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Urban regions with large areas of impervious cover generate high volumes of surface runoff 

during wet weather, overwhelming antiquated sewer infrastructure and causing overflow into 

receiving waters. Green infrastructure in urbanized areas commonly uses infiltration systems to 

convey surface runoff from impervious surfaces into surrounding soils, which helps mitigate the 

amount of stormwater entering sewer systems. However, the use of infiltration as a sustainable 

solution can be limited in regions with unsuitable environmental conditions that can lead to rapid 

degradation of infiltration systems. Two case studies conducted in Allegheny County, PA that 

look at the limits of infiltration from excessive stormwater loading and unfavorable soil water 

dynamics are presented. The first study used infiltration rates and precipitation data to model 

effective precipitation rates of various storm events over increasing levels of imperviousness in 

order to characterize local impervious cover thresholds. It was found that local soils are unable to 

effectively infiltration stormwater from a majority of storm events in regions with greater than 

60% imperviousness. These regions would be considered less suitable for the use of infiltration-

based green infrastructure and would likely require augmentation with other stormwater 

management strategies. The second study characterized subsurface soil water dynamics along 

two hillslopes sites where infiltration-based green infrastructure was installed. Prior to 

installation, soil moisture was monitored continuously at various depths, and the resulting 

records were then compared to precipitation data to quantify soil water responses to storm 
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events. Prevailing expectations of hillslope soil water dynamics assume well-drained profiles and 

top-down/horizontal wetting front following storm events, even for clay-rich soils like those 

found in Allegheny County. However, the study sites often underwent inverted wetting during 

storm events (bottom to top) and displayed relatively slower drainage rates throughout the soil 

profile, which led to uncharacteristically high soil moisture conditions. These detailed analyses 

show that unexpected patterns in soil water dynamics exist which could potentially degrade 

green infrastructure effectiveness. The findings from these two studies suggest that continuous 

pre-installation monitoring of hydrological conditions and characterization of region-specific 

impervious cover thresholds is essential to determine proper placement and design of infiltration-

based green infrastructure for optimum performance. 
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1.0  INTRODUCTION 
 

 

 

 

1.1 HYDROLOGICAL IMPACTS OF URBANIZATION 

 

 

 

Urban landscapes are characterized by the construction of impervious surfaces from buildings 

and transportation infrastructure that replaces natural, pervious land cover (Barbosa et al., 2012; 

Jacobson, 2011). These surfaces act as physical barriers preventing precipitation from infiltrating 

into underlying soils, which reduces subsurface flow and greatly enhances surface runoff during 

wet weather events (Moglen and Kim, 2007; Shuster et al., 2005). Because of this, small storm 

events in urban regions can generate volumes of runoff equivalent to a large storm event under 

natural conditions (Shuster et al., 2005). The development of proportionally larger expanses of 

impervious cover across urban catchments has been known to lead to dramatic changes in local 

hydrologic flow regimes since the late 1800’s, but research in the field didn’t become prominent 

until the 1960’s (Moglen and Kim, 2007). Early studies showing the hydrological implications of 

urbanization noted changes to surface water hydrographs (Leopold, 1968), increased flood 

events (Anderson, 1970; Hollis, 1975), morphological degradation of stream channels (Hammer, 

1972; Wolman, 1967), and stream ecological degradation (Klein, 1979). These changes are all 

the result of increased volumes of surface runoff that rapidly discharge to waterways during wet 

weather (Schueler, 1994). Increased surface runoff causes surface hydrographs to have increased 

storm responses (Rose and Peters, 2001), increased peak flow (Burns et al., 2005), and increased 
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flashiness, which describes how quickly flow volume changes during a storm event (McMahon 

et al., 2003). The sudden, flashy pulses of stormwater runoff in streams cause accelerated erosion 

of channel banks and destruction of aquatic habitats (Booth et al., 2002; Walsh et al., 2005). 

These effects are greatly amplified in regions with highly concentrated, contiguous impervious 

cover such as those in densely urbanized cities, commercial, and industrial zones (Burns et al., 

2005; Shuster et al., 2005), but even low levels of impervious cover (10-15%) have led to 

observable degradation of nearby streams (Klein, 1979). Because impervious cover is a primary 

driver of hydrological changes and is easily quantifiable, the estimation of total or percent 

impervious cover within watersheds is commonly used to characterize the impacts of 

urbanization on local waterways (Arnold and Gibbons, 1996; Schueler, 1994). 

 As urban regions continued to develop, there was a need for more rapid conveyance of 

surface runoff away from impervious surfaces in order to mitigate flooding (Leopold, 1968). The 

development of extensive sewer drainage systems, which are collectively referred to as ‘grey 

infrastructure’, allow for more efficient transport of stormwater away from source areas (Arnold 

Jr and Gibbons, 1996; Walsh et al., 2005) (Figure 1.1). Before the 1900’s, most cities 

constructed combined sewer systems that accepted both wastewater (domestic, commercial, and 

industrial) and stormwater into one piped network (EPA, 2004). The single stream of sewer and 

stormwater would be discharged into local waterways through outfall pipes before treatment 

plants were present (Figure 1.1a). However, the repeated delivery of waste into receiving waters 

had detrimental effects on water quality and caused outbreaks of water-borne diseases 

downstream of sewer inputs (EPA, 2004). This led to a shift towards separate sewer systems 

where wastewater and stormwater were each channeled into separate pipe networks (Figure 

1.1b). After the 1900’s, the wastewater in separate sewer systems was diverted to a waste 
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treatment facility, and stormwater overflows from pipe outfalls directly into receiving waters. 

The existing combined sewer systems were also connected to pipes flowing to treatment 

facilities, but still continue to overflow into local waterways during wet weather events when the 

facility or pipe capacity is exceeded (Figure 1.1a).  

 

 
 

Figure 1.1: Types of sewer systems. Combined (a) and separate (b) storm sewer systems 

function differently during wet and dry weather due to differences in design. Image courtesy of 

the US Environmental Protection Agency (2004). 

 

Combined sewer overflows (CSO’s), containing both wastewater and stormwater, deliver 

water-borne pathogens, organic pollutants, oxygen-depleting compounds, metals, and sediments 

directly into receiving waters, creating negative impacts on environmental and public health 

(Curriero et al., 2001; EPA, 2004; Field and Struzeski, 1972; Gasperi et al., 2010). Separate 
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storm sewers do not carry wastewater to local waterways, but storm sewer overflows (SSO’s) 

from these drainage systems can also cause significant impacts on water quality (EPA, 2004). 

Sediments and contaminants from urban land use and anthropogenic activities collect on 

impervious surfaces and are washed into storm sewers with runoff during wet weather events 

(Moglen and Kim, 2007; Schueler, 1994) and are discharged into local streams. CSO waters 

generally contain higher percentages of organics, nutrients and pathogens from waste 

contributions, whereas SSO waters contain higher percentages of metals from anthropogenic 

activities (Clark et al., 2007). An increased number of overflow events from both sewer systems 

is associated with increases in water quality issues for receiving waters (EPA, 2004). 

 There are a number of environmental factors that can lead to increases in the volume and 

number of overflow events from both combined and separate sewer systems. Large storm events 

resulting in high volumes of stormwater will overwhelm sewer systems and lead to overflow 

events (Roy and Shuster, 2009); however even small storm events can generate volumes of 

runoff large enough to overwhelm systems in regions with high percent impervious cover 

(Fletcher et al., 2013). Separate sewer systems are not designed to transport the large volumes of 

stormwater that combined systems can manage, so these sewers are subject to more numerous 

overflow events (EPA, 2004). Also, when combined and separate sewer systems reach capacity 

before waters have a chance to discharge at outfall pipes, wastewater and stormwater can back-

up into buildings and escape through utility access covers causing localized flooding (EPA, 

2004). Lastly, high levels of baseflow in sewers decrease pipe capacity, leading to more 

numerous outflow events during wet weather (Broadhead et al., 2013). Increased baseflow is  
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primarily caused by the burial of streams and springs into sewer systems during urban expansion 

(Barbosa et al., 2012; Broadhead et al., 2013) and by groundwater seepage into cracked sewer 

pipes (Fletcher et al., 2013).   

 As urbanization continues, the issues with current stormwater drainage systems will 

likely be amplified by increases in impervious cover (Semadeni-Davies et al., 2008) and the 

deterioration of aging infrastructure (Kaushal and Belt, 2012), leading to more overflow events 

and decreased quality of local waterways. 

 

 

1.2 STORMWATER ISSUES IN ALLEGHENY COUNTY, PA 

 

The City of Pittsburgh and its metropolitan area, located in Allegheny County, Pennsylvania, are 

serviced by both sanitary and combined sewer systems, many of which were constructed in the 

early 1900’s (Tarr, 2004). The city is located at the confluence of the Allegheny and 

Monongahela Rivers into the Ohio River, all of which are directly connected to local sewer 

systems through 258 combined sewer outfalls and 52 sanitary sewer outfalls, more than any 

other city in the United States (ALCOSAN, 2008; Tarr, 2004). Total overflow volumes from 

these outfalls have been estimated to discharge approximately 9.6 billion gallons of sewer 

overflow annually, with 8.3 million gallons being from combined sewers alone (ALCOSAN, 

2008). The primary contaminants from overflow events include fecal coliform bacteria, 

phosphorus, and suspended solids (ALCOSAN, 2008). The sewer systems are antiquated and 

suffer from structural degradation and enhanced baseflow from groundwater seepage and buried 

streams (Tarr, 2004). In 2008, local sewer authorities were issued consent decrees from state and 
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federal agencies requiring the improvement of existing conditions in order to comply with the 

Clean Water Act and PA Clean Streams Law (PWSA, 2013). In response, the local authorities 

created wet weather plans with goals to eliminate overflow events from sanitary sewers and 

significantly decrease events from combined sewers. Proposals suggest reaching the goals by 

building new infrastructure and detention facilities within the sewer network and increasing wet 

weather capacities at treatment facilities (ALCOSAN, 2008).  However, the installation of large 

storage structures takes up much-needed space in the urban landscape, and the construction and 

continuous maintenance of sewer infrastructure will be very costly (Kaushal and Belt, 2012; 

Mikkelsen et al., 1996). This is why the EPA and Pittsburgh Water and Sewer Authority 

(PWSA) have suggested that the City of Pittsburgh takes a combined approach towards better 

stormwater management by including improvements to grey infrastructure and the development 

of more natural, cost-effective green infrastructure into wet weather plans (PWSA, 2013). 

 

 

1.3 GREEN INFRASTRUCTURE 

 

With recent concerns about the sustainability of conventional grey infrastructure, efforts have 

turned towards implementing more natural stormwater management practices to help reduce 

surface runoff entering sewer systems and mitigate pollutant loads entering local waterways 

(Barbosa et al., 2012; Mikkelsen et al., 1996). These efforts can be accomplished through either 

non-structural (forest conservation, minimizing landscape disturbance, street cleaning) or 

structural means (Barbosa et al., 2012, PADEP, 2006). Structural stormwater management 

practices are collectively referred to as green infrastructure in this study, but they have also been 
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known as low-impact development (LID) strategies, structural best management practices 

(BMP’s), or water sensitive urban design (WSUD) (Burns et al., 2012; Roy and Shuster, 2009). 

The structures are designed to capture and retain surface runoff to control the timing and volume 

of stormwater reaching sewers and local waterways with the goal of reducing the volume and 

number of storm sewer overflows (Barbosa et al., 2012; EPA, 2004). Green infrastructure has 

proved to be a viable alternative to conventional sewer drainage systems and has been shown to 

improve downstream water quality, channel stability, and stream ecology (Fletcher et al., 2013; 

Loperfido et al., 2014; Roy and Shuster, 2009). The structures can also contribute to the 

mitigation of storm sewer overflow (Broadhead et al., 2013; Mikkelsen et al., 1996), and have 

considerable social and economic benefits over grey infrastructure (Barbosa et al., 2012; PWSA, 

2013). 

The earliest forms of green infrastructure used retention techniques to reduce peak flow 

by temporarily capturing stormwater in constructed dry basins and detention ponds, where it 

would be released slowly into waterways (Holman‐Dodds et al., 2003). These structures were 

typically centralized with a few large structures located at or near stream channels at the end of 

sewer networks (Loperfido et al., 2014; Williams and Wise, 2006). The suspended solids and 

pollutants in the stormwater have time to settle out at the bottom of the detention structure before 

the water is released into streams (Barbosa et al., 2012). However, this form of green 

infrastructure has only been effective in reducing storm sewer overflows for large storm events 

and thus has minimal impact on solving hydrological issues, so strategies have opted instead for 

the use of more distributed, infiltration-based green infrastructure for stormwater mitigation 

(Loperfido et al., 2014; Mikkelsen et al., 1996). 
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 Infiltration-based green infrastructure is installed close or next to impervious surfaces and 

is designed to capture surface runoff closer to the source to allow for the slow release of water 

into surrounding soils via infiltration. These systems can be distributed throughout a catchment 

in order to disconnect impervious surfaces from sewers and convey the surface runoff into 

surrounding soils instead (Holman‐Dodds et al., 2003). There are various types of infiltration-

based green infrastructure, each with different advantages, and include things such as infiltration 

trenches, vegetated swales, rain gardens, and pervious pavement (Figure 1.2). Each type is 

connected directly to adjacent impervious surfaces, and receives stormwater either concentrated 

through a dedicated inlet like in rain gardens and infiltration trenches, or distributed over its 

surface like with vegetated swales and pervious pavement. Infiltration trenches rely almost 

entirely on subsurface hydraulics to redistribute stormwater, but swales and rain gardens have the 

added benefits of evapotranspiration from vegetation to help redistribute water (Hamel et al., 

2013). Each structure type can have added storage in the form of gravel or aggregate beds, or can 

have underdrains and overflow pipes for excessive inputs.  The structure size and design is 

decided during the planning phase to estimate hydrologic needs (Hamel et al., 2013; PADEP, 

2006). 
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Figure 1.2: Types of infiltration-based green infrastructure: (a) infiltration trench, (b) vegetated 

swale, (c) rain garden, and (d) pervious pavement. Blue arrows represent flow paths of 

stormwater into the infiltration system. 
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The process of allowing stormwater to infiltrate into soils and connect with subsurface 

hydraulic processes more closely mimics natural conditions. Infiltration-based green 

infrastructure can help mitigate the negative impacts of traditional stormwater systems, 

especially for smaller and more numerous storm events where detention techniques have been 

ineffective (Loperfido et al., 2014). There is also an added benefit of pollutant removal through 

filtration of stormwater through the surrounding soils (Fletcher et al., 2013; Hamel et al., 2013).  

When properly implemented, the structures have been shown to decrease surface runoff, mitigate 

storm sewer overflows, and promote groundwater recharge (Dietz, 2007; Holman‐Dodds et al., 

2003; Mikkelsen et al., 1996).  

 

 

1.4 LIMITS OF INFILTRATION-BASED GREEN INFRASTRUCTURE 

 

Although infiltration technology has great potential for stormwater mitigation, the benefits and 

functionality of these systems are dependent on its design and environmental factors at the 

installation site. The climate, geology, hydrology, drainage area, and total impervious cover 

should all be considered before choosing to install infiltration-based green infrastructure 

(Barbosa et al., 2012; Gilroy and McCuen, 2009; Hamel et al., 2013). Infiltration devices cannot 

recover storage capabilities if stormwater cannot be infiltrated quickly; therefore, their 

functionality relies on efficient subsurface drainage of stormwater within adjacent soils (Shuster 

et al., 2007; Williams and Wise, 2006). Hydrologic failure occurs when infiltration is inhibited 

from low soil permeability or when soil water storage capacity is limited from shallow 

groundwater tables, high antecedent soil moisture conditions, or shallow depths to bedrock 
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(Bouwer, 2002; Hood et al., 2007; Shuster et al., 2007; Williams and Wise, 2006). In addition, 

conveying runoff volumes from large areas of impervious cover into pervious surfaces can be 

difficult when infiltration is low or there is little room to accept high water volumes (Holman‐

Dodds et al., 2003). The area of directly connected impervious surfaces has observable impacts 

on the amount of runoff mitigated by infiltration structures, with runoff reductions from 

infiltration being lowest in densely urbanized areas (Barbosa et al., 2012; Brander et al., 2005). 

These regions also have higher contaminant loads that can be washed into infiltration devices 

with stormwater and can potentially lead to groundwater contamination (Pitt et al., 1999; Weiss 

et al., 2008). Water directly fed into the subsurface, such as with infiltration trenches, bypasses 

the organic soil layer and root zone where most pollution filtration occurs, and poses a greater 

risk of groundwater contamination (Mikkelsen et al., 1996). Stormwater can also carry sediments 

and other suspended solids into infiltration devices which can decrease hydrologic function over 

time due to clogging (Fletcher et al., 2013; Le Coustumer et al., 2009; Reddi et al., 2000). Initial 

hydraulic conductivity of surrounding soils determines the rate of failure, with lower permeable 

soils decreasing the lifespan of infiltration-based green infrastructure (Le Coustumer et al., 2009; 

Warnaars et al., 1999). 

Without proper planning or adequate knowledge of local environmental factors, 

infiltration devices intended for mitigating stormwater runoff can ultimately experience 

premature hydrologic failure and decreased lifespans due to clogging and unfavorable 

hydrological conditions. Proper planning can aid in understanding the structure’s effect on 

subsurface flow and thus its long-term hydrological function, but little attention is given to this 

subject in current literature (Hamel et al., 2013). Planning and evaluation varies across 

catchments, and lack of knowledge and data gaps can make the design and implementation of 
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infiltration-based green infrastructure problematic, leading to poor decisions in stormwater 

management practices (Barbosa et al., 2012). In this document, we present two studies aimed at 

identifying the limits of infiltration-based green infrastructure in urban regions of the 

Appalachian plateau physiographic province with case studies in Allegheny County, 

Pennsylvania, using knowledge of impacts from impervious surfaces and local hydrological 

regimes. 
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2.0 STUDY 1: CHARACTERIZING IMPERVIOUS COVER 

THRESHOLDS 

2.1 BACKGROUND AND RESEARCH AIMS 

The wet weather plan for Allegheny County will implement infiltration-based green 

infrastructure throughout the region with the goal of reducing impervious surface runoff flows 

into combined sewer systems. The function of these structures will depend on design and 

environmental factors, such as soil physical properties and the area of impervious cover draining 

into the system (Hamel et al., 2013). When infiltration rates of adjacent soils are low or when the 

volume of water input is high, the structures will not be able to redistribute all stormwater inputs 

into the subsurface, and instead the pervious surface will just contribute to runoff generation 

(Hamel et al., 2013; Williams and Wise, 2006). This study uses percent impervious cover to 

estimate true values of water input rates during various storm events and evaluates the ability of 

soils in to infiltrate these inputs. Understanding these processes can aid decisions on green-

infrastructure placement in the county based on whether or not site conditions will negatively 

impact their hydrological function. In a case study of Allegheny County, this research looks to 

answer the following questions: (1) is there a limitation to infiltration in Allegheny County 

relative to increasing impervious cover, and, (2) what are the implications for green 

infrastructure built in threshold areas? 
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2.2 METHODS 

2.2.1 Regional Description 

Allegheny County is located in south-western Pennsylvania and has a humid continental climate, 

with an average annual temperature of 10°C and average annual rainfall of 96.5 centimeters. 

Winters are cold (2°C average temperature) and wet, and summers are warm (22°C average 

temperature) and slightly drier (NWS, 2013). The region is part of the Appalachian Plateau 

physiographic province. The surface rocks are primarily Pennsylvanian in age (approximately 

300-320 million years old), and are made up of nearly-horizontal, interbedded layers of shale, 

siltstone, sandstone, and limestone. Topographic relief varies considerably across the landscape 

which is composed of flat-topped ridges and steeply sloping valley walls (Wagner, 1970). The 

upland and hillslope soils are typically well-drained colluvial silt loams and silty-clay loams, 

categorized as Gilpin-Upshur complex soils. Valley areas contain poorly drained silt-loams with 

shallow water-tables (Newbury et al., 1981). The county lies entirely within the Ohio River 

drainage basin. Two of its largest rivers, the Allegheny and Monongahela Rivers, join to form 

the Ohio River at the center of the county in Pittsburgh, the county’s largest city and the second 

largest city in Pennsylvania (Barnes and Sevon, 1996).  

2.2.2 Soil Infiltration Rates 

The distribution of soil infiltration rates in Allegheny County was characterized by compiling 

field measurements, local measured values (Kirk, 2014), and information from the NRCS Soil 

Survey national database (Soil Survey Staff, 2014). Infiltration rates were measured using a 

double-ring infiltrometer (30.5cm outer ring, 15.25cm inner ring) within an urban park in 
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Pittsburgh, PA. Measurements were made along three transects spanning forest/open space 

boundaries to collect infiltration rates from lawns, forests, and forest edges. Protocols for 

measurement followed the “Methodology for Double-Ring Infiltrometer Field Test” as described 

in Appendix C of the Pennsylvania Stormwater Best Management Practices Manual (PADEP, 

2006). Infiltration rates are dynamic and change as a function of water input rates, slope of the 

landscape, and antecedent soil moisture content (Nassif and Wilson, 1975). Double-ring 

infiltrometers are designed to reduce effects of lateral flow caused by sloped soils and pore 

pressure from dry conditions while taking measurements. After hammering the infiltrometer 2 

inches into the soil, both rings were filled with tap water and allowed to infiltrate for 30 minutes 

to saturate the ground, refilling the rings when necessary. During this time, water in the outer 

ring flows through the soil both laterally and vertically and buffers the movement of water 

infiltrating from the inner ring. This means that any water permeating through the soil from the 

inner ring will be forced to move vertically, yielding measurements of infiltration rates that 

excludes lateral movement (Figure 2.1) (Dingman, 1994). 

 

 
 

Figure 2.1: Hydrologic function of a double-ring infiltrometer. Water infiltrating from the outer 

rings moves both laterally and vertically, but only vertical flow occurs in the inner ring where 

infiltration measurements are made from. 
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After this step, both rings were filled completely, and the drop in water level within the 

inner ring was recorded at 10 minute intervals (or 3 minute intervals for sites with faster 

infiltration), refilling when necessary to maintain a steady water input. As soils reach saturation, 

the infiltration rates reach a steady state. These steady state measurements were averaged to yield 

a final value for infiltration rate. This rate is representative of the soil infiltration capacity under 

saturated conditions (Dingman, 1994). Local reported values of infiltration rate were also 

measured using double-ring infiltrometer. 

 Infiltration rates of soils in Allegheny County were also compiled from the NRCS Soil 

Survey (Soil Survey Staff, 2014). Values of surficial saturated hydraulic conductivity (Ksat) were 

found for each soil group present in the county and used as a proxy for infiltration rates. The Ksat 

of surface soils is approximately equivalent to the infiltration capacity at saturation (Dingman, 

1994), which is the exact measurement yielded by field methods. Since Ksat values in the Soil 

Survey are given in a range for any given soil group, this range was averaged to yield a measure 

of infiltration rate. 

 

 

2.2.3 Plot Analysis of Impervious Cover 

 

The distribution of percent impervious cover across Allegheny County was measured using 

geospatial sampling. Four transects were drawn between downtown Pittsburgh and the county 

line in each cardinal direction. Each transect was split into 8-10 segments of equal length and 

points were randomly placed along these segments to provide a stratified random sample of 

locations along the urban to rural gradient (Figure 2.2).  
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Figure 2.2: Transect and analysis plot locations across Allegheny County. Each transect starts in 

downtown Pittsburgh and extends to the county border. Geospatial data was obtained from PA 

Spatial Database Access (PASDA, 2013). The thirty-eight plots are represented by the black 

points. 

 

 

A feature envelope was created based on a 100m buffer to generate 200m x 200m 

analysis plots for each sampling point. Impervious surfaces within the analysis windows were 

identified as streets, buildings, driveways, parking lots, and sidewalks (Allegheny County, 2006, 

2013a). Parking lots, sidewalks and driveways were digitized into polygon features using aerial 

orthoimagery with 1 ft. pixel resolution (Allegheny County, 2013b). All polygon features were 

merged and the combined area of these surfaces within each individual window was calculated to 

yield percent impervious cover (Figure 2.3). 
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Figure 2.3: Impervious cover characterization. The maps show aerial orthoimagery (left) and 

digitized polygons of impervious surfaces (right) within two example plots. Geospatial data was 

obtained from the PA Spatial Database Access (PASDA, 2013). 
 

 
2.2.4 Effective Precipitation Calculations 

 
Precipitation data was obtained from the National Weather Service’s Precipitation Frequency 

Data Server (PFDS) for Pittsburgh, PA. PFDS storm events were given as rainfall totals, but 

average rainfall rates were calculated by dividing these values by the duration of the storm.  

 For the purpose of this study, it was assumed that all precipitation falling on impervious 

surfaces would runoff completely into adjacent pervious surfaces. Therefore, these pervious 

surfaces are experiencing water inputs from an effectively larger storm event, and so the amount 

of rainfall falling on pervious surfaces plus any additional water from runoff is considered 

together as effective precipitation (Figure 2.4).  
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Figure 2.4: Water inputs to pervious surfaces. Effective precipitation changes with storm size 

and the percent impervious cover. 

 

 

The effective precipitation was calculated for each storm event for regions with varying 

percent impervious cover using the following equation: 

𝑃𝑒𝑓𝑓 = 𝑃 × (
1

1 − %𝐼𝐶
) 

where Peff is effective precipitation, P is the storm’s rainfall rate, and %IC is percent impervious 

cover. The resulting values were then compared to average infiltration rates to find impervious 

cover thresholds where effective precipitation rates would produce surface runoff.  

 

 

2.3 RESULTS 

 

 

2.3.1 Infiltration Rate Threshold 

 

Infiltration rates were compiled from national databases, local resources, and field measurements 

to create a distribution of infiltration rates for Allegheny County. The average infiltration rate 

was 1.05 mm/min with a standard deviation of 1.69 mm/min, and the median value was 0.55 
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mm/min (Figure 2.5). This large standard deviation is due to the log-normal distribution of the 

data, with a bulk of the data (>95%) occurring between 0.05 – 3.00 mm/min. A majority of these 

measures were from Soil Survey data. The large difference between median and average values 

of the data is caused by weighted influence of a small number of infiltration rate measurements 

that exceeded 3mm/min. Given this data, the average infiltration rate of 1.05 mm/min was used 

as a conservative threshold value for the results of effective precipitation (Peff) calculations, and 

all water input rates above this value were assumed to generate overland flow. 

 

 
 

Figure 2.5: Infiltration rate distribution. The graph above is a histogram showing the distribution 

of infiltration rates from across Allegheny County, with an average infiltration rate of 1.05 

mm/min. Data is compiled from national databases and from field measurements that were made 

in Pittsburgh, PA. The distribution is separated by data source. 

 

 

 

2.3.2 Impervious Cover Plot Analysis 

 

A total of thirty-eight plots were analyzed in ArcGIS for percent impervious cover over an urban 

to rural gradient, representing 0.08% of the total county area (Figure 2.2). The average percent 



21 

 

impervious cover within the analyzed plots was 27%, and the data curve is skewed to the left 

(Figure 2.6). This skew is caused by a bulk of the data (87%) occurring between 0 – 50% 

impervious cover. Only five plots contained > 50% impervious cover, and of these, four were 

within the Pittsburgh city boundary. The percentages with the highest frequency (0%, 15%, 25%, 

and 30%) were used in the calculation of effective precipitation for a range of local storm events. 

Higher percentages of impervious cover (50%, 75%, and 90%) were also chosen to represent 

urban areas. 

 

 
 

Figure 2.6: Percent impervious cover distribution from plot analysis. A majority of the plots 

contained less than 40% impervious cover. 

 

 

 

2.3.3 Effective Precipitation Analysis 

 

National Weather Service point precipitation frequency analyses for storm events in Pittsburgh, 

PA were obtained as a matrix containing total rainfall (in inches) for 1, 2, 5, 20, 25, 50, and 100-

year storms at various storm durations up to 24-hour storms. Rainfall rates were calculated to 

represent water input for each storm event in mm/min (Table 2.1). These rates represent the Peff 
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in regions with 0% impervious cover. These storm events were then modeled to determine the 

Peff in regions of 15%, 25%, 30%, 50%, 75%, and 90% impervious cover. 

Table 2.1: Precipitation data for Pittsburgh, PA obtained from NWS PFDS. The data shows 

average rainfall rates in millimeters per minutes (mm/min). The highlighted storms are those that 

exceed a rainfall rate of 1.055 mm/min, and represent the storms above the 0% impervious cover 

contour line in Figure 2.7. 

Storm Reoccurrence Interval (years) 

1 2 5 10 25 50 100 

St
o

rm
 D

u
ra

ti
o

n
 (

m
in

u
te

s)
 

5 1.63 1.93 2.34 2.64 3.00 3.30 3.61 

10 1.24 1.50 1.80 2.03 2.31 2.51 2.72 

15 1.02 1.22 1.47 1.66 1.90 2.08 2.25 

30 0.67 0.81 1.01 1.15 1.34 1.48 1.63 

60 0.41 0.50 0.63 0.73 0.87 0.98 1.08 

120 0.23 0.29 0.36 0.42 0.50 0.56 0.63 

180 0.17 0.20 0.25 0.29 0.35 0.40 0.44 

360 0.10 0.12 0.15 0.17 0.21 0.23 0.26 

720 0.06 0.07 0.09 0.10 0.12 0.14 0.15 

1440 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

Contour graphs of rainfall rate were generated using the R program package for each 

impervious cover condition and the threshold value of 1.05 mm/min (R Core Team, 2013). The 

contours for each impervious cover condition were then combined into a single plot to show the 

number of storms that exceed threshold values for each condition (Figure 2.7). Each line 

represents an effective precipitation rate of 1.05 mm/min and varying impervious cover. Areas 

above the contours represent storms that would lead to runoff generation (Table 2.1). As 

visualized in Table 2.1, this means that only 25 of the 70 storms analyzed occurred above the 

1.05 mm/min contour. The contour plot shows regions with 0% impervious cover can fully 

infiltrate a majority of analyzed storm events, typically those with storm durations greater than 

30 minutes. In general, Peff is relatively insensitive to changes in impervious cover from 0-50%. 
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Regions with more than 50% impervious cover are less capable of infiltrating rainfall effectively 

from a majority of storm events, even those with a higher duration; however these areas make up 

a small proportion of the county (only ~13% of sampled areas). The infiltration rate must 

increase geometrically in relation to the increasing area of impervious surfaces. The average soil 

infiltration rate would have to increase four-fold (to 4.22 mm/min) in order to fully infiltrate a 

rainfall rate equivalent to the threshold value of 1.05 mm/min (approximately the rate of a 1-yr, 

15-min storm) in a region with 75% impervious cover (Table 2.2). 
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Figure 2.7: Contour graph of infiltration thresholds (Peff = 1.05 mm/min) at varying modelled 

percent impervious cover. Storm events that lie above an individual contour line are those that 

would generate runoff in that model. The contour line for 0% impervious cover marks the 

boundary that is displayed in Table 2.1. 
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Table 2.2: Percent increase of infiltration rates. This table shows an analysis of percent increase 

in infiltration rates required to completely infiltrate a 1.05 mm/min storm as the area of 

impervious cover increases. 

 

Percent  
Impervious 

Cover 

Required 

Infiltration Rate 

(mm/min) 

Percent Increase in 

Infiltration Rate 

0% 1.05 0% 

15% 1.24 18% 

25% 1.40 33% 

30% 1.58 50% 

50% 2.11 100% 

75% 4.22 300% 

90% 10.55 900% 

 

 

 

Each storm event characterized by NWS’s frequency analysis has an impervious cover 

threshold above which local soils will not be able to infiltrate the effective precipitation, thus 

generating runoff. Typically, the volume of stormwater captured by green infrastructure in 

Pennsylvania is calculated using the rainfall amount of a 2-year, 24-hour storm (PADEP, 2006). 

In Pittsburgh, PA, a 2-year, 24-hour storm has a rainfall rate of 0.04 mm/min. This storm, plus a 

number of smaller, more frequent storms were modelled to show Peff at increasing values of 

percent impervious cover to identify the threshold over which local infiltration rates would be 

exceeded (Figure 2.8). Results show that threshold values are exceeded for a 1-yr, 30-min storm 

at 37% impervious cover; 1-yr, 1-hr storm at 60%; 1-yr, 2-hr storm at 78%; 1-yr, 6-hr storm at 

90%; and 2-yr, 24-hr storm at 96%. The 1-yr, 1-hr storm was used as a standard for geospatial 

analysis of threshold regions (>60% impervious cover) across Allegheny County. 
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Figure 2.8: Effective precipitation models. The graphs show changes in effective precipitation 

for various storm events at increasing percentages of impervious cover. Greyed areas and dotted 

lines represent where the infiltration threshold of 1.05 mm/min was exceeded for each storm. 

 

 

 

2.3.4 National Land Cover Data Analysis 

The results from the GIS plot analysis were compared to coarser analyses, for example, data 

from the USGS National Land Cover Database (NLCD) (USGS, 2014) in order to assess the 

validity of using the NLCD data to determine areas with >60% impervious area. The 

imperviousness estimates of the two different methods were compared by averaging NLCD 

imperviousness measures within each of the thirty-eight plots and comparing the results to the 

measures found through the geospatial plot analysis.  
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In addition the distribution of plot analysis impervious cover was compared with 

impervious cover distributions for all of Allegheny County. This was done by finding the percent 

of regions that exceeded a certain percent impervious cover value for both methods and 

correlating the results (Table 2.3). The plot analysis correlated well with NLCD data for percent 

impervious cover values of 35-100%, but underestimates the number of regions with impervious 

cover values < 35%. Approximately 10.5% of the plots examined in the GIS impervious cover 

analysis had >60% impervious cover. This closely agrees with NLCD data which approximates 

that 10.6% of regions within Allegheny County are covered by >60% impervious cover (Table 

2.3). According to the NLCD, areas containing >60% impervious cover typically lie along the 

river edges and within the city of Pittsburgh (Figure 2.9). Approximately 35% of the areas within 

the City of Pittsburgh contain >60% impervious cover. 
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Table 2.3: Distribution comparisons. The table below displays cumulative distribution of 

impervious cover as found by the Plot Analysis and National Land Cover Data. 

 

  National Land Cover Data Plot Analysis 

X % 
Impervious 

Cover 

Number of 900m2 

Areas with  X % 
Impervious Cover 

Percent of  900m2 

Areas with  X % 
Impervious Cover 

Number of 
40,000m2  Areas 

with  X % 
Impervious Cover 

Percent of  
40,000m2 Areas 

with  X % 
Impervious Cover 

95 29989 1.40 % 1 2.63 % 

90 54016 2.52 % 2 5.26 % 

85 76968 3.59 % 2 5.26 % 

80 101140 4.72 % 3 7.89 % 

75 127416 5.95 % 3 7.89 % 

70 156689 7.32 % 3 7.89 % 

65 189712 8.86 % 3 7.89 % 

60 227187 10.61 % 4 10.53 % 

55 269709 12.60 % 5 13.16 % 

50 321096 15.00 % 5 13.16 % 

45 380134 17.75 % 6 15.79 % 

40 442128 20.65 % 8 21.05 % 

35 502747 23.48 % 8 21.05 % 

30 560527 26.18 % 12 31.58 % 

25 618679 28.89 % 17 44.74 % 

20 681540 31.83 % 22 57.89 % 

15 749984 35.03 % 23 60.53 % 

10 823656 38.47 % 29 76.32 % 

5 926106 43.25 % 32 84.21 % 

0 2141207 100.00 % 38 100.00 % 
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Figure 2.9: Regions in Allegheny County with >60% impervious cover. The geospatial data 

displayed is from the NLCD 2011 Percent Developed Imperviousness (USGS, 2014). 
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2.4 DISCUSSION 

There is a limit to the infiltration of stormwater when effective precipitation (Peff) rates from 

impervious cover exceed local soil infiltration capacities (see Section 1.4). In a case study of 

Allegheny County, PA, the Peff  rate of a 1-year 1-hour storm exceeded average infiltration 

capacities in regions with >60% percent impervious cover. Identifying site-specific thresholds 

could be useful in determining regions where high areas of impervious cover could contribute to 

decreased functionality of infiltration-based green infrastructure. 

2.4.1 Infiltration Thresholds 

In this study, a threshold-model was used to evaluate changes in Peff rates at increasing areas of 

impervious cover and comparing these to averaged soil infiltration capacities across Allegheny 

County, PA. The average soil infiltration capacity of 1.05 mm/min was compiled from field 

measurements, local sources, and national databases, and was used as the threshold value. This 

was much greater than the median value of 0.55 mm/min because of the weight of a few high 

infiltration rate values, so this value may be conservative given the data That is, the average is an 

overestimate, with the pull of a relatively small percentage of high infiltration rates greatly 

skewing the mean. The higher values of infiltration capacity in the distribution were all from 

field measurements using the double-ring infiltrometer, and this method has been shown to yield 

higher values of infiltration if regions of preferential flow are created while driving the ring into 

the soil (Le Coustumer et al., 2009). It is also possible that the average value could be an 

underestimate, given most of the data below the average was from the Soil Survey national 

database. Soils are variable across landscapes and standardizing may not be representative of 
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individual catchments (Holman‐Dodds et al., 2003). When evaluating the accuracy of using 

published values of surficial Ksat as proxies for true values of infiltration rates, Arrington (2013) 

found that values obtained from SSURGO data did not correlate well with measured data for that 

area due to coarseness of soil units. However, the study was very site specific and the database 

can still be more effective than other published datasets for large scale studies because of 

considerations to macropores and topography in Ksat calculations (Arrington et al., 2013).  

 

2.4.2 Impervious Cover Analysis and Comparisons 

In general, the plot analysis method of determining percent impervious cover was similar to 

NLCD estimates (Figure 2.10). The NLCD data did slightly underestimate regions with 

impervious cover >80%. This discrepancy is most likely due to the fact that coarse, data 

generated from remotely sensed reflectance cannot discern regions of impervious cover from 

pervious cover as effectively because of the uncertainties in unmixing reflectance. Therefore, the 

plot analysis method is a better predictor of impervious cover in densely urban areas than the 

NLCD. 
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Figure 2.10: Impervious cover prediction comparison of NLCD vs. plot analysis. Red circles 

represent percent impervious cover for each of the thirty-eight GIS plots accompanied by a best-

fit trendline (red). Black dotted-line represents a 1:1 correlation. 

 

 

 

 When considering impervious cover distributions, the imperviousness was used to 

classify regions as being urban, suburban, or rural. The EPA classifies urban areas (industrial, 

commercial and high-density residential) as regions with > 50% impervious cover, suburban 

areas (moderate-low density residential) as regions with 20-40% impervious cover, and rural 

areas with < 20% (EPA, 2011). The distribution of percent impervious cover generated from the 

plot analysis showed a majority of plots containing 0 – 40% impervious cover, which are 

considered rural or suburban, and only five contained >50% and are considered urban. The 

analysis did not yield the same distribution of percent impervious cover found by plotting NLCD 

(Figure 2.11), and this likely was due to a lack of representation of low suburban and rural areas 

in the transect plots. Distributions of high suburban regions and urban regions from the analysis 
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were similar to that found from NLCD. A larger, more distributed sampling of regions across the 

county would most likely lead to a more accurate representation of impervious cover distribution 

for future analyses. 

 

 
 

Figure 2.11: A correlation of percent impervious cover distribution of the plot analysis (y-axis) 

versus NLCD data (x-axis). Each point represents a value of percent impervious cover (ranging 

from 5%-95%), and the correlation compared the percent of regions from each analysis that 

contained greater than or equal to the given value of percent impervious cover. The proportion of 

suburban and rural areas was underestimated by the plot analysis. 
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2.4.3 Effective Precipitation and Implications for Green Infrastructure 

The rainfall amounts obtained from point frequency data were converted into rainfall rates to 

make the values comparable to the average infiltration rate; if this value were exceeded it was 

assumed that that storm would produce runoff. Storms with shorter durations and longer 

reoccurrence intervals produced the highest rainfall rates (Table 2.1). Effective precipitation 

rates on pervious surfaces were calculated for each storm event with varying percent impervious 

cover. According to the model, increases in effective precipitation above base rainfall values are 

greatly enhanced in regions with >50% impervious cover (Figure 2.7), which are considered to 

be urban regions. Impervious cover threshold values varied by storm event, with smaller storms 

(higher initial rainfall rates) exceeding local infiltration rates at lower percentages of impervious 

cover (Figure 2.8). This means that, despite the fact that these storms produce lower volumes of 

total rainfall, the higher relative rainfall rates make Peff more sensitive to increases in impervious 

cover. 

Previous studies have shown the importance of modelling smaller, more-frequent storms 

in rainfall-runoff models in order to determine infiltration abilities of pervious areas 

(Damodaram et al., 2010; Holman‐Dodds et al., 2003). An analysis of rainfall events in 

Pittsburgh shows that 95% of events are relatively small storms that produce 1 inch or less of 

total rainfall (Meliora, 2011), and because of this, most infiltration structures are designed to 

capture 1-inch of runoff (PADEP, 2006). Since a 1-year, 1-hour storm produces approximately 1 

inch of rain and is a more frequent event, it was used as a standard around which to model local 

impervious cover thresholds, as opposed to the more commonly used 2-year, 24-hour storm. The 

1-year, 1-hour storm exceeded local infiltration rates at an impervious cover threshold of 60%, 

which means that local soils would not be able to effectively infiltrate the volume of stormwater 
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generated in regions with greater than 60% impervious cover. However, only a small percent of 

regions within Allegheny County contain greater than 60% impervious cover, and these regions 

were predominantly located in the City of Pittsburgh and along the riverfronts. In fact, when 

analyzing distribution of percent impervious cover just within Pittsburgh, it was found that more 

than one-third of the city was covered by greater than 60% impervious cover. This can prove to 

be problematic for implementing infiltration-based green infrastructure in Pittsburgh; the city is a 

primary target for this type of stormwater management because its watersheds drain into CSO 

systems (ALCOSAN, 2008). This means that pervious surfaces for one-third of the city would be 

unsuitable for completely infiltrating the runoff load from adjacent pervious surfaces. 

A few localized regulations suggest maximum loading ratios for the design of infiltration-

based green infrastructure. This ratio is the measure of the maximum area of impervious surfaces 

that can drain into the infiltration area (PADEP, 2006). In Pennsylvania, a 5:1 maximum loading 

ratio is suggested, which equates to an infiltration system draining a region with 83% impervious 

cover. This is a standard used across the entire state, but may not reflect the requirements for 

individual watersheds. The maximum loading ratio should be adjusted to account for local limits 

to infiltration. The thresholds developed here can serve to adjust maximum loading ratios to 

more appropriate values for the site under evaluation. The standard ratio may be acceptable when 

designing the system to manage a 2-year, 24-hour storm, because rainfall rates would not exceed 

local infiltration rates until percent impervious cover equaled 96% (Figure 2.8). However, 

smaller, more frequent storm events with higher rainfall rates must be considered in the design, 

and using a 1-year, 1-hour storm would mean that maximum loading ratios for Allegheny 

County would have to be adjusted to no greater than 60% impervious. Other studies have noted 

the importance of adjusting conventional design standards in order to evaluate the sustainability 
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of infiltration-based green infrastructure within individual watersheds (Damodaram et al., 2010; 

Fletcher et al., 2013). Though these systems are best at capturing runoff from the smaller, more 

frequent storms (Brander et al., 2005; Holman‐Dodds et al., 2003), these small storms have the 

potential of acting like larger storms due to effective precipitation from large areas of impervious 

cover in densely urbanized regions. For Pittsburgh, this would mean that infiltration systems may 

not be effective in areas with greater than 60% impervious cover. 

Treating high percent impervious cover regions with infiltration systems is effective for run-

off reduction to sewers and streams because these regions generate the largest volumes of surface 

runoff (Perez-Pedini et al., 2005). This is best done in regions with high infiltration rate soils and 

with many distributed systems throughout the catchment (Brander et al., 2005; Williams and 

Wise, 2006), but infiltration systems in urban Pittsburgh will be more isolated due to lack of 

available space and will be built in lower infiltration rate soils. These structures are designed to 

capture and store the first 1 inch of precipitation from all adjoining surfaces by increasing the 

structure dimensions (Gilroy and McCuen, 2009); however, by connecting any infiltration-based 

green infrastructure to large areas of impervious cover, it would act like a soil pipe conveying 

large concentrations of pollutants directly into the subsurface (Figure 2.12). The concentration of 

pollutants being carried in stormwater increases with increasing total impervious cover (Arnold  

and Gibbons, 1996; Glick, 2009), so infiltration systems installed in densely urbanized areas 

would experience rapid degradation through decreased permeability due to clogging through 

(Dechesne et al., 2005; Pitt et al., 1999; Reddi et al., 2000). When the risk of clogging is high or 

the hydraulic conductivity of the surrounding soils is low, designers can over compensate by 

artificially increasing conductivity within the systems. However, this has been shown to 

ultimately enhance clogging rates (Le Coustumer et al., 2009) and decrease filtration effects, 
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allowing contaminants to escape into local soils and groundwater reservoirs (Mikkelsen et al., 

1996; Weiss et al., 2008). Infiltration systems installed in areas of Pittsburgh with >60% 

impervious cover run the risk of being rapidly degraded from sediment inputs and conveying 

contaminants to local groundwater reservoirs. 

 

 
 

Figure 2.12: Stormwater soil pipe. In filtration systems in regions with high percent impervious 

cover can convey large volumes of contaminated stormwater directly to groundwater. 

 

 

 

Despite limitations to infiltration-based infrastructure in densely urbanized areas, the 

benefits of runoff reduction cannot be ignored, and preliminary, site specific analyses must be 

made first to decide the best approach to minimize risks of structural failure (Barbosa et al., 

2012). Infiltration systems can be distributed throughout suburban catchments where percent 

impervious cover is lower, but runoff still can have significant environmental impacts (Loperfido 

et al., 2014). Though densely urbanized areas of Pittsburgh have significant runoff production 

and contribute most to combined sewer overflow events (ALCOSAN, 2008), these structures 

might provide more challenges than benefits if installed within these regions. Infiltration systems 

can be augmented with other stormwater management practices in regions with high areas of 
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impervious cover to yield more sustainable results (Gilroy and McCuen, 2009). In fact, the best 

reduction of stormwater runoff came from using combinations of structures to detain and 

infiltrate stormwater from a wide range of storm events (Burns et al., 2012; Fletcher et al., 2013; 

Williams and Wise, 2006). The identification of impervious cover thresholds can be used to 

adjust design standards to better reflect local limits to infiltration, and can be used to help 

identify sections of urban areas that require augmentation of infiltration-based systems with 

additional stormwater management strategies. 
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3.0 STUDY 2: HILLSLOPE SOIL WATER DYNAMICS 

 

 

3.1 BACKGROUND AND RESEARCH AIMS 

 

Local organizations plan on installing infiltration-based green infrastructure in an urban park in 

Pittsburgh, PA, as part of the city’s wet weather plan. The functionality of these structures will 

greatly depend on soil physical properties and subsurface soil water dynamics at the sites 

(Bouwer, 2002; Hamel et al., 2013), and each requires detailed site evaluations and modelling of 

local hydrological regimes before installation (Fletcher et al., 2013; Hamel et al., 2013). 

However, the tests commonly utilized for evaluation are spatially and temporally limited and 

may not give an accurate representation of site adequacy for infiltration-based green 

infrastructure (Bronstert and Bardossy, 1999; Göbel et al., 2004; Shuster et al., 2007). This study 

evaluates an alternative pre-monitoring technique that analyses the continuous, in-situ 

measurements of soil moisture to characterize hydrological regimes at the two sites in the urban 

park where infiltration-based green infrastructure will be installed. The objectives are to: (1) 

characterize subsurface soil water dynamics at the two sites (2) determine the implications for 

green infrastructure at these sites given the current hydrologic regimes, and (3) compare the 

efficacy of continuous spatial and temporal monitoring against more commonly used evaluation 

tools.  
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3.2 METHODS 

 

3.2.1 Site Description 

The study was conducted in south-western Pennsylvania in the Appalachian Plateau 

physiographic province. The local geology consists of nearly horizontal, repeated layers of 

interbedded of shale, siltstone, sandstone, and limestone (Wagner, 1970). The hills and valleys of 

the plateau region were generated by erosion from local streams and rivers, creating flat ridge-

tops with steeply sloping valley walls that can be up to 100-150m tall (Wagner, 1970). Soils in 

this region are part of the Gilpin-Upshur-Atkins soil association according to NRCS Soil 

Surveys, and are characterized as being moderate- to very deep, well-drained colluvial silty-clay 

soils predominately derived from shale (Newbury et al., 1981). 

Uplift and erosion of the landscape has caused horizontal and vertical stress-relief 

fracturing in both the valleys and hillsides in the Appalachian Plateau region (Figure 3.1). 

Groundwater flow along hillslopes is primarily downslope through subsurface soil processes and 

vertically into the bedrock through the fractures (Seaber et al., 1988). The vertical fractures along 

valley walls produce preferential flow paths for bedrock water downhill to the valleys (Seaber et 

al., 1988). Pressure from overlying rock layers causes fractures to close at greater depths in the 

valley, decreasing bedrock permeability and pushing water out into colluvial soils through 

springs or seeps in the hillsides (Harlow and LeCain, 1993). Springs and seeps can also develop 

from perched aquifers on the hillsides where impermeable soil or bedrock layers limit vertical 

flow (Kozar et al., 2012). 
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Figure 3.1: Bedrock and soil water flow along Appalachian Plateau hillslopes. Soil water 

flows laterally downslope and vertically into bedrock fractures. Bedrock water flows 

downslope through vertical fractures and out into colluvial soils when bedrock permeability is 

low. (Modified from Sheetz & Kozar, 2000). 

 

 

 

The two study sites are located within Schenley Park in Pittsburgh, PA. The park is 

within the 4-Mile Run watershed, and contains the western half of the Panther Hollow subbasin 

(Figure 3.2). A majority of the streams in the watershed were redirected into the local combined 

sewer system during a phase of rapid urbanization in the watershed in the early 1900’s (Hopkins 

et al., 2014). The combined sewer system, which is now more than one-hundred years old and 

beyond its design lifetime, accepts much of the catchment drainage and redirects flow into the 

Monongahela River (Hopkins et al., 2014). However, the portion of the subbasin within 

Schenley Park still drains into two above-ground streams, Phipps Run and Panther Hollow Run 

(Figure 3.3). As part of a watershed restoration project, infiltration-based green infrastructure is 

being installed at two locations within the park (Figure 3.2). 
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Figure 3.2: Schenley Park and the 4-Mile Run watershed. The urban park, located in Pittsburgh, 

PA contains the only two above-ground streams within the watershed. (Modified from Hopkins, 

2014). 

 

 

 

 
 

Figure 3.3: Digital elevation map of Schenley Park and the two study locations. Black 

lines represent road edges and yellow circles indicate the location of monitoring equipment. 
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Monitoring equipment was installed on hillslopes in these planned green infrastructure 

locations in 2012, and the sites were named Schenley Drive and Beacon Street, after the two 

nearest roadways (Figure 3.3). The hillslopes are both north-facing and covered by managed 

lawns. Soil pits were dug at each site for equipment installation, and the soil profiles were 

characterized using the NRCS soil texture classification system (NRCS, 1987). Soils were 

predominantly silty-clay (Figure 3.4) and contained subangular, gravel-sized clasts of shale 

regolith at depth. 

3.2.2 Data Collection 

Soil moisture was measured using HOBO
®

 EC-5 Smart Sensors, model S-SMC-M005, and 

information from the probes was recorded using the HOBO
®
 U-30 data logger. The sensors are 

dielectric probes that measure volumetric water content (θV) in m
3
/m

3
 with an accuracy of ±0.03 

m
3
/m

3
. Dielectric probes are made of two parallel capacitance plates - one which sends out 

electrical pulses into the soil space between the plates, and the other which receives the pulse 

from the first plate. The change in frequency measured between the two plates can be directly 

attributed to the permittivity, or dielectric constant, of the soil (Wobschall, 1978). The 

permittivity is a dimensionless measure of the dielectric properties of a substance created by 

molecular dipoles. The total permittivity of the soil is a sum of the permittivity of mineral grains, 

air, and water in the soil. Water creates a large dielectric constant of ~80 because of the large 

dipole created from the arrangement of the oxygen and hydrogen atoms in its molecule; 

therefore, it has a large influence on the total permittivity of the soil as opposed to air and 

minerals, which only display dielectric constants below five. Increasing water content causes the 
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total permittivity of the soil to increase markedly, and this increase can be detected by the 

sensors (Robinson et al., 2008). 

Four sensors were installed at each site throughout the soil profile (Figure 3.4) before the 

installation of green infrastructure. At Beacon Street, the probes were installed at 11cm, 37cm, 

64cm, and 83cm below the surface, while at Schenley Drive the probes were installed at 15cm, 

40cm, 70cm, and 96cm below the surface. In this paper, these locations are referred to as 

“layers” in the soil, and are representative of sensor depth, not soil horizon. The layers at each 

site are referred to as the top, top middle, bottom middle, and bottom respectively (Figure 3.4). 

Data logging began on January 16, 2012 at Schenley Drive and on May 9, 2012 at Beacon Street. 

Water content measurements were taken at 1 minute or 5 minute intervals. Soil moisture data 

from the probes were recorded as volumetric water content (θV) in the data logger.  

 

 

 
 

Figure 3.4: Soil profiles and sensor locations. Colors are approximate representations of the 

Munsell soil-color found in the profiles. Blue lines represent sensor locations. 
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The saturated water content (θsat) of the soils around each sensor was calculated through 

graphical and statistical analyses. Soil water responding to storm events plateaued at a point of 

saturation which was sustained over a span of time before draining again. These saturation 

plateaus can be observed as lower-amplitude peaks at the high-end tail of θV distributions curves 

(Figure 3.5).  

Figure 3.5: Saturation peaks as observed in volumetric water content distributions. The range of 

volumetric water content values contained within saturation peaks were used to estimate 

saturated water content for each soil layer. 

Once these peaks were isolated, the average value was calculated and used as the saturated water 

content (θsat) for that soil layer. Relative saturation was calculated for each soil layer using its 

respective value of θsat and using the following equation: 

Relative Saturation (%) =  (𝜃𝑡/𝜃𝑠𝑎𝑡) × 100 

3.2.3    Relative Saturation Calculations 
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where θt is the volumetric water content (m
3
/m

3
) at time t, and θsat is the saturated volumetric 

water content (m
3
/m

3
). The resulting data were used to generate time series of relative saturation 

at each site. Soil moisture data were analyzed from May 1, 2012 to August 1, 2012, a pre-

monitoring period before green infrastructure installation. This period was chosen for analysis as 

it was the only interval when all eight sensors recorded continuously without malfunction. The 

bottom sensor at Schenley Drive became impaired on July 27
th

, so subsequent dates were not 

included from the analysis for this soil layer. 

 

3.2.4 Precipitation 

Precipitation data were obtained from 3 Rivers Wet Weather, using their calibrated radar rainfall 

tool (3RWW, 2001). Rainfall measurements were obtained from the historical rain gauge data 

for the University of Pittsburgh station, located on the north-west border of Schenley Park. 

Rainfall totals were recorded at 15 minute intervals. 

 Storms were identified as being one distinct event if rainfall totals were consecutive 

and/or occurred within 120 minutes of the last recorded rainfall amount. Some storms that would 

normally have been characterized as one event were separated into distinct events if each pulse 

of rainfall caused an observable response in soil moisture in any particular soil layer (see July 4
th

 

example, Figure 3.6). Each individual storm event was analyzed for total rainfall and storm 

interval. The storm interval for a particular storm event was characterized as the time between 

the start of that storm and the end of the previous storm. Storm events with less than 0.06 inches 

of total rainfall did not cause responses in soil moisture for any of the layers and were not 

included in the analysis of storm response. 
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Figure 3.6: Distinct soil water responses to July 4
th

 storm. This storm would typically be 

considered one event; however, since it caused two distinct responses in soil moisture, it was 

instead considered as two separate events. 
 

 

 

3.2.5 Storm Response 

A total of 38 storm events with rainfall totals above 0.06 inches occurred from May 1, 2012 to 

Aug 1, 2012. Time series of soil moisture and precipitation revealed observable soil water 

responses to storm events (Figure 3.7). To analyze each response, the antecedent soil moisture 

conditions were determined for each soil layer immediately preceding a storm event (Figure 

3.7[A]). If the soil layer displayed an observable response, it was analyzed for lag time, peak soil 

moisture value, and saturation peak duration. The lag time is characterized as the amount of time 

it takes for the soil layer to reach peak soil moisture after the start of the storm event (Figure 

3.7[B]), and saturated peak duration is the amount of time soils retain stormwater before being 

gravity drained back to field capacity (Figure 3.7[C]). Field capacity was assumed qualitatively 

as the steady-state reached immediately after stormwater drainage (Figure 3.7[D]). 
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Figure 3.7: A representative soil moisture storm response. Storm responses were analyzed for 

[A] antecedent soil moisture conditions, [B] lag time, [C] saturation peak duration, and [D] field 

capacity. 

 

 

 

3.3 RESULTS 

 

3.3.1 Relative Saturation Analysis 

To calculate the relative saturation of the soils over time, histograms of volumetric water content 

(θV) during the period of analysis were generated for each sensor location. Once the saturation 

peak was isolated, the average value was taken as the saturated water content (θSat) for that 

particular soil layer (Table 3.1). At Beacon Street, θSat values ranged from 0.344 m
3
/m

3
 in the 

top-middle layer to 0.357 m
3
/m

3
 in the bottom middle layer, and at Schenley Drive, θSat values 

ranged from 0.330 m
3
/m

3
 in the bottom layer to 0.356 m

3
/m

3
 on the top layer. The saturation 

peak distributions were within the accuracy of the sensors. 
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Table 3.1: Saturated water content analysis results for Beacon and Schenley. The table displays 

the minimum, maximum, and average θV of saturation peaks in soil moisture that was isolated 

from the data set for each individual soil layer. 

 

Site Soil Layer 
Saturation 

Min 
(m3/m3) 

Saturation 
Max 

(m3/m3) 

Average 
Saturation 

(m3/m3) 

Standard 
Deviation 

Beacon 
Street 

Top 0.350 0.369 0.352 0.001 

Top Middle 0.342 0.345 0.344 0.001 

Bottom Middle 0.350 0.369 0.357 0.004 

Bottom 0.346 0.354 0.350 0.002 

Schenley 
Drive 

Top 0.346 0.369 0.356 0.005 

Top Middle 0.345 0.368 0.354 0.004 

Bottom Middle 0.350 0.369 0.346 0.005 

Bottom 0.328 0.341 0.330 0.003 

 

 

Once θSat values were determined, continuous records of relative saturation were 

generated for each soil layer at both sites for May 1
st
 – August 1

st
, 2012, with records at Beacon 

Street beginning May 9
th

 (Figures 3.8 & 3.9). The top layers had the lowest average relative 

saturation and the largest temporal variation in relative saturation (highest standard deviation) 

over time when compared to deeper layers across both sites, though Beacon had a lower average 

than Schenley (Beacon, 66.9 ± 17.8%; Schenley, 76.0 ± 16.3%) (Table 3.2). The top-middle 

layers had similar average relative saturation but differed in variation (Beacon, 88.7 ± 10.2%; 

Schenley, 84.2 ± 7.1%). The bottom-middle layer at Beacon had a similar average value to its 

top-middle layer, but varied less (84.0 ± 5.8%). However, the bottom-middle layer at Schenley 

had a much lower average value than its top-middle layer, though it had equally low variation 

(77.7 ± 7.7%). Beacon’s bottom layer had the highest average relative saturation value of all the 

soil layers across both sites and the second lowest variation (93.0 ± 5.8%), whereas Schenley’s 

bottom layer had an average value similar to its top-middle layer but varied the least (83.4 ± 

4.5%). 
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Figure 3.8: Continuous records of relative saturation at Beacon Street. The plot shows precipitation (light blue) and soil relative 

saturation for the top (yellow), top-middle (red), bottom-middle (green), and bottom (dark blue) layers at Beacon Street from May 9th 

to August 1st (2012). 
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Figure 3.9: Continuous records of relative saturation at Schenley Drive. The plot shows precipitation (light blue) and soil relative 

saturation for the top (yellow), top-middle (red), bottom-middle (green), and bottom (dark blue) layers at Schenley Drive from May 

1st to August 1st (2012). Data after July 26th was removed from the bottom layer due to sensor malfunction. 
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Table 3.2: Average and standard deviation of relative saturation at the study sites. 

 

  

Beacon Street Schenley Drive 

Top 
Top 
Middle 

Bottom 
Middle Bottom Top 

Top 
Middle 

Bottom 
Middle Bottom 

Average 66.9% 88.7% 84.0% 93.0% 76.0% 84.2% 77.7% 83.4% 

Standard 
Deviation 17.8% 10.2% 5.8% 5.8% 16.3% 7.1% 7.7% 4.5% 

 

 

 

Relative saturation is shown for each sensor location (Figures 3.8 & 3.9) and displays 

patterns of soil wetting during storm events (spikes in relative saturation), saturation peaks 

(prolonged plateaus of high relative saturation), and drainage (declines in relative saturation). 

The top-middle, bottom-middle and bottom layers all remained relatively saturated at Beacon, 

averaging between 84.0-93.0% saturated and had small ranges of soil moisture values during the 

period of analysis. These same layers experienced a prolonged wet period from early May to 

mid-June as shown by the sustained peaks in saturation (Figure 3.8). The top layer also 

experienced this prolonged saturation briefly until mid-May. Then, from mid-June to mid-July, 

relative saturation declined for all of the layers except the bottom, suggesting this was a 

relatively dry period. Subsequently, a series of frequent storm events after mid-July caused all of 

the soil layers to have prolonged saturation peaks. The top-middle and bottom layers displayed 

the highest sustained relative saturation during wet periods. During the dry period, relative 

saturation declined the most in the top and top-middle layers. For the entire period of analysis, 

the bottom layer had the longest sustained peaks and the highest relative saturation. 

Though Schenley experienced the same wet-dry-wet pattern as Beacon, saturation peaks 

were not as prolonged and distinct patterns in relative saturation were not observable between the 

different periods (Figure 3.9). Instead, wet periods were marked by increased frequency of 

saturation peaks, but relative saturation declined more rapidly to field capacity after peaking. The 
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soil layers at Schenley displayed mean relative saturations which were typically 10% lower on 

average than Beacon soils, except those in the top layer. Overall, Schenley had shorter saturation 

peaks and steeper declines in relative saturation in its top-middle, bottom-middle, and bottom 

layers when compared to those at Beacon. 

 

3.3.2 Precipitation Analysis 

Precipitation data were obtained from the 3 Rivers Wet Weather calibrated radar rainfall data for 

the University of Pittsburgh rain gauge (3RWW, 2001). Storm events with total rainfall amounts 

 0.06 inches were identified and analyzed for rainfall totals and storm intervals (Table 3.3). 

There were a total of 38 storm events from May 1
st
 to August 1

st
 amounting to 11.32 inches of 

precipitation. Ten of the storms occurred before monitoring began at Beacon Street on May 9
th

.  

June was the driest month, with the least number of storm events (8 total) and the smallest 

average storm size (0.16 in.), whereas July was the wettest month with the highest number of 

storm events (17 total) and the highest average storm size (0.38 in.). The longest storm interval 

was between June 18
th

 and July 4
th

 and caused a fifteen-day dry period. The largest storm 

occurred on July 4
th

 and had a rainfall total of 2.04 inches. However, in the analysis this large 

storm was considered as two separate events (07/04/2012 1:15, 1.16 in. and 07/04/2012 3:30, 

0.88 in.) despite occurring less than two hours apart (see Figure 3.7). This is because the second 

portion of the storm caused observable storm responses in soil layers that were distinct from the 

responses to the first portion. A storm on July 27
th

 was separated into two separate events for 

similar reasons (07/27/2012 4:45, 0.19 in.; and 07/27/2012 6:00, 0.31 in.). The second largest 

storm event also occurred in July (07/18/2012, 1.32 in.). The greatest addition to rainfall totals 

occurred in early May and mid-late July (Figure 3.10). 
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Table 3.3: Storm intervals and rainfall totals for storms in May, June and July (2012). Sample size and average rainfall totals are 

display at the bottom. 
 

Date/Time 
(MM/DD/YYYY hh:mm) 

Rainfall 
Total 

(inches) 

Storm 
Interval 
(hours) 

Date/Time 
(MM/DD/YYYY hh:mm) 

Rainfall 
Total 

(inches) 

Storm 
Interval 
(hours) 

Date/Time 
(MM/DD/YYYY hh:mm) 

Rainfall 
Total 

(inches) 

Storm 
Interval 
(hours) 

May June July 

5/1/2012 2:00 0.08 178.3 6/1/2012 6:00 0.27 57.5 7/4/2012 1:15 1.16 368.4 

5/1/2012 5:45 0.09 2.8 6/1/2012 13:00 0.07 4.8 7/4/2012 3:30 0.88 0.5 

5/2/2012 0:00 0.12 17.8 6/1/2012 16:30 0.38 3.0 7/4/2012 17:45 0.07 13.3 

5/2/2012 5:15 0.07 4.5 6/3/2012 17:30 0.06 47.5 7/7/2012 17:15 0.06 71.3 

5/3/2012 4:15 0.43 21.0 6/11/2012 22:30 0.32 196.7 7/14/2012 10:30 0.11 161.3 

5/8/2012 0:30 1.08 115.3 6/12/2012 3:45 0.07 2.5 7/14/2012 23:15 0.20 11.5 

5/8/2012 2:30 0.17 1.3 6/12/2012 16:45 0.06 12.3 7/18/2012 13:30 1.32 85.2 

5/8/2012 8:45 0.41 6.3 6/18/2012 16:45 0.07 140.5 7/19/2012 15:15 0.32 24.3 

5/8/2012 16:30 0.11 5.8       7/20/2012 13:30 0.17 22.0 

5/13/2012 15:15 0.26 115.3       7/24/2012 8:30 0.21 90.3 

5/27/2012 21:45 0.23 332.2       7/26/2012 4:45 0.15 44.3 

5/29/2012 13:00 0.14 39.0       7/26/2012 16:45 0.32 12.0 

5/29/2012 19:30 0.43 5.0       7/26/2012 18:45 0.61 1.8 

            7/27/2012 4:45 0.19 7.5 

            7/27/2012 6:00 0.31 0.8 

            7/27/2012 23:15 0.12 16.8 

            7/28/2012 1:45 0.20 2.3 
         

Count 13   Count 8   Count 17   

Average 0.28   Average 0.16   Average 0.38   

St. Dev. 0.26   St. Dev. 0.13   St. Dev. 0.37   
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Figure 3.10: Cumulative precipitation plot for May 1
st
 to August 1

st
 (2012). Total rainfall over 

the period of analysis amounted to 11.32 inches. 
 

 

 

3.3.3 Storm Response Analysis 

The soil moisture time series were analyzed for storm response in each soil layer. A total of 38 

storms occurred during May 1
st
 – July 31

st
 at Schenley Drive, and 28 storms occurred during the 

recorded time at Beacon Street (Figure 3.11). At Schenley Drive, the layers responded to 17, 14, 

18, and 23 storms in the top, top-middle, bottom-middle, and bottom layers respectively. The 

bottom layers responded to the most number of storms, and, excluding the top layer, storm 

response increased with depth. At Beacon Street, the layers responded to 17, 13, 8, and 5 storms 

in the top, top-middle, bottom-middle, and bottom layers respectively. At this site, the top layer 

responded to the most number of storms, and the number of storm responses decreased with 

depth. 
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Figure 3.11: Frequency of storm response. The plot shows the number of storm responses in 

each soil layer at Beacon (blue) and Schenley (red). 

 

 

 

The size of the storm and antecedent soil moisture conditions were analyzed to determine what 

factors would affect storm response at each site, using the Mood’s median test for statistical 

analyses (Figure 3.12). At Schenley, antecedent soil moisture conditions did not have a 

significant effect on the response of soil water to storm events (p>0.05), but the storm magnitude 

significantly affected soil water response (p<0.05). However, storm size and antecedent soil 

moisture conditions both had significant effects on soil water storm response at Beacon (p<0.05). 

When analyzing response controls for each individual layer at Beacon, statistical tests showed 

that storm size had a significant effect on storm response for the top, top-middle, and bottom-

middle layers (p<0.05), but storm responses in the bottom layer were significantly affected by 

antecedent soil moisture conditions (p<0.05) (Figure 3.13). 
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Figure 3.12: Storm response drivers at Beacon and Schenley. The box plots display average 

antecedent soil moisture conditions (m
3
/m

3
) and average rainfall totals (in.) for storm responses 

of all layers at (a) Schenley and (b) Beacon with outliers removed. 

 

 

 

 
 

Figure 3.13: Storm responses drivers at Beacon, separated by soil layers. The box plots display 

average antecedent soil moisture conditions (m3/m3) and average rainfall totals (in.) for storm 

responses separated for each individual soil layer at Beacon with outliers removed. 
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 Soil water responses in the soil layers were primarily driven by storm size for all layers at 

both sites except the bottom layer at Beacon. Each of these soil layers responded above a 

particular storm size threshold (Figure 3.14). At Schenley, the bottom layer and top layers had 

the lowest storm thresholds (0.07 in), and the middle layers had similar storm thresholds that 

were considerably higher than the other two (top-middle, 0.12 in; bottom-middle, 0.11 in). At 

Beacon, the top layer had the lowest storm threshold (0.06 in) and was similar to that of 

Schenley’s top and bottom layers. A storm response to a 0.06 in. storm in the top-middle layer 

was considered an outlier, and thus the storm threshold was estimated at 0.20 in. The bottom 

middle layer’s storm threshold was 0.14 in. 
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Figure 3.14: Storm thresholds for soil layers at Schenley (red) and Beacon (blue). Thresholds 

were estimated for layers in which storm size was the primary driver of storm response and are 

shown for Schenley (a) top, (b) top-middle, (c) bottom-middle, (d) bottom, and Beacon (e) top, 

(f) top-middle, and (g) bottom-middle layers. Beacon’s bottom layer is not shown because its 

responses were not driven by storm size. 
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The order of wetting was analyzed at each site by comparing the times it took for each 

soil layer to respond (Figure 3.15). At Beacon Street, the top and top-middle layers (the upper 

layers) were the first to respond to a majority of storm events, but at Schenley Drive, the bottom 

and bottom-middle layers (the lower layers) were the first to respond to most storm events. 

Beacon Street only had two storm events where lower layers responded before upper layers 

(Storm 11, May 27
th

 and Storm18, June 11
th

); for every other event, the lower layers responded 

after or at the same time as the upper layers. At Schenley Drive, the upper layers were 

consistently the last layers to respond, with the exception of Storm 23 (July 4
th

), the only storm 

where the top layer responded first.  

 

 
 

Figure 3.15: Storm response lag times. The plot shows the time (in minutes) it took for each soil 

layer to respond to storm events at the two sites. Storm number is sequential with the date of 

occurrence and equally spaced along the x-axis for better visual analysis.  
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3.3.4 Long- and Short-term Drainage Patterns 

Long-term soil drainage patterns were analyzed by comparing antecedent soil moisture 

conditions and storm intervals (Figure 3.16). In general, longer storm intervals represent longer 

dry periods over which soil layers can drain, thus decreasing soil moisture levels. The rate of 

drainage was represented by the slope of the relationship between antecedent soil moisture 

conditions and storm interval, with steeper slopes indicating faster drainage rates. At Beacon, 

drainage rates decreased with increasing depth, with the highest drainage rates occurring in the 

top and the top-middle soil layers (-4.1x10
-3

 [m
3
/m

3
] hr

-1
 and -2.0x10

-3
 [m

3
/m

3
] hr

-1 
respectively). 

The bottom-middle and bottom soil layers had similar drainage rates (-1.4x10
-3

 [m
3
/m

3
]hr

-1
, and -

1.6x10
-3 

[m
3
/m

3
]hr

-1
, respectively) which were relatively slower than those of the upper layers. 

The top layer at Schenley had the fastest drainage rate (-3.5x10
-3

 [m
3
/m

3
]hr

-1
) relative to deeper 

layers at the site, and the bottom layer had the slowest drainage rate (-1.1x10
-3

 [m
3
/m

3
]hr

-1
). The 

top middle (-1.8x10
-3

 [m
3
/m

3
]hr

-1
) and bottom-middle (-2.3x10

-3
 [m

3
/m

3
]hr

-1
) layers had slower  

drainage rates, comparable to the top-middle layer at Beacon. The soils at Beacon had higher 

antecedent soil moisture conditions than Schenley and relatively slower long-term drainage rates. 

The only exception is the top layer, which had both a higher drainage rate and lower antecedent 

soil moisture conditions than the top layer at Schenley.  
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Figure 3.16: Long-term drainage rates. The plot shows antecedent soil moisture conditions 

(m
3
/m

3
) vs. storm interval (hr) for each soil layer at Beacon (blue) and Schenley (red). The 

relationship represents long-term drainage rates of soil water, with steeper slopes indicating 

higher drainage rates. 

 

 
 

The top layer at Schenley appeared to have two distinct long-term drainage trends, which 

were isolated into an upper trend (higher soil moisture content) and a lower trend (lower soil 

moisture content) (Figure 3.17). The upper trend contained 21 storm events, and the lower trend 

contained 17 (Table 3.4). For the upper trend, 14 of the storms occurred in July, and the other 7 

storms occurred in May, 4 of which occurred within the same day (May 8
th

). In the lower trend, 

only 3 of the 17 storms occurred in July, the others occurred in May and June. Conditions in the 

lower trend (May/June storms) had lower antecedent soil moisture conditions and slower 

drainage rates (-2.6x10
-3

 [m
3
/m

3
]hr

-1
), whereas the upper trend (July storms) had higher 

antecedent soil moisture conditions and faster drainage rates (-4.4x10
-3

 [m
3
/m

3
]hr

-1
). 
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Figure 3.17: Seasonal trends at Schenley. Two distinct trends are observed in the top layer at 

when plotting antecedent soil moisture against storm interval. The upper trend (black) primarily 

contains July storms, whereas the lower trend (blue) is primarily contains May and June storms. 
 

 

Table 3.4. Schenley storm events. Storms separated by date for the two trends in the top layer. 

Upper Trend Lower Trend 

May Storms July Storms May Storms June Storms July Storms 

5/1/2012 2:00 7/4/2012 3:30 5/1/2012 5:45 6/1/2012 6:00 7/4/2012 1:15 

5/8/2012 0:30 7/4/2012 17:45 5/2/2012 0:00 6/1/2012 13:00 7/14/2012 23:15 

5/8/2012 2:30 7/7/2012 17:15 5/2/2012 5:15 6/1/2012 16:30 7/18/2012 13:30 

5/8/2012 8:45 7/14/2012 10:30 5/3/2012 4:15 6/3/2012 17:30 

 5/8/2012 16:30 7/19/2012 15:15 5/29/2012 13:00 6/11/2012 22:30 

 5/13/2012 15:15 7/20/2012 13:30 5/29/2012 19:30 6/12/2012 3:45 

 5/27/2012 21:45 7/24/2012 8:30 

 

6/12/2012 16:45 

 

 

7/26/2012 4:45 

 

6/18/2012 16:45 

 

 

7/26/2012 16:45 

   

 

7/26/2012 18:45 

   

 

7/27/2012 4:45 

   

 

7/27/2012 6:00 

   

 

7/27/2012 23:15 

   

 

7/28/2012 1:45 
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When soil water responded to a storm event, it reached a peak in soil moisture and 

sustained that peak for a period of time before being drained back to field capacity. The 

durations of these saturation peaks were used to characterize short-term drainage patterns for 

each soil layer after storm events (Figure 3.18). Beacon Street displayed a pattern of increasing 

peak duration with depth, but Schenley Drive had similar peak durations for all of its soil layers. 

In fact, Schenley Drive did not show any trends in peak duration, and average values did vary 

significantly between the soil layers (p < 0.05). 

 

 

 
 

Figure 3.18: Average peak duration at Schenley (a) and Beacon (b). Peak duration is assumed to 

represent short term drainage patterns for each soil layer. 
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3.4 DISCUSSION 

 

The sites were found to have unexpected patterns in soil water dynamics which could lead to 

decreased hydrologic function of established infiltration-based green infrastructure. Traditional 

pre-installation evaluation tests likely are not able to detect the hydrological regime revealed by 

continuous monitoring. 

 

3.4.1 Characterization of Hydrological Regimes 

During the analysis period, soil water dynamics at the Schenley and Beacon sites (Figure 3.3) 

strongly contrasted. Average soil moisture at Beacon generally increased with depth, and as a 

result deeper soils remained fairly saturated. Variability in soil horizon characteristics can cause 

stratification of soil moisture during drier seasons (Penna et al., 2009).  This was particularly 

noticeable at Beacon, where average relative saturation values were low in the top layer (66.9%) 

and much higher in the bottom layer (93.0%) (Table 3.2). In contrast, patterns of average soil 

moisture at Schenley were more inconsistent throughout the profile, but during the drier period, 

the deepest layer still remained more saturated than overlying soils. Generally, soils at Schenley 

were drier than those at Beacon and had a more restricted range of average relative saturation 

values (76.0-84.2%). The temporal variation of soil moisture in the top layer and bottom layer at 

both sites correlated with its average value, so that when soil layers had higher average soil 

moisture values they generally also had greater temporal variation of soil moisture values, and 

vice versa (Table 3.2). Other studies have found that soil moisture was less variable during wet  
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periods or within soil layers that remained predominantly saturated and more variable during 

drier seasons and in well-drained soils (Penna et al., 2009; Tromp-van Meerveld and McDonnell, 

2006). 

Long-term soil water drainage rates were analyzed at both sites by comparing antecedent 

soil moisture conditions with the storm interval. Drainage rates were highest within the top 

layers at both sites, and the layers experienced more complete drainage when compared to 

underlying layers. This can be attributed to evapotranspiration processes, which are highest 

during the dry, summer months. These processes, combined with vertical drainage of soil water 

into deeper layers, have been found to result in lower soil moisture values and rapid drying in 

near-surface soils (Mohanty et al., 2000; Western et al., 1999). Both sites are located on turfed 

landscapes, which have been found to have the most rapid drying rates in near-surface soils when 

compared to other forms of vegetated landcover (Qiu 2001). Slower drainage rates in underlying 

soil layers can be attributed to significantly lessened effects from evapotranspiration, because the 

shallow-root plants of turfed landscapes do not penetrate deep enough to dry deeper soil layers 

(Tromp-van Meerveld and McDonnell, 2006).  

Long-term drainage patterns in the top layer at Schenley also revealed sub-seasonal 

trends in climate and evapotranspiration processes. In July, soils were typically wetter but dried 

more rapidly when compared to soil moisture conditions during May and June. A study from the 

Shale Hills Critical Zone Observatory, PA, with a similar climate, also found sub-seasonal trends 

in near-surface hillslope soils due to changing evapotranspiration rates from spring to summer 

(Takagi and Lin, 2012). The higher soil water content of the July trend is likely attributed to the 

larger, more frequent storm events that occurred in that month, and the more rapid drying is due 

to higher average daily temperatures and vegetation growth, which increases evapotranspiration 
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rates (Figure 3.19). Four storm events from May contributed to the July trend (see Table 3.4), but 

this was because all four storms occurred within one day, resulting in higher antecedent soil 

moisture conditions that were atypical for that month.  

 

 
 

Figure 3.19: Sub-seasonal trends in evapotranspiration at Schenley. (a) In May and June, wet 

weather events were smaller and less frequent resulting in relatively lower water content in soils, 

and during dry weather evapotranspiration rates were lower (small blue arrows). (b) In July, wet 

weather events were larger and more frequent resulting in relatively high water content in soils, 

and during dry weather evapotranspiration rates were higher (large blue arrows). 

 

 

 

In contrast to the top layers, long-term drainage rates of soil water in the bottom two 

layers at Beacon are considerably slower (Figure 3.16). This is likely attributed to low vertical 

fluxes in preferential flow, leading to prolonged periods of saturation. The high relative 

saturation and low long-term drainage rates of these two lower layers may be indicative of a 
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shallow groundwater table or a vertically extensive capillary-fringe zone above the bedrock. 

Long-term drainage rates at Schenley Drive were also very slow, but the soils were considerably 

drier than those at Beacon and are most likely not in contact with local groundwater tables during 

dry periods. 

Short-term drainage rates were represented by analyzing soil moisture peak durations 

after storm events, which showed how long the layers retained stormwater before lateral and 

vertical fluxes drained soils to field capacity. Beacon had a sequential increase in peak duration 

with depth; that is, deeper soils retained water longer after storm events. The higher water 

retention correlates to lower long-term drainage rates, which is typical for deeper soils that 

receive vertically drained water from overlying layers (Hewlett and Hibbert, 1963). The soil 

layers at Schenley had close to uniform drainage throughout the soil profile after a storm event. 

The lower average soil water content and higher short-term drainage at Schenley means that the 

site is more completely drained throughout the soil profile as compared to Beacon. 

Soil water responded to the frequency and magnitude of storm inputs throughout the 

entire depth of the soil profiles, but the patterns and number of responses varied between the two 

sites. At Beacon Street, the number of responses for each soil layer decreased with depth (Figure 

3.11).  When soil water in deeper soils did respond to storm events, the lag time was 

considerably longer than those in shallower soils (Figure 3.15). This hydrologic behavior 

suggests soils here experience top-down flow during wet weather (Grayson et al., 1997; Lin and 

Zhou, 2008), which occurs when a wetting front percolates vertically down through the soil 

profile from infiltrated stormwater at the soil surface (Figure 3.20). This is the natural wetting  



69 

 

regime for hilltops and hillslopes, which are considered to be areas of soil water recharge (Fetter, 

2000; Bachmair and Weiler, 2011), and these patterns are particularly evident during dry 

summer seasons in temperate climates (Harr, 1977; Yeakley et al., 1998).  

In contrast, soil water at Schenley displayed increased storm responses with depth, except 

in the top layer (Figure 3.11), and deeper soils consistently responded to storm events before 

shallow soils (Figure 3.15). The top layer at Schenley responded to a higher number of storm 

events than the top-middle layer, despite the general increasing trend with depth. In addition, the 

top layer responded to storm events first if lower layers were already too saturated to respond, as 

shown during the July 4
th

 storm. These patterns suggest that stormwater was reaching the bottom 

layers first, and Schenley experienced a bottom-up wetting regime (Lin and Zhou, 2008) (Figure 

3.20). The top layer soils still experienced top-down wetting; however, the downward vertical 

flow of stormwater was much slower than the upwards vertical flow of soil water from below. 

This wetting regime is more commonly associated with regions of discharge but is generally not 

assumed to occur along hillslopes (Fetter, 2000). 

 

 
 

Figure 3.20: Preferential stormwater flow paths. Stormwater wetting fronts saturate soils at 

Beacon from the top to the bottom, but Schenley soils are saturated from the bottom layer up. 
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Some studies have found similar patterns in soil water dynamics like those found at 

Schenley and attributed it to water inputs from bedrock fracture flow at the soil-bedrock interface 

(Lin and Zhou, 2008; Montgomery et al., 1997). The flow of water through permeable bedrock 

layers has been recognized as an important component of local water balances, but most 

observations have shown the vertical movement of soil water into bedrock fractures to be 

predominant (Graham et al., 2010; Tromp‐van Meerveld et al., 2007), especially in shale basins 

where little to no lateral movement is detected (Tsujimura et al., 1999). However, other studies 

have shown that the upwards response of soil saturation to storm events along hillslopes 

indicated that bedrock fracture flow contributed significantly to subsurface flow in shallow 

colluvial soils (Figure 3.21) (Anderson et al., 1997; Montgomery et al., 1997). Bedrock fracture 

flow was mostly prevalent in downslope regions, closer to streams, and much of the water was 

derived from recharge areas further upslope. However, decreased conductivity in relatively 

impermeable rock layers located higher up on the hillslope can force water out into the soils far 

above valley regions and can control hillslope runoff processes (Uchida et al., 2003). Bedrock 

fracture flow contributions to unsaturated soil flow were shown to be significant in a variety of 

geologic landscapes, including shale basins (Onda et al., 2001). It is therefore likely that 

subsurface lateral flow patterns at Schenley are also being driven by water inputs from bedrock 

fracture flow. 
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Figure 3.21: Bedrock fracture flow along hillslopes. Water from recharge areas along hilltops 

flow vertically into fractured bedrock and flows downslope, occasionally flowing out into 

overlying colluvium as springs or seeps. (Modified from Anderson 1997; not to scale). 

 

 

Storm size and antecedent soil moisture conditions were found to be the largest drivers of 

storm response at Beacon and Schenley, which agrees with other studies of hillslope subsurface 

soil water dynamics (Penna et al., 2011; Tromp‐van Meerveld and McDonnell, 2006). At 

Beacon, storm response was primarily controlled by the size of the storm in the first 64 cm of 

soil (top to the bottom-middle layer), though all layers were affected by antecedent soil moisture 

conditions to some extent. These layers would only respond to storms above a certain size 

threshold (Figure 3.14). Storm threshold values have been found in previous studies in 

unsaturated subsurface soils (Lin and Zhou, 2008; Tromp‐van Meerveld and McDonnell, 2006). 

Soil water in the first 11 cm would respond to storm events larger than 0.06 in, whereas soil 

water in the middle layers typically did not respond to storm events smaller than 0.14 inches. 

During small storm events (< 0.14 inches), water inputs are not large enough to percolate 

downwards into the middle layers to cause a storm response. Soil water at depths of 83 cm 

(bottom layer) only responded to storm events if antecedent conditions were unsaturated. It is 
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possible that the water table lies at this depth or that it is within the capillary-fringe zone. For a 

water table to be sustained in hillslope soils like at Beacon, these soils would need to have 

particularly low hydraulic conductivity to inhibit groundwater drainage through downslope 

lateral flow (Penna et al., 2009). However, textural analyses show that deeper soils at Beacon 

contain sand and subangular gravel-sized clasts produced by weathering in the regolith, which 

should increase soil permeability and allow for sufficient lateral drainage of soil water. It is 

likely that the saturated conditions in deeper soils are sustained by water inputs from bedrock 

fracture flow. On a study of hillslopes in Japan, Uchida (2006) found that when bedrock-soil 

interfaces displayed sustained saturated conditions, it indicated that bedrock water storage was 

significant enough to flow upwards into colluvium even during baseflow. This could explain 

sustained saturated conditions at Beacon. The reason Beacon doesn’t experience bottom-up 

wetting from the bedrock fracture flow like at Schenley could be a result of the sandier soils at 

depth allowing more rapid redistribution of water inputs downslope during storm events so that 

the water table does not rise rapidly into upper layers.  

At Schenley Drive, storm response throughout the entire profile was primarily driven by 

storm size, because soils at Schenley Drive are able to drain more completely after storm events 

as compared to Beacon soils. The July 4
th

 storm event is unique in that it gives us a better look at 

the hydrologic regime. On this date, two storms events occurred totaling 2.04 inches of rain 

within a three- hour period. These storms would typically be counted as one, however the second 

storm triggered soil water responses in the top and top-middle layers, but not the lower layers. 

This was the only time when the upper layers responded without one or more of the lower layers 

responding. Significant vertical drainage must have occurred in these two layers to allow for a 

second response, but not in the bottom soils, leaving them saturated and unable to respond again 
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to the second pulse of rainfall. This shows that a vertical wetting regime is only possible when 

the bottom layers are sufficiently saturated from a large storm event. This is the only time when 

Schenley storm response patterns mimicked those at Beacon.  

Overall, Schenley soil water dynamics are driven by non-local controls from the sloping 

soil masses during dry periods, therefore draining downslope through both vertical and lateral 

pathways (Figure 3.22a). This results in more complete drainage of all soil layers and lower 

average soil moisture content as compared to Beacon. Evapotranspiration also contributes to 

high long-term drainage rates and lower average soil moisture contents within the top layer. 

During wet weather, bedrock fracture flow pushes stormwater up into overlying soils, leading to 

rapid bottom-up wetting regimes through the profile, but the top layer may still experience 

slower top-down wetting during large storms (Figure 3.22b). Soil water in upper layers of 

Beacon drain downslope through both vertical and lateral pathways during drain periods, 

resulting in lower average soil moisture contents, and more rapid short- and long-term drainage 

rates; however, the lower soil layers remained fairly saturated during dry periods and had slower 

short- and long term drainage rates, which was most likely attributed to bedrock water seepage 

into the overlying soils (Figure 3.22c). Just as at Schenley, high evapotranspiration rates in the 

top soil layer results in high long-term drainage rates and lower average soil moisture content. 

During wet weather, Beacon soils experienced top-down wetting regimes from downward 

vertical flow of stormwater, but soil water in lowers layers responded less to storm events due to 

high antecedent soil moisture conditions (Figure 3.22d). 
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Figure 3.22: Subsurface soil water dynamics during dry and wet weather. (a) Dry weather soil 

water dynamics at Schenley are characterized by vertical and lateral flow downslope (straight 

arrows) and evapotranspiration in surface soils (wavy arrows). (b) Wet weather soil water 

dynamics at Schenley are characterized primarily by bottom-up wetting and slow vertical 

infiltration in surface soils. (c) Dry weather soil water dynamics at Beacon are characterized by 

vertical and lateral flow downslope in upper layers and evapotranspiration in surface soils, with 

saturated conditions at depth. (d) Wet weather soil water dynamics at Beacon are characterized 

by top-down wetting and low storm responses in lower soils due to high antecedent soil moisture 

conditions. (Not to scale). 
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3.4.2 Implications for Green Infrastructure 

Continuous monitoring of soil water dynamics along two urban hillslopes has revealed 

unexpected hydrological regimes that result in saturated subsurface soils during storm events. In 

particular, the saturation of these subsurface soils could persist at some sites during drier 

conditions due to water inputs from bedrock fracture flow. Infiltration-based green infrastructure 

installed at these sites could experience diminished hydrological function from the high 

antecedent soil moisture conditions inhibiting a timely redistribution of stormwater to the 

subsurface.  

 Infiltration is a dynamic process that is affected by slope, water input rates, and 

antecedent soil moisture content (Nassif and Wilson, 1975). Drier soils allow for higher 

infiltration rates due to negative pore pressure pulling water into the soil matrix, and saturated 

conditions slow infiltration rates due to positive pore pressures exerting force against inflowing 

water (Dingman, 1994). If lateral fluxes of subsurface soil water downslope are slow due to low 

hydraulic conductivities, infiltration becomes limited to those hydrologic controls. Studies have 

found that high antecedent soil moisture conditions led to hydrological failure of infiltration-

based green infrastructure for these very reasons (Hardie et al., 2011; Hood et al., 2007; 

Williams and Wise, 2006). The improper function arose from inhibitions to infiltration and was 

found to lead to structural overflow (Warnaars et al., 1999) and higher surface runoff at the site 

than were expected (Penna et al., 2011). The high soil water content of deep soils at Beacon 

creates a sustained, shallow water table at 60-90 cm below the surface that can lead to decreased 

hydrologic function of any infiltration systems installed at the site. If groundwater levels were 

deeper (> 1 m below the bottom of the structure), redistribution of stormwater out of the 

infiltration structure would be enhanced from vertical and lateral flow infiltration (Figure 3.23a); 
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however, the shallow water table can inhibit vertical flow, so stormwater will not be able to 

move away from the infiltration structure as quickly, resulting in decreased infiltration rates near 

the infiltration structure (Figure 3.23b) (Bouwer, 2002). Although Schenley does not have a 

shallow water table during dry periods, bottom-up wetting pushes the water table upwards during 

storm events and can cause similar issues. Currently, short-term drainage after storm events are 

more rapid at Schenley than at Beacon, but continuous inputs of stored water from green 

infrastructure could lead to more prolonged saturation and thus lower infiltration rates 

throughout the soil profile. 

 

 
 

Figure 3.23: Limits to infiltration from groundwater depth. The diagram shows how 

groundwater depth affects the function of infiltration-based green infrastructure. (a) Water can 

infiltrate vertically and laterally when water tables are deep, but (b) vertical infiltration is limited 

when water tables are shallow (modified from Bouwer 2002). 

 

 

Without rapid stormwater redistribution, water inputs from green infrastructure at Beacon 

and Schenley can lead to groundwater mounding (Figure 3.23b), which has been shown to 

decrease structural integrity of the infiltration device and cause damage to local infrastructure 

(Endreny and Collins, 2009; Göbel et al., 2004). Groundwater mounding is a particular problem 

for regions with silty-clay soils with low hydraulic conductivities (Machusick et al., 2011), such 
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as those found at Beacon and Schenley. In addition, high antecedent soil moisture in the 

unsaturated zone at the sites will only heighten mounding rates (Göbel et al., 2004). When water 

tables are shallow, the infiltration devices at the sites will create a feedback loop where 

groundwater mounding causes decreased infiltration rates in surrounding soils, which will in turn 

lead to more heightened mounding. In addition to this, infiltration devices are not encouraged for 

stormwater management in regions with shallow water tables and high antecedent soil moisture 

(Shuster et al., 2007) because of the risk of contamination of local aquifers from pollutants in the 

infiltrated stormwater (Pitt et al., 1999).  

The less than optimal hydrological conditions at Beacon and Schenley could prevent 

existing infiltration devices from functioning properly by inhibiting infiltration, promoting 

groundwater mounding, and increasing risks of groundwater contamination. If other hillslope 

regions within Pittsburgh have similar soil water dynamics, then infiltration-based green 

infrastructure may not be the best option for sustainable stormwater management for the city. 

 

3.4.3 Continuous Monitoring as a Site Evaluation Tool 

Continuous spatial and temporal monitoring of soil moisture throughout the soil profile can yield 

more comprehensive interpretations of local soil water dynamics than traditional evaluation 

tools. Traditional field techniques use soil trenches and infiltration tests to collect site-specific 

hydrological data, but these methods can only give a representative view of local soil water 

dynamics by conducting thorough, long-term observations and re-sampling of soils during 

various dry and wet periods (Barbosa et al., 2012; Tromp‐van Meerveld and McDonnell, 2006), 

but this can be a tedious and costly process. Other studies have shown the importance of 

continued, site-specific hydrological analyses to properly understand local subsurface processes 
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and the impacts to green infrastructure (Bronstert and Bardossy, 1999; Shuster et al., 2007). This 

study agrees well with previous work (Lin and Zhou, 2008) that has shown the applicability of 

in-situ soil moisture monitoring in understanding soil water dynamics. However, the study is also 

limited by sampling extent, and interpretations of the hydrological regime may just be a snapshot 

of a more spatially dynamic system. Previous studies found that soil water dynamics and storm 

response were strongly dependent on the spatial variation of average antecedent soil moisture 

across a hillslope, especially during dry seasons (Bachmair and Weiler, 2011; Bronstert and 

Bardossy, 1999). More accurate predictions of storm response can be made when considering 

spatial variability of soil moisture (Western et al., 1999); therefore more spatially extended 

monitoring efforts across hillslopes are needed to clearly understand subsurface soil water 

dynamics at sites being evaluated for infiltration-based green infrastructure.  

The interpretation is also only representative of drier, summer months, but local 

hydrological regimes experience drastic seasonal changes. In temperate climates like those in 

Pennsylvania, soils remain saturated throughout the winter months. Cold temperatures and low 

evapotranspiration rates cause slow lateral flow in the soils and decreases infiltration rates 

(Bouwer, 2002), leading to higher seasonal water tables. Saturated winter soils experience more 

frequent runoff events even when infiltration devices are present (Fletcher et al., 2013; Hamel et 

al., 2013), so winter and spring data should also be collected and analyzed for storm response 

and effects from snowmelt. Having complete temporal analyses can give insight into 

implications for infiltration-based green infrastructure year-round. 

Data from continuous monitoring of soil moisture can also be used to better design and 

calibrate models of hillslope subsurface flow to give a more accurate representation of soil water 

dynamics at that site (Esteves et al., 2000). This can aid in better predictions of green 
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infrastructure function over time. The most commonly used models for site evaluation are 

designed as rainfall-runoff models that operate off inputs from local databases and basic field 

measurements (Fletcher et al., 2013). However, these models would not be able to predict 

unexpected influences from subsurface soil water processes like those found at our sites without 

thorough field analyses. Some hydrological models account for the influences of shallow 

groundwater tables on green infrastructure function, but knowledge from field observations was 

needed first to predict these dynamics (Jeppesen and Christensen, 2015). In addition, most 

models are not designed to include water inputs and outputs from bedrock fracture flow (Tromp-

van Meerveld and Weiler, 2008), but soil moisture data can reveal if these processes are 

important to local water balances and can then be reincorporated into the program to create more 

accurate predictions. Though models can be calibrated with data to more adequately reflect 

hydrology, these are limited to the quality of the calibration data (Jacobson, 2011). Hamel (2013) 

suggests that current-day models be optimized through research on long-term, continuous, direct 

observations of local hydrological conditions, to better predict functionality of infiltration-based 

green infrastructure. The continuous monitoring methods presented in this study can provide the 

thorough evaluation of subsurface soil water dynamics that are needed to supplement 

hydrological models designed to determine long-term functionality of infiltration-based green 

infrastructure. 
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4.0 CONCLUSIONS 
 

 

 

In urbanized areas, large volumes of stormwater runoff from impervious surfaces can overwhelm 

sewer systems and be redirected as overflow into local waterways. In cities with antiquated 

combined sewer systems, these overflow events pose a risk to water quality and public health by 

delivering both stormwater and waste into receiving waters. Allegheny County, PA, has the 

largest number of combined sewer overflow inputs in the nation, and is developing a wet weather 

plan to help mitigate overflow events by implementing innovative stormwater management 

practices through the use of green infrastructure. Green infrastructure commonly utilizes 

infiltration systems to convey surface runoff from impervious surfaces into surrounding soils in 

order to reconnect stormwater to subsurface flow. In order to assess the efficacy of infiltration-

based green infrastructure in urban areas of Allegheny County, PA, we explored potential 

limitations to infiltration from local impervious cover thresholds and from existing subsurface 

soil water dynamics.  

In the first study (see Section 2.0), effective precipitation rates from varying percentages 

of impervious cover were calculated and compared to locally averaged infiltration rates, with the 

assumption that storms with effective precipitation rates higher than infiltration rates will 

generate runoff. In Allegheny County, the effective precipitation of a 1-inch storm surpassed 

local infiltration rates at 60% impervious cover, which was determined as the impervious cover 

threshold above which stormwater loading would overwhelm adjacent pervious surfaces. This 
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suggests that infiltration-based green infrastructure installed in regions with >60% impervious 

cover would be overwhelmed by stormwater inputs and could degrade infiltration systems via 

clogging and increased pollutant loading, which also risks contaminating local groundwater. 

However, more site specific investigations of infiltration rates in these regions can better 

characterize thresholds within smaller-scale catchments. 

The second study (see Section 3.0) used continuous spatial and temporal monitoring of 

soil moisture content to characterize subsurface soil water dynamics at two hillslope sites 

(Beacon and Schenley) in Pittsburgh, PA. The Beacon site was found to have high antecedent 

soil moisture conditions in deep soil layers which could suggest the presence of a shallow water 

table, and the Schenley site experienced an unexpected bottom-up wetting regime during storm 

events. Any infiltration-based green infrastructure installed at these sites would experience 

decreased hydrological function because these conditions decrease infiltration rates of 

surrounding soils and available water storage for stormwater inputs. More spatially extensive 

monitoring would be needed to determine the variability of subsurface soil water dynamics 

across the catchment. 

The use of green infrastructure to mitigate stormwater runoff entering local sewer 

systems is a more sustainable option to the expansion and maintenance of existing grey 

infrastructure in Allegheny County; however, knowledge gaps in the placement of infiltration 

systems can lead to poor investment into green infrastructure that is not the best option for that 

site. The research presented here suggests that infiltration-based green infrastructure may not be 

the best stormwater management practice for urban areas of Allegheny County due to high 

probability of early hydrological failure of the systems or groundwater contamination. More 

thorough site evaluation tools and standards are needed to determine the efficacy of infiltration 
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systems within geologically and hydrologically unique watersheds. Continuous spatial and 

temporal monitoring of soil moisture can give a better representation of subsurface soil water 

dynamics than conventional techniques, and can therefore be used to identify regions that are 

unsuitable for infiltration of stormwater. In addition, determining local impervious cover 

thresholds can yield better predictions of catchment-specific limits to infiltration than state or 

federal standards. These methods will help to avoid improper placement of infiltration-based 

green infrastructure or to identify regions where these systems will need augmentation with other 

stormwater management practices. 
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