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Bioinspired design is a useful method for developing novel materials and structures. This 

dissertation presents some works on designing and modeling hierarchical materials and cellular 

structures inspired by biological materials. The goals are to provide insight into the mechanisms 

underlying their remarkable mechanical performance and devise new theories to model their 

mechanical behaviors. The design and modeling take advantage of structural hierarchy, 

anisotropy, and symmetry. In addition, most of the designed materials and structures are realized 

by 3D printing and verified by testing.  

The first key objective is to explore the energy dissipation mechanisms in bioinspired 

hierarchical materials. Two distinct mechanisms have been discovered regarding the wave 

scattering and damping figure of merit in hierarchical materials. The first mechanism is called 

multilevel Bragg scattering, which originates from the multiple periodicity of hierarchical 

materials so phononic bandgaps can be formed in a broad range of frequencies. The second 

mechanism is the damping enhancement in staggered composites, which arises from the large 

shear deformation of the viscous soft matrix. A total of three kinds of staggered composites are 

fabricated by 3D printing and tested to verify the theory.  

The second key objective aims at modeling cellular structures with material anisotropy 

either inherent in the material or induced by the processing.  In order to characterize the 

anisotropy of such cellular structures, a mathematical framework is established for their point 
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group symmetry and symmetry breaking, which is useful for the physical property 

characterization and constitutive modeling. Moreover, the anisotropic inelastic deformation and 

failure of 3D printed cellular structures are studied by developing a hyperelastic-viscoplastic 

constitutive law for glassy photopolymers, which considers material anisotropy, pressure-

sensitivity, and rate-dependence. Both experimental and simulation results indicate that the 

mechanical behavior of 3D printed cellular structures depends on both structural orientation and 

printing direction. 
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1.0  INTRODUCTION 

The research in this dissertation lies within the areas of bioinspired material design, mechanics 

modeling, and 3D printing. The theme is to design novel materials and structures inspired from 

the bone-like structure and develop new theories and models for their mechanical behaviors. The 

motivation, background, and research objective will be addressed in this chapter.     

1.1 BIOINSPIRED MATERIAL DESIGN FROM BONE 

1.1.1 Structure and property of bone 

Bioinspired design has become an increasingly important and fascinating method for developing 

novel materials and structures [1-3]. Up to now, the structure and property of a variety of hard 

tissues have been explored and utilized for material design [3], e.g. bone, tooth, nacre, cuticle, 

fish scale, and among others. These hard tissues are usually assembled from basic building 

blocks including mineral phases (CaCO3 or hydroxyapatite (HAP)), proteins, collagens, and 

water, all with poor mechanical properties. However, it is surprised that these hard biological 

materials can achieve relatively high specific stiffness and specific strength compared to 

engineering materials like metals, alloys, and plastics [3]. Researchers have attributed these 
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incredible behaviors to the multiscale structural features of biological materials, but the detailed 

mechanisms have not been fully uncovered yet.   

 

Figure 1.1 The structure of bone and the bioinspired material design from bone.  (a) Long bone. (b) Cortical bone 

[4]. (c) Cancellous bone [3]. (d) Hexagonal staggered composite [5]. (e) Octet cellular structure.  

 

One of the most representative biological materials is bone, which has drawn extensive 

study due to its importance to human and animal life. As shown in Figure 1.1, the long bone 

usually contains two parts: a dense part called cortical bone and a porous part named cancellous 

bone. Both parts of the bone have hierarchical structures formed by self-assembling of calcified 

HAP crystals, collagens, and water. Take the cortical bone as an example, its microstructure 

spans a wide range of length scales from several nanometers to millimeters [4, 6]. At the lowest 

level of hierarchy, hundreds of long-needle-shaped HAP fibrils of diameter of 10-15 nm are 

enveloped in a soft collagen matrix, as illustrated in Figure 1.1 (b). These crystals organize 

themselves into parallel arrays of fiber bundles of diameter ~1-4 μm, which are bonded together 
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by a thin layer of wet organic material. The fiber bundles are assembled into arrays of lamella to 

form another level of structural hierarchy. Similar hierarchical structure is also found in the 

cancellous bone from the SEM (scanning electron microscope) images of the etched fracture 

surfaces [7].  

The bone has remarkable mechanical performance compared to its fragile constituent 

materials. The notable properties include, but are not limited to, the following aspects. 

i. Stiffness. The stiffness of cortical bone is normally 12 ~ 20 GPa [8-10], which is 

indeed quite high by considering that the strengthening phases are merely some 

short HAP fibrils with a low volume fraction as ~ 45%.  

ii. Toughness. The fracture toughness of human cortical bone is measured to be in the 

range between 3 ~ 25 MPa m1/2 [11] in the transverse direction, which is much 

higher than that of the HAP crystal, i.e. 0.3 ~ 0.6 MPa m1/2  [12-14].  

iii. Damping. A comparison study by Lakes [15] indicated that bone exhibits a 

comparatively high damping for a relatively stiff material. For example, its damping 

loss tangent is 0.01~0.1 [16-19] over a range of frequencies, close to the loss factor 

of plastics, which results in relatively high energy dissipation.  

The enhancement mechanisms of stiffness and toughness in cortical bones have been explained 

clearly in the literature [20-23]. It was found that the mechanical behavior of bone is tightly 

related to its staggered structure and multiple hierarchies. However, the damping enhancement 

mechanism has not been explored yet. One aim of this dissertation is to explore the energy 

dissipation mechanisms in the bone-like structures, which will be presented in Chapter 2 and 

Chapter 3.   
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1.1.2 Bone-inspired material design 

There are mainly two classes of materials inspired from the bone structure, that is, hierarchical 

staggered composites (see Figure 1.1 (d)) and cellular structures (see Figure 1.1 (e)). The 

staggered composites have been designed in recent years by mimicking the arrangement of the 

mineralized platelets in cortical bone. On the other hand, the design of cellular structures inspired 

from cancellous bone and wood can be dated back to several decades ago [24].     

The seminal works on the staggered composite analysis were published by Jäger and 

Fratzl [25] and Kotha et al. [26] for the elastic behaviors. Later on, Gao and his coworkers did 

extensive study on the fracture behavior and toughness enhancement in hierarchical staggered 

composites [21-23]. These pioneer works have attracted tremendous attention in the mechanics 

and material communities and encouraged people to design and fabricate such staggered 

composites with exceptional mechanical performance. Most recently, Bouville et al. fabricated 

bone- or nacre-like ceramics with high stiff and toughness [27] and He et al. synthesized 

mesoscopically ordered bone-mimetic nanocomposites from apatite nanocrystals [28]. Generally, 

the fabrication technologies mainly include layer-by-layer deposition, self-assembly, solution 

casting, etc., with more details introduced in some pertinent review papers [29-31] and the 

references therein. The remaining challenge is to fabricate several materials with distinct 

material properties together in an organized and efficient way. Besides the experimental works, 

there are also some theoretical or simulation works published on the design-optimization of 

staggered composites [32-34] with multiple objective optimization to achieve the best overall 

mechanical performance.  

Another bioinspired material related to bone is the cellular structure. Besides bone, 

cellular structures are also observed in many other biological materials, e.g. wood, bamboo, and 
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bird skeleton [3, 24, 35].  The major function of the natural cellular structure is to reduce the 

weight, although there are also other biological purposes like enhancing transportation and 

metabolism. Researchers found that the mechanical behaviors of cellular structures are actually 

comparable to other engineering materials [3], if one compares their specific modulus, specific 

strength, etc. Therefore, these natural cellular structures have inspired the design of engineered 

cellular structures [36-39] such as lightweight structures, wave absorption materials, and the 

cores of sandwich panels.  There are many more advantages of employing cellular structures. For 

example, cellular structures exhibit exceptional properties in case of wave absorption [37, 39], 

shock resistance [40, 41], damping enhancement [42, 43], and defect tolerance [44, 45]. For 

these reasons, cellular structures have wide applications in the areas with constraint on weight, 

like aircraft design, spacecraft design, robotic design, implant, et al. 

1.2 MATERIAL DESIGN AND MODELING FOR 3D PRINTING 

1.2.1 Material design for 3D printing 

The 3D printing technology has been developed for over three decades, even though it only 

comes to the public attention in recent years [46]. Distinct from conventional subtractive 

manufacturing methods such as milling and turning, the 3D printing technology builds 

mechanical parts or models from material powders or liquid droplets, which are usually fused by 

a heat source so parts can be formed in a bottom-up manner. Thus, 3D printing can reduce 

material costs and speed up novel or conceptual design. Up to this point, more than ten 3D 

printing techniques have been developed [46-49], e.g. electron-beam melting, selective laser 
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melting, stereolithography (SLA), just name a few. The materials to choose from include metals, 

polymers, glass, and even sand. The state-of-the-art build resolution is approaching ten microns. 

In addition, new 3D printing systems support manufacturing of multiple polymers and powders 

simultaneously, which facilitate the design and fabrication of advanced composites and 

structures [50-58] with multiple materials and complex topology.   

 

Figure 1.2 3D printed composites and cellular structures manufactured by the PolyJet technology. (a) Staggered 

composites made of VeroWhitePlus (VW) and D9860 photopolymers [5]. (b) Cellular structures made of VW (top) 

and ABS-like (bottom) photopolymers. 

 

At present, the state-of-the-art PolyJet technique (developed by the Stratasys Ltd.) is able 

to manufacture designed parts with multiple photopolymers in a single job. A wide variety of 

photopolymers are provided, ranging from soft rubber-like materials to rigid plastics. This 

technique manufactures a part in such a way that the printer jets out photopolymer droplets based 

on a designed pattern first and then uses UV light to cure the polymer through 

photopolymerization. After one layer of droplets is cured, the printer proceeds to the next layer. 
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The thickness of each layer is 16-30 microns and the in-plane building resolution is less than 100 

microns. Figure 1.2 shows some 3D printed composites and cellular structures from this PolyJet 

technique by using the Objet260 Connex 3D printer. 

1.2.2 Modeling of 3D printed materials and structures 

The 3D printing techniques, e.g. PolyJet, significantly facilitate the design and fabrication of 

advanced composites and structures. However, it also brings about some challenges for material 

modeling and structural analysis. For example, the most unique feature of 3D printed 

photopolymers is that they are usually anisotropic [59, 60] in at least three aspects below. 

i. The elastic behavior is related to the printing direction.  

ii. The yield behavior and plastic deformation also depend on the printing direction.  

iii. The material strength is highly anisotropic, which is usually much weaker along the 

printing direction.  

Therefore, this anisotropy effect inherited from the layer-wise processing feature must be 

considered for the modeling and analysis of 3D printed materials and structures. It is thus 

necessary to develop advanced constitutive models and failure criteria for the 3D printed 

materials, which will be introduced in Chapter 5. 

 In addition, the modeling and analysis to the 3D printed structures is also different from 

those fabricated by conventional methods due to the material anisotropy. For example, the 3D 

printed cellular structures have anisotropy in both the structural and material levels [61]. 

Therefore, their overall mechanical property is related to both structural orientation and printing 

direction.  It is known that the overall anisotropy of the cellular structures is quite important for 

the homogenization modeling. Hence, one aim of this work is to establish a theory to analyze the 
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symmetry and anisotropy of cellular structures, which will be addressed in Chapter 4.  In 

addition, the structural response of the 3D printed cellular structures is yet not clear due to the 

material anisotropy. This also requires accurate modeling of the 3D printed materials to assist 

structural analysis and design. Some experimental and simulation works will be presented in 

Chapter 5 for the 3D printed cellular structures.  

1.3 RESEARCH OBJECTIVE 

The objectives of this research include designing new materials and structures inspired from the 

bone structure, uncovering the mechanisms underlying their novel mechanical performance, and 

developing new theories to model these materials and structures. The research works in Chapters 

2 - 5 are mainly carried out to answer the following two scientific questions:  

i. What are the energy dissipation mechanisms in bone-like hierarchical materials?  

ii. How to model cellular structures when the material is anisotropic?  

The first question will be addressed in Chapter 2 and Chapter 3 by investigating the energy 

dissipation in hierarchical phononic crystals and hierarchical staggered composites inspired from 

bone. The second question will be answered by establishing a point group symmetry theory for 

cellular structures in Chapter 4 and developing an advanced constitutive model for 

photopolymers to analyze the 3D printed cellular structures in Chapter 5. 

These research tasks will be accomplished by integrating design, modeling, 3D printing, 

and testing. The contributions of this work will provide novel theories and methods to guide the 

design and analysis of hierarchical materials and cellular structures.   
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2.0  HIERARCHICAL PHONONIC CRYSTAL WITH BROADBAND WAVE 

SCATTERING 

2.1 INTRODUCTION 

Phononic crystal [62-66] is a kind of lattice material exhibiting phononic bandgaps at certain 

frequencies where no phonon modes exist. A conventional way of designing the phononic crystal 

is by employing the Bragg scattering effect [63, 67], which can be achieved by arranging two or 

more materials with different acoustic properties in a periodic pattern. This kind of phononic 

crystal has already been well understood and used to design thermal insulators, wave filters, 

acoustic lenses, and wave guides [66, 68-70] in recent years. However, this conventional 

phononic crystal has its own drawback, which limits its wider application in engineering. For 

example, the bandgap formed in this way obeys a scaling law [67, 71], that is, the frequency of 

the bandgap is inversely proportional to the unit cell thickness of the crystal. Thus, it is usually 

hard to design a phononic crystal with bandgaps in a broad frequency range.   

Some intriguing phenomena observed from the bone-like biological materials may 

provide guidance to design better-performance phononic crystals. It is found that many hard 

biological materials possess extraordinary resistance to waves [72-77], e.g. the bone, enamel, 

lobster cuticles, crab claws, etc.  Therefore, there may be some correlation between the wave 

propagation resistance and the microstructure of these biological materials. One common feature 
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among these materials is their hierarchical structure [77-81]. This kind of structure consists of 

hard material building blocks embedded in a soft organic matrix and assembled in a hierarchical 

manner across multiple length scales. It can generally form up to three or four levels of hierarchy 

[78, 82]. To date, experimental and theoretical investigations have proved that hierarchical 

structure enhances the static strength and fracture toughness of the material very significantly 

[22, 23, 78, 79]. Nevertheless, it is still unclear whether the hierarchical structure would affect 

the wave propagation and transmission behavior of the material significantly although there is 

enough evidence to suggest so. 

From SEM images of hierarchical structured biological materials taken at different 

resolutions [78, 81, 82], their microstructure appears to be not only self-similar but also periodic 

at each level of their structural hierarchy. It is well known that periodic structure exhibits a 

peculiar phenomenon called the phonon bandgaps [62-66, 83-85] due to Bragg reflection and 

destructive wave interference [63, 67]. Within a bandgap, no energy-carrying waves can exist 

inside a phononic crystal, and only oscillating but evanescent waves can exist. The bandgaps 

created by a periodic structure obey the scaling law aforementioned. Therefore, the hypothesis is 

that the hierarchical periodic structure is capable of creating more bandgaps at multiple 

frequency scales than periodic structures. If this is true, it may shed light on how to design wave 

filters, acoustic lenses, and waveguides [66, 68-70] with greatly enhanced performance based on 

hierarchical structures. 

In order to verify this hypothesis, the bandstructure and wave filtering behavior [86] of 

one-dimensional (1D) hierarchical phononic crystals will be presented in Section 2.2 and Section 

2.3, respectively.   
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2.2 BANDSTRUCTURE OF HIERARCHICAL PHONONIC CRYSTAL 

2.2.1 Hierarchical phononic crystal 

Three 1D hierarchical phononic crystals with different number of hierarchies (N = 1, 2, and 3) 

are designed in Figure 2.1, which mimic the hierarchical structure of bone. The phonon 

bandstructure will be studied by using the plane wave method to show the broadband bandgaps 

induced by the structural hierarchy.  Each unit cell of the phononic crystal in the -thn hierarchy 

( n N≤ ) is composed of a hard layer and a soft layer, which has a thickness of nd . Furthermore, 

each heterogeneous hard layer in the higher level ( 2,3n = ) contains 5 unit cells of the sub-level; 

while for level 1n = , the hard layer is taken up by homogeneous material. 

 

 

Figure 2.1 Schematic illustration of hierarchical phononic crystals with (a) N = 1, (b) N = 2, and (c) N = 3 levels of 

hierarchies. Each hard layer is composed of five sub unit cells except level 1. The cell thickness d1 is the same for 

the three models. Thus the models in (b) and (c) can be readily obtained by selectively thickening some soft layers in 

the model (a). The wave vector is denoted as k for the acoustic wave considered here. 
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 The hierarchical structure is organized by arranging couples of hard layers and soft 

layers in this recursive way. Once the volume fraction of the hard layer is kept as φ  in each 

hierarchy, the overall content of the hard material in the material should be ( 1,2,3)N NφΦ = = . 

In addition, this overall volume fraction is kept as a constant, i.e. 86%, for the three models in 

Figure 2.1 to avoid any unfair comparison, which indicates that the hard layer content in each 

hierarchy is 1/0.86 ( 1,2,3)N Nφ = =  for each model. It is obvious that the model in Figure 2.1 (a) 

only has one hierarchy, which indeed degenerates to the periodic structure used to design 

conventional phononic crystals. Moreover, when we calculate the bandstructures, the unit cells 

of the three models in the top level all contain 25 layers of hard materials and their thicknesses 

are also kept at a constant value d.    

2.2.2 Plane wave method 

The dynamic equation of P-SV acoustic waves (P = pressure and SV = shear vertical) 

propagating in the 1D hierarchical phononic crystal can be written as 

 
( 2 ) ( )

( ) ( 2 )
xx xz zz xz tt

xz xx zz xz tt

u w u w u
u w w u w

λ µ λ µ ρ
µ λ µ λ ρ
+ ∂ + ∂ + ∂ + ∂ = ∂
∂ + ∂ + + ∂ + ∂ = ∂

  (2.1) 

where u and w are the displacements in the x and z directions, respectively, λ , µ , and ρ  are the 

Lamé constant, shear modulus, and mass density in an arbitrary layer. Note that the material 

properties are different for hard and soft layers. 

The plane wave expansion method is frequently employed to calculate the bandstructure 

of phononic crystals. To use this method, the displacements are assumed to have the following 

plane wave expansion form, as 
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i( ) i( )

i( ) i( )

e e

e e

x z m

x z m

k x t k G z
m

m

k x t k G z
m

m

u u

w w

ω

ω

− +

− +

=

=

∑

∑
  (2.2) 

where xk  and zk  are the wave vectors in x and z directions, ω  is the angular frequency, and 

2mG m dπ=  ( 0, 1, 2,m = ± ±  ) is the m-th lattice vector in the reciprocal space. In addition, the 

material properties are also expanded in a Fourier series form, as 

 i[ , , ] [ , , ]e nG z
n n n

n
λ µ ρ λ µ ρ=∑   (2.3) 

Thus, after substituting Eqs. (2.2) and (2.3) into Eq. (2.1), and collecting each wave mode n, the 

governing equation of the n-th wave mode is 

 

2 2

2

2 2 2

[ ( 2 ) ( ) ]

( ) ( )

( ) ( )

[ ( 2 )( ) ]

x n m n m n m z m m
m

n m n m x z m m n m m
m m

n m n m x z m m
m

n m x n m n m z m m n m m
m m

k k G u

k k G w u

k k G u

k k G w w

λ µ µ

λ µ ω ρ

λ µ

µ λ µ ω ρ

− − −

− − −

− −

− − − −

+ + +

+ + + =

+ +

+ + + + =

∑

∑ ∑

∑

∑ ∑

  (2.4) 

It should be pointed out that the sum of integer m or n in Eq. (2.4) is over all the reciprocal lattice 

vectors. However, only the lowest 1000 modes are taken into account in this work, i.e. 

, [ 1000,1000]m n∈ − , which will be exact enough for the first 100 phonon modes of interest here. 

Eventually, Eq. (2.4) can be written in a matrix form, as 

 2ω=Ku Mu   (2.5) 

where K  and M  are the stiffness and mass matrices, and u  is the displacement vector. The 

frequencies can be readily obtained by solving the following eigenvalue problem, as   

 2det( ) 0ω− =K M   (2.6) 
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where det( )  indicates the determinant of a matrix. Equations (2.4) and (2.6) are the general 

equations determining the bandstructures of one-dimensional phononic crystals. However, those 

equations can be simplified for 0xk = , in which case the longitudinal mode and transverse mode 

can be decoupled. Accordingly, the equations in Eq. (2.4) become 

 

2 2

2 2

( )

( 2 )( )

n m z m m n m m
m m

n m n m z m m n m m
m m

k G u u

k G w w

µ ω ρ

λ µ ω ρ

− −

− − −

+ =

+ + =

∑ ∑

∑ ∑
  (2.7) 

This simplification in Eq. (2.7) will reduce the computation time to a significant extent.   

2.2.3 Phononic bandstructure 

The material types of the hard layer and soft layer will not be specified in this theoretical study. 

In addition, dimensionless material properties are chosen to simplify the numerical calculation. 

In this case, the unit cell thickness in the top hierarchy is set as 1d =  for the three models. As a 

numerical example, the material properties are set as the following values:  

1
10, 5, 1, 0.5

h s

h h s s

ρ ρ
λ µ λ µ

= =
= = = =

 

where the subscript h and s indicate the hard layer and soft layer, respectively. Note that the 

elastic constants of the hard layer are ten times of that in the soft layer, which are already large 

enough to form visible bandgaps in the phononic crystal. 
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Figure 2.2 Phononic band structure of hierarchical phononic crystals with different hierarchies. (a) One hierarchy 

with d1 = 0.04 d; (b) Two hierarchies with d1 = 0.038 d; (c) Three hierarchies with d1 = 0.036 d. In this way, each 

unit cell in the top level contains 25 layers of hard material for all the three models. The bandgaps are depicted in 

red color, which indicates that more bandgaps can be generated once there are more hierarchies.  

 

The bandgap characteristics of phononic crystals with different number of hierarchies are 

shown in Figure 2.2, in which 0xk =  and the dispersion curves are calculated in the irreducible 

Brillouin zone ( [0, ]zk dπ= ). Thus, the phonon modes will include both longitudinal modes (P 

wave) and transverse modes (SV wave). The frequency ω  is plotted in logarithmic scale with 

base 5 to show the bandgaps more clearly because the unit cell thickness in one hierarchy is 

approximately five times of that in the lower hierarchy, i.e. 15 ( 2,3)i id d i−≈ = . As a result, the 

frequency of the bandgap generated by each hierarchy obeys 1 5i iω ω −≈ , which is easier to show 

in logarithmic scale. In addition, the thinnest unit cells in the three models of Figure 2.2 have 

almost the same thickness d1 so that their phononic responses are comparable. Figure 2.2 (a) 

shows the dispersion curves of a conventional periodic phononic crystal (N = 1) with unit cell 

thickness as 0.04 d. Only one bandgap is observed near 5log 3.5ω =  within the plotted frequency 

range in Figure 2.2 (a). However, it is demonstrated that hierarchical structures can create more 

(a) N=1 (b) N=2 (c) N=3 
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bandgaps at low frequency range. Those results are shown in Figure 2.2 (b) and (c), in which the 

numbers of hierarchies are N = 2 and N = 3, respectively. Comparing Figure 2.2 (a) with Figure 

2.2 (b), one more hierarchy generates at least three obvious bandgaps below the frequency 

5log 3.2ω =  in the crystal. In addition, the phononic crystal with three hierarchies (see Figure 

2.3 (c)) has at least three additional bandgaps compared with the one of two hierarchies in Figure 

2.2 (b). It is obvious from Figure 2.2 that the original bandgaps (bandgaps in the crystal with 

lower hierarchy) still exist when one introduces an additional hierarchy, while more bandgaps 

can be found at low frequency range. This is actually very useful because designing phononic 

crystals with more and wider bandgaps is always an important goal for researchers. The reason 

underlying this intriguing phenomenon is supposed to be the multilevel periodicity of the 

hierarchical structure. This will be further confirmed and validated by the discussion on 

bandgaps of simple periodic structures (N = 1) next. 

 

Figure 2.3 Schematic illustration of the bandgap formation mechanism in phononic crystal with two hierarchies.  

The bandgaps of the hierarchical phononic crystal in (d) include contributions from the two hierarchies in (b) and (c) 

separately.       

 

                                                            

                                                            

            

 

(a) 

(b) 

(c) 

(d) 
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The bandgap formation mechanism in a hierarchical phononic crystal is illustrated in 

Figure 2.3. It is hypothesized that different hierarchies in the crystal will perform almost 

independently. Therefore, each hierarchy can create some bandgaps in the phononic crystal, and 

the whole hierarchical structure can integrate all those bandgaps together. For example, the 

hierarchical crystal shown in Figure 2.3 has a bandgap close to 5log 3.5ω = , which is formed by 

the first hierarchy in Figure 2.3 (b), while some additional bandgaps at lower frequency range are 

induced by the second hierarchy in Figure 2.3 (c). This mechanism can also be generalized and 

extended to hierarchical phononic crystals with more hierarchies. Thus it is expected that more 

hierarchies will create more bandgaps, as what has been shown in Figure 2.2. To prove the 

mentioned hypothesis, let us consider the bandgaps of phononic crystals with only one hierarchy 

but different unit cell thickness. The results of those models are shown in Figure 2.4, in which 

(a), (b), and (c) actually show the contributions to the bandgaps from the first, second, and third 

hierarchies in Figure 2.1, respectively. The bandstructures in Figure 2.4 are already well 

understood by researchers. It shows that rescaling the unit cell thickness will not change the 

property of the band structure so much, but the dispersion curves will rescale accordingly. By 

comparing Figure 2.2 and Figure 2.4, it can be found that Figure 2.2 (a) and Figure 2.4 (a) are 

actually the same. However, the bandgaps in Figure 2.2 (b) are approximately the superposition 

of bandgaps in Figure 2.4 (a) and (b), that is, bandgaps contributed by the first and second 

hierarchy. Similarly, the bandgaps of phononic crystal with three hierarchies (see Figure 2.2 (c)) 

can integrate the bandgaps of all three models in Figure 2.4, which further validates our 

hypothesis. By comparing Figure 2.4 with Figure 2.2, it is obvious that more hierarchies will 

generate more wide bandgaps, which will enhance the wave reflectance of the phononic crystal. 

Thus, it is concluded that bandgaps of the hierarchical phononic crystals contain the contribution 
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of each hierarchy and show exceptional wave impeding behavior. This mechanism is called 

multilevel Bragg scattering in this work. 

 

Figure 2.4 Phononic bandstructure of phononic crystals with different unit cell thickness but all with only one 

hierarchy (N = 1).  

2.3 WAVE FILTERING IN HIERARCHICAL PHONONIC CRYSTAL 

2.3.1 The model 

The phononic bandstructure of hierarchical phononic crystals in Section 2.2.3 shows bandgaps in 

a broad range of frequencies owning to the multilevel Bragg scattering mechanism. In order to 

further verify the wave filtering behavior of hierarchical phononic crystals [86], numerical 

examples are shown for their wave reflection characteristics in this section.   

The hierarchical phononic crystal considered in this section is similar to the one shown in 

Figure 2.1, but with 9 couple of layers in each unit cell.  The material properties of the soft and 

hard layers in each structure are respectively assumed to be homogeneous, isotropic and are 

chosen to be those of HAP and protein [87]. Actually these two materials are the main 

(a) d1=0.04 (b) d1=0.2 (c) d1=1 
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constituents in many hierarchical biological materials including bone, enamel, etc.  The overall 

volume fraction of the hard material in each of the hierarchical models ( 1, 2,3N = ) is taken as 

0.86Φ = . This requires that the content of hard layer in each hierarchy set to be 1 Nφ = Φ  in each 

model; for example, the volume fraction of hard layer will be 0.95 at each level n  for the N = 3 

model and 0.93 for the N = 2 model. In turn, the thickness of the unit cell at each hierarchy can 

be connected by a scaling law as 1n nd d m f− =  for any 1n > . 

Table 2.1 Material properties of the constituent materials 

 λ  (GPa) µ (GPa) ρ (kg/m3) 

HAP 37 31.5 3190 

Protein 1.2 0.3 1400 

Water 2.36 0 1050 

       

The governing equation for the elastic P-SV (P-pressure and SV-shear vertical) wave 

propagation in a multilayered material can be expressed as [88, 89]: 

 ( ) ( ) ( )z z z zω∂ =b A b   (2.8) 

where T( ) [ ]z x zz xzz u u σ σ=b  is the displacement-stress vector as a function of depth z  with u  

being the displacement, σ  the stress, ω  the angular frequency, and A  a matrix related to the 

depth-dependent density and elastic properties of the constituent materials [69, 90, 91] shown in 

Table 2.1. The subscripts x and z denote the respective axes parallel and perpendicular to the 

layers in the structure (see Figure 2.1). Through the transfer matrix formulation, the solution to 

Eq. (2.8) can be shown to be ( ) exp[i ] (0)z zω=b Α b . However, the transfer matrix formulation 

may introduce some numerical instability at high frequencies since the solution procedure 
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involves subtraction of exponential growing terms. The method proposed by Kennett [88] is 

adopted to stabilize the calculation, where reflection and transmission matrices are introduced to 

eliminate the exponential growing terms analytically. To this end, the dynamic response of the 

whole material can be obtained once the boundary value (0)b  due to the incident wave is 

prescribed. Thereafter, the reflectance of the hierarchical material is computed as the ratio of the 

energy flux, i.e., 0.5Re[i ( )]z zz x xzu uω σ σ+  [89], of the incident wave to that of the reflected wave 

at the left end (see Figure 2.1). If the reflectance is equal to unity in a certain range of 

frequencies, the incident wave will be totally reflected, and hence a bandgap can be identified.  

2.3.2 Wave reflection in hierarchical phononic crystal 

The wave reflectance of each multilayered hierarchical structure with different levels of 

hierarchy is shown in Figure 2.5, in which the reflectance spectra under P wave incident at an 

angle 0θ =   in water are illustrated. The unit cell thickness at the finest hierarchy level n = 1 in 

each model is taken to be d1 = 0.1 μm. In addition, the three hierarchical structures are of equal 

total thickness (100 μm) to avoid any unfair comparison. Figure 2.5 (a) shows the reflectance of 

the periodic structure (i.e. N = 1), where the lowest-frequency bandgap can be identified to be 

10 114 10 ~2 10× × rad/s. These characteristics show that this periodic structure is poor at impeding 

waves at frequencies 104 10< × rad/s. In contrast, more bandgaps can be created in lower 

frequency range by simply adding more hierarchy levels to this periodic structure. This is 

demonstrated in Figure 2.5 (b) and (c), which show that approximately 5 and 12 more bandgaps 

are created at frequencies 104 10< × rad/s for the respective multilayered structures with N = 2 

and N = 3 levels of hierarchy when compared with the periodic structure (Figure 2.5 (a)). Note 
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that the lowest-frequency bandgap is formed at 9~ 5 10× rad/s and 8~ 6 10× rad/s as shown in 

Figure 2.5 (b) and (c), respectively. Thus it can be concluded that adding one more level of 

hierarchy with longer period can create more bandgaps at nearly one order of magnitude lower in 

frequency. Further, it can also be observed that having more levels of hierarchy will also increase 

the reflectance in higher frequency range (i.e. 112 10ω > × rad/s). The overall behavior observed is 

remarkable because hierarchical structure provides a way to impede wave propagation in a much 

broader range of frequencies, which enhances the wave filtering ability of phononic crystals. The 

origin of this effect should be due to the multilevel Bragg scattering of the hierarchical structured 

models constructed above and will be further explored in the discussion of bandgaps of periodic 

structures next. 

 

Figure 2.5  Reflectance spectra of hierarchical materials with N levels of hierarchy. 
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Figure 2.6 Reflectance spectra of periodic and stacked structures. (a)-(c) Single periodic structures consisting of ten 

unit cells with d1 = 0.1 μm, d1 = 0.95 μm, and d1 = 8.98 μm, respectively. (d) Reflectance spectrum of a multilayered 

structure constructed by stacking the three models of (a)-(c) in series.  

 

Here, each level of hierarchy in the previous hierarchical structures is modeled 

independently as a periodic structure, and the wave reflectance will be compared to those of the 

hierarchical structures.  Each of the three periodic structures has 10 unit cells, whose respective 

thickness 1d  is the same as that at level n = 1, 2, and 3 in the three previous hierarchical 

structures. The resulting reflectance spectra under normal P wave incident are plotted in Figure 

2.6 (a)-(c), which are consistent with the scaling law mentioned above [67]. By comparing 

Figure 2.5 with Figure 2.6 (a)-(c), the hierarchical structures generally have more wide bandgaps 

than the periodic structures, which enables the strong reflection of incident waves in a wide 

range of frequencies. In fact, the bandgaps of the hierarchical structures with N = 2 and 3 levels 
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of hierarchy (Figure 2.5) seem to have superimposed, to a large extent, the widest bandgaps of 

the periodic structures when the same periodicity is embedded in the hierarchical structures. For 

example, the wave reflectance of the hierarchical structure with N = 3 (Figure 2.5 (c)) shows 

bandgaps created by all three periodic structures shown in Figure 2.6 (a)-(c). Therefore, this 

multilayered structure with three hierarchy levels has much wider bandgaps at the high 

frequencies than the response of periodic structure shown in Figure 2.6 (c). Equally importantly, 

the overall bandwidth covered by closely adjacent bandgaps of the two hierarchical structures is 

thus approximately one and two orders of magnitude larger than that of the periodic structures in 

this case. Further confirmation can be provided by computing the reflectance spectrum of a 

structure constructed by stacking the three periodic models of Figure 2.6 (a)-(c) in series. This 

structure contains a total of 30 unit cells and can superimpose all the widest bandgaps in Figure 

2.6 (a)-(c) perfectly. It can be seen that the hierarchical structure in Figure 2.5 (c) has similar 

broadband wave filtering effect with this stacked structure in Figure 2.6 (d), although some tiny 

pass bands are observed in the former, e.g., see the one at 8 96 10 ~ 2 10× × rad/s.  Actually it is 

possible to tune the three periodicities such that the bandgaps are perfectly back-to-back, or even 

overlapping, by employing the stacking design of Figure 2.6 (d). However, it is unlikely for the 

hierarchical structure to get rid of the tiny pass bands. Surely, the bandgaps of hierarchical 

structures are not just simple superposition of the ones generated by periodic structures 

corresponding to each level. In reality, adding one more level of hierarchy introduces periodic 

defects to the periodicity at the lower hierarchy level. These defects do not affect the bandgaps 

so much despite introducing some phonon modes in the tiny pass bands. However, the 

disadvantage is outweighed by the advantages of this bioinspired hierarchical structure over 

simple stacked periodic structures in series: 1) it is much more compact in thickness and uniform 
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in response due to the inherent multiscale periodicity; 2) it is cheaper to assemble because only 

hard building blocks of the same size are needed; 3) it also endows the phononic material with 

other exceptional mechanical behaviors such as enhanced strength and toughness. Therefore, 

hierarchical structure is promising for phononic crystal design [92].  

 

Figure 2.7 Contour plot of the reflectance of multilayered hierarchical models with N = 3 levels of hierarchy. 

 

The incident P wave has been set normal to the material surface in the models employed 

to generate the response in Figure 2.5 and Figure 2.6. Hence the reflection response of the 

hierarchical material with N = 3 levels of hierarchy will be examined for waves at incident angles 

of 0 ~80  , as shown in the contour plot in Figure 2.7. One can observe from Figure 2.7 that a 

wide range of bandgaps still exist when the incidence angle θ  becomes larger. In particular, the 

hierarchical material has a very wide bandgap when ~ 70θ  . This contour plot demonstrates that 

the hierarchical structure is also effective in filtering waves from different directions at a wide 

range of frequencies.  
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2.4 SUMMARY 

In summary, it has been demonstrated through a simple multilayered model that the hierarchical 

structure observed in the bone-like biological materials can be designed as phononic crystals 

exhibiting bandgaps in much broader frequency range than those with single periodicity. The 

incident waves of a wide frequency range could be totally reflected in these bioinspired 

hierarchical structures to dissipate energy, which partially answers the first question raised in 

Section 1.3. This remarkable feature is attributed to the intrinsic multilevel periodicity of 

hierarchical structures, which gives rise to the multilevel Bragg scattering phenomenon. More 

specifically, the periodicity in each hierarchy level creates bandgaps in certain ranges of 

frequency, and the whole hierarchical structure superimposes the bandgaps generated in each 

hierarchy together, which shows strong filtering effect to the incident waves. It is also found that 

the introduction of an additional level of hierarchy would not affect the original bandgaps much, 

although sometimes a small pass band can occur and split the original bandgap. The conceptual 

design and mechanism presented in this chapter can be readily adopted to enhance wave filtering 

and reflection of periodic structures by turning them into hierarchical structures. 
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3.0  HIERARCHICAL STAGGERED COMPOSITES WITH HIGHLY ENHANCED 

DAMPING 

3.1 INTRODUCTION 

The damping composites have wide applications in engineering. For example, they could serve 

as cushion layers to protect objects from dynamic attack or disturbance, control the vibration of 

load-bearing structures as a damping component, and design structures or parts with intrinsic 

energy dissipation behaviors. Even though the damping is a fundamental and ubiquitous 

behavior of all solid materials [93], only a few of them reach the standard of engineering 

damping application. The design of high-performance wave or vibration absorbing structural 

components requires materials having high viscosity and moderate to high stiffness. The 

damping performance of materials [93] is characterized by their complex modulus iE E E∗ ′ ′′= + , 

with the real part E′ (storage modulus) and imaginary part E′′  (loss modulus) being proportional 

to the storage energy and dissipated energy in the materials, respectively, and their ratio 

tan E Eδ ′′ ′=  known as the loss tangent (or viscosity) of materials. The loss modulus 

tanE E δ′′ ′= , a direct indicator of the energy dissipation, is also designated as the figure of merit 

of damping materials. In general, most materials show poor damping performance because they 

do not usually exhibit both high stiffness E′  and high viscosity tanδ  simultaneously [15, 94]. 
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For example, soft polymers usually have high viscosity ( tanδ = 0.1 ~ 1) but stiff materials like 

metals normally exhibit much lower viscosity ( tanδ  < 0.001) at room temperature [93].  

Several methods have been proposed in the literature to design better performing 

damping materials, like introducing piezoelectric or magnetostrictive phases [95, 96], employing 

phase transitions [97, 98], synthesizing nanocomposites [99, 100], and adding negative-stiffness 

phases [101, 102]. Nevertheless, one cannot underestimate the role of biological materials, 

especially those with high specific loss modulus, in inspiring and stimulating the design of 

materials with high energy dissipation [5]. For example, dissipative bio-inspired scaffolds have 

been recently synthesized by replicating the pore structure of cancellous bones [103]. In addition, 

some theoretical and numerical works have shown that the bone- and nacre-like structure could 

be utilized to design phononic crystals with highly enhanced wave reflection/absorption 

performance [86, 104, 105] and to attenuate wave propagation at nanoscale [106]. A comparison 

study by Lakes [15, 93] showed that most materials have a damping figure of merit lower than 

0.6 GPa, while cortical bone exhibits a comparatively high damping for a relatively stiff 

material. For example, its stiffness is normally 12~20 GPa [8-10] while damping loss factor is 

0.01~0.1 [16-19] over a range of frequencies. This implies that there is possibility to design 

composites exhibiting high stiffness and large damping loss factor simultaneously by mimicking 

the bone structure. It would be of great significance to develop such composites with highly 

enhanced energy dissipation for engineering applications. Hence, the objective of this chapter 

includes three aspects: (i) Design and model staggered composites with better damping 

performance; (ii) Manufacture and test staggered polymer composites with enhanced energy 

dissipation; (iii) Explore the effect of structural hierarchy on the damping of staggered materials.    
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3.2 STAGGERED COMPOSITE DESIGN 

The two-dimensional (2D) staggered composite shown in Figure 3.1 mimics the microstructure 

of bone and nacre [4], which has drawn much attention and extensive investigation. For example, 

this model has been successfully used to explain the stiffness and toughness enhancement 

mechanism in 2D staggered composites [23, 25, 26, 107-110]. In a 2D staggered composite, the 

hard prisms (or platelets) are dispersed in the soft matrix in a staggered manner (Figure 3.1 (b)). 

The length and thickness of the prism is l  and h  , respectively, which also define its aspect ratio 

as l hη =  with η≫1. The thickness of the soft matrix layer is ch  and the distance between two 

neighbor prism tips is cl  ( cl ≪ l ). The loading-transfer characteristic in the 2D staggered 

composite is quite unique. The uniaxial loading along the longitudinal direction of prisms is 

mainly sustained by the shear deformation of the soft matrix within the shear region (Figure 3.1 

(b)) between two parallel prisms [23], even though the soft matrix in the tension region (Figure 

3.1 (b)) has a minor effect [111]. The force balance of the prism is illustrated in Figure 3.1 (c), 

where cτ  is the shear stress in the shear region and cσ  is the tensile stress in the tension region. 

Note that cτ  is not necessarily constant along the prism surface, especially when the aspect ratio 

η  is large. Since the loading-transfer is mainly induced by the shear region, we define the 

effective shear length of a prism as s cl l l= −  and the corresponding aspect ratio as /s sl hη = . 

Note that the difference between η  and sη  is only significant when the aspect ratio η  is small. 
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Figure 3.1 Biomimetic design of 2D staggered composites from the bone structure. (a) The mineralized fibril 

structure of cortical bone [4]. The mineral platelets are arranged in a layer-wise staggered manner. (b) Arrangement 

of the hard prisms in the designed composite. (c) Force balance diagram for an individual prism.  

 

Three-dimensional (3D) staggered composites are designed as a substitute for the 2D 

model since the 2D model suffers from low loading-transfer ability. In reality, the staggered 

microstructure is akin to 3D rather than 2D in natural materials such as bone and nacre [77, 112, 

113]. Compared with the 2D design, 3D staggered composites have more topological features to 

be designed and optimized, providing a greater possibility to leverage the loading-transfer 

ability. Therefore, two different kinds of 3D staggered composites are designed, which have 

square (Figure 3.2 (a)) and hexagonal (Figure 3.2 (d)) shaped prisms, respectively. The structure 

of 3D staggered composites is more complex than the 2D case. For both of the two types of 3D 

staggered composites, shown in Figure 3.2, the prisms are distributed so that one prism’s tip 

locates in the middle of adjacent prisms in the longitudinal direction. The prism’s length, 

thickness, and aspect ratio are also designated as l  , h  , and η , respectively. Other parameters, 

like sl , sη , ch , and cl , can also be defined in accordance with the 2D case. The detailed 

arrangement of the prisms in 3D staggered composites is illustrated in Figure 3.2 (b) and (e), 

which show the cellular structure of their transverse cross sections. The lattice points are 
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indicated by black dots and defined by two lattice vectors 1a  and 2a . Similar to a crystal 

structure [114], the structure of a staggered composite is determined once its motif, the repeated 

unit cell resting at each lattice point, is prescribed. The representative motifs of 3D staggered 

composites are enclosed and highlighted by dotted closed circles in Figure 3.2 (b) and (e). Each 

motif contains two arrays of prisms, which arrange in a staggered manner and are differentiated 

by solid lines and dashed lines in Figure 3.2. The lattice points of the staggered composites can 

be obtained via translation operations based on the lattice vectors, which are defined as 

1 2[1 1], [1 1]= =a a , and 1 2[ 3 0], [0 1]= =a a  for square and hexagonal cases, respectively. 

The edge length a  of the prism is derived from the geometric condition, where a h=  and 

3a h=  for square and hexagonal prism, respectively. Therefore, once the volume fraction of 

the hard phase is set as φ , the soft layer thickness is determined by 
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φ
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  (3.1) 

It is found from Eq. (3.1) that the soft layer thicknesses of the two 3D staggered composites 

(with square and hexagonal prisms) are equal when the volume fraction φ  and prism thickness 

h  are fixed.  

The loading-transfer characteristics are different for the two composites presented in 

Figure 3.2. As shown in Figure 3.2 (b), all of the four nearest neighbors of a square prism have 

different arrangement compared to itself, which induces shear stress cτ  on all of its four lateral 

surfaces (Figure 3.2 (c)) once a uniaxial loading is applied to the composite. In contrast, the 

hexagonal prism (Figure 3.2 (d) and (e)) has a different feature, that is, only four lateral surfaces 

out of six are subjected to shear stress loading, as illustrated in Figure 3.2 (f). Thus, the shear 

region can be formed all around a square prism but only partially around a hexagonal prism. It is 



 31 

shown that both 3D designs have more effective loading-transfer ability than the 2D one. 

Additionally, similar to the 2D staggered composite, the tensile stress cσ  is also be induced by 

the tension region, which has a minor effect on the deformation of a prism but should not be 

neglected when the aspect ratio η  of the prism is not large enough. 

 

Figure 3.2 Schematic illustration of 3D staggered composites with (a)-(c) square prisms and (d)-(f) hexagonal 

prisms. (a) and (d) show the prism arrangement in each composite. (b) and (e) show the lattice structure of the 

transverse cross section of each composite. Lattice points are indicated by black dots. The motif is enclosed by a 

dotted closed circle, which contains two columns of prisms arranged in a staggered manner and being indicated by 

solid and dash lines, respectively. (c) and (f) illustrate the force balance diagram of a prism in the corresponding 

composite. 
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3.3 THEORETICAL MODELING 

The complex modulus of staggered composites can be derived from the correspondence principle 

of linear viscoelasticity [93, 115]. Namely, the dynamic property of viscoelastic materials 

follows the same mathematical form as the elastic case by simply replacing all real elastic 

constants with complex values. Therefore, the elastic properties are derived first.    

3.3.1 A unified shear-lag model 

A unified shear-lag model is presented to predict the overall elastic property of all three 

staggered composites. As shown in Figure 3.3, the motif structure of each 3D composite is 

further reduced to a simple model (shaded area in Figure 3.3) containing two reduced prisms 

bonded by a soft layer. The mechanical response of the reduced model is equivalent to the whole 

composite due to the lattice symmetry conditions. In fact, the reduced model in Figure 3.3 is just 

a quarter of the Wigner-Seitz cell of the lattice structure for the two composites with square 

(Figure 3.2 (b)) and hexagonal (Figure 3.2 (e)) prisms. The cross sectional area A of each 

reduced prism is  
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ah
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a



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  (3.2) 

Note that the area A is also able to be expressed as a function of h  only. 
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Figure 3.3 The reduced model (shaded area) for the motif structure of staggered composites to be used for the shear 

lag model. Each reduced model contains two reduced prisms and a soft layer between them, which is able to 

represent the structure and loading transfer characteristics of the whole composite. (a) Plane stress case. (b) Square 

prism. (c) Hexagonal prism. 

 

 

 

Figure 3.4 The unified shear lag model for staggered composites. The model is applicable to both 2D and 3D 

staggered composites. The cross section illustrated here is for the reduced square prism but it can be generalized to 

other cases easily.  
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The shear lag model is illustrated in Figure 3.4, which is composed of two reduced 

prisms and a soft layer between them. The maximum tensile stress mσ  occurs in the middle of 

each prism due to the symmetry condition. Thereby, only a half of the reduced prism needs to be 

considered in the shear lag model. A local coordinate system is established at the center of the 

soft layer with x   denoting the longitudinal direction of the prism and hence 4 4s sl x l− ≤ ≤ . In 

Figure 3.4, prism 1 is subjected to tensile stress loading cσ  and mσ  on its two ends, where cσ  is 

the tensile stress induced by the tension region. In contrast, prism 2 is subjected to the same 

tensile stress loading but on opposite ends. Suppose the displacement field in the prism is ju  and 

jv  along the x  and y  direction, respectively, with the subscript ( 1, 2)j j =  indicating the prism 

number. An essential assumption of the shear lag model is that ( )j ju u x=  and 0jv = . Thus the 

prisms are in uniaxial tension and the misfit displacement 1 2u u−  will induce shear deformation 

in the soft layer. Therefore, the shear strain cγ  in the shear region of the soft layer is  

 1 2
c

c

u u
h

γ −
=  (3.3) 

In turn, the shear strain cγ  asserts shear stress loading to the two prisms, as 

 
1 2( )

c c c

c

c

u u
h

τ µ γ
µ

=

= −
  (3.4) 

where cµ  is the shear modulus of the soft matrix.  

The unknown displacements 1u  and 2u  will be solved from the equilibrium equation of 

the prisms, as [116] 
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where A  is shown in Eq. (3.2). Given that the tension strain is j x juε = ∂  in the two prisms, the 

corresponding tensile stress is 

 j m j

m x j

E
E u

σ ε=

= ∂
  (3.6) 

where mE  is the elastic modulus of the prism. Alternatively, the equilibrium equations in Eq. 

(3.5) can be further written in a displacement form by employing Eq. (3.6), as 
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where k  is a dimensionless parameter related to the prism shape and material properties, as 
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m c
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=   (3.8) 

It will be shown later that k  is a crucial geometrical parameter reflecting the loading-transfer 

ability of a staggered composite.  

The boundary conditions of the two prisms are set as 
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Figure 3.5 Schematic illustration of the deformation in the tension region of the soft matrix for a stretched 2D 

staggered composite. The initial boundary of the tension region is a rectangle, whereas the deformed boundary is an 

octagon. The tension deformation in the tension region can be generalized to 3D cases similarly.  

 

Up to now, the tensile stress cσ  is still unknown, which is induced by the deformation of the 

tension region. It is seen from Figure 3.5 that the rectangular tension region deforms into an 

octagon shape in the 2D staggered composite. Actually the deformation of the tension region is 

similar in 3D staggered composites. The tensile strain of the tension region between the two 

prism tips can be derived from the kinematic relation in Figure 3.5, as 
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ε γ
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=   (3.10) 

Thus the average tensile stress cσ  exerted on the prism tip is estimated to be 

 c c
c

c εσ
φ

=   (3.11) 

where the term φ  in the denominator is introduced to account for the tension effect of the soft 

material on the left and right sides of the tension region. The result of Eq. (3.11) has been proved 
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to be valid even for 3D staggered composites. The term cc  is the tensile stiffness [117] of the 

soft material, as 

 
2 for plane stress
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  (3.12) 

where cE  and cν  are the elastic modulus and Poisson's ratio of the soft matrix and 

2 (1 )c c cE µ ν= + . After substituting Eqs. (3.3) and (3.10) into Eq. (3.11), the tensile stress cσ  is 

expressed in a displacement form, as 
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= −   (3.13) 

By substituting Eq. (3.13) into the boundary conditions in Eq. (3.9), the displacement 

field ( 1, 2)ju j =  is able to be solved from Eq. (3.7), as 
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where 
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The tensile stress in the prism is determined by Eqs. (3.6) and (3.14), as 
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In addition, the shear stress distribution in the shear region of the soft matrix is obtained from 

Eqs. (3.4) and (3.14), as 
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Equation (3.17) indicates that cτ  is not always constant along the prism. Only in the case that 

4k ≪1 can cτ  be assumed to be constant.  

3.3.2 Elastic modulus of staggered composites 

The overall elastic modulus of the staggered composites is derived based on the proposed shear 

lag model above. Bear in mind that the left end of prism 2 in Figure 3.4 is fixed. Hence, the 

overall strain of the staggered composite is 
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l
ε ==   (3.18) 

On the other hand, the average stress in the composite is [23] 

 ( )m cσ σ σ φ= +   (3.19) 

The overall elastic modulus E σ ε=  of the staggered composite can be obtained from 

Eqs. (3.18) and (3.19) with given displacement field in Eq. (3.14) and stress distribution in Eq. 

(3.16). It is finally found that 

 
4 4

1 1 1
tanh( )s

c

l k k
m c mlE E c Eφ φ

= +
+

  (3.20) 

where the first term on the right hand side shows the contribution from the prism and the second 

term represents the effect of the soft matrix. The simple form of Eq. (3.20) has a very strong 

physical implication, that is, the hard prism and soft matrix behave like a pair of springs in series 

while the soft matrix itself is just like connecting its tension region and shear region in parallel.  
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Note that Eq. (3.20) is a unified formula for both 2D and 3D staggered composites. The 

topology feature of different shapes of prisms is reflected in the parameter k  defined by Eq. 

(3.8). It is seen from Eq. (3.20) that the parameter k  is an effective stiffness indicator of the 

shear region of the soft matrix. A larger k  value indicates that the shear region is more effective 

in loading transfer. Equation (3.8) implies that, to increase k , one may either increase the edge 

length a  of the prism or reduce the soft layer thickness ch , which can be achieved by changing 

the shapes of prisms. Specifically, k  has the following form for different staggered composites, 

as 
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  (3.21) 

It is found from Eq. (3.21) that the loading transfer ability of these staggered composites follows 

the sequence square > hexagonal > 2D. Therefore, the aspect ratio sη  of the prism can be 

reduced if 3D designs are used instead of the 2D one. 

The elastic modulus formula Eq. (3.20) derived from the shear lag model can be 

simplified when k  is small. This derives from the fact that tanh( 4) 4k k≈  when 4k ≪1. In 

this case, the simplified elastic modulus is 
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  (3.22) 

After substituting the k  values in Eq. (3.21) to Eq. (3.22) and employing Eq. (3.12), the elastic 

modulus for the staggered composites can be written in a unified form, as 
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where 
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and α  is a correction factor introduced to account for the tension region effect, which is 
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Note that the effect of the tension region would be excluded once 1α = . Equation (3.23) 

indicates that the effect of the tension region can be incorporated by simply multiplying the shear 

modulus cµ  of the soft matrix by a factor α . In addition, this correction factor 1α →  when the 

shear aspect ratio sη  increases, which indicates that the tension region effect is only significant 

when sη  is small. It has been proven [111] that this correction factor can enhance the accuracy of 

the model a lot and should not be neglected. 

The simplified elastic modulus formula in Eq. (3.23) is quite convenient to use and 

predicts satisfactory results in most cases, even though the one in Eq. (3.20) is more accurate in 

theory. For practical usage, one is strongly advised to check the criterion 4k ≪1 first with k  

given by Eq. (3.21) to determine whether the shear-lag model or simplified model should be 

adopted.  
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3.3.3 Complex modulus of staggered composites 

Given that the elastic moduli of staggered composites have been derived in Section 3.3.2, their 

complex moduli can be readily obtained by replacing the elastic modulus mE  of the hard phase 

and shear modulus cµ  of the soft matrix with the corresponding complex constants, 

i im
m m m mE E e E Eδ∗ ∗ ′ ′′= = +  and i ic

c c c ce δµ µ µ µ∗ ∗ ′ ′′= = + , respectively. As a result, the parameter k  

in Eqs. (3.8) and (3.21) and stiffness cc  in Eq. (3.12) can also be transformed to their complex 

counterpart as k∗  and cc∗  by replacing the material constants. Note that the Poisson's ratio mν  

and cν  are assumed to be real and unchanged in both the static or dynamic cases. Finally, the 

complex modulus of staggered composites is obtained directly from Eq. (3.20) according to the 

correspondence principle, as 
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The exact storage modulus E′ , loss modulus E′′ , and loss tangent tanδ  of staggered 

composites can all be obtained from Eq. (3.26) by separating the real and imaginary parts of E∗ . 

In addition, the optimal damping situation can also be evaluated numerically by solving for the 

optimal aspect ratio ˆsη .  

Some approximated analytical formulae of E∗ , E′ , E′′ , and tanδ  for staggered 

composites are shown. These are derived based on the simplified model presented in Section 

3.3.2. In this case, the complex modulus corresponding to Eq. (3.23) can be written as 
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Therefore, the storage modulus, loss modulus, and loss tangent are deduced from Eq. (3.27) 

directly by separating the real and imaginary parts of E∗ , as 
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By employing the approximation in Eq. (3.27), the optimal aspect ratio ˆsη  is obtained by 

evaluating 0sE η′′∂ ∂ = , as 
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Note that α  is a function of sη  as given by Eq. (3.25). Hence the optimal aspect ratio ˆsη  in Eq. 

(3.29) is governed by a quadratic function, which is easy to solve. In this optimal damping 

scenario, the optimal storage modulus Ê′ , optimal loss modulus Ê′′ , and optimal loss tangent 

ˆtanδ  are expressed as 
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It can be determined that the optimal loss modulus Ê′′  of staggered composites in Eq. (3.30) 

does not measurably change simply by tuning the prism shape. However, the optimal aspect ratio 

ˆsη  in Eq. (3.29) can be adjusted by choosing different cross-sectional shapes for the prism. 
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Interestingly, Eq. (3.30) indicates that the optimal loss modulus is achieved when the storage 

modulus E′  of the staggered composite is approximately half that of the Voigt bound [115] and 

the phase delay δ  is half that of the soft matrix. At this point, the staggered composite has both 

an intermediate stiffness and loss tangent, maximizing the loss modulus.  

A special case occurs when the hard phase is purely elastic, i.e. m mE E∗ = . This is quite 

useful for mineral based prisms, which are commonly seen in natural and synthesized staggered 

composites [29, 31, 118]. In this particular case, the optimal aspect ratio, optimal storage 

modulus, and optimal loss modulus can all be further simplified to 1 2ˆ [ ( )]s m cE fη α µ∗≈ , 

ˆ 0.5 mE E φ′ ≈ , and ˆ 0.5 tan( 2)m cE E φ δ′′ ≈ , respectively. Note that similar formulae have been 

derived for a 2D staggered structure [111] using another approach. 

3.4 MANUFACTURING AND TESTING 

The designed 2D and 3D staggered composites are manufactured by the 3D printing technique to 

fabricate high-damping polymeric composites and validate the proposed design and theory. 

3.4.1 3D printing of staggered composites 

The designed staggered composites are manufactured by the Objet260 Connex 3D Printer with 

the PolyJet technique. The rigid photopolymer VeroWhitePlus (VW) is chosen for the hard 

prisms of the staggered composites. Meanwhile, the soft matrix is manufactured by the rubber-

like digital material D9860, which is a mixture of the VW and TangoBlackPlus photopolymers. 
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Specifically, the VW is mainly synthesized from acrylic monomers, isobornyl acrylate, and 

acrylic oligomers; while the TangoBlackPlus is mainly synthesized from acrylic oligomers and 

isobornyl acrylate (see PolyJet Photopolymers Material Safety Datasheets, Stratasys Ltd.). Note 

that only one UV lamp is used to cure the photopolymers in the 3D printer according to its 

default setting. Figure 3.6 (a)-(c) show three examples of the manufactured staggered 

composites. The thickness of each prism is 1 mmh =  and the volume fraction of the prisms is 

0.5φ = . The associated cross sections of the 3D staggered composites show regular arrangement 

of the prisms, which are consistent to the designed pattern shown in Figure 3.1 and Figure 3.2.   

The manufactured staggered composites used for dynamic testing are shown in Figure 3.6 

(e)-(g). Rectangular cross sections are used for these specimens in order to be in compliance with 

the ASTM standards for dynamic testing of plastics (i.e. ASTM D4065 and ASTM D5026). 

Different from the staggered composite samples in Figure 3.6 (a)-(c), two 25 mm long grip ends 

are printed using VW for each of the testing specimen, which will prevent damage to the D9860 

material or staggered composites induced by the grips of the testing apparatus. The volume 

fraction of the VW prisms is 0.5φ =  for all the staggered composites printed. In addition, the 

thickness of each prism is 1 mmh =  while the aspect ratio η  varies from 6 to 18. The thickness 

of the soft matrix in the tension region is kept as cl h=  so it is obvious that 1sη η= −  for these 

composite samples. All testing specimens are manufactured with their thickness direction normal 

to each printing layer and longitudinal axis along the printing head scanning direction. The 

specimens are kept on the building tray inside the printer chamber for two hours after printing in 

order to cool and further stabilize. The surfaces of the specimens are then cleaned by water jet to 

remove the support resin (SUP705). After removing the support resin, the specimens are dried in 

room condition for one hour and stored in sealed bags for ten hours before testing. 



 45 

 

 

 

  

Figure 3.6 Staggered polymer composites manufactured by the PolyJet 3D printing technique by using two 

polymers of VW (in white color) and D9860 (in black color). The three kinds of staggered composites (ϕ = 0.5, η = 

12) are shown in (a) 2D composite, (b) 3D composite with square prisms, and (c) 3D composite with hexagonal 

prisms, all accompanied with their cross sections. (d)-(g) show the 3D printed specimens for mechanical testing. All 

specimens contain two VW grip ends to prevent damaging induced by the grips of the load frame. (d) Testing 

specimens of VW (left) and D9860 (right). (e), (f), and (g) show a full set of 2D staggered composites, 3D staggered 

composites with square prisms, and 3D staggered composites with hexagonal prisms, respectively. Note that the 

seven specimens in (e)-(g) have a volume fraction of ϕ = 0.5 and aspect ratios as η = 6, 9, 10, 12, 14, 15, and 18, 

respectively (from left to right in each image). 
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3.4.2 Static and dynamic testing 

All tests are performed on an MTS880 system at 20 C . The static tensile tests of VW and 

D9860 specimens are performed at a strain rate of 10.156 minε −=  and 10.178 minε −= , 

respectively. The dynamic mechanical behaviors are tested by applying a cyclical tensile strain 

loading (at 1 Hz) on specimens and measuring the stress response. A pretension strain of 

0 1%ε =  and 0 11.6%ε = , respectively, is applied to the VW and D9860 specimens before 

applying the cyclic strain loading. The pretension strain is necessary to prevent any compression 

induced buckling of the specimens under the cyclic loading condition (ASTM D4065 and ASTM 

D5026). Note that the overall strain should not exceed the viscoelastic regime of the materials. 

For example, the cyclic tensile strain amplitudes are about 0.5% and 2.5% for the VW and 

D9860 specimens, respectively (see Figure 3.7 (b) and (d)). 

Figure 3.7 shows some representative testing results of the VW and D9860. For the static 

tensile responses, the VW has an elastic limit of 2%ε ≈  while that for D9860 can be up to 

45%ε ≈ . Some visible cracks would occur in the D9860 specimens once the tensile strain 

45%ε > . The dynamic stress-strain relations of VW and D9860 are shown in Figure 3.7 (b) and 

(d), respectively. The loss tangent of D9860 is nearly ten times larger than that of the VW. 

However, the energy dissipation capacity of D9860 is much less than the VW since it is too soft. 

Note that the loss modulus of D9860 is only 6% of the VW, which is proportional to the 

dissipated energy. These two kinds of photopolymers have comparably higher viscosity ( tanδ ) 

compared with other kinds of polymers at the room temperature [5].   
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Figure 3.7 Typical mechanical responses of the VeroWhitePlus (VW) photopolymer and the digital material D9860. 

(a) Static test of a VW specimen. (b) Cyclic dynamic test of a VW specimen at 1 Hz and 20 ◦C. (c) Static test of a 

D9860 specimen. (d) Cyclic dynamic test of a D9860 specimen at 1 Hz and 20 ◦C. The dissipated energy is equal to 

the area enclosed by the hysteresis circle in (b) and (d). 

 

 

Table 3.1 Material properties of VeroWhitePlus (VW) and the digital material D9860.  Dynamic material properties 

are measured at 1 Hz and 20 ◦C. 

 E  (MPa) ν  E′  (MPa) E′′  (MPa) tanδ  ρ  (Kg/m3) 

VW 1859 ± 11 0.33 2043 ± 80 215 ± 2 0.1~0.11 1160 ± 10 

D9860 2.1~2.2 0.45 12.1 ± 0.8 12.7 ± 0.3 1.05 ± 0.04 1145 ± 15 
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The mechanical behaviors of the constituent materials used to fabricate the composites 

are introduced first. Table 3.1 shows the static and dynamic material properties of VW and 

D9860. It can be seen that the VW is a rigid plastic while the D9860 behaves like soft viscous 

rubber. The storage modulus of VW is a bit higher than its elastic modulus since the latter is 

measured at a quite low strain rate. The loss tangent tanδ  of VW is comparable to that of 

PMMA (at 1 Hz, room temperature). In contrast, the digital material D9860 is quite viscous with 

a loss tangent of tan 1.05δ = , a very high value for elastomers at room temperature. In addition, 

the storage modulus and loss modulus of D9860 are much higher than its elastic modulus.   

 

Figure 3.8 Storage moduli, loss moduli, and loss tangent of staggered composites obtained from theory and 

experiments. (a) 2D staggered composite. (b) 3D staggered composite with squared prisms. (c) 3D staggered 

composite with hexagonal prisms. All dynamic tests are performed at 1 Hz and the room temperature. 

 

The manufactured staggered polymer composites are tested under cyclic dynamic loading 

to validate the theory established above. The full set of the test specimens is shown in Figure 3.6 

(e)-(g). All specimens are tested at 20 C  with a frequency of 1 Hz. A pretension strain of ∼1% 
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is applied to the staggered composite specimens and then a cyclic strain loading at amplitude of 

∼0.5% is used to perform the dynamic testing. Therefore, all tests are in the linear viscoelastic 

regime of the materials. The dynamic testing results of all three kinds of staggered composites 

are shown in Figure 3.8. The theoretical prediction results are derived from Eq. (3.26) with 

material properties of constituent materials given in Table 3.1. It is seen that the theoretical 

values agree very well with the experimental results for the 2D staggered composites. 

Additionally, for the 3D staggered composites, the theoretical predictions are quite close to the 

experimental values, although some marginal difference is observed for the loss moduli 

prediction. There are two factors possibly affecting the results. First, the manufactured composite 

specimens are not identical to their designed CAD (computer aided design) models, especially at 

the interfaces of the VW phase and D9860 phase, which will affect the overall material 

properties. However, the actual dimension of the manufactured prisms is difficult to measure 

accurately due to the resolution of the printing process. Second, the theoretical model has made 

some simple assumptions for the deformation field in the shear regions and tension regions. 

Nonetheless, the accuracy of the theoretical prediction derived from the shear lag model is 

satisfactory for these staggered composites.  

A comparison of the three staggered composites indicates that the two 3D staggered 

composites have higher loading-transfer ability than the 2D staggered composite. The optimal 

aspect ratio is ˆ 12η =  (or ˆ 11sη = ) for the two 3D staggered composites while that for the 2D 

composite is ˆ 29η = . Thus, this proves that the 3D staggered composites are a more compact 

design for damping materials. The theoretical analyses show that the square prism has slightly 

higher loading-transfer ability than the hexagonal prism. However, the experimental results 

indicate that the difference is negligible. In the optimal damping state for the 3D staggered 
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composites, the storage modulus, loss modulus, and loss tangent are measured to be 

520 MPaE′ = , 209 MPaE′′ = , and tan 0.4δ = , which are quite close to the optimal values 

predicted by Eq. (3.30), as 577 MPaE′ = , 247 MPaE′′ = , and tan 0.43δ = , respectively. In 

conclusion, these dynamic test results for staggered composite specimens validate the designed 

model and proposed theory above. 

 

Figure 3.9 Schematic illustration of the damping enhancement mechanism in staggered composites. The 

deformation mechanism changes from soft-matrix-dominate to hard-phase-dominate at the optimal damping state 

( ˆ
s sη η= ). Both the storage modulus and loss tangent have monotonic relations with respect to the aspect ratio sη  

while the loss modulus has a peak. 

3.4.3 Damping enhancement mechanism 

Why does the loss modulus have an optimal value in staggered composites, and what is the 

mechanism? The answer is illustrated schematically in Figure 3.9. The storage modulus E′  of 

the staggered composites is bounded by the Voigt bound, while its loss tangent tanδ  is bounded 
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by that of the constituent materials. Consequently, the storage modulus E′  increases from cE′  to 

mEφ  while the loss tangent tanδ  decreases from tan cδ  to tan mδ  when sη  increases from 0 to 

∞. Thus the loss modulus E′′ , i.e. the product of E′  and tanδ , might have an optimum Ê′′  at 

certain point ˆs sη η=  depending on the varying rate of the storage modulus and loss tangent. For 

the current problem, it is found that the loss modulus depends on the competition between the 

deformation in the hard phase and soft matrix. In the case that ˆs sη η< , the deformation of 

staggered composites is dominated by that of the soft matrix. The large shear deformation in the 

shear region of the soft matrix will increase the energy dissipation in the whole composite. 

However, once ˆs sη η> , large tension deformation occurs in the hard phase, which dominates the 

contribution from the soft matrix. Therefore, even though the overall storage modulus E′  of the 

composite still increases, tanδ  and Ê′′  decrease because the hard phase has low (or even none) 

energy loss. Therefore, the optimal state is achieved when the storage modulus contributions 

from the hard phase and soft matrix are equal. In this situation, the soft matrix provides the most 

efficient energy dissipation and both phases contribute to the overall storage modulus of the 

composite. It is the unique deformation mechanism transition from soft-matrix-dominant to hard-

phase-dominant that induces the significant damping enhancement in staggered composites [5, 

111]. The storage modulus, loss modulus, and loss tangent at this optimal state can be found in 

Eq. (3.30). In addition, the optimal aspect ratio ˆsη  is affected by the type of staggered 

composites. In theory, a staggered composite with higher loading-transfer ability would exhibit 

smaller ˆsη . Hence the 3D staggered composites with comparatively high volume fraction are 

recommended to design and manufacture better-performance damping materials. 
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3.5 HIERARCHICAL STAGGERED COMPOSITES 

3.5.1 Effect of structural hierarchy 

It has been reported that the stiffness, toughness, strength, and wave filtering of the material may 

be further enhanced by introducing more hierarchies [1, 23, 78, 86, 108, 119-121]. Would more 

hierarchies also affect the damping property of the hierarchical staggered materials? To answer 

this question, a 2D hierarchical staggered composite (see Figure 3.10) is studied, which contains 

elastic hard phases and a viscoelastic soft matrix. Note that the designed material has a self-

similar structure in each hierarchy and form a total number of N hierarchies. Hence, the overall 

volume fraction of the hard phase is NφΦ =  given that φ  is the volume fraction of the platelets 

in each hierarchy. 

 

Figure 3.10 Schematic illustration of a hierarchical staggered structure with three hierarchies. 

 

The complex modulus of this 2D hierarchical staggered composite can be derived from 

Eq. (3.27) in a recursive way, as 
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where the subscript n means the n-th hierarchy, and 0 mE E∗ =  is the elastic modulus of the hard 

phase. Based on Eq. (3.31), the loss modulus of the n-th hierarchy obeys the following relation: 
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  The loss moduli of the staggered composite models with different number of hierarchies 

are shown in Figure 3.11. As to this example, the total volume fraction of the hard phase is 

0.45Φ =  and the material constants [21] are taken as 1000m cE µ′=  , 0.27mν =  and 0.4cν = . It 

is found that the trend of the loss modulus does not change so much when the total number of 

hierarchies increases. However, the optimal aspect ratio ˆsη  would become smaller while the 

maximum loss modulus enhancement remains the same. Therefore, it is concluded that the 

staggered arrangement plays a dominant role in the damping enhancement of hierarchical 

staggered composites while the structural hierarchy has a minor effect. Rigorous derivation (i.e. 

by solving 0N sE η′′∂ ∂ = ) from Eq. (3.32) yields the optimal loss modulus ˆ
NE′′  and optimal aspect 

ratio ˆsη  for an arbitrary N as: 
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It is confirmed by Eq. (3.33) that introducing more hierarchies N would not increase the 

maximum loss modulus ˆ
NE′′  any further, but it is able to reduce the optimal aspect ratio ˆsη  of the 

hard platelet, e.g. by making it shorter.  This provides an additional degree of freedom for 

microstructure optimization to compromise other mechanical properties including stiffness, 
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strength, toughness, etc. Normally these properties cannot achieve the optimal state 

simultaneously and a multiple-objective optimization is needed. 

 

Figure 3.11 Loss modulus enhancement of staggered structures with different number of hierarchies.  

3.5.2 Comparison with other composites 

According to the analysis and discussion above, we can readily derive an upper bound for the 

loss modulus enhancement in hierarchical staggered composites, which is actually an alternative 

expression to the first equation in Eq. (3.33), as ˆ 0.25 tanN m cE E δ′′ = Φ . This staggered structure 

actually achieves a high stiffness and a large loss factor simultaneously compared to many other 

composites shown in Figure 3.12. It is a common belief that an increase in stiffness of a material 

will oftentimes reduce its damping behavior [15]. For example, the Voigt composite and Hashin-

Shtrikman (H-S) composite (upper bound) have high stiffness but low damping [93]. In contrast, 

the Reuss composite and H-S composite (lower bound) may show significant damping property, 

but their stiffness is commonly very low except the case with extremely high content of hard 

phase [93]. However, the staggered structure can overcome this difficulty. It can be seen in 
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Figure 3.12 that the loss modulus of the hierarchical staggered composite can be tens of times 

larger than the H-S lower bound in most cases and it does not require very large hard phase 

content. Alternatively, there is a tradeoff between the hard phase content and its aspect ratio. If 

there is less hard phase, one can still achieve high damping performance by increasing the aspect 

ratio of hard platelets. This behavior is attributed to the unique microstructure as well as the 

anisotropy of the staggered structure. This is not ubiquitous because the material’s stiffness can 

be enhanced drastically by introducing anisotropy but its damping property normally does not 

follow the same way [15]. However, the staggered composite is an exception, which can be 

optimized to achieve damping performance much better than many other structures. Another 

advantage of the hierarchical staggered composite is its high toughness and strength [21, 22, 

108]. In contrast, it was found that the soft material is subjected to large stress in the Reuss and 

H-S composites, which are very weak and cannot be used as structural materials [93]. 

Nevertheless, the hierarchical staggered structure provides a way to design damping materials 

that incorporate high damping, stiffness, toughness, and strength.  

 

Figure 3.12 Comparison of loss modulus enhancement of several composites. 
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3.6 SUMMARY 

In summary, the staggered composite design inspired from the bone structure has been proven to 

exhibit highly enhanced damping behavior. This anomalous phenomenon originates from the 

unique deformation characteristics in the staggered composites. Namely, the large shear 

deformation of the soft viscous matrix will result in high energy dissipation, while the hard phase 

endows the composite with high stiffness simultaneously. The optimal damping state is attained 

when the hard phase and soft phase have equal contribution to the overall storage modulus of the 

composites. According to this mechanism, three different kinds of staggered polymer composites 

are designed, tested, and compared. It is found that the 3D composites with square or hexagonal 

prisms have much higher loading-transfer ability than the 2D design. A much smaller aspect 

ratio of the hard phase is required to achieve the same storage modulus and loss modulus in the 

3D design compared with the 2D one. A theoretical study on the effect of structural hierarchy 

indicates that the total number of hierarchies would not affect the optimal loss modulus of the 

staggered composites. However, the optimal aspect ratio of the platelet could be reduced if more 

hierarchies are introduced. In addition, this staggered composite can exhibit a much larger loss 

modulus than the Voigt, Reuss and H-S composites, regardless of the volume fraction of the hard 

phase. The present findings provide insight into the energy dissipation mechanism in bone-like 

structures and offer a useful way to design novel composites with excellent damping property. 
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4.0  SYMMETRY, ANISOTROPY, AND SYMMETRY BREAKING OF CELLULAR 

STRUCTURES 

4.1 INTRODUCTION 

Cellular structures are composed of porous unit cells organized in a periodic or random pattern 

[24]. The periodic cellular structures are similar to single crystals since both of them have 

periodic lattice points and repetitive motif [122]. However, the cellular structures are much more 

complex than single crystals. For instance, the unit cell size of cellular structures ranges from 

nanometers to millimeters. In addition, the material distribution in the unit cell of cellular 

structures could be designed in favor of the required performance. Therefore, cellular structures 

have drawn much attention by researchers from fabrication to application. Particularly, the 

design and fabrication of cellular structures have benefited from the modern fabrication 

techniques. For example, the widely used techniques include material removal method (e.g. 

etching), 3D printing [51, 55, 123], etc.  Up to now, cellular structures of different material types 

have been fabricated at all scales including nano-, micro-, and macro-scale.       

Similar to crystals, the long-range physical properties of cellular structures must be 

compatible with their point group symmetry according to the Neumann’s law [124]. The 

relations between point group symmetry and physical properties of crystals have been studied 

extensively and outlined in [124, 125]. The physical properties (e.g. elastic, thermal, dielectric, 
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etc.) are usually represented by different ranks of tensors, which are invariant or form-invariant 

under symmetry transformations of the material point group. Therefore, the long-range physical 

properties of cellular structures could be determined qualitatively once their symmetry is known. 

However, the point group symmetry of cellular structures is more complex than that of single 

crystals. Note that the unit cell of a cellular structure may have complex topology and material 

heterogeneity that cannot be easily determined through visualization. Thus, there is a strong 

demand for a theoretical framework to analyze and determine the point group symmetry of 

cellular structure systematically.  

Another interesting problem is the deformation induced symmetry breaking [56, 126-

128], which arises in cellular structures (or single crystals as well) once a strain field is imposed. 

This phenomenon is important in at least two applications.  First, the symmetry breaking of 

cellular structures may lead to changes of their physical properties, which opens opportunities to 

tune/control the physical performance and design functional materials. For example, deformation 

induced acoustic, optical, and thermal property changes in materials are reported in the literature 

[127, 129-131]. Secondly, the symmetry evolution is also important for the constitutive modeling 

of cellular structures because the symmetry property changes must be considered when modeling 

the material property evolution during deformation [132, 133]. Therefore, the symmetry 

evolution of cellular structures after deformation is discussed in this chapter with an emphasis on 

the symmetry breaking at small strain cases. 

The main aim of this chapter is to study the symmetry characteristics of cellular 

structures. To achieve this goal, a theoretical framework is proposed to describe and determine 

the point group symmetry of cellular structures [61] with several examples discussed. Thereafter, 

the symmetry breaking of deformed cellular structures is introduced.               
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4.2 POINT GROUP SYMMETRY THEORY 

The scientific notations used in Chapters 4 and 5 are summarized. We use calligraphy letters for 

sets (e.g. ,A B ), R  for the real number set, N  for the natural number set, 3R  for the 3D 

Euclidean space, lowercase Greek letters for scalars (e.g. ,α β ), lowercase bold-face letters for 

vectors (e.g. ,a b ), uppercase bold-face letters for second-order tensors (e.g. ,A B ), uppercase 

blackboard letters for fourth-order tensors (e.g. ,  ), and uppercase bold-face script letters for 

point groups (e.g. ,A B ). The inner products are defined as ij j iA b=Ab e  and ij jk i kA B= ⊗AB e e , 

where ie  is the basis vector, ⊗  is the dyadic product, and Einstein’s summation rule applies. In 

addition, the Hermann-Mauguin notation [122] is adopted to represent the material point groups.   

4.2.1 3D material point groups 

There are totally 32 crystal point groups and 7 continuous point groups for 3D materials [122]. 

Each crystal point group contains a finite number of symmetry transformations, whereas the 

continuous point groups are non-compact. In order to describe these symmetry transformations, a 

Cartesian coordinate system is established, which has three orthogonal axes 1e , 2e , and 3e . Each 

crystal class has three preferred lattice vectors 1a , 2a , and 3a  according to the convention of 

crystallography [122]. The default material orientations are introduced first, which follow the 

notations used in [134, 135]. (i) Triclinic lattices can be arbitrarily oriented. (ii) The lattice vector 

1a  is parallel to the axis 1e  for monoclinic lattices. (iii) For the rhombic, tetragonal, and cubic 

systems, 1a , 2a , and 3a  are parallel to the axes 1e , 2e , and 3e , respectively. (iv) For the 
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hexagonal system, 1a  and 3a  are parallel to the axes 1e  and 3e , respectively. Note that the 

trigonal crystal system is classified into the hexagonal system here [134]. The detailed symmetry 

transformations of 32 crystal point groups are listed in [134, 135]. 

 Besides the 32 crystal point groups, there are two isotropy groups ( m∞∞  and ∞∞ ) and 

five transverse isotropy groups (∞ , m∞ , m∞ , 2∞ , and mm∞ ) in 3D [122, 124]. The group 

m∞∞  is equal to the 3D orthogonal group (3)O , while the group ∞∞  is equal to the 3D proper 

orthogonal group (3)+O . On the other hand, all transverse isotropy groups have a preferred 

rotation axis along 3e . The rotation transformation is represented by a continuous function, as 

 
cos sin 0
sin cos 0
0 0 1

θ

θ θ
θ θ

 
 = − 
  

M   (4.1) 

where 0 2πθ≤ ≤ . All the symmetry transformations of transversely isotropic groups [134] can 

be generated by θM  and the diagonal matrices 1 diag( 1,1,1)= −R , 3 diag(1,1, 1)= −R , and 

2 diag( 1,1, 1)= − −D . All 3D continuous point groups are listed in Table 4.1.  

Table 4.1 Symmetry transformations of continuous point groups in 3D 

Class Symmetry Transformations 

m∞∞  (3)O  

∞∞  (3)+O  

∞  θM  

m∞  θM , 1R , 1θM R  

m∞  θM , 3R , 3θM R  

2∞  θM , 2D , 2θM D  

mm∞  θM , 1R , 3R , 2D , 1θM R , 3θM R , 2θM D  
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4.2.2 Point group theory of cellular structures 

An example is illustrated in Figure 4.1 to show the multilevel structural feature of cellular 

structures and the complexity of their symmetry. Different from single crystals, cellular 

structures have symmetry and translation order at multiple structural levels, and each level may 

have different symmetry properties. For example, Figure 4.1 (a) shows a cubic cellular structure 

at level 1 (the coarsest scale) with its constituent material exhibiting a hexagonal lattice at level 2 

(finer scale).  Overall, the symmetry of cellular structures has three unique properties compared 

with that of single crystals [61]. (i) The point group symmetry of cellular structures may not be 

the same at different levels. (ii) The lattice orientations may be distinct across different levels, 

even if they belong to the same point group. (iii) The material components of the cellular 

structure unit cell could have different materials, orientations, and symmetries. It is thus clear 

that the multilevel structural feature and complex unit cell topology lead to great difficulty in 

determining the overall symmetry of cellular structures by visualization alone. To address this 

issue, a theoretical framework is established to characterize and determine the point group 

symmetry of cellular structures in a systematic manner. Without loss of generality, we focus on 

cellular structures with two structural levels since they are commonly seen. The proposed theory 

could be easily applied to cellular structures with three levels or more [86, 136] using a 

hierarchical approach.   
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Figure 4.1 An Octet cellular structure composed of a material with hexagonal lattice in level 2. All the ligaments 

have the same material type and orientation.    

 

The point group of a two-level cellular structure is determined by examining its 

symmetry at both level 1 and level 2. Thus, the symmetry of the topology, material type, material 

orientation, and local material point group should be evaluated when the reference configuration 

3⊂B R  is mapped to the transformed configuration 3′ ⊂B R  (see Figure 4.2), where B  and 

′B  are sets containing all material points and the prime symbol indicates quantities or fields 

after a symmetry transformation. Hence, a material point ∈X B  will be mapped to the point 

′ ′∈X B  after the transformation [137]. The symmetry of cellular structures is more complicated 

than the classical point group theory of single crystals, which only considers the symmetry of the 

atom location and species in a unit cell. Therefore, we will divide the symmetries of cellular 

structures into two categories: Topology symmetry and material symmetry. 

 (1) Topology symmetry. This includes the symmetries of the geometry and material type, 

which are determined at level 1. Herein the material type merely means the material name and 

phase (e.g. copper with face-centered cubic lattice), regardless of the material orientation. The 

material type field is characterized by a scalar function 3( ) :ϕ X R N  since the material type 
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of each material point could be labeled as a natural number. Thereafter, the topology point group 

{ }= TT  of the cellular structure is defined as 

 : { ( ) ( ) ( ), }d ϕ ϕ= ∈ = ∀ ∈T TX X X BT O |   (4.2) 

where ( )dO  represents the orthogonal group in 3R . Equation (4.2) is derived from the fact that 

( )ϕ ϕ ϕ′ ′≡ =X  when the map ′ =X X TX  does not change the material type field. 

Alternatively, the topology symmetry of the cellular structure is preserved once the material type 

field ( )ϕ X  is invariant under a symmetry transformation.  

(2) Material symmetry. This includes the symmetry properties of the local material 

orientations and local point groups at level 2 of a cellular structure. Generally, not all operations 

in the topology point group T  guarantee the material symmetry at level 2. Hence, by denoting 

the overall point group of the cellular structure as { }= GG , it is obvious that G  must be a 

subgroup of T , as 

 ≤G T   (4.3) 

A concept of material point group field is introduced first, i.e. ( )XM , which is a function 

mapping an arbitrary material point ∀ ∈X B  to its corresponding local material point group. 

Note that ( )XM  could even have different orders for different material points. As shown in 

Figure 4.2, the material point group field ( )XM  should be form-invariant under symmetry 

transformations, as 

 T( ) ( ) ,′ ′≡ = ∀ ∈X G X G X BM M M   (4.4) 

where the superscript ‘T’ indicates the transpose operation and T T: { | }= ∀ ∈G G GMG MM M . 

Therefore, the point group G  is defined based on Eqs. (4.3) and (4.4), as  

 T: { ( ) ( ) ,= ∈ = ∀ ∈G GX G X G X BG T|M M }   (4.5) 
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The point group of single crystals can be described solely by Eq. (4.2), the invariant of a 

scalar field ( )ϕ X , whereas that of cellular structures also requires the form-invariant of a tensor 

group field ( )XM  shown in Eq. (4.5). Generally speaking, Eqs. (4.2) and (4.5) provide all 

information required to determine the point group of a cellular structure. However, it is usually 

inefficient and impractical to exhaust the material type and point group invariant at each material 

point. Therefore, a simpler method will be introduced in Section 4.3.  

 

Figure 4.2 Schematic illustration of the reference configuration B  and its transformed configuration ′B  for a 

cubic cellular structure. The structure is rotated for 90◦ as an example of the symmetry transformation. The field 

quantities ϕ  and M  are transformed to  ϕ′  and ′M , respectively, under the symmetry transformation T  or G .    

4.2.3 Anisotropy of cellular structures 

The point group theory is a very useful mathematical tool to determine the anisotropic property 

of cellular structures for either physical property characterization or constitutive modeling. Given 

that the symmetry is determined, one can readily construct the basic forms of the physical 

property tensors or the constitutive functions. Take a cellular structure with an overall point 

group of { }= GG  as an example. Its elastic tensor ijkl i j k lC= ⊗ ⊗ ⊗e e e e  should be form-

invariant under an arbitrary symmetry operation ij i jG= ⊗G e e  for ∀ ∈G G , as [124] 
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 ijkl ia jb kc ld abcdC G G G G C=   (4.6) 

For example, the elastic tensor of the five cubic point groups (23, 3m , 432, 43m , and 3m m ) has 

the following form [125] in the Voigt notation, as  
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However, the elastic tensor of the tetragonal point groups ( 4 mmm , 4mm , 422, and 42m ) is 
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In addition, if one considers the yield behavior of cellular structures, the yield function should at 

least satisfy the following objective form [137], as 

 T
2PK 2PK( ) ( ),f f= ∀ ∈σ Gσ G G G   (4.9) 

where 2PKσ  is the second Piola-Kirchhoff stress tensor. In fact, the yield function is usually 

expressed in terms of the invariants of the stress tensor and the structural tensor which 

characterizes the material point group symmetry. 

 The topology point group T  of some typical cellular structures is shown in Table 4.2. 

Note that the overall point group G  also depends on the material distribution and orientation in 

level 2.  



 66 

 

 

  

Table 4.2 Some examples of cellular structures and their topology symmetry type 

Lattice type Topology point group T  Unit cells 

cubic 3m m  

 

hexagonal 

6 mmm  

 

6 2m  

 

tetragonal 

4 mmm  

 

4mm  
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4.3 DETERMINATION OF THE POINT GROUP OF CELLULAR STRUCTURES 

4.3.1 Overview of the method 

A practical method is proposed to determine the point group of the cellular structures. The 

cellular structure unit cell is divided into Mn  material components, each with the same material 

type and orientation, and then their symmetry properties are compared. For example, the unit cell 

in Figure 4.2 has twelve material components ( 12Mn = ), which are numbered in sequence. 

Denote the symmetry orders of the point groups G  and T  as Gn  and Tn , respectively, which 

satisfy G Tn n≤  according to Eq. (4.3).  Thus, under the l-th topology symmetry transformation 

( )l Tl n∈ ≤T T  at level 1, a material component is transformed to the position of another one, 

forming a pair of material components whose local material symmetries at level 2 should be 

examined. Consequently, a total of l Mn n=  (or 2l Mn n=  for some cases) pairs of material 

components will be formed under the l-th transformation l ∈T T . Finally, the overall point group 

G  will be determined after evaluating the material symmetries of all 
1

Tn
ll

n
=∑  pairs of material 

components for every topology symmetry transformation in T .   

4.3.2 Symmetry of a pair of material components 

As illustrated in Figure 4.3, the material symmetry of two material components  lkB  and lk′B  is 

studied first, which are the k-th pair ( )lk n≤  of material components related to the topology 

symmetry transformation l ∈T T , i.e. the configuration transformation is l′ =X X T X  for 
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lk∀ ∈X B  . For the sake of convenience, two local Cartesian coordinate systems lkx  and lk′x  are 

established for the material components lkB  and lk′B , respectively, according to the convention 

of crystallography for lattice orientations. By this means, the material point groups of lkB  and 

lk′B  have a unified form as { }lk lk= MM  in their own local coordinate systems, which results in 

great simplification for the analysis. Note that the material point groups of lkB  and lk′B  can also 

be represented in the global coordinate system X , which is correlated to the local coordinate 

systems by lk lk=x Q X  and lk lk′ ′=x Q X , where lkQ  and lk′Q  are orthogonal transformation 

matrices.  Therefore, in the global coordinate system, the material point groups lkM  and lk′M  of 

the two material components lkB  and lk′B   are expressed as 

 
T

T

lk lk lk lk

lk lk lk lk

=

′ ′ ′=

Q Q

Q Q

M M

M M
  (4.10) 

 

 

Figure 4.3 Schematic illustration of the material symmetry transformation of a pair of material components in a 

cellular structure unit cell. 

 

X

lkB lk′B
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Further, it is obtained from Eq. (4.10) that the relation between lkM  and lk′M  is 

 T T
lk lk lk lk lk lk′ ′ ′= Q Q Q QM M   (4.11) 

Equation (4.11) implies that lkM  and lk′M  are conjugate [138]. 

The material symmetry of lkB  and lk′B  is examined under the corresponding topology 

symmetry transformation l ∈T T . Based on Eq. (4.5), the material symmetry of lkB  and lk′B  

requires that T
l lk l lk′=T TM M . In addition, the point group lk′M  does not change under a symmetry 

transformation of its own members, i.e. T
lk lk lk lk′ ′ ′ ′= M MM M . Finally, it is obtained that the 

material symmetry condition of the two material components is 

 

T

T

T T T , for

l lk l lk

lk lk lk

lk lk lk lk lk lk lk lk lk

′=

′ ′ ′=

′ ′= ∀ ∈

T T
M M
Q Q M M Q Q M

M M

M

M M

  (4.12) 

where the last equality is derived by using Eq. (4.11). Thus it is found from Eq. (4.12) that the 

material symmetry of the k-th pair of material components can only be conserved when  

 T
l lk lk lk′∈T Q Q M   (4.13) 

Finally, the symmetry condition for the pair of material components is obtained by substituting 

Eq. (4.10) into Eq. (4.13), as 

 T
l lk lk lk′∈T Q QM   (4.14) 

4.3.3  Overall point group of cellular structures 

As mentioned in Section 4.3.1, the overall point group G  of a cellular structure can be obtained 

by examining the material symmetry of all material component pairs for each l ∈T T . Therefore, 
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as a direct generalization to Eq. (4.14), lT  will satisfy the material symmetry of all its ln  

material component pairs if and only if 

 T

1

ln

l lk lk lk
k=

′∈T Q Q


M   (4.15) 

Furthermore, the overall point group G  is determined by examining the condition in Eq. (4.15) 

for l∀ ∈T T , as 

 T

1

: and
ln

l l l lk lk lk
k=

 
′= ∈ ∈ 

 
T T T Q Q



G T M   (4.16) 

Equation (4.16) expresses the general form of the overall point group G  for a cellular structure, 

which is straightforward to evaluate by computation. Some remarks are noted when applying Eq. 

(4.16). First, it is suggested that one evaluates G  in Eq. (4.16) by starting from the symmetry 

transformation generators g ∈T T  [122], which may reduce a great amount of work. Moreover, 

in case that one symmetry transformation T  is excluded from G , several similar ones can also 

be excluded by comparing the subgroups [122] of T .   

Even though the general form of G  is shown in Eq. (4.16), several special cases are 

worthwhile to be introduced in particular, which are quite useful and applicable to most cellular 

structures found in the literature. There are at least four special cases as follows.   

(C1) = ∩G T M . This is achieved when lk lk′= =Q Q I  and lk =M M , namely, all 

material components have the same orientations and material point groups. This case is quite 

useful for many cellular structures, e.g. the one in Figure 4.1. 

(C2) T= ∩Q QG T M . This is a generalization to the case C1 when lk lk′= =Q Q Q  and 

lk =M M , i.e. the local coordinate system is disoriented with the global one.    
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(C3) =G T . Surprisingly, the overall symmetry of the cellular structure can still be 

identical to its topology symmetry, which is achieved when T
l lk lk lk′∈T Q QM  for all pairs of 

material components. This also provides a chance that a material with low-order symmetry can 

be carefully arranged to design a cellular structure with high-order overall symmetry. In addition, 

=G T  is always valid if the constituent material is isotropic. 

(C4) { }= IG . This is a case with the least order symmetry. Note that this happens 

frequently for cellular structures since the topology symmetry and material symmetry cannot 

always be guaranteed simultaneously.  

4.3.4 Examples 

Generally speaking, the point groups of the 3D cellular structures are within the 32 crystal point 

groups and 7 continuous groups, whose symmetry transformations have been briefly introduced 

in Section 4.2.1. Some examples are shown to further introduce the symmetry of cellular 

structures. 

The cubic cellular structure in Figure 4.1 is studied first. It is obvious that the topology 

point group T  in level 1 is 3m m  with an order of 48. In contrast, the material point group M  in 

level 2 is 6 mmm  with an order of 24. In addition, the local and global coordinate systems 

coincide with each other, namely, lk lk′= =Q Q I . Therefore, this is exactly the special case C1, 

and the point group of this cellular structure is = ∩G T M . After comparing the transformations 

in these two groups, it is found that G  is the point group mmm  with an order of 8. Thus, the 

overall symmetry of this cubic cellular material is in the orthorhombic class, quite different from 

the topology symmetry and material symmetry.  
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The example discussed above is for the crystal point group. Actually the proposed 

theoretical framework can also be applied to the continuous point groups. Consider the cubic 

cellular structure shown in Figure 4.2 with a topology point group T  of 3m m . Assume that the 

constituent material is transversely isotropic (e.g., M  is mm∞ ) with the privileged axis along 

the [001] direction of the cellular structure, as shown in Figure 4.4. In this case, the overall point 

group G  is found to be 4 mmm  of the tetragonal class. However, note that the overall symmetry 

is affected by the orientation of the privileged axis of the constituent material. For instance, if the 

privileged axis is rotated to the [111] direction (see Figure 4.4 (b)), the overall symmetry G  of 

the cellular structure will be 3m  of the trigonal class with the three-fold axis along the [111] 

direction, which is totally different from the one in Figure 4.4 (a). This analysis has particular 

application to 3D printed cellular structures [51, 55] since the constituent material often shows 

transversely isotropic behavior with the privileged axis along the print orientation. Therefore, the 

3D printing direction will definitely affect the overall symmetry behavior and also the 

physical/mechanical properties [125] consequently.   

 

Figure 4.4 Point group symmetry of a cubic cellular structure with transversely isotropic materials. (a) The 

privileged axis of the material is along the [001] direction of the cellular structure. The overall point group is 

4 mmm . (b) The privileged axis of the material is along the [111] direction of the cellular structure. The overall 

point group is 3m . 
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4.4 SYMMETRY BREAKING OF CELLULAR STRUCTURES 

4.4.1 Discussion on symmetry evolution after deformation 

So far, the point group symmetry theory proposed above is only for the undeformed 

configuration of cellular structures. It is already known that the symmetry of cellular structures 

might change once they deform [56, 126, 127]. However, the symmetry evolution is usually 

unpredictable in most cases. There are at least two reasons for this difficulty.  

First, the lattice type is usually hard to predict after deformation. For example, a uniaxial 

tensile deformation will change a cubic lattice into a tetragonal lattice with symmetry breaking. 

In this case, the point group of the deformed lattice is still tractable since it is only a subgroup of 

the point group of the undeformed lattice. However, the symmetry evolution during the reverse 

deformation process, i.e. from the tetragonal lattice to the cubic lattice, is intractable since the 

symmetry lifting occurs. In even worse cases, the point group symmetry could be totally 

different after deformation once the phase transition occurs. Therefore, the point group after 

deformation [139] is quite difficult to determine completely unless it is a subgroup of the point 

group of the undeformed lattice [140, 141].  Fortunately, only symmetry breaking may occur in 

small deformation cases [141, 142], which will be discussed in details later on.         

Second, the material symmetry field of cellular structures at level 2 is usually 

unpredictable after deformation. The local material symmetry depends on the local deformation 

field, which is often intractable for the reason explained above. In addition, the local material 

symmetry field should also satisfy the overall symmetry throughout the cellular structures unit 

cell.   
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Therefore, it is hard to establish a unified theory to predict the symmetry evolution of 

cellular structures after deformation. We will address two basic problems in Sections 4.4.2 and 

4.4.3, respectively:  (i) In which case the topology symmetry transformation is preserved even 

after deformation?  (ii) How does the material symmetry change in small deformation cases? 

4.4.2 Deformation that preserves topology symmetry 

Without loss of generality, we consider a cellular structure shown in Figure 4.5, whose topology 

symmetry after deformation is studied. Given that an affine lattice deformation [142], 

represented by a constant deformation gradient tensor LF , is applied to the lattice points in the 

superlattice level, the cellular structure unit cell will deform from an initial configuration 

{ }= XB  to a deformed configuration { ( )}= χ XB  [137], as shown in Figure 4.5. The tilde 

symbol indicates quantities after deformation. In this case, the deformation gradient ( )F X  can be 

decomposed into an affine lattice deformation LF  and a periodic non-affine deformation field 

( )pF X , as [137]  

 
( )

( )

( )
L p

L L p

≡ ∂ ∂
=

=

F X χ X
F F X
R U F X

  (4.17) 

where LR  and LU  are the lattice rotation and lattice stretch tensors, respectively [137]. Due to 

the fact that ( )L L=F X F  for all lattice points, the periodic deformation gradient pF  satisfies 

 ( ) , forp L L≡ ∀ ∈F X I X B   (4.18) 

where LX  represents the lattice points in level 1.  
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Figure 4.5 Schematic illustration for the initial and deformed cellular structures under an affine lattice deformation 

in the superlattice level.  (a) Reference configuration of a rectangular cellular structure. (b) Deformed configuration 

of the cellular structure. The initial and deformed unit cells are indicated by dashed contour lines.  

 

The symmetry property is studied for the deformed cellular structure unit cell. Again, the 

topology point group { }= TT  is transformed to its conjugacy T{ } L L= =T R R
T T  in the deformed 

configuration due to the uniform lattice rotation LR . Hence under the symmetry transformations 

T  and T , the reference configuration and deformed configuration are transformed through 

{ } { }′ ′= =X XB B  and { } { }′ ′= =χ χ 

B B , respectively. Then it can be deduced that 

 T( ) ( ) ( )L L

′ =

′ = =

X TX
χ X Tχ X R TR χ X

  (4.19) 

If the topology symmetry transformation T  is still preserved in the deformed configuration 

{ ( )}= χ XB , the symmetry condition is  

 ( ) ( ),′ ′= ∀ ∈χ X χ X X B   (4.20) 

After substituting Eq. (4.19) into Eq. (4.20), it is seen that the deformed configuration should 

satisfy 

 T ( ) ( ),L L = ∀ ∈R TR χ X χ TX X B   (4.21) 
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Further, taking a first order derivative to X  in Eq. (4.21) and utilizing Eq. (4.17) give rise to 

 T T T( ) ( ) ,L L= ∀ ∈R F TX TR F X T X B   (4.22) 

Equation (4.22) is the fundamental equation to examine whether the deformation gradient ( )F X  

preserves the topology symmetry of the cellular structure or not.  

The symmetry condition of the deformation gradient ( )F X  is equivalent to two separated 

conditions by using the decomposition in Eq. (4.17). After substituting Eq. (4.17) into Eq. (4.22), 

we obtain 

 T( ) ( ) ,L p L p= ∀ ∈U F TX TU F X T X B   (4.23) 

By substituting Eq. (4.18) into Eq. (4.23) and considering the relation ( )p L =F TX I  implied by 

Eq. (4.18), the symmetry of the lattice points LX  requires that 

 T
L L=U TU T   (4.24) 

Equation (4.24) indicates that the lattice stretch tensor LU  should be form-invariant under the 

symmetry operation∀ ∈T T  if the lattice points are still symmetric after deformation, while the 

uniform lattice rotation LR  does not affect the symmetry. The formula in Eq. (4.24) was derived 

by Coleman and Noll [141] in another context. Obviously, a uniform dilation deformation, i.e. 

L λ=U I  with λ  as a stretching factor, would not affect the symmetry condition in Eq. (4.24). 

The topology symmetry condition of a cellular structure is more complex than Eq. (4.24) due to 

the existence of the periodic non-affine deformation pF . After eliminating LU  in Eq. (4.23) by 

using Eq. (4.24), the symmetry condition forces the periodic deformation field to satisfy  

 T( ) ( ) ,p p= ∀ ∈F TX TF X T X B   (4.25) 
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Thus Eq. (4.25) indicates that the periodic deformation gradient field should be form-invariant 

under the topology symmetry operation ∀ ∈T T .  

Further, the symmetry preserving strain field can also be derived. Taking the Green strain 

tensor field T( ) [ ( ) ( ) ] 2= −E X F X F X I  [137] as an example, it satisfies 

 

T

T T

T

( ) [ ( ) ( ) ] 2
[ ( ) ( ) ] 2

( ) ,

= −

= −

= ∀ ∈

E TX F TX F TX I
T F X F X I T
TE X T X B

  (4.26) 

Figure 4.6 shows an example [127] of how symmetry breaking occurs when the strain field does 

not satisfy the symmetry condition in Eq. (4.26). In this case, Eq. (4.24) is still valid while Eqs. 

(4.25) and (4.26) are violated. In fact, the strain field does not preserve the 4mm  topology 

symmetry of the original configuration since the deformed configuration has a topology point 

group of 2mm . This strain-induced symmetry breaking phenomenon has been utilized to tune 

the phonon propagation behavior in the phononic crystals. 

 

Figure 4.6 Symmetry breaking of a cellular structure induced by deformation. (a) Undeformed configuration. (b) 

Deformed configuration. λ  is the uniform stretch factor. The images are adapted from [127] with permission. 

(a) =1λ (b) =0.8λ
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4.4.3 Material symmetry breaking in small deformation 

The material symmetry of the level 2 is studied for cellular structures. During the deformation 

process ( )X χ X , the material point group field also changes as ( ) ( )X χM M , which is 

usually hard to determine analytically. According to Eq. (4.4), The material symmetry of the 

field ( )χM  requires that 

  T( ) ( ) , and= ∀ ∈ ∀ ∈Gχ G χ G G χ      BM M G   (4.27) 

where T
L L= R RG G  ( ≤ G T ) is the overall point group after the affine lattice deformation LF  .  

In small deformation cases, ( )χM  could be determined since only symmetry breaking 

occurs in the local configuration. The polar decomposition ( ) ( ) ( )=F X R X U X  is introduced, 

where ( )R X  and ( )U X  are the rotation and stretch tensors. For small deformation case, 

symmetry breaking may occur and the material point group ( ( ))χ XM  of the deformed material 

is [141]  

 T T( ( )) : { ( ) ( ) , for and }= = ∀ ∈ ∀ ∈χ X RMR U X MU X M M X BM | M   (4.28) 

On the other hand, the material symmetry evolution is quite complex and almost intractable for 

large deformation cases, which should be paid careful attention to.  

4.5 SUMMARY 

Point group symmetry is one of the most important and fundamental properties of anisotropic 

materials, which is directly related to their physical properties and useful for material modeling. 
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Hence, it is quite necessary to develop a point group symmetry theory for cellular structures in 

response to the second question raised in Section 1.3. However, the symmetry of cellular 

structures is more complicated than single crystals due to the multilevel structural features within 

a cellular structure unit cell. Specifically, the cellular structures require both topology symmetry 

and material symmetry in one unit cell. To address this issue, a unified theoretical framework is 

established to describe and determine the overall point group of cellular structures. Current work 

reveals that the point group symmetry of cellular structures can be described by the invariant (or 

form-invariant) of a material type field and a material point group field. This is significantly 

different from the symmetry of single crystals, which only requires the invariant of the material 

type field. The proposed theory is applied to several examples to show the symmetry 

characteristics of cellular structures, especially the ones fabricated by 3D printing. In addition, 

the symmetry evolution of deformed cellular structures is also investigated with an emphasis on 

the deformation-induced symmetry breaking for small strain cases. The proposed theory will 

provide theoretical foundation for characterizing the physical properties of cellular structures and 

offer some guidance in designing tunable cellular structures by employing symmetry breaking.   



 80 

5.0  MODELING 3D PRINTED PHOTOPOLYMERS AND CELLULAR 

STRUCTURES 

5.1 INTRODUCTION 

The photopolymerization based technology plays a dominant role in manufacturing the 3D 

printed polymeric parts with high quality. The representative techniques include SLA, PolyJet, 

and multiphoton lithography, which fuse the monomers and oligomers together by using UV 

light or laser layer by layer. These techniques usually produce parts with high resolution but low 

distortion.  However, a critical and common issue of these techniques is that the photopolymer 

component exhibits strong printing direction effect [59, 60] inherited from the layer-wise 

processing feature. As a result, the deformation and failure of 3D printed cellular structures will 

depend on both structural orientation and printing direction. Hence, there is a strong demand to 

develop advanced material models to characterize the printing direction effect and predict the 

deformation and failure of 3D printed polymeric structures.  

The inelastic deformation of glassy polymers usually undergoes initial yielding, strain 

softening, and subsequent hardening [143, 144]. In early years, a seminal model of glassy 

polymers was developed by Parks, et al. [145] to describe these features and was later on 

generalized by Boyce, et al. [144] to include the effects of strain rate, pressure, and temperature. 

After that, this framework was further developed by a variety of researchers. For example, a 
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notable contribution was the adoption of the eight-chain model [146, 147] to characterize the 

backstress evolution, which has a simple form but good accuracy. In addition, a different 1D 

rheological model was introduced by Bergström and Boyce [148], which is also quite popular 

nowadays. Other development includes modifying the network model [149-151], generalizing 

the rheological model [152-155], considering thermo-mechanical coupling [156-158], and 

applying the models for new materials [52, 159], which can be found in these literature and the 

references therein. Unfortunately, these models still suffer from some limitations when applied to 

3D printed photopolymers. On the one hand, these models are usually devised for isotropic 

glassy polymers, e.g. isotropic elastic tensor and von Mises stress are used, which do not 

consider the material anisotropy induced by the printing direction effect. On the other hand, these 

models usually adopt an associated flow rule, which leads to unphysical volume dilatation when 

the material is pressure sensitive [160]. Therefore, one aim of this chapter is to develop a 

transversely isotropic inelastic model for photopolymers to tackle these two critical problems, 

which has improved accuracy compared with the isotropic model used for photopolymers [52]. 

The 3D printed photopolymers usually show orientation-dependent failure behavior, that 

is, the interface between two printing layers is usually weaker than the intra-layer strength under 

tensile loading. A macroscopic failure criterion is useful for engineering analysis to estimate the 

material and structure failure [161]. Some representative stress-based failure criteria are, for 

instance, the Tsai-Wu criterion [162] and Hashin criterion [163], which were originally 

developed for fiber composites and have been widely used.  However, these stress-based failure 

criteria are not applicable when the material exhibits strain softening, in which case one stress 

value may correspond to several strain values. In contrast, the failure criteria [164, 165] 

formulated in the strain space can overcome this issue, but they are difficult to extend to 
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problems involving inelastic deformation since the strain is decomposed into elastic and inelastic 

parts.  Therefore, the stress-based formulation is adopted in this chapter by modifying the Tsai-

Wu criterion to handle the failure problems with strain softening. Note that a well-developed 

macroscopic failure criterion is quite useful for engineering failure analysis, and indeed there is 

still a lack of such model for photopolymers.   

The ultimate goal of this chapter is to study the deformation and failure behavior of 3D 

printed cellular structures with material anisotropy. In order to achieve this goal, a transversely 

isotropic hyperelastic-viscoplastic model is established for photopolymers by considering 

material anisotropy, pressure sensitivity, and rate dependence, and a failure criterion is proposed 

by modifying the Tsai-Wu model.  Finally, the developed material model and failure criterion are 

implemented into the user subroutine (VUMAT) of the finite element software package 

ABAQUS to simulate the structural response and failure of 3D printed cellular structures.  The 

simulation results will be compared with those obtained from experiment. 

5.2 HYPERELASTIC-VISCOPLASTIC MODEL OF PHOTOPOLYMERS 

5.2.1 Kinematics of finite deformation 

The inelastic deformation of the glassy polymers is studied in the finite deformation scenario. 

The deformation of a continuum body is illustrated in Figure 5.1. The finite strain deformation of 

this deformed body is described by the deformation gradient F , which maps a material point X  

of the reference configuration 3
0 ⊂B R  to a spatial point ( )χ X  in the current configuration 

3⊂B R , as 
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 ∂
=
∂
χF
X

  (5.1) 

The corresponding velocity gradient, L , is given by 

 1−∂
= = = +
∂
χL FF D W
χ


   (5.2) 

where the dot indicates the first order time derivative. In Eq. (5.2), D  and W  are the symmetric 

part and skew part of L , respectively, which represent the stretching rate tensor and spin tensor. 

For finite strain deformation incorporating plasticity, the deformation gradient is usually 

decomposed into two parts [166], as 

 e p=F F F   (5.3) 

Since the choice of the relaxed configuration 3
p ⊂B R  is not unique, we adopt a particular 

relaxed configuration so that eF  is always symmetric, i.e. e e=F V , where eV  is the left stretch 

tensor of eF  [144]. Further, the plastic deformation gradient pF  can also be decomposed into 

two parts, as 

 p p p p p= =F R U V R   (5.4) 

where pR  is the rotation tensor, pU  is the right stretch tensor, and p p p pT=V R U R  is the left 

stretch tensor. The decomposition in Eq. (5.4) is also illustrated in Fig. 1 by introducing an 

intermediate configuration 3
ps ⊂B R  with plastic stretch deformation only.  

 The velocity gradient in Eq. (5.2) can be rewritten in the following form after the 

multiplicative decomposition of the deformation gradient, as 

 e e p e 1−= +L L F L F   (5.5) 

The term pL  in Eq. (5.5) is the plastic velocity gradient, which is defined as 

 p p p 1 p p−= = +L F F D W   (5.6) 
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where pD  and pW  are the plastic stretching rate and plastic spin tensor, respectively. In order to 

guarantee the symmetry of the elastic deformation gradient eF , the plastic spin pW  in Eq. (5.6) 

should satisfy the following relation [160, 167], as 

 
p p p p 1 p 2 p p p p p p 2 p p p 2

p p p p p p

( ) [ ( ) ( )

( ) ]

I II III I I−= − − − −

+ −

W V D D V V D D V
V V D D V V

  (5.7) 

where p , pI II , and pIII  are the three invariants of pV , as 

 

p p

p p2 p2

p p

tr

[ tr( )] 2

det

I
II I
III

=

= −

=

V
V

V
  (5.8) 

where tr( )  and det( )  indicate the trace and determinant of a tensor, respectively.   

 

Figure 5.1 Multiplicative decomposition F = FeFp of the deformation gradient for a continuum body with elasto-

plastic deformation. The plastic deformation can be further decomposed into a pure stretching part and a pure 

rotation part, as p p p=F R U . The symbols 0B , B , pB , and psB  indicate the reference configuration, current 

configuration, relaxed configuration, and plastic stretching configuration, respectively. The corresponding privileged 

axes in these four configurations are denoted by 0n , n , pn , and psn , respectively.  
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The main difference between the kinematic relations of isotropic and anisotropic bodies 

is that the material anisotropy, usually characterized by the material axes, should be considered 

for the latter. For the 3D printed photopolymers, we assume that the material is transversely 

isotropic in the reference configuration since they usually have the lamellar structure. Hence, it is 

natural to take the printing direction as the material’s privileged axis, i.e. 0n  in the reference 

configuration 0B  of Figure 5.1. The evolution of the privileged axis 0n  is especially important 

to the constitutive modeling in the finite deformation scenario. As shown in Figure 5.1, the effect 

of the plastic stretch pU  on the evolution of the privileged axis 0n  is usually assumed to be 

unchanged during the plastic stretch process, i.e. ps 0=n n . Therefore, the privileged axis pn  in 

the relaxed configuration pB  is only affected by the plastic rotation pR , as 

 p p 0=n R n   (5.9) 

In addition, the rate form of Eq. (5.9) is derived as 

 p p 0 p p= =n R n W n 

   (5.10) 

where p p pT=W R R   is the material spin tensor. Actually, the effect of the plastic stretch pU  on 

the material anisotropy evolution can be incorporated into the constitutive law by adding a 

vector/tensor type state variable representing the texture change [160, 168]. However, this 

approach would increase the complexity of the resulting model, which is usually difficult to fit 

through experiment. In practice, the assumption stated in Eq. (5.9) is more popular.  

 The anisotropy of the transversely isotropic materials is represented by the structural 

tensor, which evolves with the deformation. In the reference configuration 0B , the structural 

tensor is defined as  

 0 0 0= ⊗M n n   (5.11) 
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Correspondingly, this structural tensor in the relaxed configuration pB  is defined as  

 p p p= ⊗M n n   (5.12) 

It is easy to verify from Eq. (5.11) and Eq. (5.12) that p p 0 pT=M R M R . 

5.2.2 Material model 

The 3D printed photopolymers behave like many other glassy polymers, which usually undergo 

elastic response, yielding, strain softening, and successive hardening due to the stretching of 

polymer chains at different deformation stages. In order to capture all these behaviors, a 

hyperelastic-viscoplastic polymer model is shown in Figure 5.2. The 1D rheological chain in 

Figure 5.2 (a) is frequently used to model the glassy polymer response [147], which consists an 

elastic spring, a hyperelastic spring, and a viscoplastic element. The hyperelastic spring is used 

to model the backstress evolution due to the hardening of the glassy polymer under large 

inelastic strain, as shown in Figure 5.2 (b). Finally, the equilibrium of the stress state is 

formulated in the relaxed configuration pB  in this work. 

The linear elastic deformation eF  of the polymer is modeled by the elastic spring in 

Figure 5.2 (a). Notice that the elastic deformation is usually quite small. Hence, the elastic stress 

eσ  in the relaxed configuration pB  is determined as 

 e e e:=σ E   (5.13) 
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Figure 5.2 Schematic illustration of the hyperelastic-viscoplastic model.  (a) A one-dimensional rheological model 

for the transversely isotropic photopolymer. (b) A typical stress-strain curve for glassy polymers. The backstress is 

modeled by a hyperelastic spring. 

 

where e eT e( ) 2= −E F F I  is the elastic Green strain tensor, e  is the fourth order elastic tensor 

in the relaxed configuration pB , and “:” is the double dot product of the tensors. The explicit 

form of e  is derived as follows. It is assumed that the plastic stretch deformation pU  does not 

change the elastic response of the polymer. Therefore, e  can be obtained via a rotation 

transformation pR  to the elastic tensor   in the reference configuration 0B , as   

 e 1 p p p p
pijkl abcd ia jb kc ldJ R R R R−=    (5.14) 

where p
p detJ = U  accounts for the plastic volume change. The explicit form of   in Eq. (5.14) 

is expressed in the following form for transversely isotropic materials [169], as  

 0 0 0 0
02 ( ) 2( )λ µ α µ µ β⊥ ⊥= ⊗ + + ⊗ + ⊗ + − + ⊗I I M I I M M M



     (5.15) 
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where λ , µ


, µ⊥ , α , and β  are five independent elastic constants, ijkl ik jlδ δ=  is the fourth-

order identity tensor,  and 0 0
0( )ijkl im jmkl jm miklM M= +   . 

Further, a more convenient form of the stress eσ  in Eq. (5.13) can be written as 

 
e 1 e e p e e p

p

p e e p p e p

{ (tr ) 2 [( : ) (tr ) ]

2( )( ) ( : ) }

J λ µ α

µ µ β

−
⊥

⊥

= + + +

+ − + +

σ E I E M E I E M

M E E M M E M


  (5.16) 

In addition, the Cauchy stress σ  in the current configuration B  can be determined from Eq. 

(5.13) or Eq. (5.16) after a push-forward transformation, as 

 1 e e eT
eJ −=σ F σ F   (5.17) 

where e
e detJ = V  is the elastic volume change. Equation (5.17) is quite useful for the 

implementation of the material model in the finite element algorithms.  

It is worthwhile to mention that the spatial Hencky strain e e
h ln=E V  and the Kirchhoff 

stress e
K eJ=τ σ  are usually used in the literature to describe the isotropic elastic deformation of 

glassy polymers [144]. However, this convention is inappropriate for anisotropic cases because 

e
hE  and e

Kσ  are not a work-conjugate pair in general [170]. Therefore, we adopt the Green strain 

eE  instead of e
hE  in this work. 

 The material hardening of the glassy polymer is modeled through the evolution of the 

backstress bσ  derived from a hyperelastic model. Note that the polymer is transversely isotropic 

in the reference configuration 0B . Therefore, the strain energy function of the hyperelastic 

spring has a general form of 

 p 0 p p p p p
1 2 3 4 5( , ) ( , , , , )I I I I IΦ = ΦC M   (5.18) 
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where p p2=C U  is the right Cauchy-Green tensor, p ( 1, 2, ,5)iI i =   are the five invariants 

defined as [134] 
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A variety of strain energy functions have been proposed in the literature [171] for Eq. 

(5.18). In this work, the following form of hyperelastic strain energy is chosen, as 

 2 p 2
p 4

sinh( 1) ln ( 1)
2 4

ch
ch ch

ch

J n n Iβκ µµ β λ
β

  
Φ = − + − + −  

  



  (5.20) 

where κ , µ , n , and µ  are four hyperelastic constants. The first term of Eq. (5.20) is the 

volume dilation energy, the second term is adapted from the eight-chain model [146] for the 

distortion energy, and the last term is the standard reinforcing model to characterize the 

anisotropy [171, 172] induced by the printing direction effect.  Moreover, the terms chλ  and chβ  

in Eq. (5.20) are defined as 
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  (5.21) 

where  ( ) coth 1ch ch chβ β β= −L  is the Langevin function.  

The derivation of the backstress bσ  is straightforward once a proper hyperelastic strain 

energy function is given. Following a procedure outlined by Ogden [172], the backstress bσ  in 

the relaxed configuration pB  is determined as 
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  (5.22) 

where p p pT=B F F  is the left Cauchy-Green tensor and the subscript ‘dev’ means the deviatoric 

part of a tensor. Note that Eq. (5.22) satisfies the stress-free condition when p =F I . 

The experimental testing indicates that the inelastic deformation of 3D printed 

photopolymers is rate-dependent, pressure sensitive, and orientation-dependent. Therefore, the 

viscoplastic element is modeled to incorporate all these factors. The driving stress σ  for the 

viscoplastic flow is derived from the equilibrium of the 1D rheological network in Figure 5.2 (a), 

as 

 e b= −σ σ σ   (5.23) 

where eσ  and bσ  are defined in Eq. (5.13) and Eq. (5.22), respectively. In the case that the 

material is transversely isotropic and pressure sensitive, the equivalent stress is defined in a 

modified Hill form by incorporating the Bauschinger effect [173-175], as 

 2 2 p p 2 p
1 2 3 4 5tr( ) tr ( ) tr( ) tr( ) trdev dev dev deva a a a aτ = + + + +σ M σ M σ M σ σ       (5.24) 

where ( 1, 2, ,5)ia i =   are five dimensionless yield constants and pM  is the structural tensor 

defined in Eq. (5.12).  

5.2.3 Non-associated flow rule 

A non-associated flow rule is used since glassy polymers are pressure sensitive, otherwise 

unphysical plastic volume dilatation will occur [160, 176]. The flow potential is chosen as 
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 p( , )g J pψ τ= +   (5.25) 

where g  is an unknown function to be determined and p  is the equivalent pressure defined as  

 p
4 5

5

1 [ tr( ) tr ]
3 devp a a
a

= +M σ σ    (5.26) 

where the term related to 4a  is introduced to account for the anisotropy of the polymer. Note that 

the pressure in Eq. (5.26) is positive in tension and negative in compression.  

The evolution of the plastic deformation rate is  

 p pγ=D N   (5.27) 

where pγ  and N  are the amplitude and direction of the viscoplastic flow, respectively. The flow 

direction tensor N  is obtained from the derivative of the non-associated flow potential in Eq. 

(5.25), as  
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  (5.28) 

Then based on Eq. (5.27) and Eq. (5.28), the plastic volume change rate is derived as 
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  (5.29) 

It can be seen from Eq. (5.29) that the term g p∂ ∂  introduced by the non-associated flow rule is 

quite important for the plastic volumetric deformation. Otherwise, pJ  is always positive (or 

negative) if an associated flow rule is used ( 0g ≡ ), which results in an unreasonable plastic 
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dilatation. The significance of the non-associated flow rule has also been recognized in the 

literature [160] for other pressure-sensitive materials like granular materials, rocks, foams, etc. 

The explicit form of p( , )g J p  should be determined by experiment, which is quite challenging. 

Therefore, it is assumed that the plastic volume change rate pJ  is a linear function with respect 

to the equivalent pressure p . As a result, the term enclosed in the bracket of Eq. (5.29) is written 

as   

 5
p

3 g pa
p κ
∂

+ =
∂

  (5.30) 

where pκ  is a plastic dilatancy parameter. Finally, the plastic flow direction N  can also be 

derived by substituting Eq. (5.30) into Eq. (5.28). In addition, the plastic volume change rate is 

obtained from Eq. (5.29), as 
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=
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   (5.31) 

The equivalent plastic flow rate pγ  is taken as the following form:  

 p
0

B

exp 1G
k s

τγ γ
ϑ

 ∆  = − −  
  

    (5.32) 

where 0γ  is a pre-exponential factor, G∆  is the zero stress level activation energy, s  is the 

athermal shear strength, Bk  is the Boltzmann constant, and ϑ  is the absolute temperature. Other 

types of flow equations can also be found in the literature [177, 178], which usually have 

different indices. The strain softening is modelled by introducing a preferred state ss  so that the 

athermal threshold stress evolves in the following way, as [144] 

 p

s

1 ss h
s

γ
 

= − 
 

   (5.33) 
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where h  is the softening slope and the initial condition is 0s s=  when p 0γ = . It should be 

mentioned that an additional term was introduced in some literature [144] to take into account 

the effect of pressure on the athermal shear threshold stress. Nevertheless, this correction is not 

necessary any more in this work since the effect of pressure on the peak yield stresses has 

already been considered in the equivalent stress τ  defined in Eq. (5.24).  So far, the plastic 

stretching rate pD  in Eq. (5.27) can be determined by using Eqs. (5.32), (5.33), and (5.28) and 

the rate type constitutive model is completed.  

A final remark on the constitutive model is that the energy dissipation rate pW  should 

always be non-negative according to the second law of thermodynamics, i.e. 

 p p p: 0gW p
p

γ τ
 ∂

≡ = + ≥ ∂ 
σ D

   (5.34) 

Roughly speaking, the coefficient term g p∂ ∂  can be interpreted as the pressure-dependent 

internal friction of the material. In addition, based on Eq. (5.34), the condition p 0W ≥  requires 

that 0p g pτ + ∂ ∂ ≥ , which should be checked when fitting the parameters.  

5.3 FAILURE CRITERION OF PHOTOPOLYMERS 

The Tsai-Wu failure criterion [162] is adopted to predict the macroscopic failure of 3D printed 

photopolymers. However, the original Tsai-Wu failure criterion does not apply for materials with 

strain softening and hence is being modified in this work. In general, the failure criterion should 

be expressed in terms of the stress eσ , structural tensor pM , accumulated plastic deformation 
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pγ , flow rate pγ , temperature ϑ , and/or other internal variables.  Hence, the general failure 

criterion is  

 e p p p( , , , , , ) 1f γ γ ϑ ≤σ M 
   (5.35) 

The Tsai-Wu failure criterion is a special case of Eq. (5.35), which is expressed in the following 

form, as 
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  (5.36) 

where T


, C


, and S


 are the out-of-plane tension, compression, and shear strength along the 

printing direction,  T⊥ , C⊥ , and  S⊥  are the in-plane tension, compression, and shear strength, 

and F ⊥  is the coefficient of a mixture term. The stress invariants ( 1, 2, ,8)iK i =   in Eq. (5.36) 

are defined as 
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In the special case that the material failure is dominated by tension, the failure criterion in Eq. 

(5.36) could be simplified by assuming C →∞


, C⊥ →∞ , and  S⊥ →∞ , as 

 6 74
4 6 2 1K KK F K K

T T S⊥
⊥

+ + + ≤


 

  (5.38) 
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Generally speaking, these failure constants should be functions of the accumulated plastic strain 

pγ , flow rate pγ , temperature ϑ , etc. However, we only consider that the in-plane tensile 

strength decays during the plastic deformation. Therefore, T⊥  is prescribed as 

 p
1 0 1 2( ) exp( )T T T T T γ⊥ ⊥ ⊥ ⊥ ⊥= + − −   (5.39) 

 where 0T⊥  is the initial tensile strength, 1 0T⊥ >  is the target strength, and 2 0T⊥ >  is the 

decaying rate (see Figure 5.3). Indeed, other failure constants can also be expressed in similar 

forms, while we assume that the other three constants do not change with the plastic deformation 

due to the brittle nature of the photopolymer in the 3D printing direction. The first two terms in 

Eq. (5.38) are the dominant terms which dictate the tensile failure in 3D printed photopolymers, 

while the other two terms are introduced to incorporate the failure mode coupling and shear 

effect. 

 

Figure 5.3 Schematic illustration of the tensile failure occurring in the strain softening process of a material.  The 

tensile strength is a decaying function with respect to the plastic flow instead of a constant in the stress space.  

 

It should be noted that the macroscopic failure criterion depends much on the knowledge 

of failure modes observed in experiment and the available data tested under certain conditions. In 
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reality, the failure process includes damage accumulation and crack growth, which requires 

considerable effort and detailed analysis by using damage mechanics, nonlinear fracture 

mechanics, and even more advanced techniques [179-181]. This kind of failure criterion based 

analysis can only provide some engineering design guidance rather than predicting the failure 

process accurately.   

5.4 EXPERIMENTAL TEST OF PHOTOPOLYMERS 

5.4.1 Identification of parameters 

All material constants are determined by conducting uniaxial tension and compression tests on 

specimens printed along different orientations. As shown in Figure 5.4, all specimens are tested 

along the 2x  direction in the Cartesian coordinate system 1 2 3ox x x . The unit vectors of the three 

coordinate axes are designated as 1e , 2e , and 3e , respectively. The printing direction 

0
1 2cos sinθ θ= +n e e  is perpendicular to the axis 3x  and has an angle of θ  with respect to the 

axis 1x . Therefore, 0θ °=  indicates the in-plane direction, while 90θ °=  indicates the out-of-

plane or printing direction. Given that 0n  is prescribed, the matrix form of the structural tensor in 

the reference configuration can be obtained from Eq. (5.11), as  
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0 2

cos sin cos 0
sin cos sin 0

0 0 0

θ θ θ
θ θ θ

 
 =  
  

M   (5.40) 

An overview of calibration procedure of the material constants in the model is introduced 

first. For the uniaxial testing simulation, the deformation can be obtained through the time 
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integration of the constitutive law by using the backward Euler algorithm and assuming a set of 

trial material constants. After that, the trial material constants are then optimized iteratively by 

using the Hooke-Jeeves pattern search method [182] to minimize the fitting error. Note that this 

Hooke-Jeeves method does not require any gradient information of the target function, which is 

quite convenient. The initial trial values of the materials constants are estimated as follows.  

 

 

Figure 5.4 Schematic illustration of the material coordinate system and printing direction. (a) The testing direction 

and printing direction of the uniaxial testing specimens. The isotropic plane is indicated by the dashed elliptical 

cross section. (b) Manufacturing setup for the tensile specimen. The printing direction is indicated by the arrow. The 

compression testing specimens are arranged in a similar way. 

 

The five elastic constants in Eq. (5.15) can be fitted from the linear responses of the 

material. In the Voigt notation, the matrix form of the elastic tensor is 

 T
0θ θ == Q Q    (5.41) 

where  
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Thus, once a uniaxial stress state e e
2 2σ= ⊗σ e e  is given, the corresponding elastic strain field 

can be readily derived from Eq. (5.13), which can be used to obtain the directional elastic 

moduli.  Thereafter, the five elastic constants can be calculated by fitting the directional elastic 

moduli from the tension and compression testing along different printing directions.  

The five yield constants in Eq. (5.24) can be estimated in the following way. For a given 

uniaxial yield stress state Y 2 2σ= ⊗σ e e , the equivalent stress τ  in Eq. (5.24) is prescribed to be 

Y 0
3

θ
τ σ +

=
=  as a reference stress value. Thus, it is obtained that the yield stress for an arbitrary 

orientation θ  is 
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  (5.44) 

where the superscript + (or –) sign means the tension (or compression) condition. As indicated 

by Eq. (5.44), there are two yield stresses for each orientation, which correspond to the tensile 

and compressive yield stresses, respectively. Hence, the five yield constants can be obtained by 

fitting the yield stress data obtained from the uniaxial tension and compression tests along the 
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three directions 0 , 45θ =   , and 90 . The estimation of the six viscoplastic flow constants can 

follow a procedure suggested in [159]. In addition, the four hyperelastic constants should be 

determined together with other constants. Finally, the optimization of trial material constants can 

be conducted by minimizing the fitting error between the simulation stress-strain curves and 

experimental data.  

 Following the procedure introduced above, the 20 material constants and 6 failure 

constants for the VeroWhitePlus (VW) photopolymer is listed in Table 5.1. 

5.4.2 Manufacturing of specimens 

All the test specimens are fabricated from the VW photopolymer by using the Objet260 Connex 

3D printer. Both of the UV lamps are used to cure the photopolymer in order to achieve the best 

mechanical performance. After printing is done, the manufactured specimens are cleaned up by 

using the water jet to remove the support resin. Note that the specimens are not soaked in the 

NaOH solution to avoid any changes of the mechanical property.     

The tension and compression specimens are manufactured along different printing 

directions in the fashion shown in Figure 5.4 (b). Flat tensile specimens are manufactured with a 

total length of 100 mm and a thickness of 4.1 mm.  The gauge section of the tensile specimen is 

25.4 mm long and 8.2 mm wide. In contrast, the compression specimens are in cylindrical shape 

with a diameter of 10 mm and a height of 8 mm. Note that this aspect ratio can usually avoid the 

occurrence of buckling or barrel shape during the compression testing. Finally, it is worthwhile 

to mention that the surfaces of the manufactured specimens are usually rough, which are 

polished by sandpaper before testing.      
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Table 5.1 Material constants of the VW photopolymer manufactured by the PolyJet process 

Model components Material parameters Values 

elastic 

λ  (MPa) 3140 
µ⊥  (MPa) 724 
µ


(MPa) 775 

α (MPa) 173 
β (MPa) -62 

hyperelastic 

κ (MPa) 213 
µ (MPa) 7 
n  1.6 
µ (MPa) -2.9 

yield 

1a  0.5455 

2a  -0.0550 

3a  0.1749 

4a  0.0343 

5a  0.0672 

viscoplastic 

0γ  (s-1) 57.9 10×  
G∆  (J) 191.35 10−×  

0s (MPa) 110 

ss (MPa) 53 

h  (MPa) 340 

pκ (MPa) 1000 

failure 

T


 (MPa) 42 

0T⊥  (MPa) 130 

1T⊥  (MPa) 50 

2T⊥  20 
F ⊥  (MPa-2) 410−−  
S


 (MPa) 110 
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5.4.3 Uniaxial testing results 

Uniaxial tension and compression tests are conducted on an MTS880 system for the VW 

photopolymer specimens in order to fit the material constants of the developed model. Three 

different printing orientations of the specimen are considered, i.e. 0 , 45 ,θ ° °= and 90° , where θ  

is the angle between the longitudinal axis of the specimen and the printing plane.  In other words,  

0θ °=  and 90θ °=  would indicate that the mechanical loading direction is perpendicular and 

parallel to the printing direction of the 3D printer, respectively.  In addition, the photopolymer is 

tested under three different true strain rates ( 1 10.002 s , 0.01sε − −= , and 10.02 s− )  to capture the 

rate-dependent behavior of the viscoplastic response. All the testing is conducted at room 

temperature 295 Kϑ = . However, it was found that the temperature of the compression 

cylinders may rise when they are loaded at relatively high strain rate since the thermal condition 

is not ideally isothermal. Therefore, a thermal camera (FLIR SC325) is used to monitor the 

temperature change of the cylinders during the compression testing. As shown in Figure 5.5, the 

temperature increment ϑ∆  could reach ~ 9 K in the case of 10.02 sε −=  but does not change 

much for low strain rate cases, e.g. 10.002 sε −= . In contrast, the temperature rising of the flat 

tensile specimens is negligible since they usually break at a low strain level. 
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Figure 5.5 Temperature rising of the cylindrical specimens during the compression testing.  The data is fitted by 

polynomial functions to be used for the simulation. 

 

The uniaxial tension and compression curves of the VW photopolymer specimens are 

shown in Figure 5.6 and Figure 5.7, respectively. Besides the experimental results, the stress-

strain curves are also obtained from the proposed model for comparison. Note that the measured 

temperature data in Figure 5.5 is input into Eq. (5.32) during the compression simulation to 

incorporate the material softening induced by the temperature rise. Overall, the proposed model 

could fit the experimental results very well for both tension and compression cases and along 

different specimen printing directions. The stress-strain curves are similar to other glassy 

polymers, which usually have a linear elastic region, strain softening region, and successive 

hardening region as the strain increases. Some remarkable features of Figure 5.6 and Figure 5.7 

are noted as follows. (i) The elastic response of the VW photopolymer is transversely isotropic. 

The elastic modulus along the printing direction ( 90θ °= ) is about 10% higher than that within 
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the printing plane ( 0θ °= ). Note that this anisotropic degree is dependent on the curing state of 

the photopolymers. Normally, the elastic response of fully cured photopolymers shows less 

anisotropy compared to partially cured photopolymers.  (ii) The tensile yield stress depends 

significantly on the printing direction. However, the compression yield stress does not vary much 

along different directions. This is probably due to the generation and evolution of interfacial 

defects [183-185] between printing layers, e.g. cavitation, bond breakage, entanglement 

decohesion, etc., to be further explored by experiment. Note that these interfacial defects play an 

important role under tension rather than compression.  (iii) Strong pressure-sensitivity is 

observed by comparing the results in Figure 5.6 with that in Figure 5.7, which shows that the 

compression yield stress is usually higher than the tensile yield stress. This Bauschinger effect is 

captured well by the additional pressure-related terms in Eq. (5.24). (iv) The temperature rise at 

relatively high strain rates would lead to material softening. This is evidenced by the fact that the 

stress gap between different strain rate cases becomes smaller with an increase of strain (see 

Figure 5.7). Actually this effect would be more significant for even higher strain rate cases. (v) 

The material strength is strongly dependent on the printing direction and loading condition. The 

experimental data indicate that the photopolymer does not fail under compression testing. In 

contrast, the material failure is dominated by the tensile stress states, especially when the printing 

direction coincides with the tensile direction. As shown in Figure 5.6 (a), the in-plane tensile 

behavior is ductile with considerable plastic deformation observed. However, the photopolymer 

is quite brittle along the printing direction, which breaks when the stress is only about 60-70% of 

the yield stress along that direction.  Therefore, we can conclude that the mechanical properties 

of the VW photopolymers are related to the printing direction, especially their mechanical 

strength. 
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Figure 5.6 Uniaxial tensile testing results of the VW photopolymer with comparison to experimental results.  The 

testing is conducted under room temperature 295 Kϑ = . (a) 0θ °= . (b) 45θ °= . (c) 90θ °= .  Note that θ  denotes 

the printing direction. 

 

 

 

Figure 5.7 Uniaxial compression testing results of the VW photopolymer with comparison to experimental results.  

The testing is conducted under room temperature 295 Kϑ = . (a) 0θ °= . (b) 45θ °= . (c) 90θ °= . 
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5.4.4 Failure criterion calibration 

The tensile failure tests are conducted on tensile specimens manufactured along nine different 

printing directions ( 0 ,11.25 , 22.5 , ,90θ ° ° ° °=  ) to verify and calibrate the proposed failure 

criterion in Eq. (5.38). All specimens are tested under the room temperature 295 Kϑ =  and a 

true strain rate of 10.01sε −= . The corresponding true stress and true strain values are recorded 

when the material fails, which are called failure stress and failure strain, respectively. The 

experimental failure data are compared with the simulation ones in Figure 5.8. It can be observed 

that the theory could roughly fit the failure envelope, although there is still some variance in the 

experimental failure data. Two conclusions can be drawn from Figure 5.8 regarding the failure 

behavior of 3D printed glassy photopolymers. (i) The proposed failure criterion can predict the 

failure of glassy polymers with strain softening. The failure stress always increases when the 

printing direction increases from 0θ °=  to 40θ °= . Meanwhile, the failure strain decreases, 

which indicates that there exists strain softening in the material. (ii) The tested photopolymer 

shows a brittle-to-ductile transition behavior, depending on the printing direction. It is seen in 

Figure 5.8 (b) that the failure strain along the printing direction is much lower than the in-plane 

failure strain. In addition, the failure strain envelope is in a dumbbell shape rather than a perfect 

circle in the polar plot, which is quite different from isotropic materials. Note that the failure data 

could also be fit into the more generalized failure criterion in Eq. (5.36) by assuming large 

strength values for the failure constants C


, C⊥ , and  S⊥  .  However, these three values are set as 

infinity for simplicity since we have not observed any compression induced failure in the 

photopolymer. In addition, the failure criteria are also dependent on the loading rate and 
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temperature, which should be considered for the failure analysis if enough experimental data are 

available.  

 

Figure 5.8 Tensile failure data obtained from the experiment and simulation for the VW photopolymer with 

different print directions ( 10.01 sε −=  and 295 Kϑ = ). (a) Failure stress (unit: MPa). (b) Failure strain.  

5.5 SIMULATION AND EXPERIMENT FOR 3D PRINTED CELLULAR 

STRUCTURES 

The proposed constitutive model and failure criterion are used to analyze the structural response 

of 3D printed cellular structures. In order to do so, the constitutive model and failure criterion are 

implemented into ABAQUS through the user material subroutine (VUMAT), and the element 

deletion technique is used to predict material failure. The cellular structures are of interest 

because they are widely used to design lightweight structural components [24, 186]. Particularly, 

the 3D printing technology enables the manufacturing of cellular structures with complex 
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topology and excellent mechanical properties [53-56], which are usually difficult to fabricate 

using conventional methods.  

 

Figure 5.9 3D printed cellular structures by using the VW photopolymer. (a) Square cellular structure. (b) Diamond 

cellular structure. The samples are either printed along the direction x1 or x2, while the compression testing is always 

along x2. 

 

Two kinds of cellular structures, square lattice and diamond lattice, are manufactured by 

the Objet260 Connex printer. These two structures are actually the same but with different 

orientations. However, they are named differently here according to the convention in the 

literature. Again, the VW photopolymer is used to fabricate these cellular structures. As shown 

in Figure 5.9 (a) and (b), the dimension of the square cellular structures and diamond cellular 

structures are 52×52×20 mm3 and 56.6×56.6×20 mm3, respectively, where their depth is 20 mm. 

All the ligaments are designed to be 8 mm long and 2 mm wide. In addition, all the interior 

corners are filleted with a radius of 0.5 mm to avoid any local stress concentration induced by the 

sharp corners. A coordinate system is established in Figure 5.9 to indicate the printing and 

testing directions, which is in accordance with the coordinate system in Figure 5.4 (a). 

Correspondingly, the cellular structures are either printed along the 1x  or 2x  direction, while the 
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compression testing is conducted along 2x . The compression testing of the cellular structures is 

conducted on an MTS880 system with a nominal strain rate of 10.01sε −=   and at the room 

temperature 295 Kϑ =  to be consistent with the testing of the photopolymer.   

 The uniaxial compression testing results of the square and diamond cellular structures are 

shown in Figure 5.10 and Figure 5.11, respectively. The finite element simulation is performed 

in ABAQUS 6.14 with the user subroutine (VUMAT) developed for the proposed model.  The 4-

node plane strain element with reduced integration (CPE4R) is chosen and the explicit dynamics 

solver is used. In addition, the square and diamond cellular structures are discretized into 7,514 

and 7,424 quadrilateral elements, respectively. The failure simulation is performed by using the 

element deletion technique, which deletes the material points (or elements) once the failure 

criterion is satisfied. Although this approach for failure analysis suffers from some shortcomings, 

like violating the energy conservation after deleting the material points and incapable of 

predicting the failure process accurately, it is still a useful method for engineering failure 

analysis due to the simplicity and convenience.  Overall, the finite element analysis (FEA) results 

agree well with the simulation results, especially in the linear regions. In addition, the failure 

analysis can also predict the initial failure of the structures, which is usually quite challenging to 

achieve. All the printed cellular structures are relatively brittle due to the weak interfaces of the 

photopolymer. Thus, the structures usually fail suddenly when the peak load is achieved, except 

the example in Figure 5.11 (d) - (f), which exhibits slight progressive failure.  The failure of the 

ligaments is mainly induced by the crack propagation along the weak interfaces, evidenced by 

the simulation and experimental results. However, the overall structural responses are still quite 

different between the square cellular structures (Figure 5.10) and the diamond cellular structures 

(Figure 5.11). Note that the deformation is compression dominant in the former but bending 
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dominant in the latter. The load-bearing ability of the square cellular structures is still 

remarkable. As shown in Figure 5.10, the vertical ligaments of the square cellular structures can 

still sustain huge compression loading until the occurrence of buckling and fracture. Note that 

the 3D printed photopolymer is extremely ductile under compression, although its printing 

direction is brittle in tension. In contrast, the structural failure mechanism is quite different in the 

diamond cellular structures, in which the external loading is sustained by the bending of 

ligaments. As shown in Figure 5.11, large tensile strain is found near the joints of the diamond 

cellular structures due to bending deformation, which finally leads to the failure of the joints and 

immediate failure of the whole structure. By comparing Figure 5.10 and Figure 5.11, the 

maximum load of the diamond cellular structures is only about 10% that of the square cellular 

structures even though their overall size and relative density are very similar. This result 

indicates that the overall mechanical response and failure behavior of 3D printed cellular 

structures is determined by both the lattice orientation of the structure and the orientation of the 

constituent material, as pointed out by Zhang and To [61] in a recent work.  

This strong tension-compression asymmetry of 3D printed photopolymers also suggests 

some design guidelines for 3D printed cellular structures. It is recommended to design 

compression dominant structures instead of bending dominant structures to achieve the best 

overall load-bearing ability, mechanical strength, and/or energy absorption behavior. Besides the 

2D cellular structures shown in Figure 5.9, typical examples of the compression-dominant and 

bending-dominant cellular structures are the Octet-truss structure and tetrakaidecahedron 

structure, respectively [55]. Alternatively, designers can also optimize the cellular structure unit 

cell by using topology optimization technique for the desired mechanical performance and 

constraints [187].        
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Figure 5.10 Uniaxial compression responses of square cellular structures. Maximum principle strain (absolute 

value) profiles are shown in (a) - (b) for structures printed along  x1 and (d) - (e) for structures printed along x2 . The 

printing direction is indicated by an arrow in the graphs. The failed elements have already been deleted to show the 

cracks.  (c) and (f) show the comparison of the load-displacement curves for the structures printed along x1 and x2, 

respectively. The data points corresponding to the snapshots in (a), (b), (d), and (e) are indicated in (c) and (f). 
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Figure 5.11 Uniaxial compression responses of diamond cellular structures.  Maximum principle strain (absolute 

value) profiles are shown in (a) - (b) for structures printed along  x1 and (d) - (e) for structures printed along x2. The 

printing direction is indicated by an arrow in the graphs. The failed elements have already been deleted to show the 

cracks.  (c) and (f) show the comparison of the load-displacement curves for the structures printed along x1 and x2, 

respectively. The data points corresponding to the snapshots in (a), (b), (d), and (e) are indicated in (c) and (f). 
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5.6 SUMMARY 

The mechanical behavior of 3D printed cellular structures depends on the printing direction due 

to the lamellar structure of the photopolymer. Thus, this chapter aims at addressing the second 

question in Section 1.3 from the perspective of large inelastic deformation and failure of cellular 

structures. In order to achieve this goal, a hyperelastic-viscoplastic constitutive model is 

developed first for photopolymers below the glass transition temperature. The model is assumed 

to be transversely isotropic in order to capture the printing direction effect, while a non-

associated flow rule is adopted since the polymer is pressure-sensitive. Along with the 

constitutive model, a failure criterion is also proposed by modifying the Tsai-Wu criterion. 

Specifically, the Tsai-Wu criterion is adapted to the strain softening cases by introducing a 

decaying material strength in the stress space. The model is finally integrated with ABAQUS to 

simulate the structural response and failure of 3D printed cellular structures. The comparison 

between experiment and simulation results has been found to be very good, which suggests that 

the model is able to predict the deformation of the cellular structures quite well. In addition, the 

failure initiation in the cellular structures can also be predicted albeit less accurately than the 

behavior before failure. The proposed model and failure criterion have promising application in 

analyzing the mechanical performance of 3D printed photopolymer structures as well as other 

transversely isotropic polymeric composites.  

   

 



 113 

6.0  CONCLUSIONS 

6.1 MAIN CONTRIBUTIONS 

The research works presented in Chapters 2 to 5 are mainly on designing and modeling of 

hierarchical materials and cellular structures inspired from biological materials.  The goals are to 

uncover the energy dissipation mechanisms in hierarchical materials and to model cellular 

structures with material anisotropy.  The key scientific contributions are as follows.  

(1) Discovered the multilevel Bragg scattering mechanism in hierarchical phononic 

crystals.   It has long been known that the wave scattering in phononic crystals obeys the Bragg 

law [71], which implies that the bandgap frequency depends on the periodicity of the structure. 

Conventional phononic crystals only have a single periodicity, which results in bandgaps in a 

limited range of frequencies. In contrast, the bioinspired hierarchical phononic crystals designed 

in Chapter 2 have highly enhanced wave scattering behavior. It was demonstrated by the 

theoretical and numerical study that the hierarchical phononic crystals can generate bandgaps in 

a wide range of frequencies due to their intrinsic multilevel periodicities. Indeed, the phononic 

bandgaps of the hierarchical phononic crystal are superimposed of the bandgaps generated by 

each level of periodicity, which is called the multilevel Bragg scattering mechanism. This 

mechanism can be employed to design phononic crystals and devices with highly enhanced wave 

filtering behavior [86].   
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(2) Discovered the damping enhancement mechanism in hierarchical staggered 

composites.  The research on the damping behavior of staggered composites was motivated by 

the relatively high damping of human cortical bone [15, 17]. The theoretical study shows that the 

staggered composites could be optimized to achieve highly enhanced loss modulus, which is 

proportional to the overall energy dissipation. Detailed analysis reveals that the enhanced 

damping is attributed to the large shear deformation of the soft viscous matrix as a result of the 

unique loading transfer characteristics of staggered composites [111]. This damping 

enhancement mechanism is verified by performing experiments on three kinds of staggered 

composites manufactured by 3D printing [5]. In addition, the effects of structural hierarchy and 

hard phase arrangement on the damping enhancement are also discussed. The discovered 

mechanism in Chapter 3 can be used to design high-performance damping composites for 

engineering usage.   

(3) Established a theoretical framework for the point group symmetry and 

symmetry breaking of cellular structures. The point group symmetry plays an essential role in 

determining the anisotropic properties of materials. However, the point group symmetry of 

cellular structures was an unexplored area, although the symmetry theories of single crystals 

have been well established [122, 124]. The research in Chapter 4 has established a theory to 

describe and determine the point group symmetry of cellular structures with multilevel 

anisotropy [61]. Specifically, the symmetry is classified into two categories, topology symmetry 

and material symmetry. The overall symmetry is achieved only when both types of symmetry are 

guaranteed. The symmetry breaking theory is also established to track the symmetry evolution 

once the cellular structures deform. The proposed theory on point group symmetry and symmetry 

breaking of cellular structures can be applied to characterize their anisotropic physical properties, 
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facilitate constitutive modeling, and guide the design and modeling of tunable materials and 

structures.   

(4) Developed a transversely isotropic hyperelastic-viscoplastic constitutive model 

for photopolymers and applied for cellular structure analysis.  The 3D printed 

photopolymers exhibit a strong printing direction effect due to the layer-wise processing feature. 

A hyperelastic-viscoplastic constitutive model is developed in Chapter 5 to predict the 

deformation and failure of these photopolymers. The model considers pressure-sensitivity, rate-

dependence, and printing direction effect of the glassy photopolymers. In addition, a modified 

Tsai-Wu type failure criterion is proposed to predict the failure of photopolymer structures. 

Particularly, the modified failure criterion is applicable for materials with strain softening, which 

is distinct from the original Tsai-Wu model. The constitutive model and failure criterion are used 

to simulate the structural response and failure of 3D printed cellular structures. The experimental 

and simulation results indicate that the mechanical behavior of 3D printed cellular structures 

depend on both structural orientation and printing direction. The proposed model can be used for 

3D printed photopolymers and other transversely isotropic polymers and composites. 

6.2 FUTURE WORKS 

Advanced composite and structure design is a fruitful and exciting area to explore, especially 

when it is combined with the modern manufacturing technologies like 3D printing. Some future 

works can be toward, but are not limited to, the following directions. 

(1) Hierarchical acoustic materials with local resonance effect. There are mainly two 

dominating mechanisms to generate bandgaps in acoustic materials, i.e. Bragg scattering and 
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local resonance [67, 188]. The multilevel Bragg scattering mechanism has been discovered in 

Chapter 2 for the hierarchical phononic crystals. Thus the question is: Can hierarchical phononic 

crystals be designed to exhibit multilevel local resonance ?  If this is realized, one will be able to 

design phononic crystals with multiple bandgaps at low frequency range, which is challenging 

but highly desired in acoustic engineering.   

(2) Damping composite design and fabrication. Chapter 2 has presented a way to 

design composites with highly enhanced damping behavior by adopting the staggered structural 

design. However, this staggered composite is highly anisotropic, which has totally different 

damping behaviors along different directions. Hence, future effort can be devoted to design 

isotropic composites with enhanced damping behavior, which is more robust and useful for 

engineering application purpose. In addition, the manufacturing of the staggered composites is 

still hindered by the current technology. For example, it is still hard to manufacture high 

resolution composites with structural features in microscale. In addition, it is also difficult to 

manufacture metal/ceramic with polymer together in a designed pattern, which limits the 

fabrication of advanced composites with high performance.  

(3) Symmetry evolution and control in tunable materials and structures. A typical 

type of tunable materials [56, 127, 189] are soft cellular structures with configuration evolution 

under external stimulus, e.g. loading, electric field, etc. One essential mechanism underlying 

these tunable materials is the symmetry breaking, which dictates the change of physical 

properties. However, the symmetry evolution after deformation is quite hard to track, although 

some study in Chapter 4 has established the basic rules. Thus, it will be quite meaningful to do 

more research on the symmetry evolution of deformed cellular structures, and correlate the 
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physical property change with the point group. Both theoretical and applied research can be 

conducted on the tunable material design and analysis in the future.       

(4) Advanced constitutive modeling for photopolymers. An advanced constitutive 

model has been developed in Chapter 5 for photopolymers. The model can actually be further 

extended to high strain rate and high temperature cases by incorporating thermo-mechanical 

coupling and/or phase transition from glassy state to rubbery state. In addition, damage initiation 

and evolution can also be integrated into the constitutive law to predict the failure process in a 

more accurate way. Another meaningful research direction is to study the effect of processing 

parameters on the mechanical behavior of these 3D printed photopolymers. For example, the 

exposure time and intensity of the UV light will significantly affect the microstructure of the 

photopolymers and hence their moduli, yield strength, and finite strain responses. These analyses 

will undoubtedly assist the design of 3D printed structures for engineering usage.  
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