
VALID INEQUALITIES AND REFORMULATION

TECHNIQUES FOR MIXED INTEGER

NONLINEAR PROGRAMMING

by

Sina Modaresi

B.S., Sharif University of Technology, 2010

M.S., University of Pittsburgh, 2012

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Sina Modaresi

It was defended on

November 12, 2015

and approved by

Jayant Rajgopal, Ph.D., Professor, Department of Industrial Engineering

Oleg A. Prokopyev, Ph.D., Associate Professor, Department of Industrial Engineering

Andrew J. Schaefer, Ph.D., Noah Harding Chair and Professor, Department of

Computational and Applied Mathematics, Rice University

Juan Pablo Vielma, Ph.D., Richard S. Leghorn Career Development Assistant Professor,

Sloan School of Management, Massachusetts Institute of Technology

Dissertation Director: Jayant Rajgopal, Ph.D., Professor, Department of Industrial

Engineering

ii



VALID INEQUALITIES AND REFORMULATION TECHNIQUES FOR

MIXED INTEGER NONLINEAR PROGRAMMING

Sina Modaresi, PhD

University of Pittsburgh, 2015

One of the most important breakthroughs in the area of Mixed Integer Linear Programming

(MILP) is the characterization of the convex hull of specially structured non-convex poly-

hedral sets in order to develop valid inequalities or cutting planes. Development of strong

valid inequalities such as Split cuts, Gomory Mixed Integer (GMI) cuts, and Mixed Integer

Rounding (MIR) cuts has resulted in highly effective branch-and-cut algorithms. While such

cuts are known to be equivalent, each of their characterizations provides different advantages

and insights.

The study of cutting planes for Mixed Integer Nonlinear Programming (MINLP) is still

much more limited than that for MILP, since characterizing cuts for MINLP requires the

study of the convex hull of a non-convex and non-polyhedral set, which has proven to be

significantly harder than the polyhedral case. However, there has been significant work on

the computational use of cuts in MINLP. Furthermore, there has recently been a significant

interest in extending the associated theoretical results from MILP to the realm of MINLP.

This dissertation is focused on the development of new cuts and extended formulations

for Mixed Integer Nonlinear Programs. We study the generalization of split, k-branch split,

and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer

Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the

difference between a convex set and an open set with a simple geometric structure. We

introduce two techniques to give precise characterizations of such convex hulls and use them

to construct split, k-branch split, and intersection cuts for several classes of non-polyhedral
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sets. We also study the relation between the introduced cuts and some known classes of

cutting planes from MILP. Furthermore, we show how an aggregation technique can be

easily extended to characterize the convex hull of sets defined by two quadratic or by a conic

quadratic and a quadratic inequality. We also computationally evaluate the performance of

the introduced cuts and extended formulations on two classes of MINLP problems.

Keywords: Mixed Integer Linear Programming, Mixed Integer Nonlinear Programming,

Valid Inequality, Split Cut, K-branch Split Cut, Gomory Mixed Integer Cut, Mixed

Integer Rounding Cut, Intersection Cut, Branch-and-Cut, Extended Formulation.
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1.0 INTRODUCTION

An important are of Mixed Integer Linear Programming (MILP) is the characterization of

the convex hull of specially structured non-convex polyhedral sets to develop valid inequal-

ities or cutting planes [10, 11, 30, 31, 32, 33, 38, 42, 62, 90]. Development of strong valid

inequalities such as Split cuts [32], Gomory Mixed Integer (GMI) cuts [48, 49], and Mixed

Integer Rounding (MIR) cuts [66, 74, 75, 93] has resulted in highly effective branch-and-cut

algorithms [4, 22, 23, 55, 63]. While such cuts are known to be equivalent [39, 75], each of

their characterizations provide different advantages and insights.

The study of cutting planes for Mixed Integer Nonlinear Programming (MINLP) is still

much more limited than that for MILP, since characterizing cuts for MINLP requires the

study of the convex hull of a non-convex and non-polyhedral set, which has proven to be

significantly harder than the polyhedral case. However, there has been significant work on

the computational use of cuts in MINLP [25, 28, 44, 59, 87]. Moreover, there has recently

been a significant interest in extending the associated theoretical results from MILP to the

realm of MINLP [18, 19, 35, 36, 37, 81]. In particular, for the case of Mixed Integer Conic

Quadratic Programming (MICQP), there has been a recent surge of theoretical developments

[6, 8, 9, 14, 15, 16, 27, 57, 58, 73, 71, 72, 70, 96, 91]. However, most of the known results in

the area of MINLP are still limited to very specific sets [54, 86, 88] or to approximations of

semi-algebraic sets through Semidefinite Programming (SDP) [45, 61, 76, 77, 78, 79, 80].

While the resulting cuts for MINLP are strong nonlinear inequalities, adding such non-

linear cuts to the continuous relaxation of a MINLP could significantly increase its solution

time. Hence there will likely be a strong trade-off between the strength provided by such

cuts and their computational cost. It is then unclear if such nonlinear cuts can provide a

significant computational advantage over linearization approaches such as those in [25, 59]
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which do not require explicit cut formulas. However, even in such cases, the developed

nonlinear cuts can provide valuable information about the performance of the linearization

approaches. For instance, the linearization approaches can sometimes require a large num-

ber of iterations to yield a bound improvement similar to that obtained by the associated

nonlinear cut. Adding the nonlinear cut provides a simple way to evaluate if the lack of

bound improvement is due to lack of strength of the cut or lack of convergence of the lin-

earization approach. Similarly, the availability of explicit formulas of split cuts for quadratic

sets proven extremely useful to evaluate the strength of a cutting plane approach based on

extended formulations in [71].

This dissertation is focused on the development of new cuts and extended formulations

for Mixed Integer Nonlinear Programs. We study the generalization of split, k-branch split,

and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer

Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the

difference between a convex set and an open set with a simple geometric structure. We

introduce two techniques to give precise characterizations of such convex hulls and use them

to construct split, k-branch split, and intersection cuts for several classes of non-polyhedral

sets. We also study the relation between the introduced cuts and some known classes of

cutting planes from MILP. Furthermore, we show how an aggregation technique can be

easily extended to characterize the convex hull of sets defined by two quadratic or by a conic

quadratic and a quadratic inequality. We also computationally evaluate the performance of

the introduced cuts and extended formulations on two classes of MINLP problems.

The remainder of this dissertation is organized as follows. In Chapter 3 we study the

generalization of split, k-branch split, and intersection cuts from MILP to MINLP. We pro-

pose two simple techniques to derive general intersection cuts for several classes of MINLP

problems with specific structures. In particular, we give simple formulas for split cuts for

essentially all convex sets described by a single conic quadratic inequality. We also give

simple formulas for k-branch split cuts and some general intersection cuts for a wide variety

of convex quadratic sets.

In Chapter 4 we study split cuts and extended formulations for MICQP. In particular, we

study the relation between Conic MIR (CMIR) cuts introduced by Atamtürk and Narayanan
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[9] and nonlinear split cuts for a class of MICQP problems. We also study an extended for-

mulation for such a class of MICQP and illustrate how the power of an extended formulation

can improve the strength of a cutting plane procedure in MINLP.

In Chapter 5 we consider an aggregation technique introduced by Yıldıran [94] to study

the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic

inequality. Yıldıran [94] shows how to characterize the convex hull of sets defined by two

quadratics using Linear Matrix Inequalities (LMI). We show how this aggregation technique

can be easily extended to yield valid conic quadratic inequalities for the convex hull of sets

defined by two quadratic or by a conic quadratic and a quadratic inequality. We also show

that in many cases under additional assumptions, these valid inequalities characterize the

convex hull exactly.

In Chapter 6 we computationally evaluate the performance of the introduced linear

and nonlinear cuts and extended formulations on two classes of MINLP problems (Closest

Vector Problem and Mean-variance Capital Budgeting). We compare the strength of the

nonlinear cuts added to the original formulations versus the linear cuts added to an extended

formulation.

Finally, Chapter 7 concludes the discussion summarizing the contributions of this disser-

tation.
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2.0 NOTATION AND PRELIMINARIES

We use the following notation throughout the dissertation. Let ei ∈ Rn be the i-th unit vec-

tor, 0n ∈ Rn be the zero vector, I ∈ Rn×n be the identity matrix where n is an appropriate

dimension that we omit if evident from the context, and Sn denote symmetric matrices with

n rows and columns. For a ∈ R we let (a)+ := max {0, a} and bac := max {k ∈ Z : k ≤ a}.

We also let ‖x‖2 :=
√∑n

i=1 x
2
i denote the Euclidean norm of x ∈ Rn and |x| ∈ Rn be the

vector whose components are the absolute value of the components of x ∈ Rn. In addition,

we let ‖x‖p := (
∑n

i=1 |xi|
p)

1/p
denote the p-norm of a given vector x ∈ Rn and for a vector

v ∈ Rn, we let the projection onto its span be Pv := vvT

‖v‖22
and onto its orthogonal complement

be P⊥v := I − vvT

‖v‖22
. We also let {πi}ki=1 ⊆ Rn \ {0n} be an arbitrary set of vectors, and not

necessarily a sequence of vectors. For a matrix P , we let π (P) denote the number of negative

eigenvalues of P and null(P) denote its null space. For a set S ⊆ Rn, we let int (S) be its

interior, bd (S) be its boundary, conv (S) be its convex hull, conv (S) be the closure of its con-

vex hull, aff (S) be its affine hull, lin (S) := {d ∈ Rn : x+ λd ∈ S for all x ∈ S and λ ∈ R}

be its lineality space, and S∞ be its recession cone. For a function G : Rn → R we let

epi (G) := {(x, t) ∈ Rn+1 : G(x) ≤ t} be its epigraph, gr (G) := {(x, t) ∈ Rn+1 : G(x) = t}

be its graph, and hyp (G) := {(x, t) ∈ Rn+1 : G(x) ≥ t} be its hypograph. In addition,

we let the second-order cone (a.k.a. Lorentz cone) be the epigraph of the Euclidean norm

defined as {(x, t) ∈ Rn+1 : ‖x‖2 ≤ t}. Finally, we let [n] := {1, . . . , n}.
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3.0 INTERSECTION CUTS FOR NONLINEAR INTEGER

PROGRAMMING: CONVEXIFICATION TECHNIQUES FOR

STRUCTURED SETS

One of the most important breakthroughs in the area of Mixed Integer Linear Programming

(MILP) is the development of strong valid inequalities or cutting planes such as split and

intersection cuts. However, the study of cuts for Mixed Integer Nonlinear Programming

(MINLP) is still much more limited than that for MILP. Most of the known results in this

area are limited to very specific sets [54, 86, 88] or to approximations of semi-algebraic sets

through Semidefinite Programming (SDP) [45, 61, 76, 77, 78, 79, 80]. While some precise

SDP representations of the convex hulls of semi-algebraic sets exist [50, 51, 52, 85], these

require the use of auxiliary variables. Such higher dimensional, extended, or lifted represen-

tations are extremely powerful. However, there are theoretical and computational reasons to

want representations in the original space and/or in the same class as the original set (e.g.

representations that do not jump from quadratic basic semi-algebraic to SDP). We refer

to characterizations that satisfy both these requirements as projected and class preserving.

Projected and class preserving are in general incompatible (e.g. the convex hull of the basic

semi-algebraic set {x ∈ R2 : (x2
1 − x2)x1 ≥ 0, x2 ≥ 0} has no projected basic semi-algebraic

representation, but has a lifted basic semi-algebraic representation [24]). Furthermore, even

giving an algebraic characterization of the boundary of the convex hull of a variety [82, 83]

or giving a projected SDP representation of the convex hull of certain varieties and quadratic

semi-algebraic sets [84, 94, 95] requires very complex techniques from algebraic geometry.

All such issues make extending MILP cutting planes to the MINLP setting extremely chal-

lenging. To alleviate such challenges, in this chapter we concentrate on the extension of split,

k-branch split, and other intersection cuts to the MINLP setting [10, 32, 38, 48, 49, 62].
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Split, k-branch split, and intersection cuts for MILP can all be obtained by taking the

convex hull of the difference between a convex set and a set with a simple geometric structure.

This characterization allows for a straightforward extension of the cuts to the MINLP setting.

However, this conceptual extension does not provide a practical construction procedure for

the cuts. For this reason, we follow the approach of the simple, but extremely powerful Mixed

Integer Rounding (MIR) cut [66, 74, 75, 93]. The MIR procedure can be used to generate

every split cut for a MILP and, together with the closely related Gomory Mixed Integer

(GMI) cut procedure [48, 49], yields the most effective cutting plane approach for general

MILP [22, 23]. In particular, one version of the MIR procedure shows that every split cut

can be constructed through a simple two step procedure. The first step is the construction of

a canonical cut known as the simple or basic MIR. This cut is obtained by taking the convex

hull of the difference between two simple convex sets in R2, both of which are described by

two linear inequalities. The second step simply uses linear transformations to obtain all split

cuts from the basic MIR. In this chapter we show that a similar approach can be used to

construct a wide range of intersection cuts. More specifically, we show how two very simple

techniques can be used to construct projected class preserving characterizations of the convex

hull of difference between certain canonical sets. The techniques we consider are only tailored

to the geometric structure of these canonical sets and do not require the sets to have any

additional algebraic properties (e.g. being quadratic, basic semi-algebraic, etc.). Thanks to

this, the resulting characterizations are quite general, but give simple closed form expressions.

While the canonical sets are somewhat specific, we can also use affine transformations to

obtain more general cuts. In particular, these techniques can be used to construct split

cuts for essentially all convex sets described by a single conic quadratic inequality, and to

extend k-branch split and general intersection cuts to a wide variety of quadratic sets of

interest to trust region and lattice problems. In both cases, the only algebraic property of

the quadratic sets needed for the construction is the symmetry of the Euclidean norm. This

suggests that the techniques could be useful to construct cuts for additional classes of sets

by only exploiting similar basic properties.

Constructing such cuts requires calculating the convex hull of the difference between a

convex set and an open set with a simple geometric structure. We introduce two techniques

6



to give precise characterizations of such convex hulls and use them to construct split, k-

branch split, and intersection cuts for several classes of non-polyhedral sets. In particular,

we give simple formulas for split cuts for essentially all convex sets described by a single

conic quadratic inequality. We also give simple formulas for k-branch split cuts and some

general intersection cuts for a wide variety of convex quadratic sets.

The rest of this chapter is organized as follows. We begin with Section 3.1 where we

introduce some notation and review some known results. Section 3.2 then introduces an

interpolation technique that can be used to construct split and k-branch split cuts for many

classes of sets. Then, in Section 3.3 we use the interpolation technique to characterize

intersection cuts for conic quadratic sets. Finally, Section 3.4 introduces an aggregation

technique that can be used to construct a wide array of general intersection cuts. In both

Sections 3.2 and 3.4, we first present the basic principles behind the techniques in a simple,

but abstract setting, and then utilize them to construct more specific cuts to illustrate their

power and limitations.

3.1 NOTATION, KNOWN RESULTS AND OTHER PRELIMINARIES

In addition to the notation introduced in Chapter 2, we use the following notation and

definitions in this chapter.

Definition 1 (Intersection, Split, k-branch Split, and t-inclusive Split Cuts). Let B ⊆ Rn be

a closed convex set that we refer to as the base set, F ⊆ Rn be a closed set that we refer to as

the forbidden set, and g : Rn → R be an arbitrary function. We say inequality g(x) ≤ 0 is an

intersection cut for B and F if conv (B \ int (F )) ⊆ {x ∈ Rn : g(x) ≤ 0} and g is convex.

We let a split be a set of the form
{
x ∈ Rn : πTx ∈ [π0, π1]

}
for some π ∈ Rn \ {0n}

and π0, π1 ∈ R such that π0 < π1. If F is a split, we say that the associated intersection

cut is a split cut. Besides, if F is a split with π = ei for some i ∈ [n], we refer to F as an

elementary split and to the the associated split cut as an elementary split cut.
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We let a k-branch split be a set of the form
⋃k
i=1

{
x ∈ Rn : πi0 ≤ πTi x ≤ πi1

}
for some

{πi}ki=1 ⊆ Rn \ {0n}, πi0, πi1 ∈ R such that πi0 < πi1 for all i ∈ [k]. If F is a k-branch split, we

say that the associated intersection cut is a k-branch split cut.

When considering epigraphical sets of the form B = {(x, t) ∈ Rn+1 : G (x) ≤ t} for some

closed convex function G (x), we often assume that F is a cylinder whose axis lies along t

(i.e., F is of the form S × R for some S ⊆ Rn). For instance, if F is a split, we have F =
{

(x, t) ∈ Rn+1 : πTx ∈ [π0, π1]
}

. However, in some cases, we consider a split that includes

t and we refer to such a split as a t-inclusive split. More specifically, we let a t-inclusive

split be a set of the form
{

(x, t) ∈ Rn+1 : πTx+ π̂t ∈ [π0, π1]
}

for some (π, π̂) ∈ Rn+1 such

that π̂ 6= 01, and π0, π1 ∈ R such that π0 < π1. If F is a t-inclusive split, we say that the

associated intersection cut is a t-inclusive split cut.

We mostly restrict to the cases in which conv (B \ int (F )) is closed, so for notational

convenience, we let B := conv (B \ int (F )) when F is evident from the context.

We note that the term intersection cut was introduced by Balas [10] for the case in

which B is a translated simplicial cone, F is the euclidean ball or a cylinder of a lower

dimensional euclidean ball, and the unique vertex of B is in int (F ). In this setting, we have

that conv (B \ int (F )) is closed and can be described by adding a single linear inequality to

B. Furthermore, this single linear inequality has a simple formula dependent on the inter-

sections of the extreme rays of B with F . While we do not always have such intersection

formulas for other classes of sets, we continue to use the term intersection cut in the more

general setting and avoid any additional qualifiers for simplicity. In particular, we do not use

the term generalized intersection cut as it has already been used for the case of polyhedral

B and F and in conjunction with an improved cut generation procedure for MILP [12].

The term split cut was introduced by Cook, Kannan and Schrijver [32], and their original

definition directly generalizes to non-polyhedral sets as in Definition 1. The term k-branch

split cut was introduced by Li and Richard [62]; 2-branch split cuts are also called cross cuts

in Dash, Dey and Günlük [38]. These definitions also directly generalize to non-polyhedral

sets as in Definition 1.

1We allow π = 0n to consider disjunctions that only affect t.
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The interest of intersection cuts for MILP and MINLP arises from the fact that if int(F )∩

(Zp × Rq) = ∅, an intersection cut for B and F is valid for conv (B ∩ (Zp × Rq)). Hence,

intersection cuts can be used to strengthen the continuous relaxation of MILP and MINLP

problems.

Intersection cuts are particularly attractive in the MILP setting, since they can be quite

strong and can easily be constructed. They were extensively studied when they were first

proposed in the 1970s [10, 48, 49] and have recently received renewed interest [31, 42]. Part

of the relative simplicity and effectiveness of intersection cuts for MILP stems from two

basic facts. The first one is that in the MILP setting, B is a polyhedron (i.e., the continuous

relaxation of a MILP is an LP). The second one is the fact that every convex set F such that

int(F )∩Zn = ∅ (usually denoted a lattice free convex set) and that is maximal with respect

to inclusion for this property is also a polyhedron [64]. Restricting both B and F to be

(convex) polyhedra give intersection cuts for MILP several useful properties. For instance,

if B and F are polyhedra, then conv (B \ int (F )) is a polyhedron [42]. Hence, in the MILP

setting, we can restrict our attention to linear intersection cuts. In particular, if F is a split

and B is a polyhedron, then all linear intersection cuts for B and F can be constructed

from simplicial relaxations of B and hence have simple formulas [5, 40, 89]. As discussed

in the introduction, GMI cuts [48, 49] and MIR cuts [66, 74, 75, 93] are two versions of

these formulas. For more information on the ongoing efforts to duplicate this effectiveness

for other lattice free polyhedra, we refer the reader to [31, 42]. In this context, we note that

conv (B \ int (F )) can fail to be closed even if B and F are polyhedra and F is not a split

(e.g. consider B = {x ∈ R2 : x2 ≥ 0} and F = {x ∈ R2 : x2 ≤ 1, x1 + x2 ≤ 1}). However,

conv (B \ int (F )) is closed in the polyhedral case if F is convex and full-dimensional and

the recession cone of F is a linear subspace [7].

In the MINLP setting, there has been significant work on the computational use of linear

split cuts [25, 28, 87, 44, 59]. From the theoretical side, we know that if F is a split, then

conv (B \ int (F )) is closed even if B is not polyhedral [37]. With respect to formulas for

intersection cuts, there has been some progress in the description of split cuts for quadratic

sets in [8, 9, 37, 14]. Dadush et al. [37] show that, if B is an ellipsoid and F is a split, then

conv (B \ int (F )) can be described by intersecting B with either a linear half space, an affine
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transformation of the second-order cone, or an ellipsoidal cylinder. In addition, they give

simple closed form expressions for all these linear and nonlinear split cuts. Independently, [14]

studies split cuts for more general quadratic sets, but only for splits in which {x ∈ B : πTx =

π0} and {x ∈ B : πTx = π1} are bounded. They give a procedure to find the associated split

cuts, but do not give closed form expressions for them. Finally, [8, 9] give a simple formula

for an elementary split cut for the standard three dimensional second-order cone. While

[14] develops a procedure to construct split cuts through a detailed algebraic analysis of

quadratic constraints developed in [15], [8, 9, 37] give formulas for split cuts through simple

geometric arguments. As we have recently shown at the MIP 2012 Workshop, these geometric

techniques can be extended to additional quadratic and basic semi-algebraic sets [69]. In

this paper we show that the principles behind these geometric arguments can be abstracted

from the semi-algebraic setting to develop split and k-branch split cut formulas for a wider

class of specially structured convex sets. This abstraction greatly simplifies the proofs and

can be used to construct split cuts for essentially all convex sets described by a single conic

quadratic inequality through simple linear algebra arguments. In addition to studying split

and k-branch split cuts, we show how a commonly used aggregation technique can be used

to develop formulas for general nonlinear intersection cuts for the case in which B and F

are both non-polyhedral, but share a common structure. While a non-polyhedral F is not

necessary in the MINLP settings (it still should be sufficient to consider maximal lattice free

convex sets, which are polyhedral), they could still provide an advantage and are important

in other settings such as trust region problems [18, 19, 79] and lattice problems [26, 71].

We finally note that similar results for the quadratic case have recently been independently

developed in [6]. We discuss the relation between the results in [6] and our work at the end

of Section 3.3.2.

To describe our approach, we use the following additional definition.

Definition 2. Let B ⊆ Rn be a closed convex set, F ⊆ Rn be a closed set, and g : Rn → R

be an arbitrary function. We say inequality g(x) ≤ 0 is a:

• valid cut if B ⊆ {x ∈ Rn : g(x) ≤ 0},

• binding valid cut if it is valid and {x ∈ B \ int (F ) : g(x) = 0} 6= ∅, and
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• sufficient cut, if {x ∈ B : g(x) ≤ 0} ⊆ B.

Binding valid cuts correspond to valid cuts that cannot be improved by translations, and

sufficient cuts are those that are violated by any point of B outside B. We can show that

a convex cut that is sufficient and valid is enough to describe B together with the original

constraints defining B. Our approach to generating such cuts will be to construct cuts that

are binding and valid by design, and that have simple structures from which sufficiency can

easily be proven.

3.2 INTERSECTION CUTS THROUGH INTERPOLATION

In this section we consider the case in which the base set is either the epigraph, lower level

set, or a section of the epigraph of a convex function and the forbidden set corresponds to

a split, t-inclusive split, or a k-branch split. Our cut construction approach is based on a

simple interpolation technique that can be more naturally explained for splits and epigraphs

of specially structured functions. For this reason, we begin with such a case and then consider

special cases of non-epigraphical sets and discuss the limits of the interpolation technique.

While the structures for which the technique yields simple formulas are quite specific, we can

consider broader classes by considering affine transformations. In Section 3.3 we illustrate

the power of this approach by showing how the interpolation technique yields formulas for

intersection cuts for convex quadratic sets.

3.2.1 Split Cuts for Epigraphical Sets

Let G : R→ R be a closed convex function and let F be an elementary split associated with

π = e1. Then epi(G) = epi(G) ∩ epi(J) for

J(z) =
G(π1)−G(π0)

π1 − π0

z +
π1G(π0)− π0G(π1)

π1 − π0

. (3.1)

This is illustrated in Figure 1, where the graph of G is given by the thick black curve and the

graph of J is depicted by the thin blue line. Indeed, since J is a linear function and hence

11
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(b) Friends by following the
slope.

Figure 1: Interpolation Technique for Univariate Functions.

epi(G) ∩ epi(J) convex, it is enough to show that J(z) ≤ t is a valid and sufficient cut. We

can check that J(z) ≤ t is a binding valid cut because J is the (affine) linear interpolation of

G through z = π0 and z = π1. Convexity of G then implies that this interpolation is below

G for z /∈ (π0, π1).

To show that the cut is sufficient, we need to show that any point
(
z, t
)
∈ epi(G) that

satisfies the cut is in epi(G). To achieve this, we can find two points (z0, t0) and (z1, t1) in

epi(G) such that z0 ≤ π0, z1 ≥ π1, and
(
z, t
)
∈ conv ({(z0, t0) , (z1, t1)}). Following [41],

we will denote these points the friends of
(
z, t
)
. One naive way to construct the friends

is to wiggle
(
z, t
)

by decreasing and increasing z until it reaches π0 and π1, respectively.

However, as illustrated in Figure 1(a), this can result in one of the friends falling outside

epi(G). Fortunately, as illustrated in Figure 1(b), we can always wiggle by following the

slope of the cut J to assure that the friends are in epi(J). Correctness (i.e., containment

of the friends in epi(G)) then follows by noting that J(z) = G(z) at z = π0 and z = π1,

since J(z) ≤ t is a binding valid cut. This two-stage procedure of binding validity through

interpolation and sufficiency through friends can be formalized for general closed convex sets

as follows.
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Proposition 1. Let B ⊆ Rn be a closed convex set and F ⊆ Rn be closed. If C ⊆ Rn is a

closed convex set such that

B ∩ bd (F ) = C ∩ bd (F ) (3.2a)

B \ int (F ) ⊆ C \ int (F ) , (3.2b)

and if

for all x̄ ∈ C∩int (F ) there exists a finite set Γ ⊆ C∩bd (F ) such that x̄ ∈ conv (Γ) , (3.3)

then

B = B ∩ C. (3.4)

Proof. We have that

B \ int (F ) ⊆ B ∩ C ⊆ B, (3.5)

where the first containment comes from (3.2b) and the last from (3.3) and (3.2a). The result

follows by taking convex hull in (3.5) and noting that B ∩ C is convex because both B and

C are convex.

Note that if F is a split, we can always consider Γ containing exactly two points (e.g

Figure 1 and Propositions 2 and 4), while larger sets Γ might be necessary for other forbidden

sets (e.g. Proposition 7). Our general approach to use Proposition 1 is to construct a convex

function that yields binding valid cuts (i.e., satisfies (3.2)) and to use its specific geometric

structure to construct friends for sufficiency. We now consider two structures in which

the appropriate interpolation can easily be constructed once we identify the interpolation’s

general form. The geometric structures of the resulting cuts yield two friends construction

techniques. The first technique generalizes the univariate argument in Figure 1(b) by noting

that following the slope of J is equivalent to moving in lin (epi(J)). The second technique

constructs the friends by moving in a ray contained in an appropriately constructed cone.

These techniques are described in detail in Sections 3.2.1.1 and 3.2.1.2 respectively.
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3.2.1.1 Separable Functions Let G be a separable function of the form G(z, y) =

f(z) + g(y) with f : R → R and g : Rp → R closed convex functions, and let F be an

elementary split associated with π = e1. Analogous to (3.1), we can simply interpolate G

parametrically on y to obtain

J(z, y) =
G(π1, y)−G(π0, y)

π1 − π0

z +
π1G(π0, y)− π0G(π1, y)

π1 − π0

. (3.6)

In this case, the interpolation simplifies to J(z, y) = f(π1)−f(π0)
π1−π0 z+ π1f(π0)−π0f(π1)

π1−π0 +g(y), which

is convex on (z, y) and linear on z. Our original univariate argument follows through directly

and we get epi (G) = epi (G) ∩ epi (J). To illustrate this, consider G : R× R→ R given by

G(z, y) = z2 + y2 and let F be the elementary split associated with π = e1, π0 = −10, and

π1 = 1. Constructing a parametric linear interpolation as in (3.6) yields

J(z, y) =
1− 100

11
z +

(100 + y2) + 10 (1 + y2)

11
= −9z + 10 + y2.

Function J is convex on (z, y), linear on z, and satisfies the conditions of Proposition 1.

We can thus conclude that it yields the associated split cut. In contrast, if we consider

the non-elementary split π = (1, 1)T with the previous choices of π0 and π1 on the same

function G, we need to proceed with more care. In particular, the parametric interpolation

(3.6) cannot be directly applied since the disjunction affects both z and y. However, we can

construct the split cut by exploiting the fact that G can be represented as

G(z, y) =
(z + y)2

2
+

(z − y)2

2
=

(
πT (z, y)

)2

2
+

(
hT (z, y)

)2

2
, (3.7)

where h = (1,−1)T is orthogonal to π. If we let z̃ = πT (z, y), ỹ = hT (z, y), π̃ = (1, 0),

π̃0 = −10, π̃1 = 1, and G̃ (z̃, ỹ) = z̃2/2 + ỹ2/2, we revert to the elementary case where we

can apply the parametric interpolation (3.6) to obtain the split cut

J̃ (z̃, ỹ) =
G̃ (π̃1, ỹ)− G̃ (π̃0, ỹ)

π̃1 − π̃0

z̃ +
π̃1G̃ (π̃0, ỹ)− π̃0G̃ (π̃1, ỹ)

π̃1 − π̃0

=
−9z̃ + 10 + ỹ2

2
. (3.8)

We can then recover the split cut in the original (z, y) space by replacing the definitions of

z̃ and ỹ. The same procedure can be used for any separable function that is of, or can be

converted to, the form G(x) = f(πTx)+g(P⊥π x) where g : Rn → R and f : R→ R are closed

convex functions (P⊥π x plays the same role as hT (z, y) in (3.7)).
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To formally prove this, we first show how the friends construction procedure of Fig-

ure 1(b) can be extended to a general closed convex set C by considering properties of

lin (C).

Proposition 2. Let F ⊆ Rn be a split and C ⊆ Rn be a closed convex set. If there exists

u ∈ lin (C) such that πTu 6= 0, then condition (3.3) in Proposition 1 is satisfied.

Proof. Let x̄ ∈ C such that πT x̄ ∈ (π0, π1) and u ∈ lin (C) such that πTu 6= 0. Also let

xi := x̄ + λiu for i ∈ {0, 1}, where λi = πi−πT x̄
πTu

, and let β ∈ (0, 1) be such that πT x̄ =

βπ0 + (1− β) π1. Because u ∈ lin (C) and since πTxi = πi, we have xi ∈ C ∩ bd (F ) for

i ∈ {0, 1}. The result then follows by noting that x̄ = βx0 + (1− β)x1.

Using Propositions 1 and 2 we obtain the following split cut formula for separable func-

tions.

Proposition 3. Let F be a split, g : Rn → R and f : R→ R be closed convex functions,

Sg,f :=
{

(x, t) ∈ Rn+1 : g(P⊥π x) + f(πTx) ≤ t
}
,

a = f(π1)−f(π0)
π1−π0 , and b = π1f(π0)−π0f(π1)

π1−π0 . Then Sg,f = Sg,f ∩ C, where

C =
{

(x, t) ∈ Rn+1 : g(P⊥π x) + aπTx+ b ≤ t
}
.

Proof. Interpolation condition (3.2) holds by the definition of a and b and convexity of f .

Friends condition (3.3) follows from Proposition 2 by noting that u =
(
π, a ‖π‖2

2

)
∈ lin (C)

and (π, 0)T u 6= 0. The result then follows from Proposition 1.
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3.2.1.2 Non-separable Positive Homogeneous Functions Proposition 1 can also be

used to construct cuts for some non-separable functions, but as illustrated in the following

example, we need slightly more complicated interpolations. Consider G : R× R→ R given

by G(z, y) =
√
z2 + y2 and let F be the elementary split associated with π = e1, π0 = −10,

and π1 = 1. Constructing a parametric linear interpolation as in (3.6) yields

JL(z, y) =
10
√

1 + y2 +
√

100 + y2 + z
(√

1 + y2 −
√

100 + y2
)

11
. (3.9)

The associated cut is certainly valid, binding, and sufficient for epi (G) (we can always find

friends by wiggling z toward π0 and π1, and using t to correct by following the slope of JL

for fixed y). However, while J is linear with respect to z, it is not convex with respect to y.

We hence cannot use Proposition 1 for this interpolation. Fortunately, we can construct an

alternative interpolation given by

JC(z, y) =

√(
20− 9z

11

)2

+ y2 (3.10)

that is convex on (z, y). This function is not linear on z for fixed y, but we can still

show it satisfies the interpolation condition (3.2) by noting that
(

20−9z
11

)2 ≤ z2 for any

z /∈ (π0, π1) and that equality holds for z ∈ {π0, π1}. This is illustrated in Figure 2 for

y = −4 where the graphs of G, JC , and JL are given by the thick black curve, the thin blue

curve, and the dash-dotted green line, respectively. The figure shows that JC(z, y) ≤ t is

a nonlinear binding valid cut, but is strictly weaker than JL(z, y) ≤ t. While JC yields a

weaker cut than JL, JC is in fact the strongest convex function that satisfies the interpolation

condition (3.2) and we can show that epi(G) = epi(G) ∩ epi(JC). However, for the point
(
z, y, t

)
∈ epi (JC) ∩ int (F ) with y = −4 depicted in Figure 2, the friends construction

cannot be done by wiggling in a direction that leaves y fixed to −4. In other words, there

are points in Ĥ := {(z, y, t) ∈ R3 : y = −4} that do not have friends in Ĥ. We can construct

friends by wiggling in a direction that does change y, but since lin(epi(JC)) = {0}, such a

direction cannot be directly obtained from Proposition 2. Fortunately, the general idea

of Proposition 2 can be adapted to obtain a variant that directly reveals an appropriate

direction.
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Figure 2: Nonlinear Interpolation for Non-separable Functions.

The variant of Proposition 2 that we need, exploits a different geometric characteristic

of epi (JC) through the generalization of a technique used in [8, 9]. The required geometric

characteristic is given by the following definition.

Definition 3. Let C ⊆ Rn be a closed convex set. We say C is a translated cone or conic

set if there exists x∗ ∈ C such that C − x∗ is a convex cone. We refer to such x∗ as an apex

of C, noting that it is not necessarily unique (e.g. a half space is a conic set whose apex is

not unique).

One can check that epi (JC) is a conic set with the unique apex (z∗, y∗, t∗) = (20/9, 0, 0).

Hence, because (z̄, y, t̄) ∈ epi (JC), we have that the ray

R := {(z∗, y∗, t∗) + α ((z̄, y, t̄)− (z∗, y∗, t∗)) : α ≥ 0} ⊆ epi (JC) . (3.11)

Furthermore, because z∗ > π1 and z̄ ∈ (π0, π1), there exists αi > 0 such that z∗+αi(z̄−z∗) =

πi for each i ∈ {0, 1}. Therefore the friends of (z̄, y, t̄) are given by (zi, yi, ti) := (z∗, y∗, t∗) +

αi ((z̄, y, t̄)− (z∗, y∗, t∗)) for i ∈ {0, 1}.

Figure 3 illustrates the ray-based friends construction for (z̄, y, t̄) with y = −4. Fig-

ure 3(a) shows the construction in the (z, y, t) space, while Figure 3(b) shows the section
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Figure 3: Friends Construction for Non-separable Positive Homogeneous Functions.

obtained by intersecting Figure 3(a) with the hyperplane H̃ := aff (R ∪ {(0, 0, 1)}), for the

ray R given in (3.11). The intersection of H̃ with the bounding box is depicted by the dash-

dotted line in Figure 3(a). The graph of G is given by a black wire-frame in Figure 3(a),

while the intersection of this graph with H̃ is given by the thick black curve in both figures.

Meanwhile, the graph of JC is depicted by the blue shaded region in Figure 3(a) and by a

thin blue curve in Figure 3(b). The figures also depict (zi, yi, ti) for i ∈ {0, 1} and (z̄, y, t̄) as

black dots and (z∗, y∗, t∗) as a red box. In addition, the intersection of z = πi for i ∈ {0, 1}

with the epigraphs of both G and JC are depicted in Figure 3(a) by the gray shaded regions.

The intersection of z = πi for i ∈ {0, 1} with H̃ are depicted in both figures by dotted lines.

Finally, ray R is depicted in both figures as a red dashed arrow. Note that H̃ is tilted in the

(z, y) space precisely to contain (z∗, y∗, t∗) and (z̄, y, t̄). Noting that y∗ 6= y we have that,

unlike Ĥ, H̃ allows the variation of y. Furthermore, while (z̄, y, t̄) ∈ Ĥ ∩ H̃ might not have

friends in Ĥ, Figure 3 shows that it does have friends in H̃. Similarly to Proposition 2, the

above construction can be extended to general convex sets as follows.

Proposition 4. Let F ⊆ Rn be a split. If C ⊆ Rn is a conic set with apex x∗ ∈ Rn such

that πTx∗ /∈ (π0, π1), then condition (3.3) in Proposition 1 is satisfied.
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Proof. Let x̄ ∈ C such that πT x̄ ∈ (π0, π1). Note that since x∗ is the apex of C, all points

on the ray R := {x∗ + α (x̄− x∗) : α ∈ R+} belong to C. Let the intersections of R with the

hyperplanes πTx = π0 and πTx = π1 be x0 and x1, respectively. Such points are obtained

from R by setting αi = πi−πT x∗
πT x̄−πT x∗ , for i ∈ {0, 1}. We have xi ∈ C∩bd (F ) for i ∈ {0, 1}, since

πTxi = πi and R ⊆ C. Note that x̄ is obtained from R by setting α = 1. If α0 < 1 < α1

or α1 < 1 < α0, then there exists β ∈ (0, 1) such that x̄ = βx0 + (1− β)x1. Seeing that

πT x̄ ∈ (π0, π1) and πTx∗ /∈ (π0, π1), one can check α0 < 1 < α1 or α1 < 1 < α0.

Note that Propositions 2 and 4 ask for very different requirements on C. In Proposition 2,

we only need to have a direction u ∈ lin (C) such that πTu 6= 0. In such a case, C always

defines a non-pointed region (i.e., C contains a line). On the other hand, as illustrated

by (3.10), the sets C for which Proposition 4 is applicable are usually pointed (i.e. C has

at least one extreme point). However, pointedness is not a requirement in Proposition 4

(e.g. half-spaces are conic sets). The real price of Proposition 4 over Proposition 2 is

requiring C to be conic, which is a much more global requirement than asking for the

lineality space of C to contain a non-orthogonal direction to π. However, both propositions

are needed to construct split cuts for positive homogeneous functions. To see this, consider

the same function G(z, y) =
√
z2 + y2 for which (3.10) yields a split cut, but instead consider

the split z ∈ [−1, 1]. For this case, we can check that epi(G) = epi(G) ∩ epi(JD) for

JD(z, y) =
√

1 + y2, which does not have a conic epigraph. However, (1, 0, 0) ∈ lin(epi(JC))

and hence Proposition 2 is applicable. This dichotomy between a non-pointed and a conic

(and potentially pointed) cut will be a common occurrence that we highlight further when

characterizing intersection cuts for conic quadratic sets in Section 3.3.

While Propositions 2 and 4 can be used to prove sufficiency of the split cuts for pos-

itive homogeneous functions, such cuts first have to be constructed with an appropriate

interpolation technique. Fortunately, both interpolations of G(z, y) =
√
z2 + y2 (conic and

non-pointed) can be generalized to functions based on p-norms by using the following simple

lemma.

Lemma 1. Let p ∈ N, π0, π1 ∈ R such that π0 < π1, l ∈ R, a = (|l|p+|π1|p)1/p−(|l|p+|π0|p)1/p

π1−π0 ,

and b = π1(|l|p+|π0|p)1/p−π0(|l|p+|π1|p)1/p

π1−π0 .
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• If s ∈ {π0, π1}, then |as+ b|p = |s|p + |l|p and

• if s /∈ (π0, π1), then |as+ b|p ≤ |s|p + |l|p.

Proof. We show the equivalent version of the lemma given by

1. If s ∈ {π0, π1}, then |as+ b| = (|s|p + |l|p)1/p and

2. if s /∈ (π0, π1), then |as+ b| ≤ (|s|p + |l|p)1/p.

Let f(s) := as + b and g(s) := (|s|p + |l|p)1/p. By definition of a and b we have that

f(πi) = g(πi) for i ∈ {0, 1}. Indeed, f(s) is the (affine) linear interpolation of g(s) through

z = π0 and z = π1. Convexity of g(s) then implies f(s) ≤ g(s) for all s /∈ (π0, π1).

If |π0| = |π1|, then |as+ b| = f(s) and the result follows directly. If |π0| 6= |π1|, one

can check that |as+ b| = f(s) for s ∈ [π0, π1] and hence (1) holds. For (2) it suffices

to show that −as − b ≤ g(s) for all s ∈ R. To show this we first assume a > 0 and

hence π1 > 0 (case a < 0 is analogous). Because f(s) is affine and f(πi) = g(πi) for

i ∈ {0, 1}, by a sub-differential version of the mean value theorem we have that there exists

s̄ ∈ (π0, π1) such that a ∈ ∂g(s̄). Then, by symmetry of g(s) and its convexity, we have that

g(s) ≥ g(−s̄) − a(s + s̄) = −as + g(−s̄) − as̄ for s ∈ R. The result then follows by noting

that g(−s̄)−as̄ ≥ −b for all s̄ ∈ (π0, π1) because g(s)−as ≥ 0 for all s ∈ R and −b ≤ 0.

Using this lemma we can construct split cuts for epigraphs of a wide range of posi-

tive homogeneous convex functions and their sections (i.e. the epigraphs of such positive

homogeneous functions after a variable is fixed to a constant).

Proposition 5. Let F be a split, β, l ∈ R, g : Rn → R be a positive homogeneous closed

convex function, a and b as in Lemma 1, and

Hp,g :=
{

(x, t) ∈ Rn+1 :
(
g
(
P⊥π x

)p
+
∣∣βπTx

∣∣p + |βl|p
)1/p ≤ t

}
.

Then Hp,g = Hp,g ∩ C, where C =
{

(x, t) ∈ Rn+1 :
(
g
(
P⊥π x

)p
+
∣∣β
(
aπTx+ b

)∣∣p)1/p ≤ t
}

.

Proof. Interpolation condition (3.2) holds by the definition of a and b and Lemma 1. If

|π0| = |π1|, then (π, 0) ∈ lin (C) and friends condition (3.3) follows from Propositions 2. If

|π0| 6= |π1|, then C is a conic set with apex (x∗, t∗) =
(
−b

a‖π‖22
π, 0
)

. Furthermore,

(π, 0)T (x∗, t∗) = πTx∗ = π1 + (|l|p + |π1|p)1/p
ρ = π0 + (|l|p + |π0|p)1/p

ρ,
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where ρ = π0−π1
(|l|p+|π1|p)1/p−(|l|p+|π0|p)1/p

. If |π1| < |π0|, then πTx∗ ≥ π1 and if |π1| > |π0|, then

πTx∗ ≤ π0. Therefore, friends condition (3.3) follows from Proposition 4. The result then

follows from Proposition 1.

The following direct corollary of Proposition 5 yields simplified formulas for split cuts

when l = 0 and Hp,g is the epigraph of a positive homogeneous convex function.

Corollary 1. Let F be a split, β ∈ R, p ∈ N, g : Rn → R be a positive homogeneous closed

convex function, a = π0+π1
π1−π0 , b = − 2π1π0

π1−π0 , and

Cp,g :=
{

(x, t) ∈ Rn+1 :
(
g
(
P⊥π x

)p
+
∣∣βπTx

∣∣p)1/p ≤ t
}
.

If 0 /∈ (π0, π1), then Cp,g = Cp,g. Otherwise, Cp,g = Cp,g ∩ C, where

C =
{

(x, t) ∈ Rn+1 :
(
g
(
P⊥π x

)p
+
∣∣β
(
aπTx+ b

)∣∣p)1/p ≤ t
}
.

In particular, if g is a p-norm and the splits are elementary, Corollary 1 further specializes

as follows.

Corollary 2. Let F be an elementary split associated with π = ek, Kp := {(x, t) ∈ Rn+1 :

‖x‖p ≤ t}, a and b as in Corollary 1, and Â := I − ekekT . If 0 /∈ (π0, π1), then Kp = Kp.

Otherwise, Kp = Kp ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥
(
Â+ aekek

T
)
x+ bek

∥∥∥
p
≤ t

}
.

Proof. Direct from Corollary 1 by noting thatKp =

{
(x, t) ∈ Rn+1 :

(∥∥∥Âx
∥∥∥
p

p
+ |xk|p

)1/p

≤ t

}
,

C =

{
(x, t) ∈ Rn+1 :

(∥∥∥Âx
∥∥∥
p

p
+ |axk + b|p

)1/p

≤ t

}
, and seeing that Â = P⊥π .
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3.2.2 Split Cuts For Level Sets

The interpolation technique can also be applied to some non-epigraphical sets. This is

illustrated in the following proposition.

Proposition 6. Let F be a split, g : Rn → R be a positive homogeneous convex function,

f : R → R ∪ {+∞} be a closed convex function such that f(π0), f(π1) ≤ 0, a = f(π1)−f(π0)
π1−π0 ,

b = π1f(π0)−π0f(π1)
π1−π0 and

Lg,f :=
{
x ∈ Rn : g(P⊥π x) + f(πTx) ≤ 0

}
.

Then Lg,f = Lg,f ∩ C, where C =
{
x ∈ Rn : g(P⊥π x) + aπTx+ b ≤ 0

}
.

Proof. Interpolation condition (3.2) holds by the definition of a and b and convexity of f .

If f(π0) = f(π1), then π ∈ lin (C) and friends condition (3.3) follows from Proposition 2.

If f(π0) 6= f(π1), then C is a conic set with apex x∗ = −b
a‖π‖22

π. Furthermore, πTx∗ =

π0f(π1)−π1f(π0)
f(π1)−f(π0)

= π1 + (π0−π1)f(π1)
f(π1)−f(π0)

= π0 + (π0−π1)f(π0)
f(π1)−f(π0)

. If f(π0) < f(π1), then πTx∗ ≥ π1 and if

f(π0) > f(π1) then πTx∗ ≤ π0. Therefore, friends condition (3.3) follows from Proposition 4.

The result then follows from Proposition 1.

As a direct corollary of Proposition 6, we obtain formulas for elementary split cuts for

balls of p-norms.

Corollary 3. Let F be an elementary split associated with π = ek, r ∈ R such that

|π0| , |π1| ≤ r,

Ep := {x ∈ Rn : ‖x‖p ≤ r},

f(u) := − (rp − |u|p)1/p
, a, b as in Proposition 6, and Â := I − ekekT . Then Ep = Ep ∩ C,

where

C =

{
x ∈ Rn :

∥∥∥Âx
∥∥∥
p

+ axk + b ≤ 0

}
.

Proof. Direct from Proposition 6 by noting that Ep =

{
x ∈ Rn :

∥∥∥Âx
∥∥∥
p

+ f(xk) ≤ 0

}
and

Â = P⊥π .

22



3.2.3 Non-trivial Extensions

In this section we consider two non-trivial extensions/applications of the interpolation tech-

nique. The first example considers t-inclusive split cuts for epigraphical sets and illustrates

the case when the interpolation coefficients cannot be easily calculated. The second exam-

ple shows how the technique can be used beyond split sets to construct k-branch split cuts

for epigraphical sets. We hope these examples serve as a guide for future applications or

extensions of the interpolation technique.

3.2.3.1 t-inclusive Split Cuts for Epigraphical Sets Consider the base set Q0 :=

{(x, t) ∈ R2 : x2 ≤ t} and the t-inclusive split x + t ∈ [0, 1]. The first step to construct the

associated split cut C ⊆ R2 such that Q0 = Q0 ∩C is to find the general form of such a cut.

The inclusion of t in the split prevents us from directly using the interpolation arguments

for regular splits to construct this general form. However, by extrapolating these arguments

to the t-inclusive setting and analyzing the geometry of the problem (e.g. the intersection

of Q0 with x + t ∈ {0, 1} corresponds to two ellipses), we may guess that the appropriate

interpolation form is

C =

{
(x, t) ∈ R2 :

√
(ax+ b)2 ≤ cx+ dt+ e

}
, (3.12)

for some interpolation coefficients a, b, c, d, e ∈ R. Unlike the regular split setting, it is not

immediately clear what these coefficients should be, but we may try to deduce them by

forcing interpolation conditions (3.2). Interpolation condition (3.2a) corresponds to

{(x, t) ∈ Q0 : t = −x} = {(x, t) ∈ C : t = −x} (3.13)

{(x, t) ∈ Q0 : t = 1− x} = {(x, t) ∈ C : t = 1− x} , (3.14)

which induces an infinite number of constraints on the coefficients.2 We could try to reduce

such a set of constraints to find the interpolation coefficients. In particular, the arguments

for the regular splits effectively reduce such a set of constraints to two equality constraints.

For instance, in the interpolation given in (3.1), the corresponding interpolation conditions

2For instance, (3.13) implies

√
(ax+ b)

2 ≤ (c− d)x+ e for all (x,−x) ∈ Q0.
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analogous to (3.13) and (3.14) reduce to G (πi) = J (πi) for i ∈ {0, 1}. To obtain a similar

reduction, we here take a possibly naive approach that, nonetheless, is successful for several

classes of cuts and is flexible enough to be extended to more complicated base and forbidden

sets. The idea of this approach is to note that (3.13) and (3.14) can be expressed as

{
x ∈ R : x2 ≤ −x

}
=

{
x ∈ R : (ax+ b)2 ≤ ((c− d)x+ e)2 , (c− d)x+ e ≥ 0

}
(3.15)

{
x ∈ R : x2 ≤ 1− x

}
=

{
x ∈ R : (ax+ b)2 ≤ ((c− d)x+ d+ e)2 , (c− d)x+ d+ e ≥ 0

}
.

(3.16)

A sufficient condition for these constraints is for the quadratic polynomials in both sides of

(3.15) and (3.16) to be identical, and for the following condition to hold:

{x ∈ R : x2 ≤ −x} ⊆ {x ∈ R : (c− d)x+ e ≥ 0} (3.17)

{x ∈ R : x2 ≤ 1− x} ⊆ {x ∈ R : (c− d)x+ d+ e ≥ 0} . (3.18)

Forcing the polynomials to be identical is a simple matter of matching coefficients, which

results in the set of polynomial inequalities on a, b, c, d and e given by

a2 − (c− d)2 = 1, ab− (c− d) e = 1/2,

ab− (c− d) (d+ e) = 1/2, b2 − e2 = 0,

b2 − (d+ e)2 = −1.

The above linear system has four solutions given by:

(1, 1
2
,
√

5−1
2
,
√

5−1
2
, 1

2
), (1, 1

2
, −
√

5+1
2

, −
√

5+1
2

, −1
2

), (1, 1
2
,
√

5+1
2
,
√

5+1
2
, −1

2
), and (1, 1

2
, −
√

5−1
2

, −
√

5−1
2

, 1
2
),

of which only the first satisfies the additional conditions (3.17) and (3.18). Note that since

c = d in the first solution, checking (3.17) and (3.18) is equivalent to checking e ≥ 0 and

d+ e ≥ 0, which is trivial. Furthermore, this point also satisfies the interpolation condition

(3.2b) which in this case, corresponds to

{(x, t) ∈ Q0 : x+ t /∈ (0, 1)} ⊆ {(x, t) ∈ C : x+ t /∈ (0, 1)} . (3.19)

Finally, to show that this choice of interpolation coefficients yields the desired split cut, note

that C for such coefficients is a conic set with apex (x∗, t∗) =
(
−1
2
,
√

5−3
2
√

5−2

)
and x∗ + t∗ < 0.

Then friends condition (3.3) follows from Proposition 4.
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Note that identifying the coefficients of the quadratic polynomials and having (3.17) and

(3.18) are sufficient for the interpolation condition (3.2a), but they may not be necessary

in general. Hence, there might be other interpolation coefficients for which Q0 = Q0 ∩ C.

Moreover, it is not even clear that (3.12) is the only possible interpolation form for the

associated split cut. However, if the described procedure is successful, we need not worry

about alternative characterizations, since they will all yield Q0 when intersected with Q0.

There is of course no guarantee that the above procedure for finding a representation of C

will always succeed. However, as we illustrate in Section 3.3, the procedure is successful in

constructing rather complicated cuts for conic quadratic sets.

3.2.3.2 k-branch Split Cuts for Epigraphical Sets We now illustrate how Proposi-

tion 1 can be used for sets other than splits by constructing certain k-branch split cuts for

separable functions. The following proposition is a direct, but technical, generalization of

Proposition 3, which explains our reason to postpone its introduction to this stage of the

paper.

Proposition 7. Let g : R → R and fi : R → R for each i ∈ [k] be closed convex functions.

Furthermore, let F be a k-branch split such that πi ⊥ πj for every i 6= j. Finally, let

P⊥Π := I −
∑k

i=1
πiπ

T
i

‖πi‖22
,

Bg,f :=

{
(x, t) ∈ Rn+1 : g

(
P⊥Π x

)
+

k∑

i=1

fi
(
πTi x

)
≤ t

}
,

ai :=
fi(πi1)−fi(πi0)

πi1−πi0
, bi :=

πi1fi(πi0)−πi0fi(πi1)
πi1−πi0

for all i ∈ [k], and for every I ⊆ [k] let

hI(x) := g
(
P⊥Π x

)
+
∑

i∈[k]\I

fi
(
πTi x

)
+
∑

i∈I

aiπ
T
i x+ bi.

Then Bg,f = Bg,f ∩ C, where C =
{

(x, t) ∈ Rn+1 : maxI⊆[k] hI(x) ≤ t
}

.
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Proof. Interpolation condition (3.2) holds by the definition of ai and bi and convexity of fi.

Now let (x, t̄) ∈ C ∩ int (F ). To construct the friends of (x, t̄) we proceed as follows.

Let I ⊆ [k] be such that for all i ∈ I we have πTi x̄ ∈ (πi0, π
i
1), and for all i ∈ [k] \ I we

have πTi x̄ /∈ (πi0, π
i
1). For each s ∈ {0, 1}I , let

xs = P⊥Π x̄+
∑

i∈[k]\I

πTi x̄

‖πi‖2
2

πi+
∑

i∈I

siπ
i
0 + (1− si)πi1
‖πi‖2

2

πi, ts = t̄+
∑

i∈I

ai
(
siπ

i
0 + (1− si)πi1 − πTi x̄

)
,

(3.20)

and λs =
∏

i∈I

(
si
πi1−πTi x̄
πi1−πi0

+ (1− si)π
T
i x̄−πi0
πi1−πi0

)
.

Note that (x, t̄) =
∑

s∈{0,1}I λs (xs, ts),
∑

s∈{0,1}I λs = 1, and λs ≥ 0 for all s ∈ {0, 1}I .

Furthermore, by construction and the assumption on I, we have that xs ∈ bd (F ) and

(xs, ts) ∈ epi (hI) for all s ∈ {0, 1}I . The result then follows from Proposition 1 by noting

that for all s ∈ {0, 1}I , we have maxJ⊆[k] hJ (xs) = hI (xs).

3.3 INTERSECTION CUTS FOR CONIC QUADRATIC SETS

In this section we consider intersection cuts for conic quadratic sets of the form C :=

{x ∈ Rn : Ax− d ∈ Lm} where A ∈ Rm×n, d ∈ Rm, and Lm is the m-dimensional Lorentz

cone. Note that C can be written as

C =
{
x ∈ Rn : ‖A0x− d0‖2 ≤ aTmx− dm

}
, (3.21)

where (A0, d0) is obtained from (A, d) by deleting the m-th row, and (am, dm) is the m-th

row of (A, d). Using (3.21), one can rewrite C as

Q :=
{
x ∈ Rn : xTQx− 2hTx+ ρ ≤ 0, aTmx− dm ≥ 0

}
,

where Q = AT0A0−amaTm, h = AT0 d0−amdm, and ρ = dT0 d0−d2
m. Also note that Q ∈ Rn×n is

symmetric with at most one negative eigenvalue. Using known classifications of sets described

by a quadratic inequality with at most one negative eigenvalue (e.g. see Table 2.1 and the

reasoning after the proof of Lemma 2.1 in [15]), we have that all conic quadratic sets of the

form C correspond to the following list:
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1. A full dimensional paraboloid,

2. a full dimensional ellipsoid (or a single point),

3. a full dimensional second-order cone,

4. one side of a full dimensional hyperboloid of two sheets,

5. a cylinder generated by a lower-dimensional version of one of the previous sets, or

6. an invertible affine transformation of one of the previous sets.

We first consider split cuts for conic quadratic sets with simple structures that can be

obtained as direct corollaries of Propositions 3, 5, and 6. We then consider t-inclusive and

k-branch split cuts for conic quadratic sets that require ad-hoc proofs based on Proposition 1.

As expected, we see that split cut formulas are significantly simpler than those for t-inclusive

and k-branch split cuts. However, in either case, it is crucial to exploit the symmetry of the

Euclidean norm through the following standard lemma.

Lemma 2. For v ∈ Rn, ‖x‖2
2 = ‖Pvx‖2

2 + ‖P⊥v x‖2
2.

To give formulas for split cuts for all the sets 1–6, it suffices to consider cases 1–4. With

these, we can construct split cut formulas for cylinders using the following lemma.

Lemma 3. Let B ⊆ Rn be a closed convex set of the form B0 + L where L is a linear

subspace, and let F ⊆ Rn be a split. If π ∈ L⊥ and conv (B0 \ int (F )) = B0 ∩ C, then

conv (B \ int (F )) = (B0 ∩ C) + L. If π /∈ L⊥, then conv (B \ int (F )) = B.

Proof. We first prove the second case π /∈ L⊥. The left to right containment follows from

B \ int (F ) ⊆ B and convexity of B. To show the right to left containment, let x̄ ∈ B such

that πT x̄ ∈ (π0, π1) and u ∈ L. Note that π /∈ L⊥ implies πTu 6= 0. Let xi := x̄ + λiu

for i ∈ {0, 1}, where λi = πi−πT x̄
πTu

, and let β ∈ (0, 1) be such that πT x̄ = βπ0 + (1− β) π1.

Because u ∈ L and since πTxi = πi, we have xi ∈ B \ int (F ) for i ∈ {0, 1}. The results then

follows by noting that x̄ = βx0 + (1− β)x1.

We prove the first case by showing that

conv (B \ int (F )) = conv ((B0 + L) \ int (F )) (3.22)

= conv (B0 \ int (F )) + L (3.23)

= (B0 ∩ C) + L. (3.24)
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Note that (3.22) and (3.24) follow from the assumptions. To show the left to right contain-

ment in (3.23), let x̄ ∈ conv ((B0 + L) \ int (F )). There exist yi ∈ B0, ui ∈ L for i ∈ {0, 1},

and β ∈ [0, 1] such that for xi := yi + ui, we have xi /∈ int (F ) and x̄ = βx0 + (1− β)x1.

Note that π ∈ L⊥ and xi /∈ int (F ) imply yi /∈ int (F ) for i ∈ {0, 1}. The result then follows

from noting that βy0 + (1− β) y1 ∈ conv (B0 \ int (F )) and βu0 + (1− β)u1 ∈ L.

To show the right to left containment in (3.23), let x̄ ∈ conv (B0 \ int (F )) + L. There

exist u ∈ L, yi ∈ B0 \ int (F ) for i ∈ {0, 1}, and β ∈ [0, 1] such that x̄ = βy0 + (1− β) y1 +u.

If β ∈ {0, 1}, the result follows by noting that π ∈ L⊥ and y0, y1 /∈ int (F ) imply x̄ /∈ int (F ).

Assume β ∈ (0, 1) and let x0 := y0 + u
2β

and x1 := y1 + u
2(1−β)

. The result then follows by

noting that xi ∈ B0 + L \ int (F ) for i ∈ {0, 1} and x̄ = βx0 + (1− β)x1.

Finaly, we can construct split cut formulas for affine transformations by using the fol-

lowing straightforward lemma.

Lemma 4. Let B ⊆ Rn be a closed convex set, F ⊆ Rn be a split, and M : Rn → Rn be

an invertible affine mapping. If conv (B \ int (F )) = B ∩ C for a closed convex set C ⊆ Rn,

then

conv (M (B) \ int (M (F ))) = M (B) ∩M (C) .

We note that classification 1–6 is not strictly necessary for constructing split cuts for

quadratic sets. In particular, an algorithm introduced in [94] can be used to obtain an SDP

representation of split cuts for any quadratic set (convex or not) without a priori classifying

its specific geometry as in 1–6. However, the procedure in [94] requires the execution of a

numerical algorithm to construct split cuts and does not provide closed form expressions

of the cuts. Furthermore, such an algorithm requires elaborate algebraic tools specific to

quadratic sets that go far beyond a basic property such as that described by Lemma 2. Hence,

the objective of the following subsection is not to present the shortest possible constructions

of all quadratic split cuts, but to (i) present simple proofs tailored to the specific geometries

in classification 1–6 and (ii) present a case study on the power and limitations of the general

interpolation approach to split cuts.
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3.3.1 Split Cuts for Conic Quadratic Sets

Split cuts can be obtained for ellipsoids when interpreted as lower level sets of quadratic or

conic functions (i.e., based on the Euclidean norm). Similarly, split cuts can also be charac-

terized for paraboloids and cones that, when interpreted as epigraphs of quadratic or conic

functions, are such that t is unaffected by the split disjunctions. We note that the ellipsoid

case has already been proven on [14, 37], and that the conic case generalizes Proposition 2 in

[9] which considers elementary disjunctions for the standard three dimensional second-order

cone. Through the rest of the section, we let A ∈ Rn×n be an invertible matrix and c ∈ Rn.

Corollary 4 (Split cuts for paraboloids). Let F be a split, Q := {(x, t) ∈ Rn+1 : ‖A (x− c) ‖2
2 ≤

t}, a = π0+π1−2πT c
‖A−T π‖22

, b = −(π1−πT c)(π0−πT c)
‖A−T π‖22

, and Â = P⊥A−T πA. Then Q = Q ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥Â (x− c)
∥∥∥

2

2
+ aπT (x− c) + b ≤ t

}
.

Proof. Note that for the affine mappings M,M−1 given by M(x, t) := (A (x− c) , t) and

M−1(x, t) := (A−1x + c, t), we have Q = M−1 (Q0) and Q0 = M (Q), where Q0 :=
{

(x, t) ∈ Rn+1 : ‖x‖2
2 ≤ t

}
. Using Lemma 4, we prove the corollary by finding a closed form

expression for Q0 where the forbidden set is the split M (F ) associated with π̃ = A−Tπ,

π̃0 = π0 − πT c, and π̃1 = π1 − πT c. By Lemma 2, we have Q0 = {(x, t) ∈ Rn+1 :

‖P⊥π̃ x‖2
2 + (π̃T x)2

‖π̃‖22
≤ t}. The result then follows from Proposition 3.

Corollary 5 (Split cuts for cones). Let F be a split, K := {(x, t) ∈ Rn+1 : ‖A (x− c) ‖2 ≤ t},

a = π1+π0−2πT c
π1−π0 , b =

−2(π1−πT c)(π0−πT c)
π1−π0 , Â =

(
P⊥A−T π + aPA−T π

)
A, ĉ =

(
b/
∥∥A−Tπ

∥∥2

2

)
A−Tπ.

If πT c /∈ (π0, π1), then K = K. Otherwise, K = K ∩ C, where

C =
{

(x, t) ∈ Rn+1 :
∥∥∥Â (x− c) + ĉ

∥∥∥
2
≤ t
}
. (3.25)

Proof. Note that for the affine mappings M,M−1 defined in the proof of Corollary 4 we have

K = M−1 (K0) and K0 = M (K), where K0 := {(x, t) ∈ Rn+1 : ‖x‖2 ≤ t}. Using Lemma

4, we prove the corollary by finding a closed form expression for K0 where the forbidden

set is the split M (F ) defined in the proof of Corollary 4. By Lemma 2, we have K0 ={
(x, t) ∈ Rn+1 :

(
‖P⊥π̃ x‖2

2 + (π̃T x)2

‖π̃‖22

)1/2

≤ t

}
. The result then follows from Corollary 1.
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A particularly interesting application of Corollaries 4 and 13 is the Closest Vector Prob-

lem [71], which can alternatively be written as

min
{
‖A (x− c)‖2

2 : x ∈ Zn
}

or min {‖A (x− c)‖2 : x ∈ Zn} .

In turn, these problems can be reformulated as

min {t : (x, t) ∈ Q, x ∈ Zn} and min {t : (x, t) ∈ K, x ∈ Zn} ,

respectively. We can then use Corollaries 4 and 13 with lattice free splits to construct split

cuts that could improve the solution speed of these problems. We are currently studying the

effectiveness of such cuts.

We can also obtain as a corollary the following result from [14, 37].

Corollary 6 (Split cuts for ellipsoids). Let F be a split, r ∈ R+,

E := {x ∈ Rn : ‖A (x− c) ‖2 ≤ r} ,

f(u) := −
√
r2 − u2

‖A−T π‖22
, a = f(π0−πT c)−f(π1−πT c)

π1−π0 , and b = (π1−πT c)f(π0−πT c)−(π0−πT c)f(π1−πT c)
π1−π0 .

If πT c− r‖A−Tπ‖2 ≤ π0 < π1 ≤ πT c+ r‖A−Tπ‖2, then E = E ∩ C, where

C =
{
x ∈ Rn : ‖P⊥A−T πA (x− c) ‖2 ≤ aπT (x− c)− b

}
, (3.26)

if π0 < πT c− r‖A−Tπ‖2 < π1 ≤ πT c+ r‖A−Tπ‖2, then

E =
{
x ∈ E : πTx ≥ π1

}
, (3.27)

if πT c− r‖A−Tπ‖2 ≤ π0 < πT c+ r‖A−Tπ‖2 < π1, then

E =
{
x ∈ E : πTx ≤ π0

}
, (3.28)

if πT c− r‖A−Tπ‖2 ≥ π1 or π0 ≥ πT c+ r‖A−Tπ‖2, then E = E, and otherwise, E = ∅.
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Proof. All the cases except the first one can be shown by studying when the ellipsoid is

partially or completely contained in one side of the disjunction, or when it is strictly contained

between the disjunction.

We now prove the first case. Note that for the affine mappings M,M−1 given by

M(x) := A (x− c) and M−1(x) := A−1x + c, we have E = M−1 (E0) and E0 = M (E),

where E0 := {(x, t) ∈ Rn+1 : ‖x‖2 ≤ r}. Using Lemma 4, we prove the corollary by find-

ing a closed form expression for E0 where the forbidden set is the split M (F ) associated

with π̃ = A−Tπ, π̃0 = π0 − πT c, and π̃1 = π1 − πT c. By Lemma 2, we have E0 ={
x ∈ Rn : ‖P⊥π̃ x‖2 −

√
r2 − (π̃T x)2

‖π̃‖22
≤ 0
}

. The result then follows from Proposition 6.

We note that Corollary 6 shows there are two types of split cuts for E. In (3.26), we

obtain a nonlinear split cut that we would expect from Proposition 6, while in (3.27)–(3.28)

we obtain simple linear split cuts. These linear inequalities are actually Chvátal-Gomory

(CG) cuts for E [29, 35, 36, 43, 47], but they are still sufficient to describe E together with

the original constraint. We hence follow the same MILP convention used in [37] and still

consider them split cuts. Note that we can also consider “CG split cuts” in Proposition 6 if

we include additional structure on the functions such as g being non-negative. Similarly, we

can also do the case analysis for CG cuts in Corollary 3.

Proposition 8 (Split cuts for hyperboloids). Let F be a split, l ∈ R \ {0},

H :=

{
(x, t) ∈ Rn+1 :

√
‖x‖2

2 + l2 ≤ t

}
,

a =

√
l2‖π‖22+π2

1−
√
l2‖π‖22+π2

0

π1−π0 , and b =
π1
√
l2‖π‖22+π2

0−π0
√
l2‖π‖22+π2

1

π1−π0 . Then H = H ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥∥∥P
⊥
π x+

aπTx+ b

‖π‖2
2

π

∥∥∥∥∥
2

≤ t

}
.

Proof. Direct from Proposition 5 by noting that

H = {(x, t) ∈ Rn+1 :

√
‖P⊥π x‖

2
2 +

(πTx)2

‖π‖2
2

+ l2 ≤ t}.
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3.3.2 t-inclusive Split Cuts for Conic Quadratic Sets

The split cut formulas in this section are significantly more complicated. For this reason, we

only present them for standard sets (i.e., with A = I and c = 0). Formulas for the general

case may be obtained by combining the formulas for the standard case with Lemma 4.

Proposition 9. (t-inclusive split cuts for paraboloids) Let F be a t-inclusive split and

Q0 := {(x, t) ∈ Rn+1 : ‖x‖2
2 ≤ t}.

If π̂ > 0 and π1 ≤ −‖π‖22
4π̂

, or if π̂ < 0 and
−‖π‖22

4π̂
≤ π0, then

Q0 = Q0,

if π̂ > 0 and π0 <
−‖π‖22

4π̂
< π1, then

Q0 =
{

(x, t) ∈ Q0 : πTx+ π̂t ≥ π1

}
,

if π̂ < 0 and π0 <
−‖π‖22

4π̂
< π1, then

Q0 =
{

(x, t) ∈ Q0 : πTx+ π̂t ≤ π0

}
,

and if π̂ > 0 and
−‖π‖22

4π̂
≤ π0, or if π̂ < 0 and π1 ≤ −‖π‖22

4π̂
, then Q0 = Q0 ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥∥∥P
⊥
π x+

πTx+ b

‖π‖2
2

π

∥∥∥∥∥
2

≤ cπTx+ dt+ e

}
,

for

b =
‖π‖2

2

2π̂
, c =

f√
2 (π1 − π0) π̂

, d = cπ̂, e =
‖π‖2

2 +
√
‖π‖2

2 + 4π0π̂
√
‖π‖2

2 + 4π1π̂

4
√

2 (π1 − π0) π̂2
f,

f =

√
‖π‖2

2 + 2 (π0 + π1) π̂ −
√
‖π‖2

2 + 4π0π̂

√
‖π‖2

2 + 4π1π̂,

where we use the convention 0/0 := 0 for the case ‖π‖2 = 0.
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Proof. We first prove the last case using Proposition 1. Using Lemma 2, we have

C =

{
(x, t) ∈ Rn+1 :

∥∥P⊥π x
∥∥2

2
≤ (cπTx+ dt+ e)2 − (πTx+ b)2

‖π‖2
2

, cπTx+ dt+ e ≥ 0

}
.

(3.29)

Now consider the following two cases.

Case 1. Assume that ‖π‖2 6= 0. To prove the right to left containment in (3.2a), let

(x̄, t̄) ∈ C ∩ bd (F ). We need to show that

(cπT x̄+ dt̄+ e)2 − (πT x̄+ b)2

‖π‖2
2

= t̄− (πT x̄)2

‖π‖2
2

. (3.30)

Replacing t̄ with (πi − πT x̄)/π̂ for i ∈ {0, 1}, one can check that (3.30) follows from the

definition of b, c, d, and e. To prove the left to right containment in (3.2a), let (x̄, t̄) ∈

Q0∩bd (F ). We only need to show that cπT x̄+dt̄+e ≥ 0. Since d = cπ̂, we can equivalently

show that c(πT x̄+ π̂t̄) ≥ −e, which after a few simplifications, can be written as

π̂(πT x̄+ π̂t̄) ≥ −
(
‖π‖2

2 +

√
‖π‖2

2 + 4π0π̂

√
‖π‖2

2 + 4π1π̂

)
/4. (3.31)

(3.31) follows from noting that min{π̂(πTx+ π̂t) : (x, t) ∈ Q0} = −‖π‖
2
2

4
.

To show (3.2b), let (x̄, t̄) ∈ Q0 \ int (F ). Proving cπT x̄+ dt̄+ e ≥ 0 is similar as before.

We only need to show that (x̄, t̄) satisfies the quadratic inequality in (5.2), which we prove

by showing that

(
(cπT x̄+ dt̄+ e)2 − (πT x̄+ b)2

‖π‖2
2

)
−

(
t̄− (πT x̄)2

‖π‖2
2

)
≥ 0. (3.32)

One can check that proving (3.32) is equivalent to showing that

f 2(πT x̄+ π̂t̄− π0)(πT x̄+ π̂t̄− π1)

2 (π1 − π0)2 π̂2
≥ 0,

which follows from πT x̄ + π̂t̄ /∈ (π0, π1). Note that C is a conic set with apex (x∗, t∗) =

( −b‖π‖22
π, bc−e

d
). Furthermore,

(π, π̂)T (x∗, t∗) = −e/c =
−‖π‖2

2

4π̂
−

√
‖π‖2

2 + 4π0π̂
√
‖π‖2

2 + 4π1π̂

4π̂
.
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Hence, if π̂ < 0, then (π, π̂)T (x∗, t∗) ≥ −‖π‖22
4π̂
≥ π1 and if π̂ > 0, then (π, π̂)T (x∗, t∗) ≤

−‖π‖22
4π̂
≤ π0. Friends condition (3.3) then follows from Proposition 4.

Case 2. If ‖π‖2 = 0, C is simplified to C =
{

(x, t) ∈ Rn+1 : ‖x‖2
2 ≤ (dt+ e)2 , dt+ e ≥ 0

}
.

Interpolation condition (3.2a) follows from noting that (dt̄+ b)2 = t̄. Non-negativity of

d, e, and t also imply dt̄+ e ≥ 0. Proving (3.2b) is equivalent to showing that

f 2 (π̂t̄− π0) (π̂t̄− π1)

2 (π1 − π0)2 π̂2
≥ 0,

which follows from π̂t̄ /∈ (π0, π1). Note that C is a conic set with apex (x∗, t∗) =
(
0, −e

d

)
.

Furthermore, (π, π̂)T (x∗, t∗) = −e/c. As shown in Case 1, we have (π, π̂)T (x∗, t∗) /∈ (π0, π1).

Friends condition (3.3) then follows from Proposition 4.

To prove the other cases, let S0 := {(x, t) ∈ Q0 : πTx+π̂t ≤ π0} and S1 := {(x, t) ∈ Q0 :

πTx+ π̂t ≥ π1}. Consider the first case where π̂ > 0 and π1 ≤ −‖π‖22
4π̂

. We prove the result by

showing that S0 = ∅ and S1 = Q0. If ‖π‖2 = 0, the result follows from non-negativity of t.

Now assume that ‖π‖2 6= 0. We prove S0 = ∅ by showing that (πTx)2/ ‖π‖2
2 > (π0− πTx)/π̂

for x ∈ Rn. This follows from noting that for y ∈ R, the quadratic equation y2

‖π‖22
= π0−y

π̂
does

not have any solution. To prove S1 = Q0, we show that πTx + π̂t ≥ π1 is a valid inequality

for Q0. This comes from the fact that the quadratic equation y2

‖π‖22
= π1−y

π̂
has at most a

single solution and we thus have (π1−πTx)/π̂ ≤ (πTx)2/ ‖π‖2
2 ≤ t for x ∈ Rn. The proof for

the case π̂ < 0 and
−‖π‖22

4π̂
≤ π0 is analogous and follows by noting that S0 = Q0 and S1 = ∅.

We prove the second case where π̂ > 0 and π0 <
−‖π‖22

4π̂
< π1 by showing that S0 = ∅, S1 (

Q0, and S1 6= ∅. Proving S0 = ∅ is analogous to the previous case. We have S1 ( Q0 since

(x̄, t̄) = (−π
2π̂
,
‖π‖22
4π̂2 ) ∈ Q0, but (x̄, t̄) /∈ S1. To prove S1 6= ∅, one can check that for any x̄ ∈ Rn

and t̄ = Max{‖x̄‖2
2 ,

π1−πT x̄
π̂
}, (x̄, t̄) ∈ S1. The proof of the third case is analogous and follows

by noting that S1 = ∅, S0 ( Q0, and S0 6= ∅.

Proposition 10. (t-inclusive split cuts for cones) Let F be a t-inclusive split and

K0 := {(x, t) ∈ Rn+1 : ‖x‖2 ≤ t}.

If 0 /∈ (π0, π1), then K0 = K0. Otherwise, if 0 ∈ (π0, π1) and π̂ ≤ −‖π‖2, then

K0 =
{

(x, t) ∈ K0 : πTx+ π̂t ≤ π0

}
,
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if 0 ∈ (π0, π1) and π̂ ≥ ‖π‖2, then

K0 =
{

(x, t) ∈ K0 : πTx+ π̂t ≥ π1

}
,

and if 0 ∈ (π0, π1) and π̂ ∈ (−‖π‖2 , ‖π‖2), then K0 = K0 ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥∥∥P
⊥
π x+

aπTx+ b

‖π‖2
2

π

∥∥∥∥∥
2

≤ cπTx+ dt+ e

}
,

where

a =
(π0 + π1)

(
‖π‖2

2 − π̂2
)

f
, b = −2π0π1 ‖π‖2

2

f
,

c = − 4π0π1π̂

(π1 − π0) f
, d =

f

(π1 − π0)
(
‖π‖2

2 − π̂2
) ,

e =
2π0π1 (π0 + π1) π̂

(π1 − π0) f
, f =

√(
‖π‖2

2 − π̂2
) (
‖π‖2

2 (π1 − π0)2 − π̂2 (π0 + π1)2).

Proof. We first prove the last case using Proposition 1. Note that π̂ 6= 0 and π̂ ∈ (−‖π‖2 , ‖π‖2)

imply ‖π‖2 6= 0. Using Lemma 2, we have

C =

{
(x, t) ∈ Rn+1 :

∥∥P⊥π x
∥∥2

2
≤ (cπTx+ dt+ e)2 − (aπTx+ b)2

‖π‖2
2

, cπTx+ dt+ e ≥ 0

}
.

(3.33)

Observe that d > 0. Similarly to the proof of Proposition 9, one can show that interpolation

condition (3.2) holds by the definition of a, b, c, d, and e. If |π0| = |π1|, then u = (π,
−c‖π‖22

d
) ∈

lin (C) and friends condition (3.3) follows from Proposition 2. If |π0| 6= |π1|, then C is a conic

set with apex (x∗, t∗) = ( −b
a‖π‖22

π, bc−ae
ad

). Furthermore, (π, π̂)T (x∗, t∗) = 2π0π1
π0+π1

. If π0 + π1 < 0,

then we have 2π0π1
π0+π1

≥ π1, and if π0 + π1 > 0, then we have 2π0π1
π0+π1

≤ π0. Friends condition

(3.3) then follows from Proposition 4.

To prove the first case 0 /∈ (π0, π1), we only need to show that friends condition (3.3)

holds. This follows from Proposition 4 by noting that K0 is a conic set whose apex is the

origin.

To prove the other cases, let S0 := {(x, t) ∈ K0 : πTx + π̂t ≤ π0} and S1 := {(x, t) ∈

K0 : πTx + π̂t ≥ π1}. Consider the second case 0 ∈ (π0, π1) and π̂ ≤ −‖π‖2. We prove

the result by showing that S1 = ∅, S0 ( K0, and S0 6= ∅. If ‖π‖2 = 0, the result follows

from non-negativity of t. Now assume that ‖π‖2 6= 0. We prove S1 = ∅ by showing that
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(πTx)2/ ‖π‖2
2 > (π1 − πTx)2/π̂2. Note that non-negativity of t, π̂ < 0, and πTx + π̂t ≥ π1

imply πTx ≥ π1 > 0. One can see that −πTx < π1 − πTx < πTx, where the first inequality

comes from the fact that π1 > 0, and the second inequality follows from π1 ≤ πTx and

−πTx < 0. Thus, (πTx)2 > (π1− πTx)2 and the result follows by noting that 1
‖π‖22
≥ 1

π̂2 . We

have S0 ( K0 since (x̄, t̄) = (0n, 0) ∈ K0, but (x̄, t̄) /∈ S0. To prove S0 6= ∅, one can check

that for any x̄ ∈ Rn and t̄ = Max{‖x̄‖2 ,
π0−πT x̄

π̂
}, (x̄, t̄) ∈ S0. The proof of the third case

0 ∈ (π0, π1) and π̂ ≥ ‖π‖2 is analogous and follows by noting that S0 = ∅, S1 ( K0, and

S1 6= ∅.

With regards to the general interpolation forms of the obtained split cuts in Sections

4.1 and 4.2, we note that these fall into two categories. The first category corresponds to

the case in which the intersection of the boundary of the split and the base set is bounded

such as when the base set is an ellipsoid. In such a case, the obtained split cuts are always

an ellipsoidal cylinder or a conic set. The second category corresponds to the case in which

the intersection of the boundary of the split and the base set is unbounded. In such a case,

the obtained split cut is of the same form as the base set. For instance, split cuts for conic

sets or sections of conic sets are conic. A nice illustration of this dichotomy is the case of

paraboloids, where t-inclusive splits have bounded intersections and yield conic cuts, while

splits that are not t-inclusive have unbounded intersections and yield parabolic cuts.

Finally, we note that the only formulas that we did not explicitly characterize here are

t-inclusive split cuts for affine transformations of paraboloids and cones, split cuts for affine

transformation of hyperboloids, and t-inclusive split cuts for hyperboloids and their affine

transformations. All such formulas can be obtained using Lemma 4, except t-inclusive split

cuts for hyperboloids. We can still obtain formulas for t-inclusive split cuts for hyperboloids

using the interpolation technique; however, the resulting formulas are significantly more

involved and no longer fit the “simple” formulas theme of the paper. However, the analysis

so far is still a significant generalization of what is known for split cuts for conic quadratic

sets. In fact, the most general alternative that we are aware of is the concurrently developed

technique in [6], which considers conic sets of the form {x ∈ Rn : Ax− d ∈ Lm} for a full

rank matrix A, which we do not require. When A does not have full row rank, it is possible to
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consider a full row rank submatrix of A and use this relaxation to generate the cuts from [6].

However, as noted in Example 1 of [6], this approach fails to give split cuts for hyperboloids

which we can obtain from Proposition 8 and Lemma 4. Nevertheless, one advantage of

the approach in [6] is the use of a more systematic procedure to obtain the interpolation

coefficients, which can be particularly useful when constructing t-inclusive split cuts. For

instance, in Proposition 10 we obtain the interpolation coefficients through the heuristic

procedure described in Section 3.2.3.1, which required guessing the interpolation form of

the split cut and was not guaranteed to be successful even if this guess was accurate. In

contrast, the approach in [6] only assumes that the split cut is a polynomial inequality and

calculates the coefficients of the associated polynomial through a systematic use of techniques

from algebraic geometry. The conversion of this polynomial inequality to a conic quadratic

inequality is an ad-hoc procedure that might be limited to quadratic cones. However, the

construction of the initial polynomial inequality seems to have a higher chance of being

extended to higher order cones or more general semi-algebraic sets than the approach in

Section 3.2.3.1. In contrast, when we consider split disjunctions that are not t-inclusive, the

approach from Section 3.2.1.2 has an advantage as it is not restricted to semi-algebraic sets.

3.3.3 k-branch Split Cuts for Conic Quadratic Sets

Similarly to Corollary 4, we can use the following direct generalization of Lemma 2 to get

formulas for several families of k-branch split cuts for convex quadratic sets.

Lemma 5. Let {πi}ki=1 ⊆ Rn \ {0n} be such that πi ⊥ πj for every i 6= j and P⊥Π :=

I −
∑k

i=1
πiπ

T
i

‖πi‖22
. Then for any v ∈ Rn we have ‖x‖2

2 =
∥∥P⊥Π x

∥∥2

2
+
∑k

i=1

(πTi x)
2

‖πi‖22
.

The following corollary generalizes the result of Corollary 4 to the case of k-branch split

cuts for paraboloids.

Corollary 7 (k-branch split cuts for paraboloids). Let

Q :=
{

(x, t) ∈ Rn+1 : ‖A (x− c) ‖2
2 ≤ t

}
.
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Also let F be a k-branch split such that A−Tπi ⊥ A−Tπj for every i 6= j, ai =
πi0+πi1−2πTi c

‖A−T πi‖22
and

bi = −(πi1−πTi c)(πi0−πTi c)
‖A−T πi‖22

for all i ∈ [k], and for every I ⊆ [k] let

hI(x) :=

∥∥∥∥∥

(
A−

∑

i∈I

A−Tπiπ
T
i

‖A−Tπi‖2
2

)
(x− c)

∥∥∥∥∥

2

2

+
∑

i∈I

aiπ
T
i (x− c) + bi.

Then Q = Q ∩ C, where C =
{

(x, t) ∈ Rn+1 : maxI⊆[k] hI(x) ≤ t
}

.

Proof. Note that for the affine mappings M,M−1 defined in the proof of Corollary 4 we have

Q = M−1 (Q0) and Q0 = M (Q), where Q0 :=
{

(x, t) ∈ Rn+1 : ‖x‖2
2 ≤ t

}
. Using Lemma 4,

we prove the corollary by finding a closed form expression for Q0 where the forbidden set is

a k-branch split M (F ) associated with π̃i = A−Tπi, π̃
i
0 = πi0 − πTi c, and π̃i1 = πi1 − πTi c for

i ∈ [k]. By Lemma 5, we have

Q0 =

{
(x, t) ∈ Rn+1 :

∥∥P⊥
Π̃
x
∥∥2

2
+

k∑

i=1

(
π̃Ti x

)2

‖π̃i‖2
2

≤ t

}
.

The result then follows from Proposition 7.

3.4 GENERAL INTERSECTION CUTS THROUGH AGGREGATION

In this section we consider the case in which the base sets are either epigraphs or lower level

sets of convex functions and the forbidden sets are hypographs or upper level sets of concave

functions. Our cut construction approach in this case is based on a simple aggregation

technique, which again can be more naturally explained for epigraphs of specially structured

functions. Following the structure of Section 3.2, we also begin by studying the epigraphical

sets and then consider the case of non-epigraphical sets. We end this section by illustrating

the power and limitations of the aggregation approach by considering intersection cuts for

quadratic sets.
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3.4.1 Intersection Cuts for Epigraphs

Let G, J : R × R → R be a convex and a concave function given by G(z, y) = z2 + 2y2

and J(z, y) = −(z − 1)2 + 1 − y2, and let B = epi (G) and F = hyp(J). For λ ∈ [0, 1],

let Wλ(z, y) = (1 − λ)G + λJ . As illustrated in Figure 4(a), for any λ ∈ [0, 1], we have

that Wλ(z, y) ≤ t is a binding valid cut for B. In Figure 4(a), the graph of G is given by

the thick black curve, graph of J by the thin blue curve, and valid aggregation cuts Wλ

for λ ∈ {1/4, 1/2, 3/4} by the red dotted, green dash-dotted, and brown dashed curves,

respectively. Figure 4(a) illustrates that, depending on the choice of λ, the inequality could

be non-convex, or it could be convex but not sufficient. It is clear from the figure that, in

this case, the correct choice of λ is 1/2 = arg max {λ ∈ [0, 1] : Wλ is convex}, which yields

the strongest convex cut from this class. Furthermore, as illustrated in Figure 4(b), we

have that for any
(
z, y, t

)
∈ epi(W1/2)∩ int (F ), we can find friends in epi

(
W1/2

)
∩bd (F ) by

following the slope of W1/2 similar to what we did in Section 3.2.1.1 for split cuts of separable

functions. We can then show that B = B ∩ epi
(
W1/2

)
. A similar construction can also be

obtained if we instead study conv ({(z, y, t) ∈ epi(G) : J(z, y) ≤ 0}).

z

t

(a) Various aggregations of G and J .

�
z, y, t

�

�
z1, y, t1

�

�
z2, y, t2

�

z

t

(b) Friends construction by following slope of
W1/2.

Figure 4: Cuts From Aggregation.
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Wλ and the convexity requirement on it are the basis of many techniques such as La-

grangian/SDP relaxations of quadratic programming problems [45, 77, 79, 80], the QCR

method for integer quadratic programming [20, 21], and an algorithm for constructing pro-

jected SDP representations of the convex hull of quadratic constraints introduced in [94]. It

is hence not surprising that the approach works in the quadratic case. However, as shown

in [94], even in the quadratic case the approach can fail to yield convex constraints or closed

form expressions. Furthermore, for general functions, Wλ can easily be non-convex for every

λ. Fortunately, as the following proposition shows, the aggregation approach can yield closed

form expressions for general intersection cuts for problems with special structures.

Proposition 11. Let gi : R → R be convex functions for each i ∈ [n], m,h ∈ Rn, r, q ∈ R,

and γ ∈ R+. Furthermore, let {ai}ni=1 ⊆ Rn be such that an 6= 0n and ai ⊥ aj for every

i 6= j, and {αi}ni=1 ⊆ R+ be such that 0 6= αn ≥ αi for all i. Let

G(x) =
n∑

i=1

gi
(
aTi x

)
+mTx+ r, J(x) = −

n∑

i=1

αigi
(
aTi x

)
− hTx− q,

B := epi(G), and F := {(x, t) ∈ Rn+1 : γt ≤ J(x)}. If (1 + γ/αn) > 0 and

lim
|s|→∞

−αngn
(
saTnan

)
− s

(
hTan + γ

(m− h/αn)T an
1 + γ/αn

)
= −∞, (3.34)

then

B = conv ({(x, t) ∈ epi(G) : J(x) ≤ γt}) = epi(G) ∩ epi(W ), (3.35)

where W (x) := G(x)+(1/αn)J(x)
1+γ/αn

=
∑n−1
i=1 (1−αi/αn)gi(aTi x)+(m−h/αn)T x+(r−q/αn)

(1+γ/αn)
.

Proof. The first equality in (3.35) is direct. For the second equality, we proceed as follows.

W is a non-negative linear combination of G and J that is also a convex function from which

it is easy to see that the left to right containment holds.

To show the right to left containment, let
(
x, t
)
∈ epi(G) ∩ epi(W ) be such that J (x) >

γt. Let k = (m−h/αn)T an
1+γ/αn

. Because of (3.34), there exists s1 > 0 and s2 < 0, for which

(xi, ti) =
(
x+ sian, t+ sik

)
for i = 1, 2 are such that J(xi) = γti. Furthermore, by design,

(xi, ti) ∈ epi(W ) for i = 1, 2 which implies G(xi) + J(xi)/αn ≤ (1 + γ/αn) ti and hence

G(xi) ≤ ti. The result then follows by noting that
(
x, t
)
∈ conv ({(x1, t1) , (x2, t2)}).
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3.4.2 Intersection Cuts for Level Sets

We can extend the aggregation approach to certain non-epigraphical sets through the fol-

lowing proposition whose proof is a direct analog to that of Proposition 11.

Proposition 12. Let G(x) be as defined in Proposition 11 and

J(x) = −
n∑

i=1

αigi
(
aTi x

)
− αnmTx− q,

where q ∈ R. Also let B := {x ∈ Rn : G(x) ≤ 0}, and F := {x ∈ Rn : J(x) ≥ 0}. If

lim
|s|→∞

−αngn
(
saTnan

)
− sαnmTan = −∞, (3.36)

then

B = conv ({x ∈ Rn : G(x) ≤ 0, J(x) ≤ 0}) = {x ∈ Rn : G(x) ≤ 0, W (x) ≤ 0} ,

(3.37)

where W (x) := G(x) + (1/αn)J(x) =
∑n−1

i=1 (1− αi/αn) gi(a
T
i x) + (r − q/αn).

The special structure in both of these propositions is extremely simple, but thanks to the

symmetry of the quadratic constraints, they can be used to get formulas for several quadratic

intersection cuts.

3.4.3 Intersection Cuts for Quadratic Sets

Through the rest of the section, we let A ∈ Rn×n be an invertible matrix and c ∈ Rn.

Corollary 8. Let D ∈ Rn×n, d ∈ Rn, q ∈ R, γ ∈ R+, Q := {(x, t) ∈ Rn+1 : ‖A (x− c) ‖2
2 ≤ t},

and F :=
{

(x, t) ∈ Rn+1 : γt+ q ≤ −‖D (x− d)‖2
2

}
. Then

Q =
{

(x, t) ∈ Rn+1 : ‖A (x− c)‖2
2 ≤ t, xTNx+ aTx+ f ≤ (αn + γ)t

}
, (3.38)

for N = ATRA, a = −2AT e − 2ATRAc, f = cTATRAc + 2
(
AT e

)T
c − w − q, R =

∑n−1
i=1 (αn − αi) vivTi , e =

∑n
i=1 αiv

T
i A(c− d)vi, w =

∑n
i=1 αi

(
vTi A(c− d)

)2
, where (vi)

n
i=1 ⊆

Rn and (αi)
n
i=1 ⊆ R correspond to an eigenvalue decomposition of A−TDTDA−1 so that

A−TDTDA−1 =
n∑

i=1

αiviv
T
i ,

‖vi‖2 = 1 for all i ∈ [n], vTi vj = 0 for all i 6= j, and αn ≥ αi for all i ∈ [n].
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Proof. Let y = A(x− c) and T := Q \ int (F ). Using orthonormality of the vectors vi, T can

be written on the y variables as T = {(y, t) ∈ Rn+1 :
∑n

i=1(vTi y)2 ≤ t, −
∑n

i=1 αi(v
T
i y)2 −

2eTy − w − q ≤ γt}. The result then follows by using Proposition 11.

An interesting case of Corollary 8 arises when γ = 0. In this case, the base set B

corresponds to a paraboloid and the forbidden set F corresponds to an ellipsoidal cylinder. In

such a case, the minimization of t over (x, t) ∈ B\int (F ) is equivalent to the minimization of a

convex quadratic function outside an ellipsoid, which corresponds to the simplest indefinite

version of the well known trust region problem. While this is a non-convex optimization

problem, it can be solved in polynomial time through Lagrangian/SDP approaches [79].

It is known that optimal dual multipliers of an SDP relaxation of a non-convex quadratic

programming problem such as the trust region problem can be used to construct a finite

convex quadratic optimization problem with the same optimal value as the original non-

convex problem (e.g. [46]). Furthermore, the complete feasible region induced by an SDP

relaxation on the original space (in this case (x, t)) can be characterized by an infinite number

of convex quadratic constraints [60]. This characterization has recently been simplified for

the feasible region of the trust region problem in [18, 19]. This work gives a semi-infinite

characterization of T for γ = 0 composed by the convex quadratic constraint ‖A (x− c)‖2
2 ≤ t

plus an infinite number of linear inequalities that can be separated in polynomial time.

Corollary 8 shows that these linear inequalities can be subsumed by a single convex quadratic

constraint, which gives another explanation for their polynomial time separability3. We note

that the techniques in [18, 19] are also adapted to other non-convex optimization problems

(both quadratic and non-quadratic). Hence, combining Corollary 8 with these techniques

could yield valid convex quadratic inequalities for more general non-convex problems.

3After our original submission, it was brought to our attention that reduction of the infinite number of
inequalities to a single quadratic inequality can also be directly deduced from the formulas for such linear
inequalities given in [18, 19].
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Another interesting application of Corollary 8 for the case γ = 0 is the Shortest Vector

Problem (SVP) [71] of the form min
{
‖Ax‖2

2 : x ∈ Zn \ {0n}
}

. Similar to the Closest Vector

Problems (CVP) studied in Section 3.3.1, we can transform this problem to min(x,t)∈Y ∩(Zn×R) t

for

Y =
{

(x, t) ∈ Rn+1 : ‖Ax‖2
2 ≤ t, x 6= 0n

}
,

so that we can strengthen the problem by generating valid inequalities for Y . Unfortunately,

as the following simple lemma shows, split cuts will not add any strength.

Lemma 6. Let Y0 := Y ∪ {(0n, 0)} and F be a split. For any A ∈ Rn×n,

t∗ = min
{
t : (x, t) ∈ ∩(π,π0)∈Zn×Z Y0

}
= 0.

Proof. Note that for all integer splits (π, π0) ∈ Zn × Z, (x̄, t̄) = (0n, 0) belongs to one side

of the disjunction. Thus, we have t∗ ≤ 0 and the result follows from non-negativity of the

norm.

However, we can easily construct near lattice free ellipsoids centered at 0n that do not

contain any point from Zn \ {0n} in their interior, and use them to get some bound im-

provement. For instance, in the trivial case of A = I, Corollary 8 applied to the single near

lattice free ellipsoid given by the unit ball {x ∈ Rn : ‖x‖2 ≤ 1} yields a cut that provides

the optimal value t∗ = 1. Similar ellipsoids could be used to generate strong valid con-

vex quadratic inequalities for non-trivial cases to significantly speed up the solution of SVP

problems. Studying the effectiveness of these cuts is left for future research.

We end this section with a brief discussion about the strength and possible extensions

of the aggregation technique. For this, we begin by presenting the following corollary of

Proposition 12 whose proof is analogous to that of Corollary 8.

Corollary 9. Let D ∈ Rn×n, r1, r2 ∈ R+, E2 := {x ∈ Rn : ‖A (x− c) ‖2
2 ≤ r1}, and

F :=
{
x ∈ Rn : ‖D (x− c)‖2

2 ≤ r2

}
.

Then

E2 =
{
x ∈ Rn : ‖A (x− c)‖2

2 ≤ r1, xTNx+ aTx+ f ≤ 0
}
, (3.39)
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for a = −2ATRAc, f = cTATRAc + r2/αn − r1, R =
∑n−1

i=1 (1− αi/αn) viv
T
i , where N

is defined in Corollary 8, and (vi)
n
i=1 ⊆ Rn and (αi)

n
i=1 ⊆ R correspond to an eigenvalue

decomposition of A−TDTDA−1 given in Corollary 8.

Corollary 9 shows how to construct the convex hull of the set obtained by removing

an ellipsoid or an ellipsoidal cylinder from an ellipsoid. However, this construction only

works if the ellipsoids have a common center c. The following example shows how the

construction can fail for non-common centers. In addition, the following example shows that

the aggregation technique does not subsume the interpolation technique and sheds some

light into the relationship between Corollaries 8 and 9 and SDP relaxations for quadratic

programming.

Example 1. Let B = {(z, y) ∈ R2 : z2 + y2 ≤ 4} and F be a split associated with the split

disjunction z ≤ 0 ∨ z ≥ 1. From Corollary 6, we have that

B := conv ({(z, y) ∈ B : z ≤ 0} ∪ {(z, y) ∈ B : z ≥ 1})

= {(z, y) ∈ B : |y| ≤ (
√

3− 2)z + 2}.

Now let G(z, y) = z2 + y2 − 4 and J(z, y) = −(z − 1/2)2 + 1/4. Since split disjunction

z ≤ 0 ∨ z ≥ 1 is equivalent to J(z, y) ≤ 0, we have B = conv (S), where

S =
{

(z, y) ∈ R2 : G(z, y) ≤ 0, J(z, y) ≤ 0
}
. (3.40)

Now consider Wλ = (1 − λ)G + λJ for λ ∈ [0, 1]. One can check that the split cut |y| ≤

(
√

3− 2)z + 2 obtained through Corollary 6, can be equivalently written as

y2 −
(

(
√

3− 2)z + 2
)2

≤ 0 (3.41a)

(
√

3− 2)z + 2 ≥ 0. (3.41b)

In turn, (3.41a) is equivalent to Wλ∗ ≤ 0 for λ∗ = 4
33

(
6−
√

3
)

because Wλ∗/
(

1
33

(
9 + 4

√
3
))

=

y2 −
(
(
√

3− 2)z + 2
)2

. By noting that (3.41b) holds for B, we conclude that

B = {(z, y) ∈ B : Wλ∗(z, y) ≤ 0} . (3.42)
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Unfortunately, Wλ∗ is not a convex function, so it does not fit in the aggregation framework

described in this section. In particular, Wλ∗ is an indefinite quadratic function so it cannot

be obtained from an SDP relaxation of S. Indeed, we can show that the SDP relaxation of S

strictly contains B. Finally, while we can obtain Wλ∗ through a procedure described in [94],

this procedure requires the execution of a numerical algorithm and does not give closed form

expressions such as those provided by Corollary 6.
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4.0 SPLIT CUTS AND EXTENDED FORMULATIONS FOR MIXED

INTEGER CONIC QUADRATIC PROGRAMMING

Split cuts, Gomory Mixed Integer (GMI) cuts, and Mixed Integer Rounding (MIR) cuts are

some of the most effective valid inequalities for Mixed Integer Linear Programming (MILP).

While they are known to be equivalent, each of them provide different advantages and in-

sights. In particular, the split cuts construction shows that they are a particular case of

disjunctive cuts [11] and hence have a straightforward extension to Mixed Integer Nonlin-

ear Programming (MINLP). There has been significant work on the computational use of

split cuts in MINLP [25, 28, 44, 59, 87] and a recent surge of theoretical developments

[5, 9, 14, 15, 37, 57, 70, 81]. In particular, several formulas for split cuts for Mixed Integer

Conic Quadratic Programming (MICQP) have been recently developed [5, 14, 15, 37, 70].

While the resulting cuts are strong nonlinear inequalities, adding these cuts to the continu-

ous relaxation of the MICQP can significantly increase its solution time, which could negate

the effectiveness of the cuts. One potential solution is to use linearizations of these cuts

[25, 59], but in such a case, there is a strong trade-off between their strength and the compu-

tational burden of generating them. An alternative approach was introduced by Atamtürk

and Narayanan [9] who use the polyhedral portion of a nonlinear extended formulation (i.e.,

a formulation with auxiliary variables) to construct an inexpensive, but potentially strong,

linear cut they denote the Conic MIR (CMIR). In this chapter we attempt to broaden our

understanding of split cuts for MINLP by providing a precise link between the CMIRs and

split cuts for quadratic sets. In particular, this link provides a possible solution to the trade-

off between the strength and computational burden resulting from adding the cuts to the

relaxation.
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In this chapter we study split cuts and extended formulations for MICQP and their

relation to Conic Mixed Integer Rounding (CMIR) cuts [9]. Our first contribution is to show

that the CMIR is a linear split cut for the polyhedral portion of the nonlinear extended

formulation from [9]. Through this equivalence, we can extend the most general version of

the CMIRs to the case of variables with unrestricted signs which was not previously possible.

Our second contribution is to give a precise relation between the CMIR and nonlinear split

cuts for quadratic sets. In particular, we show that, since the CMIR construction does not

consider any quadratic information, a single CMIR can be weaker than a single nonlinear

split cut. However, we also show that when families of split cuts and CMIRs are considered,

CMIRs can provide a significant advantage over nonlinear split cuts by exploiting their

common extended formulation. To the best of our knowledge, this is the first illustration

of how the power of an extended formulation can improve the strength of a cutting plane

procedure in MINLP.

The rest of this chapter is structured as follows. In Section 4.1 we introduce some notation

and describe previous results on CMIRs and split cuts for MINLP. In Section 4.2 we establish

the equivalency between CMIRs and linear split cuts for an extended formulation. Finally,

in Section 4.3 we compare the strength of nonlinear split cuts and CMIRs.

4.1 NOTATION AND PREVIOUS WORK

We use the notation introduced in Chapter 2. Moreover, for notational convenience, we

define split cuts while identifying a single set of integer variables x ∈ Zn and three sets of

continuous variables y ∈ Rp, t ∈ Rm, and t0 ∈ R.

Definition 4. Let K ⊆ Rn+p+m+1 be a closed convex set and (π, π0) ∈ Zn × Z. A split cut

for K is any valid inequality for

Kπ,π0 := conv
(
{(x, y, t, t0) ∈ K : πTx ≤ π0} ∪ {(x, y, t, t0) ∈ K : πTx ≥ π0 + 1}

)

for some (π, π0) ∈ Zn × Z. If π = ei for some i ∈ [n], we refer to (π, π0) as an elementary

disjunction and to the obtained cuts as elementary split cuts.
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Because Kπ,π0 ⊇ conv(K ∩ (Zn×Rp+m+1)), split cuts are valid inequalities for K ∩ (Zn×

Rp+m+1). For MILP, where K is a rational polyhedron, Kπ,π0 is also a polyhedron and we

only need linear split cuts. In contrast, if K is a general closed convex set, Kπ,π0 is only

closed and convex [37]. However, for special classes of K, we can characterize the nonlinear

split cuts that need to be added to K to obtain Kπ,π0 [5, 14, 15, 37, 57, 70]. For instance, the

following proposition from [70] characterizes split cuts for conic quadratic sets of the form

C :=
{

(x, t0) ∈ Rn+1 : ‖B (x− c)‖2 ≤ t0
}
, (4.1)

where C is in fact an affine transformation of the Quadratic cone {(x, t0) ∈ Rn+1 : ‖x‖2 ≤ t0}.

Proposition 13. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, (π, π0) ∈ Zn×Z, and C be

as defined in (4.1). If πT c /∈ (π0, π0 + 1), then Cπ,π0 = C. Otherwise, there exist B̄ ∈ Rn×n

and c̄ ∈ Rn such that

Cπ,π0 =
{

(x, t0) ∈ C :
∥∥B̄ (x− c) + c̄

∥∥
2
≤ t0

}
.

Proposition 13 shows that the single split cut for C is
∥∥B̄ (x− c) + c̄

∥∥
2
≤ t0 which is of

the same class as the inequality describing C. However, this inequality can be too expensive

computationally and it can be preferable to add linear cuts instead. One way to achieve this

is to add a finite number of linearizations of the nonlinear cuts. Such linearizations can be

algorithmically obtained even in the absence of nonlinear cut formulas. Two examples of

this are the algorithms introduced in [25, 59] to generate disjunctive inequalities for convex

MINLPs.

A completely different linearization scheme was introduced by Atamtürk and Narayanan

[9] for the general conic quadratic set given by

M+ :=
{

(x, y, t0) ∈ Rn+p+1 : ‖Ax+Gy − b‖2 ≤ t0, x ≥ 0, y ≥ 0
}
,

for rational matrices and vectors A ∈ Qm×n, G ∈ Qm×p, and b ∈ Qm. Instead of considering

valid inequalities for conv(M+∩ (Zn×Rp+1)) directly, using auxiliary variables t ∈ Rm, they

first introduce the nonlinear extended formulation of M+ given by

|Ax+Gy − b| ≤ t, x ≥ 0, y ≥ 0, ‖t‖2 ≤ t0, (4.2)
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so that, if P+ := {(x, y, t) ∈ Rn+p+m : |Ax+Gy − b| ≤ t, x ≥ 0, y ≥ 0} and

Proj(x,y,t0) is the projection onto the (x, y, t0) space, then M+ = Proj(x,y,t0)({(x, y, t, t0) ∈

Rn+p+m+1 : ‖t‖2 ≤ t0, (x, y, t)∈ P+}). They then exploit the fact that P+ is a polyhedron

to generate a class of valid inequalities they denote the Conic MIR (CMIR). The first version

of the CMIR is a simple but strong cut for a four variable and one constraint version of P+.

Proposition 14 (Simple CMIR). Let b0 ∈ R, f = b0 − bb0c,

S0 :=
{

(x, y, t0) ∈ R4 : |x+ y1 − y2 − b0| ≤ t0, y1, y2 ≥ 0
}
,

and let the simple CMIR be the inequality given by

(1− 2f)(x− bb0c) + f ≤ t0 + y1 + y2. (4.3)

The simple CMIR is valid for conv(S0 ∩ (Z× R2
+ × R+)) and furthermore

conv(S0 ∩ (Z× R2
+ × R+)) = {(x, y, t0) ∈ S0 : (4.3)} .

The simple CMIR is a linear inequality, but Atamtürk and Narayanan show that it can

induce nonlinear inequalities in the (x, t0) space through (4.2).

Lemma 7 (Nonlinear CMIR). Let T0 :=
{

(x, y, t0) ∈ R3 :
√

(x− b1)2 + y2 ≤ t0
}

, P0 :=

{(x, y, t) ∈ R4 : |x− b1| ≤ t1, |y| ≤ t2}, b1 ∈ R, and f = b1 − bb1c. Then the simple CMIR

for |x− b1| ≤ t1 is given by

(1− 2f)(x− bb1c) + f ≤ t1, (4.4)

conv(T0 ∩ (Z× R2)) = T
e1,bb1c
0 , and

T
e1,bb1c
0 =

{
(x, y, t0) ∈ T0 :

√
((1− 2f)(x− bb1c) + f)2 + y2 ≤ t0

}

= Proj(x,y,t0)

({
(x, y, t, t0) ∈ R5 : (x, y, t) ∈ P0, ‖t‖2 ≤ t0, (4.4)

})
.

Atamtürk and Narayanan follows the traditional linear MIR procedure [74, 75] to get

CMIRs for M+ and develop a super-additive version of the CMIR. Their most general version

results in the following family of cuts.
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Theorem 1 (Super-additive CMIR). Let a, v ∈ Rn, g, w ∈ Rp, h, u ∈ Rm, S+ := {(x, y, t) ∈

Rn+p+m :
∣∣aTx+ gTy + hT t− b0

∣∣ ≤ uT t+vTx+wTy, x, y, t ≥ 0} be a relaxation of P+ and

let ϕf (a) = −a+ 2(1− f)
(
bac+ (a−bac−f)+

1−f

)
. Then for any α 6= 0 and fα = b0/α− bb0/αc,

a valid cut for S+ and P+ is

∑n

j=1
ϕfα(aj/α)xj − ϕfα(b0/α) ≤

(
(u+ |h|)T t+ (w + |g|)T y + vTx

)
/|α|. (4.5)

We let a super-additive CMIR be any cut of this form obtained for some relaxation S+,

which can be constructed through various aggregation procedures. Finally, with regards to

its relation to the traditional linear MIR, Atamtürk and Narayanan use the aggregation to

show that every MIR is a CMIR. In Section 4.2 we show that these two cuts are in fact

equivalent.

4.2 CONIC MIR AND LINEAR SPLIT CUTS

We now show that CMIRs are equivalent to linear split cuts for P+, which are in turn

equivalent to traditional linear MIRs for P+. Through this equivalence, we extend all CMIRs

to the case of variables with unrestricted signs and show that such extension follows naturally

from the simple CMIR. To show the equivalence between linear split cuts and super-additive

conic MIRs, we need the following well-known characterization of split cuts for a polyhedron

T (e.g. [89]).

Proposition 15. Let T := {(x, y) ∈ Zn × Rp : Cx + Dy ≤ d} for C ∈ Rm×n, D ∈

Rm×p, d ∈ Rm, and let µ ∈ Rm be such that CTµ = π ∈ Zn and DTµ = 0 ∈ Rp. Also let

f = µTd− bµTdc. Then every split cut for T is of the form

|µ|T (Cx+Dy − d) + (1− 2f)
(
πTx−

⌊
µTd

⌋)
+ f ≤ 0.

Using this proposition, we show that every linear split cut for P+ can be obtained from

the simple CMIR and that every CMIR is a split cut.
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Theorem 2. Every non-dominated split cut for P+ is of the form

(1− 2f)
(
πTx− bµT bc

)
+ f ≤ |µ|T t+ |λ|T x+ |γ|T y, (4.6)

for some µ ∈ Rm, λ ∈ Rn, γ ∈ Rp, and π ∈ Zn such that ATµ − λ = π, GTµ − γ = 0, and

f = µT b−bµT bc. Furthermore, every super-additive CMIR for P+ is equivalent or dominated

by a split cut of this form.

Proof. We first prove formula (4.6) using Proposition 15. We have P+ = {(x, y, t) ∈ Rn+p+m :

Ĉx+ D̂


y
t


 ≤ d̂}, where

Ĉ =




A

−A

−I

0



, D̂ =




G −I

−G −I

0 0

−I 0



, and d̂ =




b

−b

0

0



.

Let µ̂ = (µT1 , µ
T
2 , λ

T , γT )T , where µ1, µ2 ∈ Rm, λ ∈ Rn, and γ ∈ Rp. D̂T µ̂ = 0 implies

GT (µ1 − µ2)− γ = 0 and µ1 = −µ2. Furthermore, ĈT µ̂ = π implies AT (µ1 − µ2)− λ = π.

Let µ := µ1 − µ2 and the result then follows from Proposition 15.

Let

C =




aT

2α
− vT

2|α|

−aT

2α
− vT

2|α|

−I

0

0




, D =




gT

2α
− wT

2|α|
hT

2α
− uT

2|α|

−gT

2α
− wT

2|α| −hT

2α
− uT

2|α|

0 0

−I 0

0 −I




and d =




b0
2α

− b0
2α

0

0

0




,

so that S+ =



(x, y, t) ∈ Rn+p+m : Cx+D


y
t


 ≤ d



 is a relaxation of P+. Now let fα =

b0/α−bb0/αc, µ = (1,−1, λT , gT/α, hT/α)T where λj = aj/α−baj/αc if aj/α−baj/αc < fα,

51



and λj = −(1− aj/α + baj/αc) if aj/α−baj/αc ≥ fα. Then, by Proposition 15, we obtain

the split cut for S+ given by

∑

j∈[n]:aj/α−baj/αc<fα

(
−aj
α

+ 2(1− fα)baj/αc
)
xj

+
∑

j∈[n]:aj/α−baj/αc≥fα

(
−aj
α

+ 2(1− fα)baj/αc+ 2 (aj/α− baj/αc − fα)
)
xj

−
n∑

j=1

vj
|α|

xj −
p∑

j=1

wj + |gj|
|α|

yj −
p∑

j=1

uj + |hj|
|α|

tj ≤ 2(1− fα)bb0/αc − b0/α.

The cut above is precisely super-additive CMIR (4.5). The result follows by noting that

since P+ ⊆ S+, then any split cut for S+ is also a split cut for P+.

From Theorem 2, we have that a natural extension of the super-additive CMIR to the

case of variables with unrestricted signs is to consider split cuts. While we can also con-

sider cases with partial non-negativity requirements, because of space limitations, we here

focus on the set with no non-negativity constraints given by M := {(x, y, t0) ∈ Rn+p+1 :

‖Ax+Gy − b‖2 ≤ t0}. As before, we let the polyhedral portion of the extended formulation

of M be

P :=
{

(x, y, t) ∈ Rn+p+m : |Ax+Gy − b| ≤ t
}
.

We can extend the CMIR to this setting through the following theorem.

Theorem 3. Every non-dominated split cut for P is of the form

(1− 2f)
(
πTx− bµT bc

)
+ f ≤ |µ|T t, (4.7)

for some µ ∈ Rm such that ATµ = π ∈ Zn, GTµ = 0, and f = µT b− bµT bc.

Proof. Follows from Proposition 15.

From (4.6) and (4.7), we can see that all split cuts for P+ and P can be obtained from

the simple CMIR (4.3) and some simple aggregation procedures.
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4.3 COMPARISON BETWEEN CUTS

Through Lemma 7, Atamtürk and Narayanan show that using an extended formulation

analog to (4.2), the effect of the simple CMIR on the (x, y, t0) space is equivalent to that

of a conic split cut from Proposition 13. We now study to what extent this holds for more

general settings. We first study containment relations between the sets obtained by adding

nonlinear split cuts and CMIRs to some specific regions bounded by a single conic quadratic

inequality. To consider more general sets, we then compare the strength of the bounds

generated by the two classes of cuts on some quadratic integer programming problems.

In both cases, it will be convenient to use the following direct corollary that specializes

Theorem 3 to the polyhedral portion of the analog of extended formulation (4.2) for C :=

{(x, t0) ∈ Rn+1 : ‖B (x− c)‖2 ≤ t0}, which is of the form

L :=
{

(x, t) ∈ R2n : |B(x− c)| ≤ t
}
. (4.8)

Corollary 10. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, (π, π0) ∈ Zn×Z, and L be as

defined in (4.8). If πT c /∈ (π0, π0 + 1), then Lπ,π0 = L. Otherwise

Lπ,π0 =
{

(x, t) ∈ L : (1− 2f)
(
πTx− bπT cc

)
+ f ≤ |µ|T t

}
,

where µ ∈ Rn is the unique solution to BTµ = π ∈ Zn and f = πT c− bπT cc.

4.3.1 Containment Relations

Because C = Proj(x,t0) ({(x, t, t0) ∈ R2n+1 : (x, t) ∈ L, ‖t‖2 ≤ t0}), it is natural to compare

the strength of the CMIRs (i.e., linear split cuts) for L and the nonlinear split cuts for C from

Proposition 13. As discussed, Lemma 7 shows that these cuts can sometimes be equivalent.

However, the following proposition shows that this is true only for very specific structures

and that a single nonlinear split cut for C is at least as strong as (and many times stronger

than) the CMIR associated to the same disjunction. There, we let

MIRπ,π0 :=
{

(x, t, t0) ∈ R2n+1 : (x, t) ∈ Lπ,π0 , ‖t‖2 ≤ t0
}
. (4.9)
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Proposition 16. Let B ∈ Rn×n be invertible, c ∈ Rn, (π, π0) ∈ Zn × Z, and MIRπ,π0 as

defined in (4.9). Then Cπ,π0 ⊆ Proj(x,t0) (MIRπ,π0). The containment holds as equality if

B = I and π = ei for some i ∈ [n], but can otherwise be strict even for n = 2.

Proof. We begin with proving the containment. Let (x̄, t̄0) ∈ Cπ,π0 . There exist α ∈ [0, 1],

(x0, t00) ∈ C, and (x1, t10) ∈ C such that (x̄, t̄0) = α(x0, t00) + (1− α) (x1, t10), πTx0 ≤ π0, and

πTx1 ≥ π0 + 1. Let t0 := |B(x0 − c)|, t1 := |B(x1 − c)|, and t̄ := αt0 + (1− α) t1. Then

(x̄, t̄0) = Proj(x,t0) ((x̄, t̄, t̄0)) and (x̄, t̄) ∈ Lπ,π0 . It then only remains to show that ‖t̄‖2 ≤ t̄0,

which follows from

‖t̄‖2 =
∥∥αt0 + (1− α) t1

∥∥
2
≤ α

∥∥t0
∥∥

2
+ (1− α)

∥∥t1
∥∥

2

= α
∥∥B(x0 − c)

∥∥
2

+ (1− α)
∥∥B(x1 − c)

∥∥
2
≤ αt00 + (1− α) t10 = t̄0. (4.10)

Now we show that the containment holds as equality for B = I and π = ei for some i ∈ [n].

Using Corollary 10, we have

MIRπ,π0 =
{

(x, t, t0) ∈ R2n+1 : |x− c| ≤ t, ‖t‖2 ≤ t0, (1− 2fi) (xi − bcic) + fi ≤ ti

}
,

where fi = ci−bcic. Furthermore, one can check that MIRπ,π0 does not change by replacing

(1− 2fi) (xi − bcic) +fi ≤ ti with |(1− 2fi) (xi − bcic) + fi| ≤ ti. Thus, Proj(x,t0) (MIRπ,π0)

is defined by the original constraint ‖x− c‖2 ≤ t0 and

√ ∑

j∈[n] : j 6=i

(xj − cj)2 + ((1− 2fi) (xi − bcic) + fi)
2 ≤ t0. (4.11)

Also using Corollary 5 in [70], the split cut associated to Cπ,π0 is

√ ∑

j∈[n] : j 6=i

(xj − cj)2 + (a (xi − ci) + b)2 ≤ t0, (4.12)

where a = bcic+ bcic+ 1− 2ci = 1− 2fi and b = −2 (bcic − ci) (bcic+ 1− ci) = 2fi (1− fi).

The result then follows by noting that (4.11) and (4.12) are equivalent.
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Finally, we show that the containment is strict for n = 2, B = I, c = (1/4, 0)T ,

π = (1, 1)T , and π0 = 0. Again using Corollary 5 in [70], one can check that after a

few simplifications, the corresponding split cut is

√
(3x1 − x2)2 + (3x2 − x1 + 1)2 ≤ 4t0, (4.13)

and using Corollary 10, the corresponding CMIR cut is x1 + x2 + 1/2 ≤ 2 (t1 + t2). Let

(x̄, t̄, t̄0) = (−0.082, 0.922, 0.337, 0.928, 1). We have that (x̄, t̄, t̄0) ∈ MIRπ,π0 , but (x̄, t̄0)

violates the split cut (4.13).

While a single CMIR can be weaker than the corresponding nonlinear split cut, a family

of CMIRs sharing the same extended formulation can be significantly stronger than the

associated family of nonlinear split cuts. This can be illustrated by considering split cuts for

C (see Proposition 19 for a result along this line). However, the behavior is more dramatic

for an ellipsoid given by

E := {x ∈ Rn : ‖B (x− c)‖2 ≤ r} ,

where B ∈ Rn×n is an invertible matrix, c ∈ Rn, and r ∈ R+. As formalized in the following

straightforward lemma, an ellipsoid can be described as projections of linear sections of either

the cone C defined in (4.1), a paraboloid Q of the form

Q :=
{

(x, s0) ∈ Rn+1 : ‖B (x− c)‖2
2 ≤ s0

}
,

and the extended formulation associated to the CMIR, which provides a way of comparing

the strength of several cuts.

Lemma 8. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, and r ∈ R+. Then

E = Projx ({(x, t0) ∈ C : t0 = r}) = Projx({(x, s0) ∈ Q : s0 = r2})

= Projx
{

(x, t, t0) ∈ R2n+1 : (x, t) ∈ L, ‖t‖2 ≤ t0, t0 = r
}
.
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The CMIR and nonlinear split cuts for C and Q (characterized in [70]) can be used to

induce valid inequalities for E ∩ Zn through the same linear section of Lemma 8. However,

the construction of these cuts does not exploit the structure induced by the section and they

hence cannot be expected to always achieve the full strength of the nonlinear split cuts for

E studied in [14, 37, 70]. The following proposition shows that this is indeed the case and

that the cut with the weakest effect on E is the CMIR.

Proposition 17. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, (π, π0) ∈ Zn × Z, and

r ∈ R+. Then

Eπ,π0 ⊆ Projx
({

(x, s0) ∈ Qπ,π0 : s0 = r2
})

⊆ Projx({(x, t0) ∈ Cπ,π0 : t0 = r})

⊆ Projx ({(x, t, t0) ∈MIRπ,π0 : t0 = r}) . (4.14)

All containments can be simultaneously strict even for n = 2.

Proof. The last containment follows from Proposition 16 by noting that

Cπ,π0 ⊆ Proj(x,t0) (MIRπ,π0) .

We now prove the first containment. If x̄ ∈ Eπ,π0 , then there exist x1, x2 such that

x̄ = αx1 + (1− α)x2 for some α ∈ [0, 1],

∥∥B(x1 − c)
∥∥

2
≤ r, πx1 ≤ π0 and

∥∥B(x2 − c)
∥∥

2
≤ r, πx2 ≥ π0 + 1,

which implies that (x1, s∗) and (x2, s∗) - where s∗ = r2 - satisfy, respectively

∥∥B(x1 − c)
∥∥2

2
≤ s∗, πx1 ≤ π0 and

∥∥B(x2 − c)
∥∥2

2
≤ s∗, πx2 ≥ π0 + 1.

Therefore, α(x1, s∗)+(1−α)(x2, s∗) = (x̄, s∗) = (x̄, r2) belongs to {(x, s0) ∈ Qπ,π0 : s0 = r2},

and thus x̄ belongs to the projection of this set on the x-space.

The fact that the second set is contained in the third set can be proved as follows. If x̄

belongs to the second set, then (x̄, r2) ∈ {(x, s0) ∈ Qπ,π0 : s0 = r2} which implies that there

exist (x′, s′), (x′′, s′′) such that (x̄, r2) = α(x′, s′) + (1− α)(x′′, s′′) for some α ∈ [0, 1],

‖B (x′ − c)‖2
2 ≤ s′, πx′ ≤ π0 and ‖B (x′′ − c)‖2

2 ≤ s′′, πx′′ ≥ π0 + 1.
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We can therefore conclude that (x′, r′ =
√
s′) and (x′′, r′′ =

√
s′′) satisfy

‖B (x′ − c)‖2 ≤ r′, πx′ ≤ π0 and ‖B (x′′ − c)‖2 ≤ r′′, πx′′ ≥ π0 + 1.

As the function f(x) =
√
x is a concave function for x ≥ 0, we have

r = f(r2) = f(αs′ + (1− α)s′′) ≥ αf(s′) + (1− α)f(s′′) = αr′ + (1− α)r′′.

Now, replacing r′ by a larger number r′+, we still have ‖B (x′ − c)‖2 ≤ r′+; we can choose r′+

such that r = αr′+ + (1− α)r′′, so that (x̄, r) ∈ {(x, t0) ∈ Cπ,π0 : t0 = r}.

Finally, we show that all three containments are strict for n = 2, B = I, c = (1/4, 0)T ,

π = (1, 1)T , π0 = 0, and r = 1. The last strict containment follows by considering the

example previously provided in the proof of Proposition 16. Using Corollaries 4 and 6 in

[70], one can check that after a few simplifications, the corresponding split cuts associated

to Eπ,π0 and Qπ,π0 are given by

|x2 − x1 + 1/4| ≤
((√

23−
√

31
)

(x1 + x2) +
√

31
)
/4 (4.15)

and

(x2 − x1 + 1/4)2 + (x1 + x2) /2 + 1/16 ≤ 2s0, (4.16)

respectively. The first two strict containments then follow from noting that

(−0.082, 0.903) belongs to Projx ({(x, s0) ∈ Qπ,π0 : s0 = 1}) but violates the split cut (4.15),

and (−0.082, 0.911) belongs to Projx ({(x, t0) ∈ Cπ,π0 : t0 = 1}) but violates the split cut

(4.16) for s0 = 1.

For the effect of a single cut on E, the CMIR is the weakest in Proposition 17. However,

several CMIRs combined through a common extended formulation (i.e., with a single set of

auxiliary variables t ∈ Rn) can be significantly stronger than even the associated family of

split cuts for E. This effectively sidesteps the three potentially strict containments in (4.14).

For instance, the following proposition shows that elementary CMIRs are enough to show

emptiness of the convex hull of integer points of an ellipsoid with no lattice points, while

this cannot be done even with all the nonlinear split cuts (elementary and non-elementary)

of E.
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Proposition 18. Let n ≥ 2, r = 1/2, B = I, and ci = 1/2 for all i ∈ [n] so that E∩Zn = ∅.

Then

∅ = Projx

({
(x, t, t0) ∈

⋂n

i=1
MIRei,bcic : t0 = r

})
(
⋂

(π,π0)∈Zn×Z
Eπ,π0 = {c} .

Proof. For the first equality, note that

⋂n

i=1
MIRei,bcic = {(x, t, t0) : ‖t‖2 ≤ t0, |xi − 1/2| ≤ ti, 1/2 ≤ ti ∀ i ∈ [n]} ,

and every point in this set has t0 ≥
√
n/2 > r = 1/2 for the assumed n ≥ 2.

For the last equality, we first prove left to the right containment. This follows by noting

that the set obtained by adding all the elementary split cuts is equal to {c}. In particular,

the intersection of E with xi = 1 (or xi = 0) is exactly (1, . . . , 1)/2±ei/2 and Eei,0 is exactly

the convex hull of these two points.

The reverse containment directly follows from Lemma 1 in [34], where they show that as

long as a convex set contains points where one component is 0/1, and all other components

are 1/2, then {c} is contained in the split closure of this set (while Lemma 1 in [34] is

stated for polyhedra, the extension to general convex sets is straightforward). The strict

containment above then follows automatically.

4.3.2 Bound Strength

The quadratic integer programming problem that we consider is the Closest Vector Problem

(CVP) [26, 68] which aims to find the element in an integer lattice that is closest (with

respect to the Euclidean distance) to a given target vector not in the lattice. CVP can be

equivalently formulated as

min
x
{‖B(x− c)‖2 : x ∈ Zn} (4.17)

or

min
x

{
‖B(x− c)‖2

2 : x ∈ Zn
}
, (4.18)

where B ∈ Rn×n is an invertible matrix whose columns compose the basis of the lattice and

c ∈ Rn (the target vector is Bc in this case). As noted in [19, 18, 70], because conv (Zn) = Rn,
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to effectively use cuts in CVP we need the equivalent reformulations of (6.3) and (4.18) given

by

min
(x,t0)
{t0 : (x, t0) ∈ C, x ∈ Zn} (4.19)

for C := {(x, t0) ∈ Rn+1 : ‖B (x− c)‖2 ≤ t0}, and

min
(x,s0)
{s0 : (x, s0) ∈ Q, x ∈ Zn} (4.20)

for Q := {(x, s0) ∈ Rn+1 : ‖B (x− c)‖2
2 ≤ s0}. We can then strengthen these formulations

by adding split cuts for C and Q. However, using techniques similar to the proof of Propo-

sition 17, we can show that adding split cuts for Q to (4.20) is always equal or better than

adding split cuts for C to (6.4). For this reason, we only compare the strength of nonlinear

split cuts for Q to the strength of the CMIRs. In this context, we consider the extended

formulation given by

min
(x,t,t0)

{
t20 : |B(x− c)| ≤ t, ‖t‖2 ≤ t0, t ∈ Rn

+, t0 ∈ R+, x ∈ Zn
}
, (4.21)

which can be strengthened by adding CMIR cuts. Similarly to Proposition 16, we can show

that a single split cut for Q added to (4.20) is at least as strong as the corresponding CMIR

added to (4.21). However, as formalized in the following proposition, there are examples

where just elementary CMIR cuts can provide a bound that is arbitrarily better than that

obtained by all split cuts for Q.

Proposition 19. Let B = I and ci = 1/2 for all i ∈ [n]. Then

n/4 = min
x

{
‖x− c‖2

2 : x ∈ Zn
}

= min
x,t,t0

{
t20 : (x, t, t0) ∈

⋂n

i=1
MIRei,bcic

}
,

while 1/4 ≥ min
x,s0

{
s0 : (x, s0) ∈

⋂
(π,π0)∈Zn×ZQ

π,π0

}
.
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Proof. The first equality is straightforward. From the proof of Proposition 18, we have that

t0 ≥
√
n/2 for any (x, t, t0) ∈

⋂n
i=1 MIRei,bcic, which proves the second equality. To prove the

inequality above, we show that (x̄, s̄0) given by s̄0 = 1/4 and x̄i = 1/2 for all i ∈ [n] satisfies

all the quadratic split cuts. For this, note that using Corollary 4 in [70], the quadratic split

cut with x replaced by x̄ is given by

−
(
π0 + 1− (1/2)

∑n

i=1
πi

)(
π0 − (1/2)

∑n

i=1
πi

)
/‖π‖2

2 ≤ s0.

Then the only interesting cases are those with π0 < (1/2)
∑n

i=1 πi < π0 + 1, for which the

cut reduces to (1/4 ‖π‖2
2) ≤ s0. The strongest of these cuts is 1/4 ≤ s0 which is satisfied by

(x̄, s̄0).

Note that the example in Proposition 19 is very specific. In fact, our preliminary com-

putational experiments show that for randomly generated CVP instances, the integrality

gaps obtained by adding quadratic split cuts and CMIRs are roughly the same. It seems

that using an extended formulation is enough to compensate for the lack of non-polyhedral

information in the generation of CMIR cuts; however, it does not provide an advantage in

general.

Finally, while CVP provides a simple and clean setting to compare the strength of cuts,

no class of cuts seems to provide a computational advantage for solving these problems. We

are currently exploring the effectiveness of these cuts on more practical MICQPs.
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5.0 CONVEX HULL OF TWO QUADRATIC OR A CONIC QUADRATIC

AND A QUADRATIC INEQUALITY

Development of strong valid inequalities or cutting planes such as Split cuts, Gomory Mixed

Integer (GMI) cuts, and Mixed Integer Rounding (MIR) cuts is one of the most important

breakthroughs in the area of Mixed Integer Linear Programming (MILP). Hence, there has

recently been a significant interest in extending the theoretical and computational results

from MILP to the realm of Mixed Integer Conic Quadratic Programming (MICQP) [8, 25,

28, 35, 36, 44, 56, 87, 81]. Dadush et al. [37] study the split closure of a strictly convex body

and characterize split cuts for ellipsoids. Atamtürk and Narayanan [9] study the extension

of MIR cuts to sets defined by a single conic quadratic inequality and introduce conic MIR

cuts which are linear inequalities derived from an extended formulation. Modaresi et al.

[71] then characterize nonlinear split cuts for similar conic quadratic sets and also establish

the relation between the split cuts and conic MIR cuts from [9]. Andersen and Jensen [6]

also study similar conic quadratic sets as in [9] and derive nonlinear split cuts using the

intersection points of the disjunctions and the conic set. Belotti et al. [15] study the families

of quadratic surfaces having fixed intersections with two hyperplanes. Following the results

in [15], Belotti et al. [14, 16] characterize disjunctive cuts for conic quadratic sets when

the sets defined by the disjunctions are bounded and disjoint, or when the disjunctions are

parallel. Modaresi et al. [70] characterize intersections cuts for several classes of nonlinear

sets with specific structures, including conic quadratic sets. Bienstock and Michalka [18, 19]

derive linear inequalities to characterize the convex hull of convex quadratic functions on

the complement of a convex quadratic or polyhedral set and they also study the associated

separation problem. Morán et al. [81] consider subadditive inequalities for general Mixed

Integer Conic Programming and Kılınç-Karzan [57] studies minimal valid linear inequalities
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to characterize the convex hull of general conic sets with a disjunctive structure. Following

the results in [57], Kılınç-Karzan and Yıldız [58] study the structure of the convex hull of

a two-term disjunction applied to the second-order cone. Yıldız and Cornuéjols [96] study

disjunctive cuts on cross sections of the second-order cone. Finally, Burer and Kılınç-Karzan

[27] characterize the closed convex hull of sets defined as the intersection of a conic quadratic

and a quadratic inequality that satisfy certain technical conditions.

In this chapter we study the convex hull of regions defined by two quadratic or by a

conic quadratic and a quadratic inequality. The technique we use to characterize the con-

vex hulls is an aggregation technique introduced by Yıldıran [94]. In particular, Yıldıran

characterizes the convex hull of sets defined by two quadratic inequalities and obtains a

Semidefinite Programming (SDP) representation of the convex hull using Linear Matrix In-

equalities (LMI). Yıldıran also proposes a polynomial-time algorithm to calculate the convex

hull of two quadratics. In this chapter we show that the SDP representation of the convex

hull of two quadratics presented in [94] can be described by two conic quadratic inequalities.

We also show that the aggregation technique in [94] can be easily extended to derive valid

conic quadratic inequalities for the convex hull of sets defined by a conic quadratic and a

quadratic inequality. We also show that under an additional assumption, the derived in-

equalities are sufficient to characterize the convex hull. Therefore, the aggregation technique

proposed in [94] provides a unified framework for generating lattice-free cuts for quadratic

and conic quadratic sets which is independent of the geometry of the lattice-free set (e.g., a

set that does not contain any integer point in its interior), as long as the lattice-free set can

be described by a single quadratic inequality.

We note that the content of this chapter is a reprint from the article [72] which is

submitted for publication. Also, the work in [27] contains similar results to those presented

here and our main results have been developed independently. In Section 5.3.6 we compare

and discuss these various results.

The rest of this chapter is organized as follows. In Section 5.1 we introduce some notation

and provide the existing convex hull results from [94]. In Sections 5.2 and 5.3 we introduce

the conic quadratic characterization of the convex hull of quadratic and conic quadratic sets

and compare the results in this chapter and those in [27].
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5.1 NOTATION, PRELIMINARIES, AND EXISTING CONVEX HUL

RESULTS

We use the notation introduced in Chapter 2. In Sections 5.1 and 5.2 we follow the convention

in [94] and define all sets using strict inequalities. However, in Section 5.3 all sets are defined

by non-strict inequalities. This also allows us to compare our results with those in [27]. To

simplify the exposition, we use the same notation for sets described by strict and non-strict

inequalities; however, if we need to refer to sets defined by strict inequalities in Section 5.3,

we use the interior to avoid any ambiguity.

5.1.1 Preliminaries

In this section we first define the quadratic sets that we study. We then provide some useful

definitions and results from [94] that are relevant to our analysis. To save space, we do not

provide the proofs of such results and we refer the reader to [94].

Our analysis is based on the work in [94] which studies the convex hull of open sets

defined by two strict non-homogeneous quadratic inequalities. In particular, let

S := {x ∈ Rn : qi < 0, i = 1, 2} , (5.1)

where qi, i = 1, 2 are quadratic polynomials of the form


x

1



T

P


x

1


 = xTQx+ 2bTx+ γ, (5.2)

where P =


Q b

bT γ


 ∈ Sn+1, Q ∈ Sn, b ∈ Rn, and γ ∈ R.

Note that [94] does not require the quadratic functions to satisfy any specific property. In

particular, there is no requirement on the convexity or concavity of the quadratic functions

defined in (5.2).
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To characterize the convex hull of S, [94] considers the aggregated inequalities derived

from the convex combinations of the two quadratics. More specifically, denote the pencil of

quadratics induced by the convex combination of the two quadratic inequalities as

qλ := (1− λ)q1 + λq2,

where λ ∈ [0, 1]. Similarly, define the associated symmetric matrix pencil

Pλ := (1− λ)P1 + λP2,

and

Qλ := (1− λ)Q1 + λQ2.

For a given quadratic pencil qλ, define

Sλ := {x ∈ Rn : qλ < 0} .

The aggregation technique in [94] chooses λ ∈ [0, 1] such that the aggregated inequalities

give conv (S). The characterization of the sets D and E, which are defined below, are crucial

to the aggregation technique. Define

D := {λ ∈ [0, 1] : (1− λ)Q1 + λQ2 � 0}

and

E := {λ ∈ [0, 1] : π (Pλ) = 1} .

Note that D is the collection of all λ ∈ [0, 1] such that the associated quadratic set Sλ

is convex. On the other hand, E is the collection of all λ ∈ [0, 1] for which Pλ has exactly

one negative eigenvalue. Therefore, Sλ may be non-convex for some λ ∈ E. However, as

shown in Theorem 5, two specific aggregated inequalities associated with E admit a convex

representation and these are enough to characterize conv(S). Throughout the paper, we use

the following useful lemma from [94] which characterizes the structure of the set E.
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Lemma 9. If E 6= ∅, then E is the union of at most two disjoint connected intervals of the

form

E = [λ1, λ2] ∪ [λ3, λ4],

where λi, λi+1 ∈ [0, 1] for i ∈ {1, 3} are generalized eigenvalues of the pencil Pλ.

If E is a single connected interval, we denote E = [λ1, λ2], for λ1, λ2 ∈ [0, 1]. Also note

that each connected interval of E may contain only a single point. In such a case, we have

λi = λi+1. The following proposition from [94] characterizes the relation between D and E.

Proposition 20. If S 6= ∅, then D is a closed subset of E.

Therefore, if E is composed of two disjoint connected intervals, Lemma 9 implies that

D ⊆ [λi, λi+1] for exactly one i ∈ {1, 3}.

In what follows, we provide the convex hull results from [94]. In Section 5.1.2 we present

the convex hull characterization of the homogeneous version of the quadratic set S defined

in (5.1). Section 5.1.3 then presents the convex hull characterization of S.

5.1.2 homogeneous quadratic sets

Consider the homogeneous version of the quadratic function q defined in (5.2) as

q̃ = yTPy, (5.3)

where y =


 x
x0


 ∈ Rn+1. Also consider the homogeneous version of the quadratic set S

defined in (5.1) as

S :=
{
y ∈ Rn+1 : q̃i < 0, i = 1, 2

}
. (5.4)

Analogously, define the associated quadratic pencil q̃λ as

q̃λ := (1− λ)q̃1 + λq̃2,

where λ ∈ [0, 1]. Also denote the homogeneous version of the set Sλ as

Sλ :=
{
y ∈ Rn+1 : q̃λ < 0

}
.

Throughout the paper, we use the following definitions.
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Definition 5. C ⊆ Rn+1 is a cone if for any y ∈ C and α > 0, we have αy ∈ C.

We note that the above definition of a cone C does not require 0 ∈ C, and it also allows

a non-convex set to be a cone.

Definition 6. The symmetric reflection of C ⊆ Rn+1 with respect to the origin is defined as

−C := {−y ∈ Rn+1 : y ∈ C}.

Definition 7. C ⊆ Rn+1 is symmetric if −C = C.

Also define a linear hyperplane H ⊆ Rn+1 with the associated normal vector h ∈ Rn+1

as

H :=
{
y ∈ Rn+1 : hTy = 0

}
.

One can see that S and Sλ for λ ∈ [0, 1] are open symmetric cones. An important notion

that we frequently use throughout the paper is the separation of an open symmetric cone

which is given in the following definition.

Definition 8. Consider an open symmetric non-empty cone C ∈ Rn+1. If there exists a

linear hyperplane H ⊆ Rn+1 such that H ∩ C = ∅, we say C admits a separation (i.e., H is

a separator of C or separates C).

Denote the two half spaces induced by the hyperplane H as

H+ :=
{
y ∈ Rn+1 : hTy > 0

}
,

and

H− :=
{
y ∈ Rn+1 : hTy < 0

}
.

Therefore, a separator H induces two disjoint slices of the set S denoted by

S+ := H+ ∩ S and S− := H− ∩ S.

One can see that the resulting slices of S satisfy the following properties: (i) S+ = −S−,

(ii) S+ ∩ S− = ∅, and (iii) S = S+ ∪ S−.

Another important definition that we need is the definition of a semi-convex cone.

Definition 9. A semi-convex cone (SCC) is the union of two convex cones which are sym-

metric reflections of each other with respect to the origin.
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An SCC is symmetric by definition. Moreover, an open SCC always admits a unique

separation. In other words, regardless of the separator we use to separate an SCC with,

the associated disjoint slices will always be the same (i.e., after using any one of the valid

hyperplanes for separation, the two pieces of the SCC are uniquely defined). This fact is

formalized in the following proposition from [94].

Proposition 21. Let C ⊆ Rn+1 be an open SCC. Assume that there exists a hyperplane H

which separates C. Then, C admits a unique separation, the slices of which are the convex

connected components of C.

We also use the following useful proposition from [94].

Proposition 22. Consider an open symmetric non-empty cone given by

C :=
{
y ∈ Rn+1 : yTPy < 0

}
.

Then the following statements are equivalent:

1. There exists a linear hyperplane which separates C,

2. π (P) = 1, and

3. C is an SCC.

Remark 1. Note that when π (P) = 1, one can do the spectral decomposition of P as

P = V V T − nnT ,

for n ∈ Rn+1 and V ∈ R(n+1)×ν, where ν represents the number of positive eigenvalues of P.

One can check that

Hn :=
{
y ∈ Rn+1 : nTy = 0

}

separates C and we call Hn a natural separator of C.

The following Theorem from [94] characterizes the convex hull of any set of the form S

defined by two homogeneous quadratic inequalities.
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Theorem 4. Consider the non-empty open set S defined in (5.4) and let H be a separator

of S. Then E 6= ∅ and exactly one of the connected components [λi, λi+1] of E is such that

H ∩ Sλi
∩ Sλi+1

= ∅.

For such λi and λi+1 we have that Sλi
∩ Sλi+1

is an SCC,

conv
(
H+ ∩ S

)
= H+ ∩ Sλi

∩ Sλi+1

and there exists Hs which separates both Sλi
and Sλi+1

such that

conv
(
H+ ∩ S

)
=
(
H+
s ∩ Sλi

)
∩
(
H+
s ∩ Sλi+1

)
.

5.1.3 Quadratic sets

Using the results from Theorem 4, the following theorem from [94] characterizes the convex

hull of any set of the form S defined by two strict quadratic inequalities.

Theorem 5. Consider the non-empty open set S defined in (5.1). If D = ∅, then conv (S) =

Rn. Otherwise, let i ∈ {1, 3} be such that [λi, λi+1] is the unique connected component of E

such that D ⊆ [λi, λi+1]. For such λi and λi+1 we have

conv (S) = Sλi ∩ Sλi+1
.

5.2 CONIC QUADRATIC CHARACTERIZATION OF CONVEX HULLS

In this section we first show that the convex hull characterizations presented in Section 5.1

can be described by two strict conic quadratic inequalities. Using results from Theorem 4,

we then derive strict conic quadratic inequalities which provide a relaxation for the convex

hull of sets defined as the intersection of a strict conic quadratic and a quadratic inequality.

We also show that such valid inequalities characterize the convex hull exactly under an

additional assumption.
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5.2.1 Conic quadratic representation of convex hulls

In what follows, we show that each side of Sλi
and Sλi+1

can be described by a single conic

quadratic inequality, where [λi, λi+1] for i ∈ {1, 3} is one of the connected components of E.

Proposition 23. Let λ ∈ [0, 1] be such that π (Pλ) = 1 and let H be a separator of Sλ.

Then H+ ∩ Sλ can be described by a single strict conic quadratic inequality.

Proof. We have

Sλ =
{
y ∈ Rn+1 : yTPλy < 0

}
.

Since π (Pλ) = 1, using Proposition 22, one can see that Sλ is an SCC. Thus, using Remark 1,

one can decompose Pλ as Pλ = V V T − nnT for the appropriately chosen matrix and vector

V and n. Therefore, we have

Sλ =
{
y ∈ Rn+1 :

∥∥V Ty
∥∥2

2
<
(
nTy

)2
}
. (5.5)

Let Hn be the natural separator of Sλ. Using Proposition 21, we have that Sλ admits a

unique separation, that is,

H+ ∩ Sλ = H+
n ∩ Sλ or H− ∩ Sλ = H−n ∩ Sλ. (5.6)

Therefore, from (5.5) and (5.6) we get

H+ ∩ Sλ =
{
y ∈ Rn+1 :

∥∥V Ty
∥∥

2
< s

(
nTy

)}
,

for some s ∈ {−1, 1}.

A similar argument to the proof of Proposition 23 can be used to show that conv (H+ ∩ S)

given in Theorem 4 can be written as

conv
(
H+ ∩ S

)
= Kλi

∩Kλi+1
,

where

Kλi
= H+

i ∩ Sλi
and Kλi+1

= H+
i+1 ∩ Sλi+1

, (5.7)
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H+
i ∈

{
H+
ni
,H−ni

}
and H+

i+1 ∈
{
H+
ui+1

,H−ui+1

}
, and where Hui

and Hui+1
are natural

separators of Sλi
and Sλi+1

, respectively. In particular, each of the sets Kλi
and Kλi+1

is

described by a single strict conic quadratic inequality.

Similarly, conv (S) given in Theorem 5 can be expressed as

conv (S) = Kλi ∩Kλi+1
,

where

Kλi =



x ∈ Rn :


x

1


 ∈ Kλi



 and Kλi+1

=



x ∈ Rn :


x

1


 ∈ Kλi+1



 , (5.8)

for Kλi
and Kλi+1

defined in (5.7). In particular, Kλi and Kλi+1
can be described by a

single strict conic quadratic inequality. An alternate way of obtaining such conic quadratic

inequalities is to apply Schur’s Lemma to a homogeneous version of the SDP representation

of Sλi and Sλi+1
given in Proposition A1 in [94].

5.2.2 Conic quadratic sets

In this section we aim to characterize the convex hull of sets defined by a strict conic quadratic

and a strict quadratic inequality.

Using Theorem 4, we first derive valid conic quadratic inequalities for the convex hull

of any set defined by a strict conic quadratic and a strict quadratic inequality. We then

show that such valid inequalities characterize the convex hull exactly under an additional

assumption.

We study open sets of the form

C := {x ∈ Rn : L1 < 0, q2 < 0} , (5.9)

where L1 < 0 is a strict conic quadratic inequality of the form

‖A1x− d1‖2 < aT1 x− a0,
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where A1 ∈ Rn×n, d1, a1 ∈ Rn, a0 ∈ R, and q2 < 0 is a strict quadratic inequality of the form


x

1



T

P2


x

1


 = xTQ2x+ 2bT2 x+ γ2 < 0,

where P2 =


Q2 b2

bT2 γ2


 ∈ Sn+1, Q2 ∈ Sn, b2 ∈ Rn, and γ2 ∈ R.

Our goal is to derive strong valid inequalities for conv (C) and characterize the convex

hull exactly when possible. Since we will use results from Theorem 4, we also need to consider

the homogeneous version of the set C. Therefore, we define

C :=
{
y ∈ Rn+1 : L1 < 0, q̃2 < 0

}
, (5.10)

where L1 < 0 is a strict homogeneous conic quadratic inequality of the form

‖A1x− d1x0‖2 < aT1 x− a0x0,

and q̃2 is a strict homogeneous quadratic function as defined in (5.3). By squaring both

sides of the strict conic quadratic inequality L1 < 0, we define

S (C) :=
{
y ∈ Rn+1 : q̃1 < 0, q̃2 < 0

}
, (5.11)

where q̃1 = yTP1y such that Q1 = AT1A1 − a1a
T
1 , b1 = −AT1 d1 + a0a1, and γ1 = dT1 d1 − a2

0.

We also define the hyperplane

H0 :=
{
y ∈ Rn+1 : (a1,−a0)T y = 0

}
. (5.12)

One can see that H0 is a separator for S (C),

C = H+
0 ∩ S (C), (5.13)

and

C = H+
0 ∩ S (C) ∩ E1, (5.14)

where E1 := {(x, x0) ∈ Rn+1 : x0 = 1}. In Proposition 24, we use (5.13) and (5.14) together

with Theorem 4 to characterize conv (C). We note that the proof of Proposition 24 is a

direct adaptation of the proof of Theorem 1 in [94].
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Proposition 24. Consider the non-empty open set C defined in (5.9). Then exactly one of

the connected components [λi, λi+1] of E is such that

H0 ∩ Sλi
∩ Sλi+1

= ∅, (5.15)

where H0 is defined in (5.12). For such λi and λi+1 we have that

conv (C) ⊆ Kλi ∩Kλi+1
, (5.16)

where Kλi and Kλi+1
are defined in (5.8). Furthermore, if C ⊆ E+ for E := {(x, x0) ∈

Rn+1 : x0 = 0}, then (5.16) holds as equality.

Proof. Consider C, S (C), and H0 as defined in (5.10), (5.11), and (5.12), respectively. One

can see that (5.15) directly follows from Theorem 4. To prove the containment in (5.16),

recall from (5.13) and (5.14) that

C = H+
0 ∩ S (C)

and

C = H+
0 ∩ S (C) ∩ E1,

where E1 := {(x, x0) ∈ Rn+1 : x0 = 1}. Therefore, conv (C) can be expressed as

conv (C) =



x ∈ Rn :


x

1


 =

n+1∑

j=1

θj


zj

1


 ,

n+1∑

j=1

θj = 1, θj ≥ 0,


zj

1


 ∈ C, j ∈ [n+ 1]





⊆



x ∈ Rn :


x

1


 =

n+1∑

j=1

θj z̃j,
n+1∑

j=1

θj = 1, θj ≥ 0, z̃j ∈ C, j ∈ [n+ 1]



 (5.17)

=



x ∈ Rn :


x

1


 ∈ conv (C)



 ,

=



x ∈ Rn :


x

1


 ∈ Kλi

∩Kλi+1



 = Kλi ∩Kλi+1

, (5.18)

where the first equality holds by Carathéodory’s Theorem, the first equality in (5.18) follows

from Theorem 4, and where i ∈ {1, 3} is an appropriate index evident from Theorem 4. The

reverse containment in (5.17) trivially holds when C ⊆ E+.
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5.3 CONIC QUADRATIC CHARACTERIZATION OF CLOSED CONVEX

HULLS

In this section we study conic and quadratic sets defined by non-strict inequalities instead

of strict inequalities. In particular, whenever we refer to a previously defined set, such as

S or Kλi
, we redefine such a set by replacing strict inequalities with non-strict inequalities.

Working with non-strict inequalities requires the study of closed convex hulls instead of

convex hulls. However, under certain topological assumptions, the strict inequality results

directly imply non-strict analogs. One such assumption is condition (5.19) in the following

lemma.

Lemma 10. Let A and B be two non-empty closed sets such that

A ⊆ int(A) (5.19)

and B is convex. If conv(int(A)) ⊆ int(B), then conv(A) ⊆ B and if conv(int(A)) = int(B),

then conv(A) = B.

Proof. First note that (5.19) implies A = int(A) and hence

conv(A) = conv
(

int(A)
)

= conv (int(A)) = conv (conv (int(A))) . (5.20)

Furthermore,

B = int (B) = conv (int (B)) (5.21)

because B is closed and convex and int (B) 6= ∅ (because int(A) ⊆ int(B) and because (5.19)

and A 6= ∅ imply int(A) 6= ∅). The result then follows from (5.20)–(5.21) by taking the

closed convex hull on both sides of the corresponding containment or equality.

In the following subsections we show how Lemma 10 can be used to adapt the convex hull

results from Sections 5.1 and 5.2 to the non-strict setting. We then give several examples

that illustrate condition (5.19) and some characteristics of the closed convex hull results.

Finally, considering sets defined by non-strict inequalities allows us to compare our results

with those in [27].
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5.3.1 Homogeneous quadratic sets

We consider homogeneous quadratic sets of the form

S :=
{
y ∈ Rn+1 : q̃i ≤ 0, i = 1, 2

}
.

In this section with a slight abuse of notation, we say that the hyperplane H ⊆ Rn+1

separates S when H is in fact a separator of int (S) = {y ∈ Rn+1 : q̃i < 0, i = 1, 2}. The

following corollary characterizes the non-strict inequality version of Theorem 4 and follows

directly from that theorem and Lemma 10.

Corollary 11. Let S := {y ∈ Rn+1 : q̃i ≤ 0, i = 1, 2} such that int (S) 6= ∅, H be a

separator of S, and i ∈ {1, 3} be such that [λi, λi+1] is the unique connected component of E

such that

H ∩ Sλi
∩ Sλi+1

= ∅.

If

H+ ∩ S ⊆ int
(
H+ ∩ S

)
, (5.22)

then

conv
(
H+ ∩ S

)
= Kλi

∩Kλi+1
,

where Kλi
and Kλi+1

are as in (5.7) defined with non-strict inequalities.

5.3.2 Conic quadratic sets

The following corollary characterizes the non-strict inequality version of Proposition 24 and

follows directly from that proposition and Lemma 10.

Corollary 12. Let C := {x ∈ Rn : L1 ≤ 0, q2 ≤ 0} such that int (C) 6= ∅ and i ∈ {1, 3}

be such that [λi, λi+1] is the unique connected component of E such that

H0 ∩ Sλi
∩ Sλi+1

= ∅,

where H0 is defined in (5.12). If

C ⊆ int (C), (5.23)
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then

conv (C) ⊆ Kλi ∩Kλi+1
, (5.24)

where Kλi and Kλi+1
are as in (5.8) defined with non-strict inequalities. Furthermore, if

C ⊆ E+, (5.25)

for E := {(x, x0) ∈ Rn+1 : x0 = 0}, then (5.24) holds as equality.

Note that C ⊆ E+ provides a sufficient condition under which (5.24) trivially holds as

equality; however, equality in (5.24) may still hold even if C ⊆ E+ is violated.

5.3.3 Quadratic sets

The following corollary characterizes the non-strict inequality version of Theorem 5 and

follows directly from that theorem and Lemma 10.

Corollary 13. Let S := {x ∈ Rn : qi ≤ 0, i = 1, 2} such that int (S) 6= ∅. If D = ∅,

then conv (S) = Rn. Otherwise, let i ∈ {1, 3} be such that [λi, λi+1] is the unique connected

component of E such that D ⊆ [λi, λi+1]. If

S ⊆ int (S), (5.26)

then

conv (S) = Kλi ∩Kλi+1
,

where Kλi and Kλi+1
are as in (5.8) defined with non-strict inequalities.

Finally, note that λi and λi+1 can be obtained by a polynomial-time algorithm based on

the S-Lemma and the calculation of generalized eigenvalues of the pencil Pλ (Algorithm 1

in [94]). Therefore, once topological condition (5.19) is verified, one can obtain the conic

quadratic relaxation of conv (H+ ∩ S), conv (S), or conv (C) in polynomial time. This

relaxation is always a characterization for the first two sets and if condition (5.25) is satisfied

(which can be checked in polynomial time), it is also a characterization for the last one. A

simple version of the algorithm to obtain λi and λi+1 calculates all generalized eigenvalues

{λi}ri=1 of the pencil Pλ, which can be done in polynomial-time. Assuming such generalized
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eigenvalues are ordered such that λi < λi+1 for all i ∈ [r − 1], we can construct E by

evaluating the number of negative eigenvalues of Pλ for all λ = (λi + λi+1) /2 for i ∈ [r− 1].

The remaining check to determine the appropriate connected component of E can also be

done in polynomial time.

5.3.4 Verifying the topological condition

In this section we give two lemmas that are useful when checking the topological condition

(5.19). The first lemma shows that the condition is automatically satisfied for a wide range

of sets and the second lemma gives a sufficient condition that can often be easier to check

than the original condition (5.19).

Lemma 11. Let f, g : Rn → R be continuous functions and K be a closed convex set or the

complement of an open convex set. Then (5.19) holds for A = {(x, x0) : f(x) ≤ x0, g(x) ≤

x0} and A = {(x, x0) : f(x) ≤ x0, x ∈ K}.

Proof. The first case follows by noting that for any (x, x0) ∈ A and for every ε > 0, we have

that (x, x0 + ε) ∈ int(A). For the second case, note that for any x̄ ∈ bd (K), there exist

d ∈ Rn such that x̄+ εd ∈ int (K) for all sufficiently small ε > 0. Furthermore, (x̄, f (x̄)) =

limε→0 (x̄+ εd, f (x̄+ εd)). Hence, it suffices to show that (x̄+ εd, f (x̄+ εd)) ∈ int (A) for

all sufficiently small ε > 0. This follows from noting that (x̄+ εd, f (x̄+ εd) + δ) ∈ int (A)

for all sufficiently small ε > 0 and for any δ > 0.

Sets of the form considered by Lemma 11 include a wide range of quadratic sets such as

the intersection of a paraboloid with a general quadratic inequality. It also includes trust

region problems and hence, together with Corollary 13, this lemma can be used to show that

such problems are equivalent to simple convex optimization problems (e.g. [17, Corollary 8]

and [27, Section 7.2])

Lemma 12. If A =
⋃l
i=1 Ai and Ai satisfies (5.19) for each i ∈ [l], then A satisfies (5.19).

In particular, if Ai is convex and int (Ai) 6= ∅ for each i ∈ [l], then A satisfies (5.19).

Proof. The first part follows from A =
⋃l
i=1Ai ⊆

⋃l
i=1 int (Ai) ⊆ int (A). The second follows

from the fact that (5.19) is naturally satisfied by convex sets with non-empty interiors.
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Sets considered by Corollaries 11–13 that are unions of convex sets include those con-

structed from two-term disjunctions such as ones considered in [27, Section 6]. Such sets

are the unions of two convex sets defined by a single quadratic or conic quadratic inequality

and two linear inequalities. In the next sub-section we show that checking that these two

convex sets have non-empty interior is often easy and that when one of the sets has an empty

interior, the topological condition (5.19) can be violated.

5.3.5 Illustrative examples

We now illustrate the results in this section through several examples. In particular, we show

how the two inequalities in the closed convex hull or relaxation characterization may include

one of the original inequalities, one or two new inequalities, or even a redundant inequality.

We begin with three examples for which the description of the closed convex hull only

requires one additional inequality (i.e. one of the inequalities associated to λi, λi+1 is one of

the original inequalities). In the first two examples, Corollaries 12 and 13 are able to prove

that adding this additional inequality yields the closed convex hull. However, in the third

example, Corollary 12 cannot prove that adding the additional inequality yields the closed

convex hull even though it actually does.

Example 2. Here we consider Example 3 in [73], which is given by

S1 :=
{
x ∈ R3 : x2

1 + x2
2 − x3 − 4 ≤ 0, x2

1 + x2
2 − x2

3 + 1 ≤ 0
}
.

To check condition (5.26) of Corollary 13, first note that S1 = S ′1 ∪ S ′′1 for convex sets

S ′1 :=

{
x ∈ R3 : x2

1 + x2
2 − x3 − 4 ≤ 0,

√
x2

1 + x2
2 + 1 ≤ x3

}

and

S ′′1 :=

{
x ∈ R3 : x2

1 + x2
2 − x3 − 4 ≤ 0,

√
x2

1 + x2
2 + 1 ≤ −x3

}
.

Furthermore, both sets have non-empty interiors (e.g. (0, 0, 2) ∈ int (S ′1) and (0, 0,−2) ∈

int (S ′1)). Hence, by Lemma 12 condition (5.26) is satisfied. We can also check that

E =

[
0,

1

21

(
9− 2

√
15
)]
∪
[

1

21

(
9 + 2

√
15
)
, 1

]
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and D = {0} is contained in the first interval. Then, λi = 0 and λi+1 = 1
21

(
9− 2

√
15
)

and

Corollary 13 yields

conv (S1) =




x ∈ R2 :

x2
1 + x2

2 − x3 − 4 ≤ 0,
√
x2

1 + x2
2 ≤

1

21

√
9 + 2

√
15
((

9− 2
√

15
)
x3 +

√
15 + 6

)




.

Because λi = 0 and λi+1 /∈ {0, 1}, the first inequality given by Corollary 13 is one of the

original inequalities and the second one is a new inequality, which we can check is non-

redundant for the description of conv (S1).

Example 3. Here we consider an example proposed by Burer and Kılınç-Karzan [27], which

is given by

C2 :=

{
x ∈ R3 :

√
x2

1 + x2
2 ≤ x3, (x1 + x3 − 3)(x3 − 2) ≤ 0

}
.

The homogeneous version of this set is given by

C2 := H+
2 ∩S2 =

{
(x, x0) ∈ R4 :

√
x2

1 + x2
2 ≤ x3, x2

3 + x1x3 − 2x1x0 − 5x3x0 + 6x2
0 ≤ 0

}
,

for H+
2 := {(x, x0) ∈ R4 : x3 ≥ 0} and

S2 :=
{

(x, x0) ∈ R4 : x2
1 + x2

2 − x2
3 ≤ 0, x2

3 + x1x3 − 2x1x0 − 5x3x0 + 6x2
0 ≤ 0

}
.

To check condition (5.23) of Corollary 12, first note that C2 = C ′2 ∪ C ′′2 for convex sets

C ′2 :=

{
x ∈ R3 :

√
x2

1 + x2
2 ≤ x3, (x1 + x3 − 3) ≤ 0, (x3 − 2) ≥ 0

}
,

and

C ′′2 :=

{
x ∈ R3 :

√
x2

1 + x2
2 ≤ x3, (x1 + x3 − 3) ≥ 0, (x3 − 2) ≤ 0

}
.

Furthermore, both C ′2 and C ′′2 have non-empty interiors. Hence, by Lemma 12 condition

(5.23) is satisfied. We can also check that E = [0, 8/9]∪ [1, 1] and H2 only separates the set

associated to the first interval. Then λi = 0 and λi+1 = 8/9 and

conv (C2) ⊆
{
x ∈ R3 :

√
x2

1 + x2
2 ≤ x2

3,

√
(ax+ bz + c)2 +

y2

9
≤ dx+ ez + f

}
, (5.27)
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where

a =
1

132

(
53 + 3

√
97
)√ 1

582

(
53
√

97− 291
)
,

b =
1

33

(
20 + 3

√
97
)√ 1

582

(
53
√

97− 291
)
,

c =
1

132

(
−248− 24

√
97
)√ 1

582

(
53
√

97− 291
)
,

d =
1

132

√
1

2
+

53

6
√

97

(
3
√

97− 53
)
,

e =
1

33

√
1

2
+

53

6
√

97

(
3
√

97− 20
)
,

and

f =
1

132

√
1

2
+

53

6
√

97

(
248− 24

√
97
)
.

Finally, to check condition (5.25), first note that C2 = C′2 ∪ C′′2 for convex sets

C′2 :=

{
(x, x0) ∈ R4 :

√
x2

1 + x2
2 ≤ x3, (x1 + x3 − 3x0) ≤ 0, (x3 − 2x0) ≥ 0

}
,

and

C′′2 :=

{
(x, x0) ∈ R4 :

√
x2

1 + x2
2 ≤ x3, (x1 + x3 − 3x0) ≥ 0, (x3 − 2x0) ≤ 0

}
.

The conic inequality of C′2 implies −x1−x3 ≤ 0, which together with its first linear inequality

implies x0 ≥ 0. Similarly, the conic inequality of C′′2 implies −x3 ≤ 0, which together with

its second linear inequality implies x0 ≥ 0. Hence, condition (5.25) holds and Corollary 12

implies that (5.27) holds as equality.
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Example 4. Here we consider an example similar to those of Section 6.2 in [27], which is

given by

C3 :=
{
x ∈ R2 : |x1| ≤ x2, (2x1 + x2 − 1) (−2x1 − x2 − 1) ≤ 0

}
.

The homogeneous version of this set is given by

C3 := H+
3 ∩ S3 =

{
(x, x0) ∈ R3 : |x1| ≤ x2, (2x1 + x2 − x0) (−2x1 − x2 − x0) ≤ 0

}
,

where H+
3 := {(x, x0) ∈ R3 : x2 ≥ 0} and

S3 :=
{

(x, x0) ∈ R3 : x2
1 ≤ x2

2, (2x1 + x2 − x0) (−2x1 − x2 − x0) ≤ 0
}
.

Similarly to Example 3 we can check condition (5.23) of Corollary 12 through Lemma 12

as C3 is the union of two convex sets with non-empty interior. We can also check that

E = [0, 1/4] ∪ [1, 1] and H3 only separates the set associated to the first interval. Then

λi = 0 and λi+1 = 1/4 and

conv (C3) ⊆
{
x ∈ R2 : |x1| ≤ x2, 1− x− 2y ≤ 0

}
. (5.28)

We can check that equality holds in (5.28), but condition (5.25) does not hold so Corollary 12

cannot prove this.

For next pair of examples, we have that neither of the inequalities needed to describe

the closed convex hull is one of the original inequalities.

Example 5. Here we consider the set given by

S1 :=
{

(x, x0) ∈ R3 : 2x2
1 − x2

2 − x2
0 ≤ 0, −x2

1 + x2
2 − x2

0 ≤ 0
}
.

One can see that E := {(x, x0) ∈ R3 : x0 = 0} separates S1. Let S+
1 := E+ ∩ S1 and let

P1 and P2 be the matrices associated with the quadratic inequalities. Condition (5.22) of

Corollary 11 can easily be checked using Lemma 11 or by noting that for every (x, x0) ∈ S+
1

and ε > 0 we have that (x, x0 + ε) ∈ int
(
S+

1

)
. We can also check that E = [1/2, 2/3] and
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that E separates the set associated to this interval. Then, λi = 1/2 and λi+1 = 2/3 and

Corollary 11 yields

conv
(
S+

1

)
=
{

(x, x0) ∈ R3 : |x1| ≤
√

2x0, |x2| ≤
√

3x0

}
.

In contrast to Examples 2–4, because λi, λi+1 /∈ {0, 1}, neither of the inequalities given

by Corollary 11 is one of the original inequalities. We can also check that the two new

inequalities given by Corollary 11 are non-redundant for the description of conv
(
S+

1

)
.

Example 6. Consider the Example 1 in [94] and Example 2 in [73], which is given by

S5 :=
{
x ∈ R2 : x2

1 − x2
2 + 2x1 + 2 ≤ 0, −x2

1 + x2
2 + 2x1 − 2 ≤ 0

}
.

We can check condition (5.26) of Corollary 13 through Lemma 12 by noting that S5 is the

union of two (non-convex) sets that satisfy condition (5.19). Alternatively, we can first note

that if x ∈ S5 satisfies both inequalities of S5 strictly, then x ∈ int (S5) and the condition

is trivially satisfied. Furthermore, if x ∈ S5 satisfies one of the inequalities strictly, we can

trivially perturb x so that it remains in S5 and satisfies both inequalities strictly. Hence,

the only nontrivial check of the condition is for points x ∈ S5 that satisfy both inequalities

of S5 at equality. We can easily check that only two such points exist and each of them

satisfy (x1 − ε, x2) ∈ int (S5) for all sufficiently small ε > 0. We can also check that E =

[0, 1/2 − 1/(2
√

2)] ∪ [1/2, 1/2 + 1/(2
√

2)] and D = {1/2} ⊆ [1/2, 1/2 + 1/(2
√

2)]. Then,

λi = 1/2 and λi+1 = 1/2 + 1/(2
√

2) and Corollary 13 yields

conv (S5) =
{
x ∈ R2 : x1 ≤ 0, |y| ≤

√
2− x

}
.

Again, because λi, λi+1 /∈ {0, 1}, neither of the inequalities given by Corollary 13 is one of the

original inequalities. We can also check that the two new inequalities given by Corollary 13

are non-redundant for the description of conv (S5).

For the following example, we have that λi = λi+1, so Corollary 11 yields a unique

inequality.
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Example 7. Here we consider the homogeneous version of the example from Section 4.4 in

[27], which is given by

C6 := H+
6 ∩ S6 =

{
(x, x0) ∈ R3 : |x1| ≤ x2, x1(x2 − x0) ≤ 0

}
,

where H+
6 := {(x, x0) ∈ R3 : x2 ≥ 0} and S6 := {(x, x0) ∈ R3 : x2

1 ≤ x2
2, x1x2 − x1x0 ≤ 0}.

Condition (5.26) of Corollary 11 can easily be checked through Lemma 12 by noting that C6

is the union of two convex sets with non-empty interior. We may hence use Corollary 11 to

construct conv (C6). For that note that E = [0, 0]∪ [1, 1], and that H6 only separates the set

associated to the first interval. Hence, λi = λi+1 = 0 and

conv (C6) = K0 =
{

(x, x0) ∈ R3 : |x1| ≤ x2

}
.

Finally, note that we trivially have conv (C6) ⊆ {(x, x0) ∈ R3 : |x1| ≤ x2}. However, the

equality in this containment proven by Corollary 11 is not trivial.

We end this section by considering an example where topological condition (5.19) fails

and discussing one possible way to adapt the results in this paper to such a setting. This

example also illustrates how one of the inequalities in the closed convex hull characterization

may be redundant.

Example 8. For any ε ≥ 0, consider the generalization of the example from Section 4.5 in

[27], which is given by

C7 (ε) := H+
7 ∩ S7 (ε) :=

{
(x1, x0) ∈ R2 : |x1| ≤ x0, 2x1x0 − (2 + ε)x2

1 ≤ 0
}
,

where H+
7 := {(x1, x0) ∈ R2 : x0 ≥ 0} and S7 (ε) := {(x1, x0) ∈ R2 : x2

1 ≤ x2
0, 2x1x0 −

(2 + ε)x2
1 ≤ 0}. If we let P1 =


1 0

0 −1


 and P2 (ε) =


−(2 + ε) 1

1 0


 be the matrices

associated to S7 (ε), we have that

E =

[
0,

1

2
− f(ε)

]
∪
[

1

2
+ f(ε), 1

]
,

where f (ε) := 1
2

√
ε

4+ε
. If ε > 0, then E is composed of two intervals and we can check that

H7 only separates the sets associated to the first interval. The inequality associated to λi = 0

is the conic constraint |x1| ≤ x0 and the one associated to λi+1 = 1
2
− f(ε) is dominated by
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this conic constraint and is hence redundant. We can also check that condition (5.22) is

satisfied and then by Corollary 11, we have

conv (C7 (ε)) =
{

(x1, x0) ∈ R2 : |x1| ≤ x0

}
. (5.29)

In contrast, if ε = 0, we have that E becomes the complete interval [0, 1] and we instead obtain

λi+1 = 1. We can check that in this case (5.29) still holds, but the inequality associated to

λi+1 = 1 implies x1 ≤ 0, which removes a portion of the closed convex hull and is hence

invalid. This aligns with the fact that condition (5.22) is not satisfied for ε = 0 and hence

Corollary 11 cannot characterize relaxations of conv (C5 (ε)).

The construction of E in [94] explicitly considers the possibility of E = [λ1, λ2] ∪ [λ3, λ4]

with λ2 = λ3 and relates the λi’s to the rank (and in particular singularity) of the pencil

Pλ = (1− λ)P1 + λP2. However, special treatment of degenerate cases such as ε = 0 in this

example is not considered in [94], since it is not required for the case of strict inequalities

(indeed for the strict inequality version for ε = 0, the choice λi+1 = 1 is correct). Recognizing

such degenerate cases may allow relaxing the assumption (5.22) in Corollary 11. However,

achieving this will likely require adapting the proofs of some of the technical results from

[94] or combining them with additional results. For instance, in this example maintaining

λi+1 = 1
2
− f(ε) even for ε = 0 yields a correct characterization of conv (C5 (ε)), so perhaps

some type of perturbation analysis could resolve the issues with the non-compliance with

condition (5.22).

5.3.6 Comparison to the closed convex hull characterizations by Burer and

Kılınç-Karzan

The work in [27] studies the closed convex hull characterization of sets defined as the in-

tersection of a conic quadratic and a quadratic inequality similar to those defined in (5.9)

and (5.10) given by non-strict inequalities. The work in [27] studies a similar aggregation

technique and identifies a set of assumptions that need to be verified in order to get the

closed convex hull. Theorem 1 in [27] states the main result of the paper. In this section we

do a comparison between the results in [27] and our work and highlight the similarities and

differences of the two approaches.
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In the language of this paper the first assumption in [27] is:

P1 has exactly one negative eigenvalue and H is a separator of
{
y ∈ Rn+1 : q̃1 ≤ 0

}
.

(A1)

Assumption (A1) simply formalizes the fact that [27] studies the intersection of a conic

quadratic and a general quadratic inequality and hence is not an actual restriction in the

context of [27]. Under Assumption (A1), the second assumption of [27] simply requires

int (S) 6= ∅. This assumption is shared by this paper and we denote it (A2). The third

assumption in [27] is a minor technical assumption on the singularity of P1 and P2 as follows:

either (i) P1 is nonsingular, (ii) P1 is singular and P2 is positive definite on null(Pλ), or (iii)

P1 is singular and P2 is negative definite on null(Pλ). We denote this assumption (A3)

and show that this assumption seems to be mildly restrictive. Using Assumption (A3), [27]

defines an s ∈ [0, 1] that allows then to describe the closed convex hull using conic quadratic

inequalities associated to the pencils Pλ := (1−λ)P1+λP2 at λ = 0 and λ = s. In particular,

this forces one of the inequalities to be the original conic quadratic inequality, which is a

natural choice in the context of [27]. Depending on the details of Assumption (A3), the

choice of s is either 0 or the minimum s ∈ (0, 1] such that the pencil Ps is singular. The

last two assumptions of [27] are geometric conditions on the inequalities used to describe

the closed convex hull. To state these assumptions, let Hns be the natural separator of

Ss := {y ∈ Rn+1 : q̃s < 0} and let Ks := H+
s ∩ Ss for H+

s ∈
{
H+
ns
,H−ns

}
be defined

analogously to Kλi
and Kλi+1

in (5.7). With this notation, the homogeneous version of the

geometric conditions is

s = 1 or Ks ∩Hns ∩
{
y ∈ Rn+1 : q̃2 < 0

}
6= ∅, (A4)

while the non-homogeneous version is

s = 1 or






x

0


 ∈ Rn+1 :


x

0


 ∈ Ks ∩Hns



 ∩

{
y ∈ Rn+1 : q̃2 < 0

}
6= ∅

or (A5)





x

0


 ∈ Rn+1 :


x

0


 ∈ Ks



 ∩

{
y ∈ Rn+1 : q̃1 ≤ 0

}
∩H+ ⊆

{
y ∈ Rn+1 : q̃2 ≤ 0

}
.
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With this notation, Theorem 1 in [27] can be written as follows.

Theorem 6. Let S := {y ∈ Rn+1 : q̃i ≤ 0, i = 1, 2} . If Assumptions (A1)–(A3) hold,

then there exists s ∈ [0, 1] such that

conv
(
H+ ∩ S

)
⊆
{
y ∈ Rn+1 : q̃1 ≤ 0

}
∩H+ ∩Ks, (5.30)

where H is a separator of S ′ := {y ∈ Rn+1 : q̃1 ≤ 0}. In such a case, the right hand side of

(5.30) can be described by two conic quadratic inequalities. If additionally Assumption (A4)

is satisfied, then (5.30) holds at equality. Finally, if Assumptions (A1)–(A5) hold, then there

exists s ∈ [0, 1] such that

conv (C) =



x ∈ Rn :


x

1


 ∈H+ ∩ S ′



 ∩



x ∈ Rn :


x

1


 ∈ Ks



 , (5.31)

for C =



x ∈ Rn :


x

1


 ∈H+ ∩ S



. In such a case, the right hand side of (5.31) can be

described by two conic quadratic inequalities.

We now compare Theorem 6 and the results in this paper using examples from Sec-

tion 5.3.5. We begin by showing examples where Assumptions (A1) and (A3) restrict the

applicability of Theorem 6 as compared to the results in this paper. We then show how con-

dition (5.22) restricts the applicability of Corollary 11 as compared with Theorem 6 and how

Assumption (5.25) restricts the applicability of Corollary 12 as compared with Theorem 6.

Finally, we comment on the results of Section 7 in [27].

To show how Assumption (A1) can be a tangible restriction when compared with the

results in this paper we can use Examples 5 and 6 from Section 5.3.5. For Example 5,

we have that Assumption (A1) is violated because neither P1 nor P2 have exactly one

negative eigenvalue. Hence, Theorem 6 cannot characterize a relaxation for conv
(
S+

1

)
. For

Example 6, we have that Assumption (A1) is violated, since there is no separator H of the

first homogeneous quadratic inequality which can be used to write S5 as

S5 =



(x, x0) ∈ R3 :


x

1


 ∈H+ ∩ S3



 ,
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where S5 is the homogeneous version of S5. Hence, Theorem 6 cannot characterize a relax-

ation for conv (S5). We note that considering cases beyond Assumption (A1) was out of the

intended scope of [27]. Indeed, one important difference between Theorem 6 and Corollar-

ies 11–13 is that the former only adds one inequality and the later can add two inequalities.

Adding one inequality is sufficient for the intended scope of [27], but two inequalities may

necessary for other cases such as Examples 5 and 6.

To show how technical Assumption (A3) can be mildly restrictive when compared with

the results in this paper we can use Example 7 from Section 5.3.5. Because Assumption (A3)

is violated, the only relaxation for conv (C6) that Theorem 6 can characterize is the triv-

ial relaxation {(x, x0) ∈ R3 : |x1| ≤ x2}. While this relaxation happens to characterize the

closed convex hull, Theorem 6 cannot prove this. In contrast, Corollary 11 can prove that

the trivial relaxation yields the closed convex hull.

To show how condition (5.25) of Corollary 12 is mildly restrictive as compared with

Assumption (A5) of Theorem 6 we can use Example 4 from Section 5.3.5. Corollary 12 can

show

conv (C3) ⊆
{
x ∈ R2 : |x1| ≤ x2 1− x− 2y ≤ 0

}
, (5.32)

but since condition (5.25) is violated, it cannot prove that equality holds in (5.32). In

contrast, Theorem 6 can construct the relaxation and prove the equality in (5.32).

To show how Assumption (5.22) from Corollary 11 can be restrictive when compared with

Theorem 6 we can use Example 8 from Section 5.3.5 with ε = 0. Since condition (5.22) does

not hold, the only relaxation for conv (C7) that Corollary 11 can characterize is the trivial

relaxation {(x1, x0) ∈ R2 : |x1| ≤ x0}. Theorem 6 can also characterize this relaxation, but

in a more systematic way that could provide non-trivial relaxations for other sets for which

condition (5.22) fails. Analyzing how Theorem 6 characterizes this relaxation provides a

convenient way to compare the technical results related to the selection of s in [27] and λi

and λi+1 in [94]. For this, let P1 and P1 be the matrices defined in Example 8. The value s

from Theorem 6 is the minimum s ∈ (0, 1] such that the pencil (1− s)P1 + sP2 is singular,

which corresponds to s = 1
2
− f(ε) for f defined in Example 8. For ε > 0, this s is identical

to λi+1 obtained by Corollary 11 which yields the relaxation for Example 8. In contrast,

for ε = 0, we have s = 1/2 and Theorem 6 yields an inequality that is valid for conv (C7),
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while λi+1 = 1 and Corollary 11 yields an invalid inequality. Hence, Theorem 6 seems to

be less sensitive to the degeneracy issues caused by the violation of condition (5.22) that we

discussed at the end of Example 8. We end the discussion of Example 8 by noting that for all

ε ≥ 0, we have that Ks is dominated by the original conic inequality |x1| ≤ x0. This shows

that, similarly to the results in this paper, Theorem 6 can also yield a redundant inequality

Ks.

We note that for Examples 2 and 3, Theorem 6 yields the same results as Corollaries 12

and 13.

Finally, we consider the sets studied in Section 7 of [27]. This section develops simpli-

fications of Assumptions A1–A5 for intersections of a conic section and a general quadratic

constraint. All resulting sets correspond to the intersection of a convex quadratic inequality

with a general quadratic inequality. The convex hull of the strict inequality version of all

these sets can be characterized without any assumptions by Theorem 5. Similarly, charac-

terizing the closed convex hull of the non-strict inequality versions through Corollary 13 only

requires the sets to be contained in the closure of their interiors. Because this last condition

is not too restrictive, we can find examples where Corollary 13 can construct the closed

convex hull of the intersections of a conic section and a general quadratic constraint, while

the simplified assumptions from Section 7 of [27] do not hold. For instance, Example 3 in

[73] shows how Corollary 13 yields the closed convex hull of a paraboloid intersected with a

non-convex quadratic constraint. This example does not satisfy the simplified assumptions

in Section 7 of [27]; however, it satisfies the more general Assumptions A1–A5. Hence there

does not seem to be a major difference on the applicability of the two techniques on this

class of problems.
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6.0 COMPUTATIONAL EXPERIMENTS WITH CUTS AND EXTENDED

FORMULATIONS

In this chapter we compare the strength of the introduced linear and nonlinear cuts and

extended formulations on two classes of MINLP problems. After conducting preliminary

computational experiments, we select the following MINLP problems for our computational

tests:

• Closest Vector Problem (CVP) [26, 68]

• Mean-Variance Capital Budgeting (MVCB) problem [9, 13, 67, 92]

These two problems can be formulated as

min cTy + fTx

s.t. ‖Dy + Ex− d‖2 ≤ ρTy + wTx− q

ly ≤ y ≤ uy (6.1)

lx ≤ x ≤ ux

y ∈ Rp, x ∈ Zn,

where D ∈ Rm×p, E ∈ Rm×n, d ∈ Rm, c, ρ, ly, uy ∈ Rp, f, w, lx, ux ∈ Rn, and q ∈ R. We refer

to this formulation as the original formulation.

Note that the feasible regions of all these problems share a similar structure; they are

composed of a conic quadratic inequality (i.e., the non-polyhedral portion of the formulation)

intersected with a set of linear inequalities (i.e., the polyhedral portion of the formulation).

We provide detailed formulation of each problem in Sections 6.0.8 and 6.0.9.
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The second formulation that we consider is an extended formulation similar to the one

presented in Section 4, which is of the form

min cTy + fTx

s.t. |Dy + Ex− d| ≤ t

t0 ≤ ρTy + wTx− q

‖t‖2 ≤ t0 (6.2)

ly ≤ y ≤ uy

lx ≤ x ≤ ux

y ∈ Rp, x ∈ Zn, t ∈ Rm, t0 ∈ R.

We refer to this formulation as the extended formulation. We compare the strengths of

the nonlinear split cuts (3.25) added to the original formulation (6.1) versus the linear CMIR

cuts (4.7) added to the extended formulation (6.2). Note that adding nonlinear cuts to the

continuous relaxation of a MINLP could significantly increase its solution time. Hence there

will likely be a strong trade-off between the strength provided by the added cuts and their

computational cost. We propose to further study such a trade-off on the above set of MINLP

problems.

6.0.7 Implementation and Computational Settings

All experiments are performed on an Intel Core(TM)2 Quad PC with 3.0 GHz CPU, 4

GB RAM, and Windows 7 (64-bit) operating system. All models and formulations are

implemented using the JuMP modeling language [2, 3, 65] and solved with CPLEX v12.6

[1].

Our base algorithms to solve MICQP problems are CPLEX standard algorithms for solv-

ing MICQP. CPLEX implements an NLP-based branch-and-bound algorithm and a standard

LP-based branch-and-bound algorithm. Each of these implementations include advanced

features such as cutting planes, heuristics, preprocessing, and elaborate branching and node

selection strategies. We do not make any changes to CPLEX’s default settings. We refer
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to the NLP-based algorithm as CPLEXNLP and to the LP-based algorithm as CPLEXLP.

Both algorithms are limited to a single thread by appropriately setting CPLEX parameters

and to a total run time of 1800 seconds. We present our computational results in four tables.

The first table summarizes the percentage integrality gap (the percentage gap between the

optimal solution and the continuous relaxation) defined as

|best integer− best node|
1e− 10 + |best integer|

,

where best integer is the best integer solution found so far and best node is the relaxation

solution at the given node. We report the percentage integrality gaps both at the root node

and the terminal node (the final node before the time limit is reached or the instance is

solved to optimality). The other three tables summarize solve times, node counts, and the

total number of cuts added by the solver (other than the cuts we add to the problems).

We consider adding the nonlinear split cuts (3.25) to the original formulation (6.1) and

linear CMIR cuts (4.7) to the extended formulation (6.2). The disjunctions we use to generate

cuts are elementary disjunctions ei ∈ Zn, where ei is the i-th unit vector, and all cuts are

added at the root node as constraints. As discussed, we consider two formulations for

each problem, the two available MICQP implementations, and the formulations with and

without cuts. Therefore, each of the above tables has eight columns for the eight possible

combinations of the formulation, MICQP implementation, and cuts.

6.0.8 Closest Vector Problem

Closest Vector Problem (CVP) [26, 68] aims to find the element in an integer lattice that is

closest (with respect to the Euclidean distance) to a given target vector not in the lattice.

This problem has a wide range of theoretical and practical applications and is hard to even

approximate [26, 68]. CVP can be formulated as

min
x
{‖B(x− c)‖2 : x ∈ Zn} , (6.3)
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where B ∈ Rn×n is an invertible matrix whose columns compose the basis of the lattice and

c ∈ Rn (the target vector is Bc in this case). As noted in [18, 70], since conv (Zn) = Rn, to

effectively use cuts in CVP we need the equivalent reformulation of (6.3) given by

min
(x,t0)
{t0 : ‖B(x− c)‖2 ≤ t0, x ∈ Zn} . (6.4)

Note that the above formulation is the analog of the original formulation (6.1). The only

difference between the formulation above and (6.1) is that (6.4) does not include any linear

inequalities.

We can then strengthen the above formulation by adding nonlinear split cuts (3.25). The

second formulation of CVP that we consider is the extended formulation

min
(x,t,t0)

{
t0 : |B(x− c)| ≤ t, ‖t‖2 ≤ t0, t ∈ Rn

+, t0 ∈ R+, x ∈ Zn
}
, (6.5)

which is the analog of the extended formulation (6.2). The above extended formulation

can be strengthened by adding linear CMIR cuts (4.7). As shown in Proposition 16, a

single nonlinear split cut added to the original formulation (6.4) is at least as strong as

the corresponding linear CMIR cut added to extended formulation (6.5). However, as also

formalized in Proposition 19, there are examples where just elementary CMIR cuts can

provide a bound that is arbitrarily better than that obtained by all nonlinear split cuts. We

further study this by comparing the strengths of the linear CMIRs and nonlinear split cuts

for randomly generated CVP instances.

Note that the disadvantage of the CMIRs over the nonlinear split cuts is that CMIRs are

derived by only using the set of linear constraints |B(x− c)| ≤ t. In contrast, nonlinear split

cuts are derived using the nonlinear constraint ‖B (x− c)‖2 ≤ t0. However, the CMIR bound

does use the nonlinear constraint ‖t‖2 ≤ t0 after the derivation of the cuts. This suggests

that bounds stronger than those obtained by both the CMIR and nonlinear split cuts could

be obtained by deriving cuts using the complete feasible region of the extended formulation

(6.5). Deriving closed form expressions of such cuts are beyond the current research, but we

can use the LP-based cut generation techniques (e.g., [25, 56]) to approximate the associated

bound.
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6.0.8.1 Test Instances We generate 5 randomly generated instances for each n ∈

{10, 20, 30, 40, 50} as described in [26]. In particular, entries of matrix B are generated

as uniformly random integers in {−3, . . . , 3} and entries of vector c are chosen uniformly at

random in [−1, 1]. For simplicity, we only consider the n CMIR and split cuts associated to

the elementary disjunctions. However, because B is a general matrix, the cut equivalence

of Proposition 16 does not hold and hence this is not necessarily a favorable case for the

CMIRs.

6.0.8.2 Results We now present the computation results for CVP instances. Table 1

summarizes the percentage integrality gaps at the root and terminal nodes for randomly

generated CVP instances. In Table 1, n denote the problem size, rep denote the replication

number, R denote the root node, and T denote the terminal node. Note that if an instance

is solved to optimality, we report the integrality gap at the terminal node as 0.

Table 1: Gaps for CVP Instances

Original Formulation Extended Formulation

CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

n rep No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts

R T R T R T R T R T R T R T R T

10 1 100 0 82.78 0 100 0 77.15 0 100 0 77.88 0 100 0 77.84 0

10 2 100 0 47.9 0 100 0 44.21 0 100 0 45.7 0 100 0 45.48 0

10 3 100 0 78.38 0 100 0 85.02 0 100 0 77.99 0 100 0 77.87 0

10 4 100 0 55.5 0 100 0 54.52 0 100 0 55.71 0 100 0 55.27 0

10 5 100 0 99.6 0 100 0 99.58 0 100 0 99.58 0 100 0 99.58 0

20 1 100 0 87 40.32 100 0 83.88 0 100 0 85.76 0 100 0 84.78 0

20 2 100 11.13 83.93 35.21 100 0 79.37 0 100 0 80.5 0 100 0 77.42 0

20 3 100 0 91.22 46.74 100 0 86.34 9.84 100 0 92.58 0 100 0 89.16 0

20 4 100 0 89.83 26.97 100 0 86.05 0 100 0 87.03 0 100 0 86.08 0

20 5 100 33.6 98.2 55.75 100 0 97.2 26.02 100 0 97.52 0 100 0 97.36 0

30 1 100 69.44 95.56 86.06 100 8.7 92.35 68.23 100 21.3 93.13 22.66 100 19.18 90.96 25.36

30 2 100 69.7 94.04 82.07 100 0 82.58 61.7 100 13.59 90.29 21.78 100 7.97 85.99 17.42

30 3 100 74.89 94.66 84.87 100 0 89.2 71.03 100 15.57 90.54 18.04 100 15.51 89.53 22.66

30 4 100 69.06 93.87 80.17 100 0 88.01 66.63 100 13.77 88.64 12.9 100 12.96 88.18 18.6

30 5 100 74.78 96.92 88.68 100 19.57 90.73 78.45 100 23.42 94.63 24.72 100 28.43 93.76 33.9

40 1 100 86.74 100 92.17 100 36.73 91.46 82.86 100 48.66 91.99 49.5 100 46.06 89.88 49.88

40 2 100 87.72 96.76 90.17 100 40.95 86.76 83.33 100 43.74 92.34 47.67 100 52.58 87.77 54.84

40 3 100 86.23 96.86 92.79 100 42.48 92.16 87.57 100 51.05 94.88 49.75 100 48.85 91.96 51.79

40 4 100 90.22 99.12 96.45 100 54.97 98.26 96.52 100 53.14 98.76 56.75 100 62.27 98.26 68.33

40 5 100 87.4 98.81 92.89 100 38.13 93.96 85.9 100 54.06 95.81 52.34 100 48.3 93.5 47.6

50 1 100 91.47 98.91 95.03 100 48.33 93.73 88.36 100 62.26 95.44 60.17 100 54.95 94.04 56.87

50 2 100 94.52 99.26 96.53 100 63.8 94.89 94.41 100 67.35 97.3 66.45 100 69.17 95.73 69.83

50 3 100 92.95 98.08 94.92 100 57.7 94.2 90.85 100 66.05 96.01 67.95 100 64.3 93.96 68.93

50 4 100 95.64 99.24 97.62 100 64.06 97.72 96.76 100 72.46 97.86 71.37 100 69.5 97.81 71.57

50 5 100 90.47 98.57 95.17 100 52.66 91.11 90.24 100 63.37 94.05 55.66 100 59.12 92.64 63.32

Average 100 52.24 91 62.82 100 21.12 86.82 51.15 100 26.79 88.48 27.11 100 26.37 86.99 28.84
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We first compare the strength of nonlinear split cuts (3.25) and CMIR cuts (4.7). For the

CPLEXLP strategy, we observe that in average, nonlinear split cuts and CMIR cuts close

9% and 11.52% of the integrality gap at the root node, respectively. On the other hand,

for CPLEXNLP strategy, the average gap closed at the root node using the nonlinear split

cuts and CMIR cuts are 13.18% and 13.01%, respectively. Therefore, there is no significant

domination between the two classes of cuts in terms of closing the integrality gap at the root

node and and hence the lack of non-polyhedral information in the generation of CMIR cuts

seems to be mostly compensated by the strength of their common extended formulation. On

the other hand, the average integrality gaps at the terminal nodes are significantly smaller

for CMIR cuts. This could partially be due to the fact that adding linear CMIR cuts is

less computationally expensive than adding nonlinear split cuts and therefore the extended

formulation with CMIRs outperforms the original formulation with the nonlinear split cuts.

Moreover, this could also be due to the power of the extended formulation to generate

CMIRs, which we study next.

We now compare the strength of the original formulation (6.4) (with no cuts) versus the

extended formulation (6.5) (with no cuts). Using the extended formulation (6.5) does pro-

vide a significant computational advantage by improving the effectiveness of the CPLEXLP

strategy as the average integrality gap at the terminal node is significantly smaller for the

extended formulation; however, we do not see such an improvement for CPLEXNLP strategy.

Finally, the average integrality gaps at the terminal nodes for both formulations with no

cuts are smaller than those for the formulations with cuts. This suggests that while adding

cuts improve the formulations by closing the integrality gap at the root nodes, it does not

provide much computational advantage for solving CVP instances. We further study this by

comparing the effectiveness of the cuts and formulations using solve times.

Table 2 presents the solve times for the randomly generated CVP instances. Note that if

an instance is not solved to optimality in the time limit of 1800 seconds, we report the solve

time as 1800.

We see that the average solve times for the extended formulation with CMIR cuts are

smaller than those of the the original formulation with nonlinear split cuts. Hence, CMIRs

seem to provide the best balance between strength, cut generation expense, and compu-
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Table 2: Solve Times for CVP Instances

Original Formulation Extended Formulation
n rep CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts
10 1 0.31 0.68 0.23 1.95 0.05 0.1 0.37 0.43
10 2 0.11 0.13 0.06 0.61 0.03 0.07 0.09 0.14
10 3 0.57 1.84 0.61 4.96 0.1 0.14 0.95 0.93
10 4 0.4 0.98 0.23 3.64 0.07 0.13 0.37 0.59
10 5 1.22 6.02 2.54 23.33 0.36 0.36 4.03 5.53
20 1 932.54 1800 9.97 902.11 6.79 6.83 18.79 28.08
20 2 1800 1800 13.42 755.78 8.55 9.26 24.9 34.23
20 3 1538.93 1800 16.39 1800 8.89 10.22 31.22 48.17
20 4 474.1 1800 3.93 342.33 3.27 3.23 7.51 12.29
20 5 1800 1800 64.47 1800 19.13 22.02 121.12 148.82
30 1 1800 1800 1800 1800 1800 1800 1800 1800
30 2 1800 1800 1011.67 1800 1800 1800 1800 1800
30 3 1800 1800 1669.87 1800 1800 1800 1800 1800
30 4 1800 1800 1394.62 2166.11 1800 1800 1800 1800
30 5 1800 1800 1800 1800 1800 1800 1800 1800
40 1 1800 1800 1800 1800 1800 1800 1800 1800
40 2 1800 1800 1800 1800 1800 1800 1800 1800
40 3 1800 1800 1800 1800 1800 1800 1800 1800
40 4 1800 1800 1800 1800 1800 1800 1800 1800
40 5 1800 1800 1800 1800 1800 1800 1800 1800
50 1 1800 1800 1800 1800 1800 1800 1800 1800
50 2 1800 1800 1800 1800 1800 1800 1800 1800
50 3 1800 1800 1800 1800 1800 1800 1800 1800
50 4 1800 1800 1800 1800 1800 1800 1800 1800
50 5 1800 1800 1800 1800 1800 1800 1800 1800
Average 1341.93 1440.47 1031.61 1320.09 1081.93 1082.13 1088.4 1091.18

tational burden resulting from adding the cuts to the formulation. However, no class of

cuts seems to provide a computational advantage for solving CVP (we found similar results,

both in absolute and relative strength among the cut classes, by trying non-elementary dis-

junctions). Using the extended formulation (6.5) does provide a significant computational

advantage by improving the effectiveness of CPLEXLP strategy (see [53] for a detailed dis-

cussion of how extended formulations can help such algorithms). However, it is unlikely

that this approach will outperform specialized CVP algorithms such as the SDP-inspired

branch-and-bound algorithm from [26].

Finally, Table 3 summarizes the node counts for randomly generated CVP instances.

Also note that CPLEX did not add any cuts while solving the CVP instances.
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Table 3: Node Counts for CVP Instances

Original Formulation Extended Formulation
n rep CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts
10 1 2112 1387 189 145 294 289 189 166
10 2 913 278 35 31 158 73 35 47
10 3 3945 3458 539 398 876 603 537 391
10 4 2729 1955 197 259 508 563 197 241
10 5 8578 9762 1942 1998 2937 2287 1942 1980
20 1 437101 65826 4167 3940 29798 25648 4167 4180
20 2 457287 51922 5670 4107 30199 29722 5609 5434
20 3 676760 79419 7511 7839 40565 40918 7532 7857
20 4 357009 90817 1695 1856 15840 11369 1695 1945
20 5 614300 79946 26665 10979 83561 79132 26629 22604
30 1 332732 34000 429800 1272 1682270 1530924 179127 118531
30 2 280680 33428 228347 1173 1701093 1180753 178024 117775
30 3 290297 31500 383767 1276 2791983 1832705 182690 115060
30 4 300114 35366 318779 1251 2151980 1936830 179833 118518
30 5 306756 37335 374596 1199 1909900 1531080 169680 103394
40 1 234365 29228 241799 240 655700 651676 95040 60760
40 2 251785 29696 242200 210 1157534 984761 94652 59677
40 3 263160 29035 244960 230 830653 862747 95659 63671
40 4 242637 31046 193293 260 1230137 909597 76527 46824
40 5 250585 31900 250319 251 642834 761281 99071 60950
50 1 215187 24382 157715 70 434315 512084 56660 37840
50 2 208389 23574 152039 69 438149 447115 55504 35100
50 3 206040 19698 151980 61 453836 461091 58547 36439
50 4 200474 19946 153575 63 470466 416099 55782 34010
50 5 214239 22425 150550 57 409695 771835 56980 37074
Average 254326.96 32693.16 148893.16 1569.36 686611.24 599247.28 67292.32 43618.72

6.0.9 Mean-Variance Capital Budgeting (MVCB)

The second class of problems we study consists of capital budgeting problems with a mean-

variance objective [9, 13, 67, 92] of the form

max
x

{
rTx− γxTV x : cTx ≤ d, x ∈ Zn

}
, (6.6)

where r is the expectation vector and V is the covariance matrix of uncertain return for n

projects. There is also a budget constraint cTx ≤ d, and γ > 0 is the investor’s risk-averseness

parameter.
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As described in [9], for a ∈ Rn such that aTV 1/2 = 1
2γ
r, (6.6) can be written as

γaTa− γmin
x

{
xTV x− 2aTV 1/2x+ aTa : cTx ≤ d, x ∈ Zn

}
,

which in turn can be formulated in the conic quadratic form as

γaTa− γ
(

min
(x,t0)

{
t0 :

∥∥V 1/2x− a
∥∥

2
≤ t0, cTx ≤ d, x ∈ Zn, t0 ∈ R+

})2

. (6.7)

Therefore, the optimization problem we need to solve for each instance of MVCB is of the

form

min
(x,t0)

{
t0 :

∥∥V 1/2x− a
∥∥

2
≤ t0, cTx ≤ d, x ∈ Zn, t0 ∈ R+

}
. (6.8)

In order to obtain the actual optimal objective value, we need to first solve the optimization

problem (6.8) and then transform the optimal objective value to the correct one using (6.7).

However, since the purpose of our experiments is to compare the strength of nonlinear split

cuts and linear CMIR cuts, we only solve the optimization problem (6.7) and do not consider

the transformation given by (6.8).

The second formulation of MVCB that we consider is the extended formulation

min
(x,t,t0)

{
t0 :

∣∣V 1/2x− a
∣∣ ≤ t, ‖t‖2 ≤ t0, cTx ≤ d, x ∈ Zn, t ∈ Rn, t0 ∈ R+

}
. (6.9)

As before, we compare the effectiveness of nonlinear split and linear CMIR cuts by adding

them to the original formulation (6.8) and the extended formulation (6.9), respectively.

6.0.9.1 Test Instances We generate 5 randomly generated instances for each n ∈

{60, 80, 100, 110, 120} and γ ∈ {1} similar to the data generation of [9]. In particular, entries

of matrix B are chosen uniformly at random in [−1, 1] and entries of the vectors b and c

are chosen uniformly at random in [0, 1]. Moreover, the budget d is chosen as d =
n∑
i=1

|ai|.

Note that since V is the covariance matrix, we need to make sure all its diagonal entries are

non-negative; however, since the purpose of our experiments is to compare the strength of

nonlinear split cuts and linear CMIR cuts, we relax this requirement. As in Section 6.0.8, for

simplicity, we only consider the n CMIR and split cuts associated to elementary disjunctions.
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6.0.9.2 Results We now present the computation results for MVCB instances. Table 4

summarizes the percentage integrality gaps at the root and terminal nodes for randomly gen-

erated MVCB instances. In Table 4, n denote the problem size, rep denote the replication

number, R denote the root node, and T denote the terminal node. As before, if an instance

is solved to optimality, we report the integrality gap at the terminal node as 0.

Table 4: Gaps for MVCB Instances

Original Formulation Extended Formulation
CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

n rep No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts
R T R T R T R T R T R T R T R T

60 1 20.05 12.16 15.51 14.24 0.22 0 0.22 0 17.38 1.18 17.38 1.36 0.22 0 0.22 0
60 2 22.36 0 22.29 0 3.68 0 3.57 0 8.16 0 8.16 0 3.68 0 3.68 0
60 3 42.38 31.5 41.72 37.48 1.25 0 1.25 0 40.47 0 40.47 0 1.25 0 1.25 0
60 4 28.8 0 24.72 0 5.35 0 4.18 0 12.23 0 12.23 0 5.35 0 5.35 0
60 5 26.1 16.72 26.1 19.94 0.46 0 0.46 0 19.5 1.98 22.47 1.68 0.46 0 0.46 0
80 1 31.09 0 26.78 18.97 4.3 0 3.27 1.2 13.52 0 13.52 0 4.3 0 4.3 0
80 2 60.44 38.68 57.36 50.77 1.09 0 1.05 0.71 25.37 0 25.37 0 1.09 0 1.09 0
80 3 35.51 0 32.61 25.8 5.72 0 4.75 3.62 14.3 0 14.3 0 5.72 0 5.72 0
80 4 57.55 30.11 57.81 49.35 1.08 0 1.07 0.8 5.73 0 5.73 0 1.08 0 1.08 0
80 5 78.13 57.24 73.46 71.25 6.8 0 6.05 2.15 57.36 0 57.36 0 43.9 0 43.9 0
100 1 54.43 40.4 53.01 48.03 0.5 0 0.49 0.3 34.58 0.13 34.58 0 0.49 0 0.5 0
100 2 14.08 8.43 12.32 9.18 0.07 0 0.07 0.04 12.74 7.34 12.74 7.14 0.07 0 0.07 0
100 3 65.27 23.18 56.88 28.52 2.88 0 2.77 1.13 9.74 0 9.74 0 2.88 0 2.88 0
100 4 60.07 46.9 59.87 56.2 1.06 0 1.04 0.39 40.93 0 40.93 0 1.06 0 1.06 0
100 5 7.84 4.71 6.44 5.04 0 0 0.02 0 6.58 4.09 6.58 3.87 0.02 0 0 0
110 1 75.04 57.19 74.8 68.61 1.85 0 1.76 0.73 9.62 0 9.62 0 1.85 0 1.85 0
110 2 68.32 54.46 68.43 63.39 1.27 0 1.14 0.88 56.03 0 56.03 0 1.27 0 1.27 0
110 3 1.1 0.8 1.33 0.91 0 0 0 0 1.59 0.9 1.59 0.91 0 0 0 0
110 4 74.24 60.12 73.6 68.11 1.52 0 1.49 1.21 8.41 0 8.41 0 1.52 0 1.52 0
110 5 3.85 1.9 3.05 2.6 0 0 0 0 3.29 1.82 3.55 1.82 0 0 0 0
120 1 46.37 18.93 43.84 40.19 6.02 0 5.58 4.29 17.63 0 17.63 0 6.02 0 6.02 0
120 2 53.4 42.98 56.38 53.13 0.34 0 0.34 0.25 2.86 0 2.86 0 0.34 0 0.34 0
120 3 52.4 46.86 56.86 52.31 0.56 0 0.56 0.36 49.21 4.69 49.21 4.65 0.56 0 0.56 0
120 4 69.44 21.12 34.04 31.49 3.64 0 3.51 2.54 10.38 0 10.38 0 3.64 0 3.64 0
120 5 45.1 30.14 44.98 38.53 0.16 0 0.16 0.11 37.63 2.59 37.63 2.6 0.16 0 0.16 0
Average 43.73 25.78 40.97 34.16 1.99 0 1.79 0.83 20.61 0.99 20.74 0.96 3.48 0 3.48 0

We first compare the strength of nonlinear split cuts (3.25) and CMIR cuts (4.7). We see

that in average, nonlinear split cuts close 6.44% and 4.7% of the integrality gap at the root

node for CPLEXLP and CPLEXNLP strategies, respectively. On the other hand, CMIR

cuts do not seem to close much of the integrality gap at the root node. However, the average

integrality gaps at the terminal nodes are smaller for CMIR cuts.

97



We now compare the strength of the original formulation (6.8) (with no cuts) versus the

extended formulation (6.9) (with no cuts). Using the extended formulation (6.9) does pro-

vide a significant computational advantage by improving the effectiveness of the CPLEXLP

strategy as the average integrality gap at the terminal node is significantly smaller for the

extended formulation; however, we do not see such an improvement for CPLEXNLP strategy

as all the instances are solved to optimality for both formulations.

Finally, the average integrality gaps at the terminal nodes of the original formulation

with no cuts are smaller than that with the nonlinear split cuts. On the other hand, the

average integrality gaps at the terminal nodes of the extended formulation with and without

CMIR cuts seem to be comparable.

Table 5 presents the solve times for the randomly generated MVCB instances. As before,

if an instance is not solved to optimality in the time limit of 1800 seconds, we report the

solve time as 1800.

Table 5: Solve Times for MVCB Instances

Original Formulation Extended Formulation
n rep CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts
60 1 1800 1800 1.45 1011.21 1800 1800 3.49 11.19
60 2 28.34 1316.62 1.38 1193.32 0.55 0.67 2.91 9.95
60 3 1800 1800 1.37 1026.65 47.17 49.76 3.02 11.66
60 4 71.37 1758.53 2.01 1269.5 0.58 0.73 4.06 10.39
60 5 1800 1800 1.98 1093.09 1800 1800 3.67 9.27
80 1 135.09 1800 4.39 1800 1.04 1.42 10.49 19.49
80 2 1800 1800 3.91 1800 20.32 23.83 11.26 23.43
80 3 878.5 1800 4.57 1800 1.44 1.84 10.76 22.57
80 4 1800 1800 4.05 1800 12.22 18.02 10.53 24.25
80 5 1800 1800 6.13 1800 5.18 6.45 12 21.15
100 1 1800 1800 9.12 1800 1800 1461.55 22.32 45.77
100 2 1800 1800 6.88 1800 1800 1800 14.8 41.04
100 3 1800 1800 7.83 1800 2.72 3.54 20.03 49.41
100 4 1800 1800 9.4 1800 38.56 39.14 19.95 48.2
100 5 1800 1800 7.97 702.24 1800 1800 2.52 31.6
110 1 1800 1800 11.7 1800 28.9 38.93 28.3 71.3
110 2 1800 1800 11.31 1800 98.81 126.66 27.73 64.53
110 3 1800 1800 0.17 288.57 1800 1800 0.34 0.99
110 4 1800 1800 12.21 1800 12.22 14.49 28.43 61.91
110 5 1800 1800 0.33 365.16 1800 1800 0.44 1.23
120 1 1800 1800 16.66 1800 3.37 4.33 44.98 88.28
120 2 1800 1800 14.14 1800 73.06 87.66 42.08 96.45
120 3 1800 1800 17.27 1800 1800 1800 58.85 88.17
120 4 1800 1800 18.44 1800 3.28 4.44 44.52 92.99
120 5 1800 1800 15.76 1800 1800 1800 43.88 92.69
Average 1556.61 1779.53 7.62 1504.55 662.02 651.36 18.85 41.52
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We see that the average solve times of the extended formulation with CMIR cuts are

significantly smaller than those of the the original formulation with nonlinear split cuts.

Hence, CMIRs seem to provide the best balance between strength, cut generation expense,

and computational burden resulting from adding the cuts to the formulation. Using the

extended formulation (6.5) does provide a significant computational advantage by improving

the effectiveness of CPLEXLP strategy. Furthermore, while CMIR cuts improve the average

solve time of the extended formulation with CPLEXLP strategy, no class of cuts seems to

provide a significant computational advantage for solving MVCB (we found similar results,

both in absolute and relative strength among the cut classes, by trying non-elementary

disjunctions).

Finally, Tables 6 and 7 present the node counts and the total number of added cuts by

CPLEX for randomly generated MVCB instances.

Table 6: Node Counts for MVCB Instances

Original Formulation Extended Formulation
n rep CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts
60 1 177592 29148 63 98 241402 269833 65 100
60 2 44607 56608 113 110 199 206 113 112
60 3 176667 18039 112 109 72652 63647 111 104
60 4 110089 78079 107 109 221 218 107 114
60 5 177213 17503 71 103 198996 265206 71 103
80 1 150555 40476 148 27 190 177 141 148
80 2 156944 11186 147 39 15056 14724 137 144
80 3 891973 34322 152 30 393 363 152 152
80 4 213851 14518 143 26 9479 10322 142 140
80 5 148000 13993 142 27 1574 2012 141 141
100 1 134727 9622 174 15 366495 323741 165 163
100 2 152837 18695 137 14 190136 197500 99 127
100 3 184046 21780 182 15 554 559 181 183
100 4 142806 9900 181 14 16494 10861 178 177
100 5 147943 22986 130 5 165627 164677 5 79
110 1 137078 8627 200 10 9970 10422 200 188
110 2 128363 7900 194 11 36840 33710 194 190
110 3 129017 28907 0 0 142934 127729 0 0
110 4 134900 8400 194 9 3500 3168 196 189
110 5 138541 24127 0 0 116179 135774 0 0
120 1 915701 15663 223 5 245 250 221 222
120 2 133201 7550 211 6 27488 25606 190 190
120 3 121553 6700 204 6 219100 282462 203 192
120 4 1004059 16772 226 5 310 279 217 219
120 5 142714 7179 197 7 295400 231199 195 200
Average 239799.08 21147.2 146.04 32 85257.36 86985.8 136.96 143.08
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Table 7: Number of Added Cuts by CPLEX for MVCB Instances

Original Formulation Extended Formulation
n rep CPLEXLP CPLEXNLP CPLEXLP CPLEXNLP

No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts No Cuts With Cuts
60 1 1 2 0 0 3 3 0 0
60 2 4 2 0 0 3 3 0 0
60 3 2 0 0 0 4 4 0 0
60 4 4 2 0 0 1 1 0 0
60 5 1 1 0 0 2 2 0 0
80 1 3 3 0 0 4 4 0 0
80 2 2 1 0 0 2 2 0 0
80 3 4 3 0 0 5 5 0 0
80 4 3 0 0 0 5 5 0 0
80 5 2 2 0 0 4 4 0 0
100 1 2 2 0 0 3 3 0 0
100 2 1 0 0 0 3 3 0 0
100 3 2 3 0 0 4 4 0 0
100 4 4 3 0 0 3 3 0 0
100 5 0 0 0 0 0 0 0 0
110 1 1 1 0 0 4 4 0 0
110 2 0 0 0 0 3 3 0 0
110 3 1 0 0 0 1 1 0 0
110 4 2 1 0 0 6 6 0 0
110 5 1 0 0 0 0 1 0 0
120 1 6 2 0 0 7 7 0 0
120 2 2 1 0 0 5 5 1 1
120 3 2 2 0 0 4 4 0 0
120 4 3 1 0 0 4 4 0 0
120 5 1 1 0 0 5 5 0 0
Average 2.16 1.32 0 0 3.4 3.44 0.04 0.04

6.0.10 Concluding Remarks

Our computational experiments on CVP and MVCB instances show that using extended

formulations provides a significant computational advantage by improving the effectiveness

of CPLEXLP strategy. One can see that the solve times of the extended formulations of

these problems (with no cuts) are significantly smaller than those of the original formulations

(with no cuts).

On the other hand, while CVP and MVCB problems provide simple and clean settings

to compare the strength of cuts, no class of cuts seems to provide a computational advantage

for solving these problems. In particular, while adding cuts improves the formulations by re-

ducing the integrality gap at the root node, it does not provide any additional computational

advantage, as solve times of the formulations with cuts generally increase.
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Finally, we see that there is no significant domination between the two classes of cuts and

hence the lack of non-polyhedral information in the generation of CMIR cuts seems to be

mostly compensated by the strength of their common extended formulation. Furthermore,

the average solve times of the extended formulations with CMIR cuts are significantly smaller

than those of the original formulations with nonlinear split cuts. Therefore, CMIRs seem

to provide the best balance between strength, cut generation expense, and computational

burden resulting from adding the cuts to the relaxation. However, it seems that most of the

computational advantage is due to the extended formulation and the CMIR cuts themselves

do not provide much additional computational advantage. We expect the CMIRs to have a

better performance in problems with few conic quadratic constraints and many linear con-

straints, where we can generate linear split cuts derived by jointly using the original linear

constraints and the polyhedral portion of the CMIR extended formulation. Studying such

problems is beyond the current research, but taking advantage of advanced separation tech-

niques (e.g., [39]) can potentially help CMIRs provide additional computational advantage

on top of the extended formulation.
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7.0 CONCLUSIONS

This dissertation is focused on the development of new cuts and extended formulations for

Mixed Integer Nonlinear Programs. We introduce two techniques to give precise charac-

terization of general intersection cuts for several classes of MINLP problems with specific

structures. We also study the relation between the introduced cuts and some known classes

of cutting planes from MILP. Furthermore, we show how an aggregation technique can be

easily extended to characterize the convex hull of sets defined by two quadratic or by a conic

quadratic and a quadratic inequality. We also computationally evaluate the performance of

the introduced cuts and extended formulations on two classes of MINLP problems.

In Chapter 3 we study the generalization of split, k-branch split, and intersection cuts

from MILP to MINLP. We propose two simple techniques to derive general intersection cuts

for several classes of MINLP problems with specific structures. In particular, we give simple

formulas for split cuts for essentially all convex sets described by a single conic quadratic

inequality. We also give simple formulas for k-branch split cuts and some general intersection

cuts for a wide variety of convex quadratic sets.

In Chapter 4 we study split cuts and extended formulations for MICQP. In particular,

we study the relation between Conic MIR (CMIR) cuts [9] and nonlinear split cuts for a class

of MICQP problems. We also study an extended formulation for such a class of MICQP and

illustrate how the power of an extended formulation can improve the strength of a cutting

plane procedure in MINLP.

In Chapter 5 we consider an aggregation technique introduced by Yıldıran [94] to study

the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic

inequality. We show how this aggregation technique can be easily extended to yield valid

conic quadratic inequalities for the convex hull of sets defined by two quadratic or by a conic
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quadratic and a quadratic inequality. We also show that in many cases under additional

assumptions, these valid inequalities characterize the convex hull exactly.

In Chapter 6 we computationally evaluate the performance of the introduced linear

and nonlinear cuts and extended formulations on two classes of MINLP problems (Closest

Vector Problem and Mean-variance Capital Budgeting). We compare the strength of the

nonlinear cuts added to the original formulation versus the linear cuts added to an extended

formulation.
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[15] P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs, and T. Terlaky. On families of quadratic
surfaces having fixed intersections with two hyperplanes. Discrete Applied Mathematics,
161(16):2778–2793, 2013.
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[31] M. Conforti, G. Cornuéjols, and G. Zambelli. Corner polyhedron and intersection cuts.
Surveys in Operations Research and Management Science, 16:105–120, 2011.

[32] W. J. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer program-
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