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Gabriel Koch Ocker, PhD

University of Pittsburgh, 2015

The connectivity of mammalian brains exhibits structure at a wide variety of spatial scales,

from the broad (which brain areas connect to which) to the extremely fine (where synapses

form on the morphology of individual neurons). Two striking features of the neuron-to-

neuron connectivity are 1) the strong over-representation of multi-synapse connectivity pat-

terns compared to simple random-network models and 2) a strong relationship between

neurons’ local connectivity and their stimulus preferences, so that local network structure

plays a large role in the computations neurons perform. A central question in systems neu-

roscience is how such structures emerge. Answers to this question are confounded by the

mutual interactions of neuronal activity and neural network structure. Patterns of synaptic

connectivity influence neurons’ joint activity, while the synapses between neurons are plastic

and strengthen or weaken depending on the activity of the pre- and postsynaptic neurons.

In this thesis, I develop a self-consistent framework for the coevolution of network struc-

ture and spiking activity. Subsequent chapters leverage this to develop low-dimensional sets

of equations that directly describe the plasticity of connectivity patterns in large spiking

networks. I examine plasticity during spontaneous activity and then how the structure of

external stimuli can shape network structure and subsequent spontaneous plasticity. These

studies provide a step towards understanding how the structure of neuronal networks and

neurons’ joint activity interact to allow network computations.
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1.0 INTRODUCTION

Moment-by-moment, our nervous systems engender our thoughts and actions through their

electrochemical activity. They allow us to detect, classify and respond to external stimuli.

To do so appropriately, they must learn associations, for example between different stimuli

(as in Pavlov’s classical conditioning) or between internally produced behaviors and exter-

nal stimuli (as in operant learning). Our immediate behaviors rely on neurons’ ability to

generate action potentials: millisecond-scale, 50-100 mV depolarizations that huge relative

to the resting potential and generated through a positive feedback loop of depolarization-

activated inward currents [1]. Generated at the axon hillock, action potentials propagate

down the axon as well as back-propagating through the neuron’s cell body and dendrites.

When the action potential reaches boutons, the site of comunication with postsynaptic neu-

rons, the depolarization triggers the release of neurotransmitter into the synaptic cleft. The

neurotransmitter diffuses across the cleft and, binding to postsynaptic receptors, activates

them.

Neurons are often divided broadly into two classes: excitatory and inhibitory. This

division is based on the type of neurotransmitters they release and the effect of those neuro-

transmitters on postsynaptic neurons. There are many types of neurotransmitter. Excitatory

neurons of the neocortex most often release glutamate, while most common inhibitory neu-

rotransmitter in the cortex is γ-aminobutyric acid (GABA). Neurotransmitter receptors can

be metabotropic, in which case they activate intracellular signaling cascades, or ionotropic

- in which case they contain ion channels. When neurotransmitter binds to an ionotropic

receptor, these channels open allowing ions to pass through and generating a postsynaptic

potential (PSP). Glutamate receptors allow cations to flow inwards, generating depolarizing

excitatory post-synaptic potentials (EPSPs), while GABAergic receptors allow anions (chlo-
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ride) to enter the neuron, generating hyperpolarizing inhibitory post-synaptic potentials

(IPSPs).

There are two main types of ionotropic glutamate receptor: N-methyl-D-aspartate recep-

tors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AM-

PARs), each named for molecules that specifically bind to them. AMPARs have fast kinetics,

generating currents with rising time constants under 1 ms and decay time constants up to 5

ms [2, 3, 4, 5, 6]. NMDARs have slower kinetics, generating currents with rising time con-

stants of 5-10 ms [7, 8] and decay constants around 60 ms in postsynaptic excitatory neurons

[3] (although early in development, the decay time constants are significantly longer[3, 9]).

NMDARs also have a magnesium block: under resting conditions, the ion channel is blocked

by magnesium. Depolarization for a few milliseconds removes the magnesium block, allowing

glutamate binding to open the receptor [10, 11, 12].

1.1 LONG-TERM SYNAPTIC PLASTICITY: A BRIEF HISTORY

The search for the physiological basis of learning and memory has been a central aim of

neuroscience since the field’s birth [13]. The now-common term ”plasticity”, referring to

short- or long-lasting changes in synaptic or cellular physiology in response to a stimulus,

was apparently coined by the Italian physiologist Ernesto Lugaro in the early 20th century

[14]. Electrical recordings showing long-lasting depolarization in response to high-frequency

stimulation, by Ralf Gerard in frog nerves in 1930, provided the first evidence for long-

lasting electrophysiological changes after stimulation. Donald Hebb, in his seminal book

”The Organization of Behavior” (1949), hypothesized that ”When an axon of cell A is near

enough to excite cell B and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such that A’s efficacy, as one of

the cells firing B, is increased” [15]. He proposed this as a mechanism for the formation of

engrams: long-term biological modifications subserving memory. Decades later in the 1960’s

and 70’s, two sets of studies laid much of the groundwork for the modern study of long-term

synaptic plasticity.
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First, Eric Kandel and Ladislav Tauc provided what remains some of the most convincing

evidence for synaptic plasticity as a mechanism for behavioral learning. Working in the sea

slug Aplysia depilans, they developed an electrophysiological model of classical conditioning

[16, 17] which allowed later work to directly link synaptic plasticity with behavioral learning

of the Aplysia gill withdrawal reflex. Experiments pairing behavioral stimuli with electrical

stimulation of neurons or neural populations remain a state-of-the-art tool for the study of

synaptic mechanisms of behavioral learning (e.g. in various cortical regions, [18, 19, 20, 21,

22]).

Second, Terje Lømo and Timothy V.P. Bliss discovered that high-frequency stimulation of

the perforant path from entorhinal cortex to the dentate gyrus led to long-term potentiation

of post-synaptic potentials (LTP) [23, 24]. These results were confirmed by Douglas &

Gerard (1975), who showed that repeated bursts of stimulation were more effective than a

single high-frequency stimulus train [25]. Similar experiments also showed LTP of evoked

field potentials in CA1 [26]. At the end of the 1970’s McNaughton, Douglas & Gerard showed

that multiple weakly-activated synaptic pathways could cooperate to induce associative LTP

in both pathways’ EPSPs [27]. Baranyi & Fehèr provided confirmation that EPSPs did not

have to directly cause action potentials in order for their temporal coincidence to drive

LTP [28]. Also at the end of the 1970’s, Lynch, Dunwiddie & Gribkoff discovered long-

term depression (LTD) in response to low-frequency stimulation, also in the hippocampus

[29, 30]. Subsequent studies combining LTP and LTD protocols showed that potentiated

synapses could subsequently depress [31, 32].

One of the first studies to examine the importance of the relative timing of pre- and

post-synaptic activity was carried out by Levy & Steward. They found the first evidence

of a temporal asymmetry in synaptic plasticity: repeated stimulation of a weak pathway,

prior to repeated stimulation of a strong pathway, led to LTP of the weak pathway while the

reverse stimulation order led to LTD [33]. In some of the first experiments investigating the

relative timing of single presynaptic spikes and EPSPs, Gustafsson, Wigström & colleagues

reported postsynaptic depolarization needed to occur within ∼100 ms of the conditioning

stimulation [34, 35]. These studies presented trains of presynaptic and postsynaptic spikes in

blocks, each block consisting entirely of pre- or of postsynaptic stimulation. It was not until

3



the late 1990’s that experimentalists showed that repeated pairs of presynaptic spikes and

EPSPs, depending on their relative timing, could lead to either potentiation or depression,

discovering spike timing-dependent plasticity (STDP) [36, 37].

These studies highlighted how the relative timing of pairs of pre- and postsynaptic spikes

can control plasticity using experimental protocols in which pre-post (or post-pre) spike

pairs were elicited repeatedly at fixed time lags. This highly regular spiking stands in stark

contrast to the variable activity of neurons in vivo. Further studies revealed that plasticity

induced by larger groups of pre- and postsynaptic spikes cannot be accounted for by a solely

pair-based effects [38, 39, 40, 41].

1.2 MECHANISMS OF STDP

The molecular machinery and emergent network mechanisms underlying the formation, con-

solidation and storage of long-term memories are complex, and their study is an exciting

and very active area of research. Mechanistically, Hebbian STDP takes two main forms.

These are 1) NMDA receptor-dependent LTP and LTD, and 2) the combination of NMDA

receptor-dependent LTP and metabotropic glutamate receptor (mGluR) or cannabinoid

receptor-dependent (CbR) LTD, both of which have been shown to take place at corti-

cal synapses [42]. In NMDAR-dependent LTP and LTD, pre-post spike pairs relieve the

magnesium block and allow strong calcium influx. Due to the kinetics of NMDARs [43],

the coincidence of AMPA-mediated EPSPs with back-propagating postsynaptic action po-

tentials [44, 45], and EPSPs activing inward currents and inactivating outward currents in

the dendrites, enhancing the backpropagating depolarization [46, 47], pre-post spike pairs

all enhance calcium influx. Post-pre spike pairs, in contrast, lead to weaker calcium influx

[48, 49, 50, 51, 52]. In mGluR-dependent LTD, the combination of mGluRs and voltage-

sensitive calcium channels leads to the release of the endocannabinoid transmitter 2-AG,

which binds to presynaptic cannabinoid receptors and ultimately decreases the presynaptic

release probability [53, 54, 55, 56, 57, 58, 59].

Anti-Hebbian STDP has also been observed, in cerebellar-like structure such as the dor-
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sal cochlear nucleus [60] and electrosensory lateral line [61, 62]. The term broadly refers

to STDP that does not respect the Hebbian restriction of potentiation only occurring for

pre-post spike pairs and depression only occurring for post-pre spike pairs, but often takes

the form of only LTD (for pre-post pairs) [63]. Anti-Hebbian LTD in pre-post spike pairs

relies on endocannabinoid signaling in a similar manner to the Hebbian mGluR-dependent

LTD [64]. Neuromodulators can control the sign of plasticity, converting potentiating stim-

ulation patterns into depressing ones [65]. Mechanisms of short-term synaptic facilitation

and depression, while acting on much faster timescales than long-term plasticity, can play a

role in controlling the induction of LTP [66, 67, 68, 69]. How diverse synaptic and cellular

mechanisms conspire to control long-term plasticity in different brain areas during in vivo

activity remains an exciting area of research.

The

1.3 MECHANISTIC MODELS OF SYNAPTIC PLASTICITY

The modern study of learning and memory has been rife with mathematical theory since its

early days [13]. Here, we will discuss two broad classes of synaptic plasticity model: mecha-

nistic and phenomenological. The division of models into mechanistic and phenomenological

classes could be carried out in many ways, depending on what we call a ‘mechanism’. By

a mechanistic model, we mean one that takes into account sub-cellular processes such as

postsynaptic calcium concentrations and molecular signaling cascades [70]. We will briefly

discuss calcium-based models, which have been especially influential.

The first is based on the calcium control hypothesis, which inspired experimental work

showing that different postsynaptic calcium levels lead to different plasticity outcomes [71,

72, 73, 57]. Some of these models implement thresholds for the calcium concentration,

θd and θp with θd < θp. If calcium levels are intermediate (θd < [Ca2+] < θp) then the

synapse depresses but if calcium levels are sufficiently elevated (θp < [Ca2+]) the synapse

potentiates [49, 74, 75, 76]. The calcium concentration is increased by presynaptic spikes

through activation of NMDA receptors. Back-propagating postsynaptic spikes can 1) increase
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calcium levels through activation of voltage-dependent calcium channels [57, 37, 77] and 2)

can remove the magnesium block of the NMDA receptors, allowing presynaptic spikes to

induce calcium entry [10, 12]. Another type of calcium-based models is based on having

multiple sensors for postsynaptic calcium [78, 79, 80] which compete to determine whether

the synaptic efficacy potentiates, depresses, or does not change. Both of these classes of

model can successfully reproduce the wide variety of STDP curves observed in different

experimental paradigms [81, 42], although they can be differentiated by (for example) the

effects of burst- or triplet-induced plasticity [80].

1.4 PHENOMENOLOGICAL MODELS OF SYNAPTIC PLASTICITY

1.4.1 Rate-based plasticity rules

Before the discovery of STDP, a number of rate-based plasticity rules revealed how Hebbian

learning can allow computation in feedforward neural systems. We will briefly summarize

three classic learning rules: those of Bienenstock, Cooper & Munro (BCM) [82], Oja [83]

and Linsker [84]. These three models highlight how plasticity can allow neuronal circuits

to learn to perform computations. The BCM model accounted for a wide range of experi-

mental results pertaining to the development of ocular dominance columns in primary visual

cortex. Importantly, they also introduced the notion of plasticity dependent on temporal,

rather than spatial, relationships between pre- and postsynaptic activity. Notably, the BCM

rule predicted the possibility of homosynaptic depression: synapses depressing not due to

competition amongst synapses (heterosynaptic depression), but due to the joint activity of

the pre- and post-synaptic neurons. In the BCM learning rule, the evolution of synaptic

efficacy is a function of the pre- and postsynaptic firing rates:

∆Wpost←pre = η (ρpost (ρpost − θ) ρpre)− εWpost←pre (1.1)

where ρ denotes the instantaneous firing rate. The last term,−εWpost←pre, stabilizes the

weights in the face of certain stimulation patterns but is often neglected. θ is a threshold
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separating depression at low rates from potentiation at high rates, and this threshold is itself

a function of the postsynaptic firing rate, commonly taken as θ = 〈ρpost/y0〉2 [85] where

angular brackets denote the average output (over different inputs) and y0 is a constant. The

rate of learning is set by η.

Two other classical rate-based plasticity rules, also published in the 1980’s, are those of

Erkki Oja and Ralph Linsker. The Oja rule reads:

∆Wpost←pre = η
(
ρpreρpost − ρ2

postWpost←pre

)
(1.2)

Notably, this allows the postsynaptic neuron to learn to perform a principle components

analysis of a group of inputs {ρpre}, providing a link between theories of Hebbian learning

and neural-inspired computations [83]. Linsker’s equation is:

∆Wpost←pre = k + η (ρpost − y0) (ρpre − x0) (1.3)

where k, y0 and x0 are parameters. Linsker’s equation, similarly to the BCM rule, was

initially proposed as a Hebbian rule to explain the emergence of stimulus-selectivity in sen-

sory areas, although Linsker focused on orientation selectivity rather than ocular dominance.

While all of these plasticity rules are based on relationships between pre- and post-synaptic

activity, their reliance on average firing rates as opposed to individual action potentials

precludes discussion of how spiking activity on neuronal timescales affects plasticity.

1.4.2 Timing-based plasticity rules

In 1977, Terrence Sejnowski specifically discussed precise spike-time correlations, suggest-

ing them as a requirement for synaptic plasticity when the overall amounts of depression

and potentiation due to firing rates are balanced [86]. In 1993, Wulfram Gerstner & col-

leagues showed that plasticity based on spike times, rather than firing rates, was needed for

a recurrent network to learn spatio-temporal patterns [87]. In 1996, Gerstner & colleagues

proposed spike-timing plasticity models for sound localization [88]. Their timing-based plas-

ticity rule specified the change in synaptic weight as a function of the time lag between
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pre- and postsynaptic spikes, defining separate windows for potentiation and depression for

positive/negative time lags:

∆Wpost←pre =

f+φ(tpost − tpre), if tpost − tpre ≥ 0

−f−φ(tpost − tpre), if tpost − tpre < 0,

. (1.4)

where f± sets the amplitude of synaptic weight changes and the function φ sets their time-

dependence. Such models, by design, capture the results of pair-based plasticity protocols.

This classic study is a notable example of theory predicting experiments in neuroscience.

When the synaptic amplitude changes are a function only of the time lag between pre-

and postsynaptic spikes, synaptic weights can potentiate or depress unlimitedly, necessi-

tating the imposition of bounds reflecting the finite resources available to a synapse. This

occurs when the plasticity rule is Hebbian, so that pre-post spike pairs lead to potentiation

and post-pre spike pairs lead to depression - rewarding presynaptic activity that effectively

drives postsynaptic spikes [89]. This gives rise to bimodal distributions of synaptic weights,

clustered near the upper and lower bounds. Intracellular recordings, however, reveals synap-

tic weights with unimodal distributions [90, 91, 92]. Introducing weight-dependence into the

plasticity rule can resolve this issue [93, 94, 95], although potentially at the expense of learned

stimulus specificity [96, 97]. Alternatively to examining the stability of the weight dynamics,

supplementing the pair-based plasticity rule with additional dynamics driven by individual

pre- or post-synaptic spikes can stabilize the resulting output firing rate [98, 99, 100]. Such

non-Hebbian LTP/D has been observed at the neuromuscular junction [101] and in the hip-

pocampus [102] and cerebellum & entorhinal cortex [103, 104], but is often not observed in

neocortex [42].

Pair-based STDP rules capture the results of pair-based plasticity experiments, but how

well do they generalize to predicting the results of more complicated training paradigms

based off of triplets, quadruplets, or bursts or spikes? Unfortunately, the answer is: not

well [39, 38, 41, 40]. In addition, the results of STDP experiments are sensitive to how

frequently spike pairs are presented. Spike pairs presented at high frequency tend to cause

potentiation, while low frequency spike pairs tend to cause depression [105]. Mechanistic

models, such as those discussed above, can capture these complexities but are complex and
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difficult to analyze. Recent studies have proposed phenomenological plasticity models based

on spike times but explicitly considering beyond-pairwise interactions. Two popular models

are the triplet-based plasticity rule of Pfister & Gerstner [106] and the spike-voltage rule of

Clopath & Gerstner [107, 108]. Under certain assumptions, a BCM-style rate-based plasticity

rule can be derived from each of these spike-based models.

Here, we briefly summarize one of these models, the triplet rule of [106]. This rule

reads: ∆Wpost←pre = L(s1)+Q(s1, s2), where L(s1) is the pair-based STDP described above

(Eq. (1.4) with s1 = tpost − tpre. Q(s1, s2) = f3φ(s1)φ2(s2) described the contribution of

spike triplets, with s2 = tpost 2 − tpost 1. The functions φ1 and φ2 are commonly taken to

be exponential windows. Fitting the parameters of this rule to explain data from V1 slice

experiments [40] gave Pfister & Gerstner a model composed of pair-based LTD and triplet-

based LTP:

L(s) = −f−e
− s1
τ− (1.5)

for s1 < 0 and L(s) = 0 for s1 ≥ 0, and

Q(s1, s2) = f3e
− s1
τ+ e
− s2
τ3 (1.6)

for s1 ≥ 0, s2 ≥ 0 (and Q(s1, s2) = 0 otherwise). This only takes into account post-pre-post

and post-post-pre spike patterns. While there are other potential contributors (which the

triplet rule can easily include), this simple form has been shown to well fit experimental

data [106]. When individual changes in the synaptic weights are small, the synaptic weights

evolve on a slower timescale than the spike-train correlations and are governed by [109]:

dWij

dt
=

∫ ∞
−∞

L(s (rirj + Cij(s)) ds+

∫ ∞
−∞

∫ ∞
−∞

Q(s1, s2)Γ(s1, s2)ds1ds2 (1.7)

where Cij is the cross-covariance function of the pre- and postsynaptic spike trains and

Γ(s1, s2) is the third-order correlation, Γ(s1, s2) = 〈yi(t)yj(t − s1)yi(t − s2)〉 where yi is

the spike train of neuron i. The inclusion of this third-order correlation is a significant

complication in developing theories for the triplet rule. Recent progress has been made on

adapting methods of statistical field theory to estimate these triplet correlations [110, 111,

112, 113]. The simplest possible such theory examines the zeroth order contributions from the

firing rates, r2
i rj. The relative importance of the rate- and correlation-based contributions
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to plasticity depend on the magnitude of the correlations, appropriately weighted by the

plasticity rule. If the correlations are very weak, or the STDP rule strongly favors either

potentiation or depression, then chance spike coincidences are the dominant contribution to

plasticity. The latter argument is one we pursue in more depth later in this thesis. Here, for

simplicity, we examine the former. If the pre- and post-synaptic spike trains are uncorrelated

Poisson processes, then the rate-based terms are the only contribution to the pairwise and

triplet terms of plasticity, yielding for the triplet rule:

dWij

dt
= −f−τ−rirj + f3τ+τ3r

2
i rj (1.8)

Taking the amplitudes of potentiation and depression, f−, to depend on the postsynaptic

firing rate ri allows these dynamics to be written exactly in the form of the BCM rule, linking

spike-based plasticity to the computational capacity of rate-based learning [106]. This link

requires, however, a strong assumption about the pre- and postsynaptic spikes trains (that

they are uncorrelated Poisson processes). How spatial or temporal correlations in spike

trains affect the computations they allow neural circuits to perform has only just begun to

be studied [114].

Throughout the body of this thesis, we make use of pair-based STDP rules, neglecting

higher-order spike interactions and rate-dependence of STDP. This corresponds to assuming

that the dynamics of Eq. (1.8) are negligible. For a fixed input rate ri, those dynamics

is characterized by two fixed points (Figure 1.1). These dynamics is apparently unstable

- high firing rates will lead to potentiation, which in a recurrent network would further

increase firing rates, leading to blow-up potentiation and pathological activity. Other forms

of heterosynaptic plasticity can stabilize the weight and firing rates, providing a stable fixed

point for the synaptic weights at intermediate firing rates through non-Hebbian interactions

[115]. If these rate-based dynamics is sufficiently close to a fixed point, the higher-order

contributions from spike-train correlations will come into play. How close the rate-based

terms must be depends on the magnitude of the correlations.
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Chap. 4.
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Theories for internally-generated spike-time covariability in recurrent networks have only

recently been developed. They provide an exciting avenue for studying how spike-time

correlations contribute to synaptic plasticity in recurrent networks. Throughout this thesis,

I will examine the effect of pair-based STDP rules on the coevolution of network structure

and spiking activity. Further studies should be based on plasticity models that dynamically

account for interactions between rate- and correlation-based effects, such as the triplet model

- these will rely on advances in theories of spiking covariability in recurrent networks. Many

questions remain to be answered; the frontier of network-level plasticity is wide open.

1.5 OUTLINE OF THIS THESIS

In this thesis I will present the results of two studies, one of which is published. In Chapter

2 I develop a self-consistent theory for STDP in recurrent networks, making use of recent

developments in calculating spike-train correlations for recurrently connected, condunctace-

based neuron models. The subsequent chapters leverage this work in order to develop sim-

ple theories predicting the plasticity of different types of connectivity pattern in networks.

Chapter 3 discusses connectivity patterns composed of two synapses and how they are pro-

moted or suppressed by plasticity during spontaneous activity. These two chapters have

been previously published as [116] and were the result of a collaboration between myself,

Ashok Litwin-Kumar and our advisor Brent Doiron. In Chapter 4, I present recent work

examining how spontaneous and stimulus-driven activity can interact to produce strongly

interconnected groups of neurons with shared stimulus preferences. This work was done in

collaboration with my advisor.
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2.0 SPIKE TIMING-DEPENDENT PLASTICITY IN RECURRENT

NETWORKS

2.1 INTRODUCTION

While neural architecture undoubtedly plays a strong role in determining neuronal activity,

the reverse is also true. Individual synapses can both potentiate (strengthen) and depress

(weaken), and whether they do so depends on the relative timing of action potentials in

the connected neurons [37, 36]. Such spike timing-dependent plasticity (STDP) has featured

prominently in both experimental and theoretical studies of neural circuits [81, 117, 13]. Of

particular interest, STDP provides a mechanism for Hebbian plasticity: synaptic potentiation

occurs when a presynaptic neuron reliably drives spike responses from a postsynaptic neuron,

while anti-causal spike pairs result in synaptic depression [89]. Hebbian plasticity provides a

potential link between circuit structure and function through the formation of heavily wired

assemblies of neurons, where assembly membership is associated with coordinated, elevated

firing rates during a specific computation [118]. Evidence supporting this idea, originally

proposed by Hebb [15], has been found in both hippocampus [119] and sensory cortex [120].

Despite the promise of STDP to provide insight into the functional wiring of large neural

circuits, many studies of STDP have concentrated on the plasticity of synaptic connections

between just a single pair of pre- and postsynaptic neurons, often focusing on the distribution

of individual synaptic weights [89, 99, 121, 95, 93]. Other studies have shown that multiple

temporally correlated inputs to a neuron will cooperate to potentiate, while uncorrelated

inputs may depress [109, 89, 122, 123]. In this case STDP can generate feedforward circuits

[124], which while important for the propagation of neural activity [125], are unlike the

recurrent structure of the neocortex. Understanding the two-way interaction between plastic
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recurrent network structure and spiking activity recruited in recurrent circuits is thus a

central focus for theories of synaptic plasticity.

Due to this challenge, many studies have resorted to large-scale numerical simulations of

cortical networks with plastic synapses [126, 127, 128, 129]. While intuition for the develop-

ment of circuit structure can be gained using this approach, without a governing theoretical

framework it is often difficult to extract generalized principles. Alternatively, mathemati-

cal analyses have been restricted to either small networks [130, 128], or have required the

assumption that neurons fire as Poisson processes [131, 132, 123, 133]. These latter works

assumed shared inputs from outside the network to be the only source of correlated spiking

activity, neglecting covariance originating from recurrent coupling. Thus, there is a need

for a coherent mathematical framework that captures how STDP drives self-organization of

circuit structure in recurrent cortical networks.

To this end, we construct a self-consistent theory for the coevolution of spiking statistics

and synaptic weights in networks with STDP. This theory makes use of a previously devel-

oped linear response framework for calculating joint spiking statistics [134, 135, 136] and

a separation of timescales between spiking covariance and synaptic plasticity [109]. Most

previous studies of plasticity in recurrent networks have focused on how they can be trained

to represent an external stimulus. We focus on how spiking covariance generated by coupling

within the network interacts with plasticity to shape network structure.

2.2 RESULTS

This chapter presents the development of a self-consistent theory for spike timing-dependent

plasticity describing the plasticity of each synaptic weight in a recurrent network. It relies on

two key results: 1) a theory for plasticity of individual synapses which links their potentiation

or depression to the temporal correlations in their spike trains [109], and 2) a method for

predicting those correlations in recurrent networks [136].
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2.2.1 Spike train covariance determines synaptic plasticity

We begin by reviewing a well-studied phenomenological model of STDP [88], acting within a

simple circuit of two reciprocally coupled neurons. Consider a pair of pre- and postsynaptic

spike times with time lag s = tpost − tpre. The evolution of the synaptic weight connecting

presynaptic neuron j to postsynaptic neuron i obeys Wij → Wij + L(s), with the STDP

rule L(s) (Figure 2.2.1A) being Hebbian:

L(s) =

H(Wmax −Wij)f+e
− |s|
τ+ , if s ≥ 0

H(Wij) (−f−) e
− |s|
τ− , if s < 0,

. (2.1)

Here H(x) = 1 if x > 0 while H(x) = 0 if x ≤ 0, imposing bounds on the weights to prevent

the magnitude of excitatory synapses from becoming negative or potentiating without bound

(i.e. 0 ≤Wij ≤ Wmax). The coefficients f± scale the amplitude of weight changes induced

by individual pre-post spike pairs and τ± determine how synchronous pre- and postsynaptic

spikes must be to drive plasticity.

The spike train from neuron i is the point process yi(t) =
∑

k δ(t − tki ), with tki being

the kth spike time of neuron i. Following [109] we relate the joint statistics of yi(t) and

yj(t) to the evolution of synaptic weights. We assume that individual pre-post spike pairs

induce small changes in synaptic weights (f± � Wmax). This makes synaptic weights evolve

slowly, on a much longer timescale than the millisecond scale of pairwise spiking covariance

due to network interactions. The separation of timescales between synaptic plasticity and

spiking activity provides an approximation to the evolution of the synaptic weights (Methods:

Learning dynamics, 2.4.2):

dWij

dt
= W0

ij

∫ ∞
−∞

L(s)
(
rirj + Cij(s)

)
ds. (2.2)

Here ri is the time-averaged firing rate of neuron i, and Cij(s) = 〈(yi(t)− ri)(yj(t+ s)− rj)〉

is the cross-covariance function of neuron i and j’s spike trains. The separation of timescales

allows us to calculate the equilibrium spiking statistics C, taking W to be constant on

the timescale of C(s). The term rirj in Eq. (2.2) captures the contribution of chance spike

coincidences to STDP, while Cij(s) models the sensitivity of STDP to spike time correlations.
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Finally, W0 is the adjacency matrix of the network – a binary matrix with W0
ij = 1 denoting

the presence of a synapse from neuron j to neuron i. Multiplying by W0
ij ensures that

synapses that do not exist cannot potentiate into existence. Eq. (2.2) requires only the

first and second order joint spiking statistics. To facilitate calculations, many previous

studies have used Poisson neuron models with a specified ri and Cij(s) to generate yi(t). In

contrast, we will use a white noise-driven exponential integrate-and-fire model [137] for the

generation of spike times (Methods: Neuron and network model). While this complicates

the calculation of the spike train statistics, it provides a more biophysically realistic model

of neural dynamics [138, 139] that better captures the timescales and neuronal nonlinearities

that shape ri and Cij(s). In total, the above theory determines synaptic evolution from the

integrated combination of an STDP rule L(s) and the spike train cross-covariance function

Cij(s). Thus, any mechanism affecting two neurons’ spiking covariance is expected to shape

network structure through STDP.

As a simple illustration of how spiking correlations can drive STDP, we examined the

synaptic weight dynamics, W12(t) and W21(t), in a reciprocally coupled pair of neurons,

both in the presence and absence of common inputs. Specifically, the fluctuating input to

neuron i was the sum of a private and common term,
√

1− cξi(t) +
√
cξc(t), with c being

the fraction of shared input to the neurons. In the absence of common input (c = 0; Figure

2.2.1B), the two synapses behaved as expected with Hebbian STDP: one synapse potentiated

and the other depressed (Figure 2.2.1C). The presence of common input (c = 0.05) was a

source of synchrony in the two neurons’ spike trains, inducing a central peak in the spike

train cross-covariance function Cij(s) (Figure 2.2.1B vs 1D). In response to this increased

synchrony both synapses potentiated (Figure 2.2.1E), in contrast to the case with c = 0.

This was because of the sharp potentiation side of the learning rule compared to the the

depression side (Figure 2.2.1A), so that increased spike synchrony enhanced the degree of

overlap between Cij(s) and the potentiation component of L(s). This overcame the effects

of depression in the initially weaker synapse and promoted strong, bidirectional connectivity

in the two-neuron circuit.

This example highlights how the temporal shape of the spike train cross-covariance func-

tion, Cij(s), can interact with the shape of the learning rule, L(s), to direct STDP. However,
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Figure 2.1: Network structure shapes
synaptic plasticity. (A) The STDP rule,
L(s), is composed of exponential windows for
depression (-) and potentiation (+). Each is
defined by its amplitude f± and timescale
τ±. (B) Spike train cross-covariance func-
tion for a pair of neurons with no common
input, so that synapses between the two neu-
rons are the only source of spiking covari-
ance. Shaded lines: simulation, solid lines:
theory (Eq. (2.4)). (C,E) Synaptic weight
(peak EPSC amplitude) as a function of time
in the absence (C) and presence (E) of com-
mon input. (D) Spike train cross-covariance
function for a pair of neurons with common
input, c = 0.05. Common input was mod-
eled as an Ornstein-Uhlenbeck process with
a 5 ms timescale.

this case only considered the effect of correlated inputs from outside of the modeled circuit

(Figure 2.2.1). Our primary goal is to predict how spiking covariance due to internal network

interactions combines with STDP to drive self-organized network structure. In order to do

this, we first require a theory for predicting the spiking covariance between all neuron pairs

given a static, recurrent connectivity. Once this theory has been developed, we will use it to

study the case of plastic connectivity.
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2.2.2 Network architecture determines spiking covariance in static networks

In this section we review approximation methods [134, 135] that estimate the pairwise spike

train cross-covariances Cij(s) using a static weight matrix W (see Methods: Spiking statistics

for a more full description). The exposition is simplified if we consider the Fourier transform

of a spike train, yi(ω) =
∫∞
−∞ yi(t)e

−2πiωtdt, where ω is frequency. Assuming weak synaptic

connections Wij, we approximate the spike response from neuron i as:

yi(ω) = y0
i (ω) + Ai(ω)

(
N∑
j=1

WijJ(ω)yj(ω)

)
. (2.3)

The function Ai(ω) is the linear response [140] of the postsynaptic neuron, measuring how

strongly modulations in synaptic currents at frequency ω are transferred into modulations

of instantaneous firing rate about a background state y0
i . The function J(ω) is a synaptic

filter. In brief, Eq. (2.3) is a linear ansatz for how a neuron integrates and transforms a

realization of synaptic input into a spike train.

Following [134, 135, 136] we use this linear approximation to estimate the Fourier trans-

form of Cij(s), written as Cij(ω) = 〈yi(ω)y∗j (ω)〉; here y∗ denotes the conjugate transpose.

This yields the following matrix equation:

C(ω) =
(
I−

(
W ·K(ω)

))−1

C0(ω)
(
I−

(
W ·K(ω)

)∗)−1

, (2.4)

where K(ω) is an interaction matrix defined by Kij(ω) = Ai(ω)Jij(ω) and we use W ·K

to denote element-wise multiplication. The matrix C0(ω) is the covariance in the absence

of synaptic coupling, with elements C0
ij(ω) = 〈y0

i (ω)y0∗
j (ω)〉, and I is the identity matrix.

Using Eq. (2.4) we recover the matrix of spike train cross-covariance functions C(s) by

inverse Fourier transformation. Thus, Eq. (2.4) provides an estimate of the statistics of

pairwise spiking activity in the full network, taking into account the network structure. In

Appendix C we present an alternative, constructive derivation of Eq. (2.4).

As a demonstration of the theory, we examined the spiking covariances of three neurons

from a 1,000-neuron network (Figure 2.2A, colored neurons). The synaptic weight matrix

W was static and had an adjacency matrix W0 that was randomly generated with Erdös-

Rényi statistics (connection probability of 0.15). The neurons received no correlated input
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from outside the network, making C0(ω) a diagonal matrix, and thus recurrent network

interactions were the only source of spiking covariance. Neuron pairs that connected recip-

rocally with equal synaptic weights had temporally symmetric spike train cross-covariance

functions (Figure 2.2C), while unidirectional connections gave rise to temporally asymmetric

cross-covariances (Figure 2.2D). When neurons were not directly connected, their covariance

was weaker than that of directly connected neurons but was still nonzero (Figure 2.2E). The

theoretical estimate provided by Eq. (2.4) was in good agreement with estimates from direct

simulations of the network (Figure 2.2C,D,E red vs. gray curves).

Figure 2.2: Linear response theory for spiking covariances. (A) Illustration of the network
connectivity for a subset of 100 neurons. Three neurons, and the connections between them, are
highlighted. Nodes are positioned by the Fruchterman-Reingold force algorithm. (B) Example
voltage traces for the three highlighted neurons. (C-E) Spike train cross-covariance functions for
the three combinations of labeled neurons. Top: A shaded ellipse contains the pair of neurons
whose cross-covariance is shown. Shaded lines: simulations, red lines: linear response theory.
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2.2.3 Self-consistent theory for network structure and spiking covariance with

plastic synapses

In general, it is challenging to develop theoretical techniques for stochastic systems with

several variables and nonlinear coupling [140], such as in Eq. (2.2). Fortunately, in our

model the timescale of spiking covariance in the recurrent network with static synapses is

on the order of milliseconds (Figure 2.2C,D,E), while the timescale of plasticity is minutes

(Figure 2.2.1C,E). This separation of timescales provides an opportunity for a self-consistent

theory for the coevolution of C(s) and W(t). That is, so long as f± in Eq. (2.1) (the

individual changes in synaptic weights) are sufficiently small, the spike-train covariances

adjust instantaneously on the timescale of W, so that we can insert Eq. (2.4) into Eq. (2.2).

The resulting system yields a solution W(t) that captures the long timescale dynamics of

the plastic network structure (Methods: Self-consistent theory for network plasticity).

As a first illustration of our theory, we focus on the evolution of three synaptic weights

in a 1,000-neuron network (Figure 2.2.3A, colored arrows). The combination of Eqs. (2.2)

and (2.4) predicted the dynamics of W(t), whether the weight decreased with time (Figure

2.2.3B left, red curve), increased with time (Figure 2.2.3C left, red curve), or remained

approximately constant (Figure 2.2.3D left, red curve). In all three cases, the theory matched

well the average evolution of the synaptic weight estimated from direct simulations of the

spiking network (Figure 2.2.3B,C,D left, thick black curves). Snapshots of the network at

three time points (axis arrows in Figure 2.2.3B,C,D, left), showed that W coevolved with

the spiking covariance (Figure 2.2.3B,C,D right). We remark that for any realization of

background input y0(t), the synaptic weights W(t) deviated from their average value with

increasing spread (Figure 2.2.3B,C,D left, thin black curves). This is expected since C(t)

is an average over realizations of y0(t), and thus provides only a prediction for the drift

of W(t), while the stochastic nature of spike times leads to diffusion of W(t) around this

drift [109]. In sum, the fast-slow decomposition of spiking covariance and synaptic plasticity

provides a coherent theoretical framework to investigate the formation of network structure

through STDP.
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Figure 2.3: STDP in recurrent net-
works with internally generated spik-
ing covariance. (A) As in Fig. 2.2A.
(B-D) Left, Synaptic weight versus time for
each of the three synapses in the highlighted
network. Shaded lines: simulation, individ-
ual trials of the same initial network. Solid
black lines: simulation, trial-average. Solid
red lines: theory. Right, spike train cross-
covariances at the three time points marked
on the left (linear response theory). (E)
Histogram of synaptic weights at three time
points. Red, theory. Shaded: simulation.
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2.3 DISCUSSION

Our treatment is complementary to past studies on STDP that focused on the development of

architecture through external input [131, 132, 123, 141]. We restrict our analysis to networks

with only internally generated correlations (i.e. C0
ij(s) = 〈y0

i (t + s)y0
j (t)〉 = 0 for i 6= j),

and thus focus on the formation of self-organized structure through STDP. A consequence

of this modeling choice is low values of spiking correlations within the network: mean spike

count correlation coefficients computed from all pairs within the network were approximately

5 × 10−4, and when conditioned on cell pairs having a direct connection between them

were 4 × 10−3 (S1 Text, 2.5.1). These low values agree with reports from unanethesized

animals performing simple fixation task [142], or recordings restricted to cortical granule

layers [143, 144], however a large number of other studies report significantly higher mean

values of correlated activity [145].

There are several ways to increase the spiking correlations in our model. One is to assume

weak external correlations in the background state (i.e. C0
ij(s) = 〈y0

i (t + s)y0
j (t)〉 > 0 for

i 6= j); this has been the focus of several past studies [134, 135]. Another is to reduce

network size N to amplify any internally generated correlations within the network. When

the network size was reduced from 1,000 to 100 the mean spike count correlation increased

to 0.005 across all pairs and to 0.03 for directly coupled pairs (S1 Text, 2.5.1). Despite

these larger correlations, our self-consistent theory (Eqs. (2.2) and (2.4)) predicted well the

evolution of synaptic weights (S1 Fig, 2.5.2). This reduction in N also increased the speed

of learning by a factor of 10, however the separation of timescales required was still valid.

A recent suite of studies derived a theory for how STDP shapes the full structure of net-

works of neurons whose spike trains are Poisson processes [131, 141, 132, 100, 123, 133]. The

initial approach is similar to ours with a linear approximation to estimate spiking covariance

(see Eq. (2.3)-(2.4)). However, these studies mostly focused on the effects of external input,

considering how feedforward inputs entrain structure in recurrent synapses [141, 123, 132].

The only source of spiking covariance was inherited from external sources (meaning C0(s) has

off-diagonal structure), and subsequently filtered by the network to produce spiking covari-

ance. Two previous studies by the same authors also examined STDP in networks without
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external stimuli [131, 100]; these took a large system size limit (N →∞) and neglected the

contribution of spiking covariance to STDP, focusing on the firing rate dependence due to

an unbalanced learning rule.

While our theory gives an accurate description of plasticity in the network, it is never-

theless high-dimensional. Keeping track of every individual synaptic weight and spike train

cross-covariance function involves O(N2) variables. For large networks, this becomes com-

putationally challenging. More importantly, this high-dimensional theory does not provide

direct dynamical insights in the plasticity of connectivity patterns. In the next chapters,

we will develop principled approximations of the high-dimensional system to closed low-

dimensional theories describing the evolution of different types of structures within recurrent

networks.

2.4 METHODS

2.4.1 Neuron and network model

We model a network of N neurons. The membrane dynamics of individual neurons obey

the exponential integrate-and-fire (EIF) model [137], one of a class of models well-known to

capture the spike initiation dynamics and statistics of cortical neurons [138, 139]. Specifically,

the membrane voltage of neuron i evolves according to:

C
dVi
dt

= gL (VL − Vi) + gL∆ exp

(
Vi − VT

∆

)
+ Ii(t) +

N∑
j=1

Wij (Jij ∗ yj.) . (2.5)

The first term on the right-hand side is the leak current, with conductance gL and reversal

potential VL. The next term describes a phenomenological action potential with an initiation

threshold VT and steepness ∆: when the voltage reaches VT , it diverges; this divergence

marks an action potential. For numerical simulations, action potentials are thresholded at

V (t) = Vth, reset to a reset potential Vre and held there for an absolute refractory period τref .

The refractory period plays a role in shaping single-neuron input-output transfer, although

in the noise-driven regime we consider it may have little qualitative effect.
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Input from external sources not included in the model network is contained in Ii(t). We

model this as a Gaussian white noise process: Ii(t) = µ + gLσDξi(t). The mean of the the

external input current is µ. The parameter σ controls the strength of the noise and D =
√

2C
gL

scales the noise amplitude to be independent of the passive membrane time constant. With

this scaling, the infinitesimal variance of the passive membrane voltage is (gLσD)2.

The last term of Eq. (2.5) models synaptic interactions in the network. The N×N matrix

W contains the amplitudes of each synapse’s postsynaptic currents. It is a weighted version

of the binary adjacency matrix W0, where W0
ij = 1(0) indicates the presence (absence)

of a synapse from neuron j onto neuron i. If a synapse ij is present then Wij denotes

its strength. Due to synaptic plasticity, W is dynamic: it changes in time as individual

synapses potentiate or depress. The spike train from neuron j is the point process yj(t) =∑
k δ(t − tkj ), where tkj denotes the kth spike time from neuron j. The N × N matrix J(t)

defines the shape of the postsynaptic currents. In this study, we use exponential synapses:

Jij(t− tkj ) = H(t− tkj ) exp
(
− t−tkj

τS

)
, where H(t) is the Heaviside step function. Our theory is

not exclusive to the EIF model or to the simple synaptic kernels we used; similar methods can

be used with any integrate-and-fire model and arbitrary synaptic kernels. Model parameters

are contained in Table 2.1 (unless specified otherwise in the text). In simulations, we took

all synapses to initially have the same weight.

2.4.2 Learning dynamics

We now derive Eq. (2.2), summarizing a key result of [109]. Changes in a synaptic weight

Wij are governed by the learning rule L(s), Eq. (2.1). We begin by considering the total

change in synaptic weight during an interval of length T ms:

∆Wij = W0
ij

∫ t+T

t

∫ t+T

t

L(t′′ − t′)yj(t′′)yi(t′)dt′′dt′ (2.6)

where multiplying by the corresponding element of the adjacency matrix ensures that nonex-

istent synapses do not potentiate into existence. Consider the trial-averaged rate of change:

〈∆Wij〉
T

= W0
ij

1

T

∫ t+T

t

∫ t+T−t′

t−t′
L(s)〈yj(t′ + s)yi(t

′)〉dsdt′ (2.7)
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Table 2.1: Model parameters

Parameter Description Value

C Membrane capacitance 1 µF/cm2

gL Leak conductance 0.1mS/cm2

VL Leak reversal potential -72 mV

∆ Action potential steepness 1.4 mV

VT Action potential initiation threshold -48 mV

Vth Action potential threshold 30 mV

Vre Action potential reset -72 mV

τref Action potential width 2 ms

µ External input mean 1 µA/cm2

σ External input standard deviation 9 mV

N Number of neurons 1000

p0 Connection density .15

Wmax Maximum synaptic weight 5µA/cm2

τS Synaptic time constant 5 ms

where s = t′′ − t′ and 〈·〉 denotes the trial average. We first note that this contains the

definition of the trial-averaged spike train cross-covariance:

Cij(s) =
1

T

∫ t+T

t

〈yj(t′ + s)yi(t
′)〉dt′ − rirj (2.8)

where ri is the time-averaged firing rate of neuron i and subtracting off the product of the

rates corrects for chance spike coincidences. Inserting this definition into Eq. (2.7) yields:

〈∆Wij〉
T

= W0
ij

∫ t+T−t′

t−t′
L(s) (rirj + Cij(s)) ds (2.9)

We then take the amplitude of individual changes in the synaptic weights to be small:

f+, f− << Wmax, where τ± define the temporal shape of the STDP rule (see Eq. (2.1)). In
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this case, changes in the weights occur on a slower timescale than the width of the learning

rule. Taking T >> max (τ+, τ−) allows us to extend the limits of integration in Eq. (2.9) to

±∞, which gives Eq. (2.2). Note that in the results we have dropped the angle brackets for

convenience. This can also be justified by the fact that the plasticity is self-averaging, since

∆Wij depends on the integrated changes over the period T .

2.4.3 Spiking statistics

In order to calculate dWij/dt, we need to know the firing rates ri, rj and spike train cross-

covariance Cij(s) (Eq. (2.2)). We take the weights to be constant on the fast timescale of

s, so that the firing rates and spike train cross-covariances are stationary on that timescale.

We solve for the baseline firing rates in the network via the self-consistency relationship

ri = ri(µ
eff
i , σ),where

µeff
i = µ+

∑
j

(∫ ∞
−∞

Jij(t)dt

)
Wijrj

for i = 1, . . . , N . This gives the equilibrium state of each neuron’s activity. In order to

calculate the spike train cross-covariances, we must consider temporal fluctuations around

the baseline firing rates.

With sufficiently weak synapses compared to the background input, we can linearize each

neuron’s activity around the baseline state. Rather than linearizing each neuron’s firing

rate around ri, we follow [134, 135, 136] and linearize each neuron’s spike train around a

realization of background activity, the uncoupled spike train y0
i (Eq. (2.3)). The perturbation

around the background activity is given by each neuron’s linear response function, Ai(t),

which measures the amplitude of firing rate fluctuations in response to perturbations of each

neuron’s input around the baseline µeff
i . We calculate A(t) using standard methods based

on Fokker-Planck theory for the distribution of a neuron’s membrane potential [146, 147].

This yields Eq. (2.3), approximating a realization of each neuron’s spike train as a mixed

point and continuous process. Spike trains are defined, however, as pure point processes.

Fortunately, Eq. (2.2) shows that we do not need a prediction of individual spike train
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realizations, but rather of the trial-averaged spiking statistics. We can solve Eq. (2.3) for

the spike trains in the frequency domain as:

y(ω) = (I− (W ·K(ω)))−1 y0(ω)

where as in the Results, K(ω) is an interaction matrix defined by Kij(ω) = Ai(ω)Jij(ω)

and · denotes the element-wise product. Averaging this expression over realizations of the

background spike trains yields a linear equation for the instantaneous firing rates. Averaging

the spike trains y against each other yields the full cross-covariance matrix, Eq. (2.4). It

depends on the coupling strengths W, the synaptic filters Jij and neurons’ linear response

functions A, and the covariance of the baseline spike trains, C0.

We can calculate the baseline covariance in the frequency domain, C0(ω) = 〈y0y0∗〉, by

first noting that it is a diagonal matrix containing each neuron’s spike train power spectrum.

We calculate these using the renewal relationship between the spike train power spectrum

C0(ω) and the first passage time density [148]; the first passage time density for nonlinear

integrate and fire models can be calculated using similar methods as for the linear response

functions [147].

2.4.4 Self-consistent theory for network plasticity

We solve the system Eqs. (2.2),(2.4) for the evolution of each synaptic weight with the

Euler method with a time step of 100 seconds. At every time step of the plasticity, each

neuron’s activity is re-linearized and the firing rates and spike train covariances recomputed.

A package of code for solving the self-consistent theory and running the spiking simulations,

in MATLAB and C, is available at http://sites.google.com/site/gabrielkochocker/code. Ad-

ditional code is available on request.
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2.5 SUPPLEMENTARY INFORMATION

2.5.1 S1 Text: Magnitude of spike count correlations

Here we compute spike count correlations for the studied networks. A spike count from

neuron i, nTi (t) is the number of spikes occurring within the window (t, t+T ). The covariance

of neuron i and j’s spike counts is

Cov(nTi , n
T
j ) = 〈nTi nTj 〉 − 〈nTi 〉〈nTj 〉, (2.10)

where 〈·〉 denotes an average over trials. The variance of neuron i’s spike count is Var(nTi ) =

Cov(nTi , n
T
i ). The correlation coefficient of spike counts is

Corr(nTi , n
T
j ) =

Cov(nTi , n
T
j )√

Var(nTi )Var(nTj )
(2.11)

Here, we estimate spike count correlations by computing Cov(nTi , n
T
j ) via the renewal relation

[148]:

Cov(nTi , n
T
j ) =

∫ T

−T
Cij(s) (T − |s|) ds− rirj. (2.12)

and similar for Var(nTi ). We examine this estimate for the average spike count correlation

(over pairs of neurons in the network) as a function of window size. For the internally

generated covariability in the main paper, spike count correlations are low (S1 Figure 1A,

2.5.2).

Here, we write the linear response theory with external input correlations, for complete-

ness. Specifically the fluctuating external input to each neuron was the sum of a private

term and a globally shared term, gLσD
(√

(1− c)ξi(t) +
√
cξc(t)

)
(here, ξi(t) and ξc(t) are

Gaussian white noise of unit intensity and gL, σ and D defined as in Methods). The covari-

ance matrix of the external inputs was Cext, with Cext
ij = cgLσD for i 6= j and Cext

ii = 1.

With correlated external inputs, the full spike-train cross-covariance matrix is given (in the

Fourier domain) by [136]

C(ω) =
(
I−

(
W ·K(ω)

))−1(
C0(ω) + A(ω)Cext(ω)A∗(ω)

)(
I−

(
W ·K∗(ω)

))−1

(2.13)
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As in the main text, W is the weight matrix, Kij(ω) = Ai(ω)Jij(ω) is the effective interaction

matrix, A(ω) is a diagonal matrix containing the linear response function of each neuron.

In the main text, what we refer to as the ”baseline correlation” here corresponds to C0(ω) +

A(ω)Cext(ω)A∗(ω).
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Figure 2.4: Magnitude of spike count correlations. Average spike count correlation as a
function of the counting window size. (A) the network of Fig. 2.2. Spike count correlations are
computed via the renewal relation, Eq. (2.12) using the first-order truncated approximation of
the spike train cross-covariance function, Eq. (3.3). (B) A network of 100 neurons, with Wmax

increased by a factor of 10. Red, average spike count correlation across all pairs of neurons. Black,
average spike count correlation in monosynaptically connected pairs.

Expanding the spike-train covariances in powers of the interactions K and truncating

at first order yields the approximation Eq. (3.3). We compare the spike count correlations

for the N = 1000 network of Figure 2 in the main text to a network with N = 100 and

synaptic weights (Wmax) increased by a factor of 10 (Figure 2.5.1). As in Figs. 2.2 and

2.2.3, this network was generated with Erdös-Rényi adjacency matrix and all weights had

the same initial value, Wmax ∗ .6 In this smaller network, with stronger synaptic weights,

spike count correlations were larger, with an average long-window correlation of .005, and

.03 in monosynaptically connected pairs.
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2.5.2 S1 Fig: Plasticity in networks with larger correlations
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Figure 2.5: Plasticity in a network of
100 neurons. Here we examine synaptic
plasticity in the N = 100 network of Fig-
ure 2.5.1B. As an illustration, we embed the
same three-neuron microcircuit as in Figs 2
and 3 of the main text into this network
and examine the evolution of its synaptic
weights and spike-train covariances . (A-C)
Left, Synaptic weight versus time for each
of the three synapses in the highlighted mi-
crocircuit of Figs. 2,3. Thin lines: simula-
tion, individual trials of the same initial net-
work. Thick black lines: simulation, trial-
average. Thick red lines: theory. Right,
spike train cross-covariances at the beginning
and endpoints (linear response theory). (D)
Histogram of synaptic weights at three time
points. Red, theory. Black: simulation.
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3.0 SPIKE TIMING-DEPENDENT PLASTICITY OF TWO-SYNAPSE

MOTIFS

3.1 INTRODUCTION

The wiring of neuronal networks exhibits structure across a broad range of spatial scales [149].

For example, patterns of connectivity among small groups of cortical neurons are over- or

under-represented compared to random networks [150, 151, 91, 152]. The prevalence of these

motifs is related to neurons’ stimulus preferences and activity levels [153, 154]. Motivated in

part by these observations, there is a growing body of theoretical work that discusses how

wiring structure dictates the coordinated spiking activity of cortical neurons in recurrent

networks [155, 156, 157, 158, 159, 160, 161, 136, 162, 163, 110].

In the previous chapter, we developed a method for predicting the plasticity of individual

synapses in networks of simple model neurons. We now use that to derive a low-dimensional,

closed theory for STDP of two-synapse connectivity motifs in recurrent networks. This

reveals instabilities in the motif dynamics such that when potentiation and depression are

approximately balanced, the dynamics is partitioned into regimes in which different motifs

are promoted or suppressed depending on the initial network structure. It also highlights

the circumstances in which spike time covariations, in contrast to firing rates, drive STDP.

In total, we provide a consistent and general framework in which to study STDP in large

recurrent networks.
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3.2 RESULTS

While the theory of Chapter 2 gives an accurate description of plasticity in the network,

it is nevertheless high-dimensional. Keeping track of every individual synaptic weight and

spike train cross-covariance function involves O(N2) variables. For large networks, this

becomes computationally challenging. More importantly, this high-dimensional theory does

not provide insights into the plasticity of the connectivity patterns or motifs that are observed

in cortical networks [91, 151]. Motifs involving two or more neurons represent correlations

in the network’s weight matrix, which cannot be described by a straightforward application

of mean-field techniques. In this chapter, we develop a principled approximation of the

full weight dynamics to a closed low-dimensional theory for how the mean weight and the

strength of two-synapse motifs evolve due to STDP.

3.2.1 Dynamics of mean synaptic weight

We begin by considering the simple case of a network with unstructured weights. Analogous

to having an Erdös-Rényi adjacency matrix W0, we take there to be no second- or higher-

order correlations in the weight matrix W. In this case, we can consider only the mean

synaptic weight, p:

p =
1

N2

∑
i,j

Wij. (3.1)

In order to calculate the dynamics of p, we insert the fast-slow STDP theory of Eq. (2.2)

into Eq. (3.1):
dp

dt
=

1

N2

∑
i,j

W0
ij

∫ ∞
−∞

L(s)
(
rirj + Cij(s)

)
ds, (3.2)

where the spiking covariances are calculated using linear response theory (Eq. (2.4)). This

equation depends on the network structure in two ways. First, it depends on the full adja-

cency matrix W0. Multiplying by W0
ij inside the average here prevents additional synapses

from forming, so that we only consider the efficacy of synapses that exist, not the formation

of new ones. Second, the spike train cross-covariances depend on the full weight matrix:

Cij(s) = Cij(s; W). This dependence of a first–order connectivity statistic on the network

structure poses a challenge for the development of a closed theory.
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The main steps in our approach here are two approximations. First, the matrix of spike

train cross-covariances C(s) obtained from our linear ansatz (Eq. (2.4)) can be expanded

in a power series around the background cross-covariances C0(s) (see Eq. (C.4)). Powers

of the interaction matrix K in this series correspond to different lengths of paths through

the network [160, 136]. (As in Chapter 2, elements of K are given by postsynaptic neurons’

linear response functions and the synaptic filters for pre-post transmission.) We truncate

the spiking covariances at length one paths to obtain:

Cij(s) ≈
(
WijKij ∗C0

jj

)
(s)︸ ︷︷ ︸

forward

+
(
C0
ii ∗WjiK

−
ji

)
(s)︸ ︷︷ ︸

backward

+
∑
k

(
WikKik ∗C0

kk ∗WjkK
−
jk

)
(s)︸ ︷︷ ︸

common

,

(3.3)

where ∗ denotes convolution and K−ji(t
′) = Kji(−t′). This truncation separates the sources

of covariance between the spiking of neurons i and j into direct forward (i ← j) and back-

ward (i → j) connections, and common (k → i and k → j) inputs. Nevertheless, after

truncating C(s), the mean synaptic weight still depends on higher-order connectivity motifs

(Eq. (3.23)). Fortunately, for weak connections, these higher-order terms do not contribute

substantially to overall spiking covariance (S2 Fig, 3.6.2). This is especially true when we

consider the covariance integrated against the plasticity rule L(s) (difference of 6% between

full and truncated covariance).

The second approximation is to ignore the bounds on the synaptic weight in Eq. (2.1).

While this results in a theory that only captures the transient dynamics of W(t), it greatly

simplifies the derivation of the low-dimensional dynamics of motifs, because dynamics along

the boundary surface are not considered.

With these two approximations, the mean synaptic weight obeys:

dp

dt
= r2S

1

N2

∑
i,j

W0
ij + SF

1

N2

∑
i,j

W0
ijWij + SB

1

N2

∑
i,j

W0
ijWji + SC

1

N2

∑
i,j,k

W0
ijWikWjk.

(3.4)

The first term on the right hand side of Eq. (3.4) is scaled by S =
∫∞
−∞ L(s)ds, modeling the

interaction between STDP and the mean firing rate, r, across the network. This captures

STDP due to chance spiking coincidence and drives either net potentiation (S > 0) or

depression (S < 0). The remaining terms capture how synaptic weights interact with the
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temporal structure of spiking covariance. Because of the expansion in Eq. (3.3), these

dependencies decompose into three terms, each scaled by the integral of the product of the

STDP rule L(s) and a component of the spike train cross-covariance C(s). Specifically,

covariance due to forward connections is represented by SF (Eq. (3.27); Figure 3.1A),

covariance due to backward (reciprocal) connections is represented by SB (Eq. (3.28); Figure

3.1B), and finally covariance due to common connections is represented by SC (Eq. (3.29);

Figure 3.1C).

For a network with unstructured weights, each sum in Eq. (3.4) can be simplified. Let

p0 = 1
N2

∑
i,j W0

ij be the connection density of the network. Since our theory for spiking

covariances required weak synapses, we also explicitly scaled the weights, motifs, and ampli-

tude of synaptic changes f± by ε = 1/(Np0). This ensured that as the connection probability

p0 was varied, synaptic weights scaled to keep the total input to a neuron constant (neglect-

ing plasticity). The first and second terms of Eq. (3.4) correspond to the definitions of p0

and p. Since different elements of W0 and W are uncorrelated, the third term reduces to

1
N2

∑
i,j W0

ijWji = εpp0 + O(ε3/2) due to the central limit theorem. The last term can be

similarly evaluated and the dynamics of p to first order in ε reduce to:

dp

dt
= p0r

2S + ε
(
p (SF + p0SB) + p2SC

)
. (3.5)

The contribution of forwards (monosynaptic) connections is SFp - it depends on the average

strength of synapses. The contribution of reciprocal synapses is pp0SB because it is condi-

tioned on the existence of a forwards connection. We next study this mean-field theory in

two regimes, before examining the plasticity of networks that exhibit motif structure.

3.2.2 Unbalanced STDP of the mean synaptic weight

Eq. (3.5) contains one term proportional to the product of firing rates and the integral of

the STDP rule, r2S, and additional terms proportional to the small parameter ε. When the

learning rule, L(s), is dominated by either depression or potentiation (so that S ∼ O(1)� ε)

the whole network either uniformly depresses (Figure 3.2A,C) or potentiates (Figure 3.2B,D)

due to chance spike coincidences (the firing rate term dominates in Eq. (2.2)). These
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Figure 3.1: Different sources of spiking covariance interact with different parts of
the STDP rule.] Black: STDP rule. Red: spike train cross-covariances, from Eq. (3.3). (A)
Covariance from forward connections interacts with the potentiation side of the STDP rule. (B)
Covariance from backward connections interacts with the depression side of the STDP rule. (C)
Covariance from common input is temporally symmetric and interacts with both the potentiation
and depression sides of the STDP rule.

dynamics is straightforward at the level of individual synapses and this intuition carries

over to the mean synaptic weight. When the STDP rule is dominated by potentiation

or depression, the O(ε) terms in Eq. (3.5) are negligible; the average plasticity is solely

determined by the firing rates, with spiking covariance playing no role. In this case, the
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leading-order dynamics of p are:

p(t) = p0r
2St+ p(0), (3.6)

so that the mean synaptic weight either potentiates to its upper bound p0W
max or depresses

to 0, depending on whether the integral of the STDP rule, S, is positive or negative. (We

neglected bounds on individual synaptic weights to derive the dynamics. Here we reimpose

bounds on the mean synaptic weight, although Eq. (3.5) only describes transient dynamics

of W.) For both depression- and potentiation-dominated STDP rules, our simple theory

in Eq. (3.6) quantitatively matches p(t) estimated from simulations of the entire network

(Figure 3.2C,D, black vs. red curves).

Figure 3.2: Unbalanced plasticity gives rise to simple weight dynamics. (A) Depression-
dominated STDP rule: the amount of depression (integral of the depression side of the curve) is
twice the amount of potentiation. (B) Potentiation-dominated STDP rule: the amount of potentia-
tion is twice the amount of depression. (C) Evolution of synaptic weights with depression-dominated
STDP: all weights depress. (D) Evolution of synaptic weights with potentiation-dominated STDP:
all weights potentiate. Red lines: theory for mean synaptic weight. Shaded lines: simulation of
individual synaptic weights.
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3.2.3 Balanced STDP of the mean synaptic weight

On the other hand, if there is a balance between potentiation and depression in the STDP

rule L(s), then spiking covariance affects the average plasticity. In order to make explicit the

balance between potentiation and depression, we write S = ±δε (with +δε for STDP with

the balance tilted in favor of potentiation and −δε for balance tilted in favor of depression).

The leading-order dynamics of p are then, for networks without motif structure,

1

ε

dp

dt
= ±δp0r

2 + p (SF + p0SB) + p2SC . (3.7)

This quadratic equation admits up to two fixed points for p. We begin by examining the

dynamics of p for the case perfectly balanced potentiation and depression (δ = 0) and a

realistic shape of the STDP curve, and then consider the case of δ 6= 0.

Experimentally measured STDP rules in cortex often show f+ > f− and τ+ < τ− [42, 38],

making potentiation windows sharper and higher-amplitude than depression windows. In

this case, the STDP-weighted covariance from forward connections, SF > 0, is greater in

magnitude than those from backward connections, SB < 0 (Figure 3.1A,B). Since 0 ≤ p0 ≤ 1,

SF +p0SB > 0. Furthermore, since the covariance from common input decays symmetrically

around time lag s = 0 (Figure 3.1C), we have that SC > 0. Consequently, when δ = 0, all

terms in Eq. (3.7) are positive and p potentiates to p0W
max.

We next consider the case of imperfectly balanced STDP, with δ = .1. For potentiation-

dominated balanced STDP, +δε, again all terms in Eq. (3.7) are positive and p potentiates

to p0W
max (Figure 3.3A). However, with depression-dominated balanced STDP (−δε in Eq.

(3.7)) p has two fixed points, at:

p =
− (SF + p0SB)±

√
(SF + p0SB)2 + 4δp0r2SC

2SC
. (3.8)

Since SF + p0SB > 0 and SC > 0 because of our assumptions on f± and τ±, the term inside

the square root is positive, making one fixed point is positive and the other negative. The

positive fixed point is unstable and, if within [0, p0W
max], it provides a separatrix between

potentiation and depression of p (Figure 3.3B). This separatrix arises from the competition
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between potentiation (due to forward connections and common input) and depression (due

to reciprocal connections and firing rates).

Examination of Eq. (3.8) shows competing effects of increasing the connection density p0:

the SF +p0SB terms decrease, while the 4δp0r
2SC term increases. The latter effect dominates

for the positive fixed point, raising the separatrix between potentiation and depression as

p0 increases. So the mean synaptic weight of sparsely connected networks (small p0) have a

propensity to potentiate, while more densely connected networks (large p0) are more likely

to depress (Figure 3.3B).

In total, we see that a slight propensity for depression can impose bistability on the mean

synaptic weight. In this case, a network with an initially strong mean synaptic weight p(0)

can overcome depression and strengthen synaptic wiring, while a network with the same

STDP rule and connection probability but with an initially weak mean synaptic weight

will exhibit depression. In the next section we will show that similar separatrices exist in

structured networks and govern the plasticity of different motifs.

3.2.4 Motif dynamics

We now consider networks that have structure at the level of motifs, so that different patterns

of connectivity may be over- or under-represented compared to unstructured networks. We

begin by defining the weighted two-synapse motif variables:

qdiv =
1

N3

∑
i,j,k

WikWjk − p2,

qcon =
1

N3

∑
i,j,k

WikWij − p2,

qch =
1

N3

∑
i,j,k

WijWjk − p2.

(3.9)

The variables qdiv, qcon and qch, respectively, measure the strength of divergent, convergent,

and chain motifs. A divergent motif consists of one neuron, k, projecting to two others, i

and j. A convergent motif consists of two neurons, k and j, projecting to a third, i. A chain

consists of one neuron k, projecting to a second neuron j, which projects to a third neuron

i.
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Figure 3.3: Balanced plasticity of the mean synaptic weight. (A) When the STDP rule is
balanced and potentiation-dominated, the unstable fixed point for p is negative and decreases with
the connection probability. (B) When the STDP rule is balanced and depression-dominated, the
unstable fixed point is positive and increases with the connection probability. (A,B) Left: Dashed
lines mark bounds for the mean synaptic weight, at 0 and p0W

max. Black curves track the location
of the unstable fixed point of p as the connection probability, p0, varies. Black dots mark initial
conditions for the right panels. (A,B) Right: Dynamics of the mean synaptic weight in each of the
regimes of the left plots. Red lines mark the reduced theory’s prediction (Eq. (3.5)) and shaded
lines the result of simulating the full spiking network (10 trials are plotted individually; they lie
within line thickness of each other). Note that the ordinate axis has different limits in the left and
right sides of the figure.
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For each variable, we subtract the expected value of the sum in a network with uncor-

related weights, p2, so that the qs measure above- or below-chance levels of structure in

the network. Since these variables depend on the strength of both synapses making up the

motif, we will refer to them as motif strengths. Motif strengths are also related to neurons’

(weighted) in- and out-degrees (the total strength of incoming or outgoing synapses for each

neuron). The variables qdiv and qcon are proportional to the variance of neurons’ in- and

out-degrees, while qch, on the other hand, is proportional to the covariance of neurons’ in-

and out-degrees. This can be seen by taking the definitions of these motifs, Eq. (3.9), and

first summing over the indices i, j. This puts the sum in qdiv, for example, in the form of a

sum over neurons’ squared out-degrees.

We remark that motif strengths (q) are separate from motif frequencies (q0). Motif

frequencies have analogous definitions to Eq. (3.9), but use the adjacency matrix W0 instead

of the weight matrix W (Eq. (3.16)). It is clear that, for instance, qdiv 6= qdiv
0 , although

they would be proportional to one another if all weights Wij were equal. An Erdös-Rényi

network has an adjacency matrix W0 with negligible motif frequencies. To avoid confusion,

we refer to a network with negligible motif strengths as an unstructured network.

We wish to examine the joint dynamics of the mean synaptic weight p and the motif

strengths. We insert the fast-slow STDP theory of Eq. (2.2) into the definitions of p (Eq.

(3.1)) and the three qs (Eq. (3.9)). Similarly to Eq. (3.5), the dynamics of motifs qdiv(t),

qcon(t), and qch(t) then depend on the full network structure, W. This dependence of first-

and second-order connectivity statistics on the network structure poses a challenge for the

development of a closed theory for the dynamics of motifs. The main steps in developing

such a theory are the two approximations we used to develop Eq. (3.5), as well as one more.

As in the previous sections, our first approximation is to truncate the spike-train covari-

ances at length one paths through the network. This removes the dependency of the dynamics

on longer paths through the network. Nevertheless, after truncating C(s), the first- (p) and

second-order (qdiv, qcon, qch) motifs still depend on higher-order motifs (Eq. (3.4)). This is

because of coupling between lower and higher-order moments of the connectivity matrix W

(see Eqs. (3.23)-(3.25)) and presents a significant complication.

In order to close the dynamics at one- and two-synapse motifs, our new approximation
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follows [162], and we rewrite higher-order motifs as combinations of individual synapses and

two-synapse motifs (see Eqs. (3.30)-(3.31)). For the mean synaptic weight, for example, one

third-order motif appears due to the common input term of the spike-train covariances (Eq.

(3.4)). We break up this three-synapse motif into all possible combinations of two-synapse

motifs and individual connections, estimating its strength as:

1

N3

∑
i,j,k

W0
ijWikWjk ≈

(
p0

(
qdiv + p2

)
+ p

(
qcon

X + qch,B
X

))
. (3.10)

This corresponds to assuming that there are no third- or higher-order correlations in the

weight matrix beyond those due to second-order correlations; three- and more-synapse motifs

are represented only as much as would be expected given the two-synapse motif strengths.

(We assume that all of the third- and higher-order cumulants of the weight and adjancency

matrices that we encounter are zero.) This allows us to close the motif dynamics at two-

synapse motifs. However, two new motifs appear in Eq. (3.10), qcon
X and qch,B

X . The subscript

X denotes that these motifs are mixed between the weight and adjacency matrices, measuring

the strength of individual connections conditioned on their being part of a particular motif.

qcon
X corresponds to the strength of connections conditioned on being part of a convergent

motif and qch,B
X to the strength of connections conditioned on the postsynaptic neuron making

another synapse in a chain (Eq. (3.17)). As in previous sections, the final approximation is

to ignore the bounds on the synaptic weight in Eq. (2.1), so that our theory only captures

the transient dynamics of W(t).

These approximations allow us (see Eqs. (3.20), (3.23), and (3.32)) to rewrite the dy-

namics of the mean synaptic weight p as:

dp

dt
= p0r

2S + ε

[
pSF + (qrec

X + p0p)SB +
1

p0

(
p0

(
qdiv + p2

)
+ p

(
qcon

X + qch,B
X

))
SC

]
. (3.11)

The parameters S, SF , SB and SC are as defined in the previous section. Note that we

recover Eq. (3.5) when all q’s vanish (i.e. an unstructured network). When the network

contains motif structure (q 6= 0), the dynamics of p contain new terms. In Eq. (3.11),

the influence of forward connections through SF is again proportional to the mean synaptic

weight p. In contrast, the influence of backward connections SB must interact with the new

variable qrec
X , which measures the mean strength of connections conditioned on their being
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part of a reciprocal loop (i.e. the strength of a backwards connection, conditioned on the

existence of the forward one). As described above (Eq. (3.10)), the covariance from common

input SC involves p, the divergent motif, qdiv, as well as terms conditioned on weights being

part of a convergent motif, qcon
X , or on the postsynaptic neuron making another synapse in

a chain, qch,B
X . The definitions for the mixed motifs, the qXs, are given in Eqs. (3.17). In

total, the dynamics of mean synaptic weight cannot be written as a single closed equation,

but also requires knowledge of how the second order motifs evolve.

Fortunately, using a similar approach dynamical equations can be derived for each of

the two-synapse motifs qdiv, qcov, and qch (Eqs. (3.33)-(3.35)). To close the system we

require dynamics for five mixed motifs, qcon
X , qdiv

X , qrec
X , qch,A

X , and qch,B
X (Eqs. (3.36)-(3.40)).

In total, this yields an autonomous 9-dimensional system of nonlinear differential equations

describing the population-averaged plasticity of first- and second-order network structure.

We have derived these equations in the absence of common external inputs to the neurons;

the theory can easily be extended to this case by including external covariance in Eq. (3.3)

(replacing C0 with (C0 + Cext), where Cext is the covariance matrix of the inputs).

When the network structure W0 is approximately Erdös-Rényi, the motif frequencies

q0 are O
(
N−3/2

)
= O

(
ε3/2
)
. (Since they are proportional to the variance of neurons’ in-

and out-degrees, which for Erdös-Rényi networks are binominally distributed.) If we further

assume initial conditions for the motif strengths and the mixed motifs to be unstructured

(q(0) ∼ O
(
ε3/2
)

for all motifs), then we also have dqX/dt ∼ O
(
ε3/2
)

and dqX/dt ∼ O
(
ε3/2
)

for each motif. In this case we can neglect, to leading order, the motifs entirely. Here the

leading order dynamics simplify tremendously, and are restricted to the set {p(t), qdiv =

qcon = qch = qrec
X = qcon

X = qdiv
X = qch,A

X = qch,B
X = 0}. Since the motif variables are zero the

set corresponds to an unstructured network. Furthermore, since the leading order dynamics

of the motif variables are zero this is an invariant set. The dynamics of p(t) then collapse to

those given by Eq. (3.5), which we have already examined (Figs 5 and 6).

The stability of that invariant set, however, remains to be determined. For finite N ,

the motif frequencies q0 will be non-zero even for (approximately) Erdös-Rényi networks. In

this case we may consider the full system Eqs. (3.32)-(3.40). In particular, the dynamics

of the full system can be studied to determine the stability, or lack thereof, of the initial
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unstructured synaptic weights.

We refer to the mean field theory of Eqs. (3.32)-(3.40) as the motif dynamics for a recur-

rent network with STDP. This theory accurately predicts the transient dynamics of the one-

and two-synapse motifs of the full stochastic spiking network (Figure 3.4, compare red versus

thin black curves), owing to significant drift compared to diffusion in the weight dynamics

and these network-averaged motif strengths. The derivation and successful application of

this reduced theory to a large spiking network is a central result of our study. However, recall

that our theory requires the overall synaptic weights to be small so that our linear response

ansatz remains valid. Thus, as expected, our theoretical predictions for the evolution of

motif structure fail for sufficiently large initial mean synaptic weight p(0) (S2 Text, 3.6.1).

This is because for large recurrent weights the firing rate dynamics become unstable, and

linearization about a background state is not possible.

Our theory captures several nontrivial aspects of the evolution of network structure.

First, while the STDP rule is in the depression-dominated regime (S < 0 for the simulations

in Figure 3.4), the mean synaptic weight p nevertheless grows (Figure 3.4A). Second, both

divergent and convergent connections, qdiv and qcon, grow above what is expected for an

unstructured network (Figure 3.4B,C); however, at the expense of chain connections qch

which decay (Figure 3.4G). The combination of these results show that for this STDP rule

L(s), the unstructured network is not stable, and spontaneous structure forms slowly over

time. In the subsequent sections, we leverage the simplicity of our reduced theory to gain

insight into how the STDP rule interacts with recurrent architecture to drive motif dynamics.

3.2.5 Unbalanced STDP of two-synapse motifs

When the STDP rule is dominated by potentiation or depression so that S ∼ O(1) � ε,

then the O(ε) terms in Eqs. (3.33)-(3.40) are negligible. In this case each motif’s plasticity

is solely determined by the firing rates, with spiking covariance playing no role. Here the
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Figure 3.4: Reduced theory for the plasticity of two-synapse motifs. In each panel, the
strength of a different motif or mixed motif is plotted as it evolves. Red: theoretical prediction
(Eqs. (3.32)-(3.40)). Shaded lines: individual trials of the same initial network. (A) Mean synaptic
weight. (B) Divergent motifs. (C) Convergent motifs. (D) Mixed recurrent motifs (strength of
connections conditioned on their being part of a two-synapse loop). (E) Mixed divergent motifs
(strength of individual synapses conditioned on their being part of a divergent motif). (F) Mixed
convergent motifs. (G) Chain motifs. (H) Mixed chains type A (strength of individual synapses
conditioned on their being the first in a chain). (I) Mixed chains type B (strength of individual
synapses conditioned on their being the second in a chain). The STDP rule was in the depression-
dominated balanced regime, as in Fig. 7B.
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motif dynamics is simply:
dp

dt
= p0r

2S +O(ε)

dqα

dt
= 2r2SqαX +O(ε)

dqαX
dt

= r2Sqα0 +O(ε)

(3.12)

for α = div, con, or ch (and taking qch
X =

(
qch,A

X + qch,B
X

)
/2 in the second equation - A

and B refer to the strength of connections conditioned on, respectively, the presynaptic

neuron receiving a connection or the postsynaptic neuron making another connection). The

dynamics of p are the same here as for the unstructured case above; we include it for

completeness. Dropping order ε terms gives the simple solutions:

p(t) = p0r
2St+ p(0)

qα(t) = qα(0) + qαX(0)r2St+
1

2
qα0
(
r2S
)2
t2

(3.13)

for α = div, con, or ch (Methods: Unbalanced STDP). As stated previously, with S ∼ O(1),

individual synapses uniformly potentiate or depress (Figure 3.2). This is reflected in the

linear decay or growth (for depression- or potentiation-dominated L(s), respectively) of p

with r2 and quadratic amplification of baseline motif frequencies for the two-synapse motif

strengths.

3.2.6 Balanced STDP of two-synapse motifs

Now we turn our attention to how internally generated spiking covariance interacts with

balanced STDP to control motifs (examining the dynamics of Eqs. (3.32)-(3.40)). As before,

we consider STDP rules with sharper windows for potentiation than depression (τ+ < τ−

and f+ > f−). Each two-synapse motif can have a nullcline surface in the nine-dimensional

motif space. These nullclines define a threshold for the promotion or suppression of the

corresponding motif, analogous to the case on the unstructured invariant set (Figure 3.4).

We illustrate this by examining the dynamics in the
(
qdiv, qcon

)
plane. For STDP rules with a

balance tilted towards depression (−δε), the nullclines provided thresholds for the promotion

or suppression of divergent or convergent motifs (Figure 3.5A, blue lines). The flow in this

slice of the motif space predicted the motif dynamics well (Figure 3.5A, compare individual

45



realizations of the full spiking network – thin black lines – to the flow defined by the vector

field of the reduced motif system).

On the other hand, STDP rules with the balance tilted towards potentiation (+δε) have

the nullclines at negative motif strengths (Fig. 8B). Can the motif strengths achieve negative

values? As stated previously, qcon and qdiv are proportional to the variances of neurons’ in

and out degrees, respectively. So, like the mean synaptic weight, qdiv, qcon ≥ 0, and these

motifs always potentiated for +δε STDP rules (Fig. 8B).

In examining the joint dynamics of divergent and convergent motifs, there is little evi-

dence of interaction. The nullclines in the (qcon, qdiv) plane are horizontal and vertical, so that

whether divergent motifs potentiate or depress is independent of the dynamics of convergent

motifs and vice versa (Figure 3.5A,B). This is reflected in the equations governing them.

First, qdiv does not depend directly on qcon (Eq. (3.33)). Second, qcon depends through qdiv

only through the re-summed approximation of a four-synapse motif and the STDP-weighted

covariances from common inputs, SCq
divqcon

X (Eq. (3.34)) which due to the product qdivqcon
X

provides only weak dependency.

Chain motifs correspond to the covariance of neurons’ weighted in- and out-degrees and

so, in contrast to qdiv and qcon, can achieve negative values. Indeed, the strength of chains

can depress below zero even while the mean synaptic weight and other motifs potentiate

(Figure 3.4A,G). Examining how qch, qdiv and qcon coevolve allowed us to see how in- and

out-hubs developed in the network. With the +δε STDP rule, qch increased along with qcon

and qdiv (Figure 3.5B). So, individual neurons tended to become both in- and out-hubs.

With the −δε STDP rule, however, qch could decrease while qdiv and qcon increased (Figure

3.4, Figure 3.5D). In this case, neurons tended to become in- or out-hubs, but not both. In

contrast to the vertical and horizontal nullclines in the (qcon, qdiv) plane, qch directly depends

on qcon and qdiv (Eq. (3.35)). This is reflected in the nullcline structure of the (qch, qdiv)

plane: whether qch potentiates or depresses depends on the initial strength of qdiv (Figure

3.5C,D). For these networks, qch exhibited similar dependencies on qcon.
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Figure 3.5: Plasticity of convergent and divergent motifs with balanced STDP. (A) Joint
dynamics of convergent and divergent motifs when STDP is balanced and depression-dominated.
Initial conditions as in Fig. 7A. (B) Joint dynamics of convergent and divergent motifs when
STDP is balanced and potentiation-dominated. Initial conditions as in Fig. 7B. (C,D) Joint
dynamics of divergent and chain motifs for the balanced, depression-dominated STDP rule. Initial
conditions marked in panel A). Red: in all panels, the flow of the motif variables is projected into
the corresponding plane, with all other motifs frozen at their initial conditions. Black: plasticity
of the motifs in simulations of the full spiking network. Cyan dots mark initial conditions for
the plotted variables. Each black trace is an individual realization of plasticity from the same
initial network. For (A), the vector fields are indistinguishable, on the plotted scale, for both sets
of initial conditions. In all panels, blue lines mark projections of each variable’s nullcline into
the plane defined by freezing the other motif variables at their initial conditions, and regions of
unattainable negative motif strengths are shaded.
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3.2.7 Co-evolution of open chains and reciprocal loops

Many studies have examined how STDP affects either feedforward or recurrent structure in

neuronal networks, commonly showing that STDP promotes feedforward structure at the

expense of recurrent loops [124, 164, 165]. This is consistent with the intuition gained from

isolated pairs of neurons, where STDP can induce competition between reciprocal synapses

and eliminate disynaptic loops [89]. Our theory provides a new way to examine how STDP

regulates feedforward vs recurrent motifs by examining the dynamics of qch. This variable

includes both recurrent loops (qrec) and open chains (qop). In order to understand the

contribution of each of these to overall potentiation or depression of chains, we split the

motif strength for chains into contributions from recurrent loops and open chains, rewriting

qch as:

qch =
1

N3

∑
i,j,k

δikWijWjk︸ ︷︷ ︸
qrec

+
1

N3

∑
i,j,k

(1− δik) WijWjk − p2

︸ ︷︷ ︸
qop

. (3.14)

Similar to the case of other two-synapse motifs, the leading order dynamics of the recurrent

motif are:
1

2ε

dqrec

dt
= r2Sp0 (qrec

X + pp0) + SF q
rec + SBq

rec
X2 . (3.15)

We obtain the dynamics of the feedforward motif by subtracting dqrec/dt from dqch/dt (Eq.

(3.45)). In Eq. (3.14) we subtract p2 from qop because qop is the dominant contributor to

qch. This restricts qrec to being non-negative. The new auxiliary variable qrec
X2 is proportional

to the conditional second moment of weights that are part of loops (Eq. (3.42)), and evolves

according to Eq. (3.44). The replacement of qch by these variables expands the motif space

to 11 dimensions.

We investigated the joint dynamics of open chains and recurrent loops by examining the

(qop, qrec) plane. The qop and qrec nullclines divided this plane into regions where each motif

potentiated or depressed. The shape of the STDP rule and the initial values of the other

motif strengths affected the location of these nullclines. For the +δε STDP rule, the qrec

nullcline was just below qrec = 0 (Figure 3.6A, blue horizontal line). Since qrec ≥ 0, this

forced qrec to potentiate. The open chain motif, in contrast, could potentiate or depress

above chance levels. In our spiking simulations, the initial conditions put qop in the region of
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depression, so that open chains depressed even while all other motifs were growing (Figure

3.6A, right panels).

These dynamics were the opposite of what would be expected from examining isolated

pairs of neurons. With both the +δε and −δε balanced STDP rules, isolated pairs of neurons

showed splitting of synaptic weights to eliminate the recurrent loop (S3 Fig, 3.6.4). Thus,

with the +δε STDP rule, the intuition gained from pairs of neurons did not predict the

combined plasticity of open chains and recurrent loops. This is possible because our theory

considers large networks that have both open chains and reciprocal loops in W0, and the

motif plasticity takes both into account.

The locations of the qop and qrec nullclines were sensitive to the values of the other motif

variables. Since the mean synaptic weight and qdiv and qcon exhibited bistability under the

−δε STDP rule, we examined the (qop, qrec) slice through motif space when the other motifs

were potentiating (Figure 3.6B, right panels) or depressing (Figure 3.6C, right panels). In

both cases, the qrec nullcline was above 0 so that the recurrent motif could either potentiate

or depress, depending on its initial strength (Figure 3.6B,C blue horizontal lines). Similarly,

the feedforward motif could either potentiate or depress.

In spiking simulations with −δε STDP where p and the other motifs potentiated (Figure

3.6B, right), the initial conditions put (qop, qrec) in the region of phase space where they both

depressed (Figure 3.6B, left). In spiking simulations with−δε STDP where p and other motifs

depressed (Figure 3.6C, right), the initial conditions put (qop, qrec) in the region where qop

potentiated and qrec depressed. This region corresponded to what would be expected from

examining isolated pairs of neurons (S3 Fig, 3.6.4): the loss of disynaptic loops and promotion

of feedforward structure. So with the −δε STDP rule, the region of phase space where the

pair-based intuition was accurate at the network level was accessible. In most of the motif

space, however, interactions between triplets of neurons played a strong role so that the

theory developed here was necessary to predict the STDP of motif structure.
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Figure 3.6: Plasticity of recurrent loops and open chains with balanced STDP. (A-C)
The dynamics of loops and open chains, with all other variables fixed at their initial conditions.
In all cases, the projections of the qop and qrec nullclines into this plane provide thresholds for the
potentiation or depression of each motif. The shape of the STDP rule and the initial values of the
other motif variables determine the locations of these nullclines. Color conventions are as in Fig.
8. In each panel, right insets show the time series of p (top), qdiv (middle) and qcon (bottom), with
spiking simulations in black and motif theory in red. A) The potentiation-dominated balanced
STDP rule. B) The depression-dominated balanced STDP rule, in the region where p, qdiv and
qcon potentiate. C) The depression-dominated balanced STDP rule, in the region where p, qdiv and
qcon depress.
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3.2.8 Motif dynamics in non-Erdös-Rényi networks

So far, we have examined the promotion or suppression of motif structure from initially

unstructured networks with Erdös-Rényi W0. In order to check how well our theory ap-

plied to non-Erdös-Rényi networks, we examined networks with truncated power law in- and

out-degree distributions (Methods: Neuron and network models). These networks exhib-

ited much higher levels of divergent and convergent motif structure (Figure 3.7D,E). They

also violated the approximation we made that three- and four-synapse motifs are only as

represented as would be expected from the two-synapse motifs we measure (e.g. Eq. (3.10)).

For these networks, we varied the correlation of neurons’ in- and out-degrees, thus chang-

ing the frequency and initial strength of chains (Figure 3.7B). In most cases, we saw that

our motif plasticity theory still matched simulations of the full spiking network’s evolution.

This was true despite the motif variables being of several orders of magnitude larger com-

pared to the Erdös-Rényi networks. In these networks, we see a similar bistability of the

network structure to that observed earlier, both at the level of mean synaptic weights (Figure

3.7Cii-iv) and motifs (Figure 3.7 D,Eii-iv).

When chain motifs were sufficiently over-represented, however, the theory qualitatively

mis-predicted the actual evolution of qch (Figure 3.7Fiv). Chain motifs play a large role

in coupling various motifs to each other (Eqs. (3.32)-(3.40)). So, it is not surprising that

although all these non-Erdös-Rényi networks violated the re-summing approximation, we

only saw the theory qualitatively break down when chain motifs were sufficiently strong.

Thus, for this type of non-Erdös-Rényi network the theory developed here holds surprising

promise for the investigation of motif plasticity.
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Figure 3.7: Motif dynamics in non-Erdös-Rényi networks. Caption on next page.
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Motif dynamics in non-Erdös-Rényi networks. (A) Degree distribution of the finite-
size Erdös-Rényi networks used in Figs. 2-9, showing each neuron’s number of incoming
synapses (in-degree) and outgoing synapses (out-degree). (B) Correlated, truncated power
degree distributions. From left to right, the frequency of chain motifs increases. The
degree distributions at either end of the “Chain Frequency” axis correspond to highly
anti-correlated (left) and highly correlated (right) in- and out-degrees, with correlation
coefficient ρ = ±.9 (Methods: Neuron and network models). The networks in columns ii-iv
are drawn from the labelled points on this axis, with ρ = −.1 (ii), ρ = .1 (iii) and ρ = .5
(iv). In each column, we sample networks from each side of threshold for potentiation of
p. For the network in column ii, qdiv

0 = .0149, qcon
0 = .0163, qch

0 = −.0012. For the network
in column iii, qdiv

0 = .0165, qcon
0 = .0157, qch

0 = 7.7x10−4. For the potentiating network in
column iv, qdiv

0 = .0161, qcon
0 = .0157, qch

0 = .0062. For the depressing network in column
iv, qdiv

0 = .0148, qcon
0 = .0156, qch

0 = .0068. (C) Dynamics of the mean synaptic weight.
(D) Dynamics of divergent motifs. (E) Dynamics of convergent motifs. (F) Dynamics of
chain motifs. In all panels, the STDP rule is the balanced, depression-dominated one (−δ
in Figs. 6-9).

3.3 SUMMARY OF MOTIF SYSTEMS DISCUSSED HERE

In this chapter, we discussed a number of different sets of motif dynamics. For simplicity,

we first presented the motif dynamics under the condition where we can consider only the

mean synaptic weight, p. When the network’s adjacency matrix is Erdös-Rènyi, the mean

synaptic weight is, to leading order, an invariant set for the full motif dynamics because the

strengths are initially weak and furthermore, they evolve on a slower timescale because the

motif frequencies are also weak.

We then considered the full dynamics by taking planar slices of the motif space, freezing

other motifs at their initial conditions for an estimate of dynamics near those initial condi-

tions. This showed that the invariant set of p is often unstable (albeit on a 1/O(ε2) timescale).

While we could examine the full motif dynamics when all except p are higher-order, and don’t

affect the dynamics of p, we also examined them in non-Erdös-Rènyi networks with strong

motif structure (Figure 3.7). The full motif dynamics are derived in the Methods of this

chapter, before restricting to lower-dimensional scenarios.
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3.4 DISCUSSION

We have developed a theory for spike timing-dependent plasticity in weakly-coupled recur-

rent networks of exponential integrate-and-fire neurons. We used this framework to derive

a low-dimensional dynamical system capturing the plasticity of two-synapse motifs. The re-

sulting system naturally classifies STDP rules into two categories: 1) rules with an imbalance

between potentiation and depression and plasticity dominated by the firing rates of neurons

in the network, and 2) rules with balanced potentiation and depression in which different

sources of spiking covariance interact with the STDP rule to determine network structure.

In the latter case, the importance of spiking covariances due to forward connections, re-

ciprocal connections, and common inputs creates new equilibrium points for the weighted

motif structure of the network. For balanced, additive Hebbian STDP, these new equilib-

rium points are unstable. The nullcline manifolds that emanate from them divide the motif

space into regions where different types of synaptic weight structure are either promoted or

suppressed. When the balance in the STDP rule is tilted towards depression, regions where

motifs are promoted or suppressed can both be accessible. For balanced STDP, any mech-

anism controlling spiking covariance in the network may affect how the network structure

evolves. Thus, spike initiation dynamics [166, 167, 168, 169], spike-frequency adaptation

[170, 171], synaptic inhibition [172, 173, 174] and passive membrane properties [175] could

all, in addition to controlling firing rates, drive motif dynamics.

3.4.1 STDP in recurrent networks

In contrast to previous studies of uncorrelated Poisson-spiking neurons [131, 100], we consider

the case where the intrinsic variability of neurons’ spike trains is the only source of spiking

covariance, necessitating a finite sized network (ε = 1/(Np0) > 0). There is little difference

between our results and those of past studies [131, 100] when the learning rule is unbalanced.

If there is a balance between potentiation and depression, however, our theory shows how

internally generated spiking covariances play a strong role in STDP-induced formation of

self-organized structure. Furthermore, our use of integrate-and-fire models allows our theory
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to predict the evolution of network structure without fixing the statistics of individual or

joint spiking activity.

We have focused here on networks composed only of excitatory neurons, a clear oversim-

plification of actual neural systems. The inclusion of inhibitory neurons would not, however,

qualitatively change any of the results shown. Their effect on the plasticity of motifs can be

understood by first considering their effect on the spike train covariances: in the first-order

truncation of the spiking covariances (Eq. 7), inhibitory neurons would provide additional

common inputs to pairs of excitatory cells. If the inhibitory-excitatory projections are not

plastic and have Erdös-Renyi connectivity, this would add a constant term to dp/dt. How

the plasticity of inhibitory synapses [176, 177, 115, 129] interacts with excitatory plasticity

to shape motif structure in neuronal networks remains an exciting open area of inquiry.

3.4.2 Stability of learned network structures

Early studies of long-term plasticity, which gave rise to the phenomenological plasticity model

we used, focused on the relative timing of action potentials. More recent experiments have

shown that neurons’ firing rates and the postsynaptic membrane voltage and spike patterns

all affect the shape of measured STDP curves [105, 39, 38, 40, 178]. More complicated

models of long-term plasticity, based on spike-triplet- or voltage-dependent STDP [106,

108] or on calcium thresholds for the induction of depression and potentiation [49, 80, 76],

can replicate many of these complexities. The observation that firing rates undergo large

fluctuations over slow timescales [179, 180, 181, 182, 183] suggests that in vivo STDP may

transition between unbalanced potentiation- and depression-dominated regimes. While long-

term plasticity can be strongly affected by pre- and postsynaptic firing rates, connectivity

motifs and spiking covariance could determine the direction of plasticity during transitions

between potentiation- and depression-dominated regimes. While our paper provides an initial

framework to study how STDP shapes structure in recurrent networks, a more realistic

learning rule than that used here (Eq. (2.1)) will be needed to address these issues.

The additive, Hebbian STDP model we used here gives rise to splitting of synaptic

weights: individual weights potentiate to some upper bound, or depress to a lower bound.
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This produces a bimodal distribution of synaptic weights, while experimentally observed

weight distributions tend to be unimodal and long-tailed [91, 151, 184, 185]. Modifications of

this model, such as introducing axonal or dendritic delays or weight-dependence of plasticity,

can yield weight distributions more closely resembling those observed in neural tissue [93,

186, 95, 121, 97]. Depending on the modification made (delays vs weight-dependence), either

the same or similar theories for motif plasticity can be derived using the methods presented

in our study. Strong weight dependence, however, forces every weight to the same value so

that the baseline motif frequencies completely determine the structure of the weight matrix

(S4 Text, 3.6.5). The dynamics of motifs under more realistic models of synaptic plasticity

remain to be studied.

A major feature of STDP is that it can potentiate temporally correlated inputs [109].

Since synchronous inputs are effective at driving postsynaptic spiking, this can give rise to

pathological activity in recurrent networks [127]. Synaptic depression driven by postsynap-

tic spikes, independent of presynaptic activity, can stabilize postsynaptic firing rates during

STDP [99, 132]. Such additional rate-dependent terms of the plasticity rule can also sta-

bilize the full weight matrix [123] and thus give rise to stable motif configurations. Recent

work has focused on the necessity of homeostatic mechanisms, including synaptic scaling

[187] or inhibitory plasticity [176], in stabilizing both the activity and structure of neural

networks [188, 189, 190, 124, 191, 129]. Since balanced STDP can give rise to bistability of

mean synaptic weights in a network (Figure 3.4B), it could also provide a mechanism for

assembly formation (selected weights potentiate, while other weights depress). Mechanisms

of metaplasticity [192], operating on a similar timescale to STDP, could give rise to such a

balance. This suggests a novel role for metaplasticity in controlling not only single-neuron

excitability but also the self-organization of microcircuits in recurrent networks.

3.4.3 Plasticity of motifs

Early studies on STDP focused on isolated pairs of reciprocally connected neurons, showing

that the type of STDP we study tends to induce competition between reciprocal synapses

(Figure 1B,C; [89]). Since then, many simulation studies have investigated how STDP affects
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the structure and activity of recurrent networks [126, 193, 194, 195, 129, 115], commonly ex-

amining the emergence of highly connected clusters. Reduced theories exposing how STDP

shapes network-level structure have, however, been difficult to obtain. Most have examined

the average synaptic weight in a network [196, 197], focusing on the relationship between

network-averaged firing rates and mean synaptic weights (p) but neglecting spiking covari-

ance. Mean-field theories are accurate for fully homogenous networks, however if all neurons

have the same weighted in- and out-degrees there is no plasticity of two-synapse motifs (S3

Text, 3.6.3).

The few reduced theories examining STDP of higher-order network structure have fo-

cused on the question of how STDP controls open chains versus recurrent loops. One study

compared the mean strengths of feedforward versus recurrent inputs in a network receiving

synchronous stimulation [165], but did so for a neuron that made no feedback connections

to the network – effectively only taking into account the first term of Eq. (3.3). Another

study examined the strength of loops in a network of linear excitatory neurons, showing that

STDP tends to reduce the total number of loops (of all lengths) in a network [164]. Our

theory is restricted to two-synapse loops. While we have shown that these can potentiate (as

in Figure 3.6C), [164] predicts that longer loops would meanwhile be weakened. Whether

this is the case with balanced STDP driven by more realistic neuron models remains to be

seen.

There is a growing body of evidence that cortical networks exhibit fine-scale structure

[150, 151, 91, 152]. Experimental studies have shown that such microcircuits depend on

sensory experience [198, 199]. Our work provides an important advance towards explicitly

linking the plasticity rules that control individual synapses and the emergent microcircuits of

cortical networks. We have shown that synaptic plasticity based only on temporally precise

spike-train covariance can give rise to a diversity and, under certain conditions, multistability

of motif configurations. Motifs can have a strong influence on pairwise and population-level

activity [155, 156, 157, 158, 159, 160, 161, 136, 162, 163, 110], suggesting that precise spike

timing may play a role in how networks reorganize patterns of connectivity in order to learn

computations.
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3.5 METHODS

Neuron and network models are as described in Chapter 2.

3.5.1 Derivation of motif dynamics

The baseline structure of the network is defined by the adjacency matrix W0. The frequencies

of different motifs are:

p0 =
1

N2

∑
i,j

W0
ij,

qdiv
0 =

1

N3

∑
i,j,k

W0
ikW

0
jk − p2

0,

qcon
0 =

1

N3

∑
i,j,k

W0
ikW

0
ij − p2

0,

qch
0 =

1

N3

∑
i,j,k

W0
ijW

0
jk − p2

0.

qrec
0 =

1

N2

∑
i,j

W0
ijW

0
ji − p2

0.

(3.16)

Each of the q0 parameters refers to a different two-synapse motif. In divergent motifs (qdiv
0 ),

one neuron k projects to two others, i and j. In convergent motifs (qcon
0 ), two neurons k

and j project to a third, i. In chain motifs (qch
0 ), neuron k projects to neuron j, which

projects to neuron i. Finally, in recurrent motifs (qrec
0 ) two neurons connect reciprocally. In

each of these equations, we subtract off p2
0 to correct for the baseline frequencies expected in

Erdös-Rényi random networks. So, these parameters measure above-chance levels of motifs

in the adjacency matrix W0.

We extend this motif definition to a weighted version, given by Eqs. (3.9). Since our

linear response theory for synaptic plasticity requires weak synapses, here we explicitly scale

by the mean in-degree ε = 1
Np0

. In contrast to the motif frequencies, which depend only on
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the adjacency matrix W0, the motifs here also depend on the weight matrix W.

εp =
1

N2

∑
i,j

Wij,

ε2qdiv =
1

N3

∑
i,j,k

WikWjk − ε2p2,

ε2qcon =
1

N3

∑
i,j,k

WikWij − ε2p2,

ε2qch =
1

N3

∑
i,j,k

WijWjk − ε2p2,

εqrec
X =

1

N2

∑
i,j

WijW
0
ji − εpp0,

εqdiv
X =

1

N3

∑
i,j,k

WikW
0
jk − εpp0,

εqcon
X =

1

N3

∑
i,j,k

WikW
0
ij − εpp0,

εqch,A
X =

1

N3

∑
i,j,k

WijW
0
jk − εpp0,

εqch,B
X =

1

N3

∑
i,j,k

W0
ijWjk − εpp0

(3.17)

Here we have defined the two-synapse motifs, as well as five auxiliary variables, {qX}. These

mixed motifs, defined by products of the weight and adjacency matrices, measure the strength

of synapses conditioned on their being part of a motif. The motifs {q}, on the other hand,

measure the total strength of the motifs. While the variables {qX} are not of direct interest,

we will see that they are required in order to close the system of equations. In comparison

to the motif frequencies {q0}, which measure motif frequencies in comparison to an inde-

pendently connected network, the motif strengths are defined relative to an independently

weighted network.

We also scale the amplitude of individual synaptic changes, L(s), by ε. We now go

through the derivation of dp/dt, dqdiv/dt and dqdiv
X /dt as examples; the other six variables

follow the same steps. First, note that the spike train cross-covariance matrix of the network,
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Eq. (2.4), can be expanded in the Fourier domain around the baseline covariance C0(ω):

C(ω) =

(
∞∑
i=0

(W ·K)i
)

C0(ω)

(
∞∑
j=0

((W ·K)∗)
i

)
(3.18)

where the interaction matrix W · K is the element-wise product of the weight matrix W

and the matrix of filters, K. Elements of K are defined by the postsynaptic neuron’s linear

response function and the synaptic filter, as in Chapter 2. Powers of W ·K represent lengths

of paths through the network. Only taking into account up to length one paths yields (for

i 6= j):

Cij(s) ≈
(
WijKij ∗C0

jj

)
(s)︸ ︷︷ ︸

forwardconnection

+
(
C0
ii ∗WjiK

−
ji

)
(s)︸ ︷︷ ︸

backwardconnection

+
∑
k

(
WikKik ∗C0

kk ∗WjkK
−
jk

)
(s)︸ ︷︷ ︸

commoninputs

.

(3.19)

where we have inverse Fourier transformed for convenience in the following derivation and

K−(t) = K(−t).

Differentiating each motif with respect to time, using the fast-slow STDP theory Eq.

(2.2) and inserting the first-order truncation of the cross-covariance functions, Eq. (3.3),

yields:

ε
dp

dt
=

1

N2

∑
i,j

W0
ij

∫ ∞
−∞

εL(s)
(
rirj + δijC

0
ij(s) +

(
WijKij ∗C0

jj

)
(s)

+
(
C0
ii ∗WjiK

−
ji

)
(s) +

∑
k

(
WikKik ∗C0

kk ∗WjkK
−
jk

) )
ds

(3.20)

ε2
dqdiv

dt
=

2

N3

∑
i,j,k

[
WikW

0
jk

∫ ∞
−∞

εL(s)
(
rjrk + δjkC

0
jk(s) +

(
WjkKjk ∗C0

kk

)
(s)

+
(
C0
jj ∗WkjK

−
kj

)
(s) +

∑
l

(
WjlKjl ∗C0

ll ∗WklK
−
kl

) )
ds
]
− 2ε2p

dp

dt

(3.21)

ε
dqdiv

X

dt
=

1

N3

∑
i,j,k

W0
jkW

0
ik

∫ ∞
−∞

εL(s)
(
rirk + δikC

0
ik(s) +

(
WikKik ∗C0

kk

)
(s)

+
(
C0
ii ∗WkiK

−
ki

)
(s) +

∑
l

(
WilKil ∗C0

ll ∗WklK
−
kl

) )
ds
]
− εp0

dp

dt

(3.22)

We now define the network-averaged firing rate r, spike train autocovariances C0 and linear

response function. Since we model all postsynaptic currents with the same shape, this makes
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the matrix K a constant matrix; we replace its elements with the scalar K. Also neglecting

the weight bounds in L(s) allows us to write:

dp

dt
= r2S

1

N2

∑
i,j

W0
ij + SF

1

N2

∑
i,j

W0
ijWij + SB

1

N2

∑
i,j

W0
ijWji + SC

1

N2

∑
i,j,k

W0
ijWikWjk

(3.23)

ε
dqdiv

dt
= r2S

2

N3

∑
i,j,k

WikW
0
jk + SF

2

N3

∑
i,j,k

WikW
0
jkWjk

+ SB
2

N3

∑
i,j,k

WikW
0
jkWkj + SC

2

N3

∑
i,j,k,l

WikW
0
jkWjlWkl − 2εp

dp

dt

(3.24)

dqdiv
X

dt
= r2S

1

N3

∑
i,j,k

W0
jkW

0
ik + SF

1

N3

∑
i,j,k

W0
jkW

0
ikWik

+ SB
1

N3

∑
i,j,k

W0
jkW

0
ikWki + SC

1

N3

∑
i,j,k,l

W0
jkW

0
ikWilWkl − p0

dp

dt

(3.25)

where we have cancelled off an ε from the left and right-hand sides. We have absorbed

the integrals over the STDP rule and the spiking covariances into r2S, SF , SB and SC .

These correspond, respectively, to the total STDP-weighted spiking covariances from chance

coincidence, forward connections, backward connections, and common input:

S =

∫ ∞
−∞

L(s) ds (3.26)

SF =

∫ ∞
−∞

L(s)
(
K(t) ∗ C0(s)

)
ds (3.27)

SB =

∫ ∞
−∞

L(s)
(
C0(s) ∗K−(t)

)
ds (3.28)

SC =

∫ ∞
−∞

L(s)
(
K(t) ∗ C0(s) ∗K−(t)

)
ds (3.29)

These parameters depend on the spike train auto-covariance C0(s) and interaction kernel

K(t;A) of neurons. As the mean synaptic weight p changes, the average firing rate r will

change and this will also affect C0(s) and K(t;A). So r , SF , SB and SC are implicitly

functions of p and thus evolve with the network. We have assumed weak synapses, so we

expect small changes in firing rates and thus fix these at their value at p = p0W
max/2,
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making r , SF , SB and SC constant parameters. In order to determine the impact of this

approximation on our results, we compared the evolution of motifs in the reduced theory

while re-calculating r , SF , SB and SC at every time-step. The approximation introduced

negligible errors in calculating the evolution of the weighted motifs (S4 Fig, 3.6.6).

Each dynamical equation now contains four different sums of products of the weight

and adjacency matrices. First examining dp/dt, we see that the first three sums correspond

to defined motifs: 1/N2
∑

i,j W0
ij = p0, 1/N2

∑
i,j W0

ijWij = p and 1/N2
∑

i,j W0
ijWji =

qrec
X + pp0. The last term in Eq. (3.23), however, corresponds to a third-order motif mixed

between the weight and adjacency matrices. Similarly, third- and fourth-order mixed motifs

appear in Eqs. 3.24 and 3.25. In order to calculate these, we extend a re-summing technique

developed in [162]. We assume that there are no third- or higher-order correlations between

elements of the weight and/or adjacency matrices, and approximate the frequency of each

of these higher-order motifs by the number of ways it can be composed of one and two-

synapse motifs. For a third order motif, this corresponds to adding up the likelihoods that

all three synapses occur by chance and that each possible combination of one synapse and a

two-synapse motif occur. In Eq. (3.23),

∑
i,j,k

W0
ijWikWjk ≈ ε2N3

(
p0

(
qdiv + p2

)
+ p

(
qcon

X + qch,B
X

))
. (3.30)

and for the four-synapse motif in Eq. (3.24),

∑
i,j,k,l

WikW
0
jkWjlWkl ≈ ε3N4

(
p3p0 + p2

(
qdiv

X + qcon
X + qch,B

X

)
+ pp0

(
qdiv + qch

)
+ qdivqdiv

X + qchqcon
X

)
(3.31)

This re-summing, along with the inclusion of the mixed motifs {qX}, is what allows us

to close the motif dynamics. Re-summing each third- and fourth-order motif in our system

in terms of two-synapse motifs yields, after simplification, the final motif dynamics:

dp

dt
= p0r

2S + ε

[
pSF + (qrec

X + p0p)SB +
1

p0

(
p0

(
qdiv + p2

)
+ p

(
qcon

X + qch,B
X

))
SC

]
(3.32)
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dqdiv

dt
= 2r2Sqdiv

X + 2ε

[
qdivSF +

(
p0q

ch + pqdiv
X

)
SB +

1

p0

(
qch (qcon

X + pp0) + qdiv
X

(
qdiv + p2

))
SC

]
(3.33)

dqcon

dt
= 2r2Sqcon

X + 2ε

[
qconSF +

(
p0q

ch + pqcon
X

)
SB +

1

p0

(
qcon

(
qch,B

X + pp0

)
+ qcon

X

(
qdiv + p2

))
SC

]
(3.34)

dqch

dt
= r2S

(
qch,A

X + qch,B
X

)
+ ε
[
2qchSF +

(
p0

(
qcon + qdiv

)
+ p

(
qch,A

X + qch,B
X

))
SB

+
1

p0

((
qdiv + p2

) (
qch,A

X + qch,B
X

)
+ qch

(
qch,B

X + pp0

)
+ qcon (qcon

X + pp0)
)
SC

] (3.35)

dqrec
X

dt
= r2Sqrec

0 + ε
[
qrec

X SF + (1− p0) (qrec
X + pp0)SB

+
1

p0

(
qrec

0

(
qdiv + p2

)
+ qch,B

X

(
qch,B

X + pp0

)
+ qcon

X (qcon
X + pp0)

)
SC

] (3.36)

dqdiv
X

dt
= r2Sqdiv

0 + ε

[
qdiv

X SF +
(
pqdiv

0 + p0q
ch,B
X

)
SB +

1

p0

(
qdiv

0

(
qdiv + p2

)
+ qch,B

X (qcon
X + pp0)

)
SC

]
(3.37)

dqcon
X

dt
= r2Sqcon

0 + ε

[
qcon

X SF +
(
pqcon

0 + p0q
ch,A
X

)
SB +

1

p0

(
qcon

0

(
qdiv + p2

)
+ qcon

X

(
qch,B

X + pp0

))
SC

]
(3.38)

dqch,A
X

dt
= r2Sqch

0 + ε

[
qch,A

X SF +
(
pqch

0 + p0q
con
X

)
SB +

1

p0

(
qch

0

(
qdiv + p2

)
+ qcon

X (qcon
X + pp0)

)
SC

]
(3.39)

dqch,B
X

dt
= r2Sqch

0 + ε
[
qch,B

X SF +
(
pqch

0 + p0q
div
X

)
SB +

1

p0

(
qch

0

(
qdiv + p2

)
+ qch,B

X

(
qch,B

X + pp0

))
SC

]
(3.40)

Examination of these equations reveals how different types of joint spiking activity affect

motif dynamics. Chance spiking coincidence (the r2S terms) couple each motif to the mixed
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version of itself, and each mixed motif to the baseline structure of the adjacency matrix.

With Hebbian STDP and excitatory synapses, SF > 0 and SB < 0. So, spiking covariance

from forward connections provide positive feedback, reinforcing the current network struc-

ture. Spiking covariance from backward connections and common input couple divergent,

convergent and chain motifs to each other.

The dynamics on the invariant set (Results: Balanced STDP of the mean synaptic weight,

Figure 3.3) were plotted in MATLAB. The vector fields of Figs 8 and 9 were calculated in

XPPAUT [200]. For those figures, results from simulations of the full spiking network were

plotted in MATLAB and then overlaid on the vector fields from XPPAUT.

3.5.1.1 Plasticity of loops and open chains The chain variable qch includes both

open chains and recurrent loops. (open chains correspond to k 6= i in the definition of qch,

Eq. (3.17), and recurrent loops to k = i.) As in the main text, we break qch into these two

cases: qch = qrec + qop, where

ε2qrec =
1

N3

∑
i,j,k

δikWijWjk =
1

N3

∑
i,j

WijWji

ε2qop =
1

N3

∑
i,j,k

(1− δik) WijWjk − ε2p2
(3.41)

We also define an auxiliary variable which we will require in the dynamics of qrec:

ε2qrec
X2 =

1

N3

∑
i,j

W2
ijW

0
ji (3.42)

which is proportional to the conditioned second moment of weights that are part of disynaptic

loops. The dynamics of qrec are calculated exactly as for the other motifs and are:

1

2ε

dqrec

dt
= r2Sp0 (qrec

X + pp0) + SF q
rec + SBq

rec
X2 (3.43)

where the new auxiliary variable obeys

1

2ε

dqrec
X2

dt
= r2Sp0 (qrec

X + pp0) + SF q
rec
X2 + SBq

rec (3.44)
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We can then recover the dynamics of open chains as:

dqop

dt
=
dqch

dt
− dqrec

dt

= r2S
(
qch,A

X + qch,B
X

)
+ ε
[
− 2r2Sp0 (qrec

X + pp0) + 2SF q
op

+
(
p0

(
qcon + qdiv

)
+ p

(
qch,A

X + qch,B
X

)
− 2qrec

X2

)
SB

1

p0

((
qdiv + p2

) (
qch,A

X + qch,B
X

)
+ qch

(
qch,B

X + pp0

)
+ qcon (qcon

X + pp0)
)
SC

]
(3.45)

3.5.1.2 Unbalanced STDP When there is an imbalance between the net amounts of

potentiation and depression in the STDP rule, the motif dynamics is governed by simpler

equations. If S ∼ O(1), the O(ε) terms in Eqs. 3.32-3.40 are negligible. For each mixed

motif,

qX(t) = r2Sq0t+ qX(0) (3.46)

so that

p(t) = p0r
2St+ p(0) (3.47)

qdiv(t) = qdiv(0) + qdiv
X (0)r2St+

1

2
qdiv

0

(
r2S
)2
t2 (3.48)

qcon(t) = qcon(0) + qcon
X (0)r2St+

1

2
qcon

0

(
r2S
)2
t2 (3.49)

qch(t) = qch(0) +
(
qch,A

X (0) + qch,B
X (0)

)
r2St+

1

2
qch

0

(
r2S
)2
t2 (3.50)

Writing qch
X = qch,A

X + qch,B
X puts the dynamics for all the motifs in the same form. The

motifs expand from the initial conditions and baseline structure of the network. Note that

since the quadratic term is proportional to S2, even when STDP is depression-dominated

the long-term dynamics is expansive rather than contractive.
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3.6 SUPPLEMENTARY INFORMATION

3.6.1 S2 Text: Strength of synaptic weights and stability of firing rates

Here, we varied the initial synaptic strength p(0) and compared our theoretical predictions

to empirical measurements from simulations for the mean synaptic strength p(T ), divergent

qdiv(T ), convergent qcon(T ), and chain qch(T ) motifs, where T = 1000 min. For p(0) ≤

5 × 10−3 there was very good agreement between our reduced theory and spiking network

simulations. When p(0) ≥ 7× 10−3 we observed a clear quantitative disagreement between

theory and simulations. Increasing p(0) or p(T ) above 8× 10−3 caused an instability in the

recurrent network, with runaway excitation destabilizing the equilibrium state, preventing

any perturbative theory. The stability boundary for the stationary firing rates is computed

as in [201], by computing the eigenvalues of the network firing rate from a Fokker-Planck

theory [146]. Throughout the manuscript we always used p(0) ≤ 5×10−3 to ensure agreement

between simulations and theory.

66



2
4
6
8

10
x 10−3

p 
(μ

A/
cm

2 )

−1
1

0

0.5

1

1.5
x 10−6

qdi
v  (μ

A/
cm

2 )2

−1
1

0
2
4
6
8

x 10−7

qco
n  (μ

A/
cm

2 )

−1
1

−6

−4

−2

0
x 10−7

qch
 (μ

A/
cm

2 )

2 4 6 8 10
x 10−3

−1
1

p, initial (μA/cm2)

A

B

C

D

2 4 6 8 10
x 10−3p, initial (μA/cm2)

Figure 3.8: STDP in networks with larger synaptic weights. All panels: Red, motif theory
of Eqs. (42)-(50) in main text. Black dots: result of spiking simulations. Error bars (smaller than
marker size) are SEM. Black bars in lower part of each panel are the relative error of the theory
to the simulations, (theory-sims)/(sims). (A) Final mean synaptic weight as a function of initial
synaptic weight. Vertical and horizontal black lines mark the stability boundary for the stationary
firing rates, where the network-averaged instantaneous firing rate loses stability [201]. For p beyond
that boundary, we cannot use linear response theory for spike-train covariability (since there is no
fixed point to linearize around) and so the theory will not match simulations. (B) Final strength
of divergent motifs versus initial mean synaptic weight. (C) Final strength of convergent motifs
versus initial mean synaptic weight. (D) Final strength of chain motifs versus initial mean synaptic
weight.
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3.6.2 S2 Fig: Truncated vs full spike train cross-covariances
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Figure 3.9: Truncated vs full spike train cross-covariance functions. Black, average spike
train cross-covariance function of the network of Fig. 2. Red, truncated approximation (Eq. 7
of main text) of the average spike train cross-covariance function. When integrated against the
balanced, depression dominated STDP rule, the full theory is 1.06 times as large as the truncated.

3.6.3 S3 Text: Motif plasticity in homogenous networks

If all neurons have the same weighted in- and out-degrees, then the motif dynamics simplify

considerably. In such a homogenous network, divergent motifs obey:

dqdiv

dt
=

2

N3

∑
i,j,k

Wik
dWjk

dt
− 2p

dp

dt

=
2

N3

∑
k

(∑
i

Wik

∑
j

dWjk

dt

)
− 2p

dp

dt

=
2

N3
Np
∑
j,k

dWjk

dt
− 2p

dp

dt

= 2p
dp

dt
− 2p

dp

dt
= 0

(3.51)

Convergent and chain motifs are also neutrally stable. So, it is inhomogeneities in the

network structure that give rise to drift of the motif structure.
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3.6.4 S3 Fig: Balanced STDP in isolated pairs of neurons
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Figure 3.10: Both types of balanced STDP lead to splitting of synaptic weights. We
take an isolated pair of neurons with the same intrinsic and synaptic parameters as in the full
network. The neurons are reciprocally connected and we plot the (A) The depression-dominated
balanced STDP rule. (B) The potentiation-dominated balanced STDP rule. Both are exactly the
same as in the main paper. We show the dynamics of the weights in a pair of neurons isolated
from the network. In both cases, the reciprocal loop is eliminated and initial conditions determine
which synaptic weight is potentiated and which depressed.

3.6.5 S4 Text: Motif plasticity with weight-dependent STDP

The multiplicative STDP rule [93, 94] is:

εL(s) =

(εWmax −Wij)f+e
− |s|
τ+ , if s ≥ 0

(Wij) (−f−) e
− |s|
τ− , if s ≤ 0,

. (3.52)

Each weight has a stable fixed point:

W∗
ij = W0

ij

f+τ+

f+τ+ + f−τ−
Wmax (3.53)
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Now the mean weight and two-synapse motifs evolve according to:

ε
dp

dt
=

1

N2

∑
i,j

W0
ij

∫ ∞
−∞

εL(s)
(
rirj + δijC

0
ij(s)

)
ds (3.54)

ε2
dqdiv

dt
=

2

N3

∑
i,j,k

WikW
0
jk

∫ ∞
−∞

εL(s)
(
rjrk + δjkC

0
jk(s)

)
ds− 2ε2p

dp

dt
(3.55)

ε2
dqcon

dt
=

2

N3

∑
i,j,k

WikW
0
ij

∫ ∞
−∞

εL(s)
(
rirj + δijC

0
ij(s)

)
ds− 2ε2p

dp

dt
(3.56)

ε2
dqdiv

dt
=

2

N3

∑
i,j,k

WijW
0
jk

∫ ∞
−∞

εL(s)
(
rjrk + δjkC

0
jk(s)

)
ds− 2ε2p

dp

dt
(3.57)

where we only examine the contribution of firing rates to the plasticity, assuming that the pre-

and post-synaptic neurons’ spike trains are uncorrelated. This corresponds to the observation

that with multiplicative STDP, the weight-dependence of L(s) dominates the dynamics of

the weights. Inserting Eq. (3.52) and the motif definitions and assuming homogenous firing

rates yields:

1

ε

dp

dt
= r2 (p0W

maxf+τ+ − p (f+τ+ + f−τ−)) (3.58)

1

ε

dqdiv

dt
= 2r2

(
f+τ+W

maxqdiv
X − (f+τ+ + f−τ−) qdiv

)
(3.59)

1

ε

dqcon

dt
= 2r2 (f+τ+W

maxqcon
X − (f+τ+ + f−τ−) qcon) (3.60)

1

ε

dqch

dt
= r2

(
f+τ+W

max
(
qch,A

X + qch,B
X

)
− 2 (f+τ+ + f−τ−) qch

)
(3.61)

The mixed divergent motifs obey:

dqdiv
X

dt
= r2

(
f+τ+W

maxqdiv
0 − (f+τ+ + f−τ−) qdiv

X

)
(3.62)

and qcon
X , qch,A

X and qch,B
X obey exactly analogous equations. Defining qch

X = qch,A
X + qch,B

X puts

the dynamics of qch into the same form as those for qdiv and qcon. Dropping the motif labels,

since they obey the same dynamics, yields a three-dimensional system for (p, q, qX) with

steady state 
p

q

qX


∗

=


f+τ+

f+τ++f−τ−
p0W

max(
f+τ+

f+τ++f−τ−
Wmax

)2

q0

f+τ+
f+τ++f−τ−

Wmaxq0

 (3.63)

70



and Jacobian:
−(f+τ+ + f−τ−) 0 0

0 −(f+τ+ + f−τ−) f+τ+W
max

0 0 −(f+τ+ + f−τ−)

 (3.64)

The eigenvalue of the three-dimensional multiplicative STDP system is − (f+τ+ + f−τ−)

which is always negative, so the steady state is linearly stable. So, multiplicative STDP

simply stabilizes whatever motif structure is embedded in the adjacency matrix.

3.6.6 S4 Fig: Rate-dependence of spike train covariability
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Figure 3.11: Motif plasticity does not depend on firing rates. In the main text, we
examined the motif dynamics when the spike-train statistics are fixed. That is, for the motif theory
we linearize the spike-train statistics around the initial state r(t) = r(0), and similarly for the
STDP-weighted spike train covariances SF , SB and SC . Firing rates do, however, evolve with the
mean synaptic weight. For p = 0, r = 7.6 sp/s while for p = p0W

max, r = 12.5 sp/s. In order
to check whether the approximation of using r, SF , SB and SC calculated at initial conditions was
accurate, we re-linearized the system at every time step of the slow evolution of synaptic weights
so that the spiking statistics were not fixed. For the networks and parameters used here, this did
not have a strong effect on the motif dynamics. We illustrate this by comparing the results of
Fig. 7 to the motif dynamics with evolving spiking statistics. Red: motifs dynamics with fixed
r, SF , SB, SC - the spiking statistics are calculated by linearizing around the initial condition and
held fixed. Blue: The spiking statistics (r, SF , SB, SC) are re-linearized at every time step, so that
the theory accounts for how firing rates and spike-train correlations depend on the net synaptic
input neurons’ receive.
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4.0 SPIKE TIMING-DEPENDENT PLASTICITY OF HEBBIAN

ASSEMBLIES

4.1 INTRODUCTION

In the previous sections, we developed a theory describing the plasticity of connectivity pat-

terns composed of two synapses, motivated by results that such patterns are over-represented

compared to simple random-network models [91, 151]. Recent studies have also shown that

the recurrent connectivity between cortical neurons depends on their tuning preferences.

In mouse primary visual cortex, neurons with similar stimulus preferences connect more

frequently and with stronger synapses than neurons with dissimilar stimulus preferences.

Similar trends hold with respect to reciprocal connectivity between pairs of similarly or

dissimilarly tuned neurons [153, 92]. Additionally, synaptically connected neurons tend to

receive more common inputs than would be expected by chance, suggesting a clustered ar-

chitecture [152, 151]. While this enhanced recurrent connectivity between similarly tuned

neurons is present even at eye opening, it is enhanced during development and especially

by visual experience [198, 199]. This suggests long-term synaptic plasticity as a key mech-

anism for the organization of cortical circuits into Hebbian assemblies: groups of strongly

recurrently connected neurons with shared stimulus preferences.

The mechanisms of synaptic plasticity remain an active area of investigation. The precise

timing of pre- and post-synaptic spikes can be a crucial determinant of plasticity [36, 37].

STDP can allow the development of feedforward structures [202] allowing temporally precise

[88] and tuned [203] responses and that can allow sequential activity [87, 124]. Such feed-

forward architecture stands in contrast to the strongly recurrent organization of Hebbian

assemblies.
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The overall firing rates of pre- and post-synaptic cells, as well as slow postsynaptic

depolarization, play a large role in shaping measured STDP curves [105]. Recent theoretical

studies have often focused on this rate-dependence, for example by reducing models of STDP

to rate-based plasticity models (e.g. [132, 108, 129]). Such rate-dependent plasticity can

allow the development of Hebbian assemblies [129, 115, 194]. Recent studies of assembly

formation have relied on plasticity models that transition between strongly potentiation- and

depression-dominated regimes depending on the pre- and post-synaptic firing rates [129, 115].

This rate-dependent plasticity relies on the integral of the STDP curve being large; S � 0,

allowing the negligence of spike-time correlations.

Models that can produce such unbalanced STDP curves also, however, give rise to approx-

imate balance between potentiation and depression for many pre- and postsynaptic firing

rates (Figure 4.1, starred regions). Furthermore, spike trains in diverse cortical areas do

exhibit covariable trial-by-trial fluctuations (noise correlations). These noise correlations co-

vary with neurons’ stimulus preferences (signal correlations) [204, 180, 205] and synaptically

connected neurons have higher noise correlations [153, 92]. Furthermore, these correlations

exhibit temporal structure on the millisecond scale of measured STDP rules. This raises the

question of whether fast spike-time correlations could play a role in the learning of assembly

structure.

Here, we show that such spike-time correlations can, in the absence of rate-based plastic-

ity mechanisms, allow the formation of Hebbian assemblies in response to correlated external

inputs to groups of neurons. Combining linear response theory for spike-train covariances in

recurrent networks [136] with a slow-fast theory of STDP [109], we develop low-dimensional

theories describing the evolution of the network structure. These reveal that training can

promote strong connectivity, as well as strong reciprocal connectivity, within commonly-

stimulated groups. We further show that after training and in the absence of any external

input correlations, internally-generated spike time correlations reinforce learned architec-

tures during spontaneous activity. This study reveals a potential role for precise spike-time

correlations in the formation of Hebbian assemblies in response to correlated external inputs,

as well as their active maintenance during spontaneous activity.
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Figure 4.1: Balance between potentiation and depression in different plasticity models.
Adapted from Litwin-Kumar & Doiron, [129]. Average change in synaptic weight as a function of
pre- and post-synaptic firing rates, assuming the pre- and postsynaptic spike trains are uncorrelated
Poisson processes. Left, the triplet rule of Pfister & Gerstner [106]. Middle, the voltage-based rule
of Clopath & Gerstner [107]. Right, the calcium-based model of Graupner & Brunel [76].

4.2 RESULTS

4.2.1 Plasticity of partially symmetric networks during spontaneous activity

One striking feature of cortical networks is the over-representation of reciprocally connected

pairs of excitatory neurons, compared to a simple randomly-wired (Erdös-Rényi) network

[91, 151]. In order to reflect this structure we took the baseline excitatory-excitatory con-

nectivity of our network, W0
EE, to be composed of two parts: W0

EE = W0
sym + W0

asym,

where W0
sym is a symmetric random binary matrix with connection probability Ωp0 and

W0
asym a random binary matrix with connection probability (1 − Ω)p0 (without any sym-

metry constraint). Both had Erdös-Rényi statistics. The parameter Ω thus determined

the frequency of bidirectionally connected pairs of excitatory neurons in W0
EE. We mod-

eled networks of 1500 excitatory neurons and 300 inhibitory neurons, both types following

exponential integrate-and-fire dynamics [137]. The overall connection probability between

excitatory neurons was p0 = 0.15, with Ω = 0.4. Excitatory-inhibitory, inhibitory-excitatory

and inhibitory-inhibitory connectivity were asymmetric (Ω = 0), with connection probability
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0.4.

We begin by studying plasticity in these networks during spontaneous activity. In order

to focus on learning due to precise spike-time correlations, we used a classical spike pair-based

STDP rule [88]. In recurrent networks, excitatory plasticity can lead to the destabilization

of asynchronous activity [206] and the development of pathological synchrony [127]. Recent

studies have suggested plasticity of inhibition as a stabilizing mechanism [207], preventing

runaway activity in networks with [129, 115] and without [177] excitatory plasticity. In

order to prevent runaway excitation due to potentiation of excitatory synapses, inhibitory→

excitatory synapses underwent homeostatic inhibitory plasticity (iSTDP): pairs of pre- and

post-synaptic spikes cause potentiation of inhibitory-excitatory synapses, while individual

presynaptic spikes cause depression, as in [177]. The strength of this depression is determined

by the homeostatic target rate of the excitatory population, r̄E (4.5.1). We will look at the

dynamics of the excitatory connectivity before examining the role of the inhibitory plasticity.

We begin with a simple characterization of the network excitatory-excitatory structure

in terms of two variables:

p =
1

N2
E

∑
i,j∈E

Wij

q =
1

N2
E

∑
i,j∈E

W0
ijWji − p0p

(4.1)

These characterize the mean weight of excitatory-excitatory synapses (p) and the mean

weight of reciprocal excitatory-excitatory synapses (q) above what would be expected in an

unstructured network. Here, q corresponds to qrec
X in Chapter 3. Note that with asymmetric

connectivity, Ω = 0, q becomes weak (O(N−3/2)) so that the network connectivity can be

described (to leading order) only by p. This corresponds to the unstructured invariant set

of Chapter 3. The structure we impose on the network by setting Ω 6= 0 enforces that

the variables p, q form an invariant set for the full higher-order motif dynamics discussed in

Chapter 3.

We derive dynamics for these variables following the same steps as we took in Chapter

3. We approximate the average spike train covariance from the contributions of length one

paths in the network (Eq. (4.23)) and neglect the bounds on synaptic weights in the eSTPD

rule, so that this only takes in to account the transient plasticity and not the steady-state

76



of the weights. The network structure p, q then obeys (4.5.3):

dp

dt
=
(
r̄2
ES + cEEσ

2Sη
)
p0 + ε

[
SFp+ SB (q + p0p) + SCp

2 + SICγ(p∗EI)
2
]

(4.2)

dq

dt
=
(
r̄2
ES + cEEσ

2Sη
)
q0 +ε

[
SF q + SB (1− p0) (q + p0p) + SC

q0

p0

p2 + SICγ
q0

p0

(p∗EI)
2

]
(4.3)

The first terms on the right-hand side of Eq. (4.2) describe the contributions of chance

spike coincidences (r̄2
ES) and correlations induced by external inputs (cEEσ

2Sη). S is the

integral of the eSTDP rule, while Sη is the integral of the STDP rule against the average

susceptibility of two neurons to externally-induced correlations (4.5.3). The latter terms

describe the contribution of correlations induced by coupling within the network, weighted

by the eSTDP rule. We use a Hebbian STDP rule with potentiation from pre-post spike

pairs and depression from post-pre spike pairs (Figure 4.2B). The effect of correlations due to

direct connections is measured by SF , and those due to reciprocal connections are measured

by SB. The final terms arise from correlations due to common inputs from excitatory (SC)

or inhibitory (SIC) neurons.

We take there to be a balance between potentiation and depression, so that S ∼ O(ε),

tilted slightly in favor of depression. In this case the dynamics is governed by different

sources of spiking covariability, each interacting with the eSTDP rule L(s). Spiking co-

variations from direct connections mainly contribute at positive time lags, interacting with

the potentiation side of the eSTDP rule. This is reflected in the average spike train co-

variance between monosynaptically connected neurons. Reciprocal connections, in contrast,

contribute spiking covariations at negative time lags, interacting with the depression side of

the eSTDP rule. This is reflected in the average spike train covariance between reciprocally

connected pairs, which includes the contributions from both direct and reciprocal connec-

tions. Finally, the contributions from common inputs are temporally symmetric around zero

time lag, interacting with both the potentiation and depression windows (Figure 4.2F).

The competition between these sources of spiking covariability imposes thresholds for

potentiation and depression of the mean-field variables p and q (Figure 4.2D). If either

is initially stronger than that threshold, it will potentiate. Our theory provides a good
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Figure 4.2: Network
structure shapes synaptic
plasticity. (A) Visualization
of a random subset of the
excitatory-excitatory connec-
tivity. (B) The eSTDP rule,
L(s), is composed of exponen-
tial windows for depression (-
) and potentiation (+). Each
is defined by its amplitude f±
and timescale τ±. (C) Synap-
tic weights evolve on a slow
timescale. Individual synap-
tic weights are governed by
the relative timing of spikes
in the pre- and post-synaptic
neurons’ spike trains. (D)
Dynamics of the mean synap-
tic weight (p) and the mean
above-chance strength of re-
ciprocal synapses, q. There
is a threshold for potenti-
ation of each given by its
nullcline (blue lines). (E)
Time course of p and q in
the case where both are de-
pressing. Solid lines: the-
ory, Eqs. (4.2),(4.3). Shaded
lines: simulation of the spik-
ing network. (F) Aver-
age spike train covariance be-
tween monosynaptically con-
nected pairs (left), recipro-
cally connected pairs (right)
and all pairs (right). Shaded
lines: simulation. Solid lines:
linear response theory (first-
order truncation, Eq. (4.23)).

prediction of the plasticity of these average levels of connectivity in the absence of external

input correlations (Figure 4.2D,E). Before examining how external input correlations can

train the network into different macroscopic structures, we first examine the role of inhibition
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and inhibitory plasticity in this network.

4.2.2 Inhibition and homeostatic inhibitory STDP maintain stable activity

Inhibitory feedback recruited within the network reduces the spiking activity of excitatory

neurons. With fixed inhibitory-excitatory projection strengths, potentiation of excitatory

weights can lead to runaway activity if the recurrent excitation becomes strong enough to

overcome the inhibitory feedback [127, 129]. In order to prevent this, inhibitory-excitatory

synapses obeyed an inhibitory STDP (iSTDP) rule [177, 207, 176]:

εLI(s) = H(Wij −Wmax,I)fIe
− |s|
τI (4.4)

where fI sets the maximum amplitude of individual potentiations and τI determines their

dependence on relative spike timing (parameter values in Table 4.1). In addition, presynaptic

(inhibitory) spikes cause depression by H(−Wij)dI , with dI = −2fI r̄EτI . We have assumed

that the excitatory STDP rule is balanced between potentiation and depression, but made

no such assumption about the inhibitory plasticity rule. Indeed, if the excitatory firing rates

are far from the target rate r̄E then the inhibitory plasticity becomes unbalanced and its

leading-order dynamics is (Methods, 4.5.5):

dpEI
dt

=
(
rI
(
rE − r̄E

)
SI + cEIσ

2SEIη
)
pEI0 (4.5)

Together with the dynamics of the firing rates rE, rI , these dynamics occur on a faster

timescale than the balanced plasticity of excitatory connectivity. Examining the fixed points

and stability of (pEI , rE, rI) on this unbalanced timescale reveals that the inhibitory plasticity

stabilizes the firing rates so that rE−r̄E ∼ O(ε) (4.5.5). Indeed, in simulations we saw that as

p increases (decreases), pEI potentiates (depresses) and maintains rE = r̄E (e.g. Figure 4.3B).

The location of the homeostatic inhibitory weight, p∗EI , is given by solving the leading-order

dynamics of the unbalanced inhibitory plasticity for dpEI/dt = 0, drE/dt = 0, drI/dt = 0.

Due to the separation of timescales between the homeostatic iSTDP and the balanced eSTDP,

we could predict the location of the homeostatic inhibitory weight p∗EI through a quasi-static

approximation of p (4.5.5). We tracked the location of the homeostatic inhibitory weight
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p∗EI a function of p. As expected, strong recurrent excitation required stronger inhibitory-

excitatory feedback to maintain the excitatory rates at rE = r̄E (Figure 4.3C). In order

to investigate the conditions under which inhibition is able to maintain stable activity at

that homeostatic fixed point, we compared the cases of plastic and non-plastic inhibition.

With nonplastic inhibition, firing rates increased with p. If the excitatory feedback became

strong enough to overcome the nonplastic recurrent inhibition, the stationary firing rates lost

stability (Figure 4.3D). We predicted the location of that stability boundary by numerically

computing the eigenvalues of the Fokker-Planck equation associated with the single-neuron

voltage distribution and examining how activity is recurrently filtered through the network

[201]. This instability was reflected in the development of hypersynchronous spiking (Figure

4.3E), in contrast to the asynchronous activity in the network with plastic inhibition. In

total, we saw that recurrent inhibition stabilized stationary, asynchronous spiking in our

networks, and iSTDP allowed the inhibitory-excitatory feedback to homeostatically maintain

that stability.

4.2.3 Stimulus-induced noise correlations drive the formation of Hebbian as-

semblies

The thresholds for potentiation and depression suggests a mechanism for the formation of

Hebbian assemblies through spike timing. Namely, if we define p and q variables for within-

and cross-assembly connectivity, each should obey similar dynamics to Eqs. (4.2), (4.3).

Particularly, each should have a threshold for potentiation and futhermore, these should

depend on the spatial correlation of the external inputs within- or cross-cluster pairs of

neurons. We begin by studying the simpler case of networks with asymmetric baseline

connectivity (Ω = 0). We divided the excitatory neurons into M putative assemblies, of κ

neurons each, based on their stimulus preferences. Each assembly contained neurons that

received spatially correlated synaptic inputs due to an external stimulus. For simplicity,

we assume that the assemblies are symmetric so that the connectivity within and between

80



−50 0 50

0

1
x 10−4

Time Lag (ms)

iS
TD

P 
R

ul
e 

(μ
A/

cm
2 )

2

3

−2

−1.6

50 100 150
2
6

10

Time (min)

R
at

e 
(s

p/
s)

Exc
Inh.

0 0.01 0.03
−0.04

−0.02

0

0 100 200
Time (ms)

0 100 200
N

eu
ro

n

Ex
c.

 R
at

e 
(s

p/
s)

EE
 W

ei
gh

t

EI
 W

ei
gh

t

EE Weight (μA/cm2)

EI
 W

ei
gh

t (
μ

A/
cm

2 )

A B C

D E
Plastic inh.
Non-plastic inh.

EE Weight (μA/cm2)

H
om

eo
st

at
ic

x 10−2

μ (  
A/

cm
2 )

Plastic inh.Non-plastic inh.

0 0.01 0.02 0.03
4

6

8

Stability Boundary

μ (  
A/

cm
2 )

Figure 4.3: Homeostatic inhibitory plasticity dynamically stabilizes firing rates. (A)
STDP rule for inhibitory-excitatory synapses. (B) Top: Co-evolution of mean excitatory-excitatory
weight p (black) and mean inhibitory-excitatory pEI (red). Bottom: Firing rates during plasticity.
(C) The fixed point for pEI as a function of the mean excitatory strength p. Open circle marks the
inhibitory weight used for the non-plastic inhibition in later panels. (D) Firing rates as a function of
excitatory weight in the cases of plastic and nonplastic inhibition. (E) Raster plots of the network
activity. In both bases the excitatory weight is at the value marked by the circle in panel D. For
the right raster, pEI is at its homeostatic fixed point.

assemblies is characterized by:

εpAA =
1

κ2

∑
i,j∈A

Wij

εpAB =
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

Wij

(4.6)

where pAA is the mean strength of connections within an assembly (across all assemblies),

and pAB is the mean strength of all cross-assembly connections. The inhibitory-excitatory,

excitatory-inhibitory and inhibitory-inhibitory part of the network remained unstructured

and asymmetric. Following the same steps as for p, we derived dynamical equations for the
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mean within- and cross-cluster connectivity. The mean within- and cross-cluster synaptic

weights obeyed (Methods, 4.5.6):

dpAA
dt

=
(
r̄2
ES + cAAσ

2Sη
)
p0 + ε

[
SFpAA + SBp0pAA + SC

(
p2
AA + (M − 1) p2

AB

)
+ SICγ(p∗EI)

2
]

(4.7)

dpAB
dt

=
(
r̄2
ES + cABσ

2Sη
)
p0+ε

[
SFpAB+SBp0pAB+SC

(
2pAApAB + (M − 2) p2

AB

)
+SICγ(p∗EI)

2
]

(4.8)

Due to our approximation of the spike train covariances, Eq. (4.23), the dynamics of the

mean synaptic weight within and across assemblies are coupled to each other only through

correlations due to common inputs (the SC terms). The nullclines of pAA, qAB predict their

thresholds for potentiation.

The form of the dynamics suggests that the pAA and pAB nullclines could be simply

computed by solving those quadratic polynomial equations. This procedure is complicated,

however, by the fact that the homeostatic inhibitory weight depends on both pAA and pAB. In

order to numerically compute (for example) the pAA nullcline, we use a root-finding algorithm

to find for each pAA the pAB which, in combination with the induced inhibitory weight p∗EI ,

yields dpAA/dt = 0. We can compute the nullclines explicitly by making a simplifying

assumption: that the STDP rule is temporally symmetric (τ− ∼ τ+ +O(ε)). This allows us

to neglect the term containing the homeostatic inhibitory weight in Eqs. (4.7),(4.8). While

this assumption is inaccurate for our STDP rule (which has τ− = 2τ+), its result reveals the

main effect of external input correlations. In this case, the nullclines are given by (Methods,

4.5.7):

p∗α = −(r̄2
ES + cασ

2Sη) p0

ε (SF + p0SB)
(4.9)

for α ∈ {AA,AB}. Note that while the small parameter ε appears in the denominator,

both terms of the numerator are also O(ε) due to the balance between potentiation and

depression in the eSTDP rule. In the absence of external input correlations (cα = 0), this

nullcline is positive. This is because 1) we took S < 0 and 2) the eSTDP rule has a sharper

potentiation window than depression window, so that SF + p0SB > 0. With cα > 0, the

nullcline p∗α is shifted to the left by an amount proportional to cα. This prediction was borne
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out by the actual nullclines (Figure 4.4D-F). In particular, cAA > 0 reduces the threshold

for potentiation of within-cluster connectivity.

We tested this prediction in simulations of the full system of spiking neurons, divided into

M = 3 assemblies. External stimulation induced correlations in the spike trains of neurons

in each assembly (Figure 4.4A). After 20 min of stimulation, we observed the formation of

strongly connected assemblies of neurons (Figure 4.4H). The connectivity between assemblies

was not potentiated; the assemblies did not fuse. We contrast this to the same network

after 20 min of spontaneous activity: structure did not form spontaneously (Figure 4.4I).

Our theory explains this by the initial symmetry in connectivity and spiking covariability

between within- and cross-assembly pairs of neurons. The formation of assemblies and their

separation is similarly explained by the stimulus-induced break in this symmetry.
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4.2.4 Spontaneous spiking covariability after learning reinforces learned struc-

ture

In the absence of a training signal, assemblies did not spontaneously form. Our theory pre-

dicted, however, that a threshold for assembly formation did exist under spontaneous spiking

conditions (Figure 4.4D). This suggested that if the assemblies potentiate sufficiently dur-

ing the stimulus presentation to cross that spontaneous threshold, then internally-generated

spiking covariances will reinforce the learned architecture after stimulus removal. Internally-

generated spiking covariability after training was much larger within assemblies than between

(Figure 4.5). We predicted that this asymmetry in spiking covariability, due to the learned

network structure, would reinforce that structure after the end of training.

We tested this prediction by examining the evolution of (pAA, pAB) for 100 min after

stimulus removal in our spiking simulations. The learned assembly structure was stable,

and further reinforced by internally-generated spiking covariability after the removal of the

training signal (Figure 4.4B,D,F). This reinforcement was also reflected by the further in-

crease of spiking correlations between within-assembly neuron pairs (Figure 4.5). Internally

generated correlations, because they reflected the trained structure of the network, further

enforced that architecture.

4.2.5 Reciprocal excitatory connectivity is preferentially promoted between

similarly-tuned neurons

In the previous section, we discussed how spatial correlations in external signals can promote

the formation of Hebbian assemblies. We discussed this only at the level of mean synap-

tic weights, the simplest measure of connectivity between neuron pairs. Recent data have

revealed another striking feature of pair-based connectivity: pairs of neurons with similar

stimulus preferences have strong reciprocal connectivity [92]. We next examined whether

plasticity driven by precisely correlated spike times could contribute to the development of

such structure.

To that end, we consider networks with partially symmetric baseline connectivity (Ω =

0.4). This reciprocal structure is reflected in the weight matrix W. To measure it in a

85



−50 0 50 −50 0 50−50 0 50
Time Lag (ms)

−50 0 50
Time Lag (ms)

−50 0 50
0

1

2

3
x 10−7

C
ro

ss
−c

ov
. (

sp
/m

s)2

−50 0 50

With training
No training

0

1

2

3

C
ro

ss
−c

ov
. (

sp
/m

s)
2 x 10−7

T = 0 min T = 20 min T = 120 minA BWithin-assembly
T = 0 min T = 20 min T = 120 min

Cross-assembly

Figure 4.5: Spike train covariability reflects and reinforces learned network structure.
(A) Average spike train cross-covariance between within-assembly pairs of neurons. (B) Average
spike train cross-covariance between cross-assembly pairs of neurons. Cross-covariances estimated
by the truncated linear response theory, Eq. (4.23). Solid: with training. Shaded: without
training. Left: before training. Middle: end of stimulus presentation. Right: after spontaneous
activity following stimulus presentation (as in Fig. 4.4).

way that allows us to take into account the development of stimulus-driven assemblies, we

consider two new metrics of the network structure in addition to pAA and pAB:

qAA =
1

κ2

∑
i,j∈A

W0
ijWji − p0pAA

qAB =
1

κ (NE − κ)

∑
i∈A

∑
j 6∈A

W0
ijWji − p0pAB

(4.10)

These measure the average strength of reciprocal connections either within (qAA) or between

(qAB) assemblies, above what would be expected by chance. As before, we assume symmetry

between different assemblies. The inclusion of the mean reciprocal weights expands our

description of the network structure to four dimensions: (pAA, pAB, qAA, qAB). Furthermore,

the mean synaptic weights pAA and pAB, in addition to depending on each other, depend on

qAA, qAB through the STDP-weighted covariances due to reciprocal connections (Methods,

4.5.6).

In order to obtain a simpler description, we consider the transformation:

p∆ = pAA − pAB

q∆ = qAA − qAB.
(4.11)
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These measure the relative strength of assembly structure in the network, at the levels of

mean connection strength (p∆) and above-chance reciprocal connection strength (q∆). In

order for a network to respect the structure observed in mouse V1 by Cossell et al. [92], it

should have p∆ > 0, q∆ > 0.

The dynamics of (p∆, q∆) can be simply calculated from those of (pAA, pAB, qAA, qAB) and

are:

dp∆

dt
= c∆σ

2Sηp0 + ε
[
SFp∆ + SB(q∆ + p0p∆) + SCp

2
∆

]
(4.12)

dq∆

dt
= c∆σ

2Sηq0 + ε

[
SF q∆ + SB (1− p0) (q∆ + p0p∆) + SC

q0

p0

p2
∆

]
(4.13)

where c∆ = cAA− cAB. Notably, these are decoupled from the overall strengths of excitation

and inhibition in the network. The homeostatic inhibitory STDP, for example, is still in

effect and maintains excitatory firing rates at r̄E. Common inputs from inhibitory neurons,

however, contribute equally to the spike train covariance of within- and cross-assembly exci-

tatory neuron pairs. Because of that symmetry, they do not affect the differential plasticity

of assembly structure, p∆ or q∆. Similarly, the contribution of chance spike coincidences,

r̄2
ES, cancels out because neurons in each assembly have the same average firing rate.

Similarly to the case of asymmetric networks in the previous section, these dynamics

admit nullclines that represent thresholds for potentiation/depression. With c∆ = 0, these

are given by:

p∗∆ =
−(SF + p0SB)±

√
(SF + p0SB)2 − 4SCSBq∆

2SC

q∗∆ = −
SB(1− p0)p0p∆ + SC

q0
p0
p2

∆

SF + SB(1− p0)

(4.14)

with an unstable fixed point at (0, 0). (The other unstable point is at inaccessible values of

(p∆, q∆).) The phase plane is divided into four regions, containing each potential combination

of potentiation/depression of p∆ and q∆ (Figure 4.6C left). We take the network to be

initially unstructured, so that before training p∆ ≈ q∆ ≈ 0. If external input correlations are

higher for within-assembly pairs than cross-assembly pairs (c∆ > 0), this unstable point is

shifted to negative (p∆, q∆). This pushes the network towards having assemblies of strongly

reciprocally-connected neurons (Figure 4.6C).
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This network structure is reflected by the magnitude of spike train covariances within

and between assemblies. Due to the higher levels of reciprocal connectivity, the average

spike train covariances at negative time lag are larger than for the Ω = 0 networks discussed

above (compare Figure 4.6D vs Figure 4.5). The training of assembly structure into the

network leads to a greater than 2x increase in spike train covariability for within-assembly

neurons compared to cross-assembly neurons (Figure 4.6D). In sum, these results suggest

that spontaneously-generated spike-train correlations, in addition to providing a signature

of learned network structure, can actively reinforce it. This holds true both at the level of

average connection strengths and for reciprocal connectivity.
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4.3 RELATION TO MOTIF DYNAMICS

In Chapter 3, we derived a 9-dimensional set of equations which described the dynamics of

the mean synaptic weight and mean strengths of two-synapse motifs. When the network

had Erdös-Rènyi connectivity and unstructured weights, the mean synaptic weight (p) was,

to leading order, an invariant set of the dynamics. That invariant set could, however, be

unstable - for many initial conditions, we saw that the two-synapse motifs, while not affecting

the leading-order dynamics of p, increased so that eventually the system would move off of

the invariant set of (p, 0, 0, 0, 0, 0, 0, 0, 0).

In this chapter, we focus on the dynamics on an invariant set. We examine, however,

networks with excitatory-excitatory connectivity that is composed of a symmetric part and

an asymmetric part. The symmetric part gives rise to an over-representation of bidirectional

connectivity: qrec
0 ∼ O(1). Without special conditions on the weight matrix, this makes

qrec ∼ O(1). So, rather than having an invariant set of only p, the invariant set of the

dynamics is p, qrec. Since the recurrent motif is the only one we discuss in this chapter, we

use q ≡ qrec. Note that if the symmetric part of the connectivity is sufficiently weak, the

invariant set (p, q) becomes just p.

The main focus of this chapter is networks divided into Hebbian assemblies. This cor-

responds to block structure in the weight matrix: pairs of neurons with similar stimulus

preferences are strongly connected. In order to describe this we separate the mean synaptic

weight into the mean weight for synapses within an assembly (pAA) and the mean weight for

synapses between assemblies (pAB). Similarly, the strength of reciprocal synapses is divided

into qAA and qAB. Similar separations for the other two-synapse motifs lead to an explosion

in the total number of motif variables describing the network structure.

In order to side-step this, we take the networks to have (partially symmetric) Erdös-Rènyi

connectivity, conditioned on the adjacency matrix’s block structure. Similar to in Chapter 3,

this yields a lower-dimensional invariant set for the dynamics. Due to the partial symmetry of

the network connectivity, that invariant set is (p, q) for networks without assembly structure,

or (pAA, pAB, qAA, qAB) for networks with assembly structure.
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4.4 DISCUSSION

4.4.1 Roles of noise correlations

Many theoretical studies have asked how the trial-by-trial fluctuations in neurons’ stimulus

responses -noise correlations- impact population coding [208, 209, 145]. The answer to this

question depends on many factors. In particular, their impact on coding depends on how the

structure of noise correlations in the population relates to neurons’ stimulus preferences (e.g.

[210, 211, 212, 213, 214]). Noise correlations are often related to neurons’ stimulus tuning

[215, 216, 217, 180, 218]. In the absence of sensory stimulation, patterns of activity across

cortical populations are often similar to those observed during sensory stimulation [183, 182,

219, 220, 221, 222, 223]. Our work suggests that in addition to reflecting neurons’ learned

stimulus preferneces [216, 224], internally-generated spike train covariances can contribute

to the active maintenance of learned structures.

4.4.2 Inhibitory plasticity and inhibitory stabilization

Inhibitory feedback plays two main roles in this study. The first is to modulate excita-

tory plasticity by contributing to spike-train covariability amongst excitatory neurons. The

strength of this contribution is governed by the strength of the inhibitory feedback, which is

in turn governed by inhibition’s second role: homeostatic control of firing rates. Inhibition’s

role in stabilizing network activity in the face of strong recurrent excitation has been the

focus of much recent work in theoretical neuroscience. Notably, strong inhibitory feedback

provides dynamical explanations for the generation of variable activity in balanced networks

([225, 226, 172]) and can also account for paradoxical responses to external inhibitory inputs

[227] and diverse features of tuning in visual cortex [228, 229].

In the absence of inhibition, potentiation of excitatory synapses in our networks leads

to runaway excitation, so that the network exists in an inhibitory-stabilized regime (Figure

4.3). In contrast to other recent studies [129, 115], inhibitory STDP alone is sufficient to

stabilize the network activity in our work without imposing synaptic scaling or other com-

pensatory mechanisms. This is due to the relationship between the timescales of excitatory
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and inhibitory plasticity. We take the excitatory plasticity to be balanced between potentia-

tion and depression. This sets the dynamics of the mean excitatory weight p to occur on an

O(ε) timescale set by the eSTDP rule and the magnitude of spike-train correlations. When

the firing rates are maintained at their stable fixed points, the inhibitory STDP is similarly

governed by a timescale set by the iSTDP rule and the magnitude of spike-train correlations.

If the firing rates are outside an O(ε) neigborhood around their fixed point, this causes the

iSTDP rule to become unbalanced, so that it is governed by an O(1) timescale (Methods,

4.5.5). This feature - that the inhibitory STDP can become unbalanced in order to maintain

stable activity - guarantees that it can dynamically stabilize the network activity in the face

of the balanced excitatory plasticity.

How neurons can undergo associative, Hebbian learning while maintaining stable activity

has long been studied [230, 231]. While homeostasis is often thought of as a slower process

than learning, recent work has highlighted the necessity of homeostatic mechanisms operating

on a comparable timescale to excitatory plasticity [191]. A more specific example is yielded

by the study of ocular dominance plasticity: the analysis of simple rate-based models reveal

that homeostatic plasticity mechanisms are necessary for ocular dominance plasticity [232].

Homeostatic regulation acting alone, however, can paradoxically destabilize network activity,

inducing oscillations in neurons’ firing rates [233]. Homeostatic regulation mediated by

diffusive transmitters like nitrous oxide can have different effects than that mediated by

synaptic mechanisms [234]. The study of how homeostatic regulation and mechanisms for

associative learning interact to allow stable memories and stable activity remains an exciting

area of open inquiry.
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4.5 METHODS

4.5.1 Plasticity models

Synapses between excitatory neurons undergo additive Hebbian STDP:

εL(s) =

H(Wmax −Wij)f+e
− |s|
τ+ , if s ≥ 0

H(Wij) (−f−) e
− |s|
τ− , if s < 0,

. (4.15)

where s = tpost − tpre is the time lag between spikes. f± give the amplitude of individ-

ual changes in synaptic weights due to potentiation (f+) or depression (f−), and the time

constants τ± determine how synchronous spike pairs must be to cause plasticity. When

f± � Wmax, so that the timescale of plasticity is much longer than that of the STDP rule,

individual weights undergo diffusion (Kempter et al., 1999) and their drift can be calculated

as:

dWij

dt
= W0

ij

∫ ∞
−∞

εL(s)
(
rirj + Cij(s)

)
ds. (4.16)

Here, ri is the time-averaged firing rate of neuron i and Cij(s) is the spike train cross-

covariance function of neurons i and j. We will assume that the integral of L(s) is small

enough (O(ε)) so that firing rates do not dominate the plasticity.

The inhibitory STDP rule is

εLI(s) = H(Wij −Wmax,I)fIe
− |s|
τI (4.17)

In addition to this pair-based rule, each presynaptic (inhibitory) spike drives depression of

the inhibitory synapses by H(−Wij)dI = −2fI r̄EτI . This gives inhibitory → excitatory

synapses a drift of

dWij

dt
= W0

ij

(∫ ∞
−∞

εLI(s)
(
rirj + Cij(s)

)
ds− 2fIτI r̄Erj

)
(4.18)
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4.5.2 Network model

We consider a network of N neurons, NE of which are excitatory and divided into M clusters

of size κ. There are NI = γκ inhibitory neurons. Model parameters are in Table 4.1. We

take the excitatory-excitatory block of the adjacency matrix W0 to be partially symmetric:

W0
EE = (p0 − p0sym) W0

ER+p0symW0
sym where W0

ER has (directed, i.e. non-symmetric) Erdös-

Rényi statistics and W0
sym is symmetric with Erdös-Rényi statistics (i.e. as in an undirected

graph). Additionally we exclude autapses (W0
ii = 0 ∀i ∈ 1, . . . , N).

This means that the excitatory-excitatory connectivity is characterized by its empirical

connection density p0 and the frequency of loops q0

p0 =
1

N2
E

NE∑
i,j=1

W0
ij

q0 =
1

N2
E

NE∑
i,j=1

W0
ijW

0
ji − p2

0

(4.19)

We assume that the statistics of the adjacency matrix for within- and between-assembly

connectivity are the same (and equal to p0 and q0). The synaptic weight matrix, W is

initially generated from W0 by giving each synapse the same initial weight. We consider the

mean strength of E-E synapses within one cluster A and from other clusters into cluster A,

pAA and pAB respectively:

εpAA =
1

κ2

∑
i,j∈A

Wij

εpAB =
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

Wij

(4.20)

The small parameter ε = (κp0)−1 scales the synaptic weights. We take the mean strength

of connections within each cluster to be symmetric, and the strength of connections into

any one cluster from outside to be the same as into the others (so for all clusters A and B,

pAA = pBB and pAB = pBA). Similarly, we measure the strength of reciprocal connections

within a cluster, qAA or between clusters, qAB:

εqAA =
1

κ2

∑
i,j∈A

WijW
0
ji − εp0pAA

εqAB =
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

WijW
0
ji − εp0pAB

(4.21)
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Table 4.1: Model parameters

Parameter Description Value

C Membrane capacitance 1 µF/cm2

gL Leak conductance 0.1mS/cm2

VL Leak reversal potential -72 mV

∆ Action potential steepness 1.4 mV

VT Action potential initiation threshold -48 mV

Vth Action potential threshold 30 mV

Vre Action potential reset -72 mV

τref Action potential width 2 ms

µ External input mean 1 µA/cm2

σ External input standard deviation 9 mV

Wmax,E Maximum synaptic weight 15ε µA/cm2

Wmax,I Maximum synaptic weight −7.5ε µA/cm2

τsE Excitatory synaptic time constant 2 ms

τsI Inhibitory time constant 10 ms

By subtracting off p0pAA in the definition of qAA (and likewise for qAB), we measure the

mean strength of reciprocal connections above what would be expected in a network with

no correlations between synapses. Note: if the network is asymmetric (W0
sym = 0) then q0

is negligible (O(ε−3/2)) and so are the initial values of qAA and qAB.

We take the connectivity in between inhibitory and excitatory neurons, and within in-

hibitory neurons, to have (asymmetric) Erdös-Rényi statistics, so that these are characterized

by their mean synaptic weights: pEI for inhibitory → excitatory connections,

εpEI =
1

NENI

NE∑
i=1

N∑
j=NE+1

Wij, (4.22)

and likewise pIE and pII .
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4.5.3 Derivation of assembly dynamics

Here we will derive the dynamics of the assembly structure in networks of integrate-and-fire

neurons undergoing STDP. We will begin by consider the dynamics of mean synaptic weights

and mean reciprocal synaptic weights both within and between assemblies. The dynamics

of (p, q) and (p∆, q∆) considered in the main text will then be recovered at the end. The

derivation follows the same steps as the derivation of the motif dynamics in Chapter 3. We

begin by expanding the covariance matrix C in path lengths through the network (Trousdale

et al., 2012) and truncating at first order in the interactions to obtain:

Cij(s) ≈
external inputs︷ ︸︸ ︷

(Ai ∗Cη ∗Aj) (s) +

forwards connections︷ ︸︸ ︷(
WijKij ∗C0

jj

)
(s) +

backwards connections︷ ︸︸ ︷(
C0
ii ∗WjiK

−
ji

)
(s)

+

NE∑
k=1

(
WikKik ∗C0

kk ∗WjkK
−
jk

)
(s)︸ ︷︷ ︸

common E inputs

+
N∑

k=NE+1

(
WikKik ∗C0

kk ∗WjkK
−
jk

)
(s)︸ ︷︷ ︸

common I inputs

.

(4.23)

As can be seen from Eqs. (4.16),(4.18), these cross-covariances will control plasticity

through their integral against the STDP rule. We define variables measuring these STDP-

weighted covariances (factoring out their amplitude, given by the Wij factors in Eq. (4.23)):

S =

∫ ∞
−∞

L(s)ds

Sη =

∫ ∞
−∞

L(s) (AE(t) ∗ AE(−t)) ds

SF =

∫ ∞
−∞

L(s)
(
KEE(t) ∗ C0

E(s)
)
ds

SB =

∫ ∞
−∞

L(s)
(
C0
E(s) ∗KEE(−t)

)
ds

SC =

∫ ∞
−∞

L(s)
(
KEE(t) ∗ C0

E(s) ∗KEE(−t)
)
ds

SIC =

∫ ∞
−∞

L(s)
(
KEI(t) ∗ C0

I (s) ∗KEI(−t)
)
ds

(4.24)
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and

SI =

∫ ∞
−∞

LI(s)ds = 2fIτI

SEIη =

∫ ∞
−∞

LI(s)
(
AE(t) ∗ AI(−t)

)
ds

SEIF =

∫ ∞
−∞

LI(s)
(
KEI(t) ∗ C0

I (s)
)
ds

SEIB =

∫ ∞
−∞

LI(s)
(
C0
E(s) ∗KIE(−t)

)
ds

SEIEC =

∫ ∞
−∞

LI(s)
(
KEE(t) ∗ C0

E(s) ∗KIE(−t)
)
ds

SEIIC =

∫ ∞
−∞

LI(s)
(
KEI(t) ∗ C0

I (s) ∗KII(−t)
)
ds

(4.25)

In each of these definitions, Aα(t) corresponds to the mean linear response function of neurons

of type α, α ∈ {E, I}. Kαβ(t) is the convolution of Aα(t) and the synaptic filter for synapses

from β neurons to α neurons (α, β ∈ {E, I}). We also define rE and rI , the average excitatory

and inhibitory firing rates. Note that each of these are implicitly functions of the mean

synaptic drive onto excitatory and inhibitory neurons. Note that for the iSTDP rule, each

presynaptic spike causes depression by −SI r̄E.

We want the dynamics of the connectivity variables pAA, pAB, qAA, qAB, so we differentiate

these with respect to time. Then, inserting Eq. (4.23) into Eq. (4.16) and this into dpAA/dt

yields:

dpAA
dt

=
(
r2
ES + cAAσ

2Sη
) 1

κ2

∑
i,j∈A

W0
ij + SF

1

κ2

∑
i,j∈A

W0
ijWij + SB

1

κ2

∑
i,j∈A

W0
ijWji

+ SC
1

κ2

∑
i,j∈A

NE∑
k=1

W0
ijWikWjk + SIC

1

κ2

∑
i,j∈A

N∑
k=NE+1

W0
ijWikWjk

(4.26)

and similar for pAB:

dpAB
dt

=
(
r2
ES + cABσ

2Sη
) 1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

W0
ij + SF

1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

W0
ijWij

+ SB
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

W0
ijWji + SC

1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

NE∑
k=1

W0
ijWikWjk

+ SIC
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

N∑
k=NE+1

W0
ijWikWjk

(4.27)
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The mean bidirectional connection strengths similarly evolve according to:

dqAA
dt

=
(
r2
ES + cAAσ

2Sη
) 1

κ2

∑
i,j∈A

W0
ijW

0
ji + SF

1

κ2

∑
i,j∈A

W0
ijWijW

0
ji + SB

1

κ2

∑
i,j∈A

W0
ijWjiW

0
ji

+ SC
1

κ2

∑
i,j∈A

NE∑
k=1

W0
ijWikWjkW

0
ji + SIC

1

κ2

∑
i,j∈A

N∑
k=NE+1

W0
ijWikWjkW

0
ji − p0

dpAA
dt

(4.28)

dqAB
dt

=
(
r2
ES + cABσ

2Sη
) 1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

W0
ijW

0
ji + SF

1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

W0
ijWijW

0
ji

+ SB
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

W0
ijWjiW

0
ji + SC

1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

NE∑
k=1

W0
ijWikWjkW

0
ji

+ SIC
1

κ(NE − κ)

∑
i∈A

∑
j 6∈A

N∑
k=NE+1

W0
ijWikWjkW

0
ji − p0

dpAB
dt

(4.29)

The mean inhibitory-to-excitatory synaptic weight obeys:

dpEI
dt

=
1

NENI

NE∑
i=1

N∑
j=NE+1

dWij

dt

=
1

NENI

NE∑
i=1

N∑
j=NE+1

W0
ij

(∫ ∞
−∞

εLI(s)
(
rirj + Cij(s)

)
ds− 2fIτI r̄ErI

)

Inserting the first-order truncation of spike-train covariances yields:

dpEI
dt

=
(
rI
(
rE − r̄E

)
SI + cEIσ

2SEIη
) 1

NENI

NE∑
i=1

N∑
j=NE+1

W0
ij

+ SEIF
1

NENI

NE∑
i=1

N∑
j=NE+1

W0
ijWij + SEIB

1

NENI

NE∑
i=1

N∑
j=NE+1

W0
ijWji

+ SEIEC

1

NENI

NE∑
i=1

N∑
j=NE+1

NE∑
k=1

W0
ijWikWjk + SEIIC

1

NENI

NE∑
i=1

N∑
j=NE+1

N∑
k=NE+1

W0
ijWikWjk

(4.30)

The next step in writing down dynamics for each of the p and q variables of interest is

to evaluate the sums over W and W0 in Eqs. (4.26)-(4.30). Recalling that the adjacency
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matrix is Erdös-Rényi except for the partial symmetry of the excitatory-excitatory block,

this yields (neglecting higher-order motif contributions):

dpAA
dt

=
(
r2
ES + cAAσ

2Sη
)
p0+SF εpAA+SBε (qAA + p0pAA)+SCε

2p0

(
κp2

AA + (NE − κ) p2
AB

)
+SICε

2NIp0p
2
EI

(4.31)

dpAB
dt

=
(
r2
ES + cABσ

2Sη
)
p0 + SF εpAB + SBε(qAB + p0pAB)

+ SCε
2p0

(
2κpAApAB + (NE − 2κ) p2

AB

)
+ SICε

2NIp0p
2
EI

(4.32)

dqAA
dt

=
(
r2
ES + cAAσ

2Sη
)
q0 + SF εqAA + SBε(1− p0)(qAA + p0pAA)

+ SCε
2q0

(
κp2

AA + (NE − κ)p2
AB

)
+ SICε

2NIq0p
2
EI

(4.33)

dqAB
dt

=
(
r2
ES + cABσ

2Sη
)
q0 + SF εqAB + SBε (1− p0) (qAB + p0pAB)

+ SCε
2q0

(
2κpAApAB + (NE − 2κ) p2

AB

)
+ SICε

2q0NIp
2
EI

(4.34)

dpEI
dt

=
(
rI
(
rE − r̄E

)
SI + cEIσ

2SEIη
)
pEI0 + SEIF εpEI + SEIB εpEI0 pIE

+ SEIEC ε2pEI0 pIE (κpAA + (NE − κ) pAB) + SEIIC ε2pEI0 NIpEIpII

(4.35)

Finally, we recall that ε = (κp0)−1 and NI = γκ, revealing that the dynamics above stop

at O(ε):

dpAA
dt

=
(
r2
ES + cAAσ

2Sη
)
p0+ε

[
SFpAA + SB (qAA + p0pAA) + SC

(
p2
AA + (M − 1) p2

AB

)
+ SICγp

2
EI

]
(4.36)

dpAB
dt

=
(
r2
ES + cABσ

2Sη
)
p0 + ε

[
SFpAB + SB(qAB + p0pAB) + SC

(
2pAApAB + (M − 2) p2

AB

)
+ SICγp

2
EI

]
(4.37)

dqAA
dt

=
(
r2
ES + cAAσ

2Sη
)
q0 + ε

[
SF qAA + SB(1− p0)(qAA + p0pAA)

+ SC
1

p0

q0

(
p2
AA + (M − 1)p2

AB

)
+ SIC

γ

p0

q0p
2
EI

] (4.38)
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dqAA
dt

=
(
r2
ES + cAAσ

2Sη
)
q0 + ε

[
SF qAA + SB(1− p0)(qAA + p0pAA)

+ SC
1

p0

q0

(
p2
AA + (M − 1)p2

AB

)
+ SIC

γ

p0

q0p
2
EI

] (4.39)

dqAB
dt

=
(
r2
ES + cABσ

2Sη
)
q0 + ε

[
SF qAB + SB (1− p0) (qAB + p0pAB)

+ SC
1

p0

q0

(
2pAApAB + (M − 2) p2

AB

)
+ SIC

γ

p0

q0p
2
EI

]
(4.40)

dpEI
dt

=
(
rI
(
rE − r̄E

)
SI + cEIσ

2SEIη
)
pEI0 + ε

[
SEIF pEI + SEIB pEI0 pIE

+ SEIEC

pEI0

p0

pIE (pAA + (M − 1) pAB) + SEIIC

pEI0

p0

γpEIpII
]

(4.41)

4.5.4 Firing rate dynamics

Here we have written the dynamics in terms of the average firing rates rE, rI and STDP-

weighted spiking covariances as if those were parameters. As the mean excitatory and

inhibitory weights change, so will neurons’ firing rates. We now supplement the dynamics of

the connectivity by examining the evolution of the population-averaged firing rates rα, with

α ∈ {E, I}. The quasi-stationary firing rates obey:

rα(t) = fα(µα(t), σ2) (4.42)

where fα is the rate-current function of an EIF neuron belonging to population α and

µE = µext,E + εNEpτErE + εNIpEIτIrI

= µext,E + ε (κpAA + (NE − κ)pAB) τErE + εNIpEIτIrI

= µext,E +
1

p0

(pAA + (M − 1) pAB) τErE +
γ

p0

pEIτIrI

µI = µext,I + εNEpIEτErE + εNIpIIτIrI

= µext,I +
M

p0

pIEτErE +
γ

p0

pIIτIrI

(4.43)
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is the average external input to one those neurons and we assume that a sufficient combina-

tion of low firing rates and weak/slow synapses keeps recurrent connectivity from contributing

significantly to the effective variance of inputs to a neuron. τE and τI are the integrals of

excitatory and inhibitory synaptic kernels (these are described by single exponentials, so the

integral is their decay time constant).

The dynamics of the quasi-stationary firing rates is then given by:

drα
dt

=
dfα
dµα

dµα
dt

(4.44)

Recalling that dfα
dµ

∣∣∣
µα

=
∫∞

0
Aα(t)dt, where Aα(t) is the average linear response of neurons

of type α, we define

SαA ≡
∫ ∞

0

Aα(t)dt (4.45)

Assuming that µext,α is constant in time, we obtain:

drE
dt

= SEA

(
τE
p0

(
(pAA + (M − 1) pAB)

drE
dt

+

(
dpAA
dt

+ (M − 1)
dpAB
dt

)
rE

)
+
γτI
p0

(
dpEI
dt

rI + pEI
drI
dt

))
(4.46)

and since the excitatory → inhibitory and inhibitory → inhibitory weights are not plastic,

rI tracks rE:
drI
dt

= SIA

(
M

p0

pIEτE
drE
dt

+
γ

p0

pIIτI
drI
dt

)
=

(
SIA

M
p0
pIEτE

1− γ
p0
pIIτI

)
drE
dt

(4.47)

Inserting Eq. (4.47) into Eq. (4.46) then yields

drE
dt

=
SEA

(
τE
p0

(
dpAA
dt

+ (M − 1)dpAB
dt

)
rE + γτI

p0

dpEI
dt
rI

)
(

1− SEA
τE
p0

(pAA + (M − 1) pAB)− SEA
γτI
p0
pEI

(
SIA

M
p0
pIEτE

1− γ
p0
pIIτI

)) (4.48)
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4.5.5 Stability of firing rates

The iSTDP rule imposes a form of rate homeostasis on the dynamics, keeping rE within O(ε)

of r̄E. Indeed, this was one major motivation for its theoretical proposal (Sprekeler & Vogels

et al, 2011). We now check how this affects the dynamics of the weights. If there is a balance

between potentiation and depression in the eSTDP rule L(s) so that S ∼ O(ε), then the

dynamics of mean excitatory weights have an O(1/ε) timescale. There is a different condition

for balance between potentiation and depression of inhibitory → excitatory synapses. This

balance occurs when the excitatory rate is close to r̄E, requiring (rE − r̄E) ∼ O(ε). If the

eSTDP rule is balanced but (rE − r̄E) ∼ O(1) then the leading order dynamics of the firing

rates and pEI become O(1) and obey Eq. (4.5):

drE
dt

=

 SEA
γτI
p0

1− SEA
τE
p0

(pAA + (M − 1) pAB)− SEA
γτI
p0
pEI

(
SIA

M
p0
pIEτE

1− γ
p0
pIIτI

)


︸ ︷︷ ︸
X(pEI)

rI
dpEI
dt

(4.49)

drI
dt

=

(
SIA

M
p0
pIEτE

1− γ
p0
pIIτI

)
︸ ︷︷ ︸

Y

drE
dt

(4.50)

with fixed points (p∗EI , r
∗
I , r
∗
E) obeying:

0 =
(
r∗I
(
r∗E − r̄E

)
SI + cEIσ

2SEIη
)

0 = X(p∗EI) · r∗I ·
(
r∗I
(
r∗E − r̄E

)
SI + cEIσ

2SEIη
)

0 = Y ·X(p∗EI) · r∗I ·
(
r∗I
(
r∗E − r̄E

)
SI + cEIσ

2SEIη
) (4.51)

In order for the first condition to hold (dpEI/dt = 0), the fixed point rates must lie on the

hyperbola given by

r∗E = −
cEIσ

2SEIη
SI

(
1

r∗I

)
+ r̄E (4.52)

This also satisfies drE/dt = 0 and drI/dt = 0. If cEI = 0, this reduces to r∗E = r̄E.
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We next examine the linear stability of this solution. The Jacobian for Eqs. (4.5)-(4.50)

is:


0 rIS

IpEI0 (rE − r̄E)SIpEI0

rI
(
rI
(
rE − r̄E

)
SI + cEIσ

2SEIη
)
pEI0

∂X
∂pEI

Xr2
IS

IpEI0 2XpEI0 (rE − r̄E)SIrI +XcEIσ
2SEIη

Y rI
(
rI
(
rE − r̄E

)
SI + cEIσ

2SEIη
)
pEI0

∂X
∂pEI

Y Xr2
IS

IpEI0 2Y XpEI0 (rE − r̄E)SIrI + Y XcEIσ
2SEIη



where

∂X

∂pEI
=

(
SEA

γτI
p0

)2
(
SIA

M
p0
pIEτE

1− γ
p0
pIIτI

)
(

1− SEA
τE
p0

(pAA + (M − 1) pAB)− SEA
γτI
p0
pEI

(
SIA

M
p0
pIEτE

1− γ
p0
pIIτI

))2 (4.53)

The eigenvalues of the Jacobian, evaluated at p∗EI , r
∗
E = r̄E, r

∗
I with cEI = 0, are:

λ1 = λ2 = 0,

λ3 =
γ (r∗I )

2 SEAS
IτI

1− SEAτE(pAA+(M−1)pAB)

p0
− γMpEIpIES

E
AS

I
AτEτI

p20−γp0pIIτI

(4.54)

Below, we plot these eigenvalues (with cEI = 0) as a function of the total excitation pAA +

(M − 1)pAB with cEI = 0 so that r∗E = r̄E. For each pAA + (M − 1)pAB, we use bisection

to find p∗EI ∈ [0,WI
max] that minimizes |(rE − r̄E)| (for the particular cellular and network

parameters used). Fortunately, the inhibition is strong enough to achieve rE = r̄E - it would

be possible for this not to be the case, for example with weak WI
max.
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Figure 4.7: Eigenvalues of the system Eqs. (4.5)-(4.50) with unbalanced iSTDP.

4.5.6 Final dynamics of network structure: mind your p’s and q’s

The above analysis of unbalanced iSTDP reveals that there is a O(ε) neighborhood around

p∗EI , r̄E, r
∗
I which is attracting along those dimensions, so that rE = r̄E + O(ε), rI = r∗I +

O(ε), pEI = p∗EI + O(ε). (If cEI 6= 0 then λ2 6= 0 and the dynamics could be different, a

potential subject for future study.) Inserting these yields the following equations, up to O(ε)

and for balanced eSTDP (so S ∼ O(ε):

dpAA
dt

=
(
r̄2
ES + cAAσ

2Sη
)
p0+ε

[
SFpAA + SB (qAA + p0pAA) + SC

(
p2
AA + (M − 1) p2

AB

)
+ SICγ(p∗EI)

2
]

(4.55)
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dpAB
dt

=
(
r̄2
ES + cABσ

2Sη
)
p0 + ε

[
SFpAB + SB(qAB + p0pAB) + SC

(
2pAApAB + (M − 2) p2

AB

)
+ SICγ(p∗EI)

2
]

(4.56)

dqAA
dt

=
(
r̄2
ES + cAAσ

2Sη
)
q0 + ε

[
SF qAA + SB(1− p0)(qAA + p0pAA)

+ SC
1

p0

q0

(
p2
AA + (M − 1)p2

AB

)
+ SIC

γ

p0

q0(p∗EI)
2
] (4.57)

dqAB
dt

=
(
r̄2
ES + cABσ

2Sη
)
q0 + ε

[
SF qAB + SB (1− p0) (qAB + p0pAB)

+ SC
1

p0

q0

(
2pAApAB + (M − 2) p2

AB

)
+ SIC

γ

p0

q0(p∗EI)
2
]

(4.58)

Note that the location of (r̄E, r
∗
I , p
∗
EI) depends on the net excitation, pAA + (M − 1)pAB and

so will evolve on the slow timescale of the balanced eSTDP. We compute the nullclines of

these equations in asymmetric networks by bisection. For example, for each pAA we find the

pAB for which the homeostatic p∗EI associated with (pAA, pAB) gives dpAA/dt = 0.

4.5.7 Temporally symmetric eSTDP

When the timescales of potentiation and depression in the excitatory STDP rule are similar,

τ+ ∼ τ− + O(ε) then the dynamics of the network structure simplify considerably. Since

the correlations from common inputs (both from excitatory and inhibitory neurons) are

temporally symmetric around 0 lag, this makes SC , S
I
C , S

EIE
C , SEIIC ∼ O(ε). The dynamics

then reduce to:

dpα
dt

=
(
r̄2
ES + cασ

2Sη
)
p0 + ε [SFpα + SB (qα + p0pα)] (4.59)

dqα
dt

=
(
r̄2
ES + cασ

2Sη
)
q0 + ε

[
SF qα + SB(1− p0)(qα + p0pα)

]
(4.60)

for α = AA or AB.
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4.5.8 Separable dynamics of assembly formation and segregation

The dynamics of the network structure simplify if we take a linear transformation of our p

and q variables:

p =
MpAA +M(M − 1)pAB

M2

q =
MqAA +M(M − 1)qAB

M2

p∆ = pAA − pAB

q∆ = qAA − qAB

(4.61)

The first two, p, q measure the total mean synaptic weight and the mean weight of reciprocal

connections overall in the network. The second two measure the formation of structure. The

dynamics of these transformed variables are:

dp

dt
=
(
r̄2
ES + cEEσ

2Sη
)
p0 + ε

[
SFp+ SB (q + p0p) + SCMp2 + SICγ(p∗EI)

2
]

(4.62)

dq

dt
=
(
r̄2
ES + cEEσ

2Sη
)
q0 + ε

[
SF q + SB (1− p0) (q + p0p) + SCM

q0

p0

p2 + SICγ
q0

p0

(p∗EI)
2

]
(4.63)

dp∆

dt
= c∆σ

2Sηp0 + ε
[
SFp∆ + SB(q∆ + p0p∆) + SCp

2
∆

]
(4.64)

dq∆

dt
= c∆σ

2Sηq0 + ε

[
SF q∆ + SB (1− p0) (q∆ + p0p∆) + SC

q0

p0

p2
∆

]
(4.65)

where cEE is defined, analogously to p, as the average correlation of external inputs and

c∆ = cAA−cAB. Here we see that the spontaneous dynamics of overall potentation/depression

(p, q) are separable from the dynamics of structure formation (p∆, q∆).

The nullclines are given by solving each equation for the steady-state, and are:

p∗ =
−ε(SF + p0SB)±

√
(ε(SF + p0SB))2 − 4εSCM ((r̄2

ES + cEEσ2Sη) p0 + ε(SBq∗ + SICγ(p∗EI)
2))

2εSCM

q∗ = −
(r̄2
ES + cEEσ

2Sη) q0 + ε
(
SB(1− p0)p0p

∗ + SCM
q0
p0

(p∗)2 + SICγ
q0
p0

(p∗EI)
2
)

ε(SF + (1− p0)SB)
(4.66)
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p∗∆ =
−ε(SF + p0SB)±

√
ε2 (SF + p0SB)2 − 4εSC (c∆σ2Sηp0 + εSBq∗∆)

2εSC

q∗∆ = −
c∆σ

2Sηq0 + ε
(
SB(1− p0)p0p

∗
∆ + SC

q0
p0

(p∗∆)2
)

ε (SF + SB(1− p0))

(4.67)

In the spontaneous case (cEE = c∆ = 0) and defining S = −δε these simplify to:

p∗ =
−(SF + p0SB)±

√
((SF + p0SB))2 − 4SCM (−r̄2

Eδp0 + SBq∗ + SICγ(p∗EI)
2)

2SCM

q∗ = −
−r̄2

Eδq0 + SB(1− p0)p0p
∗ + SCM

q0
p0

(p∗)2 + SICγ
q0
p0

(p∗EI)
2

SF + (1− p0)SB

(4.68)

p∗∆ =
−(SF + p0SB)±

√
(SF + p0SB)2 − 4SC (SBq∗∆)

2SC

q∗∆ = −
SB(1− p0)p0p∆ + SC

q0
p0

(p∗∆)2

SF + (1− p0)SB

(4.69)
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5.0 CONCLUSIONS

5.1 SUMMARY

In this thesis I have presented the results of two studies on synaptic plasticity in recurrent

networks. In Chapter 2, I developed a self-consistent framework for the coevolution of

network structure and joint spiking statistics. In Chapter 3, I leveraged this to develop

theories directly describing the plasticity of two-synapse motifs during spontaneous activity.

This chapter used networks of solely excitatory neurons, necessitating weak coupling in

order to prevent runaway activity. In Chapter 4, I used similar techniques to examine

the formation of Hebbian assemblies due to external input correlations, and their active

reinforcement by spontaneous activity. This chapter also examined the effect of inhibitory

recurrence in affecting excitatory neurons’ plasticity and the role of inhibitory plasticity in

dynamically stabilizing the network’s activity.

The two largest simplifications we have relied on have been 1) considering STDP only

due to spike pairs and 2) only considering the likelihood of spike pairs as controlled by

direct interactions between neurons. This second approximation, despite neglecting spike-

train correlations due to indirect paths through the network, yielded surprisingly accurate

predictions for the results of the full spiking simulations. We expect that this accuracy

would degrade as we increased the upper bound for synaptic weights, even while remaining

within the regime of stable activity [235]. More accurate predictions for the spike train

correlations could be obtained by truncating the spike-train correlations, Eq. (C.4) at n > 1st

order in the connectivity. This accounts for the correlations to due paths up to length n

through the network. For example, truncating at length 2 paths would also account for

the spike-train correlations between neurons i and j due to any paths j → k → i, which
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we neglected. An even greater improvement can be obtained be taking into account all

higher-order patterns of connectivity, estimating them by how they are composed of up to

length n paths [162, 110]. (Mathematically, this corresponds to assuming that all higher-

than-nth-order cumulants of the network structure are negligible. The studies of this thesis,

on the other hand, neglected all 2nd- and higher-order moments of the connectivity in

estimating spike-train correlations.) This simple approximation yielded accurate predictions

of plasticity in the full spiking networks. Improved estimation of the spiking correlations

that drive plasticity could uncover new dynamics in parameter regimes we did not study.

5.2 BEYOND-PAIRWISE SPIKE CORRELATIONS IN PLASTICITY

While there is of course room for future improvement in this thesis’ theory of spike pair-based

plasticity, a more significant limitation of this work as it applies to actual plasticity in the

nervous system is that we only consider how pairs of pre- and postsynaptic spikes contribute

to plasticity. There are a number of experimental results that cannot be accounted for by

pair-based plasticity, in particular its dependence on the presentation frequency and larger

spike patterns [105, 39, 38, 41, 40]. A general theory of synaptic plasticity can be obtained

by considering the weight changes induced by pre- and postsynaptic spikes as unknown

functionals of the two spike trains [236, 237, 238]:

dWij

dt
= H0 + yi(t)F

(
yi(t), yj(t)

)
+ yj(t)G

(
yi(t), yj(t)

)
(5.1)

where yi(t) =
∑

k:tk<t δ(t− tki ) is the spike history of neuron i up to time t. The functionals

F and G model the mapping from pre- and postsynaptic spikes, through calcium signaling

or other biophysical mechanisms, into effective weight changes. As long these mappings are
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time-invariant, they can each be expanded in a Volterra series:

F (yi(t), yj(t)) =F1 +

∫ ∞
0

F ii
2 (s)yi(t− s)ds+

∫ ∞
0

F ij
2 (s)yj(t− s)ds

+

∫ ∞
0

∫ ∞
0

F iii
3 (s, s′)yi(t− s)yi(t− s′)ds′ds

+

∫ ∞
0

∫ ∞
0

F iij
3 (s, s′)yi(t− s)yj(t− s′)ds′ds

+

∫ ∞
0

∫ ∞
0

F ijj
3 (s, s′)yj(t− s)yj(t− s′)ds′ds+ · · ·

(5.2)

where each term in the expansion of F accounts for the effect of spike pairs, triplets, etc.

that include a postsynaptic spike. The functional accounting for weight changes triggered by

presynaptic spikes can be similarly expanded in a Volterra series where each term accounts

for the effect of spike pairs, triplets, etc. that include a presynaptic spike. The first term F1

accounts for weight changes driven by individual postsynaptic spikes. The superscripts in

subsequent terms denote the combination of pre- (j) and postsynaptic (i) spikes accounted for

by that term. Specific phenomenological models of plasticity can be produced by truncating

these expansions at n-th order spike interactions and specifying the necessary functions

relating action potentials to weight changes. The pair-based STDP rule have used, for

example, corresponds to truncating F and G at pairwise spike interactions, taking F1 =

G1 = 0 and F ii
2 = Gjj

2 = 0 and F ij
2 and Gji

2 to be exponential functions of the pre-post time

lag.

After truncating at a certain order, n, of spike interactions and specifying the form of

the plasticity model, the crucial last step in developing a theory for synaptic plasticity is

to compute the n-th order spike train correlations. For rate-based plasticity models such as

those discussed in the Introduction, these are simply products of the firing rates. In order to

account for spike-driven plasticity, spike-train correlations must be computed. In feedforward

networks this is comparatively simple. One approach towards computing these in recurrent

networks is to consider the neurons’ spike trains to be linearly-interacting Poisson processes

(Hawkes processes), in which case the second-order correlations can be explicitly computed

[239, 160]. Using a conductance-based model complicates the transfer of synaptic inputs to

spiking outputs, and thus the calculation of spike-train correlations. The approach we have

used is to take recurrently connected conductance-based neurons receiving external Poisson
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inputs. This allows a diffusion approximation for the external inputs and the application

of Fokker-Planck techniques to calculate the dynamical transfer of individual neurons (Ap-

pendix B), and then the use of linear response techniques to calculate spike-train correlations

[136]. In related work, Ermentrout & colleagues have examined how neurons with funda-

mentally oscillatory spiking activity can synchronize in the presence of correlated external

noise [240, 241, 242, 243, 244].

While these techniques allow the development of plasticity theories for conductance-

based recurrent networks, the requirement of Poisson external inputs restricts the approach’s

generality. Spike trains in many brain regions exhibit non-Poisson variability [245]. The

external Poisson requirement also limits the description of internally-generated spike time

variability, a striking feature of networks with balanced excitation and inhibition [225, 226,

173, 235]. Recent work has adapted techniques from the kinetic theory of plasmas to allow

the calculation of arbitrary-order spike-train correlations in networks of either binary- or

phase-neuron models [246, 247, 248, 111, 249]. The usage of these techniques to describe

conductance-based neurons relies on mapping a conductance-based model onto, usually, a

phase-neuron model [249, 111]. For example, the quadratic integrate-and-fire model can

be mapped simply onto a widely-popular phase model, the theta neuron (or Ermentrout-

Kopell canonical model) [250, 251]. These powerful techniques for calculating higher-order

spike-train correlations provide an exciting path towards theories of plasticity that self-

consistently describe both rate- and timing-based effects control the evolution of network

structure. Another, possibly simpler approach, would be to estimate triplet- or higher-order

spike train correlations by examining how they can be composed of spike pairs, similar to

the approach taken by [162] for correlations in the network structure. This type of approach

would rely on whether higher-order joint cumulants of neurons’ spike trains are negligible, a

question which remains to be tested.
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5.3

5.4 MEMORY IN RECURRENT NETWORKS

Spontaneous activity is usually viewed as a problem for plasticity: learned weight changes

must be stable in the face of spontaneous activity. Some previous studies have addressed this

issue by endowing individual synapses with dynamical bistability between weak and strong

weights [252, 76, 253, 115]. These models potentially provide a rich dynamical explanation

of the observation that individual CA3-CA1 synapses tend to occupy either strong or weak

states and switch between them, rather than having a continuum of weights [254, 255]. In

contrast the STDP rule we have used here, as with other recently proposed models [256, 257],

relies on imposed upper and lower bounds for the synaptic weight to prevent synaptic weights

from potentiating or depressing to unphysiological values.

The plasticity model we have used here is motivated by experiments demonstrating

changes in synaptic efficacy lasting for tens of minutes, mediated by post-translational synap-

tic modifications. Long-term potentiation (and possibly also depression), however, can last

for months or longer[258]. This dichotomy inspired experimental studies on the changes

in gene expression and protein synthesis mediating long-term synaptic changes. Models of

long-term plasticity based on synaptic tagging (by pre- and postsynaptic activity) and cap-

ture (of plasticity-mediating proteins, synthesized postsynaptically, in response to overall

stimulation levels) can explain a range of experimental results, exhibiting both early and

late-phase potentiation as well as depotentiation [259, 260], as well as linking depotenti-

ation protocols to behavioral memory [261]. Complementary to these studies, our results

suggest that in a recurrent network the patterns of activity that drive synaptic tagging

could, after learning, be re-generated intrinsically by the network. Indeed, a number of

past studies have shown that spontaneously patterns of activity resemble stimulus-evoked

activity [183, 182, 219, 220, 221, 222, 223]. Previous work has shown that in rate-based

plasticity, spontaneously-generated rate fluctuations due to finite-size heterogeneity in the

network structure can reflect trained structures, actively reinforcing them [129]. In Chapter

4, we show that this can occur with timing-based plasticity even despite the fact that our
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spontaneously generated patterns are fast-timescale spike-train correlations which are weak

compared to the noisy background activity.

We did not examine how presentation of further stimuli after a training period would

shape the network - whether the network would be at risk of unlearning, or able to reconfigure

in response to new stimuli. Our theory does provide predictions for these. Spontaneous un-

learning of trained network structure will occur if the training protocol is insufficient to bring

the network structure across the spontaneous thresholds for promotion of assembly structure

(Figure 4.4). After training of one network structure, the networks studied here would

response to new training protocols in a way that depends on the structure of the correlations

those protocols induce in neurons’ external inputs. For example, take a network trained into

an assembly configuration, as in (Figure 4.4). The subsequent presentation of anti-assembly

input correlations (i.e. cAB > 0) would decrease the threshold for potentiation of cross-

assembly connectivity, pushing the network into a fused configuration without preferential

connectivity within or between assemblies (large pAA and large pAB). Even if the network has

previously reached a steady state dW/dt = 0, if subsequent stimulation pushes weights off of

their equilibrium manifold then the low-dimensional theories developed here should describe

the evolution of the network’s structure. The results of Chapter 4 also extend naturally to

assemblies with overlapping membership, as long as the assumption of symmetry between

assemblies is respected.

In this thesis we investigated the formation of certain types of structure due to spike

timing. We defined structures by measure the average levels of different connectivity motifs

(Chap 3, or of connectivity within or between groups of neurons defined by their feedforward

stimulus preferences 4. A complementary line of investigation, which has received much

theoretical attention, is the question of how many different patterns of connectivity can

be maintained in a network despite ongoing activity - what is the memory capacity of a

network? And, how does it depend on the plasticity of the network’s constituent synapses?

These questions have been part of theoretical neuroscience since at least the early work of

Rosenblatt on the perceptron, a one-layer feedforward system which could learn to classify

linearly separable inputs [262]. The perceptron learns via a simple learning rule which

linearly modifies the input weights to match the inputs. Hopfield’s seminal study, examining
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memories encoded in the activity of recurrently connected neurons, brought the topic of

memory in recurrent networks into prime view [263, 264]. Early work on memory storage in

networks with Hebbian-inspired plasticity, dependent on the covariance of neurons’ activities,

showed memory capacities that scaled linearly with the network size, N [86, 265, 266, 267].

These models relied, however, on synapses being able to potentiate or depress unboundedly.

Their enormous capacity came, furthermore, with a price: the existence of a critical number

of memories that could be stored, past which all would be forgotten.

A fundamental problem of memory is how to, with a finite capacity, maintain memories in

the face of ongoing activity. When there are bounds on the possible synaptic weights, simple

synaptic models characterized by binary switches between weak or strong states exhibit a

memory capacity of at most O(
√
N), achieved when training stimuli are presented rapidly

compared to the timescale of synaptic switching. On the other hand if training stimuli arrive

slowly, the memory capacity is as low as O(lnN) [268, 269, 270, 271]. These networks are

palimpsests: rather than exhibiting critical forgetting, old memories become rewritten by

new ones [272, 273]. Because of this, a natural measure for their memory performance is how

long a memory lasts in the face of ongoing stimulation. One measure of this is the memory

lifetime: how long a randomly selected memory will last. This is typically estimated as a

signal-to-noise ratio, measuring the strength of the stored memory compared to the ongoing

fluctuations in synaptic weights.

There have been two main approaches to estimating the memory performance popula-

tions in the face of ongoing activity: 1) to examine the dynamics of the constituent synapses,

and 2) to examine the distribution of memories amongst synapses. Enriching the description

of individual synapses to multi-state cascades, with each state characterized by different

levels of plasticity, can increase the performance [274]. Interestingly, when hard bounds are

imposed on the synaptic weights, the memory lifetime depends crucially on the balance be-

tween potentiation and depression. If they are unbalanced, then the memory lifetime tends

to a constant set by the rates of potentiating and depressing events. If they are balanced,

however, the lifetime of individual memories is O(α−2), where α is the size of individual

potentiations or depressions [275]. While this work used a different synaptic model than

ours, the notion of a (possibly imperfect) balance between potentiation and depression cor-
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responds exactly. Plasticity with dynamics that depend on the current value of the synaptic

weight can also improve memory lifetimes, memory lifetimes scale as O(α−1) independently

of whether potentiation and depression are balanced or not [275]. The interaction of short-

term facilitation or depression could also be studied, pending the development of linear

response theory for spike-train correlations with short-term plasticity. How the stochastic

dynamics of synapses determines their memory capacity remains an open area of inquiry

[276].

Examining the distribution of memories amongst synapses typically involves a statement

about the coding fraction f : the number of neurons involved in individual memories. Sparse

coding (f goes to zero as N →∞) reduces the interference between old and new memories.

This can extend memory capacity up to O(N) (as long as f decreases only up to O(
√
N), in

which case critical forgetting becomes a danger again) [270]. The actual memory capacity

of finite-size networks remains a difficult question, dependent on the specifics of the network

[277, 278].

In the sparse coding limit, memories are uncorrelated with each other; each involves only

very few randomly and independently selected neurons. Similarly, theories of palimpsest

networks typically consider plasticity that is uncorrelated between synapses. There are sev-

eral reasons to further examine this assumption. One mechanism of correlations between

synapses’ plasticity is heterosynaptic plasticity, jointly affecting the dynamics of all synapses

onto a particular neuron. For example, work by Turrigiano & colleagues shows that neo-

cortical neurons homeostatically scale synaptic weights, on a timescale of days, in order to

maintain stable firing activity [90]. This can have a strong stabilizing effect on activity in

recurrent networks (e.g. [129, 115]) and is by definition highly correlated between a neuron’s

afferents. The effect of heterosynaptic plasticity on memory capacity, to our knowledge,

remains to be examined.

The structure of neural networks are characterized by correlations between different neu-

rons’ inputs and outputs [91, 151], which can strongly shape the correlation between different

neurons’ activity [162, 110, 155, 161, 160]. We showed in Chapter 3 that such structural cor-

relations can be reinforced whenever synapses are, on average, potentiating. Correlations

between neurons’ activity during stimulus-driven or spontaneous activity, potentially re-
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flecting previously learned stimulus structures, will induce correlations in the plasticity of

different synapses - as we studied in Chapter 4. Temporal correlations within an individual

pre- or postsynaptic neurons’ activity can increase the storage capacity of a perceptron-like

learning rule [279]. Senn & Fusi have shown that the presence of inhibition and realis-

tically balanced synapses can allow a perceptron-like feedforward network to discriminate

correlated, non-linearly-separable inputs [280]. The effect of spatial correlations on memory

capacity in recurrent networks remains an important open question. Spatial correlations be-

tween neurons’ activity should, in a recurrent network, induce correlations in the plasticity

of different synapses. Motif statistics represent a general way to account for different types of

structural correlation in networks [110]; the development of a motif-based theory of memory

capacity would be an exciting development for this field.

116



APPENDIX A

MATHEMATICAL NOTATION

Table A1: Mathematical Notation - Spiking Activity

Variable Description Units

ri Stationary firing rate of neuron i sp/ms

r, rE Population-averaged excitatory firing rate sp/ms

y(t) Spike train vector 1/ms

A(t) Matrix of neurons’ linear response functions (diagonal) 1/ms

y0(t) Fictional spike train in the absence of synaptic coupling 1/ms

C0(s) Spike train auto-covariance matrix (diagonal) (sp/ms)2

J(t) Synaptic filter 1/ms

K(t) Effective interaction matrix with Kij(t) = Ai(t) ∗ J(t) (ms µA/cm2)−1

C(s) Spike train covariance matrix (sp/ms)2
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Table A2: Mathematical Notation - Plasticity

Variable Description Units

L(s) Excitatory STDP (eSTDP) rule µA/cm2

S Integral of L(s) ms µA/cm2

Sη eSTDP-weighted susceptibility of excitatory neuron pairs to

external input correlations

(ms µA/cm2)−1

SF eSTDP-weighted covariance from monosynaptic connections 1/ms

SB eSTDP-weighted covariance from monosynaptic connections 1/ms

SC eSTDP-weighted covariance from reciprocal connections (ms µA/cm2)−1

SIC eSTDP-weighted covariance from common inhibitory inputs

to excitatory neuron pairs

(ms µA/cm2)−1

rI Population-averaged inhibitory firing rate sp/ms

LI(s) Inhibitory STDP (iSTDP) rule µA/cm2

SI Integral of LI(s) (ms µA/cm2)−1

SEIη iSTDP-weighted susceptibility of excitatory-inhibitory neu-

ron pairs to external input correlations

(ms µA/cm2)−1

SEIF iSTDP-weighted covariance from inhibitory-excitatory

synapses

(ms µA/cm2)−1

SEIB iSTDP-weighted covariance from reciprocal excitatory-

inhibitory synapses

(ms µA/cm2)−1

SEIEC iSTDP-weighted covariance to excitatory-inhibitory pairs

from common excitation

(ms µA/cm2)−1

SEIIC iSTDP-weighted covariance to excitatory-inhibitory pairs

from common inhibition

(ms µA/cm2)−1
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Table A3: Mathematical Notation - Network connectivity

Variable Description Units

W Synaptic weight matrix µA/cm2

W0 Connectivity (adjacency) matrix none

p0 connection density none

qdiv
0 frequency of two-synapse divergent motifs above Erös-Rènyi levels none

qcon
0 frequency of two-synapse convergent motifs above Erös-Rènyi levels none

qch
0 frequency of two-synapse chain motifs above Erös-Rènyi levels none

qrec
0 frequency of reciprocal loops above (non-symmetric) Erös-Rènyi lev-

els

none
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Table A4: Mathematical Notation - Motif strengths in networks without macroscopic
structure (Chapter 3)

Variable Description Units

p Mean excitatory synaptic weight µA/cm2

qdiv Mean strength of excitatory two-synapse divergent motif above

chance

(µA/cm2)2

qcon Mean strength of excitatory two-synapse convergent motif above

chance

(µA/cm2)2

qch Mean strength of excitatory two-synapse chain motif above chance (µA/cm2)2

qcon Mean strength of excitatory two-synapse convergent motif above

chance

(µA/cm2)2

qrec
X Mean strength of excitatory synapses, conditioned on being part

of a reciprocal loop

(µA/cm2)

qdiv
X Mean strength of excitatory synapses conditioned on being part

of a divergent motif, above chance

(µA/cm2)

qcon
X Mean strength of excitatory synapses conditioned on being part

of a convergent motif, above chance

(µA/cm2)

qch,A
X Mean strength of excitatory synapses conditioned on being the

second of a two-synapse chain, above chance

(µA/cm2)

qch,B
X Mean strength of excitatory synapses conditioned on being the

first of a two-synapse chain, above chance

(µA/cm2)

qrec Mean strength of excitatory two-synapse loops (µA/cm2)2

qop Mean strength of excitatory non-reciprocal (open) two-synapse

chains, above chance

(µA/cm2)2

qrec
X2 Mean squared excitatory synaptic weight, conditioned on being

part of a two-synapse loop

(µA/cm2)2
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Table A5: Mathematical Notation - Motif strengths in networks with macroscopic
structure (Chapter 4)

Variable Description Units

p Mean excitatory synaptic weight µA/cm2

q Mean strength of excitatory synapses, conditioned on being part of

a reciprocal loop (same as qrec
X in Chapter 3)

µA/cm2

pEI Mean inhibitory-excitatory synaptic weight µA/cm2

pAA Mean strength of excitatory synapses within assemblies µA/cm2

pAB Mean strength of excitatory synapses between assemblies µA/cm2

qAA Mean strength of excitatory synapses within assemblies conditioned

on being part of a reciprocal loop, above chance

µA/cm2

qAB Mean strength of excitatory synapses between assemblies conditioned

on being part of a reciprocal loop, above chance

µA/cm2
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APPENDIX B

FOKKER-PLANCK METHODS FOR CALCULATING SINGLE-NEURON

SPIKING STATISTICS

In this section we review a set of methods for calculating single-neuron spiking statistics.

These are based off of one main idea: that a neuron’s membrane voltage is noisy, and should

be described by a probability distribution P (V, t). There are multiple sources of noise in a

neuron’s membrane voltage [281]. The definitively stochastic sources are the probabilistic

opening and closing of single ion channels and Johnson noise. The main source we con-

sider, however, is the apparently stochastic spiking of presynaptic neurons. We examine the

case where a neuron receives a large number of presynaptic inputs, which can in sum be

approximated as a diffusion process (i.e. Gaussian white noise).

In this case, the membrane potential distribution P (V, t) obeys a partial differential

equation called the Fokker-Planck equation. While the exact form of the equation depends

on the membrane potential dynamics, general techniques exist for obtaining solutions under

the condition that the membrane potential is statistically stationary. We will review the

calculation for the transfer function first developed in [146] and extended to models with

voltage-activated conductances in [282]. We refer the reader to these past studies for any

details excluded here. For earlier treatments of spiking responses in stochastic neural network

activity, see [283, 284], and for a useful exposition of Fokker-Planck techniques in neural

networks, see [285]. We begin by considering a single neuron receiving inputs from pools of

122



presynaptic excitatory and inhibitory neurons:

C
dV

dt
= gL (VL − V )) + ψ(V ) + gE(t) (VE − V ) + gI(t) (VI − V ) + µ(t) (B.1)

where gL and VL are the leak conductance and reversal potential and µ(t) is some applied

current. ψ(V ) is a spike-generating current. For the exponential integrate-and-fire model

used in the studies of this thesis, ψ(V ) = gL∆ exp Vi−VT
∆

where VT is the spike initiation

threshold and ∆ controls the spike width. The exponential term gives rise to a divergence

in the membrane voltage: an action potential is marked by V → ∞ [137]. For numerical

purposes the voltage dynamics are supplemented by a spike peak threshold Vth and a reset

potential: V (ti) ≥ Vth → V (t+) = Vre where ti is the time of the ith postsynaptic spike. The

voltage is then held at Vre for an absolute refractory period τref

We take the synaptic conductances, gE(t) and gI(t) to be driven by presynaptic spikes,

each of which elicits the same amount of conductance (aE and aI for presynaptic excitatory

or inhibitory spikes, respectively). Here we treat the synaptic inputs as conductances. We

will soon approximate them as currents, as was done in the work composing this thesis. We

take the presynaptic spike trains to be homogenous Poisson processes with rates RE and RI .

For large presynaptic rates, we can approximate them as a diffusion process using Campbell’s

theorem (which relates integrals over functions of a point process to the intensity measure

of that process):

gE(t) (VE − V ) + gI(t) (VI − V ) ≈
(
REaE (VE − V ) +RIaI (VI − V )

)
+ σ(V )ξ(t) (B.2)

where
(
gL
√

2C/gL

)2

σ2(V ) = RE (aE (VE − V ))2 +RI (aI (VI − V ))2 and ξ(t) is a Gaussian

white noise process with zero mean and unit amplitude. Here, we have scaled σ by gL
√

2C/gL

so that σ2 is the infinitesimal variance of the passive membrane voltage - this is purely for

convenience. This allows us to write the membrane dynamics as:

C
dV

dt
= geff (Veff − V ) + ψ(V ) + µ+ σ(V )gL

√
2C/gLξ(t) (B.3)

where geff = gL+REaE+RIaI and Veff = (gLVL +REaEVE +RIaIVI) (gL +REaE +RIaI)
−1.

We then make the approximation that σ2(V ) = σ2(Veff) ≡ σ2, thus ignoring the multiplicative

nature of the synaptic noise.

123



The probability distribution associated with the membrane voltage dynamics then obeys

a Fokker-Planck equation:

∂P (V, t)

∂t
= −∂J(V, t)

∂V
= − ∂

∂V
(I(V )P ) +

σ2

2

∂

∂2V
P (B.4)

where J is the probability flux [286] and I(V ) = geff (Veff − V ) + ψ(V )− µ(t). When Veff, σ2

and µ are time-independent, the voltage has a steady state distribution P0(V ) which obeys

the continuity and flux equations:

−∂J0

∂V
= r0

(
δ (V − Vth)− δ (V − Vre)

)
(B.5)

−∂P0

∂V
=

1

gLσ2

(
CJ0 + IP0

)
(B.6)

In order to solve these, we first scale out the firing rates (i.e. replacing (P0, J0) by (p0, j0),

where P0 = r0(p0 +pap) and similar for J0) and then integrate them backwards from the spike

recording threshold Vth using the boundary conditions p0(Vth) = 0 and j0(Vth) = 1. We then

recover the firing rate from the normalization condition
∫∞
−∞ P0dV + r0τref = 1. The Fokker-

Planck equation allows the accurate prediction of the membrane potential distribution (Fig

B1).

We then investigate the response of the system to inputs that fluctuate in time by consid-

ering the time-varying responses to a periodic input as a perturbation from the equilibrium

state: µ(t) = µ0 + µ̂1e
2πift. Here µ0 is the time-independent component of the input and

µ̂1 is the amplitude of the input modulation, taken to be small. To first order in µ̂1 , the

periodic input induces periodic modulations in the system at the same frequency f . We

decompose the probability density, probability flux and firing rate into steady-state and

modulated components:

P = P0 + P̂1e
2πift, J = J0 + Ĵ1e

2πift, r = r0 + Âe2πift.

We solve for the modulated components in the Fourier domain after obtaining the equilibrium

solution to Eqs. (B.5)-(B.6). They obey the first order continuity and flux equations:

−∂Ĵ1

∂V
= 2πifP̂1 + Â

(
δ (V − Vth)− e−2πifτref δ (V − Vre)

)
(B.7)

−∂P̂1

∂V
=

1

gLσ2

(
µ0P̂1 + CĴ1 − µ̂1P0

)
(B.8)
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Figure B1: Adapted from Ocker & Doiron 2014, [170]. (A) Schematic of white-noise approximation
of Poisson inputs. (B) Left, time series of membrane potential. Right, distribution of the membrane
potential. Solid, Fokker-Planck theory. Shaded, simulation.)

In total, Fokker-Planck theory provides an accurate prediction of the responses of model

neurons receiving Poisson inputs (Fig B2).
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firing rate) as a function of input frequency. Solid, Fokker-Planck theory. Shaded, simulation.
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APPENDIX C

LINEAR RESPONSE FOR SPIKE TRAIN COVARIANCE IN RECURRENT

NETWORKS

In this appendix, we present a distinct derivation of Eq. (2.4) through a constructive ap-

proach towards the approximation in Eq. (2.3). This is a summary of work from the Josic̀

and Shea-Brown groups [136]. We start with a realization of each neuron’s spike train, tak-

ing into account only the mean (time-averaged) synaptic input to each cell, calling these

baseline spike trains y0. Importantly, y0 neglects any time-varying synaptic interactions.

The spiking output of the postsynaptic neuron, i, in response to the time-varying inputs

from presynaptic cells can be approximated as:

y
(1)
i (ω) = y0

i (ω) + Ai(ω)

(
N∑
j=1

WijJ(ω)y0
j (ω)

)
(C.1)

The difference between this approximation and the previous approximation Eq. (2.3) is

that here, we examine the response to the baseline presynaptic spike trains y0
j , rather than

the full presynaptic spike trains yj. The cross-covariance of the processes y1 yields a first

approximation to the full cross-covariance matrix:

Cij(ω) ≈ C
(1)
ij (ω) = δijC

0
ij +

(
WijKij(ω)C0

jj(ω)
)

+
(
WjiK

∗
ij(ω)C0

ii(ω)
)

+
∑
k

(
WikKik(ω)WjkK

∗
kj(ω)C0

kk(ω)
) (C.2)

This accounts for spiking covariability due to direct synaptic interactions but does not

measure the contribution of larger network structures containing paths of multiple synapses.
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Such larger structures can strongly affect spike-train covariability [156, 155, 162, 110, 160,

161, 158]. Further approximations can be built, again starting from y0. Each approximation

takes into account longer paths through the network [287, 288]:

y(n+1) = y0 + Ai(ω)

(
N∑
j=1

WijJ(ω)y
(n)
j (ω)

)
(C.3)

The first step in this iterative approximation assumes that the inputs are generated by

neurons spiking in isolation so only monosynaptic paths contribute. In the second step,

neurons in the network influence each other through disynaptic paths. Likewise, at step n

the activity of isolated neurons is filtered through paths up to length n to approximate the

spiking response.

As we iteratively approximate the spike trains, so can we successively approximate the

spike train covariances. At each step we obtain the approximation:

C(n)(ω) =

(
n∑
k=0

(W ·K)k
)

C0(ω)

(
n∑
l=0

((W ·K)∗)
l

)
(C.4)

In order to take into account the full network structure, we take the limit n → ∞ in Eq.

(C.4), yielding a power series for C(ω). If the spectral radius of the interaction matrix W ·K

is less than one, this series converges to Eq. (2.4). This convergence condition must hold at

each frequency ω. Interestingly, at ω = 0 this is the same condition as for linear stability of

the stationary firing rates in the network.
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[139] Jolivet R, Schürmann F, Berger TK, Naud R, Gerstner W, et al. (2008) The quanti-
tative single-neuron modeling competition. Biological Cybernetics 99: 417–426.

[140] Gardiner C (2009) Stochastic Methods: A Handbook for the Natural and Social Sci-
ences. Springer Berlin Heidelberg.

[141] Gilson M, Burkitt AN, Grayden DB, Thomas DA, Hemmen JL (2009) Emergence
of network structure due to spike-timing-dependent plasticity in recurrent neuronal
networks. II. Input selectivity—symmetry breaking. Biological Cybernetics 101: 103–
114.

[142] Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, et al. (2010) Decorrelated
neuronal firing in cortical microcircuits. Science 327: 584–7.

[143] Smith MA, Jia X, Zandvakili A, Kohn A (2013) Laminar dependence of neuronal
correlations in visual cortex. Journal of Neurophysiology 109: 940–947.

[144] Hansen BJ, Chelaru MI, Dragoi V (2012) Correlated variability in laminar cortical
circuits. Neuron 76: 590–602.

[145] Cohen MR, Kohn A (2011) Measuring and interpreting neuronal correlations. Nat
Neurosci 14: 811–9.

[146] Richardson M (2007) Firing-rate response of linear and nonlinear integrate-and-fire
neurons to modulated current-based and conductance-based synaptic drive. Phys Rev
E 76: 021919.

[147] Richardson M (2008) Spike-train spectra and network response functions for non-linear
integrate-and-fire neurons. Biol Cybern 99: 381–392.

139



[148] Cox D, Isham V (1980) Point Processes. Monographs on Statistics and Applied Prob-
ability. CRC Press.

[149] Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience 10: 186–198.

[150] Markram H (1997) A network of tufted layer 5 pyramidal neurons. Cerebral Cortex 7:
523–533.

[151] Perin R, Berger TK, Markram H (2011) A synaptic organizing principle for cortical
neuronal groups. Proceedings of the National Academy of Sciences 108: 5419–5424.

[152] Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory cortical neurons form
fine-scale functional networks. Nature 433: 868–873.

[153] Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, et al. (2011) Functional
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[256] Boustani SE, Yger P, Frégnac Y, Destexhe A (2012) Stable Learning in Stochastic
Network States. The Journal of Neuroscience 32: 194–214.

[257] Yger P, Harris KD (2013) The Convallis Rule for Unsupervised Learning in Cortical
Networks. PLoS Comput Biol 9: e1003272.

[258] Abraham WC (2003) How long will long-term potentiation last? Philosophical Trans-
actions of the Royal Society B: Biological Sciences 358: 735–744.

[259] Clopath C, Ziegler L, Vasilaki E, Buesing L, Gerstner W (2008) Tag-Trigger-
Consolidation: A Model of Early and Late Long-Term-Potentiation and Depression.
PLoS Comput Biol 4: e1000248.

[260] Barrett AB, Billings GO, Morris RGM, van Rossum MCW (2009) State Based Model
of Long-Term Potentiation and Synaptic Tagging and Capture. PLoS Comput Biol 5:
e1000259.

[261] Ziegler L, Zenke F, Kastner DB, Gerstner W (2015) Synaptic Consolidation: From
Synapses to Behavioral Modeling. The Journal of Neuroscience 35: 1319–1334.

[262] Rosenblatt F (1958) The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review 65: 386–408.

[263] Hopfield JJ (1982) Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences 79: 2554–
2558.

[264] Hopfield JJ (1984) Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proceedings of the National Academy of Sciences
81: 3088–3092.

147



[265] Amit DJ, Gutfreund H, Sompolinsky H (1985) Storing Infinite Numbers of Patterns
in a Spin-Glass Model of Neural Networks. Physical Review Letters 55: 1530–1533.

[266] Amit DJ, Gutfreund H, Sompolinsky H (1985) Spin-glass models of neural networks.
Physical Review A 32: 1007–1018.

[267] Tsodyks MV, Feigel’man MV (1988) The Enhanced Storage Capacity in Neural Net-
works with Low Activity Level. EPL (Europhysics Letters) 6: 101.

[268] Tsodyks M (1990) Associative memory in neural networks with binary synapses. Mod-
ern Physics Letters B 04: 713–716.

[269] Amit DJ, Fusi S (1993) Constraints on Learning in Dynamic Synapses. In: Gielen S,
Kappen B, editors, ICANN ’93, Springer London. pp. 730–733. URL http://link.

springer.com/chapter/10.1007/978-1-4471-2063-6_203.

[270] Amit DJ, Fusi S (1994) Learning in Neural Networks with Material Synapses. Neural
Comput 6: 957–982.

[271] Fusi S (2002) Hebbian spike-driven synaptic plasticity for learning patterns of mean
firing rates. Biological Cybernetics 87: 459–470.

[272] Nadal JP, Toulouse G, Changeux JP, Dehaene S (1986) Networks of Formal Neurons
and Memory Palimpsests. EPL (Europhysics Letters) 1: 535.

[273] Parisi G (1986) A memory which forgets. Journal of Physics A: Mathematical and
General 19: L617.

[274] Fusi S, Drew PJ, Abbott LF (2005) Cascade Models of Synaptically Stored Memories.
Neuron 45: 599–611.

[275] Fusi S, Abbott LF (2007) Limits on the memory storage capacity of bounded synapses.
Nature Neuroscience 10: 485–493.

[276] Lahiri S, Ganguli S (2013) A memory frontier for complex synapses. In: NIPS Proceed-
ings. pp. 1034–1042. URL http://machinelearning.wustl.edu/mlpapers/papers/

NIPS2013_4872.

[277] Huang Y, Amit Y (2010) Capacity analysis in multi-state synaptic models: a retrieval
probability perspective. Journal of Computational Neuroscience 30: 699–720.

[278] Dubreuil AM, Amit Y, Brunel N (2014) Memory Capacity of Networks with Stochastic
Binary Synapses. PLoS Comput Biol 10: e1003727.

[279] Clopath C, Nadal JP, Brunel N (2012) Storage of Correlated Patterns in Standard and
Bistable Purkinje Cell Models. PLoS Comput Biol 8: e1002448.

148

http://link.springer.com/chapter/10.1007/978-1-4471-2063-6_203
http://link.springer.com/chapter/10.1007/978-1-4471-2063-6_203
http://machinelearning.wustl.edu/mlpapers/papers/NIPS2013_4872
http://machinelearning.wustl.edu/mlpapers/papers/NIPS2013_4872


[280] Senn W, Fusi S (2005) Learning Only When Necessary: Better Memories of Correlated
Patterns in Networks with Bounded Synapses. Neural Computation 17: 2106–2138.

[281] Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nature Reviews
Neuroscience 9: 292–303.

[282] Richardson M (2009) Dynamics of neurons and networks of neurons with voltage-
activatd and calcium-activated current. Phys Rev E 80: 021928.

[283] Abbott LF, van Vreeswijk C (1993) Asynchronous states in networks of pulse-coupled
oscillators. Physical Review E 48: 1483–1490.

[284] Ginzburg I, Sompolinsky H (1994) Theory of correlations in stochastic neural networks.
Physical Review E 50: 3171–3191.

[285] Fourcaud N, Brunel N (2002) Dynamics of the Firing Probability of Noisy Integrate-
and-Fire Neurons. Neural Computation 14: 2057–2110.

[286] Risken H (1996) The Fokker-Planck equation: methods of solution and applications.
Springer-Verlag, 3 edition.

[287] Rangan AV (2009) Diagrammatic Expansion of Pulse-Coupled Network Dynamics.
Physical Review Letters 102: 158101.

[288] Rangan AV (2009) Diagrammatic expansion of pulse-coupled network dynamics in
terms of subnetworks. Physical Review E 80: 036101.

149


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. Model parameters
	4.1. Model parameters
	A1. Mathematical Notation - Spiking Activity
	A2. Mathematical Notation - Plasticity
	A3. Mathematical Notation - Network connectivity
	A4. Mathematical Notation - Motif strengths in networks without macroscopic structure (Chapter 3)
	A5. Mathematical Notation - Motif strengths in networks with macroscopic structure (Chapter 4)

	LIST OF FIGURES
	1.1. Rate-based contribution to plasticity in the triplet rule.
	2.1. Network structure shapes synaptic plasticity.
	2.2. Linear response theory for spiking covariances.
	2.3. STDP in recurrent networks with internally generated spiking covariance.
	2.4. Magnitude of spike count correlations.
	2.5. Plasticity in a network of 100 neurons.
	3.1. Different sources of spiking covariance interact with different parts of the STDP rule.
	3.2. Unbalanced plasticity gives rise to simple weight dynamics.
	3.3. Balanced plasticity of the mean synaptic weight.
	3.4. Reduced theory for the plasticity of two-synapse motifs.
	3.5. Plasticity of convergent and divergent motifs with balanced STDP.
	3.6. Plasticity of recurrent loops and open chains with balanced STDP.
	3.7. Motif dynamics in non-Erdös-Rényi networks.
	3.8. STDP in networks with larger synaptic weights.
	3.9. Truncated vs full spike train cross-covariance functions. 
	3.10. Both types of balanced STDP lead to splitting of synaptic weights.
	3.11. Motif plasticity does not depend on firing rates.
	4.1. Balance between potentiation and depression in different plasticity models.
	4.2. Network structure shapes synaptic plasticity.
	4.3. Homeostatic inhibitory plasticity dynamically stabilizes firing rates.
	4.4. Training and spontaneous reinforcement of assembly structure.
	4.5. Spike train covariability reflects and reinforces learned network structure.
	4.6. Reciprocal connectivity is preferentially promoted within assemblies.
	4.7. Eigenvalues of the system Eqs. (4.5)-(4.50) with unbalanced iSTDP. 
	B1. Fokker-Planck theory accurately predicts the membrane potential distribution of neurons with white-noise inputs.
	B2. Linear response theory for time-varying firing rate responses.

	PREFACE
	1.0 INTRODUCTION
	1.1 Long-term synaptic plasticity: a brief history
	1.2 Mechanisms of STDP
	1.3 Mechanistic models of synaptic plasticity
	1.4 Phenomenological models of synaptic plasticity
	1.4.1 Rate-based plasticity rules
	1.4.2 Timing-based plasticity rules

	1.5 Outline of this thesis

	2.0 SPIKE TIMING-DEPENDENT PLASTICITY IN RECURRENT NETWORKS
	2.1 Introduction
	2.2 Results
	2.2.1 Spike train covariance determines synaptic plasticity
	2.2.2 Network architecture determines spiking covariance in static networks
	2.2.3 Self-consistent theory for network structure and spiking covariance with plastic synapses

	2.3 Discussion
	2.4 Methods
	2.4.1 Neuron and network model
	2.4.2 Learning dynamics
	2.4.3 Spiking statistics
	2.4.4 Self-consistent theory for network plasticity

	2.5 Supplementary Information
	2.5.1 S1 Text: Magnitude of spike count correlations
	2.5.2 S1 Fig: Plasticity in networks with larger correlations


	3.0 SPIKE TIMING-DEPENDENT PLASTICITY OF TWO-SYNAPSE MOTIFS
	3.1 Introduction
	3.2 Results
	3.2.1 Dynamics of mean synaptic weight
	3.2.2 Unbalanced STDP of the mean synaptic weight
	3.2.3 Balanced STDP of the mean synaptic weight
	3.2.4 Motif dynamics
	3.2.5 Unbalanced STDP of two-synapse motifs
	3.2.6 Balanced STDP of two-synapse motifs
	3.2.7 Co-evolution of open chains and reciprocal loops
	3.2.8 Motif dynamics in non-Erdös-Rényi networks

	3.3 Summary of motif systems discussed here
	3.4 Discussion
	3.4.1 STDP in recurrent networks
	3.4.2 Stability of learned network structures
	3.4.3 Plasticity of motifs

	3.5 Methods
	3.5.1 Derivation of motif dynamics
	3.5.1.1 Plasticity of loops and open chains
	3.5.1.2 Unbalanced STDP


	3.6 Supplementary Information
	3.6.1 S2 Text: Strength of synaptic weights and stability of firing rates
	3.6.2 S2 Fig: Truncated vs full spike train cross-covariances
	3.6.3 S3 Text: Motif plasticity in homogenous networks
	3.6.4 S3 Fig: Balanced STDP in isolated pairs of neurons
	3.6.5 S4 Text: Motif plasticity with weight-dependent STDP
	3.6.6 S4 Fig: Rate-dependence of spike train covariability


	4.0 SPIKE TIMING-DEPENDENT PLASTICITY OF HEBBIAN ASSEMBLIES
	4.1 Introduction
	4.2 Results
	4.2.1 Plasticity of partially symmetric networks during spontaneous activity
	4.2.2 Inhibition and homeostatic inhibitory STDP maintain stable activity
	4.2.3 Stimulus-induced noise correlations drive the formation of Hebbian assemblies
	4.2.4 Spontaneous spiking covariability after learning reinforces learned structure
	4.2.5 Reciprocal excitatory connectivity is preferentially promoted between similarly-tuned neurons

	4.3 Relation to motif dynamics
	4.4 Discussion
	4.4.1 Roles of noise correlations
	4.4.2 Inhibitory plasticity and inhibitory stabilization

	4.5 Methods
	4.5.1 Plasticity models
	4.5.2 Network model
	4.5.3 Derivation of assembly dynamics
	4.5.4 Firing rate dynamics
	4.5.5 Stability of firing rates
	4.5.6 Final dynamics of network structure: mind your p's and q's
	4.5.7 Temporally symmetric eSTDP
	4.5.8 Separable dynamics of assembly formation and segregation


	5.0 CONCLUSIONS
	5.1 Summary
	5.2 Beyond-pairwise spike correlations in plasticity
	5.3 
	5.4 Memory in recurrent networks

	APPENDIX A. MATHEMATICAL NOTATION
	APPENDIX B. FOKKER-PLANCK METHODS FOR CALCULATING SINGLE-NEURON SPIKING STATISTICS
	APPENDIX C. LINEAR RESPONSE FOR SPIKE TRAIN COVARIANCE IN RECURRENT NETWORKS
	BIBLIOGRAPHY

