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Full atomistic Molecular Dynamics (MD) simulations are very accurate but too costly; however, 

atomistic resolution is not actually required everywhere in many problems. For this reason, a 

concurrent atomistic/continuum coupling method called Multiresolution Molecular Mechanics 

(MMM) has been developed. The method employs atomistic resolution in the localized regions 

of interest and coarser continuum description elsewhere. A number of such multiscale methods 

have been developed but they fail to demonstrate consistency, accuracy, adaptivity, flexibility, 

and efficiency all in one. The goal of this research is thus to develop a multiscale method that 

possesses these properties to outperform the MD method by 1) formulating new dynamics 

equations under the MMM framework, 2) developing an adaptivity scheme, and 3) implementing 

efficient algorithms for the method. First, the derivation of the governing MMM equations from 

a Hamiltonian that approximates the energy of the original system is presented. Second, the 

adaptivity analysis of the MMM method is presented. Refinement and coarsening mechanisms of 

the adaptivity scheme are described in detail and the step-by-step procedures are outlined. Third, 

the implementation and efficiency of the MMM software is presented. The structure of the 

software along with the associated technologies is introduced. Many improvements that 

contribute to the efficiency of the MMM software are described and demonstrated through 

benchmark tests. The efficiency of the software is found to be as good as one of the best state-of-
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the-art MD codes, i.e., LAMMPS. The speed-up of the code in proportion to reduction in the rep 

atom ratio is demonstrated. The scalability of the software is demonstrated and competing effects 

of multiscale modeling and parallelization is discussed. The dynamics, adaptivity, and efficiency 

of the method are demonstrated by numerical examples including wave and crack propagation, 

dislocation glide, nanoindentation, and modal analysis in 1/2/3 dimensions. All results agree well 

with the true full atomistic solutions. Ultimately, the MMM method demonstrates an 

improvement of 6.3 – 8.3 times in efficiency over MD method by means of a combined 

reduction in simulation time and number of processors. In conclusion, this dissertation shows 

that the MMM method is consistent, accurate, flexible, and efficient.    
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1.0  INTRODUCTION 

A class of multiscale methods assemble atomistic and continuum scales together in order to take 

advantage of both approaches. Continuum is the most traditional and common scale that is 

analytically and computationally investigated in depth. It assumes that matter completely fills the 

space it occupies, is continuously distributed, and is infinitely divisible into very small pieces. 

Physical principles governing the continuum are conservation laws of mass, momentum, and 

energy, as well as a constitutive law to govern the material behavior. Owing to the extensive 

research, continuum theories are well established and thus robust, highly efficient, and accurate; 

however, they usually fail at the atomistic scale for several reasons. To start with, they ignore the 

inherent discrete structure of the material, particles such as atoms and electrons, so that they 

leave the physical underpinning weak [1]. Another reason is the fact that different physical 

phenomena are in play at each scale; for example, quantum effects are not considered at larger 

scales but they must be accounted for at the nanoscale [2]. A third reason is because the 

continuum does not allow the material length to vanish to zero; such as at a crack opening [3]. In 

rare cases where continuum methods are able to handle the physical phenomena at the atomistic 

scale, they lack the precision that the atomistic methods are ready to offer.  

The advent of micro/nanoscale technologies such as Microelectromechanical Systems 

(MEMS) and Nanoelectromechanical Systems (NEMS) devices provide the scientist with the 

tools to investigate matter at nanoscale. For example, high-resolution microscopes are able to 



 2 

detect atoms individually [4]. In addition, computational tools such as faster processors and 

supercomputers are made available to scientists. The recent and rapid progresses present 

nanotechnology as the new trend and triggers vast research activity in development and 

application at the smaller scales [5]. A considerable amount of these activities are devoted to 

computational methods or, more precisely, atomistic methods. Compared to continuum, 

atomistic methods are relatively new and require further exploration since their inherent discrete 

structure does not fit in the traditional understanding. The most attractive feature of atomistic 

methods is their high accuracy. For example, the behavior of individual atoms in a friction event 

at the nanoscale can be tracked in profound detail [6]. In addition, atomistic approaches naturally 

achieve formation of cracks and other types of defects by breaking and rearrangement of bonds 

without any additional effort. In spite of these advantages, atomistic methods are 

computationally very expensive hence limited to small systems. For example, a typical 

aluminum grain consists of approximately 10
13

 atoms, which is much larger than the quantity of 

atoms a typical computer can handle [7]. For another example, Gracie et al. states that a 

representative volume element should have a volume of 1,000 μm
3
, which could be resolved by 

8.6x10
13

 atoms assuming a lattice constant of 3.6 Å [8]. One of the heaviest simulations is 

conducted by Abraham et al. in 2002 that includes one billion atoms corresponding to a cube of 

only one micron side length [9]. The limitations of computational power is not only restricted to 

length scale but it is also true for the time scale. For instance, MD is available to only very high 

experimental strain rates, i.e., 10
3
 – 10

6
 s

-1
 [10]. Length and time scales commonly studied in 

computational mechanics are categorized in Table 1 by Qian et al. [11]. 
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Table 1. Categorization of length and time scales commonly studied in computational mechanics. 

Method Length Scale (m) Time Scale (s) 

Quantum mechanics < 10
-8

 10
-15

 – 10
-12 

Molecular mechanics 10
-10

 – 10
-6 

10
-12

 – 10
-9 

Micromechanics 10
-6

 – 10
-4

 10
-9

 – 10
-3 

Continuum mechanics > 10
-3

 > 10
-3

 

 

 

 

In atomistic/continuum multiscale methods, the main motivation is to systematically 

reduce the total number of degrees of freedom while preserving accuracy. This way, simulations 

can be run in less time with less computational power. Furthermore, larger length and time 

scales, which are otherwise unfeasible, can be attained. Reduction in the total number of degrees 

of freedom is best guided with the following insight: only a small portion of atoms are actually 

undergoing localized deformation, such as dislocation and stacking fault, and the rest of the 

atoms are undergoing non-localized deformation, such as tension and compression [12]. The 

regions with the localized deformation are physically more relevant and therefore of greater 

interest. Figure 1 shows a snapshot from a nanoindentation example where only 8% of the atoms 

that undergoes localized deformation are made visible. This particular figure best explains the 

motivation behind the multiscale methods and how the multiscale model should be constructed. 

While the regions with localized deformation can be well investigated by highly accurate 

atomistic methods, much larger rest of the domain with non-localized deformation can be 

handled by efficient continuum methods. In that, the premise is that the deformation is free from 
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abrupt changes in the continuum region. This way the entire domain is spatially decomposed into 

atomistic and continuum regions.  

 

 

 

 

Figure 1. Interesting atoms take only 8% of the entire system in a nanoindentation example. 

 

 

 

The multiscale approach is further motivated by the nature of matter itself. The structure 

of matter is dual in nature: continuous at a larger scale and discrete when viewed at an atomic 

scale [13]. In addition, the deformation and failure of many engineering materials are inherently 

multiscale such that the observed phenomena occur at many different length and time scales 

[14]. The macroscopic events are actually results of microscopic events happening at much 
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smaller length scales. The disparity in length scales are as large as 10
10

 so that it is not feasible to 

include the effects of both scales without a multiscale model [15]. Another role of the continuum 

region is to keep the real boundaries far away and impose proper boundary conditions on the 

atomistic region; in this way, producing an improved boundary value problem replacing the 

necessity of running a full atomistic simulation [14].  

In the atomistic scale, the atoms are treated as discrete particles with individual masses. 

The interactions between atoms are governed by empirical potentials that return interatomic 

forces and energies in reply to input positional vectors. Statics minimizes the potential energy of 

the entire system while dynamics solves Newton’s second law of motion. In the context of 

multiscale modeling, continuum scale usually spans the larger rest of the entire scale, as 

categorized in Table 1. Except in the case of special handling of material defects, such as 

Extended Finite Element Method (XFEM) in Bridging Domain (BD) method and Dislocation 

Dynamics (DD) in Coupled Atomistic and Discrete Dislocation (CADD) methods, the 

homogeneous deformation of the continuum prevails under a linear elastic description, such as 

Cauchy-Born rule or averaging of atom clusters [16]. The continuum model is expected to 

reproduce the same material properties (i.e., elastic constants) with the atomistic model. In these 

continuum models, well-established Finite Element (FE) method techniques are often employed.  

1.1 CLASSIFICATION OF MULTISCALE METHODS 

Multiscale methods are classified in many directions: 

(i) Formulation type: energy-based and force-based. 

(ii) Coupling type: strong and weak.  
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(iii)Handshake region 

(iv) Continuum model 

(v) Hierarchical/Concurrent 

Multiscale methods are classified into two groups with respect to the method of search of 

equilibrium structures by Miller et al. [16]: energy-based and force-based methods. Energy-

based methods present an approximated energy of the system, and then they try to minimize the 

energy by exploiting the differential of the energy (which is equal to force) and zero out forces. 

On the other hand, main motivation of force-based multiscale methods is to realize that the 

ultimate purpose of energy minimization is to reach a configuration where forces are equal to 

zero. For this reason, they directly establish an approximate expression of forces instead of a 

unified energy functional for the entire system. Force-based methods have the following 

advantages: (i) energy-based formulation cannot eliminate ghost-forces [16] (the issue of ghost 

forces will be described later in detail) and (ii) formulating an energy functional for the entire 

system may not be feasible in some cases such as irreversible processes [15]. Force-based 

methods have the following disadvantages: (i) they have spurious solutions [12], (ii) they show 

slower convergence [12], (iii) they converge to unstable states [16], (iv) they are non-

conservative [16], (v) they are numerically unstable [16], (vi) stiffness matrix derived from the 

force function is non-symmetric [17], and (vii) they cannot be as easily analyzed as energy-based 

methods [18]. Zhang et al. suggest that the force-based formulation, when derived from its 

energy-based counterpart, gives the same result with energy-based formulation at a substantially 

lower cost [19]. Energy-based formulations can be minimized by the conjugate gradient method 

applied on energy or the Newton method whereas force-based formulations without an energy 

functional can be minimized by the conjugate gradient method applied on force or the quasi-
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Newton method [14]. It is noteworthy that some force-based formulations might be constructed 

by modifying the energy-functional such that the summation of forces is equal to zero.  

A second classification is given due to the type of coupling by Miller et al. [16]. 

According to the given definitions, strong coupling requires continuum mesh size to reduce 

down to atomistic resolution and use of pad atoms in the continuum region for full coordination 

of atoms in the atomistic region [20]. Both requirements are shown in Figure 2 where the mesh is 

refined down to the atomic lattice spacing and pad atoms are located in continuum region. The 

positions of pad atoms are interpolated from positions of mesh nodes. The methods that do not 

conform to these requirements are regarded as to have weak coupling [21]. Coupling is argued to 

be much easier if the FE mesh is not required to be refined down to the atomic lattice spacing in 

order mesh nodes to match the atoms. This matching requirement is highly undesired in terms of 

adaptivity due to the need of re-meshing after each adaptation step. Luan et al. [21] and Nie et al. 

[22] implement a weak coupling over a region where the atomistic region provides boundary 

conditions for the continuum region and the continuum region does so for the atomistic region. 

The former is achieved by determining nodal positions from weighted average of atom positions 

within a radius. The latter is achieved by interpolation of atoms positions from nodal positions. 

These two layers of boundary conditions are kept far away from each other by unconstrained 

layers of atoms in order to prevent conditions of one to effect the other.  
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Figure 2. Atomistic/Continuum coupling. Black circles are atoms of atomistic region, blue squares and lines are 

nodes and mesh of continuum region, red circles are pad atoms, and big black open circle represents the cut-off of 

big black solid atom. 

 

 

 

Third classification is given by Miller et al. [16] and Aubertin et al. [1] and it judges the 

multiscale methods whether they implement a handshake region or not. A handshake region is 

defined to be a region that is neither fully atomistic nor continuum but rather to serve for the 

integration of the two. In this region, a transition between the two main regions is accomplished 

with each method’s own terms. The other option is an interfacial coupling in that the two 

formulations meet at a point in 1-D, edge in 2-D, or face in 3-D without any overlap. Handshake 

regions are employed by many multiscale methods [15, 23]. Due to this attention, Parks et al. 

analyzed the class of multiscale methods that provide solutions of two different methods back-

and-forth to each other in an alternating Schwarz framework; and, conclude that the accuracy of 

the solution depends on both the size and position of the overlapping region [18]. Another 

analysis of blending functions is given by Badia et al. and will be discussed in later under 
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Atomistic-to-Continuum (AtC) method [24]. It is argued by Jebahi et al. that edge-to-edge 

coupling is only good for statics or dynamics with low temperature whereas a damping, hence a 

region to impose it, may be required for dynamics with finite temperature [2].  

Fourth classification is due to continuum model and given by Miller et al. [16]. The 

continuum model specifies how the continuum region of the domain is modeled. A common 

continuum model is the Cauchy-Born rule, which displaces a group of atoms with respect to 

continuum deformation gradient and extracts relevant information. For example, the deformation 

gradient at FE quadrature points is applied to a group of virtual atoms from which the energy 

density, and in turn, stress is calculated. The validity of Cauchy-Born rule is limited to uniform 

deformation that can be justified by assuming small strains. This assumption, however, agrees 

with the expectation of most multiscale methods from the continuum approach. On the 

downside, Cauchy-Born rule restricts a change in lattice constant and poses difficulties for 

composite lattices such as graphene [25]. Another continuum model is the Virtual Atom Cluster 

(VAC) model developed by Qian et al. and will be detailed later under Bridging Scale Method 

(BSM) [11].  

A fifth classification is given by many others [3, 26-28] and defines that (i) hierarchical 

methods (serial coupling or information passing) use the output of one or more scales in the 

simulation of the other scale(s) and that (ii) concurrent methods consider both scales at the same 

time in the same system. In concurrent methods, different length scales exist together and they 

continuously exchange information. Hierarchical methods are useful as demonstrated for 

viscosity of water by Abraham et al. [3]. In this example, viscosity of water obtained at a finer 

scale is informed to a coarser scale in two steps: from quantum mechanics to atomistic to 

continuum. Another useful application of hierarchical methods is to gather continuum 
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constitutive inputs from separate MD simulations. As a matter of fact, passing of information 

obtained from atomistic methods to continuum methods has an older history. However, we will 

keep our focus on the trend of multiscale modeling emerging today: concurrent coupling [14]. It 

is also noteworthy that Jebahi et al. proposed a third classification as hybrid that combines 

features of hierarchical and concurrent approaches [2].  

1.2 GHOST FORCES 

Ghost forces are defined to be any residual forces that arise upon applying the multiscale method 

to a configuration that is already in equilibrium with forces equal to zero. Ghost forces arise due 

to local/nonlocal mismatch at the atomistic/continuum interface since the former is local and the 

latter is nonlocal. That is, in case the interactions are not restricted to the first nearest neighbors, 

the degrees of freedom in the atomistic region interact with a few neighbor shells in their 

surroundings, hence nonlocal, as shown in Figure 1. In contrast, the degrees of freedom in the 

continuum region only interact with the nearest neighbors, hence local. When they meet at an 

interface, degrees of freedom of the nonlocal region see the degrees of freedom of the local 

region but not the opposite.  

At the interface, boundary conditions for the continuum region are easy to implement. 

For instance, nodes of a FE mesh can be set to match positions of some atoms. The reverse is, 

however, much harder to establish due to nonlocal nature of atoms. In case FE mesh is not fully 

resolved to atomistic length scale, the atoms does not see anything on the other side. A solution 

is to introduce a region of pad atoms within the continuum region from which atomistic 

interactions can be computed as shown in Figure 1. As noted earlier, pad atoms follow the rules 
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of continuum formulation such as their positions are interpolated from the nodal displacements 

and FE shape functions. Unfortunately, pad atoms cannot completely eliminate the ghost forces 

either. Nevertheless, they provide an alternative insight to look at the ghost forces: the pad atoms 

exert forces on the atoms in the atomistic region and displace them. In contrast, the forces 

exerted by the atoms in the atomistic region on the pad atoms do not displace them. This 

mismatch introduces the error that is attributed to the ghost forces [14].  

Ghost forces can be eliminated in many ways. First of all, force-based methods can easily 

eliminate ghost forces by construction since they formulate the force equations. But, the forces 

may not be conservative and force-based methods have many other disadvantages as discussed 

earlier. As a second solution, corrective forces can be added to the formulations to even the ghost 

forces [29]. These corrective forces are calculated for once at the beginning and then used until 

the end of the simulation. The initial calculation is usually practiced at a defect/stress free lattice 

configuration. In some cases, the corrective forces require a periodic update during the 

simulation [14]. In a third setting, the corrective forces are calculated from the difference 

between a cheaper model (such as QC with normal cluster size) and a more expensive model 

(such as QC with a larger cluster size) for sake of gaining efficiency [17]. However, it is argued 

that corrective forces are not conservative since they are not derived from a corrective energy 

[30]. Shimokawa et al. presents a forth way to eliminate ghost forces, which is to define a new 

type of atom (named quasi nonlocal atom) that is located at a buffer region between the 

continuum and atomistic domains and act both locally and nonlocally with respect to the 

opposite interacting atom [30].  

Although there are many suggestions to avoid ghost forces in general, it is still a difficult 

problem to deal with in a systematic way. That is why; the solutions are usually ad-hoc. It is 
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argued that there is not yet an energy-based method that completely avoids the ghost forces 

without any correction. In the investigation of the existence of ghost forces, infinite crystals by 

means of periodic boundary conditions are good examples. However, one should be careful that 

ghost forces do not arise in case of first nearest neighbor interactions since these interactions are 

local for both atomistic and continuum models. As the definition suggests, the ghost forces are 

best observed after applying the investigated multiscale method on a system that is already 

equilibrated by full atomistic. 

1.3 WAVE REFLECTIONS 

Concurrent multiscale methods suffer from wave reflections; that is, high frequency components 

of waves that emanate from atomistic domain cannot pass through the interface to the continuum 

domain, thus are trapped in the atomistic domain. In particular, waves with frequencies higher 

than what the continuum domain can represent are reflected back. An analytical proof to this 

reflection phenomenon is given by Jebahi et al. [2]. Cut-off frequency of the continuum domain 

is inversely proportional to the resolution of the continuum discretization, such as mesh size. 

Waves are especially crucial for heat problems since thermal phonons, which share the same 

properties with waves, are the main constituents of such kinds of problems. Reflection of the 

high frequency waves causes an unrealistic energy growth in the atomistic domain.  

An ideal coupling is proposed to suppress all high frequency wave reflections at the 

coupling and transmit all low frequency waves to the continuum domain [31]. In the ideal case, 

the energy of high frequency waves should be completely dissipated whereas the energy of low 

frequency waves should not be dissipated at all. The energy of high frequency waves are 
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negligibly small compared to the energy of low frequency waves so that dissipation of the former 

should conserve the energy to a large extent [31].  

The same wave reflection phenomenon is also observed in FE method between two 

domains of different mesh sizes [32]. As a typical solution, the wave reflection is argued to be 

reduced by refinement of FE mesh down to the atomistics resolution [31]. However, it is also 

typically argued that the mesh refinement is costly and precludes the use of coarse timesteps in 

the continuum domain in multiple timestep schemes. This expensive meshing scheme is 

particularly a bottleneck in adaptive simulations due to re-meshing after each adaptation step.  

Many methods design a handshake region to systematically eliminate the wave 

reflections at the atomistic/continuum interface [23, 33, 34]. For an example application, To et 

al. used Perfectly Matched Layers (PML) at the handshake region in order to damp the high 

frequency waves that could not be represented by the continuum description [35, 36]. In spite of 

these efforts, Curtin et al. employed a thermostat damping around the atomistic region in order to 

mitigate wave reflection [37]. Since the primary concern of wave reflections is the resultant 

temperature increase in the atomistic region, their work proves that a common MD thermostat 

can naturally regulate the temperature without a cumbersome handshake region.  

It is important to note that waves are not reflected only because of different spatial 

resolutions but they are also reflected because of (i) different wave velocities of the two 

mediums (different material properties) and (ii) different timesteps used with different methods 

(in multiple timestep methods) [2]. The former is rather rare because most of the multiscale 

methods are developed for one type of material where they try to achieve same material 

properties for models that they try to couple. The latter is either employed or claimed to be 
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potentially viable by some multiscale methods but their wave reflection aspects have not been 

discussed.  

1.4 EXISTING MULTISCALE METHODS 

In the following, a review of the existing multiscale methods will be presented. Due to the large 

body of the current literature that includes a high number and variety of multiscale methods, the 

review is restricted to a limited number of multiscale methods. Some of these methods are 

investigated in detail and some others in more general terms depending on their popularity. 

Considerably, presented methods are chosen such that their variety and volume span the majority 

of the literature and provide the reader with a thorough understanding of the existing efforts and 

ideas. The detailed methods are fully presented in every aspect except adaptivity and 

implementation, parts of which are saved for the following Chapters that are dedicated to these 

subjects. Special attention is given to quasicontinuum (QC) method due to its similarity to the 

MMM method.  

1.4.1 Quasicontinuum (QC) Method 

Quasicontinuum (QC) method is first introduced by Tadmor et al. in 1996, and it is the most 

popular of multiscale methods today [38]. So that, it is the mostly studied method with more than 

200 journal articles published by numerous researchers from institutions all around the world. 

The method marries FE with molecular mechanics (MM) without any handshake region. 
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Fundamentally, QC method makes two basic assumptions: it imposes kinematic constraints and 

approximates energy/force.  

1.4.1.1 First assumption: Kinematic constraints  

In the kinematic constraint, only a small number of atoms are appointed as degrees of freedom of 

the system, called as representative atoms (rep atoms), and positions of rep atoms are explicitly 

accounted for. The number of rep atoms is much less than the number of all atoms in the system. 

The domain is discretized by a FE mesh where rep atoms are the nodes of the mesh. Positions of 

the rest of the atoms are interpolated from nodal values via FE shape functions. The only 

unknowns of the problem are nodal values of displacement, which is solved via a FE system. 

While atomistic potential is directly imposed in the atomistic region, it is incorporated via 

Cauchy-Born rule into the continuum. More specifically, the constitutive behavior is grounded 

upon the atomistic potential in the continuum region. The energy of the system is expected to be 

well approximated by this setting. However, the computational savings from this constraint is not 

enough because all of the atoms are still need to be visited in order to calculate energy of the 

system. Therefore, the following assumption is introduced.  

1.4.1.2 Second assumption: Approximation of energy/force 

The approximation is carried out for the energy in an energy-based formulation and force in a 

force-based formulation. For simplicity, we will follow the description for energy-based 

formulation hereafter. The energy approximation is conducted in two ways. The first one is using 

local formulation [38], which is also called the element-based summation rule [39]. The second 

way is by sampling energy of the system at some particular atoms. The latter is introduced as 

cluster summation rule [40], which is also known as atom-based summation [39]. Either way, the 
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approximation formulation can be generalized to the multiplication of energies of some 

particular atoms (named sampling atoms) by some specific weights. These weights can be 

thought as the number of atoms represented by the sampling atom. The weight can be determined 

from one of the three functions: Voronoi characteristic function, patch characteristic function, 

and FE shape function. Knap et al., however, showed that the three methods are indifferent [29]. 

Moreover, the same study showed that the weights of nonlocal atoms should be unity. Energy 

sampling is further advanced to Lobatto quadrature, in which energy of an element is account by 

EatomxVelement/Vatom where E is energy and V is volume [40]. In its exact form, the weights are 

supposed to sum the FE shape functions exactly, but in practice they are usually lumped, which 

introduces some error from the construction [41]. In conclusion, the approximation scheme 

corresponds to sampling of energy from few atoms at each element; it thus provides substantial 

computational savings. Computation of energy of the system now scales by number of elements 

rather than number of atoms, hence several orders smaller.  

1.4.1.3 Local & Nonlocal formulations 

In the first paper of QC, Tadmor et al. distinguish two formulations: local and nonlocal [38]. In 

the regions where deformation varies slowly, the first assumption dictates that atoms are part of 

an infinite crystal undergoing uniform deformation thus the deformation gradient is constant. An 

element is then called local and the atoms in the element are displaced with respect to the 

constant deformation gradient. Even further, lists of positions of these atoms do not need to be 

saved in the memory. Instead, their positions can be generated as needed from the crystalline 

references. The energy, force, and stiffness are calculated as functions of deformation gradient 

from the continuum formulations. That is, a unit cell with periodic boundary conditions is 

displaced for an input deformation gradient (with respect to the Cauchy-Born rule), and its 
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energy is then computed. The local formulation lacks the ability to account for some structural 

non-homogeneous structural features, e.g., stacking fault. Besides, local QC formulation suffers 

from non-symmetric stiffness matrix due to local-nonlocal force mismatch [17]. 

In contrast to the local formulation, an atom in a nonlocal element displace with respect 

to the deformation gradient at its position. In addition, nonlocal formulation dictates energy, 

force, and stiffness to be directly calculated from the atomistic potential. As a result, atom 

positions are implicitly accounted in the local formulation while they are explicitly accounted in 

the nonlocal formulation. In order to get the final values, energy, force, and stiffness terms from 

the local and nonlocal formulations are superposed to the global matrices. To decide whether an 

element will be treated by local or nonlocal formulation, a criterion is introduced. This criterion 

can be based on the second invariant of the Lagrangian stress tensor or it can be an empirical 

constant. It was found that magnitude of deformation is a bad criterion while variation in 

magnitude is a good one [7]. Furthermore, the elements that are close to the nonlocal elements 

are also appointed as nonlocal elements.  

1.4.1.4 Fully nonlocal formulation 

Knap et al. introduces the fully nonlocal force-based QC formulation and elaborates energy-

based and force-based formulations that completely eliminates the local formulation, hence 

approximation by the Cauchy-Born rule [40]. This formulation is coupled with the cluster-based 

QC, which will be detailed in the next section. Miller et al. argue that the fully nonlocal QC 

formulation suffers from an overestimation of the energy at surfaces when a rep atom is located 

at the corner of a specimen [7]. The authors thus insist that use of local and nonlocal 

formulations together is the best choice. The fully-nonlocal scheme is further extended to 

energy-based by Eidel et al [17]. The author reported that the energy-based QC formulation 
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eliminates rank-deficiency problem of stiffness matrix (that manifests itself as zero-energy 

modes) even for node-based summation rule [17].  

1.4.1.5 Cluster-based QC 

Rep atoms are located inside the elements and surrounded by some other atoms – altogether 

called a crystallite in the introductory paper [38]; but they are subsequently corresponded to the 

FE mesh nodes [42]. Later, Knap et al. introduces cluster-based and node-based (i.e., cluster-

based with a cluster size of 1 atom) summation rules [40]. They first argue that node-based 

summation rule is indeed rank-deficient, and then proposed cluster-based summation rules. That 

is, in energy-based cluster-based QC, energies of the atoms over the cluster are summed and then 

multiplied by the cluster weight, which are the number of atoms the cluster represents. In other 

words, energy of each rep atom is taken to be the average of energies of atoms in its cluster. In 

force-based cluster-based QC, force is computed for each atom in the cluster and then mapped to 

nodes via FE shape functions. Atoms in the clusters are not degrees of freedom except the rep 

atom itself. In a sense, the cluster resembles the very initially introduced crystallites except that 

they are now centered at FE nodes. It is proven that cluster-based summation rule outperforms 

node-based summation rule and eliminates rank-deficiency problem [40]. The cluster-size can be 

useful in adjusting between the accuracy and efficiency. In this perspective, the effect of cluster 

size on accuracy is investigated by Knap et al. [40]. In cluster-based QC, the atoms in the full-

resolution have a weight of 1, and the ones in the continuum have a weight bigger than 1. 

Cluster-based QC does not employ any constitutive law but it utilizes continuum principles to 

interpolate for the positions of some atoms.  
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Luskin et al. showed that node-based cluster summation rules are inconsistent and 

inaccurate and increasing the cluster size does not rule out the error [41]. They suggest three 

fixes to be investigated: 

1. Quadrature-rule type sampling [19, 43-45].  

2. For force-based method, summation over element interfaces rather than the elements 

themselves as in FE.  

3. Non-uniform weighting of atoms in the clusters as in node-based quadrature rules of FE. 

In support, Miller et al. also show that node-based cluster summation rules show larger error 

compared to other versions of QC [16].  

1.4.1.6 Quadrature-rule type QC 

Gunzburger and Zhang introduce quasicontinuum method with quadrature-rule type summation 

(QC-QR) and also derive energy-based and force-based formulations [19, 43]. More specifically, 

quadrature-rule type summation introduces a summation over atoms that are regarded as 

quadrature points multiplied by some weights. Selection of quadrature points rely on the 

established techniques of FE. The quadrature points are required not to be coplanar, i.e., they do 

not lie on a (d-1)-dimensional plane. The weight of a quadrature atom can be thought of as the 

number of atoms it represents. Weights are constrained such that the summation is exact for 

linear polynomials. In fine-scale regions, the summations are suggested to be explicitly done 

whereas in coarse-scale regions Lobatto quadrature is suggested to be employed. All quadrature 

settings are sorted at the beginning of the simulation for one time for the rest of the simulation.  
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In their work, Gunzburger et al. argue that the QC method with only kinematic 

constraints (hence no sampling) has dNr (where d is dimension and Nr is number of rep atoms) 

system of equations and energy calculation has O(NNb) complexity where N is number of atoms 

and Nb is number of atoms in a ball defined by the cut-off distance [43]. However, QC-QR 

reduces the energy calculation complexity to O(Nr). The authors conduct error analysis with a 1-

D atom chain for a quadratic function and conclude that QC-QR is superior to QC-CS 

(quasicontinuum method with cluster-based summation rule) in terms of both accuracy and 

efficiency. They also confirm the same result with a 1-D nanoindentation example. Another 

comparison is conducted between QC with no sampling and QC-QR. It is found that QC with no 

sampling has better accuracy and QC-QR has better efficiency. The same conclusions for the QC 

with no sampling and QC-QR are drawn by Zhang et al. for both short-range and long-range 

interactions [19].  

As a similar method that performs energy sampling within elements, Lin sampled the 

energy in the middle of the elements with degrees of freedom still being the nodes of elements in 

a 2-D triangular mesh setting [44]. In that, the author assumed that the energy of any atom in an 

element is approximately equal to the energy of the atom in the middle of the element.  

As another similar method that performs energy sampling within elements, Beex et al. 

sampled energy by one atom inside the elements, called the central summation [45]. Moreover, 

discrete sampling atoms sample their own energy in order to be utilized in small elements. It is 

noted that using discrete sampling atoms along the edges of the elements, to make sure that rest 

of the atoms in the element has all neighbors in the same element, results with exact summation 

of the energy of the system. The incenter of the triangular elements serves as the best position for 

the location of sampling atoms since it is the farthest point to the edges of the triangle. Energies 
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of the atoms that lie on the boundaries of an element are proportionally (in some cases equally) 

split to the adjacent elements. The authors compare central summation to cluster summation and 

find that central summation results are much better. They also present a numerical example 

similar to the benchmark problem tested by Miller et al. for fourteen methods [16].  

1.4.1.7 Ghost forces and solutions 

QC method, like most of the other multiscale methods, inevitably suffers from ghost forces, 

which arise at the local/nonlocal interface. Ghost forces are not conservative and they lead to 

asymmetry, for instance, in stiffness matrix. Also, they are confined to the local/nonlocal 

interface. E et al. show that both element-based and cluster-based sampling rules introduce ghost 

(spurious) forces [39]. With respect to their own set of definitions, Eidel et al. classify spurious 

forces into two groups as ghost forces and residual forces [17]. Although these definitions are 

consistent in their own right, we use the term ―ghost force‖ in place of the term ―spurious forces‖ 

in this work in order to be consistent with the rest of the literature. Following the set of 

definitions of Eidel et al., they state that ghost forces are a result of modeling error because 

different types of atoms inconsistently interact with each other. Residual forces are different 

from ghost forces in three ways: they are (i) conservative, (ii) symmetric, and (iii) distributed to 

the entire domain. Fully nonlocal QC has some residual forces originating from the 

approximations of the QC method, i.e., numerical quadrature. Residual forces do not appear with 

uniform meshes or they can be reduced by increasing the number of sampling (quadrature) 

points. Another way to eliminate residual forces is to apply a correction force similar to what is 

suggested for ghost forces.  
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1.4.1.8 Inconsistencies 

In general, the term inconsistency may imply ghost forces or it may imply non-conservative 

forces/energies. E et al. discuss two inconsistencies of the QC method [39]. The first one is at the 

local-nonlocal interface since local formulation only considers the nearest neighbor atoms 

whereas nonlocal formulation extends beyond the nearest neighbors. The second inconsistency is 

the atom-based versus element-based samplings employed in the local region. Atom-based 

formulation is favored for small elements while element-based formulation is favored for large 

elements. The authors also present accuracy analysis at the local-nonlocal interface and element-

based summation rule.  

Another inconsistency of the cluster-based QC method is shown by Yang et al. [46]. That 

is, the weighting factors are calculated by assuming that the energy is piecewise linear. Indeed, 

this assumption conflicts with the earlier assumption of linear shape functions since linear shape 

functions readily implies that the energy is constant in an element. This may be a reason for the 

fail of cluster summation rule as shown by Luskin et al. [41].  

1.4.1.9 Implementation of local – nonlocal QC 

At the implementation level of QC, the method (i) starts with selecting rep atoms; (ii) deforms 

atoms in the crystallites (or clusters) with respect to either local or nonlocal formulation using 

deformation gradient; (iii) computes energy and derivatives from the underlying atomistic 

potential and feeds these back to the FE system; (iv) solves the FE system; (iv) adapts to the new 

state by mesh refinement and incorporates nonlocal elements in over strained regions; and (v) 

goes back to step (ii).  The authors use Delaunay triangulation with linear elastic elements, which 

confirms the earlier assumption of constant deformation gradient for the local formulation. 

Therefore, interpolations are performed in a linear piecewise manner utilizing FE shape 
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functions, which also obey partition of unity. They utilize conjugate gradient and Newton-

Raphson solvers. Further implementation aspects and improvements are detailed in Knap et al. 

[40].  

1.4.1.10 Extensions and Modifications 

Extension of QC to finite temperature dynamics is introduced by Shenoy [47]. However, high 

frequency waves are not able to pass from the atomistic to the continuum region. This could be 

solved by a specialized interface treatment in expense of implementation complexity and 

computational cost. Further, for a discussion on finite temperature QC, check out section 6.1 of 

Miller et al. [7]. Also, QC is extended to polycrystals [29], three-dimensions [40], complex 

lattices [48], and curved lattice structures such as CNT [49]. Some numerical examples the QC 

method solved include static simulations of dislocations [38], quasistatic simulations of fracture 

[42] and deformation processes including interfaces [29] in FCC and BCC [10] crystals.  

QC method is modified in many ways. The new versions usually differ by the first or 

second assumption. Kochmann et al. present energy-based nonlocal meshless QC based on local 

maximum-entropy interpolation [50]. The local maximum-entropy interpolation scheme 

establishes a balance between the entropy and shape function support such that one end is local 

support (minimum entropy) and the other end is global support (maximum entropy). The balance 

is parameterized and can be adjusted accordingly. As a result, the meshfree setting yields better 

control and flexibility on adaptation and adjustment of accuracy. Shan et al. modified local QC 

method in two ways: they used (i) the Cauchy-Green tensor instead of the deformation gradient, 

and (ii) representative lattice instead of rep atoms [27]. They named their approach as 

―concurrent lattice homogenization‖. Advantages and disadvantages of the approach are 

discussed as well.  
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1.4.1.11 Critique 

It is difficult to distinguish every QC version and discuss their drawbacks. Nonetheless, a generic 

disadvantage of QC is due to its adaptation mechanism. The adaptation mechanism suggests 

introducing atomistic resolution wherever required in the domain. In case of a deformation that 

leads to many dislocations spread out around the domain, the adaptivity scheme requires most of 

the domain to be resolved by atomistics. In turn, this results with a nearly full atomistic setup and 

thus cost. In this sense, the methods that can represent deformation mechanisms in continuum are 

superior. These methods may show better efficiency than QC in general as well. In this respect, 

QC is more suitable for problems with localized defects and problems with minimal spread of 

defects.  

1.4.2 Bridging Domain (BD) Method 

Bridging Domain (BD) method couples two decomposed domains of different scales via another 

domain, called the bridging domain, hence the name [23, 32]. The scales vary from quantum to 

atomistic to continuum. In two dimensions, the coupling may be accomplished edge-to-edge or 

over an overlapping area, called the handshake region. In other words, two domains of different 

scales meet at an edge or region for coupling. The coupling imposes a displacement constraint in 

order to achieve compatibility between the two scales. In fact, the constraint dictates that the 

displacement fields of both scales conform to each other. The energy (or Hamiltonian) of the 

handshake region is a weighted sum of energies of fine and coarse scales in order to avoid 

double counting. Although a linear weighting is usually the case, a nonlinear weighting is also 

reported [32]. The scaling parameter that constitutes weighting is defined in material coordinates 

thus it is constant during the simulation [31]. The total energy of the system is a sum of energies 
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of fine, coarse, and handshake regions. The constraint is imposed by using the augmented 

Lagrange multiplier method that includes the total energy of the system, the constraint, and a 

penalty term, which augments the constraint. Governing equations of the system can be derived 

by considering the stationary point of the constructed Lagrangian. Zhang et al. showed that these 

governing equations can be further simplified if the continuum domain is taken to be residing in 

the linear elastic regime in order to gain efficiency [51]. In that, BD method takes the Cauchy-

Born rule as the continuum constitutive model in order continuum domain to be consistent with 

the atomistic domain [25]. The method also utilizes pad atoms (and even pad elements for the 

same reason) that are placed around the coupling region to prevent the force imbalance on atoms 

of the atomistic domain due to missing coordination [8, 25, 51].  

The method is first introduced in statics by Belytschko et al. [23] and then extended to 

dynamics with multiple timesteps by Xiao et al. [32]. Zhang et al. presents some extensions and 

analysis of the method [51] and Xu et al. investigates conservation properties [31]. Gracie et al. 

and Moseley et al. add adaptivity and XFEM description to the method [8, 25]. Marenic et al. 

compares BD/Arlequin method to QC [52]. In some examples, the method is employed in 

solving numerical examples of bending [23] and fracture [23, 25, 51] of graphite sheet, bending 

[23] and fracture [23, 51] of carbon nanotube, wave propagation [31, 32], crack propagation 

[32], heat transfer [32], and dislocation nucleation from void and crack tip [8].  

In the dynamics version, Xiao et al. utilizes a velocity Verlet time integration method 

along with a predictor-corrector scheme to determine the Lagrange multipliers [32]. As a 

separate note, Lagrange multipliers are approximated by interpolation via shape functions thus 

the coupling is not exact. The dynamics formulation damps out the high frequency waves in the 

handshake region, which is observed by the dissipation of molecular energy. The success of the 
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damping of high frequency waves is proportional to size of the handshake region. In this regard, 

an edge-to-edge coupling is shown to be performing poorly.  

Zhang et al. presented a method based on Moving Least Squares (MLS) to approximate 

the atomistic strain values properly [51]. The method is shown to be reproducing linear and 

quadratic displacement fields exactly. In the same work, calculation of stress is also achieved by 

the Cauchy-Born rule. In effect, stress is derived from the continuum energy, which is set 

equivalent to the atomistic energy. The authors also run a patch test that results with good 

accuracy but also with an indication of room for improvement. Results of numerical examples 

show that global error is indifferent for varying sizes of atomistic domain or mesh; however, 

local error decreases with increasing size of atomistic domain and increases with increasing size 

of mesh.  

Xu et al. analytically prove that BD method conserves linear momentum, angular 

momentum, and energy by showing that the time derivatives of these properties are equal to zero 

[31]. They also confirmed the conservation properties by a numerical investigation. The authors 

compare coupling features of consistent and diagonalized constraint matrices and find that the 

diagonalization is cheaper, more effective in damping wave reflections, and dissipates energy of 

high frequency waves. The latter seem to violate the energy conservation property but the 

violation is negligible due to the small energy of high frequency waves.  

Gracie et al. employed the method with XFEM to represent discontinuities such as 

dislocations in the continuum domain [8]. The efficiency of XFEM formulation is shown to be 

superior to that of classic FE formulation. The authors also presented an adaptivity scheme based 

on the energy of atoms to periodically refine/coarsen elements of FE mesh. Refinement is carried 

out for elements that contain high energy atoms. Coarsening is conducted for elements without 
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any high energy atoms and the error calculated by a least squares fit is below a particular 

threshold value.  

Moseley et al. further extends the BD method to handle a wider range of discontinuities 

including cracks, dislocations, and other defects [25]. It is noted in this work that the coupling of 

BD method is more difficult for complicated lattices such as graphene. The authors also advance 

the adaptivity of the BD method. In addition, they point out some downsides of the XFEM 

coarsening such as energy loss at surface representation and violation of energy conservation.  

In the critique of the method, a handshake region is argued to be disadvantageous for the 

reasons that (i) Lagrange multipliers deteriorate the positive-definiteness of the system, which 

precludes use of many iterative methods [51], (ii) the implementation is rather complicated 

compared to other methods without a handshake region, and (iii) it loads an additional 

computational burden. In addition, the method is limited to two-dimensions and straight 

dislocations.  

1.4.3 Bridging Scale Method (BSM) 

In the Bridging Scale Method (BSM), the key idea is to divide displacement into orthogonal 

coarse and fine components. In that, the coarse scale components exist in the entire domain while 

the fine scale components exist only at the fine scale region. In accordance, the FE mesh (or 

meshfree [11]) discretization, hence the shape functions, is imposed over the entire domain. 

Then, the coarse scale components are only the FE displacements interpolated by the FE shape 

functions. The fine scale components are only required in the atomistic region where the total 

displacement is calculated from the MD simulation. Utilizing the shape functions, a set of 

displacements are fit (projected) to the total displacements. The fitness measure is the squared 
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difference weighted by atomic masses. The fine scale components are then the total displacement 

minus the set of fit displacements, since the latter is obtained by some sort of a coarsening 

technique. Next, equations of motion are derived from the displacement that is disintegrated into 

coarse and fine components. In this context, there are two sets of equations of motion: coarse 

scale and fine scale. The coarse scale equations are solved everywhere in the domain while fine 

scale equations are only solved in the enriched region [33]. It should be noted that the coarse 

scale components could also be extracted from the MD displacements since the latter contains 

both fine and coarse scale components. However, the atomistic region is limited to a part of the 

domain, hence not general [33]. Another note is that the convergence of fine scale system is 

enhanced by utilizing the coarse scale solution as an initial estimation [11]. 

Although the forces of fine scale system are calculated as in the standard MD 

simulations, the forces of coarse scale system are calculated differently for the atomistic and 

continuum regions. In the atomistic region, the displacement that is expressed as a sum of coarse 

and fine components is plugged into the Newton’s second law of motion. In the continuum 

region, the forces are calculated by a continuum technique such as the Cauchy-Born rule [33] or 

specialized techniques such as the Virtual Atom Cluster (VAC) technique [11]. Besides, a 

multiple timestep scheme is employed such that the continuum and atomistic routines cycle one 

after each other and dynamically exchange information [33].  

In the coupling of coarse and fine scale systems, the fine scale is included in force 

calculation of the coarse scale. In reverse, pad atoms represent the effect of coarse scale on the 

fine scale. However, the pad atoms can only impose the coarse components of displacements by 

providing full coordination to the atoms in the atomistic region [11]. This will impose a 

constraint that does not originally exist. To overcome this problem, BSM introduces the 
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impedance and random force as specialized boundary conditions on the atomistic region [33]. In 

that, an impendence force (that is derived from a time history kernel) and a random force term 

that represents the effects of fine scale displacement components of the removed degrees of 

freedom in the continuum region are employed. Both terms are attached on the right hand side, 

hence as an external force, of the fine scale equations. The boundary atoms are solved by this 

updated fine scale equations whereas the interior of atomistic region is still solved by the original 

fine scale equations. The impedance and random force terms imposes the linearized effect of fine 

scale components of continuum region on the atomistic region implicitly. The impedance force is 

calculated from the known quantities: coarse and fine scale components of displacements in the 

atomistic region. The time history kernel that is required for the calculation of impedance force is 

calculated analytically for simple cases and numerically for complicated cases [33]. Park et al. 

improves the calculation of time history kernel to a (i) numerical automated procedure, (ii) more 

compact size due to lattice symmetry, and (iii) less storage due to truncation in time history [53]. 

The impedance force term eliminates the wave reflection by means of dissipating fine scale 

energy (therefore the system is dissipative and not conservative [53]). Furthermore, it lets the 

low frequency wave to pass from the continuum region to the atomistic region. The random force 

term also imposes the temperature effects of continuum region on atomistic region. In case 

temperature effects to be ignored, this term is removed from the equation. The random force 

term conducts energy exchange between continuum and atomistic regions due to temperature 

difference [33]. The reader is referred to Figure 1 of Liu et al. for a representation of how 

impedance force takes place in governing equations [54].  

The method is extended to finite temperature [55], quantum/continuum coupling [56], 

different resolutions of continuum/continuum coupling [57], and 3-D [58]. Also, Farrell et al. 
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focuses on the interface between continuum and atomistic scales and introduces implementation 

details and efficient algorithms to calculate the time history kernel, lattice stiffness matrices, and 

random force [59, 60]. In some examples, the method is applied in solving dynamic 1-D wave 

example with harmonic and anharmonic potentials [33], quasi-static twisting and bending of 

carbon nanotubes [11], 2-D wave and crack propagation [53], 3-D crack propagation [58], and 2-

D intersonic crack propagation [59].  

1.4.4 Other Methods 

The literature includes many other multiscale methods. Some of these methods will be 

summarized in the following.  

1.4.4.1 Coupled Atomistic and Discrete Dislocation (CADD) 

Coupled Atomistic and Discrete Dislocation (CADD) plasticity couples atomistics with linear 

elastic continuum [20]. The specific feature of CADD is to incorporate dislocations in continuum 

as well. This way, much larger length scales can be attained. These dislocations are solved by 

Discrete Dislocation (DD) method in the continuum and are coupled to each other. Enabling the 

passing of dislocations between atomistic and continuum regions, dislocations in the atomistic 

and continuum regions are coupled too. The developers of the method present specialized 

algorithms for the detection and passing of dislocations between the atomistic and continuum 

regions. The atomistic region is treated by the standard molecular mechanics. On the interface, 

pad atoms are utilized to make the atoms of the atomistic region act like bulk atoms in price of 

having a stiffer region due to double counting of the energies of pad atoms. The method is later 

extended to finite-temperature dynamics using a Langevin thermostat [37]. In that, the waves 
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emitted from the atomistic region are absorbed in a ―stadium‖ that is damped by tweaking the 

damping part of the Langevin thermostat. The thermostat is only employed in the stadium 

region; yet, it is shown to be able to produce the desired temperature and thermal fluctuations in 

the atomistic region by exchanging kinetic energy with the interior atoms. They admit that the 

presented method is worse than other techniques developed for zero-temperature and linear 

material behavior, but they claim that it is better for finite temperature and non-linear behavior. 

Overall, the method is currently limited to 2-D and straight dislocations.  

1.4.4.2 Concurrent Atomistic-Continuum (CAC) 

Concurrent Atomistic-Continuum (CAC) method combines full atomistics with a FE framework 

[61]. In the method, crystalline materials are modeled as continuous collection of lattice cells 

with a group of discrete atoms inside. Governing equations are derived from balance laws that 

are reformulated based on the multiscale model. Expectedly, full atomistic resolution is utilized 

in regions of interest and a coarsening approach is utilized elsewhere. The most prominent 

feature of the method is its ability to represent dislocations slip planes in the coarse regions. In 

that, the authors realize that, owing to the formulation, finite elements do not need to be 

connected. As a result, Burgers vector can be represented along the interelement boundaries with 

the help of shape functions. In other words, the coarse setup lets finite elements to slip along 

each other in order to represent dislocations. Moreover, dislocations are able to pass from the 

atomistic to the coarse region and vice versa. In the former, the dislocations are able to pass even 

when they hit across the element boundaries. However, the deformation representations in the 

coarse region are limited to only dislocations and it is shown that stacking faults and twinning 

cannot be represented. Later, Xiong et al. introduced adaptivity to CAC by making it possible to 

split the finite elements into two in order to let otherwise suppressed deformation mechanisms 
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such as dislocation migrations to develop [62]. This way, the requirement to employ atomistic 

resolution to capture certain deformation mechanisms is eliminated. Furthermore, the restriction 

on deformation mechanisms in the coarse region is relaxed enabling stacking faults, albeit 

leaving twinning out of limits.  

1.4.4.3 Atomistic-to-Continuum (AtC) 

Atomistic-to-Continuum (AtC) is a force-based concurrent multiscale method [15]. In the 

method, the authors model particular regions of the domain with atomistic and continuum 

methods. The equilibrium is achieved by blending stresses of the two methods on an overlapping 

subregion. The atomistic stress is defined by means of the Virial stress theorem. The blending of 

stresses is actually equivalent to blending forces. The compatibility, on the other hand, is ensured 

on an average sense by the displacements of the two methods. Fish et al. compares three different 

blending functions: piecewise constant, piecewise linear, and piecewise cubic for each finite 

element in the overlapping domain; and, find that they are indifferent [15]. Badia et al. analyze 

blending methods, constraints, and imposition of these constraints [24]. In their investigation, 

they analyze four different blending methods and propose a consistent one in conclusion. In 

addition, they discuss three different constraints: (i) atomistic displacement is slaved to 

continuum displacement, (ii) continuum displacement is slaved to atomistic displacement, and 

(iii) average atomistic and continuum displacements are related. These constraints are further 

discussed to be imposed by Lagrange multipliers or restricting mathematical spaces in order to 

satisfy constraints. Two ways of imposing constraints produce the same results but differ in 

terms of implementation. They also necessitate that the blending should provide continuity and 

anticipated material properties in the effective region. Consistency [24] and patch tests [15, 24] 

of the method are also given. 
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1.4.4.4 Adaptive Multiscale Method (AMM) 

Adaptive Multiscale Method (AMM) is developed by Budarapu et al. [63]. The method is 

distinguished from the Extended Bridging Domain Method (XBDM) in two aspects: using (i) 

continuum description everywhere instead of only continuum region and (ii) bridging two 

domains by only pad atoms instead of a bridging domain. Also, the authors employ Virtual Atom 

Cluster (VAC) approach instead of the Cauchy-Born rule. They partition the displacements into 

coarse and fine components and have them exist everywhere and atomistic regions, respectively. 

The authors employ phantom node method in describing elements with discontinuities instead of 

the Extended Finite Element Method (XFEM). In a following and similar method, called the 

Meshfree Adaptive Multiscale Method (MAMMF), Yang et al. resolve the continuum region by 

a meshless approach and they treat the discontinuities by an enriched Differential Reproducing 

Kernel Particle (DRKP) approximation [64].  

1.4.4.5 Macroscopic Atomistic Ab initio Dynamics (MAAD) 

In their method, known as the Macroscopic Atomistic Ab initio Dynamics (MAAD), Abraham et 

al. seamlessly unifies the descriptions of continuum, atomistic, and quantum mechanics [3]. 

Specifically, they couple the FE, MD, and tight-binding methods, respectively. The method is 

formulated for dynamics, run at low temperatures, and make use of a multiple timestep 

algorithm. In a crack propagation example, for instance, the bond rupture at the crack tip is 

captured by tight-binding, the nonlinear atom behavior along the crack is captured by MD, and 

the rest is captured by FE. The authors introduce special treatments at the FE/MD an MD/tight-

binding interfaces. In the coupling of FE to MD, mesh size is refined down to the atomistic 

resolution in order to eliminate the wave reflection.  
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1.4.4.6 Smoothed Molecular Dynamics (SMD) 

Smoothed Molecular Dynamics (SMD) is developed by Liu et al. [65]. The method aims to 

increase the efficiency in coarsened regions by using a larger timestep. A larger critical timestep 

is achieved by solving the momentum equations on a regular background grid. As a result, the 

behaviors of atoms are smoothed by eliminating the high frequency waves. The interpolations 

are performed by FE shape functions and the background grid is kept regular by restricting its 

deformation. The SMD region naturally converts to FA when the grid size is refined down to 

atomic scale. A multi timestep scheme is implemented in order to facilitate different domains 

with different timesteps. Adaptive features of the method are later developed and presented as 

Adaptive Smoothed Molecular Dynamics (ASMD) [66].  

1.4.4.7 Coarse-grained 

Coarse-grained multiscale methods with adaptive resolutions are presented [67, 68]. In this 

method, selected groups of atoms (e.g., molecules) are treated as single particles in the coarsened 

region while their substructures (i.e., atoms) are explicitly account for in the atomistic region. 

The atomistic region is identical to an MD simulation as it is governed by a standard potential. 

The coarsened region, however, is governed by an effective potential that is derived from the 

potential used in the atomistic region. This way, the method is introduced as MD with different 

resolutions. The adaptivity is facilitated by converting molecules as they travel between 

atomistic and coarsened regions. In order to obtain a smooth transition, the conversion is 

gradually performed by means of hybrid molecules interacting with both regions in a weighted 

manner [67]. In addition, conservation properties of these methods are investigated and novel 

conservative algorithms are introduced [68].  
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1.4.4.8 Atom Collocation Method (ACM) 

Yang et al. proposes force-based Atom Collocation Method (ACM), which is truly meshfree 

[69]. Implementing a compatible atomistic/continuum interface, the method is proven to be free 

of ghost forces and provides enhanced adaptation capability by easily turning collocation atoms 

on and off.  

1.4.4.9 Surface Cauchy Born (SCB) 

Park et al. introduces the Surface Cauchy Born (SCB), which is an energy-based continuum 

method that efficiently captures the prominent surface effects at the nanoscale by utilizing a 

carefully modified version of the well-known Cauchy-Born constitutive model around the 

surfaces [70]. 

1.4.4.10 Review 

For further information about multiscale methods, interested readers can see excellent review 

articles of the literature [2, 5, 12-14, 16, 71-75].  

1.5 NUMERICAL EXAMPLES 

At the end of each Chapter, numerical examples are introduced to demonstrate the validity and 

accuracy of MMM, which is achieved by comparing MMM results to that of full atomistics 

where the latter served as a datum. When the trajectories are compared, it should be noted that 

the energy functional is highly non-convex and has many metastable configurations at local 

minima. Due to this characteristic property, many deformation paths are possible and hence 
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deformation behavior of the crystals lacks uniqueness [40, 61]. Another matter is that results of 

dynamic simulations oscillate about some mean value due to inherent vibration of atoms. For the 

sake of clarity, forces in the presented results are averaged from a large group of atoms over an 

interval of time. The iterations are integrated by the Velocity-Verlet scheme. All simulations are 

run with our MMM software, which is presented in Chapter 4.0 . Results are post processed by 

C++ and MATLAB programs. Visualizations are rendered by MATLAB and by the fast and 

user-friendly visualization software OVITO [76].  

1.6 RESEARCH OBJECTIVES 

The field of multiscale modeling and simulation is not yet fully explored. In particular, 

concurrent atomistic/continuum coupling multiscale methods need to be studied further in order 

to contribute to the understanding and development of the field. That for, in this dissertation, the 

following objects are to be achieved:  

 Extension of the MMM method from its current statics stand to zero temperature 

dynamics. Derivation of the equations of motion from the MMM energy functional, 

incorporation of the temperature effects, and mitigation of the wave reflections.  

 Incorporation of adaptivity into the MMM method. Development of robust, efficient, 

accurate, and conservative refinement and coarsening procedures associated with a sound 

adaptivity scheme and effective adaptivity criteria.  

 Implementation of an efficient, modular, readable, robust, flexible, and contemporary 

MMM software. Demonstration and discussion of the efficiency and scalability of the 

software.  
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All objectives are to be accompanied with comprehensive numerical examples to demonstrate 

the effectiveness and application of the described concepts.  

1.7 OUTLINE 

In the following Chapter, formulation and rationale of the MMM method with an emphasis on 

dynamics will be presented. In Chapter 3, adaptivity scheme of MMM method will be detailed. 

In Chapter 4, implementation aspects of the MMM method and the MMM software will be 

presented along with a discussion on efficiency in detail. All Chapters are accompanied with 

numerical examples for further demonstration of the described concepts.  
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2.0  DYNAMICS 

The Multiresolution Molecular Mechanics (MMM) method is a concurrent energy-based 

atomistic/continuum coupling multiscale method [46]. The method does not require 

implementation of a cumbersome treatment over a handshake region. In a nutshell, the 

coarsening is achieved by means of a FE mesh that is utilized to impose (i) kinematic constraints 

and (ii) energy approximation. The first one is imposed by using shape functions to interpolate 

positions of groups of atoms from the nodal positions of a mesh. The second one is imposed by 

sampling the energies of groups of atoms by only a few selected atoms. The method introduces 

an atomistic description everywhere in the domain. The most prominent advantage of this is 

having a truly seamless connection between atomistic and continuum regions. It does not 

differentiate between atomistic and continuum regions since the continuum is indeed an 

atomistic region coarsened by continuum concepts. Also, atomistic description preserves the 

essential advantages of full atomistic simulations. Other advantages include (i) eliminating the 

requirement of the mesh to be refined to the atomistic resolution, (ii) eliminating the requirement 

to use pad atoms, (iii) accommodating the continuum to be naturally modeled by atoms without a 

special procedure, and (iv) mitigating ghost forces to a great extent. The price paid in using the 

atomistic description is the computational cost of storing and computing for the crowded number 

of atoms. The number of ghost atoms can be potentially reduced by excluding latent atoms from 

storage and calculations (the calculations are indeed eliminated later in the Implementation 
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Chapter). MMM is introduced for statics [46] and dynamics [77] followed by convergence and 

error structure analysis [78] and introduction of a unified and consistent framework for general 

FE shape functions [79].  

2.1 RATIONALE 

MMM method extends molecular mechanics to larger scales by employing continuum methods. 

More specifically, molecular mechanics is employed in regions of interest and a continuum 

approach by means of finite elements is utilized elsewhere. Owing to the atomistic description, 

the atoms are regarded as degrees of freedom in the atomistic region whereas they are 

represented by some special atoms in the continuum region. These special atoms and atoms in 

the atomistic region are assigned a type and called ―rep atoms‖. More specifically, the special rep 

atoms in the continuum region are called interpolating rep atoms (red atoms in Figure 3). Setting 

the interpolating rep atoms as nodes of a mesh, the continuum region is discretized by finite 

elements. The mesh, coupled with FE shape functions, represents the collective behavior of 

atoms in the continuum region. The atoms that are represented by interpolating rep atoms are 

altogether called ghost atoms and further assigned three types as will be detailed later.  



 40 

 

Figure 3. Types of atoms: interpolating rep atom (red), non-interpolating rep atom (black), primary sampling atom 

(blue), secondary sampling atom (green), non-sampling atom (gray). 

 

 

 

A key point in the MMM framework lies in an assumption it makes about the continuum 

region. MMM assumes that deformation of the continuum region is linear; therefore, it can be 

represented by linear elements. As noted earlier, MMM is originally introduced using linear 

elements [46] and then extended to higher order elements [79]; but we are considering linear 

elements in the current work. In correspondence to linear elements, the strain (or the deformation 

gradient) in each element is constant. The assumption is further supported by the fact that the 

difference between true and homogeneous deformation is minimized within the cut-off radius of 
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the potential. As a result of this assumption, the energy distribution in an element is constant for 

the interior atoms. That is, the atoms that do not have neighbors in other elements have the same 

energy. This useful property still holds when the element is deformed. The uniformity of energy 

distribution motivates energy sampling, which is a shortcut to compute the energies of atoms in 

an element. Energy of a preselected atom is sampled and the value of the energy is assigned to 

other atoms in the element. The atom that is used to sample the energy is called the ―primary 

sampling atom‖ (blue atom in Figure 3) and the atoms whose energies are sampled by the 

primary sampling atom are called the ―non-sampling atoms‖ (gray atoms in Figure 3). The 

energy sampling scheme saves the computational cost of calculating energies of the majority of 

atoms in the continuum region.  

In accordance with the earlier assumption, MMM employs kinematic constraints in the 

continuum region. That is, the positions of atoms that are not appointed as degrees of freedom 

are interpolated from the positions of interpolating rep atoms located at the nodes of the mesh. In 

order to be consistent with the linear elements, MMM employs linear shape functions in the 

continuum region [46]. The shape functions are utilized not only for interpolating the positions 

of atoms but also for interpolation of the masses, velocities, forces, and other state variables 

since the rep atoms are meant to fully represent other atoms. The shape functions utilized in 

MMM are built and operated in the same way as in FE. For instance, an interpolating rep atom is 

locally supported by the corresponding shape functions of the elements where it is a node by 

construction.  

Of importance is that the uniformity of energy distribution in an element is only valid in 

the interior of the element. This is because the energies of the atoms along the edges of an 

element depend on the atoms in neighbor atoms located in adjacent elements. This asymmetry 
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implies that the edge atoms have different environment and hence different energy than the 

interior atoms. In order to solve this issue, the energies of some of the atoms should be accounted 

for individually instead of employing the earlier one-for-all sampling relationship for the primary 

sampling atoms. These atoms are called the ―secondary sampling atoms‖ (green atoms in Figure 

3). They are utilized near the edges for the aforementioned reasons and around the rep atoms for 

better accuracy. Consequently, MMM method has five types of atoms as listed in Table 2. 

 

 

 

Table 2. Descriptions of five types of atoms of MMM method. 

General  

name 

Specific  

name 

Degree of 

freedom 

Energy Description 

Rep 

atom 

Interpolating  

rep atom 

Representative Individual 

Nodes of the mesh, 

interpolates for the 

positions of ghost atoms 

Non-interpolating 

rep atom 

Individual Individual 

Same as atoms of full 

atomistic 

Ghost 

atom 

Primary  

sampling atom 

Passive Representative 

Samples for the energy of  

non-sampling atoms 

Secondary  

sampling atom 

Passive Individual Samples its own energy 

Non-sampling 

atom 

Passive Passive 

Contributes to  

atomistic description 
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Four out of five types of atoms are described above. The fifth type of atom is called the 

―non-interpolating rep atom‖ (black atoms in Figure 3), which is identical to an atom in full 

atomistic. These atoms are employed in atomistic regions of the domain in order to obtain high 

accuracy. In total, MMM has five types of atoms each for a specific purpose as listed in the last 

column of Table 2. Nonetheless, atoms can be assigned to any of these types, thus providing the 

method with a high level of flexibility. For instance, primary sampling atoms and secondary 

sampling atoms can be chosen in any number and location in an element. Suggestions on this 

matter have been recently proposed [79]. This flexibility provides the user with an opportunity to 

tune the atom type selection for the optimum balance between accuracy and efficiency.  

2.2 FORMULATION 

In the following, the concepts described above will be cast into the mathematical formulation of 

the MMM method on dynamics, namely MMD. For an isolated full atomistic model, let Eα 

represent the site internal potential energy and Tα the kinetic energy of each atom. Also, let E
int

 

represent the total internal potential energy, E
ext

 the total external potential energy, Π the total 

potential energy, and T the total kinetic energy. Then, we have 

 

 

(1) 

 

 

(2) 
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(3) 

where NA is the total number of atoms and  is the set of atomic 

coordinates. For atom α ϵ NA, mα is the atomic mass,  the external force vector, uα is the 

displacement vector, and pα is the momentum. The dot notation ―.‖ denotes the derivative with 

respect to time. pα is defined as 

 
 

(4) 

The total Hamiltonian of the system is then given by 

 

 

 

(5) 

The well-known Hamiltonian canonical equations of motion are 

 

 

(6) 

 

 

(7) 

Equations (6) and (7) can be combined to yield 

 

 

(8) 
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where  is the interatomic force vector. Equation (8) is typically employed in full 

atomistic simulations. 

For the MMD models, we first define the linear shape functions  used in standard FE 

methodology in order to accommodate reduced degrees of freedom of the original system. Note 

the consistency of linear shape functions with our earlier assumptions regarding linearity of the 

continuum region. Notations required to establish the mathematical formulation of MMD are in 

order. Nr, Ng, Npsa, Nssa are the set of rep atoms, ghost atoms, primary sampling atoms, and 

secondary sampling atoms, respectively. Rep atoms are further divided into two types: 

interpolating rep atoms (Nirep) and non-interpolating rep atoms (Nnirep), hence Nr = Nirep + Nnirep. 

Let  denote the set of coordinates of rep atoms,  

ghost atoms,  interpolating atoms, and 

 non-interpolating rep atoms. Thus, we have 

, , and ,  where  denote the 

initial coordinates of atom α. In addition, the shape function  of a rep atom  is defined as 

follows: if  represents an interpolating rep atom, then   is the standard interpolation shape 

function;  if   represents a non-interpolating rep atom, then  is unity at itself and is zero at all 

other atoms. Note that  is evaluated at the atom positions. Then, coordinates and velocities of 

the ghost atoms can be interpolated through the following expression as 

 

 

(9) 
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(10) 

Coordinates and velocities of the ghost atoms depend only on the coordinates and velocities of 

interpolating rep atoms, therefore  and  can be expressed as a function of  as follows 

 
 

(11) 

 
 

(12) 

Then, total potential energy of the original system is approximated as follows [46] 

 

 

 

(13) 

where wj is the weight associated with the primary sampling atom in element j. Let  and  

denote the set of ghost atoms and secondary sampling atoms in element ej, respectively. 

Assuming one primary sampling atom is employed in ej, which is the case in the current work, 

we have 

 
 

(14) 

which is the number of ghost atoms that are not secondary sampling atoms in element j. In other 

words, wj is the sum of numbers of primary sampling and non-sampling atoms in element j.  

Let  denote the set of momenta of rep atoms. The momentum of 



 47 

an atom α of the original system can then be approximated as follows 

 
. .  

(15) 

Then, the total kinetic energy of the original system can be approximated as a function of  

 

 

(16) 

With the above expression in hand, total Hamiltonian of the MMD system can be written as  

 
 

(17) 

then the approximated Hamiltonian canonical equations of motion are 

 

 

(18) 

 

 

(19) 

for . Equations (18) and (19) can be combined to yield 

 

 

(20) 

where the mass matrix M and interatomic force vector f
int

 are given as follows, respectively 

 

 

(21

) 
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(22

) 

where  is the set of interpolation shape functions.  

2.3 DIAGONALLY LUMPED MASS MATRIX 

The mass matrix given by Equation (21) is called the Consistent Mass Matrix (CMM). Another 

widely-used type of mass matrix is the Diagonally Lumped Mass Matrix (DLMM). DLMM is 

preferred over CMM due to the smaller computational and storage costs in general, especially in 

explicit time integration. Further, direct lumping naturally covers the case of concentrated (point) 

mass being a natural part of model building. The diagonal entries of DLMM are 

 

 

(23) 

where  denotes the number of elements sharing rep atom γ, and  denotes the number of 

nodes of element e. Then the DLMM  in the MMD formulation can be expressed as 
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(24) 

Then, Equation (20) can be rewritten as 

 
 

(25) 

Equation (25) will be employed in the numerical tests and examples in this work. 

2.4 THERMOSTAT 

Since MMD is an energy-based method, finite temperature MMD simulations can be enabled by 

directly employing any MD thermostats such as the Nosé-Hoover and Berendsen thermostats. In 

this paper, the Berendsen thermostat [80] is implemented within the MMD framework as follows 

 

 

(26) 

where γ is dissipation coefficient; Ttarget and Tcurrent are the target and current temperatures of the 

system, respectively. The extra term on the right hand side of Equation (26) that is not present in 

Equation (25) is employed to control temperature of the system. It should be noted that MMD is 

currently a zero temperature dynamics method and it is left as a future work to extend it to finite 

temperature as discussed in the conclusion.  

The thermostat is applied on every degree of freedom of the system regardless of where 

the degree of freedom lies, atomistic or continuum region. In this way, the overall temperature of 

the entire system is kept under control. As an alternative, the thermostat could be applied to a 
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group of atoms in the atomistic or continuum region. However, this approach is likely to be 

incapable of regulating the overall temperature of the entire system since it requires transmission 

of waves between atomistic and continuum. As discussed earlier in the section of wave 

reflections of previous Chapter, multiscale methods try to damp out the high frequency waves 

since they cannot be represented in the coarse region. As a result, thermal phonons cannot travel 

between the two descriptions, hence are unable to transmit the temperature effects. As will be 

discussed next in the section of wave reflections of this Chapter, MMM cannot represent high 

frequency waves in the coarse description too. Therefore, the thermostat is applied everywhere in 

the entire region in order to ensure that every subregion has the same temperature. This is 

particularly important in case of an adaptive refinement, where the temperature of the refined 

subregion is interpolated from the temperature of the previously coarse region. 

2.5 GHOST FORCES 

As discussed earlier, none of the energy-based multiscale methods is able to completely 

eliminate the ghost forces. This claim also holds for the MMM method. However, thanks to the 

atomistic description, MMM is able to mitigate ghost forces to a great extent, especially when 

compared to other multiscale methods.  

Ghost forces in an MMM model can be observed by applying it to a relaxed full atomistic 

model. Let’s consider a single triangular element full of atoms with zero forces; and, let’s apply 

an MMM model with one primary sampling atom at the center and three interpolating rep atoms 

at the corners of the element. The force between an interpolating rep atom and a non-

interpolating ghost atom in its range is now multiplied by a weight as a result of the MMM 
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model. This weighted force of the non-interpolating rep atom is then extrapolated to the 

interpolating rep atoms with respect to its shape function. Obviously, the resultant forces of 

interpolating rep atoms will be different than before due to the extrapolated contributions, not 

only due to the considered pair interaction but due to all other pair interactions. This difference 

in resultant forces between the relaxed full atomistic and the MMM model are the ghost forces. 

2.6 WAVE REFLECTIONS 

As discussed earlier, wave reflection is an important phenomenon for multiscale methods as it 

may affect the results adversely. In particular, a method should allow low frequency waves to 

pass from continuum region to atomistic region; and, should not allow high frequency waves 

reflecting from atomistic/continuum interface. MMM mitigates the effects of wave reflection by 

using a thermostat in the atomistic region as employed by Curtin et al. [37] as discussed earlier. 

In this context, problems are categorized into two classes: (i) the wave is the primary concern of 

a problem such as shock impact and (ii) the wave is not the primary concern of a problem such 

as nanoindentation. In the first class of problems, the wave front is required to be captured 

closely by the multiscale method. In reference to this requirement, the capacity of MMM to 

capture the wave front is demonstrated by solving a 1-D and 2-D wave problems where the wave 

is concerted with a full atomistic region. In the second class of problems, the adopted approach is 

shown to be effective by several numerical examples, such as crack propagation and 

nanoindentation. Of course, the theory suggests that there is room to improve the accuracy of the 

method by special treatment of wave reflection. However, demonstrated accuracy suggests that 

such a special treatment is not indispensible for the MMM method.  
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2.7 MMM VS. QC 

MMM method is very similar to QC method and this similarity is often questioned. Since there 

are many variations to the original QC method, MMM method should be compared to the 

version with the most common grounds: fully nonlocal QC with the central summation rule. The 

fully nonlocal approach employs an atomistic description in the entire domain and central 

summation rule samples energy within the elements. The atomistic description and the sampling 

scheme are the features that the MMM method shares with this particular QC version. However, 

the sampling schemes are not identical for the two methods for all cases. If the comparison is 

restricted to linear elements, as both methods are first presented with, the sampling schemes are 

identical; and, therefore the methods are identical too. On the contrary, it is rather difficult to 

compare the methods for higher order elements because it takes another effort to establish the 

sampling schemes for the higher order elements. Yang et al. presented the analysis on different 

sampling schemes that, in turn, concluded with suggestions for the most optimum schemes [79]. 

To the best of my knowledge, there has not been a unifying comprehensive presentation on 

sampling schemes of QC method. As such, QC method offers many potential sampling schemes; 

but, the optimum choice is not obvious.   

2.8 PRESCRIBED ADAPTIVITY 

In case where the main focus of a problem is propagating waves, a prescribed adaptive scheme is 

proposed to capture the wave front. The current scheme is different than the actual adaptivity 

scheme presented later in the Adaptivity Chapter. The current scheme is developed because the 
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actual adaptivity of the MMM software was not developed back then. However, the results 

should not differ considerably since both schemes successfully capture waves with very high 

accuracy. In the prescribed adaptivity scheme, an initial mesh that covers the entire domain is 

built in the beginning. The elements are turned on and off adaptively during the simulation. In 

particular, elements around the wave front are turned off and the region is then refined to full 

atomistic resolution by switching the ghost atoms into rep atoms. The rest of the domain is kept 

coarse by the remaining elements. After the wave has moved away from a full atomistic 

subregion, the elements are turned back on and the subregion is coarsened by switching the rep 

atoms into ghost atoms.  Thus, the only criterion for switching an atom type is that if the atom is 

just included in or excluded from the full atomistic region. The full atomistic resolution is 

implemented only at a certain distance before and after the wave front. In other words, the full 

atomistic region is carried along with the wave front. The switching of full atomistic region is 

achieved manually in the current work, hence not automated as in the actual adaptivity of the 

MMM software. The full atomistic region is prescribed to follow a path that tracks the wavefront 

as observed from the full atomistic simulation.  

An adaptivity scheme must conserve certain fundamental physical quantities such as 

mass. In order to ensure conservation of mass and momentum, mass and velocity are mapped 

from ghost atoms to rep atoms and vice versa. It is important to note that ghost atoms do not 

have velocities or masses. When an element is to be turned on, the mass of the element, which is 

defined as the sum of masses of all atoms in the element, is equally distributed to the 

interpolating rep atoms of the element. When the element is turned back off, the procedure is 

reversed. Thus, the mass is always conserved. On the other hand, if an element is to be turned 
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off, then the velocities of interpolating rep atoms are linearly mapped to the ghost atoms. This 

way, the momentum is conserved. 

2.9 NUMERICAL EXAMPLES 

The MMD method is tested for four numerical examples to demonstrate dynamics features: (i) 

one-dimensional (1-D) wave propagation; (ii) two-dimensional (2-D) wave propagation; (iii) 2-D 

crack propagation; and (iv) 2-D modal analysis. In all examples, the common settings include 

Lennard-Jones (LJ) potential with parameters σ = 1 and ε = 1 representing the interatomic 

interaction and 1 g/mole as the mass. The interactions are truncated beyond the second nearest 

neighbors. Initial spacing (r0) is set to 2
1/6 

Å, the equilibrium spacing between two atoms for the 

LJ potential. Following numerical examples concentrate on the accuracy of the method and the 

efficiency of the method will be discussed in the last Chapter.  

2.9.1 1-D Wave Propagation 

The first numerical example is a 1-D wave propagation that is simulated to demonstrate the 

capability of the method to capture propagating waves. The model is consisted of an atom chain 

of 1,201 atoms. The atoms are initially relaxed by static energy minimization. The models are 

fixed at two ends by two atoms in every dimension (Figure 4). The MMD model is coarsened by 

line elements of size 4r0, which consists of one primary sampling atom and two secondary 

sampling atoms. An initial Gaussian wave as given by Equation (27) is imposed by means of 
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displacement in the middle of the chain [33]. See right half of the symmetric MMD model in 

Figure 4.  

 

 

(27) 

where the following values for the various parameters in the equation are employed in the 

simulation: σ = 20, H = σ/4, A = 0.01, b = 0.2, Lc = 4σ, and uc = 0.  

 

 

 

 

Figure 4. Right half of the symmetric 1-D wave model that includes the full atomistic region where the wave is 

initiated, coarsened region, and the fixed end. 
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The simulations are run for 280 fs at a timestep of 0.1 fs. Full atomistic region is initially 

applied in the middle of the domain where the wave is introduced; then, travels to both ends step-

by-step along with the wave front. As the number of turned-on elements is altered during the 

simulation, the portions of full atomistic and coarse region are varied as well. The portion of full 

atomistic region is varied between 33% and 58%. Figure 5 shows several snapshots from the 

simulations of full atomistic (a, c, e) and MMD (b, d, f). The waves of full atomistic and MMD 

simulations match perfectly throughout the simulation.  
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Figure 5. 1-D wave propagation of full atomistic and MMD models at their initial (a, b), intermediate (c, d) and 

final (e, f) states, respectively. 
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The results were quantified by monitoring the kinetic energy of a subregion in the middle 

of the domain during the simulation (Figure 6). Some fluctuations occurred in the beginning due 

to introduction of the wave, and stabilized later. Then, the kinetic energy gradually decreased as 

the wave left the monitored region. The curves of full atomistic and MMD are again 

indistinguishable.  

 

 

 

 

Figure 6. Kinetic energy transfer in 1-D wave propagation of full atomistic and MMD model during the simulation. 
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2.9.2 2-D Wave Propagation 

The second numerical example is a 2-D wave propagation that is simulated to demonstrate the 

capability of the method to capture propagating wave in a higher dimension. The model is 

consisted of a square of 16,577 atoms in hexagonal configuration. The atoms are initially relaxed 

by static energy minimization. The models are fixed in x and y dimensions at the left-bottom 

corner and in x dimension at the upper-left corner (Figure 7). The MMD model is coarsened by 

8,192 elements of size 2r0, which consists of one primary sampling atom and the rest of the 

atoms in the element are set as secondary sampling atoms. As in the 1-D wave propagation 

example, an adaptive scheme is employed to capture the wave front. See Figure 7 for the initial 

MMD model where the center region employs full atomistic resolution and the rest of the 

domain is coarsened with 7,931 elements. A circular wave with respect to Equation (28) is 

introduced by means of displacement at the center of the model [53].  

 

 

(28) 

where r is the radial distance to the center of the domain and the different parameters are set to 

be following values in the simulation:  σ = 15, H = σ/4, A = 0.015, b = 0.1, rc = 5σ, and uc = 

Aexp(-rc/σ)
2
. 
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Figure 7. 2-D MMD model with the center in full atomistic resolution and the rest coarsened by the mesh. 

 

 

 

The circular wave can be visualized by the initial state of full atomistic and MMD 

simulations (Figure 8).  Each simulation is run for 80 fs at a timestep of 0.001 fs. The portion of 

full atomistic region is increased from 2% to 69% during the adaptive MMD simulation since the 

wave front is spread from the center to a larger area. Final states of the wave for full atomistic 

and MMD simulations are shown Figure 8. In addition, wave trajectories are compared along a 

line from the center to the left edge of the domain (Figure 9) at several timesteps for full 

atomistic and MMD. The comparisons suggest that the wave front is captured successfully by the 

MMD model, but there are some small deviations elsewhere. The wave front is captured well 

because it is always resolved with full atomistic resolution during the simulation. The deviation, 

on the other hand, is probably caused by the coarsening applied to regions where the wave front 

has left. The deviation is expected because coarsening is applied to a lattice structure that is not 

as perfect as at the initial state anymore. There is still the high frequency content in the full 
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atomistic region when it is switched to coarse region again. However, the important part of wave 

is the front where the critical physical phenomena occur. Therefore, capturing the front of a wave 

should be sufficient to capture the governing physical phenomena for the problem.   
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Figure 8. 2-D wave propagation of full atomistic and MMD models at their initial state (a) and final states (b, c), 

respectively. Dashed lines in the MMD final state indicate borders of the full atomistic region. 
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Figure 9. 2-D wave propagation of full atomistic and MMD models compared along the dashed line in (a) at their 

initial (b, c) and final (d, e) states, respectively. 
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As in the 1-D case, the results are quantified by monitoring the kinetic energy of 

subregion at the center of the domain (Figure 10). At first, the kinetic energy increased when the 

wave started to move, fluctuated for some time, and then stabilized. Later, the kinetic energy 

decreased as the wave left the monitored region. A discrepancy between the curves of full 

atomistic and MMD is observed after some time. This might be due to the fact that monitoring is 

performed over a fixed region that includes some elements in part, not in whole. In support to 

this argument, time of start of coarsening corresponds to 1,200 fs where the discrepancy first 

appears at ~1,350 fs. Despite the discrepancy, MMD followed the full atomistic results quite 

well. 
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Figure 10. Kinetic energy transfer in 2-D wave propagation of full atomistic and MMD model during the 

simulation. 

 

 

 

2.9.3 2-D Crack Propagation 

The third numerical example is a 2-D crack propagation that is simulated to demonstrate the 

capability of the method to capture propagation of cracks. The model is consisted of a 

rectangular prism of 10,701 atoms in a hexagonal configuration with two notches in the middle. 

The atoms are initially relaxed by static energy minimization. The models are fixed in all 

dimensions at two layers of atoms from the left and right ends (Figure 11). The MMD model is 

coarsened by 16 triangular elements of size 29r0, which consists of one primary sampling atom 
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in the middle. Correspondingly, 69% of atoms are ghost atoms in the MMD model, in which 4 

layers from the surfaces and 12 layers from the notches are covered with non-interpolating rep 

atoms. The MMD model is shown at the top of the right panel in Figure 11.  

 

 

 

 

Figure 11. Snapshots from simulations of full atomistic MD (left) and MMD (right) at the beginning (top) and end 

(bottom). 

 

 

 

Temperature of the system is kept constant at 10 K by the Berendsen thermostat with 

damping-to-timestep ratio of 1. The simulations are run for 405 ps at a timestep of 0.5 fs. At each 

timestep, the fixed atoms at the left and right ends are displaced in the opposite x-directions in 

tension at an amount corresponding to a strain rate of 10
8
 s

-1
.  

Stress is measured as the average of absolute forces in the x-direction of the atoms at the 

fixed ends, and engineering strain is measured in the conventional manner. The stress-strain 

curves of full atomistic and MMD solutions are compared in Figure 12. As apparent from the 

figure, the stress-strain curves agree very well. Note that the elastic modulus, ultimate strength, 

and ultimate strain can be estimated successfully by the MMD method.  
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Figure 12. Stress–strain curves of 2-D crack propagation for full atomistic MD and MMD. 

 

 

 

2.9.4 2-D Modal Analysis 

The fourth numerical example is a 2-D modal analysis that is simulated to demonstrate the 

capability of the method to perform modal analysis. For this purpose, the linearized equations of 

motion without damping are given by Equation (29) as follows 
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(29) 

where ML is the DLMM and u is the displacement vector; K is the stiffness matrix populated 

with stiffness values between pairs of neighbor atoms calculated with respect to the second 

derivative of the given potential function at the equilibrium position. Fourier transform of 

Equation (29) is taken so that Equation (30) is obtained 

 
 

(30) 

where  is the Fourier conjugate of , such that . When multiplied by , 

Equation (30)  represents an eigenvalue problem where  is the mode shape (eigenvector) and  

is the natural frequency (eigenvalue). Eigen-analysis is conducted to obtain the three non-zero 

smallest natural frequencies. The model is consisted of a rectangular beam of 33,313 atoms in 

hexagonal configuration. One full atomistic model and four MMD models of uniform meshes 

with different element sizes are compared (Figure 13). Each element included one primary-

sampling atom and the rest of the atoms in the element are set as non-sampling atoms. Element 

sizes, arrangement of elements, and number of elements of MMD models are listed in Table 3. 

Relative errors of MMD models with respect to the full atomistic solution are given by Equation 

(31). 

 

 

(31) 
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Table 3. Models, element sizes, arrangements and number of elements of MMD models in the convergence study. 

Model Element size (r0) Arrangement of elements Number of elements 

b 4.01 8x8 4,096 

c 8.02 4x4 1,024 

d 16.04 2x2 256 

e 32.07 1x1 64 

 

 

 

 

Figure 13. The beam model employed to perform model analysis and convergence study of the MMD method: (a) 

full atomistic model. (b–e) MMD models with element sizes from fine to coarse. 
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The three smallest natural frequencies obtained with each model are listed along with 

relative errors in Table 4. The relative errors suggest monotonic convergence for all three natural 

frequencies as the element size is decreased.  

 

 

 
Table 4. Smallest three natural frequencies and relative errors of full atomistic (a) and MMD models with element 

sizes varying from fine to coarse (b-e). 

Model ω1 

Rel. error  

(%) 

ω2 

Rel. error  

(%) 

ω3 

Rel. error 

 (%) 

a 0.00119399 - 0.00282537 - 0.00519850 - 

b 0.00119605 0.17 0.00283294 0.27 0.00521413 0.30 

c 0.00120636 1.04 0.00286477 1.39 0.00528371 1.64 

d 0.00120981 1.32 0.00292323 3.46 0.00546742 5.17 

e 0.00121571 1.82 0.00312044 10.44 0.00604410 16.27 
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3.0  ADAPTIVITY 

Adaptivity is essential to any concurrent atomistic/continuum coupling method. Considering a 

moving region of interest such as wave or dislocation on a path, the method can either model the 

entire path a priori at fine resolution or adaptively refine and coarsen the path. Multiscale 

methods that lack adaptive features are limited to the first option; they can only be employed to 

solve problems where the path can be guessed a priori and model the entire path in fine 

resolution, which severely limits problem size. Even so, efficiency of the implementation will 

not be as good as an adaptive method due to overuse of fine resolution. Although many 

multiscale methods are introduced, only a few of them feature adaptivity. Shenoy et al. [29], 

Park et al. [49], Kwon et al. [81], Shimokawa et al. [82], and Shan et al. [27] introduced 

adaptivity to the QC method. Moseley et al. [25], Moseley et al. [26], and Gracie et al. [8] 

presented adaptive features of the BD method. In addition, Marenic et al. presented review of 

adaptive methods with a focus on the QC and BD methods [52]. Xiong et al. added adaptivity to 

the CAC method [62]. Another multiscale method that presented adaptive features is the CG 

method by Praprotnik [67] and Heyden [68]. All these adaptive methods including the current 

work are empirical in a sense that they are not based on theoretical estimation of errors. In their 

work, Oden et al. presents rigorous mathematical calculations to serve as a sound basis to 

estimate the modeling error so that they can control this error adaptively [28]. Another important 

note about adaptive multiscale methods is that the theoretical framework of a concurrent 
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coupling method would dictate how that method performs adaptive analysis, and therefore 

obtained results are still characterized by the theoretical framework rather than the adaptivity 

scheme.  

Adaptivity means automatic tracking of moving regions of interest in order to reduce the 

number of degrees of freedom that needs to be simulated. The moving region of interest can be a 

wave front in a shock impact problem or a dislocation in a tensile test. Adaptivity automates the 

tracking of the moving regions of interest that are not known a priori, and thus the simulation is 

easily setup without much preprocessing. More importantly, adaptivity is crucial for efficiency 

because it keeps the computationally-expensive fine-resolution regions limited to the regions of 

interest and prevents overuse. One of the two main functions in adaptive analysis is refinement, 

which converts coarse regions into fine regions wherever required. Refinement is needed to open 

the front of the region of interest for it to be able to continue its progress. The second function is 

coarsening, which converts the fine regions back into coarse regions wherever fine resolution is 

no longer required. Coarsening is needed to close the moving region of interest so that the target 

efficiency is retained. Coarsening is especially crucial to keep the method efficient without 

compromising the accuracy since it would otherwise be too expensive to enlarge the fine regions 

gradually to everywhere the defects visited. Of course, refinement and coarsening are expected 

to be activated automatically by the method itself without a need to give a priori instructions. 

3.1 LITERATURE REVIEW 

The core issue of adaptive analysis lies in defining a criterion to determine whether a region shall 

be modeled with fine or coarse resolution. One way or another, all criteria try to measure the 
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severity of deformation, which characterizes the regions of interest. These criteria call for 

refinement of the region when they are satisfied and call for coarsening when they are not. These 

criteria may depend on potential energy [8, 25, 63], centrosymmetry parameter [64], difference 

between local and global deformations [10], deformation gradient [27], spatial variation in 

displacement [40], local shear strain [62], interatomic bonds [25], strain energy density between 

adjacent nodes and consecutive timesteps [83], or difference between smoothed and exact forces 

[66]. The refinement criterion is mostly imposed in a way that the atoms or nodes are activated 

for refinement when their values fit into the prescribed range. In addition, atoms that are too 

close to the activated atoms are also activated for refinement in some implementations [8, 25, 

63]. On the other hand, the criterion for coarsening has the opposite relationship such that it is 

performed when an atom is not activated for refinement any longer. In that, some 

implementations impose additional requirements such as they allow coarsening only if the 

candidate coarse description is accurate enough not to bring in an error more than a prescribed 

value [8, 25, 29, 52]. Similarly, the history of an atom or bond is taken into account such that 

recently refined entities are excluded from coarsening [25]. Some adaptive techniques perform 

ad-hoc adjustments of the frequency of calling [8] or tolerance [10] of adaptivity procedures so 

that they are run frequently enough to capture the relevant physical phenomena.  

The adaptive analysis procedures include interpolation and extrapolation of state 

variables between nodes and atoms. These interpolations are conveniently realized by the FE 

shape functions [26, 66]. The refinement procedure interpolates for the positions, velocities, and 

in some cases accelerations of the new atoms that are activated for refinement. Furthermore, 

thermal vibrations could be added to preserve temperature of the system in a temperature critical 

application. In the case that atoms in the coarse regions are turned off, i.e., not stored in the 
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memory, lattice sites of these atoms can be approximately reproduced [50]. The coarsening can 

be realized by shape functions or by least squares fit [8].  

Adaptive analysis by means of either refinement or coarsening introduces a disturbance 

to the system, which may result in intolerable error. By a numerical example, Moseley et al. 

show that the problem arises from instantaneous conversion of fine regions to coarse regions or 

vice versa [26]. That is why; the authors carry out the adaptation procedures in several timesteps 

instead of only one timestep. Gracie et al. staggers the execution of refinement and coarsening 

procedures in time to alleviate the error [8]. Miller et al. [42] and Shenoy et al. [29] re-establish 

equilibrium after each adaptation step since the system is considered to be no longer in 

equilibrium. In a similar way, Miller et al. limits the adaptive analysis to focus on a particular 

region or limits the counts of adaptation steps in order to restrict adaptation from becoming 

unduly costly [42]. It should, however, be noted that coarsening will always introduce some sort 

of an indispensible error since it is essentially an approximation of the full atomistic by 

construction [8].  

The coarse regions of multiscale models can be meshed by either a uniform or a graded 

mesh. The uniform mesh dictates a constant mesh size all over the region while the graded mesh 

allows variation in mesh size. The graded mesh is particularly important to multiscale methods 

since it can be utilized to dissipate part of the high frequency waves in case that the mesh size is 

reduced down to atomistic resolution near the atomistic/continuum interface. Another benefit of 

the graded mesh is its capability of reaching very coarse resolution by means of very large 

elements in the continuum region in order to enhance the efficiency. Despite its benefits, the 

graded mesh has several significant drawbacks. First of all, generation of a graded mesh is more 

expensive than generation of a uniform mesh. Second, adaptivity requires a graded mesh to be 
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re-generated every time it executes refinement or coarsening since places of fine and coarse 

regions are updated. Third, generation of a mesh is followed by building shape functions and 

atom-element relationships, e.g., designating atoms inside an element. The second and third tasks 

may become very expensive because the costs of these computations are already high and may 

become even extremely expensive with frequent updates. Moreover, some adaptivity procedures 

are recursively run until equilibrium is achieved [40]. As a result, this iterative procure may be 

prohibitively expensive. Last, graded mesh prevents taking advantage of using multiple 

timesteps since the timestep of the coarse region is limited by the mesh size [84]. Finally, the 

uniform mesh is also favored for its simplicity in implementation and generation.  

3.2 ADAPTIVE ANALYSIS 

In the current work, adaptive analysis of MMM is introduced.  In contrast to previous methods 

that require special atomistic/continuum interface treatment, the underlying MMM framework 

facilitates easy implementation of the adaptive analysis. The presented adaptivity scheme is 

simple, effective, and accurate as demonstrated by the results of three numerical examples 

including 1-D wave propagation, 2-D dislocation, and 3-D nanoindentation. The scheme 

employs a uniform mesh over the entire region for its aforementioned benefits. Owing to its 

consistency and robustness, MMM does not need to employ any special technique to smooth the 

adverse effects of adaptivity. 

The adaptivity criteria of MMM are based on potential energy, proximity, and element 

integrity. First, potential energy is a good indicator of distortion and it is already available [8, 25, 
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63]. A threshold value is input to the simulation such that atoms with higher potential energies 

are activated for refinement. According to this criterion, an atom i is activated when  

 
 

(32) 

where Ei is the potential energy of atom i, Ethreshold is the input threshold value. Second, atoms 

within an input radius of activated atoms are also activated for refinement in order to include the 

region that may possibly be influenced by the distortion [8, 25, 63]. This way, it is made sure to 

refine the regions that may be directly or indirectly affected by the ongoing physical phenomena. 

Third, all of the atoms inside the elements that include activated atoms are also activated for 

refinement for the sake of element integrity. In other words, an element is either in the coarse or 

fine region completely. Of course, only the ghost atoms among the activated atoms are selected 

and then converted to non-interpolating rep atoms. Activated atoms are required to be assigned 

with only velocities since their positions are already available thanks to the atomic description. 

The velocities are interpolated from the corresponding interpolating rep atoms with respect to 

shape functions. In order to conserve mass, the masses of activated atoms take on their original 

values and those of the corresponding interpolating rep atoms are decreased in proportion to 

reduction of the number of ghost atoms they represent. The adaptivity function is called 

periodically with respect to an input number of iterations. In total, adaptivity is controlled by 

three parameters: (i) threshold of the potential energy, (ii) radius of influence, and (iii) frequency 

of update.  
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3.2.1 Refinement 

The refinement procedure is outlined in Figure 14. 

 

 

 

 

Figure 14. Refinement procedure of MMM adaptivity. 

 

 

 

Refinement Procedure 

 

1. Return if it is not time to query adaptivity.  

2. Activate ghost atoms with potential energies higher than the threshold value, return if 

none. 

3. Activate atoms within a radius of influence of the activated atoms. 

4. Activate atoms inside elements that include activated atoms. 

5. Convert activated atom types to non-interpolating rep atoms. 

6. Interpolate new velocities of activated atoms from corresponding interpolating rep atoms.  

7. Default masses of activated atoms and reduce masses of corresponding interpolating rep 

atoms accordingly.  

8. Recalculate energies and forces of all atoms for the current iteration.  
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3.2.2 Coarsening 

The coarsening procedure is the opposite of the refinement procedure. In order for an element 

that is currently full of non-interpolating rep atoms to be coarsened, none of the rep atoms must 

be activated for refinement. Only then is the coarsening activated and all atoms inside the 

element are assigned with the types that the MMM scheme specifies. The positions of atoms are 

left as is and new shape functions are constructed. This way, the element is able to preserve its 

distorted configuration in order to keep peace with its environment. Otherwise, the original shape 

functions would dictate the original configuration that may not fit to the current environment and 

cause instability. The velocities and masses of the ghost atoms are extrapolated to the 

corresponding interpolating rep atoms where the former extrapolation is performed by shape 

functions and the latter extrapolation by arithmetic averaging. These extrapolations are carried 

out in order to conserve mass and momentum of the element and, in turn, the system. The 

coarsening procedure is outlined in Figure 15. 



 79 

 

Figure 15. Coarsening procedure of MMM adaptivity. 

 

 

 

3.2.3 Conservation Properties 

It is a well-known fact that forces derived from a global energy functional conserve linear 

momentum, angular momentum, and total energy. In addition, the conservation of mass is 

assured by construction. Analytical proofs to these conservation properties of the MMM method 

are beyond the scope of this work. After the analytical construction of a method, there are 

numerical considerations that violate the conservation laws. First is the introduction of a cut-off 

radius that truncates the interactions beyond a few neighbor shells [75, 85, 86]. Neighbor atoms 

travelling in and out of this borderline may have their properties accounted for in an on-and-off 

manner, which would violate the conservation laws. Second, MMM employs a velocity Verlet 

Coarsening Procedure 

 

1. Return if it is not time to query adaptivity.  

2. Select rep atoms with potential energies lower than the threshold value, return if none. 

3. Deactivate elements full of the selected atoms.  

4. Deactivate all atoms inside deactivated elements. 

5. Convert deactivated atom types to scheme types. 

6. Extrapolate velocities and masses of deactivated atoms to corresponding interpolating rep 

atoms.  

7. Recalculate energies and forces of all atoms for the current iteration.  
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time integration scheme that is proven to be non-conservative but symplectic, which means 

showing nearly conservative behavior [75]. The third property is the use of a thermostat to 

regulate the temperature of the system [21]. A thermostat achieves this regulation by including 

additional forces on atoms to impose an external force on the system. In spite of these negligible 

inaccuracies, refinement and coarsening procedures are carefully tailored to conserve mass and 

momentums of the system. However, the energy cannot be exactly conserved due to inclusion 

and exclusion of energy approximation in refinement and coarsening, respectively [25]. After all, 

our own numerical investigations on simple models conclude that the method shows nearly 

conservative behavior. 

3.3 NUMERICAL EXAMPLES 

The MMD method is tested for three numerical examples to demonstrate adaptivity features: (i) 

one-dimensional (1-D) wave propagation; (ii) two-dimensional (2-D) dislocation; and (iii) three-

dimensional (3-D) nanoindentation. The interactions are truncated beyond the second nearest 

neighbor. In the adaptivity scheme, all the considered models start as a fully coarse model but 

they are automatically refined at the very beginning of the simulation, for instance, due to a wave 

or surface effects. Following numerical examples concentrate on the accuracy of the method and 

the efficiency of the method will be discussed in the last Chapter. 
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3.3.1 1-D Wave Propagation 

The first numerical example is a 1-D wave propagation that is simulated to demonstrate the 

capability of the method to capture wave motion. The model considered here is consisted of a 

chain of 2,405 atoms. The atoms are separated by 1 Å in order to speed-up propagation of the 

wave. The model is fixed by two atoms at both ends (Figure 16). The MMD model is coarsened 

by a mesh of elements of size 100r0, which included one primary sampling atom in the center 

and four secondary sampling atoms around the interpolating rep atoms. The interactions are 

modeled with the Lennard-Jones (LJ) potential with parameters σ = 1 Å and ε = 1 eV and mass is 

set to 1 g/mole. The adaptivity criteria are set to -0.0555 eV (93% of the initial energy value) 

potential energy threshold, 150 Å radius of influence, and 50 iterations of update frequency. As 

discussed later, the first criterion (i.e., potential energy threshold) is adjusted by the user 

depending on which measure is prioritized: accuracy or efficiency. The latter criteria can be 

adjusted in a similar fashion so that larger radius of influence or smaller update frequency results 

with higher accuracy but lower efficiency and vice versa. All three adaptivity criteria in this and 

other examples are adjusted in an ad-hoc fashion in order to produce good results.  

A Gaussian wave including both high and low frequency components is introduced in the 

center of the model by Equation (33), see right half of it in Figure 17.  

 

 

(33) 

where σ = 20, H = σ/4, A = 0.01, b = 0.2, Lc = 4σ, and uc = 0.  
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Figure 16. A Gaussian wave is introduced in the center and atoms are fixed at the ends in the 1-D wave propagation 

example. 

 

 

 

 

Figure 17. Part of the 1-D wave model includes right half of the wave in full atomistic region and an element in the 

coarsened region. 

 

 

 

The simulations are run for 500 fs at a timestep of 0.1 fs. At the beginning of the 

simulations, the wave splits into two parts and then they travel opposite to each other towards the 

ends. As the adaptivity adds and removes rep atoms, the overall ratio of rep atoms starts at 34%, 

increases to 67%, and ends at 51%. Figure 18 shows trajectories of wave propagation for full 
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atomistic (a, c, e) and MMD (b, d, f). The results are indistinguishable at any step of the 

simulation. In addition, the kinetic energy of a region as marked in Figure 19 is monitored during 

the course of the simulations. The region consists of an element with 101 atoms and the kinetic 

energy is computed as sum of the kinetic energies of these atoms (Figure 20). The kinetic energy 

slightly increases as low frequency component of the wave enters into the region and then 

decreases as it starts to leave. At this point, the kinetic energy sharply increases as high 

frequency components of the wave enter and then sharply decreases upon their leave. The kinetic 

energies of the full atomistic and MMD being monitored are again indistinguishable. 
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Figure 18. Comparison of trajectories of full atomistic and MMD model at the beginning (a, b), intermediate (c, d) 

and end (e, f) of the 1-D wave propagation. 
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Figure 19. Kinetic energy of the element in the red box is monitored in the 1-D wave propagation example. 

 

 

 

 

Figure 20. Comparison of monitored kinetic energies of full atomistic and MMD in the 1-D wave propagation 

example. 
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3.3.2 2-D Dislocation 

The second numerical example is a 2-D dislocation that is simulated to demonstrate the 

capability of the adaptivity to consistently refine and coarsen as a defect migrates. The 2D model 

is consisted of a rectangular plate of 21,709 atoms in hexagonal configuration. The atoms are 

initially relaxed by static energy minimization. The models are fixed by two layers of atoms at 

the bottom end (Figure 21 - left). The MMD model is coarsened by a mesh of triangular elements 

of size 20r0, which included one primary sampling atom in the center and secondary sampling 

atoms around the interpolating rep atoms (Figure 21 - right). The interactions are modeled with 

the Morse potential with parameters D0 = 0.5093 eV, α = 1.4573 1/Å, and r0 = 2.58 Å and mass 

is set to 26.9815 g/mole. The adaptivity criteria are set to -1.6 eV (91% of the initial energy 

value) potential energy threshold, 10 Å radius of influence, and 100 iterations of update 

frequency. Temperature of the system is kept constant at 1 K by the Berendsen thermostat. The 

models are cropped at their upper-left corners in order to trigger dislocation nucleation.  
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Figure 21. 2-D dislocation example setup (left): Bottom is fixed and top is pulled; and, MMD model atom types 

(right). 

 

 

 

The simulations are run for 1.2 ns at a timestep of 0.5 fs. Two layers of atoms from top of 

the system are pulled apart at a constant speed corresponding to 10
-8

 s
-1

 strain rate. As the 

adaptive MMD method adds and removes rep atoms, the overall ratio of rep atoms fluctuated 

around 27±3%. Figure 22 shows trajectories of dislocation glide for full atomistics and MMD 

where only the atoms with higher energies are highlighted in the left and center panels. The 

snapshots are taken from different timesteps of full atomistic and MMD to emphasize the 

reaction of models to dislocation glide. The latency between the two models is apparent from the 
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stress-strain curve as shows in Figure 23. The force in the figure is calculated by averaging the y-

components of forces of the fixed atoms, while the strain is obtained from averaging y-

components of the distance between fixed atoms. Until the yield point, where the dislocation 

nucleates, stress-strain curves match perfectly, which is attributed to the uniformity of the elastic 

deformation. Later on, two differences are observed: (i) nucleation of dislocation is predicted 

earlier by the MMD model and (ii) the burst in the stress-strain curve of the full atomistic model 

is recorded stronger. These differences are attributed to the constraining effects of the limited 

size of the atomistic region [15]. Nevertheless, the burst in the stress-strain curve can be further 

explained with the fact that, although the deformation mechanisms (i.e., perfect edge dislocation) 

of the two models are the same, energies of dislocations are different. The energy of a dislocation 

is sum of its nearby core energy and its far field elastic energy where the former is a small 

fraction of the latter [87]. The elastic energy decays only by 1/r where r is the distance from the 

dislocation core. Therefore, it may be the case that the long range distribution of the elastic 

energy is not completely covered by the confined atomistic region of the MMD model around the 

dislocation core. In addition, the difference in the energy of dislocations can be inferred from the 

stress-strain curves since the stronger burst is related to a higher decrease in the strain energy of 

the system. In agreement, a larger number of atoms are highlighted in Figure 22 since more 

atoms with higher energies are involved in the dislocation of the full atomistic model. After 

annihilation of the dislocations, both the full atomistic and MMD models continue to harden in a 

similar fashion. Overall, the trajectories and stress-strain curves agree well and the adaptivity 

successfully tracks and captures the dislocation glide.  
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Figure 22. Comparison of trajectories of full atomistic and MMD model at the beginning (a), intermediate (b) and 

end (c) of the 2-D dislocation example. 
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Figure 23. Comparison of force versus strain curves of full atomistic and MMD in the 2-D dislocation example. 

 

 

 

3.3.3 3-D Nanoindentation 

The third numerical example is a 3-D nanoindentation that is simulated to demonstrate the 

capability of the adaptivity to capture large amount of dislocations and stacking faults nested 

together. The model is consisted of a rectangular prism of 78,033 atoms in FCC configuration. 

The atoms are initially relaxed by static energy minimization. The models are fixed by two layers 

of atoms at bottom ends in all directions and they are fixed by two layers of atoms at the lateral 

faces in normal directions (Figure 24 - left). The MMD model is coarsened by tetrahedral 

elements of size 12r0, which consists of secondary sampling atoms (Figure 24 - right). The 

interactions are modeled with the Morse potential with parameters D0 = 0.2703 eV, α = 1.1646 
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1/Å, and r0 = 3.253 Å and mass is set to 26.9815 g/mole. The adaptivity criteria are set to -2.47 

(97% of the initial energy value) and -2.50 eV (98% of the initial energy value) potential energy 

threshold, 2 Å radius of influence, and 100 iterations of update frequency. Temperature of the 

system is kept constant at 1 K by the Berendsen thermostat. The simulations are run for 300 ps at 

a timestep of 0.5 fs. An indenter is pushed towards the top surface with respect to Equation (34). 

 
 

(34) 

where K is 10 eV/Å
2

, R is 80 Å, and r is the distance between the atom and the indenter. The 

indenter is pushed constantly at a speed of 50 Å/ns.  

 

 

 

 

Figure 24. 3-D nanoindentation example setup (left): Bottom and lateral are fixed and top is indented; and, MMD 

model atom types (right). 
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As the adaptivity adds and removes rep atoms, the overall ratio of rep atoms reaches 54% 

and 75% for MMD models with criterion -2.47 eV and -2.59 eV, respectively. Figure 25 shows 

trajectories at the beginning of plastic deformation for full atomistic and MMD. The similarity of 

the deformation paths proves the success of MMD models. Figure 26 shows distorted atoms at a 

later stage of plastic deformation for full atomistic and MMD models. The atoms are colored 

with respect to deformation types utilizing centrosymmetry parameter [88]. Since it is difficult to 

distinguish the individual defects and decide if MMD models are successful, a statistical 

comparison is shown by means of distribution of the centrosymmetry parameter in Figure 27. 

The agreement between the statistical distributions suggests that the MMD model captures 

various types of defects well. In addition, the force-depth curves are shown in Figure 28. The 

forces are calculated from the total forces on the indenter and depth is calculated from the 

displacement of the indenter. The curve obtained from the MMD model with criterion -2.50 eV 

performs better and closely captures the burst of the curve.  

 

 

 

 

 



 93 

 

Figure 25. Comparison of configurations at the onset of plastic deformation in the 3-D nanoindentation example 

where atoms are colored with respect to their potential energies: Full atomistic (a), MMD with criterion -2.47 eV 

(b), and MMD with criterion -2.50 eV (c). 

 

 

 

 

Figure 26. Comparison of configurations at a later stage of plastic deformation in the 3-D nanoindentation example 

where blue atoms denote dislocation and red atoms denote stacking faults: Full atomistic (a), MMD with criterion -

2.47 eV (b), and MMD with criterion -2.50 eV (c). 
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Figure 27. Comparison of centrosymmetry parameter histogram of full atomistic and MMD models with criterion -

2.47 eV and -2.50 eV in the 3-D nanoindentation example. 

 

 

 

 

Figure 28. Comparison of force versus depth curves of full atomistic and MMD models with criterion -2.47 eV 

(left) and -2.50 eV (right) in the 3-D nanoindentation example. 
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Figure 29. Comparison of atom types of MMD models with criterion -2.47 eV (left) and -2.50 eV (right) in the 3-D 

nanoindentation example. 

 

 

 

3.3.4 Discussion on Adaptivity Criteria 

The values of the adaptivity criteria are adjusted based on a trade-off between accuracy and 

efficiency. There are many settings in an MMM simulation that are subjected to this trade-off. 

For instance, the solutions by the MMD models with different adaptivity criteria came out 

different in the 3-D nanoindentation example (Figure 28). As expected, the MMD model with a 

more stringent energy criterion (Figure 28 - right) uses more rep atoms and the results are closer 

to the full atomistic solution. In contrast, the MMD model with a less stringent energy criterion 
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(Figure 28 - left) uses fewer rep atoms hence the efficiency is higher. Another instance is due to 

different MMM schemes. The scheme employed in the 3-D nanoindentation example is more 

expensive and more accurate as compared to the scheme employed in the 2-D dislocation 

example where the former scheme uses all secondary sampling atoms inside the elements. As a 

result, the results of the 3-D nanoindentation (especially with the more stringent energy criterion) 

agree better with full atomistic as can be seen from the force-depth curve (Figure 28) and stress-

strain curve (Figure 23). Other settings subject to the trade-off between accuracy and efficiency 

include mesh size and influence of radius. All these trade-offs provide the means to adjust the 

adaptivity criteria to the preference of the user. As discussed at the beginning of this Chapter, 

these adjustments are ad-hoc in the sense that they are not based on rigorous theoretical 

estimations. Nevertheless, the author has experienced little difficulty in tuning the settings for the 

presented examples and the results agree well with the true solutions.  

 The physical meaning of the first adaptivity criterion (i.e., energy) is associated with the 

distortion of an atom from its rest position. At its rest position, an interior atom has the minimum 

potential energy it can have under the governing potential. At this state, the atom can be thought 

of lying at the bottom of the well of the curve of the potential energy function. In case of 

distortion, the potential energy of the atom increases and it elevates from the bottom of the well 

to a higher level regardless of the type of distortion. Since the goal of the adaptivity criterion is 

to detect distorted atoms, any atom with a relatively higher potential energy is a good indicator 

of distortion. There is no physical correspondence to the level of increase in the potential energy. 

However, there are physical correspondences to the level of increase in the centrosymmetry 

parameter. Particular ranges of the centrosymmetry parameters are known to be indicators of 

particular defects such as dislocation or stacking fault as shown in the 3-D nanoindentation 
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example. In the current work, potential energy is utilized in the adaptivity scheme and 

centrosymmetry parameter in the post-processing tools. However, the MMM software has the 

groundwork for centrosymmetry parameter to be implemented as an adaptivity criterion in case 

the user prefers to distinguish between different types of defects during the simulation.  

 The results of the MMM simulations are qualitatively and quantitatively compared to the 

true solutions in the presented numerical examples of the current work. The success of the 

approximate solution of MMM in matching the true solutions is evaluated with respect to 

capturing certain material properties such as elastic modulus, yield stress/strain, natural 

frequency, and hardening behavior. However, definition of a criterion that measures the 

acceptance of the approximate solution is avoided in order to let the user decide about the level 

of accuracy. As discussed earlier, the MMM method features a trade-off between accuracy and 

efficiency by many settings. Thus, the user has several options to tune for the right balance 

between accuracy and efficiency with respect to what s/he demands from the problem. In one 

simulation, the user may want to quickly observe the general behavior of a deformation where 

s/he should adjust the settings for higher efficiency. In another simulation, the user may want to 

investigate the fine details of a deformation where s/he should adjust the settings for higher 

accuracy. In this context, the level of accuracy is highly relative and depends on the demands of 

the user and the subject problem. Consequently, the user has the power to adjust for the level of 

accuracy s/he demands with respect to the time and computational power s/he desires to spend 

on the problem.  
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4.0  IMPLEMENTATION 

Molecular mechanics is addressed in its own way from a computational standpoint. Molecular 

mechanics prioritizes proper and efficient sampling of phase space rather than high accuracy, 

which can be well achieved by symplectic integrators [89]. Phase space can be explored 

stochastically, such as with conjugate gradient method [90], or deterministically, such as with 

MD [91], or with special relaxation algorithms [92]. Our focus is on the deterministic approach 

with MD, which solves Newton’s equations of motion (2
nd

 law) given by Equation (35). 

 

 

(35) 

Usually the terms beyond a few are excluded and their effects along with quantum effects are 

represented by the remaining terms [93]. The force term in Equation (35) is equal to the 

derivative of the potential energy with respect to the position of the atom. The energy of an MD 

system is given by Equation (36) 

 
 

(36) 

The last term in Equation (36) represents non-bonded interactions that are consisted of short and 

long range interactions [94] Usually, short range non-bonded interactions are taken into account 

and long range non-bonded interactions are either approximated or neglected due to their high 
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cost. The strength of short range forces decay fast so that interactions beyond a certain distance 

(rc) are truncated, or ―cut-off‖. Owing to this reduction, force calculations scale with Nrc
3
ρ 

instead of N
2
 where N is the number of atoms and ρ is the number of atoms per unit volume. In 

some cases, the effects of the cut-off region are compensated by some sort of correction.  

The equation of motions are numerically integrated by the Velocity-Verlet scheme, which 

is symplectic, time-reversible, conserves linear and angular momentum and requires one force 

evaluation per timestep; and its error is proportional to ∆t
2
 [89]. Despite cut-off and efficient 

integration, MD is fine in length and time scales, and hence highly demanding [93]. The 

calculation of force takes about 80-95% (and even higher in the current work) of the simulation 

time and other operations takes about 5-20% [85]. Other operations include, for instance, 

building in neighbor lists, input/output, and integration, where the last operation takes about 2-

3% of simulation time [93]. Memory is mostly consumed by neighbor lists [95]. Newton’s 3
rd

 

law may be exploited to halve the costs of calculation of interactions and memory consumption 

of neighbor lists. In parallel computing, this utilization is obviously useful in atom 

decomposition scheme. In a domain decomposition scheme, however, it is a matter of trade-off 

between costs of computation and communication due to the additional costs of the latter. The 

decision is usually reached with respect to communication cost of the subject algorithm. The 

advantages and disadvantages of this trade-off are detailed by Plimpton [93].  

Searching for nearest neighbors in every iteration can be a bottleneck if it is not handled 

by an efficient algorithm. Plimpton introduces neighbor lists, link-cell, and a combination of the 

two [93]. Neighbor lists store the list of neighbors beyond the cut-off distance so that only a 

limited number of atoms (instead of all atoms) are looped to find the nearest neighbors in every 

iteration. Link-cell method utilizes binning algorithm that efficiently bins atoms into cubic cells 
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and then searches for nearest neighbors in neighbor cells. There are 8 neighbor squares in 2-D 

and 26 neighbor cubes in 3-D. Plimpton efficiently combines the two methods by utilizing link-

cells to build in the neighbor lists [93].  

MD software is highly suitable for parallelization. Parallelization is mainly motivated by 

the fact that hardware technology has reached saturation in processor performance. In addition, 

the demanding nature of MD simulations strives for parallelization. However, the parallelization 

technology is considered to be immature in its current state [89] and requires efficient algorithms 

in order to show scalability [85]. Parallelization can be realized by data parallel (a.k.a. memory 

coupling) or message passing method (a.k.a. message coupling) [95]. Data parallel method 

instructs the compiler some arrays that work in parallel as in OpenMP and suitable to shared 

memory environments. Message passing method manages communication of messages explicitly 

as in MPI and suitable to distributed memory environments. Although message passing is more 

manual in terms of implementation, it can achieve higher performance by proper optimization, 

even for low number of processors [94]. Also, data parallel method is slower even if it is coupled 

with many different algorithms to solve conflicts due to race condition [91]. In some cases, data 

parallel and message passing methods are brought together such that the former is employed 

within computing nodes and the latter is employed among computing nodes.  

There are three decomposition schemes in parallel computing MD simulations: atom, 

force, and domain decompositions. Atom decomposition (a.k.a. replicated data) assigns atoms to 

processors. This scheme has the advantage of easy implementation and geometric independency. 

This way, load balancing is trivial, e.g., can be realized by random permutation. Every processor 

has all the information thus memory consumption is not efficient and communication is all-to-all 

thus it may be inefficient. The scalability is weak due to high volume of communication for large 
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systems but noted to be working well for tens of processors [85]. The communication scales by 

O(N), therefore increasing the number of processors does not decrease the cost of 

communication [93]. Force decomposition assigns atoms to processors according to a 

permutation of the force matrix in order to cut the communication cost. As in the atom 

decomposition scheme, there is geometric independency enabling trivial load balancing. 

However, the communication cost scales better with O(N/√P), which can be decreased by 

increasing the number of processors. Domain decomposition (a.k.a. spatial decomposition) 

assigns each processor a subdomain of the simulation domain, hence different from the first two 

particle decomposition methods [95]. This scheme is difficult to implement (e.g., requires atom 

migration), it is geometrically dependent, and it suffers from load balancing for heterogeneous 

systems (e.g., multiscale models) and irregular shapes (there are helpful algorithms that 

organizes partitioning though [91]). In spite of its disadvantages, domain decomposition scheme 

is very efficient and communicates locally. Three schemes are compared in terms of their 

theoretical costs and simulation times in detail by Plimpton [93]. In another scheme, Shaw et al. 

developed the midpoint scheme for efficient decomposition of atom interactions in that particles 

interact at the box where their midpoint lies; where, the efficiency is achieved by a lower volume 

of communication compared to traditional spatial decomposition algorithms [94].  

In parallel computing, proper load balancing is crucial in order to utilize processors 

efficiently. As noted earlier, load balancing is trivial with atom and force decomposition schemes 

such that atoms can be migrated at any time by assigning them to other processors. Load 

balancing is more difficult with domain decomposition schemes due to extra costs of migrating 

atoms. In this connection, heterogeneous and/or moving systems are challenging. Dynamic load 

balancing may be useful if its profits outweigh its overheads. Dynamic load balancing is realized 
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in a measurement-based fashion in NAMD where the simulation is run for a short time for a few 

times and then load is balanced accordingly [85]. 

There are a few limited efforts to utilize High Performance Computing (HPC) in 

multiscale methods. Xiao et al. presented task and data decomposition in atomistic, continuum, 

and bridging domains of the BD method; however, their demonstration is limited to one-

dimensional wave propagation [84]. Anciaux et al. presented parallel implementation of BD on a 

2-D crack example, which showed load imbalance due to coupling overheads [96]. Fox et al. 

presented parallelization of their multiscale method using MPI and demonstrated up to 3.12 

times speed up in simulation time [97]. In addition, there are initiatives to build computational 

libraries [98] and software infrastructure [99] for multiscale modeling and simulation.  

In the following, MMM software, its test functions, and its efficient improvements are 

introduced, in order. Then, the performance of MMM software is compared with LAMMPS, and 

it is also evaluated as a function of rep atom ratio on a single processor. Finally, parallelization 

of MMM software is discussed and the overall efficiency of the software is evaluated by a 2-D 

nanoindentation numerical example.  

4.1 MMM SOFTWARE 

This section introduces specifications and features of the MMM software and can be regarded as 

a short manual. The details of implementation are further elaborated by comments in the source 

code. Considering the readability and modularity of the code, the user can easily understand, 

modify, extend, and optimize the software in part or entirely.  
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MMM is a homegrown code written in C++11 in an object-oriented fashion. The 

software is composed of a hierarchy of classes with the top level class, named MMM as listed in 

Table 5. The entire software is packed into top level MMM class; in this way, it can be 

conveniently coupled to other software.  

 

 

 
Table 5. Hierarchy of classes in the MMM software. 

Top Level Middle Level Visibility Bottom Level 

MMM 

Adaptivity (VV) 

Mediator 

AddIn  (VV) 

AtomGroup  (V) 

ConjugateGradient  (VV) 

Input  (VV) 

Mesh  (V) 

Model  (VV) 

Neighbor  (V) 

Output  (VV) 

Matrix 

Parallel  (VV) 

Potential  (VV) 

Select - 

Temperature  (VV) 

Time  (VV) 

VelocityVerlet  (VV) 

BuildInitialConfiguration 

Test 

Utility 
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MMM class has many subclasses, which are listed under middle level and bottom level 

tabs in Table 5. The subclasses tagged with (VV) have access to each other by means of holding a 

pointer to each other. This N-to-N relationship is easily built by inheriting these subclasses from 

the Mediator subclass, which establishes the entire underlying pointer structure. The subclasses 

tagged with (V) are designed to be independent and thus they do not belong to the previous group 

and do not have access to the (VV) subclasses. In contrast, (VV) subclasses have access to the (V) 

subclasses. Independency of a class or function indicates that the class is standalone and does not 

implicitly depend on any other part of the program. Subclasses without any tag are independent 

and they do not have access to other subclasses but MMM class owns a copy of them. In this 

regard, BuildInitialConfiguration, Test, and Utility are collections of independent functions. 

Matrix is a sublevel class that introduces 1-D and 2-D data structures designed for the 

convenience of the MMM software. AddIn is a subclass suggested for user-designed add-in 

functions, e.g., calculation and output of stress-strain values. Polymorphism is utilized in 

Potential class such that all potentials are derived from the PairBase base class. This way, a 

single class name (i.e., pair_potential_) masks the actual potential hence providing a convenient 

interface. The remaining classes are designed for the tasks according to their names. Detailed 

description of the various classes and functions can be found in their declarations and definitions.  

The MMM software has many homegrown features regarding implementation and 

modeling. Exceptionally, the only external dependency is the Qhull meshing software [100]. The 

executable of the software is called by system commands to generate 2-/3-D Delaunay mesh. In a 

nutshell, some implementation features of the MMM software include: 

 Parallelization with MPI (MPICH 3.1.3) 
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 Fast kd-tree nearest neighbor search (performs worse than the binning algorithm but the 

difference is negligibly small compared to the simulation times)  

 Benchmarked against LAMMPS (15 May 2015) (details of the comparison with 

LAMMPS will be presented later) 

 Tested against LAMMPS and against problems of the literature (details of the tests will 

be presented later) 

 Profiled by Visual Studio (2013) and GNU gprof (2.21) for maximum efficiency  

 Styled with Google C++ Style Guide for consistency and better readability: also, many 

design decisions are made according to the rationale provided in this document 

 Portable: single core/multiple cores, Windows/Unix, Visual Studio/Makefile 

 Common I/O format (e.g., LAMMPS trajectory output) 

 User-friendly I/O formats: minimum number of abbreviations and minimal technical 

language 

 Concrete implementations are interfaced in the header files with accessor/mutator 

functions for readability and modularity: in this way, an implementation can be easily 

modified on the background with minimal effect on the other parts of the code 

 Source code is available online 

Some modeling features of the software include: 

 Both full atomistic and MMM on the same code: common MMM schemes are available  

 1/2/3 dimensions 

 Solvers: conjugate gradient with line search for statics and Velocity-Verlet integrator for 

dynamics 

 Potentials: spring, LJ, Morse 
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 Thermostats: velocity rescaling, Berendsen, Langevin 

 Displacement and force boundary conditions with set/add options 

 Various atom group selection schemes (surface, radial, grid, block, ID, file, and more) 

 Qhull (2012.1) meshing (2-/3-D Delaunay) 

 Linked to PETSc (3.4.3) and SLEPc (3.4.3) for parallel matrix operations and eigen-

analysis (not included in the distributed version) 

 Various pre-/post-processing tools (manual meshing, plotting stress-strain, etc.) 

 Add-in that allows users to integrate their own code (this is different than scripting since 

a new add-in requires recompilation of the source code)  

The simulation is performed by feeding the input file into the MMM class in the main 

function. In this way, a simulation can be easily setup from its input file and several setups of 

simulations can be readily saved. The format of the input file should be understood from 

command functions in mmm.cc source file. Commands are executed in the order they are listed 

in the input file. A sample input file is shown in Figure 30.  



 107 

 
 

Figure 30. A sample MMM software input file. 

 

 

 

The commands starting with a # character are treated as comments and ignored. Since the 

commands are executed in the order they are read, it makes sense to start from more fundamental 

components of a simulation and build up the complexity. The order of input commands does not 

matter except the ones depending on each other. The dependency of commands should be 

obvious. For instance, the sample input file starts with the dimension command and then reads 

the initial configuration from a file. Building in neighbor lists should be after the generation of 

initial configuration. Likewise, the mesh command is put before the model command since 

building the model needs a mesh. The run command comes after all settings are input and 

iterates the system with respect to the input settings. A set of sample input files can be found 

under the test/input directory. 

# simulation perf 130 r240 

dimension 2 

initial_configuration 26.981538 file m62.txt 

neighbor 11.5 auto 

potential morse 10.7844 0.49140659 1.457364 2.58 

mesh file m62_mesh_spacing_120.txt 

model mmm no_ssmp 

select 1 surface x+ 4.0  

select 2 surface x- 3.2 

select 3 unite 1 2 

select 4 surface y- 4.0 

load displacement 3 set 0 NULL NULL 

load displacement 4 set 0 0 NULL 

output 1000 100 

temperature berendsen 1.0 1.0 0.05 

# indent2d inputs: x y del_y K R  

add_in indent2d 1340.607325 2118.96755 0.0001 10.0 40.0 

adaptivity 0 true true 1000 energy -1.67 -1.47 240 

#run velocity_verlet 0.05 1000 

run velocity_verlet 0.05 350000 
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Each simulation outputs a log file and at the beginning of it the input file is pasted for the 

record. The log file provides detailed information after each command is executed. During the 

run, it provides information (e.g., potential energy) periodically in an input frequency. At the end 

of the run, many useful information (e.g., simulation time) are provided as well. Again, a set of 

sample output files can be found under the test/true and test/true4 directories.  

The MMM software consists of approximately 10,000 lines of code in 41 source (.cc) and 

header (.h) files under the source directory. Other directories are input to read input files, output 

to write output files, object to keep object files, test to keep test input file and true solutions, 

visual_studio to keep files related to Visual Studio, and document to keep copyright, manual, 

readme and todo files. In addition, there are many pre-/post-processing tools (mostly written in 

MATLAB) that amount to 5,000 lines of code. It is important to note that the source code is 

efficiently written in a concise and clear fashion. Although the software is developed by Visual 

Studio 2013 IDE in Windows, a makefile is used to build the software in UNIX environment. All 

simulations presented in this work are particularly compiled with GNU GCC 4.9.1 C++ compiler 

wrapped by MPICH 3.1.3 and run on a Dell cluster having 64x2.26GHz Intel processors with 

24MB cache size and 189GB memory size on an openSUSE 11.4 operating system.  

4.2 TESTING 

The MMM software is accompanied with a set of test functions to verify the product. By this 

way, the users and developers can modify the code and then quickly verify that the software is 

functioning properly and no mistake has been done. There are 16 test simulations (grouped into 8 

test cases) that check almost all parts of the code including 1/2/3 dimensions, static and dynamic 
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solvers, MMM schemes, input/output, meshing, potentials, selection schemes, thermostats, 

boundary conditions, adaptivity, conservation of linear momentum, parallelization, and others. 

The tests are run for both single and four processors. The test simulations are verified by the 

output of selected variables that includes IDs, types, positions, energies, and forces of atoms at 

the beginning and end of the simulation. Input files of test simulations can be found under 

test/input directory. These test simulations also serve as samples to the MMM software. True 

solutions to single processor and four processor simulations can be found under test/true and 

test/true4. The MMM software can be tested by inputting test keyword as the simulation name. 

Sample output of running tests is shown in Figure 31. 
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Figure 31. Sample output of test of the MMM software. 

 

 

 

 

Running test 1 

---------------------------------------- 

All output: PASS! 

It took 0.04 seconds. 

 

Running test 2 

---------------------------------------- 

All output: PASS! 

It took 1.09 seconds. 

 

Running test 3 

---------------------------------------- 

All output: PASS! 

All output: PASS! 

All output: PASS! 

All output: PASS! 

All output: PASS! 

It took 0.72 seconds. 

 

… 

 

Running test 8 

---------------------------------------- 

All output: PASS! 

It took 0.03 seconds. 

 

If the program reached to this point, it means all tests are PASSED! 

All tests took 5.47 seconds. 
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4.3 EFFICIENCY IMPROVEMENTS 

In the following, a number of improvements that increase the efficiency of the MMM software 

are introduced. These improvements include latent ghost atoms, dynamically balancing the load 

on processors, and other modifications. 

4.3.1 Latent Ghost Atoms 

As the theory of MMM dictates, non-interpolating atoms do not interact (apply force) with each 

other. Non-interpolating atoms interact only with other types of atoms if there are any in their 

range. As a result, non-interpolating atoms having all non-interpolating atom neighbors do not 

have any interactions, hence inactive. However, these inactive atoms are redundantly included in 

the computations: (i) they are visited in loops of energy and force calculation, (ii) their positions 

are interpolated, and (iii) their forces, which are actually equal to zero, are extrapolated. In order 

to eliminate these redundant computations, inactive atoms are converted to latent atoms, which 

means that they are excluded from the aforementioned computations (the word ―sleep‖ is used 

instead of ―latent‖ in the MMM software). Figure 32 shows a 2-D square copper system 

consisted of 1,904 atoms in hexagonal configuration where interactions are truncated beyond the 

second shell of neighbors. The atoms that are not latent are neighbors of interpolating rep atoms 

and primary sampling atoms. The system consists of 1,671 latent atoms, which corresponds to 

88% of all atoms.  
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Figure 32. 2-D square system with latent atoms (that correspond to 88% of total atoms) shown in purple color. 

 

 

 

The atoms are converted to latent atoms whenever they are not needed. The atoms are 

needed when it is time to output to file, adaptivity is performed, or neighbor lists are updated. 

When latent atoms are needed, they are activated, which means that their positions are updated 

by the displacement of interpolating rep atoms since the time they were converted to latent. Since 

only one set of positions of rep atoms are saved for the sake of efficient memory usage, all latent 

atoms are activated if any latent atom is activated and then atoms that are supposed to continue 

their latency are converted back to latent atoms.  

4.3.2 Dynamic Load Balancing 

MMM models are highly heterogeneous since the types of atoms are non-uniformly distributed 

in space. The cost of computation associated with each type of atom is difficult to anticipate 
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since it also depends on the types of neighbor atoms. In addition, adaptive MMM models may 

change the types of many atoms suddenly, hence elevating the heterogeneity to an even more 

unpredictable level. These facts require careful partitioning of atoms onto the processors. As will 

be presented later, the MMM software employs atom decomposition scheme, which allows easy 

partitioning of atoms onto the processors without a need for atom migration. That is, an atom can 

be assigned to any processor at any time without any other additional effort. A simple scheme 

partitions atoms onto the processors by random permutation. However, this scheme may suffer 

from unbalanced loading of atom types. For instance, one processor may have rep atoms in 

majority and another processor may have ghost atoms in majority. It is obvious that the cost of 

computations associated with rep atoms is higher than that of ghost atoms. In this case, the first 

processor is overloaded. A second scheme partitions atoms onto the processors by interlacing 

atoms of the same type. That is, interpolating rep atoms are partitioned onto the processors one 

by one leaving every processor with almost equal number of interpolating rep atoms, and then 

non-interpolating rep atoms are partitioned onto the processors one by one, and so on. In fact, 

this scheme is much more efficient than random permutation. However, it still suffers from 

unbalanced loading for at least three reasons: (i) a surface atom has fewer number of neighbors 

compared to an interior atom, (ii) utilizing Newton’s 3
rd

 law to compute half of the interactions 

may reduce the load of atoms at very different rates, and (iii) processors perform differently due 

to hardware issues, for instance, a cluster may be made up of old and new processors [101].  

The MMM software implements measurement-based dynamic load balancing, which is 

an efficient way to partition atoms onto the processors. In particular, the time spent in parallel 

regions by each processor is recorded over a period of time. At the moment of dynamic load 

balancing, processors that recorded parallel times lower or higher than the average are identified. 
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Then, a certain amount of atoms are collected from processors with higher parallel times. This 

amount is determined in proportion to the deviation of the processor’s parallel time from the 

average. Collected atoms are then partitioned onto the processors with lower parallel times, again 

in proportion to the deviation of the processor’s parallel time from the average. The frequency of 

dynamic load balancing is set to 500 iterations since a lower value is found to be too sensitive. 

The significance of dynamic load balancing is more pronounced with higher number of 

processors. In order to demonstrate the effect of dynamic load balancing, a 2-D rectangular 

copper system consisted of 101,537 atoms in hexagonal configuration is simulated. The material 

is modeled with Morse potential where interactions are truncated beyond the fourth shell of 

neighbors. The simulations are run on 32 processors with and without dynamic load balancing. 

Relative atom numbers (Equation (37)) and relative parallel times (Equation (38)) are compared.  

 

 

(37) 

 

 

(38) 

where P is the processor ID.  

Results of relative atom number and parallel time distributions are shown in Figure 33.  
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Figure 33. Relative atom number (left) and relative parallel time (right) vs. processor ID with and without dynamic 

loading. 

 

 

 

Figure 33 shows that when the dynamic loading is turned off, atoms are partitioned with 

respect to the scheme that interlaces atom types. As a result, atoms are partitioned evenly 

resulting with an uneven distribution of parallel times. Since processors wait for each other in 

every iteration to exchange information, the iteration time is equal to the maximum parallel time 

of that iteration. On the contrary, when dynamic loading is turned on, atoms are partitioned 

unevenly with respect to their parallel times. As a result, parallel times are evenly distributed and 

the iteration time is lower than that of dynamic loading turned off by 9% (corresponds to 3% in 

simulation time). This reduction would be much more pronounced in case of an adaptive 
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simulation where types of many atoms change suddenly, hence the workload of a processor. 

Some additional statistical results are listed in Table 6. 

 

 

 
Table 6. Relative standard deviation of relative atom numbers and relative parallel times when dynamic loading is 

turned on and off. 

Dynamic Loading 

Relative Standard Deviation of 

Relative Atom Number 

Relative Standard Deviation of 

Relative Parallel Time 

Off 0.1% 18.1% 

On 20.0% 1.9% 

 

 

 

Table 6 shows that relative standard deviation of relative parallel time significantly decreases 

when atoms are efficiently partitioned by dynamic loading, which is evident from the increase in 

relative standard deviation of relative atom number.  

4.3.3 Other Improvements 

Four other improvements are implemented in the MMM software in order to increase efficiency. 

The first one is lazy potential energy computation, which is motivated by the fact that the 

potential energies of atoms are not required to iterate the trajectory. Therefore, energies of atoms 

are computed only when they are required, e.g., output to file. This reduction increased the 

efficiency by about 10%. The second improvement is building in interaction lists. Interaction list 

of an atom consists of a list of neighbor atoms that is reduced by utilizing Newton’s 3
rd

 law and 

atom types. Utilizing Newton’s 3
rd

 law, the force between two atoms is calculated once and 
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added to the resultant force of both atoms. In this way, the interactions are cut in half. In the 

other reduction, the interactions between non-interpolating atoms are excluded from the 

interaction list. Since interaction lists are the most frequently visited sections of the software, 

these reductions contributed significantly to the efficiency. Specific to 3-D models, the third 

improvement requires search of the mesh element where each atom lies in – an atom does not 

necessarily lie in a mesh element throughout a simulation. Given the nodal coordinates of a 

tetrahedron and coordinates of an atom, checking if the atom lies inside the tetrahedron consist of 

computing determinants of five 4x4 matrices, which is computationally expensive. This 

operation is repeated for M by N times where M is the number of elements and N is the number 

of atoms. Due to high computational cost in question, this section is parallelized. This 

parallelization is exceptional in the context of the MMM software since the mainly parallelized 

section is energy/force computation, as will be presented later. The last improvement is 

periodically writing user-specific outputs to file. In the simulations where stress-strain values per 

iteration are requested, these values are expected to be written to an additional output file in 

every iteration. However, access to a file has a fixed cost which may introduce a bottleneck if 

performed every iteration. Therefore, values of a number of iterations are saved to a buffer and 

written to file periodically. This way, the cost of writing user-specific inputs to file is 

significantly reduced.  

4.4 COMPARISON WITH LAMMPS 

In addition to MMM models, the MMM software is also capable of performing full atomistic 

MD simulations. This feature provides the basis of benchmarking the software with other similar 
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software. Performance of the software is thus compared with full atomistic models to the well-

known Large-scale Atomistic Molecular Massively Parallel Simulator (LAMMPS) software 

[93]. LAMMPS software is very efficient and stands to be one of the best state-of-the-art MD 

programs. The comparison is carried out with a 3-D cubic copper system consisted of 9,842 

atoms in FCC configuration. The material is modeled with Morse potential where interactions 

are truncated beyond the fourth shell of neighbors. The simulations are run for 1,000 iterations 

by LAMMPS and MMM. Measurements are taken as the average of many trials and loop times 

(the time spent on iterating the system) are compared. As a result, MMM loop time is recorded 

as 164 seconds while LAMMPS loop time is recorded as 157 seconds. That is, the MMM 

software is only 4% slower than LAMMPS. This slowness is attributed to: (i) the MMM 

software writes additional information (ID, type, positions, energies, and forces) to an output file 

that may account for up to 1% and (ii) the MMM software is a research code, which means that it 

stands to be improved [26]. In other words, research code implements novel approaches, which 

require software to be maintainable and extensible [85].  

4.5 EFFICIENCY OF MMM ON A SINGLE PROCESSOR 

The primary motivation of developing MMM is to run simulations at a cost lower than that of 

full atomistic. In order to show the capability of MMM in this respect, the efficiency of MMM 

models are compared to a full atomistic model. This comparison can be extended to full 

atomistic software in general since full atomistic performance run of MMM is shown to be as 

good as LAMMPS in the previous section. In the comparison, a 3-D cubic copper system 

consisted of 102,690 atoms in FCC configuration is simulated. The material is modeled with 
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Morse potential where interactions are truncated beyond the fourth shell of neighbors. The 

simulations are run for 10,000 iterations and simulation time is considered. The rep atom ratios 

of MMM models are varied from 0.0078% to 100% (full atomistic) and their simulation times 

are recorded. The speed-up of MMM models are calculated according to Equation (39). 

 

 

(39) 

In addition, the theoretical speed-up is investigated. The performance of a full atomistic 

simulation scales with O(NNb) where N is the number of atoms and Nb is the number of atoms in 

a ball defined by the cut-off distance [43]. Likewise, the performance of an MMM simulation 

scales with O(NrNb) where Nr is the number of rep atoms. Dropping the identical terms, the 

MMM speed-up is inversely proportional to the reduction in the rep atom ratio as in Equation 

(40).  

 

 

(40) 

The numerator of Equation (40) should actually be equal to 1, but it is set to 100 since the rep 

atom ratio is expressed in percentage. Speed-up of MMM models with respect to varying rep 

atom ratios along with theoretical speed-ups are shown in Figure 34.  
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Figure 34. Speed-up of MMM models with respect to varying rep atom ratio (left) and its close up (right) on a semi-

log scale. 

 

 

 

Figure 34 shows that the actual speed-up closely follows the theoretical speed-up in 

general; however, a discrepancy is observed for low rep atom ratio. This discrepancy is expected 

since there is a fixed cost in every simulation and also MMM introduces some additional costs to 

the simulation. These fixed and additional costs become more apparent when the overall 

simulation cost is very low as in the case of low rep atom ratio. Nevertheless, it can be concluded 

that the reduction in the simulation time can be well estimated from the reduction in the rep atom 

ratio.  

Figure 34 shows that speed-up is below 2 times for rep atom ratio higher than 50%; and, 

from 50% to 10% rep atom ratio, speed-up increases to 8 times. Then, speed-up increases 

exponentially for rep atom ratio decreasing from 10%. The maximum speed-up (239.2 times) is 
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reached at 0.0078% rep atom ratio, which corresponds to only 8 rep atoms out of 102,690 atoms. 

These rep atoms are the interpolating rep atoms at the corners of the cube, and it stands to be the 

minimum number of rep atoms possible for this cube. Therefore, the speed-up reaches to its 

higher limit at this point. Potentially, this limit may be pushed further by increasing the mesh 

size. In general, however, when the rep atom ratio is assumed to vary between 5 to 30% on 

average, the speed-up corresponds to about 3 to 12 times. This assumption of rep atom ratio is 

reasonable since a lower value indicates use of redundant atoms and a higher value may be too 

costly, which would defeat the purpose of multiscale modeling.  

4.6 PARALLELIZATION 

The MMM software is parallelized using the Message Passing Interface (MPI), using MPICH 

3.1.3. Two sections of the code are parallelized: (i) energy/force computation and, as noted 

earlier, (ii) searching for tetrahedral elements where the atoms lie in. The rest of the code is 

sequentially executed by each processor. Energy/force computation takes about 80-95% (even 

higher with expensive potentials and/or larger cut-off distances) of the simulation time. Because 

of the partitioning of atoms onto the processors, each processor is only responsible for 

computing energies and forces of a group of atoms in every iteration. Following the parallel 

energy/force computation, energy/force vectors are communicated among processors using the 

MPI_Allreduce command. As a matter of trade-off between storage and communication, Shaw et 

al. pack/unpack data [94] and Buchholz et al. keep data in MPI-compatible structure [91]. In 

MMM, data (i.e., energy/force) is stored in 2-D noncontiguous vectors (using matrix format of 

MMM). Before and after a communication, this 2-D data is packed to and unpacked from 1-D 
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contiguous data. A design choice is made in this way because storing 1-D contiguous data all the 

time introduced a higher cost due to index operations such as accessing y-position of 773
th

 atom 

by 3x773+1.  

The MMM software employs atom decomposition scheme. As noted earlier, this scheme 

requires all-to-all communication of energies and forces. For instance, considering 1,000,000 

atoms in a system, the force data is about 23 MB. Transfer of such a size from P processors to P 

processors is too expensive. However, the MMM framework eliminates the majority of atoms 

from the system, which leaves only rep atoms that actually matters for the simulation. Thus, it is 

sufficient to only communicate data of rep atoms, which is much smaller than full atomistics. As 

a result, the elimination of redundant atoms is not only useful for reducing energy/force 

computations, but it is also useful for reducing communication costs among processors. It should 

be noted that a disadvantage of synchronous communication is that every processor has to wait 

for all other processors to finish the iteration before the simulation can proceed. This 

synchronization may add an extra few percent to the simulation time. In order to observe 

communication and wait times separately, two blocking barriers (MPI_Barrier) are located 

before and after the communication sections. By this means, the time each processor spends in 

the first barrier is recorded as the wait time and the time each processor spends between the two 

barriers is recorded as the communication time. Communication and wait times are reported at 

the end of a simulation in its log file. 

There is a competing effect between the two following phenomena: cost reductions of 

MMM and parallelization. In order to demonstrate this competing effect, a 3-D cubic copper 

system consisted of 102,690 atoms in FCC configuration is simulated. The material is modeled 

with Morse potential where interactions are truncated beyond the fourth shell of neighbors. A 



 123 

full atomistic model is run on a single processor and an MMM model of 1.3% rep atom ratio is 

run on 1, 2, and 4 processors. The results are compared in terms of parallel efficiency, which is 

given by Equation (41) as 

 

 

(41) 

where Ep is the parallel efficiency for P processors, Ts is the serial time, and TP is the parallel 

time for P processors. The results are listed in Table 7.  

 

 

 
Table 7. Parallel performance of the MMM software by comparing full atomistic model to MMM model on 1, 2, 

and 4 processors. 

 

Full  

Atomistic 

MMM 

1P 

MMM 

2P 

MMM 

4P 

Simulation Time (min) 394.7 12.4 7.8 6.5 

Parallel Efficiency of  

Simulation (%) 

- - 79.5% 47.7% 

Parallel Time (min) –  

Ratio to Simulation Time 

391.6 – 99.2% 9.1 – 73.4% 4.6 – 58.2% 2.6 – 39.2% 

Parallel Efficiency of  

Parallel Portion (%) 

- - 98.9% 87.5% 

Serial Time (min) –  

Ratio to Simulation Time 

3.1 – 0.8% 3.3 – 26.6% 3.2 – 41.8% 3.9 – 60.8% 
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As Table 7 shows, MMM run on a single processor reduces the simulation time of the 

example about 43.0 times. More importantly, this reduction is mostly effective on the parallel 

portion of the code as in the case of a parallel simulation. Therefore, both cost reductions of 

MMM and parallelization are effective on the parallel portion of the code, hence their effects are 

competing. With ideal scaling behavior, parallelization would require 43 processors to achieve 

the same amount of reduction. However, MMM software achieved this reduction with only one 

single processor. As a result, the conclusion is that the MMM software needs fewer processors.  

From full atomistic to MMM on single processor, the time that the parallel portion of the 

code spends is reduced from 99.2% to 73.4% percent. However, parallel efficiency of a code 

strongly depends on the parallel portion of the code. This phenomenon is described by Amdahl’s 

law as given by Equation (42).  

 

 

(42) 

where SP is the speed-up for P processors and B is the parallel portion of the code. For instance, 

if the parallel portion of a code is 90% (B = 0.9) and P is assumed to be infinity, maximum 

speed-up of the code is only 10 times. In this regard, Amdahl’s law proves that speed-up of a 

code is very sensitive to the parallel portion of the code.  

In order to further evaluate the scaling of the MMM software, a 3-D cubic copper system 

consisted of 164,255 atoms in FCC configuration is simulated. The material is modeled with 

Morse potential where interactions are truncated beyond the fourth shell of neighbors. An MMM 

model of 29.7% rep atom ratio is run by the MMM software on 1, 2, 4, 8, and 16 processors. The 

results are shown in Figure 35. 
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Figure 35. Scaling of MMM and estimation by Amdahl’s law. The black dotted line represents the ideal scaling. 

 

 

 

Figure 35 also shows the estimation by Amdahl’s law. The parallel portion of the MMM 

code for this model is taken from the MMM run on a single processor where the parallel time is 

recorded as 94% of the simulation time. As expected, this number well approximates the parallel 

portion of the MMM code for this model and, when input to Amdahl’s law, closely captures the 

MMM speed-up. The scaling of MMM is better for 1, 2, and 8 processors compared to 16 

processors. The decline in the efficiency is due to the fact that the communication time is starting 

to take over the computation time for more than 16 processors. In a full atomistic simulation on 

16 processors, each processor has about 10,000 atoms, thus the decline in efficiency could be 

expected for a bigger number of processors. However, an MMM simulation is different than a 

full atomistic simulation since the actual number of atoms that are included in the computations 

is the number of rep atoms rather than the total number of atoms. In MMM run on 16 processors, 
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there are about 50,000 rep atoms and each processor has about 3,000 rep atoms per processor, 

which explains the decline in efficiency. Consequently, the scaling of MMM software is 

governed by the actual number of atoms included in the computations, hence the estimations 

should be better based on number of rep atoms instead of the total number of atoms.   

4.7 NUMERICAL EXAMPLE: 2-D NANOINDENTATION 

The MMM method is tested for a 2-D nanoindentation numerical example to demonstrate its 

efficiency. The copper model is consisted of a rectangular prism of 1,009,441 atoms in 

hexagonal configuration and has width of 262.1 nm and height of 211.9 nm. The material is 

modeled with Morse potential where interactions are truncated beyond the fourth shell of 

neighbors. The atoms are initially relaxed by both static energy minimization and dynamics. The 

MMM model is coarsened by 712 elements of size 12 nm, which corresponds to about 1,400 

atoms per element. The lateral edges of the system are fixed in horizontal dimensions and bottom 

edge is fixed in all dimensions. Temperature of the system is kept constant at 1 K by the 

Berendsen thermostat. The simulations are run for 175 ps at a timestep of 0.5 fs. An indenter is 

pushed towards the top surface with respect to Equation (34) where K is 10 eV/Å
2

, and R is 40 Å. 

The indenter is pushed constantly at a speed of 200 Å/ns.  

The adaptivity scheme employed in this example is slightly different than the one 

presented in the Adaptivity Chapter. In the current scheme, two potential energy thresholds are 

input: lower and higher. Thus, an atom is activated for refinement if its energy fits into the input 

interval. This way, surface atoms can be excluded from activation as is the case in this example. 

In addition, the proximity is now utilized to search for nearby elements (rather than nearby 
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atoms). That is, elements with centroids within the influence radius of an excited atom are 

activated for refinement. Last, a new adaptivity criterion is introduced to enforce activation of 

elements that are neighbors to the active elements. Two elements are defined as neighbors if they 

share a node. These changes contributed to the efficiency of the adaptivity scheme that is critical 

to simulate large systems. In this respect, potential energy thresholds are input as -1.67 (94% of 

the initial energy value) and -1.47 eV (82% of the initial energy value) and influence radius is 

input as 240 Å. The adaptivity scheme is called in every 1,000 iterations. Results are compared 

to LAMMPS in terms of accuracy and efficiency. Force-depth curves are shown in Figure 36, 

snapshots from simulations are shown in Figure 37 and Figure 38, and rep atom ratio and 

iteration time evolutions are shown in Figure 39. 

 

 

Figure 36 Comparison of force-depth curves of LAMMPS and MMM simulations of 2-D nanoindentation example. 
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Figure 37. Snapshots of LAMMPS (left) and MMM (right) simulations of 2-D nanoindentation example. The top 

panel shows the beginning of simulations where LAMMPS is full of non-interpolating rep atoms (black) and MMM 

has only a small region of non-interpolating rep atoms with the rest is dominated by non-sampling atoms (gray). The 

bottom panel shows the onset of dislocation nucleation and color coded with respect to potential energy. In the 

MMM figure, only fine regions are color coded with respect to potential energy and the rest is color coded with 

respect to atom type. 
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Figure 38. Snapshots of LAMMPS and MMM simulations of 2-D nanoindentation example as the dislocations 

propagate (continued from previous figure). 
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Figure 39. Iteration time vs. iteration with 1 and 2 processors; and, rep ratio vs. iteration of 2-D nanoindentation 

example. 

 

 

 

Figure 36 shows that force-depth curve of MMM agrees well with that of LAMMPS. 

MMM closely captures the elastic modulus, yield stress, yield strain, and hardening along with 

three bursts in the stress-strain curve. Figure 37 and Figure 38 show that the dislocation 

distributions of MMM match that obtained from MD simulation using LAMMPS. In MMM, this 

match is achieved by only refining the localized regions of the dislocations and efficiently 

coarsening the rest. This high level of accuracy is expected due to earlier results presented in 

Dynamics and Adaptivity Chapters.  

More importantly, this Chapter focuses on the efficiency results shown in Figure 39. The 

rep atom ratio is 0.3% in the beginning. As the indenter penetrates into the material, the material 

starts deforming. As a result, the rep atom ratio increases to 1.9% at iteration number 20,000. In 
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correspondence, iteration times of both single and two processors starts increasing from iteration 

number 20,000 onward. The iteration time at an iteration number is calculated as an average 

from the beginning of the simulation until that iteration. Therefore, the reactions of iteration 

times to increases in rep atom ratio are not instant but rather cumulative. The rep atom ratio 

sharply increases from iteration number 242,000 onward. This time, reactions of iteration times 

are much smoother due to the long history of simulation. The increase in the rep atom ratio leads 

to substantial increase in the number of rep atoms. For instance, 10% rep atom ratio corresponds 

to approximately 100,000 rep atoms. In turn, the cost of simulation substantially increases too. 

This additional cost is undertaken by a single or two processors. As evident from the figure, the 

increase in iteration time is sharper in the former whereas the increase in iteration time is 

smoother in the latter as a result of relative costs per processor. Final iteration times are recorded 

at the final iteration and listed in Table 8. 

 

 

 
Table 8. Iteration times of LAMMPS and MMM on various number of processors. 

Software Number of Processors Iteration Time (s) Efficiency 

LAMMPS  4 0.8611 

~8.5 times LAMMPS 8 0.4304 

MMM 1 0.4043 

LAMMPS 6 0.5819 

~6.3 times LAMMPS 12 0.3040 

MMM 2 0.2828 
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Efficiency of MMM here is defined by Equation (43) as  

 

 

(43) 

where titer,FA is the iteration time of full atomistic simulation, titer,MMM is the iteration time of 

MMM simulation, Piter,FA is the number of processors used in full atomistic simulation, and titer,FA 

is the number of processors used in MMM simulation. According Table 8, when we take the gray 

rows as a case, the MMM iteration time on a single processor is close to LAMMPS iteration time 

on 8 processors. Alternatively, iteration time of MMM on a single processor is slightly lower 

than half of LAMMPS iteration time on 4 processors. Either option amounts to ~8.5 times in 

efficiency. When we take the white rows as a case and compare results in the same way, either 

option amounts to ~6.3 times in efficiency.  

The reduction in number of processors is included in the definition of efficiency of 

MMM since MMM shows a better performance with low number of processors due to its scaling 

behavior as discussed earlier. As a matter of fact, the reduction in number of processors is 

considered to be as important as reduction in iteration time because it enables simulation of large 

systems on desktop computers instead of supercomputers. In the current example, for instance, a 

system of about one million atoms can be efficiently simulated on a desktop computer on a 

single processor or two processors. Taking into account that current generation of desktop 

computers has more than four processors on average, running a simulation of one million atoms 

on a few processors is very feasible. In addition, the fact that maintaining a supercomputing 

facility over 3 year period equals the hardware costs [102], eliminating the need for large number 

of processors is even more important.  
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An important point regarding the numerical example presented is that nanoindentation 

stands to be a tough case since rep atom ratio considerably increases over time. The effect of 

increase in the rep atom ratio on iteration times is evident in Figure 39. However, 

nanoindentation example is chosen on purpose to show that MMM is efficient in the worst case. 

Numerical examples with localized defects have nearly constant rep atom ratio, e. g., 1-D wave 

propagation or 2-D dislocation in Adaptivity Chapter; thus, they are expected to show better 

efficiency.  

In conclusion, the efficiency of MMM is discussed by a 2-D nanoindentation numerical 

example. In that, the accuracy is matched very well. An efficiency of 6.3 – 8.5 times is achieved 

by means of combined reductions in iteration time and processor number where the latter is more 

pronounced. The reduction in processor number is believed to be very promising to enable 

simulations of large system on regular desktop computers, which in turn eliminates the need of 

using expensive supercomputers.    
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5.0  CONCLUSION 

Dynamics, adaptivity analysis, and implementation of the concurrent atomistic/continuum 

coupling method MMM are presented. Governing equations of the dynamics are derived from a 

Hamiltonian that systematically approximates the energy of the original system. Further, the 

refinement and coarsening procedures of the adaptivity scheme along with adaptivity criteria are 

outlined in detail. Last, the MMM software is presented. The structure of the software and many 

implementation aspects are described. The efficiency and scalability of the software are 

discussed as well. The dynamics, adaptivity, and efficiency of the method are demonstrated with 

many numerical examples including wave and crack propagations, dislocation glide, 

nanoindentation, and modal analysis in 1/2/3 dimensions. All results are compared to true full 

atomistic solutions. Good agreement is observed in all numerical examples. Also, the MMM 

method is shown to have 6.3 – 8.5 times efficiency by means of a combined reduction in 

simulation time and number of processors. In conclusion, the method is proved to be accurate, 

efficient, flexible, and consistent.  
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5.1 MAIN CONTRIBUTIONS 

The main contributions of this dissertation include the following: 

 This research has shown that dynamics concurrent atomistic/continuum coupling is 

feasible under the MMM framework. The energy-based MMD method is distinguished 

by initializing from a full atomistic model and systematically eliminating the degrees of 

freedom of the system. This way, the MMD method does not differentiate between the 

atomistic and continuum descriptions. Employing atomistic description everywhere in the 

domain, the MMD method eliminates the requirement for a specialized continuum model. 

Comparison of MMD solutions to true full atomistic solutions demonstrates that the 

MMD method produces high accuracy.  

 The MMD method does not need to implement a cumbersome handshake region at the 

atomistic/continuum interface. A thermostat, also utilized to regulate the temperature of 

the system, mitigates the adverse effects of the high frequency wave reflections in the 

atomistic region. The high accuracy of the MMD method further supports the adopted 

approach.  

 The MMD method is capable of capturing the fine details of wave fronts in wave 

problems. This is accomplished by adaptively tracking the wave front with atomistic 

description during the course of the simulation. 

 Modal analysis shows that the approximation of full atomistic solution extends to 

calculation of natural frequencies. The monotonic convergence of the MMD solutions 

with respect to decreasing mesh size indicates the consistency of the method. 
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 The target efficiency of the MMM method is retained by an adaptive scheme. The 

scheme is able to accurately switch the subregions of the domain between the 

atomistic/continuum descriptions. As the refinement captures the progress of the material 

defects, coarsening retains the target efficiency. Restricting it to a confined region, 

overuse of expensive atomistic description is avoided. 

 The efficient, readable, user-friendly, and portable MMM software is presented to let the 

users to run their own multiscale simulations. A short manual and testing are further 

presented and the source code is publicly shared to let the developers to extend and 

modify the MMM software. The efficiency of the software is validated by presenting the 

efficiency improvements and demonstrating that the method is as fast as one of the state-

of-the-art MD codes (i.e., LAMMPS). 

 The MMM method reaches the originally intended purpose: efficient simulations with 

high accuracy. The speed-up of the MMM method is demonstrated to be inversely 

proportional to the rep atom ratio. Even though the edge cases are presented, realistic 

expectations of the speed-up are discussed. Agreement of the actual speed-up with the 

theoretical speed-up provides a tool to closely estimate the cost of the simulation. 

 The MMM software requires much fewer processors than a standard MD code. Reducing 

the cost of the parallel portion of the code, the MMM software lowers the required 

number of processors. Consequently, problems with up to millions of atoms can be 

efficiently simulated on desktop computers with only a few processors. In turn, the need 

for high-maintenance and expensive supercomputers is eliminated.  
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5.2 FUTURE WORK 

The MMM method is introduced for statics [46] and dynamics [77] followed by convergence and 

error structure analysis [78] and introduction of a unified and consistent framework for general 

FE shape functions [79]. Also, adaptivity analysis and implementation are presented in the 

current work. Still, the MMM method needs to be further developed in many directions:  

- The MMM method features pair potentials including spring, Lennard-Jones (LJ), and 

Morse. However, it is indispensable to extend the method to many-body potentials. For 

instance, the EAM potential is different than the pair potentials since it loops the 

neighbors twice in every iteration: to account for the electron charge density in the first 

iteration and to perform the actual computations in the second iteration. That’s why; the 

EAM potential must be treated differently than the pair potentials.  

- The dynamics of the MMM method is limited to zero temperature. This incapability is 

limiting in the sense that the heat problems and problems where the heat may play an 

important role cannot be simulated. Therefore, the MMM method should be extended to 

finite temperature dynamics. It has been introduced to some multiscale methods as cited 

in the introduction. The extension to finite temperature substantially affects the dynamics 

of the system thus requires some sophisticated approach.  

5.2.1 Discussion on Scaling Performance of the MMM Software 

The scaling behavior of the MMM software is previously presented in the 

Implementation Chapter. Although the MMM software needs fewer processors and also shows 

good scaling performance, there is still more room for improvement of the scaling performance 
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of the software. In the following, a few potential improvements are going to be discussed. First, 

the serial portion of the code can be parallelized as well since it is growing in proportion as the 

time spent in the parallel portion of the code is reduced. However, in an atom decomposition 

scheme, the parallelization of the serial portion of the code would require more communication, 

cost of which may outweigh the reduction in cost of the parallel portion. A better solution is to 

implement domain decomposition since it naturally parallelizes more parts of the code and 

requires less communication. However, domain decomposition may not be suitable for MMM 

models for a few reasons. First, MMM models are highly heterogeneous and vibrant that may 

often require migration of atoms. However, migration of atoms is difficult to implement and adds 

an extra cost [103]. The difficulties regarding parallel implementation of adaptive systems is also 

evident from the literature on the subject in FE [104-106]. Second, ghost atoms have long-range 

effects that might extend beyond the neighbor boxes of a domain decomposition scheme [103]. 

For instance, position of a ghost atom has to be interpolated by the interpolating rep atoms of the 

element it belongs to. These interpolating rep atoms may be in a faraway box for a coarse mesh 

size. It is noteworthy that domain decomposition schemes owe their efficiency to minimal 

volume of communication among thin surface layers of neighbor boxes. That is why; long-range 

effects of ghost atoms may disrupt the efficient communication of domain decomposition 

schemes. Third, the relationship between ghost atoms and interpolating rep atoms are beyond the 

interpolation of positions of ghost atoms. For instance, forces of a ghost atom have to be 

extrapolated to the interpolating rep atom of the element it belongs to. For another instance, mass 

and velocity of a ghost atom is represented by the interpolating rep atoms. In case of an adaptive 

refinement, mass and velocity of a ghost atom are derived from the interpolating rep atoms of the 

element it belongs to. As in the second reason, these long-range relationships may disrupt the 
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efficient communication of domain decomposition schemes. Despite all these factors, domain 

decomposition scheme may be inevitable in order to attain much larger length and time scales 

due to the fact that it is more memory efficient. The domain decomposition scheme disintegrates 

the data structures onto the processors, which is a labor-intensive task since its implementation 

would substantially change the software.  

Another improvement to parallelize the serial portion of the MMM software is to employ 

OPENMP instead of MPI. OPENMP provides easy parallelization of the loops in a code without 

an effort to build communication schemes. In order to compare OPENMP to MPI, a 3-D cubic 

copper system consisted of 9,842 atoms in FCC configuration with 7.9% rep atom ratio is 

simulated. The material is modeled with Morse potential where interactions are truncated beyond 

the fourth shell of neighbors. The simulation is run with MPI on 1, 2, 4, 8, and 16 processors and 

with OPENMP on 1, 2, 4, 8, and 16 threads. With OPENMP, more sections of the codes 

including integration, thermostat, and boundary conditions are parallelized. Parallel efficiencies 

of MMM with MPI, MMM with OPENMP, and LAMMPS are compared in Figure 40.  
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Figure 40. Comparison of parallel efficiencies of MMM with MPI, MMM with OPENMP, and LAMMPS. 

 

 

 

Figure 40 shows that performances of MPI and OPENMP are similar although the 

parallel portion of the latter is bigger. The close track of MPI with less the parallel portion is 

attributed to the fact that MPI is known to be more efficient than OPENMP. It is noteworthy that 

although the respective performances of MPI and OPENMP are similar, OPENMP is much more 

efficient in memory usage since MPI duplicates data for each processor in an atom 

decomposition scheme. As a result, when compared to MPI, memory usage of OPENMP is as 

few as the number of processors. A disadvantage of OPENMP is that it is limited to shared 

memory environments while MPI is compatible with both shared and distributed memory 

environments. 
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