ENANTIOSELECTIVE SYNTHESIS AND CYCLOISOMERIZATION OF 1-BICYCLO[1.1.0]BUTAN-1-YL ALKYLAMINES

by
Yongzhao Yan
B.S, Tongji University, 2009
Submitted to the Graduate Faculty of the
Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Yongzhao Yan

It was defended on
May 19th, 2016
and approved by
W. Seth Horne, Associate Professor, Department of Chemistry, University of Pittsburgh Dennis P. Curran, Distinguished Service and Bayer Professor, Department of Chemistry, University of Pittsburgh

Kevin Tidgewell, Assistant Professor, Mylan School of Pharmacy, Duquesne University
Dissertation Advisor: Peter Wipf, Distinguished University Professor, Department of Chemistry, University of Pittsburgh

Copyright © by Yongzhao Yan 2016

ENANTIOSELECTIVE SYNTHESIS AND CYCLOISOMERIZATION OF 1-BICYCLO[1.1.0]BUTAN-1-YL ALKYLAMINES

Yongzhao Yan, PhD
University of Pittsburgh, 2016

This dissertation demonstrates the synthesis and application of 1-bicyclo[1.1.0]butyl alkylamines. The enantioselective synthesis of 1-bicyclo[1.1.0]butan-1-yl alkylamines was achieved by cyclopropanation to enantiomerically enriched propargyl amides. The enantioselective addition of alkynes to imines proceeded well for most N-diphenylphosphinyl 1bicyclo[1.1.0]butyl alkylamines, but the cyclopropanation suffered from the formation of cyclopropane byproducts. A series of silyl-substituted bicyclo[1.1.0]butanes could be synthesized by this methodology in high, reproducible yields. When tethered to an activated alkyne, the silyl-substituted bicyclo[1.1.0]butane undergoes cyclization to form a pyrrolidine.

In the application of the 1-bicyclo[1.1.0]butyl alkylamines, a palladium(0)-catalyzed cycloisomerization of bicyclo[1.1.0]butanes and methylenecyclopropanes has been developed. 3-Azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] is obtained with excellent stereoselectivity. A novel 2,3,3a,6a-tetrahydrocyclopenta[c]pyrrol-4(1H)-one is the product of the cycloisomerization and carbonylation sequence.

TABLE OF CONTENTS

1. ENANTIOSELECTIVE SYNTHESIS OF 1-BICYCLO[1.1.0]BUTAN-1-YL
ALKYLAMINES 1
1.1 FUNDAMENTAL PROPERTIES OF BICYCLO[1.1.0]BUTANES 2
1.1.1 Structure of bicyclo[1.1.0]butanes. 2
1.1.2 Frontier orbitals of bicyclo[1.1.0]butane 3
1.1.3 The nature of the central bond in bicyclo[1.1.0]butane. 3
1.1.4 Strain energy in bicyclo[1.1.0]butane 5
1.1.5 Bicyclo[1.1.0]butane in nature 6
1.2 SYNTHESIS OF BICYCLO[1.1.0]BUTANES 7
1.2.1 Retrosynthetic analysis of bicyclo[1.1.0]butanes 7
1.2.2 Synthesis of bicyclo[1.1.0]butanes by connecting the central bond 8
1.2.3 Synthesis of bicyclo[1.1.0]butanes by connecting the lateral bond 9
1.2.4 Synthesis of bicyclo[1.1.0]butanes by simultaneous formation of lateraland central bonds10
1.2.5 Synthesis of bicyclo[1.1.0]butanes by carbene addition 12
1.2.6 Synthesis of bicyclo[1.1.0]butanes by photochemical activation of diene 15
1.2.7 Bicyclo[1.1.0]butyllithium reagent 15
1.3 RESULTS AND DISCUSSION 17
1.3.1 Enantioselective alkynyl addition to imines. 18
1.3.2 Enantioselective alkynyl addition to N-DPP imine 22
1.3.3 Cyclopropanation of enantiomerically enriched propargyl amide. 24
1.3.4 Cyclopropanation of silyl-substituted propargyl amide. 29
1.3.5 Ene reaction of silyl-substituted bicyclo[1.1.0]butane. 33
1.3.6 Hiyama cross-coupling of silyl-substituted bicyclo[1.1.0]butane 38
1.4 CONCLUSION 39
2. PALLADIUM-CATALYZED CYCLOISOMERIZATION OF 1-
BICYCLO[1.1.0]BUTAN-1-YL ALKYLAMINES 41
2.1 FUNDAMENTAL PROPERTIES OF METHYLENECYCLOPROPANE 42
2.1.1 Transformation patterns of MCP 42
2.1.2 Cycloadditions with the conservation of cyclopropane ring 43
2.1.3 Metal-catalyzed MCP [3+2] cycloaddition reactions 46
2.1.4 Heterocycle synthesis from MCP [3+2] cycloaddition 48
2.1.5 Metal-catalyzed MCP [3+2+2] cycloaddition reactions 51
2.1.6 Metal-catalyzed MCP cycloisomerization reactions 53
2.2 RESULTS AND DISSCUSSION 54
2.2.1 Pd-catalyzed cycloisomerization of bicyclo[1.1.0]butane and MCP 54
2.2.2 Rhodium-catalyzed carbonylation of spiropentanes 63
2.3 CONCLUSION 66
3. EXPERIMENTAL SECTION 68
APPENDIX A 127
APPENDIX B 148
APPENDIX C 157
APPENDIX D 170
BIBLIOGRAPHY 180

LIST OF TABLES

Table 1. Structural information for bicyclo[1.1.0]butane 2
Table 2. Strain energies for common strained molecules (in $\mathrm{kcal} / \mathrm{mol}$) 5
Table 3. Enantioselective alkynyl zinc addition to N -phosphinoyl imine. 23
Table 4. Enantioselective alkynyl zinc addition to N-phosphinoyl imine. 23
Table 5. Cyclopropanation of carbonyl-protected propargyl amides. 27
Table 6. Cyclopropanation of styrenal propargyl amide at different temperatures. 28
Table 7. Cyclopropanation of a series of different silyl-substituted propargyl amides. 31
Table 8. Bond angles and lengths of $\mathbf{1 5 3}, 157$ and $\mathbf{1 5 8}$. 33
Table 9. Reaction condition optimizations for the cycloisomerization of 224. 59
Table 10. Palladium-catalyzed isomerization of various bicyclo[1.1.0]butanes. 60
Table 11. Crystal data and structural refinement for 153. 127
Table 12. Atomic coordinates and equivalent isotropic displacement parameters for $\mathbf{1 5 3 .}$ 129
Table 13. Bond lengths (\AA) for 153. 132
Table 14. Bond angles $\left({ }^{\circ}\right)$ for 153. 136
Table 15. Torsion angles $\left({ }^{\circ}\right)$ for 153 143
Table 16. Crystal data and structure refinement for 181. 148
Table 17. Atomic coordinates and equivalent isotropic displacement parameters for $\mathbf{1 8 1}$. 149
Table 18. Bond lengths [\AA] for $\mathbf{1 8 1}$. 151
Table 19. Bond angles [${ }^{\circ}$] for $\mathbf{1 8 1}$ 152
Table 20. Anisotropic displacement parameters for 181. 154
Table 21. Hydrogen coordinates and isotropic displacement parameters for $\mathbf{1 8 1}$ 155
Table 22. Crystal data and structure refinement for 268. 157
Table 23. Atomic coordinates and equivalent isotropic displacement parameters for 268 158
Table 24. Bond lengths [\AA] for 268 160
Table 25. Bond angles [${ }^{\circ}$] for 268 162
Table 26. Anisotropic displacement parameters for 268. 165
Table 27. Hydrogen coordinates and isotropic displacement parameters for 268. 168
Table 28. Crystal data and structure refinement for 283. 170
Table 29. Atomic coordinates and equivalent isotropic displacement parameters for 283. 171
Table 30. Bond lengths [Å] for 283 173
Table 31. Bond angles [${ }^{\circ}$] for 283. 174
Table 32. Anisotropic displacement parameters for $\mathbf{2 8 3}$ 176
Table 33. Hydrogen coordinates and isotropic displacement parameters for 283. 178

LIST OF FIGURES

Figure 1. HOMO and LUMO of bicyclo[1.1.0]butane. 3
Figure 2. Two 1-bicyclo[1.1.0]butyl cation conformers used in ab initio calculations 4
Figure 3. Bicyclo[1.1.0]butyl and cyclopropyl p-nitrobenzoate esters 5
Figure 4. Structure of a bicyclo[1.1.0]butane fatty acid methyl ester. 6
Figure 5. Several synthetic pathways towards bicyclo[1.1.0]butane 7
Figure 6. Several bicyclo[1.1.0]butanes synthesized from the halogen exchange reaction. 17
Figure 7. X-ray structure of $\mathbf{1 5 3}$. 32
Figure 8. X-ray structure of $\mathbf{1 8 1}$. 38
Figure 9. Welwitindolinone A isonitrile. 40
Figure 10. Metal-catalyzed MCP reaction pathways 42
Figure 11. Metal-catalyzed MCP reaction pathways 46
Figure 12. X-ray structure of 268. 56
Figure 13. NMR spectra of diastereomers 271 and 274 57
Figure 14. Proposed reaction pathway 61
Figure 15. X-ray structure of 283. 66
Figure 16. Examples of several biologically active compounds with a 3-azabicyclo[3.1.0]hexanecore67
Figure 17. Examples of several natural products with a 3-azabicyclo[3.3.0]octane core. 67

LIST OF SCHEMES

Scheme 1. Synthesis of bicyclo[1.1.0]butane dimer 2 4
Scheme 2. Total synthesis of bicyclo[1.1.0]butane fatty acid $\mathbf{5}$ by Sulikowski et al. 7
Scheme 3. First synthesis of a bicyclo[1.1.0]butane 8
Scheme 4. Bicyclo[1.1.0]butane synthesis by Wurtz-type reaction. 8
Scheme 5. Synthesis of 1-cyanobicyclo[1.1.0]butane. 9
Scheme 6. Synthesis of 1-trifluoromethylbicyclo[1.1.0]butane $\mathbf{1 6}$. 9
Scheme 7. Synthesis of bicyclo[1.1.0]butane by connecting the lateral bond. 10
Scheme 8. Synthesis of bicyclo[1.1.0]butane by carbene insertion into a CH-bond. 10
Scheme 9. Synthesis of bicyclo[1.1.0]butane by cyclopropanation to a CC-double bond. 11
Scheme 10. Enantioselective synthesis of 26 and cyclobutane $\mathbf{3 0}$. 12
Scheme 11. Synthesis of bicyclo[1.1.0]butane via carbene addition to cyclopropene. 12
Scheme 12. Synthesis of bicyclo[1.1.0]butane by carbene addition to alkyne 13
Scheme 13. Proposed mechanism for the cyclopropanation of $\mathbf{3 5}$ 13
Scheme 14. One-pot synthesis of bicyclo[1.1.0]butane and dicyclopropylmethylamines. 14
Scheme 15. Different products obtained depending on the steric environment at the α-position of
the propargyl amide. 14
Scheme 16. Photochemical activation of dienes 55 and 57. 15
Scheme 17. Synthesis of bicyclo[1.1.0]butane by a one-pot halogen exchange reaction. 16
Scheme 18. Synthesis of cyclobutanone from bicyclo[1.1.0]butane 16
Scheme 19. Dicarbene addition of enantiomerically enriched amine 18
Scheme 20. Enantioselective synthesis of DPC 963 using chiral ligand 77 18
Scheme 21. Total synthesis of (S)-(-)-homolaudanosine. 19
Scheme 22. Ma's synthesis of tetrahydroquinoline 20
Scheme 23. Hoveyda's methodology using a peptide-based ligand and Zr catalyst 20
Scheme 24. Binaphthol-based alkynylboronate addition to N -acetylamine. 21
Scheme 25. Enantioselective alkynyl zinc addition to N -tosyl and N -Cbz imine. 21
Scheme 26. Enantioselective alkynyl zinc addition to N-phosphinoyl imine 22
Scheme 27. Alkynyl zinc addition to N-phosphinoyl imine. 22
Scheme 28. Carbene addition of propargyl amides. 24
Scheme 29. Determination of e.r. after cyclopropanation. 24
Scheme 30. Cyclopropanation of substrates $\mathbf{1 0 2}$. 25
Scheme 31. Cyclopropanation of bicyclo[1.1.0]butane. 25
Scheme 32. Mechanism study of cyclopropanation of bicyclo[1.1.0]butane $\mathbf{1 1 0}$. 26
Scheme 33. Modification of cyclopropanation conditions of bicyclo[1.1.0]butane $\mathbf{1 0 0}$. 27
Scheme 33. Different product distribution in the one-pot cyclopropanation of propargylic amine.29
Scheme 34. Modification of cyclopropanation conditions of bicyclo[1.1.0]butane $\mathbf{1 0 0}$. 30
Scheme 35. Thermal ene reactions of bicyclo[1.1.0]butanes. 34
Scheme 37. Phase transfer alkylation of bicyclo[1.1.0]butanes 150-153. 35
Scheme 38. Cyclization failure with prolonged heating or different catalysts. 35
Scheme 39. [2+2] ene reaction with unactivated bicyclo[1.1.0]butane 36
Scheme 40. [2+2] ene reaction with bicyclo[1.1.0]butane 174. 36
Scheme 41. [2+2] ene reaction with silyl-substituted bicyclo[1.1.0]butane 37
Scheme 42. Hiyama coupling protocol using aryl silane and alkyl bromide. 38
Scheme 43. Hiyama coupling using a dimethyl(2-thienyl)silyl group. 39
Scheme 44. Hiyama coupling using a dimethyl(2-thienyl)silyl bicyclo[1.1.0]butane 39
Scheme 45. Intramolecular Pauson-Khand reaction of enyne 43
Scheme 46. 1,3-Dipolar addition of MCP with nitrones and acid-mediated ring contraction 44
Scheme 47. 1,3-Dipolar addition of BCP with nitrones and transformation of the adducts 44
Scheme 48. Total synthesis of gelsemoxonine 45
Scheme 49. Palladium-catalyzed [3+2] MCP cyclization with alkynes. 47
Scheme 50. Palladium-catalyzed [3+2] MCP cyclization with alkenes/allenes. 48
Scheme 51. Palladium-catalyzed [3+2] MCP cyclization with CO_{2}. 48
Scheme 52. Heat-induced [3+2] cycloaddition of o-aniline-tethered MCP 49
Scheme 53. Heat-induced [3+2] synthesis of furoquinoline 236 and thienoquinoline 237 49
Scheme 54. Rh(II)-catalyzed indole-fused azetidine synthesis 50
Scheme 55. Nickel-catalyzed [3+2+2] MCP cyclization with alkynes. 51
Scheme 56. Mechanisms of nickel-catalyzed [3+2+2] MCP cyclization with alkynes 51
Scheme 57. Rhodium-catalyzed [3+2+2] MCP cyclization with alkynes. 52
Scheme 58. Cobalt-catalyzed carbonylation of MCP 53
Scheme 59. Pd/Pt-catalyzed cycloisomerization of MCP. 54
Scheme 60. Proposed palladium-catalyzed cycloisomerization of MCP and bicyclo[1.1.0]butane.54
Scheme 61. Initial attempt of a palladium-catalyzed MCP cyclization. 55
Scheme 62. Rhodium(I)-catalyzed cycloisomerization of $\mathbf{2 6 9}$. 55
Scheme 63. Precursor synthesis of various bicyclo[1.1.0]butanes 263a-i 60
Scheme 64. Proposed mechanism for the formation of two diastereomers. 62
Scheme 65. Murakami's rhodium-catalyzed carbonylation of spiropentanes. 63
Scheme 66. Rhodium-catalyzed carbonylation of spiropentane 223 64
Scheme 67. Proposed pathways for rhodium-catalyzed carbonylation of spiropentane 282. 65
Scheme 68. Rhodium-catalyzed carbonylation of spiropentane 268 66

LIST OF ABBREVIATIONS

AIBN	$2,2^{\prime}$-Azobis(2-methylpropionitrile)
Ac	Acetyl
n-Bu	n-Butyl
t-Bu	tert-Butyl
Cbz	Carboxybenzyl
COD	1,5 -Cyclooctadiene
Cp	Cyclopentadienyl
Cy	Dichloromethane
DCM	Density functional theory
DFT	Dess-dimethyl formamide
DMF	Dimethyl sulfoxide
DMP	Diphenylphosphinyl
DMSO	1,3 -Bis(diphenylphosphino)propane
DPP	Dibenzylideneacetone
dppp	Ethyl
dba	Highest Occupied Molecular Orbital
Et	DOMO

LG	Leaving group
LiHMDS	Lithium bis(trimethylsilyl)amide
LUMO	Lowest Unoccupied Molecular Orbital
Ms	Methylsulfonyl
MCP	Methylenecyclopropane
Ph	Phenyl
Piv	iso-Propyl
i Pr	Supercritical Fluid Chromatography
SFC	Tetra- n-butylammonium fluoride
TBAF	tert-Butyldimethylsilyl
TBS	Triethylsilyl N^{\prime}, N^{\prime}-Tetraethylethylenediamine
TEEDA	Trimethylsilyl
TES	Thin Layoromethanesulfonyl
Tf	Trifluoroethanol N^{\prime}, N^{\prime}-Tetramethylethylenediamine
TFE	Tetrahydrofuran
THF	Triso-propylsilyl
TIPS	TME

1. ENANTIOSELECTIVE SYNTHESIS OF 1-BICYCLO[1.1.0]BUTAN-1-YL ALKYLAMINES

Bicyclo[1.1.0]butane is one of the most strained small carbon ring systems, and it can serve as an attractive building block for the synthesis of complex organic molecules. ${ }^{1,2}$ Our group has taken advantage of this high strain energy and used bicyclo[1.1.0]butane as a precursor for the synthesis of pyrrolidines and azepines. ${ }^{3}$ New developments in this area, specifically, an access to enantiomerically pure 1-bicyclo[1.1.0]butan-1-yl alkylamines starting materials, would add significantly to the repertoire of chemical transformations of bicyclo[1.1.0]butane substrates.

1.1 FUNDAMENTAL PROPERTIES OF BICYCLO[1.1.0]BUTANES

1.1.1 Structure of bicyclo[1.1.0]butanes.

The structure of bicyclo[1.1.0]butane has been elucidated by different methods including microwave ${ }^{4}$, NMR 5, X-ray ${ }^{5}$ and computations. ${ }^{6-8}$ These studies revealed some interesting facets of bicyclo[1.1.0]butane. First, the C-C bond lengths are in agreement among different methods. Compared to straight-chain aliphatic $(1.52-1.54 \AA)$ and cyclopropanes $(1.51 \AA)^{9}$, bicyclo[1.1.0]butanes have a shorter C-C bond length. This observation suggests that the central bond of bicyclo[1.1.0]butane [C1-C3] may contain some multiple-bond character. ${ }^{1}$ Also, the bridgehead C-H bond has a similar length to a vinyl C-H bond (1.077 \AA), which corresponds to the acidic nature of this bridgehead proton. ${ }^{10}$ Finally, the geometry of the bridgehead carbon directs the substituents on C 1 and C 3 into one hemisphere.

Table 1. Structural information for bicyclo[1.1.0]butane. ${ }^{5,6}$

Method $^{\mathrm{a}}$	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\lambda}$	$\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{1}} \mathbf{H}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\text {exo }}$	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\text {endo }}$
NMR	128.0	110.2	128.0	1.507	1.507	1.142	1.194	1.167
Electron Diffraction	125.5	111.6	122.8	1.507	1.502	1.108	1.106	1.106
Microwave	128.2	115.3	122.4	1.498	1.497	1.071	1.093	1.093
Angles are given in degrees and bond lengths in A								

${ }^{a}$ Angles are given in degrees and bond lengths in \AA.

1.1.2 Frontier orbitals of bicyclo[1.1.0]butane.

Many calculations of molecular orbitals of bicyclo[1.1.0]butane have been published since $1960 .{ }^{7,11-14}$ These studies suggest that both HOMO and LUMO are associated with a π-like central C-C bond (Figure 1). Ab initio calculations show that the central bond has 96% character (cyclopropane 86\%). ${ }^{13}$

Figure 1. HOMO and LUMO of bicyclo[1.1.0]butane. ${ }^{a}$
${ }^{a}$ Representation of the frontier orbitals calculated at the B3LYP/6-31G* level using Spartan 14.

1.1.3 The nature of the central bond in bicyclo[1.1.0]butane.

To further support the hypothesis of the significant p-character of the central bond, NMR studies have been performed. The $\mathrm{C}_{1}-\mathrm{H}_{1}$ coupling constant (${ }^{1} J_{\mathrm{CH}}=205 \mathrm{~Hz}$) corresponds to a C-H bond hybrid having $40 \% s$-character. ${ }^{15}$ The ${ }^{1} J_{\mathrm{CC}}$ values for $\mathrm{C}_{1}-\mathrm{C}_{3}$ are exceptionally low (-5.4 to 17.5 Hz). ${ }^{16}$ Using some approximations, Pomerantz et al. ${ }^{17}$ calculated that the central bond has

89\% p-character. Additionally, Schleyer et al. used a GVB/3-21G optimized geometry to calculate that the central bond has $c a .4 \%$ biradical character (bicyclo[1.1.0]butane). ${ }^{18}$

A

B

Figure 2. Two 1-bicyclo[1.1.0]butyl cation conformers used in ab initio calculations.

Because of the high π-character attributed to the C1-C3 bond, the conjugation between a cation and the central bond is expected to be significant. Using $a b$ initio calculations, Greensburg ${ }^{19}$ showed that the A^{+}conformer is $32 \mathrm{kcal} / \mathrm{mol}$ more stable than the B^{+}conformer (Figure 3). However, the corresponding A^{-}conformer is only $0.12 \mathrm{kcal} / \mathrm{mol}$ more stable than the B^{-}conformer. Subsequent calculations showed that the lower stabilization energy is caused by poor orbital overlap in the B conformer. ${ }^{20}$

Scheme 1. Synthesis of bicyclo[1.1.0]butane dimer 2.

Experimental evidence for the π-character of the central bond also exists. For example, Moore et al. ${ }^{21}$ synthesized a bicyclo[1.1.0]butane dimer 2 via oxidative coupling of Cu derivative 2 (Scheme 1). UV/VIS analysis indicated that the $\lambda_{\max }$ was located at 190 nm as a
result of a red shift from the monobicylobutane $\mathbf{1 b}$. This result indicated that the two central bonds were conjugated.

Figure 3. Bicyclo[1.1.0]butyl and cyclopropyl p-nitrobenzoate esters.

Wiberg et al. ${ }^{1}$ have shown that solvolysis of $\mathbf{4}$ is 1000 times faster than that of the analogous cyclopropyl derivative $\mathbf{3}$ (Figure 3). The major solvolysis products of $\mathbf{4}$ resulted from an acid-catalyzed hydration of the central bond.

1.1.4 Strain energy in bicyclo[1.1.0]butane

Bicyclo[1.1.0]butane is one of the most strained bicyclic systems. Its strain energy ranges from 63.9 to $66.5 \mathrm{kcal} / \mathrm{mol}$ and depends on the substituents attached to the bicycle. ${ }^{22-25}$ For example, the central bond of bicyclo[1.1.0]butane can be in conjugation with substituents having a π-system, which leads to an overall stabilization of the system.

Table 2. Strain energies for common strained molecules (in $\mathrm{kcal} / \mathrm{mol}$). ${ }^{26}$

26.3

66.5

57.3

6.2

33.9

65

50.7

Bicyclo[1.1.0]butane does not follow the additivity rule for the strain of bicyclic systems; it has an extra $8.9 \mathrm{kcal} / \mathrm{mol}$ of strain energy generated from the fusion of the two cyclopropane
rings. In 1976, Holloway et al. ${ }^{27}$ explained the extra strain energy by considering the nonbonding 1,3-carbon/carbon interactions (Dunitz-Schomaker hypothesis ${ }^{28}$) in cyclobutane (18 $\mathrm{kcal} / \mathrm{mol}$ in cyclobutane). Recently, Baric and Maksic ${ }^{29}$ challenged this idea by indicating that this extra strain energy is simply caused by an increase in Baeyer strain. The high strain energy makes bicyclo[1.1.0]butane a reactive building block for organic synthesis. By releasing the strain of the bicyclo[1.1.0]butane, a diene or cyclobutene can be obtained.

1.1.5 Bicyclo[1.1.0]butane in nature

Figure 4. Structure of a bicyclo[1.1.0]butane fatty acid methyl ester.

The high strain energy and acid sensitivity make bicyclo[1.1.0]butane a challenging structural motif for synthesis and isolation. The first compound bearing a bicyclo[1.1.0]butane group derived from a living organism was reported by Barsh et al. ${ }^{30}$ in 2007. The authors identified a dual-function protein encoded in the cyanobacterium Anabaena PCC 7120. They reconstituted this protein in E. coli in vitro and found that it could consume 9hydroperoxylinoleic acid and produce the bicyclo[1.1.0]butane fatty acid 5. This unique structure with unknown bioactivity drew the attention of the scientific community, and led chemists to work on its total synthesis. In 2011, the total synthesis of $\mathbf{5}$ was achieved by Sulikowski et al. ${ }^{31}$ in 13 steps (Scheme 2). The sequence featured a key cascade reaction that furnished the bicyclo[1.1.0]butane and epoxide functionality of $\mathbf{5}$ from carboxylic acid $\mathbf{8}$ in 20% yield.

Scheme 2. Total synthesis of bicyclo[1.1.0]butane fatty acid $\mathbf{5}$ by Sulikowski et al.

1.2 SYNTHESIS OF BICYCLO[1.1.0]BUTANES

1.2.1 Retrosynthetic analysis of bicyclo[1.1.0]butanes

Figure 5. Several synthetic pathways towards bicyclo[1.1.0]butane.

As shown in Figure 5, bicyclo[1.1.0]butanes can be assembled by several different methods. Anionic pathways involving formation of either the central bond (A) ${ }^{32-36}$ or lateral bond
$(B)^{37-39}$ are possible. An alternative way is carbene insertion into a double bond (path C^{40-41} and D^{42-47}). Furthermore, isomerization of a diene under photochemical conditions offers a unique pathway towards bicyclo[1.1.0]butane (path E) ${ }^{48,49}$.

1.2.2 Synthesis of bicyclo[1.1.0]butanes by connecting the central bond

In 1959, Wiberg et al. ${ }^{32}$ reported the first synthesis of a bicyclo[1.1.0]butane. Treatment of 2-bromocyclobutyl methylcarboxylate with triphenylmethide led to the formation of bicyclo[1.1.0]butanebutyl methylcarboxylate (Scheme 3).

Scheme 3. First synthesis of a bicyclo[1.1.0]butane.

Hamon et al. ${ }^{33}$ reported that a Wurtz-type reaction could also be used in the synthesis of bicyclo[1.1.0]butane. Precursor 11 was treated with sodium-potassium amalgam to afford bicyclo[1.1.0]butane 12 (Scheme 4).

Scheme 4. Bicyclo[1.1.0]butane synthesis by Wurtz-type reaction.

Similar protocols using the displacement of a halogen from an activated cyclobutane species have been reported. ${ }^{34,35}$ This reaction was shown to be a stereospecific process, proceeding with inversion. ${ }^{34}$

Scheme 5. Synthesis of 1-cyanobicyclo[1.1.0]butane.

Recently, Tilley et al. ${ }^{36}$ reported that $1,3-\gamma$-silyl elimination could furnish the bicyclo[1.1.0]butane system (Scheme 6). The authors stated that the electron-withdrawing trifluoroalkyl group on the bridgehead carbon was crucial for the formation of the desired bicyclo[1.1.0]butane.

Scheme 6. Synthesis of 1-trifluoromethylbicyclo[1.1.0]butane 16.

1.2.3 Synthesis of bicyclo[1.1.0]butanes by connecting the lateral bond

Although connecting the central bond is the most common way to synthesize bicyclo[1.1.0]butanes, synthesis of the lateral bond is also an effective way to access the bicyclo[1.1.0]butane system. Gaoni et al. ${ }^{37}$ reported a highly efficient method utilizing a substrate bearing an epoxide and sulfonyl group (17). Treatment of 17 with n - BuLi and MsCl afforded cyclopropane 18. Treatment with a second equivalent of butyllithium led to intramolecular displacement of the mesylate to afford bicyclo[1.1.0]butane 19 in good yield. In another case ${ }^{38}$, the intramolecular nucleophilic substitution with substrate 20 can generate 21, even though 20 has a poor leaving group (ethoxy).

Scheme 7. Synthesis of bicyclo[1.1.0]butane by connecting the lateral bond.

Carbene insertion of a cyclopropylidene generated by treatment of dibromocyclopropane 22 with methyllithium into an adjacent CH bond is another method to connect the lateral bond (Scheme 8). ${ }^{39}$

Scheme 8. Synthesis of bicyclo[1.1.0]butane by carbene insertion into a CH-bond.

1.2.4 Synthesis of bicyclo[1.1.0]butanes by simultaneous formation of lateral and central

 bondsAnother popular method for constructing the bicyclo[1.1.0]butane system is the addition of carbenes to alkenes. Ganem et al. ${ }^{40}$ obtained bicyclo[1.1.0]butane ester 25a as a byproduct when they treated the substituted α-diazoester 24a with rhodium(II) acetate to provide the corresponding cis-enoate 26a.

Scheme 9. Synthesis of bicyclo[1.1.0]butane by cyclopropanation to a CC-double bond.

In 2013, Davies group ${ }^{41}$ published an advanced enantioselective synthesis protocol of 2arylbicyclo[1.1.0]butane carboxylates $\mathbf{2 5}$. With a low catalyst loading ($0.01 \mathrm{~mol} \%$), product $\mathbf{2 5}$ can be obtained with up to $94 \% e e$. Furthermore, this rhodium-catalyzed reaction can be controlled by alternating the rhodium catalysts to afford cyclohexene 28 with high levels of diastereoselectivity (Scheme 9).

In 2013, Fox et al. ${ }^{42}$ independently reported an similar enantioselective cyclopropanation of α-diazoesters 24 that gave various enantiomerically enriched bicyclo[1.1.0]butanes $\mathbf{2 5}$. The new catalyst 29 eliminated the formation product $\mathbf{2 6}$ and greatly increased the yield of $\mathbf{2 5}$. It is worth mentioning that $\mathbf{2 5}$ can subsequently engage in a homoconjugate and enolate trapping sequence to afford functionalized cyclobutanes $\mathbf{3 0}$ with high diastereoselectivity (Scheme 10).

Scheme 10. Enantioselective synthesis of 26 and cyclobutane 30.

1.2.5 Synthesis of bicyclo[1.1.0]butanes by carbene addition

Scheme 11. Synthesis of bicyclo[1.1.0]butane via carbene addition to cyclopropene.

The addition of carbenes to alkynes or cyclopropenes is the most straightforward method to synthesize bicyclo[1.1.0]butanes, and this method provides the most possibilities for the synthesis of functionalized bicyclo[1.1.0]butanes. Some reactions utilize carbenes formed by the decomposition of diazo compounds ${ }^{41}$ under thermal ${ }^{44}$ or UV conditions ${ }^{45}$ (Scheme 11). Unfortunately, this type of carbene addition is not a stereospecific process. The products formed are mixtures of endo- and exo-isomers (Scheme 12). ${ }^{46}$

Scheme 12. Synthesis of bicyclo[1.1.0]butane by carbene addition to alkyne.

Other carbene sources such as the common Simmons-Smith zinc carbenoid were also explored. Schwartz et al. ${ }^{47}$ treated 1-methoxy 1-butyne with zinc carbenoid. Only a mixture of cyclopropanated products was obtained under these conditions, and no formation of bicyclo[1.1.0]butane was observed. The result was explained by the isomerization of the corresponding cyclopropene $\mathbf{3 6}$ and bicyclo[1.1.0]butane 37 (Scheme 13).

Scheme 13. Proposed mechanism for the cyclopropanation of $\mathbf{3 5}$.

The potential of Simmons-Smith reagents for the synthesis of bicyclo[1.1.0]butanes was explored by our group. ${ }^{48}$ As shown in Scheme 14 , the " CH_{2} " unit is delivered after the addition of Schwartz reagent to the propargyl imine. The corresponding bicyclo[1.1.0]butane and dicyclopropylmethylamines were obtained in good yield.

Scheme 14. One-pot synthesis of bicyclo[1.1.0]butane and dicyclopropylmethylamines.

The formation of the two products 46 and 47 depended on the steric environment at the α-position of the propargyl amide (Scheme 14). Only disubstituted alkyne 45b was able to undergo this transformation effectively to afford bicyclo[1.1.0]butane 51-53. The rearranged product 47 resulted from the addition of two additional methylene groups to 46 under the Simmons-Smith cyclopropanation conditions.

Scheme 15. Different products obtained depending on the steric environment at the α-position of the propargyl amide.

1.2.6 Synthesis of bicyclo[1.1.0]butanes by photochemical activation of diene

Photochemical activation of a diene is a unique route to synthesize the bicyclo[1.1.0]butane skeleton. This reaction is substrate dependent, and it is rarely used as a synthetic method. As shown in Scheme 16, two similar dienes 55 and 57 give completely different products. ${ }^{49,50}$

1.2.7 Bicyclo[1.1.0]butyllithium reagent

Due to the high s-character of the bridgehead carbon of bicyclo[1.1.0]butane, the lithiumbromide exchange reaction of $\mathbf{6 1}$ should be facile. Because bromide $\mathbf{6 1}$ is air-sensitive and volatile, a one-pot reaction for formation of $\mathbf{6 1}$ followed by a lithium-bromide exchange reaction and trapping with a suitable electrophile is the best solution for these problems. ${ }^{51}$

Scheme 17. Synthesis of bicyclo[1.1.0]butane by a one-pot halogen exchange reaction.

In 1985, Szeimies et al. ${ }^{51}$ reported a one-pot reaction for formation of bicyclo[1.1.0]butane ethyl ester 27a (Scheme 17). They treated dibromocyclopropane with 1 equivalent of methyllithium, which formed 1-bromobicyclo[1.1.0]butane 61. The product was subsequently treated with tert-butyllithium followed by the addition of ethyl chloroformate to afford the bicyclo[1.1.0]butane ethyl ester 27a in good yield.

Scheme 18. Synthesis of cyclobutanone from bicyclo[1.1.0]butane.

In 1999, Brinker et al. ${ }^{52}$ used 1-bromobicyclo[1.1.0]butane 61 as a precursor to cyclobutanone, which is difficult to obtain using other methods. The mechanism of this transformation is shown in Scheme 18.

Our group explored the one-pot formation of bicyclo[1.1.0]butanes from dibromocyclopropanes extensively and found this method to be one of the most effective ways to access the bicyclo[1.1.0]butane system (Figure 6). By utilizing several different electrophiles and
various substitutions on the dibromocyclopropane, a series of bicyclo[1.1.0]butanes could be obtained in good yields. ${ }^{53}$

65

66

67

72

73

74

75

Figure 6. Several bicyclo[1.1.0]butanes synthesized from the halogen exchange reaction.

1.3 RESULTS AND DISCUSSION

Previously, our group has utilized bicyclo[1.1.0]butane derivatives in the synthesis of complex molecules. ${ }^{3,54}$ However, all methodologies involved racemic bicyclo[1.1.0]butanecontaining starting materials and consequently afforded racemic products. In order to make bicyclo[1.1.0]butane a more useful synthetic tool for organic synthesis, we sought to develop an effective way to access optically active bicyclo[1.1.0]butane derivatives.

1.3.1 Enantioselective alkynyl addition to imines.

Because the direct addition of bicyclo[1.1.0]butyllithium to imines suffers from low enantioselectivity, ${ }^{53}$ we decided to apply dicarbene addition to an enantiomerically enriched propargyl amine as our new strategy towards the enantiomerically enriched bicylo[1.1.0]butanes (Scheme 19).

Scheme 19. Dicarbene addition of enantiomerically enriched amine.

Recently, propargyl amines have been used as precursors of many useful intermediates towards pharmaceutical compounds. ${ }^{55-57}$ Traditional synthetic methods usually involve deprotonation of the alkyne by a strong base such as butyllithium or an organomagnesium compound. The resulting alkynyllithium or magnesium reagent will undergo nucleophilic addition to imines. Drawbacks to this methodology are fast background addition processes and the incompatibility of strong bases with certain substrates. ${ }^{58}$

Scheme 20. Enantioselective synthesis of DPC 963 using chiral ligand 77.

There are a few examples of alkynyllithium reagents undergoing enantioselective additions to ketimines. Nugent reported a procedure using $4-\beta$-morpholinocaran-3 - ol 77 as a
chiral ligand to control the addition of lithium cyclopropylacetylide to an unprotected N acylketimine 76 (Scheme 20). The product of this reaction, DPC 963, is an anti-HIV drug candidate. ${ }^{59}$ In 2014, Collum et al. ${ }^{60}$ revealed that cubic tetramers 79 are the dominant forms in various lithium amino alkoxides and responsible for high enantioselectivities of the nucleophilic additions.

Scheme 21. Total synthesis of (S)-(-)-homolaudanosine.

Most enantioselective processes reported to date involve copper (I) species. Knochel and coworkers ${ }^{61}$ established a method using a copper (I) catalyst for the addition of an alkyne to an imine. Schreiber et al. ${ }^{62}$ found that ligands such as Quinap 82 yielded propargyl amines in high yields and $e e$'s. This reaction later was applied to the total synthesis of (S)-(-)-homolaudanosine (Scheme 21).

In 2014, Ma et al. ${ }^{63}$ developed a high enantioselective synthesis of tetrahydroquinoline synthesis utilizing 1,2-unsubstituted tetrahydroquinolines with N-pinap $\mathbf{8 5}$ as the chiral ligand. This methodology utilized an in situ iminium-ion-isomerization process and opened up an efficient entry to many tetrahydroisoquinoline alkaloids.

Scheme 22. Ma's synthesis of tetrahydroquinoline.

Besides the numerous copper catalysts used for the asymmetric addition of alkynes, Hoveyda et al. ${ }^{64}$ utilized a peptide-based ligand in combination with a zirconium species to catalyze the addition of a mixed alkynyl zinc reagent to various N-aryl aromatic imines.

Scheme 23. Hoveyda's methodology using a peptide-based ligand and Zr catalyst.

The majority of examples for the enantioselective addition of alkynes involve the use of unactivated imines, which have a slow background reaction and can be effectively enantiomerically catalyzed. Recently, many successful cases utilizing activated imines were also described. ${ }^{65-67}$

Wu and Chong reported that binaphthol-based alkynylboronates could undergo enantioselective addition to N -acylamine 88. In this case, both boronate reagent and the imine have to be prepared and purified prior to the reaction (Scheme 24). ${ }^{65}$

Scheme 24. Binaphthol-based alkynylboronate addition to N -acetylamine.

Alkynyl zinc reagents have been used extensively for the enantioselective addition to electron-deficient imines, including N-sulfonyl, N-acetyl and N-phosphonyl imines. Pedro et al. described an approach using binol-type ligand 91 as chiral catalyst in combination with an alkynyl zinc reagent to afford N-sulfonyl propargyl amines $\mathbf{9 3}$ with high yields and $e e$'s (Scheme 25). ${ }^{66}$ In 2012, they applied this strategy to the synthesis of chiral N-Cbz protected amines. ${ }^{67}$ These enantiomerically enriched propargylamines $\mathbf{9 5}$ are highly valuable synthetic intermediates.

Scheme 25. Enantioselective alkynyl zinc addition to N -tosyl and N -Cbz imine.

A similar approach using a proline-based ligand was reported by Wang et al. ${ }^{67}$ As part of their methodology, they examined a series of different proline-type ligands and found that the C_{2}-symmetric ligand 96 catalyzed the addition of alkynyl zinc reagents to N -phosphinoyl imines in good yields and $e e$'s. ${ }^{68}$

Scheme 26. Enantioselective alkynyl zinc addition to N-phosphinoyl imine.

1.3.2 Enantioselective alkynyl addition to N-DPP imine.

We previously obtained favorable results when exploring the cyclopropanation of an N DPP propargyl amide; therefore, we decided to use this method to access enantiomerically enriched bicyclo[1.1.0]butane substrates. A set of different ligands was examined for the addition of alkynyl zinc to imines. Diethyl zinc, p-trifluoromethyl phenyl acetylene and ligand were stirred for $2-6 \mathrm{~h}$ before the addition of the imine. After the addition of the imine, the mixture was stirred for another $12-48 \mathrm{~h}$ and quenched with saturated ammonium chloride solution. The products were then separated and analyzed by SFC (Chiralpak IA) (Scheme 27).

Scheme 27. Alkynyl zinc addition to N-phosphinoyl imine.

Table 3. Enantioselective alkynyl zinc addition to N-phosphinoyl imine.

Entry	Conditions	Yield (\%)	$\boldsymbol{e} . \boldsymbol{r} .^{\boldsymbol{a}}{ }^{\boldsymbol{(S}: \boldsymbol{R})^{\boldsymbol{b}}}$
1	$\mathrm{ZnMe}_{2}, \mathrm{rt}, 48 \mathrm{~h}$	86	-
2	$\mathrm{ZnMe}_{2}, \mathbf{9 1} 20 \mathrm{~mol} \%, \mathrm{rt}, 48 \mathrm{~h}$	15	$53: 47$
3	$\mathrm{ZnMe}_{2}, \mathbf{9 8} 10 \mathrm{~mol} \%, \mathrm{rt}$, overnight	61	$48: 52$
4	$\mathrm{ZnEt}_{2}, \mathbf{9 9} \mathbf{6 0 \mathrm { mol } \%}$, rt, overnight	65	$93: 7$

${ }^{a}$ Enantiomeric ratio was determined by SFC analysis using a Chiralpak IA column. ${ }^{b}$ Configurations were assigned according to the original paper. ${ }^{68}$

The results in Table 3 show that ligand $\mathbf{9 9}$ gave acceptable yield and enantiomeric ratio. We decided to use the commercially available ligand 99 as a chiral catalyst for the enantioselective additions of alkynes to imines.

Table 4. Enantioselective alkynyl zinc addition to N-phosphinoyl imine.

Entry	Product	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	Conditions	Yield (\%)	e.r. ${ }^{\boldsymbol{a}}(\boldsymbol{S}: \boldsymbol{R})^{\boldsymbol{b}}$
1	$\mathbf{1 0 2}$	$i-\mathrm{Pr}$	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	12 h	78	$93: 7$
2	$\mathbf{1 0 3}$	Ph	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	12 h	91	$92: 8$
3	$\mathbf{1 0 4}$	Ph	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	48 h	67	$69: 31$
4	$\mathbf{1 0 5}$	$i-\mathrm{Pr}$	$p-\mathrm{Br}_{6} \mathrm{H}_{4}$	6 h	84	$94: 6$
5	$\mathbf{1 0 6}$	$i-\mathrm{Pr}$	TIPS	24 h	84	$92: 8$
6	$\mathbf{1 0 7}$	PhCH	CH_{2}	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	24 h	82

${ }^{a}$ Enantiomeric ratio was determined by SFC analysis using a Chiralpak IA column. ${ }^{b}$ Configurations were tentatively assigned according to the original paper. ${ }^{67}{ }^{c}$ E.r. was determined after recrystallization.

We further explored the substrate scope of this reaction. We used the imine tosyl adduct 101a-c instead of the imine because some alkyl imines are not stable. The results are summarized in Table 4. As we expected, aromatic-substitued (entries 1, 2, and 4) and silyl-substituted alkyne (entry 5) gave good to excellent yield. Various substituents on the phenyl ring did not affect the e.r.. Alkyl-substituted alkyne (entry 3) only gave moderate yield and decreased enantioselectivity (69:31). When a smaller phenylethyl group was used (entry 6), a lower e.r. was observed.

However, we were able to increase the enantiomerical ratio to $98: 2$ by recrystallizing $\mathbf{1 0 4}$ in hexanes/dichloromethane.

1.3.3 Cyclopropanation of enantiomerically enriched propargyl amide.

As stated in the introduction, our group has studied the cyclopropanation of alkynes (Scheme 28). However, the substrate scope of this reaction is limited to cases where the starting material is a conjugated propargyl phosphonyl amide with electron withdrawing substituents on the aryl group. ${ }^{26}$

Scheme 28. Carbene addition of propargyl amides.

After obtaining the enantiomerically enriched propargyl amide 100 (Scheme 29), we subsequently treated $\mathbf{1 0 0}$ with a Simmons-Smith carbenoid to give bicyclo[1.1.0]butane $\mathbf{1 1 2}$ in 34% yield. After analysis by SFC using a chiral stationary phase the enantiomeric ratio of the bicyclo[1.1.0]butane product was equivalent to the propargyl amide starting material.

Scheme 29. Determination of e.r. after cyclopropanation.
${ }^{a}$ Enantiomeric ratio was determined by SFC analysis using a Chiralpak IA column.

Although the chiral center was retained after cyclopropanation, this process still suffers from low and irreproducible yields. As shown in Scheme 30, substrate $\mathbf{1 0 2}$ undergoes cyclopropanation to form the bicyclo[1.1.0]butane products $\mathbf{1 1 3}$ in 46% yield. The yield was a slight improvement from substrate 100,

Scheme 30. Cyclopropanation of substrates 102.

The reason for the low reaction yield is that the bicyclo[1.1.0]butane can undergo a subsequent carbenoid addition, which forms skipped diene 117 . Usually the skipped diene 117 cannot be observed in the product; it will be attacked by another equivalent of carbenoid to form products 118 and 119. The mechanism of this transformation is shown in Scheme 31.

Scheme 31. Cyclopropanation of bicyclo[1.1.0]butane.

In 1985, Jackson et al. ${ }^{69}$ described their studies on the cyclopropanation of bicyclo[1.1.0]butane. The author stated that if the mechanism is step-wise, $\mathbf{1 2 2}$ should be the
main product of the first step. Since $\mathbf{1 2 3}$ and $\mathbf{1 2 5}$ would form more substituted alkenes, $\mathbf{1 3 0}$ should be the main product of this reaction. Instead of the two suggested step-wise pathways, the author proposed another concerted route, the "two bond pluck", in which the central and lateral bonds open simultaneously. The concerted pathway was supported by the 70% yield of product $\mathbf{1 3 0}$ from the cyclopropanation of 1,2,2-trimethylbicyclo[1.1.0]butane (Scheme 32).

Scheme 32. Mechanism study of cyclopropanation of bicyclo[1.1.0]butane $\mathbf{1 1 0}$.

First of all, we hoped that modifications of the cyclopropanation reaction would provide us with a more reliable access to bicyclo[1.1.0]butane-containing compounds. In 2004, Shi and co-workers ${ }^{70}$ developed a novel class of zinc carbenoid reagents that offered efficient cyclopropanation of olefins. With the combination of Lewis acid catalyst such as $\mathrm{TiCl}_{4}, \mathrm{SnCl}_{4}$, AlCl_{3} and AlEtCl_{2}, the reactivity of zinc reagents $\left(\mathrm{ROZnCH}_{2} \mathrm{I}\right)$ increased dramatically. The mechanism of the acceleration is that Lewis acid can complex with oxygen to break the
aggregated zinc reagents $\left(\mathrm{ROZnCH}_{2} \mathrm{I}\right)$ and increase the electrophilicity of the generated zinc carbenoid. ${ }^{71}$

Scheme 33. Modification of cyclopropanation conditions of bicyclo[1.1.0]butane $\mathbf{1 0 0}$.

The cyclopropanation of alkynes required excess reagent usage and had low conversion. Thus we examined the combination that increases the reactivity of zinc carbenoid the most, namely $\mathrm{AlEt}_{2} \mathrm{Cl}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$. Despite the differences between simple olefins ${ }^{70}$ and propagylic amines, the use of diethyl aluminum chloride and trifluoroethanol as additives gave a more consistent yield. We decided to use this condition for further reaction optimization (Scheme 33).

Table 5. Cyclopropanation of carbonyl-protected propargyl amides.

Entry	Starting Material	R	Product
1	$\mathbf{1 3 1}$	Ph	$\mathbf{1 3 5}$
2	$\mathbf{1 3 2}$	$t \mathrm{Bu}$	NR.

We next tested a series of carbonyl protecting groups under the optimized conditions. As shown in the Table 5, N -benzoyl amide $\mathbf{1 3 1}$ generated only rearranged products. N -Pivaloyl
amide 132 was unreactive under the reaction conditions. Because substrates with carbonyl protecting groups gave lower yields than the original propargyl amide, we continued to develop our methodology using DPP-protected starting materials.

Finally, we decided to test if the temperature could affect the selectivity of bicyclo[1.1.0]butane formation in the presence of other functional groups that are reactive toward carbenoids (Table 6). Cyclopropanation of both allyl and propargyl amides could be carried out above $-40^{\circ} \mathrm{C}$. At $-30^{\circ} \mathrm{C}$, the allyl amide was more reactive than the propargyl functionality and $\mathbf{1 3 8}$ could be obtained exclusively. At higher temperatures, 138, $\mathbf{1 3 9}$ and $\mathbf{1 4 0}$ were obtained as an inseparable mixture, which means that the bicyclo[1.1.0]butane product has similar reactivity to the starting material propargyl amide. In summary, these results suggested that bicyclo[1.1.0]butane formation is difficult to perform in a selective fashion.

Table 6. Cyclopropanation of styrenal propargyl amide at different temperatures.

Entry	Conditions	Product	Yield
1	rt	$\mathbf{1 4 0}, \mathbf{1 4 1}(1: 10)$	$81 \%^{\mathrm{a}}$
2	$-20^{\circ} \mathrm{C}$	$\mathbf{1 3 8 , 1 3 9 , 1 4 0}(\sim 1: 1: 1)$	$62 \%^{\mathrm{b}}$
3	$-30^{\circ} \mathrm{C}$	$\mathbf{1 3 8}$	86%
4	$-40^{\circ} \mathrm{C}$	-	-

${ }^{a} \mathbf{1 4 0}$ and $\mathbf{1 4 1}$ were obtained as an inseparable mixture, the ratio was determined by NMR. ${ }^{b} \mathbf{1 3 8}$ and $\mathbf{1 3 9}$ were obtained as an inseparable mixture, the yield was determined by NMR.

1.3.4 Cyclopropanation of silyl-substituted propargyl amide.

In 1.3.3, we managed to use modified zinc reagents to solve the low conversion problem in the cyclopropanation of propagylic alkynes. but failed to keep the generated bicyclo[1.1.0]butane from reacting with excessive zinc carbenoids. In this section, we sought to design some substrates in order to solve the latter problem.

Scheme 34. Different product distribution in the one-pot cyclopropanation of propargylic amine.

As stated in 1.2.5, our group investigated the cyclopropanation of N-DPP propargyl amides and found that the steric hindrance at the α-position was crucial for a selective formation of cyclopropanation products. ${ }^{48}$ A simple structral change from hydrogen atom (47) to ethyl group (46) at β-position alternated the product distribution dramtically. In other word, the ethyl group blocked the resulting bicyclo[1.1.0]butane from reacting further with zinc carbenoid. These results implied that Simmons-Smith cyclopropanation of bicyclo[1.1.0]butanes is very sensitive to steric hindrance (Scheme 33).

We decided to test substrates with larger steric hindrance, namely, alkynes bearing a TIPS protecting group. The results of the reaction of TIPS-protected propargyl amides are summarized in Scheme 34. Surprisingly, TIPS-substituted 106 gave the cyclopropene product 142 exclusively even at room temperature. Cyclopropene $\mathbf{1 4 2}$ is not decomposed upon storage at $-20^{\circ} \mathrm{C}$ for 6 months. The result indicated that the TIPS group imparts too much steric hindrance for cyclopropene $\mathbf{1 4 2}$, which makes 142 resistant from reacting with zinc carbenoids to obtain a bicyclo[1.1.0]butane.

Scheme 35. Modification of cyclopropanation conditions of bicyclo[1.1.0]butane $\mathbf{1 0 0}$.

Next, we reduced both the size of the substituents (Table 7). By reducing the size of the iso-propyl group to a smaller phenethyl group, we observed the formation of bicyclo[1.1.0]butanes. Furthermore, the reaction proceeded to the bicyclo[1.1.0]butanes and stopped without reacting further. For alkynes 143-147, these reactions showed only one spot by TLC and gave excellent yields (75-92\%). The reaction tolerated many silyl groups with sizes from trimethylsilyl to tert-butyldimethylsilyl. We also tested substrates with trimethylsilylmethyl (148) or hydrogen (149) substituents, which conveyed a similar electronic environment to other silyl alkynes. However, these substrates gave only decomposition products, suggesting a dominant role for steric effects in the cyclopropanation process.

Table 7. Cyclopropanation of a series of different silyl-substituted propargyl amides.

(\%)

[^0]To our knowledge, this is the first case of a cyclopropanation reaction furnishing bicyclo[1.1.0]butane products with such high degree of selectivity. The combination of our modified reagents and substrate designs provided us an efficient route to these unique silylsubstituted bicyclo[1.1.0]butanes.

Figure 7. X-ray structure of 153.

We managed to obtain an X-ray structure of our silyl-substituted bicyclo[1.1.0]butane 153. Detailed structural information for several bicyclo[1.1.0]butane derivatives is summarized in Table $8 .{ }^{53}$ As we stated in 1.1.1, the substituents on the bicyclo[1.1.0]butane (C10 and C12) are restricted in the same hemisphere. As a result, we observed a strong interaction between the two substituents (trimethylsilyl and 3-phenyl-1-propyl DDP amide) on the bridgehead carbons
(Figure 7). Comparing to a similar bicyclo[1.1.0]butane bearing a hydrogen atom and a α-benzyl tosyl amide (157), the bond angles were enlarged by ~ 10 degrees each. Comparing to a conjugated bicyclo[1.1.0]butane 158, the angle was increased by 23 degrees. We believed that this angle change along with the increased size of the substituent on C12 blocked the access to the p-orbital of the central bond and prevented the bicyclo[1.1.0]butane from further reaction with zinc carbenoids.

Table 8. Bond angles and lengths of $\mathbf{1 5 3}, \mathbf{1 5 7}^{53}$ and $\mathbf{1 5 8}^{53}$.

C-C Bond parameters	137.4	127.0	131.1
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 12\left({ }^{\circ}\right)$	140.4	129.4	117.0
$\mathrm{Si1-C12-C10}\left({ }^{\circ}\right)$	1.505	1.456	1.518
$\mathrm{C} 10-\mathrm{C} 12(\AA)$			

Besides the bond angle, we also observed that the bond length of C10-C12 was expanded due to the interaction between C10 and C12 substituents, which again demonstrated the steric hindrance of the silyl group.

1.3.5 Ene reaction of silyl-substituted bicyclo[1.1.0]butane.

In 2006, our group reported a pericyclic cascade reaction using bicyclo[1.1.0]butane containing starting materials. ${ }^{54}$ Depending on the substituent on the allyl bromide, the product was formed as a spirocyclic butene or tricyclic pyrrolidine system (Scheme 35). When the R group is an alkyl group, intermediate $\mathbf{1 5 9}$ has a short lifetime and undergoes H -abstraction to
form the spirocyclic butene $\mathbf{1 6 0 - 1 6 2}$. However, when the R group is aromatic (163-165), intermediate $\mathbf{1 5 9}$ undergoes a radical recombination to form a $\mathrm{C}-\mathrm{C}$ bond.

Scheme 36. Thermal ene reactions of bicyclo[1.1.0]butanes. ${ }^{54}$

We subsequently tried the cascade conditions with several allyl bromides and silylsubstituted bicyclo[1.1.0]butanes. The alkylated products were formed, but no cyclized products were found (Scheme 37). Subjecting the alkylated products to high temperatures or microwave conditions did not promote the cascade reactions. Furthermore, rhodium catalysts and radical initiators did not facilitate this reaction (Scheme 38). ${ }^{3,53}$

Scheme 37. Phase transfer alkylation of bicyclo[1.1.0]butanes 150-153.

Since these silyl-substituted bicyclo[1.1.0]butanes have different HOMO/LUMO energies to the bicyclo[1.1.0]butanes with aromatic substitutions on the bridgehead carbon, the inertness of $\mathbf{1 6 7 - 1 7 0}$ was not unexpected. On the other hand, as we discussed in 1.3.4, the X-ray structure revealed our silyl-substituted bicyclo[1.1.0]butane possessed strong steric hindrance that possibly blocked the anti-obital of the central bond of the fused ring system, which could also be detrimental to the pericyclic cascade reaction.

Scheme 38. Cyclization failure with prolonged heating or different catalysts.
Previously, our group developed the cyclization methodology using unactivated bicyclo[1.1.0]butane substrates such as $\mathbf{1 5 7}$ (Scheme 39). ${ }^{53}$ Treatment of substrate 157 with sodium hydride in anhydrous dimethylformamide led to the formation of an alkylated amide that is converted to the cyclized product 172. We expected silyl-substituted bicyclo[1.1.0]butanes to have properties similar to 157 .

Scheme 39. [2+2] ene reaction with unactivated bicyclo[1.1.0]butane.
However, when we attempted to carry out the reaction with compound 153, we did not observe the formation of any alkylated or cyclized product. The decomposition of methyl 4bromocrotonate indicated that the alkylation process was problematic. We sought to solve this issue by applying a 3-step (alkylation/deprotection/oxidation) strategy towards the synthesis of the activated propargyl functionality.

Scheme 40. [2+2] ene reaction with bicyclo[1.1.0]butane 174.
${ }^{a}$ Structure assigned by comparing to X-ray structure a similar compound $\mathbf{1 8 0}$.

This method involved a protected alcohol that can be easily oxidized to the aldehyde, which in turn can activate the conjugated propargyl alkyne. ${ }^{53}$ Alkylation of amide $\mathbf{1 5 3}$ with TBS protected propargyl bromide using phase transfer conditions affords $\mathbf{1 7 3}$ in good yield (Scheme 40). The TBS group could be removed in nearly quantitative yield without any decomposition of the 1-trimethylsilyl bicyclo[1.1.0]butane. Subsequently, treating the propargyl alcohol with Dess-Martin reagent afforded the cyclized product 174 in high yield. It is worth mentioning that the ene-reaction happened simultaneously at 0 degrees, without the isolation of propargyl
aldehyde. We planned to obtain a crystal structure of $\mathbf{1 7 4}$. Unfortunately, 174 slowly decomposed at room temperature and failed to crystallize.

Scheme 41. [2+2] ene reaction with silyl-substituted bicyclo[1.1.0]butane.

An alternative strategy with dinitrophenyl hydrazine was applied with substrate 175. The alkyne addition provided TMS-substituted bicyclo[1.1.0]butane 176. Switching the phenylethyl group to a smaller ethyl group did not affect the outcome of cyclopropanation. TMS-substituted bicyclo[1.1.0]butane 177 was obtained in 62% yield as the only product. The following alkylation/deprotection/ene reaction sequence produced the aldehyde $\mathbf{1 7 9}$ in high yield and as a single diastereomer. Hydrazone 181 was synthesized upon stirring $\mathbf{1 7 9}$ with (2,4dinitrophenyl)hydrazine (181) in methanol at room temperature (Scheme 41).

The product was recrystallized from dichloromethane and hexanes to afford an orange crystal. As shown in Figure 8, we observed bond length differences between the double bond (1.343 \AA) and the single bond $(1.536 \AA)$ on the cyclobutene ring. The ethyl group is located on
the same side with the double bond on the cyclobutene ring. This suggests that this reaction is a stereospecific formal ene reaction.

Figure 8. X-ray structure of 181.

1.3.6 Hiyama cross-coupling of silyl-substituted bicyclo[1.1.0]butane

The high π-character of the central bond of bicyclo[1.1.0]butane has been highlighted in the first chapter. We expected this compound to have similar reactivity to a vinyl silane, which undergoes a Hiyama coupling in the presence of a fluoride activator and a palladium species.

Scheme 42. Hiyama coupling protocol using aryl silane and alkyl bromide.

Hundreds of protocols for Hiyama couplings utilizing mild conditions and different silicon species have been reported in the last decade. ${ }^{72}$ For example, a room-temperature Hiyama
cross-coupling of arylsilanes with alkyl bromides and iodides was reported by Fu et al. (Scheme 42). ${ }^{73}$ Silicon functionalities such as dimethyl(2-thienyl)silyl have also been used in Hiyamacoupling partners (Scheme 43).

Scheme 43. Hiyama coupling using a dimethyl(2-thienyl)silyl group.

We began our explorations of the use of silyl-substituted bicyclo[1.1.0]butanes as Hiyama coupling partners using substrate 154 (Scheme 44). Unfortunately, subjecting compound 154 to Hiyama coupling conditions led to the decomposition. An explanation is that the palladium catalyst opens the bicyclo[1.1.0]butane ring and formed a palladium-carbene complex that decomposes under the reaction conditions.

Scheme 44. Hiyama coupling using a dimethyl(2-thienyl)silyl bicyclo[1.1.0]butane.

1.4 CONCLUSION

This chapter describes our methodologies for the enantioselective synthesis of 1-bicyclo[1.1.0]butan-1-yl alkylamines. Initial trials with the enantioselective addition of
bicyclo[1.1.0]butyllithium reagent to imines were unsuccessful. We developed an alternative route using cyclopropanation to enantiomerically enriched propargyl amides. The enantioselective addition of alkynes to imines proceeded well for most N-DPP amides. The cyclopropanation went well for conjugated propargyl amides with the stereocenter retained. This methodology enabled us an access to enantiomerically enriched 1-bicyclo[1.1.0]butan-1-yl alkylamines.

A series of silyl-substituted bicyclo[1.1.0]butanes could be synthesized by double cyclopropanation from propargyl amides without observation of byproduct. To our knowledge, this is the first case of a cyclopropanation reaction furnishing bicyclo[1.1.0]butane products in such high, reproducible yields. When tethered to an activated alkyne, the silyl-substituted bicyclo[1.1.0]butanes underwent cyclization to form pyrrolidines. This methodology also enables an unique pathway for the synthesis of multi-functional cyclobutene compound. Cyclobutane/cyclobutene-containing alkaloids have shown anticancer, antibiotical and other activities and may serve as potential lead drug candidates. ${ }^{74}$ Despite various well-known methodologies developed for cyclobutane/cyclobutene synthesis, highly-substituted cyclobutenes remain challenging synthesis target ${ }^{75}$. However, our oxidation/pericyclic cascade reaction furnished a quaternary center in the cyclobutene at ease. This methodology could pave a unique pathway for the synthesis of multi-functional cyclobutene compounds such as welwitindolinone A isonitrile. ${ }^{76-78}$

Figure 9. Welwitindolinone A isonitrile.

2. PALLADIUM-CATALYZED CYCLOISOMERIZATION OF 1-BICYCLO[1.1.0]BUTAN-1-YL ALKYLAMINES

Transition metals have been at the center of strained cyclopropane methodology development in the last few decades. For example, metal-catalyzed methylenecyclopropene (MCP) reactions have proven multifunctional and versatile in organic synthesis. Utilizing this transformation on bicyclo[1.1.0]butanes reveals some interesting reactivity of these species. This chapter will demonstrate some fundamental aspects of these transformations as well as applications of these strategies for bicyclo[1.1.0]butane derivatives.

2.1 FUNDAMENTAL PROPERTIES OF METHYLENECYCLOPROPANE

2.1.1 Transformation patterns of MCP

Similar to bicyclo[1.1.0]butane, MCP is a highly strained four-carbon unit that can undergo a variety of reactions by releasing its strain energy. ${ }^{22}$ Metal catalysts can utilize the π character of the cyclopropane bond and the high thermodynamic driving force provided by the ring strain to initiate many fascinating transformations. This type of rearrangement reaction usually results in significant increase in structural complexity. ${ }^{79}$

Figure 10. Metal-catalyzed MCP reaction pathways.

As shown in Figure 10, there are three major reaction patterns for MCP. The first pattern arises from the reactivity of the double bond in MCP. It can undergo carbometallation followed by β-elimination to afford the homoallylic or allylic compounds. ${ }^{80}$ Alternatively, the double bond
may also react as a component in a Pauson-Khand, ${ }^{81}$ Diels-Alder ${ }^{82}$ or [3+2] dipolar cycloaddition ${ }^{83}$, which furnish many spirocyclic compounds without cyclopropane ring opening. The second reaction pattern relies on the formation of a metallacyclobutane species or a metal trimethylenemethane (TMM) complex 188. These highly reactive intermediates are produced by the insertion of the transition metal into the distal (189) or the proximal (190) bond, respectively. Finally, MCPs can undergo metal-catalyzed cycloisomerization to afford the cyclobutene. ${ }^{84,85}$

The following sections review several representative examples of metal-catalyzed MCP cycloaddition/isomerization reactions.

2.1.2 Cycloadditions with the conservation of cyclopropane ring

Scheme 45. Intramolecular Pauson-Khand reaction of enyne.

The Pauson-Khand reaction (PKR) is a cobalt/rhodium-mediated $[2+2+1]$ cyclization of an alkyne, an alkene and a carbon monoxide that yields a cyclopentenone. In 2005, de Meijere and co-workers applied MCP moieties as alkenes in PKR precursors 1,6- and 1,7-enynes, which
furnished spirocyclopropanated bicyclo[3,3,0]octenone or bicyclo[4,3,0]nonenone in good yields. ${ }^{86}$ Additionally, the authors found that a chiral auxiliary led an asymmetric induction in the cyclization step. Spiro(cyclopropanebicylo[3,3,0]octantenone) 194 can be obtained in enantiomerically pure form (Scheme 45).

Scheme 46. 1,3-Dipolar addition of MCP with nitrones and acid-mediated ring contraction.

In 2000, Brandi et al investigated the 1,3-dipolar addition of MCP with various nitrones, providing 1,5-isoxazolidines in moderate yield. ${ }^{87}$ An acid led these resulting isoxazolidines to form valuable β-lactams by ethylene extrusion. (Scheme 46)

Scheme 47. 1,3-Dipolar addition of BCP with nitrones and transformation of the adducts.

This cascade reaction was applied to bicyclopropylidene 198 (BCP) for the synthesis of α-spirocyclopropane- β-lactam. ${ }^{88,89}$ Upon microwave heating in presence of NaOAc , the adducts of BCP and nitrone (in situ generated from aldehyde) gave cyclopropanated β-lactam 200 in good yield. Interestingly, pyrrolidine derivatives afforded α-cyclopropanated- β-homoprolines due to the instability of carbapenam skeleton in 202. Additionally, the authors showed that these highly functionalized homoprolines were incorporated in the synthesis of a pseudotripeptide (Scheme 47). ${ }^{90}$

Scheme 48. Total synthesis of gelsemoxonine.

In 2013, Carreira's group published a 21-step total synthesis of gelsemoxonine, a natural product isolated from traditional Chinese medicine. ${ }^{91}$ The author utilized Brandi's 1,3-dipolar addition and acid-promoted ring contraction sequence to obtain β-lactam 208, which ultimately elaborated into the azetidine in 209. A mechanistic study indicated that the reaction proceeds via a concerted pathway. ${ }^{92}$ In 2015, Carreira et al. reported a full account of their studies on gelsemoxonine as well as an enantioseletive synthesis of key intermediate 206. ${ }^{93}$

2.1.3 Metal-catalyzed MCP [3+2] cycloaddition reactions

The metal-catalyzed [3+2] cycloaddition of MCP and double bonds has been studied extensively since the pioneering studies of Noyori's and Binger's group in 1970s. ${ }^{94-96}$ Motherwell and Nakamura independently reported examples of intramolecular [3+2] cycloaddition between MCPs with alkenes and alkynes in 1988. ${ }^{97-98}$ These methodologies served as great procedures to construct highly functionalized cyclopentanes. (Figure 11)

Figure 11. Metal-catalyzed MCP reaction pathways.

Generally, there are two different pathways for the [3+2] cycloaddition between MCP and double bonds. An oxidative insertion of the distal bond (C2-C3) would generate metallacyclobutane 210. The carbonmetalation with double bonds and reductive elimination forms cyclopentane 211. Alternatively, the proximal bond cleavage between C 1 and C 2 would lead to the formation of regioisomer 213 (Figure 11).

Mascareñas and co-workers published a series of papers on the [3+2] cycloaddition of alkyne/alkene/allene tethered MCPs in the presence of palladium catalysts. ${ }^{99-103}$ In 2003, they found that the cyclization of 214 afforded 215 in good yield when treated with a palladiumphosphite complex. ${ }^{99}$ Later they discovered that a Ruthenium-based catalyst was capable of
catalyzing the reaction in a similar fashion. ${ }^{100}$ DFT studies suggested that these cyclizations are initiated by an oxidative insertion into the distal bond and followed by an isomerization via a TMM-Pd complex to give a palladacyclobutane intermediate 216. ${ }^{101}$ Intramolecular addition into the alkyne and reductive elimination leads to the formation of 218. Additionally, the authors managed to combine the alkylation with the cycloaddition to a one-pot synthesis, which is a more simple and practical process (Scheme 49) . ${ }^{102}$

214

88\%

219

Scheme 49. Palladium-catalyzed [3+2] MCP cyclization with alkynes.

The electron-deficient alkene tethered MCP 221 furnished 222 in a highly diastereoselective fashion through a similar mechanism to alkynes. ${ }^{102}$ On the other hand, the authors found the allene $\mathbf{2 2 3}$ could perform the cycloaddition with less catalyst loading (Scheme 50). ${ }^{103}$

225

Scheme 50. Palladium-catalyzed [3+2] MCP cyclization with alkenes/allenes.

2.1.4 Heterocycle synthesis from MCP [3+2] cycloaddition

Scheme 51. Palladium-catalyzed [3+2] MCP cyclization with CO_{2}.

A $\mathrm{C}=\mathrm{X}(\mathrm{X}=\mathrm{N}, \mathrm{O})$ double bond can also react with MCP in the presence of metal catalysts. An interesting example is Binger's lactone synthesis by a palladium-catalyzed cycloaddition between MCP and carbon dioxide. ${ }^{104}$ However, this process afforded a mixture of regioisomers (227 and 228) and diastereomers. In 2011, Shi et al. published an optimized
procedure to synthesize spirocycliclactones $\mathbf{2 3 0}$ with complete regioselectivity. ${ }^{105}$ This methodology offers a straightfoward strategy to these highly-substituted lactones, which usually took several steps to synthesize from ketones.

Scheme 52. Heat-induced [3+2] cycloaddition of o-aniline-tethered MCP.

Shi et al. developed a series of novel and efficient protocols utilizing intramolecular cycloadditions of o-aniline-tethered MCP. ${ }^{106-108}$ In 2009, they reported a thermo-induced [3+2] cyclization from cyclopropane opening of in situ genertated imine 232. Notably, many biologically active natural products possesses the same functionalized pyrrolo[1,2-a]indole core as 233. ${ }^{106}$ (Scheme 52)

Scheme 53. Heat-induced [3+2] synthesis of furoquinoline 236 and thienoquinoline 237.

In 2016, their group published an approach for facile access to furoquinoline and thienoquinoline scaffolds from 231. ${ }^{107}$ Mechanistically, the starting anilines were transformed into isocyanates in situ. Next, the isocyanate-tethered 234 underwent a 6π-electrocyclization to form intermediate 235, which further rearranged to product 236 through cleavage of the cyclopropane ring. Potential applications of products $\mathbf{2 3 6}$ and $\mathbf{2 3 7}$ were still under investigation.

Scheme 54. Rh(II)-catalyzed indole-fused azetidine synthesis.

Another rhodium(II)-catalyzed protocol that converts othro-MCP-tethered phenyl azide into indole-fused azetidines was discovered by Shi and co-workers in 2016. ${ }^{108}$ When the radical trapping reagent TEMPO was applied, the authors found the yield of $\mathbf{2 3 9}$ was dramatically diminished. This suggested a SET (single-electron-transfer) mechanism might be involved. The authors proposed a mechanism based on the experimental results and DFT studies. Upon the coordination of $\mathrm{Rh}_{2}(\mathrm{esp})_{2}, 238$ releases N_{2} and produces nitrene 240. Subsequent SET and addition generates radical 241, which is rearranged to give indole intermediate 242. Another SET regenerates rhodium catalyst and furnishes indole-fused azetidines $\mathbf{2 3 9}$ as final product (Scheme 54).

2.1.5 Metal-catalyzed MCP [3+2+2] cycloaddition reactions

Scheme 55. Nickel-catalyzed [3+2+2] MCP cyclization with alkynes.

In 2004, Saito et al. first discovered a intermolecular [3+2+2] cycloaddition between MCP and alkynes. ${ }^{109}$ The resulting seven-member ring carbocycles are prevalent among many nature products. Interestingly, nickel was used in this case and the product distribution was distinctively different from palladium-catalyzed cycloadditions because nickel prefers the proximal insertion to the distal insertion. Recently, this reaction was further developed as a 3component reaction (2 different alkynes) with a good yield of a single regioisomer (Scheme 55). ${ }^{110}$

Scheme 56. Mechanisms of nickel-catalyzed [3+2+2] MCP cyclization with alkynes.

In 2015, a follow-up DFT study from Saito's group suggested two possible pathways depending on the different substitutions on the alkynes. ${ }^{111}$ Alkyl-substituted alkynes prefer pathway A, and the regioselectivity is determined by the second insertion of acetylene (246). A bulkier R would generate 3,5 -substituted 247a, while a smaller R would afford a mixture of $\mathbf{2 4 7}$ a and 247b. For pathway B, electron-deficient alkynes would couple with the nickel catalyst to form 248, which ultimately determines regioselectivity of the 2,5 -substituted $\mathbf{2 5 0}$. These reactions provide a facile synthesis of 7-member ring carbocycles with decent regioselectivity. (Scheme 56)

Scheme 57. Rhodium-catalyzed [3+2+2] MCP cyclization with alkynes.

In 2008, Evans et al. explored an intra/intermolecular $[3+2+2]$ process for the preparation of cis-fused bicycloheptadienes 252 catalyzed by a rhodium phosphite complex. ${ }^{112}$ The study was noteworthy for the fast stereospecific generation of three new stereogenic centers and the control of the regiochemistry. In 2015, the same authors published another $[3+2+2]$
cycloaddition utilizing allenes as a component to generate tri- or tetrasubstituted exocyclic olefins $\mathbf{2 5 4}$, which provided a new route to the guaiane family of sesquiterpenes (Scheme 57). ${ }^{113}$

2.1.6 Metal-catalyzed MCP cycloisomerization reactions

De Meijere et al. developed a novel [3+1] ring expansion reaction that produces methylenecyclobutanones under mild conditions. ${ }^{114}$ The carbonylation could be carried out under 1 atmosphere of CO (balloon) with $5 \mathrm{~mol} \%$ of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$. Other metal carbonyls such as $\left[\mathrm{W}(\mathrm{CO})_{6}\right],\left[\mathrm{Mo}(\mathrm{CO})_{6}\right],\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ and $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$ gave poor yield. Notably, this is the first example of a cobalt catalyst effectively activating the δ bonds of a cyclopropane. (Scheme 58)

Scheme 58. Cobalt-catalyzed carbonylation of MCP.

In 2006, Fürstner reported a PtCl_{2}-catalyzed cycloisomerization of MCP into cyclobutene in moderate to good yield. ${ }^{84}$ Shi et al. independently published the same ring-expansion transformation utilizing $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{CuBr}_{2} .{ }^{85}$ In 2009, Marek and co-workers proved that the rearrangement of enantiomerically pure MCP completely conserved the quaternary stereocenter with high regioselectivity (Scheme 59). ${ }^{115}$

Scheme 59. Pd/Pt-catalyzed cycloisomerization of MCP.

2.2 RESULTS AND DISSCUSSION

2.2.1 Pd-catalyzed cycloisomerization of bicyclo[1.1.0]butane and MCP

In the last several sections, we have discussed the reactivities of MCP extensively. Inspired by these fascinating examples, we planned to explore the interaction between MCP and bicyclo[1.1.0]butane. With the highly strained nature of both moieties, a great potential in organic synthesis can be envisioned.

Scheme 60. Proposed palladium-catalyzed cycloisomerization of MCP and bicyclo[1.1.0]butane.

We imagined that the central bond of bicyclo[1.1.0]butane in 263 would serve as an alkene functionality to perform a formal [3+2] cycloaddition with MCP. A palladium catalyst could insert into the distal bond of MCP and isomerize to palladacyclobutane 264. Next, the addition of bicyclo[1.1.0]butane and reductive elimination would afford our desired bicyclo[3.1.1]heptane 265. On the other hand, 263 could also undergo a formal [2+2] cycloaddition to product cyclopropanated bicyclo[3.1.1]heptane 266.

Scheme 61. Initial attempt of a palladium-catalyzed MCP cyclization.

Our initial attempt was carried out with substrate 263, which was prepared from the Mistunobu reaction between 157 and 2-cyclopropylideneethanol. As shown in Scheme 61, A solution of 263 in dioxane was heated at reflux in the presence of $10 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and 40 mol\% triisopropylphosphite. Surprisingly, we obtained 268 in 65% yield as the only product without the observation of $\mathbf{2 6 5}$ or 266. Instead of forming the Pd-TMM complex with MCP, the palladium catalyst might open the bicyclo[1.1.0]butane ring into a carbene intermediate to provide the product 268.

Scheme 62. Rhodium(I)-catalyzed cycloisomerization of 269.

We were intrigued by this result because our group previously reported a rhodiumcatalyzed cycloisomerization of bicyclo[1.1.0]butanes. ${ }^{3}$ As depicted in Scheme 62, by tuning the ligands on the rhodium catalyst, bicyclo[1.1.0]butane 269 can generate two rhodium carbine species 270 and 272. Subsequently, cyclopropanations produced pyrrolidine 271 or azepine 273, respectively.

Figure 12. X-ray structure of 268.

Recrystallization of 268 in dichloromethane and hexanes afforded a fine colorless crystal. The X-ray structure of $\mathbf{2 6 8}$ is displayed in Figure 12. The highly-strained spirocyclopropane ring is perpendicular to the pyrrolidine. Notably, the phenyl and allyl group are in a trans relationship. We observed a cis orientation of these groups in our previous rhodium-catalyzed cycloisomerization.

Having confirmed the structure of spirocyclopropane 268, we further examined the reaction with substrate $\mathbf{2 6 9}$, which provided 274 under our standard conditions. Interestingly, 274 is the opposite diastereomer of our previous rhodium-catalyzed cycloisomerization product 271. On the other hand, we did not detect any azepine-type (273) product under our conditions. We noticed very similar H-NMR spectra of these two compounds except for the protons located in the pyrrolidine ring. The assignment of these protons are depicted in Figure 13.

Figure 13. NMR spectra of diastereomers 271 and 274.

First of all, we assigned H_{b} and H_{b}, by examing the vicinal $\mathrm{H}-\mathrm{H}$ coupling between $\mathrm{H}_{\mathrm{b}} / \mathrm{H}_{\mathrm{b}}$, and $\mathrm{H}_{\mathrm{c}} .{ }^{3} J_{\mathrm{HH}}$ of $\mathrm{H}_{\mathrm{b}} / \mathrm{H}_{\mathrm{c}}(\mathbf{2 7 1})$ and $\mathrm{H}_{\mathrm{b}} / \mathrm{H}_{\mathrm{c}}(\mathbf{2 7 4})$ were close to 0 Hz so the dihedral angles of these C-H bond should be $\sim 90^{\circ}$. Second of all, $\mathrm{H}_{\mathrm{b}^{\prime}}$ in 271 and 274 were both around 3.7 ppm because they adopted a similar equatorial position. Comparing to $\mathbf{2 7 4}$, two axial protons $\left(\mathrm{H}_{\mathrm{a}}\right.$ and $\left.\mathrm{H}_{\mathrm{b}}\right)$ in 271 shifted downfield. The shielding effect of cyclopropane rings should be responsible for this shift. ${ }^{115}$ In 271 both protons were cis to the cyclopropane ring and much closer than the protons that were trans to the cyclopropane ring in $\mathbf{2 7 4}$. Additionally, in $271 \mathrm{H}_{\mathrm{a}}$ shifted downfield due to the anisotropic effect of the trans allyl group. ${ }^{116}$ This explains why H_{a} had a larger $\Delta \delta$ value $(0.6$ ppm for $\mathrm{H}_{\mathrm{a}}, 0.4 \mathrm{ppm}$ for H_{b}). Finally, we also observed the shielding effect of the phenyl ring to the protons located at the cyclopropanes. ${ }^{117}$ As shown in Figure 12, the phenyl ring in 274 was perpendicular to the pyrrolidine ring and adjacent to the endo proton H_{d}. Comparing to 271, The current on the phenyl ring shifted H_{d} downfield (0.6 ppm) and $\mathrm{H}_{\mathrm{d}^{\prime}}$ upfield (-0.3 ppm).

We next optimized the reaction conditions (Table 9). When the palladium (II) catalysts were applied, no product was observed. (entry 1). The yield was lower with palladium catalyst such as $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (entry 2). 275 and triphenylphosphite reduced the yield dramatically (entries 3 and 4). When the phosphine ligand DPPP or $\mathrm{P}(n \mathrm{Bu})_{3}$ was used, the yield was also diminished (entries 5 and 6). Addition of the bulkier $\mathrm{P}(i \operatorname{Pr})_{3}$ improved the yield of 274 to 81% (entry 7). By reducing the catalyst and ligand loading to $10 \mathrm{~mol} \%$, the yield remained excellent (entry 8). The reaction was completed in less than 45 min in a microwave reactor. When only 5% catalyst was applied, a high concentration (0.1 M) was required to generate 274 in a high yield (entry 9). Finally, the bulkier $\mathrm{P}(t \mathrm{Bu})_{3}$ ligand had a detrimental effect, while the smaller ligand PCy_{3} gave 82% of 274 (entries 10 and 11). Additionally, solvents such as toluene and DMF provided no improvement.

Table 9. Reaction conditions optimizations for the cycloisomerization of 224.

Entry ${ }^{\text {[a] }}$	Catalyst	Ligand	Yield ${ }^{[b]}$
1	$20 \mathrm{~mol} \% \mathrm{PdCl}_{2}$	$40 \mathrm{~mol} \% \mathrm{P}(\mathrm{OiPr})_{3}$	0\%
2	$20 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	35\%
3	$10 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$40 \mathrm{~mol} \% \mathrm{P}(\mathrm{OPh})_{3}$	0\%
4	$20 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	$40 \mathrm{~mol} \% 226$	15\%
5	$20 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	$20 \mathrm{~mol} \%$ DPPP	42\%
6	$20 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	$40 \mathrm{~mol} \%{\mathrm{P} n \mathrm{Bu}_{3}}$	34\%
$7^{[\mathrm{c}, \mathrm{d}]}$	$20 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	$40 \mathrm{~mol} \% \mathrm{PiPr}_{3}$	81\%
$8{ }^{[c]}$	$10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	$20 \mathrm{~mol} \% \mathrm{PiPr}_{3}$	82\%
$9^{[\text {c,d] }}$	$5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	$10 \mathrm{~mol} \% \mathrm{PiPr}_{3}$	84\%
$10{ }^{[\mathrm{c}, \mathrm{e}]}$	$5 \mathrm{~mol} \% \mathrm{Pd}\left({\left.\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}}\right.$	-	0\%
$11^{\text {[c,e] }}$	$5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$	-	82\%

[a] Reaction was heated to reflux in 1,4-dioxanes for 2 h , concentration $=0.02 \mathrm{M}$. [b] All yields are isolated yields. [c] Reaction was heated at $130{ }^{\circ} \mathrm{C}$ in a microwave reactor for $30-45 \mathrm{~min}$. [d] Concentration $=0.1 \mathrm{M}$. [e] Concentration $=0.05 \mathrm{M}$.


```
157a, \(\mathrm{R}_{1}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 61 \%\)
263a, \(\mathrm{R}_{1}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 85 \%\)
157b, \(\mathrm{R}_{1}=\) fural, \(75 \%\)
263b, \(R_{1}=\) fural, \(83 \%\)
157c, \(\mathrm{R}_{1}=m, m-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2}, 66 \%\)
263c, \(\mathrm{R}_{1}=m, m-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2}, 91 \%\)
157d, \(\mathrm{R}_{1}=0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 25 \%\)
263d, \(\mathrm{R}_{1}=\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, 93 \%\)
157e, \(\mathrm{R}_{1}=i \mathrm{Pr}, 72 \%\)
263e, \(\mathrm{R}_{1}=i \mathrm{Pr}, 90 \%\)
157f, \(\mathrm{R}_{1}=\) cyclopropyl, \(33 \%\)
263f, \(\mathrm{R}_{1}=\) cyclopropyl, \(76 \%\)
157g, \(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OPMB}, 55 \%\)
263g, \(\mathrm{R}_{1}=\mathrm{CH}_{2}\) OPMB, 62\%
157h, \(R_{1}=\mathrm{Me}, 40 \%\)
263h, \(R_{1}=\mathrm{Me}, 45 \%\)
```


Scheme 63. Precursor synthesis of various bicyclo[1.1.0]butanes 263a-i.

After identifying optimized conditions, we synthesized a set of 1-bicyclo[1.1.0]butan-1-yl alkylamines 157a-i through the addition of bicyclo[1.1.0]butyllithium reagent in moderate to good yields (Scheme 63). Due to the high volatility of 2-cyclopropylideneethanol, we applied a Tsuji-Trost type reaction for the alkylation of $\mathbf{1 5 7 a} \mathbf{a}$. The vinylcyclopropyl tosylate formed a π -allyl-Pd(II) complex and attacked by the tosyl amide to generate 263a-i in excellent yields. Morever, we also prepared methyl-susbstituted 263i in 94\% yield.

Table 10. Palladium-catalyzed isomerization of various bicyclo[1.1.0]butanes. ${ }^{[a]}$

268a, $71 \%^{[b]}$

268b, 65\% ${ }^{[b, e]}$

268c, $42 \%{ }^{[b]}$

268d, $0 \%{ }^{[b, c]}$

268e, $31 \%{ }^{[c]}$

268f, $54 \%^{[c]}$

268g, 65\% ${ }^{[\mathrm{c}, \mathrm{e}]}$

268h, 32\% ${ }^{[\text {c] }]}$

268i, $61 \%{ }^{[\mathrm{c}, \mathrm{d}]}$
[a] Reaction was heated to $130{ }^{\circ} \mathrm{C}$ with microwave reactor in 1,4-dioxanes for 30 min at 0.05 M concentration. [b] Condition $\mathrm{A}=10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}, 20 \mathrm{~mol} \% \mathrm{PiPr}_{3}$. [c] Condition $\mathrm{B}=10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}, 20 \mathrm{~mol} \% \mathrm{P}(\mathrm{OiPr})_{3}$. [d] Reaction was carried out in toluene. [e] concentration $=0.1 \mathrm{M}$.

We next explored the scope of the methodology using substrates 263a-i. (Table 11). All reactions proceeded in excellent stereoselectivity (268a-i were obtained as a single diastereomer). The yield decreased considerably as the substituent on the aromatic group moved closer to the
bicyclo[1.1.0]butane (268a-d). The aliphatic substrates generally formed spirocyclopropanes in good yield under the original conditions rather than our optimized conditions (entries 268e-i). The yield of these substrates decreased dramatically when the size of α-group was too large or too small (268e and 268h). Only $\mathbf{2 6 8 f}$ and $\mathbf{2 6 8 g}$ gave moderate yields. We were surprised that the methyl-substituted biyclo[1.1.0]butane underwent the cyclopropanation with good yield, despite having a very hindered bicyclo[1.1.0]butane core (268i).

Figure 14. Proposed reaction pathway.

Our proposed palladium-induced reaction pathway of the bicyclo[1.1.0]butane is illustrated in Figure 14. Precomplexation of MCP 263 and palladium catalyst gave intermediate $\mathbf{2 7 6}$ or 276'. Although palladium could cleave the lateral bond in MCP, the bicyclo[1.1.0]butane core was released probably due to a much higher strain energy ($66 \mathrm{kcal} / \mathrm{mol}$). And palladium catalyst was unable to activate $\mathbf{2 7 6}$ ' due to steric hindrance between bicyclo[1.1.0]butane and

MCP. The central bond and lateral bond of bicyclo[1.1.0]butane in 276 rearranged to form the allyl-carbene intermediate 277. The highly reactive palladium-carbene reacts with MCP spontaneously and leads to the formation of 279. Alternatively, the unproductive hydride migration pathway provides the side-product diene 278.

Scheme 64. Proposed mechanism for the formation of two diastereomers.

Furthermore, we rationalized the origin of diastereoselectivities of Pd and Rh catalysts in Scheme 64. Since the reaction led to the pyrrolidine without forming any azepine isomers, the palladium catalyst could not generate an external metal-carbene complex like our previous rhodium-catalyzed cycloisomerization process. One interpretation from this is that the coordination between palladium and $\mathrm{MCP} /$ allyl was essential for the generation of palladiumcarbene species 277. However, rhodium catalysts can insert into bicyclo[1.1.0]butanes and provide rhodium-carbene species $\mathbf{2 7 0}^{\prime}$, without such directing groups. ${ }^{118-119}$ The selectivity of rhodium catalyst can be explained by thermodynamic stability of conformer 270'. On the other hand, the coordination of MCP and palladium directed the bicyclo[1.1.0]butane opening. And the less sterically hindered intermediate 276 produced palladium-carbene 277 which furnished 268 simultaneously. Thus 268 can be considered as a kinetically-controlled product.

2.2.2 Rhodium-catalyzed carbonylation of spiropentanes

Intrigued by the formation of spiropentanes, we further explored the utility of the 3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] scaffold. Most of the methodologies of spiropentanes demand a heteroatom or an activating group on the cyclopropane. However, Murakami et al. developed a rhodium-catalyzed carbonylation reaction involving two consecutive σ-bond cleavages ($\mathrm{C} 1-\mathrm{C} 3$ and $\mathrm{C} 4-\mathrm{C} 5$) of inactivated spiropentane. ${ }^{120}$ As depicted in Scheme 65, the carbonylation protocol provided gem-di-substituted products (281a-c) in good yield but cyclooctane-fused (281d and 281e) and tri-substituted (281f) products in moderate to low yield.

Selected examples:

281b
76\%

281c 82\%

Scheme 65. Murakami's rhodium-catalyzed carbonylation of spiropentanes.

Scheme 66. Rhodium-catalyzed carbonylation of spiropentane 223.

Our concern for the reaction was that $\mathbf{2 6 8}$ is a tri-substituted and cyclopentane-fused spirocyclopentane, which might give a poor yield according to Murakami's substrate scope. Another concern was that the allyl group in $\mathbf{2 6 8}$ might coordinate with rhodium and fail to activate the spirocyclopropane because the allyl group was in the opposite position of spirocyclopropane.

We decided to test the reaction with hydrogenated product $\mathbf{2 8 2}$ to avoid the potential detrimental effect of the allyl to the carbonylation sequence. The hydrogenation with platinum dioxide at low temperature $\left(0^{\circ} \mathrm{C}\right)$ gave $\mathbf{2 8 2}$ almost quantitatively without the hydrogenation of the spirocyclopropanes. Refluxing 282 in presence of rhodium catalyst under one atmosphere carbon monoxide furnished cyclopentenone 283 in decent yield (Scheme 66).

Mechanistically, the rhodium catalyst opens C4-C5 bond in spirocyclopentane 282 to generate rhodacyclobutane 284. Next, the migrations of C1 and C2 lead to the formation of $\mathbf{2 8 5}$ and 288, respectively. Since C2 possesses more steric hindrance than $\mathrm{C} 1, \mathbf{2 8 5}$ is the predominant intermediate. Carbonyl insertion and reductive elimination produces 287, which further isomerizes to furnish our final product $\mathbf{2 8 3}$. On the other hand, due to excessive steric on tertiary C2, the carbonylation does not occur on 288 (Scheme 67).

Scheme 67. Proposed pathways for rhodium-catalyzed carbonylation of spiropentane 282.

Murakami obtained an excellent yield on the gem-di-substituted substrates because the large steric hindrance on C 2 drove the migration to occur at C 1 almost entirely. For other substrates however, there were no such dramatic differences between C 1 and C 2 , which led to the formation of many C1-migration by-products. We believed that the cis phenyl group in 282 provided extra steric hindrance to force C 1 migration over C 2 migration, which benefited the overall yield of our product 283.

Recrystallization of $\mathbf{2 8 3}$ from dichloromethane and hexanes provided a fine colorless crystal. The butterfly-shape X-ray structure confirmed our proposed structure of 283 (Figure 15). The orientation of n-propyl and phenyl group remained the same during the carbonylation process.

Figure 15. X-ray structure of 283.

Additionally, 268 can also afford carbonylation product $\mathbf{2 8 9}$ with a decent yield (55\%).
The coordination of the allyl group did not affect the carbonylation process.

Scheme 68. Rhodium-catalyzed carbonylation of spiropentane 268.

2.3 CONCLUSION

We have developed a palladium-catalyzed cycloisomerization reaction of bicyclo[1.1.0]butane and MCP. The unique pathway gave spiropentanes as single diastereomers
which happens to be the opposite diastereomer of our previous rhodium-catalyzed process. These methodologies enabled a diastereoselective access to a variety of 3-azabicyclo[3.1.0]hexane scaffolds that possessed a quaternary stereocenter. This demonstrates that 1-bicyclo[1.1.0]butan-1-yl alkylamines could be applied into the synthesis of multifunctional molecules and potentially served as precursors to pharmacologically active heterocycles such as indolizomycin ${ }^{121}$, boceprevir ${ }^{122}$, cycloclavine ${ }^{123-127}$ or duocamycin A^{128} (Figure 16).

Figure 16. Examples of several biologically active compounds with a 3-azabicyclo[3.1.0]hexane core.

The cycloisomerization and carbonylation sequences allow a rapid synthesis of a multifunctionalized 3-azabicyclo[3.3.0]octane scaffold. This carbonylation process benefited from the extra steric hindrance provided by the substitutions on the pyrrolidine ring. Finally, this methodology enables a brand new pathway towards the synthesis of complex natural product such as paucidisine ${ }^{129}$, mubironine C^{130}, lycopalhine $\mathrm{A}^{131-133}$ and obscurinine ${ }^{134}$.

Paucidisine

Mubironine C

Lycopalhine A

Obscurinine

Figure 17. Examples of several natural products with a 3-azabicyclo[3.3.0]octane core.

3. EXPERIMENTAL SECTION

General. All reactions were performed under an Argon atmosphere and all glassware was dried in an oven at $140{ }^{\circ} \mathrm{C}$ for 2 h prior to use. Reactions carried out at $-78{ }^{\circ} \mathrm{C}$ employed a $\mathrm{CO}_{2} /$ acetone bath. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled over sodium/benzophenone ketyl, (-)-sparteine was distilled from CaH_{2}, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were purified using an alumina column filtration system.

Reactions were monitored by TLC analysis (pre-coated silica gel 60 F254 plates, 250 m layer thickness) and visualization was accomplished with a 254 nm UV light and by staining with a PMA solution (5 g of phosphomolybdic acid in 100 mL of $95 \% \mathrm{EtOH}$), panisaldehyde solution (2.5 mL of p-anisaldehyde, 2 mL of AcOH , and 3.5 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL of $95 \% \mathrm{EtOH})$, Vaughn's reagent $\left(4.8 \mathrm{~g}\right.$ of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ and 0.2 g of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ in 100 mL of a $3.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution) or a KMnO_{4} solution (1.5 g of KMnO_{4} and 1.5 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 100 mL of a $0.1 \% \mathrm{NaOH}$ solution). Flash chromatography on SiO_{2} was used to purify the crude reaction mixtures.
${ }^{1} \mathrm{H}$ spectra were obtained at 400 or 500 MHz in CDCl_{3} unless otherwise noted. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were obtained and are tabulated as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, number of protons,
and coupling constant(s). ${ }^{13} \mathrm{C}$ NMR spectra were run at 100 or 125 MHz using a protondecoupled pulse sequence with a d_{1} of 3 sec , and are tabulated by observed peak. SFC analyses were performed using a Mettler-Toledo Model Analytix SFC.

P,P-Diphenyl- N-(1-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)phosphinic amide

 (100). To a solution of dimethyl zinc ($29 \mathrm{mg}, 0.30 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added 4-(trifluoromethyl)phenylacetylene ($0.068 \mathrm{~g}, \quad 0.40 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2pyrrolidinemethanol $(0.012 \mathrm{~g}, 0.06 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and added a solution of imine ($306 \mathrm{mg}, 0.10 \mathrm{mmol}$) in toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at rt overnight and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc , washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford $100(30.9 \mathrm{mg}, 65 \%)$ as a white solid: IR (ATR) 3125.7, 3086.1, 2905.8, 1591.5, 1574.8, 1446.2, 1313.8, 1174.1, 1159.2, 1149.8, 1075.3, 1026.9, 997.0, 943.0, 719.4, 700.7, $691.4 \mathrm{~cm}^{-1}$; Mp $195^{\circ} \mathrm{C}$; e.r. $=93: 7(S: R)$, SFC condition: Chiralpak IA column, sc CO $2 / \mathrm{MeOH}=70 / 30$, flow rate $=2.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=240 \mathrm{~nm}, t_{\mathrm{R}}=2.7 \mathrm{~min}(S)$ and $3.1 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}-43\left(c 1.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.03(\mathrm{~m}, 2 \mathrm{H})$, 7.88-7.83 (m, 2 H), $7.65(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.56(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.54-7.32(\mathrm{~m}, 11 \mathrm{H}), 5.42$ $(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=8.4,9.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9(\mathrm{~d}, J=$ $5 \mathrm{~Hz}), 132.3(\mathrm{~d}, \quad J=10,78 \mathrm{~Hz}), 132.1(\mathrm{~d}, \quad J=3 \mathrm{~Hz}), 132.0,128.8,128.6(\mathrm{~d}, J=2,13 \mathrm{~Hz})$,128.2, 127.3, 126.5, $125.1(\mathrm{q}, J=4 \mathrm{~Hz}), 91.5,84.3,47.1$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NOF}_{3} \mathrm{P} 498.1211$, found 498.1209.

N-(4-Methyl-1-(4-(trifluoromethyl)phenyl)pent-1-yn-3-yl)-P,P-diphenylphosphinic amide (102). To a solution of diethyl zinc ($75 \mathrm{mg}, 0.60 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added 4-(trifluoromethyl)phenylacetylene $(0.102 \mathrm{~g}, \quad 0.6 \mathrm{mmol})$ and (S)-(-)-1-benzyl-2pyrrolidinemethanol $(0.012 \mathrm{~g}, 0.06 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and added a solution of imine tosyl adduct $\mathbf{1 0 1 b}(0.046 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene (2.0 mL). The reaction was stirred at room temperature for 12 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=4: 1)$ to afford $\mathbf{1 0 2}$ (34.5 mg, 78\%) as a white solid: IR (ATR) 3172.3, 2959.8, 1612.2, 1437.0, 1327.1, 1185.4, $1122.0,1103.4,1066.1,838.7,749.3,723.2,693.4 \mathrm{~cm}^{-1} ; \mathrm{Mp} 196-199^{\circ} \mathrm{C} ;$ e.r. $=93: 7(S: R)$, SFC condition: Chiralpak IB column, sc $\mathrm{CO}_{2} / \mathrm{MeOH}=91 / 9$, flow rate $=3.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=$ $240 \mathrm{~nm}, t_{\mathrm{R}}=3.2 \mathrm{~min}(S)$ and $3.9 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}-83.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 10 \mathrm{H}), 4.08(\mathrm{dt}, 1 \mathrm{H}, J=9.6,4.8 \mathrm{~Hz})$, 3.30 (app t, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.4(\mathrm{dd}, J=78,127 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=10,110 \mathrm{~Hz}), 132.0(\mathrm{t}, J$ $=3 \mathrm{~Hz}), 131.9,129.9(\mathrm{q}, \quad J=32 \mathrm{~Hz}), 128.5(\mathrm{dd}, \quad J=13,1 \mathrm{~Hz}), 126.8,125.1(\mathrm{q}, \quad J=4 \mathrm{~Hz})$, $124.0(\mathrm{q}, J=271 \mathrm{~Hz}), 91.3(\mathrm{~d}, J=6 \mathrm{~Hz}), 83.2,49.7,34.8(\mathrm{~d}, J=4 \mathrm{~Hz}), 19.4,17.3 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NOF}_{3} \mathrm{P}$ 464.1367, found 464.1354.

N-(3-(3-Chlorophenyl)-1-phenylprop-2-ynyl)-P,P-diphenylphosphinic amide (103). To а solution of diethyl zinc ($75 \mathrm{mg}, 0.60 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added 3chlorophenylacetylene ($81.5 \mathrm{mg}, 0.6 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2-pyrrolidinemethanol $(0.012 \mathrm{~g}$, $0.06 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and added a solution of imine tosyl adduct $101 \mathbf{a}(0.046 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 12 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on SiO_{2} (EtOAc: hexanes $=4: 1$) to afford $\mathbf{1 0 3}(39.8 \mathrm{mg}, 91 \%)$ as a white solid: IR (ATR) 3144.3, 2855.4, 2848.0, 1589.9, 1560.0, 1472.4, 1450.1, 1435.2, 1185.4, 1123.9, 1107.1, 1060.5, 991.6, 784.7, 747.4, 725.0, 695.2, $680.3 \mathrm{~cm}^{-1} ; \mathrm{Mp} 165-166^{\circ} \mathrm{C} ;$ e.r. $=92: 8(S: R)$, SFC condition: Chiralpak IA column, sc $\mathrm{CO}_{2} / \mathrm{MeOH}=75 / 25$, flow rate $=2.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=240 \mathrm{~nm}, t_{\mathrm{R}}=3.5 \mathrm{~min}(S)$ and $4.0 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}-50.8\left(c 1.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.67(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.58-$ $7.49(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.43(\mathrm{t}, J=9.6 \mathrm{~Hz}), 3.61(\mathrm{t}, J=9.6,4.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.04(\mathrm{~d}, J=5 \mathrm{~Hz}), 134.1,132.2(\mathrm{dd}, J=49,129 \mathrm{~Hz})$, 132.1 (t. $J=3 \mathrm{~Hz})$, 131.6, $131.3(\mathrm{dd}, J=10,88 \mathrm{~Hz}), 129.8,129.5,128.8,128.7$, $128.6(\mathrm{~d}, J=13$ $\mathrm{Hz}), 128.1,127.3,124.4,90.1(\mathrm{~d}, J=5 \mathrm{~Hz}), 84.2,47.1$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NOClP} 464.0947$, found 464.0967 .

N-(3-Cyclohexyl-1-phenylprop-2-ynyl)-P, P-diphenylphosphinic amide (104). To a solution of diethyl zinc ($75 \mathrm{mg}, 0.6 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added cyclohexylacetylene $(64.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ and (S)-(-)-1-benzyl-2-pyrrolidinemethanol ($12 \mathrm{mg}, 0.06 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h and added a solution of imine tosyl adduct 101a $(0.046 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 48 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on SiO_{2} $($ EtOAc: hexanes $=4: 1)$ to afford $104(27.7 \mathrm{mg}, 67 \%)$ as a white solid: IR (ATR) 3153.6, 3054.9, 2926.3, 2849.8, 1491.1, 1448.2, 1437.0, 1260.0, 1187.3, 1148.1, 1123.9, 1109.0, 1092.2, 1068.0, $1053.1,1027.0,997.2,930.1,900.2,889.1,825.7,803.3,749.3,738.1,723.2,695.2 \mathrm{~cm}^{-1} ; \mathrm{Mp}$ $158-159{ }^{\circ} \mathrm{C}$; e.r. $=69: 31(S: R)$, SFC condition: Chiralpak IB column, $\mathrm{sc} \mathrm{CO}_{2} / \mathrm{MeOH}=90 / 10$, flow rate $=4.0 \mathrm{~mL} / \mathrm{min}$, wavelength $=220 \mathrm{~nm}, t_{\mathrm{R}}=5.3 \mathrm{~min}(S)$ and $6.0 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}-12.6(c 1.12$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8 \mathrm{~Hz}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=8.0 \mathrm{~Hz}), 3.43(\mathrm{t}, J=7.6 \mathrm{~Hz}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.08(\mathrm{~d}, J=4 \mathrm{~Hz}), 132.5(\mathrm{dd}, J=130,76 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=10,104 \mathrm{~Hz}), 131.9(\mathrm{dd}$, $J=7,3 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=2 \mathrm{~Hz}), 128.4,127.7,127.3,90.3,79.7(\mathrm{~d}, J=7 \mathrm{~Hz}), 46.8,32.6,25.9$, 24.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NOP} 436.1806$, found 436.1806 .

N-(1-(4-Bromophenyl)-4-methylpent-1-yn-3-yl)-P,P-diphenylphosphinic amide (105). To a solution of diethyl zinc ($75 \mathrm{mg}, 0.60 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added 4bromophenylacetylene ($109 \mathrm{mg}, 0.6 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2-pyrrolidinemethanol $(0.012 \mathrm{~g}$, $0.06 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and added a solution of imine tosyl adduct $\mathbf{1 0 1 b}(0.043 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 6 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc , washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on SiO_{2} (EtOAc: hexanes $\left.=4: 1\right)$ to afford $\mathbf{1 0 5}(37.9 \mathrm{mg}, 84 \%)$ as a white solid: IR (ATR) 3159.2, 2956.1, 2868.5, 1483.6, 1437.0, 1187.3, 1122.0, 1109.0, 1068.0, 1010.2, 922.6, 892.8, 823.8, 749.3, $723.2,697 . \mathrm{cm}^{-1}$; Mp 194-195 ${ }^{\circ}$; e.r. $=94: 6(S: R)$, SFC condition: Chiralpak IB column, sc CO $2 / \mathrm{MeOH}=90 / 10$, flow rate $=4.0 \mathrm{~mL} / \mathrm{min}$, wavelength $=240 \mathrm{~nm}, t_{\mathrm{R}}$ $=5.4 \min (S)$ and $6.0 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}-101.2\left(c \quad 1.03, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 194-195 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 8 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $4.04(\mathrm{ddd}, 1 \mathrm{H}, J=6.4,5.2,4.8 \mathrm{~Hz}), 3.28(\mathrm{dd}, J=10.4,8.8 \mathrm{~Hz}), 2.12-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.1,132.4(\mathrm{dd}, J=129$, $95 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=10,96 \mathrm{~Hz}), 132.0,131.5,128.6(\mathrm{dd}, J=13,2 \mathrm{~Hz}), 122.4,121.9,89.8(\mathrm{~d}, J=$ $6 \mathrm{~Hz}), 83.5,49.8,34.9(\mathrm{~d}, J=4 \mathrm{~Hz}), 19.4,17.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NOPBr} 474.0598$, found 474.0598 .

106
N-(4-Methyl-1-(triisopropylsilyl)pent-1-yn-3-yl)-P,P-diphenylphosphinic amide (106). To a solution of diethyl zinc ($75 \mathrm{mg}, 0.60 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added triisopropylsilylacetylene ($110 \mathrm{mg}, 0.6 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2-pyrrolidinemethanol $(0.012 \mathrm{~g}, 0.06 \mathrm{mmol})$. The mixture was stirred at $5^{\circ} \mathrm{C}$ for 1 h and added a solution of imine tosyl adduct $\mathbf{1 0 1 b}(0.043 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at rt for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on SiO_{2} $($ EtOAc: hexanes $=4: 1)$ to afford $106(38.1 \mathrm{mg}, 84 \%)$ as a white solid: IR $($ ATR $) 3183.5,3056.7$, 2954.2, 2939.3, 2862.9, 2165.8, 2158.3, 1461.3, 1437.0, 1383.0, 1189.1, 1123.9, 1109.0, 1071.7, 1027.0, 1017.7, 997.2, 883.5, 751.1, 747.4, 723.2, $693.4,678.4 \mathrm{~cm}^{-1} ; \mathrm{Mp} 86-87{ }^{\circ} \mathrm{C} ;$ e.r. $=92: 8$ $(S: R), \mathrm{SFC}$ condition: Chiralpak IA column, $\mathrm{sc} \mathrm{CO}_{2} / \mathrm{MeOH}=90 / 10$, flow rate $=4.0 \mathrm{~mL} / \mathrm{min}$, wavelength $=220 \mathrm{~nm}, t_{\mathrm{R}}=2.1 \mathrm{~min}(R)$ and $2.6 \mathrm{~min}(S) ;[\alpha]_{\mathrm{D}}-89.0\left(c 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 6 \mathrm{H}), 3.86(\mathrm{dt}, 1 \mathrm{H}, J$ $=10.4,4.8 \mathrm{~Hz}), 3.22(\mathrm{t}, J=10.4 \mathrm{~Hz}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~m}, 21 \mathrm{H}), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.6(\mathrm{dd}, J=154,126 \mathrm{~Hz}), 132.3$ $(\mathrm{d}, J=10,121 \mathrm{~Hz}), 131.9(\mathrm{t}, J=3 \mathrm{~Hz}), 128.5(\mathrm{dd}, J=13,4 \mathrm{~Hz}), 106.9(\mathrm{~d}, J=9 \mathrm{~Hz}), 84.8,50.2$, $34.9(\mathrm{~d}, J=2 \mathrm{~Hz}), 19.4,18.6,16.8,11.2$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NOPSi}$ 476.2515, found 476.2511.

P, P-Diphenyl- N-(5-phenyl-1-(4-(trifluoromethyl)phenyl)pent-1-yn-3-yl)phosphinic amide (107). To a solution of diethyl zinc ($75 \mathrm{mg}, 0.60 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added 4-(trifluoromethyl)phenylacetylene (102 mg, 0.6 mmol) and (S)-(-)-1-benzyl-2pyrrolidinemethanol ($0.012 \mathrm{~g}, 0.06 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and added a solution of imine tosyl adduct $101 \mathrm{c}(0.049 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=4: 1)$ to afford $\mathbf{1 0 7}$ (41.3 mg, 82\%) as a white solid: IR (ATR) 3144.3, 2928.1, 2859.2, 1614.1, 1437.0, 1328.9, $1321.5,1185.4,1163.0,1123.9,1110.9,1103.4,1094.1,1081.0,1068.0,1015.8,965.5,840.6$, 749.3, 725.0, 698.9, $693.4 \mathrm{~cm}^{-1} ; \mathrm{Mp} \mathrm{188-189}{ }^{\circ} \mathrm{C}$; e.r. $=98: 2(S: R)$ (after recrystallization), SFC condition: Chiralpak IB column, sc $\mathrm{CO}_{2} / \mathrm{MeOH}=85 / 15$, flow rate $=3.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=$ $240 \mathrm{~nm}, t_{\mathrm{R}}=4.2 \mathrm{~min}(S)$ and $5.1 \mathrm{~min}(R) ;[\alpha]_{\mathrm{D}}-47.0\left(c \quad 0.84, \mathrm{CHCl}_{3}\right)(70 \%$ ee sample $) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 8$ H), 7.28-7.26 (m, 2 H), 7.20-7.18 (m, 3 H), 4.25-4.20 (m, 1 H$), 3.34(\mathrm{dd}, J=10.5,7.5 \mathrm{~Hz}), 2.92-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,132.2(\mathrm{dd}, J=10,93$ $\mathrm{Hz}), 132.2(\mathrm{dd}, J=129,85 \mathrm{~Hz}), 132.1(\mathrm{t}, J=2.5 \mathrm{~Hz}), 131.9,130.0(\mathrm{q}, J=45 \mathrm{~Hz}), 128.6(\mathrm{dd}, J=$ $12.5,1.3 \mathrm{~Hz}$), 128.5 (overlap), 126.6, 126.1, 125.2 (q, $J=3.8 \mathrm{~Hz}$), $123.9(\mathrm{q}, J=270 \mathrm{~Hz}), 92.4$ (d, $J=6.3 \mathrm{~Hz}), 82.9,43.7,40.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 32.1$; HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NOF}_{3} \mathrm{P}$ 526.1524, found 526.1524.

$\boldsymbol{P}, \boldsymbol{P}$-Diphenyl- N-(phenyl(3-(4-(trifluoromethyl)phenyl)bicyclo[1.1.0]butan-1-yl)methyl)
phosphinic amide (112). To a cold solution of $100(220 \mathrm{mg}, 0.46 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(44 \mathrm{mg}, 0.46 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-50^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}(114 \mathrm{mg}$, 0.93 mmol) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$. The mixture was stirred for 10 min and added $\mathrm{CH}_{2} \mathrm{I}_{2}$ ($501 \mathrm{mg}, 1.85 \mathrm{mmol}$). The reaction was stirred at $-30^{\circ} \mathrm{C}$ overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with DCM. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on SiO_{2} (EtOAc: hexanes $=4: 1)$ to afford $112(74 \mathrm{mg}, 32 \%)$ as a white solid: IR (ATR) 3285.6, 3086.1, $3067.5,3054.5,3037.7,3030.2,1647.4,1626.9,1591.5,1574.8,1559.8,1446.2,1313.8,1272.8$, $1203.9,1174.1,1159.2,1149.8,1075.3,1026.9,997.0,943.0,935.5,916.9,864.7,812.5,764.1$, $719.4,700.7,691.4 \mathrm{~cm}^{-1}$; Mp 124-126 ${ }^{\circ}$ C ; e.r. $=93: 7(S: R)$, SFC condition: Chiralpak IA column, sc $\mathrm{CO}_{2} / \mathrm{MeOH}=75 / 25$, flow rate $=2.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=240 \mathrm{~nm}, t_{\mathrm{R}}=3.1 \mathrm{~min}(S)$ and 3.9 $\min (R) ;[\alpha]_{\mathrm{D}}-28.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.59$ $(\mathrm{m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.64(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.46(\mathrm{dd}, 1 \mathrm{H}, J=7.2,4.8 \mathrm{~Hz}), 2.24(\mathrm{~d}, 1 \mathrm{H}, J$ $=6.8,5.6 \mathrm{~Hz}), 2.00(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.03(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.7,139.9(\mathrm{~d}, J=6 \mathrm{~Hz}), 132.6(\mathrm{dd}, J=128,88 \mathrm{~Hz}), 132.0(\mathrm{dd}, J=18,9 \mathrm{~Hz}), 131.8(\mathrm{t}, J=3$ $\mathrm{Hz}), 128.4(\mathrm{dd}, J=12,7 \mathrm{~Hz}), 128.2,127.5,126.9,125.6,124.9(\mathrm{q}, J=4 \mathrm{~Hz}), 55.1,34.2,31.5$,
$30.0(\mathrm{q}, J=5 \mathrm{~Hz}), 20.4$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NOF}_{3} \mathrm{P} 526.1524$, found 526.1525.

N-(2-Methyl-1-(3-(4-(trifluoromethyl)phenyl)bicyclo[1.1.0]butan-1-yl)propyl)-P,P-

diphenylphosphinic amide (113). To a cold solution of $102(34.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(7.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , cooled to $-50^{\circ} \mathrm{C}$ and added a solution of $\mathrm{Et}_{2} \mathrm{Zn}$ (19 $\mathrm{mg}, 0.16 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$. The mixture was added $\mathrm{CH}_{2} \mathrm{I}_{2}(84.5 \mathrm{mg}, 0.31 \mathrm{mmol})$ in this temperature. The reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with DCM. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on $\mathrm{SiO}_{2}($ EtOAc: hexanes $=4: 1)$ to afford $\mathbf{1 1 3}(17.0 \mathrm{mg}, 46 \%)$ as a yellowish solid: IR (ATR) 3204.0, 3190.9, 3183.5, 2957.9, 2926.3, 2883.4, 2870.3, 1614.1, 1437.0, 1323.3, 1185.4, 1163.0, $1118.3,1062.4,842.5,751.1,723.2,697.1,685.9 \mathrm{~cm}^{-1} ; \mathrm{Mp} 117-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.61-7.36(\mathrm{~m}, 13 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{ddd}, J=10.4,6.4,3.2 \mathrm{~Hz}), 2.76(\mathrm{dd}, 1$ $\mathrm{H}, J=10.8,2.8 \mathrm{~Hz}), 2.32(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.21$ $(\mathrm{s}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 1 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.2,132.2(\mathrm{dd}, J=134,130 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10,30 \mathrm{~Hz}), 131.8(\mathrm{dd}, J=10,3 \mathrm{~Hz})$, $128.3(\mathrm{dd}, J=13,7 \mathrm{~Hz}), 127.2(\mathrm{q}, J=32 \mathrm{~Hz}), 126.1,125.2$, $(\mathrm{q}, J=4 \mathrm{~Hz}), 124.5(\mathrm{q}, J=270 \mathrm{~Hz})$,
$54.8,34.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 33.3,30.6,29.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 19.0,17.4,17.1 ;$ HRMS (ESI) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NOPF}_{3}$ 492.1680, found 492.1666.

N-(1-(3-(4-Bromophenyl)bicyclo[1.1.0]butan-1-yl)-2-methylpropyl)-P,P-diphenylphosphinic

amide (114). To a cold solution of $105(32 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(6.8 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , cooled to $-50^{\circ} \mathrm{C}$ and added a solution of $\mathrm{Et}_{2} \mathrm{Zn}(17.5 \mathrm{mg}, 0.14 \mathrm{mmol})$ in anhydrous $\operatorname{DCM}(5 \mathrm{~mL})$. The mixture was added $\mathrm{CH}_{2} \mathrm{I}_{2}(77 \mathrm{mg}, 0.28 \mathrm{mmol})$ in this temperature. The reaction mixture was stirred at $-30{ }^{\circ} \mathrm{C}$ overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with DCM. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on SiO_{2} (EtOAc: hexanes = 4: 1) to afford $\mathbf{1 1 4}(22.3 \mathrm{mg}, \mathbf{6 6 \%})$ as a yellowish solid: $\operatorname{IR}(\mathrm{ATR}) 3198.4,3058.6$, 2956.1, 2926.3, 2868.5, 1589.9, 1481.8, 1437.0, 1187.3, 1122.0, 1107.1, 1069.9, 1008.3, 904.0, 829.4, $751.1,723.2,697.1 \mathrm{~cm}^{-1} ; \mathrm{Mp} 121-123{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.60(\mathrm{~m}, 2$ H), 7.49-7.38 (m, 10 H), $7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.25(\mathrm{ddd}, J=10.0,6.4,3.2 \mathrm{~Hz}), 2.73(\mathrm{dd}, 1$ $\mathrm{H}, J=10.0,2.8 \mathrm{~Hz}), 2.21(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.14$ $(\mathrm{s}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 1 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.6,133.6,132.3(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 128.4(\mathrm{t}, J=10 \mathrm{~Hz}), 127.6$, $126.3,118.8,54.9,34.9,33.1,30.1,27.3(\mathrm{~d}, J=10 \mathrm{~Hz}), 19.1,17.3,16.5$; HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NOBrP} 480.1092$, found 480.1082.

N-(1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-ynyl)benzamide (131). To an ice-cooled $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added $\mathrm{AcCl}(0.71 \mathrm{~mL}, 10 \mathrm{mmol})$. The colorless solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min , warmed to room temperature, and stirred for a further 5 min . The resulting solution of 2 N HCl in MeOH was added $\mathbf{1 0 0}(144 \mathrm{mg}, 0.30 \mathrm{mmol})$, stirred at room temperature for 12 h , and concentrated to dryness. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and concentrated to dryness, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and treated with $\mathrm{PhCOCl}(80 \mu \mathrm{~L}$, $0.69 \mathrm{mmol}),(i \operatorname{Pr})_{2} \mathrm{NEt}(0.18 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and DMAP $(6.0 \mathrm{mg}, 0.048 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1 h , concentrated to 0.5 mL , and purified by column chromatography on $\mathrm{SiO}_{2}($ EtOAc: hexanes $=1: 9)$ to afford $131(96.6 \mathrm{mg}, 85 \%)$ as a white solid: IR (ATR) 3284.1, 3064.2, 1634.6, 1522.8, 1487.4, 1319.6, 1166.8, 1123.9, 1105.3, 1066.1, 1015.8, 840.6, $693.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.59(\mathrm{~d}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 7.49(\mathrm{~s}, 4 \mathrm{H}), 7.43(\mathrm{~m} 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.6,138.6,133.6,132.1,131.9,130.3(\mathrm{q}, J=33 \mathrm{~Hz}), 128.9,128.6,128.3$, 127.4, 127.2, 126.4, $125.2(\mathrm{q}, ~ J=4 \mathrm{~Hz}), 89.8,83.6,45.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NOF}_{3}$ 380.1262, found 380.1275.

N-(1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-ynyl)pivalamide (132). To an ice-cooled $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added $\mathrm{AcCl}(0.71 \mathrm{~mL}, 10 \mathrm{mmol})$. The colorless solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min , warmed to room temperature, and stirred for a further 5 min . The resulting solution of 2 N HCl in MeOH was added $\mathbf{1 0 0}$ ($144 \mathrm{mg}, 0.30 \mathrm{mmol}$), stirred at room temperature for 12 h , and concentrated to dryness. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and concentrated to dryness, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and treated with $\operatorname{PivCl}(86 \mu \mathrm{~L}, 0.69$ $\mathrm{mmol}),(i \operatorname{Pr})_{2} \mathrm{NEt}(0.18 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and DMAP $(6.0 \mathrm{mg}, 0.048 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1 h , concentrated to 0.5 mL , and purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=1: 9)$ to afford $\mathbf{1 3 2}(99.1 \mathrm{mg}, 92 \%)$ as a white solid: IR (ATR) 3297.2, 2965.4, 2632.7, 1517.2, 1319.6, 1202.2, 1181.7, 1164.9, 1157.5, 1123.9, 1101.5, 1064.3, 1015.8, 842.5, $745.5,736.2,719.4,697.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.56(\mathrm{~s}, 4 \mathrm{H}), 7.54-7.53(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.33-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.29$ (m, 2 H), $1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.3,132.1,130.2(\mathrm{q}, J=32.5 \mathrm{~Hz})$, 128.8, 128.2, 126.9, 126.4, $125.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.9(\mathrm{q}, J=270 \mathrm{~Hz}), 89.8,83.3,45.0,38.8$, 27.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NOF}_{3} 360.1575$, found 360.1582.

N-(2-Methyl-1-(2-(triisopropylsilyl)cycloprop-1-en-1-yl)propyl)-P,P-diphenylphosphinic amide (142). To a cooled solution of $106(45 \mathrm{mg}, 0.10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(19 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-50^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}(50 \mathrm{mg}, 0.40 \mathrm{mmol})$ and trifluoroethanol ($29 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) in anhydrous dichloromethane (5 mL). Then, diethyl
aluminum chloride $(0.012 \mathrm{~mL}, 0.012 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{I}_{2}(107 \mathrm{mg}, 0.40 \mathrm{mmol})$ was added at this temperature. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on SiO_{2} to afford 142 as a white semisolid ($37 \mathrm{mg}, 79 \%$): IR (ATR) 2954.2, 2939.3, 2862.9, 1785.6, 1589.9, 1461.3, 1437.0, 1383.0, 1191.0, 1122.0, 1109.0, 1069.9, 1010.2, 997.2, 881.6, 749.3, 723.2, $695.2,678.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.80(\mathrm{~m}, 4 \mathrm{H})$, 7.51-7.38 (m, 6 H$), 4.18-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.94$ $(\mathrm{m}, 23 \mathrm{H}), 0.84-0.82(\mathrm{~m}, 5 \mathrm{H}), 0.83(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.7$ $(\mathrm{dd}, J=126,137 \mathrm{~Hz}), 132.1(\mathrm{dd}, J=10,91 \mathrm{~Hz}), 131.8(\mathrm{dd}, J=3,6 \mathrm{~Hz}), 131.7,128.4(\mathrm{~d}, J=13$ $\mathrm{Hz}), 104.9,55.4,34.6(\mathrm{~d}, J=3 \mathrm{~Hz}), 19.2,18.8,18.7,18.2,11.5,7.9 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NOSiP} 468.2852$ found 468.2845 .

N-(1-(tert-Butyldimethylsilyl)-5-phenylpent-1-yn-3-yl)-P,P-diphenylphosphinicamide (143).
To a solution of diethyl zinc ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added (tertbutyldimethylsilyl)acetylene ($0.17 \mathrm{~g}, 1.2 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2-pyrrolidinemethanol (24 $\mathrm{mg}, 0.12 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h and added a solution of 101c $(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in anhydrous toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc , washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford $\mathbf{1 4 3}(35 \mathrm{mg}, 36 \%)$ as a colorless oil:
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.14-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 2.72-2.63(\mathrm{~m}, 2$ H), 2.02-1.88 (m, 2 H$), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.

P, P-Diphenyl- N-(5-phenyl-1-(triethylsilyl)pent-1-yn-3-yl)phosphinic amide (144). To a solution of diethyl zinc ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added triethylsilylacetylene $(0.17 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $(S)-(-)-1$-benzyl-2-pyrrolidinemethanol $(24 \mathrm{mg}$, 0.12 mmol). The mixture was stirred at room temperature for 1 h and added a solution of $\mathbf{1 0 1 c}$ $(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in anhydrous toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc , washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on SiO_{2} (EtOAc : hexanes $=4: 1$) to afford $144(45 \mathrm{mg}, 47 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.99-7.94(m, 2 H$), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.14(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.85-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1$ H), 2.03-2.00(m, 1 H$), 1.02(\mathrm{t}, 9 \mathrm{H}, J=8.0 \mathrm{~Hz}), 0.61(\mathrm{q}, 6 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 141.3,132.4(\mathrm{dd}, J=130,135 \mathrm{~Hz}), 132.1(\mathrm{dd}, J=10,105 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=11,12 \mathrm{~Hz})$, 128.5, 128.4, 125.9, $101.7(\mathrm{~d}, J=8 \mathrm{~Hz}), 85.8,44.1,40.6(\mathrm{~d}, J=2 \mathrm{~Hz}), 32.1,7.53,4.4 ;$

N-(1-(Dimethylsilyl)-5-phenylpent-1-yn-3-yl)-P,P-diphenylphosphinic amide (145). To a solution of diethyl zinc ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added phenyldimethylsilylacetylene $(0.20 \mathrm{~g}, 1.2 \mathrm{mmol})$ and (S)-(-)-1-benzyl-2-pyrrolidinemethanol (24 $\mathrm{mg}, 0.12 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h and added a solution of 101c $(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in anhydrous toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc , washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=4: 1)$ to afford $145(67 \mathrm{mg}, 66 \%)$ as a colorless oil: IR (ATR) 3144.8, 3055.3, 2954.6, 2921.1, 2857.7, 1452.2, 1437.2 ,1427.9, 1247.1, 1187.4, $1122.2,1111.0,1092.4,1071.9,837.0,816.5,779.2,749.4,725.1,697.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.97-7.92 (m, 2 H), 7.83-7.76 (m, 2 H), 7.65-7.62 (m, 2 H), 7.49-7.45 (m, 2 H), 7.40-7.38 (m, 6 H$), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{t}, 1 \mathrm{H}, J=$ $9.6 \mathrm{~Hz}), 2.85-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 0.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.9,137.8,134.6,133.1(\mathrm{t}, J=128 \mathrm{~Hz}), 133.1(\mathrm{dd}, J=10,100 \mathrm{~Hz}), 132.9$, $130.4,129.4(\mathrm{~d}, J=13 \mathrm{~Hz}), 129.4,129.3,128.8,126.8,109.1(\mathrm{~d}, J=7 \mathrm{~Hz}), 87.5,44.9,41.1(\mathrm{~d}, J$ $=2 \mathrm{~Hz}$), 32.9, 0.1, 0.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{33}$ NOSiP (M+H) 494.2069, found 494.2077.

P, P-Diphenyl- N-(5-phenyl-1-(trimethylsilyl)pent-1-yn-3-yl)phosphinic amide (146). To a solution of diethyl zinc ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added trimethylsilylacetylene ($0.12 \mathrm{~g}, 1.2 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2-pyrrolidinemethanol (24 mg ,
0.12 mmol). The mixture was stirred at room temperature for 1 h and added a solution of hydrocinnamyl substrate $101 \mathrm{c}(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in anhydrous toluene (2.0 mL). The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=4: 1)$ to afford $\mathbf{1 4 6}(54 \mathrm{mg}, 61 \%)$ as a colorless oil: IR (ATR) 3056.7, 2954.2, 2920.7, 2167.7, 2160.2, 1437.0, 1246.9, 1185.4, 1122.0, $1109.0,1090.4,1071.7,840.6,749.3,723.2,695.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-$ $7.75(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 3 \mathrm{H})$, $3.79-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.65-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,132.4(\mathrm{~d}, J=124,129 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=10,102 \mathrm{~Hz})$, $132.0,128.6,128.5 .128 .4(\mathrm{~d}, J=3 \mathrm{~Hz}), 126.0,106.5(\mathrm{~d}, J=7 \mathrm{~Hz}), 88.6,43.9,40.3(\mathrm{~d}, J=3 \mathrm{~Hz})$, 32.0, 0.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{31}$ NOSiP 432.1913, found 432.1912.

N-(1-(Dimethyl(thiophen-2-yl)silyl)-5-phenylpent-1-yn-3-yl)-P,P-diphenylphosphinic amide

 (147). To a solution of diethyl zinc ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added dimethyl(2-thienyl)silylacetylene ($0.20 \mathrm{~g}, 1.2 \mathrm{mmol}$) and (S)-(-)-1-benzyl-2-pyrrolidinemethanol ($24 \mathrm{mg}, 0.12 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h and added a solution of 101c $(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in anhydrous toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc , washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford $147(64.3 \mathrm{mg}, 63 \%)$ as a colorlessoil: IR (ATR) 2954.6, 2921.1, 3150.4, 3055.3, 2169.8, 2160.5, 1452.2, 1437.2, 1405.6, 1249.0, 1211.7, 1187.4, 1122.2, 1109.2, 1086.8, 1071.9, 995.4, 835.1, 810.9, 781.1, 747.5, 723.3, 697.2 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J=4.8$ $\mathrm{Hz}), 7.48(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.43-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.00-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{bs}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 0.47(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.8,136.1,135.0,132.0(\mathrm{dd}, J=10,99 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=$ $12 \mathrm{~Hz}), 131.2,128.3(\mathrm{~d}, J=13 \mathrm{~Hz}), 128.3,128.2,128.1,125.7,108.0(\mathrm{~d}, J=7 \mathrm{~Hz}), 86.0,43.8$, 39.9, 31.7, $0.0(\mathrm{~d}, J=4 \mathrm{~Hz})$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NOSSiP} 500.1633$, found 500.1628.

P, P-Diphenyl- N-(1-phenyl-6-(trimethylsilyl)hex-4-yn-3-yl)phosphinic amide (148). To a solution of diethyl zinc ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous toluene (1.0 mL) was added propargyltrimethylsilane $(0.14 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $(S)-(-)$-1-benzyl-2-pyrrolidinemethanol $(24 \mathrm{mg}$, $0.12 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and added a solution of 101c $(0.1 \mathrm{~g}, 0.2 \mathrm{mmol})$ in anhydrous toluene $(2.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 24 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on SiO_{2} (EtOAc : hexanes = $4: 1$) to afford $148(68 \mathrm{mg}, 76 \%)$ as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.97-7.92 (m, 2 H), 7.86-7.81 (m, 2 H$), 7.49-7.241(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.14(\mathrm{~m}, 3 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 2.82-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.08(\mathrm{~m}, 1$ H), 1.99-1.96(m, 1 H$), 1.49(\mathrm{~d}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$141.4,132.5(\mathrm{dd}, J=100,127 \mathrm{~Hz}), 132.0(\mathrm{dd}, J=9,68 \mathrm{~Hz}), 131.8,128.4(\mathrm{dd}, J=4,13 \mathrm{~Hz})$, $128.4,128.3,125.8,82.3,79.4(\mathrm{~d}, J=9 \mathrm{~Hz}), 44.0,41.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 32.1,7.1,-2.0$.

P, P-Diphenyl- N-(5-phenylpent-1-yn-3-yl)phosphinic amide (149). To a solution of amide 146 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF was added TBAF (1 M in THF, $0.24 \mathrm{~mL}, 0.24 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h , quenched with water, and extracted with EtOAc for 3 times. The organic layers were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The product was concentrated to afford $\mathbf{1 4 9}$ as a yellowish oil ($38 \mathrm{mg}, 91 \%$) without further purification: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2$ H), 7.18-7.15 (m, 3 H), 3.95-3.88 (m, 1 H$), 3.18(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.82-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, $1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 2 \mathrm{H})$;

N-(1-(3-(tert-Butyldimethylsilyl)bicyclo[1.1.0]butan-1-yl)-3-phenylpropyl)-P,P-diphenyl-

phosphinic amide (150). To a cooled solution of amide $143(35 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(14 \mathrm{mg}, 0.15 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-30^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}$ ($36 \mathrm{mg}, 0.30 \mathrm{mmol}$) and trifluoroethanol ($22 \mu \mathrm{l}, 0.29 \mathrm{mmol}$) in anhydrous dichloromethane (5.0 mL). Then, diethyl aluminum chloride (1 M in hexanes, $0.0090 \mathrm{~mL}, 0.0090 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{I}_{2}$ ($79 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added at this temperature. The reaction mixture was stirred overnight,
quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford $\mathbf{1 5 0}$ as a colorless oil slowly solidified (33 mg, 91\%): IR (ATR) 3215.6, 3057.2, 2949.0, 2924.8, 2852.1, $1707.5,1452.2,1437.2,1249.0,1183.7,1122.2,1109.2,1092.4,1071.9,829.5,807.2,768.0$, 749.4, 723.3, $697.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 6 \mathrm{H})$, 7.26-7.22 (m, 2 H$), ~ 7.17-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.74(\mathrm{~m}, 1$ H), 1.81-1.73 (m, 2 H), $1.26(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.03(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}$, $1 \mathrm{H}), 0.19(\mathrm{~s}, 1 \mathrm{H}),-1.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2,132.3(\mathrm{dd}, J=10,52$ $\mathrm{Hz}), 131.8,128.7,128.5,128.4,128.3,125.8,50.8,33.6,32.3,29.7,26.4,17.8,0.0,-1.0,-6.0,-$ 6.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{41}$ NOSiP 502.2695, found 502.2707.

P, P-Diphenyl- N-(3-phenyl-1-(3-(triethylsilyl)bicyclo[1.1.0]butan-1-yl)propyl)phosphinic

amide (151). To a cooled solution of amide $144(45 \mathrm{mg}, 0.096 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0$ $\mathrm{mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(18 \mathrm{mg}, 0.19 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , cooled to $-30^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}(47 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ and trifluoroethanol ($28 \mu \mathrm{l}, 0.38 \mathrm{mmol}$) in anhydrous dichloromethane (5.0 mL). Then, diethyl aluminum chloride (1 M in hexanes, $0.011 \mathrm{~mL}, 0.011 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{I}_{2}(0.10 \mathrm{~g}, 0.38$ mmol) was added at this temperature. The reaction mixture was stirred overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and
purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford $\mathbf{1 5 1}$ as a white semisolid (37 mg, 76\%): IR (ATR) 3172.7, 3057.2, 3023.6, 2949.0, 2932.3, 2909.9, 2872.6, 1452.2, 1437.2, $1187.4,1122.2,1109.2,1077.5,769.9,751.2,721.4,695.3 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.97-7.88 (m, 4 H), 7.49-7.43 (m, 6 H), 7.24-7.22 (m, 2 H), 7.17-7.15 (m, 3 H), 3.61-3.59 (m, 1 H), 2.98-2.90 (m, 2 H), 2.77-2.75 (m, 1 H), 1.78-1.73 (m, 1 H$), 1.24(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.99(\mathrm{~d}$, $1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.84(\mathrm{t}, 9 \mathrm{H}, J=8.0 \mathrm{~Hz}), 0.44(\mathrm{q}, 6 \mathrm{H}, J=8.0 \mathrm{~Hz}), 0.20(\mathrm{~s}, 1 \mathrm{H}), 0.17(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,134.0,133.2(\mathrm{dd}, J=58,129 \mathrm{~Hz}), 132.3(\mathrm{dd}, J=7,4 \mathrm{~Hz})$ $131.8(\mathrm{dd}, J=2,8 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=15 \mathrm{~Hz}), 128.4,128.3,125.8,51.2,38.0(\mathrm{~d}, J=3 \mathrm{~Hz}), 33.5$, 32.3, 30.5, $23.5(\mathrm{~d}, J=5 \mathrm{~Hz}), 7.5,4.1,-1.2$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{NOSiP}$ 502.2679, found 502.2686.

N-(1-(3-(Dimethyl(phenyl)silyl)bicyclo[1.1.0]butan-1-yl)-3-phenylpropyl)-P,P-diphenyl-

phosphinic amide (152). To a cooled solution of amide 145 ($50.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(19 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-30^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}$ $(50 \mathrm{mg}, 0.41 \mathrm{mmol})$ and trifluoroethanol ($29 \mu \mathrm{l}, 0.41 \mathrm{mmol}$) in anhydrous dichloromethane (5.0 $\mathrm{mL})$. Then, diethyl aluminum chloride (1 M in hexanes, $0.012 \mathrm{~mL}, 0.012 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{I}_{2}(0.11$ $\mathrm{g}, 0.41 \mathrm{mmol}$) was added at this temperature. The reaction mixture was stirred overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford $\mathbf{1 5 2}$ as a white semisolid (45 mg, 86\%): IR (ATR) 2950.9, 2941.6, 2923.0, 2917.4, 2867.0, 2857.7,
$2852.1,3167.2,1437.2,1187.4,1122.2,1111.0,1092.4,827.7,812.8,747.5,725.1,699.0 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.25-$ $7.22(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 1 \mathrm{H})$, $2.72(\mathrm{dd}, 1 \mathrm{H}, J=6.8,10.0 \mathrm{~Hz}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $1.11(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.34(\mathrm{~s}, 1 \mathrm{H}), 0.30(\mathrm{~s}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NOSiP} 522.2382$, found 522.2382

P, P-Diphenyl- N-(3-phenyl-1-(3-(trimethylsilyl)bicyclo[1.1.0]butan-1-yl)propyl)phosphinic

amide (153). To a cooled solution of amide $146(43.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0$ $\mathrm{mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(19 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-30^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}(49 \mathrm{mg}, 0.40$ $\mathrm{mmol})$ and trifluoroethanol ($29 \mu \mathrm{l}, 0.40 \mathrm{mmol}$) in anhydrous dichloromethane (5.0 mL). Then, diethyl aluminum chloride (1 M in hexanes, $0.012 \mathrm{~mL}, 0.012 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{I}_{2}(0.11 \mathrm{~g}, 0.40$ mmol) was added at this temperature. The reaction mixture was stirred overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on SiO_{2} (EtOAc : hexanes $=4: 1$) to afford 153 as a yellowish semisolid ($34 \mathrm{mg}, 75 \%$): IR (ATR) 3176.0, 3054.9, 3023.2, 2946.8, 2922.5, 2861.0, 2853.6, $1437.0,1246.9,1185.4,1122.0,1109.0,1092.2,835.0,747.4,723.2,695.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.02-7.93 (m, 4 H$), 7.55-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H})$, 3.68-3.65 (m, 1 H$), 3.07-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$
$6.8 \mathrm{~Hz}), 1.04(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.26(\mathrm{~s}, 1 \mathrm{H}), 0.24(\mathrm{~s}, 1 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.0,133.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.8,129.5(\mathrm{~d}, J=10 \mathrm{~Hz}), 129.4$ (overlap), 129.3, 126.8, 51.9, 39.1, 34.0, 33.3, 31.1, 25.1 (d, $J=7 \mathrm{~Hz}$), 1.9, 0.0; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NOSiP} 460.2226$, found 460.2222.

N-(1-(3-(Dimethyl(thiophen-2-yl)silyl)bicyclo[1.1.0]butan-1-yl)-3-phenylpropyl)-P,P-

diphenylphosphinic amide (154). To a cooled solution of amide 147 ($50.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(19 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , cooled to $-30^{\circ} \mathrm{C}$ and added a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}(50 \mathrm{mg}, 0.41 \mathrm{mmol})$ and trifluoroethanol (29 $\mu \mathrm{l}, 0.41 \mathrm{mmol}$) in anhydrous dichloromethane (5.0 mL). Then, diethyl aluminum chloride (1 M in hexanes, $0.012 \mathrm{~mL}, 0.012$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{I}_{2}(0.11 \mathrm{~g}, 0.41 \mathrm{mmol})$ was added at this temperature. The reaction mixture was stirred overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane $(3 \times 10$ $\mathrm{mL})$. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=4: 1)$ to afford 154 as a white semisolid ($48 \mathrm{mg}, 92 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.85(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.50 (m, 2 H), 7.48-7.43 (m, 6 H), 7.27-7.26 (m, 2 H), 7.21-7.13 (m, 4 H), 7.06 (dd, 1 H, J $=3.2,4.8 \mathrm{~Hz}), 3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, 1 \mathrm{H}, J=7.2,10.0 \mathrm{~Hz}), 2.68-2.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.19(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.39(\mathrm{~s}, 1 \mathrm{H})$, 0.35 (s, 4 H , overlap), 0.32 (s, 3 H).

N-Allyl-P,P-diphenyl- N-(3-phenyl-1-(3-(triethylsilyl)bicyclo[1.1.0]butan-1-yl) propyl) phosphinic amide (167). Amide 151 ($15 \mathrm{mg}, 0.030 \mathrm{mmol}$), allyl bromide ($36 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$ were dissolved in $\mathrm{PhMe}(1.0 \mathrm{~mL})$ and treated with a 50% NaOH solution $(1.0 \mathrm{~mL})$. The reaction mixture was vigorously stirred at room temperature for 1.5 h , diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford the product $167(15 \mathrm{mg}, 93 \%)$ as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.96-7.87 (m, 4 H), 7.48-7.44 (m, 6 H), 7.29-7.27 (m, 2 H$), 7.18-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.01-5.97(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.00-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.12(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.82(\mathrm{~d}, 9 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 0.43 (s, 1 H$), 0.42(\mathrm{q}, 6 \mathrm{H}, J=8.0 \mathrm{~Hz}), 0.27(\mathrm{~s}, 1 \mathrm{H}) 0.02(\mathrm{~s}, 1 \mathrm{H})$.

N-(1-(3-(tert-Butyldimethylsilyl)bicyclo[1.1.0]butan-1-yl)-3-phenylpropyl)-P,P-diphenyl- N -(prop-2-yn-1-yl)phosphinic amide (168). Amide 150 ($0.015 \mathrm{~g}, 0.030 \mathrm{mmol}$), propargyl bromide ($36 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.0051 \mathrm{~g}, 0.015 \mathrm{mmol})$ were dissolved in PhMe $(1.0 \mathrm{~mL})$ and treated with a $50 \% \mathrm{NaOH}$ solution $(1.0 \mathrm{~mL})$. The reaction mixture was vigorously stirred at room temperature for 1.5 h , diluted with water, and extracted (3x) with EtOAc. The
combined organic layers were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1$) to afford the product $168(14 \mathrm{mg}, 91 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.91(\mathrm{~m}, 4 \mathrm{H})$, 7.54-7.44 (m, 6 H), 7.29-7.23 (m, 2 H), 7.20-7.18 (m, $3 H$), 4.15-4.11 (m, 1 H), 3.91-3.85 (m, 2 H), 3.25-3.16(m, 1 H$), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 1.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $6.8 \mathrm{~Hz}), 1.33-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.47(\mathrm{~s}, 1 \mathrm{H}), 0.34(\mathrm{~s}, 1 \mathrm{H}),-$ $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,133.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.8(\mathrm{~d}$, $J=9 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=8 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=9 \mathrm{~Hz}), 128.3,125.8,82.6,71.2,56.8,34.9,33.7,33.1$, 32.1, 31.9, 26.4, 19.7, 17.8, -1.6, -6.0, -6.8; HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{NOSiP}(\mathrm{M}+\mathrm{H})$ 560.2539, found 560.2554.

N-(1-(3-(Dimethyl(phenyl)silyl)bicyclo[1.1.0]butan-1-yl)-3-phenylpropyl)-P,P-diphenyl-N-(prop-2-yn-1-yl)phosphinic amide (169). Amide 152 ($0.015 \mathrm{~g}, 0.029 \mathrm{mmol}$), propargyl bromide ($34 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.005 \mathrm{~g}, 0.014 \mathrm{mmol})$ were dissolved in PhMe $(1.0 \mathrm{~mL})$ and treated with a $50 \% \mathrm{NaOH}$ solution $(1.0 \mathrm{~mL})$. The reaction mixture was vigorously stirred at room temperature for 1.5 h , diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on SiO_{2} ($\mathrm{EtOAc}:$ hexanes $=4: 1$) to afford the product $\mathbf{1 6 9}$ ($14 \mathrm{mg}, 85 \%$) as a colorless oil: IR (ATR) 3304.6, 3299.0, 3291.6, 3282.3, 3054.9, 3023.2, 2948.6, 2924.4, 2851.7, 1716.6, 1692.4, 1601.1, 1591.7, 1468.7, 1459.4, 1453.8, 1437.0, $1248.8,1181.7,1120.2,1107.1,1081.0,1071.7,1047.5,829.4,767.9,751.1,725.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl_{3}) δ 8.03-7.98 (m, 2 H), 7.95-7.90 (m, 2 H), 7.53-7.41 (m, 6 H), 7.39-7.37 (m, 2 H$), 7.26-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.87-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz})$, $1.27(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.13-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.56(\mathrm{~s}, 1 \mathrm{H}), 0.45(\mathrm{~s}, 1 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3$ $\mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.1,138.5,133.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.7,132.5,132.2(\mathrm{~d}, J=$ $9 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=21 \mathrm{~Hz}), 129.2,128.7,128.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 128.5$, $128.0,125.9,82.7(\mathrm{~d}, J=7 \mathrm{~Hz}), 71.4,56.8(\mathrm{~d}, J=3 \mathrm{~Hz}), 35.0,33.6(\mathrm{~d}, J=4 \mathrm{~Hz}), 33.1,32.3(\mathrm{~d}, J$ $=6 \mathrm{~Hz}), 21.9(\mathrm{~d}, J=2 \mathrm{~Hz}), 0.0,-2.1,-2.5$; HRMS (ESI) m$/ \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{NOSiP}$ 540.2852, found 540.2854.

P, P-Diphenyl- N-(3-phenyl-1-(3-(trimethylsilyl)bicyclo[1.1.0]butan-1-yl)propyl)- N-(prop-2-yn-1-yl)phosphinic amide (170). Amide $153(0.015 \mathrm{~g}, 0.033 \mathrm{mmol}$), propargyl bromide (39 mg , $0.33 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.006 \mathrm{~g}, 0.016 \mathrm{mmol})$ were dissolved in $\mathrm{PhMe}(1.0 \mathrm{~mL})$ and treated with a $50 \% \mathrm{NaOH}$ solution $(1.0 \mathrm{~mL})$. The reaction mixture was vigorously stirred at room temperature for 1.5 h , diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford the product $\mathbf{1 7 0}(11 \mathrm{mg}$, 65%) as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 8.04-7.99(\mathrm{~m}, 2 \mathrm{H})$, 7.60-7.53 (m, 6 H), 7.34-7.32 (m, 2 H), 7.28-7.25 (m, 3 H), 4.21-4.19 (m, 1 H), 3.98-3.93 (m, 2 H), 3.35-3.28 (m, 1 H$), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.52(\mathrm{~s}, 1 \mathrm{H}), 0.43(\mathrm{~s}, 1 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,134.0(\mathrm{dd}, J=9,10 \mathrm{~Hz}), 133.7,133.5,133.0(\mathrm{dd}, J=3,8$ $\mathrm{Hz}), 132.8,132.4,132.2,129.6,129.5,129.4,126.9,83.7(\mathrm{~d}, J=7 \mathrm{~Hz}), 72.3,57.9(\mathrm{~d}, J=2 \mathrm{~Hz})$, 35.4, $34.8(\mathrm{~d}, J=5 \mathrm{~Hz}), 34.2,33.3(\mathrm{~d}, J=6 \mathrm{~Hz}), 32.8,22.4(\mathrm{~d}, J=3 \mathrm{~Hz}), 1.3,0.0$.

N-(4-((tert-Butyldimethylsilyl)oxy)but-2-yn-1-yl)-P,P-diphenyl-N-(3-phenyl-1-(3-(trimethyl-silyl)bicyclo[1.1.0]butan-1-yl)propyl)phosphinic amide (173). Amide $\mathbf{1 5 3}$ (0.040 g, 0.087 mmol), propargyl bromide ($69 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.015 \mathrm{~g}, 0.044 \mathrm{mmol}$) were dissolved in $\mathrm{PhMe}(1.0 \mathrm{~mL})$ and treated with a $50 \% \mathrm{NaOH}$ solution (1.0 mL). The reaction mixture was vigorously stirred at room temperature overnight, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by chromatography on SiO_{2} (EtOAc : hexanes = $3: 1$) to afford the product $\mathbf{1 7 3}(40 \mathrm{mg}, 71 \%)$ as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{ddd}, 4 \mathrm{H}, J=7.2,12.0,25.2 \mathrm{~Hz}), 7.60-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ 7.23 (m, 3 H), 4.27 ($\mathrm{s}, 2 \mathrm{H}$), 4.25-4.21 (m, 1 H), 4.00-3.93 (m, 2 H), 3.26 (dt, $1 \mathrm{H}, J=4.0,12.8$ $\mathrm{Hz}), 2.56(\mathrm{dt}, 1 \mathrm{H}, J=4.8,13.2 \mathrm{~Hz}), 2.46-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.23(\mathrm{~d}, 1 \mathrm{H}, J$ $=6.4 \mathrm{~Hz}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.51(\mathrm{~s}, 1 \mathrm{H}), 0.44(\mathrm{~s}, 1 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.

(Z)-2-(6-(Diphenylphosphoryl)-5-phenethyl-2-(trimethylsilyl)-6-azaspiro[3.4]oct-1-en-8-

ylidene) acetaldehyde (174). To 1 mL anhydrous THF was added TBAF ($0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1$ M solution in THF) and TBS protected alcohol $\mathbf{1 7 3}(40 \mathrm{mg}, 0.062 \mathrm{mmol})$. The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated. The product was purified by chromatography to afford the primary alcohol ($32 \mathrm{mg}, 98 \%$) without further characterization. To a solution of primary alcohol ($10 \mathrm{mg}, 0.019 \mathrm{mmol}$) was added 2,6-lutidine ($0.011 \mathrm{~mL}, 0.095 \mathrm{mmol}$). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, added Dess-Martin periodinane ($16 \mathrm{mg}, 0.038 \mathrm{mmol}$) and stirred at this temperature for 8 h . The reaction was quenched by a $1: 1$ solution of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} solution and extracted with EtOAc for 3 times. The combined organic layer was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ afford the product as a colorless oil $(6.9 \mathrm{mg}$, 69%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.95-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.45(\mathrm{~m}$, 6 H), 7.24-7.22 (m, 2 H), 7.18-7.14 (m, 1 H), 7.06-7.04 (m, 2 H$), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{br} \mathrm{d}, J=$ $6.0 \mathrm{~Hz}), 4.39(\mathrm{ddq}, 2 \mathrm{H}, J=2.4,8.8,18.0 \mathrm{~Hz}), 3.77(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.91(\mathrm{~d}, 1 \mathrm{H}, J=13.2$ $\mathrm{Hz}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.4,170.0,159.7,143.7,141.7,132.5(\mathrm{dd}, J=9,10 \mathrm{~Hz})$, $132.1(\mathrm{dd}, J=3,14 \mathrm{~Hz}), 128.8(\mathrm{dd}, J=13,15 \mathrm{~Hz}), 128.4,128.2,126.0,118.7,65.1,62.7,49.9$, 48.6, 35.5, 32.9, -2.4.

P, P-Diphenyl- N-(1-(trimethylsilyl)pent-1-yn-3-yl)phosphinic amide (176). To a solution of lithium bistrimethylsilyl amide ($0.408 \mathrm{~g}, 2.4 \mathrm{mmol}$) in anhydrous hexanes (5 mL) was added trimethylsilyl acetylene $(0.355 \mathrm{~g}, 3.6 \mathrm{mmol})$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min and added a solution of imine adduct $(0.50 \mathrm{~g}, 1.21 \mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$. The reaction was stirred at room temperature for 6 h and quenched by $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layers were concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=4: 1)$ to afford the product $\mathbf{1 7 6}$ as a yellowish solid (0.336 g, 78\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H})$, 7.33-7.23 (m, 6 H$), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.54$ (m, 1 H), $0.84(\mathrm{t}, 3 \mathrm{H}, J=8.4 \mathrm{~Hz}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NOSiP} 356.1600$, found 356.1603 .

177
P, P-Diphenyl- N-(1-(3-(trimethylsilyl)bicyclo[1.1.0]butan-1-yl)propyl)phosphinic amide (177). To a cooled solution of $\mathbf{1 7 6}(0.33 \mathrm{~g}, 0.93 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}(0.18 \mathrm{~g}, 1.8 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour, cooled to $-30^{\circ} \mathrm{C}$ and treated with a cold solution of $\mathrm{Et}_{2} \mathrm{Zn}(0.46 \mathrm{~g}, 3.7 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Then, $\mathrm{CH}_{2} \mathrm{I}_{2}(1.0 \mathrm{~g}, 3.7 \mathrm{mmol})$ were slowly added in this temperature. The reaction mixture was stirred overnight, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on SiO_{2} (EtOAc : hexanes $=4: 1)$ to afford the product as a white solid $(0.22 \mathrm{~g}, 62 \%):{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.91-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 1.45(\mathrm{p}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.23(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 1.02(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.99(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz})$, $1.15(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}),-0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.2,133.8$, 132.9, $132.5,132.4,132.0,131.9,131.6,128.4,128.3,128.2,52.4,32.8,30.2,29.0(\mathrm{~d}, J=4 \mathrm{~Hz}), 24.0$ (d, $J=7 \mathrm{~Hz}$), 10.7, -1.01; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NOSiP}$ 384.1913, found 384.1918; IR(ATR) 3176, 3055, 2954, 2926, 2870, 1437, 1247, 1187, 1122, 1107, 1060, 1010, 997, $954,835,749,721,695 \mathrm{~cm}^{-1}$.

N-(4-((tert-Butyldimethylsilyl)oxy)but-2-yn-1-yl)-P,P-diphenyl-N-(1-(3-(trimethylsilyl)-bicyclo[1.1.0]butan-1-yl)propyl)phosphinic amide (178). Amide ($0.10 \mathrm{~g}, 0.26 \mathrm{mmol}$), TBSprotected propargyl bromide $(0.21 \mathrm{~g}, 0.78 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.044 \mathrm{~g}, 0.13 \mathrm{mmol})$ were dissolved in toluene $(3.0 \mathrm{~mL})$ and treated with a 50% aq NaOH solution $(3.0 \mathrm{~mL})$. The reaction mixture was vigorously stirred at rt overnight, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The product was purified by chromatography on SiO_{2} (EtOAc : hexanes $=4: 1$) to afford the product 178 as a yellowish oil ($78 \mathrm{mg}, 53 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (ddd, $2 \mathrm{H}, J=$
$1.2,8.0,12.0 \mathrm{~Hz}), 7.93(\mathrm{ddd}, 2 \mathrm{H}, J=1.2,8.0,12.0 \mathrm{~Hz}), 7.53-7.45(\mathrm{~m}, 6 \mathrm{H}), 4.28(\mathrm{t}, 2 \mathrm{H}, J=1.6$ $\mathrm{Hz}), 4.10(\mathrm{ddt}, 1 \mathrm{H}, J=1.6,8.8,18.4 \mathrm{~Hz}), 3.83(\mathrm{ddt}, 1 \mathrm{H}, J=2.0,8.8,18.4 \mathrm{~Hz}), 3.65(\mathrm{dt}, 1 \mathrm{H}, J$ $=2.8,8.8 \mathrm{~Hz}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.16(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.14-1.08(\mathrm{~m}, 1$ H), $1.08(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.45(\mathrm{~s}, 1 \mathrm{H}), 0.37(\mathrm{~s}, 1 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}),-0.06(\mathrm{~s}, 9$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 132.9(\mathrm{dd}, J=10.0,20.0 \mathrm{~Hz}), 132.0(\mathrm{dd}, J=126,33 \mathrm{~Hz})$, $131.8(\mathrm{dd}, J=11,2.5 \mathrm{~Hz}), 128.3(\mathrm{dd}, J=1.3,12.5 \mathrm{~Hz}), 83.1(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 81.2,57.9,51.7$, 34.0, $32.1(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 31.7,25.8,24.3(\mathrm{~d}, J=5 \mathrm{~Hz}), 21.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 18.3,11.4,-1.2,-$ $5.2\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}\right.$); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{2} \mathrm{Si}_{2} \mathrm{P} 566.3040$, found 566.3046; IR(ATR) 2950, 2926, 2896, 2874, 2855, 1461, 1437, 1371, 1361, 1340, 1249, 1206, $1139,1118,1103,1068,913,831,775,749,721,695 \mathrm{~cm}^{-1}$.

(Z)-2-(6-(Diphenylphosphoryl)-5-ethyl-2-(trimethylsilyl)-6-azaspiro[3.4]oct-1-en-8-ylidene)-
acetaldehyde (179) To 1 mL anhydrous THF was added TBAF ($0.28 \mathrm{~mL}, 0.28 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) and $\mathbf{1 7 8}(78 \mathrm{mg}, 0.14 \mathrm{mmol})$. The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated. The product was purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=3: 1)$ to afford the corresponding propargyl alcohol ($60 \mathrm{mg}, 96 \%$) without further purification: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 6 \mathrm{H}), 4.48-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H})$, $4.14(\mathrm{dd}, 1 \mathrm{H}, J=15.2,24.0 \mathrm{~Hz}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=15.2,24.0 \mathrm{~Hz}), 3.62(\mathrm{t}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$, $2.04(\mathrm{dt}, 1 \mathrm{H}, J=14.0,9.6 \mathrm{~Hz}), 1.47(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 1.25(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 1.21-1.15(\mathrm{~m}$, $1 \mathrm{H}), 1.17(\mathrm{t}, 3 \mathrm{H}, J=4.0 \mathrm{~Hz}), 0.58(\mathrm{~s}, 1 \mathrm{H}), 0.47(\mathrm{~s}, 1 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$. To a solution of
propargyl alcohol ($60 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added 2,6-lutidine ($0.078 \mathrm{~mL}, 0.66 \mathrm{mmol}$). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, treated with Dess-Martin periodinane ($113 \mathrm{mg}, 0.27 \mathrm{mmol}$) and stirred at this temperature for 8 h . The reaction was quenched by a $1: 1$ solution of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} and extracted with EtOAc for 3 times. The combined organic layer was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The product was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=3: 1)$ to afford 179 as a colorless oil $(48 \mathrm{mg}, 80 \%)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.96-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 6 \mathrm{H})$, $6.31(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{brd}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.37(\mathrm{ddd}, 1 \mathrm{H}, J=2.0,9.2,13.2 \mathrm{~Hz}), 4.32(\mathrm{ddd}, 1 \mathrm{H}, J$ $=2.0,9.2,13.2 \mathrm{~Hz}), 3.6(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.8(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.52(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$, 1.48-1.40(m, 2 H$), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.6$, $170.8(\mathrm{~d}, J=5 \mathrm{~Hz}), 159.4,144.0,132.7,132.6(\mathrm{dd}, J=17,9 \mathrm{~Hz}), 132.1(\mathrm{dd}, J=17,3 \mathrm{~Hz}), 131.4$, $128.8(\mathrm{dd}, J=20,12 \mathrm{~Hz}), 118.6,66.6,62.7(\mathrm{~d}, J=3 \mathrm{~Hz}), 50.1,48.8(\mathrm{~d}, J=4 \mathrm{~Hz}), 26.5(\mathrm{~d}, J=5$ Hz), 11.0, -2.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{SiP} 450.2018$, found 450.2007; IR(ATR) 3059, 2956, 2934, 2928, 2878, 2872, 2855, 1676, 1614, 1590, 1437, 1247, 1184, 1122, 1107, 1072, 911, 839, 751, 725, 693, $677 \mathrm{~cm}^{-1}$.

((Z)-8-((Z)-2-(2-(2,4-Dinitrophenyl)hydrazono)ethylidene)-5-ethyl-2-(trimethylsilyl)-6-
azaspiro[3.4]oct-1-en-6-yl)diphenylphosphine oxide (181) To solution of the aldehyde 179 (40 $\mathrm{mg}, 0.089 \mathrm{mmol})$ in methanol (1 mL) was added (2,4-dinitrophenyl)hydrazine ($18 \mathrm{mg}, 0.089$
mmol). The mixture was stirred at room temperature overnight. The product is concentrated and purified by chromatography to afford the hydrazone 181 as a yellow oil ($42 \mathrm{mg}, 75 \%$). An orange color crystal was obtained by slowly crystallizing a solution of $\mathbf{1 8 1}$ in dichloromethane and hexanes: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.5(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.31(\mathrm{dd}, 1$ $\mathrm{H}, J=9.6,2.0 \mathrm{~Hz}), 7.99-7.88(\mathrm{~m}, 5 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 6.39-6.35$ $(\mathrm{m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=16.0,8.0 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=16.0,8.0 \mathrm{~Hz}), 3.61(\mathrm{q}, 1 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 2.91(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.58(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, 1 \mathrm{H}, J=7.2$ Hz), $0.14(\mathrm{~s}, 9 \mathrm{H})$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{NaSiP} 652.2121$ found 652.2118; IR(ATR) 3122, 3116, 3111, 3103, 3100, 3090, 3083, 3075, 3055, 2956, 2924, 2874, $2854,1616,1590,1437,1422,1333,1310,1247,1183,1122,1107,1077,1070,1025,1008,997$, $911,902,839,753,723,692,677 \mathrm{~cm}^{-1}$.

N-(Bicyclo[1.1.0]butan-1-yl(4-chlorophenyl)methyl)-4-methylbenzenesulfonamide (157a). ${ }^{53}$
To a $-78{ }^{\circ} \mathrm{C}$ solution of tribromo cyclopropane $(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether ($6.3 \mathrm{~mL}, 10 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t - BuLi in pentane $(12 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.5 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (2 x 3.5 mL) was added. The reaction mixture was then gradually warmed to rt. After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=1: 4)$ afforded 157 a as a white solid $(1.06 \mathrm{~g}, 61 \%)$:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 5.28(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.73(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.0$ $\mathrm{Hz}), 1.26-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.62(\mathrm{~s}, 1 \mathrm{H}), 0.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.6, $138.03,137.8,133.5,129.6,128.6,128.4,127.3,57.5,32.6,31.5,21.6,14.1,1.9 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SCl} 348.0825$, found 348.0829.

157b
N-(Bicyclo[1.1.0]butan-1-yl(furan-2-yl)methyl)-4-methylbenzenesulfonamide (157b) ${ }^{53}$. To a $-78{ }^{\circ} \mathrm{C}$ solution of tribromo cyclopropane $(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether dropwise ($6.3 \mathrm{~mL}, 10 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t - BuLi in pentane ($12 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.2 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (2 x 3.5 mL) was added. The reaction mixture was then gradually warmed to rt. After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=1: 4)$ afforded $\mathbf{1 5 7 b}$ as a yellowish solid $(1.14 \mathrm{~g}$, $75 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.16(\mathrm{~d}$, $1 \mathrm{H}, J=0.8 \mathrm{~Hz}), 6.17(\mathrm{dd}, 1 \mathrm{H}, J=1.6,2.8 \mathrm{~Hz}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.42(\mathrm{~m}, 3 \mathrm{H}), 0.58(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,143.3,142.2,137.9,129.5,127.2,110.2,107.3,52.1,32.4,32.0,21.6$, 12.9, 2.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S} 304.1007$, found 304.1033.

N-(Bicyclo[1.1.0]butan-1-yl(3,5-dimethoxyphenyl)methyl)-4-methylbenzenesulfonamide
(157c). ${ }^{53}$ To a $-78^{\circ} \mathrm{C}$ solution of tribromo cyclopropane $(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether $(6.3 \mathrm{~mL}, 10 \mathrm{mmol})$. After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t - BuLi in pentane $(12 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise at $78{ }^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.6 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (2 x 3.5 mL) was added. The reaction mixture was then gradually warmed to rt . After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=1: 4)$ afforded 157 c as a yellowish solid (1.23 g , $66 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.25(\mathrm{~s}$, $1 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 2.38(\mathrm{~s}, 3$ H), 1.50-1.49(m, 1 H), 1.35-1.30(m,1 H), $1.30(\mathrm{~s}, 1 \mathrm{H}), 0.60(\mathrm{~s}, 1 \mathrm{H}), 0.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,143.3,141.9,138.0,129.5,127.3,105.1,99.6,58.0,55.3,32.4,31.9$, 21.6, 14.1, 1.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S} 374.1426$ found 374.1398.

157d
N-(Bicyclo[1.1.0]butan-1-yl(2-chlorophenyl)methyl)-4-methylbenzenesulfonamide (157d).
To a $-78^{\circ} \mathrm{C}$ solution of tribromo cyclopropane $(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a
1.6 M solution of MeLi in ether $(6.3 \mathrm{~mL}, 10 \mathrm{mmol})$. After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t-BuLi in pentane $(12 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.5 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (2 x 3.5 mL) was added. The reaction mixture was then gradually warmed to rt. After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=1: 4)$ afforded 157 d as a white solid $(0.45 \mathrm{~g}, 25 \%)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.44$ $(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.38(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.4 \mathrm{~Hz}), 0.61(\mathrm{~s}, 1 \mathrm{H}), 0.48(\mathrm{~s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4,137.3,136.6,132.4,129.6,129.5,128.8,128.6,127.3$, $126.8,54.9,33.4,30.7,21.6,13.8,2.3$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SCl}$ 348.0825, found 348.0847.

N-(1-(Bicyclo[1.1.0]butan-1-yl)-2-methylpropyl)-4-methylbenzenesulfonamide (157e). ${ }^{53}$ To a $-78{ }^{\circ} \mathrm{C}$ solution of tribromo cyclopropane $(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether ($6.3 \mathrm{~mL}, 10 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t - BuLi in pentane $(12 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.1 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (5 mL) was added. The reaction mixture was then gradually warmed to rt . After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were
dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on SiO_{2} $($ EtOAc : hexanes $=1: 4)$ afforded 157 e as a yellowish solid $(1.01 \mathrm{~g}, 72 \%):{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.43(\mathrm{dd}$, $1 \mathrm{H}, J=5.6,8.8 \mathrm{~Hz}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{ds}, 1 \mathrm{H}, J=5.6,6.8 \mathrm{~Hz}), 1.43(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 0.93$ $(\mathrm{s}, 1 \mathrm{H}), 0.92(\mathrm{dd}, 6 \mathrm{H}, J=5.6,6.8 \mathrm{~Hz}), 0.62(\mathrm{~s}, 1 \mathrm{H}), 0.41(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,138.5,129.6,126.9,58.6,34.6,33.6,28.9,21.6,18.9,18.7,11.6,-0.2 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S} 280.1371$, found 280.1394.

N-(Bicyclo[1.1.0]butan-1-yl(cyclopropyl)methyl)-4-methylbenzenesulfonamide (157f). To a $78{ }^{\circ} \mathrm{C}$ solution of tribromo cyclopropane $(2.5 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether ($6.3 \mathrm{~mL}, 10 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t-BuLi in pentane ($12 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.1 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (5 mL) was added. The reaction mixture was then gradually warmed to rt . After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on SiO_{2} $($ EtOAc : hexanes $=1: 4)$ afforded $\mathbf{1 5 7 f}$ as a yellowish solid $(0.46 \mathrm{~g}, 33 \%):{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.97(\mathrm{t}, 1$ $\mathrm{H}, J=7.2 \mathrm{~Hz}), 2.2(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.13(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.03$ $(\mathrm{s}, 1 \mathrm{H}), 0.62-0.57(\mathrm{~m}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 1 \mathrm{H}), 0.22-0.16(\mathrm{~m}, 2 \mathrm{H}), 0.14(\mathrm{~s}, 1 \mathrm{H}), 0.05-0.00(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,137.9,128.9,126.6,57.0,30.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 20.9,15.0$,
11.5, 2.2, 2.1, 0.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}$ 278.1215, found 278.1217; IR (ATR) 3288, 3258, 3252, 3247, 3239, 3003, 2997, 2917, 2898, 2878, 2867, 1597, 1456, 1435, $1405,1398,1387,1320,1316,1305,1286,1156,1133,1094,1016,986,958,908,885,809 \mathrm{~cm}^{-}$ ${ }^{1}$.

N-(1-(Bicyclo[1.1.0]butan-1-yl)-2-((4-methoxybenzyl)oxy)ethyl)-4-methylbenzenesulfon-
amide ($\mathbf{1 5 7} \mathbf{g}$). To a $-78{ }^{\circ} \mathrm{C}$ solution of tribromo cyclopropane ($2.5 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether ($6.3 \mathrm{~mL}, 10 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of $t-\mathrm{BuLi}$ in pentane $(12 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise at $78{ }^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.7 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (5 mL) was added. The reaction mixture was then gradually warmed to rt . After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=1: 4)$ afforded $\mathbf{1 5 7} \mathrm{g}$ as a yellowish solid $(1.07 \mathrm{~g}$, $55 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.06(\mathrm{~d}$, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.75-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=4.8,9.6 \mathrm{~Hz}), 3.30(\mathrm{dd}, 1 \mathrm{H}, J=4.8,9.6 \mathrm{~Hz}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.13(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.29(\mathrm{~s}, 1 \mathrm{H}), 0.39(\mathrm{~s}, 1 \mathrm{H}), 0.32(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,143.2,138.0,129.7,129.5,129.3,127.2,113.8,72.8$, 71.3, 55.3, 52.8, 31.4, 31.3, 21.5, 11.1, 1.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}$ 388.1583, found 388.1580; IR (ATR) 3279, 3271, 2924, 2863, 1610, 1512, 1456, 1452, 1439, $1420,1405,1322,1301,1243,1156,1087,1031,967 \mathrm{~cm}^{-1}$.

N-(1-(Bicyclo[1.1.0]butan-1-yl)ethyl)-4-methylbenzenesulfonamide (157h). To a $-78{ }^{\circ} \mathrm{C}$ solution of tribromo cyclopropane ($2.5 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added a 1.6 M solution of MeLi in ether ($6.3 \mathrm{~mL}, 10 \mathrm{mmol}$). After $1 \mathrm{~h}, \mathrm{MeBr}$ was removed in vacuo. Then, a 1.7 M solution of t - BuLi in pentane ($12 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$. After 1 hr , sulfonyl imine ($1.0 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (5 mL) was added. The reaction mixture was then gradually warmed to rt . After 30 min , the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by chromatography on SiO_{2} $($ EtOAc : hexanes $=1: 4)$ afforded $\mathbf{1 5 7 h}$ as a yellowish solid $(0.50 \mathrm{~g}, 40 \%):{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.83(\mathrm{p}, 1$ $\mathrm{H}, J=7.2 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}), 1.31-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 0.44(\mathrm{~s}, 1 \mathrm{H}), 0.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,136.7,127.9,125.5$, 48.2, 30.6, 28.2, 19.9, 18.8, 12.0, 0.0; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}$ 252.1058, found 252.1030; IR (ATR) 2954, 2947, 2924, 2867, 2852, 1597, 1448, 1420, 1411, $1377,1322,1303,1288,1154,1107,1083,1044,1033,1020,969,951,911,889,863,815,802$ cm^{-1}.

263a
N-(Bicyclo[1.1.0]butan-1-yl(4-chlorophenyl)methyl)- N-(2-cyclopropylideneethyl)-4-methylbenzenesulfonamide (263a). A solution of $\mathbf{1 5 7 a}(219 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate $(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$ to give 263a as a colorless oil (148 mg, 85\%): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 7.22-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.61(\mathrm{~d}, 1 \mathrm{H}, J=2.8,6.3 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz}), 1.47(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz})$, 0.98-0.94 (m, 4 H), $0.69(\mathrm{~s}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.1, 138.6, $138.1,133.3,129.4,129.2,128.5,127.4,125.2,115.6,62.0,47.9,34.2,32.0,21.6,12.1,3.8,2.4$, 1.9; HRMS (ESI) m/z: [M + H ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SCl} 414.1295$, found 414.1282; IR (ATR) $2978,2926,2867,1596,1489,1435,1405,1335,1305,1288,1156,1117,1090,1027,1012,951$, $910,897,848,813,762,746,731 \mathrm{~cm}^{-1}$.

263b

N-(Bicyclo[1.1.0]butan-1-yl(furan-2-yl)methyl)- N-(2-cyclopropylideneethyl)-4-methyl

 benzenesulfonamide (263b). A solution of 157b ($190 \mathrm{mg}, 0.63 \mathrm{mmol}$) in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate $(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$ to give 263b as a colorless oil ($129 \mathrm{mg}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.25-6.22(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 5.58(\mathrm{tt}, 1 \mathrm{H}, J=2.1,6.3$ $\mathrm{Hz}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{dd}, 2 \mathrm{H}, J=1.2,6.6 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{dd}, 1 \mathrm{H}$, $J=1.8,5.4 \mathrm{~Hz}), 0.98-0.94(\mathrm{~m}, 4 \mathrm{H}), 0.66(\mathrm{~s}, 1 \mathrm{H}), 0.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.4,142.9,141.9,138.4,129.3,127.5,124.6,115.5,110.3,108.5,56.8,47.1,33.8,32.6,21.6$, 11.2, 3.3, 2.3, 1.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S} 370.1477$, found 370.1493; IR (ATR) 2975, 2924, 2880, 2865, 2852, 1596, 1495, 1435, 1398, 1387, 1379, 1362, 1340, 1325, $1308,1290,1273,1159,1133,1118,1098,1090,1070,1033,1008,928,915,893,884 \mathrm{~cm}^{-1}$.

N-(Bicyclo[1.1.0]butan-1-yl(3,5-dimethoxyphenyl)methyl)-N-(2-cyclopropylideneethyl)-4methylbenzenesulfonamide (263c). A solution of $\mathbf{1 5 7 c}(235 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(17.9 \mathrm{mg}, 0.67 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate $(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously
stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$ to give 263c as a colorless oil ($168 \mathrm{mg}, 91 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.30(\mathrm{~s}, 3 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, 2 \mathrm{H}, J=6.4$ $\mathrm{Hz}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.53(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{dd}, 1 \mathrm{H}, J=$ 2.8, 6.0 Hz), $0.98-0.96(\mathrm{~m}, 4 \mathrm{H}), 0.71(\mathrm{~s}, 1 \mathrm{H}), 0.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.6,142.9,141.8,138.6,129.3,127.4,124.9,115.7,106.1,99.3,62.5,55.2,47.8,33.9,32.4$, 21.5, 12.1, 3.8, 2.3, 1.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}$ 440.1896, found 440.1895; IR (ATR) 2930, 2837, 1596, 1458, 1443, 1428, 1335, 1322, 1316, 1303, 1290, 1204, $1154,1096,1066,1059,1027,1020,1001,925,908,897,880,837,813 \mathrm{~cm}^{-1}$.

263d

N-(Bicyclo[1.1.0]butan-1-yl(2-chlorophenyl)methyl)-N-(2-cyclopropylideneethyl)-4-

methylbenzenesulfonamide (263d). A solution of $\mathbf{1 5 7 d}$ ($219 \mathrm{mg}, 0.63 \mathrm{mmol}$) in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate $(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$
to give 263d as a colorless oil ($162 \mathrm{mg}, 93 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8.0 Hz), 7.51-7.48 (m, 1 H), 7.51-7.48 (m, 1 H), 7.27-7.25 (m, 1 H), 7.18-7.12 (m, 4 H$), 5.68(\mathrm{~s}$, $2 \mathrm{H}), 4.40(\mathrm{dd}, 1 \mathrm{H}, J=1.2,16.0 \mathrm{~Hz}), 4.29(\mathrm{dd}, 1 \mathrm{H}, J=6.8,16.0 \mathrm{~Hz}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dd}, 1$ $\mathrm{H}, J=2.4,6.4 \mathrm{~Hz}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.13(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 0.98-0.92(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{~s}, 1$ H), $0.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,138.1,137.3,132.9,129.8,129.5,129.2$, 128.6, 127.5, 126.7, 125.1, 115.6, 59.9, 48.8, 35.6, 31.2, 21.6, 11.9, 3.7, 2.4, 1.9; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SCl} 414.1295$, found 414.1294; IR (ATR) 3024, 1597, 1481, $1421,1321,1141,1098,1025,1012,916,887,805,717,736,748,763 \mathrm{~cm}^{-1}$.

263e

N-(1-(Bicyclo[1.1.0]butan-1-yl)-2-methylpropyl)-N-(2-cyclopropylideneethyl)-4-methyl

benzenesulfonamide (263e). A solution of $157 \mathrm{e}(176 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate ($100 \mathrm{mg}, 0.420 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$ to give 263e as a colorless oil $(131 \mathrm{mg}, 90 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.79(\mathrm{bs}, 1 \mathrm{H}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=7.6,15.6 \mathrm{~Hz}), 4.02(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.4,16.0 \mathrm{~Hz}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.53(\mathrm{~m}, 1 \mathrm{H})$,
$1.03(\mathrm{bs}, 4 \mathrm{H}), 0.99(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.97-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{dd}, 1 \mathrm{H}, J=6.8,11.2 \mathrm{~Hz})$, $0.80(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.35(\mathrm{~s}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6$, $139.2,129.2,127.5,124.4,115.9,64.2,46.2,31.1,30.9,29.8,21.5,21.1,20.5,11.4,5.1,2.4,1.7$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}$ 346.1841, found 346.1842; IR (ATR) 2977, 2973, 2956, 2924, 2870, 1733, 1724, 1719, 1596, 1493, 1465, 1458, 1448, 1437, 1387, 1333, $1303,1286,1154,1117,1090,1020,1012,1001,975,960,926,904,887,811 \mathrm{~cm}^{-1}$.

N-(Bicyclo[1.1.0]butan-1-yl(cyclopropyl)methyl)- N-(2-cyclopropylideneethyl)-4-methyl-

benzenesulfonamide (263f). A solution of $\mathbf{1 5 7 f}(175 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate $(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$ to give 263 f as a colorless oil $(110 \mathrm{mg}, 76 \%)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.71(\mathrm{bs}, 1 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.4(\mathrm{~s}$, $3 \mathrm{H}), 1.55(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 1.42(\mathrm{~s}, 1 \mathrm{H}), 1.06(\mathrm{dd}, 1 \mathrm{H}, J=2.8,6.0 \mathrm{~Hz}), 0.87-0.80(\mathrm{~m}$, $5 \mathrm{H}), 0.37-0.33(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.22(\mathrm{~m}, 3 \mathrm{H}), 0.02-0.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $142.7,139.1,129.3,127.4,124.1,116.6,64.1,46.3,33.3,31.2,21.5,13.8,11.3,5.7,3.4,2.4,1.8 ;$

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}$ 344.1684, found 344.1672; IR (ATR) 3001, 2997, 2977, 2951, 2921, 2869, 1597, 1456, 1435, 1396, 1379, 1333, 1305, 1288, 1154, 1131, $1118,1092,1021,1007,979,962,939,925,897,859,813,772 \mathrm{~cm}^{-1}$.

N-(1-(Bicyclo[1.1.0]butan-1-yl)-2-((4-methoxybenzyl)oxy)ethyl)- N-(2-cyclopropylidene-ethyl)-4-methylbenzenesulfonamide ($\mathbf{2 6 3 g}$). A solution of $\mathbf{1 5 7 g}$ ($244 \mathrm{mg}, 0.63 \mathrm{mmol}$) in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate $(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}\right.$: hexanes $=$ $1: 100$ to $1: 20$) to give the product $\mathbf{2 6 3 g}$ as a colorless oil ($118 \mathrm{mg}, 62 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2$ $\mathrm{H}, J=8.7 \mathrm{~Hz}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.49$ (dd, $1 \mathrm{H}, J=6.0,9.6 \mathrm{~Hz}$), $3.37(\mathrm{dd}, 1 \mathrm{H}, J=8.4,9.6 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.01$ (dd, $1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz}), 0.95-0.89(\mathrm{~m}, 4 \mathrm{H}), 0.38(\mathrm{~s}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.4,142.9,138.6,130.1,129.5,129.4,127.5,124.7,116.4,113.9,72.7,70.4,57.8$, 55.4, 46.6, 32.7, 31.0, 21.6, 8.9, 3.2, 2.4, 1.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}$ 454.2052, found 454.2061; IR (ATR) 2917, 2885, 2863, 2848, 1717, 1707, 1700, 1605, 1584,
$1512,1497,1465,1458,1437,1405,1361,1333,1303,1286,1273,1249,1158,1098,1090$, 1029, $1007 \mathrm{~cm}^{-1}$.

N-(1-(Bicyclo[1.1.0]butan-1-yl)ethyl)-N-(2-cyclopropylideneethyl)-4-methylbenzene-

sulfonamide ($\mathbf{2 6 3 h}$). A solution of $\mathbf{1 5 7} \mathbf{h}(158 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate (100 $\mathrm{mg}, 0.42 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexanes $=1: 100$ to $\left.1: 20\right)$ to give 263h as a colorless oil ($60 \mathrm{mg}, 45 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$), $7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.88-5.83(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.22(\mathrm{dd}, 1 \mathrm{H}, J=7.2$, $15.9 \mathrm{~Hz}), 4.12$ (ddt, $1 \mathrm{H}, J=1.5,5.7,15.9 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz})$, $1.29-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.09-1.05(\mathrm{~m}, 4 \mathrm{H})$, $0.48(\mathrm{~d}, 2 \mathrm{H}, J=3.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,139.0,129.4,127.3,124.2$, 116.6, 54.7, 45.6, 34.3, 30.3, 21.6, 17.9, 11.8, 2.4, 2.2, 1.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S} 318.1528$, found 318.1514; IR (ATR) 3049, 3038, 3031, 3018, 2977, 2949, 2928, 2880, 2874, 1597, 1493, 1450, 1437, 1390, 1357, 1333, 1303, 1288, 1150, 1120, 1096, 1066, $1019,1003,988,958,887,872,857,813,770 \mathrm{~cm}^{-1}$.

263i

N-(2-Cyclopropylideneethyl)-4-methyl- N-((3-methylbicyclo[1.1.0]butan-1-yl)(phenyl)

methyl)benzenesulfonamide (263i). A solution of tosyl amide $\mathbf{7 2}^{53}$ ($206 \mathrm{mg}, 0.63 \mathrm{mmol}$) in THF (3 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(22.4 \mathrm{mg}, 0.84 \mathrm{mmol}, 90 \%$ in mineral oil) in THF (3 mL). After stirring at rt for 20 min the solution was transferred via cannula over a solution of tosylate ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF (2 mL) previously stirred for 15 min at rt . The reaction mixture was allowed to stir for 3 h at rt , poured into water and extracted with ether. The combined organic layers were dried, filtered and concentrated and the crude product was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O}\right.$: hexanes $=1: 100$ to $1: 20$) to give $\mathbf{2 6 3 i}$ as a colorless oil $(155 \mathrm{mg}, 94 \%):{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.22-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.61(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.8,6.3 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz}), 1.47(\mathrm{~s}, 1 \mathrm{H})$, $1.24(\mathrm{dd}, 1 \mathrm{H}, J=3.0,6.3 \mathrm{~Hz}), 0.98-0.94(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{~s}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,138.6,138.1,133.3,129.4,129.2,128.5,127.4,125.2,115.6,62.0,47.9$, 34.2, 32.0, 21.6, 12.1, 3.8, 2.4, 1.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SCl}$ 414.1295, found 414.1282; IR (ATR) 2919, 2852, 1493, 1452, 1407, 1374, 1333, 1303, 1288, $1156,1137,1118,1090,1020,1010,1003,975,895,813 \mathrm{~cm}^{-1}$.

263
N-(Bicyclo[1.1.0]butan-1-yl(phenyl)methyl)- N-(2-cyclopropylideneethyl)-4-methylbenzenesulfonamide (263) ${ }^{53}$ To a $0{ }^{\circ} \mathrm{C}$ solution of tosyl amide $\mathbf{1 5 7}^{53}$ ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$), alcohol (68 $\mathrm{mg}, 0.77 \mathrm{mmol}$), and 1,1'-(azodicarbonyl) dipiperidine ($73 \mathrm{mg}, 0.28 \mathrm{mmol}$) was added tri-butyl phosphine ($0.068 \mathrm{~mL}, 0.26 \mathrm{mmol}$). After 24 h , the mixture was added another portion of $1,1^{\prime}-$ (azodicarbonyl) dipiperidine ($73 \mathrm{mg}, 0.28 \mathrm{mmol}$) and tri-butyl phosphine ($0.068 \mathrm{~mL}, 0.26 \mathrm{mmol}$). After 30 h , the reaction mixture was added 15 mL hexanes. The solid was filtered and the filtrate was concentrated and purified by column chromatography (EtOAc : hexanes $=1: 19$ to $1: 9)$ to yield 263 as a colorless oil slowly crystallized in freezer ($89 \mathrm{mg}, 92 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, 2 \mathrm{H}, J=11.2 \mathrm{~Hz}), 7.26-7.14(\mathrm{~m}, 7 \mathrm{H}), 5.61(\mathrm{tt}, 1 \mathrm{H}, J=8.4,2.8 \mathrm{~Hz}), 5.35(\mathrm{~s}, 1$ H), $4.21(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{dd}, 1 \mathrm{H}, J=8.8,4.0 \mathrm{~Hz}), 1.49(\mathrm{bs}, 1 \mathrm{H}), 1.27$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.8,4.0 \mathrm{~Hz}), 0.98-0.92(\mathrm{~m}, 4 \mathrm{H}), 0.70(\mathrm{~s}, 1 \mathrm{H}), 0.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.1,131.6,136.9,127.5,126.5,126.0,125.6,123.3,113.9,60.7,46.1,32.3,30.2$, 19.7, 10.5, 1.8, 0.5 .

1-Allyl-2-phenyl-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (268) To a solution of 263 ($10 \mathrm{mg}, 0.026 \mathrm{mmol}$) in 0.5 mL dioxane was added tris(dibenzylideneacetone) dipalladium powder ($3.0 \mathrm{mg}, 2.6 \mu \mathrm{~mol}$) and triisopropyl phosphite ($3.0 \mathrm{mg}, 0.01 \mathrm{mmol}$). The
solution was degassed and then heated at $110{ }^{\circ} \mathrm{C}$ in the oil bath. After 3 h , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford 268 as a colorless semisolid ($6.5 \mathrm{mg}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.33-7.20 (m, 7 H), $5.49-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H})$, $3.66(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=9.6,4.8 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=14.8$, $8.0 \mathrm{~Hz}), 1.94(\mathrm{dd}, 1 \mathrm{H}, J=15.2,4.8 \mathrm{~Hz}), 1.46(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 0.95-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.54(\mathrm{p}, 1$ $\mathrm{H}, J=4.4 \mathrm{~Hz}), 0.46(\mathrm{p}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,138.1,134.9$, 129.3, 128.3, 127.8, 127.5, 127.2, 117.3, 66.6, 51.0, 37.6, 35.2, 24.1, 21.6, 21.4, 3.9, 3.0; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S} 378.1528$, found 378.1517; IR (ATR) 3068, 3033, 2997, 2971, 2954, 2926, 2867, 2846, 1597, 1491, 1454, 1437, 1361, 1346, 1338, 1301, 1290, $1161,1090,1023,1012,997,919,837,813,703 \mathrm{~cm}^{-1}$.

1-Allyl-2-(4-chlorophenyl)-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (268a)
To a solution of 263a ($20 \mathrm{mg}, 0.048 \mathrm{mmol}$) in 0.90 mL dioxane was added bis(dibenzylideneacetone)palladium ($2.8 \mathrm{mg}, 4.8 \mu \mathrm{~mol}, 56 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphine ($1.6 \mathrm{mg}, 9.7 \mu \mathrm{~mol}, 35 \mu \mathrm{~L}$ in $45 \mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 100$ to $1: 20$) to afford 268a as a colorless oil (14.2 mg, 71\%): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 7 \mathrm{H}), 5.62-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}$, $1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.45(\mathrm{dd}, 1 \mathrm{H}, J=5.1,9.6 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=8.4,15.6 \mathrm{~Hz})$,
$1.98(\mathrm{dd}, 1 \mathrm{H}, J=3.3,15.6 \mathrm{~Hz}), 1.50(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 0.93(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.62-0.56(\mathrm{~m}$, $1 \mathrm{H}), 0.53-0.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7,136.8,134.7,132.9$, 132.6, $129.4,129.1,128.2,127.7,117.5,66.0,50.9,37.4,35.1,24.2,21.6,21.3,3.9,2.9$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SCl} 414.1295$, found 414.1277; IR (ATR) 3068, 2990, 2975, 2954, 2926, 2913, 2880, 2869, 1637, 1597, 1491, 1469, 1448, 1437, 1424, 1411, 1346, 1303, $1292,1163,1089,1059,1025,1014,999,982,928,919,893,839,829,822,813,725,710 \mathrm{~cm}^{-1}$.

268b

1-Allyl-2-(furan-2-yl)-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (268b). To a solution of 263b $(20 \mathrm{mg}, 0.054 \mathrm{mmol})$ in 0.50 mL dioxane was added bis(dibenzylideneacetone)palladium ($3.1 \mathrm{mg}, 5.4 \mu \mathrm{~mol}, 62 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphine ($1.8 \mathrm{mg}, 11 \mu \mathrm{~mol}, 39 \mu \mathrm{~L}$ in $45 \mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 100$ to $1: 20$) to afford 268b as a colorless oil ($13.0 \mathrm{mg}, 65 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 5.53-5.51(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H})$, $4.89(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.46(\mathrm{dd}, 1 \mathrm{H}, J=4.8,9.6 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{dd}, 1 \mathrm{H}, J=8.0,15.2 \mathrm{~Hz}), 2.05(\mathrm{dd}, 1 \mathrm{H}, J=6.0,15.2 \mathrm{~Hz}), 1.50(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 1.10-$ $1.06(\mathrm{~m}, 1 \mathrm{H}), \quad 0.9-0.85(\mathrm{~m}, 1 \mathrm{H}), \quad 0.72-0.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.5$, $143.1,142.0,134.5,134.2,129.2,127.9,117.1,110.1,109.9,60.1,50.5,36.2,35.1,23.3,21.5$, 20.7, 4.3, 3.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S} 370.1477$, found 370.1492; IR
(ATR) 2993, 2951, 2921, 2865, 2850, 1801, 1793, 1784, 1778, 1774, 1760, 1752, 1733, 1728, $1719,1702,1685,1638,1597,1493,1465,1458,1448,1437,1348,1305,1288,1223,1182$, $1161,1092,1031,1012,917,885,837,813,800,734,708 \mathrm{~cm}^{-1}$.

1-Allyl-2-(3,5-dimethoxyphenyl)-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane]
(268c). To a solution of $263 \mathrm{c}(20 \mathrm{mg}, 0.045 \mathrm{mmol})$ in 0.90 mL dioxane was added bis(dibenzylideneacetone)palladium ($2.6 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 53 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphine ($1.5 \mathrm{mg}, 9.1 \mu \mathrm{~mol}, 33 \mu \mathrm{~L}$ in $45 \mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford the product 268 c as a colorless oil $(8.4 \mathrm{mg}, 42 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}), 6.49(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.35(\mathrm{t}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 5.65-$ $5.52(\mathrm{~m}, 1 \mathrm{H}), 5.03,(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.6 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=4.8,9.6 \mathrm{~Hz}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dd}, 1 \mathrm{H}, J=8.4,15.3 \mathrm{~Hz}), 1.99(\mathrm{dd}$, $1 \mathrm{H}, J=5.1,15.3 \mathrm{~Hz}), 1.49(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 1.04-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.61-$ $0.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,143.5,140.5,134.9,133.1,129.3,128.2$, $117.4,106.2,99.2,66.7,55.2,51.0,37.7,35.3,24.1,21.6,21.4,4.1,3.2 ;$ HRMS (ESI) m/z: $[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S} 440.1896$, found 440.1902; IR (ATR) 2993, 2954, 2932, 2874, 2850, 2837, 1748, 1637, 1596, 1493, 1458, 1428, 1402, 1346, 1305, 1292, 1260, 1202, 1152, 1090, $1059,1029,1014,993,939,925,889,839,815,738 \mathrm{~cm}^{-1}$.

268e

1-Allyl-2-isopropyl-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (268e). To a solution of $263 \mathrm{e}(20 \mathrm{mg}, \quad 0.058 \mathrm{mmol})$ in 0.90 mL dioxane was added bis(dibenzylideneacetone)palladium ($3.4 \mathrm{mg}, 5.8 \mu \mathrm{~mol}, 67 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphine ($1.9 \mathrm{mg}, 12 \mu \mathrm{~mol}, 42 \mu \mathrm{~L}$ in $45 \mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford 268e as a colorless oil ($6.2 \mathrm{mg}, 31 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.38-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.77(\mathrm{~d}, 1 \mathrm{H}, J=16.8$ $\mathrm{Hz}), 3.86(\mathrm{dd}, 1 \mathrm{H}, J=6.8,12.8 \mathrm{~Hz}), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.21(\mathrm{dd}, 1 \mathrm{H}, J=3.2,12.8 \mathrm{~Hz})$, 2.47 (s, 3 H), 2.08-1.99 (m, 1 H), $2.01(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.36(\mathrm{dd}, 1 \mathrm{H}, J=3.2,6.8 \mathrm{~Hz}), 1.10$ $(\mathrm{d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.97-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.75(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.68-0.64$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,136.3,135.2,129.6,128.1,116.9,72.0,51.5$, 39.3, 39.2, 29.1, 28.4, 27.1, 21.5, 19.9, 5.2, 4.9; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S} 346.1841$, found 346.1855; IR (ATR) 2956, 2923, 2885, 2878, 2870, 2848, 2099, 2093, 1653, 1646, 1637, 1596, 1512, 1508, 1489, 1465, 1458, 1450, 1420, 1363, 1340, 1303, $1286,1260,1236,1160,1122,1090,1051,1021,995,977,911 \mathrm{~cm}^{-1}$.

1-Allyl-2-cyclopropyl-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (268f) To a solution of $\mathbf{2 6 3 f}(20 \mathrm{mg}, \quad 0.058 \mathrm{mmol})$ in 0.90 mL dioxane was added bis(dibenzylideneacetone)palladium ($3.3 \mathrm{mg}, 5.8 \mu \mathrm{~mol}, 67 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphite ($2.7 \mathrm{mg}, 12 \mu \mathrm{~mol}, 71 \mu \mathrm{~L}$ in $38 \mathrm{mg} / \mathrm{mL}$ solution in dioxane $)$. The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford $268 f$ as a colorless oil ($10.8 \mathrm{mg}, 54 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.68-5.60(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.64(\mathrm{dd}, 1$ $\mathrm{H}, J=4.4,9.6 \mathrm{~Hz}), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.88(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=8.0$, $15.2 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{dd}, 1 \mathrm{H}, J=5.6,15.2 \mathrm{~Hz}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 0.94-0.90(\mathrm{~m}$, $2 \mathrm{H}), 0.82-0.77(\mathrm{~m}, 1 \mathrm{H}), 0.75-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.58-0.54(\mathrm{~m}, 1 \mathrm{H}), 0.45-0.41(\mathrm{~m}, 1 \mathrm{H}), 0.37-0.32$ (m, 1 H), 0.19-0.17 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,137.9,135.3,129.2$, 127.6, $117.2,67.5,51.1,37.0,51.1,37.0,36.1,23.7,21.7,20.8,11.5,6.1,4.3,3.5,2.6$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}$ 344.1684, found 344.1667; IR (ATR) 3008, 3005, 2997, 2971, 2951, 2926, 2917, 2889, 2872, 2859, 2850, 2121, 2114, 2106, 2101, 2091, 2073, 1638, $1597,1491,1458,1448,1439,1431,1342,1299,1288,1258,1225,1159,1118,1103,1090$, $1061,1042,1025,1008,993,964,945,934,921,902,872,856,841,833,811 \mathrm{~cm}^{-1}$.

268g

1-Allyl-2-(((4-methoxybenzyl)oxy)methyl)-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-

 cyclopropane] ($\mathbf{2 6 8 g}$). To a solution of $\mathbf{2 6 3 g}(20 \mathrm{mg}, 0.044 \mathrm{mmol})$ in 0.50 mL dioxane was added bis(dibenzylideneacetone)palladium ($2.5 \mathrm{mg}, 4.4 \mu \mathrm{~mol}, 51 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphite ($2.0 \mathrm{mg}, 8.8 \mu \mathrm{~mol}, 54 \mu \mathrm{~L}$ in $38 \mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford 268g as a colorless oil ($13.0 \mathrm{mg}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.54-5.44(\mathrm{~m}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz})$, $4.06(\mathrm{dd}, 1 \mathrm{H}, J=2.0,6.8 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, 2 \mathrm{H}, J=8.8,16.0 \mathrm{~Hz}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.6 \mathrm{~Hz}), 3.30(\mathrm{dd}, 1 \mathrm{H}, J=4.8,9.6 \mathrm{~Hz}), 2.61(\mathrm{dd}, 1 \mathrm{H}, J=8.0,14.8 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{dd}, 2$ $\mathrm{H}, J=5.6,14.8 \mathrm{~Hz}), 1.33(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 0.85-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.76-0.71(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.62$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.2,143.5,135.1,132.9,130.6,129.5,129.2,128.1$, 116.6, 113.7, 72.8, 70.5, 61.6, 55.3, 51.3, 36.4, 36.0, 24.5, 21.6, 21.6, 4.2, 3.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S} 454.2052$, found 454.2064; IR (ATR) 2971, 2954, 2947, 2926, 2923, 2883, 2876, 2869, 2857, 2852, 2101, 1653, 1646, 1638, 1610, 1597, 1586, 1512, 1491, $1463,1458,1441,1420,1342,1303,1243,1159,1090,1029,1012,913,815,708 \mathrm{~cm}^{-1}$.

1-Allyl-2-methyl-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (268h). To a solution of $\mathbf{2 6 3 h}(20 \mathrm{mg}, \quad 0.063 \mathrm{mmol})$ in 0.90 mL dioxane was added bis(dibenzylideneacetone)palladium ($3.6 \mathrm{mg}, 6.3 \mu \mathrm{~mol}, 72 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropyl phosphite ($2.9 \mathrm{mg}, 12.6 \mu \mathrm{~mol}, 77 \mu \mathrm{~L}$ in $38 \mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford 268h as a colorless oil ($6.4 \mathrm{mg}, 32 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.35(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.63-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, 1 \mathrm{H}$, $J=9.6 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=6.4,12.4 \mathrm{~Hz}), 3.25(\mathrm{dd}, 1 \mathrm{H}, J=4.4,9.2 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (dd, $1 \mathrm{H}, J=7.2,15.2 \mathrm{~Hz}), 2.12(\mathrm{dd}, 1 \mathrm{H}, J=6.4,15.2 \mathrm{~Hz}), 1.35(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.35-1.33$ (m, 1 H), $0.99(\mathrm{dt}, 1 \mathrm{H}, J=4.4,4.8 \mathrm{~Hz}), 0.90(\mathrm{dt}, 1 \mathrm{H}, J=4.4,5.2 \mathrm{~Hz}), 0.77(\mathrm{dt}, 1 \mathrm{H}, J=4.4,5.2$ $\mathrm{Hz}), 0.69(\mathrm{dt}, 1 \mathrm{H}, J=4.0,4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,134.9,133.8,129.4$, $127.8,116.8,59.3,50.9,35.8,35.0,23.2,21.6,20.2,16.0,3.9,3.2 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S} 318.1528$, found 318.1531; IR (ATR) 2977, 2960, 2926, 2887, 2878, 2867, 2857, 2850, 2110, 2097, 2084, 1653, 1638, 1597, 1514, 1491, 1458, 1452, 1420, 1376, $1344,1303,1288,1260,1236,1161,1109,1092,1074,1029,1020,1007,966,913,844,815$ cm^{-1}.

268i
1-(2-Methylallyl)-2-phenyl-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane]
(268i). To a solution of 263 i ($20 \mathrm{mg}, 0.051 \mathrm{mmol}$) in 0.90 mL toluene was added bis(dibenzylideneacetone)palladium ($2.9 \mathrm{mg}, 5.1 \mu \mathrm{~mol}, 58 \mu \mathrm{~L}$ in $50 \mathrm{mg} / \mathrm{mL}$ solution in toluene) and triisopropyl phosphite $(2.4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 62 \mu \mathrm{~L}$ in $38 \mathrm{mg} / \mathrm{mL}$ solution in toluene $)$. The solution was carefully degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in microwave. After 30 mins , the mixture was concentrated and purified by chromatography (EtOAc : hexanes $=1: 20$) to afford 268i as a colorless oil ($12.2 \mathrm{mg}, 61 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 7.40-7.25 (m, 7 H$), 4.79$ (s, 1 H), 4.70 (s, 1 H$), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.52$ (dd, $1 \mathrm{H}, J=4.8,9.2 \mathrm{~Hz}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 1.80(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 1.52(\mathrm{~d}$, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.52(\mathrm{~m}, 1 \mathrm{H}), 0.45-0.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.5,142.7,138.5,132.2,129.4,128.3,127.7,127.4,127.0,113.8$, $65.3,50.8,39.3,36.2,26.2,22.1,21.5,21.0,3.6,2.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S} 394.1841$, found 394.1840; IR (ATR) 2956, 2921, 2852, 1722, 1648, 1597, 1493, $1450,1377,1348,1303,1290,1163,1090,1075,1051,1023,1014,898,891,839,816,738,708$, $699 \mathrm{~cm}^{-1}$.

1-Allyl-2-phenyl-3-tosyl-3-azabicyclo[3.1.0]hexane (274). To a solution of 269 ($20 \mathrm{mg}, 0.056$ mmol) in 0.5 mL dioxane was added bis(dibenzylideneacetone) palladium ($1.6 \mathrm{mg}, 2.8 \mu \mathrm{~mol}, 62$
$\mu \mathrm{L}$ in $26 \mathrm{mg} / \mathrm{mL}$ solution in dioxane) and triisopropylphosphine ($0.93 \mathrm{mg}, 5.7 \mu \mathrm{~mol}, 28 \mu \mathrm{~L}$ in 33 $\mathrm{mg} / \mathrm{mL}$ solution in dioxane). The solution was degassed and then heated at $130{ }^{\circ} \mathrm{C}$ in the microwave reactor. After 45 mins, the mixture was concentrated and purified by chromatography $($ EtOAc $:$ hexanes $=1: 100$ to $1: 20)$ to afford the product as a colorless oil $(16.8 \mathrm{mg}, 84 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, 5.57-5.50 (m, 1 H$), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~d}, 1 \mathrm{H}, J=9.2$ $\mathrm{Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=9.2,4.4 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=14.8,8.0 \mathrm{~Hz}), 1.84(\mathrm{dd}, 1 \mathrm{H}$, $J=15.2,5.2 \mathrm{~Hz}), 1.38(\mathrm{q}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 1.05(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 0.39(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,138.7,134.3,132.7,129.4,128.2,128.0,127.6,127.4$, 117.7, 66.9, 52.4, 35.3, 21.6, 19.3, 11.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}$ 352.1371, found 352.1353; IR (ATR) 3062, 3029, 2997, 2971, 2965, 2958, 2921, 2880, 2869, 2861, 2854, 1638, 1597, 1493, 1452, 1435, 1349, 1303, 1290, 1161, 1107, 1092, 1040, 1027, $1016,915,815,772 \mathrm{~cm}^{-1}$.

2-Phenyl-1-propyl-3-tosyl-3-azaspiro[bicyclo[3.1.0]hexane-6,1'-cyclopropane] (282). To a $0^{\circ} \mathrm{C}$ suspension of platinum oxide ($6.0 \mathrm{mg}, 26 \mu \mathrm{~mol}$) in 5 ml THF hydrogenated with H_{2} under room temperature for 15 mins. After this, a solution of $268(0.20 \mathrm{~g}, 0.53 \mathrm{mmol})$ was added dropwise, and the mixture was stirred at this temperature for 30 mins. The mixture was concentrated and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}:$ hexanes $=1: 20)$ to afford 282 as a colorless oil $(0.176 \mathrm{~g}, 88 \%)$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.08$ (m, 7 H), $4.29(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.35(\mathrm{dd}, 1 \mathrm{H}, J=4.5,7.8 \mathrm{~Hz}), 2.36(\mathrm{~s}, 3 \mathrm{H})$,
$1.53-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.19(\mathrm{~m}, 3 \mathrm{H}), 0.88-0.75(\mathrm{~m}, 2 \mathrm{H}), 0.67(\mathrm{dt}, 3 \mathrm{H}, \mathrm{J}=$ $1.5,6.9 \mathrm{~Hz}), 0.45-0.43(\mathrm{~m}, 1 \mathrm{H}), 0.37-0.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,138.3$, $132.8,129.3,128.2,127.8,127.5,127.1,67.0,51.0,38.0,32.7,24.3,21.6,21.0,19.4,14.0,3.9$, 3.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S} 382.1841$, found 382.1871; IR (ATR) 3061, 2965, 2912, 2901, 2867, 2846, 1491, 1439, 1411, 1336, 1326, 1308, 1291, 1095, 1021, $1009,921,823,810,791 \mathrm{~cm}^{-1}$.

283

6-Methyl-1-phenyl-6a-propyl-2-tosyl-1,3,3a,6a-tetrahydrocyclopenta[c]pyrrol-4(2H)-one

(283). To a solution of 282 ($40 \mathrm{mg}, 0.1 \mathrm{mmol}$) in xylenes was added chloro-(1,5cyclooctadiene)rhodium(I) dimmer ($2.6 \mathrm{mg}, 5.2 \mu \mathrm{~mol}$) and DPPP ($4.4 \mathrm{mg}, 10 \mu \mathrm{~mol}$) and degassed by bubbling CO through the solution. The resulting reaction mixture was heated at $130{ }^{\circ} \mathrm{C}$ for 3 h under CO atmosphere ($\mathrm{CO}: \mathrm{N}_{2}=1: 1$ balloon). The mixture was then purified by chromatography on SiO_{2} (acetone : hexanes =2:5) to afford 283 as a colorless oil ($24 \mathrm{mg}, 56 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.17-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=2.0,10.0 \mathrm{~Hz}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.69$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.14(\mathrm{~m}, 1 \mathrm{H})$, $1.05(\mathrm{~s}, 3 \mathrm{H}), 1.03-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.8$, $180.0,143.6,136.7,133.3,129.3,128.6,128.1,128.1,128.0,72.0,63.2,52.5,49.0,37.5,21.5$, 18.0, 15.6, 14.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S} 410.1790$, found 410.1774; IR (ATR) 3057, 2969, 2962, 2926, 2919, 2854, 1700, 1614, 1597, 1469, 1454, 1363, 1351, 1312,
$1299,1199,1184,1159,1128,1111,1090,1033,1023,1014,1007,988,904,874,865,856,833$, $824,811,785,759 \mathrm{~cm}^{-1}$.

6a-Allyl-6-methyl-1-phenyl-2-tosyl-1,3,3a,6a-tetrahydrocyclopenta[c]pyrrol-4(2H)-one
(289). To a solution of 268 ($10 \mathrm{mg}, 26 \mu \mathrm{~mol}$) in xylenes (1 mL) was added chloro-(1,5cyclooctadiene)rhodium(I) dimmer ($0.66 \mathrm{mg}, 1.3 \mu \mathrm{~mol}$) and degassed by bubbling CO through the solution for 5 mins. The resulting reaction mixture was heated at $130^{\circ} \mathrm{C}$ for 6 h under CO atmosphere (CO balloon). The mixture was then purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$: hexanes $=1: 100$ to $1: 20$) to afford $\mathbf{2 8 9}$ as a colorless oil ($5.9 \mathrm{mg}, 55 \%$) : ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, 2 \mathrm{H}, J=1.6,6.8 \mathrm{~Hz}), 7.29-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=1.6,6.8 \mathrm{~Hz}), 5.94$ $(\mathrm{d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 5.48-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=1.6$, $10.0 \mathrm{~Hz}), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=8.4,9.6 \mathrm{~Hz}), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=1.6,8.4 \mathrm{~Hz}), 2.52-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.43$ (s, 3 H), $1.09(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.4,179.2,143.7$, 136.6, $133.6,132.9,132.0,129.3,128.6,128.2,128.1,128.0,120.5,71.0,62.5,52.7,48.9,39.5,21.6$, 15.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S} 408.1633$, found 408.1602; IR (ATR) 2951, 2921, 2867, 2848, 2060, 2048, 1702, 1612, 1597, 1491, 1467, 1454, 1374, 1349, 1303, $1292,1199,1184,1163,1090,1021,1008,925,867,839,816 \mathrm{~cm}^{-1}$.

APPENDIX A

X-RAY DATA FOR 153

Table 11. Crystal data and structural refinement for 153.

Identification code	yan1
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NOPSi}$
Formula weight	459.62
Temperature	100(2) K
Wavelength	1.54178 A
Crystal size	$0.020 \times 0.090 \times 0.130 \mathrm{~mm}$
Crystal habit	colorless plate
Crystal system	monoclinic
Space group	P $121 / \mathrm{c} 1$
Unit cell dimensions	$\mathrm{a}=10.5991(3) \AA{ }^{\circ} \mathrm{A} \quad \alpha=90^{\circ}$
	$\mathrm{b}=20.9441(7) \AA{ }^{\circ} \mathrm{A} \quad \beta=92.369(2)^{\circ}$
	$\mathrm{c}=23.2304(8) \AA{ }^{\text {® }}$

Volume
5152.5(3) \AA^{3}

Z

Density (calculated)

Absorption coefficient
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent
reflections

Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method

Refinement program

Function minimized

Data / restraints / parameters

Goodness-of-fit on F2
$\Delta / \sigma m a x$
$1.185 \mathrm{Mg} / \mathrm{cm}^{3}$
$1.532 \mathrm{~mm}^{-1}$
3.81 to 63.30°
$-12<=\mathrm{h}<=12,-24<=\mathrm{k}<=23,-26<=1<=26$

48198
$8292[\mathrm{R}(\mathrm{int})=0.0702]$
98.7\%
multi-scan
0.9700 and 0.8257
direct methods
SHELXS-97 (Sheldrick, 2008)
Full-matrix least-squares on F2
SHELXL-97 (Sheldrick, 2008)
$\Sigma \mathrm{w}(\mathrm{Fo} 2-\mathrm{Fc} 2) 2$

8292 / 0 / 590
1.823
0.003

6063 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0885, \mathrm{wR} 2=0.2198$
all data
$\mathrm{R} 1=0.1165, \mathrm{wR} 2=0.2325$

$$
\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0780 \mathrm{P})^{2}+0.0000 \mathrm{P}\right]
$$

Weighting scheme

$$
\text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3
$$

Largest diff. peak and hole
R.M.S. deviation from mean
1.639 and $-0.475 \mathrm{e}^{-3}$
$0.109 \mathrm{e}^{-3}$

Table 12. Atomic coordinates and equivalent isotropic displacement parameters for 153.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x / a	y / b	z / c	$\mathrm{U}(\mathrm{eq})\left(\mathrm{A}^{2}\right)$
P1	$0.63098(8)$	$0.35474(5)$	$0.16016(4)$	$0.0223(3)$
Si1	$0.71943(13)$	$0.27991(7)$	$0.42326(5)$	$0.0459(4)$
O1	$0.5100(2)$	$0.38306(13)$	$0.17764(13)$	$0.0327(7)$
N1	$0.7486(3)$	$0.36560(16)$	$0.20672(13)$	$0.0262(8)$
C1	$0.7372(4)$	$0.36273(19)$	$0.26955(17)$	$0.0291(9)$
C2	$0.8089(4)$	$0.41808(19)$	$0.29670(18)$	$0.0315(10)$
C3	$0.7530(4)$	$0.4826(2)$	$0.2794(2)$	$0.0485(13)$
C4	$0.9015(4)$	$0.5758(2)$	$0.2743(2)$	$0.0461(12)$
C5	$0.9652(5)$	$0.6271(3)$	$0.2985(3)$	$0.0640(17)$
C6	$0.9510(7)$	$0.6413(3)$	$0.3541(4)$	$0.117(4)$
C7	$0.8733(9)$	$0.6053(4)$	$0.3869(4)$	$0.148(5)$
C8	$0.8093(7)$	$0.5538(4)$	$0.3625(3)$	$0.092(3)$
C9	$0.8214(4)$	$0.5386(2)$	$0.3053(2)$	$0.0394(11)$

	x/a	y/b	z/c	$\mathrm{U}(\mathrm{eq})\left(\AA^{2}\right)$
C10	0.7777(4)	0.2987(2)	0.29237(18)	0.0331(10)
C11	0.7045(5)	0.2380(2)	0.2964(2)	0.0474(12)
C12	0.7733(4)	0.2659(2)	0.34990(19)	0.0365(10)
C13	0.8963(4)	0.2753(2)	0.3200(2)	0.0427(11)
C14	0.6090(6)	0.2137(4)	0.4410(3)	0.107(3)
C15	0.6392(12)	0.3569(5)	0.4285(3)	0.220(8)
C16	0.8538(5)	0.2801(3)	0.4748(2)	0.0657(17)
C17	0.6282(4)	0.4436(2)	0.0728(2)	0.0421(12)
C18	0.6735(5)	0.4745(2)	0.0249(2)	0.0468(13)
C19	0.7837(5)	0.4539(2)	0.0010(2)	0.0483(13)
C20	0.8470(5)	0.4006(2)	0.0234(2)	0.0511(13)
C21	0.7981(4)	0.3688(2)	0.06988(18)	0.0367(10)
C22	0.6892(4)	0.39029(18)	0.09599(17)	0.0266(9)
C23	0.4968(4)	0.2491(2)	0.1210(2)	0.0403(11)
C24	0.4807(5)	0.1855(2)	0.1063(2)	0.0563(15)
C25	0.5782(6)	0.1438(2)	0.1127(2)	0.0560(15)
C26	0.6933(5)	0.1643(2)	0.1349(2)	0.0481(13)
C27	0.7110(4)	0.2280(2)	0.15021(19)	0.0367(10)
C28	0.6119(4)	0.27079(19)	0.14344(17)	0.0299(9)
P1'	0.13267(9)	0.39080(5)	0.16437(5)	0.0268(3)

	x/a	y / b	z/c	$\mathrm{U}(\mathrm{eq})\left(\AA^{2}\right)$
Si1'	0.23006(13)	0.45270(7)	0.42797(5)	0.0428(4)
O1'	0.0113(2)	0.36346(13)	0.18246(13)	0.0337(7)
C1'	0.2402(4)	0.37907(19)	0.27303(19)	0.0303(10)
N1'	0.2509(3)	0.37751(16)	0.21042(16)	0.0327(8)
C2'	0.3074(4)	0.3203(2)	0.2984(2)	0.0391(11)
C3'	0.2408(5)	0.2582(2)	0.2798(3)	0.0668(18)
C4'	0.3956(5)	0.1733(3)	0.2600(3)	0.0581(15)
C5'	0.4571(5)	0.1170(3)	0.2735(3)	0.0711(19)
C6'	0.4304(5)	0.0846(3)	0.3215(3)	0.0663(18)
C7'	0.3439(5)	0.1084(3)	0.3574(3)	0.0611(15)
C8'	0.2844(5)	0.1653(2)	0.3445(2)	0.0482(13)
C9'	0.3088(4)	0.1983(2)	0.2956(2)	0.0402(12)
C10'	0.2856(4)	0.4412(2)	0.29765(18)	0.0311(10)
C11'	0.2163(4)	0.5025(2)	0.30443(19)	0.0411(11)
C12'	0.2847(4)	0.4716(2)	0.35617(19)	0.0340(10)
C13'	0.4076(4)	0.4618(2)	0.3255(2)	0.0383(11)
C14'	0.2071(11)	0.5287(5)	0.4714(4)	0.087(4)
C15'	0.3416(9)	0.4042(6)	0.4709(4)	0.098(5)
C16'	0.0748(8)	0.4122(5)	0.4216(4)	0.073(3)
C14"	0.104(2)	0.5029(11)	0.4388(10)	0.097(7)

	x / a	y / b	z/c	$\mathrm{U}(\mathrm{eq})\left(\AA^{2}\right)$
C15"	0.3607(13)	0.4741(7)	0.4767(6)	0.045(4)
C16"	0.2213(18)	0.3612(9)	0.4356(8)	0.076(6)
C17	0.1331(4)	0.2996(2)	0.0805(3)	0.0568(15)
C18'	0.1763(5)	0.2699(3)	0.0310(3)	0.0713(19)
C19'	0.2713(5)	0.2952(3)	0.0013(2)	0.0591(15)
C20'	0.3260(5)	0.3527(2)	0.0190(2)	0.0546(14)
C21'	0.2812(4)	0.3828(2)	0.0671(2)	0.0402(11)
C22'	0.1860(4)	0.35678(19)	0.09854(18)	0.0309(10)
C23'	0.0044(4)	0.5002(2)	0.1290(2)	0.0395(11)
C24'	0.9938(5)	0.5651(2)	0.1172(2)	0.0546(14)
C25'	0.0992(6)	0.6043(2)	0.1279(2)	0.0562(16)
C26'	0.2101(6)	0.5812(2)	0.1489(2)	0.0506(14)
C27	0.2214(5)	0.5155(2)	0.16020(18)	0.0402(11)
C28	0.1180(4)	0.47554(19)	0.15061(18)	0.0310(10)

Table 13. Bond lengths (\AA) for 153.

P1-O1	$1.485(3)$	P1-N1	$1.633(3)$
P1-C22	$1.798(4)$	P1-C28	$1.810(4)$
Si1-C16	$1.823(5)$	Si1-C15	$1.829(7)$
Si1-C12	$1.843(5)$	Si1-C14	$1.872(7)$

N1-C1	1.471(5)	N1-H1B	0.88
C1-C10	1.499(6)	C1-C2	1.510(6)
C1-H1A	1.0	C2-C3	1.522(6)
C2-H2A	0.99	C2-H2B	0.99
C3-C9	1.492(6)	C3-H3A	0.99
C3-H3B	0.99	C4-C5	1.376 (8)
C4-C9	1.378(6)	C4-H4A	0.95
C5-C6	1.340 (10)	C5-H5A	0.95
C6-C7	$1.372(11)$	C6-H6A	0.95
C7-C8	1.383(9)	C7-H7A	0.95
C8-C9	1.376(7)	C8-H8A	0.95
C10-C13	1.472(6)	C10-C11	1.494(6)
C10-C12	1.505(6)	C11-C12	1.531(6)
C11-H11A	0.99	C11-H11B	0.99
C12-C13	1.515(6)	C13-H13A	0.99
C13-H13B	0.99	C14-H14A	0.98
C14-H14B	0.98	C14-H14C	0.98
C15-H15A	0.98	C15-H15B	0.98
C15-H15C	0.98	C16-H16A	0.98
C16-H16B	0.98	C16-H16C	0.98
C17-C22	1.387(6)	C17-C18	1.391(7)

C17-H17A	0.95	C18-C19	1.383(7)
C18-H18A	0.95	C19-C20	1.392(7)
C19-H19A	0.95	C20-C21	1.386(6)
C20-H20A	0.95	C21-C22	1.400(6)
C21-H21A	0.95	C23-C28	1.382(6)
C23-C24	1.386(6)	C23-H23A	0.95
C24-C25	1.355(8)	C24-H24A	0.95
C25-C26	1.374(8)	C25-H25A	0.95
C26-C27	1.392(6)	C26-H26A	0.95
C27-C28	1.385(6)	C27-H27A	0.95
P1'-O1'	1.485(3)	P1'-N1'	1.638(3)
P1'-C22'	1.799(4)	P1'-C28'	1.809(4)
Si1'-C14"	1.72(2)	Si1'-C15"	1.808(13)
Si1'-C15'	1.824(9)	Si1'-C12'	1.832(4)
Si1'-C16'	1.851(8)	Si1'-C14'	1.906(9)
Si1'-C16"	1.927(19)	C1'-N1'	$1.464(6)$
C1'-C10'	1.493(6)	C1'-C2'	1.528(6)
C1'-H1'A	1.0	N1'-H1'B	0.88
C2'-C3'	1.533(6)	C2'-H2'A	0.99
C2'-H2'B	0.99	C3'-C9'	1.486(6)
C3'-H3'A	0.99	C3'-H3'B	0.99

C4'-C9'	1.368(7)	C4'-C5'	1.376(8)
C4'-H4'A	0.95	C5'-C6'	1.347(9)
C5'-H5'A	0.95	C6'-C7'	1.359(8)
C6'-H6'A	0.95	C7'-C8'	1.375(7)
C7'-H7'A	0.95	C8'-C9'	1.363(7)
C8'-H8'A	0.95	C10'-C13'	1.486(6)
C10'-C11'	1.490 (6)	C10'-C12'	1.501(6)
C11'-C12'	1.522(6)	C11'-H11C	0.99
C11'-H11D	0.99	C12'-C13'	1.525(6)
C13'-H13C	0.99	C13'-H13D	0.99
C14'-H14D	0.98	C14'-H14E	0.98
C14'-H14F	0.98	C15'-H15D	0.98
C15'-H15E	0.98	C15'-H15F	0.98
C16'-H16D	0.98	C16'-H16E	0.98
C16'-H16F	0.98	C14"-H14G	0.98
C14"-H14H	0.98	C14"-H14I	0.98
C15"-H15G	0.98	C15"-H15H	0.98
C15"-H15I	0.98	C16"-H16G	0.98
C16"-H16H	0.98	C16"-H16I	0.98
C17'-C22'	1.379(6)	C17'-C18'	1.399(8)
C17'-H17B	0.95	C18'-C19'	1.352(8)

C18'-H18B	0.95	C19'-C20'	$1.391(8)$
C19'-H19B	0.95	C20'-C21' $^{\prime}$	$1.385(7)$
C20'-H20B	0.95	$\mathrm{C}^{\prime} 1^{\prime}-\mathrm{C} 22^{\prime}$	$1.382(6)$
C21'-H21B	0.95	$\mathrm{C} 23^{\prime}-\mathrm{C} 28^{\prime}$	$1.385(6)$
C23'-C24'	$1.391(6)$	$\mathrm{C} 23^{\prime}-\mathrm{H} 23 \mathrm{~B}$	0.95
$\mathrm{C} 24^{\prime}-\mathrm{C} 25^{\prime}$	$1.400(8)$	$\mathrm{C} 24^{\prime}-\mathrm{H} 24 \mathrm{~B}$	0.95
$\mathrm{C} 25^{\prime}-\mathrm{C} 26^{\prime}$	$1.344(8)$	$\mathrm{C} 25^{\prime}-\mathrm{H} 25 \mathrm{~B}$	0.95
$\mathrm{C} 26^{\prime}-\mathrm{C} 27^{\prime}$	$1.405(7)$	$\mathrm{C} 26^{\prime}-\mathrm{H} 26 \mathrm{~B}$	0.95
$\mathrm{C} 27^{\prime}-\mathrm{C} 28^{\prime}$	$1.390(6)$	$\mathrm{C} 27^{\prime}-\mathrm{H} 27 \mathrm{~B}$	0.95

Table 14. Bond angles $\left({ }^{\circ}\right)$ for 153.

O1-P1-N1	$114.07(16)$	O1-P1-C22	$113.02(18)$
N1-P1-C22	$102.29(17)$	O1-P1-C28	$110.88(17)$
N1-P1-C28	$110.68(18)$	C22-P1-C28	$105.27(18)$
C16-Si1-C15	$107.9(5)$	C16-Si1-C12	$110.2(2)$
C15-Si1-C12	$111.4(3)$	C16-Si1-C14	$109.6(3)$
C15-Si1-C14	$110.0(5)$	C12-Si1-C14	$107.8(3)$
C1-N1-P1	$124.0(3)$	C1-N1-H1B	118.0
P1-N1-H1B	118.0	N1-C1-C10	$110.7(3)$
N1-C1-C2	$108.8(3)$	C10-C1-C2	$114.1(3)$
N1-C1-H1A	107.7	C10-C1-H1A	107.7

C2-C1-H1A	107.7	C1-C2-C3	112.8(3)
C1-C2-H2A	109.0	C3-C2-H2A	109.0
C1-C2-H2B	109.0	C3-C2-H2B	109.0
H2A-C2-H2B	107.8	C9-C3-C2	114.5(4)
C9-C3-H3A	108.6	C2-C3-H3A	108.6
C9-C3-H3B	108.6	C2-C3-H3B	108.6
H3A-C3-H3B	107.6	C5-C4-C9	122.0(5)
C5-C4-H4A	119.0	C9-C4-H4A	119.0
C6-C5-C4	119.6(6)	C6-C5-H5A	120.2
C4-C5-H5A	120.2	C5-C6-C7	120.5(6)
C5-C6-H6A	119.7	C7-C6-H6A	119.7
C6-C7-C8	119.7(7)	C6-C7-H7A	120.1
C8-C7-H7A	120.1	C9-C8-C7	120.9(6)
C9-C8-H8A	119.6	C7-C8-H8A	119.6
C8-C9-C4	117.2(5)	C8-C9-C3	120.5(5)
C4-C9-C3	122.2(5)	C13-C10-C11	97.2(4)
C13-C10-C1	132.8(4)	C11-C10-C1	130.0(4)
C13-C10-C12	61.2(3)	C11-C10-C12	61.4(3)
C1-C10-C12	134.7(4)	C10-C11-C12	59.6(3)
C10-C11-H11A	117.8	C12-C11-H11A	117.8
C10-C11-H11B	117.8	C12-C11-H11B	117.8

H11A-C11-H11B	114.9	C10-C12-C13	58.4(3)
C10-C12-C11	59.0(3)	C13-C12-C11	93.9(4)
C10-C12-Si1	140.4(3)	C13-C12-Si1	135.1(3)
C11-C12-Si1	131.0(3)	C10-C13-C12	60.5(3)
C10-C13-H13A	117.7	C12-C13-H13A	117.7
C10-C13-H13B	117.7	C12-C13-H13B	117.7
H13A-C13-H13B	114.8	Si1-C14-H14A	109.5
Si1-C14-H14B	109.5	H14A-C14-H14B	109.5
Si1-C14-H14C	109.5	H14A-C14-H14C	109.5
H14B-C14-H14C	109.5	Si1-C15-H15A	109.5
Si1-C15-H15B	109.5	H15A-C15-H15B	109.5
Si1-C15-H15C	109.5	H15A-C15-H15C	109.5
H15B-C15-H15C	109.5	Si1-C16-H16A	109.5
Si1-C16-H16B	109.5	H16A-C16-H16B	109.5
Si1-C16-H16C	109.5	H16A-C16-H16C	109.5
H16B-C16-H16C	109.5	C22-C17-C18	121.0(5)
C22-C17-H17A	119.5	C18-C17-H17A	119.5
C19-C18-C17	120.0(4)	C19-C18-H18A	120.0
C17-C18-H18A	120.0	C18-C19-C20	120.2(5)
C18-C19-H19A	119.9	C20-C19-H19A	119.9
C21-C20-C19	119.0(5)	C21-C20-H20A	120.5

C19-C20-H20A	120.5	C20-C21-C22	$121.7(4)$
C20-C21-H21A	119.2	C22-C21-H21A	119.2
C17-C22-C21	$118.0(4)$	C17-C22-P1	$119.0(3)$
C21-C22-P1	$122.9(3)$	C28-C23-C24	$120.4(5)$
C28-C23-H23A	119.8	C24-C23-H23A	119.8
C25-C24-C23	$120.4(5)$	C25-C24-H24A	119.8
C23-C24-H24A	119.8	C24-C25-C26	$120.2(4)$
C24-C25-H25A	119.9	C26-C25-H25A	119.9
C25-C26-C27	$120.2(5)$	C25-C26-H26A	119.9
C27-C26-H26A	119.9	C28-C27-C26	$119.9(4)$
C28-C27-H27A	120.1	C26-C27-H27A	120.1
C23-C28-C27	$118.9(4)$	C23-C28-P1	$1091^{\prime}-C 14{ }^{\prime}$

C15"-Si1'-C14'	64.7(6)	C15'-Si1'-C14'	105.6(6)
C12'-Si1'-C14'	110.7(3)	C16'-Si1'-C14'	107.0(5)
C14"-Si1'-C16"	123.6(10)	C15"-Si1'-C16"	103.2(7)
C15'-Si1'-C16"	55.2(7)	C12'-Si1'-C16"	108.5(6)
C16'-Si1'-C16"	60.4(7)	C14'-Si1'-C16"	140.8(7)
N1'-C1'-C10'	111.3(3)	N1'-C1'-C2'	108.2(4)
C10'-C1'-C2'	114.6(3)	N1'-C1'-H1'A	107.5
C10'-C1'-H1'A	107.5	C2'-C1'-H1'A	107.5
C1'-N1'-P1'	123.8(3)	C1'-N1'-H1'B	118.1
P1'-N1'-H1'B	118.1	C1'-C2'-C3'	111.8(4)
C1'-C2'-H2'A	109.2	C3'-C2'-H2'A	109.2
C1'-C2'-H2'B	109.2	C3'-C2'-H2'B	109.2
H2'A-C2'-H2'B	107.9	C9'-C3'-C2'	115.7(4)
C9'-C3'-H3'A	108.4	C2'-C3'-H3'A	108.4
C9'-C3'-H3'B	108.4	C2'-C3'-H3'B	108.4
H3'A-C3'-H3'B	107.4	C9'-C4'-C5'	121.0(6)
C9'-C4'-H4'A	119.5	C5'-C4'-H4'A	119.5
C6'-C5'-C4'	120.5(6)	C6'-C5'-H5'A	119.8
C4'-C5'-H5'A	119.8	C5'-C6'-C7'	119.6(5)
C5'-C6'-H6'A	120.2	C7'-C6'-H6'A	120.2
C6'-C7'-C8'	120.0(6)	C6'-C7'-H7'A	120.0

C8'-C7'-H7'A	120.0	C9'-C8'-C7'	$121.3(5)$
C9'-C8'-H8'A	119.3	C7'-C8'-H8'A	119.3
C8'-C9'-C4'	$117.7(5)$	C8'-C9'-C3'	$121.9(5)$
C4'-C9'-C3'	$120.4(5)$	C13'-C10'-C11'	$97.4(4)$
C13'-C10'-C1'	$132.8(4)$	C11'-C10'-C1'	$129.7(4)$
C13'-C10'-C12'	$61.4(3)$	C11'-C10'-C12'	$61.2(3)$
C1'-C10'-C12'	$134.6(4)$	C10'-C11'-C12'	$59.8(3)$
C10'-C11'-H11C	117.8	C12'-C11'-H11C	117.8
C10'-C11'-H11D	117.8	C12'-C11'-H11D	117.8
H11C-C11'-H11D	114.9	C10'-C12'-C11'	$59.1(3)$
C10'-C12'-C13'	109.5	C11'-C12'-C13'	$94.4(4)$
C10'-C12'-Si1'	109.5	C11'-C12'-Si1'	$130.7(3)$
C13'-C12'-Si1'	$138.3(3)$	H15	C10'-C13'-C12'-C15'

H15E-C15'-H15F	109.5	Sil'-C16'-H16D	109.5
Sil'-C16'-H16E	109.5	H16D-C16'-H16E	109.5
Si1'-C16'-H16F	109.5	H16D-C16'-H16F	109.5
H16E-C16'-H16F	109.5	Si1'-C14"-H14G	109.5
Si1'-C14"-H14H	109.5	H14G-C14"-H14H	109.5
Sil'-C14"-H14I	109.5	H14G-C14"-H14I	109.5
H14H-C14"-H14I	109.5	Si1'-C15"-H15G	109.5
Si1'-C15"-H15H	109.5	H15G-C15"-H15H	109.5
Si1'-C15"-H15I	109.5	H15G-C15"-H15I	109.5
H15H-C15"-H15I	109.5	Si1'-C16"-H16G	109.5
Si1'-C16"-H16H	109.5	H16G-C16"-H16H	109.5
Sil'-C16"-H16I	109.5	H16G-C16"-H16I	109.5
H16H-C16"-H16I	109.5	C22'-C17'-C18'	119.5(5)
C22'-C17'-H17B	120.2	C18'-C17'-H17B	120.2
C19'-C18'-C17'	121.4(5)	C19'-C18'-H18B	119.3
C17'-C18'-H18B	119.3	C18'-C19'-C20'	119.9(5)
C18'-C19'-H19B	120.1	C20'-C19'-H19B	120.1
C21'-C20'-C19'	118.6(5)	C21'-C20'-H20B	120.7
C19'-C20'-H20B	120.7	C22'-C21'-C20'	121.9(5)
C22'-C21'-H21B	119.0	C20'-C21'-H21B	119.0
C17'-C22'-C21'	118.6(4)	C17'-C22'-P1'	117.6(4)

C21'-C22'-P1'	$123.7(3)$	C28'-C23'-C24'	$119.9(5)$
C28'-C23'-H23B	120.1	C24'-C23'-H23B	120.1
C23'-C24'-C25'	$118.7(5)$	C23'-C24'-H24B	120.7
C25'-C24'-H24B	120.7	C26'-C25'-C24'	$122.3(5)$
C26'-C25'-H25B	118.9	C24'-C25'-H25B	118.9
C25'-C26'-C27'	$119.1(5)$	C25'-C26'-H26B	120.5
C27'-C26'-H26B	120.5	C28'-C27'-C26'	$120.0(5)$
C28'-C27'-H27B	120.0	C26'-C27'-H27B	120.0
C23'-C28'-C27'	$120.1(4)$		$119.8(3)$
C27'-C28'-P1'	$120.1(3)$		

Table 15. Torsion angles $\left({ }^{\circ}\right)$ for 153.

O1-P1-N1-C1	$38.6(4)$
C28-P1-N1-C1	$-87.2(3)$
P1-N1-C1-C2	$-135.6(3)$
C10-C1-C2-C3	$-171.4(4)$
C9-C4-C5-C6	$0.9(9)$
C5-C6-C7-C8	$0.2(16)$
C7-C8-C9-C4	$1.4(11)$
C5-C4-C9-C8	$-1.4(8)$
C2-C3-C9-C8	$-74.6(7)$

N1-C1-C10-C13	98.6(5)	C2-C1-C10-C13	-24.6(6)
N1-C1-C10-C11	-84.7(5)	C2-C1-C10-C11	152.2(4)
N1-C1-C10-C12	-171.9(4)	C2-C1-C10-C12	65.0(6)
C13-C10-C11-C12	51.5(3)	C1-C10-C11-C12	126.1(5)
C11-C10-C12-C13	117.6(4)	C1-C10-C12-C13	123.1(6)
C13-C10-C12-C11	-117.6(4)	C1-C10-C12-C11	119.3(6)
C13-C10-C12-Si1	124.1(6)	C11-C10-C12-Si1	118.3(6)
C1-C10-C12-Si1	1.0(9)	C10-C11-C12-C13	-49.1(3)
C10-C11-C12-Si1	132.0(5)	C16-Si1-C12-C10	116.3(5)
C15-Si1-C12-C10	3.3(8)	C14-Si1-C12-C10	124.1(6)
C16-Si1-C12-C13	-23.6(5)	C15-Si1-C12-C13	96.1(7)
C14-Si1-C12-C13	-143.1(5)	C16-Si1-C12-C11	154.8(4)
C15-Si1-C12-C11	-85.5(7)	C14-Si1-C12-C11	35.3(5)
C11-C10-C13-C12	-51.7(3)	C1-C10-C13-C12	125.8(5)
C11-C12-C13-C10	49.6(3)	Si1-C12-C13-C10	-131.6(5)
C22-C17-C18-C19	-2.6(7)	C17-C18-C19-C20	2.5(8)
C18-C19-C20-C21	-0.2(7)	C19-C20-C21-C22	-2.1(7)
C18-C17-C22-C21	0.4(6)	C18-C17-C22-P1	176.8(4)
C20-C21-C22-C17	2.0(7)	C20-C21-C22-P1	-174.3(4
O1-P1-C22-C17	7.2(4)	N1-P1-C22-C17	-115.9
C28-P1-C22-C17	128.4(3)	O1-P1-C22-C21	176.5(3)

N1-P1-C22-C21	60.4(4)	C28-P1-C22-C21	-55.3(4)
C28-C23-C24-C25	-1.2(8)	C23-C24-C25-C26	1.1(9)
C24-C25-C26-C27	-0.7(8)	C25-C26-C27-C28	0.4(7)
C24-C23-C28-C27	0.8(7)	C24-C23-C28-P1	178.1(4)
C26-C27-C28-C23	-0.5(7)	C26-C27-C28-P1	-177.7(4)
O1-P1-C28-C23	31.1(4)	N1-P1-C28-C23	158.7(3)
C22-P1-C28-C23	-91.5(4)	O1-P1-C28-C27	151.7(3)
N1-P1-C28-C27	-24.1(4)	C22-P1-C28-C27	85.7(4)
C10'-C1'-N1'-P1'	-99.3(4)	C2'-C1'-N1'-P1'	133.9(3)
O1'-P1'-N1'-C1'	-38.3(4)	C22'-P1'-N1'-C1'	161.3(3)
C28'-P1'-N1'-C1'	86.7(4)	N1'-C1'-C2'-C3'	-65.7(5)
C10'-C1'-C2'-C3'	169.4(4)	C1'-C2'-C3'-C9'	171.9(5)
C9'-C4'-C5'-C6'	1.8(8)	C4'-C5'-C6'-C7'	-1.3(9)
C5'-C6'-C7'-C8'	-0.1(9)	C6'-C7'-C8'-C9'	1.0(8)
C7'-C8'-C9'-C4'	-0.6(7)	C7'-C8'-C9'-C3'	177.0(5)
C5'-C4'-C9'-C8'	-0.8(7)	C5'-C4'-C9'-C3'	178.5(5)
C2'-C3'-C9'-C8'	95.0(6)	C2'-C3'-C9'-C4'	-87.4(6)
N1'-C1'-C10'-C13'	-97.6(5)	C2'-C1'-C10'-C13'	25.6(7)
N1'-C1'-C10'-C11'	86.1(5)	C2'-C1'-C10'-C11'	-150.8(4)
N1'-C1'-C10'-C12'	172.6(4)	C2'-C1'-C10'-C12'	-64.2(6)
C13'-C10'-C11'-C12'	-51.5(3)	C1'-C10'-C11'-C12'	125.8(5)

C13'-C10'-C12'-C11'	117.9(4)	C1'-C10'-C12'-C11'	118.8(5)
C11'-C10'-C12'-C13'	-117.9(4)	C1'-C10'-C12'-C13'	123.3(5)
C13'-C10'-C12'-Si1'	-124.1(5)	C11'-C10'-C12'-Si1'	118.1(5)
C1'-C10'-C12'-Si1'	-0.7(8)	C10'-C11'-C12'-C13'	49.3(3)
C10'-C11'-C12'-Si1'	-129.3(5)	C14"-Si1'-C12'-C10'	109.9(9)
C15'-Si1'-C12'-C10'	134.3(6)	C15'-Si1'-C12'-C10'	83.9(6)
C16'-Si1'-C12'-C10'	-39.6(6)	C14'-Si1'-C12'-C10'	157.6(6)
C16"-Si1'-C12'-C10'	24.7(8)	C14"-Si1'-C12'-C11'	-23.0(9)
C15'-Si1'-C12'-C11'	-138.7(6)	C15'-Si1'-C12'-C11'	170.9(6)
C16'-Si1'-C12'-C11'	47.3(6)	C14'-Si1'-C12'-C11'	-70.6(6)
C16"-Sil'-C12'-C11'	111.7(7)	C14"-Si1'-C12'-C13'	159.0(9)
C15'-Si1'-C12'-C13'	43.3(7)	C15'-Si1'-C12'-C13'	-7.2(7)
C16'-Si1'-C12'-C13'	-130.7(6)	C14'-Si1'-C12'-C13'	111.3(6)
C16"-Si1'-C12'-C13'	-66.4(7)	C11'-C10'-C13'-C12'	51.4(3)
C1'-C10'-C13'-C12'	-125.8(5)	C11'-C12'-C13'-C10'	-49.5(3)
Si1'-C12'-C13'-C10'	129.0(5)	C22'-C17'-C18'-C19'	1.8(9)
C17'-C18'-C19'-C20'	-1.7(9)	C18'-C19'-C20'-C21'	0.1(8)
C19'-C20'-C21'-C22'	1.3(8)	C18'-C17'-C22'-C21'	-0.4(7)
C18'-C17'-C22'-P1'	-176.9(4)	C20'-C21'-C22'-C17'	-1.1(7)
C20'-C21'-C22'-P1'	175.1(4)	O1'-P1'-C22'-C17'	-17.3(4)
N1'-P1'-C22'-C17'	105.8(4)	C28'-P1'-C22'-C17'	138.9(4)

O1'-P1'-C22'-C21'	$166.4(3)$	N1'-P1'-C22'-C21'	$-70.5(4)$
C28'-P1'-C22'-C21'	$44.8(4)$	C28'-C23'-C24'-C25'	$-0.3(7)$
C23'-C24'-C25'-C26'	$0.2(8)$	C24'-C25'-C26'-C27'	$0.5(8)$
C25'-C26'-C27'-C28'	$-1.2(7)$	C24'-C23'-C28'-C27'	$-0.3(7)$
C24'-C23'-C28'-P1'	$-178.6(4)$	C26'-C27'-C28'-C23'	$1.1(7)$
C26'-C27'-C28'-P1'	$179.4(3)$	O1'-P1'-C28'-C23'	$-32.5(4)$
N1'-P1'-C28'-C23'	$-158.9(3)$	C22'-P1'-C28'-C23'	$90.4(4)$
O1'-P1'-C28'-C27'	$149.2(3)$		
C22'-P1'-P1'-C28'-C27'	$22.8(4)$		

APPENDIX B

X-RAY DATA FOR 181

Table 16. Crystal data and structure refinement for 181.

Identification code	yan4a	
Empirical formula	C23 H25 N O2 S	
Formula weight	379.50	
Temperature	100(2) K	
Wavelength	1.54178 A	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	$a=7.8396(2) \AA$	$\mathrm{a}=89.908(2)^{\circ}$.
	$\mathrm{b}=8.6125(4) \AA$	$\mathrm{b}=81.344(2)^{\circ}$.
	$\mathrm{c}=16.8418(5) \AA$	$\mathrm{g}=62.948(2)^{\circ}$.
Volume	998.30(6) \AA^{3}	
Z	2	
Density (calculated)	$1.262 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$1.570 \mathrm{~mm}^{-1}$	

$F(000)$	404
Crystal size	$0.21 \times 0.16 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	2.66 to $71.73{ }^{\circ}$.
Index ranges	$-9<=\mathrm{h}<=9,-9<=\mathrm{k}<=10,-20<=\mathrm{l}<=20$
Reflections collected	11041
Independent reflections	$3610[\mathrm{R}(\mathrm{int})=0.0231]$
Completeness to theta $=71.73^{\circ}$	92.3\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8340 and 0.7340
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3610 / 0 / 244
Goodness-of-fit on F^{2}	2.394
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0643, \mathrm{wR} 2=0.2729$
R indices (all data)	$\mathrm{R} 1=0.0654, \mathrm{wR} 2=0.2738$
Largest diff. peak and hole	0.507 and -1.260 e. \AA^{-3}

Table 17. Atomic coordinates and equivalent isotropic displacement parameters for 181.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	$\mathrm{x}\left(10^{4}\right)$	$\mathrm{y}\left(10^{4}\right)$	$\mathrm{z}\left(10^{4}\right)$	$\mathrm{U}(\mathrm{eq})\left(\AA^{2} \mathrm{x} 10^{3}\right)$
S	$4631(1)$	$3660(1)$	$3400(1)$	$18(1)$
N	$6302(3)$	$4018(3)$	$2842(1)$	$16(1)$
$\mathrm{O}(1)$	$3497(3)$	$5202(3)$	$3939(1)$	$23(1)$
$\mathrm{C}(1)$	$7815(4)$	$2533(4)$	$2279(2)$	$15(1)$

$\mathrm{O}(2)$	3707(3)	3106(3)	2869(1)	25(1)
C(2)	9474(4)	3012(4)	2094(2)	17(1)
C(3)	8992(4)	4827(4)	1876(2)	20(1)
C(4)	7728(5)	6249(5)	1414(2)	29(1)
C(5)	9925(5)	5598(5)	1273(2)	30(1)
C(6)	9098(4)	4454(4)	2734(2)	20(1)
C(7)	7213(4)	4878(4)	3277(2)	19(1)
C(8)	11484(4)	1529(4)	1807(2)	20(1)
C(9)	12183(4)	194(4)	2416(2)	25(1)
C(10)	12573(5)	-1459(5)	2307(3)	34(1)
C(11)	7981(5)	519(4)	1178(2)	23(1)
C(12)	7437(5)	159(5)	478(2)	27(1)
C(13)	6017(5)	1477(5)	134(2)	25(1)
C(14)	5134(4)	3159(4)	496(2)	23(1)
C(15)	5660(4)	3534(4)	1198(2)	20(1)
C(16)	7107(4)	2209(4)	1540(2)	18(1)
C(17)	6211(4)	2187(4)	4720(2)	21(1)
C(18)	7284(5)	777(4)	5141(2)	24(1)
C(19)	8012(4)	-943(4)	4817(2)	24(1)
C(20)	7637(5)	-1207(4)	4058(2)	28(1)
C(21)	6545(5)	182(4)	3633(2)	24(1)
C(22)	5857(4)	1882(4)	3967(2)	20(1)
C(23)	9193(5)	-2480(5)	5267(2)	31(1)

Table 18. Bond lengths $[\AA]$ for 181.

S-O(2)	1.436(2)	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900
S-O(1)	1.437(2)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.506(4)
S-N	1.641(2)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
S-C(22)	1.764(3)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
N-C(1)	1.492(3)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.320(5)
N-C(7)	1.495(3)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9500
$\mathrm{C}(1)-\mathrm{C}(16)$	1.512(4)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500
$\mathrm{C}(1)-\mathrm{C}(2)$	1.525(4)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	1.0000	$\mathrm{C}(11)-\mathrm{C}(16)$	1.390(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.491(4)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.392(4)
$\mathrm{C}(2)-\mathrm{C}(8)$	1.514(4)	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500
$\mathrm{C}(2)-\mathrm{C}(6)$	1.539(4)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.381(5)
$\mathrm{C}(3)-\mathrm{C}(6)$	1.487(4)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	1.487(4)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.383(5)
$\mathrm{C}(3)-\mathrm{C}(5)$	1.491(4)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	1.528(4)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.394(4)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9500
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900	$\mathrm{C}(15)-\mathrm{C}(16)$	1.391(4)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(17)-\mathrm{C}(18)$	1.390(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.502(4)	$\mathrm{C}(17)-\mathrm{C}(22)$	1.389(4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	1.0000	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900	$\mathrm{C}(18)-\mathrm{C}(19)$	1.399(5)

$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.395(4)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.394(5)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(19)-\mathrm{C}(23)$	$1.509(4)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.388(5)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9500	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800

Table 19. Bond angles [${ }^{\circ}$] for 181.

$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(1)$	$119.88(14)$	$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	$116.9(2)$
$\mathrm{O}(2)-\mathrm{S}-\mathrm{N}$	C	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$58.8(2)$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{N}$	C		
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(22)$	$105.68(13)$	$\mathrm{C}(2)-\mathrm{C}(6)$	$122.1(2)$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(22)$	$107.38(15)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$107.3(2)$
$\mathrm{N}-\mathrm{S}-\mathrm{C}(22)$	$108.83(14)$	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$	$137.5(3)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(7)$	$106.73(13)$	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(5)$	$134.5(3)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{S}$	$110.6(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	$61.8(2)$
$\mathrm{C}(7)-\mathrm{N}-\mathrm{S}$	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(2)$	$62.23(19)$	
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(16)$	$116.71(19)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$142.4(3)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$113.56(18)$	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(2)$	$134.4(3)$
$\mathrm{C}(16)-\mathrm{C}(1)-\mathrm{C}(2)$	$114.03 .6(2)-\mathrm{C}(5)$	$59.2(2)$	
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	108.4	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	117.8
$\mathrm{C}(16)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	108.4	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	117.8
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	108.4	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{~B})$	117.8
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	$120.2(2)$	117.8	
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$118.0(2)$	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	115.0

$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	117.9	$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.9
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	117.9	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.8
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	117.9	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	124.7(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	117.9	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	117.7
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	115.0	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	117.7
$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	116.6(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	120.0
$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(2)$	58.99(19)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	120.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	108.0(2)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	120.0
$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.3	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	120.6(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.3	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	119.7
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.3	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	119.7
N-C(7)-C(6)	104.3(2)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.5(3)
$\mathrm{N}-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.9	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	119.8
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.9	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	119.8
$\mathrm{N}-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.9	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.1(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.9	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	120.4
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.9	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	120.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(2)$	113.1(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.0(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.9	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	119.5
$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.9	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	119.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.9	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	119.9(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.0	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	119.0(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.0	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(1)$	118.2(3)

$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(1)$	$122.8(3)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.7(3)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	$119.4(3)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.6
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.3	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.6
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.3	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.9(3)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$121.0(3)$	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{S}$	$119.8(2)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.5	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{S}$	$119.2(2)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.5	$\mathrm{C}(19)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$118.2(3)$	$\mathrm{C}(19)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(23)$	$120.5(3)$	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(23)$	$121.3(3)$	$\mathrm{C}(19)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$121.7(3)$	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.1	$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.1		

Table 20. Anisotropic displacement parameters for 181.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h \mathrm{k} \mathrm{a}{ }^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U 13	$\mathrm{U}^{12} \quad\left(\AA^{2} \mathrm{x} 10^{3}\right)$
S	$11(1)$	$19(1)$	$21(1)$	$0(1)$	$-2(1)$	$-7(1)$
N	$11(1)$	$17(1)$	$20(1)$	$-1(1)$	$-2(1)$	$-6(1)$
$\mathrm{O}(1)$	$16(1)$	$21(1)$	$25(1)$	$-1(1)$	$0(1)$	$-3(1)$
$\mathrm{C}(1)$	$11(1)$	$14(1)$	$20(1)$	$1(1)$	$-3(1)$	$-6(1)$
$\mathrm{O}(2)$	$19(1)$	$34(1)$	$27(1)$	$3(1)$	$-5(1)$	$-17(1)$
$\mathrm{C}(2)$	$14(1)$	$16(1)$	$22(1)$	$3(1)$	$-5(1)$	$-7(1)$
$\mathrm{C}(3)$	$12(1)$	$16(1)$	$32(2)$	$3(1)$	$-4(1)$	$-6(1)$
$\mathrm{C}(4)$	$24(2)$	$27(2)$	$39(2)$	$12(1)$	$-7(1)$	$-14(2)$

$\mathrm{C}(5)$	$20(2)$	$29(2)$	$44(2)$	$12(2)$	$-4(1)$	$-13(2)$
$\mathrm{C}(6)$	$14(1)$	$16(1)$	$30(2)$	$-2(1)$	$-4(1)$	$-7(1)$
$\mathrm{C}(7)$	$15(1)$	$18(1)$	$26(2)$	$-2(1)$	$-4(1)$	$-10(1)$
$\mathrm{C}(8)$	$14(1)$	$19(2)$	$26(2)$	$2(1)$	$-2(1)$	$-7(1)$
$\mathrm{C}(9)$	$18(1)$	$20(2)$	$31(2)$	$3(1)$	$-5(1)$	$-4(1)$
$\mathrm{C}(10)$	$25(2)$	$22(2)$	$51(2)$	$5(2)$	$-12(2)$	$-7(2)$
$\mathrm{C}(11)$	$25(2)$	$18(2)$	$28(2)$	$1(1)$	$-9(1)$	$-10(1)$
$\mathrm{C}(12)$	$32(2)$	$24(2)$	$30(2)$	$-2(1)$	$-7(1)$	$-16(2)$
$\mathrm{C}(13)$	$25(2)$	$31(2)$	$25(2)$	$1(1)$	$-7(1)$	$-17(1)$
$\mathrm{C}(14)$	$17(1)$	$30(2)$	$22(2)$	$6(1)$	$-5(1)$	$-11(1)$
$\mathrm{C}(15)$	$19(1)$	$17(1)$	$24(2)$	$2(1)$	$-5(1)$	$-8(1)$
$\mathrm{C}(16)$	$17(1)$	$20(2)$	$18(1)$	$3(1)$	$-4(1)$	$-10(1)$
$\mathrm{C}(17)$	$18(1)$	$19(2)$	$25(2)$	$-3(1)$	$1(1)$	$-9(1)$
$\mathrm{C}(18)$	$22(2)$	$26(2)$	$23(2)$	$3(1)$	$-3(1)$	$-10(1)$
$\mathrm{C}(19)$	$18(1)$	$21(2)$	$31(2)$	$5(1)$	$2(1)$	$-10(1)$
$\mathrm{C}(20)$	$22(2)$	$18(2)$	$39(2)$	$-1(1)$	$1(1)$	$-8(1)$
$\mathrm{C}(21)$	$24(2)$	$25(2)$	$29(2)$	$0(1)$	$-2(1)$	$-18(1)$
$\mathrm{C}(22)$	$16(1)$	$21(2)$	$24(2)$	$4(1)$	$-1(1)$	$-9(1)$
$\mathrm{C}(23)$	$25(2)$	$25(2)$	$38(2)$	$11(1)$	$0(1)$	$-8(2)$
		$25)$				

Table 21. Hydrogen coordinates and isotropic displacement parameters for 181.

	$x\left(10^{4}\right)$	$y\left(10^{4}\right)$	$z\left(10^{4}\right)$	$U(\mathrm{eq})\left(\AA^{2} \times 10^{3}\right)$
H(1A)	8270	1448	2576	18
H(4A)	6891	7413	1703	35
H(4B)	7166	5930	992	35
		155		

H(5A)	10693	4884	766	36
H(5B)	10418	6368	1477	36
H(6A)	10210	4413	2972	24
H(7A)	7445	4403	3808	22
H(7B)	6375	6158	3358	22
H (8A)	11473	941	1304	24
H(8B)	12410	2017	1680	24
H(9A)	12356	569	2915	30
H(10A)	12417	-1880	1815	41
H(10B)	13010	-2228	2719	41
H(11A)	8957	-400	1409	28
H(12A)	8048	-1002	236	33
H(13A)	5652	1233	-345	30
H(14A)	4155	4071	263	27
H(15A)	5032	4693	1444	24
H(17A)	5724	3350	4946	25
H(18A)	7527	984	5656	29
H(20A)	8142	-2367	3826	33
H(21A)	6271	-22	3124	29
H(23A)	9317	-2055	5784	47
H(23B)	10487	-3165	4947	47
H(23C)	8541	-3217	5363	47

APPENDIX C

X-RAY DATA FOR 268

Table 22. Crystal data and structure refinement for 268.

Identification code	yan5	
Empirical formula	C32 H36 N5 O5 P Si	
Formula weight	629.72	
Temperature	$100(2) \mathrm{K}$	
Wavelength	Triclinic	
Crystal system	$\mathrm{P}-178$	
Space group	$\mathrm{b}=11.1144(18) \AA$	$\mathrm{a}=88.012(7)^{\circ}$.
Unit cell dimensions	$\mathrm{c}=13.799(2) \AA 18) \AA$	$\mathrm{b}=69.895(8)^{\circ}$.

Volume
$1675.0(4) \AA^{3}$
Z
2

Density (calculated)
$1.249 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient
$1.449 \mathrm{~mm}^{-1}$

F(000)	664
Crystal size	$0.09 \times 0.06 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	3.80 to 67.68°.
Index ranges	$-13<=\mathrm{h}<=8,-13<=\mathrm{k}<=13,-15<=1<=15$
Reflections collected	8530
Independent reflections	$4306[\mathrm{R}(\mathrm{int})=0.0529]$
Completeness to theta = 67.68	70.8%
Absorption correction	$\mathrm{Semi}-\mathrm{empirical}$ from equivalents
Max. and min. transmission	0.9716 and 0.8806
Refinement method	$4306 / 0 / 401$
Data / restraints / parameters	1.171
Goodness-of-fit on F°	$\mathrm{R} 1=0.0712, \mathrm{wR} 2=0.1572$
Final R indices [I>2sigma(I)] least-squares on F^{2}	
R indices (all data)	$\mathrm{R} 1=0.1137, \mathrm{wR} 2=0.1738$
Largest diff. peak and hole	0.593 and $-0.468 \mathrm{e} . \mathrm{A}^{-3}$

Table 23. Atomic coordinates and equivalent isotropic displacement parameters for 268.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	$\mathrm{x}\left(10^{4}\right)$	$\mathrm{y}\left(10^{4}\right)$	$\mathrm{z}\left(10^{4}\right)$	$\mathrm{U}(\mathrm{eq})\left(\AA^{2} \mathrm{x} 10^{3}\right)$
$\mathrm{P}(1)$	$8395(1)$	$2556(1)$	$1993(1)$	$32(1)$
$\mathrm{Si}(1)$	$1880(1)$	$5984(1)$	$3658(1)$	$39(1)$
$\mathrm{O}(1)$	$7510(3)$	$2344(3)$	$3024(2)$	$35(1)$
$\mathrm{N}(1)$	$8101(4)$	$3890(3)$	$1619(3)$	$28(1)$

C(1)	9228(5)	1568(4)	-35(4)	35(1)
$\mathrm{O}(2)$	2840(3)	8836(3)	4871(3)	42(1)
$\mathrm{N}(2)$	6504(4)	7476(3)	4838(3)	33(1)
C(2)	9055(5)	972(4)	-793(4)	38(1)
N(3)	5167(3)	8112(3)	5117(3)	31(1)
O(3)	1218(3)	10172(3)	5932(3)	54(1)
C(3)	7968(5)	558(4)	-559(4)	38(1)
$\mathrm{O}(4)$	1851(3)	12416(3)	8314(3)	49(1)
N(4)	2401(4)	9569(3)	5612(4)	40(1)
C(4)	7038(5)	736(4)	430(4)	36(1)
$\mathrm{O}(5)$	3775(4)	11951(3)	8565(3)	48(1)
N(5)	3034(4)	11819(3)	8120(3)	39(1)
C(5)	7227(5)	1312(4)	1197(4)	34(1)
C(6)	8304(4)	1744(4)	975(4)	27(1)
C(7)	10457(5)	1620(4)	2729(4)	34(1)
C(8)	11742(5)	1360(4)	2744(4)	38(1)
C(9)	12710(5)	1712(4)	1968(4)	38(1)
C(10)	12385(5)	2292(4)	1175(4)	36(1)
C (11)	11093(5)	2555(4)	1156(4)	36(1)
C(12)	10104(5)	2223(4)	1945(4)	32(1)
C(13)	8383(6)	4528(5)	-561(4)	62(2)
C(14)	7256(5)	5189(4)	409(4)	38(1)
C(15)	6928(4)	4428(4)	1299(3)	31(1)

$\mathrm{C}(16)$	$8129(4)$	$4778(4)$	$2319(4)$	$34(1)$
$\mathrm{C}(17)$	$6662(4)$	$5494(4)$	$2809(4)$	$31(1)$
$\mathrm{C}(18)$	$5865(4)$	$5120(4)$	$2283(4)$	$31(1)$
$\mathrm{C}(19)$	$4589(4)$	$6020(5)$	$2268(4)$	$34(1)$
$\mathrm{C}(20)$	$3725(5)$	$5531(4)$	$2922(4)$	$33(1)$
$\mathrm{C}(21)$	$4858(4)$	$4502(4)$	$3024(4)$	$35(1)$
$\mathrm{C}(22)$	$1256(5)$	$4748(5)$	$3603(4)$	$55(2)$
$\mathrm{C}(23)$	$1006(6)$	$7244(5)$	$3126(5)$	$71(2)$
$\mathrm{C}(24)$	$1682(5)$	$6368(5)$	$5011(4)$	$50(2)$
$\mathrm{C}(25)$	$6151(4)$	$6322(4)$	$3588(4)$	$32(1)$
$\mathrm{C}(26)$	$6906(5)$	$6660(4)$	$4120(4)$	$35(1)$
$\mathrm{C}(27)$	$4648(4)$	$9026(4)$	$5831(4)$	$27(1)$
$\mathrm{C}(28)$	$3298(4)$	$9741(4)$	$6096(4)$	$29(1)$
$\mathrm{C}(29)$	$2778(5)$	$10650(4)$	$6841(4)$	$33(1)$
$\mathrm{C}(30)$	$3590(5)$	$10869(4)$	$7305(4)$	$32(1)$
$\mathrm{C}(31)$	$4937(5)$	$10219(4)$	$7043(4)$	$33(1)$
$\mathrm{C}(32)$	$5449(4)$	$9300(4)$	$6317(3)$	$30(1)$

Table 24. Bond lengths [\AA] for 268.

$\mathrm{P}(1)-\mathrm{O}(1)$	$1.490(3)$	$\mathrm{Si}(1)-\mathrm{C}(22)$	$1.854(5)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.665(4)$	$\mathrm{Si}(1)-\mathrm{C}(24)$	$1.862(5)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.794(5)$	$\mathrm{Si}(1)-\mathrm{C}(20)$	$1.864(5)$
$\mathrm{P}(1)-\mathrm{C}(12)$	$1.799(5)$	$\mathrm{N}(1)-\mathrm{C}(15)$	$1.480(5)$
$\mathrm{Si}(1)-\mathrm{C}(23)$	$1.837(6)$	$\mathrm{N}(1)-\mathrm{C}(16)$	$1.491(6)$

$\mathrm{C}(1)-\mathrm{C}(2)$	1.391(7)	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500
$\mathrm{C}(1)-\mathrm{C}(6)$	1.397(6)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.393(7)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500
$\mathrm{O}(2)-\mathrm{N}(4)$	$1.244(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	1.376(7)
$\mathrm{N}(2)-\mathrm{C}(26)$	1.293(6)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9500
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.379(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	1.385(6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.379(6)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.404(7)$
$\mathrm{N}(3)-\mathrm{C}(27)$	1.361(6)	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~B})$	0.8800	$\mathrm{C}(13)-\mathrm{C}(14)$	1.527(7)
$\mathrm{O}(3)-\mathrm{N}(4)$	1.231(5)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.377(7)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B}$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C}$	0.9800
$\mathrm{O}(4)-\mathrm{N}(5)$	1.239(5)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.523(6)
N(4)-C(28)	1.441(6)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.396 (7)	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B}$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(15)-\mathrm{C}(18)$	1.530(6)
$\mathrm{O}(5)-\mathrm{N}(5)$	1.231(5)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	1.0000
$\mathrm{N}(5)-\mathrm{C}(30)$	1.476(6)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.522(6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.385(6)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(8)$	1.376(6)	$\mathrm{C}(17)-\mathrm{C}(25)$	1.347(6)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.389(7)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.492(6)

$\mathrm{C}(18)-\mathrm{C}(19)$	$1.521(6)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{C}(21)$	$1.590(6)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.342(7)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.436(6)$
$\mathrm{C}(19)-\mathrm{H}(19)$	$1.03(5)$	$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9500
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.535(6)$	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9500
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A}) 0.9900$	$\mathrm{C}(27)-\mathrm{C}(32)$	$1.398(6)$	
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B}) 0.9900$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.419(6)$	
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A}) 0.9800$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.384(6)$	
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B}) 0.9800$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.360(6)$	
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C}) 0.9800$	$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	0.9500	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A}) 0.9800$	$\mathrm{C}(30)-\mathrm{C}(31)$	$1.394(6)$	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B}) 0.9800$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.376(6)$	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C}) 0.9800$	$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9500	
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A}) 0.9800$	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9500	

Table 25. Bond angles [${ }^{\circ}$] for 268.

$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$118.55(18)$	$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(24)$	$110.9(3)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$110.9(2)$	$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(20)$	$110.8(3)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$103.5(2)$	$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(20)$	$108.1(2)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$110.8(2)$	$\mathrm{C}(24)-\mathrm{Si}(1)-\mathrm{C}(20)$	$105.8(2)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$101.9(2)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$105.8(3)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	$110.6(2)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{P}(1)$	$121.1(3)$
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(22)$	$111.4(3)$	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{P}(1)$	$116.0(3)$
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(24)$	$109.6(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.0(4)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	120.0	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.3
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	120.0	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.5(4)
$\mathrm{C}(26)-\mathrm{N}(2)-\mathrm{N}(3)$	114.9(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{P}(1)$	118.0(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.6(5)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{P}(1)$	123.5(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.7	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	121.1(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.7	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	119.4
$\mathrm{C}(27)-\mathrm{N}(3)-\mathrm{N}(2)$	120.1(4)	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	119.4
$\mathrm{C}(27)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~B})$	120.0	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.8(5)
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~B})$	120.0	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.1(5)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.9	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.9(5)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.9	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	120.1
$\mathrm{O}(3)-\mathrm{N}(4)-\mathrm{O}(2)$	121.5(4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	120.1
$\mathrm{O}(3)-\mathrm{N}(4)-\mathrm{C}(28)$	118.9(4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.6(5)
$\mathrm{O}(2)-\mathrm{N}(4)-\mathrm{C}(28)$	119.6(4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	119.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.4(5)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	119.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.3	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.0(5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.3	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.0
$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{O}(4)$	124.8(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	120.0
$\mathrm{O}(5)-\mathrm{N}(5)-\mathrm{C}(30)$	117.6(4)	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	118.6(5)
$\mathrm{O}(4)-\mathrm{N}(5)-\mathrm{C}(30)$	117.6(5)	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{P}(1)$	118.5(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	121.4(5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{P}(1)$	122.8(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.3	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5

$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(25)-\mathrm{C}(17)-\mathrm{C}(18)$	125.1(4)
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(25)-\mathrm{C}(17)-\mathrm{C}(16)$	126.6(5)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	108.3(4)
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(15)$	103.9(4)
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	116.3(4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	112.8(4)	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{C}(19)$	122.0(4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.0	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(21)$	112.7(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.0	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{C}(21)$	117.3(4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.0	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(21)$	84.4(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.0	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	96.4(4)
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.8	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	130(3)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	111.9(4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	134(3)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(18)$	103.5(4)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	92.9(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$	111.9(4)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{Si}(1)$	135.6(4)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.8	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Si}(1)$	130.6(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.8	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(18)$	86.2(3)
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.8	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	114.3
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	104.1(4)	$\mathrm{C}(18)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	114.3
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	110.9	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	114.3
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	110.9	$\mathrm{C}(18)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	114.3
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	110.9	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B}$)111.4
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	110.9	Si(1)-C(22)-H(22A)	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$)108.9	$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5

$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$)109.5	$\mathrm{N}(2)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	115.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	115.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$)109.5	$\mathrm{N}(3)-\mathrm{C}(27)-\mathrm{C}(32)$	120.4(4)
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	N(3)-C(27)-C(28)	121.7(4)
$\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5	$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(28)$	117.8(4)
$\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	121.0(5)
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$)109.5	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{N}(4)$	116.5(4)
$\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{N}(4)$	122.6(4)
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$)109.5	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	119.0(4)
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	120.5
Si(1)-C(24)-H(24A)	109.5	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	120.5
Si(1)-C(24)-H(24B)	109.5	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	122.1(4)
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$)109.5	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{N}(5)$	119.3(4)
$\mathrm{Si}(1)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{N}(5)$	118.5(5)
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$)109.5	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	118.9(5)
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$)109.5	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	120.5
$\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(26)$	125.4(4)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	120.5
$\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	117.3	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	121.1(4)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	117.3	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	119.5
$\mathrm{N}(2)-\mathrm{C}(26)-\mathrm{C}(25)$	129.1(4)	$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	119.5

Table 26. Anisotropic displacement parameters for 268.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h \mathrm{k} \mathrm{a} \mathrm{b}^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U33	U^{23}	U13	U^{12}	$\left(\AA^{2} \times 10^{3}\right)$
$\mathrm{P}(1)$	29(1)	31(1)	26(1)	-8(1)	$0(1)$	-6(1)	
Si(1)	29(1)	42(1)	33(1)	-9(1)	$0(1)$	-3(1)	
$\mathrm{O}(1)$	32(2)	35(2)	25(2)	-4(2)	5(2)	-8(1)	
$\mathrm{N}(1)$	26(2)	28(2)	24(2)	-3(2)	-1(2)	-6(2)	
C(1)	30(2)	32(3)	38(4)	-8(2)	-5(3)	-10(2)	
$\mathrm{O}(2)$	37(2)	42(2)	40(2)	-10(2)	-7(2)	-9(2)	
$\mathrm{N}(2)$	31(2)	28(2)	30(3)	-5(2)	-2(2)	-2(2)	
C(2)	35(3)	34(3)	33(3)	-11(2)	-3(3)	-4(2)	
N(3)	25(2)	33(2)	29(3)	-11(2)	-4(2)	-6(2)	
$\mathrm{O}(3)$	32(2)	46(2)	74(3)	-14(2)	-14(2)	0(2)	
C(3)	48(3)	29(3)	36(4)	-10(2)	-14(3)	-8(2)	
$\mathrm{O}(4)$	40(2)	37(2)	45(3)	-12(2)	11(2)	-6(2)	
N(4)	33(2)	31(2)	47(3)	1(2)	-6(2)	-8(2)	
C(4)	31(3)	38(3)	37(4)	-6(2)	-7(3)	-14(2)	
$\mathrm{O}(5)$	55(2)	44(2)	32(2)	-15(2)	-2(2)	-13(2)	
N (5)	42(3)	32(3)	30(3)	-6(2)	3(2)	-10(2)	
C(5)	34(3)	34(3)	28(3)	-7(2)	$-5(2)$	-9(2)	
C(6)	28(2)	21(3)	31(3)	-6(2)	-9(2)	-7(2)	
C(7)	32(3)	33(3)	28(3)	-8(2)	0(2)	-7(2)	
C(8)	40(3)	39(3)	31(3)	-6(2)	-9(3)	-8(2)	
C(9)	32(3)	42(3)	38(4)	-7(3)	-10(3)	-10(2)	
C(10)	32(3)	35(3)	35(4)	-6(2)	-4(3)	-9(2)	

C(11)	35(3)	32(3)	30(3)	-6(2)	-1(2)	-8(2)
C(12)	32(2)	29(3)	28(3)	-11(2)	-2(2)	-7(2)
C(13)	72(4)	50(4)	34(4)	-8(3)	8(3)	-8(3)
C(14)	39(3)	34(3)	24(3)	-11(2)	1(2)	1(2)
C(15)	34(3)	29(3)	19(3)	-6(2)	2(2)	-8(2)
C(16)	29(2)	31(3)	29(3)	-14(2)	3(2)	-5(2)
C(17)	30(2)	27(3)	21(3)	1(2)	3(2)	-1(2)
C(18)	29(2)	28(3)	25(3)	-6(2)	4(2)	-8(2)
C(19)	29(3)	31(3)	36(3)	-6(3)	-7(3)	-5(2)
C(20)	34(3)	29(3)	34(3)	-7(2)	-12(3)	-5(2)
C(21)	30(2)	33(3)	33(3)	-8(2)	-1(2)	-10(2)
C(22)	40(3)	73(4)	36(4)	-16(3)	4(3)	-16(3)
C(23)	68(4)	64(4)	56(5)	-6(3)	-12(4)	5(3)
C(24)	50(3)	47(3)	41(4)	-14(3)	1(3)	-17(3)
C(25)	24(2)	33(3)	28(3)	-9(2)	1(2)	-6(2)
C(26)	34(3)	30(3)	29(3)	-1(2)	3(2)	-8(2)
C(27)	23(2)	25(3)	26(3)	-1(2)	-2(2)	-7(2)
C(28)	25(2)	30(3)	29(3)	-2(2)	-4(2)	-11(2)
C(29)	29(2)	27(3)	31(3)	-1(2)	1(2)	-4(2)
C(30)	37(3)	26(3)	24(3)	-3(2)	0(2)	-9(2)
C(31)	35(3)	32(3)	29(3)	2(2)	-6(2)	-14(2)
C(32)	24(2)	36(3)	19(3)	-8(2)	1(2)	-2(2)

Table 27.Hydrogen coordinates and isotropic displacement parameters for 268.

	$\mathrm{x}\left(\mathrm{x} 10^{4}\right)$	$y\left(x 10^{4}\right)$	$\mathrm{z}\left(\mathrm{x} 10^{4}\right)$	$\mathrm{U}(\mathrm{eq})\left(\AA^{2} \times 10^{3}\right)$
H(1A)	9976	1856	-205	42
H(2A)	9691	849	-1478	45
H(3B)	4650	7928	4832	37
H(3A)	7860	150	-1082	46
H(4A)	6277	469	590	43
H(5A)	6603	1410	1885	41
H(7A)	9798	1384	3265	41
H(8A)	11970	940	3282	46
H(9A)	13592	1552	1985	45
H(10A)	13053	2514	637	44
H(11A)	10876	2961	609	43
H(13A)	8566	5059	-1102	92
H(13B)	8108	3930	-806	92
H(13C)	9197	4170	-397	92
H(14A)	7523	5813	633	45
H(14B)	6437	5548	237	45
H(15A)	6611	3818	1094	37
H(16A)	8682	5257	1923	40
H(16B)	8495	4415	2853	40
H(19)	4400(40)	6780(40)	1910(40)	37(14)
H(21A)	4905	3760	2723	42
H(21B)	4891	4435	3732	42
168				

H(22A)	1361	4567	2886	82
H(22B)	304	4944	4037	82
H(22C)	1773	4078	3856	82
H(23A)	1108	7039	2416	106
H(23B)	1395	7867	3126	106
H(23C)	49	7500	3553	106
H(24A)	2007	7028	5022	75
H(24B)	2203	5712	5275	75
H(24C)	5214	6714	3804	38
H(25A)	7829	6225	3915	42
H(26A)	1868	11115	7025	40
H(29A)	5493	10408	7359	39
H(31A)	6361	8844	6143	36
H(32A)				75

APPENDIX D

X-RAY DATA FOR 283

Table 28. Crystal data and structure refinement for 283.

Identification code	yan6	
Empirical formula	C 24 H 27 N O 3 S	
Formula weight	409.53	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	$\mathrm{P} 21 / \mathrm{c}$	
Space group	$\mathrm{a}=12.1214(2) \AA$	$\mathrm{a}=90^{\circ}$.
Unit cell dimensions	$\mathrm{b}=14.4706(2) \AA$	$\mathrm{b}=110.5600(10)^{\circ}$.
	$2141.92(6) \AA^{3}$	$\mathrm{~g}=90^{\circ}$.
Volume	4	
Z	$1.270 \mathrm{Mg} / \mathrm{m}^{3}$	
Density (calculated)	$1.537 \mathrm{~mm} \mathbf{n}^{-1}$	
Absorption coefficient		

$\mathrm{F}(000)$	872
Crystal size	$0.21 \times 0.15 \times 0.09 \mathrm{~mm}^{3}$
Theta range for data collection	3.89 to 72.13°.
Index ranges	$-14<=\mathrm{h}<=14,-16<=\mathrm{k}<=17,-15<=\mathrm{l}<=15$
Reflections collected	15495
Independent reflections	$4034[\mathrm{R}($ int $)=0.0171]$
Completeness to theta $=70.00^{\circ}$	98.4%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8741 and 0.7385
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1.659
Goodness-of-fit on F^{2}	$\mathrm{R} 1=0.0347$, wR2 $=0.1212$
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0360, \mathrm{wR} 2=0.1235$
R indices (all data)	0.311 and $-0.331 \mathrm{e} . \mathrm{A}^{-3}$
Largest diff. peak and hole	

Table 29. Atomic coordinates and equivalent isotropic displacement parameters for 283.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	$\mathrm{x}\left(10^{4}\right)$	$\mathrm{y}\left(10^{4}\right)$	$\mathrm{z}\left(10^{4}\right)$	$\mathrm{U}(\mathrm{eq})\left(\AA^{2} \mathrm{x} 10^{3}\right)$
$\mathrm{S}(1)$	$4751(1)$	$2336(1)$	$9149(1)$	$28(1)$
$\mathrm{O}(1)$	$1863(1)$	$-377(1)$	$8502(1)$	$36(1)$
$\mathrm{N}(1)$	$3758(1)$	$1640(1)$	$8308(1)$	$24(1)$
$\mathrm{C}(1)$	$4045(1)$	$644(1)$	$8443(1)$	$29(1)$

$\mathrm{O}(2)$	5001(1)	1952(1)	10221(1)	43(1)
C(2)	3059(1)	223(1)	7489(1)	24(1)
$\mathrm{O}(3)$	4314(1)	3258(1)	8914(1)	41(1)
C(3)	1930(1)	48(1)	7721(1)	25(1)
C(4)	965(1)	463(1)	6829(1)	25(1)
C(5)	1371(1)	958(1)	6170(1)	22(1)
C(6)	2717(1)	936(1)	6548(1)	20(1)
C(7)	3322(1)	1865(1)	7117(1)	20(1)
C(8)	622(1)	1464(1)	5169(1)	29(1)
C(9)	3168(1)	694(1)	5617(1)	24(1)
C(10)	2652(1)	-190(1)	4982(1)	30(1)
C(11)	3238(1)	-430(1)	4159(1)	38(1)
C(12)	1733(1)	2885(1)	7366(1)	25(1)
C(13)	977(1)	3640(1)	7054(1)	30(1)
C(14)	1034(1)	4230(1)	6233(1)	34(1)
C(15)	1843(1)	4071(1)	5729(1)	36(1)
C(16)	2606(1)	3313(1)	6037(1)	29(1)
C(17)	2542(1)	2714(1)	6850(1)	22(1)
C(18)	6103(1)	2723(1)	7914(1)	25(1)
C(19)	7100(1)	2631(1)	7640(1)	28(1)
C(20)	8047(1)	2084(1)	8270(1)	28(1)
C(21)	7969(1)	1634(1)	9186(1)	30(1)
C(22)	6966(1)	1703(1)	9458(1)	26(1)

$\mathrm{C}(23)$	$6036(1)$	$2251(1)$	$8817(1)$	$22(1)$
$\mathrm{C}(24)$	$9117(1)$	$1963(1)$	$7952(2)$	$45(1)$

Table 30. Bond lengths [\AA] for 283.

$\mathrm{S}(1)-\mathrm{O}(3)$	1.4277(11)	$\mathrm{C}(7)-\mathrm{C}(17)$	1.5141(14)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.4340 (10)	$\mathrm{C}(7)-\mathrm{H}(7)$	1.003(16)
S(1)-N(1)	1.6547(10)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.96(2)
$\mathrm{S}(1) \mathrm{C}(23)$	1.7621(12)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.98(3)
$\mathrm{O}(1)-\mathrm{C}(3)$	1.2154(15)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.99(3)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.4800 (15)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.5336(15)
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.4912(13)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	1.005(16)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.5170 (15)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.924(18)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.984(19)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.5204(19)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	1.015(16)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.00(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5238(16)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.950(18)
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.5445(14)$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	1.037(19)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.993(17)	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.97(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.4582(16)	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.93(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.3391 (17)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.3915(17)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.966(19)	$\mathrm{C}(12)-\mathrm{C}(17)$	1.3929(17)
$\mathrm{C}(5)-\mathrm{C}(8)$	1.4941 (15)	$\mathrm{C}(12)-\mathrm{H}(12)$	0.926(17)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.5296 (14)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.3899(19)
$\mathrm{C}(6)-\mathrm{C}(9)$	$1.5362(15)$	$\mathrm{C}(13)-\mathrm{H}(13)$	0.982(18)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.5859(14)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.379(2)

$\mathrm{C}(14)-\mathrm{H}(14)$	$0.94(2)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.3924(18)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.3995(18)$	$\mathrm{C}(20)-\mathrm{C}(24)$	$1.5055(18)$
$\mathrm{C}(15)-\mathrm{H}(15)$	$0.98(2)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.3851(18)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.3922(17)$	$\mathrm{C}(21)-\mathrm{H}(21)$	$0.980(18)$
$\mathrm{C}(16)-\mathrm{H}(16)$	$0.945(17)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.3917(16)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.3819(19)$	$\mathrm{C}(22)-\mathrm{H}(22)$	$0.908(18)$
$\mathrm{C}(18)-\mathrm{C}(23)$	$1.3879(17)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A}) 1.01(3)$	
$\mathrm{C}(18)-\mathrm{H}(18)$	$0.945(17)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B}) 1.01(3)$	
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.3985(19)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C}) 0.92(3)$	
$\mathrm{C}(19)-\mathrm{H}(19)$	$0.947(18)$		

Table 31. Bond angles [${ }^{\circ}$] for 283.

$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(2)$	$120.42(7)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	$108.2(10)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(1)$	$107.28(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	$112.7(9)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$105.41(6)$	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	$110.0(13)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(23)$	$107.84(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.09(10)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(23)$	$108.08(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$107.36(9)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(23)$	$107.14(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$105.09(9)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$108.55(9)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$112.7(9)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	$115.38(7)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	$107.2(9)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	$117.83(8)$	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{H}(2)$	$110.1(9)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$102.06(9)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.30(11)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	$111.9(11)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$125.38(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	$111.8(10)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$107.31(9)$

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.09(10)	$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	100(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	126.6(10)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(6)$	115.21(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	122.3(10)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	107.6(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	125.12(11)	$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	107.9(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.92(10)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110.0(10)
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(6)$	122.94(10)	$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.7(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	112.66(9)	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.1(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	103.18(9)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	111.67(11)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(2)$	113.92(9)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.8(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	113.53(9)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	113.0(11)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)$	109.14(9)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	111.1(10)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	104.08(8)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.2(10)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(17)$	112.34(9)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B}$	102.8(14)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	103.84(8)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.4(11)
$\mathrm{C}(17)-\mathrm{C}(7)-\mathrm{C}(6)$	115.54(9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.3(11)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(7)$	109.2(8)	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C}$	106.9(16)
$\mathrm{C}(17)-\mathrm{C}(7)-\mathrm{H}(7)$	109.8(8)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	113.1(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	105.7(8)	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A}$)105.6(16)
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	116.2(14)	$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A}$)112.4(18)
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.2(13)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	120.16(11)
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108(2)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	121.2(10)
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	113.4(15)	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{H}(12)$	118.6(10)
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	107.5(19)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.08(12)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.1(9)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	118.6(11)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.8(9)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	118.72(11)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.07(12)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(24)$	120.44(13)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	121.4(12)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(24)$	120.82(13)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	118.5(12)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	121.06(11)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.17(12)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	117.3(10)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	122.1(11)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	121.7(10)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	117.8(11)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.04(11)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	119.96(12)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	119.4(11)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.9(10)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	121.5(11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.1(10)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	120.96(11)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	119.55(11)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{S}(1)$	119.63(9)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(7)$	118.89(11)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{S}(1)$	119.41(9)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(7)$	121.51(10)	$\mathrm{C}(20)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	111.2(17)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	119.27(11)	$\mathrm{C}(20)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	106.2(18)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	118.1(10)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B}$)106(2)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{H}(18)$	122.7(10)	$\mathrm{C}(20)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	103(2)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	120.93(11)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C}$)126(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	120.4(11)	$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C}$)103(2)

Table 32. Anisotropic displacement parameters for 283.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~S}(1)$	$20(1)$	$42(1)$	$22(1)$	$-11(1)$	$7(1)$	$-2(1)$

$\mathrm{O}(1)$	42(1)	37(1)	31(1)	8(1)	16(1)	-5(1)
$\mathrm{N}(1)$	19(1)	31(1)	19(1)	-1(1)	5(1)	-1(1)
C(1)	22(1)	33(1)	27(1)	5(1)	4(1)	2(1)
$\mathrm{O}(2)$	27(1)	85(1)	19(1)	-9(1)	9(1)	-11(1)
C(2)	22(1)	22(1)	25(1)	3(1)	7(1)	2(1)
$\mathrm{O}(3)$	28(1)	42(1)	50(1)	-25(1)	9(1)	2(1)
C(3)	29(1)	22(1)	25(1)	0(1)	11(1)	-3(1)
C(4)	20(1)	26(1)	29(1)	-3(1)	10(1)	-3(1)
C(5)	20(1)	21(1)	22(1)	-3(1)	5(1)	$0(1)$
C(6)	19(1)	21(1)	20(1)	O(1)	7(1)	-1(1)
C(7)	19(1)	24(1)	19(1)	-2(1)	8(1)	-2(1)
C(8)	24(1)	30(1)	27(1)	3(1)	1(1)	$0(1)$
C(9)	24(1)	25(1)	23(1)	-4(1)	11(1)	-3(1)
C(10)	32(1)	28(1)	31(1)	-8(1)	12(1)	-5(1)
$\mathrm{C}(11)$	43(1)	38(1)	36(1)	-14(1)	17(1)	-2(1)
$\mathrm{C}(12)$	25(1)	25(1)	26(1)	-1(1)	11(1)	-1(1)
C(13)	28(1)	29(1)	34(1)	-3(1)	13(1)	2(1)
C(14)	36(1)	26(1)	38(1)	1(1)	10(1)	7(1)
C(15)	48(1)	28(1)	36(1)	8(1)	17(1)	2(1)
C(16)	33(1)	27(1)	31(1)	0 (1)	17(1)	-3(1)
C(17)	21(1)	22(1)	22(1)	-3(1)	7(1)	-3(1)
C(18)	25(1)	22(1)	24(1)	-1(1)	5(1)	-4(1)
$\mathrm{C}(19)$	33(1)	29(1)	24(1)	-2(1)	12(1)	-10(1)

$\mathrm{C}(20)$	$25(1)$	$30(1)$	$32(1)$	$-10(1)$	$13(1)$	$-8(1)$
$\mathrm{C}(21)$	$23(1)$	$30(1)$	$34(1)$	$0(1)$	$8(1)$	$2(1)$
$\mathrm{C}(22)$	$25(1)$	$31(1)$	$23(1)$	$3(1)$	$7(1)$	$-1(1)$
$\mathrm{C}(23)$	$20(1)$	$26(1)$	$21(1)$	$-5(1)$	$7(1)$	$-3(1)$
$\mathrm{C}(24)$	$33(1)$	$59(1)$	$50(1)$	$-18(1)$	$25(1)$	$-11(1)$

Table 33. Hydrogen coordinates and isotropic displacement parameters for 283.

	$\mathrm{x}\left(10^{4}\right)$	$\mathrm{y}\left(10^{4}\right)$	$\mathrm{z}\left(10^{4}\right)$	$\mathrm{U}(\mathrm{eq})\left(\mathrm{A}^{2} \mathrm{x} 10^{3}\right)$
$\mathrm{H}(1 \mathrm{~A})$	$4824(16)$	$512(12)$	$8401(13)$	$37(4)$
$\mathrm{H}(1 \mathrm{~B})$	$4023(14)$	$440(12)$	$9180(13)$	$33(4)$
$\mathrm{H}(2)$	$3288(14)$	$-370(12)$	$7238(12)$	$29(4)$
$\mathrm{H}(4)$	$149(16)$	$362(12)$	$6740(13)$	$38(4)$
$\mathrm{H}(7)$	$4013(13)$	$1961(10)$	$6875(12)$	$20(3)$
$\mathrm{H}(8 \mathrm{~A})$	$890(20)$	$1466(17)$	$4565(19)$	$65(6)$
$\mathrm{H}(8 \mathrm{~B})$	$510(20)$	$2103(18)$	$5351(19)$	$65(6)$
$\mathrm{H}(8 \mathrm{C})$	$-210(20)$	$1254(19)$	$4890(20)$	$76(7)$
$\mathrm{H}(9 \mathrm{~A})$	$4046(14)$	$613(11)$	$5946(13)$	$30(4)$
$\mathrm{H}(9 \mathrm{~B})$	$3028(15)$	$1190(12)$	$5142(14)$	$34(4)$
$\mathrm{H}(10 \mathrm{~A})$	$2692(17)$	$-729(15)$	$5468(16)$	$50(5)$
$\mathrm{H}(10 \mathrm{~B})$	$1828(16)$	$-104(11)$	$4628(13)$	$34(4)$
$\mathrm{H}(11 \mathrm{~B})$	$2876(16)$	$-1036(14)$	$3756(15)$	$44(5)$
H(11C)	$4066(19)$	$-549(14)$	$4545(16)$	$47(5)$
H(11A)	$3113(18)$	$12(16)$	$3614(17)$	$55(6)$
H(12)	$1721(13)$	$2494(11)$	$7924(13)$	$24(3)$

$\mathrm{H}(13)$	$387(15)$	$3749(11)$	$7400(13)$	$33(4)$
$\mathrm{H}(14)$	$517(18)$	$4734(16)$	$6039(16)$	$53(5)$
$\mathrm{H}(15)$	$1910(16)$	$4476(14)$	$5155(15)$	$43(5)$
$\mathrm{H}(16)$	$3145(14)$	$3207(11)$	$5674(13)$	$29(4)$
$\mathrm{H}(18)$	$5493(14)$	$3111(12)$	$7475(13)$	$33(4)$
$\mathrm{H}(19)$	$7146(15)$	$2925(12)$	$7008(14)$	$35(4)$
$\mathrm{H}(21)$	$8621(16)$	$1261(12)$	$9668(14)$	$38(4)$
$\mathrm{H}(22)$	$6938(14)$	$1406(12)$	$10062(14)$	$34(4)$
$\mathrm{H}(24 \mathrm{~A})$	$9850(30)$	$1880(20)$	$8620(20)$	$85(8)$
$\mathrm{H}(24 \mathrm{~B})$	$9000(30)$	$1360(20)$	$7530(20)$	$101(9)$
$\mathrm{H}(24 \mathrm{C})$	$9010(30)$	$2400(20)$	$7410(30)$	$95(10)$

BIBLIOGRAPHY

1. Wiberg, K. B.; Lampman, G. M.; Ciula, R. P.; Connor, D. S.; Schertler, P.; Lavanish, J. Tetrahedron 1965, 21, 2749.
2. Hoz, S. In The Chemistry of the Cyclopropyl Group, Rappoport, Z. Ed. John Wiley \& Sons: 1987.
3. Walczak, M. A. A.; Wipf, P. J. Am. Chem. Soc. 2008, 130 (22), 6924-6925.
4. Cox, K. W. H., M. D.; Nelson, G.; Wiberg, K. B. J. Chem. Phys. 1969, 50, 1976.
5. Meiboom, S.; Snyder, L. C. Acc. Chem. Res 1971, 4, 81.
6. Wiberg, K. B.; Waddell, S. T.; Rosenberg, R. E. J. Am. Chem. Soc. 1990, 112, 2184.
7. Walters, V. A.; Hadad, C. M.; Thiel, Y.; Colson, S. D.; Wiberg, K. B.; Johnson, P. M.; Foresman, J. B. J. Am. Chem. Soc. 1991, 113, 4782.
8. Jensen, J. O. J. Mol. Str. THEOCHEM 2003, 631, 157.
9. Allen F.H.; Kennard, O.; Watson, D. G.; Brammer, L,; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. 2, 1987, S1-S19
10. Meinwald, J.; Swithenbank, C.; Lewis, A. J. Am. Chem. Soc. 1963, 85, 1880.
11. Wiberg, K. B.; Ellison, G. B.; Peters, K.S. J. Am. Chem. Soc. 1977, 99, 3942.
12. Politzer, P.; Kirschenheuter, G. P.; Alster, J. J. Am. Chem. Soc. 1987, 109, 1033.
13. Newton, M. D.; Schulman, J. M. J. Am. Chem. Soc. 1972, 94, 76.
14. Wipff, G.; Lehn, J. J. Chem. Soc. Chem. Commun. 1973, 19, 747.
15. Wüthrich, K. M. S.; Snyder, L. C. J. Chem. Phys. 1970, 52, 230.
16. Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
17. Pomerantz, M.; Hillenbrand, D. J. Am. Chem. Soc. 1973, 95, 5809-5810
18. Budzelaar, P. H. M.; Kraka, E.; Cremer, D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 561.
19. Greenberg, A. Tetrahedron Lett. 1978, 19, 3509.
20. Hoz, S.; Levy, R. J. Mol. Str. THEOCHEM. 1985, 211, 93-99.
21. Moore, W. R.; Costin, C. R. J. Am. Chem. Soc. 1971, 93, 4910.
22. Schleyer, P. v. R.; Williams, J. E.; Blanchard, K. R. J. Am. Chem. Soc. 1970, 92, 2377.
23. Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1988, 110, 4710.
24. Rozental, E.; Azaran, C.; Basch, H.; Hoz, S. Can. J. Chem. 1999, 77, 537.
25. Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547.
26. Ashlyn, E.V.; Dougherty, D. A.; Modern Physical Organic Chemistry;; University Science Books: Sausalito, CA, 2004.
27. Bauld, N. L.; Cessac, J.; Holloway, R. L. J. Am. Chem. Soc. 1977, 99, 8140.
28. Dunitz, J. D.; Schomaker, V. J. Chem. Phys. 1952, 20, 1703.
29. Baric, D.; Maksic, Z. B. Theor. Chem. Acc. 2005, 114, 222.
30. Schneider, C.; Katrin Niisuke, K.; Boeglin, W. R.; Voehler, M.; Stec, D. F.; Porter, N. A.; Brash, A. R. Proc. Natl. Acad. Sci. 2007, 104, 18941.
31. DeGuire, M. S.; Ma, S.; Sulikowski, G. A. Angew. Chem. Int. Ed. 2011, 50, 9940 -9942
32. Wiberg, K. B.; Ciula, R. P. J. Am. Chem. Soc. 1959, 81, 5261.
33. Hamon, D. P. G. J. Am. Chem. Soc. 1968, 90, 4513.
34. Hoz, S.; Aurbach, D. J. Am. Chem. Soc. 1980, 102, 2340.
35. Hall, H. K. Jr.; Blanchard, E. P. Jr.; Cherkovsky, S. C.; Sieja, J. B.; Sheppard, W. A. J. Am. Chem. Soc. 1971, 93, 110.
36. Kelly, C. B.; Colthart A. M.; Constant B. D.; Corning S. R.; Dubois L. N. E.; Genovese J. T.; Radziewicz J. L.; Sletten E. M.; Whitaker, K. R.; Tilley. L. J. Org. Lett. 201113 (7), 16461649.
37. Gaoni, Y. J. Org. Chem. 1982, 47, 2564.
38. Abramova, N. M.; Zotova, S. V. Izv. Akad Nauk 1979, 697.
39. Brown, D. W.; Hendrick, M. E.; Browne, A. R. Tetrahedron Lett. 1973, 3951.
40. Ikono, N.; Takamura, N.; Young, S. D.; Ganem, B. Tetrahedron Lett. 1981, 22, 4163.
41. Qin, C.; Davies, H. M. L. Org. Lett. 2013, 15, 310-313.
42. Panish, R. P.; Chintala, S. R.; Boruta, D. T.; Fang, Y.; Taylor, M. T.; Fox, J. M. J. Am. Chem. Soc. 2013, 135, 9283-9286.
43. Small, A. J. Am. Chem. Soc. 1964, 86, 2091.
44. Masamune, S. J. Am. Chem. Soc. 1964, 86, 735.
45. Mahler, W. J. Am. Chem. Soc. 1962, 84, 4600.
46. Dyakonov, I. A.; Komendatov, M. I. Zh. Org. Khim. 1961, 31, 3881.
47. Jautelat, M.; Schwarz, V. Tetrahedron Lett. 1966, 5101.
48. Wipf, P.; Stephenson, C. R. J.; Okumura, K. J. Am. Chem. Soc. 2003, 125, 14694.
49. Tochterman, W.; Popp, B.; Mattauch, A.-K.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1993, 126, 2547.
50. Tochterman, W.; Panitzsch, T.; Peschanel, M.; Wolff, C.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Lieb. Ann. 1997, 1125.
51. Duker, A.; Szeimies, G. Tetrahedron Lett. 1985, 26, 3555-3558;
52. Weber, J.; Haslinger U.; Brinker U. H. J. Org. Chem. 1999, 64, $6084-6086$.
53. Walczak, M. A. A. Ph.D. Dissertation: Synthesis and Reaction of Bicyclo[1.1.0]butanes, University of Pittsburgh, 2009.
54. Wipf, P.; Walczak, M. A. A. Angew. Chem. Int. Ed. 2006, 45, 4172-4175.
55. Nilsson, B. M.; Hacksell, U. J. J. Heterocycl. Chem. 1989, 26, 269.
56. Havey, D. F.; Sigano, D. M. J. Org. Chem. 1996, 61, 2268.
57. Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G. Marinelli, F. Org. Lett. 2001, 3, 2501
58. Zani, L.; Bolm, C. Chem. Commun. 2006, 4263-4275.
59. Kauffman, G. S.; Harris, G. D.; Dorow, R. L.; Stone, B. P. R.; Parsons, R. L.; Pesti, J. Jr.; Magnus, N. A.; Fortunak, J. M.; Confalone, P. N.; Nugent, W. A. Org. Lett. 2000, 2, 3119.
60. Bruneau, A. M.; Liou, L.; Collum D. B. J. Am. Chem. Soc. 2002, 136, 2885.
61. Koradin C.; Polborn K.; Knochel P. Angew. Chem. Int. Ed. 2002, 41, 2535.
62. Taylor, A. M.; Schreiber, S. L. Org. Lett. 2006, 8, 14.
63. Lin, W.; Cao, T.; Fan, W.; Han, Y.; Kuang, J.; Luo, H.; Miao, B.; Tang, X.; Yu, Q.; Yuan, W.; Zhang, J.; Zhu, C.; Ma, S. Angew. Chem., Int. Ed. 2014, 53, 277.
64. Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2003, 5, 3273.
65. Wu, T. R.; Chong J. M. Org. Lett. 2006, 8, 15.
66. Blay, G.; Cardona, L.; Climent, E.; Pedro, J. R. Angew. Chem. Int. Ed. 2008, 47, 5593.
67. Blay, G.; Cardona, L.; Pedro, J. R.; Sanz-Marco, A. Chem. Eur. J. 2012, 18, 12966.
68. Wang, R.; Zhu, S,; Yan, W,; Mao, B.; Jiang, X. J. Org. Chem. 2009, 74, 6980-6985.
69. Jackson, J. E.; Mock, G. B.; Tetef, M. L.; Zheng, G-X.; Jones, M. Jr. Tetrahedron 1985, 41, 1453-1464.
70. Shi, Y.; Lorenz, J. C.; Long, J.; Yang, Z.; Xue, S.; Xie, Y. J. Org. Chem. 2004, 69, 327-334.
71. Charette, A. B.; Molinaro, C.; Brochu, C. J. J. Am. Chem. Soc. 2001, 123, 12168.
72. Denmark, S.; Regens, C. Acc. Chem. Res. 2008, 41, 1486-1499.
73. Lee, J.-Y.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616-5617.
74. Dembitsky VM. J. Nat. Med. 2008, 62, 1.
75. Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404-408.
76. Reisman, S. E.; Ready, J. M.; Hasuoka, A.; Smith, C. J.; Wood, J. L. J. Am. Chem. Soc. 2006, 128, 1448-1449.
77. Reisman, S. E.; Ready, J. M.; Weiss, M. M.; Hasuoka, A.; Hirata, M.; Tamaki, K.; Ovaska, T. V.; Smith, C. J.; Wood, J. L. J. Am. Chem. Soc. 2008, 130, 2087-2100.
78. Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas, T.; Pohjakallio, A.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 17938-17954.
79. Rubin, M.; Rubina, M.; Gevogyan, V. Chem. Rev. 2007, 107, 3117-3179.
80. Suginome, M.; Ito, Y. J. Organomet. Chem. 2003, 680, 43-50.
81. Smit, V. A.; Kireev, S. L.; Nefedov, O. M.; Tarasov, V. A. Tetrahedron Lett. 1989, 30, 40214024.
82. Hartmann, K.-P.; Heuschmann, M. Tetrahedron 2000, 56, 4213-4218.
83. Molchanov, A. P.; Diev, V. V.; Magull, J.; Vidoviæ, D.; Kozhushkov, S. I.; de Meijere, A.; Kostikov, R. R. Eur. J. Org. Chem. 2005, 593-599.
84. Fürstner, A.; Aissa, C. J. Am. Chem. Soc. 2006, 128, 6306-6307.
85. Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc. 2006, 128, 7430-7431.
86. De Meijere, A.; Becker, H.; Stolle, A.; Kozhushkov, S. I.; Bes, M. T.; Salaün, J.; Noltemeyer, M. Chem.-Eur. J. 2005, 11, 2471-2482.
87. Cordero, F. M.; Pisaneschi, F.; Goti, A.; Ollivier, J.; Salaün, J.; Brandi, A. J. Am. Chem. Soc. 2000, 122, 8075-8076.
88. Marradi, M.; Brandi, A.; Magull, J.; Schill, H.; de Meijere, A. Eur. J. Org. Chem. 2006, 5485-5494.
89. Marradi, M.; Brandi, A.; de Meijere, A. Synlett 2006, 1125-1127.
90. Cordero, F. M.; Salvati, M.; Vurchio, C.; de Meijere, A.; Brandi, A. J. Org. Chem. 2009, 74, 4225-4231.
91. Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 8500-8501.
92. Diethelm, S.; Schoenebeck, F.; Carreira, E. M. Org. Lett. 2014, 16, 960-964.
93. Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 6084-6069.
94. Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780-5781.
95. Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972, 94, 4018-4020.
96. Binger, P. Angew. Chem., Int. Ed. 1972, 11, 433-434.
97. Lewis, R. T.; Motherwell, W. B.; Shipman, M. J. Chem. Soc., Chem. Commun. 1988, 948950.
98. Yamago, S.; Nakamura, E. J. Chem. Soc., Chem. Commun. 1988, 1112-1113.
99. Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2003, 125, 9282-9283.
100. López, F.; Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2004, 126, 10262-10263.
101. García-Fandiño, R.; Gulías, M.; Castedo, L.; Granja, J. R.; Mascareñas, J. L.; Cárdenas, D. J. Chem. Eur. J. 2008, 14, 272-281.
102. Gulías, M.; Garcia, R.; Delgado, A.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc.

2006, 128, 384-385.
103. Trillo, B.; Gulías, M.; López, F.; Castedo, L.; Mascareñas, J. L. Adv. Synth. Catal. 2006, 348, 2381-2384.
104. Y. Inoue, T. Hibi, M. Satake, H. Hashimoto, J. Chem. Soc., Chem. Commun. 1979, 982983.
105. Chen, K.; Jiang, M.; Zhang, Z.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 7189.
106. K. Chen, Z. Zhang, Y. Wei and M. Shi, Chem. Commun., 2012, 48, 7696-7698.
107. L. Yu, X. Hu, Q. Xu and M. Shi, Chem. Commun., 2016, 52, 2701-2704.
108. K. Chen, Z. Zhu, J. Liu, X. Tang, Y. Wei and M. Shi, Chem. Commun., 2016, 52, 350-353.
109. S. Saito, M. Masuda and S. Komagawa, J. Am. Chem. Soc. 2004, 126, 10540-10541.
110. S. Komagawa and S. Saito, Angew. Chem., Int. Ed. 2006, 45, 2446-2449.
111. Komagawa, S.; Wang, C.; Morokuma, K.; Saito, S.; Uchiyama, M. J. Am. Chem. Soc. 2013, 135, 14508-14511.
112. Evans, P. A.; Inglesby, P. A. J. Am. Chem. Soc. 2008, 130, 12838-12839.
113. Evans, P. A.; Negru, D. E.; Shang, D. Angew.Chem. Int. Ed. 2015, 127,4768-4772.
114. Kurahashi, T.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 7881-7884.
115. Masarwa, A.; Fürstner, A.; Marek, I. Chem. Commun. 2009, 5760-5762.
116. Poulter, C. D.; Boikess, R. S.; Brauman, J. I.; Winstein, S. J. Am. Chem. Soc. 1972, 94, 2291-2296.
117. Mihelich, E. D.; Hite G. A. J. Am. Chem. Soc. 1992, 114, 7318-7319.
118. Dauben, W. G.; Kielbania, A. J. J. Am. Chem. Soc. 1972, 94, 3669-3671.
119. Dauben, W. G.; Kielbania, A. J.; Raymond, K. N. J. Am. Chem. Soc. 1973, 95, 7166-7168.
120. Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596-12597.
121. Yamashita, F.; Hotta, K.; Kurasawa, S.; Okami, Y.; Umezawa, H. J. Antibiot. 1985, 38, 58.
122. Njoroge, F. G.; Chen, K. X.; Shih, N. Y.; Piwinski, J. J. Acc. Chem. Res. 2008, 41, 50.
123. Stauffacher, D.; Niklaus, P.; Tscherter, H.; Weber, H. P.; Hofmann, A. Tetrahedron 1969, 25, 5879.
124. Incze, M.; Dörnyei, G.; Moldvai, I.; Temesvári-Major, E.; Egyed, O.; Szánty, C. Tetrahedron 2008, 64, 2924.
125. Petronijevic, F. R.; Wipf, P. J. Am. Chem. Soc. 2011, 133, 7704-7707.
126. Wang, W.; Lu, J.-T.; Zhang, H.-L.; Shi, Z.-F.; Wen, J.; Cao, X.-P. J. Org. Chem. 2014, 79, 122-127.
127. Netz, N.; Opatz, T. J. Org. Chem. 2016, 81, 1723-1730.
128. Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. Chem. Rev. 1997, 97, 787.
129. Yap, W.-S.; Gan, C.-Y.; Sim, K.-S.; Lim, S.-H.; Low, Y.-Y.; Kam, T.-S. J. Nat. Prod. 2016, 79, 230-239.
130. Morita, H.; Fujiwara, M.; Yoshida, N.; Kobayashi, J. I., Tetrahedron 2000, 56, 5801.
131. Dong, L.-B.; Yang, J.; He, J.; Luo, H.-R.; Wu, X.-D.; Deng, X.; Peng, L.-Y.; Cheng, X.; Zhao, Q.-S. Chem. Commun. 2012, 48, 9038.
132. Williams, B. M.; Trauner, D. Angew. Chem., Int. Ed. 2016, 55, 2191.
133. Ochi, Y.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2016, 18, 1494.
134. Hu, T.; Chandler, R. F.; Hanson, A. W. Tetrahedron Lett. 1987, 28, 5993.

[^0]: ${ }^{\text {a Products afforded as a messy mixture. }}$

