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Phase transitions in nanomaterials are the basis for their broad applications. However, due to the 

short length and fast kinetics at the nanoscale, gaining a mechanistic understanding of such 

transient processes is extremely challenging. In this dissertation, in-situ transmission electron 

microscopy (TEM) studies have been performed to reveal the atomic-scale processes during 

vitrification of metallic liquids and to uncover the reaction and degradation mechanisms in 

lithium-ion battery electrodes. 

It has been a long-standing goal for scientists to vitrify single-element metallic liquids. 

Here, we report an experimental approach that successfully vitrifies melts of pure refractory 

body-centered cubic metals by achieving an unprecedented high liquid quenching rate of 1014 

Ks−1. The availability of monatomic metallic glasses being the simplest glass formers offers 

unique possibilities to study the structure-property relationships of glasses. Distinctive 

tendencies towards shear localization have been observed in sub-100-nm metallic glasses, which 

may shed light on the relationship between atomic structure and mechanical property of metallic 

glasses. 

Phase transitions in anode materials during battery operation often induce large volume 

change and pulverization. By building a nanobattery inside the TEM, the plasticity and strain 

accommodation in one-dimensional anode materials during lithiation/delithiation were, for the 

first time, visualized under atomic-scale resolution. Lithiation of SnO2 nanowires was initiated 
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by preferred lithium insertion along the (020) plane, which developed into multiple reaction 

fronts where stress-driven dislocation plasticity was found to be a precursor towards solid-state 

amorphization.  

Revealing the thermodynamics and kinetics in intercalation compounds has been 

technically challenging, due to the subtle structural changes associated with lithium 

intercalation/extraction. By tracking the evolution in the electron diffraction pattern of a multi-

particle system consisting of 200-300 nanoparticles, we found that the lithiation of anatase TiO2, 

previously believed to be biphasic, switches to a single-phase reaction with a high lithiation rate 

up to 60 C when the crystal size decreases to 20 nm. 

This dissertation provides a novel non-equilibrium processing methodology for 

investigating the fast kinetics and structures of supercooled liquids under deep quench, and 

advances the fundamental understanding of the mechanical degradation and the size-dependent 

kinetics and thermodynamics in nanostructured electrode materials. 
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1.0  INTRODUCTION 

Nanomaterials often exhibit superior physical and chemical properties compared to their bulk 

counterparts1-10, and therefore hold great promise in various applications such as energy storage 

devices10-22, biosensors23-26 and memristors27-31. For example, recent investigations on the 

mechanical properties of nanosized metallic glasses (MGs) have reported increasing strength and 

ductility with decreasing specimen size, resulting in a transition from strong-yet-brittle to strong-

and-ductile at the nanoscale32-37. Unfortunately, nanosized MGs are usually fabricated by 

focused ion-beam (FIB) milling, which tends to introduce contamination and lacks the ability to 

produce sub-100-nm sized MGs, while effective liquid-quenching approaches at the nanoscale 

have currently been lacking. To date, most bulk MGs are produced by liquid-quenching 

techniques such as die-casting, melt-spinning, and liquid splat-quenching. However, the 

mediocre accessible cooling rates in these vitrification techniques limit the glass formers to those 

consisting of multiple elements with distinctive atomic sizes and chemical affinities38-41. At the 

nanoscale, however, ultrahigh cooling rates may be achieved by employing deliberately designed 

structures and geometries (e.g., by reducing interfaces that block the heat transport42 and by 

shortening the distance to heat reservoirs for facile heat dissipation), which leads to the 

formation of nanosized MGs with compositions outside the glass-forming zone defined by 

conventional vitrification techniques, and may even open up the possibility for vitrifying 

monatomic metallic liquids, which is otherwise extremely challenging due to their poor glass 
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forming ability (GFA) resulting from their negligible nucleation barrier and superfast 

crystallization kinetics under supercooled condition43,44. Though promising, such success has not 

yet been demonstrated by laboratory efforts.  

Moreover, the electrochemical performances of rechargeable lithium-ion batteries (LIBs), 

which is one of the most important energy storage devices that are widely applied in portable 

electronic devices and hybrid vehicles, have also been widely reported to benefit from 

nanostructured electrode materials10,18,19,45, due to their large surface-to-volume ratio and 

reduced Li ion diffusion length. Nanostructured electrodes often demonstrates superior 

electrochemical performances compared to their micrometer-sized counterparts, such as higher 

energy density18, higher rate45,46, and longer cycle life47,48. Nevertheless, a bottleneck that 

preventing further improvement of the performance of LIBs is found to be mechanical 

degradation due to the large volume change and plasticity associated with phase transitions 

during battery operation49-53. Despite a long history of research, the detailed mechanism of such 

mechanical degradation is still not clear, due to the complexity in the battery reactions and the 

lack of techniques that can visualize the electrochemical reactions on the fly54.  

It is worth noting that among the broad applications of nanomaterials, many of them are 

based on phase transitions12,14,17,22,29-31, which is defined as the transformation of a 

thermodynamic system from one state to another55. To gain a mechanistic understanding of these 

complex physical-chemical processes, it is important to know not only the final phases, but also 

the transition pathways (that is, how the original phases are transformed to the final ones). 

Unfortunately, owing to the small volume and fast kinetics inside nanomaterials, such phase 

transitions are often transient processes that can only be revealed by molecular dynamics (MD) 

simulations56-58, which are frequently subject to validity issues due to their extremely fast time 



 3 

scale and inaccuracies in the applied atomic potentials. Gaining direct experimental evidence of 

the rapid phase transitions, however, requires in-situ investigation techniques with both superior 

spatial and temporal resolutions to capture the microstructural and morphological evolutions 

along the transition paths, and thus has been a long-standing challenge for scientists. Recently, 

the development in in-situ transmission election microscopy (TEM), with the ability to resolve 

the atomic structure and to operate on a time scale within a fraction of one second59-65, became a 

strong tool to address these challenges.  

In this dissertation, in-situ TEM investigations have been performed on vitrification of 

melts from pure bcc metals and on electrochemical lithiation/delitiation of individual SnO2 and 

anatase TiO2 nanowires (NWs). With the help of a Nanofactory scanning tunneling microscopy 

(STM)-TEM specimen holder, phase transitions in nanosized materials under transient electric 

pulses (that is, ultrafast liquid quenching) and under constant biases (that is, 

lithiation/delithiation of electrodes) were atomically resolved. This dissertation is organized as 

follows: 

In Chapter 2, strategies for stabilizing supercooled metallic liquids, the mechanisms 

governing the performances and degradation of both cathodes and anodes, and previous in-situ 

techniques applied to reveal the charge/discharge processes of LIBs are reviewed. Additionally, 

the motivation and objectives of this dissertation will be proposed. 

Chapter 3 introduces the experimental procedures for sample preparation and for 

developing a nanobattery and an ultrafast liquid-quenching nanodevice inside the TEM.  

Chapter 4 reports the formation of monatomic MGs from pure body-centered cubic (bcc) 

metals by an ultrafast liquid-quenching approach that achieves an unprecedentedly high cooling 

rate of ~1014 Ks−1. Combining both in-situ TEM observation and atomistic simulations, the 
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cooling process is found to be dependent on the competition between vitrification and crystal 

growth from metallic liquids at the liquid-crystal interface (LCA). This competition can be 

controlled by tuning the parameters of the applied electric pulses, leading to a novel phase-

change phenomenon. The methodology created in this chapter leads to the formation of 

nanosized MGs with clean surfaces and tunable dimensions, which enables investigation on the 

intrinsic size-dependent mechanical property and, possibly, its connection to the atomic structure 

of MGs in the sub-100-nm regime.  

In Chapter 5, the strain accommodation and plasticity during lithiation and delithiation of 

one-dimensional anodes are studied by using SnO2 NWs as an example. Lithiation of the SnO2 

NW initiated by preferred lithium insertion along the (020) crystallographic plane, followed by 

formation of multiple reaction fronts propagating along the longitudinal direction of the NW. 

The microstructural and morphological evolutions during lithiation indicate large dislocation 

plasticity at the reaction front, which is a precursor to electrochemically-driven solid-state 

amorphization (ESA).  

Chapter 6 focuses on the phase evolutions in intercalation compounds by using anatase 

TiO2 as a model material. Size-dependent lithiation pathways are uncovered in TiO2 NWs and 

nanoparticles, where anatase TiO2, a classic intercalation system long believed to follow a two-

phase lithiation path, switches to a single-phase reaction path when the crystal size drops below 

20 nm. The in-situ electron diffraction approach developed in this chapter tackles the difficulties 

associated with tracking the subtle microstructural evolutions during lithium 

intercalation/extraction, which can be extended to studies on a variety of cathode materials.  

At last, the results of this dissertation are summarized in Chapter 7, and future work as 

well as possible research directions is discussed and proposed in Chapter 8. 
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2.0  BACKGROUND 

In this chapter, strategies for stabilizing supercooled metallic liquids as well as the mechanisms 

governing the performances and degradation of electrodes in LIBs will be briefly introduced. 

Additionally, previous efforts on the search for single-element MGs and in-situ investigation of 

lithiation/delithiation mechanisms will be reviewed and discussed. 

2.1 CAPTURING PHASE TRANSITIONS WITH IN-SITU TEM 

Phase transition is the transformation of a thermodynamic system from one state to another55, 

which is the basis for many research fields, including high pressure physics66,67, rapid 

solidification68,69 and electrochemistry70,71. Phase transitions occur when the original phases 

become unstable in the given thermodynamic conditions55, and are often accompanied by 

morphological and structural evolutions. Take the liquid quenching process for example, a 

crystalline metal is first melted, undergoing a solid to liquid phase transition, followed by 

solidification of the liquid to form a MG. After these phase transitions, the long range periodic 

sequence (that is, translational symmetry) in the original crystal changes to a disordered glassy 

state with only short-to-medium-range order72. In another case, electrochemically-driven solid-

state amorphization is frequently observed during lithiation/delithiation of electrodes, especially 
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Figure 2.1 Magnified area from a movie image acquired at ~750 C° showing the contrast 
perturbations in the liquid parallel to the (0006) planes in alumina. The atom positions in the 
Al2O3 (red for oxygen and yellow for aluminum) were determined by contrast matching between 
simulated and experimental images at different objective lens defocus and specimen thickness 
values. The first layer of liquid atoms is shown schematically. The white line is an average-
intensity line scan perpendicular to the interface. The numbers indicate the minima in intensity, 
which for the negative numbers correlate to the columns of atoms in the sapphire and for the 
positive numbers correlate to the intensity perturbations in the Al. The two black points at 1 and 
2 indicate identified layers of ordered liquid Al.60 

in anode materials73,74, which tends to induce large volume change upon cycling and thus 

catastrophic failure by cracking and pulverization.  

The technique of in-situ TEM refers to a broad class of experiments where the dynamic 

response of a material to an externally applied stimulus is observed as it happens inside the 

microscope75. With the power of resolving atomic-scale processes and a temporal resolution 

within a fraction of a second, in-situ TEM is capable of revealing the rapid phase transition 

processes at real time. Compared to conventional post-mortem TEM studies where only snap 

shots are allowed, in-situ TEM investigation can provide more critical information that bridges 
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the gaps between the snap shots, and has thus been widely applied to reveal the thermodynamics 

and kinetics in various phase transitions in nanomaterials, including nanostructure growth63,76-81, 

crystal nucleation and growth from solution64,65,82,83, gas-solid interaction84-89, phase-change-

based memory devices90-92, ferroelectric materials93,94, crystallization and melting60,95-97, 

temperature controlled phase transition98,99, and stress or pressure induced phase 

transformation100-102. One example that demonstrates the excellent resolving power of in-situ 

TEM is shown in Figure 2.1, where an ordered liquid phase was identified in Al liquid at the 

interface with sapphire.  

In this dissertation, several novel experimental configurations have been developed to 

investigate the atomic-scale phase transition pathways in nanomaterials under different electric 

loading conditions: transient electric pulses for revealing the vitrification process during ultrafast 

liquid quenching; and constant biases for uncovering the mechanical degradation mechanism as 

well as size-dependent lithiation pathways in nanostructured electrodes. 

2.2 IMPORTANT ASPECTS FOR VITRIFYING METALLIC LIQUIDS 

2.2.1 Thermodynamics and kinetics during rapid solidification 

Metallic glasses, also known as amorphous metals, are metallic solids that demonstrate a 

disordered structure with only short-to-medium-range order72. They excel in various chemical 

and physical properties including strength, soft magnetic property, corrosion resistance and 

thermo-plastic formability, and are therefore important materials over a wide range of 

applications103. Recently, MGs with superior ductility104 and toughness105 have also been 
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reported, extending their functionality to serving as advanced engineering materials. Unlike their 

crystalline counterparts that possess long range orders (that is, translational symmetry) and are 

often thermodynamically favored, MGs are non-equilibrium or metastable materials, which are 

formed by non-equilibrium processing methods such as rapid solidification. During liquid 

quenching, the metals (typically alloys) are first heated to a temperature above their melting 

points, followed by fast quenching to bypass the glass transition temperature, so that atoms in the 

supercooled liquids are frozen before the onset of crystal nucleation and growth. Whether 

metallic liquids can be successfully vitrified depends on both the thermodynamics and kinetics 

during the cooling process.  

From a thermodynamic perspective, the activation energy for forming crystal nuclei is 

mainly dictated by the free energy difference between the undercooled liquid and the 

corresponding crystalline state, which is the driving force for crystallization. Its value is 

determined by both the enthalpy of fusion and entropy of fusion, where a small enthalpy of 

fusion and a large entropy of fusion lead to a small free energy difference, therefore more stable 

supercooled liquids with low driving forces towards crystallization39,106. An alloy composed of 

multiple elements is not only associated with a large entropy of fusion, but also accounts for an 

increased degree of dense random packing in undercooled liquid and thus a decrease in the 

enthalpy of fusion, imparting multi-component metallic liquids ideal MG formers107. Indeed,  

small gaps in thermodynamic driving forces between several Zr-based MGs lead to dramatic 

differences in the critical cooling rates up to 4 orders of magnitude108. 

The kinetics during liquid-quenching is another important aspect that determines the 

GFA. Among a variety of parameters, viscosity is the most important one that describes the 

crystallization kinetics in supercooled liquids, and is reflected in a parameter named fragility109, 



 9 

which represents the change in the viscosity as a function of temperature above glass transition. 

A strong glass former (e.g., SiO2) exhibits almost a linear increase of viscosity with decreasing 

temperature (that is, Arrhenius behavior), therefore keeping the liquid viscous over most of the 

undercooled regime. On the other hand, a fragile liquid shows an abrupt increase in the viscosity 

near the glass transition temperature while keeping a low viscosity over a wide temperature 

range below the melting point. As a result, strong liquids are better glass formers, due to their 

high viscosities that reduce the atomic mobility, kinetically suppressing the nucleation and 

growth of thermodynamically favored crystalline phases.  

2.2.2 Glass forming ability 

The GFA of MG formers is reflected in the magnitude of the critical cooling rate required for 

vitrification or, alternatively, the maximum accessible specimen thickness. While a cooling rate 

of 105−6 Ks‒1 was required to form the first MG (i.e., the binary Au75Si25 MG)110, the lowest 

critical cooling rate obtained at present is around 0.1 Ks−1 with a corresponding maximum 

sample thickness over ten centimeters111. The most widely accepted universal criterion to 

determine the GFA is the reduced glass transition temperature: 
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where Tg is glass transition temperature and Tm is the melting point or liquidus temperature. 

Inoue interpreted this criterion in terms of three key factors41: a multicomponent system with 

three or more elements; significant differences in the atomic sizes between the main component 

elements; and a negative heat of mixing for the system. Although the first statement is no longer 

a necessary concern today as evidenced by the successful formation of various binary bulk 
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MGs112,113, the above empirical rules still hold their ground, and are consistent with both the 

thermodynamic and kinetic requirements for MG formation as illustrated in Section 2.1.1. The 

basic idea is that a multicomponent system with distinctive atomic sizes destabilizes the 

crystalline phases by making them ‘too confuse to crystalize’114. Specifically, a complex glass 

former thermodynamically reduces the driving force for crystallization by increasing in the 

configurational entropy and, at the meantime, kinetically suppresses crystal growth by a more 

complex and efficient atomic packing that leads to limited atom mobility and, thus, a high 

viscosity in the undercooled liquid. Additionally, multicomponent systems with deep eutectics 

also improve GFA by reducing the melting point103.  

Several criteria based on equation 2.1 have been proposed to represent the GFA, where 

additional parameters are taking into account, including the crystallization temperature115 and the 

fragility of undercooled liquids116,117. Recently, the GFA has also been connected to the density 

of amorphous phases in laboratory118, as well as to the maximum crystal growth rate and its 

corresponding temperature in undercooled liquids119.  Additionally, more and more efforts have 

been devoted to reveal the atomic-scale origin of these empirical criteria112,120-123.  

In summary, excellent MG formers are generally alloys consisting of multiple elements 

with distinctive atomic sizes and chemical affinities, as evidenced in Table 2.1 where the best 

glass forming systems are among the ternary, quaternary and quinary alloys. In contrast, single-

element metallic liquids have extremely low GFA, mainly due to their low viscosity and thus fast 

crystallization kinetics when undercooled. From this perspective, melts of bcc metals are better 

glass formers compared to those of fcc metals, since the crystal growth rates in the former are 

generally lower than those in the latter, especially at low temperatures. As depicted in Figure 2.2, 

the crystal growth rates for Pt and Ag keep significant even at zero temperature, indicating a 
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Table 2.1 Summaries of bulk metallic glass alloys with critical size≥10 mm.124 

System Alloy Critical size 
(mm) Year 

Pd-based125,126 Pd40Ni40P20 10 1984 
Pd40Cu30Ni10P20 72 1997 

Zr-based127,128 Zr65Al7.5Ni10Cu17.5 16 1993 
Zr41.2Ti13.8Cu12.5Ni10Be22.5 25 1996 

Cu-based129,130 Cu46Zr42Al7Y5 10 2004 
Cu49Hf42Al9 10 2006 

RE-based131,132 Y36Sc20Al24Co20 25 2003 
La62Al15.7Cu11.15Ni11.15 11 2003 

Mg-based133,134 Mg54Cu26.5Ag8.5Gd11 25 2005 
Mg65Cu7.5Ni7.5Zn5Ag5Y5Gd5 14 2005 

Fe-based135-137 
Fe48Cr15Mo14Er2C15B6 12 2004 

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 12 2004 
Fe41Co7Cr15Mo14C15B6Y2 16 2005 

Co-based138 Co48Cr15Mo14C15B6Er2 10 2006 
Ti-based139 Ti40Zr25Cu12Ni3Be20 14 2005 
Ca-based140 Ca65Mg15Zn20 15 2004 
Pt-based141 Pt42.5Cu27Ni9.5P21 20 2004 

crystallization process with negligible activation energy. Mo and Fe, on the other hand, exhibit 

thermally activated crystal growth with infinitesimal rates at room temperature (RT)142. Although 

kinetic parameters, such as the viscosity and crystallization rate, can provide important 

implications for the GFA of monatomic MGs, they can only be experimentally measured within 

a very small temperature window below the melting point143, which is attributed to the limited 

accessible cooling rates for reaching deep quench in these fragile liquids. 

2.2.3 The search for monatomic metallic glasses 

Vitrifying pure metal melts is extremely difficult due to their poor GFA144, which has become a 

long-term scientific curiosity. To the best of our knowledge, laboratory demonstrations of 

formation of monatomic MGs by liquid quenching are rare, if at all, owing to the extremely 
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Figure 2.2 Crystallization velocities as a function of the normalized temperature for (a) Mo, (b) 
Fe, (c) Pt, and (d) Ag. Gray squares correspond to (110) face and black triangles correspond to 
the (100) face. Scaled temperatures should be multiplied by Tm=3570 K for Mo, Tm=1880 K for 
Fe, Tm=2230 K for Pt, and Tm=1170 K for Ag.142 

high critical cooling rates required for freezing atoms in such fragile liquids. Most reported 

successes on obtaining single-element MGs were based on alternative techniques other than 

liquid-quenching, which are summarized below.  

The earliest method is vapor condensation onto substrates kept at a very low temperature. 

This technique allows deposition of thin amorphous films with pure metals such as Al, Ga, Sn, 

Bi, Pd, and Ni145-147. However, these films are kinetically unstable and show very limited 

resistance against crystallization even at very low temperatures151, for example 14 K for Ga to 

crystalize146,147. Later, amorphous Ta films have been deposited using e-beam evaporation148 and 

recently laser ablation (combined with gas condensation) succeeded in producing 1−3 nm 
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amorphous Fe nanoparticles149. Beside vapor condensation, several other non-vitrification 

methods that produce monatomic MGs have also been reported. Ion irradiation of pure Ga at 

very low temperature induced fully amorphization of Ga150, whose purity was compromised by a 

contamination layer151. In the 1990s, chemical methods, such as sonochemical synthesis, 

succeeded in the synthesis of amorphous Fe152 and Ni153 powders with purity below 96%. 

Recently, deformation induced solid-state amorphization has also been reported to produce 

localized amorphous Ni in severely deformed regions154. Unfortunately, the produced amorphous 

region is so localized that a mixture of nanocrystallites and amorphous domains is observed. 

Therefore it is generally believed that amorphous metals formed by these non-vitrification 

approaches can be kept stable only at low temperature by incorporation of impurities above a 

certain concentration145, especially in the case of fcc metals, and thus can hardly be treated as 

true monatomic metallic glasses. 

In contrast, vitrification of metallic liquids is a classic approach that produces bulk MGs 

with high purity. However, the accessible cooling rates by conventional quenching methods, 

such as die-casting155, melt-spinning156, and liquid splat-quenching157 are in the range of 101−108 

Ks−1, which is not sufficient to reach the critical cooling rate around 1010 Ks−1 for making pure 

amorphous metals158. Therefore, new technological advancement has to be made in order to 

overwhelm the superfast kinetics in undercooled monatomic metallic liquids. Given that whether 

a glass can be formed depends on the competition between vitrification of the melts (cooling rate) 

and crystallization, there are two routes to promote the formation of MGs: either by suppressing 

crystallization (i.e., improving GFA) or by raising the cooling rate. Up to now, progresses have 

been made in only one example following the first route, which is vitrification of pure Ge liquid 

under very high static compressive pressure159. However, the metallic phase of Ge is not stable 



 14 

under ambient pressure, in which case the tendency and mechanism towards vitrification may be 

different from those in true metals160. Moreover, this approach requires the materials to melt 

accompanied by a decrease in the volume and is thus not applicable to most of the metals.  

Much more efforts have been made following the second route. In 1973, non-crystalline 

Ni foils were produced by splat quenching157 at an estimated cooling rate above 2×109 Ks−1. 

However, amorphous regions were only found in the very thin edge of these foils, which may 

formed due to incorporation of oxygen and carbon impurities. In the late 1980s, a systematic 

study on the GFAs of metals was carried out by Kim et al. using an electrohydrodynamic 

atomization method160. In their experiment, all the examined pure bcc metals, including Ta, W, 

V, Nb, Mo, and Fe, were found to solidify from melts to form amorphous nanoparticles at a 

cooling rate of ~106 Ks−1. This may be the only true experimental demonstration of successful 

vitrification of monatomic metallic liquids.  

In summary, during the long-lasting search for monatomic MGs, various attempts have 

been made to produce monatomic amorphous samples, which are, however, often in 

geometrically confined forms (e.g., substrate-supported thin films and nano-sized powders) and 

are plagued with either purity152 or stability problems146, offering limited potential for broader 

applications. Therefore, advanced techniques to fabricate high purity monatomic MGs with 

controllable geometries are highly appealing but yet to be developed. 
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2.3 MECHANISMS GOVERNING THE PERFORMANCES OF LI-ION BATTERIES 

2.3.1 Mechanical degradation in high-capacity anodes 

 LIB delivers the highest specific energy (that is, the energy per unit weight) among the family 

of rechargeable batteries (e.g., Ni-Cd and Lead-acid batteries)53. The present generation of LIB 

consists of graphite as anode and layered transition metal oxides, such as LiCoO2 and LiFePO4, 

as cathode, with lithium ions being repeatedly intercalated into and extracted from the electrode 

hosts during cycling. However, the energy density accessible by intercalation-type electrodes is 

inherently limited by their crystal structure (e.g., the lattice parameters and the amount of 

interstices) and the redox activity (that is, the number of exchangeable electrons), and thus 

cannot keep up with the pace of the rapidly growing demands for applications in hybrid vehicles 

and other portable electronic devices. Much efforts have been devoted to the search for new 

high-capacity electrode materials beyond intercalation compounds, and were mostly succeeded 

in finding metals, semimetals and transition metal oxides as promising anode materials to replace 

graphite. Most of these new materials react with lithium based on completely different 

mechanisms compared to intercalation, and can be categorized into either alloying- or 

conversion-type anodes. Typical alloying-type anodes include Si161-165, Sn166,167, Ge168 and Al169 

while promising conversion-type anodes include Co3O4, Fe3O4 and Cu2O10,170,171, etc. For 

example, each Si or Sn atom can alloy with up to 4.4 Li ions, leading to theoretical specific 

capacities of 4200 mAhg−1 and ~1000 mAhg−1, respectively53,172, which are among anode 

materials with the highest specific capacities, and are 3-10 times the capacity of graphite. 

Promising as they are, their applications are limited by mechanical degradation17,47,53,173-179, 

including severe plasticity, cracking, and pulverization, which is attributed to the phase-transition 

http://en.wikipedia.org/wiki/Rechargeable_battery
http://en.wikipedia.org/wiki/Lithium
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Figure 2.3 Fast fracture of a free-standing 620-nm Si nanoparticle during chemical lithiation in 
one minute180. (a-e) Time sequence of crack initiation and growth. (f) EDP indicating formation 
of polycrystalline Li15Si4 as the fully lithiated phase.  

induced large volume expansions/contraction upon lithium insertion/removal. When fully 

lithiated, silicon (Si) and tin (Sn) exhibit as high as ~300% and ~250% volume expansions181, 

respectively, exhibiting poor cyclabilities with significant pulverization and capacity loss 

occurring even during the first cycle182, as is demonstrated in Figure 2.3 where rapid fracture of a 

Si particle proceeded right upon lithiation180. 

In order to overcome this bottleneck, numerous nanostructured electrodes have recently 

been designed, including a yolk-shell configuration where Si nanoparticles are encapsulated in 

relatively larger conductive carbon shells183, and a double-walled Si nanotube structure where 

active Si tubes are surrounded by a silicon oxide layer184.  A basic criterion for these novel 

designs is to exploit the flexibility and facile strain accommodation in nanomaterials and to rely 
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on specially-designed configurations to accommodate the huge volume change upon cycling, 

thus significantly improving the cycle life. Therefore, a mechanistic understanding of the 

plasticity and volume change upon lithiation/delithiation in the active materials will provide 

important guidelines for designing advanced nanostructured electrodes. 

2.3.2 Phase evolutions in intercalation compounds 

Intercalation compounds are the most important materials for cathodes, which largely determine 

the cost and energy density of LIBs185. Layered compounds LiMO2 and olivine compounds 

LiMPO4 (M=Co, Ni, Mn, etc.) are two commercialized cathode materials at present, and their 

performances are found to be closely related to the stability of their phases. Although LiCoO2 is 

capable of delivering high capacities, the safety issues due to the instability of its structure in 

high voltage windows prevent it from being the perfect cathode for LIBs. On the other hand, 

LiFePO4 has recently attracted extensive research interests owing to its low-cost, environmental 

friendless and superior cycle life. The main drawback of LiFePO4 lies in its low rate capability 

due to its one-dimensional lithium diffusion channel as well as the low electronic conductivity. 

This sluggish lithium insertion, however, was found to be dramatically accelerated by a 

reduction in the LiFePO4 particle size186,187. Nevertheless, the origin of this improvement is 

closely related to the atomic-level lithium intercalation/extraction mechanism, which is still 

under intense debate186-190.  

Several models concerning the two-phase lithiation mechanism have been proposed, 

including the shrinking core model where lithiation of LiFePO4 particles follow a conventional 

core-shell mechanism191, the mosaic model where lithiation proceeds concurrently at randomly 

distributed multiple local regions192, and the domino-cascade model where lithium intercalation, 
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Figure 2.4 Free energy and atomic configurations along the single-phase LiFePO4 
transformation path186. (a) Zero-temperature mixing energies (black circles) calculated from first 
principles of 245 different Li/vacancy and electron/hole configurations in LixFePO4 (0<x<1) 
show the existence of several low formation energy structures. The non-equilibrium free energy 
curve at room temperature determined by canonical Monte Carlo simulations (solid red) using 
small simulation cells (2×3×3 unit cells), as well as the least squares cubic spline fit of the Monte 
Carlo data (dashed blue) both plateau at ~15 meV per formula unit (f.u.) within ~0.05<xLi <0.9. 
(b) Snapshots of Li (green atoms) and Fe2+ (brown atoms) configurations in Monte Carlo 
simulations at room temperature for xLi =0.2, 0.4, 0.6, 0.8 show the succession of single-phase 
states with some local ordering. Adjacent (010) planes containing Li/vacancy are shown in green. 

facilitated by the elastic energy of the coherency strains at the two-phase interface, is found to 

behave like a wave sweeping through the nanoparticle187. Recently, a non-equilibrium single-

phase reaction has been proposed in extremely small LiFePO4 particles, which is mainly due to 

the size impact on the thermodynamics of the lithiation process186. Figure 2.4 demonstrates the 

formation energy of the intermediate phase LixFePO4 (0<x<1), which is found to be negligible 

over the entire compositional range between the stable phases (that is, LiFePO4 and FePO4), 

indicating the possibility of lithiation through a solid-solution path. Such a single-phase reaction 



 19 

may significantly improve the lithiation kinetics by exempting the need for nucleation of a 

second phase and, meanwhile, should keep the particle more robust by reducing the strain 

associated with a two-phase interface. Although phase evolutions in intercalation compounds 

play an important role for electrochemical performances, they are extremely challenging to 

reveal inside nanomaterials, due to the subtle morphological and structural changes 

accompanying lithium intercalation/extraction. As a result, effective methods capable of tracking 

the lithiation pathway in intercalation compounds are highly appealing.   

2.3.3 Previous in-situ studies on LIBs 

A mechanistic understanding of the structural instability of electrode materials is important, 

which can provide important insights for degradation control during cycling. In previous 

researches, several in-situ techniques have been applied to track the structural evolutions of 

electrode materials during battery operations. Important in-situ techniques include scanning 

electron microscopy193-197 (SEM), synchrotron X-ray diffraction198-201 (XRD), synchrotron X-ray 

absorption spectroscopy119,120 (XAS)202,203, Raman spectroscopy204, mass spectroscopy205-207, and 

nuclear magnetic resonance (NMR) spectroscopy176,208. Among all these techniques, SEM is 

capable of revealing the surface morphological evolution at a resolution of several nanometers. 

However, it lacks the ability to provide information on microstructural evolutions inside the 

active electrode materials. Moreover, to conduct in situ SEM observation requires special design 

in order to ensure correct functioning of the electrochemical cell inside the high vacuum of an 

SEM. On the other hand, in-situ XRD and XAS studies allow the cell to work in atmospheric 

pressures, providing detailed information on crystal structural and electronic structural 

evolutions. Nondestructive analytical tools, such as MS and NMR, are also widely used to probe 
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Figure 2.5 X-ray tomography209. (a) Unprocessed cross-sectional tomogram showing individual 
SnO particles in the electrode with high resolution and good contrast against a low-attenuating 
carbon black, binder, and electrolyte phase. Att. coeff, attenuation coefficient. (b) A series of 
cross sections through two particles demonstrates a core-shell process, volume expansion, and 
particle fracture during the initial reduction and particle redensification during subsequent 
oxidation. mAhg−1, milliampere hours per gram. 

the interfacial processes such as the formation and dissolution of solid electrolyte interfaces 

(SEIs). Unfortunately, the limited spatial resolution associated with all these analytical methods 

limit their power to providing only collective information, such as the average structure and 

composition, from an ensemble of particles composing the electrodes, while a close-up view of 

the electrochemistry inside individual particles is unattainable. In some cases, such as during a 

particle-to-particle lithiation process187,210, the spatial limitation may lead to inaccurate 

interpretation of the mechanisms governing battery operation. 
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Recently, more and more attempts have been made to visualize the particles during 

lithiation/delithiation at real time. X-ray tomography209,211 and X-ray transmission microscopy212 

have been performed to reveal the 3-D morphological and structural evolution in micron-sized 

Sn particles. Figure 2.5 clearly reveals a core-shell lithiation mechanism, along with volume 

expansion and cracking. However, these approaches still fall short of revealing the atomistic 

origin of such plasticity and volume change as well as tracking the lithiation pathway in 

nanosized intercalation compounds.  

2.3.4 Difficulties associated with in-situ TEM observation 

Despite the long history of batteries, the detailed mechanism of mechanical degradation of 

electrode materials during electrochemical cycling is still not fully understood due to the 

complex nature in batteries and the lack of technologies that can visualized the electrochemical 

reactions on the fly. In-situ TEM technique, with atomic scale spatial and decent temporal 

resolutions, is a strong tool to overcome such challenges. However, the key technical difficulty 

to perform in-situ TEM observation on battery operation lies in the choice of a liquid electrolyte 

with ultralow vapor pressure to survive the high vacuum inside a TEM (typically ~10-5 Pa). As 

shown in Table 2.2, the vapor pressure of several most widely used solvents have vapor 

pressures several orders of magnitude higher than the TEM vacuum pressure213. 

One way to protect the liquid electrolyte is to seal it into a liquid-cell device64,214-218 with 

electron beam transparent thin films (typically Si3N4 thin films). Such a strategy allows the use 

of commercialized electrolytes, creating an environment similar to that in practical LIBs. 

However, the use of thin films and the filled electrolyte in between significantly compromise the 
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Table 2.2 Vapor pressure of several widely used solvents around RT213. 

Solvent Vapor pressure (Pa) 

Ethylene carbonate (C3H4O3) 1.33 (20 °C) 

Propylene carbonate (C4H6O3) 4 (25 °C) 

Dimethyl carbonate (C3H6O3) 5300 (20 °C) 

Diethyl carbonate (C5H10O3) 1400 (25 °C) 

spatial resolution, limiting the microstructural information that can be captured during 

electrochemical reactions. This configuration also limits the ability to conduct analytical TEM 

such as electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) 

based composition analysis. Moreover, to fabricate a working liquid cell of LIB also challenges 

the high-precision nanodevice fabrication and materials assembly (that is, to attach active 

materials to the designated current collectors), which have become the bottleneck for a technical 

breakthrough in in-situ liquid-cell studies. 

An alternative way is to apply an open-cell configuration by the use of either a 

nonvolatile ionic liquid electrolyte (ILE) with negligible vapor pressure219 or lithium metal 

covered with a thin Li2O layer serving as solid electrolyte. This strategy allows facile 

construction of a nanobattery inside the TEM, atomic scale resolution observation at real time, 

and great flexibility in selecting and manipulating the desiring electrode materials (e.g., to 

choose a NW with optimum size and orientation), allowing more room for analytical TEM 

analysis. Recent development on such an open-cell configuration220 (see Chapter 5 for details) 

has promoted numerous in-situ TEM studies on the microscopic processes in LIBs169,221-224. 
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2.4 MOTIVATION AND OBJECTIVES 

Phase transitions are ubiquitously seen in nanomaterials governing their broad applications. A 

fundamental understanding of the thermodynamics and kinetics during these phase transitions is 

of both scientific and practical significance. However, very few studies have succeeded in 

capturing the microscopic processes at real time, owing to the short length-scale and fast kinetics 

inherently associated with nanomaterials. In this dissertation, an ultrafast nanoscale liquid-

quenching system and a nanosized electrochemical cell will be developed inside the TEM to 

reveal the non-equilibrium processes during rapid solidification as well as the plasticity, strain 

accommodation and lithiation pathways in nanostructured electrodes. Based on the background 

review in this chapter, this dissertation will be dedicated to addressing the following critical 

issues: 

1. Is it possible to vitrify melts of pure metals by developing a nanodevice that maximizes the 

cooling rate? If yes, what are the factors governing the vitrification process in monatomic 

metallic liquids?  

2. What are the atomic-scale processes for mechanical degradation in one-dimensional 

nanoszied high-capacity anodes? 

3.  What is the reaction pathway in nanosized intercalation compounds? Can the size-dependent 

competition between an equilibrium two-phase lithiation pathway and a non-equilibrium 

single-phase reaction pathway be an origin of the size-dependent rate capability observed in 

nanosized intercalation compounds? 

This dissertation aims to gain a fundamental understanding of the phase transition 

processes during rapid solidification and Li-ion battery operation, which reveals the kinetics and 

structural behaviors in supercooled liquids far from equilibrium, and uncovers the atomic-scale 
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mechanisms governing mechanical degradation and size-dependent performances in 

nanostructured electrodes.  
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3.0  MATERIALS AND EXPERIMENTAL PROCEDURES 

In this chapter, the materials and experimental approaches employed in this dissertation will be 

introduced. A variety of high-purity body-centered cubic (bcc) and face-centered cubic (fcc) 

metals are used for the MG formation and processing; a Pd-based MG and Cu50Zr50 MG are 

selected for nanoscale tensile mechanical testing; SnO2 NWs are chosen as a model system for 

studying the large volume change and strain accommodation in anode materials; both single 

crystalline and polycrystalline anatase TiO2 NWs are selected as model systems for tracking the 

lithiation pathway in intercalation compounds. A novel methodology integrating nanoscale MG 

fabrication, structural characterization and mechanical testing will be presented, where the 

ultrafast liquid-quenching approach is a technological breakthrough for rapid solidification. 

Additionally, an experimental configuration that, for the first time, enables visualization of the 

atomic-scale electrochemistry in LIB electrodes will also be briefly illustrated.  

3.1 MATERIALS 

3.1.1 High-purity bcc and fcc metals 

A series of high purity bcc and fcc metals were used in this dissertation to study the vitrification 

process of melts from pure metals, all of which were provided by ESPI Metals. The studied bcc 
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Table 3.1 Impurities in bcc metals225. 

 
Impurities 

Impurity concentration (ppm) 
Ta 

(99.98%) 
V 

(99.9%) 
Mo 

(99.98%) 
W 

(99.98%) 
Cr 10 50 10 <20 
Nb 10    
Si 10 150   
W 40    
Zr 10    
Mo 10 130   
Mg 10    
Sn 10 <30   
Fe 15 200 20 <50 
Ni 15 <50 130 <50 
Ti 10 150   
V 10    
Cu 10 <50 <20 <10 
Mn 10    
Al 10 50   
Co 10    
Ca  <50   
K   <20 <30 

metals include Ta (99.98%), W (99.98%), vanadium (V; 99.9%), and molybdenum (Mo; 

99.98%); fcc metals include gold (Au, 99.999%), Silver (Ag, 99.999%), Aluminum (Al; 

99.999%), Palladium (Pd; 99.995%), Platinum (Pt; 99.999%), Rhodium (Rh, 99.99%), and 

Iridium (Ir; 99.99%). Among all these tested materials, only the four bcc metals succeeded in 

forming monatomic MGs. Since impurities may significantly affect the GFA, they need to be 

kept minimal. The impurity levels of bcc metals are listed in Table 3.1. 

During specimen preparation, one end of a metal rod was flattened by a punch to form a 

substrate, which was then notched by a tungsten carbide cutter and torn apart with two clamps. 

This strategy generates many triangle-shaped nano-tips at the fracture edge of the metal pieces 
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Figure 3.1 Nano-tips as specimens in the liquid-quenching experiment225.  

(Figure 3.1). These nano-tips are the specimens in the liquid-quenching experiments. This 

strategy allows fabrication of nanosized MGs directly from bulk materials. 

3.1.2 Pd79Ag3.5P6Si9.5Ge2 and Cu50Zr50 metallic glasses 

Pd79Ag3.5P6Si9.5Ge2 MG was provided by Dr. Marios Demetriou from California Institute of 

Technology, which is among the toughest material known at present105. The glassy ingot was 

formed by water-quenching the melts inside a quartz tube, and is in the form of a cylinder with a 

diameter of 3 mm and a height of 2 mm. The detailed experimental procedure is provided in Dr. 

Marios Demetriou’s recent publication105. Cu50Zr50 MG ribbons were provided by Yang Zhao 

from Beihang University with a melting-spinning method.  Both MGs were cut and thinned into 

films, which were then attached to the tip of aluminum rods. Similar to the approach presented in 
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the section above, the films were notched and torn apart to form nano-tips at the fracture edge for 

subsequent glass fabrication and mechanical testing. 

3.1.3 Single crystalline SnO2 nanowires     

The SnO2 nanowire were synthesized by Dr. Chongmin Wang’s group at Environmental 

Molecular Sciences Laboratory, Pacific Northwest National Laboratory. The NWs were 

synthesized by a chemical vapor deposition (CVD) process using activated carbon powder 

(Ketjen Black, EC600JD, Akzo Nobel Corp. Japan) and SnO2 nanoparticles (from Aldrich, 

particle size < 100 nm) as the precursors and Au as the catalyst, based on the synthesis process 

reported in previous researches226,227. The activated carbon (C) and the SnO2 nanopowder were 

combined in a ratio of C:SnO2 = 1:4 by weight and thoroughly dry mixed using a mortar and 

pestle. The mixed C and SnO2 powder was placed into a quartz boat, which was subsequently 

loaded into a quartz tube furnace. A Si wafer, topped by a 5 nm thick sputter coated Au film, was 

located next to the quartz boat for the purpose of catalyzing the formation of the SnO2 nanowires. 

The carrier gas with high purity nitrogen (99.95%) was flowing in the direction from the mixed 

powder precursor towards the Si substrate. The nitrogen flow rate was 100 sccm with the 

pressure in the tube maintained at 200 Torr. The furnace was heated at a rate of 6.5 °C/min to 

800 °C and maintained at 800 °C for 6 hours for the growth of the SnO2 nanowires. Upon 

completion of the growth, the furnace power was shut off to allow the furnace to cool naturally. 

Typically, it took ~4 hours for the furnace to cool from 800 °C to room temperature. The 

diameter of the SnO2 NWs ranged from several nanometers to ~1 μm and the length of the wires 

ranged from several hundred nanometers to several hundred micrometers. The cross-section of 
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Figure 3.2 Cross-section of the nanowire and their growth direction220. (A-C) Scanning electron 
microscopy (SEM) micrographs showing the cross-section of the nanowire is either polygonal 
(A), or rhombic (B-C), or hexagonal (C). (D) A high resolution transmission electron microscopy 
(HRTEM) image showing the nanowire growth direction is [011]. Inset is a Fast Fourier 
Transformation of the HRTEM image.  

these nanowires is either polygonal, or hexagonal, or rhombic. The growth direction of the 

nanowires is [011] (Figure 3.2). 

3.1.4 Polycrystalline anatase TiO2 nanowires 

The polycrystalline anatase TiO2 NWs used in this study were obtained from MemPro Ceramics 

Corporation. They typically have lengths of several micrometers and widths varying between 

100-200 nm. Figure 3.3 shows that these NWs are composed of randomly oriented and loosely 

packed anatase nanoparticles, with most of them being 10−25 nm. 
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Figure 3.3 Morphology of pristine poly-crystalline anatase TiO2 nanowires (NWs). (a-b) Bright-
field and dark-field TEM images of several poly-crystalline TiO2 NWs, representing randomly 
oriented component crystallites. (c) A close-up view of a typical TiO2 NW, showing that the 
crystallites are about 20 nm in diameter, randomly oriented, and loosely packed. (d) Size 
distribution of more than 300 component crystallites with most of them being 10−25 nm. 

3.1.5 Single crystalline anatase TiO2 nanowires 

Single crystalline anatase TiO2 NWs (Figure 3.4) were synthesized by Dr. Weiqiang Han from 

Brookhaven National Laboratory (Now at Ningbo Institute of Materials Technology and 

Engineering, Chinese Academy of Sciences). The synthesis process consists of two steps. First 

H2Ti3O7 nanobelts were produced from a NaOH treatment of anatase TiO2 particles inside an 

autoclave at a temperature of 160 °C for 4 days, subsequently followed by acid washing228. In the 

second step, the as-grown white H2Ti3O7 nanobelts were put into an alumina boat and heated in a 
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C2H4/H2 gas mixture229 at a temperature of 700 °C for 3 minutes. The grey-black product was 

collected from the boat. 

 

 

Figure 3.4 Morphology and structure of single crystalline anatase TiO2 NWs. (a) A typical TiO2 
NW with growth direction of <100> viewed from the <010> direction. Some defects are visible. 
(b) HRTEM showing a well-defined tetragonal phase. A 5-nm-thick amorphous carbon layer was 
deposited to the surface of the NW to increase the electronic conductivity. (c) Cross-sectional 
view of one NW along its growth direction (that is, [100]). Most of the surface facets are low-
index planes such as {011} and {004}. (d) Corresponding EDP of the nanowire cross-section 
shown in (c). 
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3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Experimental configurations 

Most of the work in this dissertation were carried out with an FEI Tecnai F30 TEM at Center for 

Integrated Nanotechnologies (CINT) in Sandia National Laboratory. The fabrication, structural 

characterization, and mechanical testing of Pd-based and Cu50Zr50 MGs were performed in an 

aberration-corrected FEI Titan TEM at Environmental Molecular Sciences Laboratory in Pacific 

Northwest National Laboratory. Although in-situ TEM technique provides both excellent spatial 

and temporal resolutions, it, along, does not necessarily lead to success in in-situ investigations. 

As stated by Ferreira et al., ‘The development in the microelectromechanical systems (MEMS)–

based and piezo-actuated in-situ holders are profoundly impacting the way in-situ experiments 

are performed and the types of observations we are able to make’75. By taking advantage of the 

Nanofactory TEM-STM platform, the present work carried out in-situ TEM observations either 

under transient electric pulses (for liquid-quenching experiment), or under constant biases (for 

LIBs investigations). 

A schematic illustration of the TEM-STM platform is presented in Figure 3.5. It allows 

one specimen (specimen 1) to be attached to a metal rod, which is then loaded to the fixed end; 

and allows another specimen (specimen 2) to be mounted onto the piezo-manipulator, which 

extends or retrieves under electric field with different magnitudes. By this strategy, specimen 2 

can be positioned at an accuracy of ~0.1 nm, which allows precise manipulation to make contact 

with selected sites (e.g., a NW or a nano-tip) in specimen 1. After that, either transient electric 

pulses or constant biases can be applied to the specimens for research purpose. This 

configuration can be slightly modified based on different research demands and objectives.  
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Figure 3.5 Schematic illustration of the Nanofactory TEM-STM platform. 

In this dissertation, three configurations have been employed based on Figure 3.5. In 

Chapter 4, both the fixed end (specimen 1) and the piezo-manipulator (specimen 2) are mounted 

with metal rods with nano-tips (Figure 3.1) at the front edge, which enables formation of sub-

100-nm glassy or crystalline nanostructures directly from bulk substrates. In Chapters 5 and 6, 

nanowire electrodes are attached to the fix end (specimen 1) and either an ILE droplet on a 

LiCoO2 film or a small volume of Li metal with Li2O surface layer serving as solid electrolyte is 

mounted onto the piezo-manipulator (specimen 2). These configurations allow development of a 

nanobattery with either ILE or solid electrolyte inside the TEM for atomic-scale in-situ 

observations. The detailed configurations and experimental procedures are provided in the 

experimental approach section in each corresponding chapter. 
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3.2.2 Calibration of the transient electric pulses 

The liquid-quenching experiment started with applying a transient square electric pulse by a 

Keithley 3401-F pulse generator, creating a melting zone at the contacting nano-tips, followed by 

ultrafast quenching via rapid heat dissipation through the substrates, leading to the formation of 

monatomic MGs. Because it is impossible to directly measure the applied voltage on the samples, 

some calibrations have to be performed outside the TEM. Based on the dimensions of the MG 

obtained in the liquid-quenching experiment (usually 20−80 in thickness and 30−100 in length), 

the electric resistance of the sample is about 10−100 Ω. During calibration, resistors with 

resistance 10-100 Ω, which replace the MG samples, were placed between the fixed end and the 

current collector on the piezo-manipulator. At the meantime, a Tektronix oscilloscope was 

connected in parallel to both ends of the resistors in order to measure the actual potential drop on 

 

Table 3.2 Calibration of the applied square electric pulse. 

 
Nominal 

Voltage (V) 

Measured Voltage (V)/Width (ns) 

Nominal 
width (ns) 3.2 5.0 10.0 

1.0             0.66/3.6 0.89/4.9 0.96/9.9 
1.3             0.80/3.6 1.04/5.0 1.21/9.9 
1.5             0.91/3.6 1.14/5.1 1.38/10.0 
1.8             1.05/3.7 1.30/5.0 1.62/10.0 
2.0             1.16/3.7 1.42/5.0 1.78/9.9 
2.2             1.26/3.6 1.58/5.1 1.99/10.0 
2.5             1.48/3.7 1.80/5.0 2.22/9.8 
3.0           1.7/3.7 2.08/5.0 2.7/10.2 
3.5           2.0/3.6 2.44/5.1 3.04/9.9 
4.0             2.32/3.7 2.82/5.0 3.52/10.2 
4.5             2.58/3.6 3.18/5.1 3.92/9.8 
5.0             2.82/3.6 3.5/5.0 4.42/9.8 
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the resistors as well as the pulse width. It was found that the measured potential and width are 

almost independent of the selected resistors with resistances in the range of 10−100 Ω. Therefore, 

a 50 Ω resistor was chosen to perform the calibration (Table 3.2). Each value in Table 3.2 is the 

average of five trials under the same nominal pulse parameters. For simplicity, only the 

calibrated combinations of voltage and width were used during the liquid-quenching experiments 

in Chapter 4. 

3.2.3 Metallic glass microstructure characterization 

The local arrangements of several MGs were investigated using nanobeam diffraction 

technique230,231, where a nearly parallel coherent electron beam was generated by using a small 

condenser aperture with a diameter of 10 µm. A small convergence angle of 2−2.5 mrad was 

selected throughout the experiment, under which the electron beam was focused to spot with a 

dimeter of ~0.7 nm. The TEM was operated in scanning transmission electron microscopy 

(STEM) mode, which allows concurrent imaging and structural characterization, enabling 

precise pinpointing of the objective regions in the specimen. To gain structural information on 

the short-to-medium order72 in MGs, only the very edge of specimens with a thickness below 5 

nm are selected. 

3.3 SIMULATION METHODS 

To gain a mechanical understanding of the multi-physics during the ultrafast cooling process, the 

heat transport during the quenching process, as well as the formation mechanism of tantalum 
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MG was simulated by atoms-to-continuum (AtC) computer simulation with a two-temperature 

model. This work was performed by my collaborator Dr. Hongwei Sheng from George Mason 

University. In this method, the classic MD system is coupled to an electron temperature field 

represented by finite-element meshes to describe the electron transport process. For classic MD, 

a high-accuracy realistic embedded-atom-method (EAM) potential was developed to describe the 

interactions between Ta atoms based on first-principles calculations and the force-matching 

method. The simulation aims to replicate the experimental conditions under which Ta liquids 

vitrify. The in-silico Ta nanowire is 85 nm×40.8 nm×13.6 nm in dimension, containing up to 

2,457,600 atoms, with both ends kept at 300 K. To simulate Joule heating on the nanowire, an 

electron heat flux was injected to the system, creating a temperature distribution along the 

nanowire as shown in Figure 4.7a in the next chapter. Quenching processes in scenarios where 

the heat flux is terminated instantly and within 0.4 ns in a ramp function were simulated. 
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4.0  FORMATION OF MONATOMIC METALLIC GLASSES THROUGH ULTRAST 

LIQUID QUENCHING 

In this Chapter, a novel ultrafast liquid-quenching methodology will be provided and the atomic-

scale vitrifaction process will be revealed. It has long been conjectured that any metallic liquid 

can be vitrified into a glassy state provided that the cooling rate is sufficiently high156,232-234. 

Experimentally, however, vitrification of single-element metallic liquids is notoriously 

difficult159. True laboratory demonstration of the formation of monatomic MG has been lacking. 

Herein we report an experimental approach to vitrify monatomic metallic liquids by achieving an 

unprecedented high liquid quenching rate of 1014 Ks−1. Under such a high cooling rate, melts of 

pure refractory bcc metals, such as liquid tantalum and vanadium, are, for the first time, 

successfully vitrified to form MGs suitable for property interrogations. Combining in-situ 

transmission electron microscopy observation and AtC modeling, we investigated the formation 

condition and the thermal stability of the as-obtained monatomic MGs. The availability of 

monatomic MGs being the simplest glass formers offers unique possibilities to study the 

structure and property relationships of glasses. Our technique also exhibits great control over the 

reversible vitrification-crystallization processes, suggesting its potential in micro-electro-

mechanical applications. The ultra-high cooling rate, approaching the highest liquid-quenching 

rate attainable in the experiment, makes it possible to explore the fast kinetics and structural 

behavior of supercooled metallic liquids within the nano- to pico-second regimes. 
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4.1 INTRODUCTION 

Since the first discovery of MG in the 1960s110, the search for new types of MGs has not 

stopped68,155,156. To date, most MG formers are known to consist of two or more elements with 

distinct atomic sizes and chemical affinities38-41,55, usually formed by quenching the liquids with 

techniques varying from conventional die-casting155 (~101-3 Ks−1), melt-spinning156 (105-6 Ks−1), 

liquid splat-quenching157 (~109-10 Ks−1), to pulsed laser quenching235 (~1012-13 Ks−1). 

Unfortunately, these solidification techniques can hardly be applied to produce monatomic MGs, 

mainly due to the extremely low glass forming ability of monatomic metallic liquids resulting 

from vanishingly small nucleation barriers of supercooled liquids43,44 and very fast crystal 

growth rates69,234. As such, vitrification of pure monatomic MG requires extremely high critical 

cooling rates far above the experimentally accessible level to suppress crystal growth. Although 

it has long been conjectured that any metallic liquid can be vitrified into a glassy state provided 

that the cooling rate is sufficiently high40,156,234, experimental vitrification of single-element 

metallic liquids is notoriously difficult. True laboratory demonstration of the formation of 

monatomic metallic glass (MG) has been lacking. The monatomic MG may also be confronted 

with the thermal stability issue at RT where spontaneous crystallization seems inevitable. 

Consequently, except for a few special circumstances (e.g., at very thin edges of a splat 

quenched nickel foil157), monatomic MGs have not been found to form from pure metal melts by 

vitrification. 

More recently, pure metallic germanium liquid was reported to vitrify under hydrostatic 

pressure above 7.9 GPa for the first time159. However, upon releasing pressure to ambient 

condition, germanium MG quickly transforms to a non-metallic low-density amorphous phase, in 

which case the tendency and mechanism of liquid vitrification are largely different from those of 
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most d-block transition metals. Other non-vitrification methods (e.g., vapor deposition236 and 

chemical synthesis152) have been attempted to produce monatomic amorphous samples, which 

are often in geometrically confined forms (e.g., substrate-supported thin films and nano-sized 

powders) and are plagued with either purity152 or stability problems146, offering limited potential 

for broader applications. Therefore, advanced techniques to fabricate high purity monatomic 

MGs with controllable geometries are highly appealing. 

4.2 EXPERIMENTAL APPROACHES 

By building an in-situ Joule heating nano-device inside a transmission electron microscope 

(TEM), we present a unique ultrafast liquid-quenching system to vitrify monatomic metallic 

liquids. This technique exploits the excellent thermal conductivity of the metals and maximizes 

the heat conduction rate of the cooling system. As described in Chapter 3, triangle-shaped nano-

tips were generated at the fracture surface of the metal piece. Two such metal pieces with nano-

tips were mounted to a Nanofactory TEM-STM platform, with one at the fixed end and the other 

at the piezo-manipulator. All the above specimen preparation and loading procedures were 

carried out inside a glove box filled with helium (the content of oxygen and water is below 1 

ppm). The TEM-STM platform, together with the sample, was quickly transferred to the TEM 

while being kept in an air-proof environment. 

All in-situ experiments were conducted inside an FEI Tecnai F30 TEM operating at an 

acceleration voltage of 300 kV with column vacuum ~10−5 Pa. We preferred longer tips with 

low-index zone axis (i.e., <111>, <001> and <110>) parallel to the incident electron beam, 

which can be easily found in our samples. The two chosen nano-tips were brought into contact 
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by the piezo-manipulator of the STM holder. In order to remove surface contamination, the 

joined nano-tips were heated to an elevated temperature (close to the melting point) for half an 

hour by Joule heating. The liquid-quenching experiment started with applying a transient square 

electric pulse by a Keithley 3401-F pulse generator, creating a melting zone at the nano-tips, 

followed by ultrafast quenching via rapid heat dissipation through the substrates, leading to the 

formation of monatomic MGs. Tensile tests on the as-formed tantalum MG were carried out by 

gradually retracting the substrate mounted on the piezo-manipulator. The strain rate can be 

controlled by adjusting the speed at which the substrate is retracted, and in the present study, it 

was controlled to be ~10−3 s−1. 

4.3 EXPERIMENTAL RESULTS 

4.3.1 Formation of monatomic metallic glasses from melts of pure metals 

The ultrafast quenching technique in the current study is illustrated in Figure 4.1a-c. First, two 

protruded nano-tips with clean surfaces are brought into contact with each other (Figure 4.1a) 

under an ultra-high vacuum condition inside the TEM. A short square electric pulse, typically 

0.5−3 V in amplitude and within 3.7 ns in duration, imposes local Joule heating on the joined 

tips, causing melting of the extrusion tips and formation of a melting zone in the middle (Figure 

4.1b). Upon instantaneous cessation of the electric pulse and, consequently, local Joule heating, 

heat dissipates rapidly through the solidifying piece and the conductive heat reservoir, creating 

an extremely high cooling rate sufficient to vitrify the melt (Figure 4.1c). In Figure 4.1d-e, we 
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Figure 4.1 Illustration of an ultrafast liquid-quenching approach225. (a-c) Schematic drawing of 
the experimental configuration. Two protruded nano-tips are brought into contact with each other 
(a), which are melted by applying a short square electric pulse with duration around 3.7 ns and 
voltage in the range of 0.5−3 V (b). Heat dissipates rapidly through the two bulk substrates 
(indicated by two red arrows), vitrifying the melting zone to form monatomic MGs (c). (d-e) 
High resolution TEM images showing two contacting tantalum nano-tips (d) forming a tantalum 
MG (e) after applying a 0.8 V, 3.6 ns electric pulse. The glass-crystal interfaces (GCIs) are 
denoted by yellow dotted curves. (f-h) FFTs confirming a 20 nm long, 15 nm thick fully vitrified 
region (g) bounded by two crystalline substrates viewed along the <100> (f) and <110> (h) 
crystallographic orientations, respectively.  
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Figure 4.2 Controllable geometries by tuning the electric pulse and by coupling with 
tensile/compressive stress225. A tantalum MG with diameter close to 100 nm is obtainable under 
an electric pulse with voltage above 2 V (left). A nanowire with an aspect ratio of 4 was formed 
by applying tensile loading during liquid quenching (right). The GCIs are indicated by yellow 
dotted curves. 

demonstrate that a 0.8 V, 3.6 ns electric pulse on two connecting crystalline Ta nano-tips (Figure 

4.1d) led to the formation of a 15 nm wide, 20 nm long Ta MG (Figure 4.1e). 

The dimensions of the MG samples can be controlled by tuning electric pulse parameters 

while engaging in-situ tensile/compressive loading. In this way, Ta MG samples with dimensions 

of 100 nm in diameter or an aspect ratio of ~4 are obtainable (Figure 4.2). The formation of even 

larger Ta MG samples, which are not electron transparent, has not been pursued in this work. 

Applying this method, we have systematically tested the vitrification capability of transition 

metals, and successfully obtained Ta, V (Figure 4.3), Mo (Figure 4.4) and W (Figure 4.5) 

monatomic MGs (vitrification of V and Mo melts were performed by Dr. Jiangwei Wang from 

University of Pittsburgh). The materials systems that have been vitrified to form monatomic 

MGs are typically early transition bcc metals with high melting points and excellent thermal 

conductivities. 

The amorphous nature of the as-obtained MG was confirmed by TEM diffraction patterns. 

The diffusive diffraction halos in the fast Fourier transformation (FFT) (Figure 4.1g) of the area 
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Figure 4.3 Formation and RT stability of vanadium MG225. (a) TEM image of two crystalline 
vanadium nano-tips in contact with each other. (b) Formation of a 75 nm long, 80 nm thick 
vanadium MG under a 1.26 V, 3.6 ns electric pulse. The as-formed vanadium MG was 
sandwiched by two crystalline substrates with two GCIs (denoted by yellow dotted curves). (c-d) 
Thermal stability test on vanadium MG at RT, where amorphous vanadium was found stable 
after 56 hours. In order to protect vanadium from oxidation, a 5 nm thick amorphous carbon 
layer was coated to the surface of the vanadium MG. The reduced length of the vanadium MG in 
d is due to a slight change in the viewing angle. (e) High resolution image of the vanadium MG 
relaxed for 56 h, exhibiting typical amorphous characteristics. (f) Electron diffraction pattern of 
vanadium MG, showing diffusive amorphous halos and a diffusive background. The bright 
diffraction spots originate from bcc vanadium due to the fact that the aperture was not small 
enough to exclude the neighboring crystalline vanadium substrate. 
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Figure 4.4 Formation of molybdenum MG by ultrafast quenching225. (a) TEM image of two 
contacting molybdenum nano-tips with a well-defined bcc structure viewed along the <111> 
zone axis (inset in a). (b-e) Mo MG formation and growth under a series of vitrification pulses. 
The GCIs (indicated by yellow dotted curves) moved a step away from each other after each 
pulse (denoted by two yellow arrows in b), resulting in the growth of the Mo MG. The 
amorphous structure is corroborated by the diffuse halos in the FFT (inset in e).  
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Figure 4.5 Formation and spontaneous crystallization of tungsten MG225. (a) High resolution 
TEM image of the original crystalline tungsten nano-tip viewed along <100> zone axis. (b) 
Formation of tungsten MG in the tungsten nano-tip under a vitrification pulse. An atomically 
rough and diffuse GCI was identified, where the transition zone from amorphous to bcc tungsten 
was about 1−2 nm thick (the region between the two dotted yellow curves) (c-e) In-situ TEM 
observation of spontaneous crystallization of tungsten MG. Tungsten MG is found to be unstable 
at RT, undergoing spontaneous crystallization to a well-defined bcc structure.  

bounded by two glass-crystal interfaces (GCIs) are characteristic of amorphous structure, 

contrasting the bright diffraction spots of the Ta substrates with a well-defined bcc structure 

(Figure 4.1f,h). To confirm the glassy structure and the thermal stability of Ta MG, a sample 

with 60 nm in diameter and 90 nm in length was relaxed in high vacuum at RT for 8 hours 

(Figure 4.6a). Electron diffraction patterns (EDPs) of the as-quenched (Figure 4.6b left) and 

relaxed (Figure 4.6b right) Ta MGs showed similar features characterized by diffuse halos 
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Figure 4.6 Structure and thermal stability of tantalum MG225. (a) TEM morphology of a typical 
Ta MG with length of ~90 nm and diameter of ~60 nm. The GCIs are indicated by yellow dotted 
curves. (b) Electron diffraction of Ta MG, as-quenched (b left) versus relaxed for approximately 
8 h (b right). (c) A comparison of the structure factors of the as-formed, 8 h relaxed and 
simulated Ta MGs. All three curves show very similar peak positions, including well separated 
second (q2) and third peaks (q3) (indicated by cyan arrows). The ratios of peak positions are the 
same for the relaxed and simulated structure, where q2/q1=1.69 and q3/q1=1.99. 

typical of amorphous structure. The corresponding integrated and optimized 1D static structure 

factors237 S(q) (Figure 4.6c) showed similarities in their shape and peak positions, indicating that 

no major structural changes have occurred in Ta MG after 8 hours. The slight shift to the right in 

the main peak positions of S(q) may be attributed to structural relaxation in the glass, as expected. 

The main peak positions of the relaxed MG are measured to be 2.63 Å−1, 4.42 Å−1, and 5.23 Å−1, 

respectively, corresponding to q2/q1=1.68 and q3/q1=1.99, which are almost identical to the 

simulated structure factor (orange circles in Figure 4.6c) derived by quenching liquid tantalum at 

a cooling rate of ~1013 Ks−1 on the computer. The observed S(q) of tantalum MG also agrees 
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well with theoretical works on monatomic systems238-241, as well as with previous experimental 

results on amorphous iron242 and cobalt243 where q2/q1=1.69 and q3/q1=1.97. 

To understand the vitrification process of the liquid and estimate the cooling rate, atoms-

to-continuum simulations244 have been performed where a tantalum nanowire with geometry and 

size matching the experimental conditions was simulated (This simulation work was performed 

by Dr. Hongwei Sheng form George Mason University; detailed information about the atoms-to-

continuum simulation is presented in Appendix A). Quenching of liquid tantalum starts at the 

moment when external Joule heating is turned off (Figure 4.7a), during which the temperature 

evolution in the nanowire depends on rapid heat dissipation through the massive crystalline 

substrates kept at RT. Due to the large temperature gradient, excellent heat conductivity, and 

small specimen size, ultrafast cooling is achieved, as evidenced from the evolution of the 

temperature distribution in the Ta nanowire (Figure 4.7b). The computed cooling rate of the 

liquid zone (Figure 4.7c) reaches as high as 1014 Ks−1 at 4200 K and decreases slightly to 5×1013 

Ks−1 at the glass transition temperature Tg of liquid tantalum, which is estimated to be around 

1650 K (Figure 4.8). 

Accompanying the rapid quenching process, the real-time dynamics of the atomic system 

was revealed by MD simulations, indicating that whether a MG can eventually form is 

determined by the competition between the liquid-quenching rate and the crystal growth rate 

from the melt. Under the given experimental condition, a large portion of the original 35-nm-

long liquid tantalum zone vitrified after Joule heating was cut off (Figure 4.9a-b), demarcated by 

atomically rough GCIs (Figure 4.9b inset), corroborating our experimental observations. The 

effect of a trailing edge in the applied electric pulses is taken into account by modeling liquid-

quenching under a heat flux terminated within 0.4 ns in a ramp function rather than instantly. As 
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Figure 4.7 Cooling rate and crystal growth rate estimated by AtC computer simulation225. (a) 
Atomic temperature distribution of a tantalum nanowire with dimension 85 nm×40.8 nm×13.6 
nm at time zero when Joule heating is instantly stopped.  The 32×12×6 finite-element meshes 
were used to simulate the electron temperature field in the TTM. The electron temperature on 
both sides of the nanowire was kept constant at 300 K. (b) Evolution of atomic temperature 
distribution along the x direction of the Ta nanowire during the cooling process. (c) Cooling rate 
as a function of temperature in liquid tantalum (the middle section within 5 nm along the x 
direction). The highest cooling rate at the initial stage of quenching reaches as high as 1014 Ks−1. 
(d) Crystal growth rate at the LCIs of the (100) (orange squares) and (110) (cyan circles) 
crystallographic planes, respectively, based on classic MD simulation. The simulation details for 
crystal growth from the melt are similar to previous research245. 

shown in Figure 4.10a-b, 18 nm of the 35 nm Ta liquid was successfully vitrified into MG under 

a cooling rate varying between 3×1013 Ks−1 and 1013 Ks−1 (Figure 4.10). 

The critical cooling rate cT  required for vitrifying liquid tantalum is estimated based on 

dimensional considerations: /c LT T v L≈ , where TL is the temperature of the liquid, v is the 

average moving velocity of the liquid-crystal interface, which is estimated to be ~50 ms−1 based 

on Figure 4.7d, and L is the length of the melting zone. The critical cooling rate is derived by 
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Figure 4.8 Glass transition temperature Tg of tantalum from MD simulation225. Both the enthalpy 
change and the volume change as a function of temperature indicate Tg is close to 1650 K. 

considering the temperature drop ΔT, which is the temperature interval between TL and the glass 

transition temperature Tg, divided by the time t required for complete crystallization. As shown 

in Figure 4.8 and Figure 4.9, Tg is approximately half of TL, leading to ΔT ≈0.5 TL. Assuming 

complete crystallization is signified by two glass-crystal interfaces merging in the middle of the 

melting zone, each interface travels a length of 0.5L, leading to t=0.5L/v. Hence, we have 

0.5
(0.5 / )

L L
c

T T vTT
t L v L
∆

= ≈ = . Under the simulation geometry where L is around 30 nm, the 

estimated critical cooling rate is ~5×1012 Ks−1. 

The thermal stability of tantalum MG is rationalized by our computation, showing that 

the crystal growth of low-index faces of bcc Ta is a thermally activated process at RT, with 
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Figure 4.9 Dynamic vitrification process in liquid Ta revealed by atoms-to-continuum computer 
simulation225. (a) Atomic configuration showing a 35 nm long liquid zone of tantalum after Joule 
heating (at t=0 ps). The atoms are colored based on their degree of disorder represented by local 
bond-orientational order parameter246 q6. The red color corresponds to liquid tantalum after Joule 
heating. (b) Atomic configuration showing the formation of a 30 nm long tantalum MG segment 
after quenching (t=150 ps). The average temperature of the tantalum nanowire is close to RT at 
t=150 ps. The inset highlights the interface structure between amorphous and bcc Ta. (c) A 
Time-Temperature-Transformation diagram derived from isothermal MD simulations, outlining 
approximately the formation condition of Ta MG. The crystal zone is estimated based on the 
crystal growth rates of the (100) plane (cyan circles) and the (110) plane (orange squares). The 
red solid line indicates the temperature evolution of the moving LCI (and later on GCI) during 
cooling. 
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Figure 4.10 Vitrification of liquid tantalum under a heating flux terminated within 0.4 ns by AtC 
computer simulation225. (a) Atomic configuration of the tantalum nanowire after Joule heating. A 
35 nm long melting zone was formed before quenching (atoms colored with red). (b) A 18 nm 
region in the middle of the melting zone is vitrified to a glassy state after being quenched to RT. 
(c) Cooling rate as a function of temperature in the middle region of the melting zone during 
quenching. The cooling rate varied between 3×1013 Ks−1 at 4200 K and 1013 Ks−1 at Tg. 
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infinitesimally small growth rates at the GCIs (based on Figure 4.7d). It should be pointed out 

that the “slow” growth rate of Ta crystals is distinctly different from that of fcc metals, where the 

growth of crystal interfaces is expected to be spontaneous and fast even at zero temperature69,142. 

Indeed, we have tried but failed to produce any monatomic MGs from fcc metals (e.g., gold, 

silver, copper, palladium, aluminum, rhodium, and iridium) using the very same approach. 

4.3.2 Controlled competition between vitrification and crystal growth 

Interestingly, the competition between vitrification and crystal growth can be experimentally 

controlled, leading to a novel phase-change phenomenon in the MG. Figure 4.11 illustrates a 

vitrification-crystallization cycle in a Ta sample controlled by alternately applying two kinds of 

electric pulses with the same duration (3.6 ns) but different voltages. With the assistance of in-

situ TEM observation, the structural and morphological evolutions of the sample can be 

monitored on the fly. As shown in Figure 4.11a, a 40-nm-thick, 50-nm-long Ta MG obtained 

with a high-voltage (1.26 V) electric pulse (i.e., the vitrification pulse) was reverted to its 

original crystalline state after applying a series of low-voltage (0.90 V) electric pulses (i.e., the 

crystallization pulses), with each pulse reducing the size of the sandwiched amorphous zone 

(Figure 4.11b-c). The GCIs were identified to be atomically rough and diffuse during both 

vitrification (Figure 4.11e) and crystallization (Figure 4.11f). After complete crystallization of 

the Ta MG (Figure 4.11c and its inset), another vitrification pulse again generated a glassy zone 

of Ta (Figure 4.11d), which exhibits almost identical dimension and morphology with respect to 

the one shown in Figure 4.11a, demonstrating that a reversible glass-crystal phase-change 

process is achievable by our approach. 
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Figure 4.11 Reversible crystallization-vitrification phase changes of tantalum MG225. (a) 
Formation of a 40-nm-thick, 50-nm-long tantalum MG under a 3.6 ns, 1.26 V electric pulse. The 
two GCIs are indicated by yellow dotted curves and labeled as A and B, respectively. (b-c) 
Controlled gradual crystallization under a series of pulses with 3.6 ns in duration and 0.91 V in 
amplitude. Crystallization proceeded with crystal growth at GCI B (indicated by a yellow arrow), 
and completed after 6 crystallization pulses (inset in c). (d) A second vitrification pulse resulted 
in the formation of a Ta MG similar to (a). (e-f) Close-up views of the atomically rough and 
diffuse GCIs during a phase-change cycle. A schematic drawing with cyan dotted lines along one 
set of the (110) planes is presented in f to show the gradual breakdown of the long-range order 
across the GCI. 
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Figure 4.12 Controlled gradual crystallization under a series of crystallization pulses225. The 
GCIs are marked with yellow dotted curves their move directions are indicated by yellow arrows. 
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Another example of controlled phase changes of Ta MG is presented in Figure 4.12. Such 

reversible phase-change behavior of tantalum, bearing a resemblance to phase-changing 

chalcogenide glasses29,30, makes it interesting candidates for applications in nano-devices such as 

phase-change based memristors30 and rewritable data storage devices29. 

4.3.3 Tensile deformation of sub-100-nm-sized metallic glasses 

With the current ultrafast liquid-quenching approach, the size-dependent tensile behavior of 

several sub-100-nm-sized MGs were investigated. Figure 4.13 demonstrates a shear-dominated 

deformation process in a 27-nm-wide Ta MG (that is, the left side of the hybrid Ta NW in Figure 

4.13a). One of the GCIs is used as a reference to track the deformation of the Ta MG (pointed 

out by green arrows in Figure 4.13a-c,g). Premature necking (marked by a pair of purple arrow 

heads in Figure 4.13c) was observed shortly after yielding at an elastic strain close to 5% (Figure 

4.13b), which approaches the elastic limit of MGs247. Further deformation to a strain of ~10% led 

to nucleation of a major shear with approximately 52° with respect to the loading direction 

(Figure 4.13d). Unlike in bulk MGs where catastrophic failure is expected after very limited 

plasticity39,  the nanosized Ta MG exhibited gradual growth of a shear offset (Figure 4.13e) until 

final fracture by cavitation (Figure 4.13f). The length of the deformed region in the original Ta 

MG is identified by tracking the contour evolution during deformation (Figure 4.13g), which is 

approximately 28 nm. The stress in the Ta MG are roughly estimated by measuring the lattice 

strain of the bcc Ta segment (that is, the right side of the hybrid Ta NW), which serve as a strain 

gauge. The stress-strain curve (Figure 4.13h) demonstrates a yielding strength as high as 4.7 GPa 

and an elastic modulus of ~110 GPa, which is about half of the elastic modulus of bcc Ta in the 
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Figure 4.13 Shear-dominated deformation in Ta MG under a strain rate of 10−3 s−1. (a) A hybrid 
Ta nanowire with the left half being Ta MG and the right half being bcc Ta. This hybrid 
nanowire was fabricated by forming a Ta MG nanowire at first, followed by controlled gradual 
crystallization to move one of the GCIs (outlined by yellow dotted curves) to the middle of the 
nanowire (marked by a green arrow), which is used as a reference for tracking the deformation of 
Ta MG. The strain rate was around 2×10−3 s−1. (b) Elastic deformation to a strain close to 5%. (c) 
Onset of necking shortly after yielding (pointed out by a pair of purple arrow heads). (d) 
Nucleation of a major shear. (e) Subsequent deformation through gradual growth of a shear 
offset along ~52° off the tensile loading direction. (f) Fracture at an overall strain of 37%. The 
inset is a schematic drawing of the non-edge-on shear plane. During the whole deformation, no 
plasticity has been observed in bcc Ta on the right. (g) Contours outlining the shape change of 
the Ta MG during deformation shown in (a-c) (marked by yellow, cyan and purple contours, 
respectively). The deformed region in Ta MG is measured to be 28 nm. (h) Stress-strain curve 
estimated by using crystalline Ta as a strain gauge. The red arrows marked the data points 
collected from (c) and (d), which correspond to the onset of necking and shear localization, 
respectively. 
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Figure 4.14 Completely ductile necking in Pd79Ag3.5P6Si9.5Ge2 MG under a strain rate of 6×10−3 
s-1. (a) A 52-nm-wide pristine Pd-based MG formed by applying a transient electric pulse on two 
contacting nanotips. (b) Uniform deformation of the Pd-pased MG. (c-f) Completely ductile 
necking throughout the deformation process. (g-h) Contour evolution during deformation. The 
length of the deformed region is L=L1−L2−L3=32 nm. The contour of the deformed region is 
outlined by blue dotted lines in (a). (i) Strain (magenta squares) and diameter change (cyan 
circles) with respect to time. D0 and Dmin represent the minimum diameter of the MG before and 

during deformation, respectively. (j) 2

0

min ))(1(
D

Dε+  as a function of the overall strain (ɛ). 

According to equations (4.1) and (4.2), the onset of necking is estimated to be around a strain of 
12%.  
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<110> direction.  The stress dropped rapidly after yielding due to the lack of hardening and shear 

transformation induced softening after the onset of shear banding248.  

Unlike Ta MG, a 52-nm-wide Pd79Ag3.5P6Si9.5Ge2 MG (referred to as Pd-based MG 

hereafter) showed extraordinary ductility during deformation. The deformed segment of the Pd-

based MG (outlined by blue dotted lines in Figure 4.14a) is identified by tracking the contour 

change during deformation (Figure 4.14g-h), the length of which is estimated to be about 32 nm. 

Necking initiated at the early stage of deformation (Figure 4.14c), and proceeded in a completely 

ductile manner until it was drawn to a point (Figure 4.14d-f). The final strain reached up to 90% 

(magenta squares in Figure 4.14i), which was accompanied by continuous diminishing in the 

neck width until it reached zero (cyan circles in Figure 4.14i), indicating an extremely large true 

strain near the tip region. Due to the non-uniform diameter of the Pd-based MG, the amount of 

uniform deformation before the onset of necking is not straightforward. During uniform 

elongation, the diameter and length change accordingly, following a relationship of 

ε+
==

1

1
)( 2

0

min0

D

D

L

L , where L0 and D0 are the original length and diameter in the narrowest 

site (Figure 4.14a), while L and Dmin represent the length and smallest diameter after deformation. 

Therefore, we have: 

1))(1( 2

0

min =+
D

Dε                                                                                                                     (4.1) 

However, after necking, localized deformation causes rapid decrease in Dmin, leading to 

1))(1( 2

0

min <+
D

Dε                                                                                                                     (4.2) 

According to equations (4.1) and (4.2), the amount of uniform deformation that the Pd-based 

MG has carried before necking is about 12% (Figure 4.14j). 
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Figure 4.15 Necking in a sense of shear in Cu50Zr50 MG under a strain rate of 3.5×10−3 s−1. (a) 
Pristine Cu50Zr50 MG with a diameter of 52 nm and a deformed length of 35 nm. (b-c) Early 
necking in a sense of shear, where necking proceeded inside a shear band. (d-e) Fracture before 
being drawn to a point. The inset in (e) is a close-up view of the both tips after fracture. (f) Strain 
(magenta squares) and diameter change (cyan circles) with respect to time. D0 and Dmin represent 
the minimum diameter of the MG before and during deformation, respectively. (g) Strain at 
which necking sets in is estimated to be 8% based on equations (4.1) and (4.2). 
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Figure 4.16 Shear localization in Pd-based MG with ‘large’ size under a strain rate of 6×10−3 s−1. 
(a) Pristine Pd-based MG with a diameter of 400 nm. (b-c) Nucleation of multiple shears at the 
early stage of deformation. The inset in (b) is a close-up view of nucleation of the first shear. (d-e) 
Fracture by shear along a non-edge-on plane, as evidenced by the abrupt contour of the necking 
region (outlined by blue dotted curves).  

The tensile behavior of a 52-nm-wide Cu50Zr50 MG was also investigated as shown in 

Figure 4.15. Necking initiated much earlier compared to the case in Pd-based MG, imparting 

very limited uniform elongation (Figure 4.15b).  Interestingly, necking in Cu50Zr50 MG 

proceeded in a sense of shear, which developed inside a shear band (Figure 4.15b-c). Such 

necking was not completely ductile (Figure 4.15d), and the Cu50Zr50 MG fractured before being 

drawn to a point (Figure 4.15e). By using the same approach introduced in Figure 4.14j, we 

found that the overall strain before fracture reached 57% (Figure 4.15f), and that necking 

initiated at a strain of 8% (Figure 4.15g). 
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Size-dependent ductility was observed in all three MGs, which decreases with increasing 

specimen dimension. A switch in the deformation mode from ductile necking to localized shear 

was observed in a Pd-based MG with a diameter of 400 nm (Figure 4.16). 

4.4 DISCUSSION 

4.4.1 Minimization of possible contaminations 

The vitrification of pure metallic liquids reported here should not be attributed to the enhanced 

glass forming ability associated with impurities in the original materials (Table 3.1) and/or 

oxygen contamination during experimental procedures (Figure 4.17). Some studied materials, 

such as tantalum, are reactive with the atmosphere, especially oxygen. Here, we made special 

effort to minimize such contaminations by carrying out our experiment under helium or high 

vacuum protection and by deoxidization before the liquid-quenching experiment. 

First, specimens were prepared and transferred to the microscope in a helium-protected 

environment with oxygen content below 1 ppm. The specimens were then inserted into the TEM 

with less than two seconds of exposure to the air. During this short period, oxygen contamination 

is limited to surface adsorption, as evidenced by the lack of an amorphous oxidization layer on 

the specimen surface (Figure 4.18). Oxygen absorption on clean Ta surfaces at room temperature 

was reported to be a self-limiting process where the absorption rate drops exponentially with 

respect to increasing oxygen coverage249. Therefore, it is expected that limited amount of oxygen 

is absorbed by our specimen during the specimen loading process. 
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Figure 4.17 Electron energy-loss spectroscopy spectra of oxygen in tantalum225. An oxygen K-
edge was identified around 530 eV energy loss from tantalum that was exposed to air for 
approximately 10 minutes (red curve). In contrast, no O K-edge was detected in both Ta MG and 
crystal (cyan curve) when the Ta nano-tips were processed in a helium-protected environment 
and deoxidized by Joule heating before the liquid-quenching experiment, indicating that the 
oxygen concentration in the Ta MG was below the detection limit of EELS, which is ~1000 ppm 
in atomic ratio250 (i.e., ~100 ppm in weight percentage).  

 

Figure 4.18 High-resolution TEM image showing the clean surface of an original Ta nano-tip 
specimen225. 
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Once specimens are inside the TEM column (~10-5 Pa), oxidation becomes negligible as 

evidenced from the following estimation. If we assume the sticking probability of oxygen 

molecules is 1.0 (that is, oxygen molecules attach to the surface as soon as they hit the specimen), 

oxygen adsorption rate can be obtained by calculating the collision frequency between the 

oxygen molecules and the specimen surface. 

In high vacuum as such, the oxygen partial pressure is as low as 2×10-6 Pa, in which case 

the interactions between oxygen molecules are weak. Therefore, oxygen can be treated as an 

ideal gas. According to p=nkBT, where p is oxygen partial pressure, n is the density of oxygen 

molecules, kB is Boltzmann constant, and T is temperature, oxygen molecule density inside the 

TEM column can be represented as 

n=p/kBT.                                                                                              (4.3) 

According to the Maxwell-Boltzmann distribution theory, the mean speed of oxygen 

molecules is 8RT
M

υ
π

〈 〉 = , where R is the gas constant and M is the molar mass of oxygen 

molecules. In the scenario where collisions occur between oxygen molecules and a flat surface, 

only the speed along the normal direction of the surface (i.e., x direction) should be considered. 

Therefore, the mean speed should be recast as 

2 8
x

RT
M

υ
π π

〈 〉 = .                                                                                              (4.4) 

Since oxygen molecules have an equal possibility to travel along all directions, only half 

of the oxygen molecules move towards the surface. Hence the collision frequency Z on a unit 

surface area can be calculated as 

1
2 xZ n υ= 〈 〉 .                 (4.5) 
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Replacing n and xυ〈 〉with equations 4.3 and 4.4, we obtain 

8

B

p RTZ
k T Mπ π

= .                            (4.6) 

Under a partial pressure of 2×10−6 Pa and temperature of 300 K, Z equals 2.16×1015 

collisions∙s−1∙m−2. Under such a collision rate and a dimension of 85 nm×40.8 nm×13.6 nm (the 

size of the tantalum nanowire the computer simulation), approximately 20 collisions take place 

per second, corresponding to an increase of the oxygen content by 1.4 ppm (weight percentage). 

In the real experiment, the sticking probability for each collision is less than 1.0, which makes 

oxidation contamination even more trivial. During our ultrafast quenching experiment on the 

nanosecond scale, oxygen contamination of the specimens inside the TEM is deemed negligible. 

An important procedure to lower the oxygen content is that the specimens were preheated 

by applying a current on the order of 100 μA through the joined nano-tips to a temperature close 

to the melting point for half an hour before the melt-quenching experiment. Such heating in high 

vacuum expels oxygen from tantalum, which serves as an effective method to obtain tantalum 

free of oxygen45,46. Although in some cases, complete removal of oxygen was reported to be 

difficult, the remaining proportion of oxygen is rather small251. This is confirmed by electron 

energy loss spectroscopy where the oxygen K-edge is invisible in the specimen (Figure 4.17), 

indicating the oxygen concentration in the current specimen is below the detection limit of EELS 

(that is, below 1000 ppm in atomic ratio). 

4.4.2 Opportunity for revealing the structure-ductility relationship in MGs 

Superior mechanical properties, such as large accessible elastic strain247, high strength32,37, 

uniform elongation32,252, and ductile necking33,35,36,252 have been frequently reported in sub- 
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Figure 4.19 Glassy state throughout the deformation. (a) High-resolution TEM image showing a 
fully amorphous region after deformation. (b-c) Comparison of electron diffraction patterns of 
Pd-based MG before (b) and after (c) deformation, where no crystallization was identified. 

 

Figure 4.20 Completely ductile necking of an 88-nm-wide Pd-based MG under a strain rate of 
3×10−3 s−1. The electron beam was blanked throughout the deformation except for recording 
images every dozens of seconds.  
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micrometer- and nanometer-sized MGs. However, most of the specimens investigated in 

previous researches were fabricated by FIB milling 32,35-37,247, which is widely known to 

introduce surface contamination and damage. These extrinsic factors may significantly impact 

the mechanical behavior of nanosized MGs253,254, therefore complicating the task to gain a 

fundamental understanding of their intrinsic mechanical properties254,255. Moreover, FIB-

fabricated specimens usually have a lower size limit around 100 nm, while further reducing the 

size is associated with technical difficulties. Here, we demonstrate an experimental approach that 

overcomes this difficulty and produces extremely small MGs with clean surfaces, enabling an 

investigation on the intrinsic size-dependence of the mechanical property with accessible sizes 

covering the entire sub-100-nm regime.  

The enhanced ductility observed here cannot be attributed to shear-induced crystallization, 

which is evidenced by the fully glassy state throughout the deformation process (Figure 4.19). 

Although electron-beam has been reported to induce super-plasticity in amorphous silica via a 

bond-switch mechanism, its impact on MGs, however, is expected to be less severe due to the 

more flexible bonds in MGs (that is, metallic bonding) compared to those in silica glass (that is, 

ionic bonding). Nevertheless, a low dose electron beam on the order of 10 Acm-2 was used 

throughout the tensile tests in order to minimize possible beam impact. Moreover, tensile tests 

with electron beam being blanked except for recording images every dozens of seconds have 

been carried out, where MGs demonstrated identical tensile behaviors compared to those under 

electron beam exposure. As shown in Figure 4.20, an 88-nm-wide Pd-based MG can be drawn to 

a point without exposure to the electron beam, indicating that the size dependence of ductility 

observed in this work is an intrinsic property of MGs. Although the large fracture strain reached 

in this work is very likely due to the short gauge length, the observed deformation mode (i.e., 
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Figure 4.21 Local symmetry of MGs obtained by nanobeam diffraction. Some diffraction spots 
on the second diffraction ring are highlighted with magenta arrow heads. Pd-based MG exhibits 
a relatively well-defined 5-fold symmetry compared to the CuZr (b) and Ta (c) MGs. 

shear versus ductile necking) provides important insights into the intrinsic ductility of the MGs. 

Indeed, similar ductile necking has been reported in another Pd-based MG (that is, 

Pd40Cu30Ni10P20) in the form one dimensional fibers252.  

Despite all superior properties of bulk MGs, their applications are usually limited by very 

small amount of plasticity, if at all. Therefore, gaining a fundamental understanding of the 

mechanisms governing ductility is of great significance. The ductility of bulk MGs has been 

related to their elastic stimuli256, where a relatively small elastic shear modulus compared to bulk 

modulus, and thus a large Poisson’s ratio, facilitates shear over dilatation, therefore imparting 

better plasticity104,105,141,257,258. On the other hand, the better ductility of nanosized MGs 

compared to their bulk counterparts is often explained as a consequence of suppressed shear 

band nucleation35-37. Though suggestive, both theories remain to be elucidated in terms of the 

atomic-scale origin of ductility, which is intrinsically related to the local atomic arrangements in 

MGs122,259-261. Indeed, the tested three MGs that show distinctive ductility also exhibit different 

local structures, where Pd-based MG demonstrates a better-defined 5-fold symmetry compared 

to the other two MGs (Figure 4.21).  Since the deformation of MG is carried by the operation of 
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shear transformation zones (STZs)262,263, it is conceivable that the local atomic arrangements will 

affect the property of STZs and, consequently, the ductility of MGs. Moreover, the atomic-level 

structure of MGs are not only dictated by their compositions118,264, but also impacted by how fast 

they are vitrified from the melts122. Therefore, with the ability to integrate glass-forming, phase-

characterization and mechanical-testing, the present work opens up a new opportunity to 

interrogate the connection between microstructure and the intrinsic mechanical properties of 

MGs. Although a clear relationship between them is yet to be uncovered, our work is the first 

step towards this ultimate goal. 

4.5 CONCLUSIONS 

A methodology that achieves an ultrafast liquid quenching rate of 1014 Ks−1 has been developed 

in this chapter, with which we successfully vitrified monatomic metallic melts and obtained 

single-element MGs from bcc metals. The forming condition and thermal stability of the as-

obtained monatomic MGs were revealed to be determined by the competition between 

vitrification and crystal growth. The breakthroughs in obtaining monatomic MGs and 

manipulating their phase behavior are important to both scientific research and technological 

applications. 

The formation of monatomic MGs opens up new opportunities to study the structural 

dependence of the rheological, thermal, electric, and mechanical properties of MGs, where 

complications due to chemical effects in multi-component MGs can be isolated. By reaching 

deep quench under an ultrafast cooling rate, the current work has the potential to advance the 

fundamental understanding of the fast kinetics and structural properties of supercooled liquids. In 
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addition, this ultrafast liquid-quenching methodology is a technological break-through in making 

nano-scale MGs with tunable dimensions. The controllable phase-change phenomenon is 

promising for micro-electro-mechanical applications, such as phase-changing-based memristors 

and rewritable data storage devices. 

An intrinsic size dependence of ductility was revealed, where MGs with small size can 

sustain more uniform elongation and deform via ductile necking without catastrophic failure 

caused by cavitation. More importantly, the current methodology opens up new opportunities to 

gain a fundamental understanding of the connection between local atomic arrangements and the 

intrinsic mechanical properties of MGs. 
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5.0  IN-SITU TEM OBSERVATION ON LITHIATION/DELITHIATION OF TIN 

DIOXIDE NANOWIRES 

In this chapter, the morphological and microstructural evolutions during lithiation/delithiation of 

individual SnO2 NWs are revealed at atomic-scale resolution. We report here the successful 

construction of a nanoscale electrochemical device consisting of a single SnO2 nanowire anode, 

an ionic liquid electrolyte, and a bulk LiCoO2 cathode in a transmission electron microscope. 

Upon charging, a reaction front propagated progressively along the nanowire, inducing large 

plastic deformation in the nanowire.  A region with a high density of dislocations was identified 

at the reaction front, where dislocations were continuously nucleated and absorbed at the moving 

reaction interface. This region is named as ‘dislocation cloud’, which indicates large in-plane 

misfit stresses and is found to be precursor for electrochemically-driven solid-state 

amorphization. Because mechanical degradation induced by large volume expansion, plasticity 

and pulverization of electrode materials during lithiation/delithiation is an important drawback 

that plagues the performance and lifetime of batteries, our observations provide important 

implications for the design of advanced batteries.  

The atomic scale lithiation mechanism of individual SnO2 NWs in a flooding geometry 

with the entire nanowires being immersed in the electrolyte was also revealed by in-situ 

transmission electron microscopy. Lithiation was initiated by formation of multiple stripes with 

width of a few nanometers parallel to the (020) plane traversing the entire wires, serving as 
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multiple reaction fronts for subsequent lithiation. A high density of dislocations and enlarged 

inter-planar spacing were identified inside the stripes, which provided effective paths for lithium 

ion transport. The density of the stripes increased with further lithiation, and eventually they 

merged with one another, causing a large elongation, volume expansion, and the crystalline to 

amorphous phase transformation. This lithiation mechanism characterized by multiple stripes 

and multiple reaction fronts was unexpected and differed completely from the expected core-

shell lithiation mechanism.  

5.1 INTRODUCTION 

LIB is one of the most important energy storage devices for hybrid vehicles and portable 

electronic devices. The next generation of LIBs requires higher capacity, higher power and better 

cyclability45,71,265,266. However, the performance of LIBs is often plagued by mechanical 

degradation during electrochemical cycling, including crack, pulverization of the electrode 

materials and loss of contact between the effective materials and current collectors52,53. Several 

in-situ techniques, including SEM193-197,267, synchrotron XRD167,198, synchrotron XAS119,120, 

Raman spectroscopy204, mass spectroscopy205-207, and NMR spectroscopy176,208, have been 

applied to track the structural evolutions of electrode materials during battery operation. 

Unfortunately, these in-situ techniques fall short of revealing the detailed mechanisms of 

mechanical degradation, such as strain induced plasticity and strain accommodation, due to 

either limited spatial and temporal resolution, and the thus lack of ability to visualize the atomic-

scale electrochemical processes at real time.  
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It has been recently reported that electrodes consisting of nanowires demonstrate 

improved performance and reliability compared to those composed of micron-sized or bulk 

electrode materials47,268-278. These improvements may due to the unique one-dimensional 

geometry of the NWs that shows enough flexibility to accommodate the large volume change 

during battery operation47,279. In order to reveal the mechanism of such strain accommodation, 

in-situ TEM study was performed on lithiation/delithiation of SnO2 NW anode. 

5.2 EXPERIMENTAL APPROACHES 

To create the test cell, an individual SnO2 nanowire was attached to a gold rod, which was 

further attached to a piezo-manipulator. Prior to insertion into the TEM, a drop of ILE [lithium 

bis (trifluoromethylsulfonyl) imide (LiTFSI) dissolved in 1-butyl-1-methylpyrrolidinium bis 

(trifluoromethylsulfonyl) imide (P14TFSI)] was placed on the LiCoO2 cathode surface. The ionic 

liquid is a molten organic salt with very low vapor pressure, enabling its use in the high vacuum 

(~10−5 Pa) inside the high-resolution TEM while still solvating and transporting Li ions 

effectively. After loading the battery components into the TEM, an SnO2 nanowire was 

manipulated in-situ and partially inserted into the ILE droplet, completing the assembly of the 

battery (anode, electrolyte, and cathode) (Figure 5.1). When assembled in this manner, the 

battery is in its discharged state (i.e. with lithium residing in the cathode). The nanowire battery 

was charged by performing potentiostatic holds at different voltages (up to −4 V) with respect to 

the LiCoO2 cathode. These potentials were chosen because the open circuit voltage of SnO2 vs. 

LiCoO2 is about −2.9 V280,281. 
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Figure 5.1 Building a nano-battery inside a TEM, which consists of a single SnO2 nanowire 
anode, an ionic liquid electrolyte, and a bulk LiCoO2 cathode220. 

To minimize the effect of the electron beam impinging on the sample, the beam was 

“blanked” during the charging process except for very short exposures (~1 s) about every five 

minutes for the purpose of recording images. However, when recording a video, the beam was 

not blanked. No significant mechanistic differences were found between time lapse imaging with 

beam blanking and continuous imaging without blanking. In either case, an extremely low 

electron beam dose (~10−3 Acm−2) was used to minimize possible beam damage artifacts. 

Two configurations were applied in this chapter. The first one is in an end-contact 

geometry, in which the nanowire is barely immersed in the ILE. To create an environment that is 

close to that in real LIBs, a second configuration in a flooding geometry (i.e., side-contact), 

where the NWs are immersed in the electrolyte, was also considered. 
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5.3 EXPERIMENTAL RESULTS 

5.3.1 Lithiation/delithiation of SnO2 NWs in an end-contact geometry 

The morphological and structural evolutions in a SnO2 nanowire during lithiation are presented 

in Figure 5.2. The pristine NW was barely inserted into the ILE (Figure 5.2a), with a −3.5 V bias 

being applied to start the lithiation. The reaction started at the contact point between the ILE and 

NW by propagation of a single reaction front along the axial direction of the NW that 

continuously moving away from the ILE (pointed out by the small arrow heads) (Figure 5.2a-m). 

As the reaction front passed by, the NW elongated and became bent, twisted, and spiral, which 

indicated large plastic deformation and microstructural changes (Figure 5.2o-r). After lithiation 

for about half an hour, the NW showed up to 60% elongation, 45% diameter change, leading to a 

240% volume expansion (Figure 5.2n). 

A close-up view and detailed structure characterization at the reaction front are presented 

in Figure 5.3. The unreacted part was still single crystalline (Figure 5.3b) while the reacted 

segment right after the reaction front showed a dark grey featureless contrast with corresponding 

diffusive halos in the EDP (Figure 5.3d), typical of amorphous structure. Between the reacted 

and unreacted segments of the SnO2 NW, the amorphous-crystalline interface (ACI) was 

featured by a high density of dislocations (Figure 5.3a), namely the dislocation cloud, and the 

EDP corresponding to this region was featured by a spots pattern superimposed on a diffuse 

scattered background. After further lithiation, the NW was composed of Sn (black indices in 

Figure 5.3e) and LixSn (orange indices in Figure 5.3e) alloy nanocrystals embedded in an 

amorphous Li2O matrix (Figure 5.3f). 
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Figure 5.2 Time-lapse structure evolution of a SnO2 nanowire anode during charging at –3.5 V 
against a LiCoO2 cathode220. The initially straight nanowire (a-b) became significantly twisted 
and bent after charging (c-r). The chemical reaction front progressed along the nanowire’s 
longitudinal direction, with the front clearly visible, as pointed out by arrowheads in (d) to (r). 
The red line in (a) to (n) marks a reference point to track the change of the nanowire length. (o) 
to (r) are sequential high-magnification images showing the progressive migration of the reaction 
front, swelling, and the twisted morphology of the nanowire after the reaction front passed by. 
The big dark particle in the middle of (n) is an island of gelled ILE. Because of the long 
cumulative electron beam exposure time during the recording of TEM images, the ILE front 
became gelled (with high viscosity) at this spot. 
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Figure 5.3 Structural and phase characterization of another SnO2 NW anode during charging at –
3.5 V against the LiCoO2 cathode220. (a) TEM micrograph of the nanowire containing a reaction 
front (dislocation cloud) separating the reacted (amorphous) and non-reacted (single crystal SnO2) 
sections. (b-e) EDPs from the different sections of the nanowire. The pristine nanowire was 
single crystalline and the corresponding EDP (b) can be indexed as the [111] zone axis of rutile 
SnO2. The EDP from the dislocation zone (c) shows a spot pattern superimposed on a diffuse 
scattering background. The EDP from an area immediately after the reaction front (d) shows an 
amorphous halo. The EDP from an area far away from the reaction front (e) shows diffraction 
rings superimposed on a diffuse amorphous halo. The diffraction rings can be indexed as 
tetragonal Sn (black indices) and a LixSn compound such as hexagonal Li13Sn5 (orange indices). 
(f) A high-resolution TEM image from a charged nanowire showing Sn nanoparticles dispersed 
in an amorphous matrix. 

Unlike brittle bulk SnO2, SnO2 NWs showed large dislocation plasticity near the reaction. 

Although previous ex-situ TEM study has revealed a high density of dislocations in LiCoO2 

cathode after cycling282, it lacks the ability to capture the dynamic dislocation nucleation and 

migration processes. Figure 5.4 demonstrates that the dislocations were continuously nucleated 

in crystalline SnO2 at the vicinity of the ACI and then moved away driven by the high misfit 

stress at the reaction interface. At the meantime, they were also absorbed by the moving ACI 
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Figure 5.4 TEM images revealed a high density of dislocations emerging from the reaction front 
(marked by chevron-shaped dotted lines). As the dislocation front propagated, the crystalline 
contrast changed to gray amorphous contrast instantaneously, and the nanowire diameter 
increased immediately. (a-f) and (g-h) are two sets of time-lapsed TEM images showing the high 
density of dislocations that appeared at the reaction front and the migration of the reaction 
front220. 
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from behind283, thus maintaining a steady volume and a chevron shape in the moving dislocation 

cloud. Because the old dislocation sources were continuously removed by the advancing ACI, 

the high density of dislocations have to be emitted from the new dislocation sources continuously 

generated by the high stress at the reaction front, indicating that a stress close to the ideal 

strength284 of SnO2 should exist at the ACI. The large discrepancy (that is, 45% radial expansion 

in the reacted segment with respect to the original crystalline segment) between the diameters of 

the reacted and unreacted segment at each side of the reaction interface would generate a large 

tensile stress near the ACI that leads to spontaneous dislocation nucleation on the unreacted side, 

as well as a large compressive stress on the reacted amorphous that induce plastic deformation 

on the amorphous side. The dislocation density in the dislocation cloud was estimated to be on 

the order of 1017 m−2, which is about two orders of magnitude larger than that in heavily work-

hardened fcc metals285. Such a high dislocation density drives the crystal far from its equilibrium 

state and leads to the collapse of the crystal lattices, therefore severing as a precursor toward 

amorphization. 

Delithiation of the lithiated SnO2 NWs was also performed, during which the LixSn alloy 

nanoparticles were converted back to pure Sn accompanied by a shrinkage in the diameter 

(Figure 5.5). However, further oxidation of Sn into SnO2 was not observed, and the amorphous 

Li2O matrix formed by the initial lithiation kept stable during the following delithiation 

processes, resulting in a much less prominent volume change compared to that during the first 

lithiation half-cycle. Namely, lithiation of SnO2 is a two-step reaction, which can be expressed as: 

4Li+ + SnO2 + 4e– → 2Li2O + Sn; 

Sn + xLi+ + xe– ↔ LixSn  (0 ≤ x ≤ 4.4). 
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Figure 5.5 TEM images of a lithiated SnO2 NW before (a) and after (b) delithiation220. The NW 
was biased at ‒0.05 V versus the LiCoO2 cathode. (c-f) Time-lapse EDPs of the same area as 
outlined in (a) and (b), showing the structural evolution of the nanowire during delithiation. The 
initial nanowire consisted of LixSn, Sn and Li2O (c and d). After 12417s of discharging, only Sn 
(diffraction rings in f) and amorphous Li2O were present (amorphous halo in f). After 
discharging, the diameter of the NW was reduced from 183 nm to 154 nm. 

5.3.2 Lithiation of SnO2 NWs in a flooding geometry 

The experiment above was conducted in an end contact geometry, in which the nanowire is 

barely immersed in the ILE (Figure 5.6a). In this setup, the main lithium ion transport channel is 

inside the nanowire and the reaction front is perpendicular to the nanowire axis. Due to the 

confinement of the reaction interface, the nanowire undergoes super-elongation (Figure 5.6b). 

However, in a real battery, the nanowires are immersed in the electrolyte. Then, what will 

happen in this flooding (i.e., side-contact) geometry (Figure 5.6c)? Will the mechanisms operate 
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Figure 5.6 Schematic illustration of end-contact and side-contact configurations286. 

in an end-contact geometry also operate in a flooding geometry? One guess is that since lithium 

ions diffuse through the side surface and the nanowire may form a core-shell structure with 

swelling rather than elongation (Figure 5.6). 

To conduct experiments in a flooding geometry, one third of the nanowire was immersed 

in the electrolyte (Figure 5.7a). When lithiation started, the segment above the electrolyte 

showed typical lithiation process in an end-contact geometry, which was featured by elongation 

and a single reaction front propagating along the nanowire (Figure 5.7b-k). Surprisingly, the 

flooded segment showed similar morphology with large elongation at the ILE was retracted 

(Figure 5.7l). The EDPs from the non-flooded (Figure 5.7m) and flooded (Figure 5.7n) segments 
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Figure 5.7 Structural evolution of a SnO2 NW anode in a flooding geometry during charging at 
−3.5 V with respect to the LiCoO2 cathode286. (a) A 45-μm-long and 220-nm-thick pristine SnO2 
NW with single crystalline structure (o). (b) Flooding geometry in which about 1/3 of the NW 
was immersed in the ILE. (c-k) Sequential images showing the morphology change during 
charging. The reaction front (indicated by the red arrowheads) progressed continuously along the 
NW’s axial direction. (l) Lithiated nanowire after the ILE was withdrawn. Similar morphology 
was observed for both the flooded and the nonflooded segments. The corresponding EDPs of 
nonflooded (m) and flooded (n) segments showed almost identical structure after lithiation. 
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also showed similar microstructure. This is in contrast with the assumed core-shell structure and 

the swelling in a flooding geometry (Figure 5.6d). 

To explain this contradiction, lithiation was stopped at various intermediate stages and 

the ILE was retracted to inspect the structural evolution of the flooded segment. Figure 5.8 

shows morphology and structure changes at different lithiation stages of several SnO2 NWs in a 

flooding geometry. A pristine SnO2 NW was smooth and straight, with a single crystalline rutile 

structure before lithiation (Figure 5.8a,g). After a −3.5 V bias was applied to the SnO2 nanowire 

against a LiCoO2 cathode, there were no detectable changes until after approximately 90 s, when 

a set of dark-contrasted stripes inclined 61° with respect to the side surface of the NW emerged 

(Figure 5.8b). After a few more seconds, the spacing between the stripes became smaller and 

there was dislocation contrast all over the NW (Figure 5.8c). These stripes were induced by 

lithiation. The EDP of the striped nanowire (Figure 5.8h) showed single-crystal diffraction spots 

superimposed on a diffuse scattering background caused by inelastic scattering originating from 

lithiation induced defects. These strips were likely nucleated from local surface regions with 

atomic scale defects and each traversed the entire NW. Upon further lithiation, the contrast of 

these stripes became blurred (red rectangle in Figure 5.8d). In the meantime, some weak arcs 

around the single-crystal diffraction spots emerged (Figure 5.8i) due to lithiation induced 

polycrystallization of the NW. With further lithiation (Figure 5.8e-f), the arcs around SnO2 

diffraction spots became much weaker (Figure 5.8j) and finally barely discernible (Figure 5.8k) 

and the whole nanowire was converted to a Sn, LixSn, and Li2O amorphous matrix.  

Figure 5.9a is the morphology of a SnO2 nanowire with [011] growth direction at the 

initiation stage of lithiation, showing again multiple stripes inclined to the nanowire axis, and 

Figure 5.9b is a HRTEM image and an EDP of the same nanowire before lithiation. The stripes 
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Figure 5.8 Multiple stripes formation in flooded SnO2 nanowire anodes during charging at −3.5 
V against the LiCoO2 cathode286. (a) Pristine single crystalline nanowire and its corresponding 
EDP (g) which can be indexed to the [ 110 ] zone axis of the rutile SnO2. (b-c) Multiple stripes 
formed after lithiation. A set of parallel stripes with dark contrast inclined 61° to the side surface 
of the nanowire. The corresponding EDP (h) showed single-crystal diffraction spots 
superimposed on a diffuse scattering background. Morphology (d-f) and the corresponding EDPs 
(i-k) after further lithiation. After further lithiation, the stripes disappeared completely and the 
nanowire underwent both elongation and swelling. The corresponding EDP (j-k) showed that the 
SnO2 nanowire has been reduced to Sn+Li2O+LixSn. Note the images shown in (b-f) were 
captured from five different nanowires immersed in the ILE for different periods of time and 
were all viewed along the [ 110 ] direction. 
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Figure 5.9 Microstructure of the lithiation induced multiple stripes in SnO2 nanowires286. (a-b) 
Low and high magnification images of the charged (a) and pristine (b) nanowire. The nanowire 
was viewed along the [ 110 ] zone axis. Stripes inclining 61° to the (111) planes of the nanowire 
are parallel to the (020) plane. (c-d) Raw and Fourier filtered HRTEM images of the multiple 
stripes. (d) High magnification image of the framed area in (c), showing dislocations with 
Burgers vector [001] or [100] in the stripes. (e-f) Images of the nanowire after further lithiation. 
(f) is a high magnification image of the framed area in (e), showing a high density of stripes 
formed after prolonged lithiation. (g-h) Raw and Fourier filtered HRTEM images of another 
nanowire after lithiation, showing a high density of dislocations with Burgers vectors of [100] 
and [001], and even disordering. The viewing direction was the [ 011 ] zone axis. 
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are parallel to the (020) plane, which is apparently the preferred lithium insertion plane. HRTEM 

images (Figure 5.9c-d) of the same nanowire showed lithiation induced dislocations in one of 

these stripes. Possible Burgers vector of the dislocations was determined to be [001] or [100]. 

The lithiation induced dislocation cores may act as fast lithium diffusion channels and may 

increase the lithiation kinetics287. Based on previous studies288-291, [001] is the diffusion channel 

in a rutile structural crystal such as SnO2. Therefore, the initial lithiation process can be 

interpreted as follows: lithiation initiated at some surface defects, continued along [001] 

direction in the (020) plane. The lithiation induced stress led to formation of dislocations along 

the stripes, which further facilitated lithium diffusion into the interior of the NW. The multiple-

stripe formation process was rather quick and the density of stripes increased with progression of 

lithiation (Figure 5.9e-f). HRTEM images (Figure 5.9g-h) from another striped nanowire 

identified a high density of dislocations with Burgers vectors of [100] and [001]. The crystal 

lattice became indiscernible at some areas inside the stripes, indicating the beginning of the 

reaction to form Sn and amorphous Li2O. The dislocation density was estimated to be ~ 5×1016 

m−2 based on Figure 5.9h, similar to that in the dislocation cloud observed in non-flooded 

NWs220. Therefore, lithiation-driven dislocation plasticity in the stripes occurred and was a 

precursor of the crystalline to amorphous phase transition. 

Figure 5.10 shows the evolution in the lattice spacing during lithiation obtained from 

EDPs. When the stripes formed, the (020) diffraction spots were split into two (Figure 5.10c-d, 

and their insets). The brighter spot corresponded to a d-spacing of 2.36 Å, which matched well 

with the SnO2 (020) plane, while the darker spot had a d-spacing of 2.43 Å, which was caused by 

lithiation induced lattice expansion (Figure 5.10c inset). With further lithiation, the spot from the 

pristine lattice became much weaker, and the brighter spot corresponded to a d-spacing of 2.49 Å, 
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Figure 5.10 EDPs from the striped nanowire indicated lattice expansion caused by lithiation286. 
Structural evolution was viewed along the [ 110 ] zone axis. (a) Stripes parallel to the (020) plane 
formed after initial lithiation. (b-d) The (020) diffraction spot was split into two with different d-
spacings (insets in c and d), with the brighter spot corresponding to a d-spacing of 2.36 Å, 
matching that of the (020) plane in the pristine structure, while the darker spot having a d-
spacing of 2.49 Å, indicating a 5.5% lattice expansion induced by lithiation. (e) Schematic 
illustration of lithium intercalation along [001] in the (020) plane in a side-contact geometry. The 
nanowire’s growth direction is [011]. 

a ~5.5% increase with respect to the pristine structure (Figure 5.10d inset). It confirmed that the 

transverse (020) plane is the preferred lithiation plane, which may be ascribed to the side-contact 

geometry as shown in Figure 5.10e. Since (020) plane traverses the nanowire, lithium ions 

diffuse into the [001] channels in the (020) plane inside the nanowire through surface defects. 

The special one-dimensional geometry of nanowires plays an important role in this multi-stripe 

lithiation mechanism. The flexibility in the longitudinal direction and the small diameter 
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facilitate lithium insertion292-294, leading to easier lithium intercalation along (020) plane which 

traverses the nanowire. 

5.4 DISCUSSION 

Based on the different lithiation mechanisms in end-contact and side-contact geometries, we 

demonstrate that experimental configurations can play an important role in determining the 

mechanisms governing battery operation. An open-cell configuration in the current study allows 

real-time observation at atomic scale resolution with the capability of concurrent analytical TEM, 

such as EELS and EDS analysis. However, the choice for the electrolyte is key difficulty in 

performing an open-cell experiment, because most commercialized electrolytes have high vapor 

pressure, which cannot survive the high vacuum inside a TEM. Thus commercialized electrolytes 

have to be replaced by an ILE with ultralow vapor pressure. Moreover, an end-contact geometry 

is often associated with an open-cell configuration, which is not exactly the same as the 

electrochemical environment in real batteries, where the electrodes are fully surrounded by 

electrolyte. Although the use of a side-contact geometry can address this issue, the immersed part 

of the electrode materials is not visible, which can allow only a quasi-in-situ study. A liquid-cell 

configuration65,214-216,218,295-297 , on the other hand, allows in situ TEM observation on electrode 

materials that are immersed in real electrolytes, creating an electrochemical environment the 

same as that in real batteries. However it shows limited resolution compared to that in an open-

cell configuration, and imposes difficulties on performing analytical TEM, such as composition 

analysis. Therefore, in-situ TEM studies complemented by both open-cell and liquid-cell 

configurations are of scientific and practical importance.  
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5.5 CONCLUSIONS 

In-situ TEM observation on the lithiation/delithiation of SnO2 NWs was performed in end-

contact and flooding geometries, respectively. Lithiation of SnO2 NW above the ILE is featured 

by a single reaction front propagating along the axial direction of the NW, accompanied by 

significant elongation and volume expansion. At the reaction front (i.e., the ACI), a region with a 

high density of dislocations was identified (i.e., the dislocation cloud), leading to large 

dislocation plasticity serving as a precursor towards ESA. In a flooding geometry, a unique 

multiple-stripe multiple-reaction-front lithiation mechanism was discovered, where preferred 

lithium insertion was found to induce multiple stripes along the (020) plane traversing the 

nanowire. Lattice expansion and dislocations were observed inside these stripes. This new 

lithiation process has important implications for the reaction mechanism in practical LIBs where 

the electrodes are immersed in electrolyte. In both configurations, the SnO2 NWs successfully 

accommodate the large strain by elongation in the longitudinal direction without catastrophic 

failure, which can be attributed to the special 1-D geometry. The results in this chapter provide 

insights into a fundamental understanding of the plasticity and strain accommodation 

mechanisms inside SnO2 NWs, and have significant implications for designing the next-

generation LIBs with anode materials demonstrating large volume expansion and contraction 

during battery operation.  

Although this work was carried out by selecting SnO2 nanowires as a model material, the 

established methodology is applicable to many other electrode materials for both cathode and 

anode studies, and thus should provide important insights for a better understanding of the 

mechanisms governing battery performance and reliability. 
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6.0  IN-SITU OBSERVATION OF NON-EQUILIBRIUM SINGLE-PHASE 

LITHIATION IN ANATASE TITANIUM DIOXIDE NANOPARTICLES 

In this chapter, the lithiation pathway in single crystalline and polycrystalline anatase TiO2 NWs 

are successfully revealed by utilizing both in-situ electron diffraction and HRTEM. Although an 

equilibrium two-phase lithiation/delithiation path is thermodynamically favored, it requires the 

nucleation and growth of a second phase, and may thus not be kinetically preferred at the same 

time187,298. On the other hand, a non-equilibrium single-phase reaction is believed to kinetically 

improve the reaction rate. However, the possibility of a single-phase reaction replacing a two-

phase process is still not conclusive and under intense debate186-190,299-301 due to the difficulties in 

tracking the lithiation/delithiation processes at real time. Here, by conducting in-situ TEM 

observation, we show direct evidences that the lithiation of anatase TiO2, previously believed to 

follow a two-phase reaction path302-310, switches to a single-phase reaction with high a rate of 

10−60 C when the crystal size goes down to ~20 nm. By demonstrating the significant size 

impact on the lithiation mechanisms in anatase TiO2, our results indicate that the observed switch 

in the lithiation path may also take place in other intercalation compounds whose miscibility 

gaps are associated with a prominent size effect, therefore providing important guidelines for 

designing high-power electrodes, especially cathodes. 
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6.1 INTRODUCTION 

An equilibrium two-phase lithiation /delithiation mechanism is quite prevalent among electrode 

materials for LIBs. For example, intercalation compounds311-313, an important group of electrode 

materials in LIBs, tend to favor this pathway. These electrode materials exhibit limited bonding 

and structural modifications upon lithium intercalation/extraction, which tends to mitigate the 

mechanical degradation during cycling. However, their electrochemical performances are usually 

limited by their rate capability314,315 associated with the slow kinetics in a two-phase reaction 

mechanism (that is, to form a second phase upon lithiation/delithiation with an interface between 

the lithium-rich and lithium-poor phases). A non-equilibrium single-phase reaction path (that is, 

to form a solid solution during lithiation/delithiation) on the other hand, obviates the need for 

nucleation and growth of a second phase, and therefore may greatly improve the reaction rate. A 

single-phase reaction further excels in that without the coherency strain at the two-phase 

interface region, lihtiation can proceed more homogeneously inside electrode materials, therefore 

alleviating the mechanical degradation during cycling. It has been reported that both the 

thermodynamics and kinetics during lithiation are sensitive to sample size186. The question is: is 

this size dependence significant enough to cause replacement of a thermodynamically favored 

equilibrium two-phase reaction with a non-equilibrium single-phase reaction? And, if yes, what 

is the threshold size for such a switch to take place? 

Although single-phase versus two-phase reaction has been widely discussed, no 

consensus has been reached. For example, Delmas et al.187 believed that delithiation proceeds by 

fast migration of a two-phase boundary between the lithium rich and lithium poor phases; while 

Malik et al.186 proposed a possible non-equilibrium single-phase reaction pathway. Therefore, an 

approach capable of tracking the electrochemistry at nanoscale is highly desirable. Here, by 
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conducting in-situ TEM observation on the lithiation of polycrystalline and single crystalline 

anatase TiO2 NWs, we demonstrate the significant size impact on the lithiation mechanisms, and 

report a non-equilibrium single-phase lithiation pathway in anantase TiO2 nanocrystallites with 

size of ~20 nm. 

6.2 EXPERIMENTAL APPROACHES 

To conduct in-situ TEM observation on the lithiation process inside anatase TiO2 NWs, a 

nanoscale battery was assembled inside the TEM180. A positive electrode was made by attaching 

polycrystalline or single crystalline anatase TiO2 NWs to an aluminum rod with silver epoxy. 

This method allows good electrical conductivity between the TiO2 NWs and the aluminum rod, 

which serves as a current collector. A tungsten rod was scratched against a lithium metal, so that 

a small piece of lithium metal was attach to the tip of the tungsten rod, serving as the negative 

electrode. Both the TiO2 and lithium electrodes were mounted onto a Nanofactory TEM-STM 

specimen holder. All the above operations are conducted inside a helium filled glove box with 

very low content of oxygen and water (both below 1 ppm). Then, the STM holder was quickly 

transferred to the TEM in a sealed plastic bag filled with helium, which reduces the time of 

exposure to the air to less than three seconds. A thin surface layer of lithium was oxidized, 

serving as a solid electrolyte. Inside the TEM, the lithium electrode was brought into contact 

with the TiO2 electrode by a piezo-manipulator. At this point, a nanobattery has been 

successfully assembled. Lithiation occurred under applying a constant 0.5 V bias to the TiO2 

electrode with respect to the lithium electrode.  
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An FEI Tecnai F30 TEM was used in our experiments, which operates at an acceleration 

voltage of 300 kV. To reduce electron beam irradiation, an electron beam with intensity as low 

as 10 2Am−  was used throughout the experiment. Due to the small morphology and volume 

changes before and after lithiation, it is difficult to track lithiation inside individual nanocrystals 

by conventional bright-field TEM imaging. Employing in-situ electron diffraction, on the other 

hand, excels in revealing even the slightest changes in the lattice parameters, and is therefore 

competent to track the structural changes associated with successive lithium incorporation. Most 

diffraction patterns were recorded at a camera length of 1.2−1.5 m. 

6.3 EXPERIMENTAL RESULTS 

6.3.1 Lithiation of TiO2 nanoparticles via a single-phase reaction 

Figure 6.1 presents the morphological and structural changes of a poly-crystalline anatase TiO2 

NW during lithiation. The pristine TiO2 NWs (provide by MemPro Ceramics Corporation) are 

composed of randomly oriented and loosely packed anatase nanocrystallites with most of them 

being 10−25 nm (Figure 3.3), creating an environment similar to that in clusters consisting of 

nano-particles in a real battery electrode. The experiments were carried out using an all-solid 

electrochemical setup illustrated in Figure 6.1a, consisting of a TiO2 NW working electrode and 

a Li metal counter electrode bridged by a thin film of Li2O solid electrolyte. No significant 

volume expansion was observed after lithiation, except for a thin layer of Li2O covering the TiO2 

NW surface, providing a pathway for radial transport of Li ions (Figure 6.1b and Figure 6.2). 
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Figure 6.1 Structural evolution of TiO2 during lithiation. (a-b) Morphology changes of a poly-
crystalline anatase TiO2 NW before (a) and after lithiation (b). (c) EDPs of polycrystalline TiO2 
before (top) and after (bottom) lithiation, showing the original tetragonal anatase TiO2 has been 
converted to orthorhombic LixTiO2. (d) Integrated intensity from time-lapse EDPs. A two-stage 
lithiation mechanism was observed. In the first stage (0 s to 4297 s), both diffractions from TiO2 
and LixTiO2 (with x close to 0.5) were detected, indicating the coexistence of two phases. At the 
end of this stage, the TiO2 NW has been fully converted to Li0.5TiO2, corresponding to the purple 
diffractogramm. At the second stage (after 4297 s), the continuous displacement of the LixTiO2 
{200} peak was characteristic of a solid solution with increasing lithium content (0.5<x<1). Cyan 
and magenta vertical solid lines indicate the expected peak positions of TiO2 and Li0.5TiO2, 
respectively. (e) Displacement of the {200} diffraction peak with respect to time. (f) A 
magnified view of the {200} diffraction peak (rectangular region in d). Cyan arrows indicate 
several small peaks at the left edge. 
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Figure 6.2 Comparison of morphologies before and after lithiation. (a) Pristine TiO2 NW. (b) 
After lithiation, the same NW showed similar morphology with no significant changes in the 
crystallite size. A Li2O surface layer was formed after lithiation. 

The size of the TiO2 crystallites composing the NW also remained unchanged (Figure 6.2). 

Nevertheless, EDPs before (Figure 6.1c top) and after (Figure 6.1c bottom) lithiation indicated 

that the TiO2 nanoparticles have been converted from the original tetragonal anatase phase 

(space group I41/amd) to an orthorhombic LixTiO2 phase (lithium titanate, space group Imma)316. 

This phase transition was featured by splits in the TiO2 {101} and {200} rings to form LixTiO2 

({101}+{011}) and ({200}+{020}) reflections, respectively, as well as the shift in the {004} 

diffraction ring (Figure 6.1c). Figure 6.1d is derived from a series of EDPs recorded at different 

periods during lithiation, exhibiting a two-stage lithiation mechanism. In the first stage (before 

4297 s), the diffraction intensity came from a juxtaposition of both the anatase and lithium 

titanate phase, which seems to suggest a well-established two-phase lithiation mechanism. The 

LixTiO2 {004} and {020} peaks corresponded well with the expected peak positions of Li0.5TiO2  
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Figure 6.3 Structural evolution of single crystalline anatase TiO2 NWs during lithiation. Both 
Li0.5TiO2 and TiO2 phases were detected, with the former growing progressively at the expense 
of the latter. Unlike the case in polycrystalline TiO2 NWs, no additional diffraction intensities 
were captured between Li0.5TiO2 {020} and TiO2 {200}. Cyan and magenta vertical solid lines 
indicate the expected peak positions of TiO2 and Li0.5TiO2, respectively. 

(~7% expansion in b and ~4.8% shrinking in c), indicating x in the obtained lithium titanate 

phase is close to 0.5. (Hereafter, this metastable phase is referred to as Li0.5TiO2.) In the second 

stage (after 4297 s), continuous displacement of the diffraction peaks was observed, most evident 

in LixTiO2 {200}, which is characteristic of a single-phase (solid solution) reaction. This 

displacement is further represented in Figure 6.1e, where the {200} Bragg ring first stayed 

between TiO2 {200} and LixTiO2 {200} due to an apparent biphasic nature, then reached the 

latter at the end of stage one. At this point (4297 s), the polycrystalline TiO2 NW has been fully 

converted to Li0.5TiO2. Further lithiation led to continuous displacement of the lithium titanate 
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{200} towards LiTiO2 {200}, indicating the existence of a solid solution domain when x is above 

0.5. 

It should be pointed out that the kinetics in the second stage was slow, reflected by the 

sluggish shift of the lithium tinatate diffraction peaks, which almost stopped after prolonged 

discharge. This means the obtained solid solution above 0.5 lies in a narrow domain, which is 

possibly a result of crystal size effect317 or ordering of Li ions in Li0.5TiO2318. While this solid-

solution behavior may be rationalized by previous researches, a careful comparison of the 

structure changes in stage one between the nanocrystalline NWs and single crystalline NWs 

(with dimensions of 50−200 nm in diameter and several micrometers in length) reveals one 

anomaly: the former (Figure 6.1d) showed additional diffraction intensities, such as secondary 

peaks (Figure 6.1f), between Li0.5TiO2 {020} and TiO2 {200}, which were absent in the latter 

(Figure 6.3). Since neither the anatase nor the Li0.5TiO2 phase has Bragg rings located between 

Li0.5TiO2 {020} and TiO2 {200}, these additional intensities should not have existed in the 

structural evolution of a typical two-phase reaction (for example, Figure 6.3). This unexpected 

phenomenon challenges the validity of the long believed two-phase lithiation mechanism in this 

classical insertion type anode material when its crystal size comes down to ~20 nm.  

Figures 6.4 and 6.5 are close-up views of the evolutions in the Bragg rings obtained from 

a cluster consisting of 200-300 TiO2 nanoparticles during the first-stage lithiation. Three bright 

diffraction spots (labeled with Arabic 1, 2 and 3, respectively) from TiO2 {004} were presented 

in Figure 6.4a at 0 s. Based on the randomly oriented nature of these nanoparticles (Figure 3.3a-c) 

and  the limited number of nanoparticles included in the EDP, it is reasonable to treat each 

diffraction spot as coming from individual crystallites. Surprisingly, the first two Bragg spots, 

namely 1 and 2, started to shift continuously from the TiO2 {004} (indicated by a cyan dotted arc) 
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Figure 6.4 Continuous displacement of diffraction intensities from individual TiO2 particles 
during the first-stage lithiation. (a) Time-lapse EDPs of {004} diffraction spots from three 
individual particles (named by Arabic 1, 2, and 3, respectively). Bragg spots 1 and 2 (marked by 
yellow and magenta arrows, respectively) shifted from the {004} diffraction ring of TiO2 (Cyan 
dotted arc) towards that of Li0.5TiO2 (brown dotted arc) upon progressive lithium incorporation. 
After 69 s, the third spot also began to shift (indicated by an orange arrow). Finally, all three 
Bragg spots reached the Li0.5TiO2 {004} diffraction ring after ~200 s. The circles in the last 
frame indicate the original positions of the three diffraction spots while arrows indicate the 
displacement of these diffraction intensities, which are indicative of a single-phase reaction path. 
(b) Intensity profiles of Bragg spots 1 and 2 (top) and their displacement with respect to time 
(bottom). It took ~3 minutes to lithiate TiO2 particles to Li0.5TiO2, which showed much higher 
rate compared to the overall lithiation of the poly-crystalline NWs. 
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Figure 6.5 Continuous shifting of a diffraction spot from an individual TiO2 crystallite. The 
Bragg spot (marked by a yellow arrow) moved from TiO2 {200} (marked by cyan dotted arc) 
towards Li0.5TiO2 {020} (marked by brown dotted arc). It was half way towards Li0.5TiO2 {020} 
after 49 s.    

towards the Li0.5TiO2 {004} diffraction ring (indicated by a brown dotted arc) right upon 

lithiation (pointed out by yellow and pink arrows, respectively). The displacements of these two 

Bragg spots are also presented in Figure 6.4b, where the intensity shift versus time is clearly 

visible. After 109 s, an approximately 3%  shrinkage along the c axis was observed (Figure 6.4b 

bottom). The third Bragg spot also began to move towards Li0.5TiO2 {004} 69 s behind spots 1 

and 2 (marked by an orange arrow). After approximately 200 s, all three Bragg spots have 

reached the Li0.5TiO2 {004} diffraction ring (indicated in the last frame of Figure 6.4a with 

circles marking the original positions of the three diffraction spots and arrows indicating their 

displacements). These continuous displacements of the diffraction intensities are a strong 

indication of LixTiO2 solid solution with successive lithium incorporation. This is also consistent  
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Figure 6.6 Structure changes of a single TiO2 crystallite induced by lithium insertion. (a-b) 
High-resolution TEM images of one TiO2 nanocrystal before (a) and during (b) lithiaiton, 
showing a ~5% increase in the {011} lattice spacing. c-e, Corresponding fast Fourier 
transformations (FFTs) before (c) and after (e) lithiation, representing the microstructure changes 
caused by lithiation. Both an increase in the {022}/{011} lattice spacing and a slight rotation 
have been observed (d) by superimposing diffraction patterns before (cyan) and during (magenta) 
lithiation. Additional diffraction spots (marked by yellow circles in c) came from another 
overlapping particle. 

with the high-resolution TEM images of a single crystallite before and during lithiation where no 

trace of a two-phase boundary is visible (Figure 6.6). Although nanosize-enhanced solubility in 

anatase TiO2317,319 may have contributed to the shifting of diffraction intensities, the d-spacing 

changes owing to the formation of solid solutions up to x=0.25 in anatase LixTiO2 is very 

limited320,321, which alone cannot justify the observed large diffraction intensity displacements. It  
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Figure 6.7 Reaction time distribution for individual TiO2 crystallites to be lithiated to Li0.5TiO2 
nanocrystals. The examined crystallites were lithiated within 1−6 min, corresponding to a rate of 
10−60 C. 

can thus be concluded that individual TiO2 nanoparticles in the present study were lithiated via a 

single-phase reaction. 

The observed single-phase lithiation inside each nanoparticle is rapid, which can be 

completed within 1−6 min, corresponding to a rate of 10−60 C (Figure 6.7). Under such a rate, 

the Li+ diffusion coefficient is estimated to be much larger than 10−17 cm2s−1 as reported in nano-

sized TiO2 crystals322,323. Instead, it is likely to stay close to 10−13 cm2s−1, which is expected in 

micron-scale anatase TiO2304,318,324 (see the discussion section for detail). This rapid lithiation of 

individual particles is more than an order faster compared to the overall lithiation of TiO2 NWs 

(Figure 6.1d). In other words, lithiation of the polycrystalline TiO2 NWs can be treated as an 

assembly of discrete fast lithiations of individual crystallites, analogous to a jigsaw puzzle which 

is put together piece by piece. If we consider an observation timescale commensurate with the 

overall lithiation speed in the polycrystalline NWs, lithiation of individual particles is so rapid 

that it makes the component crystallites look like either lithiated or unlithiated, therefore 
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representing an apparent biphasic feature during the first-stage lithiation (Figure 6.1d). Thus the 

excessive intensities and small peaks between the Li0.5TiO2 {020} and TiO2 {200} can be 

explained by diffraction intensities originated from nanoparticles with intermediate lithium 

content (0<x<0.5), which were captured during their continuous shifting toward the Li0.5TiO2 

{004} Bragg ring.  

Similar rapid lithiation has previously been reported to occur in anatase TiO2 and 

LiFePO4 nanocrystals, leaving the crystallites to appear like either lithiated or unlithiated 

187,317,320, which was attributed to a shortened diffusion length, enlarged interface area between 

the electrode materials and electrolyte, and an increased driving force derived from elastic 

energies at the two-phase interface.187. In the current study, by conducting in-situ experiment at 

an adequate temporal resolution, we provide direct evidence to show that the improved kinetics 

in lithiation of TiO2 nanoparticles is due to the formation of a solid solution, which eliminates 

the energy-demanding two-phase interface. The single-phase lithiation process has previously 

only been reported in amorphous TiO2325, and is thus  unexpected to proceed in a context of an 

anatase phase. The main driving force for a solid-solution reaction may stem from the large size 

impact on the lithium solubility in both the anatase and lithium titanate phases317. Hence, it is 

reasonable to think that by reducing the particle size, a single-phase reaction may also take place 

in other electrode materials whose miscibility gaps are closely related to their crystal sizes. 

6.3.2 Two-phase lithiation in single crystalline anatase TiO2 NWs 

If the observed transition from two-phase to single-phase lithiation is intrinsically size-controlled, 

then a two-phase lithiation is expected when the crystal size increases above a critical threshold. 

in single crystalline TiO2 NWs under similar conditions (that is, electron beam irradiation and 
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identical experimental setups). Indeed, unlike the case in 20 nm TiO2 crystallites, EDPs collected 

from an agglomerate consisting dozens of single crystalline TiO2 NWs (with diameter above 50 

nm and length up to several micron-meters) showed no displacements of diffraction intensities 

during lithiation (Figure 6.3), indicating a two-phase equilibrium reaction. Again, the lithium 

titanate phase is close to Li0.5TiO2, as depicted in Figure 6.3. 

Direct evidence of a two-phase boundary existing between anatase TiO2 and lithium 

titanate has been provided by tracking the microstructural changes during lithiation of an 

individual single crystalline TiO2 NW. Figure 6.8a-d shows its formation and migration during 

lithiation. The pristine TiO2 NW was about 100 nm in diameter and 1.6 µm in length (Figure 

6.8a). A two-phase boundary, presented as two dark-contrasted stripes parallel to the surface 

(marked by yellow dotted lines in Figure 6.8b; also presented in a close-up view in Figure 6.8j), 

formed rapidly upon lithiation, and propagated along both the radial and longitudinal directions 

of the NW (denoted by cyan arrows in Figure 6.8b). The movement of the reaction front was also 

visible (marked by red arrows in Figure 6.8b-c). The corresponding structural evolution during 

the two-phase boundary formation and migration was presented in Figure 6.8e-h and their insets, 

which was featured by the splitting of the {004} Bragg spot into anatase TiO2 {004} and lithium 

titanate (Li0.5TiO2) {004} (denoted by cyan and brown dotted lines, respectively). First, a weak 

Li0.5TiO2 {004} Bragg spot appeared at the same time as the formation of a two-phase boundary 

(Figure 6.8f), which then kept growing at the expense of TiO2 {004} during the subsequent 

boundary migration (Figure 6.8g-h). A dark field TEM image illuminated by Li0.5TiO2 g004 

reveals a core-shell structure with the interior being TiO2 and the peripheral being Li0.5TiO2 

(Figure 6.8i). Thus it is clear that lithiation inside individual single crystalline TiO2 NWs 

propagated via a two-phase reaction with anatase TiO2 continuously being replaced by Li0.5TiO2,  



 103 

 

Figure 6.8 Two-phase lithiation in single crystalline TiO2 NWs. (a) A pristine single crystalline 
TiO2 NW diameter around 100 nm. (b-d) Phase boundary migration upon lithiaon viewed along 
the <010> direction. Red arrow heads mark the reaction front and cyan arrows indicate phase 
boundary (marked by yellow dotted lines in b) movement upon further lithiation. Olive arrows 
denote a surface step as a reference for tracking the movement of the interface. (e-h) Structural 
evolution of the two-phase system corresponding to the lithiation progresses in (a-d). The insets 
in e−h are magnified views of the {004} diffraction spot. The d-spacing decrease from TiO2 to 
Li0.5TiO2 in the c direction was ~4%. (i) Dark-field TEM image of the NW in (d) using Li0.5TiO2 

004g  diffraction condition. (j) Close-up view of the phase boundary region (rectangle in d). The 
thickness of the Li0.5TiO2 phase was ~20 nm. (k-l) Morphology (k) and structure (l) of a reaction 
front in a partially lithiated TiO2 NW viewed along <111> zone axis. The magnified view of the 

022  diffraction spot (l, right) also reflected both TiO2 and Li0.5TiO2. (m-n) Original (m) and 
Fourier-filtered (n) HRTEM images of the reaction front tip (rectangle in k). 
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which was accompanied by a two-phase boundary migrating from the surface to the interior of 

the TiO2 NW. Another example of a two-phase boundary is represented in Figure 6.8k with a 

viewing direction of [111]. Splitting of the { 022 } Bragg spot was observed (Figure 6.8l right), 

showing, again, the biphasic nature. A HRTEM and its Fourier-filtered image of the reaction 

front reveal the coexistence of both coherency strains and mismatch dislocations at the two-

phase boundary (Figure 6.8m-n). The former is known to significantly contribute to the elastic 

energy186,326,327, therefore destabilizing the two-phase configuration when the particle size scales 

down below a critical level, e.g. 20 nm. 

6.4 DISCUSSION 

An equilibrium two-phase reaction in anatase TiO2 has frequently been reported based evidences 

such as a flat potential plateau during galvanostatic lithiation/delithiation220,328-330 and the 

coexistence of both anatase and lithium titanate phases revealed by neutron and X-ray 

diffractions317,331 and by NMR spectra305. The observed single-phase lithiation mechanism, 

however, is unexpected, even in smallest crystals with size below 20 nm317,332. This discrepancy 

can be rationalized by Figure 6.9, which is a schematic illustration of the single-phase lithiation 

process in poly-crystalline TiO2 NWs. As observed in Figure 6.1d and Figure 6.4, overall 

lithiation of poly-crystalline TiO2 NWs proceeds by single-phase lithiation of individual 

crystallites, with the latter being at least ten times faster than the former. As we know, most in-

situ techniques, such as X-ray and neutron diffractions307,308 and Raman microscopy331,333, have 

limited spatial resolution, and are usually conducted under a timescale of minutes, which is 

incompetent to capture the rapid electrochemistry inside individual particles (reactions enclosed 
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Figure 6.9 Schematic illustration of the single-phase lithiation process in anatase TiO2 NWs 
composed of 20 nm crystallites. Cross-sections of the poly-crystalline TiO2 NWs are depicted. 
The overall lithiation of the NW is slow (marked by pink arrow heads), proceeding by rapid 
lithiation of individual crystallites (enclosed in a green rectangle). The single-phase lithiation 
process inside each nanocrystal is too fast to be revealed by either ex-situ studies or in-situ X-ray 
and neutron diffractions, which makes TiO2 crystallites appear to be either lithiated or unlithiated. 
Therefore, only the sluggish overall lithiation was captured by previous studies. The rapid 
lithiation inside individual crystallites as well as the metastable nature of Li0.5TiO2 makes the 
overall lithiation of TiO2 NWs resemble an equilibrium two-phase reaction featured by a two-
phase interface (marked by yellow dotted curves). 

in a green dotted rectangle). Therefore, only the sluggish overall lithiation of the TiO2 NWs can 

be observed (indicated by magenta arrow heads), featured by the coexistence of either TiO2 or 

Li0.5TiO2 crystallites. On the other hand, In-situ TEM observation, with a 2 Å spatial resolution 

and a sub-one-second temporal resolution, is more than adequate to track the single-phase 

lithiation process inside individual particles (reactions inside the green rectangle), with lithium 

content continuously increasing from x=0 to x=0.5. In addition, it can also be noticed that further  
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Figure 6.10 lithium concentration distributions in a TiO2 crystallites (when t=100 s) at diffusion 
coefficients of 10−17 cm2s−1 (typical for nanosized TiO2 particles) and 10−13 cm2s−1 (typical for 
micron-sized TiO2 particles), respectively. The former leads to phase separation while the latter 
enables uniform lithium distribution. 

lithiation beyond x=0.5 is reluctant (Figure 6.1d), indicating Li0.5TiO2 a metastable phase. 

Compared to the galvanostatic lithiation/delithiation which typically lasts for at least several 

hours, the transient lithiation of individual crystallites and stable nature of Li0.5TiO2 leave the 

component crystallites in the polycrystalline TiO2 NWs looking like either Li0.5TiO2 (the 

lithiated shell of NWs) or anatase TiO2 (the unlithiated core of the NWs). Thus, the overall 

lithiation in poly-crystalline TiO2 NWs appear to proceed via migration of a two-phase boundary 

between TiO2 and Li0.5TiO2 crystallites (marked by yellow dotted curves), resembling an 

equilibrium two-phase lithiation path. The above scenario is similar to that in a many-particle 
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electrode model, and therefore both a plateau and a voltage hysteresis are expected in the charge 

and discharge curves210. 

The diffusion coefficient can be roughly estimated based on the lithiation rate of 

individual TiO2 particles. The displacement of the diffraction spots from TiO2 {004} to Li0.5TiO2 

{004} proceeded in a more or less uniform manner, indicating a continuous Li+ flux into the 

TiO2 crystallites. The average Li+ flux can be estimated by the following equation: 
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where F0 is the average Li+ flux per unit surface area into a TiO2 particle during progressive 

lithiation until it reaches Li0.5TiO2; a, b, c are the unit cell parameters of tetragonal Li0.5TiO2, 

respectively; t is the lithiation time; and R is the radius of the a TiO2 crystallite if we treat it as a 

sphere. Here, we take 100 s as the reaction time (based on Figure 6.7), and 10 nm as the TiO2 

nanoparticle radius (Figure 3.3d). According to equation (6.1), the corresponding average Li+ 

flux will be ~4.8×1017 m−2s−1. By giving an estimation of this average Li+ flux, the Li+ diffusion 

rate in lithiated TiO2 nanoparticles can be roughly deduced. 

By applying the model of diffusion in a sphere with constant surface flux F0, we can 

estimate Lithium concentration distribution in a TiO2 nanoparticle by334 
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where C is the lithium concentration, r is the distance form a certain spot inside the TiO2 sphere 

to the sphere center, D is the diffusion coefficient, and nRα (n=1→∞) are the positive roots of 

cot 1n nR Rα α = . The lithium concentration can be further equalized to x in LixTiO2 by  

x
4
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where the unit cell volume of LixTiO2 (0≤x≤0.5) is treated as the unit cell volume of Li0.5TiO2 

(that is, a·b·c), since the volume change from x=0 to x=0.5 is only ~4%. Combining equations 

(6.2) and (6.3), the lithium concentration distributions (when t=100 s) in a TiO2 crystallite at 

diffusion coefficients of D=10−17 and D=10−13 cm2s‒1 are obtained in Figure 6.10. When the 

diffusion coefficient is on the order of 10−17 cm2s‒1, the lithium flux rate is much faster than the 

diffusion rate, which will inevitably lead to phase separation with an unlithiated TiO2 core 

surrounded by a lithium titanate shell. On the other hand, a diffusion coefficient on the order of 

10−13 cm2s‒1 enables almost uniform lithium distribution, which resembles the case in our 

experiment. Therefore, a reasonable estimation of the diffusion coefficient should be between 

these two values, and probably very close to 10−13 cm2s‒1. 

6.5 CONCLUSIONS 

In summary, we have directly revealed that lithiation of individual anatase TiO2 nanocrystals 

with size of 20 nm proceeds via a non-equilibrium single-phase reaction. By tracking EDPs from 

a many-particle system consisting of 200-300 particles, we were able to capture the continuous 

shifting of diffraction intensities from anatase to lithium titanate phase (Li0.5TiO2) in individual 

TiO2 nanocrystals. This work captured the size-dependent competition between 

thermodynamically different lithiation pathways, and unambiguously confirmed the possibility 

of a single-phase reaction mechanism operating in materials whose miscibility gap is associated 

with a prominent size impact, which significantly improves the reaction kinetics. These results 

provide important guidelines for designing high-power LIBs, and demonstrate that precise size-
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control of the active electrode materials might be of equal importance compared to searching for 

new candidate electrode materials. 
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7.0  SUMMARY AND CONCLUSIONS 

Phase transitions are ubiquitously seen to dictate the broad applications of nanomaterials. This 

dissertation employed state-of-the-art in-situ TEM atomic-scale observation to reveal the rapid 

solidification processes of metallic liquids and to gain a mechanistic understanding of the 

mechanical degradation processes, such as volume change and strain accommodation, as well as 

the reaction pathways in nanostructured electrodes during battery operation.  

The stabilities of supercooled metallic liquids are highly dependent on the composition 

and cooling rate. Melts of pure metals require extremely high cooling rate to be vitrified, due to 

their intrinsic poor glass-forming ability. In this dissertation, a methodology with the ability to 

achieve an ultrafast quenching rate of 1014 Ks−1 has been developed, which successfully vitrified 

monatomic metallic melts of early transition bcc metals. It was revealed that the formation 

condition and thermal stability of these novel glasses depend on the competition between the 

cooling rate and the crystal growth rate at the liquid-crystal interface, and that undercooled 

metallic liquids from pure fcc metals are intrinsically unstable due to the negligible activation 

energy and fast kinetics in crystal growth even at room temperature. This work broadens the 

glass-forming zone by including glass formers with the worst glass-forming abilities. With such 

a high cooling rate to reach deep quench, the inherent structure of liquids can be accessed, 

enabling investigations of the fast kinetics of supercooled liquids and the mechanisms for the 

formation of metastable materials under conditions far away from equilibrium. 
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By integrating nanoscale fabrication, structural characterization and mechanical testing, 

this work opens up new opportunities for investigating the connection between the atomic 

structure and intrinsic mechanical properties of sub-100-nm sized metallic glasses. Unlike 

crystalline materials whose deformation mechanism has been well established, the deformation 

of metallic glasses with disordered structures has not yet been fully understood. A mechanistic of 

the atomic-scale origin of the ductility versus brittleness in metallic glasses warrants further 

study in the future. 

Solid-state amorphization, large expansion/contraction upon reaction, the formation of 

micro-cracks, and pulverization are common mechanisms that lead to mechanical degradation in 

lithium-ion battery electrodes, especially in high-capacity anode materials. One-dimensional 

materials in the form of nanowires are much more robust than their bulk counterparts, due to 

their special geometry to accommodate large plasticity and volume changes. When immersed in 

electrolyte, lithiation of SnO2 nanowires is initiated by preferred lithium insertion along the (020) 

planes in the transverse direction, which then evolves into multiple reaction fronts with large 

dislocation plasticity at the vicinity, serving as a precursor towards electrochemically-driven 

solid-state amorphization. Such mechanism can successfully accommodate a 45% radial 

expansion and a 90% super-elongation without catastrophic failure. These results provide 

insights into a fundamental understanding of the plasticity and strain accommodation 

mechanisms inside one-dimensional materials, and have significant implications for designing 

nanostructured electrodes with materials exhibiting large volume expansion and contraction 

during battery operation.  

Intercalation compounds with superior rate capabilities are highly desirable. The reaction 

rate can be significantly dependent on the particle size of the electrode materials, due to not only 
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the kinetic aspects such as the short diffusion length, but also the change in thermodynamics 

which dictates the competition between different reaction pathways. Compared to a well-defined 

two-phase reaction process in bulk TiO2, lithiation of individual anatase TiO2 nanoparticles with 

size of 20 nm proceeds via a non-equilibrium single-phase reaction, which significantly 

accelerates the reaction kinetics by obviating the need to nucleate a second phase and, at the 

meantime, effectively alleviates strain by exempting a two-phase boundary. These results 

demonstrate the significant size impact on both the thermodynamics and kinetics in intercalation 

compounds and thus provide important guidelines for designing high-power lithium-ion batteries.  

In summary, this dissertation develops an ultrafast solidification approach for 

investigating the fast kinetics and structures of supercooled liquids, and advances the 

fundamental understanding of the origin of mechanical degradation and size-dependent 

electrochemical performances in nanostructured electrodes. 
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8.0  OUTLOOK 

The broad application of nanomaterials has attracted extensive research effort to reveal the 

atomistic origin of their response under different circumstances. Fox example, a ‘smaller is 

stronger’ trend has been widely observed among various materials, which aroused a long-lasting 

pursuit of the underlining mechanisms governing the structural-property relationship in 

nanosized materials under mechanical loading. At present, the understanding of atomic-scale 

deformation mechanism is largely based on MD simulations, which are usually subjected to 

unrealistically fast strain rates and inaccurate atomic potentials, and thus need to be further 

validated by laboratory efforts. Although several in-situ nanomechanical testing techniques335,336 

have been developed recently, they usually suffer from limited resolution due to the difficulties 

in alleviating vibration and reducing the accessible minimum specimen thickness. Moreover, the 

intrinsic deformation behavior may be shrouded by undesired extrinsic effects such as surface 

defects and damages induced by FIB milling, therefore significantly hindering a mechanistic 

understanding of deformation mechanism in nanomaterials. Thanks to the Nanofactory TEM-

STM platform, the atomic-scale structural evolution under mechanical loading can be captured at 

real time, which is thus capable of offering tremendous details that cannot be obtained by 

alternative approaches. Some examples on the current researches and future planes will be 

presented and briefly discussed. 
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8.1 DISPLACIVE VS. DIFFUSIVE PLASTICITY IN NANOCRYSTALS 

Displacive plasticity and GB diffusive plasticity are two major deformation mechanisms in 

nanocrystalline materials at room temperature. These two deformation mechanisms contradict 

each other in the sense that the former leads to superior strengths but low ductility while the 

latter contributes to large creep rates with a compromise in hardness. Therefore, the widely 

reported transition from dislocation dominated to GB-mediated deformation337,338 with 

decreasing crystal size will result in a crossover in the mechanical property of nanocrystalline 

materials from strong-yet-‘brittle’ to ductile-but-soft. An extreme example of such transition was 

observed in sub-10-nm Ag nanoparticles, which demonstrate liquid-like behavior even at room 

temperature4. Then a question arises: will the nanocrystalline materials become strong-and-

ductile in the crossover regime where both displacive and diffusional activities thrive? Given that 

GBs become an important dislocation nucleation source in the nanocrystalline regime339,340, it is 

rational to assume a close interaction between displacive events and GB diffusion, which has 

recently been reflected in a temperature dependence of the dislocation nucleation strength in Pd 

nanowires341. Nevertheless, the relationship between displacive and GB diffusive plasticity in the 

crossover regime has often been considered as a size-dependent competition337,342, while their 

interaction is still poorly understood.  

Recently, we focused on the deformation of individual Ag nanocrystals and show that 

strong-and-ductile nanocrystals can be obtained in the cross-over regime via a special surface 

diffusional creep, where diffusion at the surface is activated by dislocation slip events, which, in 

turn, suppresses plastic instability during subsequent displacive deformation (Figure 8.1). Given 

that the deformation mechanisms found in individual nanocrystals343 also apply to those bounded 

by neighboring grains340, the interaction between displactive and diffusive plasticity should thus 



 115 

 

Figure 8.1 Surface diffusive plasticity during tensile deformation of a 20-nm Ag nanocrystal. (a-
f) Surface diffusion assisted lateral movement of the steps on a Ag nanocrystal {111} surface. 
Dislocations (pointed by white arrows in a and e) were continuously emitted from the corner 
enclosed in a cyan circle in a, leading to the formation of surface steps, which quickly moved 
away from the highly stressed region. Each surface step is tracked by arrows with a specific 
color. g, Lateral displacement versus time measured from four surface steps, where steps 1-3 
correspond to step movements tracked by purple, blue, and red arrows, respectively. The green 
curve is measured from another surface step that is not shown. (h) Schematic illustration of 
surface diffusion by sequential hopping of the atoms at a surface step. 
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also be applicable to bulk nanocrystalline materials. However, the deformation of the later is 

governed by an ensemble of nanocrystallites, and is thus much more complex than that in an 

isolated nanocrystal. More effort is still required in the future to explore the impact of this slip-

activated interfacial diffusional creep on the mechanical behavior of bulk nanocrystalline 

materials. 

8.2 DEFORMATION TWINNING NUCLEATION AND GROWTH IN BCC 

NANOCRYSTALS 

Unlike fcc metals whose size-dependent deformation map has been well established, the 

deformation of bcc nanocrystals has been relatively less explored. Due to the complex nature in 

terms of the non-planar core of screw dislocations and the lack of symmetry in their crystal 

structure, understandings of the atomistic processes during deformation of bcc metals heavily 

rely on continuum mechanics models and MD simulations. Recently, direct evidence has been 

provided to show twinning dominated deformation in bcc W nanocrystals344, however, its 

nucleation and propagation process, as well as its impact on the ductility are still not clear. 

Figure 8.2 demonstrates the nucleation and gradual propagation of a deformation twin in 

Ta nanocrystal under <001> tensile loading. The twin embryo was found to have a minimum 

thickness of 6 {112} layers with a twin boundary consisting of steps with a height of 3 {112} 

planes (Figure 8.2 b). The thickening and lateral expansion of the deformation twin were rather 

reluctant (Figure 8.2c-h). Interestingly, twin boundaries were found to be inclined, which became 

curved after intersecting the side surface of the Ta NW, causing formation of Moiré patterns by 

overlapping with the matrix (inset in Figure 8.2d; Figure 8.2i). Such detailed scenario during 
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Figure 8.2 Reluctant twin growth in a Ta nanocrystal with size above 20 nm. (a) An as-formed 
23-nm wide Ta NW under tensile loading along the [001] direction. (b) Nucleation of a twin 
embryo with a minimum thickness of six (112) layers and a width of 8 nm (inset in b). (c-h) 
Slow growth of the deformation twin. The twin boundaries are tracked by yellow dotted lines. 
Note that the lower twin boundary is inclined, which is curved by intersecting the side surface of 
the Ta NW. Most regions of the twin lamella exhibited Moiré patterns (cyan dots in d) formed by 
overlapping of the matrix and the twin. The Moiré-patterned region developed to an 
approximately elliptical shape (outlined by cyan dotted lines in f), matches the projection of an 
inclined plane, for example the (101) plane. Meanwhile, a second set of Moiré pattern developed 
at the upper twin boundary (enclosed by a magenta dotted curves in f and g), due to the 
formation of an inclined (011) boundary. The lattice strain following twin growth (pointed out by 
red arrows in c and g) was finally accommodated by penetration of the twin through radial 
direction of the NW, which was accompanied by an abrupt shape change in the NW (h). The 
FFT (inset in h) clearly demonstrates a diffraction pattern of a {112} twin. (i) High resolution 
TEM image of the deformation twin containing a high density of dislocations. Moiré-patterns 
were found at both twin boundaries (indicated by cyan arrow heads). 
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deformation twinning in bcc metals has never been revealed before. The formation of inclined 

twin boundaries is, likely, due to a dislocation-cross-slip-and-dissociation-mediated twin 

thickening mechanism. Considering that the competition between dislocation plasticity and 

deformation twinning in bcc metals is highly size dependent, whether further decrease in the 

crystal size will lead to changes in the deformation twinning nucleation and growth mechanism, 

as well as the physical origin of this size dependence, is yet to be uncovered.  
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APPENDIX A 

COOLING RATE ESTIMATED BY ATOMS-TO-CONTINUUM SIMULATION 

To understand the vitrification process of the liquid and estimate the cooling rate, AtC 

simulations have been performed by Dr. Hongwei Sheng at George Mason University, where the 

MD system is coupled to an additional electron temperature field that implements the two-

temperature model (TTM)244 for heat transport. It is worth noting that the present experimental 

approach is capable of vitrifying monatomic metallic liquids on temporal and spatial scales 

commensurate with those in MD modeling, allowing for a direct comparison between 

experiment and MD simulation, enabling accurate interpretation of the multi-physics of the 

cooling process.  

A.1 DEVELOPMENT OF A NEW EMBEDDED-ATOM-METHOD (EAM) 

POTENTIAL FOR TANTALUM 

A realistic interatomic potential has been developed for large-scale simulation of Ta. The 

potential, in the EAM formalism, was developed by fitting the potential energy landscape (PES) 

of Ta established through extensive ab initio calculations based on the density functional theory 
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(DFT). The interatomic potential was developed in a tabulated form and can be publically 

obtained from https://sites.google.com/site/eampotentials/Ta. 

Over 600 reference configurations (typically 96~128 atoms in each configuration) of Ta 

were employed in the potential fitting process, including equations-of-state of relevant crystal 

structures, liquid phases, point and interfacial defects, liquid inherent structures, and MGs 

quenched at various cooling rates, etc., with a special emphasis on the liquid states and phase 

behavior of Ta. Phonon frequencies and experimental elastic constants of the selected crystals 

were also taken into account in the fitting. High-precision ab initio calculations were performed 

for each selected atomic configuration, utilizing the pseudopotential and plane-wave method 

implemented in the Vienna Ab-initio Simulation Package (VASP)345. The projector augmented-

waves (PAW) method and the generalized-gradient approximation (GGA) were employed in all 

the VASP calculations, and the Brillouin zone was sampled with 3×3×3 Monkhorst-Pack k-point 

grids. The valence electron configuration of Ta in the DFT calculation is 5d34s2.  

The EAM potential was optimized by using the force-matching method346 implemented 

in the potfit package347. The generated EAM parameters were further refined through a recursive 

method until self-consistent results were reached. Similar  techniques have been successfully 

employed to generate highly optimized EAM potentials for fcc elements and multi-component 

metallic systems. The as-developed Ta EAM potential accurately predicts the metling 

temperature of bcc Ta, liquid density, formation of the β-Ta phase as well as many other 

properties of Ta. More detailed information about the validation and performance of the newly 

developed EAM potential of Ta will be presented elsewhere. 

https://sites.google.com/site/eampotentials/Ta
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A.2 ATC SIMULATION OF THE HEAT TRANSPORT 

The two-temperature model was used for the AtC computer simulation244. Since heat dissipation 

is conducted through phonon and electron transport, classic MD is incapable of simulating the 

electron transport process that dominates the heat transfer in the current setup. In the TTM, the 

atomistic system, which runs MD simulation, is coupled to an additional electronic system 

described by the finite-element method. To model the coupling between the electronic system 

and the atomic system, the following two governing equations are used: 

2 ( )p p p p p e p e p p pc T T g T T rρ κ ρ−= ∇ − − +                         (A.1) 

2 ( )e e e e e e p e p e ec T T g T T rρ κ ρ−= ∇ − − +                                                                                         (A.2) 

where ρ, c, T, and κ are the density, specific heat, temperature field, and thermal conductivity of 

phonons (with subscript p ) or electrons (with subscript e ), respectively. ge−p denotes the 

electron-phonon coupling parameter, and r is a mass normalized source term, which includes all 

the external sources of energy exchange events (e.g., the effects of Peltier cooling/heating, laser 

heating, and Joule heating). Five parameters are needed to implement the AtC model to simulate 

the vitrification process of Ta. Following the approach of Jones et al.244, the five parameters are 

set as follows. 

A.2.1  The phonon heat capacity ρpcp 

The phonon heat capacity per volume in the classic limit is given by the Dulong-Petit law348:  

ρpcp=3kB/Vα                                                    (A.3) 

where kB is the Boltzmann constant and Vα is the atomic volume of Ta at a given temperature. 

For Ta at 3000 K, ρpcp is calculated to be 2.1×106 J∙m−3∙K−1 based on the Dulong-Petit law. 
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A.2.2 The phonon thermal conductivity κp 

The thermal conductivity of the phonon system is obtained by conducting classic MD simulation 

of Ta at desired temperatures (via both the Green-Kubo method, and a direct method employing 

Fourier's law349). At 3000 K, the thermal conductivity of Ta due to phonons is estimated to be 

3.5 W∙m−1∙K−1, which is trivial compared to the experimental thermal conductivity of Ta crystal 

near its melting point at 3200 K (67 W∙m−1∙K−1)350. Note that the electron thermal conductivity is 

about 20 times greater than the phonon conductivity. 

A.2.3 The electron heat capacity ρece 

The electron heat capacity per volume is estimated from the free electron density. Assuming the 

free electrons behave like a kinetic gas: 
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where ne is the number of valence electrons and EF is the Fermi level. Within the temperature 

range of interest, ρece is assumed to have a constant value of 5.0×105 J∙m−3∙K−1. The experimental 

value351 of the electron heat capacity coefficient γ is measured to be 541 J∙m−3∙K−2.  

A.2.4 The electron thermal conductivity κe  

The thermal conductivity of the electron system of Ta is estimated from the Franz–Wiedemann 

law:  
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where σ is the electrical conductivity, and the Lorentz constant is L=2.443×10−8 W∙Ω∙K−2. At 

300 K, the electrical conductivity of Ta is about 8.0×106 Ω−1∙m−1, and κ0=58.6 W∙m−1∙K−1, which 
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corresponds to the electron thermal conductivity when the electron temperature is at equilibrium 

with the atomic temperature (i.e., Te = Tp).   

A.2.5 The electron-phonon coupling coefficient ge−p 

The electron-phonon coupling coefficient is assumed to have a linear relationship with 

temperature. For Ta, the coupling coefficient is set to be 3.0×1017 J∙m−3∙K−1∙s−1, comparable with 

the experimental electron-phonon coupling parameters for other transition metals352. 

A.3 THERMAL CONDUCTIVITY OF TA CRYSTAL AT 3000K BY TTM-MD 

METHOD 

The thermal conductivity is obtained based on the Fourier heat law:  

q
T

κ −
=
∇
                      (A.6) 

where q  is the rate of heat flux. With the parameters prescribed above, the thermal conductivity 

of Ta at 3000 K is estimated to be 62.6 W∙m−1∙K−1, which is in good agreement with the 

experimental value350. 

A.4 FORMATION OF TA MG BY RAPID LIQUID QUENCHING 

The AtC method was used to simulate the cooling process of an 85 nm×40.8 nm×13.6 nm Ta 

nanowire containing 2,457,600 atoms, without applying periodic boundary conditions. Both ends 

of the nanowire along the x-axis are connected to heat reservoirs by fixing temperatures (both the 

atomic temperature and the electronic temperature) to be 300 K. Joule heating is simulated by 
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injecting electron heat flux into the system, creating a temperature distribution along the 

nanowire as shown in Figure 4.7a. Quenching processes in scenarios where the heat flux is 

terminated instantly and within 0.4 ns in a ramp function were simulated. The cooling process 

starts instantly after Joule heating is zeroed out, which proceeds at a quenching rate on the order 

of 1013−14 Ks−1 (Figure 4.7c and Figure 4.10c). Such an ultrafast cooling rate strongly favors 

vitrification over crystal growth, leading to the formation of Ta MG. 
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