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ABSTRACT 

Motivation: Dental caries (cavities) constitutes as a significant public health problem that begins 

in early childhood and that is steadily increasing in the US. It remains the most common chronic 

childhood disease, five times more common than asthma and four times more common than 

childhood obesity. Untreated caries disproportionately affects low socioeconomic populations 

and some racial/ethnic minority groups. Furthermore, dental caries is a multifactorial disease that 

involves many interacting variables to promote its development. Unlike other diseases, dental 

caries is highly preventable. However, there are still some individuals who seem to be more 

susceptible to caries, and those who appear to be extremely resistant, thus implying a genetic 

component. Therefore, we investigated a subset of  genes that have some biologically plausible 

role in oral health for evidence of association with dental caries experience in 13 race- and age-

stratified samples from six independent studies (n =3600). 

Methods: Participants were genotyped for a custom panel of single nucleotide polymorphisms 

(SNPs) using the Illumina Golden Gate platform by the Center for Inherited Disease Research 

(CIDR). We tested association of these genes with dental caries in 13 race- and age-stratified 

samples from six independent studies of whites and blacks adults and children. We performed 
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analyses independently for each cohort and synthesized results by meta-analysis across five 

childhood cohorts and across eight adult cohorts.  

Results: Linear regression used to detect genetic association for a selection of candidate ion 

channel genes revealed two SNPs in CACNA2D1 were significantly associated with dental caries 

via meta-analysis across the five childhood cohorts, and in one individual childhood cohort (p < 

7.1 x 10-4). In adults, genetic association was observed in three individual cohorts for potassium 

channel genes KCNH1 and KCNK5 (p-values<0.001). Significant associations for variants in 

CNIH, BCOR and IFT88 corroborate the findings of caries GWAS (Genome-Wide-Association 

Studies) hits from published papers in the permanent dentition. This research demonstrates the 

importance of genes in the etiology of dental caries which is of public health relevance. 

Understanding genetic determinants of dental caries could lead to new strategies to reduce caries 

risk and improve oral health. 
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1.0  INTRODUCTION 

Dental caries is the most common, chronic, and costly infectious disease worldwide, affecting 

more than 90% of adults and more than one-fourth of children in the U.S population (Beltran-

Aguilar et al., 2005).  This chronic infectious disease is caused by bacteria by-products that 

breakdown the surface of the enamel on the teeth, thus causing tooth decay ("From the Centers 

for Disease Control and Prevention. Achievements in public health, 1900-1999: fluoridation of 

drinking water to prevent dental caries," 2000). If left untreated, dental caries can lead to tooth 

loss, oral pain that can affect one’s speech, eating, sleeping, breathing or, in rare cases, death 

(Lawrence & Leake, 2001). The impact of untreated caries extends beyond oral pain, accounting 

for more than 50 million school hours and 164 work hours lost each year, leading to increased 

educational disparities and reduced productivity (Low, Tan, & Schwartz, 1999).  

Untreated caries can be extremely detrimental for children since it can affect their eating 

habits and nutritional intake, which can potentially influence growth and development. In 

addition, untreated childhood caries can compromise the emotional health of a child. For 

example, if a child has missing teeth, decayed teeth or a mouthful of silver caps, they may smile 

less often and their self-esteem may be affected by other’s reactions to their poor oral health. 

According to the American Dental Association ,over 50% of  5-9  year-old  children have  at  

least  one  cavity  or  restoration,  and  that  proportion increases  to 78% among 17  year-olds. 
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Prevention of childhood caries has been focused on research by the modification of children’s 

diet and feeding habits through education of parents (Ismail, 1998). 

Further, there are disparities in dental disease by income and race. According to the 

Centers for Disease Control (CDC), from 1999-2004, 42% of Mexican American and 32 % of 

black children ages 2 to 5 have decayed or filled teeth, compared with 24 % of non-Hispanic 

white children.  Additionally, children in poverty suffer twice as much dental caries as their more 

affluent peers, and their disease is more likely to be untreated. Therefore, it is important that 

researchers make a continuous effort to counter the trend of disparities and to identify the factors 

that contribute to this complex disease through research, treatment and prevention strategies. 

1.1 TOOTH DEVELOPMENT 

Ectodermal organs such as teeth, hair follicles and mammary glands are all developed from 

adjacent epithelial and mesenchymal tissue (Pispa & Thesleff, 2003). Tooth development is an 

intricately orchestrated process that relies on a series of interactions of molecular signaling that 

initiates with the placement of individual teeth of specific shapes and sizes within the jaw (Mina 

& Kollar, 1987). A series of signals transmitted between ectodermal or endodermal-derived 

epithelium and the cranial neural crest-derived mesenchyme are needed to initiate the process.  

Among the ectodermal organs, tooth is an excellent model to study the genetics and 

molecular mechanisms of mammalian tooth development patterns, specifically in rodents. 

(Miletich & Sharpe, 2003). However, the mouse dentition differs significantly from humans by 

only developing two different shapes and having one set of teeth, whereas humans have two sets 

of teeth, 20 primary and 32 permanent teeth. The tooth developmental process in humans is 
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broken up into a number of stages that require a detailed process involving instructions of each 

tissue layer to the other, which in turn, determines the formation of the shapes and sizes of teeth 

such as incisors, premolars and molars. The overall sequential process of tooth development 

allows us to gain better understanding in great detail of the genetic mechanisms that are involved 

in this highly precise organized process. 

1.1.1 Embryology of Tooth Development 

Tooth formation occurs at the 6th week of gestation and continues until an age of 18-25 years in 

humans (Underwood et al., 2015).  During this period, the embryonic oral cavity is lined by the 

ectoderm, which is one of three types of embryonic germ layers (ectoderm, endoderm, and 

mesoderm) that ultimately results in the adult organism. Around the 7th week, tooth development 

begins with the thickening of the dental epithelial (primary epithelial band) which divides into 

two subdivisions to form the structures known as the dental lamina and vestibular lamina (Bei, 

2009).  This process results in the development of individual teeth, all deciduous teeth (primary 

teeth) arising from the dental lamina and later during the development of jaws, the permanent 

teeth arise from its distal extension (Thesleff, 2006).  

Before the development of primary and permanent teeth, the cells within the epithelia 

band commences to proliferate and localize in certain positions to form dental placodes within 

the dental lamina (Bei, 2009). Dental placodes are a key element in tooth development, 

functioning as the first signaling centers of the tooth. Dental placodes are believed to initiate 

formations of different tooth families such as incisors, canines, and molars (Thesleff & 

Tummers, 2008). After this crucial step, further stages of tooth morphogenesis proceeds in three 

stages: the bud, cap and bell. 
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1.1.2 Three Stages of Tooth Formation 

The bud stage is regarded as the initial stage of tooth formation where the epithelial thickening 

(dental lamina of ectoderm origin) folds back within itself into the neighboring oral mesenchyme 

to form a tooth bud (Koussoulakou, Margaritis, & Koussoulakos, 2009; Thesleff & Sharpe, 

1997). During the late bud or early cap stage, the enamel knot if formed by non-proliferating 

cells at the tip of the molar bud which is an area believed to secrete proteins that induces mitosis 

in nearby cells, and may influence the future shape of the tooth (Jernvall, Kettunen, Karavanova, 

Martin, & Thesleff, 1994). The cap stage is characterized by the epithelial outgrowth known as 

the enamel organ which resembles a cap resting on a ball of condensed ectomesenchyme cells 

(dental papillia).  In the outer enamel, epithelial cells on the external surface of the cap becomes 

more cuboidal, in contrast to the inner enamel epithelial cells that become more columnar 

(Antonio Nanci, 2012). Additionally, the mesenchymal cells begin to proliferate during this 

stage, completing the dental papilla beneath the internal enamel epithelium, and the dental 

follicle (or dental sac) surrounding the tooth germ. As the cap stages transitions to the bell stage, 

important development changes begin where epithelial cells become distinctly functional and 

morphologically components of the tooth (Antonio Nanci, 2012).  

During the early bell stage, continued growth of tooth germs leads into a bell-shaped 

structure with four distinct layers: outer enamel epithelium, stellate reticulum, stratum 

intermedium, and inner enamel epithelium (Berkovitz & Maden, 1995). In late bell stage, hard 

tissue formation begins to form, causing the division of enamel epithelial cells along the 

mesenchymal dental papilla, which form the characteristic cusps and basins of the future enamel-

dentine junction (EDJ). One particular study demonstrated that the dental papilla is responsible 

for gross shape of the tooth, as transplanted molar dental papilla has been shown to develop 
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molar teeth under incisor epithelium and vice versa (Kollar & Baird, 1969). However, according 

to (Jernvall & Jung, 2000), the developmental mechanisms of cusp shape, and cusp configuration 

characters is unclear and less understood. 

Furthermore in the late bell stage, enamel-forming ameloblast and dentin-producing 

odontoblasts are developed by a series of reciprocal inductive events that derive from the inner 

enamel epithelium and adjacent dental papilla cell. Once mature, the odontoblasts begin 

secreting dentine under the cusp tips of the future EDJ and then forms a matrix of collagen fibers 

called predentin that subsequently calcifies to become dentin (Slootweg, 2007). After 

dentinogenesis, the production of enamel starts after a small amount of dentin has been formed at 

the interface between future ameloblasts and odontoblasts.  

Next, the ameloblasts secrete enamel matrix proteins that precipitates the initiation of 

mineralization and forms enamel on top of the dentine, thus departing from this surface and 

towards the surface of the future crown of the tooth. Once the formation of the crown is 

complete, the enamel organ degenerates, following the dissipation of the stellate reticulum. 

Lastly, the inner and outer enamel epithelium form an epithelial covering of the tooth crown 

which remains present until the tooth erupts into the oral cavity (Slootweg, 2007). 

 

1.1 SIGNALING PATHWAYS OF TOOTH DEVELOPMENT 
 

There are several genes and complex interactions between cells and tissues involved within the 

conserved signaling pathways which mediate the initial steps of tooth development. Theses 

interactions include a balance between stimulatory and inhibitory signals that are essential for 

determining the location, identity, size and shape of teeth. The genes that are involved in the 

signaling pathways are essential components for tooth formation therefore, if disrupted, they can 
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cause defects such as missing teeth (ologodontia) (Bei, 2009). The most commonly studied genes 

that regulate interactions between the ectoderm and mesenchyme are those that encode fibroblast 

growth factors (FGFs), bone morphogenetic proteins (BMPs), hedgehog (SSH) and Wnt families 

(Mikkola, 2007).    

1.1.3 Bone Morphogenetic Proteins (BMPs) 

Bone Morphogenetic Proteins are secreted singling molecules that belong to TGFβ superfamily 

of growth factors that have a variety of regulatory functions during the morphogenesis of tissue 

and cell differentiation. BMPs were first discovered for their ability to activate abnormal and 

misplaced bone function when implanted under the skin of rodents. (Ducy & Karsenty, 2000). 

This discovery was an indication that BMPs play a role in embryonic skeleton formation and 

possibly play an important role throughout embryogenesis. The BMP family is formed by eight 

members which are grouped into subclasses based on sequence homologies. Different BMP 

genes are responsible for determining bone shape and the development of a variety organs 

(Hogan, 1996). Subgroups BMP2 and BMP4 are closely related to prototypical decapentaplegic 

(dpp) gene in Drosophila and are key components in the morphogenesis of teeth (Maas & Bei, 

1997).  BMP2 together with BMP4 and BMP7 are expressed in the enamel knot, a signaling 

center that controls the positioning of the tooth and the patterning of the tooth cusp (Thesleff & 

Mikkola, 2002).  In addition, BMP genes have been reported to be involved in dental crown 

morphogenesis in studies with experimental animal models (Aberg, Wozney, & Thesleff, 1997).  

In humans, variants in BMP genes are involved in many diseases and recent findings suggest 

they are involved in caries experience in the primary dentition (Romanos et al., 2015; Wharton & 

Derynck, 2009). 
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1.1.4 Fibroblast Growth Factors (FGFs) 

Fibroblast growth factors (FGFs) are a large family of heparin proteins that induces the growth 

and differentiation of many different cell types during embryogenesis (Partanen & Thesleff, 

1989). FGFs signaling was in the induction of mesoderm formation of Xenopus (frog) embryos 

and in later studies Drosophila and mammals (Slack, Darlington, Heath, & Godsave, 1987; 

Sutherland, Samakovlis, & Krasnow, 1996). At several stages of tooth development, FGFs 

induce cell division in both dental mesenchyme and epithelium (Pearson, Pearson, Shibahara, 

Hofsteenge, & Chiquet-Ehrismann, 1988; Rosa et al., 1988). In particular, FGF3, FGF8 and 

FGF9 are key players in stimulations of cell expression in the dental mesenchyme in the early 

bud stage. During the cap stage and bell stages, FGF3 and FGF10 are expressed in the dental 

pallia mesenchymal cells, both in incisors and molars (Kettunen et al., 2000). Other members of 

FGF members, 2, 4, 10, 15 and 20 genes are also expressed in different stages of tooth 

development (C. Y. Li, Prochazka, Goodwin, & Klein, 2014). 

1.1.5 Sonic Hedgehog (Shh) 

In addition to the previously mentioned signaling genes, Sonic hedgehog (Shh) is one secreted 

signaling factor that is also involved in the ectoderm and mesenchyme interactions of growth and 

shaping of a variety of organs (Dassule, Lewis, Bei, Maas, & McMahon, 2000). During tooth 

development, Shh is expressed in the dental epithelium throughout the bud stage and is 

upregulated in the cells of the enamel knot in the cap stage, therefore suggesting a role in the 

initiation of tooth formation.  Implications of Shh involvement in shaping the tooth cap is 
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consistent with its upregulation of cells in the enamel knot as well as in experiment animal 

studies (Dassule et al., 2000; Hardcastle, Mo, Hui, & Sharpe, 1998) .  

 Shh is also expressed in the inner enamel epithelium and it is maintained in 

differentiating ameloblasts, thus suggesting it plays a role in regulation of the underlying 

odontoblast layer in the enamel. Not only is Shh signaling involved in the tooth-forming area of 

the epithelial, but has also shown to be an important key player in tooth root development 

(Nakatomi, Morita, Eto, & Ota, 2006). Consequently, the absence of Shh in mutant mice has 

shown severe facial and tooth defects which reiterates its’ important role in the pathway of tooth 

development (Hardcastle et al., 1998).  

1.1.6 WNT Signaling 

Wnt proteins comprise of a large family of secreted ligands that activate several receptor-

mediated pathways and are involved in cell proliferation, polarity and fate determination during 

embryonic development and tissue homeostasis (Logan & Nusse, 2004; MacDonald, Tamai, & 

He, 2009). Therefore, mutations in the Wnt pathway are often associated with human birth 

defects, cancer and other diseases (Clevers, 2006). Evidence of Wnt signaling was first 

discovered in tooth development from studies in Lef1 (lymphoid enhancer factor) knock-out 

mice. Lef1 is a critical component of the Wnt signaling pathway. Mutations in Lef1 mice led to 

the termination of tooth development at the bud stage.(Kratochwil, Dull, Farinas, Galceran, & 

Grosschedl, 1996). In the developing tooth stages, there are a number of Wnt genes expressed 

that are mostly restricted solely to the dental epithelium. In the initiation stage, when tooth 

forming sites and tooth shaping are determined, Wnt7 interacts with Shh signaling to form the 

ectodermal boundaries between oral and dental ectoderm. Throughout the bud stage when dental 
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epithelium begins thickened, Wnt10a and Wnt10b are expressed in both molar and incisor 

epithelium and with Wnt3 and Wnt6 in the enamel knot at the cap stage (Liu & Millar, 2010). 

Another important component of Wnt signaling is the canonical Wnt signaling pathway. 

The canonical Wnt signaling is the most crucial and well-studied Wnt pathway. This pathway 

regulates the amount of the transcriptional co-activator β-catenin that mediates key 

developmental gene expression networks (Logan & Nusse, 2004). In particular, the activation of 

Wnt/β-catenin signaling initiates the beginning formation of ectodermal appendages associated 

with teeth, including hair follicles, feather buds, mammary placodes, and taste buds (Chu et al., 

2004; Gat, DasGupta, Degenstein, & Fuchs, 1998). Roles for β-catenin signaling are found 

throughout three main stages of development and are within both epithelial and mesenchymal 

compartments of the developing tooth.  

1.2 DENTAL DEFECTS 

Studies using transgenic animal models have produced functional data showing possible 

malfucntion of genes that are part of tooth development signaling pathways resulting in severe 

abnormalities of tooth development such as tooth agenesis (the absence of one or more teeth) 

(Bei, 2009). Disruption of tooth development at early stages of the lamina or bud stage, has been 

known to lead to anodontia (lack of teeth). For example, studies have reported that either 

blocking Wnt co-receptors or knocking out Left1, a mediator of Wnt signaling, led to an absence 

of all teeth (Miletich & Sharpe, 2003) 

  In embryos that are Pax9 deficient, tooth development is arrested at the bud stage and 

other genes exhibit overlapping expression pattern in the dental mesenchyme such as Bmp4, 
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Msx1 and Left1 (Peters, Neubuser, Kratochwil, & Balling, 1998). Dominant inherited mutations 

in human PAX9 and MSX1 have been identified as causes of missing posterior teeth.  In addition, 

mutations in human PAX9 causes agenesis of most permanent molars and deletion of PAX9 is 

involved with the agenesis of all primary and permanent molars (Das et al., 2002).  

Mutations in the PITXP2 gene is genetically associated with Axenfeld-Rieger Syndrome 

(ARS). Patients with ARS present various dental abnormalities including umbilical anomalies, 

ocular defects, and craniofacial abnormalities.  PITX2 encodes one of the earliest transcription 

factors to initiate tooth development. Thus, PITS has long been considered as an upstream 

regulator of the transcriptional hierarchy in tooth development (St Amand et al., 2000). 

Mutations in the transcription factor p63 have been associated with several syndromes including 

various tooth aberrations ranging from enamel dysplasia, cleft lip and palate to a loss of teeth 

which can affect both primary and permanent dentitions (Brunner, Hamel, & Van Bokhoven, 

2002) 

1.3 AMELOGENESIS 

The mineral composition of teeth consist of three tissues: cementum, dentin, and enamel. The 

cementum is the bone-like tissue that covers the roots of the teeth in a thin layer and anchors the 

tooth in place by binding collagen fibers (Sharpeys fibers) of the periodontal ligament. Dentin is 

also a bone-like yet very porous material that constitutes the largest portion of the tooth and is 

harder than bone but softer than enamel. A firm bond joins dentin and enamel together at the 

dentin-enamel junction (DEJ) (Hu, Chun, Al Hazzazzi, & Simmer, 2007). Enamel is a calcified 

substance that covers the top of the crown of the tooth and protects the dentin. Tooth enamel is 



 

11 

typically regarded as a composite material, composed of both mineral and organic components. 

Mature enamel contains greater than 96% of mineral content, 4% organic matter and %1 water 

(Simmer & Fincham, 1995).  Within the human body, enamel is the hardest substance and the 

most resistance to deterioration. The cells that are responsible for the formation of enamel are 

called ameloblasts. These cells secret enamel matrix proteins and are involved in calcium 

transporting which maintains an extracellular environment favorable for enamel formation 

(Sasaki, Takagi, & Yanagisawa, 1997). The development of enamel (amelogenesis) can be 

classified into six phases, but can be broken down to three defined stages: presecretory, 

secretory, and maturation stages.  

During the presecretory stage, mineralization of predentin occurs and ameloblast prepares 

to secrete the organic matrix of the enamel. Predentin is composed of collagen fibers and ground 

substance (non-collagen proteins). This presecretory stage is first guided by the mineralization of 

predentin in the future area of the DEJ in which the dentin begins to thicken as mineralization 

moves toward the future pulp chamber. Ameloblasts begin secreting enamel matrix proteins 

which initiates mineralization (Antonio Nanci, 2012). Second, during the secretory stage, 

ameloblasts develops a blunt process by elongating into tall columnar cells at their ends near the 

forming enamel which is known at the “Tomes’ process”. From the prominent location, enamel 

matrix proteins are secreted on a side of the Tomes’ Process that allows enamel crystals to grow 

between the dentin. At this point, enamel is rich in protein and its structure is a soft cheese-like 

consistency (Ronnholm, 1962).  

Next, the enamel layer begins to thicken as enamel matrix proteins are secreted and long 

crystallite ribbons form. The crystals grow almost parallel to each other and eventually form into 

a rod (prism).  As the ameloblast migrates away from the dentin the enamel thickens and 
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enzymes  (amelogenin, enamelin and ameloblastin) are secreted for modulation and support of 

crystal growth and for determination of prismatic structure (Hallsworth, Robinson, & 

Weatherbell, 1972). By the end of the secretory stage, the enamel matrix is rich in organic 

constituents and the enamel layer has achieved its full thickness. 

Lastly, enamel maturation begins after the ameloblasts have completed their matrix 

secretion, retract their Tomes' processes, smooth off the enamel surface, and the enamel has 

reached its final thickness (Smith, 1998).  During this stage, matrix is degraded rapidly and 

replaced by tissue fluid which is replaced by mineral uptake associated with crystal growth in 

width and thickness, and the mineral content increases (Robinson, Brookes, Shore, & Kirkham, 

1998). In this process, ameloblasts also become less columnar, degrade many internal organelles, 

and participate in re-absorption of the matrix proteins.  

Two forms of ameloblasts are seen during the maturation stage: ruffled-ended and 

smooth-ended. Calcium is actively pumped during ruffle-ended phase and passively during 

smooth-ended phase (Boyde, 1987). The ruffle-ended ameloblasts may be important for the 

incorporation of calcium into maturing enamel, although there is no currently accepted 

explanation for how calcium and phosphate ions enter enamel (Antonio Nanci, 2012). 

Kallikreins proteases are secreted by amelobasts during the maturation, and are important for 

removing proteins from the enamel. Without kallikrein, enamel proteins would remain in the 

matrix and the enamel prism would fail to grow (Simmer, Hu, Lertlam, Yamakoshi, & Hu, 

2009). At the end of the maturation stage, the enamel will achieve its final hardened form. These 

general features of amelogenesis are similar across different species (Orams, 1966). 

Depending on the stage of the ameologenesis, defects can occur which are dependent on 

the stage of the ameloblasts when injury occurs. For example, enamel hypoplasia is due to 
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damage to the cells during the secretion stage. Enamel hypoplasia is a defect of the teeth in 

which the enamel is hard but thin and deficient in amount. In addition, damaged cells during the 

late stages of secretion or maturation of amelogenesis can cause hypomineralization. Enamel on 

these teeth has marked areas with less mineral than unaffected enamel (Hu et al., 2007; Suga, 

1989). 

1.4 EPIDEMIOLOGY OF CARIES 

During the past 40 years, the prevalence of dental caries has declined due to improvements in 

diet, the use of topic and systemic fluorides, sealants and oral health education (Bagramian, 

Garcia-Godoy, & Volpe, 2009). Despite the progress in reducing caries, individuals of lower 

socioeconomic status experience more dental caries than those who are above the poverty level. 

Furthermore, studies have reported an increase in the global prevalence of caries in the primary 

and permanent dentition of adults and children within the past decade.  Although dental caries is 

the most common chronic disease among children in the U.S, it is also increasing in the elderly 

population as more individuals retain teeth throughout their lifetime (Anderson, 2002). Studies 

have shown that older adults may have a similar trend of increased levels of developing caries 

than children (Griffin, Griffin, Swann, & Zlobin, 2004). Other groups that are at high risk for 

dental caries include individuals with HIV or AIDs, recent immigrants, and individuals with 

disabilities (Beltran-Aguilar et al., 2005; Stewart & Hale, 2003). 

Dental caries is not only a major public health problem in the U.S but, is a major health 

concern for populations worldwide. In Western Australia, dental caries is the fifth most common 

disease in Aboriginal children, causing hospitalization in children ages 1-4 (Tennant, Namjoshi, 
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Silva, & Codde, 2000). In India, the prevalence of dental caries for five year old children with 

coronal and root surfaces were 52% and 80% in adults’ ages 35-44 years old (Sukhabogi et al., 

2014). One third of Canadian adults age 50 years are older reported problems with social 

interactions and communication due to caries and adults in France reported higher needs for 

dental care (Sukhabogi et al., 2014; Tubert-Jeannin, Riordan, Morel-Papernot, & Roland, 2004). 

Conditions of dental caries worldwide confirms and identifies the need for action for prevention 

strategies by the global dental professional community. 

1.4.1 Risk Factors 

Dental caries is initiated by the action of acids on the enamel surface, which eventually will 

break down the tooth enamel.  The acids are produced when bacteria attaches themselves to 

dental plaque which will break down the sugars or carbohydrates from the food that we eat in 

order to use them for their own metabolism. This process produces acid as a by-product which in 

turn, reduces the saliva pH. The lower pH causes de-mineralization which results in more 

calcium and phosphate ions leaving the tooth surface than entering it, which the early effects can 

be seen on the enamel as a white spot (Tanzer, Kurasz, & Clive, 1985) . Furthermore, the by-

products of the bacterial acid can be neutralized over time by adequate amounts of healthy saliva, 

therefore, returning calcium and phosphate ions into the tooth surface. This reverse process of 

de-mineralization is known as “re-mineralization”. 

A person’s risk of caries can vary with time since many risk factors can be modified. 

Because dental caries is a multifactorial disease, there are many factors involved that can 

contribute to one’s risk such as behavioral/environmental factors (oral hygiene, fluoride 

exposure, brushing and frequency), host/tooth factors (salivary buffering capacity and position of 
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teeth), oral bacteria (Streptococcus mutans) and susceptible teeth. However, the three key risk 

factors include: Bacteria, diet and tooth/host (Robert H. Selwitz, Ismail, & Pitts) 

1.4.2 Plaque Bacteria 

Among the variety of bacterial species that are present in the human dental flora, two species of 

the mutans streptococci family (Streptococcus mutans (S. mutans) and Streptococcus sobrinus 

(S. sobrinus)) are most associated in human caries (Loesche, 1986; Struzycka, 2014; van Houte, 

1994). This is due to the organism's ability to synthesize extracellular sugars (glucans and 

fructans) specifically from sucrose, which may explain why this sugar has a tendency to promote 

tooth decay (Loesche, 1986). S. mutans and S. sobrinus have also been demonstrated to be the 

principal agents for enamel caries in experimental models in animals. In particular, one study 

demonstrated a transmissible infection involving S. mutans resulted in tooth decay in hamsters 

(Fitzgerald & Keyes, 1960). In another study, among 30 acid producing bacteria, S. mutans and 

S. sobrinus caused tooth decay in glucose fed rats (Fitzgerald & Konig, 1968). These 

experiments provided evidence that specific bacteria can be cariogenic not only in animal 

models, but in humans as well.  

Additionally, results from the previously mentioned studies suggest that bacteria other 

than S. mutans are associated with demineralization and the development of caries.  There has 

been strong evidence that demonstrates association between the lactic acid bacteria 

“Lactobacillus spp.” and formation of caries, especially in the dentine. Lactobacillus is 

characterized by their ability to grow in an acid environment, and the ability to synthesize both 

extracellular and intracellular polysaccharides from sugars (Berkowitz, 2003). Comparison 

studies have shown a correlation between the amount of Lactobacilli in saliva or on tooth surface 
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with caries progression (Hemmens, Blayney, & et al., 1946; Snyder, 1942). Recently, some 

studies have shown the presence of Lactobacilli in the mouth to have a high prevalence in root 

caries as well (Brailsford et al., 2001; Ellen, Banting, & Fillery, 1985). Another bacterium that 

forms a major complex part of the dental flora is the Actinomyces species. Specifically, 

Actinomyces odontolyticus has been associated with early stages of tooth demineralization by 

colonizing in infants before the eruption of teeth (Boyar & Bowden, 1985; Sarkonen et al., 

2000). The strain Actinomyces naeslundii has been suggested to play a pathogenic role in the 

development of roots surface caries (Bowden, 1990; Bowden, Ekstrand, McNaughton, & 

Challacombe, 1990; Schupbach, Osterwalder, & Guggenheim, 1996). 

1.4.3 Diet 

There is a compelling relation that exists between diet and oral health that can influence or 

reduce one’s risk for dental caries. Diet affects the integrity of the oral cavity, composition of 

saliva and plaque pH. As mentioned previously, foods that are high in sugar and other 

fermentable carbohydrates are an essential factor in caries development. The sugars and 

carbohydrates are hydrolyzed salivary amylase, an enzyme present in the saliva that initiates the 

chemical process of digestion, which provides the activity of the oral bacteria. This process 

results in reduced pH of the saliva and plaque which initiates tooth demineralization. A low pH 

favors the growth of acidogenic bacteria such as S. mutans whereas a diet reduced in added 

sugars, fermentable carbohydrates and calcium rich may favor remineralization (Touger-Decker 

& van Loveren, 2003). A number of retrospective studies have shown statistically significant 

positives correlations between sucrose consumption and caries incidence and prevalence 

(Schmidt, 1958).  
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In addition to foods that are high in sugars, there are other factors that affect the caries 

process including the form of fluid, duration of exposure, salivary flow and sequence of eating 

habit (Fontana & Zero, 2006). The consumption of beverages that are highly acidic such as soft 

drinks, citrus juices, and sports drinks can cause erosion of the tooth. Tooth erosion is the 

reduction of dental hard tissue by acids in a process that does not include the involvement 

bacteria or sugars (ten Cate & Imfeld, 1996). To support this, there has been many studies 

demonstrating a positive relationship between caries and dental erosion and the consumption of 

soft drinks (Harding, Whelton, O'Mullane, & Cronin, 2003; A. K. Johansson et al., 1996; 

Sayegh, Dini, Holt, & Bedi, 2002). Beverages containing high concentration of acids have many 

potential health problems, including dental caries and dental erosion. 

Saliva flow can affect incidence of dental caries in many ways, by acting as a cleansing 

mechanism to reduce the accumulation of dental plaque and by buffering and antibacterial 

activity (Jawed, Khan, Shahid, & Azhar, 2012). Additionally, diet and nutrition can have an 

effect on salivary flow rate as well. Reduced salivary flow is a condition that is often found in 

individuals with insufficient food intake therefore, the salivary glands are affected by insufficient 

nutrition (Mazengo et al., 1994). It has been proposed that iron deficiency can affect salivary 

secretion rate. An experimental study in rats demonstrated that iron deficiency anemia impaired 

protection provided by the salivary peroxidase system, thus resulting in the reduction of salivary 

flow (I. Johansson & Fagernas, 1994) 

1.4.4 Caries Prevention 

The role of the tooth is also a key risk factor of dental caries of with caries are prone to specific 

teeth in the permanent and primary dentition (Anderson, 2002). In children, dental caries are 
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mostly found on smooth surfaces and in the pit and fissures surfaces during the later years 

(Kleinman, 2002). This can be a result of prolonged bedtime use of bottles with milk or 

carbonated drinks and juices.  Individuals with deep pit and fissures are at increased risk for 

caries as well.  The grooves of the pit and fissures surfaces are more difficult to clean because of 

the likelihood of retention of food getting trapped on the surface. Therefore, influencing the risk 

for dental caries. In addition, imperfect alignment, rotated or abnormally positioned teeth can be 

difficult to cleanse and trap food debris and bacteria. All mentioned above, in a susceptible 

individual, is sufficient to cause dental caries.  
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2.0  GENETICS OF DENTAL CARIES 

The etiology of dental caries is complex and multifactorial with contributions from 

environmental and genetic factors. Regardless of environmental risk factors, some individuals 

are more susceptible to caries and others are resistant, thus implying that genetics is a 

contributing factor in caries etiology.  One way to directly measure the genetic contribution of 

inheritance to disease, is the study of traits and susceptibilities in twins. A few twin studies have 

observed a statistically significant genetic component in caries risk and demonstrated that the 

caries experience of monozygotic twins had a greater concordance than either dizygotic twins or 

unrelated controls (Finn & Caldwell, 1963; Goodman, Luke, Rosen, & Hackel, 1959; Horowitz, 

Osborne, & Degeorge, 1958; Mansbridge, 1959). Twin pairs that have been reared apart in 

different family studies is good way to test the relative influences of genes and environment. 

Therefore, any differences between the twins must be attributed to differences in their 

environment, while similarities are mainly due to their identical heredity. Interestingly, (Boraas, 

Messer, & Till, 1988) detects evidence of strong resemblance seen in monozygotic twins reared 

apart, but not in dizygotic twins reared apart for dentate status and treatment status. Additional 

twin studies have identified genetic evidence linked to increased risk for dental caries by 

providing heritability estimates ranging from 40-60% (Boraas et al., 1988; Bretz et al., 2005; 

Wang et al., 2010).  
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There is also strong evidence from animal model studies that identified genomic regions 

and polymorphisms related to susceptibility and/or resistance of caries (Culp et al., 2005; 

Kurihara et al., 1991). (Lehner, Lamb, Welsh, & Batchelor, 1981) was the first to report linkage 

between the major histocompatibility complex (MHC) haplotype and dental caries in mice. 

Another study that has demonstrated a genetic contribution to dental caries in animals induced 

dental caries in inbred strains of mice by inoculation of S. mutans serotype c. This study 

suggested that strain differences in susceptibility to dental caries are determined genetically.  

Investigating genetic evidence of caries risk and identifying candidate genes in animal models 

sparked further investigation of these genes to be studied in human populations. 

To date, several candidate gene studies have investigated the genetic association with 

dental caries based on their known biological functions. For instance, genes affecting tooth 

development (Tannure, Kuchler, Lips, et al., 2012; Wang et al., 2010), taste preference 

(Pidamale et al., 2012; Wendell et al., 2010) and genes involved in enamel formation, including 

amelogenin, ameloblastin, and tuftelin, have been associated with dental caries (Deeley et al., 

2008; Patir et al., 2008; Slayton, Cooper, & Marazita, 2005). Candidate genes studies have had 

some success on a smaller scale at identifying genetic variants associated with dental caries. 

However, to identify novel genes on a larger scale, a genome-wide-association (GWAS) study is 

useful.  

A GWAS study is an approach that involves rapidly scanning markers across the 

complete sets of DNA, or genomes, of many people to find genetic variations associated with a 

particular disease. This allows for the detection of new genes for a disease and provides potential 

information about new genes and biological processes that help to prioritize genes or genomic 

regions for further investigation. It is important to replicate associations found in the initial 
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GWAS in order to determine if results are valid. A valid result should be replicated 

independently, whereas an invalid result that was due to some error or chance will not be able to 

be consistently reproduced. This approach can be useful when determining genetic factors for 

multifactorial diseases such as dental caries. With this in mind, our group performed several 

GWAS studies in order to identify genetic loci that influence the risk for dental caries. 

2.1.1 GWAS of Childhood Caries 

Childhood caries is a significant public health problem in selected populations and is also found 

throughout the general population. Therefore, our group performed the first GWAS for 

childhood dental caries in 1305 children ages 3-12 years in order to identify associated genetic 

loci and to nominate candidate genes that influence dental caries. Analyses stratified by fluoride 

exposure were conducted to investigate the role of gene and gene-by-fluoride interactions in 

dental caries. There was no SNP that exhibited association at genome-wide-significance level 

however, several genes (ACTN2, MTR, EDARADD, MPPED2, and LPO) with biological roles in 

tooth development, immune response and other oral health phenotypes yielded suggestive 

evidence for association. The fluoride analyses stratified by home fluoride level observed three 

additional loci, TFIP11 in the low fluoride group, and EPHA7 and ZMPSTE24 in the sufficient-

fluoride group. These suggestive loci were tested in an independent sample (1,695 white children 

age 2-7 from Demark) but, did not replicate successfully (Shaffer et al., 2011). 
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2.1.2 Genes and Their Effects on Dental Caries May Differ Between Primary and 

Permanent Dentition 

As mentioned previously, twin studies investigating the heritability in children and adults have 

been influential in supporting the key role of genetics in dental caries. However, these studies 

were limited to small sample sizes and exclusive to only twins. Furthermore, it is unclear 

whether the heritability of dental caries is similar for primary and permanent dentitions, and 

whether the same or different genes are involved because previous studies focused on either 

children or adults but, no studies has compared the two. To address this issue, our group wanted 

to investigate the heritability of caries-related phenotypes for primary and permanent dentition, 

specifically to determine whether genes contribute to the development of dental caries, and 

whether these genes differ between primary and permanent dentitions. This was done by using 

family-based likelihood methods on caries phenotypes for adults and children (2,600 participants 

from 740 families). The results from this study revealed genes accounting for 54-70% of 

variation in caries scores for caries phenotypes in the primary detention and moderate heritability 

for caries scores in the permanent dentition ranging from 30-55% (Wang et al., 2010) 

2.1.3 GWAS of Dental Caries Patterns in the Permanent Dentition 

The majority of genetic epidemiology studies of dental caries have use the DMFT/S index 

(calculated as the sum of decayed, missing due to decay, or filled/restored teeth surfaces) as a 

global phenotype definition. However, there are potential limitations that ignore differences in 

susceptibility across tooth surfaces of which display differences in risk factors when using this 

global measure of decay. Therefore, our group performed a GWAS of caries in the permanent 
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dentition using five novel caries phenotypes from our previous published paper of hierarchical 

clustering. This study was performed in 920 self-identified non-Hispanic whites, aged 18-75 

years with genotype information on 518,997 variants. This study identified significant genetic 

associations between dental caries and the anterior mandibular teeth and mid-dentition tooth 

surfaces with genes LYZL2 and AJAP1, respectively. Suggestive associations were detected in 

ABCG2, PKD2, SCP sub-family, EDNRA, TJFBR1, NKX2-3, IFT88, TWSG1, IL17D, and 

SMAD7.   

2.1.4 Genetic Susceptibility to Dental Caries on Pit and Fissure and Smooth Surfaces 

Previous studies have examined the differential effects of environmental factors on smooth 

surface caries (SMS) and pit and fissures surfaces (PF). However, genetic factors affecting SMS 

and PF risk for caries differentially had yet to be explored. To address this issue, our group 

examined the role of genetic factors on dental caries separately for SMS and PFS in more than 

2,600 subjects from 740 families. The proportion of trait variation due to genes was achieved 

using likelihood methods as well as correlation calculations between PFS and SMS caries scores 

were obtained. In conclusion, the heritability of caries scores was similar for PFS and SMS (h 2 = 

19–53%, h 2 = 17-42 %; respectively) and heritability scores for both PFS and SMS in the 

primary dentition was greater than in the permanent dentition and total dentition. The genetic 

correlation results suggest that common genes are involved in the risk of caries for both surface 

types and genetic factors may have different effects on caries risk in PFS vs. SMS in the primary 

dentition (Shaffer et al., 2012). 
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2.1.5 Clustering Tooth Surfaces 

Global measures of caries experiences are often reduced to single measure decay such as 

DMFT/S index (calculated as the sum of decayed, missing due to decay, or filled/restored 

teeth/surfaces). These measures can ignore the fact that susceptibility for tooth decay in different 

surfaces exhibit different risk factors. Therefore, global measures can misidentify caries risk 

factors that affect specific categories of tooth surfaces. To address this issue, our group used 

hierarchical clustering on tooth surface-level caries data for 1,068 Appalachian adults (ages 18-

75 yrs) to group surfaces based on co-occurrence of caries. This analysis resulted in five groups 

of tooth surfaces that differ with regards to caries: (C1) pit and fissure molar surfaces, (C2) 

mandibular anterior surfaces, (C3) posterior non-pit and fissure surfaces, (C4) maxillary anterior 

surfaces, and (C5) mid-dentition surfaces. In addition, associations between potential risk factors 

such as sex, age, education levels, and tooth-brushing habits and some cluster-based caries 

outcomes were demonstrated by our group (Shaffer et al., 2013).  The results from this study 

imply that the permanent dentition can be subdivided into groups of tooth surfaces that are useful 

for understanding the factors influencing dental caries. 

2.1.6 GWAS of Caries in the Permanent Dentition 

There are few genes for dental caries in the permanent dentition that have been identified or 

successfully replicated. Therefore, our group performed the first GWAS in permanent dentition 

in adults with the intention of identifying genetic variants associated with dental caries in 

permanent dentition in adults. Five independent cohorts, totaling over 7000 participants were 

used for the GWAS analyses. Three meta-analyses were performed on part or all of the 
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combined samples. Though there were no genetic associations observed for genome-wide 

significance, several genes (RPS6KA2, PTK2B, RHOU, FZD1, ADMTS3, ISL1, and TLR2) loci 

yielded suggestive significance with plausible biological functions in dental caries (Wang et al., 

2012a).   

2.1.7 GWAS of Pit-and Fissure and Smooth Surface in Permanent Dentition 

To further understand genetic factors that contribute to PF-and SM-surface caries risk, our group 

performed separate GWAS in the permanent dentition for the two types of surfaces. The analyses 

were performed in both surfaces for PF surfaces, 1,017 participants, adjusted for age, sex, and 

the presence of Streptococcus mutans and in 1,004 participants, adjusted for age, education 

group, and the presence of Streptococcus mutans for SM surfaces in self-reported whites, ages 14 

to 56 yrs. This study identified potential caries genes that were suggestively associated in PF 

caries (BCOR, INHBA) and SM caries (BCORL1, CXCR1& CXCR2). These nominated genes 

have plausible roles in caries etiology such as tooth development, tooth morphology and immune 

response (Zeng et al., 2013).  

2.1.8 Follow Up Association of Enamel Matrix Genes 

The first GWAS for dental caries focused on primary dentition in children age 3-12 years which 

nominated several novel genes: ACTN2, EDARADD, EPHA7, LPO, MPPED2, MTR, and  

ZMPSTE24. The aim of this study was to follow-up genetic associations and seek to replicate the 

putative genetic associations identified in the original GWAS of dental caries in white children. 

In this study, 156 SNPs within the candidate genes were tested for evidence of association with 
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dental caries experience in 13 race- and  age-stratified samples from 6 independent studies (n= 

3600). A meta-analysis was then preformed to combine results across sample. The results for this 

study yielded that MPPED2 was significantly associated with caries via meta-analysis across 

childhood samples, with 4 SNPs showing significant associations after gene-wise adjustment for 

multiple comparisons (p< .0026). These results were confirmation with the previous genome-

wide association study. ACTN2 also showed significant association via meta-analysis across 

childhood samples (p= .0014). Genetic association for adults was observed for ACTN2 SNPs in 

individual samples (p< .0025), however, there were no significant SNPs via meta-analysis across 

adult samples. Overall, this study strengthens the hypothesis that ACTN2 influences caries risk 

given its compelling biological role in organizing ameloblasts during amelogenesis (Stanley et 

al., 2014). 

2.1.9 Effects of Enamel Matrix Genes on Dental Caries Moderated by Fluoride Exposures 

Previous candidate gene studies have explored whether enamel matrix or enamel matrix related 

genes are associated with dental caries. In these studies, inconsistencies of heterogeneity were 

observed across studies with regard to the environmental exposures fluoride, which significantly 

affects the risk of dental caries. Therefore, this study aimed to investigate the effects of non-

amelogenin enamel matrix genes in dental caries susceptibility in children and adults, and to 

determine whether their effects are moderated by fluoride exposures.  

The investigation of 18 SNPs in a group of non-amelogenin enamel matrix genes (AMBN, 

ENAM, TUFT1, and TFIP11) were investigated to detect associations with dental caries 

experience in 13 age- and race-stratified samples from six parent studies (N=3,600). Linear 

regression analysis was used to model genetic associations and test gene-by-fluoride interaction 
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effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. 

Meta-analysis was used to combine results across five child and eight adult samples. Significant 

associations were observed for SNPs in TFIP11 and TUFT1, each showing evidence of 

association. In addition, two genetic variants, upstream of TUFT1 and missense in AMBN were 

found to be involved in gene-by-fluoride interactions. For each interaction models, participants 

with the risk allele/genotype exhibited greater dental caries experience only if they were not 

exposed to the source of fluoride. The results of this study confirm that variation in enamel 

matrix genes contributes to individual differences in dental caries liability, and demonstrate 

that the effects of these genes may be moderated by protective fluoride exposures (Shaffer et 

al., 2015) 
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3.0  METHODS 

3.1.1 Center for Oral Health Research in Appalachia (COHRA1) 

Appalachia is a rural region known to be economically disadvantaged and experience some of 

the worst oral health in the United States (Krause et al., 2012).  Factors such as isolated location, 

lack of knowledge of oral health behaviors, and low priority of dental health could contribute to 

the poor quality of oral health in the Appalachian region. To address this issue, the University of 

Pittsburgh, in collaboration with West Virginia University, established COHRA1 in 2000 to 

investigate factors (genetics, environmental, microbiological, and epidemiological ) contributing 

to oral health disease, oral health disparities, caries and other phenotypes in Appalachia (Polk et 

al., 2008).  

To obtain a sample of Appalachian population, families were recruited from two 

Pennsylvania counties (Washington and McKean) and two West Virginia counties (Webster and 

Nicholas).  The eligibility criteria for recruitment included that at least one biological parent-

child pair were included per household. Other members of eligible households were encouraged 

to participate regardless of biological relationships. Participants were enrolled without regard to 

their oral health status and were given complete intra-oral examinations by a licensed dentist or 

research dental hygienist (Polk et al., 2008). DNA was isolated from saliva, blood, buccal swab 

and mouthwash samples using the Oragene kits from DNA Genotek 
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(http://www.dnagenotek.com). Approval of this study population was obtained from the 

University of Pittsburgh and West Virginia University Institutional Review Board (IRB). 

3.1.2 Dental Strategies Concentrating on Risk Evaluation (Dental SCORE) 

The Dental SCORE was established by the University of Pittsburgh to investigate the 

relationship between oral health and cardiovascular disease. This study derived from a 

prospective longitudinal cohort study called Heart SCORE designed to investigate the factors 

contributing to racial and socioeconomic disparities in cardiovascular risk in adults (Aiyer, Kip, 

Marroquin, et al., 2007).  Adults within the Pittsburgh area, both African American and 

Caucasian, who were already enrolled in the Heart SCORE study, were asked to participate. All 

participants over the age of 45 were offered enrollment without regard to oral health status. Once 

participants provide informed consented, they received dental screening by a research dental 

hygienist following the COHRA1 protocol.  DNA was isolated via salvia saliva samples from 

Oragene kits from DNA genotek. All assessments were approved by the University of Pittsburgh 

IRB.  

3.1.3 Dental Registry and DNA Repository (DRDR) 

DRDR was established at the University of Pittsburgh School of Dental Medicine to obtain DNA 

samples from patients seeking treatment at the University of Pittsburgh School of Dental 

Medicine clinic. The purpose of this registry is to link dental phenotypes to DNA samples for 

educational and research involvement. Participants were enrolled without regard of their oral 

health and medical status. DNA was isolated via saliva samples taken in Oragene kits from DNA 
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genotek. All participants provided written consent to have their dental phenotypes and genetic 

data used for future research studies. Approval of this study population was obtained from the 

University of Pittsburgh IRB. 

3.1.4 Iowa Head Start Study (IHS) 

IHS recruited low-income children aged 3 to 5 years old who participated in federally funded 

child development program for low-income children (Slayton et al., 2005). Dental caries 

experience was performed by licensed dentist and DNA was extracted via buccal or saliva 

samples taken in Oragene kits from DNA Genotek. Parental or legal guardian provided consent 

for all participants and all protocols were approved by the IRB at the University of Iowa. 

3.1.5 Iowa Fluoride Study IFS (IFS) 

The objective of this study is to evaluate fluoride exposures from dietary and non-dietary sources 

and to associate fluoride exposure with dental caries and fluorosis. The IFS is a study that 

recruited new mothers and newborns from eight Iowa postpartum wards and followed their 

offspring from adult to childhood (Wang, Willing, et al., 2012). Trained dentists performed 

dental assessments during field examinations for children at ages 4 to 6 years. DNA was 

obtained from blood, buccal swab, or saliva samples as part of additional genetics study. All 

parents provided informed written consent, and all children provided verbal assent. All study 

questionnaires, procedures, and protocols were approved by the IRB at the University of Iowa. 
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3.1.6 Center for Education and Drug Abuse Research (CEDAR) 

CEDAR recruited adolescent offspring of fathers with and without substance use disorder from 

the Pittsburgh area enrolled in a study of substance use risk factors.  The purpose of this study is 

to investigate substance use risk factors in the father’s offspring from the ages of 10-12 years 

through 30 years of age (Vanyukov et al., 2004). Dental examinations were performed by 

calibrated dental hygienist at the University of Pittsburgh School of Dental Medicine. Blood 

samples and DNA aliquots were obtained from the NIDA Center for Genetic Studies. 

Lymphoblast cells lines established from blood samples at the NIDA Center for Genetic Studies 

(https://zork5/wustl/nida)nprovided DNA for the present study. All of participants parents 

provided informed consent and all study questionnaires and protocols were approved by the 

University of Pittsburgh IRB. 

3.1.7 Dental Caries Phenotype 

In the present studies, standard dental exams were conducted for each tooth.  Participant’s caries 

experience in the permanent and primary dentitions were measured according to the Decayed, 

Missing-due-to-caries, Filled Teeth (DMFT) based on  National Institute of Dental and 

Craniofacial Research recommendations (Drury et al., 1999). This is the most commonly used 

index for measuring dental caries. Each surface that is decayed, missing (due to decay) or filled 

is counted once and the total score is based on the total number of affected surfaces. Scores were 

calculated separately in the primary and permanent dentitions. For permanent teeth, dentition 

scores are represent by upper case letters (DMFT) and lower case letters (dft (decayed and filled 

teeth)) for primary teeth.  
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Scores per individual can range from 0 to 28 or 32, depending on whether the third 

molars (wisdom teeth) are included in the scoring. The third molars were excluded in the present 

studies. The dft index expresses the number of affected teeth in the primary dentition, with 

scores ranging from 0 to 20 for children. Calculations for DMFT consist of when a carious 

lesion(s) or both carious lesion(s) and a restoration are present, the tooth is recorded as a D.  

When a tooth has been extracted due to caries, it is recorded as an M.  When a permanent or 

temporary filling is present, or when a filling is defective but not decayed, this is counted as an 

F.  Teeth restored for reasons other than caries are not counted as an F. The rules for recording d, 

m, and t are the same as for DMFT but with the total count of 20 teeth (Cappelli, 2001). 

3.1.8 Custom Panel 

All participants were genotyped for a custom panel of single nucleotide polymorphisms by the 

Center for Inherited Disease Research (CIDR) at Johns-Hopkins University using the Illumina 

GoldenGate platform (San Diego, USA). The custom panel consisted of tagging SNPs from 71 

genes in addition to subset of several hundred Specific SNPs of interest. The genes on the panel 

were chosen for different reasons of interest however, the majority of genes were on the panel 

because they were nominated in GWAS studies for oral health phenotypes. The process of 

nominating these genes were based on their location and/or linkage disequilibrium with 

associated variants in addition to biological relevance of the gene, previously reported 

experimental evidence, or a role in the etiology of the oral health phenotype.  

The SNPs on the panel were chosen because of specific of interest and/or because they 

exhibited genetic associations with oral health phenotypes that were nominated in genome-wide 

association studies. The overall goal of this panel is for replication and fine mapping of 
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previously associated loci for a variety of different oral health phenotypes, specifically dental 

caries. The Illumina GoldenGate platform only allowed up to 3,072 SNPs for genotyping in 

which there initially 746 specific SNPs. Another 4,107 SNPs were added that were located 

within genes of interest and having minor allele frequencies ≥0.02 and designability scores ≥0.8 

therefore, totaling up to 4,853 potential SNPs. Furthermore, SNPs with an R2> 0.95 were 

omitted. 70 SNPs were omitted due to physical proximity to another tag SNP which leaves a 

total of 3,046 tag SNPs. This in turn yielded 2,976 custom SNPs. Another 96 ancestry 

informative SNPs were included for a total of 3,072 SNPs on the custom panel (Stanley et al., 

2014). 

3.1.9 Statistical Analysis  

Dental caries experience in the primary and permanent was analyzed separately in 13 race- and 

age- stratified samples in self-reported non-Hispanic whites and non-Hispanic blacks (Table 1). 

This was done to minimize confounding by population stratification and to reduce the risk of 

inflated type 1 error. Analyses of dental caries experience in the primary dentition (dft) was 

investigated in children in 3-12 years of age and in adults 18 years or older in the permanent 

dentition (DMFT). One exception was the CEDAR sample, which included adolescents 15 years 

or older which were considered adults for the purpose of the present studies. Linear regression 

was used to test for genetic association between dft/DMFT and each SNP (under the additive 

genetic model while adjusting for the effects of age and sex). Because individuals of African 

ancestry can potentially exhibit population stratification in genetic analyses, the first four 

components of ancestry were included as covariates. Genetic association and ancestry modeling 

was performed in PLINK (Purcell et al., 2007). 
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 Stouffer’s inverse variance weighted method of meta-analysis was used to combine 

evidence of association across studies based on the sample size, direction of effect, and p value 

of the association test using the software tool METAL. Meta- analysis was performed for whites 

only, blacks only, and all participants combined. To adjust for multiple comparisons, the method 

by Li and Ji (Li and Ji, 2005) was used to compute the effective number of independent tests, 

which is less than or equal to the total number of correlated SNPs. For each gene, we computed a 

multiple-testing–adjusted p-value by setting α to 0.05 divided by the effective number of 

independent tests 

3.1.10 Dissertation Objective  

A custom panel was designed in an effort to follow up genes from the various GWAS studies 

from our group and to investigate a few families of candidate genes. In this dissertation, we 

analyzed several subsets of the custom panel data and investigated the associations between 

previously associated loci and dental caries. This begins with a review of the study of 

incremental features of dental development in Chapter 1, where an emphasis is placed on 

amelogenesis and mineralization. Chapter 2 contains a summary of previous GWAS studies of 

dental caries that was conducted by our research group. A description of the custom genotype 

panel and analyses methods are described in Chapter 3. This chapter is critical for the 

interpretation of the current studies. Building on these methodological foundations, Chapter 4 

investigates and follows up on putative genetic associations from a previous GWAS study that 

nominated loci in the permanent dentition. Here we asked: Whether variants in associated loci 

affect dental caries experience in children and/or adults? Are we able to detect genetic 

association in samples other than the original caries GWAS samples (COHRA1 white adults and 
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IFS children)? And lastly, are we able to detect interactions between candidate caries genes and 

fluoride exposures, brushing frequency and S. mutans (This chapter and the subsequent chapters 

are formatted for journal publication). 

In Chapter 5, given the biological functions of ion channels in tooth development, we 

asked the question: Whether common genetic variants in candidate ion channel genes are 

associated with dental caries in 13 race and age-stratified cohorts from six independent studies of 

non-Hispanic whites and blacks. This question is also examined in Chapter 6, but with candidate 

matrix metalloproteinases (MMPs) genes. This dissertation concludes with a discussion of our 

major findings and their implications for dental caries. In addition, these questions, along with 

future directions and the public health implications of this work are addressed in Chapter 7. 
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4.1 ABSTRACT 

Recent genome-wide association studies (GWAS) of permanent dentition caries have identified 

novel loci (AJAP1, TGFBR1, NR4A3, LYZL2, IFT88, ISL1, CNIH, BCOR, BCORL1, and 

INHBA) for further study. The aim of this study is to examine these putative genetic associations 

in six independent studies of non-Hispanic whites and blacks. In this study, we interrogated 158 

single nucleotide polymorphisms (SNPs) in 13 race- and age stratified samples from six 

independent studies (n =3600). All statistical analyses were performed separately for each 

sample, and results were combined across samples by meta-analysis. CNIH was significantly 

associated with caries via meta-analysis across eight adult samples, with four SNPS showing 

significant associations in white adults after gene-wise adjustment for multiple testing (p < 

0.001). BCOR also showed significant association in four SNPs, with the strongest evidence of 

association was observed in white adults (p=9.11x10-5). Mutations in this gene results in an X-

linked dominant Mendelian disorder oculofaciocardiodenta (OFCD) syndrome which is 

responsible for several dental abnormalities. These results corroborate the findings of GWAS in 

the permanent dentition for two types of tooth surfaces and reinforces the interest of SNPs in this 

gene. Furthermore, in adults, genetic association was observed for IFT88 in individual white 

samples (p < 0.005). IFT88 is thought to be involved in craniofacial, salivary gland and tooth 

development. Overall, this study strengthens that hypothesis that IFT88 influences caries risk 
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5.0  INTRODUCTION 

Dental caries is one of the most common, chronic, and multifactorial diseases that is prevalent in 

industrialized and developing counties (Petersen, 2009). Caries affects 90% of adults in the US 

(Beltran-Aguilar et al., 2005; Shaffer et al., 2013) and appears to concentrate in specific group of 

individuals and populations such as low-income and minorities. Studies have shown that despite 

being on a high cariogenic diet, some individuals are resistant to caries (Gustafsson et al., 1954) 

thus suggesting that resistance or susceptibility are a result of genetic influences. Heritability of 

dental caries experience has been supported by various studies, ranging from 30% to 55% 

(Boraas et al., 1988; Shaffer et al., 2011). The identification of genetic risk factors can help 

screen and identify susceptible patients and help better understand the contribution to genes in 

dental caries.   

Recent genome-wide association studies (GWAS) of dental caries in the permanent 

dentition have identified many common variants associated with this complex disease and have 

expanded our knowledge of genetic risk factors for caries phenotypes and genes that influence 

caries in adults.. The first GWAS for dental caries in the permanent dentition in adults identified 

several candidate genes with plausible biological roles for dental caries (Wang, Shaffer, et al., 

2012). In another study, GWAS for novel dental caries phenotypes nominated several candidate 

genes involved in host defense and tooth development (AJAP1, TGFBR1, NR4A3, LYZL2 and 

IFT88) (Shaffer et al., 2013). Surface level GWAS of pit-and-fissure (PF) and smooth (SM) 
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tooth surfaces caries implicated two homologous genes: BCOR and BCOL1, that play role a 

Mendelian disease involving multiple dental anomalies (Zeng et al., 2013). These notable 

findings from permanent dentition GWAS studies require follow-up and replication in 

independent samples in order to distinguish coincidental results from true associations. 

Therefore, the aim of this study seeks to examine the putative genetic associations of nominated 

genes (AJAP1, TGFBR1, NR4A3, LYZL2, IFT88, ISL1, CNIH, BCOR, BCORL1, and INHBA) in 

the original GWAS of dental caries in white adults. Previously, we have shown that both shared 

and unique genetic risk factors may affect dental caries of the primary dentition and permanent 

dentition (Wang et al., 2010). For this reason, we test whether the same genes are associated with 

dental caries in children and in a different racial population. 

5.1 METHODS 

5.1.1 Samples 

We included six independent samples in this study (Table1): The Center for Oral Health 

Research in Appalachia (COHRA1; N=1,769 (Polk et al., 2008)), Iowa Head Start (IHS; N=64 

(Slayton et al., 2005)) Study, Dental Strategies Concentrating on Risk Evaluation cohort (Dental 

SCORE; N=502 (Aiyer et al., 2007a; Aiyer et al., 2007b)), the Dental Registry and DNA 

Repository (DRDR; N=875 (Wang et al., 2012a)), and the Center for Education and Drug Abuse 

Research (CEDAR; N=241 (Tarter and Vanyukov, 2001)).  All study protocols were approved 

by the institutional review boards and further details of each of the six studies are described 

elsewhere (Stanley et al., 2014) . Dental caries experience in the permanent and primary 
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dentitions was scored via DMFT and dft indices based on full-mouth intra-oral examinations by 

trained dental examiners. DMFT in the permanent dentition was defined as the number of teeth 

scored as decayed, missing due to decay, or restored (filled), excluding the third molars. In the 

primary dentition, dft was defined as the number of teeth scored as decayed or restored. 

 

Table 1. Descriptive statistics samples: mean (range) or percentage, % 

Sample N Female sex Age mean (range) dft/DMFT1 
Children 

   
Primary 

COHRA1  
Whites 608 46.7% 7.3  (3.0-12.0) 2.3  (0-17) 
Blacks 81 46.9% 7.6  (3.2-11.8) 1.8  (0-8) 
IHS  
Whites 41 58.5% 4.1  (3.2-5.3) 6.3  (0-20) 
Blacks 23 52.2% 4.3  (3.4-5.6) 5.7  (0-17) 
IFS  
Whites 136 48.5% 5.2  (4.4-6.8) 1.2  (0-16) 

Adults 
   

Permanent  
COHRA1 
 Whites 994 62.8% 34.3  (18.0-75.0) 10.5  (0-28) 
 Blacks 86 70.9% 36.2  (18.2-60.8) 9.3  (9-28) 
Dental SCORE 
 Whites 277 63.2% 64.0  (48.0-78.0) 16.4  (2-28) 
 Blacks 225 72.9% 61.6  (47.0-79.0) 14.8  (1-28) 
DRDR  
Whites 702 50.0% 43.0  (18.0-74.8)  16.6  (0-28) 
Blacks 173 57.8% 44.5  (18.0-74.4) 16.5  (0-28) 
CEDAR  
Whites 173 31.2% 20.4  (15.7-28.6) 5.4  (0-21) 
Blacks 68 44.3% 20.2  (15.6-27.8) 6.4  (0-16) 

 
Values expressed as mean (range) or percentage. 
COHRA1, Center for Oral Health Research in Appalachia; IHS, Iowa Head Start study, IFS, 
Iowa Fluoride Study; Dental SCORE, Dental Strategies Concentrating on Risk Evaluation; 
DRDR, Dental Registry and DNA Repository and DNA Repository; CEDAR, Center for 
Education and Drug Abuse Research.  
1dft was the measure of caries experience of the primary dentition in children samples; DMFT 
was the measure of caries experience of the permanent dentition in adult samples. 
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5.1.2 Genotypes 

Participants were genotyped for a custom panel of single nucleotide polymorphisms (SNPs) by 

the Center for Inherited Disease Research (CIDR) using the Illumina GoldenGate platform (San 

Diego, USA). This panel was chosen for the purpose of following up putative associations from 

several GWAS scans. For this study, we investigated 158 SNPS in 10 genes (AJAP1, TGFBR1, 

NR4A3, LYZL2, IFT88, ISL1, CNIH, BCOR, BCORL1, and INHBA) to further investigate genetic 

associations in 13 race-and age-stratified samples from six independent studies of non-Hispanic 

whites and blacks. Further details regarding the criteria for the selection of SNPs and genotype 

quality assurance are presented elsewhere (Stanley et al., 2014) 

5.1.3 Statistical Analysis 

All analyses were performed separately in non-Hispanic whites and blacks and by dental caries 

experience in permanent (DMFT) and primary (dft) dentitions. For the permanent dentition 

(DMFT), analysis was limited to adults ≥18 years of age, with the exception of the CEDAR 

sample, for which adults were considered > 15 years of age.  Likewise, analysis for the primary 

dentition (dft) was limited to children 3-12 years of age. Separate analyses were also performed 

to reduce population stratification and to minimize the risk of inflated type 1 error.  

Under the additive model, linear regression was used to test for genetic association 

between the quantitative trait DMFT/dft and each SNP while adjusting for age and sex. 

Additionally, analyses for blacks were adjusted for the first four principal components of 

ancestry (PCA) because of the potential to display population stratification. Because our custom 

panel could not adequately measure population structure in whites, adjustments for ancestry were 
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only performed in black samples.  The association and PCA analyses were performed in PLINK 

(Purcell et al., 2007). Using the software METAL (Willer, Li, & Abecasis, 2010), Stouffer’s 

inverse variance method was used to combine p-values across studies while taking sample size 

and direction of effect into account. This was the most appropriate method to account for 

differences in the statistical information each cohort supplies such as differences in age ranges or 

phenotype information in primary vs. permanent dentitions.   

Meta-analysis was performed for non-Hispanic whites only, for blacks only, and for all 

participants. Given multiple comparison, we used the method by Li and Ji (J. Li & Ji, 2005) that 

computes the effective number of independent tests, which is less than or equal to the total 

number of correlated SNPs. For each gene, we computed a multiple-testing–adjusted p-value by 

setting α to 0.05 divided by the effective number of independent tests.  

5.1.4 Results 

Characteristics of the 13 race- and age-stratified samples are shown in the Table 1. Given the 

different age range and demography from populations, variation in dental caries experience was 

observed. Figure 1 show evidence of genetic association results for six loci that showed evidence 

of significant associations after for adult caries: LYZL2, BCOR, CNIH, IFT88, ISL1 and 

BCORL1. Figure 2 show genetic association for childhood caries for six genes of which loci, 

AJAP1 and IFT88 only yielded significant evidence of association for childhood caries. Negative 

log10 transformed p-values are plotted against all SNPs individually and combined by meta-

analysis.  

In adults, the strongest evidence of genetic association was observed for BCOR 

(rs17145638, p=2.77E-05) in COHRA1 whites. Individual samples COHRA1 white and black 
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adults both showed significant association for more than one SNP in this gene. Additionally, 

suggestive association across meta-analysis for white adults in one SNP was observed for BCOR. 

Meta-analyses across adult samples for 4 SNPs in CNIH yielded significant associations which 

appear to be driven by the individual COHRA1 white samples. We did not detect any 

significance evidence of association with childhood caries for these genes.  

   IFT88 showed significant association for one or more SNPs in individual samples 

COHRA1 and Dental SCORE whites. Meta-analyses across adult samples for one SNP were also 

significantly associated with adulthood caries. In addition, IFT88 SNP rs9579887 showed 

suggestive association (p =0.006) for Dental SCORE white adults. Other significant associations 

were observed for COHRA1white adults for LYZL2 and ISL1 and Dental SCORE black adults 

for BCORL1. Meta-analyses for adult samples for two SNPs in ISL1 were also significant. 

The strongest association signal in children was observed for SNP rs1024139 in AJAP1 

for COHRA1 whites. This SNP was also significant in the meta-analysis across all five 

childhood samples (p < 0.001). In COHRA1 white children, SNP rs6490590 in IFT88 was 

significantly associated with childhood caries (p = 0.001). Overall, there were no SNPs that 

displayed significant association or suggestive association in both adults and children. 

5.1.5 Discussion 

Recent GWAS studies of permanent dentition caries have identified novel loci (AJAP1, 

TGFBR1, NR4A3, LYZL2, IFT88, ISL1, CNIH, BCOR, BCORL1, and INHBA) for further study. 

In this study, we evaluated a sample close to 3,600 participants in six independent samples for 

evidence of genetic associations in 10 genes nominated for adulthood dental caries. Selection of 
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these nominated genes were based on their biologically plausible effects on caries relevance to 

oral health disease, and proximity to an associated SNP.  

Consistent with the GWAS in permanent dentition for pit-and-fissure surfaces, (Zeng et 

al., 2013), we observed statistically significant evidence of association for rs17145638 (BCOR) 

for adulthood caries in COHRA1 whites. This SNP is located in the 3′ downstream region of the 

BCOR gene (BCL6 co-repressor). BCOR plays a critical role in transcription regulation during 

early embryonic development (Ng et al., 2004). Mutations in BCOR result in an X-linked 

dominant Mendelian disorder oculofaciocardiodental (OFCD) syndrome which is responsible for 

several dental abnormalities (Hilton et al., 2009; Noda, Hamachi, Inoue, & Maeda, 2007). 

Furthermore, a study in mice resulted in dentinogenesis defects and retardation of tooth root 

development from silenced Bcor expression by RNA interference in dental tissues (Cai et al., 

2010). There has been no directed established role linking BCOR to dental caries. BCOR was not 

associated with caries in children 

Likewise, for BCORL1, a significant association was observed on chromosome Xq26.1 

near BCORL1 (BCL6 co-repressor-like 1) for adulthood caries in Dental SCORE blacks 

(rs3788848, p= 0.001). SNP rs3788848 is located in the 3′ region downstream of BCORL1 and 

also in the 3′ UTR region of ELF4 (involved in innate immunity). This SNP showed suggestive 

association for SM surface caries in COHRA1 white adults from our previous permanent GWAS 

study of SM surface caries. Interestingly, one study reported chromosome Xq to be associated 

with low caries susceptibility (Vieira, Marazita, & Goldstein-McHenry, 2008). BCORL1 is a 

strong transcriptional repressor that is similar in sequence with BCOR (Pagan et al., 2007). 

BCORL1 was not associated with caries in children and has no known function that directly 
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relates to cariogenesis. The results of BCOR and BCOL1 together, strengthen the hypothesis that 

genetic variation in these loci influences the risk for dental caries in the permanent dentition. 

Across all samples of adults combined, CNIH was significantly associated with caries 

after consideration of multiple comparisons. However, the association signals were driven 

primarily by COHRA1 whites, who were also included in our original GWAS. CNIH showed no 

evidence of genetic association for caries in children and has no known or biologically plausible 

role in dental caries, though a previous report found CNIH involved in regulation of carious 

tissue (Wang, Shaffer, et al., 2012). 

Although SNPs in CNIH yielded the smallest p values for adulthood caries, IFT88 show 

assuring evidence of genetic association for adulthood caries. IFT88, a gene thought to be 

involved in tooth development (Ohazama et al., 2009), yielded significant evidence of 

association for one SNP in Dental SCORE white adults. In addition, IFT88 showed significant 

association for adult caries for COHRA1 whites and across eight adulthood samples via meta-

analysis. Furthermore, IFT88 was associated with childhood caries for one SNP in COHRA1 

whites. 

While AJAP1 was nominated in a permanent dentition GWAS of adults, a stronger 

association signal was observed for children. In mice and rat models, AJAP1’s protein product 

SHREW1 is involved in tooth development by interacting with a mediator of matrix 

metalloprotease (MMP) activity (Schreiner et al., 2007; Schwab et al., 2007). There was no 

evidence of associations in this gene for caries in adults and no direct role in caries etiology. 

Therefore, the following evidence along with our reported results suggests that AJAP1 may play 

in influential role in tooth development.  
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ISL1, a gene that is exclusively expressed in epithelial cells of developing incisors, and is 

a crucial regulator of jaw and tooth development in mice (Mitsiadis, Angeli, James, Lendahl, & 

Sharpe, 2003) showed evidence of association for COHRA1 whites and across meta-analyses for 

adults. This gene showed no evidence of genetic association for caries in children. Moreover, 

CNIH has no known or biologically plausible role in dental caries. LYZL2, which is involved in 

host defense, (Zhang et al., 2005) did not yield evidence of association for any samples except 

for COHRA1 white adults. No associations were observed for either children or adult caries for 

loci NR4A3, TGFBR1and INHBA. 

Results from this study corroborate with the findings of our original permanent dentition 

GWAS for CORHA1 white adults (BCOR, CNIH, IFT88, ISL1 and LYZL2) and reinforces 

interest of SNPs in these genes. While providing support for the associations within these genes, 

we also observed heterogeneity across the samples just as our previous previously published-

caries literature did. This may result from associations that were specific to individuals and less 

power to detect association in our racial ethnic populations. For the most part, the significant and 

suggestive associations identified in this study reinforces the notion that genetic variation in loci 

BCOR1, CNIH and IFT88 influence susceptibility to dental caries.  Additional investigations 

such as fine-mapping are needed to further analyze these genes and the role of their variants in 

caries 
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Figure 1. Genetic association for adults for six genes in the permanent dentition 

Genetic association in adult samples for six genes nominated in genome-wide association studies 
of caries in adults. Negative log10 transformed p-values are shown for adult samples: Center for 
Oral Health in Appalachia (COHRA1 (red)), Dental Strategies Concentrating on Risk Evaluation 
(Dental SCORE (green)), Dental Registry and DNA Repository (DRDR (orange)), and Center 
for Education and Drug Abuse Research (CEDAR (yellow)). Circles represent white samples, 
and squares represent black samples. White diamonds represent meta-analysis across all white 
adult samples, and gray diamonds represent meta-analysis across all black and white adult 
samples combined. The dotted lines represent the p threshold after adjustment for the number of 
independent single-nucleotide polymorphisms within a gene. The physical location and 
directions of the genes are denoted by the blue arrows. 
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Figure 2. Genetic association in children for six genes in the primary dentition 

Genetic association in children samples for two genes nominated in a genome-wide association 
study of childhood caries. Childhood samples: Center for Oral Health in Appalachia (COHRA1 
(red)), Iowa Head Start (IHS (blue)), and Iowa Fluoride Study (IFS (purple)). Circles represent 
white samples, and squares represent black samples. White diamonds represent meta-analysis 
across all white childhood samples for children, and gray diamonds represent meta-analysis 
across all black and white childhood samples combined. The dotted lines represent the p 
threshold after adjustment for the number of independent single-nucleotide polymorphisms 
within a gene. The physical location and directions of the genes are denoted by the blue arrows. 
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5.2 GXE ANALYSIS OF BCOR AND BCORL1 

Many common diseases are believed to result from the interplay of genetic and environmental 

factors. Considering the multifactorial nature of dental caries, environmental factors such as 

fluoride exposure, bacterial flora, socioeconomic factors including access to health care, saliva 

composition, and poor oral hygiene are variables that contribute to caries development and 

progression (Martinez-Mier and Zandona, 2013). Previous studies have suggest the presence of 

gene/SNP-by-environment-interactions (GxE) between candidate caries genes and environment 

factors such as fluoride exposure, tooth brushing frequency, and s.mutans (Streptococcus 

mutans) (Patir et al., 2008; Shaffer et al., 2015; Slayton et al., 2005; Zeng et al., 2013). Though 

we have speculated a possible role in GxE interactions on dental caries experience in regards to 

the inconsistencies of heterogeneity across studies in our follow-up report, we had yet investigate 

for evidence of such interactions. Therefore, we have extended our statistical models of dental 

caries in the permanent dentition follow-up study to include the contribution of GxE interactions 

in observation of heterogeneity across studies.  

SNPs within BCOR (rs17145638) and BCORL1 (rs3788848) genes were selected 

according to thier significant association with caries from a recent GWAS study of pit-and-

fissures and smooth surface caries in the permanent dentition (Zeng et al., 2013). Additionally, 

these SNPs yielded significant associations in the previously mentioned follow-up study with 

caries in the permanent dentition in adults. Both studies reported significant associations in 

COHRA1 samples with the exception of BCORL for the follow-up study. For this reason, we 

considered the explanation that the associations could be attributed to environmental factors such 

as fluoride exposure and S. mutans that are present in the initial study (COHRA1) population but 

not in the others. In addition, the previous studies did not included modeling the interactions of 
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these SNPs and known risk factors with caries experience. Therefore, this study aims to 

investigate X chromosome SNPs rs17145638 and rs3788848 effects on dental caries 

susceptibility and to determine whether their effects are moderated by exposures of fluoride and 

S.mutans. 

5.2.1 Methods 

Samples 

The Center for Oral Health Research in Appalachia, cohort 1 (COHRA1) white adults and 

children were used this analysis (N = 1,602). Details regarding recruitment of samples are 

explained in previous sample section.  

Phenotypes 

Dental caries experience in the permanent and primary dentition was scored via DMFT and dft 

indices, respectively as previously described in detailed. 

Covariates 

Seven variables in our dataset were used to construct three GxE interaction models for the 

genetic association tests: age at examination, sex, home water fluoride level, tooth brushing 

frequency, the presence of S. mutans and SNPs within BCOR (rs17145638)  and BCORL1 

(rs3788848). The presence of S. mutans was tested from participants’ saliva samples using 

Dentocult®SM Strip mutans kit or determined genetically by a real-time polymerase chain 

reaction (PCR) assay with DNA profiles extracted from the saliva (Polk et al., 2008). 

Dichotomous measurements of S. mutans were coded as 1 if present, and 0 if not. Measurements 

of fluoride were detected by a fluoride-specific electrode in household water samples from 

COHRA1 participants. Home water source fluoride concentrations were coded as less than 0.7 
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ppm vs. greater than or equal to 0.7 ppm. Brushing frequency was measured qualitatively from 

self-reported questioners of which was coded into binary variables of daily brushing (once or 

more vs. less than once a day). 

SNPs rs17145638 and rs3788848 were coded as ordinal variables, according to the number of 

copies of the rare variant. 

 

 
Table 2. Characteristics of COHRA1 white samples: mean (range) or percentage, % 

 
a caries prevalence was defined as dfs ≥ 1 in children or DMFT ≥ 1 in adults  
b dft was the measure of caries experience of the primary dentition in child samples; DMFT was 
the measure of caries experience of the permanent dentition in adult samples 
 
 

Characteristics of the study samples are describe in Table 2. We constructed three models to test 

SNP-by-environment interactions effects using linear regression while adjusting for age and sex 

in COHRA1 white adults and children. The three models are as follows: 

Model 1: DMFT/dft=β0 + β1*Age +β2*Sex + β3*Fluoride (Water Source)+ β4*SNP + 

β5*SNP*Fluoride (Water Source) 

Model 2: DMFT/dft=β0 + β1*Age +β2*Sex + β3*Brush frequency+ β4*SNP + β5*SNP*Brush 

frequency 

Model 3: DMFT/dft=β0 + β1*Age + β2*Sex + β3*S. Mutants+ β4*SNP + β5*SNP*S.Mutans 

 

sample N female 
sex  age, years caries 

prevalencea dft/DMFTb fluoridated 
water (%) 

daily 
tooth 
brushing  

tooth 
brushing 
per day 

S. mutans 

children 
        

 
COHRA1 608 46.7 7.3  (3.0-12.0) 55.4 2.3  (0-17) 60.2 92.8 1.6 (0-4) 1.5 (0-2) 

adults 
        

 
COHRA1 994 62.8 34.3  (18.0-75.0) 96.5 10.5  (0-28) 58.8 89.3 1.5 (0-2) 1.5 (0-2) 
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Because the numbers of rare homozygotes precluded association tests, they were combined with 

the heterozygotes and the additive model was longer taken into consideration. Therefore, a 

dominant genetic model was used, encoding 0 and 1, (rare homozygote (CC) + heterozygote 

(CT) vs. wild type homozygote (TT)). We used an α of 0.05 to declare statistical significance and 

the wild type genotype was used as the reference category. All interaction models and 

descriptive statistics were generated in R (R Development Core Team, 2010).   

5.2.2 Results 

Interpretation from the three GxE interaction models are shown in Table 3. Three models were 

used to test the effects of two fluoride exposures and the presence of S. mutans separately in 

COHRA1 white adults and children. Over all, one significant interaction was observed for BCOR 

SNP rs17145638 with home water fluoride concentrations in COHRA1 white children. Increased 

caries was observed for children carrying the C allele who were exposed to home fluorinated 

water less than 0.7 ppm than those who were not. Interestingly, the presence of S. mutans was 

associated with a significant increase in dentals caries in both children and adults samples when 

testing the main effects (data not shown). A similar trend is found throughout our SNP 

interaction models.  

5.2.3 Conclusion 

Results from this analysis supports the notion that fluorinated water is an important source in the 

reduction of dental caries when populations have adequate exposures to it. Further investigation 
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of GxE interactions with candidate caries genes may have the ability to identify individuals for 

whom risk factors are most relevant for caries susceptibility.  
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       Table 3. GxE results for BCOR and BCORL1 

COHRA1 Adults        COHRA1 Children 

 
Beta P-val   Beta P-vale  

BCOR/rs17145638         
Model 1        

Age 0.07931 0.022609   -0.01066 0.8795  
Sex 1.07687 0.087883   -0.82048 0.0160  
SNP -2.89679 0.013440   -1.01241 0.1241  

Fluoride > 0.7 0.30864 0.648180   -0.83335 0.0322*  
SNP*Fluoride > 0.7 1.56786 0.342458   1.76793 0.0407 *  

Model 2        
Age 0.09450 4.39e-05 *   -0.04005 0.4372  
Sex 0.88403 0.04339 *   -0.50542 0.0492 *  
SNP -2.84158 0.11493   -0.30860 0.7656  

Brush<once a day -2.14239 0.00333 *   -0.30521 0.6241  
SNP*Brush < once a day 0.72466 0.70028   0.46373 0.6714  

Model 3        
Age 0.07902 0.000806 *   -0.14335 0.01805 *  
Sex 0.70042 0.110776   -0.69098 0.00961 **  
SNP -2.76539 0.035993 *   -0.24496 0.65192  

S. Mutans (yes) 1.67196 0.002415*   1.80458 1.66e-09 *  
SNP*S. Mutans (yes) 0.34107 0.814032   -0.14173 0.84225  
BCORL1/rs3788848        

Model 1        
Age 0.08337 0.01674 *   0.01021 0.885  
Sex 0.70277 0.27318   -0.75518 0.030 *  
SNP -0.81259 0.41392   -0.40363 0.479  

Fluoride > 0.7 -0.20676 0.79114   -0.66260 0.126  
SNP*Fluoride > 0.7 2.41987 0.05719   0.54652 0.450  

Model 2        
Age 0.09841 2.37e-05 *   -0.03928 0.4454  
Sex 0.49568 0.2685   -0.55932 0.0312*  
SNP 1.62050 0.2153   -0.93246 0.3898  

Brush<once a day -1.73608  0.0421 *   -0.57492 0.3404  
SNP*Brush < once a day -0.86276 0.5310   1.28406 0.2500  

Model 3        
Age 0.08445 0.000383 *   -0.13997 0.02107 *  
Sex 0.26806 0.553128   -0.70920 0.00879 *  
SNP 1.41690 0.134631   0.52265 0.22310  

S. Mutans (yes) 1.79211 0.005554 *   2.08888 5.07e-10 *  
SNP*S. Mutans (yes) -0.62066 0.558816   -0.94425 0.09334  
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6.1 ABSTRACT 

Ion channels play an important role in regulating and maintaining the calcium and pH 

homeostasis that is critical for tooth development. As part of a larger candidate gene study, we 

investigated 480 single-nucleotide polymorphisms (SNPs) in seven ion channel genes, including 

CACNA1C, CACNA2D1, CACNB2, CACNG2, KCNH1, KCNK5, and KCNK17, several of which 

are known to play a role in channelopathies, including those associated with dental defects. We 

tested association of these genes with dental caries in 13 race- and age-stratified cohorts from six 

independent studies of whites and blacks. We performed analyses independently for each cohort 

and synthesized results by meta-analysis across five childhood cohorts and across eight adult 

cohorts. After gene-wise adjustment for multiple testing, two SNPs in CACNA2D1 were 

significantly associated with dental caries via meta-analysis across the five childhood cohorts, 

and in one individual childhood cohort (p-values =3.8E-04 and 7.1E-04). In adults, genetic 

association was observed in three individual cohorts for potassium channel genes KCNH1 and 

KCNK5 (p-values<0.001), but no single SNP was significant via meta-analysis across all eight 

adult cohorts. These findings strengthen the hypothesis that ion channel genes, particularly those 

involved in channelopathies, may affect the risk of dental caries. 
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6.2 INTRODUCTION 

Dental caries is the most common, chronic, and costly infectious disease worldwide, affecting 

more than 90% of the adult population and 23% of children in the U.S. Dental caries is a 

multifactorial disease initiated by microbiological shifts within the complex oral biofilm and is 

affected by salivary flow and composition, exposure to fluoride, consumption of dietary sugars, 

tooth structure, genetic predisposition, gene-by-environment interactions and by preventive 

behaviors such as tooth brushing (Anderson, 2002; R. H. Selwitz, Ismail, & Pitts, 2007). Studies 

support heritability of caries risk, ranging from 30 to 60% (Boraas et al., 1988; Bretz et al., 2005; 

Shaffer et al., 2012; Wang et al., 2010). Despite the importance of genetics, only a few genes 

associated with susceptibility to caries have been identified thus far. 

To date, several candidate gene studies have investigated genetic associations with dental 

caries based on the genes’ known biological functions. For instance, genes affecting tooth 

development (Tannure, Kuchler, Lips, et al., 2012; Wang et al., 2010), taste preference 

(Pidamale et al., 2012; Wendell et al., 2010) and enamel genes (Deeley et al., 2008; Slayton et 

al., 2005) (Gasse et al., 2013; Jeremias et al., 2013; Patir et al., 2008; Shimizu et al., 2012; 

Wang, Willing, et al., 2012) have been studied. These studies have shown varying levels of 

evidence that genetic variation in candidate genes influences susceptibility to dental caries, and 

cumulatively reinforce the important role of genetics in disease susceptibility.   

Another family of candidate genes warranting investigation is the ion channel genes. Ion 

channels control the flow of ions across biological membranes and are classified according to the 

ionic species involved: potassium (K+), sodium (Na+), calcium (Ca+), chloride (Cl-) and 

undefined cations (Kim, 2014). In addition, ion channels perform many functions, such as 

electrical signal transduction, regulation of cell volume, transepithelial transport, regulation of 
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cytoplasmic or vesicular ion concentration and pH. Therefore, mutations in ion channels can 

cause diseases in many tissues including clinical dental phenotypes. For example, ion channel 

genes have been previously shown to be involved in altered tooth eruption, root dysplasia, 

amelogenesis imperfecta, dentine dysplasia, and tooth agenesis (Duan, 2014). Given the 

biological functions of ion channels in tooth development, we hypothesized that ion channel 

genes may influence the risk of dental caries. Therefore, in the current study, we investigated 480 

SNPs within seven ion channel genes: CACNA1C, CACNA2D1, CACNB2, CACNG2, KCNH1, 

KCNK5, and KCNK17. 

These ion channel genes are generally considered to be tooth development genes, though 

this conclusion is largely based on the tooth defects observed in individuals who are affected by 

channelopathies (a disease involving dysfunction of an ion channel), in addition to a limited 

amount of supporting evidence. We tested these genes for associations with dental caries in 13 

race- and age-stratified cohorts from six independent studies of non-Hispanic whites and blacks.  

6.3 METHODS 

6.3.1 Samples 

Study participants were drawn from six independent samples: The Center for Oral Health 

Research in Appalachia (COHRA1; N=1,769), which recruited households from rural 

Appalachian communities in Pennsylvania and West Virginia (Polk et al., 2008); Iowa Head 

Start (IHS; N=64) Study, which recruited low-income children aged 3 to 5 years old (Slayton et 

al., 2005); The Iowa Fluoride Study (IFS; N=136), which recruited children from urban and 



 

59 

suburban Iowa (Wang, Willing, et al., 2012); The Dental Strategies Concentrating on Risk 

Evaluation cohort (Dental SCORE; N=502), which recruited adult participants from the 

Pittsburgh area originally enrolled to study racial and socioeconomic factors leading to 

disparities in cardiovascular risk (Aiyer, Kip, Marroquin, et al., 2007; Aiyer, Kip, Mulukutla, et 

al., 2007); The Dental Registry and DNA Repository (DRDR; N=875), which recruited urban 

adults seeking treatment at the University of Pittsburgh School of Dental Medicine (Shaffer et 

al., 2013); and The Center for Education and Drug Abuse Research (CEDAR; N=241), which 

included the adolescent offspring of fathers from the Pittsburgh area enrolled in a study of 

substance use risk factors (Tarter & Vanyukov, 2001). All study procedures were reviewed and 

approved by the Institutional Review Boards for each university site. Details of each of the six 

studies are described elsewhere (Stanley et al., 2014) 

6.3.2 Phenotypes 

A dentist or research dental hygienist assessed dental caries in all participants by full-mouth 

intra-oral examination, from which DMFT and dft indices were calculated. DMFT in the 

permanent dentition was defined as the number of teeth scored as decayed, missing due to decay, 

or restored (filled), excluding the third molars. In the primary dentition, dft was defined as the 

number of teeth scored as decayed or restored. 

6.3.3 Genotypes 

All participants were genotyped for a custom panel of single nucleotide polymorphisms (SNPs) 

for 71 genes of interest by the Center for Inherited Disease Research (CIDR) at Johns-Hopkins 
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University using the Illumina GoldenGate platform (San Diego, USA). The genes on the custom 

panel (including the seven ion channel genes) were chosen based on their proximity to a GWAS 

hit and/or experimental or biological evidence related to caries etiology or oral health, and 

included some a priori candidate genes. For this study, we investigated 480 SNPs in seven ion 

channel genes: CACNA1C, CACNA2D1, CACNB2, CACNG2, KCNH1, KCNK5, and KCNK17. 

All participants were genotyped for a custom panel of single nucleotide polymorphisms 

(SNPs) for 71 genes of interest by the Center for Inherited Disease Research (CIDR) at Johns-

Hopkins University using the Illumina GoldenGate platform (San Diego, USA). The genes on 

the custom panel (including the seven ion channel genes) were chosen based on their proximity 

to a GWAS hit and/or experimental or biological evidence related to caries etiology or oral 

health, and included some a priori candidate genes. For this study, we investigated 480 SNPs in 

seven ion channel genes: CACNA1C, CACNA2D1, CACNB2, CACNG2, KCNH1, KCNK5, and 

KCNK17. Further details regarding the criteria for the selection of SNPs and genotype quality 

assurance are presented elsewhere (Stanley et al., 2014). 

6.3.4 Statistical Analysis 

All analyses were performed separately in non-Hispanic whites and blacks. This was done to 

minimize confounding by population stratification and to reduce the risk of inflated type 1 error. 

Additionally, analyses for blacks were adjusted for the first four principal components of 

ancestry (PCA). Because our samples are heterogeneous, varying by age, race, and dental caries 

experience, the six studies were stratified into 13 cohorts by race and age. For the permanent 

dentition (DMFT), analysis was limited to adults ≥18 years of age, with the exception of the 

CEDAR sample, for which adults were considered > 15 years of age.  Likewise, analysis for the 
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primary dentition (dft) was limited to children 3-12 years of age. Genetic associations between 

each SNP and dft/DMFT were tested using linear regression under the additive model while 

adjusting for age and sex.  

Association analyses and PCA were performed in PLINK (Purcell et al., 2007). 

Stouffer’s inverse variance weighted method of meta-analysis was used to combine evidence of 

association across studies using METAL (Willer et al., 2010). Meta-analysis was performed for 

non-Hispanic whites only, for blacks only, and for all participants.  Because of the heterogeneous 

nature of our studies (differences in age, race & caries experience), we did not fit a model-based 

meta-analysis or conduct a formal test of heterogeneity. Instead, we combined p-values across 

studies while taking sample size and direction of effect into account. To adjust for multiple 

comparisons, we used the method by Li and Ji (Li and Ji, 2005) that computes the effective 

number of independent tests, which is less than or equal to the total number of correlated SNPs. 

For each gene, we computed a multiple-testing–adjusted p-value by setting α to 0.05 divided by 

the effective number of independent tests 

6.3.5 Results 

Table 1 summarizes the13 race- and age-stratified cohorts, representing a range of ages and 

caries experiences from populations of different risk profiles. Table 4 shows results of the 

genetic association for seven SNPs in four ion channel genes that met the threshold for gene-

wise significance after consideration of multiple comparisons. Figures 3 and 4 illustrate evidence 

of association adults and children, respectively, for all six ion channel genes in individual 

samples and combined via meta-analysis.  
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For CACNA2D1, a significant association was observed in meta-analysis across 

childhood samples for SNP rs6467890 (p=3.6E-04), and there was nominal evidence of 

association in IFS white children for rs38564 (p=7.1E-04). Within this gene, there were multiple 

SNPs in multiple cohorts with p-values near, but not reaching, the significance threshold. 

Nominal association was observed for COHRA1 white children in a SNP downstream from 

KCNK17 (rs9471075; p=0.002). 

The strongest genetic association for dental caries in adults was observed in KCNH1 for 

SNPs (rs4951657; p=1.0E-04) and (rs7553542; p=4.9E-04) in COHRA1 white samples. SNP 

rs2592958 in CACNG2 was significantly associated in Dental SCORE White adults (p=1.2E-03). 

COHRA1 black adults (rs243458; p=1.0E-03) and CEDAR whites (rs2758901; p=6.1E-04) 

showed evidence of association downstream from KCNK5. In CEDAR whites, nominal evidence 

of association was observed in CACNA1C for rs2239082 (p =7.1E-04).There was no significant 

evidence of association observed for meta-analysis across all adult samples, nor was there a SNP 

that was significantly associated via meta-analysis for children and adult samples.  

We further explored our data through forest plots to visualize heterogeneity among 

cohorts. Figure 5 illustrates forest plots generated for two SNPs from associated loci CACNA2D1 

and KCNK5, which displayed significant or nominal evidence of association. Despite the 

differing p-values, the CACNA2D1 forest plot for SNP rs6467890 shows no influence on caries 

risk among white adults, but shows some effect for IHS black children and possibly Dental 

SCORE and DRDR black adults. 
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Table 4.  Results of the genetic association for seven SNPs in four ion channel genes  
 

Sample Gene SNP Positionᵃ Chr MAFᵇ Base 
change 

Location/ 
function 

P-value 

Children         
Metac CACNA2D1 rs6467890 81935213 7 0.2969 A-G Intron 3.6E-04 
IFS (W) CACNA2D1 rs38564 81891089 7 0.2676 G-T Intron 7.1E-04 
Adults         
Dental Score (W) CACNG2 rs2592958 37084981 22 0.0459 C-T Intron 1.2E-03 

COHRA1 (W) 
COHRA1 (W) 

KCNH1 
KCNH1 

rs4951657 
rs7553542 

211014703 
211001866 

1 
1 

0.3957 
0.4095 

A-T 
C-G 

Intron 
Intron 

1.0E-04 
4.9E-04 

COHRA1 (B) KCNK5 rs2434581 39202106 6 0.2442 C-T Downstream 1.0E-03 
CEDAR   (W) KCNK5 rs2758901 39257716 6 0.1981 A-G Downstream 6.1E-04 
     

ᵃBased on Build 37 
ᵇMAF = minor allele frequency in the COHRA1 sample 
 W= Whites 
 B = Blacks 
cMeta = Meta-analysis for black and white children samples combined 

 

6.3.6 Discussion 

Previous studies have demonstrated the importance of ion channels with respect to tooth 

development and tooth-related disorders (Duan, 2014). In this candidate gene study, we 

investigated 480 SNPs in seven ion channel genes for evidence of genetic association in 

childhood and adult caries. After adjustment for multiple testing, we found that CACNA2D1 was 

significantly associated with dental caries risk in meta-analysis across all samples of children 

combined.  Interestingly, CACNA2D1 was not associated with caries risk in adults and its role in 

caries etiology is unknown.  However, one previous study found elevated mRNA expression of 

CACNA2D1 in traumatized apical pulp of vertically root-fractured vital teeth (Kaneko et al., 

2010). Nominal evidence of association in COHRA1 white children was observed for rs9471075 
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downstream from KCNK17, which also showed suggestive evidence of association for smooth 

surface caries experience in white children from a previous caries GWAS study (Zeng et al., 

2014). These findings suggest that this particular variant may be influential in childhood caries. 

However, more work is needed to conclusively establish this relationship.  

In adults, significant associations for two SNPs in KCNH1 were observed in COHRA1 

whites. KCNH1 encodes a member of the potassium channel, voltage-gated, and plays a role in a 

variety of functions such as heart rate, neurotransmitter release, smooth muscle contraction and 

neuronal excitability (Li et al., 2006). This gene is expressed in the brain and in myoblasts in 

which overexpression may cause growth of cancer cells and contribute to tumor proliferation. 

KCNH1 showed no evidence of association in children, and its relation to caries etiology is 

unknown. 

A significant association for one SNP in CACNG2 was observed for caries in Dental 

SCORE White adults. Mutations in this gene causes mental retardation, autosomal dominant 10 

(MRD10): a disorder characterized by significantly below average general intellectual 

functioning associated with impairments in adaptive behavior and manifested during the 

developmental period (Hamdan et al., 2011). Cases with recognizable genetic etiologies of 

intellectual disabilities are known to present a wide range of dental manifestations, such as 

severe caries, cleft lip/palate, enamel hypoplasia, and delayed dental eruption to name a few. 

Convincing evidence of association for a SNP in CACNA1C (though not meeting the 

threshold for gene-wise significance) was observed in CEDAR white adults. Mutations in 

CACNA1C are responsible for Timothy Syndrome, a Mendelian disease that affects many parts 

of the body, including the heart, fingers and toes, the nervous system and causes small, 

misplaced teeth and frequent cavities in children (Hennessey et al., 2014).  
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  Two SNPs downstream from KCNK5 showed evidence of association in COHRA1 black 

adults and CEDAR white Adults. KCNK5 encodes the potassium channel subfamily K member 5 

protein, a two-pore domain which is expressed in many types of cells and is involved in the 

important function in maintaining the resting membrane potential (Lancet  et al., 2008). KCNK5 

was not associated with caries in children, and its relation to caries etiology is unknown. Though, 

one previous report found TREK-1 (a member of the two-pore domain potassium channel family) 

to be to be strongly expressed in the membrane of coronal odontoblasts (Magloire et al., 2003). 

TREK-1 channels are considered as thermo-sensors and assumed to be main mediator targets of 

pain (Murbartian et al., 2005). 

Some limitations to our study should be noted. In particular, our ability to detect 

associations could be impacted by insufficient power across samples, differences in age, genetic 

heterogeneity among racial groups and sampling errors. Nevertheless, we identified associations 

in multiple ion channel genes that are known to play a role in channelopathies that could possibly 

influence the risk for dental caries.   

Overall, this study has strengthened the hypothesis that ion channel genes may influence 

the risk for dental caries. Because ion channel dysfunction can cause a spectrum of diseases that 

manifest a variety of clinical dental phenotypes, further investigation of ion channel genes and 

their involvement in dental defects is warranted.  More importantly, understanding ion channels 

and their genetic contributions to dental caries can aid in the process of discovering innovative 

prevention and treatment strategies, as well as early detection of high-risk individuals. 
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Figure 3. Genetic association in adult samples for six ion channel genes 

Genetic association in adult samples for six ion channel genes. Negative log10 transformed p-
values are shown for adult samples: Center for Oral Health in Appalachia (COHRA1 (red)), 
Dental Strategies Concentrating on Risk Evaluation (Dental SCORE (green)), Dental Registry 
and DNA Repository (DRDR (orange)), and Center for Education and Drug Abuse Research 
(CEDAR (yellow)). Circles represent white samples, and squares represent black samples. White 
diamonds represent meta-analysis across all white adult samples, and gray diamonds represent 
meta-analysis across all black and white adult samples combined. The dotted lines represent the 
p threshold after adjustment for the number of independent single-nucleotide polymorphisms 
within a gene. The physical location and directions of the genes are denoted by the blue arrows. 
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Figure 4. Genetic association in children samples for six ion channel genes 

Genetic association in children samples for six ion channel genes. Negative log10 transformed p-
values are shown for childhood samples. Childhood samples: Center for Oral Health in 
Appalachia (COHRA1 (red)), Iowa Head Start (IHS (blue)), and Iowa Fluoride Study (IFS 
(purple)). Circles represent white samples, and squares represent black samples. White diamonds 
represent meta-analysis across all white childhood samples for children, and gray diamonds 
represent meta-analysis across all black and white childhood samples combined. The dotted lines 
represent the p threshold after adjustment for the number of independent single-nucleotide 
polymorphisms within a gene. The physical location and directions of the genes are denoted by 
the blue arrows. 
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Figure 5. Forest plots 

 
Associated with childhood and nominally associated with adult caries respectively. For the two 
SNPs (rs6467890 and rs11961538), effect size (beta) and 95% confidence intervals are plotted 
for each cohort. Listed on the horizontal axis are the race- and age-stratified cohorts and sample 
sizes. Minor allele frequencies (MAF) of the associated SNP in the COHRA1 sample. The x-axis 
represents the effect estimate per study and the red vertical dashed line represents having no 
effect. Horizontal lines represent 95% confidence intervals.  
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7.1 ABSTRACT 

Recent evidence suggests that matrix metalloproteinases (MMPs) and their tissue inhibitors are 

involved in the caries process. Here we investigated 28 genetic variants spanning the MMP10, 

MMP14 and MMP16 genes to detect association with dental caries experience in 13 age- and 

race-stratified (N=3600) samples from six parent studies. Analyses was performed separately for 

each sample, and results were combined across samples by meta-analysis. Two SNPs in the 

region of MMP16 were significantly associated with caries in an individual sample of white 

adults and via meta-analysis across 8 adult samples after gene-wise adjustment for multiple 

comparisons. Regarding the two SNPs, noteworthy is SNP rs2046315 (p = 8.14x10-8) association 

with caries in adults which corroborates with previous association studies of caries.  

7.2 INTRODUCTION 

Despite the significant amounts of improvements in oral health in the U.S, dental caries still 

remains the most prevalent chronic disease among children and is steadily increasing in adults. 
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The etiology of caries is multifactorial, involving a number of environmental factors, including, 

salivary flow, microbial flora, fluoride exposure, tooth morphology, and among many others. 

Although these environmental factors substantially contribute to the disease itself, the impact of 

genetic factors play a considerable role that has been recognized and studied for a long time 

(Townsend, Aldred, & Bartold, 1998).  

Evidence of genetic contributions to caries have been detected in studies showing 

heritability estimates between 40% and 60% (Boraas et al., 1988) (Wang et al., 2010) (Wendell 

et al., 2010). Furthermore, over the past decade, there has been several published studies that 

have nominated candidate genes based on their known biological functions in oral health. To 

name a few, candidate genes involved in enamel formation (Deeley et al., 2008; Patir et al., 

2008; Slayton et al., 2005; Wang, Shaffer, et al., 2012), tooth development, (Tannure, Kuchler, 

Lips, et al., 2012; Wang, Shaffer, et al., 2012), taste preference (Kulkarni et al., 2013; Pidamale 

et al., 2012; Wendell et al., 2010) and host defense (Acton et al., 1999; Briseno-Ruiz et al., 2013; 

Ozturk, Famili, & Vieira, 2010; Valarini, Maciel, Moura, & Poli-Frederico, 2012).  

Interestingly, matrix metalloproteinases (MMPs)  are a well-studied family of genes that 

are involved in early tooth development and have been suggested to play a role in the caries 

process (Tannure, Kuchler, Falagan-Lotsch, et al., 2012) (Menezes-Silva, Khaliq, Deeley, Letra, 

& Vieira, 2012; Tannure, Kuchler, Lips, et al., 2012). Given this prior evidence, the aim of this 

study is to determine if variants in MMP10, MMP14 and MMP16 are associated with dental 

caries.  

MMPs are a multi-gene family that belong to the metalloproteinase class of 

endopeptidades which are responsible for the remodeling and degradation of extracellular matrix 

molecules (ECM) (Chaussain-Miller, Fioretti, Goldberg, & Menashi, 2006). ECM 
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macromolecules are essential for maintaining a cellular environment for biological processes 

such as embryonic development, tissue remodeling, wound healing and angiogenesis. MMPs also 

play a key role in several diseases such cancer, arthritis, tissue ulceration, periodontitis and 

dental caries (Mezentsev, Nikolaev, & Bruskin, 2014; Visse & Nagase, 2003). In addition, 

members of MMPs are classified into subfamilies according to their functionality and substrate 

specificity as collagenases, stromelysins, gelatinases and membrane-type MMP (Hannas, Pereira, 

Granjeiro, & Tjaderhane, 2007). Currently, there are 24 different MMPs found in humans 

including the two identical forms for MMP23, of which are located distinctly on 10 

chromosomes (Page-McCaw, Ewald, & Werb, 2007). MMP expression and catalytic activity are 

regulated at the level of transcription secretion, activation of the precursor zymogens, interaction 

with specific ECM components and by tissue inhibitors of matrix metalloproteinases (TIMPs) 

(Chaussain-Miller et al., 2006; Loffek, Schilling, & Franzke, 2011). MMPs are secreted as 

inactive zygomens and therefore require activation to function. Activation of some MMPs are by 

bacterial proteinases; serine proteases (such as plasma) and other MMP species (Potempa, 

Banbula, & Travis, 2000).  

Another important component to the regulations of MMP activity are TIMPs. There are 

four human TIMPS (TIMP-4) of which their expression is regulated during development and 

tissue remodeling. These specific inhibitors are low-molecular-weight proteins that form a non-

covalent bond to the active site of MMPs in a 1:1 ratio (Potempa et al., 2000). Thus, regulations 

of MMP activity begin under these normal balanced pathological conditions. However, if 

unbalanced changes of TIMP levels can occur that affect the level of MMP activity of which can 

ultimately lead to destruction and degradation of tissues. 
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7.2.1 MMPs ROLE IN DENTAL CARIES 

Subsequent to demineralization, the degradation of the collagenous organic matrix dentin occurs 

of which is necessary for caries formation. This destruction of the matrix has been traditionally 

known to be attributed to bacterial proteases. Although a number of oral bacteria may yield 

proteolytic enzymes, there has been no evidence shown that the bacteria associated with the 

development of dental caries lesions to produce enzymes that are able to degrade the organic 

matrix of dentin (Katz, Park, & Palenik, 1987). A number of in vitro experiments have shown 

that cariogenic bacteria could cause demineralization only on the dentin surface, but failed to 

degrade the dentin matrix (Katz et al., 1987). The bacteria collected from dentinal lesions created 

in an in situ model exhibited weak proteases activity and therefore was unable to degrade the 

dentin collagenous matrix (van Strijp, van Steenbergen, & ten Cate, 1997). Since the dentin 

organic matrix primarily contains collagen (90%), it has been suggested that host-derived MMPs 

that are concentrated in the dentin and saliva may have a more significant role in degradation of 

the dentin organic matrix which is necessary for caries initiation and progression (Linde & 

Goldberg, 1993).  

Saliva and the gingival cervical fluid (GCF), an exudate secreted by the gums that can be 

found in the crevices located at the point where the gum line meets the teeth are two possible 

sources for the MMPs in caries lesions (Mazzoni et al., 2015). Saliva penetrates the exposed 

dentin lesion of which MMPs that are present in the saliva are able to target the demineralized 

dentin (Chaussain-Miller et al., 2006; Tjaderhane et al., 1998; van Strijp et al., 1997). Salivary 

enzymes have been suggested to influence outer, caries-infected dentin because of the outward 

flow of saliva (Toledano et al., 2010). MMP8 and MMP9 are the most abundant salivary MMPs 

and are prominent in dentin caries lesions located in the outer caries-affected layer (Shimada, 
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Ichinose, Sadr, Burrow, & Tagami, 2009). On the other hand, GCF appears to be the major 

source of MMPs found in saliva because of the hydrostatic pressure working in favor of an 

outward flow (Toledano et al., 2010; Vidal et al., 2014). MMP members of collagenases and 

gelatinases have been found in both saliva and GCF. In addition, several MMPs (MMP1-3, 

MMP9, and MMP20) have been identified in human and rat studies and have been implicated for 

their involvement in the early stages of dentinogenesis (Caron, Xue, Sun, Simmer, & Bartlett, 

2001; Hall, Septier, Embery, & Goldberg, 1999; Heikinheimo & Salo, 1995; Randall & Hall, 

2002).  

7.3 METHODS 

7.3.1 Samples and data collection 

Study participants were drawn from six parent studies in this investigation: The Center for Oral 

Health Research in Appalachia cohort 1, [COHRA1, N = 1,769 (Polk et al., 2008)], Iowa 

Head Start [IHS, N = 64 (Slayton et al., 2005)], Iowa Fluoride Study [IFS, N = 136 (Wang, 

Willing, et al., 2012)], Dental Strategies Concentrating on Risk Evaluation [Dental SCORE, N = 

502 (Aiyer, Kip, Marroquin, et al., 2007; Aiyer, Kip, Mulukutla, et al., 2007)], the Dental 

Registry and DNA Repository [DRDR, N = 875 (Wang, Shaffer, et al., 2012)], and the Center for 

Education and Drug Abuse Research [CEDAR, N = 241 (Vanyukov et al., 2004)].  

All study protocols were approved by the institutional review boards of the corresponding 

universities. Details of the participant recruitment protocol and study design for each parent 
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study have been previously reported and summarized (Stanley et al., 2014). These six parent 

studies were stratified into 13 samples by age and race (8 adults and 5 children samples).  

Dental caries assessment were performed by trained dental professionals (dentist and dental 

hygienists) in which all participants underwent an intraoral examination.  

Intraclass correlation coefficient (ICC) analysis was applied to measure the consistency 

of caries assessment among and within dental examiners. There were high concordance rates 

observed for both inter-examiner reliability (ICC= 0.86-0.99) and intra-examiner reliability 

(ICC>0.99) (Polk et al., 2008).Each tooth identified as either permanent or primary and each 

surface on each tooth was scored by traditional DMFT and dft indices: DMFT was defined as the 

number of decayed, missing due to decay, or restored (filled) teeth of the permanent dentition, 

excluding third molars. Correspondingly, dft was defined as the number of decayed or restored 

teeth of the primary dentition. 

7.3.2 Genotypes 

Genotyping for a custom panel of single nucleotide polymorphisms (SNPs) was performed by 

the Center for Inherited Disease Research (CIDR) using the Illumina GoldenGate platform (San 

Diego, USA). The majority of this panel was chosen to follow up results from a number of 

selected GWAS scans. Additionally, we also included SNPs such as those in and near MMP 

genes, based on our specific interest in strong candidate genes. For this study, we investigated 28 

SNPs across three MMP genes: MMP10, MMP14 and MMP16 (Table 5). These genes and some 

SNPs were selected based on published reports, and/or their locations within the genes and their 

known roles in the early stages of tooth development. Details regarding the design of the 

genotype panel are available elsewhere (Stanley et al., 2014) 
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7.3.3 Statistical Analysis 

Analyses of dental caries experience were performed separately in each sample for children 3–12 

years of age for the primary dentition (dft) and adults ≥18 years of age for the permanent 

dentition (DMFT).  The analyses were performed separately in self-reported non-Hispanics 

whites and blacks in order to guard against population stratification. Our CEDAR sample 

included adolescents >15 years of age and for the purposes of this study was considered an adult 

sample. Linear regression analysis using PLINK software (Purcell et al., 2007) was used to test 

genetic association between DMFT/dfts and each SNP under the additive model while adjusting 

for age and sex. To guard against confounding due to admixture, we adjusted for the first four 

principal components for analyses of blacks.  

Results were combined across samples using Stouffer’s inverse variance weighted 

method of meta-analysis using METAL software (Willer et al., 2010). This method is 

appropriate because it takes into consideration of the non-random heterogeneity that are 

exhibited by the cohorts. Meta analyses was performed for whites only and for all participants. 

Given the multiple comparisons, we used the method by Li and Ji by determining the effective 

number of independent test, which is less than or equal to the total number of test due to linkage 

disequilibrium (LD). The threshold for the multiple comparisons was set to 0.05, divided by the 

number of independent test. This analysis was completed in R (R Development Core Team, 

2010).   
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Table 5.  Genetic variants in MMP genes 

gene SNP chromosome positiona 
MAF 
(COHRA1)b base change location / functionality  

MMP10 rs7948454 11 102641196 0.06173 C-T downstream 

 

rs12272341 11 102644601 0.1259 A-G intron 

 

rs470154 11 102647310 0.05891 C-G intron 

 

rs17293607 11 102650389 0.1583 C-T missense Gly65Arg 

 

rs559518 11 102656079 0.36 A-G intron 

MMP14 rs8003217 14 23304416 0.1561 A-C downstream 

 

rs762052 14 23308986 0.1448 A-G intron 

 

rs10133740 14 23310131 0.1476 C-T intron 

 

rs17243048 14 23311480 0.1708 A-G intron 

 

rs12893368 14 23312208 0.1744 C-G intron 

MMP16 rs17718917 8 89030490 0.07681 A-G intron 

 

rs1477907 8 89033615 0.09849 A-G intron 

 

rs16876790 8 89035664 0.3841 A-T intron 

 

rs2664368 8 89045674 0.2022 C-T intron 

 

rs10103111 8 89075226 0.2304 C-T intron 

 

rs1824717 8 89075979 0.4939 A-G intron 

 

rs17719876 8 89083319 0.08341 C-T intron 

  rs2616487 8 89084284 0.3412 A-G intron 

 rs6469206 8 89084691 0.4472 G-T intron 

 rs7826929 8 89084837 0.1316 A-G intron 

 rs2054415 8 89087358 0.04713 G-T intron 

 rs1551893 8 89102366 0.06645 A-T intron 

 rs1382104 8 89103325 0.4405 C-T intron 

 rs17720688 8 89104241 0.1265 C-T intron 

 rs10089111 8 89119305 0.3775 G-T intron 

 rs16878625 8 89125990 0.08915 C-T intron 

 rs10429371 8 89993488 0.2182 C-T intron 

 rs2046315 8 90211100 0.1296 A-G intron 

a based on Build 37, b MAF = minor allele frequency in the COHRA1 sample 



 

78 

7.4 RESULTS 

Characteristics of the 13 samples are shown in Table 1.There were noticeable variations in dental 

caries experience detected, which can be expected because of the differences in age and 

demography within the samples. Figure 6 shows the results of tests of genetic association for 

three matrix metalloproteinases genes: MMP14, MMP16, and MMP10. Negative log10-

transformed p for all SNPs in individual samples and combined. These values are plotted against 

physical positions in the chromosome and SNPs were considered statistically significant after 

adjusting for multiple comparisons. Columns one and two represent genetic association in adults 

and children respectively.  

In adults, the strongest evidence of genetic association was detected for rs2046315, a 

distance from MMP16 for CHORA1 whites (p = 8.14x10-8). In addition, meta-analysis across 

whites adult samples for this SNP yielded significant association as well (p= 0.002). COHRA1 

white adults (p < .001) and meta-analysis across black and white adults and children samples 

combined (p = .001) for rs10429371 showed significant associations for this gene. Though not 

meeting the threshold for gene-wise significance for rs10429371, meta-analysis across white 

adults showed nominal evidence of association for this SNP (p =.004). Another convincing 

evidence of association that did not meet gene-wise threshold was for a SNP in MMP10 for 

COHRA1 white adults (rs17293607, p =0.01). There were no significant associations observed 

in any of the children samples. 
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7.5 DISCUSSION 

Given MMPs’ various roles in bone remodeling, immune responses, caries, and dental 

development, we hypothesize that these genes may play a role in caries experience. Therefore, in 

this study, we investigated 28 SNPS in or within distance of three MMP genes (MMP10, MMP14 

and MMP16)  for evidence of association with dental caries experience in 13 race- and age-

stratified samples from 6 independent studies (n=3600). Selection of these loci was based on 

proximity to an associated SNP, corroborating experimental evidence or biologically probable 

involvement with caries etiology or the oral cavity environment.  

Regarding the two SNPs spanning MMP16 associated in this study, noteworthy is SNP 

rs2046315. Our present work provided evidence that variant rs2046315, our strongest association 

(p = 8.14x10-8) is associated with dental caries in the permanent dentition for adults. rs2046315 

is located on chromosome 8q21.3 and is 870 kb downstream from MMP16 and 560 kb away 

from the nearest gene RIPK2 (receptor-interacting serine-threonine kinase 2). RIKP2 has no 

known role in caries etiology, though it has been detected to be involved in apoptosis, and is 

expressed in both deciduous and permanent tooth pulp cells (Yuko Okai, 2012). 

SNP rs2046315 was originally nominated in a GWAS scan of dental caries in adults 

(Wang et al., 2012a). In line with our results, another study demonstrated that this SNP is 

associated with increased caries susceptibility in a GWAS study of Smooth Surface caries in the 

permanent dentition of adults (p = 3.08x10-8) (Zeng et al., 2013). Additionally, this SNP was 

suggestively associated with caries for the pit-and-fissures surface in the permanent dentition as 

well (Zeng et al., 2013). Although we did not find associations for rs2046315 in our other 

samples, our findings strengthens the hypothesis that rs2046315 influences dental caries in the 

permanent dentition. However, more work is needed to conclusively prove this relationship. 
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MMP16, a member of the type I transmembrane proteins which plays an important role in 

angiogenesis (Lijnen et al., 2000) was relatively far (>100 kb) from our top SNP (rs2046315) 

and its’ role in caries etiology is unknown. While a study using DNA microarray demonstrated 

less pronounced expression of MMP16 and specific tissue inhibitor (TIMP1) in healthy and 

carious tooth samples (Larmas, 2003), it is still a logical candidate to pursue. MMP16 could be 

less involved in caries progression and more so in other severe oral phenotypes. MMP16 has 

been associated with nonsyndromic oral cleft and palate and its inactivation mutations in mice 

have yielded severe structural and craniofacial defects (Letra et al., 2012; Subramanian et al., 

1995). 

In this study, we did not observe any associations for in MMP14 in both adults and 

children. Like MMP16, MMP14 is a member of the Membrane-type 1 matrix metalloproteinase 

(MT1-MMP) which is a membrane bound member of the MMP gene family that has previously 

been shown to be expressed by cells associated with bone and cartilage formation (osteoclasts, 

osteoblasts and chondrocytes) (Subramanian et al., 1995). MMP14 plays a role in early tooth 

development by its expression on the cell surface of ameloblasts and odontoblasts of the 

developing tooth (Bartlett, 2013). Additionally, MMP14 has thought to be important during the 

tissue destruction of periodontal disease (Menezes-Silva et al., 2012; Silva et al., 2012). 

Likewise, SNPs in MMP10 did not yield genetic association with caries in our samples.  MMP10 

is a member of the matrix metalloproteinase multi-gene family and is also referred to as 

stromelysin-2. MMP10 is a metalloproteinase similar to collagenase with substrates that include 

collagen, proteoglycans, and fibronectin. Since dentin’s organic matrix is mostly comprised of 

colleagn, MMP10 therefore could be a potential subsrate for MMP10. The combination of its 
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biololgical function and an association between caries and variants within the MMP10 region 

detected by preliminary analyses of GWAS data, provided rational to be included in this study. 

 As mentioned in our previous body of literature, we observed heterogeneity across our 

samples, such associations that were specific to individual samples (COHRA1). This could be 

due to differences between populations. The associations could be attributed to environmental 

factors that are present in specific populations but not in the others. In addition, there could be 

differences in phenotype assessments and differences in power to detect association across 

samples. These explanations could have affected our results one way or another. Overall, Matrix 

Metalloproteinases genes are involved in numerous physiological processes and diseases such as 

dental caries. Results from our study suggest that SNP rs2046315 may contribute to caries 

susceptibility in adults. However, further investigation is needed to make this conclusion.  
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Figure 6. Genetic association in adults and children samples for three MMP genes 

Genetic association in adult (column one) and children (column2) samples for three MMP genes. 
Negative log10 transformed p-values are shown for childhood samples. Childhood samples: 
Center for Oral Health in Appalachia (COHRA1 (red)), Iowa Head Start (IHS (blue)), and Iowa 
Fluoride Study (IFS (purple)). Adult Samples: adult samples: Center for Oral Health in 
Appalachia (COHRA1 (red)), Dental Strategies Concentrating on Risk Evaluation (Dental 
SCORE (green)), Dental Registry and DNA Repository (DRDR (orange)), and Center for 
Education and Drug Abuse Research (CEDAR (yellow)). Circles represent white samples, and 
squares represent black samples. White diamonds represent meta-analysis across all white 
childhood samples for children, and gray diamonds represent meta-analysis across all black and 
white childhood samples combined. The dotted lines represent the p threshold after adjustment 
for the number of independent single-nucleotide polymorphisms within a gene. The physical 
location and directions of the genes are denoted by the blue arrows. 
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8.0  CONCLUDING REMARKS 

A substantial amount of research and progress has been made over the past decade in identifying 

genetic and environmental contributions to caries. From these studies, a number of candidate 

genes and specific variants have been nominated based on their perceived role in biological and 

functional mechanisms relevant to caries etiology or oral health. It is important to replicate 

findings in different sample populations to determine if they are reproducible associations. As 

part of this dissertation research, we analyzed several subsets of custom panel data and 

investigated the associations between candidate genes and dental caries for purposes of 

replicating putative association in our replication samples.  

8.1 SUMMARY OF MAJOR FINDINGS 

A highlight of this dissertation work was found in our follow-up and replication study in the 

permanent dentition. The major finding of this study was detecting significant associations with 

caries in samples other than our original samples (COHRA1 and IFS white children) used in our 

initial GWAS study.  Specifically, for individual samples, Dental Score whites and blacks, we 

observed evidence of genetic association IFT88 and BCORL1 for one SNP, respectively (p < 

0.001). In addition to these findings, we detected significant association between dental caries 
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and SNPs in ion channel genes that are involved in a variety biological mechanisms regarding 

oral health. 

8.2 FUTURE CONSIDERATIONS 

The presence of heterogeneity across studies has been observed in previous studies as well as in 

the present studies.  This could be attributed to a variety of reasons such as differences in 

phenotype assessments, genetic heterogeneity among racial groups, ages, and differences in 

primary and permanent dentitions. Specifically in our meta-analysis, there has been an 

observation of heterogeneity which has been visually shown through the assessments of graphics 

such as forest plots. In the present and previous studies, we did not conduct any statistical test 

that would determine what factors contribute the heterogeneity within the pooled samples. 

Therefore the next approach would be to exploring the contributing factors of heterogeneity in 

our studies by a more sophisticated statistical method such as the Meta-regression analysis.  

Meta-regression is considered to be a combination of meta-analytic and linear regression 

principles. This method’s objective is to determine whether a linear relationship exists between 

an outcome measure and one or more covariates. This method would be appropriate for our 

studies so that we are able to identify potential sources of heterogeneity rather than simply 

quantifying them. Additional analyses of GxE interactions could also be conducted on SNPs that 

were not statistically significant in our results but were significant in previous studies. This may 

determine if the lack of associations could be due to the presence of an environmental risk factor.  
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