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PROBING LOW-REDSHIFT GALAXIES USING QUASAR ABSORPTION

LINES WITH AN EMPHASIS ON Ca ii ABSORPTION

Gendith M. Sardane, PhD

University of Pittsburgh, 2015

We searched for intervening CaII absorption in nearly 95,000 quasar spectra with i≤20 from

the Sloan Digital Sky Survey(SDSS) data releases DR7+DR9. Our identification of >400

CaII systems is the largest compilation of CaII absorbers in a blind search. Unlike other

absorption line species with similar strengths, a single exponential profile is insufficient to

describe the sensitivity-corrected CaIIλ3934 rest equivalent width distribution. Instead, two

distributions are needed to describe the CaII absorbers, suggesting that there are at least

two distinct absorber populations. The two populations can roughly be separated to lie

above and below W λ3934
0 = 0.7Å. Using this 0.7Å value to separate absorbers, we find from

composite spectra that the mean dust content of the strong absorbers makes them nearly

six times more reddened than the weak absorbers. Also, the mean element abundance

ratios of the strong absorbers are intermediate to that of disk- and halo-type gas, while the

abundance patterns of the weak absorbers are consistent with Milky Way halo-type gas. For

absorbers with zabs . 0.4 we identified associated galaxies in four cases using rare overlapping

SDSS data. The four galaxies have impact parameters between 5-25kpc and luminosities

between ∼0.1-1L?r. The most reliable brightness profiles derived from stacked composite

images reveal a more concentrated and steeper light profile for the stronger absorbers. The

average luminosity-weighted impact parameter is ≈26kpc for strong absorbers, and ≈48kpc

for weak absorbers.

We also conducted the first Hubble Space Telescope quasar absorption line study to

search for absorbing gas in M31. While galaxies in the distant universe can normally be
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probed with only one quasar sightline, this study of M31 utilized ten sightlines with impact

parameters between 13-112kpc. Low- and high-ionization metal-line absorption systems

arising in M31 were associated with its high velocity clouds and its disk and halo gas.

However, contrary to the standard picture that metal-line absorption systems in quasar

spectra arise in extended halos of galaxies, the four outermost sightlines showed no metal-line

absorption to within our observational limits. Along sightlines where M31 MgIIλλ2796,2803

absorption was detected, the absorption was significantly weaker than that attributed to

high-redshift galaxies at similar impact parameters.
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1.0 INTRODUCTION

1.1 THE BIG PICTURE: THE FORMATION AND EVOLUTION OF GAS

AND GALAXIES IN THE UNIVERSE

The modern-day dynamical model of the expanding Universe has it originating ∼ 13.7 bil-

lion years ago in a hot “big bang.” The Universe is currently dominated by Dark Energy

(∼68%) and non-baryonic Dark Matter (∼27%). Moreover, the remaining ∼5% is normal

baryonic matter in the form of the chemical elements with which we are all familiar (Planck

Collaboration XIII, 2015). While investigations of the nature of the mysterious Dark Energy

and Dark Matter are among the most fundamental to our understanding of modern physics,

significant advances in these areas are likely to require new theories and new instrumentation

on new telescopes. However, observation of the remaining 5% of normal matter is, of course,

possible with present-day technology. Indeed, past results based on observations of normal

matter and the cosmic microwave background have led to the realization that Dark Energy

and Dark Matter must exist.

As part of the standard model of cosmology, it is also known that as the Universe cools

gravity will cause small perturbations to collapse and “halos” (clumps) of Dark Matter will

form. Gas and galaxies will form and sink to the centers of these halos due to radiative

processes. In this cosmic process gas initially collapses to form the first stars in galaxies, but

the entire cosmic process entails many episodes of accretion of gas to form stars in galax-

ies, subsequent outflows (e.g., from supernovae in galaxies), and then new episodes of star

formation in galaxies. Some galaxies will cluster and may merge with one another. Cosmic

chemical evolution will occur. Since redshift equates to look-back time in an expanding

Universe, this cosmic evolution can be studied by observing gas and galaxies as a function
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of redshift.

This thesis primarily describes studies of gas as far back as 8.5 billion years ago. We use

spectroscopy of bright background quasars to probe the foreground gas. In particular, Ca ii

absorbing gas is studied. Compared to other gas that can be studied, it is relatively rare.

However, it is very important because it can be observed to redshift zero using ground-based

telescopes, unlike most other species of absorbing gas, and a subset of Ca ii absorbers are

associated with molecular and dusty regions, which are known to be required conditions

for star formation. Also, we apply our method to the “Great Spiral Galaxy in Andromeda

(M31)” using other absorption species, which creates an important benchmark.

1.2 QUASARS AND QUASAR ABSORPTION LINES

Quasi-stellar objects, or quasars, are not only among the most distant objects detected, but

are also among the most luminous astronomical sources known in the Universe. Quasars

can generate enormous luminosities, ∼ 10 − 1000 times the luminosities of bright normal

spiral galaxies such as the Milky Way and M31, emanating from extremely compact nuclear

regions about the size of the Solar System (< 1 light day). The high luminosities of quasars

imply the important role that they play as cosmological probes, since they can be detected

and identified at large distances. Quasars, therefore, present unique opportunities to probe

the gaseous content of the Universe, since gaseous structures that are normally difficult to

detect in emission leave their signatures as absorption lines in background quasar spectra.

In addition to the strong broad emission features intrinsic to the quasars themselves,

much narrower absorption lines arising in intervening material along the quasar line-of-sight

(LOS) are also found in most high-redshift quasar spectra. These absorption features contain

information on the ionization, metal abundances, and kinematics of the gaseous interstellar

medium (ISM), circumgalactic medium (CGM), and intergalactic medium (IGM) over a wide

range of physical conditions and evolutionary stages at various redshifts.

As the detection of gaseous structures is independent of the luminosity of the absorbing

medium, quasar absorption-line (QAL) spectroscopy can probe much greater depths than
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traditional flux-limited imaging surveys. But the detection of these structures is subject to

surface brightness limitations and k−corrections, and are biased towards the more luminous

sources, especially at higher redshifts. Instead, the detection of gas in absorption is dependent

on the cross-section of the absorbing material. Although luminosity biases are absent in QAL

surveys, a different set of limitations apply such as dependence on quasar brightness, dust

reddening bias, and adequate spectral resolution. A prominent limitation of QAL studies,

however, lies in its normally one-dimensional spatial sampling nature — as pencil-beam

sightlines towards background quasars.

Despite these limitations, the study of intervening absorption lines in the spectra of

quasars has, nevertheless, become a powerful and unique method of deciphering the physical

properties of otherwise invisible gaseous structures, where most of the Universe’s baryons

reside. In conjunction with galaxy surveys, QAL studies, in principle, provide a wealth

of information useful for establishing a comprehensive understanding of the cosmological

distribution and evolution of baryonic matter, and the formation and evolution of galaxies.

1.3 THE TECHNIQUE

A traditional study relating QALs to the gaseous environments of galaxies from which they

originate begins with the detection of an intervening absorption-line system in a quasar

spectrum. As shown in Figure 1.1, each parcel of gas along the LOS to a distant quasar

selectively absorbs certain wavelengths of the continuum light from the quasar. Due to the

expansion of the Universe, the wavelength that is observed in the spectrum is longer than

the rest wavelength absorbed by the gas. The farther away the gas is, the longer it takes for

the photons to reach earth. Since the photons are “locked” into the expansion of space, the

longer the photons have traveled in time, the more they are stretched with the expanding

space of the Universe. Hence, photons from the more distant universe appear at longer

wavelengths, or are redshifted according to

λobs = (1 + z)λ0 (1.1)

3



where z is the redshift, and λ0 and λobs are the vacuum rest and observed wavelengths of

the transition, respectively.

Figure 1.2 depicts a typical one-dimensional quasar spectrum plotted in the observed

optical wavelength frame. The quasar has an emission redshift zem = 3.0. The quasar

continuum and broad emission lines from H i, Nv, Si iv, and C iv transitions are outlined

by the red solid curve. The dashed red curve is the extrapolation of the quasar continuum

blueward of Lyα emission. In this example, the absorption lines indicated by the green

vertical lines are associated with an absorbing galaxy at zabs = 2.78. The image shown in

the top panel of Figure 1.2, taken from the Hubble Ultra Deep Field composite image, is

marked to illustrate an example line-of-sight from a quasar to Earth.

Listed in Table 1.1 are the rest wavelengths and oscillator strengths of some of the

common transitions seen in absorption in quasar spectra. Note that following spectroscopic

convention, we refer to a transition of a neutral atom, X0, as X i and a transition for the

singly-ionized species, X+1, as X ii, etc. This list covers both high and low ionization lines.

In §1.5, we will discuss the significance of these lines as key diagnostics of the different phases

of the ISM, CGM, and IGM.

The rest wavelength of the transition and the wavelength coverage of the spectrograph

determine the redshift range, or equivalently, the cosmic lookback time interval that can be

probed by absorption lines, given a model of cosmology. The lookback time tLB for an object

at redshift z is given by

tLB = tH

z∫
0

dz′

(1 + z′)E(z′)
(1.2)

where tH = H−1
0 is the present Hubble time, and H0 is the present Hubble constant. For the

favored ΛCDM cosmology E(z) is written as

E(z) =
H(z)

H0

= [ΩM(1 + z)3 + (1− ΩM − ΩΛ)(1 + z)2 + ΩΛ] (1.3)

where ΩM and ΩΛ are, respectively, the matter and dark energy density ratios relative

to the critical density today. Current constraints indicate ΩM = 0.317, ΩΛ = 0.683 and

H0 = 67.8 km s−1 Mpc−1, giving tH = 13.7 Gyrs (Planck Collaboration XIII, 2015).
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Figure 1.1: A schematic of a classic QAL study. Light from the distant background quasar

is selectively absorbed by each intervening gaseous structure. Labeled “A,” “B,” and “C,”

the features from more distant sources are observed at redder wavelengths of the spectrum,

as the photon is stretched according to Eqn. 1.1 due to the expansion of the Universe.

Spectrum D is the resulting spectrum of the quasar as seen from Earth; spectra C, B, and

A represent observations of gas at increasingly higher redshift. Image credit: Ed Janssen,

ESO
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Figure 1.2: An example of a typical quasar spectrum at high redshift, zem = 3.0, shown in

the observed frame. The quasar continuum and broad emission lines are marked by the red

curve; its extrapolation towards bluer wavelengths is indicated by the dashed red curve. The

broad emission lines are from the C iv, Si iv, Nv, Lyα and Lyβ transitions, redshifted by

1 + zem. The dense region blueward of the Lyα broad emission line is dominated by narrow

H i Lyα absorption lines referred to as the “Lyα forest,” caused by numerous intervening

“clouds” of highly ionized gas in the IGM. The prominent intervening absorption features

are associated with the absorption system at zabs = 2.78, and are marked using green vertical

lines. The absorption lines are due to high-ionization lines of C iv λλ1548,1550 and Si iv

λλ1393,1402, and low-ionization lines of Si ii λ1526, C ii λ1334 and Si ii λ1304. The broader

absorption lines of neutral hydrogen, H i, are from the Lyα λ1216 and Lyβ λ1025 transitions.

The broad Lyα profile is referred to as a damped Lyα line. Also identified for this system

is the Lyman limit near 3500 Å, which is seen as a break in the spectrum due to absorption

of photons with energies > 13.6 eV, which can ionize neutral hydrogen. An unrelated image

marked to illustrate galaxies that intercept the quasar LOS is shown in the top panel. Image

credit: Michael Murphy. Hubble Ultra Deep Field: NASA, ESA, S. Beckwith (STScI) and

the HUDF Team.
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Figure 1.3 shows the lookback time coverage on the linear vertical axis (with the redshift

coverage on the right hand side vertical axis) for absorption lines that can be observed in

quasar spectra using the Sloan Digital Sky Survey (SDSS) spectrograph. The gray boxes in-

dicate the more ubiquitous QALs. The green box indicates the coverage for Ca ii absorption,

which is a much more rare QAL. As can be seen, Ca ii has the largest lookback time interval,

providing a coverage of ∼ 8.8 Gyrs of cosmic history. Ca ii is a doublet transition resulting

from fine structure splitting the singly-ionized calcium, Ca+1. This is the familiar Ca ii H

& K doublet first seen in the solar spectrum and in the interstellar medium of the Milky

Way (e.g. West et al. 1985, Ben Bekhti et al. 2008). Unlike other QALs, the rest frame

wavelength of the Ca ii transition occurs in the optical at wavelengths 3934 Å and 3969 Å.

This implies that Ca ii has the advantage of being able to study the low-redshift Universe

using ground-based telescopes. Note, especially, that with the Ca ii transition and the SDSS

spectrograph, we can observe more than 4 Gyrs of recent cosmic history that would otherwise

be missed by surveys using the Mg ii QAL. In this thesis, three chapters will be dedicated to

understanding the statistical properties of Ca ii absorbers from the ground-based SDSS sur-

vey, as well as their chemical abundances, dust, reddening, and the properties of associated

galaxies.

1.4 THE ABSORPTION LINE PROFILE

The overall shape of an absorption line profile can be described by a Voigt function, which

results from the convolution of a Lorentzian function with a Gaussian. The Lorentzian

function describes the natural quantum mechanical broadening, which is a consequence of the

finite life-time of excited atomic states within the absorbing gas. The Gaussian contribution

results from the assumption of a Maxwellian velocity distribution of width characterized by

the Doppler parameter, b, which in turn is related to the velocity dispersion of the gas, σ,

b =
√

2σ. If the velocity is solely due to thermal motion then btherm =
√

2kBT/m, where

kB, matom, and T are the Boltzmann constant, atomic mass, and gas kinetic temperature,

respectively. More generally, turbulent motion, usually assumed to be independent of the

7



Table 1.1: Common absorption transitions in

quasar spectra and their oscillator strengths.

Transition fosc λrest[Å]

Lyman Limit - 911.8

Ly γ 0.0290 972.537

Ly β 0.0203 1025.762

Ly α 0.4164 1215.670

Ovi 1031 0.1329 1031.9261

Ovi 1037 0.0661 1037.6167

Si iv 1393 0.5280 1393.755

Si iv 1402 0.2620 1402.770

C iv 1393 0.1908 1548.195

C iv 1402 0.0952 1550.770

Fe ii 2382 0.3200 2382.765

Fe ii 2586 0.0691 2586.650

Fe ii 2600 0.2390 2600.173

Mn ii 2382 0.320 2576.877

Mn ii 2586 0.2710 2594.499

Mn ii 2586 0.1927 2606.462

Mg ii 2796 0.6123 2796.352

Mg ii 2803 0.3054 2803.531

Mg i 2852 1.8100 2852.964
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Figure 1.3: The lookback time coverage of various absorption lines observable with the SDSS

spectrograph. The plot shows the lookback time on the left vertical axis (Eqn. 1.2) and the

redshift on the right vertical axis. The coverage of the most common absorption lines are

shown as gray boxes. The coverage of the much rarer Ca ii transition, which covers more

than ∼60% of cosmic history, is shown in green. Note, especially, that SDSS QAL surveys

using the commonly detected transitions due to Mg ii miss more than 4 Gyrs of the most

recent cosmic history.
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Figure 1.4: The equivalent width is a measure of the strength of an absorption line. It is

defined by the amount of continuum that is absorbed. The area (gray-shaded region) of the

absorption profile on the left is equal to the area of the rectangle on the right. The equivalent

width is then defined as the width of the rectangle which completely absorbs the continuum.
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thermal motion, is also present, so that the Doppler parameter becomes the quadrature

sum of both kinematic components: b =
√
b2
therm + b2

turb. Collisional broadening is often

neglected due to the extremely rarified nature of the gas. Thus, in principle, the line profile is

dominated by the Gaussian component near the line center, called the “Doppler core.” As the

Lorentzian component falls off more slowly than the Gaussian component with displacement

from the line center, extended “damping wings” appear on the profile. See, for example,

Petitjean (1998) and references therein for details on much of the discussion in this section.

The final measured absorption profile is the convolution of the Voigt line profile with the

spectrograph’s instrumental broadening profile, which is usually approximately Gaussian.

The strength of an absorption line is characterized by a single parameter called the rest

equivalent width (REW), or W0, which is a measure of any missing flux in the continuum.

The parameter W0 is independent of the intrinsic line profile or the instrumental broadening

profile. By definition, W0 is given by

W0 =
1

1 + zabs

λ2∫
λ1

(
1− Iλ

Ic

)
dλ =

1

1 + zabs

λ2∫
λ1

(
1− e−τλ

)
dλ (1.4)

where Iλ is the measured flux at wavelength λ, Ic is the interpolated continuum at λ, and

τλ is the optical depth along the LOS, defined by the product of the column density, N , and

the absorption coefficient, αλ. Figure 1.4 graphically illustrates how W0 is conceptualized

and calculated.

The relationship between the gas column density and W0 is known as the “curve of

growth” (COG) for an absorption line. The COG consists of three distinct regimes:

• Unsaturated: A line is said to be “unsaturated” if it is sufficiently weak. In the

optically thin limit where the line center optical depth is τ � 1, the column density

becomes linearly proportional to W0, independent of b. This portion of the COG is

also referred to as the linear portion of the COG. In this limit, W0 gives an accurate

determination of the column density, N , even if the line profile is unresolved. Physically,

as more atoms are added to the absorbing gas, thereby increasing N , W0 increases due

to removal of more photons in the core of the line until the absorption profile saturates.

• Saturated: A line is saturated when the transmitted intensity at the core of the line
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approaches zero. Essentially, no photons at the line center make it through the absorbing

cloud. This occurs when the gas has a sufficiently large column of atoms or ions, but

with negligible contribution from the damping wings of the Lorentzian profile. In this

regime, with ∼ 2− 3 . τ . 103, W0 begins to grow as the product of b and
√

ln(N/b).

This implies that W0 varies very slowly with N , and therefore, is very insensitive to N .

This regime is also called the flat or the logarithmic portion of the COG.

• Damped: In this regime, the Doppler core of the line is totally saturated, but the

damping wings of the line profile provide some measurable partial transparency. This

begins to occur at higher column densities, with τ > 103−4. In this case, W0 does not

depend on b and it varies with N as W0 ∝
√
N . Due to the presence of the prominent

damping wings of line profiles in this regime, this regime is also called the damped or

square root part of the COG. An example of a damped Lyα system was shown in Figure

1.2.

For some transitions, the absorbing level will have allowed transitions to two different

excited states (u1 and u2) due to fine-structure splitting (Draine 2011). In the optically thin

limit, i.e. in the linear regime of the COG, the ratio of the doublet equivalent widths, DR,

simplifies to

DR =
W0,2

W0,1

≈ f2λ2

f1λ2

, (1.5)

where W0,1, f1 and λ1 denote the rest equivalent width, oscillator strength, and rest wave-

length for the state u1, and similarly for u2.

When the lines enter the saturated regime of the COG, the DR is approximately

DR ≈
[

1 +
ln[f2λ2/f1λ2]

ln[τ1/ ln 2]

]1/2

. (1.6)

For many resonance doublet transitions, such as Mg ii λλ2796, 2803, C iv λλ1548, 1550

and Ca ii λλ3934, 3969, the rest wavelengths are separated by only a few Angstroms and the

oscillator strengths have ratios f2/f1 ≈ 2. In these cases, the doublet ratio is an indicator of

the saturation level of the line. That is, an unsaturated line has DR ≈ 2, while a line that

approaches complete saturation has DR ≈ 1.
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1.5 INTERVENING QUASAR ABSORPTION LINE SYSTEMS

1.5.1 Hydrogen Systems

In the local universe, the neutral hydrogen phase is often studied using H i 21-cm emission

using large radio telescopes. However, the collecting areas and radio receiver response of

such telescopes are only large enough to usefully perform 21-cm surveys up to z ∼ 0.2 (Lah

et al. 2007). At higher redshifts, it is also possible to trace H i through 21-cm in absorption

(e.g Kanekar et al. 2006, Gupta et al. 2009), but detections are rare due to the lack of

bright background radio sources. Also, galaxies have low cross-sections to cold, neutral gas

(Prochaska & Tumlinson 2009). For these reasons, the neutral gas content, especially of the

high-redshift universe, is primarily surveyed using QALs.

Depending on the column density of the parcel of gas intercepted by the LOS to the back-

ground quasar, different types of H i absorption-line profiles, belonging to different regions

of the COG arise. These profiles are shown in Figure 1.2, i.e., the weak, narrow absorption

lines in the Lyα forest, the Lyman limit systems (LLS), and the damped Lyα absorption

(DLA).

1.5.1.1 The Lyα Forest Systems. The thicket of narrow absorption lines blueward of

the broad Lyα emission in Figure 1.2 are due to a multitude of intervening clouds containing

trace amounts of neutral hydrogen, mostly with column densities NH i . 1015 cm −2. These

hydrogen clouds are highly ionized with nH0/nH0+H+1 ≤ 10−4, and are kept at temperature

T ∼ 3× 104 K by photoionization heating from the intergalactic UV background light.

1.5.1.2 The Lyman Limit Systems. LLSs are optically thick at the H i Lyman limit

(912 Å), and therefore have NH i > 1017.2 cm−2, which is required for a Lyman limit opacity

τLL > 1. In Figure 1.2, the LLS is identified by the drop in the continuum flux at 3500 Å,

which is due to absorbing clouds at z = 2.8 that are optically thick to Lyman-limit photons

at 912 Å. The energy dependence of the H i ionization cross section leads to a recovery

of the flux at shorter wavelengths. LLS are tracers of a mix of ionized and neutral gas at
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temperatures of T ∼ 1-4×104 K. LLS with NH i > 1020.3 cm−2 are referred to as the DLAs.

1.5.1.3 The DLA Systems. These systems are intervening H i systems (T ∼ 1− 10×
102K) with NH i ≥ 2×1020 cm−2. At such high column densities, there is a sufficient degree

of self-shielding in the gas against UV background sources that the gas is essentially neutral.

At NH i ∼ 1019 cm−2, the damping wings of the Voigt profile become prominent, so that

these profiles are resolved even with lower-resolution spectrographs (FWHM ∼ 5 − 10 Å).

Since the first survey for DLAs nearly three decades ago (Wolfe et al. 1986), it has been

accepted that they contain the bulk of the neutral gas content of the universe (Lanzetta,

Wolfe & Turnshek 1995; Rao, Turnshek & Nestor 2006), which may provide the neutral gas

reservoirs for fuel for subsequent star formation.

1.5.2 Metal Lines Systems

In addition to the hydrogen absorption line systems listed above, absorption lines due to

metal-line transitions are also frequently seen when the metal content of the gas is large

enough. The most common of these are due to the low-ionization transitions, such as the

Mg ii λλ2796, 2803 doublet and Fe ii λ2586, Fe ii λ2600 transitions, and high-ionization tran-

sitions from the resonance doublet transitions of Ovi λλ1031, 1037, Si iv λλ1393, 1402 and

C iv λλ1548, 1550 with rest wavelengths indicated in Table 1.1. The ubiquity of these lines

in a quasar spectrum is due to their significant cosmic abundances and oscillator strengths,

f . Note that these lines are, for practical reasons, usually surveyed redward of the Lyα broad

emission to avoid confusion with Lyα forest lines. The low-ionization lines are used to trace

the physical conditions and kinematics of the warm neutral gas in the ISM/CGM/IGM at

T ∼ 104 K. High ionization lines such as C iv and Si iv, on the other hand, are used to trace

the kinematics of the ionized IGM/CGM at temperatures roughly a few times 104 K. The

even higher ionization lines of Ovi trace the hot diffuse gas at T ∼ 106 K.
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1.5.2.1 The Low-Ionization Mg ii Absorption Lines

The relatively long wavelengths of the Mg ii doublet, coupled with their large oscillator

strengths, make this doublet among the most studied metal quasar absorption lines in the

literature (e.g. Lanzetta, Turnshek & Wolfe 1987, Steidel, Dickinson & Persson 1994, Nestor

et al. 2005, Churchill et al. 2005, Quider et al. 2010, Zhu & Menard 2011; Rao et al.

2013; Seyffert et al. 2013). The doublet is easy to identify and traces the redshift regime

0.4 . zabs . 2.4 in SDSS quasar spectra (York et al. 2000). The tremendous increase in

the number of quasars identified in the SDSS since the initial data release has resulted to

the identification of more than 40,000 absorbers in the seventh data release (Zhu & Ménard

2013) which has since increased two-fold in the twelfth data release.

In Chapter 5, I will present results on the first ever use of quasar sightlines to probe the

extended disk region of the great spiral galaxy in Andromeda, M31, our nearest large spiral

galaxy neighbor. This is based on Hubble Space Telescope (HST) observations of Mg ii in

absorption.

1.5.2.2 The Low-Ionization Ca ii Absorption Lines

As apparent in Figure 1.3 and Table 1.1, the transitions used in QAL studies almost

all lie in the rest frame UV, so the absorbers are usually at moderate to high redshifts.

Even with the large number of absorbers available from SDSS Mg ii surveys, more than

60% of cosmic history is still largely inaccessible through SDSS spectroscopy. The option

of using space-based facilities such as the HST to perform very large UV quasar absorption

line surveys is problematic due to the limited availability of HST observing time. Thus, the

general lack of metal-line absorbers at very low redshifts makes studies of galaxies in the

vicinity of absorbers difficult.

However, the Ca ii λλ3934,3969 absorption doublet falls at optical wavelengths where

large numbers of SDSS quasar spectra are now available. Ca ii absorption is also rare, in

part because it is found in cool neutral regions, which may contain molecules and dust (Wild

& Hewett 2005; Wild et al. 2006; Wild et al. 2007; Nestor et al. 2008; Zych et al. 2009). In

other words, the integrated cross section of Ca ii absorbers on the sky is small. Despite the
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low incidence of Ca ii, this thesis has taken advantage of the huge number of existing SDSS

quasar spectra. We use these to identify and compile the largest sample of Ca ii absorbers

to date. The advantage of our very low redshift sample is that Ca ii absorption can be used

as a tracer of cool gas in the vicinity of galaxies which cannot be detected at higher redshift.

As will be described in §1.6, the three chapters of this thesis will cover the results on the

search for, and analysis of, SDSS Ca ii absorbers.

1.5.2.3 The High-Ionization Metal Lines

In addition to low-ionization metal lines, high-ionization QALs may also arise in quasar

spectra. Common examples of these are the C iv and Ovi resonance doublet transitions.

Their relatively short rest wavelengths imply that they probe the intermediate to high red-

shift Universe in optical surveys. In the SDSS, C iv QALs probe 1.5 . zabs . 4.5, while the

Ovi QALs probe much higher redshifts, 2.7 . zabs . 7.9. Consequently, UV space-based

studies with HST are often required for Ovi studies at low redshift.

The C iv (e.g. Steidel 1990; Barlow & Tytler 1998; Schaye et al. 2003; Becker, Rauch

& Sargent 2009; Cooksey et al. 2013) and Ovi (e.g. Frank et al. 2010; Pieri et al. 2010a)

transitions have been well studied primarily because they are relatively strong transitions

of common metals. Only C iv can be observed redward of the Lyα forest. These absorbers

are generally produced from regions of low density under a hard UV background (Muzahid

et al. 2012). In addition to being observed in only high-ionization gas, observations have

shown that highly ionized gas detected in C iv and Ovi absorption are seen in DLAs (Lu

et al. 1996; Ledoux et al. 1998; Wolfe & Prochaska 2000a; Fox et al. 2007), in sub-DLAs

(Dessauges-Zavadsky et al. 2003; Péroux et al. 2003; Richter et al. 2005), and in LLSs

(Bergeron et al. 1994; Kirkman & Tyler 1997, 1999). As one moves to lower columns of H i

from the DLAs to LLSs, one samples progressively more remote and highly ionized regions

of galaxy halos, with most gas in the LLSs lying outside the halo virial radius (Maller et al.

2003; Davé et al. 1999). Hence, these types of absorbers may be tracers of the low-density

CGM and IGM, arising in the extended halos of galaxies or feedback zones from galactic

outflows (Bergeron & Herbert-Fort 2005; Simcoe et al. 2006.)
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1.6 ORGANIZATION

This thesis seeks to build upon quasar absorption-line studies that focus on the low-redshift

Universe. First, in particular, Ca ii QALs have up until now been under-represented due to

their rarity, but nevertheless are important diagnostics of key physical gas properties such

as gas density, degree of self-shielding, and dust content. Secondly, future UV spectroscopy

of quasars behind the M31 galaxy can build upon the results presented in Chapter 5 by

acquiring higher signal-to-noise and resolution spectra which will probe down to much weaker

W0. In particular, higher resolution can be used to better study gas kinematics relative to

21 cm emission measurements, and/or using a greater number of sightlines to probe various

locations of a galaxy’s extended halo and disk regions. The rest of the thesis is organized as

follows.

Chapter Two: Ca ii Absorbers in the Sloan Digital Sky Survey: statistics

This work has been published as Sardane, Turnshek & Rao 2014, MNRAS, 444, 1747.

Chapter Three: Ca ii Absorbers in the Sloan Digital Sky Survey: chemical abundances and

dust

This work is the second paper in the series of papers on Ca ii absorbers in the SDSS, and

has been published as Sardane, Turnshek, & Rao 2015, MNRAS, 452, 3192.

Chapter Four Ca ii Absorbers in the Sloan Digital Sky Survey: associated galaxies

This work (Sardane, Turnshek & Rao) is the third and final paper in the series of papers

on Ca ii absorbers in the SDSS. This paper is in preparation for submission to MNRAS.

Chapter Five: Probing the Extended Gaseous Regions of M31 with Quasar Absorption

Lines

This work has been published as Rao, Sardane, Turnshek, et al., 2013, MNRAS, 432,

866. I was responsible for the data reduction, measurement, and analysis of UV data

from the Cosmic Origins Spectrograph on the HST for ten quasar sightlines through M31.

Chapter Six: Summary and Conclusions

This chapter summarizes the results of the various projects in this thesis, and outlines

some goals both for future projects and those that are already underway.
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2.0 Ca ii ABSORBERS IN THE SLOAN DIGITAL SKY SURVEY:

STATISTICS

The contents of this chapter have been published in Sardane, Turnshek and Rao, 2014,

Monthly Notices of the Royal Astronomical Society, 444, 1747 - 1758.

2.1 INTRODUCTION

A successful and complete theory of galaxy formation and evolution must not only explain

the properties of the luminous components of galaxies, but also account for the properties,

kinematics, and evolution of gaseous structures associated with them. Quasar absorption

lines (QALs) are an extremely powerful probe of the physical properties and kinematics of the

gas in galactic, intergalactic and circumgalactic environments. Since the detection of gaseous

structures in absorption is independent of the luminosity of the absorbing medium, quasar

spectroscopy has been crucial in providing a wealth of information on the distribution and

evolution of matter in the Universe. Without the selection bias caused by galaxy brightness

and surface brightness limitations, one can identify structures that are fainter than what

traditional imaging studies allow. QAL studies have resulted in the identification of a gamut

of intervening gaseous absorbers from the coolest molecular clouds detected in H2 (e.g.,

Noterdaeme et al. 2008) to the predominantly neutral regions identified as H i damped

Lyman alpha systems (DLAs) and low-ionization Mg ii absorbers (e.g., Noterdaeme et al.

2012, Rao, Turnshek, & Nestor 2006, Quider et al. 2011, Seyffert et al. 2013), as well

as hot ionized plasma in the extended halos of galaxies (e.g., Werk et al. 2014). The

resonance transitions for the most common atoms and ions fall in the rest-frame ultraviolet
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(UV). Consequently, the QALs used to explore and make identifications of these various

gaseous components have often concentrated on absorbers at moderate to high redshifts

where these lines fall at wavelengths accessible to optical ground-based telescopes. Given

available time allocations, the option of using space-based telescopes such as the Hubble

Space Telescope (HST) to perform large UV QAL surveys is impractical, expensive, and

unrealistic. Consequently, large statistical studies of absorption line systems and the gaseous

components of low-redshift galaxies that they trace are lacking.

One particular class of absorber, which falls at optical wavelengths at low redshift, is that

traced by the Ca ii H & K doublet, i.e. Ca ii λλ3934, 3969. It is a resonance doublet transition

of singly ionized calcium from the ground state with rest-frame wavelengths λ = 3934.78 Å

(Ca ii K) and λ = 3969.60 Å (Ca ii H). The energy required to photoionize the neutral Ca

atom is 6.11 eV. However, the energy required to photoionize Ca+ is only 11.87 eV, a value

that is slightly less than the ionization potential of H i. Thus, Ca+ may not be the dominant

ionization state of calcium. Moreover, Ca is a highly refractory element, being among the

most depleted in the interstellar medium (Savage and Sembach 1996; Wild and Hewett 2005;

Wild, Hewett & Pettini 2006). Thus, Ca ii is a rare class of absorber, which nevertheless

is an important diagnostic of key physical properties of the gas such as its density, degree

of self-shielding, and dust content. To emphasize this point, we further note that detailed

spectroscopic studies of the astrophysical properties of Ca ii absorbers (e.g. Zych et al.

2009, Richter et al. 2011, Crighton at al. 2013) reveal that they exhibit a variety of neutral

hydrogen column densities, sometimes exhibit H2, have a range of dust to gas ratios, and

are sometimes associated with environments which give rise to high-ionization metal lines.

Ca ii absorption has been proposed to arise in environments where some fraction of the

dust grains has been destroyed, and the fraction of Ca in the gas phase enhanced due to

shocks driven by supernovae associated with recent star-formation (Routly & Spitzer 1952).

More recent studies of a handful of Ca ii absorbers (Wild & Hewett 2005; Wild, et al. 2006;

Wild, Hewett & Pettini 2007; Nestor et al. 2008; Zych et al. 2007; Zych et al. 2009) indicate

that Ca ii systems with Wλ3934
0 & 0.2 Å preferentially reside in dense, dusty, neutral, metal-

rich, H2-bearing environments — the reservoirs for subsequent star-formation.

Intervening Ca ii absorption associated with low-redshift galaxies were detected in quasar
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spectra early in the history of QAL spectroscopy. See Blades (1988) for a summary of early

detections. The first systematic attempt to establish the extent of Ca ii absorption in present-

day galaxies was carried out by Morton, York & Jenkins (1986). Their search, which used

seven background quasars, was unable to detect any absorption above their sensitivity limits

at projected galactocentric distances of ∼ 10 − 300 kpc. Subsequent work by Bowen et

al. (1991) and Bowen (1991) using background quasars found to be fortuitously close to

z . 0.1 foreground galaxies suggested that Ca ii absorption occurring beyond ∼ 20 kpc from

a galaxy’s center is relatively weak, with Ca ii K rest frame equivalent widths Wλ3934
0 . 0.2 Å,

and distributed non-homogeneously around the galaxies. They detected a single Ca ii system

with Wλ3934
0 ≈ 0.6 Å and within ∼ 10 kpc from a galaxy’s center. They suggested that

Ca ii absorption may arise from material deposited through galaxy interactions. In addition,

results on the extent of Ca ii absorbers have been discussed in the literature (e.g. Ben Bekhti

et al. 2008, Richter et al. 2011) in terms of being distant analogs of the intermediate and

high velocity clouds in the halo of the Milky Way, as they appear to trace neutral and partly

ionized gas clouds in the halos and circumgalactic environments of galaxies.

Recent measurements (Zhu & Menard 2013) of the average density profile of Ca ii gas

around galaxies out to ∼ 200 kpc using cross-correlation analysis of the positions of ∼ 106

foreground galaxies with ∼ 105 background quasars in the Sloan Digital Sky Survey (SDSS)

concluded that most of the Ca ii in the Universe is in circum- and intergalactic environments,

and that the Ca ii content in galaxy halos is larger for galaxies with higher stellar mass and

star formation rates.

Studies of the extent of rare Ca ii absorbers around galaxies will, therefore, place im-

portant empirical contraints on models for the existence of cool gas in the extended regions

of galaxies. This includes models of cold accretion (e.g. Dekel & Birnboim 2006, Kereš

et al. 2009, Stewart et al. 2011, and references therein); and models relying on radiation

pressure driving from massive clusters followed by ram pressure driving from SNe (e.g, Nath

& Silk 2009, Murray et al. 2011, Sharma & Nath 2012, and references therein), which can

launch cool gas out beyond 50 kpc. These processes have implications for the fueling and

evolution of galaxies (Davé, Oppenheimer & Finlator 2011; Davé, Finlator & Oppenheimer

2011, and references therein); cold accretion fuels star formation, while resulting feedback
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and outflows quench it. Furthermore, such studies are useful in understanding trends in the

colors, luminosities, morphologies and orientations of galaxies, as well as the dust-content

and metal-enrichment of the IGM/CGM. Since Ca ii can be detected in ground-based surveys

down to z = 0, the lowest redshift Ca ii systems allow for detailed studies of the absorbers

and their host galaxy environments.

In this paper, we present the results from the largest sample of Ca ii λλ3934, 3969 ab-

sorbers ever compiled. In a blind survey of roughly 95, 000 quasar spectra from the Seventh

and Ninth Data Release of the SDSS (SDSS-DR7, DR9), we identified 435 Ca ii doublets

with W λ3934
0 ≥ 0.16 Å. The wavelength coverage of the SDSS spectrum allows us to probe

the redshift interval z < 1.34, which corresponds to ∼ 8.9 Gyr of cosmic history. More im-

portantly, of all the ionic transitions commonly observed in SDSS spectra, only Ca ii provides

ground-based access to the low redshift regime of z < 0.34, which is equivalent to 4 Gyrs

of cosmic history. This work, which primarily aims to present a statistical description of

Ca ii systems in low-resolution SDSS spectra, is the first in a series of chapters exploring the

properties of these rare absorbers. Follow-up analysis on their chemical and dust depletion

properties, and their connection to potential host galaxies, will be discussed in forthcoming

chapters in the series.

The paper is organized as follows: In §2.2 we describe the data reduction process: the

continuum fitting and line-finding algorithms, the selection criteria we imposed, and tests for

systematic biases. We then present our main results in §2.3, where we derive the absorber rest

equivalent width (REW) parametrization and evolution and the absorber redshift number

density and its evolution, along with results on Ca ii doublet ratios and how the incidence

of Ca ii absorbers compares with that of Mg ii absorbers. In §2.4, we discuss evidence

for two populations of Ca ii absorbers. We summarize and present our conclusions in §2.5.

Throughout the paper, we assume a standard ΛCDM cosmology with H0 = 71 km s−1Mpc−1,

ΩM = 0.27, and ΩΛ = 0.73 (Spergel et al. 2007; Komatsu et al. 2011).
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2.2 THE SDSS Ca ii CATALOG

From its early beginnings, the SDSS (York et al. 2000) has been pivotal in advancing

moderate resolution quasar absorption line spectroscopy by providing a huge increase in

the number of quasar spectra available for absorption line surveys. Spectroscopy from the

SDSS-I/II data releases has resulted in over 100,000 quasar spectra in the seventh data release

(Schneider et al. 2010). The spectra were obtained using a pair of similar multi-object fiber

spectrographs mounted on a dedicated 2.5-m wide-field telescope. Each spectrograph has

640 three-arcsecond-diameter fibers, with a combined spectral coverage of 3800 − 9200 Å.

More recently, the ninth data release provided an additional ∼ 80, 000 quasar spectra (Ahn

et al. 2012; Pâris et al. 2012) from ∼ 1.5 years of data from the SDSS-III Baryon Oscillation

Spectroscopic Survey (BOSS, Schlegel et al. 2007; Dawson et al. 2013). The improved

BOSS spectrograph (Smee et al. 2013) has 1000 two-arcsecond-diameter fibers, and has an

extended wavelength coverage of 3600− 10, 400 Å. Both the SDSS and BOSS spectrographs

have approximately the same resolution ranging from 1500 at 3800 Å to 2500 at 9000 Å.

In this work, we utilize the most recent entries found in the SDSS DR7 and DR9 quasar

catalogs of Schneider et al. (2010) and Pâris et al. (2012), respectively. The SDSS spectral

coverage corresponds to an absorption redshift interval of z < 1.34 in the Ca ii λ3934 absorp-

tion line. We confined our search for Ca ii absorption lines in the BOSS data set to redshifts

z < 1.34 even though the BOSS quasar spectra have redshift coverage up to z = 1.64.

2.2.1 Quasar Sample Selection

In order to ensure adequate signal-to-noise ratios, we restricted the quasar sample to SDSS

fiber magnitudes of i < 20, and to minimize the incidence of galaxies that have been misiden-

tified as quasars, we only considered quasars with zem ≥ 0.1. In addition, we searched for

Ca ii at wavelengths greater than 6000 km s−1 redward of the quasar Ly-α emission line.

The quasar with the highest redshift in our sample has zem = 6.0. We used the catalogs

compiled by Shen et al. (2011) for SDSS DR7, and extended by Pâris et al. (2012) for

SDSS DR9, to exclude broad absorption line quasars from our search. Altogether, 94, 114
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quasar spectra were useful for the search of the Ca ii absorption doublet. The distribution

of emission redshifts, zem, of the quasar sample is shown in Figure 2.1. The distribution has

a mean of <zem>= 1.4.

2.2.2 Data Reduction

The construction of our Ca ii absorber sample closely follows the methods adopted for the

construction of the University of Pittsburgh SDSS Mg ii catalog described in Nestor et al.

(2005), Rimoldini (2007), and Quider et al. (2011). Quite generally, our data reduction

proceeds three-fold as follows: (1) automated quasar processing, (2) visual inspection of the

automatically flagged doublet candidates, and (3) measurement of the line strengths of the

doublets that passed the stringent visual inspection.

The automated processing procedure consisted of two stages, i.e., the pseudo-continuum

normalization and the search for Ca ii doublets. A combination of cubic splines and Gaus-

sians were employed to determine the pseudo-continuum fit, which included both the true

continuum as well as the broad emission features. In Figure 2.2, we show an example spec-

trum with the pseudo-continuum fit overplotted in red. For the vast majority of spectra, the

continuum-fitter worked quite well, even in regions of poor signal-to-noise ratios. The error

in the normalized flux is derived by dividing the flux error array by the fitted continuum.

We do not propagate any errors in the continuum fit to determine the normalized error ar-

ray. However, we will later show that a 20% error in continuum level determination is not

the dominant source of uncertainty; given the relatively small number of detected systems,

statistical Poisson errors are still the major source of uncertainty.

All normalized spectra were then searched for Ca ii absorption using a line-finding algo-

rithm that flags possible Ca ii candidate doublets based on the doublet separation and line

significance levels. To isolate a sample of intervening absorbers, we only accepted candidates

that were separated in velocity by at least 6000 km s−1 from the quasar emission redshift,

and from z = 0. Thus, biases that could arise due to an over-density of absorbers in the

vicinity of quasar environments and the Milky Way, respectively, were minimized.

All candidate doublets were then visually inspected to check for satisfactory continuum
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Figure 2.1: The distribution of emission redshifts of the SDSS quasars, with magnitudes

i < 20 and zem ≥ 0.1, used to search for the Ca ii λλ3934, 3969 absorption doublet. The

distribution has a mean of <zem>= 1.4, and a maximum redshift of zem = 6.0.
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Figure 2.2: An example quasar spectrum with the psuedo-continuum fit overplotted in red.

In this example, zem = 1.720, and the median error is ∼ 2.6% of the flux.
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Figure 2.3: An example Ca ii absorber system at zabs = 0.819. The green dot-dash curve is

a double Gaussian profile that was fit simultaneously to both members of the doublet. Note

that to emphasize the feature, as well as its error array, the spectrum is truncated between

∼ 0.1− 0.8 in normalized flux units.
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fits, blends, and potential false detections due to the presence of absorption lines at other

redshifts that could mimic the Ca ii profile. We further note that we painstakingly exam-

ined each absorption feature flagged by the line-finding routine and retained systems after

eliminating every other possibility. In order to identify a Ca ii system, we required the

detection of the λ3934 line and the λ3969 doublet partner. We required a 5σ minimum

level of significance for the λ3934 line and a 2.5σ minimum level of significance for the

λ3969 doublet partner. From their oscillator strengths, f = 0.682 for the λ3934 line and

f = 0.330 for the λ3969 line (Kramida et al. 2013), the secondary λ3969 line is expected to

be roughly half as weak as the primary λ3934 line in the unsaturated regime. We measured

the doublet REWs, W λ3934
0 and W λ3969

0 , by fitting unresolved Gaussian profiles to both lines

simultaneously, with full width half maxima (FWHM) given by the resolution of the SDSS

spectrograph. Candidates with doublet ratios (DRs) that were outside the physically allowed

range of 1.0− σDR ≤ W λ3934
0 /W λ3969

0 ≤ 2.0 + σDR were eliminated. The error in the doublet

ratio, σDR, was estimated assuming Gaussian uncertainties. The redshift of an absorber was

determined from the weighted average of the wavelength centroids of the two fitted doublet

Gaussian profiles. Figure 2.3 shows an example absorber that passed our selection cuts.

The survey sightline coverage, or sensitivity function, is shown in Figure 2.4 as a function

of absorber redshift and minimum detectable REW threshold, Wmin
0 . The corresponding

SDSS wavelength coverage is indicated by the top axis. The sightline coverage is the total

number of lines of sight with sufficient signal-to-noise ratio to detect the λ3934 Å line with

W λ3934
0 ≥ Wmin

0 at a ≥ 5σ level of significance, and, at the same time, detect the λ3969 Å line

at a ≥ 2.5σ level of significance. We emphasize that in order to be included in the accounting

of the total survey path, a single redshift pixel and its corresponding doublet pixel position

must have sufficient signal-to-noise ratios to detect the doublet pair at significance levels of

5σ and 2.5σ, respectively, and to detect both lines within the physically allowable doublet

ratio range of 1.0 − σDR ≤ W λ3934
0 /W λ3969

0 ≤ 2.0 + σDR. 1 The strongest possible λ3969

absorption line is given by a profile with DR = 1.0, therefore, a pixel is rejected from the

redshift path if a saturated W λ3969
0 line, where W λ3934

0,min = W λ3969
0,min , cannot be detected at this

1We note that no previous survey for absorption line doublets has imposed as stringent a doublet-finding
criterion as employed here. Past surveys imposed a significance cut only on the stronger member of the
doublet.
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position with a significance level of at least 2.5σ. The sensitivity function for our survey is

given by Equation 2.1:

g(W λ3934
0 , z) =

NLOS∑
i=1

H(z − zmin(i))H(zmax(i) − z)

×H[W λ3934
0 − 5σ0(z)]H[W λ3969

0 − 2.5σ0(z)]

(2.1)

where the sum is over the total number of lines of sight, NLOS, and H is the Heaviside

function. Using λmin and λmax to indicate the wavelength limit of each quasar spectrum, we

write the minimum (maximum) redshift coverage, zmin (zmax), for each quasar spectrum as

zmin =

0.02 if λ0 ≥ λmin

λmin/λ0 − 1 if λ0 < λmin

(2.2)

zmax =

zem − 0.02 if λ0(1 + zem) < λmax

λmax/λ0 − 1 if λ0(1 + zem) ≥ λmax.

(2.3)

The prominent deep feature in Figure 2.4 occurring near absorber redshift z ∼ 0.5

(6000 Å) is due to the SDSS dichroic (Schneider et al. 2010). The conspicuous absorption

features redward of z ∼ 0.8 are due to strong night sky lines in many spectra. Taking into

account the line significance of both members of the Ca ii doublet in calculating redshift

path results in the doubling of narrow dips seen in Figure 2.4, as one might expect.

Integrating the sensitivity function of Figure 2.4 over the allowed redshift interval for

Ca ii, as determined by each SDSS spectrum, gives the cumulative path length of the survey,

g(Wmin
0 ), as a function of REW threshold Wmin

0 . The solid black curve shown in Figure 2.5

effectively describes the sensitivity of the survey to the measurement of a given strength of

the λ3934 line. For example, a λ3934 line with REW W λ3934
0 ≥ 1.0 Å can only be detected in

roughly half of the total available sightlines. The cumulative path length of the survey then

asymptotes to 94, 114 lines of sight at large REWs. The dash-dot black curve depicts the

decrease in the cumulative path that would result from a (conservatively chosen) 20% error

in the continuum fit, added to the flux error array in quadrature. The difference between
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Figure 2.4: Sightline coverage for the Ca ii survey in the SDSS DR7+DR9 as a function of

absorber redshift and REW threshold: Wmin
0 = 0.3, 0.6, 1.0, 2.0, 4.0 Å. This gives the total

number of lines of sight with sufficient signal-to-noise ratio to detect at least a saturated

Ca ii doublet at the 5σ,2.5σ significance levels. See text. The wide, deep feature near

z = 0.5 is due to the SDSS dichroic. The sharp narrow dip in the middle of the dichroic is

from the prominent O i λ5578 night sky line. The series of sharp declines redward of z ≈ 0.8

are the due to strong night sky lines. The additional constraint on the λ3969 line in Eq. 2.1

results in the doubling of narrow dips.
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the two paths peaks at 8% at W λ3934
min,0 = 0.2 Å, decreases to 2% at W λ3934

min,0 = 1.0 Å, and to

0.04% at W λ3934
min,0 = 6.0 Å.

2.2.3 Monte Carlo Simulations to Determine False Positives and Systematics

We ran Monte Carlo simulations of the absorber catalog to test the efficiency of our detec-

tion routine and identify possible biases and systematic effects. Prior to the simulations,

we masked out all detected Ca ii systems from their respective spectra, and used the edited

spectra for the simulations instead. Using the observed distributions for the absorption red-

shift, W λ3934
0 , and FWHM of the absorbers, and a uniformly distributed doublet ratio, we

generated 10, 000 Ca ii doublets and inserted them into randomly-selected spectra. Approx-

imately 7300 of these appeared in regions of spectra with sufficient signal-to-noise ratio that

met our criteria for detection. We then ran the entire data pipeline and recovered 97.7%

of these simulated doublets. Thus, we may have missed a maximum of 10 doublets in our

search. In addition, no Ca ii doublet that was not in the input list was falsely included in

the output list of the simulation.

2.3 RESULTS

2.3.1 The W λ3934
0 Distribution

We identified 435 Ca ii doublets with W λ3934
0 ≥ 0.160 Å and z . 1.34. The first few entries

of our Ca ii catalog are presented in Table 2.1. The table is available in its entirety online.

The observed W λ3934
0 distribution is shown in Figure 2.6. The strongest system we found

has W λ3934
0 = 2.573 Å, while the weakest system has W λ3934

0 = 0.163 Å. The distribution

has a mean of <W λ3934
0 >= 0.769 Å and a spread of σ = 0.393 Å. Combining the observed

distribution from Figure 2.6 with the cumulative path length in Figure 2.5, we obtain the

sensitivity-corrected distribution for W λ3934
0 , shown as the binned data points in Figure 2.7.

The errors are determined using Poisson statistics. Similar to what has been found for other

classes of QAL systems, the REW distribution rises with decreasing REWs. However, the
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Figure 2.5: The cumulative pathlength, g(W ), as a function of REW threshold is shown here

as the black solid curve. The decrease in the path due to an additional 20% uncertainty in

the pseudo-continuum fit added in quadrature is shown by the black dash-dot curve. The

difference between the two cumulative path lengths peaks at 8% at W λ3934
0,min = 0.2 Å, decreases

to 2% at W λ3934
0,min = 1.0 Å, and to 0.04% at W λ3934

min,0 = 6.0 Å.
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Figure 2.6: The observed REW distribution for W λ3934
0 . The distribution has a mean of

0.769Å and a spread of 0.393 Å. Measured REWs range from 0.163 Å ≤ W λ3934
0 ≤ 2.573 Å.
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Figure 2.7: The sensitivity-corrected W λ3934
0 distribution. The double exponential model,

Equation 2.4, that maximizes the likelihood to the unbinned data, is shown in green. The

two single-exponential components of Equation 2.4 are plotted as grey dashed lines. The

maximum likelihood fit using a single exponential model is shown as the red dotted line.
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Table 2.1: The Ca ii Samplea

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )

g mag (Å) (Å) (Å) (Å)

J001214.19−095922.9 19.44 1.262 0.6901 0.773 0.137 0.412 0.112

J001444.02−000018.5 17.95 1.550 0.0277 0.326 0.056 0.201 0.055

J002940.02+010528.5 17.83 1.388 0.3732 0.302 0.059 0.213 0.060

J004130.97+024222.5 18.81 2.308 0.7095 0.720 0.143 0.370 0.120

J004800.50+022514.9 18.96 2.160 0.5982 0.594 0.101 0.297 0.096

a The table is available in its entirety in the Appendix.

data clearly show a change in the slope of the distribution near W λ3934
0 ≈ 0.9 Å. The best-fit

single exponential function, determined using a maximum likelihood estimate (MLE) on the

unbinned data, is clearly a poor fit as shown by the red dotted line in Figure 2.7. Therefore,

we used a double-exponential function, written as the sum of weak and strong components,

to obtain a satisfactory fit. Equation 2.4 parametrizes the model with two characteristic

REWs, W ?
wk and W ?

str, and two normalization constants, N?
wk and N?

str, for the weak and

strong components, respectively. 2

∂n

∂W λ3934
0

=
N?
wk

W ?
wk

e
−W

λ3934
0
W?
wk +

N?
str

W ?
str

e
−W

λ3934
0
W?
str (2.4)

The resulting fit parameters are N?
wk = 0.140 ± 0.029 and W ?

wk = 0.165 ± 0.020Å for

the weak component, and N?
str = 0.024 ± 0.020 and W ?

str = 0.427 ± 0.101Å for the strong

component. The solid green curve shows this best-fit double exponential function MLE fit

to the unbinned data. The dashed grey lines are the two individual components; from this

fit, we determined that the change in slope occurs at W λ3934
0 = 0.88Å.

2In this context, we use the terms “weak” and “strong” to refer to the two components of the observed
Wλ3934

0 distribution. Thus, this usage does not intend to provide a formal definition of whether an individual
Ca ii absorber should be considered weak or strong.
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We evaluated the Akaike Information Criterion (AIC) for both the single and double

exponential fits, and obtained AIC = 46 and AIC = 11 for the two fits, respectively. The

AIC is a measure of the quality of the candidate models relative to each other (Liddle 2007).

It is based on information entropy and quantifies the trade-off between goodness of fit and

complexity (i.e., the number of parameters) of the model. Given a set of candidate models,

the model with the smallest AIC value has the strongest support. Thus based on the AIC

values above, the data are significantly better represented by the double exponential fit.

The existence of a change in slope and the success of the double exponential model may be

interpreted as evidence for the existence of more than one class of Ca ii absorber. We will

address this possibility further in §2.4.

2.3.1.1 Redshift Evolution of ∂n/∂W0 We now investigate the redshift evolution of

the REW distribution, ∂n/∂W0. We binned the data into three redshift subsamples, with

each zabs interval having roughly the same number of absorbers. The results are shown in

Figure 2.8. The solid green curves show the MLE fit to the unbinned data. For comparison,

the single exponential fits are shown as red dashed lines. The subsample in the lowest redshift

bin shows the most prominent departure from a single exponential fit. While the other two

subsamples still show some hints of a change in slope, it is less apparent given the increasing

size of the error bars at larger W λ3934
0 . The AIC values in each subsample suggest that the

single exponential model is still less favored, although the degree of support has decreased in

the higher-redshift subsamples. Thus, we cannot discount the possibility of the persistence

of multiple populations across the different redshifts.

In Figure 2.9 we plot the resulting double exponential model parameters W ?
wk and W ?

str,

and N?
wk and N?

str, as a function of the mean zabs in each subsample. The result for the

entire Ca ii sample is shown as the open data points, plotted at a zabs that is slightly offset

from the median for clarity. These plots clearly show that there is no evidence for evolution

in the shape of the exponenial distributions for either the weak or strong components of the

fit. In addition, Kolmogorov-Smirnov (KS) tests are also consistent with no evolution.
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Figure 2.8: The sensitivity-corrected W λ3934
0 distribution binned into three redshift intervals.

The double exponential model (Equation 2.4) that maximizes the likelihood to the unbinned

data is shown in green. The single exponential fit is shown as the red dashed line. The single

exponential model is less favored over the double exponential model in all redshift intervals.

2.3.2 The Ca ii Absorber Redshift Distribution

The observed absorber redshift distribution is shown in Figure 2.10. As mentioned previously,

SDSS spectra can be used to search for Ca ii at redshifts zabs . 1.34, equivalent to a lookback

time of tLB ∼ 8.9 Gyrs, or & 60% of our cosmic history. The observed distribution has a

mean redshift of <zabs>= 0.579, and standard deviation of σzabs = 0.296. The distinct drop

in sensitivity near z ∼ 0.5 is mainly due to the SDSS dichroic.

The redshift number density, ∂n/∂z, or the incidence of lines that have W λ3934
0 larger

than a specified threshold Wmin
0 over some redshift interval, is given by

∂n

∂z

∣∣∣∣∣
W0>Wmin

0

=
∑

W0,i>W0,min

zi∈(z,z+dz)

1

g(W0,i, zi)dz
(2.5)

36



zabs

0.0

0.2

0.4

0.6

0.8

W
 � 

[Å
]

Weak
Strong

0.5 1.0 1.50.0
0.0

0.1

0.2

N
 �

Figure 2.9: Top: The MLE characteristic REWs, W ?, for the weak (filled circles) and strong

(filled squares) components, in the three redshift ranges shown in Figure 2.8. The error bars

and bin sizes are shown in grey. The W ? parameters imply a lack of redshift evolution in

the slopes of each component. Bottom: The MLE normalizations for the two-component fit,

which within the errors, are also consistent with no evolution. For reference, we have plotted

the results for the entire sample as open circles and squares, which for clarity, are plotted at

a location slightly offset from the median zabs.
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whose variance is given by

σ2 =
∑

W0,i>W
0
min

zi∈(z,z+dz)

(
1

g(W0,i, zi)dz

)2

. (2.6)

We reiterate that one can ignore the errors in g(W, z) since the dominant contribution to

the error budget comes from the number counts, as discussed in §2.2.2. The incidence of

absorption lines represents the product of the integrated number density of absorbers per

co-moving volume and their effective cross section. Figure 2.11 shows the Ca ii incidence for

various equivalent width thresholds, Wmin
0 = 0.3, 0.6, 1.0, 1.5 Å. In each panel, the data are

binned to have approximately equal numbers of systems. In each panel, the dash-dot lines

show the no-evolution curves (NECs) predicted by the standard cosmology (Equation 2.7):

dn

dz
= n0

(1 + z)2√
ΩM(1 + z)3 + ΩΛ

(2.7)

The normalization, n0, has been adjusted to minimize the sum of squared deviations of the

binned data points from the curve. For W λ3934
0 ≥ 0.3 Å, the normalization constant, which

is also the extrapolated incidence at z = 0, is n0 = 0.017± 0.001. Except for the case where

W λ3934
0 ≥ 1.5 Å, the data are consistent with the NEC at better than the 99.9% confidence

level.

In Table 2.2, we compare our results on the Ca ii incidence with earlier results. The

Wild et al. (2006) study used the SDSS-DR3 and required the simultaneous detection of

Mg ii absorption at ≥ 6σ significance for the λ2796 line. On the other hand, Richter et al.

(2011) used high-resolution VLT/UVES data and required the detection of other transitions

such as Na i, Mg ii and Fe ii. Note the difference in the number of systems detected. As

summarized in Table 2.2, and the accompanying table notes, our results are consistent with

the Wild et al. (2006) results, while the Richter et al. (2011) incidence is ∼ 2 times larger.

2.3.3 The Ca ii Doublet Ratio

For transitions with different oscillator strengths (e.g., absorption doublets), a measured

doublet ratio (DR) is an important indicator of the degree of saturation of an absorption
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Table 2.2: The Ca ii incidence comparisons

Reference W λ3934
0,min num. zmin zmax 〈zabs〉 ∂n/∂z

(Å) sys.

Wild et al. (2006) 0.5 31 0.84 1.3 0.95 0.013a

Richter et al. (2011) 0.015 23 0.00396 0.47439 0.35 0.117 ± 0.044b

This work 0.16 435 0.02 1.34 0.58 0.078 ± 0.006

a For comparison, using Eq. (7) and our best-fit n0 for Wλ3934
0,min = 0.5 Å, our results give

∂n/∂z = 0.014± 0.001 at 〈zabs〉 = 0.95.
bUsing the Richter et al. (2011)-reported average redshift path, we derive ∂n/∂z ≈ 0.09
at 〈zabs〉 ≈ 0.22 for the 8 (out of 23) detections with Wλ3934

0 ≥ 0.16 Å in the Richter et al.
(2011) sample. For comparison, using Eq. (7) and our best-fit n0 for Wλ3934

0,min = 0.16 Å, we
get ∂n/∂z = 0.051± 0.003 at 〈zabs〉 = 0.22.

line. The equivalent widths of weak unsaturated lines provide direct measurements of column

densities. For strong, saturated doublets, such as Mg ii λλ2796, 2803 and Fe ii λλ2586, 2600,

equivalent width measurements are more appropriately related to gas velocity spreads. The

observed Ca ii DRs (W λ3934
0 /W λ3969

0 ) for our sample range from ∼ 2 for completely unsatu-

rated systems to ∼ 1 for completely saturated systems. The left panel in Figure 2.12 shows

the DR distribution for our sample. It has a mean of ∼ 1.7 and a spread of σDR ∼ 0.4.

Hence, the Ca ii doublets are, on average, between the two extreme possible values. The

right panel in Figure 2.12 shows W λ3969
0 versus W λ3934

0 and includes the errors on these ob-

served values, with the dash-dot lines bounding the physically allowed DR ranges, as in the

left panel. Figure 2.13 shows the DRs as a function of redshift, along with the propagated

DR errors assuming Gaussian error distributions. There is no detectable evolution in the

DR distribution.

2.3.4 The Ca ii versus Mg ii Incidence

To make appropriate comparisons of the Mg ii incidence to that of Ca ii, we first determine

which of the Ca ii systems in our sample have confirmed Mg ii measurements. We made use of

the data available from the University of Pittsburgh SDSS DR4 Mg ii Catalog (Quider et al.
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Figure 2.10: The observed absorber redshift distribution shown in bins of ∆z = 0.1, with

mean zabs = 0.579 and standard deviation σ = 0.296. The poor SNR of SDSS spectra

near zabs ∼ 0.5, due to the SDSS dichroic, causes the decrease in the number of detected

Ca ii systems that pass our selection criteria at this redshift.
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Figure 2.11: The Ca ii redshift number density as a function of the lookback time, tLB,

for various REW thresholds W λ3934
0 ≥ Wmin

0 . The errors are determined using Poisson

statistics. The bin sizes are such that there are approximately equal numbers of systems

in each bin. The no-evolution curves (NEC) are shown as dash-dot lines. The NECs are

normalized to minimize the sum of squared deviations of the binned data from the curve.

With the exception of the W λ3934
0 ≥ 1.5 Å sample, the NECs are consistent with the data at

a > 99.9% significance level. The W λ3934
0 ≥ 1.5 Å sample has too few data points to allow

for a meaningful interpretation.
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Figure 2.12: Left: The distribution of doublet ratios, W λ3934
0 /W λ3969

0 , for the Ca ii sample.

The dash-dot lines mark the limits of 1.0 for completely saturated systems and 2.0 for

completely unsaturated systems. Values above and below these limits are due to poorer

signal-to-noise ratio data. Our sample is not dominated by either extreme DR values. Right:

W λ3969
0 vs. W λ3934

0 .
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Figure 2.13: The W λ3934
0 /W λ3969

0 doublet ratio as a function of redshift. There is no detected

redshift evolution in the doublet ratio.
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Figure 2.14: W λ2796
0 versus W λ3934

0 for the 251 Ca ii systems in our sample with detected

Mg ii. See text. There is a correlation between the REWs of Mg ii and Ca ii, albeit with

a large spread, but a sharp lower bound. The three dash-dot lines have W λ2796
0 /W λ3934

0 =

[1.0, 2.0, 4.0].
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Figure 10. The observed absorber redshift, zabs, distribution shown in bins of �z = 0.1, with mean zabs = 0.577 and standard deviation
of � = 0.296. The poor SNR of the SDSS spectrum near zabs ⇠ 0.5 due to the SDSS dichroic causes the decrease in the number of
detected Ca ii systems that pass the selection criteria.

Figure 11. The Ca ii number density as a function of the zabs for various REW thresholds W�3934
0 � W min

0 . The errors are propagated
using Poisson errors. The bin sizes are such that there are approximately an equal number of systems in each bin. The no evolution
curves (NEC) for a WMAP cosmology are shown as dash-dot lines. The NECs are normalized to minimize the sum of squared deviations
from the binned data. With the exception of the W0 � 1.5 Å sample, the NECs are consistent with the data at a > 99% significance
level. The W0 > 1.5 Å sample has too few data points to allow for a meaningful interpretation.
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Figure 10. The observed absorber redshift, zabs, distribution shown in bins of �z = 0.1, with mean zabs = 0.577 and standard deviation
of � = 0.296. The poor SNR of the SDSS spectrum near zabs ⇠ 0.5 due to the SDSS dichroic causes the decrease in the number of
detected Ca ii systems that pass the selection criteria.

Figure 11. The Ca ii number density as a function of the zabs for various REW thresholds W�3934
0 � W min

0 . The errors are propagated
using Poisson errors. The bin sizes are such that there are approximately an equal number of systems in each bin. The no evolution
curves (NEC) for a WMAP cosmology are shown as dash-dot lines. The NECs are normalized to minimize the sum of squared deviations
from the binned data. With the exception of the W0 � 1.5 Å sample, the NECs are consistent with the data at a > 99% significance
level. The W0 > 1.5 Å sample has too few data points to allow for a meaningful interpretation.

c� 2014 RAS, MNRAS 000, 1–??

Figure 2.15: Ca ii incidence as a function of zabs across various W λ3934
0 thresholds. The

no-evolution curve is shown as dash-dot lines. The errors are propagated using Poisson

statistics.
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2011), extended up to SDSS DR7 (E. Monier, private communication). In total, the extended

Mg ii catalog contains over 29, 000 doublets, which includes an additional ∼ 13, 000 unique

Mg ii systems from SDSS DR7. The Quider et al. (2011) Mg ii sample was selected based on

5σ and 3σ significance cuts for W λ2796
0 and W λ2803

0 , respectively. A similar doublet ratio cut of

1.0−σDR ≤ W λ2796
0 /W λ2803

0 ≤ 2.0+σDR was also imposed to construct the final catalog. For

absorbers from SDSS DR9, we measured the strengths of the Mg ii doublets, and made the

appropriate cuts. Note that to find Mg ii, the Ca ii system must be at zabs & 0.4. However,

detecting the corresponding Mg ii lines also depends on the quasar emission redshift and the

SNR of the spectrum at the predicted Mg ii location. Lines that fell in the Lyα forest were not

measured. After implementing the required selection cuts, we have 251 Ca ii-Mg ii systems.

The results are shown in Figure 2.14. We see a positive correlation between the strengths of

the two lines, albeit with a spread that is quite large. However, the distribution does appear

to have a sharp lower bound. The three dash-dot lines have W λ2796
0 /W λ3934

0 = [1, 2, 4].

We also performed the reverse search where we looked for Ca ii lines corresponding to

Mg ii systems from DR7 in the 0.4 ≤ z ≤ 1.34 redshift interval. Only 3% of Mg ii systems

were found to have Ca ii, confirming that it is rare to identify Ca ii in quasar absorption-line

surveys.

We now compare the incidence of Ca ii absorbers to the more common Mg ii systems.

In Figure 2.15, the incidence of Ca ii is shown as the green data points using the following

REW thresholds: W λ3934
0 ≥ 0.3Å shown on the top panels, and W λ3934

0 ≥ 0.6Å shown by the

bottom panels. The Mg ii incidence is shown in red. The errors are derived using Poisson

counting statistics. Within each panel, we binned the data so that each point has roughly

the same number of systems. Note that these are plotted against tLB in the linear scale

instead of zabs in order to highlight the length of cosmic time that Mg ii cannot trace using

SDSS spectra. Motivated by the observed ratios in Figure 2.14, we have chosen the following

Mg ii-Ca ii ratios: W λ2796
0 /W λ3934

0 = [2, 4] for this comparison. For both absorbers, the NECs

were normalized to minimize the sum of the squares of the residuals. The resulting fits are

consistent with the data at & 99% confidence level for both absorbers at all REW thresholds.

The Ca ii incidence is in a sense similar to Mg ii in that the gaseous cross sections do not

show evidence for evolution at zabs > 0.4, and with this new result from Ca ii, we extend the
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same conclusions down to z = 0. Figure 2.15 also underscores the rareness of Ca ii absorbers

relative to Mg ii. More specifically, in the left panels of Figure 2.15, where W λ2796
0 = 2W λ3934

0 ,

the incidence of Ca ii is roughly a factor of ∼ 10 times smaller. At the larger REW ratios

(right panels), as the number of stronger Mg ii absorbers becomes rare, this fraction drops

to a factor of ∼ 3 to 4.

2.4 INVESTIGATING THE POSSIBILITY OF TWO Ca ii ABSORBER

POPULATIONS

The W λ3934
0 distribution shown in Figure 2.7 reveals a break in ∂n/∂W λ3934

0 at W λ3934
0 =

0.88 Å. The need for a strong and a weak component to adequately fit the overall distribution

(Equation 4) suggests that we should investigate trends which might further reveal the prop-

erties of these components. Below we search for identifiable trends based on: (1) the W λ3934
0

value and Ca ii DR, and (2) the W λ3934
0 value and the Mg ii-to-Ca ii ratio (W λ2796

0 /W λ3934
0 ).

2.4.1 Trends Between W λ3934
0 and Ca ii DR

Here we explore the possible role of the Ca ii DR in isolating the two components of the

W λ3934
0 distribution. To do this we divide the entire Ca ii sample into four subsamples of

roughly equal size based on their DRs and W λ3934
0 values. This can be accomplished by

making divisions above and below DR = 1.5 and W λ3934
0 = 0.7 Å. Note that these values lie

close the the mean doublet ratio of the entire sample and the location of the break in Figure

2.7.

In Figure 2.16, we plot the sensitivity-corrected W λ3934
0 distributions for the four defined

subsamples. The resulting four distributions can now be accurately parametrized by sin-

gle exponential functions. The best-fit single exponential functions to the unbinned data

are shown as dash-dot lines. All four single exponential functions fit the data in their cor-

responding subsamples at a better than 99% confidence level. Moreover, the MLE slopes

for both subsamples with W λ3934
0 < 0.7 Å (left panels) are consistent with the W ?

wk value
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for the overall sample to within the errors, and the MLE slopes for both subsamples with

W λ3934
0 ≥ 0.7 Å (right panels) are consistent with the W ?

str value to within the errors. Also,

dividing the entire sample at DR=1.5 into two subsamples yielded the same two component

distribution specified in Equation 4 to within the errors.

Thus, at the accuracy of our data, the Ca ii DR alone does not play a role in separating

the Ca ii absorbers into two populations. A series of KS tests were also performed and found

to support this conclusion.

2.4.2 Trends Between W λ3934
0 and W λ2796

0 /W λ3934
0

For almost all Ca ii absorbers with redshifts z > 0.4 we have information on the correspond-

ing Mg ii absorption. Therefore, we can explore if Mg ii information can be used to isolate the

two components of the W λ3934
0 distribution. From past work we know that Mg ii absorption

doublets found in SDSS surveys are generally saturated (Quider et al. 2011). As explained in

§2.3.3, this means that Mg ii rest equivalent widths are more representative of low-ionization

gas velocity spreads rather than Mg+ column densities. However, the Ca ii doublet is gen-

erally unsaturated or only partially saturated, so to some degree the Ca ii rest equivalent

widths must be representative of Ca+ column densities.

In Figure 2.17 we plot the two observed W λ2796
0 /W λ3934

0 ratio histograms for Ca ii ab-

sorbers with W λ3934
0 < 0.7 Å and W λ3934

0 ≥ 0.7 Å. This separation value is the same as the

one used in §2.4.1 and is again motivated by our desire to roughly equalize the number of

systems in each of the two subsamples. There are ∼ 120 absorbers in each subsample.

By using this W λ3934
0 separation value and including Mg ii information, we produced

Figure 2.17, which shows the Ca ii absorbers to be a bimodal population, with the weaker

Ca ii absorbers having a larger (on average) and wider spread in W λ2796
0 /W λ3934

0 than the

stronger Ca ii absorbers. A KS-test renders the two distributions inconsistent with one

another at a > 99% confidence level. This bimodality provides supporting evidence that

stronger and weaker Ca ii absorbers (i.e., absorbers with relatively higher and lower Ca+

column density values) may be different populations. We note that with the exception of

a few data points, the Mg ii absorbers associated with the Ca ii absorbers have saturated
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Figure 2.16: The sensitivity-corrected equivalent width distributions for four roughly equal

subsamples of Ca ii absorbers divided according to Ca ii DR and W λ3934
0 . The dash-dot lines

are the MLE single power-law fits.

49



doublets, which means that W λ2796
0 values are indicative of gas velocity spreads. See Figure

2.17 and its caption for color-coded data points (online version only) on Mg ii doublet ratios

and some additional explanation.

Finally, in Figure 2.18 we show that for those Ca ii absorbers with Mg ii information, it

is possible to separate the W λ3934
0 distribution shown in Figure 2.7 into two single power-law

distributions over the entire range of W λ3934
0 values. This is done by forming two subsamples

divided at W λ2796
0 /W λ2803

0 = 1.8, but in this case the subsamples are not approximately of

equal size.

The slope of the steeper distribution is found to be consistent with the slopes of the weak

component of the distribution in Figure 2.7 and the top-left and bottom-left panels of Figure

2.16 (i.e with W λ3934
0 < 0.7 Å). Similarly, the flatter red distribution is also consistent with

the corresponding results for the strong systems in Figures 2.7 and 2.16.

2.5 SUMMARY, CONCLUSIONS AND OUTLOOK

We have presented the results of a blind survey for intervening Ca ii absorption-line systems

using ∼ 95, 000 quasar spectra from the seventh and ninth data release of the SDSS. Our

results represent the largest compilation of Ca ii absorbers to date. The rest wavelengths of

the Ca iiλλ3934, 3969 doublet resonance transition allow us to probe redshifts z . 1.34, which

corresponds to the most recent ∼ 8.9 Gyrs of the history of the Universe. Ca ii absorbers are

considerably more rare than Mg ii absorbers. However, it is notable that with the orginal

SDSS spectrograph, Mg ii absorbers at z . 0.4 are not accessible. Therefore, studies of

Ca ii absorbers in quasar spectra are the only absorption-line systems which are generally

accessible with SDSS spectra at z . 0.4, which is equivalent to the past ∼ 4.3 Gyrs of cosmic

time. Consequently, within the SDSS spectral window Ca ii presents a unique opportunity

for ground-based studies of cool, metal-rich gas around galaxies at the lowest redshifts, and

such studies can help constrain models for the existence of cool gas in the extended gaseous

halos of galaxies.

Our blind survey resulted in the identification of 435 Ca ii absorbers at rest equivalent
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Figure 2.17: The bimodal distribution of the W λ2796
0 /W λ3934

0 ratio for the weak and strong

Ca ii absorbers divided at W λ3934
0 = 0.7 Å. Note that we also plot W λ2796

0 (right y-axis) as a

function of W λ2796
0 /W λ3934

0 (x-axis); these data points are color-coded (online version only)

according to the top color bar to show the saturation level of the Mg ii doublet.
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Figure 2.18: The sensitivity-corrected equivalent width distributions for two subsamples of

Ca ii absorbers separated at W λ2796
0 /W λ3934

0 = 1.8. The separation into two single-power-law

fits is clear. The blue squares and red circles represent the subsamples with a W λ2796
0 /W λ3934

0

ratio greater than and less than 1.8, respectively. The solid blue and dashed red lines are

the best-fit single-exponential MLE fits to the unbinned distributions.
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width significance levels ≥ 5σ for W λ3934
0 and ≥ 2.5σ for W λ3969

0 , within the physically-

allowable doublet ratio range, i.e., 1−σDR ≤ W λ3934
0 /W λ3969

0 ≤ 2+σDR. Of these detections,

251 Ca ii absorbers at z & 0.4 were found to have associated Mg ii absorption, which is

essentially all of them.

The sensitivity-corrected W λ3934
0 distribution cannot be fitted by a single-component

exponential function, but a two-component exponential function describes the data well. We

find ∂n/∂W λ3934
0 = (N?

wk/W
?
wk)exp(−W λ3934

0 /W ?
wk) + (N?

str/W
?
str)exp(−W λ3934

0 /W ?
str), with

N?
wk = 0.140±0.029, W ?

wk = 0.165±0.020 Å, N?
str = 0.024±0.020, andW ?

str = 0.427±0.101 Å.

This suggests that the Ca ii absorbers are composed of at least two distinct populations

(Figure 2.7).

The Ca ii absorber incidence was found to not evolve in the standard cosmology, implying

that the product of integrated Ca ii absorber cross section and their comoving number density

has remained roughly constant over the last ∼ 8.9 Gyrs.

The normalization of the no-evolution curve, which is also the incidence extrapolated to

z = 0, is n0 = 0.017± 0.001 for the sample with W λ3934
0 ≥ 0.3 Å.

Furthermore, we have demonstrated that the incidence of Ca ii absorbers relative to the

more common Mg ii absorbers in quasar spectra is about 3 to 10 times smaller, depending

on the REW threshold used for the comparison (Figure 2.15).

Finally, we performed some investigations to determine if we could use available Ca ii ab-

sorber properties, specifically doublet ratio and Mg ii information, to isolate the “weak” and

“strong” populations of Ca ii absorbers. While it was not possible to do this using the Ca ii

doublet ratio, we did find that Mg ii information could be used to isolate the two populations

(Figures 2.17 and 2.18).

Clearly, there are numerous important issues that could be investigated using the Ca ii ab-

sorbers identified in this survey. For example, questions such as: (1) How do we explain the

observed incidence and cross section ratio between Mg ii and Ca ii absorbers in terms of the

ionization, abundance, and dust depletion properties of the two types of absorbers? (2)

How do the Ca ii absorbers fit into our current understanding of galaxies and their evolu-

tion? (3) What are the host galaxies of Ca ii absorbers and what is the characteristic spatial

distribution of absorption around the host galaxies? (4) And what is the physical origin of
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the two-component Ca ii W λ3934
0 distribution? We will explore these issues in the succeeding

chapters.
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3.0 Ca ii ABSORBERS IN THE SLOAN DIGITAL SKY SURVEY:

ELEMENT ABUNDANCES AND DUST

The contents of this chapter have been published in Sardane, Turnshek and Rao, 2015,

Monthly Notices of the Royal Astronomical Society, 452, 3192-3208.

3.1 INTRODUCTION

Determination of element abundances, dust properties, and the overall chemical histories

of the gaseous environments of galaxies is needed for an improved understanding of galaxy

formation and evolution. The gaseous environments of galaxies include their interstellar

medium (ISM) as well as surrounding circumgalactic medium and intergalactic medium

(CGM and IGM). A broad goal is to constrain how galaxies convert their gas into stars,

and the feedback (outflow) mechanisms that are at play in polluting the gas surrounding

galaxies in the context of the observed galaxy stellar populations. Here we consider what can

be learned from a study of the properties of intervening gas giving rise to Ca ii absorption

seen in the spectra of background quasars. The statistics of these absorbers, as derived from

an analysis of SDSS quasar spectroscopy, were recently presented in Sardane, Turnshek &

Rao (2014). Some of the properties of galaxies associated with them, derived from SDSS

images, will be presented in Sardane, Turnshek & Rao (2015). In this chapter, we use SDSS

spectroscopy to constrain results on relative element abundances and dust in Ca ii absorbers.

Quasar absorption line (QAL) spectroscopy is a unique probe of the evolution of galaxies

and their gaseous components, from the coolest molecular clouds to the hotter ionized gaseous

halos (Foltz et al. 1988; Lu et al. 1996; Ledoux et al. 1998; Wolfe & Prochaska 2000a;
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Petitjean et al. 2000; Ledoux, Srianand & Petitjean 2002; Ledoux, Petitjean & Srianand

2003; Cui et al. 2005; Srianand et al. 2005; Petitjean et al. 2006; Fox et al. 2007; Tripp

et al. 2008; Thom & Chen 2008; Noterdaeme et al. 2008; 2010; Prochaska et al. 2011;

Tumlinson et al. 2011a; Crighton et al. 2013; Stocke et al. 2014; Lehner et al. 2014;

Savage et al. 2014). Due to the rest-frame UV location of the resonance transitions most

relevant for QAL studies, such studies have traditionally concentrated on probing the gaseous

absorbers and their environments at high redshifts. As a result, the paucity of identified

gaseous structures at very low redshift naturally creates a gap in our understanding of how

galaxies and their gaseous environments evolve from high redshift to the present. Moreover,

cosmological dimming, which reduces the surface brightness of astronomical sources by (1 +

z)4, makes it more difficult to identify and characterize the galaxies that could host the

absorbers at high redshift.

One rare class of QAL system that is not as well studied and understood as oth-

ers is the one identified using the resonance doublet transition of singly ionized calcium:

Ca ii λλ3934, 3969. However, although its incidence makes it rare, the advantage of studying

the Ca ii QAL doublet is that it can be observed from z ∼ 1.4 all the way down to the

present epoch using the large number of optical ground-based quasar spectra obtained by

the Sloan Digital Sky Survey (SDSS) (Schneider et al. 2010; Ahn et al. 2012).

Recently, we harnessed the statistical power of the SDSS to assemble the largest catalog

of these rare Ca ii absorbers (Chapter 2). This search, which utilized ∼ 95, 000 quasar

sightlines from the Seventh (DR7) and Ninth (DR9) data releases of the SDSS, resulted

in the compilation of 435 Ca ii absorbers. As described in Chapter 2, the detections were

based on ≥ 5σ and ≥ 2.5σ rest equivalent width significance threshholds for the strong and

weak members of the Ca ii doublet, respectively. A constraint on the doublet ratio was also

employed to remove “unphysical” profiles, as dictated by the theoretical ratio of the doublet

oscillator strengths.

In Chapter 2 we demonstrated that after accounting for sensitivity corrections, a single

power-law fit is insufficient to describe the λ3934 rest equivalent width, W λ3934
0 , distribution.

More specifically, a two-component exponential distribution is required to fit the data sat-

isfactorily. This result is somewhat surprising based on analysis of much larger samples of
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more ubiquitous QAL systems such as Mg ii (e.g., Nestor, Turnshek & Rao 2005, Seyffert et

al. 2013, and Zhu & Menard 2013) and C iv (Cooksey et al. 2013). For these QAL systems,

a single exponential function suffices to characterize their W0 distributions at W0 & 0.1 Å.

For Ca ii absorbers the need for a two-component distribution persists across all observed

redshifts, which is strong statistical evidence for at least two distinct populations.

A preliminary investigation of the nature of the two-component fit suggested that there

was a bimodality in the distribution of Mg ii-to-Ca ii ratios (i.e., Wλ2796
0 /Wλ3934

0 ) with a

separation above and below W λ3934
0 ∼ 0.7 Å. However, there was no evidence that the Ca ii

doublet ratio, which is an indicator of saturation, could be used to distinguish between the

two absorber populations.

Using the statistical sample from Chapter 2, this work will explore the chemical abun-

dances and dust-extinction properties of the Ca ii absorbers. In particular, we will exploit

the power of spectral stacking to form various composite spectra which will be analyzed to

infer chemical abundance ratios and dust-extinction properties for various subsamples. This

will allow us to characterize and distinguish between two different Ca ii absorber populations

as implied by their statistical properties.

The Chapter is organized as follows. In §3.2 we give a brief description of our SDSS Ca ii

absorber catalog that was presented in Chapter 2. In §3.3 we discuss notable individual

systems in the Ca ii catalog. In §3.4 we derive the composite properties of the Ca ii absorber

full sample and subsamples in the context of their element abundance ratios and dust-

extinction properties. We then discuss the implications of these results and how they explain

the existence of two different populations of Ca ii absorbers in §3.5. In §3.6 we summarize

our results and conclusions.

3.2 THE SDSS CA II ABSORBER CATALOG

The sample of Ca ii absorbers used in this analysis is derived from our Chapter 2 catalog.

It consists of 435 Ca ii absorbers with W λ3934
0 ≥ 0.16 Å, compiled using over 95,000 quasar

spectra with SDSS magnitudes i < 20 from the SDSS data releases DR7 (Abazajian et al.
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2009; Schneider et al. 2010) and DR9 (Ahn et al. 2012; Pâris et al. 2012). Data from DR7

and DR9 were obtained using two nearly identical spectrographs, the SDSS spectrograph and

the Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph, respectively. The BOSS

spectrograph (Smee et al. 2013), which was designed to target higher-redshift quasars for the

BOSS project (Schlegel et al. 2007; Dawson et al. 2013), is an improved version of the SDSS

spectrograph. The SDSS spectrograph covers the wavelength range of 3800− 9200 Å, while

the BOSS spectrograph has extended wavelength coverage in both the blue and the near-

infrared, and covers 3600− 10, 400 Å. The resolutions of both spectrographs are essentially

the same, ranging from ∼ 1500 at 3800 Å to ∼ 2500 at 9000 Å.

To identify the Ca ii absorbers, splines and Gaussians were used to fit a quasar spectrum’s

so-called pseudo-continuum, which consists of the “true” continuum plus the broad emission

lines. As indicated previously, the absorbers were selected based on 5σ and 2.5σ significance

thresholds for the λ3934 and λ3969 lines, respectively, and a doublet ratio (DR)1 constraint

of 1 ≤ DR ≤ 2 to within the measurement errors, which is the range of physically-allowable

doublet ratios between saturated (DR = 1) and completely unsaturated (DR = 2) absorption

lines.

3.3 PROPERTIES OF SOME INDIVIDUAL CA II ABSORBERS IN THE

CATALOG

In the limit of an absorption line in the optically thin regime, the optical depth is independent

of the Doppler parameter, so a measurement of its equivalent width translates reliably into

a column density measurement. Hence, for weak, unsaturated resonance transitions at rest-

frame wavelength, λ0, and oscillator strength, f , the column density, N , is approximately a

linear function of the rest equivalent width, W0,

N ≈ 1.13× 1020 W0

λ2
0f

(3.1)

where N is in atoms cm−2 and W0 and λ0 are in Å (Draine 2011).

1The doublet ratio is defined here as DR = Wλ3934
0 /Wλ3969

0 .
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In QAL studies of high-N(H i) systems, which generally applies to the Ca ii absorbers,

it is common to use this relation to derive total element column densities from weak, low-

ionization, unsaturated lines due to, e.g., Zn ii, Cr ii, Fe ii, and Mn ii. Self-shielding gener-

ally ensures that the low-ionization metallic elements will be the dominant ionization state.

Therefore, we will employ this method to infer some of the properties of individual Ca ii

absorbers, and we will also take advantage of this in the §3.4 analysis using composite spec-

tra. These assumptions are theoretically justified, and departures should be small for the

elements we consider (e.g., Viegas 1995; Vladilo et al. 2001; Prochaska & Wolfe 2002). In

cases where there is evidence for a non-negligible degree of saturation, we will report lower

limits on derived column densities.

Under these assumptions, we derive abundance ratios of special sightlines that have

high enough redshift and signal-to-noise ratios to permit spectral coverage and reliable mea-

surements of interesting weak absorption features. In keeping with standard practice, the

reported abundance ratios are relative to solar (Asplund et al. 2009), i.e., the abundance

ratio of element X relative to element Y will be given relative to solar values:

[X/Y ] ≡ log[N(X)/N(Y )]− log[N(X)/N(Y )]� (3.2)

For absorbers with zabs & 0.9, the UV Zn ii-Cr ii rest-frame region of the spectrum falls

into the SDSS optical wavelength window. The Ca ii sample consists of ∼ 70 systems with

zabs & 0.9. However, due to increasingly poor signal-to-noise ratios in the blue region of

many SDSS spectra, and the unfortunate blending of the Zn ii-Cr ii region with Lyα forest

lines or other unrelated metal lines, the useful sample where Zn ii-Cr ii can be studied in Ca ii

absorbers is reduced to a dozen systems. Since zinc is only mildly refractory, its abundance

ratio relative to more strongly depleted elements such as chromium, titanium, and iron

is of primary importance for characterizing the depletion properties of the gas. Pettini,

Boksenberg & Hunstead (1990) were the first to use Zn ii as a metallicity indicator in QAL

systems.

The Zn ii-Cr ii region has a rest-frame wavelength interval 2026− 2066 Å. For the usable

spectra we infer the column densities of Cr and Zn from four Cr ii transitions and two

Zn ii transitions. The first of these is a feature at λ2026 which is a blend due to three
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transitions: a Zn ii line, a weak Mg i line, and a very weak Cr ii line. Another feature at

λ2062 is a blend of Cr ii and Zn ii. The two additional transitions for Cr ii are at λ2056 and

λ2066.

Deblending the features in the Zn ii-Cr ii region at SDSS resolution can be done by

making use of known oscillator strength ratios for an element’s ionic transition. For example,

for the feature at λ2026 the equivalent widths of Mg i λ2026 and Cr ii λ2026 were taken to

be 32 and 23 times smaller than the observed equivalent widths of the unblended Mg i λ2852

and Cr ii λ2056 lines, resepctively. The remaining absorption can then be attributed to Zn ii

λ2026.2 Generally, since the oscillator strength of Cr ii λ2026 is quite small relative to Zn ii

λ2026, its contribution to the λ2026 feature is negligible.

Similarly, the feature at λ2062 due to Zn ii and Cr ii can be deblended by taking the Cr ii

λ2062 equivalent width to be half of the sum of the Cr ii λ2056 and Cr ii λ2066 equivalent

widths, with the remainder due to Zn ii λ2062. The corresponding errors are then propagated

in quadrature. The reported column densities are the error-weighted average values inferred

from each transition. The results on the column densities for Zn+, Cr+, Fe+ and Mn+ are

summarized in Table 3.1, where the column density for Fe+ is inferred from the weak lines of

Fe ii λλ2249, 2260 and the column density for Mn+ is inferred from the weak lines of Mn ii

λλλ2576, 2594, 2606.

For the Ca ii absorbers in Table 3.1, Figure 3.1 shows the abundance ratios [X/Zn],

where X = [Cr, Fe, Mn], as filled circles versus W λ3934
0 . Cr, Fe, and Mn are known to

be highly refractory, while Zn is not. Hence, an indication of the degree of depletion of

Cr, Fe, and Mn onto dust grains can be inferred from these abundance ratios. Results from

previous investigations of Ca ii absorbers (open symbols) known to be damped Lyα absorbers

(DLAs) and subDLAs at z ∼ 1 are also included in Figure 3.1 for comparison. These data

are due to Wild, Hewett & Pettini (2006)3, Nestor et al. (2008), and the Zych et al. (2009)

VLT/UVES and Keck/HIRESb datasets. Consistent with previous results, these refractory

2In some systems comparisons of Mg i λ2852 to Mg ii λλ2796, 2803 suggest that Mg i λ2852 may be
approaching saturation, but neglecting this does not introduce a significant uncertainty.

3Wild et al. (2006) abundance ratios were derived from composite spectra constructed from 37 Ca ii ab-
sorbers from SDSS DR3+DR4. One of their results was for their entire sample, while two additional result
were presented for “High” and “Low” Wλ3934

0 values on either side of their median Wλ3934
0 = 0.68 Å value.

Our results from composite spectra in this study are presented in §3.4 and §3.5.
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elements are all seen to be depleted relative to Zn. While the depletion levels are fairly

typical, nucleosynthetic processes can yield departures of −0.3 to −0.1 in [Fe/Zn] (Prochaska

& Wolfe 2002). The depletion levels are seen to vary over a range of values, suggestive of a

significant range in dust-to-gas ratios in these sightlines and/or environments. Although a

large scatter is present, the results suggest that depletion increases with increasing W λ3934
0 ,

which is generally consistent with previous findings.

61



Table 3.1: Cr+, Zn+, Fe+, and Mn+ column densities of Ca ii absorbers derived from the equivalent widths of detectable

weak transitions. The Ca ii absorbers all lie in the redshift interval 0.87 . zabs . 1.21. The column densities of the various

low-ionization elements are derived as described in the text.

Quasar zabs W λ3934
0 W λ3969

0 log N(Cr+1) log N(Zn+1) log N(Fe+1) log N(Mn+1)]

(Å) (Å) (atoms cm−2)

J014717+125808 1.039 0.484 ± 0.065 0.253 ± 0.066 13.36 ± 0.08 12.08 ± 0.05 14.40 ± 0.04 12.07 ± 0.03

J081053+352224 0.877 0.509 ± 0.074 0.254 ± 0.078 13.30 ± 0.15 12.84 ± 0.10 14.61 ± 0.04 12.31 ± 0.04

J233917-002943 0.967 0.475 ± 0.095 0.439 ± 0.111 13.62 ± 0.08 12.42 ± 0.18 · · · 12.39 ± 0.07

J112932+020422 0.965 0.632 ± 0.051 0.489 ± 0.063 13.09 ± 0.09 11.97 ± 0.41 14.30 ± 0.04 11.93 ± 0.04

J172739+530229 0.945 0.590 ± 0.094 0.422 ± 0.112 13.43 ± 0.13 12.49 ± 0.19 14.50 ± 0.06 12.15 ± 0.04

J094145+303503 0.938 1.118 ± 0.095 0.872 ± 0.104 13.45 ± 0.12 12.34 ± 0.06 14.62 ± 0.08 12.21 ± 0.03

J100000+514416 0.907 0.896 ± 0.168 0.660 ± 0.216 13.34 ± 0.21 12.59 ± 0.12 14.53 ± 0.40 12.36 ± 0.13

J162558+313911 0.906 0.813 ± 0.156 0.332 ± 0.130 13.63 ± 0.07 12.58 ± 0.10 14.96 ± 0.27 12.46 ± 0.04

J153503+311832 0.904 0.524 ± 0.045 0.387 ± 0.044 12.87 ± 0.08 11.90 ± 0.12 14.16 ± 0.07 11.84 ± 0.04

J114658+395834 0.900 0.381 ± 0.042 0.137 ± 0.045 13.86 ± 0.02 12.09 ± 0.02 14.23 ± 0.02 11.93 ± 0.02

J141615+365537 1.204 0.696 ± 0.086 0.396 ± 0.063 13.19 ± 0.11 11.89 ± 0.27 · · · 12.09 ± 0.83

J213408+043611 1.118 0.804 ± 0.085 0.426 ± 0.089 12.68 ± 0.13 11.96 ± 0.06 14.28 ± 0.08 11.97 ± 0.11
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The Na i λλ5891,5897 absorption transitions can be observed with the SDSS spectrograph

for absorbers with zabs . 0.6. With the BOSS spectrograph the coverage is extended to

zabs . 0.7. For absorbers in the Ca ii catalog, measurements of Na i are possible for 213

systems. However, due to signal-to-noise limitations, which is particularly severe for many

of the Na i lines since they occur close to the red limit of SDSS/BOSS spectra, only 31 Ca ii

absorbers had≥ 2σ Na i detections. The results are summarized in Table 3.2. However, based

on the observed doublet ratios, 23 of the measurements indicate some degree of saturation,

and so most of the results are given as lower limits on Na+ column densities. For the

remaining eight, Eq. 3.1 was employed to derive the Na+ column densities.

Galactic ISM studies show that Na+ to Ca+ column density ratios span about four orders

of magnitude, ranging from ∼ +2.5 to ∼ −1.5 dex (Routly & Spitzer 1952; Siluk & Silk

1974; Welty et al. 1996), which is mainly due to substantial differences in the depletion of Ca

onto dust grains. Large ratios occur in cold, dense and quiescent clouds, whereas the smaller

values can be attributed to environments where no significant depletion has yet occurred or

where some Ca has been returned to the gas phase due to shocks, such as those in warm

and/or high velocity clouds.

Finally, we note that our Ca ii catalog has two cases where the Ca ii and Na i lines have

doublet ratios which are clearly indicative of lines in the unsaturated regime. Both of these

have W λ3934
0 < 0.6Å, and in those cases we calculate the Na+/Ca+ column density ratios to

be −0.36± 0.06 dex and −0.04± 0.10 dex. These values fall within the range that is typical

of the diffuse, warm neutral medium in the Milky Way, where T = 102− 104 K and nH ≤ 10

atoms cm−3 (Crawford 1992; Welty et al. 1996; Richter et. al 2011).

3.4 PROPERTIES OF Ca ii ABSORBERS FROM COMPOSITE SPECTRA

Here we explore the composite properties of the Ca ii absorbers by considering the 435 Ca ii

absorbers in the Chapter 2 catalog. We form two types of composite spectra. The first type is

one constructed by median-combining continuum-normalized spectra. Element abundances

will be inferred from this type of composite spectrum. The second type is formed using the
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Table 3.2: Measurements of Na i λλ5891,5897 doublet rest equivalent widths for

Ca ii absorbers with zabs . 0.7. The table is ordered in terms of increasing zabs.

For weak unsaturated lines, we derive the Na0 column densities as described in the

text. For Na i profiles with doublet ratios approaching saturation, lower limits on

N(Na0) are reported.

Quasar zabs Wλ3934
0 Wλ3969

0 Wλ5891
0 Wλ5897

0 log N(Na+1)

(Å) (Å) (Å) (Å) (atoms cm−2)

J155752+342140 0.114 0.598 ± 0.102 0.628 ± 0.168 0.527 ± 0.165 0.380 ± 0.154 ≥ 12.54

J075031+192754 0.18 0.437 ± 0.084 0.447 ± 0.098 0.580 ± 0.123 0.380 ± 0.097 ≥ 12.55

J091958+111152 0.182 1.105 ± 0.212 0.720 ± 0.168 0.407 ± 0.138 0.569 ± 0.144 ≥ 12.66

J085917+105509 0.183 0.92 ± 0.108 0.431 ± 0.115 0.277 ± 0.098 0.209 ± 0.103 ≥ 12.28

J114339+073105 0.189 0.632 ± 0.098 0.462 ± 0.080 0.420 ± 0.089 0.180 ± 0.095 12.29 ± 0.09

J142536-001702 0.22 1.111 ± 0.094 0.515 ± 0.079 0.181 ± 0.091 0.150 ± 0.093 ≥ 12.13

J085045+563618 0.225 0.532 ± 0.071 0.219 ± 0.073 1.226 ± 0.121 1.068 ± 0.099 ≥ 12.96

J082312+264415 0.253 0.633 ± 0.103 0.383 ± 0.102 0.673 ± 0.165 0.398 ± 0.154 12.59 ± 0.08

J165743+221149 0.266 1.642 ± 0.221 1.546 ± 0.158 1.838 ± 0.176 1.060 ± 0.200 ≥ 13.02

J124300+204246 0.277 1.488 ± 0.126 1.034 ± 0.101 1.716 ± 0.145 0.957 ± 0.120 ≥ 12.97

J085010+593118 0.282 0.279 ± 0.043 0.160 ± 0.044 0.310 ± 0.054 0.194 ± 0.067 ≥ 12.27

J102935-012138 0.29 0.351 ± 0.067 0.208 ± 0.055 0.177 ± 0.084 0.240 ± 0.118 ≥ 12.31

J152800+535223 0.316 0.541 ± 0.056 0.325 ± 0.080 0.475 ± 0.147 0.186 ± 0.108 12.33 ± 0.13

J161649+415416 0.321 0.397 ± 0.067 0.226 ± 0.054 0.369 ± 0.086 0.201 ± 0.089 12.30 ± 0.09

J105640+013941 0.348 1.318 ± 0.213 0.749 ± 0.185 2.040 ± 0.433 1.710 ± 0.436 ≥ 13.02

J130811+113609 0.349 1.068 ± 0.121 0.815 ± 0.119 1.646 ± 0.157 1.734 ± 0.195 ≥ 12.97

J161018+042631 0.363 0.293 ± 0.054 0.225 ± 0.055 0.391 ± 0.153 0.365 ± 0.092 ≥ 12.27

J162957+423051 0.378 0.734 ± 0.146 0.498 ± 0.148 0.885 ± 0.224 0.942 ± 0.207 ≥ 12.89

J081336+481302 0.437 0.619 ± 0.042 0.290 ± 0.047 2.073 ± 0.359 0.515 ± 0.252 ≥ 12.87

J212727+082724 0.439 0.535 ± 0.104 0.456 ± 0.089 0.238 ± 0.096 0.080 ± 0.091 ≥ 12.31

J104923+012224 0.472 0.582 ± 0.054 0.236 ± 0.057 3.322 ± 0.462 2.644 ± 0.439 ≥ 13.19

J143614+105905 0.478 0.833 ± 0.121 0.551 ± 0.107 0.752 ± 0.135 0.448 ± 0.134 12.64 ± 0.06

J015701+135503 0.484 1.760 ± 0.184 1.599 ± 0.318 2.652 ± 0.322 2.838 ± 0.277 ≥ 13.37

J125244+642103 0.512 1.099 ± 0.096 0.696 ± 0.076 1.518 ± 0.824 2.189 ± 1.119 ≥ 12.99

J083553+154139 0.531 1.064 ± 0.106 0.726 ± 0.117 3.377 ± 0.911 1.320 ± 0.962 13.08 ± 0.12

J132803+352152 0.532 0.679 ± 0.095 0.439 ± 0.096 0.186 ± 0.098 0.244 ± 0.110 ≥ 12.30

J074816+422509 0.558 0.314 ± 0.036 0.148 ± 0.030 0.290 ± 0.104 0.321 ± 0.122 ≥ 12.44

J004800+022514 0.598 0.594 ± 0.101 0.297 ± 0.096 1.324 ± 0.282 0.560 ± 0.328 12.78 ± 0.10

J132657+405018 0.611 0.723 ± 0.080 0.548 ± 0.078 1.149 ± 0.152 0.683 ± 0.147 ≥ 12.82

J160343+244836 0.656 0.723 ± 0.080 0.548 ± 0.078 0.957 ± 0.277 0.612 ± 0.259 12.76 ± 0.09
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Figure 3.1: The reliable abundance ratio measurements for a dozen individual Ca ii absorbers

(Table 3.1) in our sample (filled circles) in comparison to results reported in other studies

(open symbols). Top panel: The abundance ratio [Cr/Zn] vs. W λ3934
0 , determined as ex-

plained in the text. Center panel: The abundance ratio [Fe/Zn] vs. W λ3934
0 , as inferred from

Fe ii λλ2249, 2260. The downward arrows are upper limits from Zych et al. (2009). Bottom

panel: The abundance ratio [Mn/Zn] vs. W λ3934
0 , as inferred from Mn ii λλλ2576, 2594, 2606.

Typical errors are shown in the upper right of all three panels. Note that the three Wild

et al. (2006) data points are for their low-W λ3934
0 , full sample, and high-W λ3934

0 composites.

The reader is referred to §3.4 (Tables 3.6 and 3.7) and §3.5 (Figure 3.12) for our composite

results. All three abundance ratio results show a trend of increasing depletion with increas-

ing W λ3934
0 , although the spread in [X/Zn] is large. The dotted vertical line in the figure

marks the lowest values of the Ca ii rest equivalent width detection threshold from Chapter

2, i.e., W λ3934
0 = 0.16 Å. The dash-dot horizontal lines mark the solar reference level for no

depletion.
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geometric mean of unnormalized flux spectra (e.g., York et al. 2006, Vanden Berk et al.

2001). From this type of composite we will measure the overall extinction and reddening

characteristics of the Ca ii absorbers. This is done using unabsorbed quasar spectra that are

matched (in emission redshift and i-band magnitude) to the Ca ii absorber quasar spectra.

We form these two types of composites for our full sample and four different subsamples,

which are subsets of the full sample. The rationale behind choosing the criteria to define the

four subsamples was given in Chapter 2. In particular, Chapter 2 showed the existence of

two populations of Ca ii absorbers that could be separated based upon the bimodality in the

distribution of Wλ2796
0 /Wλ3934

0 ratios, with the separation occurring at Wλ3934
0 = 0.7 Å. We

also found that the change in slope of the Wλ3934
0 distribution occurred at Wλ2796

0 /Wλ3934
0 =

1.8. (See Figures 2.17 and 2.18 of Chapter 2.) Therefore, we define the four subsamples as

systems with Wλ3934
0 < 0.7Å and ≥ 0.7Å, and those with Wλ2796

0 /Wλ3934
0 < 1.8 and ≥ 1.8.

The results we derive from the full sample are primarily discussed in this section, while the

results from the four subsamples are primarily discussed in §3.5.

3.4.1 Normalized Composite Spectra

The stacking procedure begins by shifting all 435 normalized spectra to the Ca ii absorber

rest frame. To facilitate wavelength registration before doing this, we start by rebinning the

spectra into a finer sub-pixel grid, the size of which is about one-tenth of the original pixel

size. The spectra were then combined to build two types of normalized composite spectra,

a median composite and an inverse-variance-weighted composite. We find essentially no

significant difference in the absorption rest equivalent width measurements of the two types.

Since the median is a robust measure of central tendency, we have chosen to use the median-

combined spectra for the normalized composites (e.g. Vanden Berk et al. 2001; Pieri et

al. 2010). The error in the composite flux is estimated using normal error propagation.

Our errors are appropriately smaller than those reported for the SDSS sample of Wild et al.

(2006), consistent with our increase in sample size relative to theirs. The final stack is then

rebinned to 2-pixels per resolution element and then smoothed over two pixels for display

purposes only. We summarize the number of spectra that contributed to the various regions
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of the composite spectra in Table 3.3. We emphasize that when forming the composites,

we used all available spectra at all redshifts. This means, for example, that the Zn ii - Cr ii

region only includes data at z > 0.85 (50 spectra in the full sample), whereas the Ca ii

region includes all data down to redshifts near zero (435 spectra in the full sample). This is

justified because there is no evidence for redshift evolution and we wish to minimize errors

in all spectral regions; the Ca ii composite spectral regions are statistically the same above

and below z = 0.85.

Figure 3.2 shows the full sample normalized composite spectrum, which was formed

using all 435 SDSS Ca ii absorber spectra identified in Chapter 2. Figures 3.3-3.6 are the

normalized composite spectra for the four subsamples (see §3.5 discussion). The error array

of the full sample composite spectrum ranges between ∼1.4% and ∼ 6.5% of the flux. The

red vertical lines mark the rest-frame locations of the absorption features that are typical of

those identified in QAL studies. The wavelength coverage of the various spectra in the Ca ii

absorber rest frame allows access to absorption features that lie between and include Si ii

λ1808 and Na i λλ5891,5897. Note that the stack includes absorber rest frame wavelengths

down to ∼ 1700 Å, but we do not attempt to measure any QALs at λ . 1750 Å because of

potential errors in the continuum placement at the (noisy) blue end of SDSS spectra.

Clearly seen in the normalized composite spectrum are the transitions of low-ionization

lines such as Zn ii, Cr ii, Ni ii, Ti ii, Fe ii, Mn ii Mg ii, Mg i and Na i, as well as the higher-

ionization transitions due to Al iii. In the individual SDSS spectra most of these transitions

are too weak, and/or located in spectral regions with too poor signal-to-noise, to identify

them. In the Zn ii-Cr ii region at shorter wavelengths, the composite is derived from only

∼ 50 out of > 400 spectra, and thus it exhibits poorer signal-to-noise characteristics; on

the other hand, at the longer wavelengths the Na i region composite is comprised of ∼
200 spectra. In Figure 3.2 we only label those features with ≥ 2σ detections to avoid

crowded labeling. We measure the rest equivalent widths by fitting Gaussian profiles to each

feature, with the constraint that features have a minimum line width set by the resolution

of the SDSS/BOSS spectra. The rest equivalent widths of the various QAL transitions are

summarized in Table 3.4. For those lines which do not pass the 2σ detection limit, we report

2σ upper limits. Composite results for the full sample and four subsamples are given in
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Table 3.4. There is a ∼30% improvement in the measured absorption rest equivalent width

errors in the Zn ii - Cr ii region (Table 3.4) in comparison to the earlier study of Wild et al.

(2006).

3.4.2 Column Densities and Element Abundance Ratios in Ca ii Absorbers from

their Composite Spectra

Column densities derived using Eq. 3.1 for the weak, unsaturated absorption lines in the

full sample composite and the four subsample composites are reported in Table 3.5 along

with their 1σ uncertainties. The reported results are generally variance-weighted averages

of column densities determined from accessible unsaturated transitions of the ion, similar

to the results reported in §3.3. We only provide results when significance levels are ≥ 2σ,

otherwise, 2σ upper limits are reported. The limit for N(Fe0) was derived from the 2σ

rest equivalent width upper limit of Fe i λ2484, since it has the strongest oscillator strength

among the Fe i transitions in our coverage. The N(Fe+1) value was obtained using the weak

lines of Fe ii λ2249, λ2260.

The doublet ratios of Ca ii and Na i indicate that both may be partially saturated so we

assign lower limits on their column densities. These column densities are consistent with

those reported by previous authors using ∼10 times fewer systems (e.g., Wild et al. 2006,

Nestor et al. 2008, Zych et al. 2009). However, none of these studies have sampled much of

the W λ3934
0 & 0.7 Å regime.

As in §3.3 we assume that the low-ionization column densities reported in Table 3.5

represent the dominant ionization state due to self-shielding and that no significant ionization

corrections are needed. The solar abundance ratios relative to Zn and Fe, i.e., [X/Zn] and

[X/Fe], are then tabulated in Table 3.6 and Table 3.7, respectively. The ratios relative to Zn

can reveal depletion of elements on to dust grains relative to solar abundances, while ratios

relative to Fe can show important enhancements (see below).
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Figure 3.2: The median-combined normalized composite spectrum of the full sample of Ca ii

absorbers in the Paper I and Chapter 2 catalog. To facilitate accurate wavelength registra-

tion, each spectrum in the composite has been shifted to the rest frame of the Ca ii absorber

prior to stacking using a finer subpixel grid. Details are provided in the text. Red vertical

lines mark absorption features that are significant at the > 2σ level. The rest equivalent

width measurements and 2σ upper limits of QALs associated with the Ca ii absorption in

this spectrum are summarized in Table 3.4.
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Figure 3.3: Same as Fig. 3.2 but for the sample of Ca ii absorbers with Wλ3934
0 < 0.7 Å.
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Figure 3.4: Same as Fig. 3.2 but for the sample of Ca ii absorbers with Wλ3934
0 ≥ 0.7 Å.
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Figure 3.5: Same as Fig.3.2 but for the sample of Ca ii absorbers with Wλ2796
0 /Wλ3934

0 <1.8.
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Figure 3.6: Same as Fig. 3.2 but for the sample of Ca ii absorbers with Wλ2796
0 /Wλ3934

0 ≥1.8.
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Table 3.3: The number of individual spectra included in the various regions of the final normalized composite spectra (§4.1).

When forming fluxed composites (§4.4), approximately 10% of these individual spectra were excluded due to an inadequate

non-absorber match.

Region Full Sample W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å W λ2796
0 /W λ3934

0 < 1.8 W λ2796
0 /W λ3934

0 ≥ 1.8

Zn ii- Cr ii 50 29 21 4 40

Fe ii λ2249 141 82 59 7 124

Mn ii 229 128 101 21 189

Ti ii 375 202 173 29 223

Ca ii 435 233 202 31 223

Na i 223 126 97 12 59
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Table 3.4: Rest equivalent width (REW, W0) measurements off five different

normalized composite spectra, including the composite spectrum formed using

the full sample of 435 Ca ii absorber spectra. The rationale behind forming

four additional composite spectra by dividing the full sample into subsamples

is explained in the text.

Line REW (Å)

· · · Full Sample Wλ3934
0 < 0.7Å Wλ3934

0 ≥ 0.7Å Wλ2796
0 /Wλ3934

0 < 1.8 Wλ2796
0 /Wλ3934

0 ≥ 1.8

Ni ii 1741 0.133 ± 0.039 0.107 ± 0.029 0.054 ± 0.022 · · · 0.130 ± 0.025

Ni ii 1751 0.081 ± 0.031 0.060 ± 0.026 0.034 ± 0.018 · · · 0.059 ± 0.021

Si ii 1808 0.155 ± 0.029 0.160 ± 0.024 0.151 ± 0.028 ≤ 0.437 0.159 ± 0.019

Al iii 1854 0.424 ± 0.029 0.378 ± 0.031 0.525 ± 0.031 ≤ 0.348 0.512 ± 0.019

Al iii 1862 0.286 ± 0.024 0.322 ± 0.026 0.363 ± 0.034 ≤ 0.399 0.315 ± 0.020

Fe ii 1901 ≤ 0.028 ≤ 0.032 ≤ 0.044 ≤ 0.322 ≤ 0.040

Ti ii 1910 ≤ 0.040 0.084 ± 0.020 ≤ 0.050 ≤ 0.223 0.067± 0.017

Co ii 1941* 0.094 ± 0.020 0.063 ± 0.022 ≤ 0.184 ≤ 0.323 0.083 ± 0.017

Co ii 2012* ≤ 0.058 ≤ 0.028 ≤ 0.082 ≤ 0.344 0.066 ± 0.010

Zn ii 2026† 0.142 0.070 0.103 ≤ 0.205 0.079

Cr ii 2026† 0.004 0.003 0.004 ≤ 0.005 0.005

Mg i 2026† 0.023 0.019 0.029 ≤ 0.015 0.026

Cr ii 2056 0.084 ± 0.014 0.082 ± 0.010 0.085 ± 0.021 ≤ 0.303 0.100 ± 0.015

Cr ii 2062 0.056 ± 0.010 0.063 ± 0.010 ≤ 0.024 ≤ 0.309 0.074 ± 0.010

Zn ii 2062 0.069 ± 0.022 0.058 ± 0.018 0.157 ± 0.029 ≤ 0.146‡ 0.072 ± 0.016

Cr ii 2066 0.028 ± 0.015 0.044 ± 0.011 ≤ 0.048 ≤ 0.181 0.048 ± 0.012

Cd ii 2145 ≤ 0.028 ≤ 0.034 ≤ 0.038 ≤ 0.158 ≤ 0.024

Fe i 2167 ≤ 0.013 ≤ 0.038 ≤ 0.044 ≤ 0.125 ≤ 0.022

Fe ii 2249 0.126 ± 0.012 0.090 ± 0.012 0.108 ± 0.019 0.097 ± 0.023 0.130 ± 0.010

Fe ii 2260 0.115 ± 0.011 0.110 ± 0.011 0.096 ± 0.017 0.099 ± 0.036 0.136 ± 0.009

Fe ii 2344 1.140 ± 0.009 0.976 ± 0.009 1.260 ± 0.016 0.391 ± 0.034 1.269 ± 0.008

Fe ii 2374 0.751 ± 0.009 0.618 ± 0.009 0.819 ± 0.016 0.148 ± 0.042 0.840 ± 0.008

Fe ii 2382 1.398 ± 0.009 1.279 ± 0.009 1.475 ± 0.015 0.486 ± 0.043 1.635 ± 0.007

Fe i 2463 ≤ 0.020 ≤ 0.020 ≤ 0.032 ≤ 0.080 ≤ 0.017

Fe i 2484 ≤ 0.020 ≤ 0.020 ≤ 0.032 ≤ 0.084 ≤ 0.017

Fe i 2501 ≤ 0.020 ≤ 0.020 ≤ 0.030 ≤ 0.098 ≤ 0.017

Si i 2515 ≤ 0.022 ≤ 0.022 ≤ 0.030 ≤ 0.080 ≤ 0.017

Fe i 2523 ≤ 0.020 ≤ 0.020 ≤ 0.022 ≤ 0.078 ≤ 0.017

Mn ii 2576 0.226 ± 0.010 0.183 ± 0.010 0.299 ± 0.017 0.236 ± 0.037 0.237 ± 0.008

Fe ii 2586 1.115 ± 0.008 0.954 ± 0.008 1.247 ± 0.013 0.711 ± 0.034 1.239 ± 0.006

Mn ii 2594 0.164 ± 0.009 0.137 ± 0.010 0.197 ± 0.014 0.181 ± 0.036 0.171 ± 0.008

Fe ii 2600 1.472 ± 0.008 1.321 ± 0.008 1.616 ± 0.013 0.770 ± 0.030 1.641 ± 0.007

Mn ii 2606 0.104 ± 0.009 0.100 ± 0.010 0.115 ± 0.013 0.109 ± 0.022 0.123 ± 0.008

Mg ii 2796 1.940 ± 0.008 1.785 ± 0.008 2.068 ± 0.013 1.235 ± 0.027 2.283 ± 0.006

Mg ii 2803 1.803 ± 0.008 1.595 ± 0.007 2.054 ± 0.013 1.175 ± 0.027 2.065 ± 0.006

Mg i 2852 0.742 ± 0.007 0.614 ± 0.008 0.919 ± 0.012 0.474 ± 0.027 0.818 ± 0.006

Fe i 2967 ≤ 0.016 ≤ 0.018 ≤ 0.028 ≤ 0.074 ≤ 0.015

Fe i 3021 ≤ 0.016 ≤ 0.018 ≤ 0.028 ≤ 0.069 ≤ 0.015

Ti ii 3073 0.039 ± 0.008 0.039 ± 0.009 0.036 ± 0.014 0.057 ± 0.018 0.032 ± 0.007

Ti ii 3230 0.035 ± 0.006 0.035 ± 0.006 0.048 ± 0.009 0.045 ± 0.019 0.030 ± 0.005

Ti ii 3242 0.046 ± 0.008 0.050 ± 0.007 0.052 ± 0.014 0.068 ± 0.020 0.052 ± 0.006

Ti ii 3384 0.082 ± 0.007 0.091 ± 0.006 0.089 ± 0.014 0.111 ± 0.017 0.079 ± 0.006

Fe i 3720 ≤ 0.016 ≤ 0.016 ≤ 0.026 ≤ 0.079 ≤ 0.032

Ca ii 3934 0.703 ± 0.006 0.493 ± 0.006 1.012 ± 0.010 0.885 ± 0.024 0.636 ± 0.006

Ca ii 3969 0.418 ± 0.006 0.312 ± 0.006 0.572 ± 0.011 0.470 ± 0.023 0.378 ± 0.006

Ca i 4227 ≤ 0.018 ≤ 0.018 ≤ 0.028 ≤ 0.060 ≤ 0.015

Na i 5891 0.118 ± 0.013 0.079 ± 0.012 0.194 ± 0.039 0.235 ± 0.053 0.269 ± 0.020

Na i 5897 0.089 ± 0.011 0.074 ± 0.009 0.182 ± 0.033 ≤ 0.104 0.174 ± 0.018

* Tentative detections
† Blended. The deblending procedures were as outlined in Nestor et al. (2003). Cr ii λ2026 and Mg i λ2026
are predicted strengths.
‡ Upper limit inferred using the 2σ upper limit for Cr ii+Zn ii.
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Table 3.5: Metal-line column densities derived from the normalized composite spectra.

log N [atoms per cm2]

Ion Full Sample W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å W λ2796
0 /W λ3934

0 < 1.8 W λ2796
0 /W λ3934

0 ≥ 1.8

Si+1 15.39 ± 0.08 15.40 ± 0.07 15.38 ± 0.08 · · · 15.40 ± 0.05

Al+2 13.44 ± 0.09 13.36 ± 0.09 13.51 ± 0.07 ≤ 13.54 13.49 ± 0.06

Zn+1 12.89 ± 0.05 12.63 ± 0.07 12.82 ± 0.06 ≤ 13.35 12.69 ± 0.06

Cr+1 13.32 ± 0.05 13.33 ± 0.04 13.07 ± 0.12 ≤ 13.93 13.41 ± 0.04

Fe+1 15.12 ± 0.03 15.01 ± 0.03 15.05 ± 0.05 15.03 ± 0.09 15.13 ± 0.02

Mn+1 13.01 ± 0.01 12.94 ± 0.02 13.00 ± 0.02 12.94 ± 0.05 13.04 ± 0.01

Ti+1 12.42 ± 0.03 12.44 ± 0.02 12.41 ± 0.06 12.55 ± 0.05 12.41 ± 0.03

Fe 0 ≤ 11.82 ≤ 11.82 ≤ 12.02 ≤ 12.30 ≤ 12.20

Ca+1 ≥ 12.97 ≥12.84 ≥13.11 13.02 ± 0.01 ≥12.87

Na 0 ≥ 11.83 ≥11.71 ≥12.14 ≥12.06 ≥12.17
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For the full sample, the results are generally consistent with DLA absorber populations

over a range of redshifts (e.g., Turnshek et al. 1989, Pettini et al. 1999, Prochaska &

Wolfe 2002, Ledoux, Bergeron & Petitjean 2002, Prochaska et al. 2003, Akerman et al.

2005, Kulkarni et al. 2005, Battisti et al. 2012), and with the ratios seen in individual

Ca ii absorbers in the literature (e.g., Zych et al. 2009, Richter et al. 2011). Similar

abundance ratios are also seen in metal-strong DLAs (MSDLAs), which are classified as

those DLAs with logN(Zn+) ≥ 13.15 or logN(Si+) ≥ 15.95 (Herbert-Fort et al. 2006),

though the metal column densities of the Ca ii absorbers are significantly lower than these

values. The abundance ratios relative to Zn also approximately match the abundances ratios

of the SMC as measured toward the star Sk 155 (Welty et al. 2001).

The wavelength coverage of the Ca ii absorber spectra permits the detection of both Fe-

peak (e.g., Cr, Mn, Fe) and α-capture elements (e.g., Si, Ca, Ti). It is generally thought that

the Fe-peak and α-capture elements are synthesized in the lead-up to Type II supernovae

events over timescales < 107 years, whereas Fe-peak elements are also synthesized through

Type Ia supernovae events occurring over 108 − 109 years. Hence, studying the abundance

of α-elements relative to Fe-peak elements provides clues to the chemical and star-formation

patterns of the absorber. Furthermore, since different elements display various affinities

to dust, one can also characterize the absorber depletion patterns. But disentangling the

degeneracy between depletion and chemical enrichment is often difficult (e.g. Lauroesch

et al. 1996, Lu et al. 1996, Prochaska & Wolfe 2002, Vladilo 2002, Dessauges-Zavadsky,

Prochaska & D’Odorico 2002, Welty & Crowther 2010). However, some constraints on the

two effects can still be inferred from comparisons of various abundances against each other

(Prochaska & Wolfe 2002; Herbert-Fort et al. 2006). An enhanced [Ti/Fe] generally implies

a Type II enrichment pattern, while an enhancement of [Si/Fe] suggests a population that is

strongly depleted by dust. The [Ti/Zn] ratio is generally not a clear tracer of depletion, and

using it would likely under-estimate the extent of depletion; however, the [Ti/Zn] ratio we

observe for the Ca ii absorbers does hint at some level of depletion of Ti on to dust grains.

The enhancements of [Si/Fe], [Zn/Fe], and [Si/Ti] all unanimously indicate strong depletions

in the typical Ca ii absorber (Prochaska & Wolfe 2002 ).
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Table 3.6: Elemental abundances relative to Zn for the various (sub)samples of Ca ii absorbers. The determinations

are derived using the methods discussed in the text.

[X/Zn]

X Full Sample W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å W λ2796
0 /W λ3934

0 < 1.8 W λ2796
0 /W λ3934

0 ≥ 1.8

Cr −0.63± 0.06 −0.38± 0.08 −0.88± 0.13 · · · −0.36± 0.09

Si −0.37± 0.11 −0.17± 0.09 −0.45± 0.13 · · · −0.24± 0.09

Mn −0.75± 0.06 −0.56± 0.06 −0.75± 0.06 ≥ −1.49 −0.51± 0.09

Ti −0.85± 0.06 −0.58± 0.06 −0.86± 0.08 ≥ −1.19 −0.66± 0.06

Fe −0.70± 0.06 −0.56± 0.08 −0.77± 0.09 ≥ −1.26 −0.50± 0.09

Ni −0.45± 0.11 −0.34± 0.13 −0.87± 0.16 · · · −0.37± 0.14
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Table 3.7: Elemental abundances relative to Fe for the various (sub)samples of Ca ii absorbers.

The determinations are derived using the methods discussed in the text.

[X/Fe]

X Full Sample W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å W λ2796
0 /W λ3934

0 < 1.8 W λ2796
0 /W λ3934

0 ≥ 1.8

Cr +0.06± 0.06 +0.17± 0.05 −0.12± 0.13 ≤ +0.76 +0.14± 0.04

Si +0.25± 0.09 +0.38± 0.07 +0.32± 0.10 · · · +0.26± 0.06

Mn −0.04± 0.03 −0.01± 0.04 +0.02± 0.06 −0.02± 0.10 −0.01± 0.02

Ti −0.16± 0.04 −0.02± 0.04 −0.09± 0.08 +0.07± 0.10 −0.16± 0.03

Zn +0.70± 0.09 +0.56± 0.09 +0.77± 0.09 ≤ +1.26 +0.50± 0.09

Ni +0.21± 0.11 +0.21± 0.11 −0.10± 0.15 · · · +0.13± 0.08
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3.4.3 Limits on Electron Densities in Ca ii Absorbing Gas

The improvement in signal to noise which results when forming composite spectra allows us

to derive some constraints on the electron density of the absorbing gas. Under ionization

equilibrium, the balance between a neutral element X and a singly ionized element X+ is

n(X+)

n(X0)
=

Γ

α(T )ne
(3.3)

where n(X) denotes the volume density of X, Γ is the photoionization rate of X to X+, α is the

temperature-dependent recombination coefficient to form X0 from X+, and ne is the electron

density. For gas of uniform density this can also be expressed using column densities by

replacing n(X) and n(X+) with the column densities N(X) and N(X+), respectively (e.g.,

Prochaska, Chen & Bloom 2006). In principle, constraints on ne could be obtained using

observations of Fe, Ca, and Mg transitions. However, except for Mg i, no transitions from

a neutral atom are observed at ≥ 2σ in the composite. Also, the Ca ii and Mg ii doublet

ratios show some indications of saturation. Therefore, the most conservative way to place

constraints on ne is to use column density results derived from the observed Fe ii lines and

the absence of observed Fe i. These column density results are reported in Table 3.5.

The frequency integral of the product of the Fe photoionization cross section (Verner et al.

1996) and the local UV background (Mathis, Mezger, & Panagia 1983) yields Γ = 1.9×10−10

s−1. The total (radiative+dielectronic) recombination coefficient for Fe+1 is α = 7.2× 10−13

cm3 s−1 at T= 104 K (Mazzotta et al. 1998; Verner 1999). Using the measurements of the

N(Fe0)/N(Fe+1) ratio inferred from Table 3.5 yields a 2σ upper limit of ne . 0.1 cm−3 for

the full sample and weak absorber subsample, and ne . 0.3 cm−3 for the strong absorber

subsample. The electron density upper limit of our full Ca ii absorber sample is in good

agreement with higher-quality observations of individual absorbers by Nestor et al. (2008)

and Zych et al. (2009). Such limits on ne may imply hydrogen densities suitable for molecular

gas (Zych et al. 2009; Nestor et al. 2008; Srianand et al. 2005).
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3.4.4 Dust in Ca ii Absorbing Gas

The average extinction and reddening of Ca ii absorbing gas can be derived by forming

composites using the geometric mean of unnormalized flux spectra. This is done for the full

sample of Ca ii absorbers and the four subsamples. The approach we take to form these

composites is similar to the one taken in York et al. (2006). That is, when we construct

a composite using Ca ii absorber flux spectra, we also construct an unabsorbed reference

composite.

Specifically, we define a non-absorber match for every Ca ii absorber in the sample. The

match is determined using the quasar SDSS i-band magnitude and emission redshift zem.

To find a match, we formed a list of all SDSS quasars up to DR9 with zem > 0.1 and i < 20

mag. We then eliminated those quasars with known intervening Mg ii absorption (Quider

et al. 2010; Monier et al., in prep, private communication), Ca ii absorption (Chapter 2),

or broad absorption lines (Shen et al. 2011). A tentative match between a Ca ii absorber

spectrum and an unabsorbed quasar spectrum is then determined by finding an unabsorbed

quasar that lies closest to the absorbed quasar in ∆i/<i> −∆zem/<zem> space, where

∆i and ∆zem represent differences between the absorbed and matching unabsorbed quasar

properties.

Initial matches are accepted for those with |∆i| ≤ 0.20 and |∆zem| ≤ 0.01 since we

found it especially important to have similar emission features in both spectra. However, we

also visually inspected initial matches for any missed absorption transitions because their

presence in the unabsorbed list has the potential to cause extra extinction/reddening in the

“unabsorbed” quasar spectrum and affect our analysis. In addition, we checked for other

issues such as broad intrinsic Fe ii emission in the matched unabsorbed quasar spectra, which

may lead to significant unmatched broad features in individual absorbed and unabsorbed

spectra.

When these types of problems occurred, we removed the quasar from the unabsorbed

quasar list and re-ran the matching process until a satisfactory match was found. In the end,

we found that it was not possible to find a suitable match with |∆i| ≤ 0.2 and |∆zem| ≤ 0.01

for 41 of our Ca ii absorbers, which is ∼ 10% of our full sample. We did accept seven of
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those 41 since the matches were not too discrepant. Figure 3.7 illustrates the distribution

of ∆i and ∆zem for our final matches. Red points mark the seven closer outliers which just

missed matching our search criteria but were included. Figure 3.8 illustrates an example

case of an individual Ca ii absorber and its match. Fifty per cent of the final matches

are within |∆i| ≤ 0.014 mag and |∆zem| ≤ 0.001, and the median and average values of

the distributions of ∆i and ∆zem are indistinguishable from zero. Thus, in the end, the

numbers of spectra used to form the flux composite spectra were less than those used to

form the normalized composite spectra (Table 3.3). Yet we point out that, even with these

precautions, forming a normalized composite is an inherently more robust process because

undulations in the pseudo-continuum due to both weak and strong emissions are fitted and

removed by the normalization, but this does not happen when forming a flux composite.

This is most troublesome when the number of individual spectra forming a flux composite

at the shortest rest wavelengths becomes small.

To assess extinction and reddening we are interested in comparing the Ca ii absorber

fluxed composite continuum (which is in the rest frame of the absorber) to the unabsorbed

reference continuum. To this end, we constructed the composites for our extinction analysis

by taking the geometric mean of those Ca ii absorbed spectra which have suitable unabsorbed

matches, hence we used 401 sets of absorbed-unabsorbed spectra. A quasar continuum

generally follows a power-law and the geometric mean of a set of power-law spectra preserves

the average power-law index. Therefore, this is an appropriate method to use to determine

the average extinction law, which is also likely to be similar to a power-law.

To form a fluxed composite each Ca ii absorbed quasar spectrum and its match were

shifted to the absorber rest frame after rebinning to a wavelength scale that was one-tenth

of the original pixel size in order to make the registration of spectra accurate. The final

composites were then rebinned to a wavelength scale of 1 Å per pixel in the rest frame. The

standard deviation, σλ,g, in the geometric mean is given by

lnσλ,g =

√√√√ 1

N

N∑
i=1

[
ln

(
fλ,i
µλ,g

)]2

(3.4)

where µλ,g is the geometric mean of N fluxes and fλ,i are the individual spectrum fluxes as
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Figure 3.7: The ∆i - ∆zem space for the final Ca ii absorber and non-absorber matches. The

dashed lines depict our initial match search box criteria. Suitable matches were found for

401 absorbers including the near matches shown as red open circles which we used.
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Figure 3.8: An example Ca ii absorber spectrum and its non-absorber spectrum match. In

this case |∆i| = 0.01 and |∆zem| = 0.001.
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a function of wavelength (Kirkwood 1979). The top panel of Figure 3.9 shows the matched

composites for the full sample, with the Ca ii absorber sample in red and the unabsorbed

reference sample in blue. Figures 3.10-3.11 illustrate this in the four subsamples (see §3.5

discussion.) The errors in the full sample composite typically lie in the range 1.8−2.2×10−17

ergs cm−2 s−1 Å−1 level. Prominent absorption features from transitions of Fe ii, Mg ii, Mg i,

and Ca ii are clear in the Ca ii absorber composite. The bottom panel shows the flux ratios

between the absorbed and unabsorbed composites. Overlaid are extinction model fits to

the data: the magenta dashed line shows a LMC-like dust model (Gordon et al. 2003), the

solid green line shows a SMC-like model (Gordon et al. 2003), and the dashed-dot cyan

lines show a standard Milky Way (MW) model (Fitzpatrick 1999). All fits have been made

over a wavelength range ≥ 2500 Å to ensure more uniform noise characteristics across the

wavelength range when performing the fits; absorption lines were masked out when making

the fits.

In Table 3.8 we summarize the modeled or observed absorbed-to-unabsorbed flux ratios

at λrest = 2200 Å, R, and color excesses, E(B−V ), for the full sample and four subsamples.

For the full sample the observed R is 0.83, which is best matched by either the LMC or

SMC; the color excess is inferred to be E(B−V ) ≈ 0.03. Over the fitted range (λ > 2500 Å)

the LMC and SMC models are nearly indistinguishable, while the MW dust law is definitely

ruled out. As can be seen from Figures 3.10 and 3.11, due to a combination of smaller

sample sizes and/or lower extinction, ruling out the MW extinction law becomes difficult

for all subsamples except the Wλ3934
o ≥ 0.7 Å subsample. Wild et al. (2006) concluded that

an LMC extinction law applied to the Ca ii sample of absorbers that they studied, however,

with a color excess that is two to five times higher. Nevertheless, the results presented here

are consistent with earlier studies that the strong Ca ii absorbers are among the dustiest

absorber systems, and are likely to be DLAs (Wild et al. 2006; Zych et al. 2009). We also

note for comparison that an SMC-like extinction curve with E(B−V ) < 0.02 mag has been

inferred using DLA and Mg ii samples (Murphy & Liske 2004; York et al. 2006; Vladilo,

Prochaska & Wolfe 2008).
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Figure 3.9: Top: The geometric mean rest-frame composites for the Ca ii absorbers (red)

and the unabsorbed reference sample (blue) derived using the full sample. Clearly visible

in the absorber composite are the narrow absorption lines from Fe ii, Mg ii, Mg i, and Ca ii.

Bottom: The ratio of the absorber composite to the unabsorbed reference composite. Least-

squares fits of dust models derived from the LMC (dashed line in magenta), SMC (solid line

in green), and Milky Way (MW) (dashed-dot line in cyan) are also shown. The LMC and

SMC dust laws both provide good fits to the observe extinction, with E(B−V ) ≈ 0.03. The

LMC and SMC fits are nearly indistinguishable.
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Figure 3.10: Same as Figure 3.9, but showing the results for the Wλ3934
0 < 0.7 Å subsample

(left side) and Wλ3934
0 ≥ 0.7 Å subsample (right side).

Figure 3.11: Same as Figure 3.9, but showing the results for the Wλ2796
0 /Wλ3934

0 < 1.8

subsample (left side) and Wλ2796
0 /Wλ3934

0 ≥ 1.8 subsample (right side).
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3.5 IMPLICATIONS OF THE RESULTS FOR CA II ABSORBER

POPULATIONS USING THE SUBSAMPLES

As indicated at the beginning of §3.4, in Chapter 2 we found that while Ca ii absorbers are

rare, they are unlikely to represent a single type or population of absorber. The Wλ3934
0

distribution requires a two-component exponential to satisfactorily fit the data, hinting at

the existence of at least two distinct populations. This persists across our survey redshift

interval, zabs . 1.4. Upon further analysis of the Ca ii survey data, it was also shown that

when the Mg ii properties of these Ca ii absorbers are taken into account, it is possible to

more clearly separate the Ca ii absorbers into two populations at the > 99% confidence

level. In this section we investigate whether the chemical and dust depletion properties of

subsamples of Ca ii absorbers are consistent with the statistical evidence for two populations.

To do this, we divide the full sample into four subsamples, and we analyze the subsamples

in the same way we analyze the full sample as discussed in §3.4. The tabulations of results

and the figures on subsamples are in Tables 3.3-3.7 and Figures 3.3-3.6 and 3.10-3.11. Recall

(Chapter 2 and §3.4) that we divide the full sample as follows. Two subsamples were formed

by separating the full sample at W λ3934
0 = 0.7 Å, which results in ∼ 200 Ca ii absorbers

in each. This is also the separation which exhibits the maximum difference between two

populations from KS tests. We also form two more subsamples by separating the full sample

at W λ2796
0 /W λ3934

0 = 1.8, but only 29 Ca ii absorbers have W λ2796
0 /W λ3934

0 < 1.8. Finally,

we note that we also performed an analysis by dividing the W λ3934
0 distribution into four

subsamples of equal size. This produces results that are consistent with dividing the W λ3934
0

distribution into two subsamples, but with appropriately larger errors, as expected. We

determined that there was not anything reliable to be learned by pursuing this.

Figures 3.3 and 3.4 show the normalized composite spectra of the two subsamples of

Ca ii absorbers separated at W λ3934
0 = 0.7 Å. The measurements of the equivalent widths are

reported in Table 3.4. The corresponding ionic column densities derived from unsaturated

lines of Cr ii, Zn ii, Fe ii, Ni ii, and Mn ii are tabulated in Table 3.5. Estimates on the

abundance ratios relative to Zn and Fe are inferred in Tables 3.6 and 3.7, assuming no

ionization corrections. The results clearly indicate that the two subsamples separated at
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W λ3934
0 = 0.7 Å reveal the existence of two broadly defined populations of Ca ii absorbers

in terms of their element abundance ratios and depletion measures, although there is likely

some cross-mixing between the two populations given the crude way they were separated.

However, the two subsamples formed by separating the full sample at W λ2796
0 /W λ3934

0 =

1.8 do not allow us to draw a similar type of conclusion because only 29 Ca ii absorbers

have W λ2796
0 /W λ3934

0 < 1.8 and only five spectra contribute to the flux composite below

∼ 2300 Å, which compromises the accuracy of this particular measurement. Results from

the W λ2796
0 /W λ3934

0 ≥ 1.8 subsample are very similar to W λ3934
0 < 0.7 Å results.

Figures 3.10 and 3.11 illustrate the extinction and reddening results for the four sub-

samples. A tabulation of observed results and best-fit extinction laws are given in Table

3.8.

Figure 3.12 shows the log of the abundance ratios of Si, Mn, Cr, Fe, Ni, and Ti relative

to Zn, as measured with respect to solar values. The elements on the x-axis are ordered left-

to-right in increasing condensation temperatures. Filled symbols are Galactic abundance

measurements for the halo (green squares), cold disk (brown circles), and warm disk (red

diamonds) obtained from the compilations of Welty et al. (1999). The halo + disk (blue

triangles) abundances are taken from Savage & Sembach (1996). Measurements pertaining

to Ca ii absorbers with W λ3934
0 < 0.7 Å are shown as filled green circles while those with

W λ3934
0 ≥ 0.7 Å are blue asterisks; results for Ca ii absorbers with W λ2796

0 /W λ3934
0 ≥ 1.8 are

shown as filled orange triangles and are seen to be very similar to the W λ3934
0 < 0.7 Å results;

the W λ2796
0 /W λ3934

0 < 1.8 results are not shown due to their poor accuracy. We also draw

attention to Figure 3.1, which includes our individual Ca ii absorber results and results from

earlier work.

The stronger Ca ii absorber subsample (W λ3934
0 ≥ 0.7 Å) is seen in Figure 3.12 to be

similar to the halo + disk component in terms of both chemical enrichment and element

depletions on to dust grains. This conclusion is consistent with both the best-fit LMC or SMC

dust extinction laws for our stronger Ca ii absorber subsample (right panel of Figure 3.10).

This is our most heavily reddened subsample, with an absorbed-to-unabsorbed flux ratio at

2200 Å of R = 0.73 (Table 3.8). A MW extinction law is clearly ruled out for the stronger

Ca ii absorber subsample. However, the weaker Ca ii absorber subsample (W λ3934
0 < 0.7 Å)

89



is seen to have chemical enrichment and element depletion characteristics of the warm halo

component, and there is much less reddening due to dust extinction (left panel of Figure

3.10 and Table 3.8), with R = 0.95. Calculating the optical depths from the flux ratios

indicates that the stronger Ca ii absorbers are nearly six times more reddened than the

weaker absorbers.

In comparison to expected nucleosynthetic effects and the errors in our measurements,

Figure 3.12 reveals that depletion of elements to form dust grains is the dominant physics ob-

served in the Ca ii absorber normalized composite spectra; studies of the details of nucleosyn-

thetic processes are probably better accomplished using high-resolution, high signal-to-noise

observations of individual Ca ii absorbers. In particular, Figure 3.12 shows that elements

with larger condensation temperatures have generally greater depletion levels (Field 1974),

and indicates a clear progression of increasing depletions, consistent with moving from halo

regions toward cooler disk regions. The differences likely provide clues on the physical pro-

cesses that transport and form/destroy gas and dust in the ISM and CGM of galaxies. The

depletion patterns may be indicative of severe destruction of dust grains in the halo clouds

than in the disk clouds, which may result from either more frequent or more severe shocking

of the halo clouds compared with disk clouds (Savage & Sembach 1996), as supported by di-

rect comparisons of the halo cloud abundances with those in strongly shocked environments

(Jenkins & Wallerstein 1996).

We should add some comments about depletion results for Ca ii absorbers from other

authors. Using a smaller sample, Wild et al. (2006) compared the depletion patterns of

refractory elements (Mn, Cr, Fe, and Ti) to that of the warm and cold disks of the MW;

they formed two subsamples separated at W λ3934
0 = 0.68 Å. Consistent with our findings,

their results show that the depletion pattern for Ca ii absorbers is inconsistent with that of

the cold disk of the MW. They also find that Ca ii absorbers with W λ3934
0 > 0.68 Å have

depletions that approach or exceed those of the warm disk of the MW. In comparison, we

find weaker depletion levels for our strong Ca ii absorbers compared to the MW’s warm disk

phase and, as shown in Figure 3.12, our results are consistent with halo+disk-like depletions.

Results from Nestor et al. (2008) indicate that the [Cr/Zn] ratios for their sample of 22 Ca ii

absorbers (of which 16 are subDLAs and six are DLAs) are similar to the values seen along
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sightlines sampling the MW halo. The more recent study by Zych et al. (2009) found similar

results, as inferred from the [Fe/Zn] ratios of their sample of 19 Ca ii absorbers. We note,

however, that the Ca ii absorber sample from both studies consisted of weak absorbers. In

particular, the Nestor et al. (2008) sample has only a single absorber with W λ3934
0 > 0.7 Å,

while Zych et al. (2009) has three. Thus, our conclusions on the depletions for the weak

absorbers generally agree with earlier results.

From the analysis of depletion measures and velocity profiles of 19 Ca ii absorbers

(W λ3934
0 > 0.2 Å), Zych et al. (2009) suggested that there might be two distinct scenar-

ios giving rise to Ca ii absorbers, with one being a low-impact-parameter sightline passing

through a quiescent galaxy disk, and the other being a sightline passing through more dis-

turbed and complex environments such as outflows, mergers, or galaxy clusters. Moreover,

Richter et al. (2011) concluded that the majority of their sample of 23 Ca ii absorbers (with

W λ3934
0 . 0.8 Å) trace neutral and partly ionized gas in clouds in the halos and circumgalactic

environments of galaxies. Hence, the two-population picture for Ca ii absorbers is apparent

even with smaller data sets. Our results on chemical depletion and reddening suggest that

stronger absorbers are likely to be associated with low impact parameter, disk-like environ-

ments, while the weaker absorbers are likely to be associated with larger impact parameter

environments more typical of galactic halos. We will explore this further in Chapter 4.

Finally, we emphasize again that previous studies of the stronger Ca ii absorption systems

have been very limited until now. In the future it will be important to explore the properties

of individual Ca ii absorbers (especially the stronger ones) with high-resolution spectroscopy

in order to measure their kinematics and better characterize their chemistry.
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Figure 3.12: Element abundance ratios relative to Zn for three Ca ii absorbers subsamples:

(1) Wλ3934
0 < 0.7 Å, (2) Wλ3934

0 ≥ 0.7 Å, (3) and Wλ2796
0 /Wλ3934

0 ≥ 1.8. The Ca ii absorber

subsample with Wλ2796
0 /Wλ3934

0 < 1.8 is not shown because of the small number of absorbers

(and large error bars) that pertain to this subsample. The elements are arranged in order

increasing condensation temperature. For comparison, and as described in the text, also

shown are abundance ratio compilations for cold disk gas, warm disk gas, disk + halo gas,

and warm halo gas (Welty et al. 1999; Savage & Sembach 1996).
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Table 3.8: Results on extinction and reddening for the full sample and four subsamples of Ca ii absorbers. Parameters are given

for the best-fit LMC, SMC, and MW extinction laws applied to the fluxed Ca ii absorber composite spectra, relative to the

unabsorbed reference composite spectra, at λrest ≥ 2500 Å. The parameter R is the absorbed-to-unabsorbed flux ratio at 2200

Å. For the Ca ii absorber (sub)samples R is observed. For the best-fit extinction models R is predicted.

Full Sample W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å Wλ2796
0 /Wλ3934

0 < 1.8 Wλ2796
0 /Wλ3934

0 ≥ 1.8

Dust Law E(B − V ) R E(B − V ) R E(B − V ) R E(B − V ) R E(B − V ) R

· · · [mag] · · · [mag] · · · [mag] · · · [mag] · · · [mag] · · ·

LMC 0.029 0.80 0.011 0.93 0.048 0.67 0.029 0.80 0.018 0.87

SMC 0.024 0.81 0.009 0.93 0.040 0.69 0.024 0.81 0.015 0.87

MW 0.026 0.75 0.010 0.90 0.043 0.62 0.025 0.77 0.016 0.84

Ca ii Sample - 0.83 - 0.95 - 0.73 - · · · - 0.83
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3.6 SUMMARY AND CONCLUSIONS

We have used statistical results on the 435 Ca ii absorbers identified in SDSS quasar spec-

tra (Chapter 2) to derive results on their element abundance ratios and dust properties.

In contrast to earlier studies, this new large sample includes a large number (≈ 200) of

W λ3934
0 ≥ 0.7 Å Ca ii absorbers at redshifts zabs < 1.4. We present results on a number

of individual Ca ii absorption systems in Tables 3.1 and 3.2. More importantly, by median-

combining > 400 normalized spectra for the full sample and four subsamples, we have formed

high signal-to-noise normalized composite spectra and used them to detect (or place limits

on) low-ionization metal lines due to Si ii, Fe ii, Co ii, Zn ii, Cr ii, Fe i, Si i, Mn ii, Mg ii, Mg i,

Ni ii, Ti ii, Ca ii and Na i, as included within the redshifted spectral coverage of the SDSS

spectrograph. These have been used to investigate element abundance ratios in Ca ii ab-

sorbers. We also formed Ca ii absorber fluxed composite spectra and matching unabsorbed

fluxed composite spectra of the full sample and four subsamples to investigate extinction

and reddening in Ca ii absorbers.

We tested a hypothesis put forth in Chapter 2. Namely, that the sensitivity-corrected

Wλ3934
0 distribution of Ca ii absorbers follows a shape that is suggestive of at least two

populations of Ca ii absorbers, separated at Wλ3934
0 = 0.7 Å. We therefore hypothesized

that analysis of two subsamples divided at Wλ3934
0 = 0.7 Å would allow us to reveal the

nature of these two populations, and this turned out to be the case. We also showed in

Chapter 2 that by using information on Mg ii in Ca ii absorbers we could statistically infer

the presence of two populations divided at Wλ2796
0 /Wλ3934

0 = 1.8, but unfortunately only 29

Ca ii absorbers are in the subsample with Wλ2796
0 /Wλ3934

0 < 1.8, so we could not make an

accurate comparison of these other two subsamples using this criterion.

Because of our findings, in what follows we will refer to the Wλ3934
0 ≥ 0.7 Å absorbers as

the strong Ca ii absorbers, and the Wλ3934
0 < 0.7 Å absorbers as the weak Ca ii absorbers.

Analysis of the element abundance ratios derived for Si, Mn, Cr, Fe, Ni, and Ti relative

to Zn using normalized composite spectra indicate that the abundance pattern of the strong

Ca ii absorbers is intermediate between disk- and halo-type gas (see Figure 3.12). The results

indicate more significant depletions of the highly refractory elements of Cr, Fe, Ni, and Ti in
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the strong Ca ii absorbers. In addition, independent of the absorption line analysis, which

was based on normalized composites, an investigation of the extinction and reddening in the

strong Ca ii absorbers using the ratio of the absorbed-to-unabsorbed composite fluxed spectra

shows that they are a significantly reddened population of absorbers, with the absorbed-to-

unabsorbed composite flux ratio at λrest = 2200 Å being R ≈ 0.73 and E(B − V ) ≈ 0.046,

consistent with a LMC or SMC dust law (right hand panel of Figure 3.10 and Table 3.8).

Our data do not allow us to distinguish between an LMC versus SMC reddening law.

At the same time, we showed that the weak Ca ii absorbers have an abundance pattern

typical of halo-type gas with less depletion of the highly refractory elements of Cr, Fe, Ni,

and Ti (also Figure 3.12). Again independent of the absorption line analysis, we find that

the weak Ca ii absorbers are nearly six times less reddened than the strong Ca ii absorbers,

with R ≈ 0.95 and E(B − V ) ≈ 0.011 (left hand panel of Figure 3.10 and Table 3.8).

Thus, the results of this analysis have confirmed the hypothesis that at least two popula-

tions of Ca ii absorbers exist, consistent with the statistical evidence in Chapter 2. Thanks to

the high-signal-to-noise composite spectra, we were able to identify the striking differences in

the element abundance ratios, depletion patterns, and dust extinction and reddening prop-

erties of the two populations of Ca ii absorbers divided at Wλ3934
0 = 0.7 Å. In Chapter 4 we

will explore the association between Ca ii absorbers and galaxies.
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4.0 Ca ii ABSORBERS IN THE SLOAN DIGITAL SKY SURVEY:

GALAXIES

4.1 INTRODUCTION

Chapter 4 is the third in a series of papers based on our survey for Ca ii λλ3934, 3969

absorption-line systems in the Seventh and Ninth data releases of the Sloan Digitial Sky

Survey (SDSS; Schneider et al. 2010; Ahn et al. 2012). In the first paper, Sardane, Turnshek

& Rao (2014; hereafter Paper I; also thesis Chapter 2), we discussed details of the survey

and presented our sample of 435 Ca ii absorbers. The survey covered the redshift range

z < 1.34 and included rest equivalent widths Wλ3934
0 ≥ 0.16 Å. We also required that the

stronger line of the doublet be detected at a ≥ 5σ level of significance and, at the same

time, the weaker line be detected at a ≥ 2.5σ level of significance. We presented evidence for

the existence of two distinct populations of Ca ii absorbers. We found that the Wλ3934
0 rest

equivalent width distribution is better represented by a double exponential function rather

than a single component, with a change in slope occurring at Wλ3934
0 ≈ 0.7− 0.9 Å and the

weaker systems showing a steeper rise towards lower values of Wλ3934
0 . In the second paper,

Sardane, Turnshek, & Rao (2015; hereafter Paper II; also thesis Chapter 3), we performed

a spectral stacking analysis of Ca ii absorbers that were divided into two roughly equal-

sized subsamples with Wλ3934
0 less than and greater than 0.7 Å. We found a significant

difference in the dust-reddening and abundance patterns between the two composites; the

strong absorbers with Wλ3934
0 ≥ 0.7 Å are a factor of six times more reddened, and hence

significantly more dusty, than the weak absorbers. The abundance pattern of weak systems

was found to be consistent with Milky Way halo-type material (Savage & Sembach 1998).

On the other hand, the stronger systems are more complex, with a composite abundance
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pattern that is intermediate between disk and halo-type gaseous material.

In this chapter of the thesis, which is the third paper in the series, we present our results

on the properties of galaxies associated with Ca ii absorbers using imaging data from the

SDSS. We first describe the properties of the galaxies that have been directly identified

in the SDSS images as the most likely absorber. We then use an image stacking analysis

(e.g., similar to Zibetti et al. 2007) to derive the surface brightness profiles of the light in

the vicinity of the quasar sightlines with Ca ii absorbers, which allows us to infer average

differences in galaxy properties between the two populations of absorbers.

Prior to our work, Zych et al. (2009) had identified galaxies associated with Ca ii ab-

sorbers that had W λ3934
0 ≥ 0.2 Å from imaging and spectroscopic observations using the

FORS2 spectrograph on the Very Large Telescope. Their study consisted of a sample of five

Ca ii absorbers identified in the SDSS at redshifts zabs < 0.5. In contrast to our survey for

Ca ii described in Paper I, their selection criteria required a line significance of ≥ 4σ for

the λ3934 line and ≥ 1σ for the λ3969 line. A ≥ 6σ-Mg ii or ≥ 1σ-Na i detection was also

required. They found that these absorbers are associated with galaxies that are luminous

(L ∼ L?), have substantial star-formation, are metal rich (Z ∼ Z�), and have impact pa-

rameters . 24 kpc. K-band imaging of 30 strong Ca ii absorber host galaxies at z ∼ 1 by

Hewett & Wild (2007) showed similar results. The absorbers were found to be preferentially

luminous with a mean impact parameter of 24 kpc and a filling factor of only 10%. No asso-

ciated galaxy was detected for approximately a third of the absorbers. However, the physical

origin of these absorbers remains unclear, and includes a wide range of possibilities from very

extended disks of luminous galaxies to associated dwarf galaxy neighbors, outflows, or can-

nibalism of tidal debris by smaller galaxies. A recent cross-correlation analysis of foreground

galaxies with background quasars in the SDSS resulted in the suggestion that, for edge-on

galaxies, bipolar outflows induced by star-formation is largely responsible for producing Ca ii

in the halos of galaxies (Zhu & Menard 2013). Furthermore, several authors have suggested

that Ca ii absorbers with W λ3934
0 & 0.2 Å may be a subclass of damped Lyman alpha (DLA)

systems with higher neutral gas densities (Wild, Hewett & Pettini 2006; Nestor et al. 2008).

Other investigations have indicated, however, that Ca ii systems exhibit a variety of neutral

hydrogen column densities, sometimes bearing H2, have a range of dust-to-gas ratios and are
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sometimes associated with environments giving rise to high-ionization metal lines (Zych et

al. 2007; Richter et al. 2011; Crighton et al. 2013).

Having assembled the largest catalog of Ca ii absorbers to date, we are now able to

determine their properties in a statistically meaningful way. In Paper I we presented the

rest equivalent width and redshift distribution of the absorbers. Paper II described their

dust reddening and abundance patterns. And here in Paper III we present some results on

the properties of the galaxies that are associated with the Ca ii absorbers. The paper is

organized as follows. In §4.2 we give a brief description of the Ca ii absorber catalog, as well

as the non-absorber samples used to form reference or control images for an image stacking

analysis. In §4.3 we present some galaxies that are likely to host some of the absorbers.

These are SDSS galaxies for which spectroscopic data are available and whose redshifts

match those of the absorbers. Details on the image stacking technique, the construction of

the image composites, the derivation of light profiles, and the inferred luminosity-weighted

mean impact parameter of galaxies associated with Ca ii absorbers are described in §4.4. In

§4.5 we present our conclusions and discuss the implications of our results.

Hereafter, we refer to absorbers with Wλ3934
0 < 0.7 Å as “weak” Ca ii absorbers, and those

with Wλ3934
0 ≥ 0.7 Å as “strong” absorbers. Throughout this paper we assume standard

ΛCDM cosmological parameters of Ωm = 0.27, ΩΛ = 0.73, and H0 = 71 km s−1 (Spergel et

al. 2007; Komatsu et al. 2011).

4.2 THE DATA

4.2.1 The Ca ii Absorber Catalog

The sample of Ca ii absorbers that we use in this paper is derived from the catalog presented

in Paper I. In this section, we briefly describe the Ca ii dataset. The catalog consists of 435

Ca ii absorbers identified from a search of over 95,000 quasar spectra from the Seventh (SDSS

DR7, Shen et al. 2011) and Ninth (SDSS DR9, Pâris et al. 2012) data releases of the SDSS.

Ca ii absorption can be detected at redshifts 0 < z < 1.34 in SDSS quasar spectra, tracing
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back more than 8.5 Gyrs of cosmic time. The spectra of all quasars brighter than i = 20

mag were normalized using a pseudo-continuum and then searched for the Ca iiλλ3934, 3969

doublet feature. A positive detection was defined in terms of the significance levels of the

strengths of the two absorption lines and the value of the doublet ratio. Specifically, under

these criteria the rest equivalent widths (REWs) of accepted Ca ii doublets had be significant

at a ≥ 5σ significance level for the stronger line, λ3934, and at a ≥ 2.5σ significance level for

the weaker line, λ3969. The doublets also needed to satisfy the doublet ratio (DR) criterion,

which requires them to be within the physically allowed range of 1.0−σDR ≤ DR ≤ 2.0+σDR.

Profiles with DR = 1 are said to be fully saturated, in which case the REWs are sensitive

to the velocity spread of the gas, while those with DR = 2 are fully unsaturated, in which

case the strengths are proportional to the Ca+ column density of the gas. Furthermore, only

systems with a separation greater than 6000 km s−1 longward of the Lyα emission line were

accepted into the catalog.

4.2.2 The Reference Non-Absorber Quasar Sample

In order to define a control sample for our image stacking analysis, we also needed to select a

sample of quasars which had no absorbers detected in their spectra. This set of non-absorber

quasar fields serves as a baseline for establishing background levels. The non-absorbers were

selected using the matching algorithm described in York et al. (2006) and adopted in Paper

II to compile our non-absorber set. In brief, each quasar in the absorber set is matched with

a quasar containing no absorbers by minimizing the difference in their SDSS i magnitudes

and emission redshifts, zem. We refer the reader to Paper II for a complete discussion of the

matching process. In this analysis, we use the same sample of absorber-non-absorber pairs

as defined for the Paper II analysis.
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4.3 DIRECT DETECTION OF ABSORBING GALAXIES

In this section, we present results from an examination of SDSS r−band images of quasar

fields with the lowest redshift Ca ii absorbers. We restricted the search to quasar fields with

zabs ≤ 0.4 in order to concentrate on galaxies that lie within the primary redshift range of

galaxies explored by the SDSS. The Ca ii absorber sample has approximately 150 systems

at redshifts z ≤ 0.4. Of these, only 4 galaxies had spectroscopic redshifts that matched

the redshift of the Ca ii absorption systems and were within a search radius of 100 kpc

from the quasar sightline. A primary reason for there being so few matches is the fact

that spectroscopic fibers are placed at a minimum of 55 arcsec apart on any single SDSS

plate. Thus, spectroscopic data for targets separated by less than 55 arcsec can exist only

in overlapping plate regions. We were fortunate to have found 4 matches.

The properties of the absorbers and identified galaxies are tabulated in Table 4.1. Abso-

lute magnitudes are calculated using K-corrections obtained as in Blanton & Roweis (2007),

which uses the stellar population synthesis models of Bruzual & Charlot (2003) and the

nebular emission-line models of Kewley et al. (2001). Ratios of the absolute luminosities

of the galaxies relative to L? were obtained using M? values from Montero-Dorta & Prada

(2009). In Figure 4.1, the Ca ii absorption features are shown along the top row, with the

Ca ii absorption redshifts indicated on each panel. Solid red vertical lines indicate the loca-

tion of the Ca ii doublets. The second row shows the SDSS r -band postage-stamp images

of the quasar-galaxy pairs. The blue arrows mark the location of the galaxies, while the red

arrows point to the quasars. The images are labeled A through D to correspond to the row

labels in Table 4.1. The galaxies, which have redshifts in the range 0.047 < z < 0.242, have

generally small impact parameters that range between 5 and 25 kpc. Galaxies A, B, and C

are emission-line, star-forming galaxies according to the classification scheme in the SDSS

database. At z = 0.4 100 kpc corresponds to ∼ 18.4 arcsec. The spectra of the four galaxies

are shown in Figure 4.2.

The nature of the fourth galaxy, labeled D, is ambiguous. Here, we have a bright nuclear

region embedded in an extended, low-surface brightness, fuzzy structure. The spectrum

reveals that the galaxy is early-type, but with weak emission lines blended. Accounting

100



for K-corrections and using the de Vaucouleurs model magnitude tabulated in the SDSS

photometric table, the luminosity of the spherical nuclear component (see Figure 4.1) is 6L?.

But the fiber and point spread function (PSF) magnitudes give a luminosity of 0.8L?. It is

likely that the model magnitude of this object is confused due to its blended morphology,

giving the light profile an erroneously larger spread. We also note that this particular galaxy

can be found in the Galaxy Zoo dataset (Lintott et al. 2011) with a morphology classification

of “uncertain”. Given the images and the spectrum, we suspect that this galaxy is a blend

of two separate, but physically close structures, possibly a dwarf companion to the larger

early-type galaxy dominating the spectrum. It is unlikely that the nuclear component is the

absorber host. The absorber is more likely to be associated with the much fainter extended

region, from which the weak emission lines seen in the spectrum of this object are likely

to originate. We also note that upon adjusting the image contrast for this object as shown

in Figure 4.3, we see signatures of what appear to be spiral arms and an additional faint

nuclear component. The green arrow points to the possible spiral arm-like structure and

the magenta arrow shows the location of a separate nuclear component. If this low-surface

brightness galaxy is indeed the absorber, we estimate its physical extent to be ∼ 96 kpc.

Due to the ambiguity of the nature of the galaxy associated with this absorber, we have left

the magnitudes and colors in Table 4.1 blank.
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Figure 4.1: The luminous, low-impact parameter galaxies associated with Ca ii absorption

arranged in order of increasing redshift from left to right. See Table 4.1 for absorption and

galaxy properties. Top Row: The Ca ii absorption lines detected in the spectra of the four

quasars. The absorber redshifts are indicated. Pairs of red vertical lines identify the two

lines of the Ca ii doublet. Bottom Row: Postage-stamp SDSS r-band images of the quasar

fields corresponding to the Ca ii absorbers in the top panel. Red arrows mark the location

of the quasar, while blue arrows point to the location of the galaxy that has a spectroscopic

redshift that matches that of Ca ii. The scale of the image is also shown.
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0

20

40

f �
,
[1

0�
17

er
g

s�
1
cm
�

2
Å
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Figure 4.2: The SDSS spectra, shown in blue, of the four galaxies identified at the same

redshift as the Ca ii absorbers. For display purposes, the spectra are smoothed over five

pixels. The error arrays are shown in black and prominent emission lines are labeled where

applicable.
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Figure 4.3: Galaxy D shown with enhanced contrast in comparison to Figure 4.1, revealing

what appears to be a portion of a spiral arm (green arrow), and a faint nuclear component

(magenta arrow).
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Table 4.1: The four SDSS spectroscopic galaxies identified in the SDSS. A few percentage of Ca ii absorbers identified in Sardane

et al. (2014) are found to be associated to low-luminousity, low-impact parameter galaxies.

IAU Name Image zabs W λ3934
0 W λ3934

0 b b mr g-r Mr Luminosity type

· · · Label · · · Å Å arcsec kpc mag mag mag L?

J114719+522923 A 0.0475 1.327 ± 0.269 0.601 ± 0.173 5.4 5.0 18.8 0.37 -17.8 0.1 Starburst

J123401+002427 B 0.1125 0.518 ± 0.097 0.519 ± 0.097 10.3 21.3 19.4 0.64 -20.0 0.2 Star-Forming

J155752+342142 C 0.1140 0.598 ± 0.102 0.628 ± 0.168 3.7 7.7 18.1 0.57 -21.3 0.9 Star-forming

J141746+162512 D 0.2416 0.603 ± 0.110 0.479 ± 0.092 12.5 25.4 - - - - -
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4.4 IMAGE STACKING ANALYSIS

4.4.1 Selection of the Images Used in the Composites

As shown by Zibetti et al. (2007) for Mg ii absorbers, the approach of image stacking is an

efficient way to statistically detect the excess of surface brightness around absorbed quasars

relative to unabsorbed ones. The excess in the stacked light profile is assumed to be produced

by galaxies associated with the absorbing systems. More specifically, this approach allows

one to measure the spatial distribution of the light of the absorbing galaxies, from which

the luminosity-weighted impact parameter distribution of the galaxies associated with the

gaseous absorption can be derived. In this section, our goal is to uncover any differences in

the surface brightness profiles between strong and weak Ca ii absorbers that could provide

more clues to the nature of the Ca ii absorber populations.

We now describe the selection of images that will be included in the composite. The

stacking and subsequent analysis are carried out using g as well r band images. We used the

corrected (calibrated and sky-subtracted) imaging fields downloaded from the SDSS DR9

Science Archive Server (SAS) in SDSS-III FITS file format. Each SDSS field is 2048 × 1489

pixels, corresponding to 13′ × 10′, and is uniquely identified by a run, camera column, and

field number designation. We restrict our stacks to the absorber redshift ranges 0.2 ≤ zabs ≤
0.4 and 0.4 < zabs ≤ 0.65, which are large enough to include a statistically significant number

of absorbers, yet small enough that the difference in pixel scales at the low and high redshift

ends did not require unreasonably large rebinning at the lowest redshifts. Each SDSS image

was examined for its quality within a 350 kpc radius around the quasar at the redshift of the

absorber. Fields which contained highly saturated stars and large foreground galaxies that

have negligible chance of being the galaxy at the redshift of the absorber were eliminated

from the list to be stacked, since light from these sources overwhelmingly dominated these

images. Each field was also required to have a minimum, uninterrupted area of 700×700

square kpc, so that differences in depth and/or image quality of adjoining plates, if the

quasar was near the edge of a plate, could be avoided.

The measurement of excess light in stacked images encounters sources of noise that come
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Table 4.2: Number of fields included in the stacks.

zabs Number of Fields

W λ3934
0 < 0.7 Å W λ3934

0 ≥ 0.7 Å Non-absorber

0.20 - 0.40 29 27 50

0.40 - 0.65 32 33 49

from intrinsic photon noise, the noise from foreground and background galaxies and fore-

ground stars, and noise from the quasar light itself (Zibetti et al. 2007). The intrinsic photon

noise is fixed by the number of images that are stacked and their depth. The contribution

from background and/or foreground sources unrelated to the absorbers is somewhat allevi-

ated by masking these sources out from the images. Appropriate subtraction of the quasar

PSF can drastically reduce the contribution from the quasar itself. Implementation of these

techniques is described in the following subsections.

4.4.2 Quasar PSF Subtraction

In very high signal-to-noise ratio images, such as stacked images, the quasar PSF can be

detected out to angular distances of a few tens of arcseconds and can, therefore, contribute

a non-negligible fraction of the azimuthally averaged surface brightness (SB). In order to

suppress this contribution, the SB distribution of the quasar is estimated from high signal-

to-noise ratio PSFs of bright, unsaturated, stars in the same field. For each quasar, the

PSF is empirically determined using bright (r < 18.0 mag), unsaturated stars found in

the same 10′ × 13′ SDSS field as the quasar. Suitable PSF stars were those flagged with

clean photometry in the SDSS PhotoObj tables (i.e., CLEAN = 1) and tagged as primary

objects (i.e., MODE = 1), identifying the best version of an object observed multiple times.
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To ensure that the quasar and the PSF star were observed under similar detector and sky

(seeing) conditions, both of them were required to be identified with the same CAMCOL and

RUN numbers. Candidate PSF stars too close to an edge were eliminated. Two-dimensional

Gaussians were fit to PSF stars with magnitudes 15 ≤ mr ≤ 18, which were then scaled

to the intensity amplitude of the quasar and subtracted with the centroid at the location

of the quasar. The quality of the PSF subtraction was visually examined, and fields with

unsatisfactory PSF subtractions were eliminated. We then divided the sample into weak

and strong Ca ii absorber samples. Table 4.2 summarizes the number of fields that were

ultimately included in the stacks.

4.4.3 Masking Algorithm

We used the SDSS SAS catalog of sources to identify stars in each quasar field that needed

to be masked. Galaxies identified to have a negligible likelihood of being associated with

the absorber, based on the availability of reliable redshift (photometric and spectroscopic)

information, were also masked out. Galaxies brighter than 3L?, equivalent to an absolute

magnitude Mr = −22.7 and Mg = −21.5, at the redshift of the absorber were masked out.

Figure 4.4 shows the corresponding apparent magnitudes as a function of redshift for 3L?.

For simplicity, we used square masks of uniform size that were 5” and 7” on a side to mask

out stars and galaxies, respectively. Each pixel in the mask was assigned a brightness value

equal to the median pixel value of the entire 13′ × 10′ SDSS field containing the quasar

sightline. Occasionally, a bright star overwhelmed a field, in which case that sightline was

not included in the stack.

We note that we supplemented our source list using catalogs generated by the source

extraction software SExtractor (ver. 2.5.0; Bertin & Arnouts 1996). All sources detected

at a significance level 1.5σ above the local background over a minimum area of 10 pixels were

cataloged. The quasar PSF was subtracted prior to running the source detection software.
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Figure 4.4: Apparent magnitude thresholds equivalent to 3L? as a function of absorber

redshift for the SDSS r and g filters.
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4.4.4 Construction of the Image Composites and Light Profiles

Prior to stacking the PSF-subtracted images, each field was rescaled to the same physical

scale at the redshift of the absorber, zabs. The resulting pixel scale for each field was set at

2 kpc per pixel, and rescaled to conserve the total flux of an object. Corresponding non-

absorber fields (§4.2.2) were also rescaled in the same manner, as if an absorber existed at

the zabs of its matching absorber field. The final composite images only included unmasked

regions of individual images. The intensity of each pixel in the stacked image was calculated

as the simple average over the all individual unmasked pixels. The uncertainties in the final

composite images were estimated using a jackknife method, where for a given sample of N

quasar fields, the stacking is repeated N times, leaving out a different field each time. The

variance in each pixel from these N realizations of the stack is multiplied by N-1 to get the

sample variance (e.g., Zibetti 2007).

Figure 4.5 shows the 600 × 600 kpc2 regions for our resulting stacks, projected at zabs

and centered around the quasar, for the redshift range zabs = [0.20, 0.40]. As noted by

the labels, the top row is for the r-band composites and the bottom row is for the g-band

composites. The left column shows the weak Ca ii absorber stacks, whereas the strong Ca ii

absorber stacks are shown in the right column. The corresponding 600×600 kpc2 regions for

the non-absorber stacks are shown in Figure 4.6. Note that the non-absorber matches for

the strong and weak absorbers are statistically similar, therefore we combined them into a

single non-absorber sample. The surface brightness levels in units of apparent magnitudes

per square kpc are shown above each panel. Similarly, we show the corresponding composites

in Figures 4.7 and 4.8 for the redshift interval zabs = [0.40, 0.65].

By construction, the central pixel of each stack has zero intensity since the PSF was

scaled to the quasar peak intensity before subtraction. For these stacks, which consist of a

small number of fields, individual sources are sometimes visible. Note that in both absorber

and non-absorber composites, the appearance of these individual sources are less apparent in

the g-band than in the r-band, as the SDSS images go deeper in r than in g. Sources farther

away from the center of the field can be attributed to light from background/foreground

sources, which were likely to be too faint to pass the detection cuts from the SDSS and/or
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SExtractor constraints, and hence were not masked out. However, we suspect that these

should become less apparent as more individual images are added to the stack. The excess

seen near the quasar sightline appears to be more extended and is more likely to be related

to galaxies associated with absorbers themselves. Though not as dramatic in extent as the

absorber stacks, the non-absorber intensity maps show a slight excess which can be seen by

eye within the ∼10 kpc radius around the quasar. Zibetti et al. (2007) suggested that such

an excess around reference quasars might be attributed to light physically associated with

the quasar’s host galaxy. This systematic additive contribution to the light profiles is more

apparent with low-redshift quasars. For quasars at high redshifts, zem & 1.5, the light from

the host galaxy would drop below detection limits, so would not show this excess (Zibetti et

al. 2007).

Analysis of the surface brightness distribution of the excess light around absorbed quasars

in Figures 4-7 can be used to measure the radial light profiles, allowing us to infer the spatial

distribution of galaxies for the Ca ii absorbers as probed by quasar sightlines. Specifically, we

extract one-dimensional surface brightness profiles in circular annuli surrounding the quasar

sightlines. The accuracy of our quasar PSF subtraction enables us to probe only up to a

minimum radius of 7 kpc from the quasar sightline at 0.20 ≤ zabs < 0.40. The spacing

between subsequent apertures is chosen to progress geometrically.

To establish the background light profile levels at 0.20 ≤ zabs < 0.40, we first show

in Figure 4.9 the surface brightness profiles as a function of the distance from the quasar

sightline for the non-absorber quasar fields, with the g-band composite on the left and the

r-band on the right. A slight increase in the surface brightness (. 0.5 mag per kpc2) closer

to the quasar sightline can be seen, but consistent with the overall noise levels. This is

plausibly consistent with excess light coming from the host galaxies of low-z quasars.

The profiles for the surface brightness for the absorber fields, subdivided into weak and

strong Ca ii absorber components, as a function of the projected distance from the quasar

from 7-300 kpc is shown two different ways. In the first, we assume a constant background

level per square kpc using the results in Figures 4.9 and 4.10. In the second, we subtract the

non-absorber reference images. For each of these profiles, the distribution of light is modeled

as a power-law distribution of order n where r is the distance from the quasar sightline in
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Table 1. Caption here.

zabs W�3934
0 � 0.7Å W�3934

0 < 0.7Å Luminosity Cut

range b0 [kpc] R̄30 [kpc] b0 [kpc] R̄30 [kpc] L/L?

0.02 - 0.10 18.1 ± 5.1 17.0 ± 0.3 3.7 ± 4.7 16.7 ± 0.5 · · ·
0.10 - 0.20 3.5 ± 2.0 15.2 ± 0.4 5.6 ± 3.6 13.9 ± 0.5 · · ·
0.20 - 0.30 5.4 ± 2.8 13.7 ± 0.4 9.2 ± 2.1 17.7 ± 0.2 · · ·
0.30 - 0.40 6.5 ± 3.0 13.7 ± 0.4 13.5 ± 2.9 16.8 ± 0.3 · · ·
0.20 - 0.40 5.5 ± 1.9 13.7 ± 0.7 7.4 ± 1.3 17.3 ± 0.2 · · ·

Table 2. The four SDSS spectroscopic galaxies identified in the SDSS. A few percentage of Ca ii absorbers identified in Sardane et al
(2014) are associated to luminous, low-impact parameter galaxies.

Image zabs W�3934
0 W�3934

0 b r-g Luminosity type

Label · · · Å Å kpc · · · L? · · ·

A 0.0475 1.327 ± 0.269 0.601 ± 0.173 5.0 0.37 1.4 Starburst

B 0.1125 0.518 ± 0.097 0.519 ± 0.097 21.3 0.64 1.3 Star-Forming

C 0.1140 0.598 ± 0.102 0.628 ± 0.168 7.7 0.57 1.3 Star-forming

D 0.2416 0.603 ± 0.110 0.479 ± 0.092 25.4 0.81 2.1 -

Table 3. Caption here. With FITTED Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å

range ↵ [kpc] R̄ [kpc] ↵ [kpc] R̄ [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 50.9 3.1
3.2 -2.12 ± 0.53 32.8 10.0

8.4 r

0.20 - 0.40 -1.08 ± 0.18 52.2 3.0
3.2 -1.19 ± 0.83 50.1 12.7

2.3 g

Table 4. Caption here. With Constant Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å

range ↵ [kpc] R̄ [kpc] ↵ [kpc] R̄ [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 49.9 2.4
2.6 -1.85 ± 0.27 37.75.2

5.0 r

0.20 - 0.40 -1.11 ± 0.18 51.5 3.1
3.3 -0.79 ± 1.37 56.915.2

24.9 g

Table 5. Caption here.

zabs W�3934
0 � 0.7Å W�3934

0 < 0.7Å Luminosity Cut

range b0 [kpc] R̄30 [kpc] b0 [kpc] R̄30 [kpc] L/L?

0.02 - 0.10 2.6 ± 1.6 11.2 ± 0.7 3.7 ± 4.0 17.8 ± 0.6 � 0.02

0.10 - 0.20 3.8 ± 2.0 15.2 ± 0.4 11.1 ± 2.5 13.9 ± 0.5 � 0.08

0.20 - 0.30 5.4 ± 6.4 16.7 ± 0.7 8.7 ± 1.7 15.9 ± 0.4 � 0.20

0.30 - 0.40 7.5 ± 2.0 14.5 ± 0.7 11.2 ± 2.9 15.9 ± 0.4 � 0.40

0.20 - 0.40 4.9 ± 1.7 14.5 ± 0.7 6.2 ± 1.2 16.9 ± 0.3 � 0.40
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0.30 - 0.40 6.5 ± 3.0 13.7 ± 0.4 13.5 ± 2.9 16.8 ± 0.3 · · ·
0.20 - 0.40 5.5 ± 1.9 13.7 ± 0.7 7.4 ± 1.3 17.3 ± 0.2 · · ·

Table 2. The four SDSS spectroscopic galaxies identified in the SDSS. A few percentage of Ca ii absorbers identified in Sardane et al
(2014) are associated to luminous, low-impact parameter galaxies.

Image zabs W�3934
0 W�3934

0 b r-g Luminosity type

Label · · · Å Å kpc · · · L? · · ·

A 0.0475 1.327 ± 0.269 0.601 ± 0.173 5.0 0.37 1.4 Starburst

B 0.1125 0.518 ± 0.097 0.519 ± 0.097 21.3 0.64 1.3 Star-Forming

C 0.1140 0.598 ± 0.102 0.628 ± 0.168 7.7 0.57 1.3 Star-forming

D 0.2416 0.603 ± 0.110 0.479 ± 0.092 25.4 0.81 2.1 -

Table 3. Caption here. With FITTED Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å

range ↵ [kpc] R̄ [kpc] ↵ [kpc] R̄ [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 50.9 3.1
3.2 -2.12 ± 0.53 32.8 10.0

8.4 r

0.20 - 0.40 -1.08 ± 0.18 52.2 3.0
3.2 -1.19 ± 0.83 50.1 12.7

2.3 g

Table 4. Caption here. With Constant Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å

range ↵ [kpc] R̄ [kpc] ↵ [kpc] R̄ [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 49.9 2.4
2.6 -1.85 ± 0.27 37.75.2

5.0 r

0.20 - 0.40 -1.11 ± 0.18 51.5 3.1
3.3 -0.79 ± 1.37 56.915.2

24.9 g

Table 5. Caption here.

zabs W�3934
0 � 0.7Å W�3934

0 < 0.7Å Luminosity Cut

range b0 [kpc] R̄30 [kpc] b0 [kpc] R̄30 [kpc] L/L?

0.02 - 0.10 2.6 ± 1.6 11.2 ± 0.7 3.7 ± 4.0 17.8 ± 0.6 � 0.02

0.10 - 0.20 3.8 ± 2.0 15.2 ± 0.4 11.1 ± 2.5 13.9 ± 0.5 � 0.08

0.20 - 0.30 5.4 ± 6.4 16.7 ± 0.7 8.7 ± 1.7 15.9 ± 0.4 � 0.20

0.30 - 0.40 7.5 ± 2.0 14.5 ± 0.7 11.2 ± 2.9 15.9 ± 0.4 � 0.40
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Figure 4.5: The 600×600 kpc2 quasar PSF-subtracted image composites for the Ca ii ab-

sorber sample with absorption redshifts from 0.20 to 0.40. The subtracted quasar is at the

center of the image. As the labels indicate, the top row shows the composites constructed

from the SDSS r -band images, while the bottom row shows the g-band composite images.

The left panels are for the absorbers with W λ3934
0 < 0.7Å, and the right panels are for

W λ3934
0 ≥ 0.7Å absorbers.
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Figure 4.6: The 600×600 kpc2 quasar PSF-subtracted image composites for the non-absorber

quasar matches centered on the quasar. The matched absorber redshifts span the range

0.20 ≤ zabs ≤ 0.40. Left: The SDSS g-band non-absorber composite. Right: The SDSS

r -band non-absorber composite.
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Table 1. Caption here.

zabs W�3934
0 � 0.7Å W�3934

0 < 0.7Å Luminosity Cut

range b0 [kpc] R̄30 [kpc] b0 [kpc] R̄30 [kpc] L/L?
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0.20 - 0.40 5.5 ± 1.9 13.7 ± 0.7 7.4 ± 1.3 17.3 ± 0.2 · · ·

Table 2. The four SDSS spectroscopic galaxies identified in the SDSS. A few percentage of Ca ii absorbers identified in Sardane et al
(2014) are associated to luminous, low-impact parameter galaxies.

Image zabs W�3934
0 W�3934

0 b r-g Luminosity type

Label · · · Å Å kpc · · · L? · · ·

A 0.0475 1.327 ± 0.269 0.601 ± 0.173 5.0 0.37 1.4 Starburst

B 0.1125 0.518 ± 0.097 0.519 ± 0.097 21.3 0.64 1.3 Star-Forming

C 0.1140 0.598 ± 0.102 0.628 ± 0.168 7.7 0.57 1.3 Star-forming

D 0.2416 0.603 ± 0.110 0.479 ± 0.092 25.4 0.81 2.1 -

Table 3. Caption here. With FITTED Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å
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0.20 - 0.40 -1.21 ± 0.14 50.9 3.1
3.2 -2.12 ± 0.53 32.8 10.0

8.4 r

0.20 - 0.40 -1.08 ± 0.18 52.2 3.0
3.2 -1.19 ± 0.83 50.1 12.7

2.3 g

Table 4. Caption here. With Constant Background.
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0.30 - 0.40 7.5 ± 2.0 14.5 ± 0.7 11.2 ± 2.9 15.9 ± 0.4 � 0.40

0.20 - 0.40 4.9 ± 1.7 14.5 ± 0.7 6.2 ± 1.2 16.9 ± 0.3 � 0.40

c� 2014 RAS, MNRAS 000, 1–??

2 G. M.Sardane et al.

Table 1. Caption here.

zabs W�3934
0 � 0.7Å W�3934

0 < 0.7Å Luminosity Cut

range b0 [kpc] R̄30 [kpc] b0 [kpc] R̄30 [kpc] L/L?

0.02 - 0.10 18.1 ± 5.1 17.0 ± 0.3 3.7 ± 4.7 16.7 ± 0.5 · · ·
0.10 - 0.20 3.5 ± 2.0 15.2 ± 0.4 5.6 ± 3.6 13.9 ± 0.5 · · ·
0.20 - 0.30 5.4 ± 2.8 13.7 ± 0.4 9.2 ± 2.1 17.7 ± 0.2 · · ·
0.30 - 0.40 6.5 ± 3.0 13.7 ± 0.4 13.5 ± 2.9 16.8 ± 0.3 · · ·
0.20 - 0.40 5.5 ± 1.9 13.7 ± 0.7 7.4 ± 1.3 17.3 ± 0.2 · · ·

Table 2. The four SDSS spectroscopic galaxies identified in the SDSS. A few percentage of Ca ii absorbers identified in Sardane et al
(2014) are associated to luminous, low-impact parameter galaxies.

Image zabs W�3934
0 W�3934

0 b r-g Luminosity type

Label · · · Å Å kpc · · · L? · · ·

A 0.0475 1.327 ± 0.269 0.601 ± 0.173 5.0 0.37 1.4 Starburst

B 0.1125 0.518 ± 0.097 0.519 ± 0.097 21.3 0.64 1.3 Star-Forming

C 0.1140 0.598 ± 0.102 0.628 ± 0.168 7.7 0.57 1.3 Star-forming

D 0.2416 0.603 ± 0.110 0.479 ± 0.092 25.4 0.81 2.1 -

Table 3. Caption here. With FITTED Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å

range ↵ [kpc] R̄ [kpc] ↵ [kpc] R̄ [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 50.9 3.1
3.2 -2.12 ± 0.53 32.8 10.0

8.4 r

0.20 - 0.40 -1.08 ± 0.18 52.2 3.0
3.2 -1.19 ± 0.83 50.1 12.7

2.3 g

Table 4. Caption here. With Constant Background.

zabs W�3934
0 < 0.7Å W�3934

0 � 0.7Å

range ↵ [kpc] R̄ [kpc] ↵ [kpc] R̄ [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 49.9 2.4
2.6 -1.85 ± 0.27 37.75.2

5.0 r

0.20 - 0.40 -1.11 ± 0.18 51.5 3.1
3.3 -0.79 ± 1.37 56.915.2

24.9 g

Table 5. Caption here.

zabs W�3934
0 � 0.7Å W�3934

0 < 0.7Å Luminosity Cut

range b0 [kpc] R̄30 [kpc] b0 [kpc] R̄30 [kpc] L/L?

0.02 - 0.10 2.6 ± 1.6 11.2 ± 0.7 3.7 ± 4.0 17.8 ± 0.6 � 0.02

0.10 - 0.20 3.8 ± 2.0 15.2 ± 0.4 11.1 ± 2.5 13.9 ± 0.5 � 0.08

0.20 - 0.30 5.4 ± 6.4 16.7 ± 0.7 8.7 ± 1.7 15.9 ± 0.4 � 0.20

0.30 - 0.40 7.5 ± 2.0 14.5 ± 0.7 11.2 ± 2.9 15.9 ± 0.4 � 0.40

0.20 - 0.40 4.9 ± 1.7 14.5 ± 0.7 6.2 ± 1.2 16.9 ± 0.3 � 0.40

c� 2014 RAS, MNRAS 000, 1–??

g 

r r 

g 

mag per kpc2! mag per kpc2!

mag per kpc2! mag per kpc2!

Figure 4.7: The 600×600 kpc2 quasar PSF-subtracted image composites for the Ca ii ab-

sorber sample with absorption redshifts from 0.40 to 0.65. The subtracted quasar is at the

center of the image. The top rows show the composites constructed from the SDSS r -band

composite images, while the bottom rows show the g-band composite images. The left pan-

els are for the absorbers with W λ3934
0 < 0.7Å, and the right panels are for W λ3934

0 ≥ 0.7Å

absorbers. Noise from foreground and background sources are still apparent in this redshift

range due to the small number of fields.
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Figure 4.8: The 600×600 kpc2 quasar PSF-subtracted image composites for the non-absorber

quasar matches centered on the quasar. The matched absorber redshifts span the range

0.40 ≥ zabs ≥ 0.65. Left: The SDSS g-band non-absorber composite. Right: The SDSS

r -band non-absorber composite.
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Figure 4.9: The radial surface brightness profiles centered around the quasar for the non-

absorber image composites shown in Figure 4.6 for the redshift range 0.20 ≤ zabs < 0.40.

The left panel is for the g-band image composite and the right panel is for r -band composite.

These relatively flat profiles will be used to infer the constant background level when deriving

the surface brightness profiles for the composites of Figure 4.5.

kpc, as shown in Eqn.4.1:

I(r) = Arα. (4.1)

The first moment of the light distribution is then

R1 =

100kpc∫
7kpc

I(r)r2dr

100kpc∫
7kpc

I(r)rdr

(4.2)

where R1 is the luminosity-weighted average impact parameter of Ca ii absorbing galaxies,

with small values indicating more centrally concentrated light profiles. We summarize the

results of the profile fitting and the corresponding R1 values in Table 4.3. In both bands,

strong systems tend to have steeper power-laws than weaker absorbers, as shown in Table

4.3. This result is consistent with that found by Zibetti et al. (2007) for Mg ii absorbers,
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Figure 4.10: The radial surface brightness profiles centered around the quasar for the non-

absorber image composites shown in Figure 4.6 for the redshift range 0.40 ≤ zabs ≤ 0.65.

The left panel is for the g-band image composite and the right panel is for r -band composite.

These relatively flat profiles will be used to infer the constant background level when deriving

the surface brightness profiles for the composites of Figure 4.9.
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Figure 4.11: The radial brightness profiles from 7-300 kpc for the composites in the redshift

range 0.20 ≤ zabs < 0.40 (Figure 4.5) after subtraction of a constant background of 31.0 and

30.5 mags per kpc2, respectively, in the g and r bands. The left panels are for the absorbers

with W λ3934
0 < 0.7 Å, and the right panels are for the absorbers with W λ3934

0 ≥ 0.7 Å.

The top panels show the radial r-band surface brightness profiles, and the bottom panels

show for the g-band profiles. The solid lines correspond to the best-fit power-law of Eq. 4.1

from 7 kpc to 100 kpc. The results of the fit and effective impact parameter R1 values are

summarized in Table 4.3.
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Figure 4.12: The radial brightness profiles from 7-300 kpc for the composites in the redshift

range 0.40 ≤ zabs < 0.65 (Figure 4.7) after subtraction of a constant background of 31.3 and

31.0 mags per kpc2, respectively, in the g- and r− bands. The left panels are for the absorbers

with W λ3934
0 < 0.7 Å, and the right panels are for the absorbers with W λ3934

0 ≥ 0.7 Å. The

top panels show the radial r-band surface brightness profiles, and the bottom panels show

for the g-band profiles. The solid lines correspond to the best-fit power-law of Eq. 4.1

from 7 kpc to 100 kpc. The results of the fit and effective impact parameter R1 values are

summarized in Table 4.3.

119



i.e., the R1 values for the strong absorbers are smaller, indicating more concentrated light

profiles.

We show in Figures 4.11 and 4.12 the surface brightness profiles as a function of the

impact parameter from ∼ 7-300 kpc for the redshift bins zabs = [0.20, 0.40] and zabs = [0.40,

0.65], respectively. For these profiles, we have assumed a constant surface brightness back-

ground (Table 4.3). As indicated by the figure labels and corresponding to the order of the

intensity maps of Figure 4.5, the left and right columns indicate the weak and strong Ca ii

absorber subsamples, respectively. The top and bottom rows indicate the corresponding fil-

ters. The solid lines show the fit to the profiles using Eqn. 4.1, which models the distribution

of light as a power-law of order n of the impact parameter r. The fits are performed over

the impact parameter range from 7-100 kpc by minimizing the sums of the residuals. The

results are summarized in Table 4.3.

The results from the second background subtraction method are shown in Figures 4.13

and 4.14 for the surface brightness profiles for the redshift bins zabs = [0.20, 0.40] and zabs =

[0.40, 0.65], respectively. These were obtained by direct subtraction of the reference images

of Figures 4.6 and 4.8 from the absorber frames Figure 4.5 and 4.7. The parameters of the

power-law fits, Eqn. 4.1, and characteristic mean impact parameter R1 are given in Table

4.4. It is quite apparent that this method of subtraction results in steeper, albeit more

noisy, profiles for the strong Ca ii absorber subsample. Nevertheless, both methods show

that strong Ca ii absorbers, on average, have a more concentrated light distribution than the

weak systems. Moreover, both methods are in agreement that for the weak absorbers the

characteristic R1 is within 40-50 kpc for both redshift bins and filters. On the other hand,

the light profiles for the strong systems show a wider range in R1, but for the more reliable

direct background subtraction method, R1 ∼ 20 − 30 kpc. Similar conclusions were drawn

by Zibetti et al. (2007) in a study of Mg ii absorbers using 2800 images from the SDSS,

spanning the redshift range from ∼ 0.4 - 1.0. For Mg ii absorbers, the average characteristic

R1 is ∼ 40 kpc for the high-W0 systems (W λ2796
0 > 1.5Å), and increases to ∼60 kpc for the

weaker systems (W λ2796
0 ∼ 0.8− 1.0Å).
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Table 4.3: Summary of results of the brightness profiles analysis via image stacking in the

SDSS r and g bands, showing the slopes of the power-law profiles of Eq. 4.1. As described

in the text, we assume a constant background to derive the final brightness profiles. The

results show that the strong systems have significantly compact light profiles compared to

the weak counterparts.

zabs W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å

range α R1 [kpc] α R1 [kpc] Filter

0.20 - 0.40 -1.21 ± 0.14 49.9 2.4
2.6 -1.85 ± 0.20 37.73.8

3.7 r

0.20 - 0.40 -1.11 ± 0.18 51.5 3.1
3.3 -2.24 ± 0.45 30.18.3

6.9 g

0.40 - 0.65 -1.14 ± 0.06 51.1 1.0
1.0 -1.37 ± 0.08 46.91.6

1.6 r

0.40 - 0.65 -1.60 ± 0.19 42.5 3.7
3.7 -2.22 ± 0.37 31.06.7

5.8 g
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Figure 4.13: The radial brightness profiles from 7-100 kpc for the composites in the redshift

range 0.20 ≤ zabs < 0.40 (Figure 4.5) obtained by direct subtraction of the unabsorbed

composite in Figure 4.6. The left panels are for the absorbers with W λ3934
0 < 0.7 Å, and the

right panels are for W λ3934
0 ≥ 0.7 Å. The top panels show the radial r-band surface brightness

profiles, and the bottom panels show for the g-band profiles. The solid lines correspond to

the best-fit power-law of Eq. 4.1 from 7 kpc to 100 kpc. The results for the fit and the

effective impact parameter R1 values are summarized in Table 4.4.
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Figure 4.14: The radial brightness profiles from 7-100 kpc for the composite images in

the redshift range 0.40 ≤ zabs ≤ 0.65 (Figure 4.7) obtained by direct subtraction of the

unabsorbed composite in Figure 4.6. The left panels are for the absorbers with W λ3934
0 <

0.7 Å, and the right panels are for W λ3934
0 ≥ 0.7 Å. The top panels show the radial r-band

surface brightness profiles, and the bottom panels show for the g-band profiles. The solid

lines correspond to the best-fit power-law of Eq. 4.1 from 7 kpc to 100 kpc. The results of

the fit and effective impact parameter R1 values are summarized in Table 4.4.
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Table 4.4: Summary of results of the brightness profiles analysis via image stacking in the

SDSS r and g bands, showing the slopes of the power-law profiles of Eqn. 4.1. These results

were derived by direct subtraction of the reference non-absorber composites of Figures 4.13

and 4.14 from the corresponding absorber composite frames in Figures 4.6 and 4.8. The

results are in agreement with the general results of Table 4.3 in that the strong systems have

steeper slopes, and hence more compact light profiles compared to the weak counterparts.

zabs W λ3934
0 < 0.7Å W λ3934

0 ≥ 0.7Å

range α R1 [kpc] α R1 [kpc] Filter

0.20 - 0.40 -1.46 ± 0.09 45.3 1.4
1.7 -2.70 ± 0.19 23.72.6

2.3 r

0.20 - 0.40 -1.44 ± 0.11 45.5 2.2
2.1 -4.01 ± 0.50 13.02.6

1.6 g

0.40 - 0.65 -1.24 ± 0.09 49.3 1.6
1.5 -2.56 ± 0.18 25.52.8

2.5 r

0.40 - 0.65 -1.52 ± 0.54 44.1 10.2
9.7 · · · · · · g
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4.5 SUMMARY AND DISCUSSION

This is the third in a series of papers investigating the properties of Ca ii absorbers identified

in moderate-resolution SDSS quasar spectra. The redshift range over which Ca ii absorbers

can be studied in SDSS optical spectra (0 < z < 1.34) allows us to study them over the

most recent 8.5 Gyrs of our cosmic history. The ability to study Ca ii absorbers at the lowest

redshifts makes them unique, as the rest wavelengths of more common QAL transitions lie in

the UV. For example, in SDSS spectra, Mg ii can only be studied down to redshift z = 0.4.

However, the incidence of Ca ii absorption in quasar spectra is much more rare in comparison

to Mg ii, which makes performing a survey to discover a large number of them challenging.

In Paper I (Chapter 2 of this thesis) we described our SDSS survey for Ca ii, which

resulted in the identification of 435 Ca ii absorbers, and we characterized their statistical

properties, which included evidence for the existence of at least two populations of ab-

sorbers, e.g., based on the need for a two-component fit to model their Wλ3934
0 distribution.

Among the various possibilities we considered, the simplest was the proposal that “weak

Ca ii absorbers” with Wλ3934
0 < 0.7 Å might have different astrophysical properties than

“strong Ca ii absorbers” with Wλ3934
0 ≥ 0.7 Å. Owing to the nature of our evidence, if two

populations do exist, one would expect the populations to be mixed near Wλ3934
0 ≈ 0.7 Å.

In Paper II (Chapter 3 of this thesis) we investigated element abundance ratios and dust

in the weak and strong absorbers using their composite spectra. We found that the weak

Ca ii absorbers had element abundance ratios typical of halo-type gas, whereas the strong

Ca ii absorbers had element abundance ratios typical of a mix of halo- and disk-type gas.

Moreover, while both populations of Ca ii absorbers showed evidence for dust in the form of

element depletions and the reddening they caused, the strong Ca ii absorbers showed nearly

six times more reddening than the weak Ca ii absorbers. The reddening was found to be

consistent with either LMC- or SMC-type extinction laws, but a MW-type extinction law

was ruled out.

In this Chapter, we investigated the galaxy populations associated with the weak and

strong Ca ii absorbers using SDSS imaging data. We identified four galaxies along quasar

sightlines that had SDSS spectroscopic redshifts that matched the Ca ii absorber redshifts
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(Figures 4.1-4.3 and Table 4.1). The fact that matches required spectroscopic data for

both the quasar and the nearby galaxy meant that these could only be found using rare,

overlapping, plates, which resulted in the serendipitous identification of only four galaxies.

The four absorbers have rest equivalent widths and redshifts lying in the intervals Wλ3934
0 =

[0.48, 1.3] Å and zabs = [0.04, 0.24]. The four associated galaxies have impact parameters and

luminosities lying in the intervals b = [5, 25] kpc and L = [0.1, 0.9] L∗. The identification and

luminosity of one galaxy is unclear, but the three others are clearly star-forming galaxies,

exhibiting strong hydrogen Balmer emission lines as well as emission from [O ii], [O iii],

[N ii], and [S ii] (Figure 4.2). We also investigated the population of galaxies associated with

the Ca ii absorbers by stacking and forming composite images. These investigations were

necessarily statistical in nature, since we did not utilize any spectroscopic galaxy redshifts,

but simply inferred their properties by assuming that any excess galaxy light above the

background had z = zabs. The background-subtracted composite images, which covered

the redshift intervals zabs = [0.20, 0.40] and [0.40, 0.65], revealed excess light along the Ca ii

absorber quasar sightlines (Figures 4.11-4.14). We found that the strong Ca ii absorbers

had a more concentrated and steeper light profile than the weak Ca ii absorbers. The first

moments of the excess light distributions were used to derive the luminosity-weighted impact

parameters, R1, for the weak and strong absorbers. If we average the various r-band and

g-band results (Tables 4.3 and 4.4) in the most reliable zabs = [0.20, 0.40] interval, the weak

Ca ii absorbers have R1 ≈ 48 kpc, while the strong Ca ii absorbers have R1 ≈ 26 kpc.

Thus, the results from Chapters 2-4 give rise to a consistent picture. The two-component

rest equivalent rest distribution (Chapter 2, Paper 1) was the first clue indicating two ab-

sorber populations. The strong Ca ii absorbers were then shown to have metal abundance ra-

tios and dust properties consistent with a contribution from disk- and halo-type gas, whereas

the weak Ca ii absorbers show properties consistent with only halo-type gas; the strong Ca ii

absorbers contain nearly six times more dust than weak Ca ii absorbers, which puts them

among the most dusty quasar absorbers (Chapter 3, Paper 2). The metal abundance ra-

tio and dust results lead to the expectation that typical strong Ca ii absorbers might have

smaller impact parameters than typical weak Ca ii absorbers. And indeed, in this third

paper of the series, the strong Ca ii absorbers were found to have associated galaxies with
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typical luminosity-weighted impact parameters of ≈ 26 kpc, which is ∼ 54% of the impact-

parameter (or ∼ 29% of the cross-sectional area) that characterizes the weak Ca ii absorbers.

Thus, the various derived observables are qualitatively correlated as might be expected.

But while the combination of results leads to a consistent picture, the results also raise

a number of issues which should be investigated into the future. As discussed in these last

three Chapters, previous results on Ca ii absorbers have provided evidence that a significant

fraction of them contain high column densities of neutral as well as molecular gas and dust

conducive to star-formation. Ultimately direct measurements of H i column densities, H2 col-

umn densities, and depletions on to dust grains in a significant subsample of Ca ii absorbers

are needed to study this and better understand the Ca ii absorber populations. At the same

time, our results show that much of this gas lies at large impact parameters, typically ranging

between 20−60 kpc, and there appear to be cases where an associated absorbing galaxy can

not be identified to very faint levels within ∼ 100 kpc. This provides important clues about

inflows, outflows, and chemical enrichment in the extended circumgalactic regions surround-

ing galaxies and possibly the intergalactic medium. The existence of such regions far away

from the centers of galaxies would also require theoretical explanation.

Therefore, these new results raise a number of issues which should be investigated into the

future. As discussed in this series of papers, previous results on Ca ii absorbers have provided

evidence that at a significant fraction of them contain high column densities of neutral gas,

and also molecular gas conducive to star-formation. Ultimately direct measurements of H i

and H2 column densities in a significant subsample of Ca ii absorbers are ideally needed

to confirm this. At the same time, our results show that much of this gas lies at large

impact parameters, typically ranging between 20 − 60 kpc, predominately from galaxies

with dwarf-like or near dwarf-like luminosities. This provides important clues about inflows,

outflows, and chemical enrichment in the extended circumgalactic regions surrounding this

under-luminous galaxy population.
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5.0 PROBING THE EXTENDED GASEOUS REGIONS OF M31 WITH

QUASAR ABSORPTION LINES?

The contents of this chapter have been published in the paper by Rao, Sardane, Turnshek,

et al., 2013, Monthly Notices of the Royal Astronomical Society, 432, 866 - 885.

5.1 INTRODUCTION

The standard paradigm for metal-line absorption systems in quasar spectra is that they arise

in the extended gaseous halos/disks of galaxies well beyond their observable optical radii.

However, with the exceptions afforded by gravitationally-lensed quasars, rarely is there more

than one sightline passing in the vicinity of a galaxy. As such, the study of quasar absorption

lines arising in extended gas associated with the great spiral galaxy in Andromeda (M31)

represents a unique opportunity. M31’s large extent on the sky means that many quasar

sightlines should intercept its extended gas. For example, the NHI = 1.9× 1018 atoms cm−2

21 cm emission contour around M31, as derived from the data discussed by Thilker et al.

(2004), is approximately 5.0× 1.5 square degrees on the sky (see Figure 5.1). We list some

properties of M31 in 5.1. Quasar surveys have shown that there are as many as 18 quasars

per square degree brighter than g ∼ 20 at z . 2.6 (Richards et al. 2009, Abraham et al.

2012). Thus, there are likely to be on the order of 135 such quasars behind M31 within

the boundaries of its observed 21 cm emission, and a factor of several more in its extended

gaseous disk and halo regions. However, until now, quasar absorption lines have never been

successfully used to study the extended gas of M31 because of the lack of sufficiently-bright,

?Based on observations made with the NOAO 2.1-m and the NASA/ESA Hubble Space Telescope
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identified quasars.

Two of the most recognizable signatures of metal lines in quasar spectra are the Mg ii

λλ2796,2803 and C iv λλ1548,1550 doublets, which have been studied in numerous quasar

absorption-line surveys. The first comprehensive study which demonstrated that galaxies

at large impact parameters exist along the sightlines to low-redshift Mg ii absorbers was by

Bergeron and collaborators, e.g., Bergeron & Boissé (1991). They estimated that the average

Mg ii radius of a spherical gaseous envelope surrounding an L∗ galaxy is R∗ ∼ 3.5 to 5.0RH

(∼ 55 to 80 kpc) at z ∼ 0.3 for rest equivalent widths W λ2796
0 ≥ 0.3 Å, where RH is the

Holmberg radius. Others had made similar estimates (e.g., Lanzetta et al. 1987, Lanzetta

& Bowen 1990, Steidel 1993). The recent survey of galaxies associated with Mg ii absorbers

at 0.1 < z < 1.0 by Rao et al. (2011) showed that the gaseous extent of Mg ii-selected

absorbing galaxies could be as large as 100 kpc. At z < 0.5, Chen et al. (2010) find that

the mean covering fraction for Mg ii absorbers with W λ2796
0 ≥ 0.3 Å within ∼130 kpc of a

2L∗ galaxy (for h = 0.7) is ∼70%. Therefore, if cross sections have remained constant since

z ∼ 0.5, then we might expect that gas giving rise to Mg ii is likely to be present in the

extended gaseous regions of M31 out to a radius of ∼ 100 kpc or more, assuming it is a

typical absorbing galaxy.

As described in §5.2, we obtained Hubble Space Telescope (HST) - Cosmic Origins Spec-

trograph (COS) spectra of ten quasars located behind M31 in order to investigate the prop-

erties of the gas in its extended disk and high velocity clouds (HVCs). We searched for Mg ii,

C iv, and other absorption lines to do this. In §5.3 we describe the results obtained from

each spectrum. We discuss the results in §5.4 and end with a summary and conclusions in

§5.5. This study indicates that M31 does not present itself as an absorbing galaxy which

is typical of the higher-redshift galaxies inferred to give rise to moderate-strength quasar

absorption lines.
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Table 5.1: M31 properties

Property Value Referencea

RA (2000) 00h42m44s 1

Dec (2000) +41◦16′08” 1

Distance 752± 27 kpc 2

Inclination 78◦ 3

vsys −306 km/s 3

Rb
opt 22.3 kpc 4

mB 4.16 4

LcB 2.0L∗B 4,5

Rd
21cm 33 kpc 3

Mvirial 0.8− 1.1× 1012M� 6

a References: 1. Evans et al. (2010); 2. Riess et al. (2012); 3. Corbelli et al. (2010); 4.

de Vaucouleurs et al. (1991); 5. Cool et al. (2012); 6. Tamm et al. (2012)

b Optical radius at B-band surface brightness µB = 25 magnitudes per square arcsec.

c Assuming M∗
B = −19.92 (Cool et al. 2012).

d From the NHI = 1.9× 1018 atoms cm−2 contour (5.1).
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5.2 OBSERVATIONS

5.2.1 Existing H i 21 cm Emission Observations

Since M31 is the nearest large spiral galaxy close to the Milky Way, it has been the subject

of many observational studies. Specifically for this work, we will make reference to several

results over the past decade from radio observational studies of M31’s H i 21 cm emission.

These are: the Green Bank Telescope (GBT) study of Thilker et al. (2004), which identified

high-velocity clouds (HVCs) but at lower spatial resolution than later studies; the Westerbork

Synthesis Radio Telescope (WSRT) study of Braun and Thilker (2004) which discovered the

M31-M33 H i bridge, and of Westmeier et al. (2005), which focused on obtaining higher

spatial resolution observations of HVCs; the WSRT study of Braun et al. (2009), which

obtained observations over a wide field at high spatial resolution; and the study of Corbelli

et al. (2010), which smoothed the data to lower spatial resolution in order to fit a tilted-ring

model to M31’s warped disk and study its rotation curve. At some level, all of this work was

collaborative by various members of the same group, and in later studies they made use of

results that could be derived from earlier data sets.

H i emission spectra were extracted from the Thilker et al. (2004) and Braun et al.

(2009) datacubes along the sightlines toward our target quasars. These data, originally in

units of Jy/beam, were converted to NHI under the assumption of negligible H i opacity.

This conventional assumption, while recently questioned by Braun et al. (2009) and Braun

(2012) in the dense gaseous environment of the traditional optical disk and slightly beyond,

is expected to be satisfied in the outer disk and halo environment. A more significant

concern regarding the NHI from observations of emission is the vastly different scale probed

by the GBT and WSRT relative to COS. The maximum linear spatial resolution of the

high resolution 21 cm observations is ∼ 50 − 100 pc at the distance of M31. This scale is

of order ∼ 105 times larger than the linear spatial scale sampled in quasar “pencil-beam”

absorption-line observations, where the pencil-beam has the scale of the UV continuum

emitting region of the background quasar. Thus, NHI values derived from 21 cm emission

observations are averaged over a much larger spatial scale in comparison to those derived
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from quasar absorption-line spectra. Nevertheless, using 21 cm observations to derive average

NHI values along our sightlines, and noting the velocity range of detected emission, provides

some important information.

As an aside, we note that it would be interesting if NHI results derived from M31’s 21

cm emission data could someday be compared with NHI determinations from Lyman series

absorption seen in the UV spectra of background quasars. One could then get an H i column

density measurement averaged over less than a milli-parsec region in M31, in comparison

to the ∼ 50 pc linear spatial scale offered by the radio observations. This would provide

information on the homogeneity and size scale of H i absorbing regions in M31.

5.2.2 Optical Discovery Spectra of Quasars behind M31

We started this project by developing a list of quasars in especially desirable locations (see

below) relative to M31. These were initially quasar candidates, since existing catalogs gener-

ally did not include quasars behind M31. The quasar candidates were selected from special

plates of the SDSS, which were obtained specifically to find quasars behind the extended

regions of M31 (Adelman-McCarthy et al. 2006). Of the 219 candidates, 108 were confirmed

as quasars. Twenty-three of the 108 were spectroscopically confirmed during our October

2003 NOAO 2.1 m Gold Camera run at Kitt Peak. To make follow-up observations with

HST-COS (§5.2.3 and §5.3) more feasible, we concentrated on finding brighter quasars. We

also focused our search behind M31’s extended major axis to probe possible disk gas that

could sample its outer rotation curve. See Figures 5.1 and 5.2, and Tables 5.1 and 5.2, for

information on their locations relative to M31 and the discovery spectra. Quasars labeled

1 through 4 would sample any extended disk gas (or possibly halo gas) that is undetected

in 21 cm emission; quasars 5, 6, 8, and 9 lie near the edge of detected 21 cm emission; the

sightline towards quasar 7 passes through a high velocity cloud (HVC) in the circumgalactic

environment of M31; and quasar 10 lies behind the 21 cm emission H i disk as well as two

other HVCs. Importantly, owing to M31’s systemic velocity of −306 km s−1 (Corbelli et

al. 2010) and its direction of rotation, absorption originating on the southwest side of M31

will not be confused with Galactic absorption. Consequently, quasars 1 through 4 offer the
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best opportunities for observing extended disk gas and measuring M31’s rotation curve much

farther out than possible with 21 cm emission observations. Unfortunately, while obtaining

information on M31’s rotation curve at large galactocentric distance was one of the primary

motivations for observing quasars 1 through 4, no M31 absorption near the expected velocity

was detected in their UV spectra (§5.2.3 and §5.3). We note, however, that higher quality

observations might yet be able to detect gas at these locations. Observing quasars on the

extended northeast side of M31 was avoided because of potential confusion with Galactic

absorption.
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Figure 5.1: Location of the ten quasars that were observed with HST-COS. An optical image

of M31 is shown in the background along with 21 cm emission maps showing the disk gas

and HVCs. The red contour is 21 cm emission at 1 Jy km/s, or an H i column density of

NHI = 1.9 × 1018 cm−2. Higher column density contours interior to this are not shown.

High velocity cloud contours from Thilker et al. (2004) are shown in green. The scale at

the distance of M31 is 13.2 kpc deg−1. The innermost (8. 0043+4016) and outermost (1.

0018+3412) quasars are at projected distances (impact parameters) of b = 13.4 kpc and

b = 111.9 kpc from M31’s center. See Tables 5.1 and 5.2.
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Figure 5.2: KPNO 2.1m Gold Camera discovery spectra of the ten quasars that were observed

with HST-COS. The quasar name and emission redshift are noted in each panel.
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Table 5.2: Quasars observed with HST-COS

Quasar RA (2000) Dec (2000) Map zem SDSS u b COS G140L COS G230L Sightline notesc

h m s ◦ ′ ′′ IDa mag (kpc)b Exp time (s) Exp time (s)

0018+3412 00 18 47.45 +34 12 09.6 1 0.447 17.7 111.9 3446 5646 extended disk

0024+3439 00 24 50.05 +34 39 42.8 2 0.822 18.1 98.6 · · · 5092 extended disk

0030+3700 00 30 17.43 +37 00 54.3 3 1.237 17.5 64.4 4054 3191 extended disk

0031+3727 00 31 32.37 +37 27 51.8 4 1.300 18.5 57.6 4455 2246 extended disk

0032+3946 00 32 55.70 +39 46 19.3 5 1.138 18.6 31.5 · · · 10324 edge of 21 cm disk

0037+3908 00 37 48.00 +39 08 58.7 6 1.130 18.4 30.5 · · · 10354 edge of 21 cm disk

0040+3915 00 40 59.03 +39 15 12.3 7 1.099 18.5 26.9 6293 11101 HVC + 21 cm disk edge

0043+4016 00 43 52.45 +40 16 29.4 8 1.093 18.2 13.4 7073 5537 edge of 21 cm disk

0043+4234 00 43 54.98 +42 34 30.4 9 0.191 18.0 17.4 3555 6137 edge of 21 cm disk

0046+4220 00 46 55.52 +42 20 50.1 10 0.306 18.1 17.5 2572 5217 2 HVCs + 21 cm disk

a Quasar IDs in order of increasing RA.
bProjected distance from galactic center assuming that the center of M31 is at (00h42m44s, +41

◦
16 ′08′′) and that the distance to

M31 is 752 kpc. See Table 5.1.
c See Figure 5.1.
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5.2.3 HST-COS UV Spectroscopy

The HST-COS spectroscopic data were obtained during the period July-October 2010. Table

5.2 gives details of the quasars and the HST-COS observations. We decided to make a

broad initial absorption-line survey in order to maximize the observed number of metal-line

transitions we could reasonably cover within our allocation of 39 HST orbits.1 The aim was

to reach a signal-to-noise ratio which would enable us to detect Mg ii and C iv absorption

rest equivalent widths commonly seen in prior, large moderate-resolution quasar absorption-

line surveys. Therefore, we did not use higher-resolution COS gratings. However, it would

indeed be worthwhile to perform follow-up spectroscopy of a number of our detections at

higher spectral resolution and signal-to-noise ratios.

The COS gratings used in this study along each sightline are specified in Table 5.2.

The near ultraviolet (NUV) G230L grating has a resolution of 2 pixels or ∼ 0.82 Å at

the wavelength of the Mg ii λλ2796,2803 doublet, which corresponds to ∼ 87 km s−1 on

a velocity scale. The far ultraviolet (FUV) G140L grating has a resolution of 7 pixels or

∼ 0.55 Å at the wavelength of the C iv λλ1548,1550 doublet, which corresponds to ∼ 106

km s−1. Given the redshifts of the quasars, we should note that in certain wavelength regions

there is the possibility of contamination by Lyα forest absorption. For example, Lyα forest

absorption would potentially be visible near any Galactic or M31 Mg ii absorption when the

quasar’s redshift is higher than zem ∼ 1.3 (i.e., in quasar 4) and near any Galactic or M31

C iv absorption when the quasar’s redshift is higher than zem ∼ 0.27 (i.e., in all quasars

except quasar 9). However, according to Weymann et al. (1998), the incidence of Lyα forest

absorption lines with rest equivalent widths ≥ 0.24 Å at these relatively low redshifts is

typically only about one line per 30 Å (about one line per 3200 km s−1), so we did not

necessarily anticipate too much confusion due to overlapping Lyα forest absorption. There

might also be overlapping absorption due to unidentified metal-line systems. In §5.3 we note

instances where Lyα forest absorption or other overlapping unidentified absorption appears

to be a confusing factor.

Seven quasars were observed with both the NUV and FUV gratings, while three were

1Parallel imaging data were also obtained. These will be discussed in Thilker et al. (in prep.).
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targeted with the NUV grating alone. These three had low FUV fluxes based on the GALaxy

Evolution eXplorer (GALEX) telescope measurements, and so they were not observed. The

NUV grating covers Fe ii, Mn ii, Mg ii and Mg i transitions, while the FUV grating covers

C iv, Si iv and several lower-ion transitions, as described in §5.3.

Pipeline flux-calibrated and wavelength-calibrated spectra were used for all the measure-

ments, and no additional calibrations or re-calibrations were carried out. The wavelength

scale is heliocentric, and measured velocity offsets relative to a transition of interest are made

on this scale. Before making absorption-line measurements, the FUV spectra were re-binned

to two pixels per resolution element and all spectra were normalized using an interactive

algorithm which fitted splines to a quasar’s observed continuum plus broad emission lines

to derive a pseudo-continuum. We used the pipeline-provided standard deviation in flux to

calculate the 1σ error in the normalized flux. When reporting errors in equivalent width

measurements, we do not include (propagate) any errors that might arise during the process

of defining a pseudo-continuum.

5.3 RESULTS

Figures 5.3−5.12 show the pseudo-continuum-normalized spectra near the predicted loca-

tions of metal lines along the ten sightlines, and Table 5.3a gives the measured metal-line

absorption rest equivalent widths or upper limits for both M31 and Galactic lines. To make

these measurements, heliocentric velocity locations for the absorbing gas had to be deter-

mined. The procedure for this is discussed below and the results on velocity offsets are given

in Table 5.4.

For the low-ion transitions, the narrow Mn ii lines (when present) allow for a more

accurate determination of the velocity centroid of Galactic gas since they are well-fitted

by single Gaussians. Therefore, the velocity offsets of low-ion Galactic absorption lines are

defined by the centroids of Galactic Mn ii λ2576 absorption for sightlines 2, 8, 9, and 102.

2The sightline 10 Galactic component is heavily blended with the M31 disk component, as described in
the discussion of sightline 10.
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The centroids of Galactic Mg ii λ2796 are used to define the velocity offsets of absorption

along other sightlines. The wavelength interval covered by the COS-FUV spectra includes

transitions due to Si ii, O i, C ii, C ii∗, Fe ii, and Al ii. The centroids of these low-ion lines

were fixed at the velocities determined from either the Mn ii λ2576 line or Mg ii λ2796 as

indicated above. In the panels for each figure, dash-dot vertical lines are drawn at the

determined velocity offsets of M31 and Galactic gas.

The only high-ion transitions detected in our spectra are due to C3+ and Si3+. The

velocity centroids of Gaussians fitted to the C iv λ1548 lines were allowed to vary since low-

ion and high-ion absorption lines are not a priori required to have the same velocity centroids

or line widths. The C iv λ1550 line and Si iv lines were then constrained to have the same

velocity locations and widths as the C iv λ1548 line, within the uncertainties and resolution

of the data. Inspection of the final fits suggests that this was a reasonable constraint.

The 1σ error in the normalized flux is shown in the figures as a black dotted line. M31

and Galactic absorption transitions that are identified at a level of significance > 2σ are

indicated in the figures by red profiles. A > 2σ rest equivalent width detection threshold is

an appropriate criterion for identifying absorption because we already know the approximate

velocity location of M31 absorption (e.g., from M31’s 21 cm emission). We also searched for

significant absorption in a wider velocity window. Gaussian profiles are fitted to detected

absorption. If more than one Gaussian is required to fit the data, we show the individual

Gaussians as red dashed profiles, visible above the solid red profile. In the absence of multiple

Gaussians, the red solid profile will lie on top of the red dashed profile, and the red dashed

profile will not be visible. However, the measurements indicated by the red dashed profiles

are what we report in Tables 5.3a and 5.4. As noted earlier, the positions of most low-ion

lines are fixed by the centroid of either the Mn ii λ2576 or the Mg ii λ2796 line; however, their

widths are allowed to vary in order to obtain the best fit. In a few cases, even the velocity

offsets had to be allowed to vary up to one resolution element in order to obtain a satisfactory

fit. Also, while performing the fits, we identified some absorption in the spectra which were

likely blends resulting from a real M31 or Galactic absorption line plus overlapping or nearby

absorption due to, for example, Lyα forest absorption, some other unrelated absorption, or

even related absorption such as C ii λ1334.5 and C ii∗ λ1335.7. When this happened, we
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fitted Gaussians to these nearby absorption components in order to better isolate the M31

and Galactic absorption transition of interest. We refer to this as deblending. However, when

we report results in Tables 5.3a and 5.4, as noted earlier, only absorption taken to be due

to the designated transition of interest in M31 or the Galaxy is reported and shown on the

figures. Other nearby absorption lines which were fitted in order to isolate M31 and Galactic

gas are shown as green dashed Gaussian profiles. The identifications and measurements of

M31 and Galactic lines in the presence of confusing overlapping or nearby absorption should

be considered less secure.

When a line is not detected (i.e., the detection is < 2σ) at its expected velocity offset, or

nearby absorption not due to the transition of interest appears to be present, a red dotted

Gaussian profile with FWHM equal to the spectrograph resolution (i.e., ∼ 0.82 Å or ∼ 87

km s−1 for the NUV lines and ∼ 0.55 Å or ∼ 106 km s−1 for the FUV lines) is shown on the

figures to indicate the reported upper limit. If no overlapping or nearby confusing absorption

is present, this is just the 2σ upper limit on equivalent width generated from the error in

normalized flux. However, if overlapping or nearby absorption is present, the upper limit

is determined from the strength of this overlapping or nearby absorption. Lacking evidence

that a low-oscillator-strength transition should be present along a particular sightline, we

would attribute any significant detected absorption as due to overlapping absorption, and

list it as an upper limit.

In cases where the velocity of an M31 absorption line overlaps with the velocity of a

different Galactic absorption line, for example, the M31 C iv λ1550 and the Galactic C iv

λ1548 lines, or the M31 Si ii λ1304 and the Galactic O i λ1302 lines along sightlines 1, 3, and

4 (Figures 5.3, 5.5, and 5.6), we assign the absorption to the Galactic absorption system.

The measurement is listed in Table 5.3a only for the Galactic absorption line.

The bottom panels for sightlines 5 through 10 (Figures 5.7−5.12) show H i 21 cm emission

profiles extracted from the GBT data of Thilker et al. (2004). The intensities are scaled to

accentuate the very weak emission signal from M31. The dash-dot horizontal line drawn in

each 21 cm panel marks the location of zero intensity. The H i 21 cm emission disk of M31

extends out to ∼ 33 kpc as determined from the NHI = 1.9 × 1018 cm−2 column density

contour (5.1), and no H i 21 cm measurements exist at the positions of quasars 1 through
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4. Therefore, to estimate equivalent width upper limits for these four sightlines, we have

assumed that M31’s 21 cm rotation curve is flat at large galactocentric distances and we

extrapolate the sightline 21 cm emission velocity out to the positions of quasars 1 through 4

to predict a probable velocity location of absorbing gas. Note that M31 is nearly edge-on and

inclined ∼ 78 deg on the plane of the sky. Thus a very small inclination correction is needed

since sin(78) = 0.978. Then the assumption of a flat rotation curve suggests that if metal-line

absorption is present in M31’s outer regions, we might find it near a heliocentric velocity

location of ∼ −525 km s−1. This is where we determine M31 equivalent width upper limits

for sightlines 1 through 4. We note that the choice of where to measure potential absorption

in the four outer sightlines is purely an algorithmic decision given that flat rotation curves

exist. We also considered the Tamm et al. (2012) study which derives a rotation curve out to

a galactocentric radius of ∼ 500 kpc. They employ, among other diagnostics, observations

of stellar streams (Fardal et al. 2006) and satellite galaxies (Tollerud et al. 2012) which

yield rotational velocities of ∼ 160 km s−1 near the position of our outermost sightline.

This translates to a heliocentric velocity of −466 km s−1 since our outer sightlines lie on

the approaching, SW, side of M31. This is well within one resolution element (§2.3) of our

assumed velocity location of −525 km s−1. Therefore, we are confident that we have not

missed any absorption from gas in M31 along the outer four sightlines that is above our

detection limits.

Tables 5.3a and 5.4 summarize all of the measurements and upper limits, both for

M31 and the Milky Way Galaxy. A discussion of individual sightlines follows (see Figures

5.3−5.12), with emphasis on what they reveal about M31 gas. The discussions are presented

in order of increasing sightline right ascensions. This ordering generally follows decreasing

impact parameter, b, except for the last three sightlines which all have 13 < b < 18 kpc. At

the beginning of each discussion we indicate the maximum wavelength at which Lyα forest

absorption might cause blending and confusion, λforest ∼ 1216(1 + zem) Å.

1. 0018+3412 (b = 111.9 kpc, λforest < 1760 Å, Fig. 5.3): No significant M31 absorp-

tion is detected along this sightline, and H i 21 cm emission maps of M31 do not extend

this far out. Therefore, rest equivalent width upper limits on absorption were measured

at −525 km s−1 as described earlier. At this velocity location, the red dotted Gaussian

141



lines show the velocity positions and rest equivalent widths of hypothetical unresolved

absorption lines with 2σ levels of significance, and these are the upper limits reported in

Table 5.3a. Galactic absorption is clearly present. Suspected confusion (blending) due to

overlapping Lyα forest absorption is apparent for the Si ii λ1260, Si ii λ1304, O i λ1302,

C ii λ1334, and C iv λ1550 Galactic absorption lines. The method we used to measure

such cases was discussed above.

2. 0024+3439 (b = 98.6 kpc, λforest < 2216 Å, Fig. 5.4): As in the previous sightline,

no significant M31 absorption is detected, and H i 21 cm emission maps do not extend

this far out, so upper limits were measured at a velocity location of −525 km s−1. Only

NUV spectra of this quasar were obtained. Therefore, for example, the C iv region was

not observed. A Galactic MnII λ2576 line is detected at a level of significance of ∼ 3σ,

however the two weaker members of the triplet are not detected at > 2σ. Galactic Mg ii

and Fe ii absorption are clearly detected.

3. 0030+3700 (b = 64.4 kpc, λforest < 2720 Å, Fig. 5.5): Again, no significant absorp-

tion lines from M31 are detected at or near −525 km s−1, and the 21 cm emission maps

do not extend out this far. Among the significant Galactic absorption lines that are

detected, the measurements of Si ii λ1260, Si iv λ1393, C iv λ1548 and Fe ii λ2586 were

made in the presence of overlapping unrelated absorption using the method described

earlier. While only the stronger members of the Galactic Si iv and C iv doublets are de-

tected, the rest equivalent width upper limits of the weaker members of these doublets are

consistent with their expected strengths based on fλ values. In addition to the detected

Galactic metal absorption lines, at least two partial Lyman limit absorption systems are

present in the spectrum. One at z ∼ 0.5 is clearly visible in the FUV observation (not

shown). Based on the difference in flux level between the FUV and NUV observations,

and the presence of some strong Lyα forest absorption near and just shortward of the

Lyα broad emission line, at least one other Lyman limit absorption system is likely to

be present at 1.21 < z < 1.24. However, it is not directly visible in our observations

because it falls in the wavelength gap between the FUV and NUV spectra.

4. 0031+3727 (b = 57.6 kpc, λforest < 2797 Å, Fig. 5.6): As with the first three

sightlines, no significant absorption lines from M31 gas are seen, and the 21 cm emission
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Figure 5.3: Normalized spectra versus velocity for the labeled transitions in the spectra of

0018+3412. The black dotted line is the 1σ error spectrum. All velocities are heliocentric.

The vertical dot-dashed lines are Milky Way (near 0 km s−1) and M31 detected or assumed

velocities. See Table 5.4. Fits to M31 and Galactic absorption lines detected at a significance

> 2σ are shown as heavy dashed (if part of a blend) or solid red lines. See text. Dotted red

lines indicate 2σ upper limits. Green dashed lines are components within a blend that are

unrelated to M31 or Galactic absorption.
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Figure 5.4: Same as Figure 5.4, but for 0024+3439. No FUV spectra of this quasar were

obtained.
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Figure 5.5: Same as Figure 5.3, but for 0030+3700.
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map does not extend out this far. M31 upper limits were estimated at −525 km s−1 for

both the high and low ions. Galactic absorption is clearly detected for some transitions,

but the measurements of Si ii λ1260, C ii λ1334, Si ii λ1526, Fe ii λ1608, and Fe ii λ2600

required deblending due to the presence of unrelated overlapping absorption.

5. 0032+3946 (b = 31.5 kpc, λforest < 2600 Å, Fig. 5.7): Only NUV spectra were

obtained for this quasar. An M31 Mg ii λ2796 absorption line with a significance of

2σ at a heliocentric velocity of −453 km s−1 appears to be present (see Table 5.3a),

however a corresponding 2-pixel-wide absorption feature near the expected position of

Mg ii λ2803 has a significance < 2σ. If present, this absorption may originate at the

southwest edge of M31’s disk (see Figure 5.1). Apart from strong Galactic emission, the

GBT 21 cm data along this sightline (bottom panel of Figure 5.7) shows evidence for M31

emission between −509 and −459 km s−1. Although the resolution of the NUV spectrum

is ∼ 0.82 Å (∼ 87 km s−1) at the position of Mg ii, the centroid of the absorption line

can be estimated with an uncertainty of ∼ 6 km s−1 (see §5.4). Thus, the identified

Mg ii λ2796 feature at −453 km s−1 is near the maximum velocity of observed 21 cm

emission. Keeping in mind the limitations of using H i 21 cm emission observations to

determine H i column densities (§5.2.1), we find NHI ≈ 2.5 × 1018 atoms cm−2 along

this sightline. Very significant Galactic Mg ii and Fe ii absorption is detected along this

sightline, but the Galactic Fe ii λ2586 line was deblended to separate it from unrelated

nearby absorption.

6. 0037+3908 (b = 30.5 kpc, λforest < 2590 Å, Fig. 5.8): Only NUV spectra were

obtained for this quasar. Absorption from M31 gas is not detected. However, apart

from the strong Galactic emission, the GBT data along this sightline reveal M31 21

cm emission between −542 and −475 km s−1 (bottom panel of Figure 5.8), with an

integrated column density of NHI = 2.5 × 1018 atoms cm−2 (see §5.2.1). The 2σ upper

limits on M31 absorption are made at the central velocities predicted by the observed

M31 21 cm emission. Very significant Galactic Mg ii and Fe ii absorption is detected

along this sightline. The Galactic Fe ii λ2586 and Fe ii λ2600 lines were deblended to

separate them out from unrelated nearby absorption.

7. 0040+3915 (b = 26.9 kpc, λforest < 2552 Å, Fig. 5.9): Only the velocity profiles
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Figure 5.6: Same as Figure 5.3, but for 0031+3727.
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Figure 5.7: Same as Figure 5.3, but for 0032+3946. In addition, the H i 21 cm emission

profile extracted from the GBT data of Thilker et al. (2004) is shown in the bottom panel.

The intensities are scaled to accentuate the very weak emission signal from M31. The dash-

dot horizontal line drawn in the 21 cm panel marks the location of zero intensity. No FUV

spectra of this quasar were obtained.
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Figure 5.8: Same as Figure 5.7, but for 0037+3908. No FUV spectra were obtained for this

quasar.
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in the vicinity of Mg ii and Mg i are visible in our observations for two reasons. First,

the quasar spectrum exhibits intrinsic broad absorption lines (BALs) and the Nv BAL

trough overlaps the Mn ii and Fe ii absorption-line regions. This prevents useful mea-

surements of M31 and Galactic lines in those regions. Second, the FUV spectrum shows

no useful continuum flux, possibly due to strong shorter-wavelength BALs and/or over-

lapping intervening Lyman limit absorption. Mg ii λ2796 due to M31 gas appears as two

absorption components in the NUV spectrum. The noise characteristics of the spectrum

are worse in the corresponding Mg ii λ2803 region, and two absorption components are

not seen (a single Gaussian was fitted to the absorption), but we give this lower weight

due to the higher noise. The two vertical dash-dot lines at −389 km s−1 and −513

km s−1 mark the velocity positions of the two M31 Mg ii λ2796 absorption components.

The sightline passes through an HVC (see Figure 5.1), whose 21 cm emission profile can

clearly be seen in the bottom panel of the figure peaking at ∼ −500 km s−1. The GBT

data reveal that this 21 cm emission extends between −542 and −442 km s−1. Thus, the

two Mg ii absorption components at −389 km s−1 and −513 km s−1 may correspond to

M31 halo gas and HVC gas, respectively, with the halo component showing no apparent

21 cm emission. From the WSRT 21 cm emission data, the integrated H i column density

in the HVC is estimated to be NHI = 9.5×1019 atoms cm−2 (see §5.2.1). Very significant

Galactic Mg ii absorption is present along this sightline.

8. 0043+4016 (b = 13.4 kpc, λforest < 2545 Å, Fig. 5.10): This is the lowest impact pa-

rameter sightline. M31 low-ion absorption from Si ii λ1260 and C ii λ1334 is detected,

and high-ion absorption from C iv λ1548 is detected, but the Si ii λ1260 and C iv λ1548

lines had to be deblended from overlapping unrelated absorption. Given that the 21 cm

emission extends over a large range in velocity, we cannot rule out that all the absorp-

tion features within the C iv λ1548 blend are due to C iv λ1548 absorption over a wide

velocity range. Confirmation would require a higher signal-to-noise spectrum; here, we

identify the lowest velocity component with the M31 C iv λ1548 absorption line. The

low-ions are centered at ∼ −336 km s−1 and the high-ions are centered at ∼ −340 km

s−1. However, Mg ii and Fe ii absorption lines from M31 gas were not detected. The

GBT data show that 21 cm emission from M31 exists along this sightline between −559
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Figure 5.9: Same as Figure 5.7, but for 0040+3915. The M31 HVC that is detected in 21

cm at −513 km/s, is also detected in the Mg iiλ2796 line. The two Mg iiλ2803 components

are too weak to be resolved with these data. The FUV data are not shown because the

spectrum had no flux presumably due to an intervening Lyman limit system.
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km s−1 and −326 km s−1, with a total integrated column density of NHI = 1.2 × 1019

atoms cm−2. We note that the absorption-line velocities are coincident with the peak

in the 21 cm emission-line spectrum (bottom panels of Figure 5.10). Many significant

Galactic absorption lines are present. Galactic Si ii λ1260 and C iv λ1550 had to be

deblended to separate them out from unrelated overlapping absorption.

9. 0043+4234 (b = 17.4 kpc, λforest < 1448 Å, Fig. 5.11): The sightline to this quasar

passes “above” the H i 21 cm emission disk of M31 on the receding, northwest, side (see

Figure 5.1). Due to the location of the sightline, the detected M31 and Galactic absorp-

tion lines needed to be deblended from each other. We used two-component Gaussian fits

with fixed velocity components to do this. Measurements of the Si ii λ1260, C ii λ1334.5

(and C ii∗ λ1335.7), Si iv λ1393, and Al ii λ1670 absorption lines are further complicated

by other overlapping absorption. For low-ion absorption the velocity centroid for the

Galactic lines was fixed using Mn ii λ2576, while allowing the position of the M31 low-

ion velocity centroid to vary until the best least-squares solution was found. Deblending

indicates that the detected M31 low-ion gas, which gives rise to transitions of Si ii, C ii,

Al ii, Fe ii and Mg ii, is located at −234 km s−1, and the Galactic low-ion gas is located

at −73 km s−1. It is notable that along this sightline there is a detection of Galactic

C ii∗ λ1335.7. The M31 high-ion gas, which gives rise to transitions of Si iv λ1393 and

C iv λ1548, are also members of a multi-component blend with Galactic lines. Using a

procedure similar to the one used for the low-ions, we find that the M31 high-ion gas is

at −191 km s−1 and the Galactic high-ion gas is at −1 km s−1. GBT data reveal M31

21 cm emission between −259 km s−1 and −93 km s−1, with a total integrated column

density of NHI = 8× 1018 cm−2 (see §5.2.1). The higher velocity edge of the M31 21 cm

emission is uncertain since it may overlap with Galactic 21 cm emission.

10. 0046+4220 (b = 17.5 kpc, λforest < 1588Å, Fig. 5.12): To infer what gaseous struc-

tures exist along this sightline we are guided by the observed GBT H i 21 cm emission

velocity profile, which is shown in the bottom panels of Figure 5.12. An inset in the

bottom left panel shows the entire 21 cm profile. Most notably, the weaker 21 cm peak

near −5 km s−1 represents Galactic emission, while the stronger 21 cm emission peak

near −55 km s−1 represents M31’s disk; however, such a velocity separation cannot be
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Figure 5.10: Same as Figure 5.7, but for 0043+4016. FUV data obtained for this quasar are

also shown.
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Figure 5.11: Same as Figure 5.7, but for 0043+4234. FUV data obtained for this quasar are

also shown.
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distinguished in the COS G140L and G230L absorption-line spectra. More generally,

the entire 21 cm velocity profile and the detected low-ion absorption lines have allowed

us to infer the existence of five gaseous structures along this sightline: one near −5 km

s−1 (Galactic gas), one near −55 km s−1 (M31 disk gas), one near −195 km s−1 (M31

halo gas), one near −334 km s−1 (a M31 HVC), and one near −409 km s−1 (a second

M31 HVC). As with sightline 9, detected Galactic and M31 absorption lines needed to

be deblended from each other, but the blending along this sightline is more severe. In

particular, the low-ion absorption detected near −40 km s−1 must be a blend of Galac-

tic gas and M31 disk gas, with most of the absorption being due to M31 disk gas. This

Galactic+M31 blended component is included under the heading of “Milky Way Absorp-

tion Lines” in Table 5.3a but with a footnote. Absorption due to C ii∗ λ1335.7 is among

the many transitions detected in this component (see Table 5.3a). A weak (barely sig-

nificant) blended Galactic and M31 high-ion absorption component is located near −35

km s−1. The 21 cm emission profile allows us to estimate that the Galactic component

peaking near −5 km s−1 has NHI = 4.0× 1020 atoms cm−2 and the M31 disk component

peaking near −55 km s−1 has NHI = 1.5×1021 atoms cm−2. Aside from this first blended

absorption component, a second low-ion absorption component is seen displaced toward

lower velocities by ∼ 155 km s−1, close to the edge of the H i 21 cm emission profile,

which we take as evidence for halo gas. However, measurements of the Si ii λ1260, O i

λ1302, Si ii λ1304, C ii λ1334.5 (and C ii∗ λ1335.7), Si ii λ1526, C iv λ1548, and Al ii

λ1670 absorption lines are complicated by overlapping or nearby absorption. Deblending

indicates that the M31 low-ion halo gas component is near −195 km s−1, and this gives

rise to absorption due to Si ii, O i, C ii, Al ii, Fe ii, and Mg ii. Deblending also indicates

that a high-ion absorption component is located near −152 km s−1; it is clearly present

in C iv but possibly not Si iv. The 21 cm emission allows us to estimate that the M31

halo component peaking near −195 km s−1 has NHI = 7×1019 atoms cm−2. The velocity

locations of the above described absorption components for the low ions and high ions

are shown as vertical dot-dashed lines in the panels, including the lower left inset panel.

In addition, the GBT 21 cm observations also reveal gas from two M31 HVCs near −334

km s−1 (between −342 km s−1 and −326 km s−1), and near −409 km s−1 (between −426
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km s−1 and −392 km s−1). The total integrated column densities along the sightlines

to these HVCs are NHI = 2 × 1018 atoms cm−2 and NHI = 2.5 × 1018 atoms cm−2,

respectively. We do not detect metal-line absorption near the velocities of these HVCs,

so we have not used vertical lines to mark their velocity locations in Figure 5.12. Thus,

using standard quasar absorption line jargon, we conclude that, given the estimated NHI

values for the four detected M31 velocity components, we have detected a DLA system

(M31 disk gas), a sub-DLA system (M31 halo gas), and two Lyman limit systems (two

M31 HVCs).

Finally, we point out that the blended low-ion absorption near −40 km s−1 in sightline

10 is the only system which reaches DLA H i column densities (i.e., NHI ≥ 2 × 1020

atoms cm−2). As described above, it is due to a blend of Galactic gas and M31 disk gas.

DLAs are the quasar absorption-line systems used to track the evolution of neutral gas

in the Universe at low (Rao et al. 2006) and high (e.g., Noterdaeme et al. 2012) redshift.

The strength of the Mg ii λ2796 and Fe ii λ2600 absorption lines in this component are

consistent with criteria used in Mg ii-selected DLA searches (Rao et al. 2006).
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Figure 5.12: Same as Figure 5.7, but for 0046+4220. FUV data obtained for this quasar are

also shown.
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Table 5.3a: Rest Equivalent Width Measurementsa

Line 1. 0018+3412 2. 0024+3439 3. 0030+3700 4. 0031+3727 5. 0032+3946 6. 0037+3908 7. 0040+3915 8. 0043+4016 9. 0043+4234 10. 0046+4220b

REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å)

M31 Absorption Lines

SiII 1260 ≤ 0.113 · · · ≤ 0.300 ≤ 0.132 · · · · · · · · · 0.225± 0.042 0.259± 0.054 0.544± 0.042

OI 1302 ≤ 0.113 · · · ≤ 0.093 ≤ 0.065 · · · · · · · · · ≤ 0.048 ≤ 0.048 0.187± 0.047

SiII 1304 · · · · · · · · · · · · · · · · · · · · · ≤ 0.043 ≤ 0.046 0.341± 0.036

CII 1334 ≤ 0.106 · · · ≤ 0.303 ≤ 0.121 · · · · · · · · · 0.192± 0.042 0.318± 0.039 0.234± 0.044

CII∗ 1335 ≤ 0.131 · · · ≤ 0.373 ≤ 0.118 · · · · · · · · · · · · · · · · · ·

SiIV 1393 ≤ 0.145 · · · ≤ 0.205 ≤ 0.143 · · · · · · · · · ≤ 0.139 0.085± 0.042 ≤ 0.095

SiIV 1402 ≤ 0.131 · · · ≤ 0.188 ≤ 0.137 · · · · · · · · · ≤ 0.125 ≤ 0.098 0.156± 0.065

SiII 1526 ≤ 0.173 · · · ≤ 0.523 ≤ 0.214 · · · · · · · · · ≤ 0.180 ≤ 0.152 0.386± 0.066

FeII 1608 ≤ 0.223 · · · ≤ 0.384 ≤ 0.209 · · · · · · · · · ≤ 0.151 ≤ 0.168 0.267± 0.076

AlII 1670 ≤ 0.244 · · · ≤ 0.453 ≤ 0.253 · · · · · · · · · ≤ 0.194 ≤ 0.110 0.258± 0.087

CIV 1548 ≤ 0.202 · · · ≤ 0.298 ≤ 0.180 · · · · · · · · · 0.146± 0.061 0.167± 0.087 0.651± 0.098

CIV 1550 · · · · · · · · · · · · · · · · · · · · · ≤ 0.175 ≤ 0.161 0.320± 0.070

Milky Way Absorption Lines

SiII 1260 0.289± 0.054 · · · 0.358± 0.081 0.320± 0.053 · · · · · · · · · 0.636± 0.048 0.689± 0.044 0.479± 0.056

OI 1302 0.189± 0.086 · · · ≤ 0.071 0.113± 0.042 · · · · · · · · · 0.107± 0.021 0.162± 0.032 0.358± 0.050

SiII 1304 0.258± 0.033 · · · ≤ 0.065 ≤ 0.050 · · · · · · · · · 0.154± 0.029 0.084± 0.032 0.545± 0.045

CII 1334 0.410± 0.095 · · · 0.448± 0.128 0.309± 0.048 · · · · · · · · · 0.594± 0.034 0.592± 0.036 0.669± 0.032

CII∗ 1335 ≤ 0.129 · · · ≤ 0.401 ≤ 0.115 · · · · · · · · · 0.295± 0.044 0.413± 0.044 0.288± 0.039

SiIV 1393 ≤ 0.131 · · · 0.396± 0.121 ≤ 0.144 · · · · · · · · · 0.533± 0.036 0.149± 0.056 0.189± 0.095

SiIV 1402 ≤ 0.108 · · · ≤ 0.163 ≤ 0.130 · · · · · · · · · ≤ 0.116 ≤ 0.104 0.133± 0.065

SiII 1526 0.286± 0.046 · · · ≤ 0.462 0.155± 0.097 · · · · · · · · · 0.483± 0.062 0.706± 0.093 0.761± 0.092

FeII 1608 ≤ 0.231 · · · ≤ 0.372 0.243± 0.092 · · · · · · · · · 0.175± 0.076 0.119± 0.060 0.424± 0.078

AlII 1670 0.634± 0.063 · · · ≤ 0.557 0.443± 0.102 · · · · · · · · · 0.427± 0.082 0.274± 0.066 0.440± 0.099

CIV 1548 0.213± 0.077 · · · 0.471± 0.261 ≤ 0.155 · · · · · · · · · 0.270± 0.110 0.252± 0.078 0.264± 0.079

CIV 1550 0.365± 0.074 · · · ≤ 0.299 ≤ 0.177 · · · · · · · · · 0.378± 0.095 ≤ 0.128 0.132± 0.066

a 2σ upper limits are tabulated for non-detections.
bIn sightline 10, Milky Way absorption lines are blended with M31 disk gas. See the description in §3.
c The two measurements are M31 HVC and disk components, respectively. See Figure 5.9.
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Table 5.3b: Continued from Table 5.3a.

Line 1. 0018+3412 2. 0024+3439 3. 0030+3700 4. 0031+3727 5. 0032+3946 6. 0037+3908 7. 0040+3915 8. 0043+4016 9. 0043+4234 10. 0046+4220b

REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å) REW (Å)

M31 Absorption Lines

MnII 2576 ≤ 0.447 ≤ 0.274 ≤ 0.307 ≤ 0.829 ≤ 0.218 ≤ 0.150 · · · ≤ 0.181 ≤ 0.285 ≤ 0.243

MnII 2594 ≤ 0.422 ≤ 0.283 ≤ 0.302 ≤ 0.815 ≤ 0.139 ≤ 0.123 · · · ≤ 0.187 ≤ 0.263 ≤ 0.257

MnII 2606 ≤ 0.428 ≤ 0.291 ≤ 0.311 ≤ 0.829 ≤ 0.138 ≤ 0.498 · · · ≤ 0.182 ≤ 0.285 ≤ 0.259

FeII 2586 ≤ 0.421 ≤ 0.254 ≤ 0.435 ≤ 0.847 ≤ 0.178 ≤ 0.120 · · · ≤ 0.187 ≤ 0.289 0.266± 0.115

FeII 2600 ≤ 0.430 ≤ 0.291 ≤ 0.313 ≤ 0.865 ≤ 0.133 ≤ 0.114 · · · ≤ 0.183 ≤ 0.291 0.571± 0.112

MgII 2796 ≤ 0.459 ≤ 0.261 ≤ 0.211 ≤ 0.433 0.341± 0.171 ≤ 0.405 0.304± 0.220c ≤ 0.379 0.554± 0.111 0.627± 0.112

· · · · · · · · · · · · · · · · · · · · · 0.412± 0.256c · · · · · · · · ·

MgII 2803 ≤ 0.484 ≤ 0.248 ≤ 0.226 ≤ 0.354 ≤ 0.430 ≤ 0.399 0.606± 0.208 ≤ 0.377 0.285± 0.117 0.390± 0.122

MgI 2852 ≤ 0.619 ≤ 0.387 ≤ 0.419 · · · ≤ 0.565 ≤ 0.428 ≤ 0.981 ≤ 0.624 ≤ 0.301 ≤ 0.260

Milky Way Absorption Lines

MnII 2576 ≤ 0.417 0.356± 0.106 ≤ 0.722 ≤ 0.849 ≤ 0.205 ≤ 0.150 · · · 0.135± 0.067 0.297± 0.112 0.427± 0.093

MnII 2594 ≤ 0.428 ≤ 0.285 ≤ 0.317 ≤ 0.838 ≤ 0.133 ≤ 0.123 · · · 0.222± 0.074 0.325± 0.104 0.448± 0.100

MnII 2606 ≤ 0.438 ≤ 0.273 ≤ 0.310 ≤ 0.884 ≤ 0.143 ≤ 0.136 · · · 0.190± 0.082 0.226± 0.113 0.319± 0.100

FeII 2586 0.627± 0.222 0.626± 0.126 0.667± 0.163 ≤ 0.838 0.602± 0.142 0.659± 0.078 · · · 0.632± 0.077 0.767± 0.147 0.919± 0.092

FeII 2600 0.591± 0.162 0.676± 0.139 0.671± 0.172 1.209± 0.312 0.646± 0.062 0.897± 0.131 · · · 0.755± 0.104 0.888± 0.186 0.965± 0.094

MgII 2796 0.869± 0.179 0.968± 0.146 1.058± 0.115 0.726± 0.133 1.025± 0.215 0.569± 0.199 0.977± 0.293 0.580± 0.194 0.764± 0.107 1.096± 0.122

MgII 2803 0.508± 0.198 0.947± 0.135 0.846± 0.110 0.624± 0.117 0.870± 0.220 1.038± 0.248 0.089± 0.288 1.294± 0.211 0.920± 0.096 1.249± 0.120

MgI 2852 ≤ 0.626 ≤ 0.493 ≤ 0.595 · · · ≤ 0.833 ≤ 0.428 ≤ 0.959 ≤ 0.608 ≤ 0.304 0.846± 0.117

a 2σ upper limits are tabulated for non-detections.
bIn sightline 10, Milky Way absorption lines are blended with M31 disk gas. See the description in §3.
c The two measurements are M31 HVC and disk components, respectively. See Figure 5.9.
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5.4 SUMMARY AND DISCUSSION OF RESULTS FOR M31

5.4.1 Overview on the Detection of Low-Ion and High-Ion Absorption Lines

The detections of M31 gas presented in the previous section and reported in Tables 5.3a and

5.4 can be summarized as follows.

Low-ion Mg ii absorption due to M31 gas is detected along four of the 10 observed

sightlines (5, 7, 9, and 10). These sightlines have impact parameters ranging between b ≈ 17

and 32 kpc. We also detect other low-ion gas (e.g., due to Si ii, O i, C ii, Fe ii, or Al ii) along

three of the four sightlines with Mg ii detections; sightline 5 was not observed in the FUV,

where most of these transitions occur. In addition, we detect C ii absorption at M31 velocities

along sightline 8 (b = 13.4 kpc). Sightline 6 (b = 30.5 kpc) is the only “inner” sightline

which does not show evidence for M31 low-ion absorption (W λ2796
0 < 0.41 Å); however, no

FUV spectra were obtained along this sightline. Among these “inner” sightlines, except for

the blended Galactic and M31 line in sightline 10, the Mg ii rest equivalent widths ranged

between W λ2796
0 ≈ 0.34 and 0.71 Å, with the strongest detection being a two-component

absorber with W λ2796
0 ≈ 0.30 and 0.41 Å. The four outer sightlines (1 through 4), with impact

parameters b ≈ 57 to 112 kpc, do not show Mg ii absorption down to 2σ rest equivalent upper

limits ranging between W λ2796
0 ≈ 0.21 and 0.46 Å.

High-ion C iv absorption due to M31 gas is detected along three of six sightlines (8, 9,

and 10) which have usable FUV spectra. These three detections are all in “inner” sightlines,

with impact parameters ranging between b ≈ 13 and 18 kpc, and rest equivalent widths

ranging between W λ1548
0 ≈ 0.17 and 0.65 Å. Some Si iv absorption and low-ion absorption

is also detected along these three “inner” sightlines. The three C iv non-detections are in

outer sightlines (1, 3, and 4), with impact parameters ranging between b ≈ 57 and 112 kpc,

and with 2σ rest equivalent width upper limits ranging between W λ1548
0 ≈ 0.18 and 0.30 Å.

We should point out that many of the detections summarized above were near the limit

of our sensitivity threshold, despite the fact that our rest equivalent width upper limits are

typical of those in large optical quasar absorption-line surveys. Another concern is confusion

from overlapping or nearby absorption, but we believe we have dealt with this appropriately.
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Also, Rich et al. (private communication) has observed three sightlines in the halo of

M31 with COS. They do not cover the Mg ii region, but detect C iv from M31 in some of

these sightlines. There are other HST archival observations in the M31 halo, but these do

not show any detections.

5.4.2 Implications

As elaborated further in §5.4.3, a clear picture does emerge. The absorption lines that arise

in M31 gas are found to be relatively weak in comparison to those often identified in optical

quasar absorption-line surveys, and even more so in comparison to absorption lines which

arise in the ISM of the Milky Way Galaxy (e.g., Table 5.3a). Moreover, none of the detected

M31 absorption lines are found at large impact parameters. This could also be viewed as

unexpected since the bulk of intervening low- to moderate-redshift metal-line absorbers seen

in quasar spectra are identified with large-impact-parameter galaxies in followup imaging

studies (e.g., Rao et al. 2011, Chen et al. 2010). However, all of the large-impact-parameter

sightlines we observed were generally along M31’s major axis, so one scenario which might

explain the lack of absorption in those cases would be to hypothesize that extended gaseous

absorption originates in galactic fountains and preferentially avoids extended regions along

the direction of the disk (e.g., Bordoloi et al. 2011, Bouché et al. 2012). Using the observed

distribution of HVCs around the Milky Way and M31, Richter (2012) finds an exponential

decline in the mean filling factor of HVCs with a characteristic radial extent of ∼ 50 kpc.

If HVCs alone are responsible for absorption lines, then one would not expect to find any

absorption along our four outer sightlines. Alternatively, M31 may simply be typical of a

class of luminous galaxies that don’t possess large gaseous cross sections which are capable

of giving rise to moderate-strength quasar absorption lines. Our findings for M31 may in

some way be connected to the observed relative decrease in the incidence of stronger Mg ii

systems with decreasing redshift (e.g., Nestor et al. 2005).

In the past several years there has been speculation that M31 is a galaxy that lies in the

“green valley” (e.g., Mutch et al. 2011, Davidge et al. 2012). The idea is that it exhibits

properties that put it between the red cloud and blue cloud populations that have been
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identified in large galaxy surveys. Such galaxies may be in a stage of transition and their

star formation may nearly cease in less than 5 Gyrs. While this may be the case for M31, we

note that the data we have discussed here should not be taken to offer any clues about this.

For example, our data do not allow us to draw any conclusions about the strength of star

formation or even the column densities of metal-line absorption. This is because the lines

we have identified are likely to be mostly saturated. Thus, the weakness of the metal-line

absorption in M31 most likely indicates that the effective gas velocity spread is low; it may

either be truly low relative to the spectral resolution and/or there may be a small number

of velocity components within the spectral resolution element.

5.4.3 Mg ii Rest Equivalent Width (W λ2796
0 ) versus Impact Parameter (b)

Figure 5.13 is a plot of M31 Mg ii λ2796 rest equivalent width (W λ2796
0 ) detections (or 2σ

upper limits) versus sightline impact parameter (b). The measurement shown for sightline 7,

which has b = 26.9 kpc, was made by fitting a single Gaussian to both absorption components

reported in Table 5.3a, i.e., it is not a simple sum of the results from the two individual

Gaussian fits reported in Table 5.3a. Since the impact parameters of sightlines 9 and 10 are

very similar, they are displaced from each other in the figure for clarity. Note that the upper

limits are 2σ upper limits, while the error bars are the 1σ uncertainties. The four outermost

data points are suggestive of an overall decrease of W λ2796
0 with increasing impact parameter.

Quasar absorption line studies of large samples of absorber-galaxy pairs have shown this to

be true as well (Chen et al. 2010; Rao et al. 2011).

For comparison, Figure 5.14 includes results from the Rao et al. (2011) sample of ab-

sorbing galaxies which have been identified for Mg ii-selected DLAs, subDLAs, and Lyman

limit systems (LLSs). The mean redshift of the Rao et al. sample is z ∼ 0.5, with redshifts

in the range 0.1 . z . 1.0. The identified absorbing galaxies in the Rao et al. sample

also have a range of luminosities, mostly 0.1 . L . 1.0L∗, but there is not a significant

correlation between luminosity and impact parameter. Rao et al. found only a marginal

(1.8σ) correlation between W λ2796
0 and b. The solid black circles in Figure 5.14 are DLAs

and the open circles are subDLAs and LLSs. The data from this current M31 study are in
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red. Sightlines 5 through 10 have averaged integrated 21 cm emission H i column densities in

the subDLA regime, with the exception of the Galactic and M31 blended component along

sightline 10. (See §3.) H i 21 cm emission maps are not available as far out as the four

outermost sightlines, but since the NHI = 1.9× 1018 cm−2 edge of the H i disk of M31 is at

b ≈ 33 kpc (5.1), these sightlines are not expected to have averaged integrated H i column

densities in the DLA or subDLA regime.

Thus, as noted in §5.4.1 and §5.4.2, it is clear that the sightlines passing near M31,

or through its gaseous disk seen in 21 cm emission, do not give rise to the moderate-to-

strong Mg ii absorption lines which are often identified in moderate- to high-redshift quasar

absorption-line surveys. For comparison, all of the Galactic detections reported in Table

5.3a have W λ2796
0 > 0.5 Å, and 4 of the Galactic sightlines have W λ2796

0 ∼ 1 Å (sightline 10

is a blend of Galactic and M31 gas). In the HST Key Project sample of Galactic sightlines

(Savage et al. 2000) the median value is W λ2796
0 = 1.17 Å, and the strongest line has

W λ2796
0 = 2.2 Å.

Of course, our sightlines through M31 are biased sightlines in the context of traditional

absorption line surveys, in that the galaxy was pre-selected in order to study the proper-

ties of its low-ion and high-ion gas. Therefore, for M31 the probability of occurrence of

Mg ii absorption as a function of W λ2796
0 is not properly estimated from the observed in-

cidence of Mg ii absorption in unbiased quasar absorption-line surveys. Instead, however,

this experiment does show that a gas-rich, ∼ 2L∗, spiral galaxy like M31 need not give rise

to moderate-to-strong Mg ii absorption along sightlines which pass through its H i 21 cm

emission disk, or even through a putative extended gaseous halo.

5.4.4 Comparison of 21 cm Emission and Absorption-Line Velocities

The range of velocities that exhibit 21 cm emission for sightlines 5 through 10 are shown

as cyan and orange vertical bars as a function of impact parameter in Figure 5.15. Cyan

bars correspond to 21 cm emission velocities from M31 gas and orange bars represent HVC

velocities. Also plotted are the velocities of the low-ion (red stars) and high-ion (blue trian-

gles) absorption lines from Table 5.4. The Galactic and M31 blended low-ion absorption line
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Figure 5.13: Mg ii λ2796 rest equivalent width, W λ2796
0 , vs. impact parameter, b, for M31

measurements from Table 5.3a. Detections have 1σ error bars and arrows indicate 2σ upper

limits for the non-detections. For sightline 7, which is the data point at 26.9 kpc, a single

Gaussian fit solution to the HVC and M31 components is shown. It has W λ2796
0 = 0.694 ±

0.289 Å. The two points at b ∼ 17.5 kpc have been displaced for clarity. The blended Galactic

and M31 absorption along sightline 10 with W λ2796
0 = 1.096± 0.122 Å has been excluded.
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Figure 5.14: Same as Figure 5.13, but data points from Rao et al. (2011) have been added.

These represent identified galaxy impact parameters for Mg ii systems with H i column den-

sity measurements at z ∼ 0.5. Solid black circles are the DLAs as measured in UV spectra

(Rao, Turnshek, & Nestor 2006) and open black circles are subDLAs and LLSs.
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along sightline 10 is shown as the encircled star. For the two inner disk sightlines (9 and 10

at ≈ 17.5 kpc), it appears that the velocity of the high-ion absorption is better correlated

with the 21 cm emission velocity range. Along sightline 8, the low and high-ion absorption

lie at an outer velocity edge of where 21 cm emission is detected. As noted in §5.3, this

velocity corresponds to the peak in 21 cm emission along this sightline. For sightlines 7 (at

b = 26.9 kpc) and 5 (at b = 31.5 kpc), the low-ion gas again coincides with the peak of 21

cm emission which is near near the edge of the 21 cm profile (see Figures 5.7 and 5.9). Thus,

in nearly all cases, the low ions occur near the edge of the 21 cm profiles (two are near the

low velocity edge and three are near the high velocity edge), and for sightlines 5, 7, and 8,

are coincident with the peak in 21 cm emission.

Given the resolution of the NUV and FUV data (∼ 87 km s−1 at ∼ 2800 Å and ∼ 106

km s−1 at ∼ 1550 Å), one might question if these differences are significant. However, it

is well-known that in data with sufficient signal-to-noise, a Gaussian fit to an absorption

line can be used to determine the centroid location of the line to an accuracy much better

than the line’s FWHM. In order to determine how accurately absorption-line locations can

be determined, we ran 10,000 realizations of lines with equivalent widths drawn from the

data. Figure 5.16 shows the distributions of equivalent widths. Noise was added to the

Gaussian profiles generated with these equivalent widths so that the resulting signal-to-noise

ratios matched the data. Line centroids were then estimated by refitting Gaussian profiles

to the noised-up absorption lines. The resulting distributions of centroid velocities relative

to the input values are shown in Figure 5.17. For both the original as well as the simulated

data, the spectra were rebinned to two pixels per resolution element before measurements

were made. The signal-to-noise ratios of NUV spectra were, in general, higher than in FUV

spectra. Thus, the accuracy with which the line centroids can be measured is higher for the

Mg ii lines. Specifically, the centroid standard deviation of the Mg ii distribution is ∼ 6 km

s−1 compared to ∼ 16 km s−1 for C iv. These uncertainties indicate that the separations in

velocities of the low and high ions are significant towards sightlines 9 and 10 at approximately

the 2σ level.

The 21 cm emission studies of M31 (e.g., §5.2.1) show that for this nearly edge-on galaxy,

the sightline velocities of gas giving rise to 21 cm emission can span a large range (e.g., see
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Table 5.4: Heliocentric velocity offsets of low- and high-ion ab-

sorption linesa

Quasar M31 Milky Way

Low ion High ion Low ion High ion

(km s−1) (km s−1) (km s−1) (km s−1)

1. 0018+3412 · · · · · · −18 −61

2. 0024+3439 · · · · · · −6 · · ·

3. 0030+3700 · · · · · · −21 −53

4. 0031+3727 · · · · · · −33 · · ·

5. 0032+3946 −453 · · · −42 · · ·

6. 0037+3908 −508 · · · −42 · · ·

7. 0040+3915 −513,−389b · · · −38 · · ·

8. 0043+4016 −336 −340 6 42

9. 0043+4234 −234 −191 −73 −1

10. 0046+4220 −195,−40c −152,−35c −40 −35

aThe velocity centroid of the Milky Way absorption system is determined from the Mn ii λ2576 line,

if detected, or from the Mg ii λ2796 line if no Mn ii is present, or from the C ii λ1334 if neither is

present in the spectrum. The velocity centroid of the C iv λ1548 line was determined independent

of the low-ion velocity, and was used to constrain the positions of the high-ionization lines. The

uncertainties in the low- and high-ion velocities are 6 km s−1 and 16 km s−1, respectively.
bThe two measurements are M31 HVC and halo components, respectively. See Figure 5.9.
cThe two measurements are M31 halo and disk components, respectively. The disk component is

blended with the Milky Way line.
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Figure 5.15: Velocities of detected lines in M31 as a function of impact parameter. Cyan

and orange vertical bars represent velocity ranges of 21 cm emission from M31’s disk and

HVCs, respectively. (See the bottom panels of Figures 5.7−5.12 for an indication of the

velocity regimes which contain the most gas.) Red stars are low-ion (Mn ii, Mg ii, or C ii)

line centroids, and blue triangles are high-ion (C iv) line centroids from Table 5.4. The

uncertainty in the velocity measurement is shown as the vertical bar in the upper left corner.

Sightlines 9 and 10 are displaced for clarity. Three distinct velocity ranges are apparent

towards sightline 10; the wide component arises in M31, and is partly blended with Milky

Way gas. The encircled star at −40 km s−1 is the blended Galactic and M31 disk absorption-

line velocity centroid, and the red star at −195 km s−1 is from M31’s halo. (See description

of sightline 10 in §3.) The two narrower orange components originate in M31 HVCs. No

metal lines are detected at these velocities. The two red stars along sightline 7 are the two

components of the Mg ii line shown in Figure 5.9. 21 cm emission is detected only from the

HVC along this sightline but not at the velocity of the Mg ii component at −389 km s−1. We

therefore surmise that this gas resides in the halo and not in the disk of M31. We caution

that the velocities plotted in this figure are not a measurement of M31’s rotation curve since,

except for sightline 10, the inner sightlines, i.e., 5-9, do not lie along the major axis of M31.

See Figure 5.1.
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Figure 5.16: Distribution of rest equivalent widths, Mg ii W λ2796
0 (left) and C iv W λ1548

0

(right), from 10,000 realizations of the data.

Figure 5.17: Distribution of line centroid velocity offsets measured from 10,000 realizations

of the data. Gaussian profiles with rest equivalent widths sampled from measured values

were generated, to which noise was added to match the signal-to-noise ratio of the data.

Centroid velocities of these simulated lines were measured, and the offsets from input values

are shown here. We report the standard deviation of this distribution as the uncertainty in

the centroid velocity measurement, i.e., the Mg ii λ2796 and C iv λ1548 line centroids can

be measured with an accuracy of 6 km s−1 and 16 km s−1, respectively.
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the lower panels in Figures 5.7 - 5.12). Corbelli et al. (2010) fitted a tilted ring model to

M31’s H i 21 cm emission data from 8 to 37 kpc to study the details of its rotation, finding

that M31’s disk warps beyond galactocentric distances of ∼ 25 kpc and that it becomes more

inclined with respect to our sightline. As we have shown above, the Mg ii absorption regions

are almost always at the peak of the 21 cm emission profile, which occurs near the edge of

the 21 cm emission velocity range. Thus, when detected, the low-ion gas appears to trace

the 21 cm gas. Interestingly, neither low- nor high-ion absorption lines are detected at the

21 cm velocity locations of the HVCs along sightline 10 (b = 17.5 kpc). Low-ion absorption

is also not detected at the 21 cm disk velocity location along sightline 6 (b = 30.5 kpc).

However, the observed low-ion absorption along sightline 7 originates in the HVC detected

in 21 cm emission, but at the velocity location of the other absorption component, there is

no detected 21 cm emission. This component, at −389 km s−1, is likely to be M31 halo gas.

Thus, it appears that the sightlines through M31 are passing through very different physical

and kinematic conditions within its ISM.

5.5 CONCLUSIONS

A conventional study relating quasar absorption-lines to the galaxies that cause them begins

with the detection of an intervening absorption-line system in a spectrum followed by imaging

work to identify the galaxy. The experiment with M31 described here is a quasar absorption-

line survey conducted in reverse. We probed ten sightlines with vastly different impact

parameters through a single spiral galaxy with a luminosity of ∼ 2L∗. As summarized in

§5.4.1, we detected some type of absorption from M31 gas in five of the six inner sightlines

(13 < b < 32 kpc), but no absorption in any of the four outer sightlines (57 < b < 112 kpc).

We also reported the first detection of metals in a M31 HVC.

In §4 5.4.3 we compared our M31 results to the findings in the conventional Rao et al.

(2011) survey. Rao et al. found only a marginal anticorrelation between W λ2796
0 and b, and

indeed we find the same qualitative trend in M31, but the values of W λ2796
0 are far smaller

in M31 (Figure 5.14). And while Rao et al. found that there were fewer systems with
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moderate-to-strong W λ2796
0 at large-b (b > 50 kpc), we found none arising in M31. In §5.4.4

we compared the velocity locations of low-ion and high-ion gas in M31 to that of M31’s 21

cm emission and found that the high-ion gas is better aligned with the velocities of observed

21 cm emission along two of three sightlines where it is detected. The velocity of the low-ion

gas is correlated with the peak of 21 cm emission and is often near the edge of the 21 cm

emission velocity range. In one case Mg ii is detected at a velocity location that shows no

21 cm emission.

Broadly, our results indicate that:

1. Despite the fact that M31 is a gas-rich, ∼ 2L∗ spiral galaxy, it produces relatively weak

Mg ii and C iv absorption lines in comparison to those found in moderate-to-high redshift

quasar absorption-line surveys. For Mg ii, this may indicate that M31 is typical of a class

of luminous galaxies that don’t possess gaseous cross sections capable of giving rise to

moderate-strength quasar absorption lines even at impact parameters b . 32 kpc. This

finding might also be related to the observed relative decrease in the incidence of stronger

Mg ii systems with decreasing redshift.

2. M31 appears not to possess an extensive large gaseous cross section at impact parameters

b > 57 kpc that is capable of giving rise to moderate-strength quasar absorption lines

(e.g., with W λ1548
0 > 0.2 Å or W λ2796

0 > 0.3 Å), at least not along the direction of its

major axis.

3. For the relatively weak absorption that we did detect at b . 32 kpc, we found the low-ion

gas to be associated with the peak in the 21 cm emission profile, near one edge of the 21

cm emission velocity range. Two of three sightlines showed high-ion gas to be centrally

located within the 21 cm emission profile, with the third being coincident with an edge.

It is also likely that we have detected low-ion halo gas through two of the sightlines.

Future UV spectroscopy of quasars behind M31 can build on these findings by: (1)

acquiring higher signal-to-noise data to probe down to weaker rest equivalent width values,

(2) acquiring higher resolution data to better study the velocity locations of the gas relative

to 21 cm emission velocities, and/or (3) probing a larger number of sightlines including ones

in M31’s extended halo region.
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It would be interesting if NHI results derived from M31’s 21 cm emission data could be

compared with NHI determinations from Lyman series absorption seen in the UV spectra

of background quasars. One could then get an H i column density measurement averaged

over less than a milli-parsec region in M31, in comparison to the ∼ 50 pc linear spatial scale

offered by the radio observations. This would provide information on the homogeneity and

size scale of H i absorbing regions in M31.
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6.0 SUMMARY, CONCLUSIONS, AND FUTURE WORK

After providing a brief introduction (Chapter 1), we presented quasar absorption-line spec-

troscopy results to study the low-redshift Universe. This thesis consisted of two separate

projects. The first project (Chapters 2-4) dealt with studies of Ca ii absorbers along quasar

sightlines, which probed the redshift regime zabs < 1.34, equivalent to a cosmic lookback

time of 8.5 Gyrs. This was done by identifying the Ca ii λλ 3934,3969 resonance doublet

transition of singly-ionized calcium in a quantitative search of ∼ 95, 000 background SDSS

quasar spectra, and resulted in a catalog of 435 intervening absorbers, which is the largest

ever assembled for Ca ii. The analysis described the absorbers statistical properties, their

chemical and dust properties, and the galaxies that are associated with them. The second

project of this thesis (Chapter 5) presented results on using, for the first time, an unprece-

dented ten quasar sightlines to study the extended gaseous disk, halo, and high velocity

clouds (HVCs) of the Great Spiral Galaxy in Andromeda, M31. This now serves as an im-

portant z = 0 benchmark for the study of intervening quasar absorbers. The results from

each endeavor described in Chapters 2-4 are briefly summarized below. Following this we

present comments on some of the needed future work directly related to this thesis.

6.1 SUMMARY AND CONCLUSIONS

In Chapter 2 we presented the results of a survey for Ca ii λλ3934, 3969 absorption-line

systems culled from ∼ 95, 000 Sloan Digital Sky Survey (SDSS) Data Release 7 and Data

Release 9 quasar spectra. With 435 doublets identified in the catalog, this list is the largest

Ca ii catalog compiled to date, spanning redshifts z < 1.34, which corresponds to the most re-
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cent 8.5 Gyrs of the history of the Universe. We derived statistics on the Ca ii rest equivalent

width distribution and incidence. We found that the λ3934 rest equivalent width (W λ3934
0 )

distribution cannot be described by a single exponential function. A double exponential

function is required to produce a satisfactory description. The function can be written as

a sum of weak and strong components: ∂n/∂W λ3934
0 = (N?

wk/W
?
wk)exp(−W λ3934

0 /W ?
wk) +

(N?
str/W

?
str)exp(−W λ3934

0 /W ?
str). A maximum likelihood fit to the unbinned data indicates:

N?
wk = 0.140±0.029, W ?

wk = 0.165±0.020 Å, N?
str = 0.024±0.020, andW ?

str = 0.427±0.101 Å.

This suggests that the Ca ii absorbers are composed of at least two distinct populations. The

incidence of the overall Ca ii absorber population does not show evidence for evolution in

the standard cosmology. The normalization of the no-evolution curve, i.e., the value of the

Ca ii incidence extrapolated to redshift z = 0, for W λ3934
0 ≥ 0.3 Å, is n0 = 0.017± 0.001. In

comparison to Mg ii surveys, we found that only 3% of Mg ii systems in the SDSS have Ca ii,

confirming that Ca ii systems are rare. We also reported on some preliminary investigations

of the nature of the two populations of Ca ii absorbers, and showed that they can likely be

distinguished using their Mg ii properties.

In Chapter 3 we presented measurements of element abundance ratios and dust in

Ca ii absorbers identified in SDSS DR7+DR9. As described in Chapter 2, we formed a

statistical sample of 435 Ca ii absorbers and postulated that their statistical properties

might be representative of at least two populations of absorbers. Here in Chapter 3, we

showed that if the absorbers are roughly divided into two subsamples with Ca ii rest equiv-

alent widths larger and smaller than W λ3934
0 = 0.7 Å, they are then representative of two

physically different populations. Comparisons of abundance ratios between the two Ca ii

absorber populations indicate that the weaker W λ3934
0 absorbers have properties consistent

with halo-type gas, while the stronger absorbers have properties intermediate between halo-

and disk-type gas. We also showed that, on average, the dust extinction properties of the

overall sample is consistent with a LMC or SMC dust law, and the stronger absorbers are

nearly 6 times more reddened than their weaker counterparts. The absorbed-to-unabsorbed

composite flux ratio at λrest = 2200 Å is R ≈ 0.73 and E(B − V ) ≈ 0.046 for the stronger

Ca ii absorbers (W λ3934
0 ≥ 0.7 Å), and R ≈ 0.95 and E(B − V ) ≈ 0.011 for the weaker Ca ii

absorbers (W λ3934
0 < 0.7 Å).
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In Chapter 4 we used SDSS imaging data to study galaxies associated with Ca ii absorbers

in the redshift interval zabs = [0.02, 0.65]. The Ca ii absorbers were identified in our survey

for Ca ii λλ3934, 3969 absorption-line systems in SDSS DR7+DR9 quasar spectra. First,

we discussed four cases where we identified galaxies with SDSS spectroscopic redshifts that

match that of the Ca ii absorbers. The four galaxies, three of which are star-forming, have

redshifts between 0.04 − 0.24, impact parameters between 5 − 25 kpc, and luminosities

between ∼ 0.1-1 L?r. We then specifically considered the question of whether a sample of

Ca ii absorbers separated above and below Wλ3934
0 = 0.7 Å showed different associated galaxy

properties. This rest equivalent width value was motivated by Ca ii λ3934 absorption-line

properties described in Chapters 2 and 3. This was investigated statistically by stacking

and forming composite images. We then inferred associated galaxy properties by assuming

that any excess galaxy light above the background is due to associated galaxies at z =

zabs. We found that galaxies associated with Ca ii absorbers above and below Wλ3934
0 = 0.7

Å have significantly different statistical properties. The stronger Ca ii absorbers have a

more concentrated and steeper light profile than the weaker Ca ii absorbers, with average

luminosity-weighted impact parameters of ≈ 26 kpc and ≈ 48 kpc, respectively. The results

from our overall study of Ca ii absorbers in the SDSS give rise to a consistent picture, with the

various derived observables (impact parameters, metal abundance ratios, dust) qualitatively

correlated as might be expected. However, the fact that Ca ii absorbers, which are often

known to contain significant columns of neutral and molecular gas, can exist at large impact

parameters from any associated galaxy needs to be theoretically explained. The results

most likely provide important clues about inflows, outflows, and chemical enrichment in the

extended circumgalactic regions surrounding both luminous and under-luminous galaxies.

In Chapter 5, we presented Hubble Space Telescope - Cosmic Origins Spectrograph spectra

of ten quasars located behind M31, selected to investigate the properties of gas associated

with its extended disk, halo, and HVCs. The sightlines have impact parameters ranging

between b = 13 kpc and 112 kpc. No absorption is detected in the four sightlines selected

to sample any extended disk (or halo) gas that might be present in the outer regions of

M31 beyond an impact parameter of b > 57 kpc. Of the six remaining sightlines, all of

which lie at b < 32 kpc and within the NHI = 2 × 1018 cm−2 boundary of the H i disk

175



of M31, we detected low-ionization absorption at M31 velocities along four of them (three

of which include Mg ii absorption). We also detected Mg ii absorption from a HVC. This

HVC sightline does not pass through the 21 cm disk of M31, but we detected additional

Mg ii absorption at velocities distinct from the HVC that presumably arises in the halo.

We found that along sightlines where both are detected, the velocity location of the low-ion

gas tracks the peak in 21 cm emission. High-ionization absorption is detected along the

three inner sightlines, but not along the three outer sightlines for which C iv data exist. As

inferred from high-resolution 21 cm emission line maps of M31’s disk and extended regions,

only one of the sightlines may be capable of harboring a damped Lyα system, i.e., with

NHI ≥ 2 × 1020 cm−2. This sightline has impact parameter b = 17.5 kpc, and we detected

both low- and high-ion absorption lines associated with it. The impact parameters of our

observed sightlines through M31 are similar to the impact parameters of galaxies identified

with Mg ii absorbers at redshifts 0.1 < z < 1.0 in a 2011 study by Rao et al. However, even if

we only count cases where absorption due to M31 is detected, the Mg ii λ2796 rest equivalent

width values are significantly smaller. In comparison, moderate-to-strong Mg ii absorption

from Milky Way gas is detected along all ten sightlines. Thus, this study indicates that M31

does not present itself as an absorbing galaxy which is typical of higher-redshift galaxies

inferred to give rise to moderate-strength quasar absorption lines. M31 also appears not to

possess an extensive large gaseous cross section, at least not along the direction of its major

axis.

6.2 FUTURE WORK

There are a myriad of ways through which we can explore galaxy formation and evolution

using QALs. One direction, which is a natural extension of the work discussed in Chap-

ter 4, involves the individual identification of galaxies associated with Ca ii absorbers. A

proposal to obtain candidate galaxies’ redshifts and ultimately identify the galaxies associ-

ated with Ca ii absorbers was approved for queue observations for the Semester 2014B and

Semester 2015A cycles of the Gemini-North Observatory using the Multi-Object Spectro-
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graph (GMOS-N). For this project, we proposed to observe 15 of the lowest redshift fields,

with zabs < 0.08. At the very low-redshifts, the goal is to identify all galaxies down to SDSS

r-band luminosity of 0.01L? in the vicinity of Ca ii absorbing regions seen in background

quasar spectra. As the presence of Ca ii absorption is likely indicative of cool neutral gas

that may contain molecules and dust, studying the association between cool, metal-rich gas

and galaxies down to very low luminosity will lead to important constraints on the overall

existence and extent of such gas around galaxies, which in turn constrains models of in-

flows, outflows, star formation, feedback, chemical enrichment, and cooling. The Gemini

program is designed to find all galaxies, including very faint dwarfs, within ∼100 kpc of the

quasar sightlines, enabling us to constrain just how far these absorbing gaseous regions are

from galaxies. A common criticism of this type of work at high redshift is that a galaxy

could be hidden under the surrounding glare of a quasar’s PSF; however, due to the low

absorber redshifts, interference from the glare of the quasar will be negligible. In total over

260 galaxy candidates along 15 sightlines could be observed. At present, observations for

the five Semester 2014B program fields are complete. The remaining ten Semester 2015A

fields are currently being observed.

Also in the context of finding galaxies associated with Ca ii absorption, one could extend

the results of this thesis even more by using HST images to study the nature of several Ca ii

absorbers, such as the absorber in quasar SDSS1532+0613 with zabs = 0.05. This absorber

is particularly remarkable because, despite its low redshift and the relative ease of finding

galaxies at this redshift, there is apparently no candidate galaxy within 100 kpc that is

identifiable in the SDSS images. A follow-up observation using the ACS/WFC on the HST

is an appropriate match to the goal of imaging the absorber environment in much greater

detail. The capabilities of the ACS will allow the field to be imaged down to r = 24.8,

corresponding to 0.001L? at zabs = 0.05. Such a project would contribute to an improved

understanding of the environments which give rise to Ca ii absorbers and their properties

in the context of the CGM and the intergalactic medium (IGM). Improved ground-based

images will likely be needed before an allocation of HST time is likely.

Finally, since Ca ii absorbers are quite rare, there is limited information on the neutral

gas column densities for this class of absorber. Hence, it would be worthwhile to conduct
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a future UV study using HST to specifically target these quasars to measure their neutral

hydrogen column densities. Such a study would be important for clarifying the nature of

these rare absorbers and how the strength of Ca ii relates to the neutral hydrogen gas column

density (e.g., to sort out whether a particular Ca ii absorber should be classified as a DLA,

a sub-DLA, or a LLS). Measurements of the neutral hydrogen gas column densities in Ca ii

absorbers will also be crucial for properly characterizing individual values for their dust-to-

gas contents, molecular hydrogen properties, the low-ionization and high-ionization metals

associated with them, and their neutral-gas-phase chemical abundances (not just abundance

ratios).
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APPENDIX

THE Ca ii ABSORBER DATA

Table A1: The Ca ii Absorber Sample

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )

g mag (Å) (Å) (Å) (Å)

J001214.19-095922.9 1.262 0.6901 19.44 0.773 0.137 0.412 0.112

J001444.02-000018.5 1.550 0.0277 17.95 0.326 0.056 0.201 0.055

J002025.22+154054.6 2.023 0.0963 17.65 0.382 0.065 0.167 0.067

J002940.02+010528.5 1.388 0.3732 17.83 0.302 0.059 0.213 0.060

J004130.97+024222.5 2.308 0.7095 18.81 0.720 0.143 0.370 0.120

J004800.50+022514.9 2.160 0.5982 18.96 0.594 0.101 0.297 0.096

J005355.15-000309.3 1.703 1.2503 18.57 0.395 0.072 0.270 0.062

J005408.46-094638.1 2.125 0.4779 18.01 0.427 0.071 0.250 0.070

J010332.30+133233.6 1.663 1.0485 18.96 1.150 0.151 0.887 0.147

J010759.23+092256.7 1.574 0.6048 18.89 1.126 0.125 0.753 0.096

J012327.61+131947.4 2.100 0.2061 19.03 0.715 0.123 0.762 0.163

Continued on next page

179



Table A1 – Continued from previous page

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )

g mag (Å) (Å) (Å) (Å)

J012412.47-010049.7 2.827 1.2942 18.65 0.233 0.037 0.244 0.034

J012412.47-010049.7 2.827 1.1321 18.65 0.243 0.043 0.180 0.054

J014354.48+115913.3 3.143 0.3233 19.40 0.459 0.088 0.359 0.080

J014717.77+125808.7 1.495 1.0388 18.39 0.484 0.065 0.253 0.062

J015144.31+040248.7 0.414 0.3954 18.98 0.578 0.103 0.289 0.091

J015318.19+000911.4 0.838 0.7717 17.83 0.519 0.069 0.375 0.070

J015701.02+135503.2 0.960 0.4837 20.38 1.760 0.184 1.599 0.318

J022015.14+025025.3 2.334 0.1005 19.38 0.698 0.107 0.534 0.111

J022111.33-081308.7 1.840 0.7890 19.08 0.657 0.118 0.366 0.099

J022322.73-005248.5 1.365 0.2992 18.94 0.281 0.051 0.137 0.054

J024736.85+035835.3 1.103 0.6155 19.71 0.472 0.094 0.478 0.080

J025248.15+015303.6 2.645 0.4694 18.63 0.573 0.069 0.263 0.076

J025316.45+010759.8 1.031 0.6317 19.11 0.783 0.138 0.518 0.149

J072810.13+393027.9 2.725 1.0780 19.35 0.451 0.085 0.306 0.086

J072912.26+410551.4 0.103 0.0394 17.25 0.643 0.128 0.645 0.124

J073128.46+290242.0 1.607 0.8228 19.04 1.109 0.134 0.678 0.147

J073306.63+462517.5 0.541 0.7735 18.23 0.428 0.065 0.234 0.085

J073306.63+462517.5 0.541 0.3070 18.23 0.660 0.116 0.347 0.122

J074054.05+332006.5 0.886 0.4912 17.43 0.205 0.041 0.142 0.039

J074356.39+434842.9 2.006 0.6127 18.78 0.818 0.143 0.521 0.113

J074500.47+341731.1 3.688 0.5366 20.64 1.784 0.201 1.009 0.130

J074707.62+305415.0 0.974 0.7651 18.67 0.917 0.093 0.644 0.103

J074816.97+422509.2 1.107 0.5575 17.15 0.314 0.036 0.148 0.030
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J074938.96+513124.6 2.351 0.1769 19.58 1.335 0.200 1.024 0.159

J074942.51+171512.1 2.157 0.0434 19.02 1.618 0.322 1.102 0.345

J075031.39+192754.5 0.425 0.1804 17.83 0.437 0.084 0.447 0.098

J075048.32+471732.5 1.411 0.7725 18.92 0.803 0.105 0.741 0.094

J075131.00+502654.5 2.282 0.5931 18.30 0.275 0.051 0.212 0.045

J075934.16+530505.7 2.255 0.9813 19.12 1.080 0.206 0.648 0.150

J075948.30+510539.0 2.386 1.1679 19.18 0.380 0.073 0.247 0.076

J080000.05+152326.1 0.274 0.2315 19.38 0.943 0.173 0.838 0.161

J080002.25+351243.3 2.255 0.2695 18.98 0.531 0.103 0.481 0.066

J080106.51+415753.4 1.892 0.1041 18.14 0.499 0.095 0.379 0.092

J080623.70+200631.8 1.537 0.5736 19.25 0.960 0.178 0.584 0.130

J080735.97+304743.8 1.259 0.9690 18.98 0.698 0.139 0.612 0.117

J081039.80+345730.8 3.766 0.8214 19.88 0.914 0.072 0.605 0.071

J081053.95+352224.6 1.305 0.8769 18.75 0.509 0.074 0.254 0.078

J081059.27+283658.6 0.329 0.2847 18.70 0.358 0.069 0.253 0.072

J081225.08+501845.6 2.607 0.2628 18.30 0.445 0.088 0.422 0.065

J081336.05+481302.9 0.870 0.4368 18.17 0.619 0.042 0.290 0.047

J081443.66+343141.2 1.995 0.8366 19.17 1.040 0.133 0.543 0.157

J081649.00+391223.9 2.383 0.2200 18.68 0.730 0.139 0.544 0.151

J081739.19+453228.3 1.510 0.7487 18.63 0.751 0.084 0.396 0.069

J081930.35+480825.8 1.999 0.9032 18.17 0.947 0.065 0.434 0.062

J081954.89+423636.3 1.687 0.6537 20.01 0.844 0.127 0.498 0.108

J082039.66+372137.3 4.276 0.8263 21.95 0.755 0.142 0.639 0.165
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J082103.50+400903.3 1.229 0.5989 18.55 0.362 0.066 0.251 0.068

J082153.82+503120.4 2.124 0.1833 17.95 0.296 0.054 0.165 0.054

J082159.58+402236.3 3.770 1.0102 20.33 0.809 0.098 0.520 0.123

J082206.66+344806.0 2.284 0.3441 19.69 0.915 0.178 0.678 0.146

J082226.81+475059.1 1.126 0.1796 17.32 0.163 0.028 0.107 0.029

J082312.13+264415.7 1.857 0.2533 18.59 0.633 0.103 0.383 0.102

J082324.39+513950.2 2.477 1.0498 19.14 0.649 0.088 0.565 0.068

J082341.08+241805.4 1.812 0.6192 17.49 0.886 0.091 0.394 0.069

J082716.26+395742.4 2.827 0.5588 19.13 1.257 0.129 0.586 0.103

J082736.21+270532.6 2.614 0.1615 19.22 0.489 0.086 0.393 0.088

J082803.82+362915.2 2.277 0.1168 19.51 0.818 0.161 0.808 0.139

J082918.09+113341.7 1.257 0.7424 17.45 0.230 0.034 0.134 0.041

J082958.13+150157.2 1.206 0.2860 18.23 0.759 0.091 0.251 0.092

J083036.17+255240.2 1.242 0.4168 19.11 0.900 0.157 0.496 0.147

J083137.24+235352.8 0.430 0.3827 19.28 0.717 0.143 0.535 0.148

J083247.21+150744.6 1.394 0.2038 18.62 0.680 0.133 0.731 0.133

J083553.63+154139.5 1.400 0.5313 18.68 1.064 0.106 0.726 0.117

J083559.15+142716.6 1.766 0.7129 19.41 0.697 0.117 0.466 0.127

J083937.84+223940.6 1.308 0.4466 16.71 0.607 0.079 0.405 0.063

J084106.79+031206.8 1.837 1.3427 16.48 0.225 0.033 0.133 0.029

J084244.84+201215.2 1.229 0.3820 18.22 0.960 0.097 0.358 0.102

J084442.74+385358.8 2.430 1.2514 18.84 0.549 0.080 0.308 0.063

J084650.44+052946.0 1.050 0.7429 17.82 0.435 0.063 0.264 0.053
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J084730.45+103327.2 1.058 0.8048 18.77 0.512 0.067 0.337 0.073

J084804.73+212441.1 1.753 0.7707 19.67 1.214 0.225 0.968 0.165

J085010.26+593118.2 1.718 0.2821 16.82 0.279 0.043 0.160 0.044

J085045.44+563618.7 2.467 0.2253 18.24 0.532 0.071 0.219 0.073

J085135.39+015601.9 3.205 0.9112 20.25 1.467 0.168 0.514 0.165

J085223.93+565725.7 1.547 0.3003 18.64 0.672 0.133 0.504 0.131

J085245.09+010239.4 2.533 0.2019 18.71 0.498 0.089 0.234 0.074

J085313.54+042257.2 2.288 0.4095 19.02 1.271 0.202 0.616 0.161

J085905.54+310522.9 0.742 0.3282 18.10 0.442 0.070 0.202 0.072

J085917.59+105509.2 0.296 0.1830 17.84 0.920 0.108 0.431 0.115

J090130.79+631117.8 1.859 0.8175 18.38 0.812 0.086 0.343 0.088

J090208.63+514352.6 1.972 0.7594 19.33 0.787 0.114 0.310 0.076

J090231.46+172841.2 1.412 0.3101 19.06 0.838 0.157 0.605 0.169

J090334.92+502819.2 3.564 0.6462 21.55 1.623 0.236 0.900 0.284

J090757.59+421823.6 0.809 0.2215 18.30 0.469 0.085 0.306 0.118

J090809.20+041326.2 0.948 0.7585 18.43 1.414 0.092 0.744 0.120

J090902.22+345926.5 0.575 0.4617 17.92 0.492 0.080 0.511 0.116

J091333.65-004250.9 0.426 0.2807 17.67 0.496 0.080 0.317 0.107

J091510.01+475658.8 3.342 0.4519 18.16 0.456 0.089 0.254 0.094

J091727.16+282302.3 1.312 0.9727 19.88 1.938 0.326 1.191 0.308

J091815.92+481135.5 1.270 0.6626 18.53 0.465 0.080 0.318 0.085

J091958.24+111152.3 1.928 0.1818 18.91 1.105 0.212 0.720 0.168

J092525.17+202139.0 0.459 0.4453 18.78 0.858 0.169 0.502 0.149

Continued on next page

183



Table A1 – Continued from previous page

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )

g mag (Å) (Å) (Å) (Å)

J092837.98+602521.0 0.295 0.1538 17.24 0.307 0.048 0.288 0.049

J092908.67+563556.7 0.897 0.2746 17.52 0.359 0.063 0.275 0.064

J093035.07+464408.4 2.034 0.6212 18.69 0.526 0.096 0.325 0.100

J093508.36+271648.6 0.940 0.6559 19.46 0.611 0.099 0.323 0.108

J093556.91+002255.6 3.739 1.2825 19.81 0.900 0.071 0.368 0.073

J093738.03+562838.8 1.800 0.9784 19.76 1.311 0.153 0.847 0.173

J093743.93+004130.6 2.580 0.4099 19.44 0.838 0.115 0.351 0.123

J093945.62+511327.2 1.935 0.6738 17.29 0.421 0.080 0.212 0.065

J094109.66+050114.6 2.601 0.7743 19.48 0.785 0.158 0.415 0.125

J094145.03+303503.6 1.225 0.9378 18.69 1.118 0.095 0.872 0.104

J094158.74+352329.7 2.062 1.2092 17.58 0.310 0.037 0.267 0.053

J094229.86+614652.2 0.643 0.1992 19.46 0.828 0.153 0.488 0.175

J094613.97+133441.2 2.470 0.1152 17.58 0.393 0.058 0.229 0.064

J094636.86+323949.6 1.307 0.7982 17.34 0.600 0.062 0.279 0.067

J094806.59+045811.7 1.738 0.9017 19.00 0.527 0.102 0.268 0.077

J094927.67+314110.0 0.309 0.3055 16.88 1.779 0.056 1.065 0.062

J095031.63+432908.4 1.771 0.7308 17.33 0.820 0.037 0.536 0.043

J095046.94+041451.3 1.864 0.6264 19.02 0.667 0.108 0.443 0.114

J095221.58+235248.3 2.545 0.2369 18.43 0.449 0.088 0.187 0.075

J095352.70+080103.6 1.718 1.0232 17.89 0.470 0.071 0.337 0.084

J095624.74+355604.5 2.804 0.8148 18.32 0.427 0.052 0.200 0.050

J095737.14+255546.9 1.520 0.7811 17.88 0.391 0.049 0.202 0.049

J095808.06+500055.3 1.312 0.8088 18.16 0.493 0.069 0.334 0.098
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J095829.88+182528.1 2.363 0.5045 18.52 0.842 0.125 0.485 0.126

J100000.85+514416.6 1.236 0.9070 18.97 0.896 0.168 0.660 0.216

J100033.85+132410.8 1.355 0.6984 16.85 0.318 0.043 0.194 0.053

J100102.75+500421.9 2.150 1.1488 19.19 1.479 0.287 0.659 0.210

J100125.06+072329.1 3.140 0.4090 18.99 1.401 0.191 0.728 0.175

J100145.14+594008.6 1.186 0.9001 18.36 0.452 0.087 0.225 0.073

J100237.22+270056.5 1.976 0.7536 17.61 0.525 0.055 0.298 0.053

J100523.73+115712.4 1.655 0.8345 18.16 0.777 0.080 0.634 0.103

J100544.53+520903.3 3.140 0.5849 18.33 0.609 0.112 0.341 0.088

J100625.17+302611.7 0.747 0.7157 18.53 0.540 0.095 0.280 0.101

J100629.14+682126.0 1.044 0.4346 18.06 0.632 0.070 0.339 0.058

J100713.68+285348.4 1.045 0.8839 20.09 1.411 0.109 0.931 0.129

J100734.64+155751.8 2.049 0.6707 18.94 0.666 0.111 0.334 0.102

J100937.13+291606.5 2.226 0.2894 17.96 0.380 0.072 0.262 0.077

J100940.65+123010.3 0.611 0.5054 17.98 0.541 0.097 0.382 0.099

J100943.55+052953.8 0.942 0.3862 17.17 0.424 0.031 0.225 0.034

J101030.54+255949.5 0.511 0.2446 16.53 0.386 0.048 0.214 0.038

J101145.10+422617.1 2.258 0.2220 18.68 0.652 0.129 0.440 0.103

J101209.65+484839.4 1.518 0.7767 18.34 0.463 0.080 0.232 0.075

J101252.58+474708.6 2.606 0.8312 18.51 0.554 0.094 0.522 0.110

J101358.73+011928.4 1.995 0.6696 19.29 0.906 0.108 0.344 0.109

J101748.68+222659.2 1.993 0.5362 18.60 0.583 0.091 0.336 0.091

J101847.31+445145.6 1.962 0.4357 17.87 0.332 0.049 0.180 0.055
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J102653.65+251540.4 3.160 0.6503 18.28 0.452 0.060 0.534 0.071

J102928.64+310623.4 1.062 0.4042 17.60 0.435 0.072 0.254 0.078

J102935.19-012138.3 1.058 0.2899 18.68 0.351 0.067 0.208 0.055

J103024.18+561832.8 1.293 1.0001 18.14 0.727 0.147 0.459 0.091

J103410.41+233657.7 2.352 0.7323 18.43 0.517 0.084 0.524 0.098

J103451.42+233435.4 2.654 0.3324 17.12 0.378 0.049 0.326 0.076

J103546.02+110546.4 2.358 0.3328 17.65 0.466 0.074 0.416 0.090

J103708.76-004402.3 2.470 0.3524 19.58 0.673 0.132 0.306 0.082

J104304.88+464953.4 2.895 0.6518 19.83 2.023 0.326 0.885 0.330

J104448.52+160041.1 1.715 0.0652 19.28 0.778 0.149 0.765 0.133

J104547.50+365655.3 2.395 0.5443 18.67 0.567 0.089 0.398 0.089

J104702.22+173410.0 1.779 0.8243 18.38 0.737 0.071 0.462 0.107

J104837.40-002813.6 4.033 0.7924 19.25 0.661 0.132 0.296 0.117

J104923.94+012224.6 1.947 0.4715 17.80 0.582 0.054 0.236 0.057

J105042.27+160056.1 1.267 0.7418 18.40 0.688 0.097 0.443 0.087

J105106.07+100923.6 0.897 0.7643 17.85 0.557 0.080 0.386 0.081

J105640.55+013941.9 2.366 0.3478 19.88 1.318 0.213 0.749 0.185

J105709.91+381859.5 2.974 0.9077 19.75 0.712 0.143 0.719 0.144

J105714.82+440323.8 3.311 0.6561 18.03 0.376 0.063 0.139 0.051

J105853.11+370314.1 1.688 0.0473 18.23 0.619 0.076 0.249 0.060

J105930.93+403956.6 1.208 0.4469 18.16 0.776 0.095 0.484 0.129

J110608.13+592559.0 1.147 0.7776 18.79 1.380 0.134 0.969 0.111

J110729.03+004811.2 1.392 0.7405 17.62 0.347 0.065 0.240 0.055
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J110834.54+411900.9 2.453 0.1014 19.12 1.453 0.151 0.872 0.131

J111109.65+144238.2 3.097 0.6539 19.16 0.940 0.182 0.492 0.195

J112012.12+671115.9 1.493 0.5800 18.88 0.384 0.077 0.179 0.072

J112053.85+623106.3 1.130 1.0723 17.85 0.491 0.068 0.395 0.068

J112602.80+003418.2 1.800 0.7247 18.54 0.363 0.057 0.209 0.063

J112642.95+434949.8 1.296 0.8091 17.95 0.407 0.067 0.351 0.071

J112932.71+020422.8 1.192 0.9649 17.64 0.632 0.051 0.489 0.063

J113148.44+383811.6 2.108 0.5945 19.45 1.359 0.173 0.635 0.190

J113324.63+250249.2 1.566 0.6444 18.57 0.701 0.099 0.415 0.090

J113653.03+482812.9 1.659 0.7383 19.46 0.855 0.123 0.619 0.109

J113709.49+390723.4 1.029 0.7191 18.13 0.571 0.093 0.249 0.077

J113853.35+230739.6 1.495 0.7427 20.08 0.784 0.129 0.562 0.147

J114006.15+013731.8 3.864 0.9327 21.66 1.240 0.212 0.904 0.106

J114107.43+522818.6 1.264 0.5937 17.16 0.384 0.056 0.150 0.044

J114114.62-032623.9 0.755 0.4378 17.72 0.375 0.055 0.190 0.048

J114339.86+073105.7 1.305 0.1891 17.98 0.632 0.098 0.462 0.080

J114502.90+645725.8 1.972 0.6902 19.39 1.049 0.147 0.915 0.160

J114534.27+493559.0 2.987 0.7999 18.88 0.860 0.146 0.488 0.131

J114557.84+080029.0 2.363 0.8695 18.54 0.607 0.084 0.353 0.107

J114658.29+395834.2 1.088 0.9004 18.65 0.381 0.042 0.137 0.045

J114719.89+522923.1 2.000 0.0475 19.11 0.973 0.166 0.601 0.173

J114751.16+205347.6 1.459 0.1806 18.78 1.477 0.266 1.033 0.190

J114856.57+525425.3 1.632 0.8309 16.91 0.400 0.051 0.255 0.042
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J114907.14+004104.3 2.292 0.6663 18.22 0.436 0.073 0.349 0.055

J115244.06+571202.1 1.604 0.8476 18.83 0.516 0.103 0.368 0.094

J115337.56+320046.2 2.418 0.2801 19.19 0.431 0.083 0.322 0.086

J115413.10+340942.0 1.768 0.6768 18.06 0.737 0.057 0.503 0.064

J115718.31+561135.4 1.636 0.8308 18.44 0.549 0.071 0.414 0.075

J115830.96+631004.2 2.925 0.2604 19.58 1.634 0.325 1.175 0.285

J120008.69-015736.2 2.986 0.7414 19.55 1.626 0.186 0.720 0.202

J120200.93+523753.1 3.051 0.6988 19.39 0.905 0.126 0.581 0.161

J120301.01+063441.5 2.178 0.8619 19.74 1.378 0.171 0.960 0.179

J120342.24+102831.8 1.894 0.7461 17.88 0.655 0.122 0.365 0.082

J120554.32+531648.6 1.798 0.6705 19.79 1.576 0.280 1.040 0.258

J120802.65+630328.8 2.579 0.3361 17.48 0.627 0.068 0.483 0.056

J121020.17+225920.1 0.573 0.5605 19.37 1.499 0.235 0.871 0.328

J121320.98+050601.7 2.427 0.3546 19.23 1.150 0.179 0.499 0.176

J121442.30+280329.1 1.973 0.6778 17.80 0.538 0.075 0.334 0.058

J121454.11+120030.1 0.873 0.7195 19.02 0.824 0.126 0.545 0.148

J121604.72+584333.2 1.452 0.7247 18.20 0.528 0.066 0.226 0.063

J121753.03+050030.8 0.632 0.5410 18.52 0.542 0.104 0.444 0.154

J121911.23-004345.5 2.288 0.4484 17.89 0.400 0.060 0.325 0.048

J121930.77+494052.3 2.699 1.0453 17.09 0.295 0.049 0.187 0.068

J122043.87+011122.1 2.627 0.9191 18.46 0.615 0.052 0.448 0.079

J122108.73+184847.9 2.178 0.5962 18.36 0.945 0.165 0.556 0.103

J122151.96+110223.5 1.887 0.2035 19.21 1.132 0.200 0.472 0.185

Continued on next page

188



Table A1 – Continued from previous page

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )
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J122756.34+425632.3 1.311 1.0449 17.47 0.359 0.063 0.244 0.053

J122831.53+041424.8 1.355 0.6116 18.71 0.726 0.108 0.422 0.110

J122930.94+230331.5 1.586 0.9910 19.11 0.843 0.165 0.626 0.165

J123401.23+002437.3 2.147 0.1125 19.49 0.518 0.097 0.519 0.097

J123413.61+292212.9 1.611 0.7066 19.21 0.791 0.093 0.520 0.098

J123600.33+561444.0 2.313 0.2528 18.44 0.822 0.165 0.593 0.131

J124011.15+003203.9 3.028 0.3690 19.81 1.211 0.157 0.516 0.129

J124300.47+204246.8 1.980 0.2769 18.62 1.488 0.126 1.034 0.101

J124347.60+374512.5 2.146 0.7176 18.42 0.552 0.103 0.302 0.088

J124349.61+191537.7 2.311 0.4320 19.08 1.196 0.156 0.652 0.194

J124722.49+342727.0 2.494 1.0379 18.14 0.695 0.129 0.329 0.104

J124753.19-014712.2 3.670 0.7900 20.24 0.776 0.112 0.249 0.082

J124910.19+623847.3 1.457 0.6169 18.74 0.564 0.097 0.245 0.097

J124924.43-011617.6 2.219 0.7554 19.82 0.880 0.156 0.421 0.147

J124949.65+593216.9 2.052 0.7063 18.24 0.429 0.070 0.347 0.072

J125244.53+642103.3 1.399 0.5124 17.58 1.099 0.096 0.696 0.076

J125314.72+380911.3 1.815 0.9896 18.16 0.447 0.078 0.301 0.049

J125348.77+340243.4 1.269 0.8902 19.79 0.494 0.096 0.490 0.092

J125419.07+362750.4 2.985 0.2702 18.50 0.533 0.099 0.446 0.088

J125431.89+210315.9 3.281 0.4338 20.46 2.235 0.386 1.322 0.486

J130028.53+283010.1 0.647 0.2228 16.95 0.429 0.069 0.259 0.061

J130153.78-011410.9 1.718 1.2436 17.92 0.822 0.137 0.318 0.066

J130537.33+283007.0 1.141 0.7279 17.93 0.616 0.059 0.395 0.066
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J130811.95+113609.2 2.098 0.3486 18.38 1.068 0.121 0.815 0.119

J130846.76-005046.8 2.091 0.2107 19.05 0.400 0.077 0.369 0.084

J131058.14+010822.1 1.395 0.8621 18.86 0.874 0.069 0.434 0.059

J131204.43+361814.5 1.429 0.3285 18.10 0.798 0.094 0.527 0.098

J131232.07+392023.8 1.509 0.4014 19.59 0.793 0.150 0.533 0.157

J131446.65+040609.4 2.360 0.9817 18.91 0.903 0.154 0.546 0.131

J131630.46+005125.5 2.401 0.1544 18.23 1.123 0.176 0.835 0.166

J132323.78-002155.2 1.391 0.7162 18.44 0.896 0.050 0.518 0.043

J132657.45+405018.9 2.711 0.6108 17.97 0.723 0.080 0.548 0.078

J132657.46+405018.9 1.727 0.6112 17.97 0.852 0.115 0.386 0.096

J132736.15+152450.7 2.566 0.2771 18.35 0.546 0.093 0.296 0.099

J132752.04+103627.2 1.901 0.5985 19.18 1.910 0.257 1.094 0.218

J132803.43+352152.2 2.350 0.5324 19.51 0.679 0.095 0.439 0.096

J133008.08+145357.0 3.028 0.5243 19.50 1.597 0.251 0.699 0.225

J133317.74+353750.1 0.769 0.0938 19.33 0.351 0.070 0.364 0.073

J133404.15+195930.1 2.464 0.3514 19.30 1.671 0.168 0.759 0.102

J133526.01-010028.1 0.671 0.1731 17.28 0.303 0.061 0.185 0.049

J133550.37+284808.7 1.066 0.8491 17.41 0.478 0.074 0.356 0.075

J133658.54+100808.2 0.356 0.1796 17.82 0.766 0.060 0.287 0.084

J133719.25+074728.4 1.392 0.8594 17.57 0.501 0.083 0.258 0.056

J134246.25-003543.7 0.787 0.5383 18.23 0.596 0.099 0.271 0.079

J134317.34+635444.9 1.139 0.7095 17.56 0.777 0.065 0.470 0.053

J134804.80+072439.6 2.496 0.2425 18.86 0.539 0.105 0.447 0.139
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J135406.12+104220.9 0.318 0.3186 19.05 1.550 0.303 1.123 0.280

J135547.63+071241.1 0.348 0.3019 19.55 0.841 0.157 0.642 0.174

J135639.93-012321.8 2.207 0.9370 20.20 0.957 0.151 0.478 0.123

J135721.40+164213.1 2.246 0.8183 19.70 0.831 0.129 0.678 0.146

J135828.74+005811.4 3.921 0.7067 20.84 1.055 0.198 0.665 0.184

J140056.06+021825.8 0.196 0.1547 19.22 1.825 0.295 1.544 0.319

J140059.27+073339.9 2.346 0.2988 18.93 0.724 0.107 0.303 0.085

J140134.90+533714.2 1.971 0.8280 18.97 0.471 0.093 0.383 0.131

J140215.79+341533.3 2.079 0.5548 18.69 0.815 0.096 0.424 0.094

J140444.19+551637.0 1.588 1.0708 19.42 1.374 0.233 0.501 0.195

J140448.80+144940.6 2.192 0.7532 19.43 0.601 0.116 0.419 0.113

J140602.17+590443.2 2.364 0.6762 18.63 0.673 0.092 0.675 0.092

J140703.55+243137.0 2.144 0.1168 18.56 0.735 0.105 0.521 0.133

J140717.90+170709.5 1.794 0.8369 18.30 1.355 0.101 0.685 0.113

J140744.20+140620.8 2.175 0.2111 19.01 0.962 0.187 0.464 0.179

J140945.23+494119.5 1.230 0.3343 19.28 1.166 0.221 0.984 0.232

J141108.45+285551.7 0.540 0.1350 19.18 1.536 0.303 0.973 0.287

J141615.71+365537.3 1.827 1.2035 18.30 0.696 0.086 0.396 0.063

J141723.73+285522.6 1.808 0.2243 19.42 1.750 0.281 0.709 0.240

J141746.03+162512.2 1.720 0.2415 17.79 0.603 0.110 0.479 0.092

J142119.39+313219.6 2.921 0.7044 20.25 1.371 0.141 1.109 0.130

J142536.12-001702.2 2.679 0.2197 18.83 1.111 0.094 0.515 0.079

J142543.32+540619.3 3.260 0.3791 18.12 0.487 0.086 0.268 0.076
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J143040.83+014939.9 2.113 1.2419 17.81 0.301 0.039 0.130 0.043

J143113.14-005238.4 1.635 0.0292 20.11 1.370 0.219 0.819 0.161

J143218.94+134145.6 1.204 0.3383 19.24 1.148 0.213 0.923 0.213

J143517.71+634259.2 0.528 0.0329 17.93 0.397 0.076 0.185 0.072

J143614.14+105905.6 1.240 0.4775 17.48 0.833 0.121 0.551 0.107

J143712.49+613519.2 1.783 0.5477 18.54 1.142 0.186 0.769 0.141

J143841.95+034110.3 1.737 0.2943 18.50 0.441 0.089 0.233 0.088

J144030.18+160012.3 2.010 0.3174 18.25 0.668 0.086 0.413 0.094

J144047.39+093809.0 1.201 0.9016 18.08 0.497 0.086 0.229 0.081

J144107.90+392329.8 1.351 0.6785 19.13 1.007 0.167 0.672 0.162

J144314.18-024722.1 0.677 0.6503 17.35 0.524 0.057 0.357 0.050

J144335.16+334859.8 3.606 0.5646 19.58 0.583 0.086 0.202 0.067

J144342.21-025430.6 0.775 0.7627 19.61 2.573 0.222 1.114 0.241

J144446.73+591047.4 0.277 0.2333 18.70 0.598 0.114 0.350 0.104

J144617.43+163707.0 1.687 0.7866 19.51 0.697 0.133 0.534 0.136

J145012.13+302551.5 1.219 0.6035 18.22 0.371 0.067 0.177 0.059

J145048.95+191430.6 0.790 0.4772 18.58 0.578 0.095 0.590 0.102

J145306.70+123902.4 0.541 0.4078 18.98 0.994 0.151 0.575 0.162

J145322.45+053448.4 2.207 0.7389 19.28 0.439 0.085 0.286 0.086

J145943.07+135758.3 0.800 0.0624 18.85 1.305 0.222 0.602 0.215

J150917.22+341026.2 1.936 0.8020 18.69 0.489 0.090 0.428 0.069

J151144.82+184511.0 1.535 0.7776 19.14 0.644 0.110 0.524 0.110

J151247.48+573843.5 2.125 1.0444 19.26 1.040 0.182 0.692 0.195
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J151424.94+370413.5 1.061 0.5106 18.65 0.715 0.143 0.440 0.118

J151507.84+612411.9 2.181 0.5216 17.88 0.369 0.069 0.233 0.089

J151617.79+265525.0 3.107 0.9429 21.88 1.542 0.109 0.839 0.118

J151958.12+502919.2 2.095 0.5193 19.07 1.123 0.205 0.669 0.194

J152046.36+610511.3 2.176 0.4234 19.21 1.192 0.223 1.191 0.186

J152340.18+094651.7 1.432 0.5139 18.31 0.876 0.133 0.536 0.103

J152531.76+151238.2 1.492 0.2757 18.35 0.473 0.080 0.406 0.081

J152552.40+111706.7 2.039 0.6878 18.37 0.497 0.092 0.272 0.093

J152607.22+292903.6 2.734 1.2192 19.41 0.490 0.090 0.439 0.088

J152609.38+071829.3 2.417 1.1321 19.64 1.148 0.187 1.234 0.227

J152652.76+405126.6 3.717 0.6507 19.90 1.394 0.222 1.096 0.159

J152726.97+263637.5 3.481 0.7200 20.04 0.946 0.145 0.591 0.177

J152740.66+063218.5 2.924 0.4454 19.56 0.606 0.114 0.283 0.105

J152800.29+535223.8 1.391 0.3160 17.47 0.541 0.056 0.325 0.080

J152918.02+324841.8 1.650 0.0636 17.75 0.238 0.046 0.259 0.048

J152934.79+275416.3 1.374 0.2399 18.85 0.878 0.134 0.453 0.140

J152941.57+254815.9 3.646 0.5403 20.48 0.466 0.082 0.351 0.081

J153043.23+210743.2 1.338 0.3594 18.36 0.493 0.068 0.321 0.055

J153043.23+210743.3 1.337 0.3595 18.36 0.510 0.087 0.385 0.087

J153209.51+061356.1 0.842 0.0533 17.37 0.506 0.102 0.262 0.081

J153338.11+023320.9 0.870 0.8425 17.91 0.425 0.078 0.301 0.075

J153400.58+025615.8 0.430 0.3986 17.50 0.333 0.064 0.251 0.067

J153503.43+311832.1 1.511 0.9042 18.12 0.524 0.045 0.387 0.044
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J153717.86+432752.9 2.186 0.3678 17.97 0.375 0.075 0.263 0.074

J153731.01+335836.7 1.023 0.9136 17.57 0.451 0.070 0.412 0.079

J154052.05-001822.5 1.862 0.2004 19.66 1.683 0.290 1.392 0.387

J154207.66+191525.6 2.505 0.6074 18.84 0.357 0.053 0.228 0.055

J154317.71+302921.3 1.053 0.8049 19.03 0.480 0.093 0.415 0.100

J154348.98+232910.2 2.383 0.0930 19.27 0.841 0.144 0.480 0.120

J154550.38+554346.2 2.155 0.5443 17.71 0.471 0.055 0.523 0.056

J154836.39+174941.9 1.170 0.6933 18.43 0.661 0.125 0.446 0.104

J154929.89+113743.3 0.681 0.3528 19.35 0.520 0.103 0.558 0.100

J155121.13+071357.7 0.675 0.3290 16.85 0.197 0.035 0.147 0.036

J155328.49+095102.0 0.192 0.1577 16.60 0.212 0.036 0.130 0.036

J155331.55+122039.1 2.162 1.0450 18.53 0.578 0.073 0.204 0.062

J155412.48+144533.0 0.780 0.3667 17.49 0.427 0.050 0.315 0.052

J155434.56+200845.8 2.048 0.5661 19.43 1.430 0.243 0.612 0.183

J155453.30+245622.5 1.029 0.5996 20.31 0.618 0.100 0.512 0.091

J155744.01+330231.1 3.146 0.4422 18.61 0.524 0.087 0.489 0.083

J155752.31+342140.0 1.265 0.1140 18.56 0.598 0.102 0.628 0.168

J155924.08+094431.3 3.030 0.4408 19.70 1.022 0.163 0.536 0.146

J155948.17+065727.6 2.895 0.5325 18.98 0.909 0.169 0.427 0.132

J160202.39+401301.3 2.096 0.8452 18.38 0.310 0.048 0.233 0.050

J160212.46+334954.0 1.966 0.8396 19.24 0.707 0.133 0.261 0.091

J160224.86+024220.5 1.401 0.5713 18.23 0.395 0.065 0.224 0.080

J160335.78+453656.3 3.031 0.6119 19.79 1.198 0.193 0.795 0.224
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J160343.18+244836.4 2.263 0.6564 20.37 1.170 0.157 0.575 0.138

J160500.70+203511.3 1.362 0.6461 19.30 1.390 0.112 0.844 0.089

J160637.57+173516.2 2.313 0.5947 18.50 0.286 0.050 0.265 0.054

J160843.90+071508.6 2.864 1.3206 16.78 0.308 0.034 0.209 0.034

J160932.94+462613.3 2.372 0.9655 18.76 0.985 0.161 0.381 0.153

J160943.67+533041.0 1.329 0.7940 18.99 0.884 0.076 0.527 0.077

J161018.39+042631.6 2.612 0.3626 18.55 0.293 0.054 0.225 0.055

J161033.12+202420.1 0.627 0.1585 17.59 0.536 0.067 0.358 0.071

J161206.04+320516.3 1.839 1.1425 18.84 0.749 0.140 0.318 0.113

J161644.75+211907.4 1.322 0.6207 19.57 1.041 0.191 0.527 0.188

J161649.42+415416.3 0.440 0.3212 16.95 0.397 0.067 0.226 0.054

J161808.79+192325.7 1.496 0.5841 18.87 0.640 0.120 0.395 0.097

J161833.54+335826.0 2.951 0.4923 19.18 0.721 0.141 0.369 0.136

J161907.54+211114.3 2.423 0.3256 18.29 0.598 0.116 0.330 0.107

J161925.53+513029.6 1.301 0.6497 18.31 0.664 0.074 0.290 0.088

J161953.10+071621.0 1.846 0.1105 20.20 1.439 0.241 0.742 0.128

J162044.77+125629.8 1.339 0.3949 18.05 0.232 0.047 0.175 0.048

J162537.74+352022.3 0.662 0.5259 19.17 0.971 0.133 0.514 0.121

J162548.79+264658.7 2.522 0.1432 17.32 0.535 0.083 0.332 0.088

J162558.00+313911.3 1.207 0.9056 18.90 0.813 0.156 0.332 0.130

J162904.96+361512.1 0.363 0.2583 17.74 0.533 0.082 0.452 0.069

J162933.60+253200.6 1.339 0.6545 19.65 0.897 0.171 0.522 0.146

J162957.80+423051.4 1.187 0.3783 19.26 0.734 0.146 0.498 0.148
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J163101.91+141037.3 2.355 0.2440 19.31 0.521 0.077 0.299 0.079

J163513.26+145938.3 1.643 0.6538 19.20 0.521 0.103 0.359 0.109

J163513.47+132305.8 2.857 0.6867 18.96 0.843 0.114 0.367 0.111

J163556.84+110907.7 2.172 0.6684 19.53 0.858 0.171 0.369 0.145

J163638.18+211255.5 1.803 0.8001 19.42 0.432 0.058 0.308 0.061

J163923.07+161041.8 2.511 0.3622 18.98 0.577 0.073 0.352 0.068

J164042.18+175334.2 2.744 0.2154 19.75 0.667 0.111 0.492 0.118

J164105.35+403651.7 2.444 0.2446 18.69 0.608 0.114 0.332 0.117

J164447.09+171154.3 2.970 0.9240 18.96 0.897 0.087 0.610 0.148

J165118.61+400124.8 0.357 0.3356 17.22 0.244 0.035 0.126 0.042

J165621.66+415524.4 2.901 0.3296 18.92 1.321 0.171 0.913 0.182

J165743.05+221149.1 1.779 0.2659 18.38 1.642 0.221 1.546 0.158

J165749.66+345149.0 1.643 0.7694 19.03 0.881 0.140 0.485 0.109

J170428.65+242917.9 1.788 1.3129 16.94 0.316 0.059 0.190 0.057

J170700.46+591041.2 1.834 0.5184 18.71 0.760 0.145 0.490 0.139

J171712.86+640344.7 2.101 0.1799 19.03 1.321 0.253 0.710 0.193

J172739.03+530229.1 1.444 0.9452 18.44 0.590 0.094 0.422 0.112

J173257.40+325121.6 3.236 0.6950 18.60 0.469 0.089 0.442 0.073

J173559.98+573106.0 1.827 0.8725 18.87 0.995 0.163 0.723 0.140

J205455.16-052511.5 0.831 0.7016 20.43 1.152 0.159 1.165 0.166

J205601.68-001613.2 0.521 0.4687 18.05 0.863 0.164 0.591 0.167

J210757.66-062010.6 1.899 0.2321 17.48 0.747 0.080 0.503 0.063

J210803.84+010217.2 2.441 0.3187 19.74 0.624 0.115 0.487 0.101

Continued on next page

196



Table A1 – Continued from previous page

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )
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J211443.95-005532.8 3.442 0.5066 19.44 1.742 0.085 1.086 0.097

J212110.54+035501.4 2.680 0.3087 19.72 0.673 0.082 0.389 0.091

J212258.85+034309.5 3.250 0.7794 19.77 0.749 0.115 0.499 0.120

J212727.19+082724.6 0.745 0.4393 18.87 0.535 0.104 0.456 0.089

J212916.60+003756.7 2.955 0.2918 17.89 0.200 0.040 0.163 0.039

J213235.95-001350.6 2.506 0.9886 18.96 0.803 0.146 0.542 0.126

J213408.11+043611.4 2.215 1.1182 18.67 0.804 0.085 0.426 0.089

J213613.74+005825.9 0.528 0.3257 19.65 0.488 0.063 0.197 0.065

J213617.71+084007.6 2.266 0.8685 18.79 0.893 0.149 0.539 0.118

J213623.52-003410.9 2.224 1.2213 18.40 1.616 0.248 0.536 0.172

J214037.59+100351.1 2.227 1.0724 18.47 0.430 0.060 0.298 0.054

J214704.08-002600.1 1.803 0.7409 20.13 1.141 0.176 0.851 0.158

J214730.00+104830.8 2.107 0.6995 18.47 0.549 0.081 0.318 0.084

J220249.76-003441.4 2.565 0.8341 20.94 1.772 0.233 1.329 0.384

J221608.88-005708.5 2.400 1.3428 17.61 0.378 0.056 0.255 0.061

J221945.06+003708.1 3.531 0.4809 20.01 1.900 0.139 1.228 0.150

J222733.20+003449.0 0.307 0.2419 18.83 0.815 0.157 0.432 0.152

J223848.23+133926.8 2.223 0.0655 19.27 1.122 0.206 0.529 0.199

J224511.27+130904.0 1.547 0.8612 19.05 1.279 0.162 0.849 0.231

J224728.80-004417.5 1.140 0.4697 18.39 0.392 0.047 0.163 0.050

J225800.02-084143.7 1.493 0.7311 17.69 0.306 0.057 0.278 0.058

J225913.74-084419.6 1.291 0.5295 18.61 0.697 0.137 0.488 0.110

J230048.95+023320.6 2.346 0.5546 18.82 0.487 0.092 0.282 0.074

Continued on next page

197



Table A1 – Continued from previous page

Quasar SDSS zem zabs W λ3934
0 σ(W λ3934

0 ) W λ3969
0 σ(W λ3969

0 )

g mag (Å) (Å) (Å) (Å)

J230951.18-094016.3 1.574 0.6780 19.60 0.776 0.124 0.558 0.112

J231930.38+004330.9 0.969 0.7517 18.22 0.746 0.050 0.570 0.051

J232820.38+002238.1 1.307 0.6519 17.83 0.212 0.036 0.142 0.037

J233112.65-100758.0 1.322 0.3584 16.97 0.338 0.055 0.136 0.045

J233212.46-093301.9 1.425 0.2446 18.94 0.800 0.154 0.423 0.136

J233728.39+004533.7 2.722 0.3159 19.63 0.888 0.150 0.723 0.148

J233917.86-002943.5 1.344 0.9667 18.80 0.475 0.095 0.439 0.111

J234002.76-005242.1 2.254 0.2827 18.79 0.866 0.084 0.447 0.140

J234009.92-090921.3 0.519 0.0368 18.82 1.591 0.298 0.810 0.244

J234340.34+011254.4 1.954 0.1585 19.01 1.288 0.243 0.814 0.226
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Kent, S. J. Kleinman, G. R. Knapp, A. Y. Kniazev, R. G. Kron, J. Krzesinski,
N. Kuropatkin, D. Q. Lamb, H. Lampeitl, B. C. Lee, R. F. Leger, H. Lin, D. C.
Long, J. Loveday, R. H. Lupton, B. Margon, D. Mart́ınez-Delgado, R. Mandel-
baum, T. Matsubara, P. M. McGehee, T. A. McKay, A. Meiksin, J. A. Munn,
R. Nakajima, T. Nash, E. H. Neilsen, Jr., H. J. Newberg, P. R. Newman, R. C.
Nichol, T. Nicinski, M. Nieto-Santisteban, A. Nitta, W. O’Mullane, S. Okamura,
R. Owen, N. Padmanabhan, G. Pauls, J. Peoples, Jr., J. R. Pier, A. C. Pope,
D. Pourbaix, T. R. Quinn, G. T. Richards, M. W. Richmond, C. M. Rockosi,
D. J. Schlegel, D. P. Schneider, J. Schroeder, R. Scranton, U. Seljak, E. Shel-
don, K. Shimasaku, J. A. Smith, V. Smolčić, S. A. Snedden, C. Stoughton, M. A.
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[SBD+07] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hin-
shaw, N. Jarosik, E. Komatsu, L. Page, H. V. Peiris, L. Verde, M. Halpern, R. S.
Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland,
E. Wollack, and E. L. Wright. Three-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Implications for Cosmology. ApJS, 170:377–408,
June 2007.

[SBE+07] D. J. Schlegel, M. Blanton, D. Eisenstein, B. Gillespie, J. Gunn, P. Harding,
P. McDonald, R. Nichol, N. Padmanabhan, W. Percival, G. Richards, C. Rock-
osi, N. Roe, N. Ross, D. Schneider, M. Strauss, D. Weinberg, and M. White.
SDSS-III: The Baryon Oscillation Spectroscopic Survey (BOSS). In American
Astronomical Society Meeting Abstracts, volume 39 of Bulletin of the American
Astronomical Society, page 132.29, December 2007.

[SCS+13] E. N. Seyffert, K. L. Cooksey, R. A. Simcoe, J. M. O’Meara, M. M. Kao, and
J. X. Prochaska. Precious Metals in SDSS Quasar Spectra. II. Tracking the
Evolution of Strong, 0.4 < z < 2.3 Mg II Absorbers with Thousands of Systems.
ApJ, 779:161, December 2013.

[SDM+97] C. C. Steidel, M. Dickinson, D. M. Meyer, K. L. Adelberger, and K. R. Sembach.
Quasar Absorbing Galaxies at z <˜ 1: Deep Imaging and Spectroscopy in the
Field of 3C 336. ApJ, 480:568–588, May 1997.

[SDP94] C. C. Steidel, M. Dickinson, and S. E. Persson. Field galaxy evolution since
Z approximately 1 from a sample of QSO absorption-selected galaxies. ApJ,
437:L75–L78, December 1994.

[SGU+13] S. A. Smee, J. E. Gunn, A. Uomoto, N. Roe, D. Schlegel, C. M. Rockosi, M. A.
Carr, F. Leger, K. S. Dawson, M. D. Olmstead, J. Brinkmann, R. Owen, R. H.
Barkhouser, K. Honscheid, P. Harding, D. Long, R. H. Lupton, C. Loomis,
L. Anderson, J. Annis, M. Bernardi, V. Bhardwaj, D. Bizyaev, A. S. Bolton,
H. Brewington, J. W. Briggs, S. Burles, J. G. Burns, F. J. Castander, A. Con-
nolly, J. R. A. Davenport, G. Ebelke, H. Epps, P. D. Feldman, S. D. Friedman,
J. Frieman, T. Heckman, C. L. Hull, G. R. Knapp, D. M. Lawrence, J. Loveday,
E. J. Mannery, E. Malanushenko, V. Malanushenko, A. J. Merrelli, D. Muna,
P. R. Newman, R. C. Nichol, D. Oravetz, K. Pan, A. C. Pope, P. G. Ricketts,

211



A. Shelden, D. Sandford, W. Siegmund, A. Simmons, D. S. Smith, S. Snedden,
D. P. Schneider, M. SubbaRao, C. Tremonti, P. Waddell, and D. G. York. The
Multi-object, Fiber-fed Spectrographs for the Sloan Digital Sky Survey and the
Baryon Oscillation Spectroscopic Survey. AJ, 146:32, August 2013.

[SKB+11] K. R. Stewart, T. Kaufmann, J. S. Bullock, E. J. Barton, A. H. Maller, J. Die-
mand, and J. Wadsley. Observing the End of Cold Flow Accretion Using Halo
Absorption Systems. ApJ, 735:L1, July 2011.

[SKD+14] J. T. Stocke, B. A. Keeney, C. W. Danforth, D. Syphers, H. Yamamoto, J. M.
Shull, J. C. Green, C. Froning, B. D. Savage, B. Wakker, T.-S. Kim, E. V.
Ryan-Weber, and G. G. Kacprzak. Absorption-line Detections of 105-106 K Gas
in Spiral-rich Groups of Galaxies. ApJ, 791:128, August 2014.

[SKW+14] B. D. Savage, T.-S. Kim, B. P. Wakker, B. Keeney, J. M. Shull, J. T. Stocke,
and J. C. Green. The Properties of Low Redshift Intergalactic O VI Absorbers
Determined from High S/N Observations of 14 QSOs with the Cosmic Origins
Spectrograph. ApJS, 212:8, May 2014.

[SN12] M. Sharma and B. B. Nath. The Roles of Radiation and Ram Pressure in Driving
Galactic Winds. ApJ, 750:55, May 2012.

[SPL+05] R. Srianand, P. Petitjean, C. Ledoux, G. Ferland, and G. Shaw. The VLT-
UVES survey for molecular hydrogen in high-redshift damped Lyman α systems:
physical conditions in the neutral gas. MNRAS, 362:549–568, September 2005.

[SRH+10] D. P. Schneider, G. T. Richards, P. B. Hall, M. A. Strauss, S. F. Anderson,
T. A. Boroson, N. P. Ross, Y. Shen, W. N. Brandt, X. Fan, N. Inada, S. Jester,
G. R. Knapp, C. M. Krawczyk, A. R. Thakar, D. E. Vanden Berk, W. Voges,
B. Yanny, D. G. York, N. A. Bahcall, D. Bizyaev, M. R. Blanton, H. Brewing-
ton, J. Brinkmann, D. Eisenstein, J. A. Frieman, M. Fukugita, J. Gray, J. E.
Gunn, P. Hibon, Ž. Ivezić, S. M. Kent, R. G. Kron, M. G. Lee, R. H. Lupton,
E. Malanushenko, V. Malanushenko, D. Oravetz, K. Pan, J. R. Pier, T. N. Price,
III, D. H. Saxe, D. J. Schlegel, A. Simmons, S. A. Snedden, M. U. SubbaRao,
A. S. Szalay, and D. H. Weinberg. The Sloan Digital Sky Survey Quasar Catalog.
V. Seventh Data Release. AJ, 139:2360, June 2010.

[SRS+11] Y. Shen, G. T. Richards, M. A. Strauss, P. B. Hall, D. P. Schneider, S. Snedden,
D. Bizyaev, H. Brewington, V. Malanushenko, E. Malanushenko, D. Oravetz,
K. Pan, and A. Simmons. A Catalog of Quasar Properties from Sloan Digital
Sky Survey Data Release 7. ApJS, 194:45, June 2011.

[SS74] R. S. Siluk and J. Silk. On the velocity dependence of the interstellar Na I/Ca
II ratio. ApJ, 192:51–57, August 1974.

[SS96] B. D. Savage and K. R. Sembach. Interstellar Abundances from Absorption-Line
Observations with the Hubble Space Telescope. ARAA, 34:279–330, 1996.

212



[Ste90] C. C. Steidel. A high-redshift extension of the survey for C IV absorption in the
spectra of QSOs - The redshift evolution of the heavy element absorbers. ApJS,
72:1–39, January 1990.

[Ste93] C. C. Steidel. The Properties of Absorption-Line Selected High-Redshift Galax-
ies. In J. M. Shull and H. A. Thronson, editors, The Environment and Evolution
of Galaxies, volume 188 of Astrophysics and Space Science Library, page 263,
1993.

[STR14] G. M. Sardane, D. A. Turnshek, and S. M. Rao. Ca II absorbers in the Sloan
Digital Sky Survey: statistics. MNRAS, 444:1747–1758, October 2014.

[STR15] G. M. Sardane, D. A. Turnshek, and S. M. Rao. Ca II absorbers in the Sloan
Digital Sky Survey: element abundances and dust. MNRAS, 452:3192–3208,
September 2015.

[SWJ+00] B. D. Savage, B. Wakker, B. T. Jannuzi, J. N. Bahcall, J. Bergeron, A. Bok-
senberg, G. F. Hartig, S. Kirhakos, E. M. Murphy, W. L. W. Sargent, D. P.
Schneider, D. Turnshek, and A. M. Wolfe. The Hubble Space Telescope Quasar
Absorption Line Key Project. XV. Milky Way Absorption Lines. ApJS, 129:563–
610, August 2000.

[TBG+12] E. J. Tollerud, R. L. Beaton, M. C. Geha, J. S. Bullock, P. Guhathakurta, J. S.
Kalirai, S. R. Majewski, E. N. Kirby, K. M. Gilbert, B. Yniguez, R. J. Patterson,
J. C. Ostheimer, J. Cooke, C. E. Dorman, A. Choudhury, and M. C. Cooper. The
SPLASH Survey: Spectroscopy of 15 M31 Dwarf Spheroidal Satellite Galaxies.
ApJ, 752:45, June 2012.

[TBW+04] D. A. Thilker, R. Braun, R. A. M. Walterbos, E. Corbelli, F. J. Lockman,
E. Murphy, and R. Maddalena. On the Continuing Formation of the Andromeda
Galaxy: Detection of H I Clouds in the M31 Halo. ApJ, 601:L39–L42, January
2004.

[TC08] C. Thom and H.-W. Chen. A STIS Survey for O VI Absorption Systems at
0.12 < z <˜ 0.5. I. The Statistical Properties of Ionized Gas. ApJ, 683:22–32,
August 2008.

[TSB+08] T. M. Tripp, K. R. Sembach, D. V. Bowen, B. D. Savage, E. B. Jenkins,
N. Lehner, and P. Richter. A High-Resolution Survey of Low-Redshift QSO
Absorption Lines: Statistics and Physical Conditions of O VI Absorbers. ApJS,
177:39–102, July 2008.

[TTT+12] A. Tamm, E. Tempel, P. Tenjes, O. Tihhonova, and T. Tuvikene. Stellar mass
map and dark matter distribution in M 31. A&A, 546:A4, October 2012.

[TTW+11] J. Tumlinson, C. Thom, J. K. Werk, J. X. Prochaska, T. M. Tripp, D. H. Wein-
berg, M. S. Peeples, J. M. O’Meara, B. D. Oppenheimer, J. D. Meiring, N. S.

213
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G. S. Hennessy, Ž. Ivezić, S. Kent, P. Z. Kunszt, D. Q. Lamb, R. F. Leger,
D. C. Long, J. Loveday, R. H. Lupton, A. Meiksin, A. Merelli, J. A. Munn,
H. J. Newberg, M. Newcomb, R. C. Nichol, R. Owen, J. R. Pier, A. Pope,
C. M. Rockosi, D. J. Schlegel, W. A. Siegmund, S. Smee, Y. Snir, C. Stoughton,
C. Stubbs, M. SubbaRao, A. S. Szalay, G. P. Szokoly, C. Tremonti, A. Uomoto,
P. Waddell, B. Yanny, and W. Zheng. Composite Quasar Spectra from the Sloan
Digital Sky Survey. AJ, 122:549–564, August 2001.

[WBT05] T. Westmeier, R. Braun, and D. Thilker. Westerbork H I observations of high-
velocity clouds near M 31 and M 33. A&A, 436:101–115, June 2005.

214



[WC10] D. E. Welty and P. A. Crowther. Interstellar TiII in the Milky Way and Mag-
ellanic Clouds. MNRAS, 404:1321–1348, May 2010.

[WH05] V. Wild and P. C. Hewett. Evidence for dust reddening in damped Lyα absorbers
identified through CaII (H&K) absorption. MNRAS, 361:L30–L34, July 2005.

[WHL+99] D. E. Welty, L. M. Hobbs, J. T. Lauroesch, D. C. Morton, L. Spitzer, and D. G.
York. The Diffuse Interstellar Clouds toward 23 Orionis. ApJS, 124:465–501,
October 1999.

[WHP06] V. Wild, P. C. Hewett, and M. Pettini. Selecting damped Lyman α systems
through CaII absorption - I. Dust depletions and reddening at z˜ 1. MNRAS,
367:211–230, March 2006.

[WHP07] V. Wild, P. C. Hewett, and M. Pettini. The star formation rate of CaII and
damped Lyman α absorbers at 0.4 < z < 1.3. MNRAS, 374:292–304, January
2007.

[WJL+98] R. J. Weymann, B. T. Jannuzi, L. Lu, J. N. Bahcall, J. Bergeron, A. Boksenberg,
G. F. Hartig, S. Kirhakos, W. L. W. Sargent, B. D. Savage, D. P. Schneider, D. A.
Turnshek, and A. M. Wolfe. The Hubble Space Telescope Quasar Absorption
Line Key Project. XIV. The Evolution of Lyα Absorption Lines in the Redshift
Interval z = 0-1.5. ApJ, 506:1–18, October 1998.

[WLB+01] D. E. Welty, J. T. Lauroesch, J. C. Blades, L. M. Hobbs, and D. G. York. Unusual
Depletions toward the SMC Star SK 155-Differences in Dust Composition in the
SMC Interstellar Medium? ApJL, 554:L75–L79, June 2001.

[WMH96] D. E. Welty, D. C. Morton, and L. M. Hobbs. A High-Resolution Survey of
Interstellar Ca II Absorption. ApJS, 106:533, October 1996.

[WP00] A. M. Wolfe and J. X. Prochaska. Ionized Gas in Damped Lyα Protogalax-
ies. I. Model-independent Inferences from Kinematic Data. ApJ, 545:591–602,
December 2000.

[WPP+85] K. A. West, M. Pettini, M. V. Penston, J. C. Blades, and D. C. Morton. The
interstellar spectrum of the bright Seyfert galaxy NGC 3783 - Evidence for an
extragalactic origin of high-velocity clouds. MNRAS, 215:481–497, August 1985.

[WPT+14] J. K. Werk, J. X. Prochaska, J. Tumlinson, M. S. Peeples, T. M. Tripp, A. J.
Fox, N. Lehner, C. Thom, J. M. O’Meara, A. B. Ford, R. Bordoloi, N. Katz,
N. Tejos, B. D. Oppenheimer, R. Davé, and D. H. Weinberg. The COS-Halos
Survey: Physical Conditions and Baryonic Mass in the Low-Redshift Circum-
galactic Medium. ArXiv e-prints, March 2014.

215



[WTSC86] A. M. Wolfe, D. A. Turnshek, H. E. Smith, and R. D. Cohen. Damped Lyman-
alpha absorption by disk galaxies with large redshifts. I - The Lick survey. ApJS,
61:249–304, June 1986.

[YAA+00] D. G. York, J. Adelman, J. E. Anderson, Jr., S. F. Anderson, J. Annis, N. A.
Bahcall, J. A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W. N. Boroski,
S. Bracker, C. Briegel, J. W. Briggs, J. Brinkmann, R. Brunner, S. Burles,
L. Carey, M. A. Carr, F. J. Castander, B. Chen, P. L. Colestock, A. J. Connolly,
J. H. Crocker, I. Csabai, P. C. Czarapata, J. E. Davis, M. Doi, T. Dombeck,
D. Eisenstein, N. Ellman, B. R. Elms, M. L. Evans, X. Fan, G. R. Federwitz,
L. Fiscelli, S. Friedman, J. A. Frieman, M. Fukugita, B. Gillespie, J. E. Gunn,
V. K. Gurbani, E. de Haas, M. Haldeman, F. H. Harris, J. Hayes, T. M. Heck-
man, G. S. Hennessy, R. B. Hindsley, S. Holm, D. J. Holmgren, C.-h. Huang,
C. Hull, D. Husby, S.-I. Ichikawa, T. Ichikawa, Ž. Ivezić, S. Kent, R. S. J. Kim,
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