recurrent/metastatic disease.    

Primary tumors in our study averaged 67.6 nonsynonymous SSNVs per tumor, including 

mutations in tumor suppressor genes, oncogenes, and genes that have previously been found to 

be significantly mutated in HNSCC; such as AJUBA, CASP8, FAT1, FBXW7, NFE2L2, and 

TP53 (Table S4 Hedberg, Goh, Chiosea, et al., 2015 in press JCI). Interestingly, primary tumors 

were not found to harbor mutations in several tumor suppressor genes and oncogenes previously 

implicated in HNSCC including CCND1, PIK3CA, NOTCH1, PTEN, CDKN2A, HRAS, and 

EGFR. However, copy number alterations, consistent with previously published reports, were 

seen in several of these genes, and the overall genetic profiles of primary tumors in our study 

appear similar to those reported in other WES studies of primary HNSCC tumors (Figure S2 

Hedberg, Goh, Chiosea, et al., 2015 in press JCI).(39-41, 85, 86, 103-105)  

Approximately 86% (1290/1499) of the SSNVs identified in synchronous nodal 

metastases from 11 patient-matched tumor pairs were transmitted from their respective index 

primary tumors. This high degree of mutational similarity between primary tumors and 

synchronous nodal metastases in individual patients was also seen in the only other published 

sequencing report of patient-matched HNSCC tumors to date, in which whole genome 
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sequencing was performed on three regions of a primary HPV(+)HNSCC tumor, and two regions 

of a single synchronous cervical lymph node metastasis, from one patient.(167) In that study, 

Zhang et al used multiple samples of the same tumor to study intra-tumor genetic heterogeneity, 

and approximated the phylogenetic evolution and timeline of cancer development in that patient. 

They estimated that the clones making up the nodal metastasis evolved at a significantly later 

point in time than the clones of the index primary tumor.(167) We are unable to estimate the 

timeline of clonal evolution as our study design does not allow for the analysis of intra-tumor 

genetic heterogeneity. However, if metastatic potential is acquired in later stages of HNSCC 

progression, as posited by Zhang et al, then mutated genes identified in multiple nodal 

metastases, but not in the primary tumors, may confer metastatic ability. Newly arisen mutations 

in C17orf104, and ITPR3 were seen in the nodal metastases of two patients in the synchronous 

nodal metastases group, and represent plausible targets for investigation in future studies (Table 

10). Alternatively, if metastatic ability is developed early in HNSCC development, as is the 

commonly held clinical belief, then commonly transmitted mutations may confer metastatic 

ability. In 8/11 patient-matched tumor pairs in the synchronous metastasis group, fewer SSNVs 

were identified in the metastases than in their paired primary tumors, suggesting that clones 

developed the ability to metastasize and did so early on, while the primary tumor continued to 

evolve. These observations may be limited by differences in sample purity however, and future 

studies with multiple samples from each tumor and deeper sequencing must be performed to 

validate this finding.   

Approximately 60% (274/457) of the SSNVs identified in metachronous recurrences 

from 8 patient-matched tumor pairs were transmitted from their respective index primary tumors. 

This finding suggests a greater degree of inter-tumor genetic heterogeneity in the setting of 
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metachronous recurrence, versus synchronous nodal metastasis, in HNSCC. This was largely 

expected given that, compared to their matched index primary tumors, metachronous recurrent 

tumors sequenced in this study were malignancies that arose in different anatomical 

microenvironments, at later points in time, often following genotoxic therapy, including radiation 

and/or chemotherapy.  

The field cancerization theory suggests that there are numerous malignant and 

premalignant fields present in the mucosa of HNSCC patients.(168) This can lead to a high 

degree of inter-tumor genetic heterogeneity in the setting of recurrent disease, as metachronous 

tumors can be recurrences, which evolved from cells in the initial primary tumor that survived 

treatment, or they may arise from malignant clones that developed in a field unrelated to the 

initial cancer event, known as a “second primary,” or “second field” tumor (SPT).(10) To date, 

the differentiation of recurrence and SPT has been based on histologic appearance, anatomic 

location, and kinetics of tumor formation, with earlier events (<24 months) generally considered 

to represent recurrences. Molecular diagnostic studies using mutated TP53 and patterns of 

genetic changes as markers suggest that as many as 50% of recurrent HNSCC tumors that arise 

within 3 years of initial treatment and occur within 2 cm of the original index tumor location, 

may in fact be “second primary” tumors.(131) In patient PY-8, we conclusively demonstrate an 

instance in which the metachronous tumor represents a true SPT. The metachronous tumor was 

found to harbor newly arisen mutations in multiple cancer driving genes, and shared no SSNVs 

with the index primary tumor studied from that patient, apart from 3 SNVs of uncertain, 

potentially germline, origin. Identification of the unique mutational profiles in recurrences and 

SPTs will be vital to the rational design of personalized therapy that appropriately targets the 
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newly aberrant cellular processes contributing to the formation of metachronous head and neck 

tumors.  

Although this cohort is small, it is striking that 2/9 metachronous recurrent tumors, 

including one true SPT, harbored DDR2 mutations that were not identified in their matched 

primary tumors. Sequencing data, utilizing platforms sufficient for detection of DDR2 mutations, 

is available for at least 658 newly diagnosed primary HNSCC tumors to date, and only 12 have 

been found to harbor transcript-altering DDR2 mutations (Figure 22).(39-41, 85, 86, 103-105, 

167, 169) The HNSCC cell line BICR 18, which harbors an endogenous DDR2 mutation, 

HNSCC cells engineered to express the DDR2 mutations identified in metachronous recurrent 

HNSCC tumors, and DDR2 mutant tumors in two lung cancer case reports demonstrated 

increased sensitivity to dasatinib (Figure 24 and Figure 26).(151, 165) While the precise 

mechanism(s) underlying dasatinib sensitivity are beyond the scope of this report, the general 

mechanisms and consequences of discoidin domain receptor signaling in cancer are areas of 

ongoing research.(151, 163-165, 170) The DDR2(R709*) mutation identified in the 

metachronous recurrent tumor of patient PY-3, which conferred the greatest degree of 

sensitization to dasatinib in the present study, has also been reported in gastric and endometrial 

cancers. It is among the most common recurrent mutations, and is the only recurrent truncation 

mutation, identified in DDR2 across all cancers in the TCGA and COSMIC database.(90, 171-

173) Patient PY-3 is HPV-negative, had no history of smoking or significant alcohol use, and

had a low mutational burden, further implicating DDR2 as a potential driver in the metachronous 

recurrence. 

If validated in larger cohorts, our observation that DDR2 mutations may be enriched in 

metachronous recurrences, and may confer enhanced sensitivity to SFK inhibitors, has important 
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implications for the treatment of recurrent disease. Especially in light of the exceptional clinical 

response to dasatinib reported in two patients with lung squamous cell carcinoma harboring 

DDR2(S768R) mutations. As such, further mechanistic investigations to define the role of DDR2 

mutations as predictive biomarkers in HNSCC are warranted. While SFK inhibitors are FDA 

approved in several hematological malignancies, their role has not been defined in solid tumors, 

and is the subject of ongoing preclinical and clinical investigations.(174) A 12-patient, single-

arm, phase II study of dasatinib in unselected patients with recurrent/metastatic HNSCC failed to 

demonstrate significant activity, however the DDR2 status of patients’ tumors was 

unknown.(175) A biomarker-guided trial in which patients with DDR2 mutated tumors are 

selected to receive a SFK inhibitor has not been performed. A variety of sequencing platforms in 

common clinical use are capable of rapidly assessing the mutational status of DDR2 and other 

genes in HNSCC tumor samples.(176) The implementation of such techniques will be required 

to determine to what degree, if any, DDR2 mutations are enriched in metastatic/recurrent disease 

overall, and to correlate mutational status with treatment response and outcomes.  

Limitations of the present study include the relatively small sample size, the use of a 

cohort of convenience where adequate biologic material was available for sequencing, a lack of 

distant metastases, variations in tumor sample purity, and the assessment of a single sample per 

tumor; thereby precluding assessment of intra-tumor heterogeneity. While these findings will 

require validation in future, larger sequencing studies, this is the first mutational analysis of 

patient matched tumor pairs in the setting of synchronous nodal metastasis, and metachronous 

recurrence in HNSCC. The findings provide an opportunity to guide future investigations.  
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4.0  GENERAL SUMMARY DISCUSSION AND FUTURE DIRECTIONS 

HNSCC is characterized by phenotypic, etiological, biological and clinical heterogeneity 

resulting in a difficult to treat malignancy. The first two WES studies of HNSCC were published 

in 2011 and demonstrated a mutational landscape in which HNSCCs were found to harbor 

anywhere from 2, to as many as 527 nonsynonymous mutations per tumor (mean = 73 +/- 99). 

These mutations were largely found in a range of tumor suppressor genes and rarely, 

oncogenes.(39, 41) Both studies reported that HPV(+) tumors harbored fewer mutations than 

HPV(-) tumors, and identified novel, inactivating mutational patterns in NOTCH1, suggesting 

that it functions as a tumor suppressor in HNSCC.  

The studies differed with respect to whether or not the mutational spectrum in smoking-

associated cancers was enriched for G:C>T:A transversions, as has been reported in lung cancer. 

They reported markedly different rates of mutation in genes found to be commonly mutated in 

HNSCC (e.g. 47% vs 62% of tumors harboring TP53 mutations in each study, respectively). 

Neither report identified an oncogene that was mutated in more than 8% of patients, and Agrawal 

et al. remarked: “Our finding that HNSCCs have few directly targetable mutations … suggests 

that prevention, careful surveillance of patients at risk, and early detection are the optimal 

approaches for reducing morbidity and mortality from this disease.” The goal of identifying 

genetic alterations that can guide treatment in subsets of HNSCC patients was not realized by 
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these initial studies, and its fulfillment would represent a much-needed advance in HNSCC 

therapy. 

4.1 THE PI3K PATHWAY IN HNSCC 

 By analyzing WES data from an expanded cohort of 151 tumors, including the previously 

studied samples (39, 41), we interrogated several mitogenic pathways, and found the PI3K 

pathway, and PIK3CA, to be the most frequently mutated oncogenic pathway and oncogene in 

HNSCC (mutated in 30.5% and 12.6% of tumors in our cohort, respectively Figure 5). The 

frequency with which the PI3K pathway and PIK3CA are altered suggest that they are likely to 

be important contributors to the aberrant molecular biology underlying HNSCC. We found that 3 

HPV(+) tumors harbored no mutations in known cancer genes, except for mutations in PI3K 

genes, suggesting that PI3K pathway alterations may play an especially important role in 

HPV(+)HNSCC. We demonstrated that PIK3CA alterations including simulated amplification 

and/or hotspot and non-hotspot mutations can contribute to cancerous phenotypes including 

growth, survival, and invasion in HNSCC cell lines (Figure 8, Figure 12, and Figure 13). We 

showed that PI3K inhibitors were effective in preclinical models of HNSCC that we tested 

including endogenous cell lines and PDXs (Figure 16 and Figure 17). These data suggest that 

targeting the PI3K pathway may be a clinically feasible approach, and we conclude that the PI3K 

pathway represents a promising target for therapy in a substantial subset of HNSCC patients. 

Overall, we believe further investigation of targeted PI3K inhibition in HNSCC, and further 

investigation regarding the validity of PI3K alterations as predictive biomarkers of response to 
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targeted PI3K inhibition and/or combination therapy, is warranted in future preclinical and 

clinical studies.    

Many of our findings with regard to the PI3K pathway have since been validated by 

subsequent, larger, and more comprehensive studies; including most prominently the TCGA 

HNSCC project, which is the largest, multi-platform cohort-study of HNSCC to date.(40) These 

studies confirm that PIK3CA is the most commonly mutated and/or amplified oncogene in 

HNSCC (~37% overall), that mutation and amplification of PIK3CA is significantly enriched in 

HPV(+)HNSCC vs HPV(-)HNSCC (~56% vs ~34%, respectively), and that in total, 

approximately half of all patients have a somatic alteration somewhere in the pathway that may 

be activating.(18, 40) These cumulative findings, exemplified by a concluding statement in the 

abstract of the TCGA HNSCC report: “Therapeutic candidate alterations were identified in most 

HNSCCs.” represent a sharp departure from the observations of Agrawal et al.  

The impact of this work can be greatly expanded through future studies that are able to 

elucidate the signaling mechanisms of these various PIK3CA driver mutations in HNSCC 

preclinical models. To do this, we intend to engineer driver PIK3CA mutations into HNSCC cell 

lines using the newly developed CRISPR/Cas9 genetic engineering techniques, and assess them 

with the RPPA platform. The RPPA platform measures the expression and phosphorylation of 

more than 200 proteins composing most of the major mitogenic pathways that have been 

implicated in cancer. By assessing the parental and engineered cell lines, treated with BYL-719 

or vehicle control, we can determine the effect of each PIK3CA driver mutation and PI3K 

inhibition by BYL-719 on these pathways. Should any of the PIK3CA driver mutations be found 

to upregulate non-canonical signaling pathways that are not successfully targeted by PI3K 
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inhibitors, these experiments can guide us towards rationally designed combination therapies 

with other targeted inhibitors.   

Increasing amounts of preclinical data confirming and defining both the efficacy and 

limitations of PI3K inhibitors in HNSCC, has spurred great interest in what ultimately represents 

the future direction of this work; targeting this pathway in patients.(109, 114, 177-179) This 

future is being realized as at least 16 clinical trials evaluating PI3K inhibitors in HNSCC are now 

active across the country, including NCT02277197 and NCT02277184 at the University of 

Pittsburgh. Our studies, and their clinical extensions, represent an important step forward in the 

search for new HNSCC treatment options, and will continue to influence future research efforts. 

4.2 GENETICS OF METASTASIS AND RECURRENCE IN HNSCC 

WES studies in primary HNSCC are rapidly expanding our knowledge of the underlying disease 

biology and impacting the course of translational research. Recurrence and metastasis are the 

primary cause of the persistent cancer-associated mortality seen in HNSCC. Challenges inherent 

to the collection of multiple paired normal and tumor tissue samples of sufficient quantity and 

quality for whole exome sequencing from separate clinical time points throughout a patient’s 

course of treatment, represents a significant barrier to evaluating the mutations that arise in 

paired primary tumors, metastatic tumors, and/or recurrent tumors that develop in individual 

head and neck cancer patients. Only a small number of academic centers are equipped to 

assemble such cohorts. Leaving this critical area of HNSCC largely unstudied by these powerful 

methodologies, and the genetic alterations underlying these processes largely unknown.  
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In what is the first WES study of a cohort of patient-matched HNSCC tumor pairs in 13 

patients with synchronous lymph node metastases, and 10 patients who recurred, we have 

outlined the first compendium of somatic mutations in primary, metastatic and/or recurrent 

HNSCC. With ~86% vs ~60% of the mutations identified in synchronous nodal metastases or 

metachronous recurrent tumors respectively, found to be transmitted from their matched index 

primary tumors, we observed a higher degree of genetic concordance between paired index 

primary tumors and synchronous lymph node metastases than between paired index primary 

tumors and metachronous recurrent tumors. 

Additionally, the range of genetic concordance varies widely in the recurrent tumor pairs 

we assessed. In 3 pairs >90% of the mutations identified in each patient-matched tumor were 

shared, whereas 1 patient had a recurrent tumor that shared virtually no mutations with its paired 

index primary tumor (Figure 21). The evolution of such genetic differences is likely to underlie 

important changes in tumor biology and response to therapy throughout the course of treatment. 

Our cohorts are not large enough to identify genetic alterations with a prevalence high enough to 

suggest that they are likely contributors to metastasis or recurrence in large subsets of patients. 

But even in these small cohorts, we were able to identify some genes that appear to be newly 

mutated in the metastases or recurrences of multiple patients.  

One such example that may have implications for targeted therapy are the DDR2 

mutations that arose in the metachronous recurrences of two otherwise very dissimilar patients 

(Figure 23). DDR2 mutations have been shown to confer sensitivity to SFK inhibitors in other 

cancers. We similarly found evidence in endogenous and engineered HNSCC cell lines that 

DDR2 mutations may be predictive of enhanced sensitivity to treatment with dasatinib (Figure 

24, Figure 25, and Figure 26). The true translational potential of sequencing studies in the setting 
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of metastasis and recurrence can only be realized once a critical mass of data is obtained, as has 

begun to be achieved in primary disease. Should the prevalence of DDR2 mutations and/or 

activation truly be enriched in recurrent disease, further mechanistic study of the role it plays in 

this disease setting would be warranted. In UPCI15B cells engineered to express the various 

DDR2 mutations we identified in our sequencing study, we did not appreciate any reduction in 

the phosphorylation of downstream targets, primarily SHP2 (data not shown). However we have 

not yet performed the appropriate studies to determine whether or not the mutations we observed 

in DDR2 are truly activating, nor have we dissected their effect on, or requirement for, 

downstream effectors known to be a part of the DDR2 signaling cascade. It is conceivable that 

DDR2 signaling could play an important role in the setting of recurrent disease as its natural 

ligand is collagen, which is often enriched (primarily types I and III) in the cellular 

microenvironment of recurrent tumors that arise in the setting of radiation induced fibrosis. 

Although we found BICR18 cells to be invasive in transwell assays, the collagen component of 

matrigel is collagen IV, which has been shown to bind DDR1, but not DDR2.(180) Further, the 

timeframe for these experiments was only 24 hours; and DDR2 has been shown to take up to 24 

hours to achieve maximal phosphorylation.(170) Therefore, the experiments we have conducted 

may not have been conducted with the appropriate ligand(s) and/or timeframe(s) to appreciate 

specific mechanistic contributions made by DDR2, beyond the enhanced sensitivity to SFK 

inhibitors it seems to confer. Growth studies of HNSCC cells with WT and modified DDR2 in a 

variety of collagen-spiked matrices, coupled with phosphoproteomic analyses and RNAi screens, 

could help to identify the functional and molecular effects of DDR2 in preclinical models of 

HNSCC, and start to tease apart the required components of the signaling pathway. Ultimately 

tumorigenic studies could be conducted in vivo with HNSCC cells harboring WT or modified 
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DDR2 being seeded either in matrigel solutions +/- fibrillary collagen, or into a fibrotic field 

induced by pre-irradiation, to observe the effect of stimulated DDR2 on HNSCC tumor growth, 

invasion, and metastasis in vivo. First and foremost however, future directions of these studies 

will necessitate more sequencing in larger cohorts of patient-matched tumor pairs to validate our 

findings and any potential biomarkers in collaboration with other academic centers. In the near 

term future, we plan to assess the DDR2 mutational status of tumors from patients enrolled in 

NCT01488318, an ongoing phase II trial of dasatinib plus cetuximab in recurrent/metastatic 

HNSCC that is currently being conducted at the University of Pittsburgh. 

4.3 CONCLUDING REMARKS 

This dissertation, and my work as a graduate student, has focused on the application and analysis 

of WES in cohorts of HNSCC patient tumors, paired with functional analyses and treatment 

studies in preclinical models of HNSCC. With the goal of expanding our understanding of the 

important genomic changes that drive these tumors, and identifying promising targets for novel 

therapeutic approaches in HNSCC. I have led and contributed to studies, described in this 

dissertation, that have made significant progress towards this stated goal. 

By identifying PIK3CA as the most commonly mutated oncogene in HNSCC, 

demonstrating that it can contribute to cancerous phenotypes in HNSCC cell lines, and 

demonstrating efficacy of small molecule PI3K inhibitors in preclinical models of HNSCC. We 

have laid significant groundwork for continued mechanistic studies into this pathway, and for 

rapid translation of this preliminary data into the development and implementation of clinical 

trials.  
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By reporting the first landscape of exomic alterations in a cohort of metastatic/recurrent 

HNSCC, we have described important, novel genetic characteristics of these understudied and 

high risk disease states. By demonstrating that newly acquired genetic alterations, such as DDR2 

mutations, may result in new or enhanced sensitivity to targeted therapeutics in the setting of 

relapse, we offer an example after which future studies may be designed to monitor the evolution 

of disease in individual patients and one day modify therapy over time as guided by 

pharmacogenomics.  

The era of personalized molecular medicine in HNSCC is on the near horizon. It has been 

my distinct privilege to play a small role in its early development. Thank you for reading.  
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