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Proper brain function depends upon the precise organization of neural circuits. In the central 

auditory system, accurate acoustic processing depends upon the assembly and preservation of 

tonotopically-organized networks of excitatory and inhibitory synaptic connections.  

In this thesis, we investigated the development and plasticity of intrinsic synaptic 

circuitry in the central nucleus of the mouse inferior colliculus (CNIC), a tonotopically-

organized midbrain nucleus that serves as the major subcortical center for auditory integration.  

In the CNIC, intrinsic connections comprise the majority of synapses, yet the functional 

organization of these local networks has remained largely obscure.  

In Chapter 2, we mapped the functional organization of intrinsic connections in the CNIC 

during the first three weeks of postnatal development. We found evidence of robust excitatory 

and inhibitory intrinsic connections already at postnatal day 2 (P2). Excitatory and inhibitory 

intrinsic connections underwent a period of dramatic refinement after hearing onset, resulting in 

a predominance of intrinsic inhibition. 

 In Chapter 3, we examined the role of hearing experience in directing the maturation of 

intrinsic CNIC circuits by rearing mice in pulsed white noise. We found that pulsed noise 

delivered from P12-25, but not P19-25, led to a profound reorganization of excitatory and 

inhibitory intrinsic connections received by both glutamatergic and GABAergic neurons, 

suggesting that intrinsic CNIC circuits are sculpted by acoustic experience during an early 

critical period.  

Development and Plasticity of Intrinsic Connectivity in the Central Nucleus of the 
Mouse Inferior Colliculus 

  

Joshua Sturm A.B. 

University of Pittsburgh, 2015
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In Chapter 4, we investigated the effects of hearing-loss on the organization of CNIC 

circuits in a mouse model of tinnitus. We found that hearing loss led to reorganizations of 

excitatory and inhibitory local CNIC circuits, the nature of which correlated with the presence or 

absence of behavioral evidence of tinnitus. Acoustic enrichment with pulsed white noise 

delivered immediately after acoustic trauma prevented circuit reorganization and the emergence 

of behavioral signs of tinnitus.  

In addition to providing the first characterization of functional intrinsic connectivity in 

the auditory midbrain, our findings may also have broader implications for the principles that 

govern the organization and balance of excitatory and inhibitory networks in subcortical circuits. 

Our findings also have potentially important clinical implications for the prevention and 

treatment of tinnitus. 
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1.0  GENERAL INTRODUCTION 

1.1 ACTIVITY-DEPENDENT CONSTRUCTION OF AUDITORY CIRCUITS 

The mature brain is composed of precisely organized neural circuits comprised of excitatory and 

inhibitory synaptic connections. These connectivity networks enable animals to interact with 

their external worlds and to develop adaptive behaviors suited to their unique environmental 

niches. While the initial assembly of neural circuits involves genetically programmed sets of 

molecular interactions (Goodman and Shatz, 1993), the functional optimization of these circuits 

requires periods of activity-dependent refinement (Zhang and Poo, 2001). Early in development, 

activity-dependent refinement of immature circuits is directed by internally generated patterns of 

correlated spontaneous activity (Kirkby et al., 2013). As the brain progressively matures, circuit 

refinement becomes increasingly driven by sensory experience (Katz and Shatz, 1996). Although 

much experience-dependent circuit sculpting takes place early in life, during windows of 

enhanced synaptic plasticity called critical periods (CP), it is now clear that substantial synaptic 

reorganization can also take place in adulthood (Hübener and Bonhoeffer, 2014).  

The experience-dependent maturation of neural circuits is crucial for the establishment of 

normal brain function, and changes in sensory experience, either during development or in 

adulthood, can have dramatic effects on circuit organization. A clear example of this principle 

can be seen in the central auditory system, where the rapid and accurate processing of sounds is 
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afforded by the precise topographical structuring of neural circuits according to preferred sound 

frequency (tonotopy). In the developing rodents, degrading sensory experience during the initial 

weeks of hearing experience can disturb the maturation of tonotopic organization (Zhang et al., 

2001; Zhang et al., 2002; Chang and Merzenich, 2003; Insanally et al., 2010) and have long-

lasting consequences for acoustic response selectivity (Sanes & Constantine-Paton, 1983; Sanes 

& Constantine-Paton, 1985; Seidl and Grothe, 2005; Grecova et al., 2009). Furthermore, in adult 

animals, where auditory circuits are largely mature, hearing loss can lead to substantial changes 

in the intrinsic and synaptic properties of auditory neurons, and can contribute to central hearing 

disorders such as tinnitus and hyperacusis (Roberts et al., 2010; Knipper et al., 2013). 

In order to develop effective means of preventing and treating central hearing disorders, it 

will be crucial to elucidate the processes by which central auditory circuits become precisely 

organized in development, as well as how changes in sensory experience can modify this 

functional organization. Here we investigate these questions by examining the development and 

plasticity of intrinsic synaptic circuitry in the mouse inferior colliculus, the subcortical nexus for 

auditory integration.  

1.2 THE INFERIOR COLLICULUS 

The inferior colliculus (IC) is the principal midbrain nucleus of the central auditory system and 

acts as the major subcortical site for the integration of acoustic information. In the ascending 

auditory pathway, the IC acts as an obligatory synaptic terminus for nearly all auditory brainstem 

nuclei (Adams, 1979; Aitken and Phillips 1984b), including the cochlear nucleus (CN) (Oliver, 

1984; Oliver, 1987; Cant and Benson, 2008), the superior olivary complex (SOC) (Shneiderman 
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and Henkel, 1987; Oliver 2000) and the lateral lemniscus (LL) (Saint Marie et al., 1997; Gabriele 

et al., 2000a) (Figure 1-1). These converging projections carry information about various sound 

attributes (e.g. duration, frequency, intensity and location), which is assimilated and integrated in 

the IC. In the descending auditory pathway, the IC receives substantial projections from the 

auditory cortex (Saldaña et al., 1996; Winer et al., 1998; Bajo and Moore, 2005), which exert 

top-down control of auditory processing in the IC (Ma and Suga, 2001; Xiao and Suga, 2005; 

Yan et al., 2005; Ma and Suga, 2008; Nakamoto et al., 2008) and which have recently been 

shown to modulate sound-driven behavior (Bajo et al., 2010; Xiong et al, 2015).  In addition to 

these ascending and descending inputs, the IC also receives an intercollicular projection from the 

contralateral IC (Moore et al., 1998; Malmierca et al., 2005; Fathke and Gabriele, 2009), as well 

as an extensive network of intracollicular (intrinsic) synaptic connections (Saldaña and Merchán, 

1992), which gives rise to the majority of IC synapses (Saldaña and Merchán, 1992). The 

function of these intrinsic networks remains unclear, but recent evidence suggests that they are 

preferentially engaged at higher sound levels, where they modulate the dynamic range of 

neuronal responses (Grimsley et al., 2013) and may contribute to the intensity-dependent shaping 

of spectrotemporal receptive fields (Lesica and Grothe, 2008). 

The IC is composed of three principal divisions: a central nucleus (CNIC), a lateral 

cortex (LCIC) and a dorsal cortex (DCIC) (Fig 1-1) (Aitkin, 1979; Morest and Oliver, 1984). 

The function of each IC division is reflected by its unique combination of synaptic inputs and 

postsynaptic targets. For example, the CNIC, which plays a critical role in integration of acoustic 

stimulus features (Winer and Schreiner, 2005), receives the majority of its synaptic input from 

the auditory brainstem nuclei (Aitkin et al., 1994; Malmierca, 2004). Output from the CNIC is 

primarily sent to the ventral division of the thalamic medial geniculate body (MGB), which 
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serves as the principal relay nucleus to primary auditory cortex (A1) (Calford and Aitkin, 1983; 

Wenstrup and Grose, 1995). The CNIC also sends descending projections to the dorsal nucleus 

of the LL (DNLL) (Caicedo and Herbert, 1993), the granule cell domain of the dorsal CN (DCN) 

(Malmierca et al., 1996) and the efferent medial olivocochlear system (MOC) (Vetter et al., 

1992). The DCIC, on the other hand, which plays an important role in top-down modulation of 

auditory processing (Stebbings et al., 2014), primarily receives synaptic input from the auditory 

cortex. Outgoing ascending projections from the DCIC are principally sent to the deep dorsal 

division of the MGB (Winer and Morest, 1984; Mellott et al., 2014), whereas descending DCIC 

projections are sent to multiple divisions of the DCN (Vater and Feng, 1990). Finally, the LCIC, 

which is believed to contribute to multimodal sensory integration, is the only IC division to 

receive considerable non-auditory input (Morest and Oliver, 1984). The LCIC sends ascending 

projections to both the dorsal and medial divisions of the MGB (Winer and Morest, 1983), and 

descending projections to the CN (Schofield, 2001) and SOC (Vetter et al., 1992). Thus, the IC is 

composed of three functional divisions, each of which is distinguishable on the basis of its 

unique distribution of synaptic inputs and outputs.  

 

 

 

 

 

 

 

 



 5 

 
Figure 1-1. Synaptic organization of the inferior colliculus 

Schematic of major excitatory (red) and inhibitory (blue) inputs to IC. Synaptic inputs to the IC arise from 

ascending, commissural, descending and intrinsic sources. Ascending projections primarily terminate in central 

nucleus (CNIC), whereas descending projections terminate in dorsal cortex (DCIC) and non-auditory (multisensory) 

projections terminate in lateral cortex (LCIC). Projections shown to single IC for simplicity (mirrored projections 

are received by contralateral IC). Legend: AC; auditory cortex, CNIC; central nucleus of inferior colliculus, DCIC; 

dorsal cortex of inferior colliculus, DCN; dorsal cochlear nucleus, DNLL; dorsal nucleus of lateral lemniscus, H; 

hippocampus, INLL; intermediate nucleus of lateral lemniscus, LCIC; lateral cortex of inferior colliculus, LSO; 

lateral superior olive, MSO; medial superior olive, SPN; superior paraolivary nucleus, VCN; ventral cochlear 

nucleus, VNLL; ventral nucleus of lateral lemniscus. 
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1.3 THE CENTRAL NUCLEUS OF THE INFERIOR COLLICULUS 

The central nucleus (CNIC) is the most extensively studied of the three IC divisions, and has 

been shown to be essential for normal hearing (Jenkins and Masterton, 1982). The CNIC exhibits 

a robust tonotopic organization, where neurons with similar characteristic frequency (CF) 

preferences are clustered together into anatomically defined fibrodendritic (isofrequency) 

laminae (Figure 1-2 A) (Oliver and Morest, 1984; Stiebler and Ehret, 1985; Malmierca, 2004). 

Isofrequency laminae are approximately 150-200 μm wide and extend lengthwise up to 1,000 

μm along the ventrolateral (VL) to dorsomedial (DM) direction (Willott and Shnerson, 1978; 

Romand and Ehret, 1990). The orientation of these laminae demarcates an “isofrequency axis,” 

which runs orthogonal to the tonotopic axis of the CNIC (Fig 1-2 A) (Stiebler and Ehret, 1985; 

Romand and Ehret, 1990). In the CNIC, ascending brainstem projections terminate in alignment 

with fibrodendritic laminae, thereby preserving their tonotopic relations (Morest and Oliver, 

1984; Oliver and Morest, 1984; Stiebler and Ehret, 1985; Malmierca et al., 1993; Gabriele et al., 

2000a, 2007; Henkel et al., 2005; Miller et al., 2005; Henkel et al., 2007). For example, low-

frequency (lateral) parts of the lateral superior olive (LSO) (Guinan et al., 1972 a,b) project to 

the dorsolateral (DL, low frequency) portion of the CNIC (Merzenich and Ried, 1974; 

Glendenning and Masterton, 1983), whereas high-frequency (dorsal) parts of the dorsal cochlear 

nucleus (DCN) project to the ventromedial (VM, high frequency) portion of the CNIC (Oliver, 

1984).  

In addition to its clear tonotopic organization, the CNIC also exhibits a topographic axis 

of tone-evoked neuronal response latencies (Hattori and Suga, 1997; Reetz and Ehret, 1999). 

This axis parallels the isofrequency axis in the VL-to-DM direction, with VL neurons exhibiting 

shorter response latencies to tones centered at their CFs compared to DM neurons. Interestingly, 
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this response latency gradient is paralleled by a biochemical gradient of inhibitory 

neurotransmitter receptor densities (Fubara et al., 1996), where GABAA receptor density 

increases from VL to DM and glycine receptor density increases from DM to VL. The 

predominance of indices of glycinergic inhibition in the VL domain, where CNIC neurons 

exhibit the fastest tone-evoked response latencies, is consistent with a critical role of glycinergic 

inhibition in enabling the rapid temporal processing necessary for coincidence detection (Saitoh 

and Suga, 1995; Myoga et al., 2010). Additionally, differences in the distributions of 

postsynaptic neurotransmitter receptor types along the isofrequency axis may reflect 

heterogeneity in the ascending and/or local synaptic network configurations of CNIC neurons 

with similar CF preferences. Indeed, spectrally matched ascending projections to the CNIC do 

not terminate uniformly within isofrequency laminae, but rather are segregated into “functional 

zones” (FZs) according to input source (Aitkin and Schuck, 1985; Maffi and Aitkin, 1987; 

Shneiderman and Henkel, 1987; Oliver et al., 1997; Loftus et al., 2004; Bajo and Moore, 2005; 

Cant and Benson, 2006). Neurons in the CNIC that receive input from different FZs exhibit 

distinct binaural response properties and periodicity preferences (Wenstrup et al., 1986; 

Schreiner and Langner, 1988; Loftus et al., 2010), likely resulting from a combination of the 

response properties of their inherited inputs, their intrinsic membrane properties, and their 

intrinsic connectivity within the CNIC. Thus, multiple levels of functional organization exist 

within the CNIC, which together contribute to the diversity of spectrotemporal response 

properties exhibited by CNIC neurons (Escabi and Schreiner, 2002; Lesica and Grothe, 2008). 
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Figure 1-2. Functional organization of central nucleus of inferior colliculus 

 (A) CNIC neurons with similar characteristic frequency preferences are organized into isofrequency laminae 

(colored ellipses). Isofrequency laminae extend orthogonal to tonotopic axis, which runs along the ventromedial 

(high frequency) to dorsolateral (low frequency) direction. (B) Two morphological cell types found in CNIC 

(cartoon depictions). Dendritic (dashed) and axonal (solid) extensions of disc-shaped cells (black) predominantly 

restricted to individual isofrequency lamina, whereas extensions of stellate cells (red) cross multiple laminae. 

Legend: D; dorsal, L; lateral, M; medial, V; ventral. 
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1.4 INTEGRATION OF EXCITATORY AND INHIBITORY INPUTS IN CNIC  

Neurons in the CNIC receive a profound diversity of converging excitatory and inhibitory 

synaptic inputs (Figure 1-1). Excitatory synaptic inputs to CNIC neurons are glutamatergic, 

whereas inhibitory synaptic inputs can be either GABAergic or glycinergic. In mammals, major 

glutamatergic projections to the CNIC arise contralaterally, from the dorsal (DCN) and 

anteroventral (AVCN) divisions of the CN (Oliver, 1984; Oliver, 1987) and the lateral superior 

olive (LSO) (Shneiderman and Henkel, 1987), and ipsilaterally, from the medial superior olive 

(MSO) (Oliver et al., 1995) (Figure 1-1). GABAergic inhibitory projections, on the other hand, 

predominately arise contralaterally, in the DNLL (Shneiderman et al., 1998) and IC (González-

Hernández et al., 1996), and ipsilaterally in the superior paraolivary nucleus (SPN)  (González-

Hernández et al., 1996), DNLL (Shneiderman et al., 1998) and VNLL (Thompson et al., 1985). 

In addition to these GABAergic inhibitory pathways, prominent glycinergic inhibitory 

projections to the CNIC arise ipsilaterally, in the LSO (Saint Marie et al., 1989) and the VNLL 

(Winer et al., 1995). Neurons in the CNIC can, themselves, be glutamatergic or GABAergic 

(Ono et al., 2005; Ito et al., 2009), suggesting that intrinsic IC networks likely consist of both 

excitatory and GABAergic inhibitory connections. However, direct evidence of functional 

intrinsic excitatory and inhibitory CNIC circuits has been lacking. 

Physiological studies in a number of mammalian species (bats, cats, guinea pigs, rats and 

mice) have revealed by intracellular recordings that excitatory and inhibitory inputs interact to 

determine sound-evoked responses of CNIC neurons (Covey et al., 1996; Pedemonte et al., 1997; 

Kuwada et al., 1997; Gitelman et al., 2009; Xiong et al., 2013; Ono and Oliver, 2014). Individual 

CNIC neurons can receive excitatory and inhibitory inputs from several ascending sources (Ono 

and Oliver, 2014), and the relative strength and timing of these inputs both contribute to shaping 
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the sound-evoked discharge patterns of CNIC neurons (Ono and Oliver, 2014; Xiong et al., 

2013). For example, CNIC neurons have been shown to detect inter-aural level differences 

(ILDs), which provide salient cues for localizing binaurally presented sounds in space, by scaling 

contralaterally evoked synaptic excitation in an ILD-dependent manner, without changing 

evoked synaptic inhibition (Xiong et al., 2013). Importantly, this ILD-dependent modulation of 

excitation: inhibition balance left frequency tuning unchanged, thereby providing a modality-

specific gain adjustment mechanism that allows CNIC neurons to dynamically encode a sound’s 

location in space without affecting their selectivity for other acoustic features (Xiong et al., 

2013). In a second study, directional selectivity for frequency-modulated (FM) sweeps was 

shown to emerge in CNIC neurons via the assimilation of excitatory and inhibitory input 

strengths (Gittelman et al., 2009).  In this study, direction-dependent shifts in the relative 

magnitudes of excitatory and inhibitory synaptic conductances were shown to account for the 

selectivity of IC neurons for upward or downward FM sweeps (Gittelman et al., 2009). Taken 

together, the evidence from these studies suggests that the dynamic integration of excitatory and 

inhibitory synaptic inputs onto CNIC neurons contributes to the generation of response 

selectivity for various acoustic attributes in the IC. 

1.5 INTRINSIC CIRCUITRY OF THE CNIC 

While the organization and integration of extrinsic projections to the IC have become 

increasingly well understood in recent years (Brunso-Bechtold et al., 1981; Maffi and Aitkin, 

1987; Oliver, 1987, 2000; Faingold et al., 1993; Burger and Pollak, 2001; Malmierca et al., 2002; 

Henkel et al., 2005; Cant and Benson, 2008; Bajo et al., 2010; Pollak et al., 2011; Xiong et al., 
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2013), the anatomical and functional organization of intrinsic connections in the CNIC has 

remained unclear. Intrinsic axons in the CNIC arise from two major morphological cell types: 

disc-shaped (flat) and stellate (less flat) neurons (Figure 1-2 B) (Oliver and Morest, 1984; 

Meininger et al., 1986; Oliver et al., 1991; Malmierca et al., 1993). Disc-shaped neurons exhibit 

elliptical dendritic fields (200-800 μm long and 50-70 μm wide) and local axon collaterals that 

are both restricted to the same fibrodendritic lamina as the dendrites of their parent neurons 

(Oliver et al., 1991). The intralaminar local axons of these disc-shaped neurons likely connect IC 

neurons that are tuned to similar sound frequencies, but that may reside in different functional 

zones (Brunso-Bechtold et al., 1981; Maffi and Aitkin, 1987; Shneiderman and Henkel, 1987; 

Oliver, 2005; Cant and Benson, 2006; Loftus et al., 2010). In contrast to disc-shaped IC neurons, 

stellate cells exhibit spherical dendritic fields (spanning 200-500 μm) and local axons that extend 

across several fibrodendritic laminae (Winer & Schreiner, 2005). Thus, whereas disc-shaped 

cells are morphologically poised to integrate information across tonotopically-matched afferent 

projections and intrinsic networks, stellate-cells appear suited to facilitate information exchange 

across isofrequency laminae, between IC neurons with different CF preferences (Merzenich and 

Reid, 1974; Ehret and Romand, 1994; Schreiner and Langner, 1997; Malmierca et al., 2008). 

While the morphological distinctions between disc-shaped and flat IC neurons suggest 

different cellular specializations, perhaps involving distinct synaptic network architectures, the 

organization of functional synaptic connectivity in the CNIC has remained elusive. Disc-shaped 

and stellate IC neurons can be both glutamatergic and GABAergic (Ono et al., 2005; Ito et al., 

2009), suggesting that intrinsic IC networks are likely to be excitatory as well as inhibitory, yet 

little is else is known about the functional organization of these networks. In Chapter 2, we 

describe a series of studies aimed at elucidating the functional organization of intrinsic CNIC 
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networks. In these studies, we used laser-scanning photostimulation with caged glutamate 

(LSPS) (Figure 1-3) to characterize the strength and the spatial distribution of local excitatory 

and inhibitory inputs received by CNIC neurons in mice during the first three weeks of postnatal 

development (P2-P22). 
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Figure 1-3. Mapping synaptic connections in the CNIC with laser-scanning photostimulation. 

(A) UV photostimulation lyses the covalent linkage between glutamate (black) and the caging compound (red, caging 

group is 4-methoxy-7-nitroindolinyl (MNI) group from MNI-caged-L-glutamate, Tocris) (left), thereby releasing free 

glutamate (middle) that drives nearby neurons to spike (right). Spiking in presynaptic neurons leads to neurotransmitter 

release and postsynaptic responses in the recorded cell (B) Schematic illustration of input mapping in the inferior 

colliculus, with whole-cell path clamp recording electrode.  Light pulses are delivered to a series of stimulation targets 

(stim grid)  (C) Excitatory (red trace) and inhibitory (blue trace) synaptic inputs can be distinguished by holding the 

membrane potential of the recorded cell near the reversal potential for chloride (-65 mV) and glutamatergic 

neurotransmission (0 mV), respectively. Compared to direct stimulations (black trace), synaptic responses have longer 

onset latencies. (D) Left, Example of an excitatory synaptic input map obtained with laser-scanning photostimulation 

from an IC neuron in a P7 mouse. Right, Synaptic inputs are abolished by mapping in the presence of TTX, which blocks 

action potential generation leaving only direct responses intact. (E) Example average excitatory (left, same map as 2D, 

left) and inhibitory (right) synaptic input maps. Direct responses sites are shown in black. Figure adapted from Sturm et 

al., 2015. 
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1.6 ACTIVITY-DEPENDENT REFINEMENT IN THE DEVELOPING CNIC 

Activity-dependent refinement is a central mechanism by which initially imprecise synaptic 

connections are sculpted into precise, functionally optimized neural circuits (Wong, 1993; Katz 

and Shatz, 1996; Kandler, 2004; Spitzer, 2006; Huberman et al., 2008; Kandler et al., 2009; 

Kirkby et al., 2013). In the rodent auditory system, activity-dependent refinement takes place in 

two principal stages of development: before hearing onset and after hearing onset. Before 

hearing onset, which occurs around postnatal day (P) 12 (Rubel, 1984), substantial refinement of 

functional connectivity has been demonstrated in the auditory brainstem (Kim and Kandler, 

2003; Noh et al., 2010; Case et al., 2011), and this refinement has been shown to depend upon 

spontaneous activity patterns originating in the pre-hearing cochlea (Clause et al., 2014). These 

spontaneous activity patterns arise when depolarized inner hair cells (IHCs) in the cochlea 

release glutamate onto auditory nerve afferents, causing them to fire patterned bursts of action 

potentials that are propagated along the ascending central auditory pathways  (Jones et al., 2007; 

Tritsch et al., 2007; Tritsch and Bergles, 2010). The patterning of spontaneous auditory nerve 

discharges appears to instruct pre-hearing refinement of auditory circuitry, since disrupting the 

temporal fine structure of these spontaneous bursts has been shown to profoundly disrupt the 

functional and structural sharpening of an inhibitory tonotopic map in the auditory brainstem 

(Clause et al., 2014). Substantial neural circuit refinement also takes place after hearing onset 

(Sanes and Siverls, 1991; Kapfer et al., 2002; Magnusson et al., 2005; Sun et al., 2010; Clause et 

al., 2014), as the patterning of neural activity in the auditory system becomes increasingly driven 

by the spectral and temporal structures of auditory inputs. Changes in the acoustic properties of 

auditory inputs during early hearing experience can disrupt both structural and functional circuit 

refinement (Magnusson et al., 2005; Werthat et al., 2008), and have long-lasting effects on 
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acoustic response selectivity (Sanes and Constantine-Paton, 1983; Sanes and Constantine-Paton, 

1985; Zhang et al., 2001; Zhang et al., 2002; Chang and Merzenich, 2003; Chang et al., 2005; 

Razak et al., 2008; de Villers-Sidani et al., 2008; Zhou et al., 2008; Grecova et al., 2009; 

Insanally et al., 2010; Oliver et al., 2011; Bures et al., 2014).  

In the CNIC, afferent projections from the auditory brainstem are present at birth 

(Kandler and Friauf, 1993; Okoyama et al., 1995), and are rapidly refined before hearing onset 

(Oliver, 2000; Gabriele et al., 2000a, 2007; Henkel et al., 2007). This pre-hearing maturation, 

which involves the segregation of auditory afferents that initially terminate in a uniform manner 

in the CNIC into distinct isofrequency bands with clear inter-band spaces (Gabriele et al., 

2000a), has been shown to depend on cochlear-generated spontaneous activity (Gabreile et al., 

2000b; Franklin et al., 2006; Franklin et al., 2008). In contrast to the arrangement of auditory 

afferents in the CNIC, which appears adult-like at hearing onset, the organization of intrinsic 

CNIC circuits leading up to hearing onset has remained unclear. Intrinsic CNIC circuit 

refinement may be largely complete by hearing onset, or it may continue after hearing onset in 

an experience-dependent manner. Prior studies in rodents have shown that altering the patterning 

of sound-evoked activity during the first week of hearing with pulsed white noise exposure 

prevents the maturation of frequency selectivity in CNIC (Sanes and Constantine-Paton, 1983; 

Sanes and Constantine-Paton, 1985), and since afferent connections are largely mature at hearing 

onset, these developmental deficits may involve a rewiring of local CNIC circuits. However, it 

remains to be determined whether changes in the acoustic properties of auditory inputs during 

early hearing experience can lead to reorganizations of intrinsic CNIC circuits.  

In Chapter 3, we describe a series of studies aimed at investigating the role of early 

hearing experience on the maturation of intrinsic CNIC circuits. In these studies, we exposed 
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mice to pulsed white noise during the first two weeks of hearing and mapped local connectivity 

to glutamatergic and GABAergic CNIC neurons using LSPS with caged glutamate. 

1.7 PLASTICITY OF THE ADULT CNIC AFTER HEARING LOSS 

In addition to playing a critical role in instructing the maturation of central auditory circuits 

during development, changes in hearing experience can also cause plastic changes in the adult 

auditory system.  In the mature CNIC, experience-dependent plasticity has been most extensively 

studied after hearing loss, either involving complete deafening with cochlear ablation (McAlpine 

et al., 1997; Mossop et al., 2000; Vale and Sanes, 2002; Vale et al., 2004; Alvarado et al., 2005) 

or partial cochlear damage with acoustic trauma (Wang et al., 2002; Ma et al., 2006; Bauer et al., 

2008; Dong et al., 2009; Mulders and Robertson, 2009; Dong et al., 2010, Wang et al., 2011; Niu 

et al., 2013). A number of these studies have linked hearing loss to changes in indices of 

GABAergic inhibitory neurotransmission in the CNIC, with the majority of studies reporting 

decreased global indices of GABA signaling (Bledsoe et al., 1995; Mossop et al., 2000; Milbrant 

et al., 2000; Dong et al., 2009, 2010; but see Bauer et al., 2000). In contrast, few studies have 

reported hearing loss-related changes in markers of excitatory neurotransmission in the IC  (but 

see Suneja et al., 2000b).  

Reductions in GABAergic neurotransmission after hearing loss are thought to underlie 

multiple changes in the response properties of IC neurons, perhaps by functionally “unmasking” 

CNIC connections that would otherwise remain inactive. For example, focal cochlear damage 

has been shown to increase evoked potential (EP) amplitudes in the CNIC at frequencies below 

the peak of cochlear damage (Salvi et al., 1992), a phenomenon that likely relates to the 
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recruitment of CNIC neurons. Consistent with this hypothesis, cochlear deafness has been shown 

to simultaneously decrease GABA release in the CNIC and to increase the number of Fos-

immunoreactive CNIC cells activated by electrical stimulation of the cochlea (Nagase et al., 

2000). Decreases in GABAergic neurotransmission in the CNIC may also contribute to multiple 

forms of noise-induced hyperactivity that can emerge in CNIC neurons after cochlear damage, 

including increased spontaneous firing rates (Ma et al., 2006; Bauer et al., 2008; Dong et al., 

2009; Mulders and Robertson, 2009; Dong et al., 2010), Increased burst firing (Bauer et al., 

2008; Wang et al., 2011), and increased signal gain (Wang et al., 2002; Niu et al., 2013). Hearing 

loss-related hyperactivity in the CNIC may initially be inherited from the CN, which can also 

become hyperactive after cochlear trauma (Brozoski et al., 2002; Mulders and Robertson, 2011; 

Vogler et al., 2011; Middleton et al, 2011; Manzoor et al., 2012 a/b; Li et al., 2013), and this 

inherited hyperactivity may be amplified by local decreases in GABAergic neurotransmission in 

the CNIC.  

1.8 PLASTICITY OF THE CNIC IN TINNITUS 

A host of studies have also linked hearing loss-induced changes in the CNIC with the perception 

of phantom sounds in tinnitus (Berger and Coomber, 2015).  Hearing loss is the leading risk 

factor for tinnitus (Helfer et al., 2001; Yankaska et al., 2013), and similar patterns of 

hyperactivity in CNIC that develop after hearing loss have also been documented in both tinnitus 

patients and tinnitus animal models (Melcher et al., 2000; Wang et al., 2002; Ma et al., 2006; 

Bauer et al., 2008; Dong et al., 2009; Mulders and Robertson, 2009; Dong et al., 2010; Manzoor 

et al., 2012; Niu et al., 2013; Ropp et al., 2014; Berger and Coomber, 2015). Accordingly, 
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hearing loss-induced decreases in inhibitory neurotransmission in the CNIC may play an 

important role in the generation of tinnitus-related hyperactivity, similar to how reductions in 

synaptic inhibition in the DCN contribute to increased spontaneous firing rates in mice with 

behavioral evidence of tinnitus (Wang et al., 2009; Middleton et al., 2011; Pilati et al., 2012b). 

However, not all patients that suffer from hearing loss develop tinnitus, and it has remained 

unclear which (if any) hearing-loss related changes in the CNIC specifically contribute to 

tinnitus. Furthermore, clear evidence of whether hearing loss and/or the generation of tinnitus 

involve the reorganization of local synaptic circuits in the CNIC is still missing. 

In Chapter 4, we describe a series of studies aimed at identifying hearing-loss-induced 

reorganizations of synaptic circuits that correlate with tinnitus. We applied LSPS with caged 

glutamate to map the organization and strength of intrinsic excitatory and inhibitory synaptic 

inputs onto glutamatergic and GABAergic neurons in the CNIC of noise-traumatized mice with 

and without behavioral evidence of tinnitus.  

1.9 SUMMARY OF DISSERTATION RESEARCH 

In this dissertation, we describe a series of studies aimed at elucidating the functional 

organization of intrinsic synaptic circuits in the central nucleus of the mouse inferior colliculus. 

We first investigate the development of excitatory and inhibitory synaptic networks in the CNIC 

during the first three weeks of postnatal development (Chapter 2). We then explore the activity-

dependence of intrinsic circuit maturation in the CNIC, by manipulating the quality of early 

acoustic experience with pulsed white noise exposure, and measuring changes in the excitatory 

and inhibitory synaptic networks received by identified glutamatergic and GABAergic CNIC 
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neurons (Chapter 3). Finally, We investigate the effects of hearing loss on synaptic organization 

in the CNIC, and correlate specific patterns of local circuit rewiring with the emergence of 

behavioral evidence of tinnitus (Chapter 4). Taken together, the results of these studies highlight 

a remarkable level of functional plasticity in intrinsic microcircuits of the CNIC. 
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2.0  DEVELOPMENT OF INTRINSIC CONNECTIVITY IN THE CENTRAL 

NUCLEUS OF THE MOUSE INFERIOR COLLICULUS 

2.1 INTRODUCTION 

The inferior colliculus (IC) in the midbrain is the major subcortical auditory integration center. It 

receives ascending inputs from almost all auditory brainstem nuclei, descending inputs from the 

thalamus and cortex, and intracollicular projections from the contralateral inferior colliculus 

(Adams, 1979, 1980; Saldaña and Merchán, 1992; Saldaña et al., 1996; Winer et al., 1998; 

Malmierca, 2004; Malmierca et al., 2005). In the central nucleus of the IC (CNIC), afferent 

projections terminate in a tonotopic manner with ascending brainstem projections aligning to 

anatomically defined fibrodendritic laminae (Morest and Oliver, 1984; Oliver and Morest, 1984; 

Stiebler and Ehret, 1985; Malmierca et al., 1993; Gabriele et al., 2000a, 2007; Henkel et al., 

2005; Miller et al., 2005; Henkel et al., 2007). 

In addition to the wide array of ascending and descending projections, the CNIC also 

contains a dense network of local, intrinsic connections (Oliver et al., 1991; Saldaña and 

Merchán, 1992; Casseday et al., 2002; Fathke and Gabriele, 2009; Wallace et al., 2013). Local 

networks are thought to give rise to the majority of synapses in the IC (Saldaña and Merchán, 

2005), suggesting that intrinsic connections significantly contribute to the response properties of 

IC neurons. However, while the organization and integration of extrinsic projections to the IC are 
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becoming increasingly well understood (Brunso-Bechtold et al., 1981; Maffi and Aitkin, 1987; 

Oliver, 1987, 2000; Faingold et al., 1993; Burger and Pollak, 2001; Malmierca et al., 2002, 2005; 

Henkel et al., 2005; Cant and Benson, 2008; Pollak et al., 2011), the anatomical and functional 

organization of intrinsic connections in the CNIC has remained largely obscure. 

Intrinsic axons arise from disc-shaped (flat) as well as stellate (less flat) cells, the two 

major morphological cell types in the CNIC (Oliver and Morest, 1984; Meininger et al., 1986; 

Oliver et al., 1991; Malmierca et al., 1993; Wallace et al., 2012). Because both disc-shaped and 

stellate cells can be glutamatergic or GABAergic (Oliver et al., 1994; Ono et al., 2005), intrinsic 

connections likely are excitatory as well as inhibitory. Local axon collaterals from disc-shaped 

cells predominantly project along the same fibrodendritic laminae as the dendrites of their parent 

neurons (Oliver et al., 1991), and intralaminar local axons likely connect IC neurons that are 

tuned to similar sound frequencies but may reside in different functional zones (Brunso-Bechtold 

et al., 1981; Maffi and Aitkin, 1987; Shneiderman and Henkel, 1987; Oliver, 2005; Cant and 

Benson, 2006; Loftus et al., 2010). In contrast, local axons from stellate cells can spread 

significantly beyond a fibrodendritic laminae (Oliver et al., 1991), thus potentially connecting 

neurons that are tuned to different sound frequencies (Merzenich and Reid, 1974; Ehret and 

Romand, 1994; Schreiner and Langner, 1997; Malmierca et al., 2008). 

The contribution of intrinsic connections to an IC neuron's response properties is poorly 

understood. Recent evidence indicates that intrinsic connections are activated at higher sound 

intensities than extrinsic inputs (Grimsley et al., 2013). The recruitment of intrinsic networks 

increases the dynamic range of IC neurons but has little effect on their frequency or intensity 

tuning. Activation of intrinsic networks at higher sound levels may also contribute to the 

intensity-dependent dynamic nature of the spectrotemporal receptive fields of IC neurons (Lesica 
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and Grothe, 2008). 

To better understand the functional organization and the development of the intrinsic 

networks in the CNIC, we used laser-scanning photostimulation in brain slices from developing 

mice to characterize the strength and the spatial distribution of local excitatory and inhibitory 

inputs and their developmental refinement. 

2.2 MATERIALS AND METHODS 

2.2.1 Animals and slice preparation  

Experimental procedures were performed in accordance with National Institutes of Health 

guidelines and were approved by the Institutional Animal Care and Use Committee at the 

University of Pittsburgh. Brain slices were prepared from neonatal CBA/CaJ mice of either sex 

(The Jackson Laboratory) that ranged in age from postnatal day 2 (P2) to P22. For brain slice 

preparation, animals were deeply anesthetized with isofluorane, decapitated, and their brains 

were immediately removed. Coronal midbrain slices (300 μm) were then prepared using a 

vibrating microtome. Cuts were in a ∼30 degree angle in a dorsocaudal to ventrorostral direction. 

Consistency of this angle was verified using anatomical landmarks in the slice (IC slice 

contained fibers of the lateral lemniscus that entered the IC; slice contained ventral areas just 

rostral to the lateral superior olive). Slices were incubated for 30 min at 34°C in ACSF 

(composition in mM as follows: 1.3 7H2O ×MgSO4, 124 NaCl, 5 KCl, 10 dextrose, 1.25 

KH2P04, 26 NaHCO3, 2.0 CaCl) followed by 1–3 h incubation at 22°C-25°C (Kim and Kandler, 

2003). The synaptic inputs of 89 neurons in the CNIC from 59 mice were mapped. These mice 
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were grouped into four age ranges: P2-P4 (11 animals, 19 neurons), P7-P9 (18 animals, 21 

neurons), P13-P15 (23 animals, 29 neurons), and P19-P22 (7 animals, 20 neurons). 

2.2.2 Electrophysiological recordings  

Whole-cell recordings were aimed at the CNIC using the inferred demarcations of the lateral and 

dorsal cortices of the IC, which, in most cases, were visible in our slices. Although the CNIC 

was clearly recognizable within these defined borders at all ages, individual CNIC neurons 

cannot be unequivocally distinguished from neurons in the external cortices based on 2D 

dendritic morphology alone. Thus, to minimize the probability of incorrectly selecting neurons 

from outside the CNIC, slices that contained the caudal part of the IC (first slice containing the 

IC in our caudal to rostral series) or that contained the caudal part of the superior colliculus were 

excluded. Using this procedure, we only recorded from one slice per animal (the second 300 μm 

slice) and in which we only targeted neurons from within the center of the CNIC. Recordings 

were performed in a submersion-type chamber (3–4 ml/min perfusion with oxygenated ACSF at 

22°C–25°C) mounted on an upright microscope (Zeiss AxioExaminer A1). Borosilicate glass 

pipettes (5–7 MΩ) were filled with a cesium-based internal solution containing (composition in 

mM as follows: 110 D-gluconic acid (C6H12O7), 120 CsOH × H2O, 11 EGTA, 1 MgCl2 × 6H2O, 

1 CaCl2 × 2H2O, 10 HEPES, 0.3 GTP disodium salt, 2.0 ATP disodium salt, 5 QX314-Cl × H2O 

and 0.5% biocytin, pH 7.2, 314 mOsm/L). Whole-cell currents in voltage-clamp mode were 

acquired with a Multiclamp 700B amplifier (Molecular Devices) and a Digidata-1440A A/D 

converter (Molecular Devices) at a sampling rate of 10 kHz using pClamp 10 software 

(Molecular Devices). Voltages were corrected for a junction potential of −13 mV. All 

pharmacological drugs were bath applied. 
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2.2.3 Synaptic input mapping  

The spatial distribution of presynaptic inputs to CNIC neurons was determined using focal 

photolysis of p-hydroxyphenacyl-glutamate (0.1 mM, MNI glutamate, Tocris Bioscience). A 

custom-built system was used to guide the size, location, and duration of the UV light spot used 

to photolyze MNI-glutamate. A UV laser (DPSS Laser, 3510-30, 2 W) was used as a light 

source, and placement of the uncaging spot was steered with galvanometers (Cambridge 

Technology, 6210H). Uncaging position, electrophysiological data acquisition, and analysis were 

under the control of custom-written Labview-programs linked to pClamp software (written by 

Tuan Nguyen). 

Input maps were only collected if cells had a holding current <100 pA and access 

resistance <50 mΩ. UV light pulses (355 nm) were delivered at 1 Hz in a random order. Light 

intensity was 2 mW (measured at slice position), light duration was 1 ms, and UV spot size on 

the slice was 20 μm. For mapping, 5 mM QX314 (Tocris Bioscience) was included in the 

internal solution to prevent spiking at positive holding potentials. An initial map of the entire IC 

was collected first with stimulation targets spaced 80 μm apart (Figure 1B). Responsive areas 

were then mapped at a finer resolution with stimulation sites spaced 40 μm apart (see Figure 2-1 

B). 

Excitatory and inhibitory synaptic responses were isolated by holding cells at −65 and 0 

mV, respectively (Figure 2-1 C). For each condition, 3 input maps were obtained successively 

and the average map was used for analysis (Figure 2-1 D). To distinguish synaptic responses 

from direct stimulation of the recorded cell, input mapping was repeated in the presence of 1 μM 

TTX (Alomone Labs) (see Figure 2-1 D). In the few cases in which maps with TTX could not be 

obtained, responses elicited close to the recorded neuron were classified as synaptic if their onset 
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latency was >7 ms. In these cases, choosing this conservative value may miss short-latency 

synaptic responses arising from locations very close to the recorded cell. When input maps were 

obtained in the absence and presence of TTX, similar maps were obtained using either onset 

latencies or TTX sensitivity as criteria. 

2.2.4 Excitability mapping 

Excitability mapping experiments were performed with loose-seal patches (20–40 MΩ) using 

patch pipettes (5–10 MΩ) filled with ACSF. After forming a loose seal, UV light was delivered 

in a 20 μm grid (225 stimulation sites delivered at random locations) surrounding the recording. 

For each cell, three consecutive excitability maps were obtained, and the average number of 

spikes per stimulation site was used to create excitability maps. 

2.2.5 Data analysis 

Input map shape: Elliptical functions of best fit (least-squares fit, ImageJ, National Institutes of 

Health) were assigned to individual excitatory and inhibitory input maps. An “ellipticity factor” 

(ratio of minor axis, m; to major axis, M), was then calculated for each map (Figure 2-4 B). 

Ellipticity factor values that approach 1 describe input maps that were circular, whereas 

decreasing ellipticity factor values describe input maps that were increasingly elliptical. The 

angle of the long axis to the horizontal (lateral-to-medial) axis was determined with ImageJ 

software. 

Synaptic input area: Synaptic input area was determined by subtracting the responsive uncaging 

area obtained in TTX (direct response area) from the total input map. To account for the 
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expansion of the IC size during development, synaptic input areas were normalized to the cross-

sectional IC area for each age group (Figure 2-5 Bi–iii). 

Synaptic input strength: Total excitatory and inhibitory synaptic strengths were calculated as the 

sums of the synaptic charge (pC) elicited from all stimulation sites at holding potentials of −65 

and 0 mV, respectively. 

2.2.6 Statistical analysis 

Data are presented as mean ± SEM. Data were tested for normal distribution, and both unpaired t 

tests (two-tailed) and Mann–Whitney tests were used to determine statistical significance of 

differences between groups (GraphPad Prism). Statistical significance was set to p < 0.05. 

2.3 RESULTS 

2.3.1 Spatial mapping of local synaptic inputs to single CNIC neurons 

To map the organization of intrinsic excitatory and inhibitory synaptic networks in the 

developing CNIC, we used whole-cell patch-clamp recordings with laser-scanning 

photostimulation. For each neuron, we first scanned the entire CNIC at a resolution of 80 μm to 

identify the overall layout of presynaptic sites. We then obtained finer-scale maps at a resolution 

of 40 μm from the regions that contained responsive stimulation sites (Figure 2-1 B). To 

distinguish between excitatory and inhibitory synaptic responses, maps were obtained while 

holding the membrane potential of the recorded neurons at −65 mV, the reversal potential for 



 27 

chloride, to isolate excitatory responses, and at 0 mV, near the reversal potential of glutamatergic 

responses, to isolate inhibitory responses (Figure 2-1 C). Both excitatory and inhibitory input 

maps were highly reproducible in successive iterations and the average map from three iterations 

was used for all further analysis (Figure 2-1 D). Synaptically elicited responses were 

distinguished from responses to direct glutamate stimulation of the recorded cell (direct 

responses) by their onset latencies (>7 ms) (Figure 2-1 C) and their sensitivity to the voltage-

gated sodium channel blocker TTX (1 μM) (Figure 1D). Areas from which direct responses were 

elicited were excluded from the analysis of input maps (Figure 2-1 D). Consistent with previous 

anatomical studies showing the absence of glycinergic neurons in the IC (Oliver et al., 1994; Ito 

et al., 2009), all inhibitory responses were abolished by the GABAA-receptor antagonist gabazine 

(GBZ, 5 μM, n = 6 neurons, p = 0.001, Mann–Whitney test) (Figure 2-2 B). In contrast, GBZ 

had no effect on excitatory synaptic currents or on excitatory input maps (n = 6, p = 0.741, 

Mann–Whitney test) (Figure 2-2 A, C). 
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Figure 2-1. Mapping local inputs in the CNIC using laser-scanning photostimulation. 

(A) Coronal brain slices (300 μm) containing the CNIC were prepared from P2–P15 mice. (B) An initial, low-

resolution input map of the entire IC is first generated by spacing stimulation sites 80 μm apart. Responsive areas 

are then rescanned at a finer resolution with a stimulation site spacing of 40 μm. (C) Excitatory (red trace) and 

inhibitory (blue trace) synaptic inputs are distinguished by holding neurons at −65 and 0 mV, respectively. Direct 

activation of the recorded cell by uncaged glutamate elicits short latency, direct responses. (D) Example of three 

consecutively obtained excitatory (top row) and inhibitory (bottom row) synaptic input maps (P8). TTX (1 μM) 

abolishes synaptic responses but leaves direct responses intact. Example current traces of synaptic (square) and 

direct (circle) responses are shown for each map. Red lines indicate laser pulse. Maps 1–3 were used to created 

average input in which sites with direct responses are marked in black. 
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Figure 2-2. intracollicular inhibitory connections are mediated by GABA. 

For a subset of neurons (n = 6), 5 μM GBZ was bath-applied during input mapping. (A) Excitatory synaptic input 

maps for a CNIC neuron (P8) before, during, and after washout of 5 μM GBZ. (B) Inhibitory synaptic input 

maps from the same neuron shown in A. Direct response areas are marked in black. (C) Size of excitatory (red) and 

inhibitory (blue) input areas from 6 neurons before (control) and after application of GBZ (+ GBZ). Inhibitory map 

size was calculated exclusively based on outward currents at 0 mV.  
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2.3.2 Input maps represent monosynaptic connections 

Previous studies have shown that disinhibiting the IC favors the recruitment of polysynaptic 

circuits, leading to an increase in the duration of synaptic responses and response areas (Moore et 

al., 1998; Sivaramakrishnan and Oliver, 2006; Chandrasekaran et al., 2013). In our 

mapping experiments, GBZ did not change excitatory input maps (Figure 2-2 C), suggesting 

that our low-intensity uncaging conditions (0.1 mM caged glutamate and 2 mW of laser 

power) primarily activated monosynaptic connections, which are not affected by disinhibition. 

This assumption is further supported by the onset latencies of synaptic currents. First, there was 

no difference in the latencies of excitatory versus inhibitory responses (Figure 2-3 C, D), which, 

however, would be expected if a significant fraction of inhibitory responses were caused 

by the activation of disynaptic connections. Second, onset latencies increased smoothly with 

increasing stimulation distance at similar rates for excitatory (r2 = 0.97, slope = 34.4 ms/mm) 

and inhibitory responses (r2 = 0.926, slope = 36.4 ms/mm, SlopeInhibitory vs SlopeExcitatory, p = 

0.209, ANCOVA) (Figure 2-3 B), and these rates were similar to those reported for 

uncaging-activated monosynaptic connections in the cochlear nucleus (Campagnola and 

Manis, 2014). Finally, if monosynaptic connections are strong enough to generate spikes in 

postsynaptic neurons, one would expect that neurons close to the recorded cell contribute to 

the excitability maps, resulting in excitability maps that are larger than direct response areas. 

This was not the case, however, as the average size of direct response areas (in the presence 

of TTX) was very similar to the area over which photostimulation generated spikes in cell-

attached mode (without TTX, excitability area) (direct 
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response area = 20,890 ± 1643 μm2, n = 68 cells; excitability area = 19,840 ± 5020 μm2, n = 17 

cells; direct vs excitability, p = 0.11, Mann–Whitney test). Thus, single stimuli do not elicit 

synaptically generated spikes in the recorded neuron, which means that unitary connections in 

the IC are weak, requiring the activity of several to many connections to elicit the postsynaptic 

neuron to spike. Together, these results suggest that the excitatory and inhibitory input maps 

obtained with our conditions primarily reflect monosynaptic connections. 

2.3.3 Spatial organization of excitatory and inhibitory intrinsic inputs 

At all ages examined, intrinsic input maps were elongated and oriented along the ventrolateral to 

dorsomedial direction, the presumed isofrequency contour of the CNIC (Willott and Shnerson, 

1978; Romand and Ehret, 1985; Romand and Ehret, 1990). The angle of the isofrequency axis in 

the coronal plane of the mouse IC shortly after hearing onset is ∼35°–55° (Romand and Ehret, 

1990). In each of our age groups, the average orientation angles of both excitatory and inhibitory 

input maps (determined from the fitted ellipses) fell in that range (excitatory maps: P2-P4 = 43.8 

± 4.2°, n = 18; P7-P9 = 37.4 ± 3.0°, n = 20; P13-P15 = 53.1 ± 7.0°, n = 15; P19-P22 = 45.1 ± 

11°, n = 9; inhibitory maps: P2-P4 = 38.1 ± 4.2°, n = 13; P7-P9 = 35.7 ± 3.0°, n = 20; P13-P15 = 

47.1 ± 4.3°, n = 14; P19-P22 = 38.2 ± 10°, n = 9; excitatory vs. inhibitory, p = 0.577, Mann–

Whitney test). 

To quantify the shape of input maps, we fit input maps with an ellipse and calculated the 

“ellipticity factor” (EF, ratio of minor to major axis; referred to elsewhere as the “compressibility 

factor,” see Maling, 1993) (Figure 2-4 B). At all ages, EFs for excitatory and as well as 

inhibitory input maps were 0.5, indicating that input maps were elongated, stretching twice as 

long along the isofrequency direction than along the tonotopic axis (Figure 2-4 C). The degree of 
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elongation changed during the first three postnatal weeks, such that excitatory maps became 

more elongated during the first postnatal week (excitatory, EFP2-P4 = 0.53 ± 0.14, n = 18; EFP7-P9 

= 0.44 ± 0.16, n = 20; p < 0.05, Student's t test), reversed to a more circular shape during the 

second postnatal week (EFP13-P15 = 0.58 ± 0.20, n = 17; p < 0.001, Student's t test), and then 

became more elongated again during the third postnatal week (EFP19-P22 = 0.44 ± 0.05, n = 9; p < 

0.05, Student's t test). Inhibitory maps underwent parallel changes during this period (inhibitory, 

EFP2-P4 = 0.52 ± 0.17, n = 13; EFP7-P9 = 0.39 ± 0.09, n = 20; EFP13-P15 = 0.60 ± 0.19, n = 17; 

EFP19-P22 = 0.45 ± 0.05, n = 10; P2-P4 vs P7-P9, p < 0.05, Student's t test; P7-P9 vs P13-P15, p < 

0.01, Student's t test; P13-P15 vs P19-P22, p < 0.05, Student's t test) (Figure 2-4C). At each age 

group, excitatory input maps were clustered into two distinct populations, which differed in their 

EF values (P2-P4, r2 = 0.98, sum of 2 Gaussian fits; P7-P9, r2 = 0.98, sum of 2 Gaussian fits; 

P13-P15 r2 = 0.89, sum of 2 Gaussian fits; P19-P22, r2 = 89, sum of 2 Gaussian fits) (Figure 2-4 

Di–iv). No separation into two populations was evident at any age for inhibitory input maps. 
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Figure 2-3. Synaptic response latencies are similar for excitatory and inhibitory responses. 

(A) Example of excitatory and inhibitory synaptic input maps color-coded by onset latency (from a P8 mouse).

Black squares represent stimulation sites that elicited direct responses. (B) Mean synaptic onset latencies plotted as a 

function of distance from the recorded cell. Lines are least-squares regression fits for excitation (red, r2 = 0.97, slope 

= 34.4 ms/mm) and inhibition (blue, r2 = 0.926, slope = 36.4 ms/mm). Error bars indicate SEM. (C) Frequency 

histogram of onset latencies of excitatory (red) and inhibitory (blue) synaptic responses (n = 5 cells). (D) 

Cumulative frequency distributions of excitatory (red line) and inhibitory (blue line) synaptic onset latencies 

(Kolmogorov–Smirnov, p = 0.192). n.s., Not significant. 
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Figure 2-4. Excitatory and inhibitory synaptic input maps are oriented along the isofrequency axis. 

(A) Schematic illustration of “isofrequency laminae” in the left CNIC. (B) Example of an excitatory synaptic input

map (left) fitted with an elliptical function (filled red). (C) Developmental changes of ellipticity factors for 

excitatory (red) and inhibitory (blue) input maps. Error bars indicate SEM. *p < 0.05 (two-tailed t test). **p < 0.01 

(two-tailed t test). ***p < 0.001 (two-tailed t test). (D) Histogram of ellipticity factors for excitatory (red) and 

inhibitory (blue) input maps at P2-P4 (i), P7-P9 (ii), P13-P15 (iii), and P19-P22 (iv). Black brackets represent 

distinct populations of excitatory input map shapes. 
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2.3.4 Developmental refinement of excitatory and inhibitory intrinsic input maps 

The size of both excitatory and inhibitory input maps changed during development, expanding 

during the first postnatal week and retracting during the second and third weeks (Figure 2-5 A, 

Bi). To account for the growth of the IC during this period (Figure 5Bii), we normalized input 

areas to the cross-sectional areas of the IC (Figure 2-5 Biii). Between P2-P4 and P7-P9, the 

normalized size of excitatory and inhibitory input maps significantly increased (Figure 2-5 B, C). 

Excitatory maps increased by ∼87% (from 0.14 to 0.26, n = 39; p = 0.01, Student's t test) and 

inhibitory input maps increased by 63.0% (0.17 to 0.28, n = 34; p = 0.01, Student's t test). This 

initial map growth was followed by a significant shrinkage of input maps during the second 

postnatal week. Between P7-P9 and P13-P15, excitatory input area decreased by ∼70% (from 

0.26 to 0.08, n = 49; p < 0.001, Student's t test), and inhibitory input area decreased by 55% 

(from 0.28 to 0.12, n = 46; p < 0.001, Student's t test) (Figure 2-5 B, C). In addition, although 

input maps were present in virtually all neurons before hearing onset, input maps were observed 

in only 69% of cells (20 of 29) immediately after hearing onset. Map refinement continued 

during the third postnatal week. Between P13-P15 and P19-P22, excitatory input area decreased 

by 70% (from 0.08 to 0.02, n = 36; p < 0.01, Mann–Whitney test), and inhibitory input area 

decreased by ∼37%, but this decrease was not statistical significant (from 0.12 to 0.07, n = 36, p 

= 0.21, Student's t test) (Figure 2-5 B, C). Similar to the P13-P15 age range, input maps were 

observed in only 70% of cells between P19-P22 (14 of 20). 
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Figure 2-5. Developmental growth and refinement of local synaptic input maps. 
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Figure 2-5. Developmental growth and refinement of local synaptic input maps. 

(A) Examples of synaptic input maps before (left) and after (right) hearing onset. (B) Age-dependent changes in the

size of excitatory (red) and inhibitory (blue) synaptic input maps. (Bi) Absolute sizes of input maps at different ages. 

Bii, Developmental increase of cross-sectional area of IC. (Biii) Synaptic input areas normalized to the cross-

sectional are of the CNIC for each age group. C, Distribution of excitatory and inhibitory synaptic input area sizes in 

each age group: P2-P4 (i), P7-P9 (ii), P13-P15 (iii), and P19-P22 (iv). D, Neuronal excitability to glutamate 

uncaging during cell-attached recordings. Black circles represent stimulus locations from which example traces were 

recorded. Red line indicates UV light pulse. E, The average number of spikes per stimulus was not significantly 

different between age groups. Numbers in bars indicate number of cells. Error bars indicate SEM. *p < 0.05 (two-

tailed t test). **p < 0.01 (two-tailed t test). ***p < 0.001 (two-tailed t test). n.s, Not significant (p > 0.05). 
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To control for possible age-dependent changes in the effectiveness by which uncaged 

glutamate elicits action potentials in CNIC neurons, which could influence the size of input 

maps, we used cell-attached recordings to construct excitability maps (Figure 2-5 D). In all age 

groups, glutamate uncaging over the recorded cell elicited an average of 2–3 action potentials per 

stimulation (Figure 2-5 E). Thus, the changes in the sizes of input maps reflect the formation of 

new functional intrinsic connections during the first postnatal week followed by the silencing 

and/or elimination of connections during the end of the second postnatal week. 

To determine whether the addition and elimination of synaptic inputs was biased toward 

either the isofrequency or the tonotopic axis, we quantified the amount of map changes along the 

ventrolateral (VL) to dorsomedial (DM) direction (isofrequency axis) and along the ventromedial 

(VM) to dorsolateral (DL) direction (tonotopic axis) (Figure 2-6 A, B). For the P13-P15 and 

P19-P22 age groups, this analysis was restricted to those neurons that received input maps 

exceeding 1% of the IC area (31 of 49 neurons). Between P2-P4 and P7-P9, excitatory as well as 

inhibitory input maps extended along the isofrequency axis, with similar magnitudes toward the 

VL (excitatory, p < 0.001, n = 20; inhibitory, p < 0.01, n = 20) and the DM directions 

(excitatory, p < 0.05, n = 20; inhibitory, p < 0.05, n = 20) (Figure 2-6 C). In contrast, neither the 

excitatory nor the inhibitory maps extended along the tonotopic axis (DL direction: excitatory, p 

= 0.33, n = 20; inhibitory, p = 0.64, n = 20: VM direction: excitatory, p = 0.09, n = 20; 

inhibitory, p = 0.11, n = 20).  
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Figure 2-6. Refinement of input maps along the tonotopic and isofrequency axes. 
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Figure. 2-6. Refinement of input maps along the tonotopic and isofrequency axes. 

(A) Illustration of analysis. Excitatory and inhibitory synaptic inputs were calculated along each of four axes,

relative to the location of the recorded neuron (VL, VM, DL, and DM). Right, Average excitatory and inhibitory 

synaptic charges (normalized to the maximum excitatory and inhibitory responses for that cell, respectively) are 

plotted as a function of distance from the recorded cell. (B) Excitatory (red) and inhibitory (blue) synaptic charges as 

a function of distance to the cell body along each of the four axes. Gray shaded areas represent ± SEM. Black lines 

indicate maximum extent of connections for each age group. (C) Average extent of excitatory and inhibitory 

synaptic input maps along each axis. Error bars indicate SEM. *p < 0.05 (two-tailed t test). **p < 0.01 (two-tailed t 

test). ***p < 0.001 (two-tailed t test). 
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Between P7-P9 and P13-P15, both excitatory and inhibitory maps shrank along the 

isofrequency axis but expanded along the tonotopic axis. Along both axes, these changes were 

asymmetrical. Along the isofrequency axis, excitatory as well as inhibitory maps retracted 

exclusively along the VL direction (excitatory, p < 0.001, n = 18; inhibitory, p < 0.05, n = 18). 

Along the tonotopic axis, excitatory and inhibitory input areas expanded exclusively in the DL 

direction (excitatory, p < 0.05; n = 18; inhibitory, p < 0.05, n = 18) (Figure 2-6 C). 

Between P13-P15 and P19-P22, both excitatory and inhibitory maps shrank along the 

tonotopic axis, in both the DL (excitatory, p < 0.01, n = 20; inhibitory, p < 0.01, n = 20) and VM 

(excitatory, p < 0.05, n = 20; inhibitory, p < 0.05, n = 20) directions (Figure 2- 6C). Very little 

refinement occurred along the isofrequency axis between P13-P15 and P19-P22, except that 

inhibitory maps shrank slightly along the DM direction (p < 0.05, n = 20, Student's t test) (Figure 

2- 6C).

In summary, the sizes of excitatory and inhibitory synaptic input maps underwent two 

parallel alterations during the first two postnatal weeks. These changes were complex, yet 

spatially specific, and primarily involved a combination of growth and retraction along the 

isofrequency axis. During the first postnatal week, input maps expanded symmetrically along the 

isofrequency axis. During the second postnatal week, this growth was followed by a shrinkage of 

input maps that was restricted to the VL direction of the isofrequency axis, along which 

excitatory maps shrank relatively more than inhibitory maps. During the third postnatal week, 

map refinement was most dramatic and was primarily restricted to the VM and DL directions of 

the tonotopic axis resulting in excitatory maps that extended 80–320 μm (182 ± 100 μm, n = 7) 

and inhibitory maps that extended 160–360 μm (240 ± 83 μm, n = 7) along the tonotopic axis, 
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which are comparable with the width of a fibrodendritic lamina in the IC (Shneiderman and 

Henkel, 1987; Malmierca et al., 1993; Fathke and Gabriele, 2009; Wallace et al., 2013). 

2.3.5 Relationship of excitatory and inhibitory input 

To quantify the spatial relationship of excitatory and inhibitory intrinsic input maps in the 

developing CNIC, we first determined the spatial overlap of stimulation sites that elicited 

excitatory and inhibitory responses (Figure 2-7). Overall, the amount of overlap between 

excitatory and inhibitory input maps was substantial (Figure 2-7 C, D), and there was no 

systematic shift in the locations of excitatory and inhibitory inputs relative to each other. 

Approximately 70% of stimulation sites that elicited excitatory responses also elicited inhibitory 

responses (E:I sites), and this percentage did not change with age (Figure 2-7 C). In contrast, the 

percentage of inhibitory stimulation sites that also elicited excitatory responses (I:E sites) was 

age dependent (Figure 2-7 D). At P2-P4, only 45% of sites that elicited inhibitory responses also 

elicited excitatory responses (n = 15 cells), indicating a dominance of GABAergic over 

glutamatergic intrinsic connectivity. During the first postnatal week, the I:E fraction increased to 

66% at P7-P9 (p < 0.01, Mann–Whitney test, n = 31), indicating a relative increase of 

glutamatergic inputs. From P7-P9 to P13-P15, the I:E fraction significantly decreased again to 

47% (p < 0.05, Mann–Whitney test, n = 31), indicating a shift back toward more inhibition at the 

time of hearing onset (Figure 2-7 D). This shift toward inhibition became more pronounced from 

P13-P15 to P19-P22 and the I:E fraction decreased to 31% (p < 0.05, Mann–Whitney test, n = 

30). The fact that the I:E fraction decreased from P7-P9 to P13-P15, and from P13-P15 to P19-

P22, but the E:I fraction remained constant, indicates that the sizes of excitatory maps decreased 

more than the sizes of inhibitory maps after hearing onset. 
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Figure 2-7. Spatial relationship of excitatory and inhibitory synaptic input maps. 

(A) Example excitatory (top) and inhibitory (bottom) input maps from a CNIC neuron (P7). Direct response areas

are in black. (B) Same input maps at higher resolution. Bottom, Superimposition of excitatory and inhibitory 

synaptic maps. (C) Percentage of excitatory stimulation sites that also give rise to inhibitory responses: P2-P4, n = 

13; P7-P9, n = 18; P13-P15, n = 13; P19-P22, n = 12. (D) Percentage of inhibitory stimulation sites that also give 

rise to excitatory responses. Same neurons as in C. (E) Mean ratios of area of excitation to area of inhibition for 

individual neurons: P7-P9, n = 18; P13-P15, n = 13; P19-P22, n = 12. Error bars indicate SEM. *p < 0.05 (two-tailed 

Student's t test). **p < 0.01 (two-tailed Student's t test). n.s., Not significant (two-tailed Student's t test). 
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To quantify the magnitude of this difference, we calculated for each neuron the ratio of 

excitatory input area to inhibitory input area (E:I area index). Between P7-P9 and P13-P15, the 

mean E:I index decreased from 0.93 to 0.64, indicating that around the time of hearing onset, 

excitatory input area decreased by ∼29%, relative to inhibitory input area (p < 0.05, Student's t 

test, n = 31) (Figure 2-7 E). Between P13-P15 and P19-P22, the mean E:I area index decreased 

from 0.64 to 0.32, indicating that, during the third postnatal week, excitatory input area 

decreased by ∼32% relative to inhibitory area (p < 0.05, Student's t test, n = 30). 

Although the size of an intrinsic input map illustrates the area in the CNIC from which 

neurons received synaptic inputs, it does not provide information about the amount of excitation 

or inhibition that IC neurons can receive from intrinsic sources. To address this question, we 

determined the total amount of excitation and inhibition received by each neuron by summing 

the synaptic charge from all stimulation sites. During the first postnatal week, the amount of 

synaptic excitation as well as inhibition dramatically increased, by approximately sixfold for 

excitation (from 34.8 pC to 209.8 pC, n = 22, p < 0.01) and fivefold for inhibition (from 78.9 pC 

to 385.6 pC, n = 22, p < 0.01) (Figure 2-8 A, B). Because the increase in the amounts of synaptic 

excitation and inhibition was similar, the mean E:I charge ratio remained unchanged (Figure 2-8 

C). Between P7-P9 and P13-P15, the amount of excitation and inhibition decreased, but this 

decrease was not statistically significant (excitation, p = 0.35, Mann–Whitney test; inhibition, p 

= 0.17, Mann–Whitney test). However, the mean E:I ratio decreased by ∼37%, from 0.61 to 0.38 

(p < 0.05, Mann–Whitney test, n = 31) (Figure 2-8 C), indicating that total excitation decreased 

more than inhibition. Between P13-P15 and P19-P22, there was a dramatic decrease in the 

amount of excitation and inhibition, from 85.9 pC to 3.9 pC for excitation (p < 0.05, n = 30, 

Mann–Whitney test) and from 139.4 pC to 37.8 pC for inhibition (p < 0.05, n = 30, Mann–
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Whitney test). The magnitude of the changes in total strength of inhibition and excitation 

matched the magnitude of changes we observed in the size of excitatory and inhibitory input 

maps (Figure 2-7 E). 

The dominance of local inhibition that emerged around hearing onset could result from a 

relative increase in inhibitory input area and/or from an increase in the strength of inhibitory 

connections. To address this question, we analyzed the charge density of excitatory and 

inhibitory maps (Figure 2-8 D, E). During the first postnatal week, charge density significantly 

increased for both excitatory and inhibitory maps (p < 0.01, n = 22 cells, two-tailed t test), 

indicating a strengthening of intrinsic connections during this developmental period. An increase 

in excitatory and inhibitory charge density was also observed during the second postnatal week, 

although this increase was not statistically significant (excitatory, p = 0.54; inhibitory, p = 0.42). 

The increase in excitatory and inhibitory strength was similar and as a result, the E:I charge 

density ratio remained the same (Figure 2-8 F). 

During the third postnatal week, however, charge density decreased for both excitatory (p 

< 0.01, n = 30, Student's t test) and inhibitory connections (p < 0.01, n = 30, Student's t test) 

(Figure 2-8 D, E). This decrease was slightly greater for excitatory charge density then for 

inhibitory charge density, but the difference was not large enough to lead to a change in the E:I 

charge density ratio (Figure 2-8 F). In summary, these results indicate a dominance of 

GABAergic inhibition during the first three postnatal weeks, which increased in magnitude after 

hearing onset (Figure 2-8 C) because of a relative increase in inhibitory input area compared 

with excitatory input area. 
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Figure 2-8. Development of the strength of intrinsic excitatory and inhibitory inputs. 

(A) Developmental changes of mean total excitatory synaptic charge received by CNIC neurons (mean ± SEM; P2-

P4, n = 9; P7-P9, n = 14; P13-P15, n = 10; P19-P22, n = 9). (B) Mean total inhibitory synaptic charge received by 

same neurons as in A. (C) Mean ratio of total excitatory and inhibitory synaptic charge per cell. (D) Developmental 

change of excitatory charge density (P2-P4, n = 8; P7-P9, n = 14; P13-P15, n = 9; P19-P22, n = 11). (E) Mean 

charge density of inhibitory maps (same neurons as in D). (F) Ratio of excitatory charge density to inhibitory charge 

density at different ages. Error bars indicate SEM. *p < 0.05 (two-tailed Student's t test). **p < 0.01 (two-tailed 

Student's t test). ***p < 0.001 (two-tailed Student's t test). n.s., Not significant (two-tailed Student's t test). 
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Although excitatory and inhibitory inputs maps overlapped considerably, on a 

microcircuitry level, these maps could be heterogeneous, and individual presynaptic sites within 

these maps might be dominated by either excitation or inhibition. To address this possibility, we 

compared the strength of excitatory and inhibitory responses for each individual stimulation site 

from which both responses could be elicited (Figure 2-9). In some neurons, the amplitudes of 

excitatory and inhibitory responses elicited from individual stimulation sites were highly 

correlated (linear correlation with slope approaching 1), whereas in other neurons, many 

stimulation sites gave rise to predominantly excitatory or inhibitory inputs (linear correlation 

with slope approaching 0) (Figure 2-9 B–F). In each age group, both the slopes and correlation 

coefficients were spread between 0 and 1. Negative correlations were rarely encountered, 

indicating that strong synaptic inputs of one type (either excitatory or inhibitory) were not 

systemically paired with weak inputs of the other type. Thus, the strengths of overlapping 

excitatory and inhibitory inputs were more likely to be balanced than antagonistic. Interestingly, 

in the neurons in which we observed a low correlation of excitatory and inhibitory response 

amplitudes, either excitation- or inhibition-dominated stimulation sites tended to cluster together 

(Figure 2-9 F), suggesting that these neurons receive spatially restricted “subclusters” of inputs 

that are predominately excitatory or inhibitory. 
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Figure 2-9. Relative synaptic strength of excitatory and inhibitory responses emanating from individual 

stimulation sites. 
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Figure 2-9. Relative synaptic strength of excitatory and inhibitory responses emanating from individual 

stimulation sites.  

(A) Example of superimposed excitatory and inhibitory inputs. Red box represents stimulation site that elicited the 

isolated excitatory and inhibitory responses shown to the right (blue represents inhibitory; yellow represents 

excitatory). Black boxes represent stimulation sites that elicited direct responses. (B–E) Excitatory versus inhibitory 

synaptic charge from corresponding stimulation sites, normalized to the peak charge. Two example neurons from 

each age group are shown (i, ii). Each data point represents a single stimulation site. Lines indicate least-squares 

linear regressions and Pearson correlation coefficients (r). (F) Population of correlation coefficients. Horizontal 

black lines indicate median. (G) Input maps from four cells around hearing onset with r values ∼0 (marked by 

arrows in E). Stimulation sites dominated by inhibition or excitation are clumped together, but the pattern varies 

highly between cells. 
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2.4 DISCUSSION 

2.4.1 Summary of findings 

In this study, we used laser-scanning photostimulation with caged glutamate to provide the first 

characterization of functional intrinsic connectivity in the central nucleus of the inferior 

colliculus. Our results demonstrate that, already at P2, the CNIC contains an extensive excitatory 

and inhibitory intrinsic network. Excitatory and inhibitory inputs were spatially organized, 

forming continuous maps that largely overlapped with each other and that were aligned with the 

presumed isofrequency axis. This characteristic organization persisted throughout the first two 

postnatal weeks of development. However, the size of input maps was developmentally regulated 

undergoing an expansion during the first postnatal week that was followed by a significant 

shrinkage that began around the onset of hearing. These changes occurred in parallel for 

excitatory and inhibitory input maps, although the elimination of intrinsic connections was 

greater for excitatory than for inhibitory connections, resulting in a predominance of intrinsic 

inhibition at the end of the third postnatal week. 

 

2.4.2 Technical considerations 

An issue to consider when using photostimulation to map the organization of synaptic inputs is 

whether input maps represent monosynaptic or polysynaptic inputs. In our experiments, we 

aimed to stimulate monosynaptic inputs by using low concentrations of caged-glutamate (0.1 

mM), low laser power (2 mW), and short laser pulse durations (1 ms). Our stimulation conditions 
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were of significantly lower intensity than those used in other uncaging studies that activated 

monosynaptic connections in the auditory cortex and brainstem (Noh et al., 2010; Oviedo et al., 

2010; Hirtz et al., 2012; Campagnola and Manis, 2014) but still yielded reliable input maps in 

the IC. Several lines of evidence argue in favor that our conditions primarily activated 

monosynaptic connections. First, disinhibiting the IC by blocking GABAA receptors, a condition 

that allows the recruitment of polysynaptic circuits (Sivaramakrishnan and Oliver, 2006; 

Chandrasekaran et al., 2013), did not affect excitatory input maps (Figure 2-2). Second, the onset 

latencies of excitatory and inhibitory responses were indistinguishable (Figure 2-3 C, D), and 

both increased with distance from the recorded cell at similar rates of ∼34 ms/mm (Figure 2-3 

B). These rates are comparable with the rates reported for monosynaptic connections in the 

AVCN of adolescent mice recorded at slightly higher temperatures (Campagnola and Manis, 

2014). Third, the average size of spike-eliciting areas obtained with cell-attached recordings was 

indistinguishable from the average size of direct stimulation areas obtained with whole-cell 

recordings in the presence of TTX (∼400 μm2), which blocks spike-elicited synaptic 

transmission. This indicates that presynaptic neurons activated under our photostimulation 

conditions do not elicit postsynaptic spikes that are necessary for polysynaptic transmission. 

Together, these results indicate that our input maps predominantly reflect the spatial organization 

of monosynaptic connections. 

2.4.3 Organization of intrinsic synaptic input maps 

Our studies demonstrate that functional, intrinsic input maps in the developing CNIC exhibit a 

laminar organization that closely follows the curvature of isofrequency contours in the CNIC 

(Ehret and Romand, 1994), thereby connecting neurons with similar best frequencies. This is 
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consistent with previous anatomical (Oliver et al., 1991; Saldaña and Merchán, 1992; Malmierca 

et al., 1993, Miller et al., 2005; Wallace et al., 2012) and physiological (Grimsley et al., 2013) 

studies. Our results also revealed that this organization applies to both excitatory and inhibitory 

intrinsic circuits. The typical laminar organization was a consistent feature of all neurons that we 

recorded, despite the fact that our sample likely included many of the anatomically and 

physiologically distinct cell types that are present in the IC (Oliver and Morest, 1984; Peruzzi et 

al., 2000; Sivaramakrishnan and Oliver, 2001; Tan et al., 2007). Therefore, a laminar 

organization appears to be a fundamental feature of intrinsic connectivity that is shared by a wide 

variety of cell types in the IC. 

Along the isofrequency domain, intrinsic input maps were continuous (e.g., not 

“patchy”), and the strength of both excitatory and inhibitory inputs diminished smoothly with 

increasing distance from the recorded neuron (Figure 2-6). Thus, intrinsic connections can link 

different “functional zones,” which share a common spectral tuning but receive different 

ascending (Aitkin and Schuck, 1985; Maffi and Aitkin, 1987; Shneiderman and Henkel, 1987; 

Oliver et al., 1997; Loftus et al., 2004; Malmierca et al., 2005; Cant and Benson, 2006) and/or 

descending inputs (Bajo and Moore, 2005). IC neurons in different functional zones exhibit 

distinct binaural response properties and periodicity preferences (Wenstrup et al., 1986; 

Schreiner and Langner, 1988; Loftus et al., 2010), and the integration of these elements by 

intrinsic IC circuits may facilitate the processing of complex acoustic features, such as tempo 

and rhythm (Bregman et al., 1985). 

Along the tonotopic axis, excitatory and inhibitory input maps extended between 400 μm 

(P2-P4) and 600 μm (Figure 2-5) at hearing onset. This indicates that, at this age, input maps 

likely span 2–6 frequency bands, or fibrodendritic lamina, each of which is ∼100–200 μm wide 
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(Shneiderman and Henkel, 1987; Malmierca et al., 1993; Fathke and Gabriele, 2009; Wallace et 

al., 2013). Wide input maps connecting several frequency bands may contribute to the immature 

frequency filters that are present at this age (Yu et al., 2005). Since the organization of ascending 

inputs to the IC is mature at hearing onset (Gabriele et al., 2000a, 2007; Henkel et al., 2007), the 

maturation of frequency filters that occurs after hearing onset (Ehret and Romand, 1994; Yu et 

al., 2005) may reflect the refinement of intrinsic IC maps that also occurs after hearing onset 

(Figures 2-5 and 2-6). 

Although in 3-week-old animals the average tonotopic width of intrinsic maps 

corresponded to the width of fibrodendritic laminae, ∼30%–40% of maps (6 of 14) extended 

significantly >200 μm along the tonotopic axis (up to 400 μm), thus connecting 2–3 frequency 

bands. These tonotopically wide maps across could contribute to the broad tuning of 

subthreshold synaptic inputs (Xie et al., 2007) that exists despite the strict tonotopic termination 

patterns of extrinsic inputs (Oliver, 2000; Malmierca et al., 2005; Cant and Benson, 2006). It 

could also provide a neuronal substrate for the spectral integration of complex sounds seen, for 

example, in “combination-sensitive” neurons (Portfors and Felix, 2005). In mice, >30% of IC 

neurons are combination-sensitive and exhibit either combination-sensitive facilitation or 

inhibition, where a neuron's response to a particular sound frequency is either increased 

(facilitation) or decreased (inhibition) by the presence of a second sound that is separated by at 

least an octave (∼3 frequency bands) (Portfors and Felix, 2005). Combination-sensitive 

facilitation and inhibition are important for creating selective responses to species-specific 

sounds in the IC (Klug et al., 2002), and the organization of intrinsic CNIC circuits is suitable to 

contribute to the generation of these responses. Because intrinsic circuits are preferentially 

engaged at higher sound intensities (Grimsley et al., 2013), intensity-dependent recruitment of 
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excitatory and inhibitory intrinsic inputs from other fibrodendritic lamina may underlie the 

generation of the complex spectrotemporal receptive fields of CNIC neurons observed at higher 

sound intensities (Lesica and Grothe, 2008). 

 

2.4.4 Intrinsic excitation: inhibition balance 

Intrinsic excitatory and inhibitory synaptic input maps overlapped considerably during the first 3 

postnatal weeks. However, after hearing onset, overlapping intrinsic excitatory and inhibitory 

inputs may be differentially engaged by different acoustic stimuli. For example, frequency 

response bandwidths in the IC broaden with increasing sound intensity (Egorova et al., 2001; 

Egorova and Ehret, 2008); and because extrinsic excitatory and inhibitory inputs to the CNIC 

saturate at higher sound levels (Grimsley et al., 2013), this broadening of tuning may be partly 

mediated by the recruitment of intrinsic excitatory circuits. 

Although most presynaptic sites gave rise to both excitatory and inhibitory inputs, the 

correlation of the strength of excitation and inhibition arising from individual presynaptic sites 

varied widely between neurons (Figure 2-9). At each age, we found neurons in which the 

strength of excitation and inhibition was remarkably correlated, suggesting that the strength of 

both inputs was adjusted in a coordinated manner. In other neurons, however, the correlation was 

basically absent, suggesting that, in these neurons, the strength of excitatory and inhibitory inputs 

is adjusted independently from each other (Figure 2-9). Interestingly, in these neurons, 

stimulation sites that were dominated by either excitation or inhibition clustered together, giving 

rise to subinput maps, the organization of which varied considerably between neurons (Figure 2-

9). This heterogeneity on the microcircuit level adds to the large degree of heterogeneity of IC 
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neurons observed in other studies (Peruzzi et al., 2000; Sivaramakrishnan and Oliver, 2001; Tan 

et al., 2007, Xie et al., 2007) and supports the idea that intrinsic excitatory and inhibitory 

microcircuits contribute to the generation of response preferences for specific frequency-

temporal patterns of sound stimuli in individual IC neurons. 

 

2.4.5 Developmental changes in intrinsic circuitry during the first 3 postnatal weeks 

During the first postnatal week, both excitatory and inhibitory intrinsic synaptic input maps 

expanded along the isofrequency laminae (Figures 2-5 and 2-6), and this expansion was 

accompanied by synaptic strengthening (Figure 2-8 D, E). During the same period, afferent 

projections from the DNLL segregate from a uniform to a banded termination pattern (Gabriele 

et al., 2000a; Henkel et al., 2005). This suggests that, during the first postnatal week, the 

development and refinement of extrinsic and intrinsic synaptic inputs in the CNIC are 

independently regulated. However, during the second postnatal week, when extrinsic inputs from 

the DNLL to the CNIC undergo refinement along the isofrequency domain, intrinsic input maps 

exhibited refinement along this domain as well. The prehearing refinement of these afferent 

projections to the CNIC requires cochlear-driven spontaneous activity (Gabriele et al., 2000b), 

and it remains to be determined whether similar mechanisms are necessary for the refinement of 

intrinsic input maps. 

Although refinement of intrinsic input maps involved both excitatory and inhibitory 

connections, excitatory input maps shrank more than inhibitory input maps, such after 1 week of 

hearing a layer of inhibitory inputs surrounded excitatory input maps. The emergence of this 

surrounding inhibition may relate to the emergence of the inhibitory sidebands, which have been 
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described in the IC of adult animals (Wang et al., 2002; Fuzessery et al., 2006). After hearing 

onset, map refinement was most dramatic and most pronounced for excitatory input along the 

tonotopic axis. The correlation of this refinement with hearing onset may indicate that tonotopic 

sharpening of excitatory intrinsic IC maps is triggered or guided by early auditory experience. 
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3.0  NOISE REARING INDUCES LOCAL CIRCUIT REORGANIZATION IN THE 

AUDITORY MIDBRAIN DURING A CRITICAL PERIOD 

3.1 INTRODUCTION 

The functional maturation of the auditory system is an activity-dependent process that is 

instructed by a combination of spontaneously generated and acoustically driven patterns of 

neuronal firing. Prior to hearing onset, which occurs during embryonic week 24 in humans 

(Ruben, 1991) and around postnatal day 12 (P12) in rodents (Rubel, 1984), auditory nerve 

afferents exhibit spontaneous, burst-like discharges (Jones et al., 2007), the precise patterning of 

which is critical for tonotopic map refinement in the auditory brainstem (Clause et al., 2014). 

After hearing onset, the patterning of auditory nerve discharges becomes increasingly driven by 

the spectral and temporal structures of auditory inputs, and changes in the acoustic properties of 

these inputs during the initial weeks of hearing experience can have profound, long-lasting 

effects on the emergence of acoustic feature selectivity (Zhang et al., 2001; Zhang et al., 2002; 

Chang and Merzenich, 2003; Chang et al., 2005; Razak et al., 2008; de Villers-Sidani et al., 

2008; Zhou et al., 2008; Grecova et al., 2009; Insanally et al., 2010; Oliver et al., 2011; Bures et 

al., 2014). In rodents, for example, synchronous activation of auditory nerve afferents with 

pulsed noise during early hearing experience prevents the maturation of tonotopic maps in 

primary auditory cortex (A1) (Zhang et al., 2002; Insanally et al., 2010), as well as the 
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refinement of frequency selectivity in both A1 (Zhang et al., 2002; Insanally et al., 2010) and the 

inferior colliculus (IC) (Sanes and Constantine-Paton, 1983; Sanes and Constantine-Paton, 

1985).  

Disruptions in the functional development of the auditory system by noise rearing may 

relate to a lack of refinement and/or a re-wiring of local synaptic networks. Previous studies in 

the rodent sound localization system have shown that early omnidirectional noise exposure 

(Magnusson et al., 2005; Werthat et al., 2008) can disrupt both structural and functional 

refinement of the inhibitory projection from the medial nucleus of the trapezoid body (MNTB) to 

the medial superior olive (MSO) (Krapfer et al., 2002), which is responsible for detecting inter-

aural time differences (ITD). In these studies, noise-reared animals exhibited impaired ITD 

selectivity in neurons of the dorsal lateral lemniscus (DLL), a major postsynaptic target of the 

MSO, whereas adult animals exposed to identical noise exhibited normal ITD tuning (Seidl and 

Grothe, 2005). Additionally, noise-reared animals exhibited impaired performance in a forced-

choice behavioral paradigm that relies upon ITD sensitivity (Maier et al., 2008). Together, these 

findings suggest that noise-rearing-induced disruptions in synaptic refinement occurring during 

an early critical period can have significant consequences for hearing performance.  

In this study, we investigated the effect of pulsed noise rearing on the organization of 

local synaptic circuits in the central nucleus of the mouse inferior colliculus (CNIC). The CNIC 

is the major subcortical integration center in the mammalian brain, receiving ascending inputs 

from almost all auditory brainstem nuclei (Adams et al., 1979; Malmierca et al., 2005), 

commissural inputs from the contralateral IC (Saldaña et al., 1992), and descending inputs from 

the auditory cortex (Saldaña et al., 1996; Gao and Suga, 1998; Bajo and King, 2013). In addition 

to these extrinsic inputs, the IC also contains an extensive network of intrinsic connections, 
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which are thought to encompass the majority of IC synapses (Saldaña and Merchán, 2005) and to 

provide gain control (Grimsley et al, 2013). After hearing onset, both excitatory and inhibitory 

intrinsic circuits in the CNIC undergo substantial refinement, involving a functional elimination 

of both excitatory and inhibitory inputs (Chapter 2; Sturm et al., 2014). However, it has remained 

unknown whether and to what degree the maturation of intrinsic CNIC circuits is shaped by 

hearing experience.  

Here we addressed this question by mapping local connectivity to glutamatergic and 

GABAergic neurons in the CNIC of mice using laser-scanning photostimulation (LSPS) with 

caged glutamate, and comparing CNIC circuit connectivity between noise-reared and age-

matched control mice. We found that pulsed noise exposure from P12-25 leads to a profound, 

cell-specific rewiring of glutamatergic and GABAergic IC circuits. In GABAergic IC neurons, 

noise rearing leads to increases in both excitatory and inhibitory input map areas, as well to a 

strengthening of excitatory, but not inhibitory synaptic inputs. This leads to a shift in excitation: 

inhibition balance in favor of excitation. In glutamatergic IC neurons, on the other hand, noise 

rearing leads to a shrinkage of excitatory input map areas, without changing the size of inhibitory 

input maps.  However, the strengths of inhibitory inputs are weakened relative to closely apposed 

excitatory inputs, which again leads to a shift in excitation: inhibition balance in favor of 

excitation. Finally, the effects of noise exposure on GABAergic and glutamatergic IC neurons 

were absent in mice exposed to pulsed noise rom P19-25, indicating that noise rearing disrupts 

intrinsic connectivity in the IC during a critical period within the first week of hearing 

experience. 
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3.2 MATERIALS AND METHODS 

3.2.1 Experimental animals 

All experimental procedures were carried out in accordance with US National Institutes of 

Health (NIH) guidelines and were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of Pittsburgh. Vgat-ires-cre, and dT-loxP mice were purchased from 

Jackson Labs (Jackson). Vglut2-cre mice were the generous gift of Dr. Rebecca Seal’s 

laboratory. The background strain of all mice was C57BL/6J. In our laboratory, vglut2-cre and 

vgat-ires-cre mice were crossed with dT-loxP mice to generate vglut2-cre-dT-loxP and vgat-ires-

cre-dT-loxP strains.  

3.2.2 Pulsed noise exposure 

Mice of either sex [postnatal day (P) 11] were assigned to one of three groups: 1) noise-reared 

P12-25, 2) noise-reared P19-25 or 3) control. Mice in each exposure group were kept together in 

their original breeding cages with their mother (all mice in a given cage were assigned to the 

same group). For noise rearing, pulsed white noise (75 dB SPL) was delivered in a sound-

attenuating chamber (Coulbourn Instruments) as previously described (Clause et al., 2014). Pulse 

length was set to 138ms, and pseudorandomly presented with an inter-pulse length of 0-450ms 

and a duty cycle of 47%. 
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3.2.3 Slice preparation 

Coronal slices were prepared from vglut2-cre-dT and vgat-ires-cre-dT mice of either sex aged 

26-30 days. For brain slice preparation, animals were deeply anaesthetized with isoflurane, 

decapitated, and their brains were immediately removed. Coronal midbrain slices (300 µm) were 

then prepared using a vibrating microtome and incubated to 34° C in artificial cerebrospinal fluid 

(ACSF) (composition in mM; 0.25 7 H2O ×MgSO4, 124 NaCl, 5 KCl, 10 Dextrose, 1.25 

KH2P04, 26 NaHCO3, 2 CaCl2) as previously described (Sturm et al., 2014). Brain slices were 

given 1h (30m incubation at 34° C followed by 30m rest at 22-25° C) prior to beginning 

recordings. 

3.2.4 Electrophysiological recordings 

Whole-cell recordings were aimed at the CNIC as previously described (Sturm et al., 2014). 

Recordings were performed in a submersion-type chamber (3-4 ml/min perfusion with 

oxygenated ACSF at 22-25° C) mounted on an upright microscope (Zeiss AxioExaminer A1) 

and were targeted at dT-expressing neurons under fluorescent illumination. Borosilicate glass 

pipettes (3-6 MΩ) were filled with a potassium-based internal solution containing (composition 

in mM; 115 K-Gluconic acid (C6H11O7K), 5 KCl, 11 EGTA, 1 MgCl2 X 6H2O, 1 CaCl2 X 2H2O, 

10 HEPES, 0.3 GTP disodium salt, 2.0 ATP disodium salt and 0.5 % biocytin, pH 7.2, 314 

mOsm/l). Whole-cell currents in voltage-clamp mode were acquired with a Multiclamp 700B 

amplifier (Molecular Devices) and a Digidata- 1440A A/D converter (Molecular Devices) at a 

sampling rate of 4 kHz using pClamp 10 software (Molecular Devices). 
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3.2.5 Synaptic input mapping 

The spatial distribution of presynaptic inputs to IC neurons was determined using focal 

photolysis of p-hydroxyphenacyl-glutamate (0.2 mM, MNI- glutamate, Tocris). A custom built 

system was used to guide the size, location and duration the UV light spot used to photolyze 

MNI-glutamate (Sturm et al., 2014). A UV laser (DPSS Laser Inc., 3510-30, 2 W) was used as a 

light source and placement of the uncaging spot was steered with galvanometers (Cambridge 

Technology, 6210H). Uncaging position, electrophysiological data acquisition and analysis were 

under the control of custom-written Labview-programs linked to pClamp software (written by 

Tuan Nguyen). Input maps were only collected if cells had a holding current < -100 pA and 

access resistance < 50 mΩ. UV light pulses (355 nm) were delivered at 1 Hz in a random order. 

Light intensity was 20-mW (measured at slice position), light duration was 1-ms. Excitatory and 

inhibitory synaptic responses were isolated by holding cells at -65 mV and 0 mV, respectively. 

For each condition, 1-3 input maps were obtained and the average map was used for analysis. 

3.2.6 Mapping analysis 

During input mapping with LSPS, a combination of spontaneous events, uncaging-evoked 

synaptic responses and uncaging-evoked direct neuronal responses were measured at the 

recorded cell. It was therefore necessary to develop a detection method for discerning between 

these event types. Direct neuronal responses could be reliably distinguished from evoked 

synaptic response based upon their onset latencies relative to the onset of the uncaging stimulus 

(direct response onset latencies were < 7 ms post-stimulus, whereas synaptic response onset 

latencies were > 7ms post-stimulus). This onset latency cut-off was validated previously by 
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performing input mapping studies in the presence and absence of the voltage-gated sodium 

channel blocker Tetrodotoxin (TTX), which blocks action potential generation in presynaptic 

neurons stimulated with glutamate uncaging (Sturm et al., 2014).  In these studies, stimulation 

sites that elicited post-synaptic responses at -65 mV in the absence of TTX were re-mapped in 

the presence of TTX, and sites where evoked responses persisted in the presence of TTX (e.g. 

responses that did not require presynaptic action potential generation) were classified as direct 

response sites. The onset latencies of responses that persisted in TTX (direct responses) were <7 

ms, whereas the onset latencies of responses that were eliminated in the presence of TTX 

(synaptic responses) were >7 ms. 

After direct stimulation sites were identified and eliminated, it was then necessary to 

distinguish between spontaneous synaptic events and synaptic events evoked by glutamate 

uncaging. The following criteria were utilized to determine whether events observed at 

individual stimulation sites were treated as synaptic response sites. First, a response amplitude 

threshold was set to 4σ of the mean baseline activity (recorded over a 100 ms period prior to the 

laser stimulus at each individual stimulation site). Sampling for potential synaptic events was 

restricted to a 50 ms window, from 10 ms post-stimulus to 60 ms post-stimulus. If an event 

occurred during this 50 ms window, with an amplitude that was greater than 4σ of the mean 

baseline activity (in the case of inhibitory events recorded at 0 mV) or less than -4σ of the mean 

baseline activity (in the case of excitatory events recorded at -65 mV), then that stimulation site 

was considered a candidate synaptic response site.  

Mean baseline activity was calculated independently for each stimulation trial, and the 

baseline value from each trial was then used to set the amplitude threshold for that trial. In this 



 64 

way, amplitude thresholds were adjusted for variations in the level of spontaneous activity that 

occurred over the course of recordings for each cell. This approach limited the probability that 

spontaneous synaptic events would be incorrectly considered uncaging-evoked synaptic 

responses.  However, in cases where spontaneous activity levels are high, this approach may lead 

to a rejection of events that are, in fact, evoked synaptic responses, and in doing so, may 

underestimate input map size. To account for this possibility, we set the response amplitude 

threshold to a relatively low value (4σ), in the hopes of minimizing the chance of incorrectly 

rejecting evoked synaptic responses. Stimulation sites that were determined to be candidate 

presynaptic sites (e.g. an event that exceeded the amplitude threshold criterion was detected in at 

least one stimulation iteration at those sites) were only considered valid synaptic response sites if 

they also fulfilled at least 1 of 3 additional criteria. A candidate presynaptic site was only 

considered valid if 1) an event that fulfilled the amplitude response threshold was detected in at 

least 2 stimulation iterations at that site, 2) an event that fulfilled the response amplitude 

threshold was detected in a single stimulation iteration at that site, but the event was multi-

peaked (likely indicative of a complex synaptic response rather than a spontaneous synaptic 

current), or 3) an event that fulfilled the response amplitude threshold was detected in a single 

stimulation iteration at that site, but with a similar onset latency (within 10 ms) to an event 

observed at an immediately adjacent stimulation site (within 50 μm).  

Excitatory and inhibitory synaptic input map areas were calculated as the sum of 

individual excitatory and inhibitory synaptic response sites, respectively. The synaptic charge 

transferred (pC) at each valid synaptic response site was calculated over a 150ms window, from 

10ms post-stimulus to 160ms post-stimulus, and averaged across all available mapping iterations 

(1-3). For each cell, the total amounts of excitatory and inhibitory synaptic charge transferred 
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were determined as the sum of excitatory and inhibitory synaptic charges found at excitatory and 

inhibitory synaptic response sites, respectively. Synaptic charge per stimulation site was 

calculated as the total synaptic charge (either excitatory or inhibitory) for a given neuron, divided 

by the number of synaptic response sites (either excitatory or inhibitory) for that neuron. 

Excitation: Inhibition index: Excitation: Inhibition (E: I) indices were calculated at individual 

dual stimulation sites (e.g. those sites that elicited both excitation and inhibitory response). E: I 

indices were calculated as the amount of inhibitory synaptic charge elicited at a dual site 

subtracted from the excitatory synaptic charge elicited at that site, together divided by the sum of 

excitatory and inhibitory synaptic charges elicited at that site. To calculate cellular E: I indices, 

the E:I indices of all dual stimulation sites for a given cell were summed together, and this 

quantity was then divided by the total number of dual stimulation sites for that cell. To calculate 

pooled E: I indices, the E:I indices of dual stimulation sites were summed across all cells for a 

given behavioral condition (e.g. control or noise reared) and then divided by the total number of 

dual stimulation sites for that condition. The above-mentioned calculations are expressed by the 

following equations: 

1) E: I index =  (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠.𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 − 𝑒𝑒𝑠𝑠ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠.𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒)
(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠.𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 + 𝑒𝑒𝑠𝑠ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠.𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒)

 

2) Cellular E: I= ∑ (𝐸𝐸:𝐼𝐼)𝑖𝑖 𝑛𝑛
𝑖𝑖=1

𝑁𝑁
 , where i= synaptic response site number, n= last synaptic 

response site number for given cell, and N= total number of synaptic response sites that 

cell. 
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3) Pooled E: I= ∑ (𝐸𝐸:𝐼𝐼)𝑖𝑖ℎ
𝑖𝑖=1
𝐻𝐻

 , where i= synaptic response site number, h= last synaptic 

response site number in total population of sites from cell in behavioral condition (i.e. 

control or noise reared , and H= total number of synaptic response sites.  

3.2.7 Statistical analysis 

Data are presented as mean +/- SEM. Data were tested for normal distribution using Bartlett’s 

test. For independent, two-group comparisons, Students t-tests (two-tailed) and Mann-Whitney 

tests were used to determine statistical significance. For correlational analyses, Pearson 

correlations were performed. For categorical comparisons, Chi-Square tests were performed 

(GraphPad Prism). Statistical significance was set to p< 0.05.  

3.3 RESULTS 

3.3.1 Noise rearing increases local excitatory input onto GABAergic neurons   

Vgat-ires-cre-dT mice (n= 14 animals) were raised in continuous, pulsed white noise (75 dB 

white noise in pulses of 138 ms duration, delivered pseudo-randomly at intervals from 0 to 450 

ms, duty cycle 47%) during the first 2 weeks of hearing experience (P12-25) (Figure 3-1 A, B). 

Control mice (n= 15 animals) were raised in standard housing conditions. To detect noise 

rearing-related changes in intrinsic connectivity in the IC, we mapped local synaptic networks in 

the IC in brain slices using LSPS of caged glutamate (Sturm et al., 2014), and compared the 
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distribution and strength of excitatory and inhibitory synaptic inputs received by individual IC 

neurons between noise-reared and control mice (Figure 3-1 C). Since glutamatergic and 

GABAergic neurons in the IC cannot be reliably distinguished on the basis of morphological or 

physiological criteria (Malmierca et al., 1993; Sivaramakrishnan et al., 2001), we targeted 

recordings to GABAergic neurons using a mouse line in which the expression of the fluorescent 

protein dtTomato is restricted to GABAergic neurons expressing the Cre protein under the 

promoter for the vesicular GABA transporter (vgat+). Previous input mapping experiments 

revealed two types of vgat+ neurons in the IC: neurons that receive both excitatory and 

inhibitory inputs from intrinsic sources (type 1) and neurons that only receive excitatory inputs 

(type 2) (Chapter 4, Figure 4-6). In these prior studies, the synaptic input maps of type 1, but not 

type 2 neurons, were sensitive to noise exposure. We therefore focused the current mapping 

studies on type 1 GABAergic neurons.  

Noise rearing increased the amount of excitatory synaptic input received by GABAergic 

neurons. This increase in excitation was reflected by larger excitatory input maps (Noise reared: 

exci input area 166% of control, n= 31 cells, n= 14 animals) (Figure 3-1 C, D), greater amounts 

of total excitatory synaptic charge (Noise reared: total exci charge 250% of control, n= 30 cells, 

n= 14 animals) (Figure 3-1 E) and increased excitatory synaptic charge per stimulation site 

(Noise reared: exci charge per stim. site 165% of control, n= 29 cells, n= 14 animals) (Figure 3-1 

F). In contrast, the overall sizes and strengths of inhibitory input maps received by GABAergic 

IC neurons remained stable (Figure 3-1 C-F).  
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Figure 3-1. Noise rearing increases excitatory input onto GABAergic neurons. 
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Figure 3-1. Noise rearing increases excitatory input onto GABAergic neurons  

(A) Noise reared mice are exposed to pulsed white noise from P12-25. (B) Pulsed white noise stimulus. Pulse 

intensity (75 dB) and duration (138 ms) are constant, and inter-pulse interval varies pseudo-randomly at intervals 

from 0-450 ms. (C) Example excitatory and inhibitory maps for a GABAergic neuron are overlaid over a 

photograph of the corresponding IC slice. Examples of excitatory (left) and inhibitory (right) synaptic input maps 

from control (top) and noise-reared (bottom) vgat-ires-cre-dT mice. Traces illustrate excitatory and inhibitory 

synaptic responses to glutamate uncaging at the map locations indicated by symbols. Uncaging sites that elicited 

direct responses at the recorded neuron are indicated in black. (D) Changes in synaptic input area induced by noise 

rearing. Excitatory input area was increased in noise-reared mice compared to control mice (exci area, control=1.47 

x 105 μm2 ± 0.20 x 105 μm2, noise reared: 2.42 x 105 μm2 ± 0.13 x 105 μm2, n= 31 neurons, p= 0.0007, Mann-

Whitney Test). (E) Changes in total synaptic charge induced by noise rearing. Excitatory input charge was increased 

in noise-reared mice compared to control mice (exci charge, control= 39.6 pC  ± 14.0 pC, noise reared= 99.1 pC ± 

16.9 pC, n= 30 neurons, p= 0.0008, Mann-Whitney Test). (F) Changes in synaptic charge per stimulation site 

induced by noise rearing. Excitatory charge per stimulation site was increased in noise-reared mice compared to 

control mice (exci charge per stim. site, control= 0.62 pC  ± 0.10 pC, noise reared= 1.02 pC ± 0.16 pC, n= 29 

neurons, Student’s t-test, p= 0.0383). Error bars represent SEM. Stars indicate statistical significance. *= p< 0.05, 

**= p< 0.01. 
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Both excitatory and inhibitory synaptic responses in GABAergic neurons were often 

elicited from the same presynaptic stimulation sites, suggesting that there may be substantial 

spatial overlap between local sources of excitation and inhibition (Figure 3-2 A). However, in all 

recorded GABAergic neurons, there were also stimulation sites that elicited excitatory but not 

inhibitory responses, as well as sites that elicited inhibitory but not excitatory responses (Fig 3-2 

A).  Thus, presynaptic sites could be divided into three categories: 1) sites that elicited both 

excitatory and inhibitory synaptic responses (dual), 2) sites that elicited only excitatory synaptic 

responses (exci alone) and 3) sites that elicited only inhibitory synaptic responses (inhi alone) 

(Fig 3-2 A).  

Given the precise tonotopic organization of the CNIC, where closely apposed neurons 

share similar CF preferences, excitatory and inhibitory inputs found at dual sites may be 

activated together in vivo. Inputs found at exci-alone and inhi-alone sites, on the other hand, may 

be recruited by different acoustic stimuli.  Thus, noise-rearing-related changes in synaptic input 

maps may have different consequences for auditory processing depending upon whether they 

occur at dual sites, exci-alone sites and/or inhi alone sites. Accordingly, the synaptic input maps 

of control and noise reared animals were compared with respect to dual, exci-alone and inhi-

alone sources of synaptic input (Figure 3-2 B-D).  

Noise rearing increased dual input area (Noise reared: dual input area 174% of control, 

n= 30 cells, n= 14 animals), without changing exci-alone or inhi-alone input areas (Figure 3-2 

B). Thus, the increase in excitatory input area onto GABAergic neurons (Figure 3-1 D) was due 

to an increase in dual input area. However, while increases in excitatory input area were 

restricted to dual sites, increases in total excitatory input charge were found at both dual and 

exci-alone sites (Noise reared: dual total excitatory charge 267% of control, exci-alone total 
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excitatory charge 197% of control, n= 30 cells, n= 14 animals) (Figure 3-2 C). Additionally, 

excitatory input charge per presynaptic site was also increased at both dual and exci-alone sites 

(Noise reared: dual excitatory charge per stimulation site 165% of control, exci-alone excitatory 

charge per stimulation site 197% of control, n= 29 cells, n= 14 animals)  (Figure 3-2 D). Thus, 

noise rearing enhanced excitatory synaptic input onto GABAergic neurons at both dual and exci-

alone synaptic response sites. 

We next investigated whether noise rearing led to changes in the balance of excitatory 

and inhibitory synaptic strengths at individual dual stimulation sites. In control mice, most 

GABAergic neurons (16 of 19 cells) exhibited dual stimulation sites where inhibitory synaptic 

charge was greater than excitatory synaptic charge (Figure 3-2 E). This dominance of inhibition 

translated into negative excitation: inhibition (E: I) indices, which were calculated as the amount 

of inhibitory charge elicited at a dual site subtracted from the excitatory charge elicited at that 

site, together divided by the sum of excitatory and inhibitory charge for that site (see Methods; 

3.2) (Figure 3-2 F). Negative E: I indices indicate a dominance of inhibition, whereas positive E: 

I indices indicate a dominance of excitation. Given that noise rearing led to increases in the 

strengths of excitatory, but not inhibitory synaptic inputs (Figure 3-2 D), we predicted that E: I 

indices at dual stimulation sites would be shifted in the positive direction, in favor of synaptic 

excitation.  

To test this hypothesis, we first calculated E:I indices for individual dual sites and 

determined a mean E:I index for each neuron (Cell E: I index) (see Methods; 3.2.6) (Fig 3-2 G). 

With this method, we detected a trend towards a positive shift in E: I indices in noise-reared mice 

that failed to reach statistical significance (p= 0.42, Mann-Whitney Test) (Fig 3-2 G). A possible 

confound of this analysis method was that it relies on the size of dual input areas, which greatly 
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varied among GABAergic IC neurons (ranging from 0.18 x 105 μm2 to 2.3 x 105 μm2). For 

instance, the statistical confidence associated with the mean E: I index of a cell with 100 dual 

sites would be far greater than the confidence associated with the mean index of a cell with only 

5 dual sites. Therefore, while calculating mean E: I indices for individual cells controls for inter-

cell variability, it gives biased weight to E: I indices calculated for dual sites from cells with few 

dual sites.  To account for the variation in dual input areas among GABAergic IC neurons, we 

also estimated E: I balance by pooling E:I indices calculated for individual dual sites across 

neurons in each behavioral condition (pooled E: I index) (see Methods; 3.2.6) (Fig 3-2 H). This 

analysis treats all dual stimulation sites as equivalent and therefore avoids giving greater weight 

to dual sites from neurons with few dual sites. However, in treating all dual sites as equivalent, 

this method fails to control for inter-cell variability. With the pooled E: I analysis approach, we 

detected a significant positive shift in the balance of excitatory and inhibitory synaptic strengths 

in noise reared animals (noise reared: -0.26  ± 0.02, control: -0.37  ± 0.02, n= 1,043 dual 

stimulation sites, Mann-Whitney test, p<0.0001) (Figure 3-2 H). Thus, raising mice in pulsed 

white noise during the first 2 weeks of hearing experience leads to a significant reorganization of 

synaptic inputs onto GABAergic IC neurons, involving substantial increases in synaptic 

excitatory input, which lead to a shift in in the E: I balance of closely apposed excitatory and 

inhibitory synaptic inputs in favor of synaptic excitation. 
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Figure 3-2. Spatial overlap of excitatory and inhibitory inputs on GABAergic neurons after noise rearing 

from P12-25. 



 74 

Figure 3-2. Spatial overlap of excitatory and inhibitory inputs onto GABAergic neurons after noise rearing 

from P12-25. (A) Example Excitatory (left) and inhibitory (right) input maps received by a GABAergic neuron. 

Input maps consist of uncaging sites that elicit both excitatory and inhibitory responses (dual, green), sites that elicit 

excitatory responses only (exci alone, red) and sites that elicit inhibitory responses only (inhi alone, blue). (B) 

Changes in synaptic input area induced by noise rearing at dual and non-dual stimulation sites. Dual input area was 

increased in noise-reared mice compared to control mice (dual input area, control= 0.82 x 105 μm2 ± 0.10 x 105 μm2, 

noise reared= 1.43 ± 0.17 x 105 μm2, n= 30 neurons, Student’s t-test, p= 0.0029). (C) Changes in total synaptic 

charge induced by noise rearing at dual and non-dual stimulation sites. Total excitatory charge was increased in 

noise-reared mice compared to control mice at both dual (dual exci charge, control= 24.8 pC  ± 7.5 pC, noise reared= 

69.3 pC ± 15.6 pC, n= 30 neurons, Student’s t-test, p= 0.007) and exci-alone stimulation sites (exci-alone exci 

charge, control= 14.9 pC  ± 6.8 pC, noise reared= 29.2 pC ± 8.9 pC, n= 30 neurons, Mann-Whitney Test, p= 0.009). 

(D) Changes in synaptic charge per stimulation site induced by noise rearing at dual and non-dual stimulation sites. 

Excitatory synaptic charge per stimulation site was increased in noise-reared mice compared to control mice at both 

dual (dual exci charge per site, control= 0.66 pC ± 0.09 pC, noise reared= 1.98 pC ± 0.21 pC, n= 29 neurons, Mann-

Whitney Test, p= 0.031 and exci-alone stimulation sites (exci-alone exci charge per site, control= 0.45 pC  ± 0.12 

pC, noise reared= 0.89 pC ± 0.19 pC, n= 29 neurons, Mann-Whitney Test, p= 0.034). (E) Example excitatory (left) 

and inhibitory (right) synaptic responses elicited at single, dual uncaging sites at -65 mV and 0 mV, respectively, in 

a control (top) and a noise-reared mouse (bottom). (F) Mean excitatory and inhibitory synaptic charge at dual 

uncaging sites for control (left) and noise-reared (right) mice. Lines are individual neurons connecting mean 

excitatory and inhibitory synaptic charges for that neuron. (G) Changes in cellular E: I index induced by noise 

rearing. E: I index measures excitation: inhibition balance and is calculated as the inhibition a neuron receives 

subtracted from the excitation that neuron receives, divided by the sum of the excitation and the inhibition that 

neuron receives. Each data point is mean E:I index for an individual neuron, calculated as the average of all indices 

from dual uncaging sites for that neuron. (H) Changes in pooled E: I index induced by noise rearing. E: I indices 

from individual dual stimulation sites pooled across neurons. In noise reared mice, the pooled E: I index was shifted 

to more positive values compared to control mice (pooled E: I index, control= -0.37  ± 0.02, noise reared= -0.26 ± 

0.02, n= 1,043 dual sites, Mann-Whitney Test, p<0.0001). Error bars represent SEM. Stars indicate statistical 

significance. *= p< 0.05, **= p< 0.01. 



 75 

3.3.2 Noise-rearing-induced increases in excitation are restricted to a critical period 

The developing brain exhibits heightened responsiveness to changes in the sensory environment 

during brief postnatal epochs called critical periods (CP). The timing of CPs differs according to 

sensory modality (e.g. vision vs. audition vs. somatosensation) (de-Villers-Sidani et al., 2007) as 

well as stimulus feature (e.g. stimulus location, intensity and frequency) (Insanally et al., 2009; 

Buran et al., 2014). For example, in primary auditory cortex (A1), passive tone exposure disrupts 

tonotopic organization when delivered between P11-P13, but not after (de Villers-Sidani et al., 

2007). We therefore hypothesized that noise rearing with pulsed white noise would lead to 

synaptic circuit reorganization in the CNIC when delivered during the first week of hearing 

experience, but not after. To test this hypothesis, we mapped the synaptic inputs received by 

GABAergic neurons in mice that were reared in standard housing conditions during the first 

week of hearing experience, from P12-18, and then reared in pulsed white noise from P19-25 (n= 

7 animals) (Figure 3-3 A).  We predicted that if the CP for intrinsic synaptic circuits in the IC 

falls within P12-18, then mice exposed to pulsed white noise from P19-25 would exhibit intrinsic 

synaptic networks similar to those of control, non-noise-reared animals.  

Consistent with this prediction, noise rearing between P19-25 did not change the overall 

distribution or strength of input maps received by GABAergic neurons compared to controls, as 

indicated by stable input areas (Figure 3-3 B), total input charges (Figure 3-3 C), and amounts of 

input charge per stimulation site (Figure 3-3 D). When input maps were analyzed on a finer 

scale, with respect to dual, exci-alone and inhi-alone regions, no differences were found between 

noise-reared and control mice in terms input area (Figure 3-4 A) or total synaptic charge (Figure 

3-4 B), though a trend was observed towards decreased total excitatory synaptic charge for dual 

stimulation sites (Mann-Whitney Test, p= 0.09) (Figure 3-4 B).  
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Figure 3-3. A critical period for noise rearing-induced plasticity of local CNIC circuitry.  

(A) Noise reared mice are exposed to pulsed white noise from P19-25. (B) Examples of excitatory (left) and 

inhibitory (right) synaptic input maps from control (top) and noise-reared (bottom) mice. Traces illustrate excitatory 

and inhibitory synaptic responses to glutamate uncaging at the map locations indicated by symbols. Uncaging sites 

that elicited direct responses at the recorded neuron are indicated in black. (C-E) Noise rearing from P19-25 did not 

alter overall synaptic input area (C), total input charge (D) or input charge per stimulation site (E). Error bars 

represent SEM. Stars indicate statistical significance. *= p< 0.05, **= p< 0.01. 
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Figure 3-4. Spatial overlap of excitatory and inhibitory inputs onto GABAergic neurons after noise rearing 

from P19-25.  

(A) Noise rearing left synaptic input area unchanged at dual and non-dual uncaging sites. (B) Noise rearing left total 

synaptic input charge unchanged at dual and non-dual uncaging sites. (C) Noise rearing decreased excitatory 

synaptic charge per dual stimulation site (dual exci charge per site, control= 0.66 pC ± 0.09 pC, noise reared= 0.39 

pC ± 0.04 pC, n= 28 neurons, Mann-Whitney Test, p= 0.024). (D-E) Noise rearing did not change excitation: 

inhibition balance at dual uncaging sites. Noise rearing had no effect on the mean E: I index calculated for 

individual neurons (D) or on the pooled E: I index (E). Error bars represent SEM. Stars indicate statistical 

significance. *= p< 0.05, **= p< 0.01. 
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We did observe a decrease in excitatory synaptic charge per stimulation site in noise-

reared mice, specifically for dual sites (Noise reared: dual excitatory charge per stimulation site 

59% of control, n= 28 cells, n= 12 animals) (Figure 3-4 C), but this change was insufficient to 

disrupt E: I balance (Fig 3-4 D, E). Thus, noise rearing from P12-25, but not P19-25, led to 

substantial reorganizations of local synaptic networks received by GABAergic neurons, 

suggesting that the CP for noise rearing-induced plasticity in intrinsic IC circuits falls within the 

first week of hearing experience.  

3.3.3 Noise rearing enhances E: I synaptic strength correlations in GABAergic neurons 

Our group showed previously that while excitatory and inhibitory input maps in the CNIC 

overlap considerably in the majority of neurons, the correlation between excitatory and 

inhibitory input strengths at individual presynaptic sites varies substantially between neurons 

(Sturm et al., 2014). In some neurons, the strengths of excitatory and inhibitory inputs are highly 

correlated, whereas in other neurons they are weakly or not at all correlated (Sturm et al., 2014). 

Consistent with these prior findings, we found that in a subpopulation of GABAergic neurons 

from control mice, the strengths of excitatory and inhibitory synaptic responses elicited at dual 

input sites were positively correlated (5 of 19 neurons, pearson coefficients ranging from r= 0.24 

to r= 0.76) (Figure 3-5).  

Interestingly, noise rearing from P12-25, but not P19-25, enhanced both the magnitude 

and the incidence of this excitation: inhibition coupling (Figure 3-5). When dual stimulation sites 

were pooled across neurons from each behavioral condition, there were significant linear 

relationships between excitatory and inhibitory synaptic charge in both control mice (Linear 

regression, p= 0.17) and mice reared in noise from P12-25 (Linear regression, p<0.0001), but not 



 79 

in mice reared in noise from P19-25 (Linear regression, p= 0.36) (Figure 3-5 B). Compared to 

control animals, the strength (r2 value) and slope of this linear relationship were each 

significantly greater in mice reared in noise from P12-25 compared to controls (Noise reared r2= 

0.30, slope= 0.70; Control r2= 0.01, slope= 0.24, n= 30 neurons) (Figure 3-5 C). Additionally, 

the percentage of neurons that exhibited significant positive correlations between excitatory and 

inhibitory response strengths was increased in mice reared in noise from P12-25 (8 of 11 cells) 

compared to both control mice (5 of 19 cells) and mice exposed to noise between P19-25 (1 of 8 

cells) (Figure 3-5 D). Thus, in addition to increasing synaptic excitation onto GABAergic IC 

neurons, noise rearing from P12-25 enhanced the coupling between excitatory and inhibitory 

response strengths.   
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Figure 3-5. Noise rearing increases E: I correlations in GABAergic neurons. 
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Figure 3-5. Noise rearing increases E: I correlations in GABAergic neurons. 

 (A) Excitatory versus inhibitory synaptic charge from dual stimulation sites. Example neurons shown from each 

behavioral condition. Each data point represents an individual dual presynaptic site. Lines indicate least-squares 

linear regressions and correlation coefficient values (r) are from Pearson correlations. (B) Excitatory versus 

inhibitory synaptic charge for population of dual presynaptic sites, pooled across neurons in each condition. Lines 

indicate least-squares linear regressions (equations, r2 and significance shown for each group). (C) Comparison of 

regression line slopes from control (black) and mice reared in noise from P12-25 (blue) (same lines as in B) with 

95% confidence intervals (regression line slope, control= 0.235 ± 0.10, noise-reared= 0.71 ± 0.048, F= 19.9, 

p<0.0001).  Regression line from mice reared in noise from P19-25 not shown- regression line equation not 

statistically significant. (D) Proportion of neurons in which excitatory and inhibitory synaptic charges are positively 

correlated.  Mice reared in noise from P12-25 exhibit a greater percentage of neurons in which excitatory and 

inhibitory synaptic charge are correlated compared to both control mice (proportion of cells where excitation and 

inhibition correlated, control= 5/19 cells, noise-reared P12-25= 8/11 cells, n= 30 neurons, Χ2 = 6.11, p= 0.013) and 

mice reared in noise from P19-25 (proportion of cells where excitation and inhibition correlated, noise-reared P12-

25= 8/11 neurons, noise-reared P19-25= 1/8 neurons, n= 19 neurons, Χ2= 6.7, p= 0.034). Error bars represent 95% 

CI of regression lines. Stars indicate statistical significance. *= p< 0.05, **= p< 0.01. 
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3.3.4 Noise rearing diminishes excitatory input onto glutamatergic neurons 

To investigate whether noise rearing also leads to a reorganization of synaptic networks received 

by excitatory IC neurons, we targeted recordings to glutamatergic neurons using a mouse line in 

which the expression of the fluorescent protein dtTomato is restricted to glutamatergic neurons 

expressing the Cre protein under the promoter for the vesicular glutamate transporter 2 (vglut2+). 

We compared the synaptic networks received by vglut2+ glutamatergic neurons between control 

and noise-reared mice (Figure 3-6 A).  

Noise rearing from P12-25 decreased the amount of excitatory input received by 

glutamatergic neurons.  This decrease was reflected by smaller excitatory input areas (Noise 

reared: exci input area 49% of control, n= 26 cells, n= 11 animals) (Fig 3-6 B) and decreased 

total excitatory synaptic charge (Noise reared: total exci charge 30% of control, n= 26 cells, n= 

11 animals) (Figure 3-6 C). Excitatory synaptic charge per stimulation site, on the other hand, 

remained unchanged (Mann-Whitney Test, p= 0.137) (Figure 3-6 C), suggesting that the 

reduction in synaptic excitation onto glutamatergic neurons was due to a decrease in the number, 

rather than the strength of excitatory synaptic inputs. Inhibitory input maps received by 

glutamatergic IC neurons remained stable in noise-reared animals compared to controls (Figure 

3-6 B-D). 

As in GABAergic neurons, the input maps of glutamatergic IC neurons consisted of a 

combination of dual, exci-alone and inhi-alone presynaptic sites (Fig 3-7 A). However, unlike 

GABAergic neurons, glutamatergic neurons exhibited a shrinkage of excitatory input areas (Fig 

3-7 B). This shrinkage of excitation was restricted to exci-alone stimulation sites, whereas both 

dual and inhi-alone areas were unchanged (Fig 3-7 B). No significant differences were detected 

between control and noise-reared mice in terms of total synaptic charge at either dual or non-dual 
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sites (Figure 3-7 C), though a trend was observed toward reduced excitatory charge at exci-alone 

sites (Mann-Whitney Test, p= 0.08). Additionally, no significant differences were observed 

between control and noise-reared mice in terms of synaptic charge per stimulation site, though a 

trend was observed toward decreased inhibitory charge per dual stimulation site (Mann-Whitney 

Test, p= 0.19) (Figure 3-7 D). 

When we examined the balance of excitatory and inhibitory synaptic strengths at 

individual dual stimulation sites, we found that the majority of glutamatergic IC neurons (10 of 

11 control cells) exhibited greater inhibitory synaptic charge compared to excitatory synaptic 

charge (Figure 3-7 E), which translated into negative mean cellular E: I indices (Figure 3-7 F).  

Interestingly, this dominance of inhibition was reduced in mice exposed to noise from P12-25. In 

noise-reared animals, we found positive shifts in E:I indices calculated both on an individual cell 

basis (noise reared: -0.40  ± 0.11, control: -0.03 ± 0.1, n= 21 cells, n= 11 animals)  (Figure 3-7 

F), and pooled across cells (noise reared: -0.12  ± 0.03, control: -0.50 ± 0.03, n= 486 dual 

stimulation sites, n= 11 animals) (Figure 3-7 G).  Thus, noise rearing from P12-25 decreased 

excitatory input area, but shifted E:I balance at dual stimulation sites in favor of excitation. In 

other words, excitatory input area diminished, but at remaining dual sites, excitation became 

stronger than inhibition. 
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Figure 3-6. Noise rearing decreases synaptic excitation onto glutamatergic neurons. 

(A) Examples of excitatory (left) and inhibitory (right) synaptic input maps from control (top) and noise-reared 

(bottom) vglut2-cre-dT mice. Traces illustrate excitatory and inhibitory synaptic responses to glutamate uncaging at 

the map locations indicated by symbols. Uncaging sites that elicited direct responses at the recorded neuron are 

indicated in black. (B) Changes in synaptic input area induced by noise rearing. Excitatory input area was decreased 

in noise-reared mice compared to control mice (exci area, control=1.38 x 105 μm2 ± 0.29 x 105 μm2, 0.68 x 105 μm2 

± 0.23 x 105 μm2, n= 26 neurons, p= 0.040, Mann-Whitney Test). (C) Changes in total synaptic charge induced by 

noise rearing. Excitatory input charge was increased in noise-reared mice compared to control mice (exci charge, 

control= 68.6 pC  ± 25.7 pC, noise reared= 20.4 pC ± 9.3 pC, n= 27 neurons, p= 0.046, Mann-Whitney Test). (D) 

Synaptic charge per stimulation site was unaffected by noise rearing. Error bars represent SEM. Stars indicate 

statistical significance. *= p< 0.05, **= p< 0.01. 
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Figure 3-7. Spatial overlap of excitatory and inhibitory inputs onto glutamatergic neurons after noise rearing 

from P12-25. 
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Figure 3-7. Spatial overlap of excitatory and inhibitory inputs onto glutamatergic neurons after noise rearing 

from P12-25.  

(A) Example excitatory (left) and inhibitory (right) input maps received by a glutamatergic IC neuron. Input maps 

consist of uncaging sites that elicit both excitatory and inhibitory synaptic responses (dual, green), sites that elicit 

excitatory but not inhibitory responses (exci alone, red) and sites that elicit inhibitory but not excitatory responses 

(inhi alone, blue). (B) Changes in dual and non-dual synaptic input areas induced by noise rearing. Exci-alone input 

area was decreased in noise-reared mice compared to control mice (exci-alone input area, control= 0.45 x 105 μm2 ± 

0.16 x 105 μm2, noise reared= 0.18 ± 0.07 x 105 μm2, n= 23 neurons, Mann-Whitney Test, p= 0.045). (C) Total 

synaptic charge was unchanged by noise rearing at dual and non-dual uncaging sites. (D) Synaptic charge per 

stimulation site was unchanged by noise rearing at dual and non-dual uncaging sites. (E) Mean excitatory and 

inhibitory synaptic charge at dual uncaging sites for control (left) and noise-reared (right) mice. Lines are individual 

neurons connecting mean excitatory and inhibitory synaptic charges for that neuron. (F) Changes in E: I index 

induced by noise rearing. Each data point is mean E:I index for an individual neuron, calculated as the average of 

indices from dual uncaging sites for that neuron. The mean E: I index in noise-reared mice was shifted in favor of 

excitation compared to control mice (E: I index, control= -0.40  ± 0.11, noise reared= -0.03 pC ± 0.10 pC, n= 21 

neurons, Student’s t-test, p= 0.022). (G) Changes in pooled E: I index induced by noise rearing. E: I indices from 

individual, dual uncaging sites pooled across neurons from control (left) and noise reared (right) mice. In noise 

reared mice, the pooled E: I index was shifted to more positive values compared to control mice (pooled E: I index, 

control= -0.50  ± 0.03, noise reared= -0.12 pC ± 0.03 pC, n= 486 dual uncaging sites, Mann-Whitney Test, 

p<0.0001). Error bars represent SEM. Stars indicate statistical significance. *= p< 0.05, **= p< 0.01. 
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Finally, we sought to determine whether noise rearing-related changes in the synaptic 

input maps of glutamatergic neurons were restricted to a similar critical period as GABAergic 

neurons. Consistent with this prediction, noise rearing between P19-25 (n= 5 animals) did not 

change either the excitatory or inhibitory synaptic input areas received by excitatory IC neurons 

(Figure 3-8 A). However, noise rearing between P19-25 did lead to a reduction in total inhibitory 

charge compared to controls (noise reared: 26.9% of control, n= 17 cells, n= 8 animals) (Figure 

3-8 B). This reduction in inhibition was found at inhi-alone presynaptic sites (noise reared: 

26.9% of control, n= 18 cells, n= 8 animals), but not dual sites (Figure 3-8 E), and was 

attributable to a reduction in inhibitory charge per inhi-alone site (noise reared: 43.4% of control, 

n= 18 cells, n= 8 animals) (Figure 3-8 F). However, despite these changes, we found no 

differences between control mice and mice exposed to noise from P19-25 in terms of the balance 

of excitatory and inhibitory synaptic strengths at dual stimulation sites (Fig 3-8 G, H).  

It was not possible to investigate changes in excitation: inhibition coupling for 

glutamatergic neurons through correlational analyses, because the number of dual stimulation 

targets in many cells was too low (e.g. <10) to gain sufficient statistical power to run correlations 

and make inter-group comparisons.  However, among those glutamatergic neurons that did 

possess sufficiently large dual input areas to perform E: I correlational analysis, we found that a 

subpopulation of cells exhibited significant positive correlations between excitatory and 

inhibitory synaptic strengths (4 of 8 cells from control mice, 3 of 5 cells from noise reared P12-

25 mice, 1 of 3 cells from noise reared P19-25 mice). Thus, in the CNIC, a subpopulation of both 

GABAergic and glutamatergic neurons show significant evidence of excitation: inhibition 

coupling at dual presynaptic sites. 
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Figure 3-8. Noise rearing leads to reorganization of synaptic inputs onto glutamatergic neurons during a 

parallel critical period. 
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Figure 3-8. Noise rearing leads to reorganization of synaptic inputs onto glutamatergic neurons during a 

parallel critical period.  

(A) Noise rearing from P19-25 did not change overall synaptic input area compared to control mice (B) Total 

inhibitory synaptic charge was decreased in noise reared mice compared to controls (total inhibitory synaptic charge, 

control= 196.6 pC ± 66.3 pC, noise reared P19-25= 51.2 pC  ± 25.8 pC, n= 17 neurons, Mann-Whitney Test, p= 

0.024). (C) Noise rearing did not change overall synaptic input charge per stimulation site. (D) Noise rearing from 

P19-25 did not change dual or non-dual synaptic input areas compared to control mice. (E) Total inhibitory synaptic 

charge was decreased at inhi-alone stimulation sites (total inhibitory synaptic charge from inhi-alone sites, control= 

118.4 pC ± 28.7 pC, noise reared P19-25= 31.8 pC  ± 9.4 pC, n= 18 neurons, Mann-Whitney Test, p= 0.013). (F) 

Inhibitory synaptic charge per stimulation site was decreased at inhi-alone stimulation sites (inhibitory synaptic 

charge per inhi-alone site, control= 1.43 pC ± 0.30 pC, noise reared P19-25= 0.62 pC  ± 0.06 pC, n= 18 neurons, 

Mann-Whitney Test, p= 0.013). (G-H) Noise rearing did not change E: I balance at dual uncaging sites. Noise 

rearing had no effect on the mean E: I index calculated for individual neurons (G) or on the pooled E: I index (H). 

Error bars represent SEM. Stars indicate statistical significance. *= p< 0.05, **= p< 0.01. 
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3.4 DISCUSSION 

In this study, we demonstrate that altering the spectrotemporal makeup of acoustic stimulation 

during early hearing experience profoundly impacts the functional organization of intrinsic 

synaptic circuits in the central nucleus of the mouse IC. By performing synaptic circuit mapping 

with LSPS in mice that were reared in pulsed white noise, we were able to link changes in 

acoustic experience to cell-specific patterns of IC circuit reorganization. Our data support two 

main conclusions. First, pulsed noise rearing during the first two weeks of hearing experience 

(P12-25) leads to a substantial reorganization of intrinsic synaptic networks in the IC, with 

distinct patterns of reorganization occurring for GABAergic and glutamatergic IC neurons. 

Second, noise rearing-induced reorganizations of local IC circuits are largely restricted to an 

early critical period during the first week (P12-18) of hearing experience. Taken together, these 

results demonstrate a powerful link between early acoustic experience and the functional 

organization of synaptic circuits in the auditory system. Furthermore, our findings provide a 

possible synaptic circuit basis for the persistent immature frequency tuning that has been 

observed in the IC of noise-reared mice (Sanes and Constantine-Paton, 1983; Sanes and 

Constantine-Paton, 1985).  

 

3.4.1 Reorganization of intrinsic IC circuits in noise-reared mice 

Synaptic mapping of glutamatergic and GABAergic CNIC neurons enabled us to identify cell-

type specific forms of synaptic circuit reorganization in the CNIC of noise-reared animals. In 

GABAergic inhibitory neurons, noise rearing from P12-25 leads to increases in the sizes of 
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synaptic input maps, specifically involving an increase in the number of dual stimulation sites 

(Figure 3-2 B). We cannot be certain of the precise locations of the presynaptic excitatory and 

inhibitory neurons being stimulated at these dual stimulation sites- only that the ‘spike-eliciting 

areas’ of these inputs in response to glutamate uncaging are overlapping.  However, this overlap 

suggests that excitatory and inhibitory presynaptic inputs found at dual sites are located in close 

spatial approximation to one another. Given the tonotopic organization of the CNIC, inputs 

evoked at dual stimulation sites may arise from neurons that share similar CF preferences, and 

these inputs may therefore be driven by similar frequencies of acoustic stimulation. In noise-

reared mice, the increase in dual input area for GABAergic neurons may therefore broaden 

frequency tuning curves. 

Noise rearing likely increased dual input area via one of two processes (Figure 3-9). First, 

the increase in dual input area may involve the addition of excitatory and inhibitory synaptic 

inputs to regions of the CNIC that were previously unresponsive to glutamate uncaging (Figure 

3-9 A). In this case, dual input areas would likely be increased in noise-reared animals, whereas 

exci-alone and inhi-alone areas would remain stable. Indeed, we found that noise rearing leads to 

an increase in dual input area, without changing exci-alone or inhi-alone input areas (Figure 3-2 

B). An alternative explanation is that noise rearing increases dual input areas via the addition of 

excitatory and inhibitory synaptic inputs to locations where inhi-alone and exci-alone 

presynaptic sites were previously found, respectively (Figure 3-9 B). In this case, exci-alone 

and/or inhi-alone sites would become dual sites, and exci-alone and inhi-alone input areas would 

likely shrink (Figure 3-9 B). This scenario seems unlikely, however, given that exci-alone and 

inhi-alone input areas were found to be stable (Figure 3-2 B). 
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Figure 3-9. Models of noise-rearing-related increases in dual input area onto GABAergic neurons. 

(A) Input maps consist of inhi-alone (blue), exci-alone (red) and dual (blue-red) presynaptic sites. Schematized input 

map shown with equivalent proportions of each site.  (B) Noise-rearing from P12-25 may increase dual input area 

via the addition of excitatory and inhibitory inputs to regions of the CNIC that were previously unresponsive to 

glutamate uncaging. (C) Alternatively, noise rearing may increase dual input area via the addition of excitatory and 

inhibitory inputs to presynaptic sites that were previously inhi-alone and exci-alone, respectively.  
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The increase in dual input area onto GABAergic neurons is accompanied by a 

strengthening of excitatory synaptic inputs at both dual and exci-alone sites. In vivo, this 

increased excitatory input may translate into an increased drive of inhibitory IC networks in 

response to acoustic stimulation, which could result in a broadening of tuning curves for 

GABAergic neurons and/or a sharpening of tuning curves for CNIC neurons that receive local 

inhibitory inputs. Additionally, since intrinsic CNIC circuits are preferentially engaged at higher 

sound intensities (Grimsley et al., 2013), increases in local excitatory input onto GABAergic 

neurons may lower the acoustic stimulus intensity threshold for the recruitment of local 

inhibitory networks. Increasing the amount of local inhibition in the CNIC under conditions of 

mild acoustic stimulation could alter neuronal tuning properties as well as affect hearing in noisy 

environments. 

 In glutamatergic neurons, noise rearing from P12-25 leads to a shrinkage of excitatory 

input maps (Figure 3-6 A, B), as well as to a loss of total excitatory charge (Figure 3-6 C). 

However, noise rearing does not change excitatory charge per stimulation target (Figure 3-6 D, 

Figure 3-7 D), which suggests that the strength of remaining excitatory inputs is preserved. 

Instead, we find that inhibition is weakened relative to excitation at dual stimulation sites (Figure 

3-7 E), and this asymmetry produces a shift in E: I balance at dual sites in favor of excitation. 

Thus, while the patterns of noise rearing-induced synaptic reorganization differ substantially 

between excitatory and inhibitory neurons, both changes lead to shifts in the balance of 

excitatory and inhibitory input strengths in favor of excitation. 

The different patterns of noise rearing-induced synaptic reorganization for glutamatergic 

and GABAergic IC neurons may relate to different spike-timing dependent plasticity (STDP) 

rules acting at excitatory and inhibitory synapses in the IC. Spike-timing dependent plasticity is 
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hypothesized to instruct the refinement of synaptic circuits in development (Bennet and Bair, 

2015), and in disrupting normal patterns of correlated spiking in auditory circuits, pulsed noise 

rearing may disturb STDP-dependent circuit refinement. In the DCN, excitatory synapses onto 

glutamatergic principal cells exhibit long-term potentiation (LTP) when presynaptic excitation is 

delivered shortly before the occurrence of post-synaptic spiking, whereas excitatory synapses 

onto GABAergic cartwheel neurons exhibit long-term-depression (LTD) under the same 

conditions (Tzounopoulos et al., 2004; Tzounopoulos et al., 2007). Similar plasticity rules may 

function at excitatory synapses onto glutamatergic and GABAergic neurons in the IC, and if 

pulsed noise exposure disrupts the relative timing of pre- and post-synaptic firing in these 

neurons, it could theoretically prevent STDP-related strengthening and weakening of excitatory 

inputs onto glutamatergic and GABAergic IC neurons, respectively. Such a process could 

explain why pulsed noise exposure from P12-25 results in decreased excitatory input onto 

glutamatergic IC neurons (if LTP is prevented) as well as to increased excitatory input onto 

GABAergic IC neurons (if LTD is prevented). 

3.4.2 A critical period for intrinsic connectivity in the auditory midbrain 

The effects of pulsed noise rearing on synaptic circuit organization in the IC were predominantly 

restricted to mice that were reared in pulsed noise during the first week of hearing experience 

(P12-18). Compared to age-matched control mice, mice reared in noise between P19-25 (but not 

P12-18) exhibited similar excitatory and inhibitory synaptic input maps for both GABAergic 

(Figures 3-3, 3-4) and glutamatergic (Figure 3-8) IC neurons. Thus, the first week of hearing 

experience appears to represent a critical period for the effects of noise rearing on intrinsic 

connectivity in the CNIC. 
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Although the effects of noise rearing were largely restricted to the first week of hearing 

experience, pulsed noise delivered exclusively from P19-25 did lead to at least two fine-scale 

synaptic modifications. Noise-reared animals exhibited a weakening of excitatory synaptic 

strength at dual presynaptic sites for GABAergic neurons (Figure 3-4 C), as well as a weakening 

of inhibitory synaptic strength at inhi-alone sites for excitatory neurons (Fig 3-8 B, E, F). It is 

possible that the critical period for intrinsic circuit plasticity in the CNIC is not completely 

closed by P19, and that these changes reflect the “tail end” of the plasticity window. However, if 

this were the case, we would then expect that the synaptic changes occurring in mice that were 

raised in noise from P19-25 would be similar to those occurring in mice that were raised in noise 

from P12-25. Instead, whereas the strengths of excitatory synaptic inputs received by 

GABAergic neurons were slightly weakened in mice exposed to noise between P19-25, 

excitatory inputs were profoundly strengthened in mice exposed to noise between P12-25. 

Additionally, whereas the strengths of inhibitory synaptic inputs received by glutamatergic 

neurons were weakened in mice exposed to noise between P19-25, the strengths of these 

inhbitory inputs were unchanged in mice exposed to noise between P12-25. We therefore suspect 

that the fine-scale changes in synaptic strength that result from noise rearing between P19-25 

occur after the closure of the initial critical period, and are the result of a distinct, activity-

dependent process. In the developing auditory cortex, different intrinsic and synaptic properties 

of cortical pyramidal neurons exhibit distinct critical periods of plasticity in response to transient 

hearing loss (Mowery et al., 2015). Therefore, it is plausible that the fine-scale changes in 

synaptic strength that occurred in the CNIC of mice reared in noise from P19-25 occurred during 

a distinct critical period from the larger-scale network changes that occurred in mice reared in 

noise from P12-25. 



 96 

3.4.3 Consequences of CNIC circuit reorganization for the development of hearing  

Frequency tuning in the IC matures rapidly during the first week of hearing experience, as 

evidenced by a sharpening of tuning curves and a decrease in sound evoked firing thresholds 

(Shnerson and Willot, 1979, Saunders et al., 1980). Exposing mice to synchronous auditory 

inputs during this period has been shown to prevent the developmental sharpening of frequency 

tuning in the IC (Sanes and Constantine-Paton, 1983; Sanes and Constantine-Paton, 1985) and 

since the organization of ascending inputs to the IC is largely mature at hearing onset (Gabriele 

et al., 2000a, 2007; Henkel et al., 2007), this disruption in tuning may reflect disturbances in the 

refinement of intrinsic CNIC maps. Here we demonstrate that pulsed white noise rearing 

between P12-25 leads to an increase in local excitatory and inhibitory input areas received by 

GABAergic neurons, as well as to a substantial strengthening of the excitatory synaptic inputs 

received by these cells. These changes may lead to a widening of tuning curves for GABAergic 

neurons and to a lowering of their sound-evoked response thresholds.  

Neuronal tuning curves in the IC broaden with increasing sound intensity (Egorova et al., 

2001; Egorova and Ehret, 2008) and since extrinsic excitatory and inhibitory inputs to the CNIC 

saturate before intrinsic inputs (Grimsley et al., 2013), this broadening of tuning may be partly 

mediated by the recruitment of intrinsic IC circuits. In addition to the increased excitation of 

GABAergic neurons, noise rearing also led to a relative increase in excitatory synaptic strength 

at dual presynaptic sites (in spite of an overall loss of excitatory area). Together, these noise- 

reorganizations may shift the intensity-dependent recruitment of intrinsic IC circuits to lower 

sound intensities and alter neuronal tuning at low-mid sound intensities. 

How might pulsed white noise exposure disrupt developmental refinement in intrinsic 

CNIC circuits? In primary auditory cortex, where pulsed white noise exposure prevents the 
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maturation of tonotopy and frequency selectivity, the effects of noise rearing have been 

attributed to premature closure of critical period plasticity (Zhang et al., 2002). This may also be 

the case in the CNIC, where pulsed noise exposure during early hearing experience may shut the 

critical period window for experience-dependent plasticity prior to the completion of normal 

synaptic refinement. Critical period duration is highly dependent on the level of local 

GABAergic neurotransmission (Hensch et al., 1998; Faglioni and Hensch, 2000; Iwai et al., 

2003; Hensch and Stryker, 2004; Hensch, 2005), and critical period closure following pulsed 

noise exposure may therefore relate to changes in the intrinsic properties of GABAergic IC 

neurons, as well as to changes in local synaptic inputs received by these cells. In the developing 

primary visual cortex (V1) of mice, monocular deprivation leads to ocular dominance plasticity 

via a transient reduction in the evoked firing rates of fast-spiking parvalbumin-positive (PV) 

GABAergic interneurons, which, in turn, is due to a decrease in local excitatory input onto PV 

interneurons (Kuhlman et al., 2013). Pharmacologically preventing this reduction in GABAergic 

neurotransmission just after eye opening has been shown to prevent ocular dominance plasticity 

in VI and to accelerate critical period closure (Iwai et al., 2003; Kuhlman et al., 2013). The 

results of these studies parallel our findings in the IC, which demonstrate that pulsed white noise 

exposure selectively increases excitatory synaptic input onto GABAergic IC neurons. Thus, 

pulsed white noise exposure may have naturalistically recapitulated the effects achieved by 

pharmacologically increasing GABAergic neurotransmission in the visual system, and closed the 

window for experience-dependent plasticity in the auditory system.  
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3.4.4 Conclusion 

In this study, we provide the first evidence that altering the spectrotemporal makeup of acoustic 

inputs during early hearing experience can lead to profound reorganizations of local synaptic 

circuits in the auditory midbrain.  Raising mice in pulsed white noise during the first two weeks 

of hearing experience leads to complex yet specific reorganizations of excitatory and inhibitory 

synaptic inputs onto glutamatergic and GABAergic neurons. Furthermore, our studies 

demonstrate that noise rearing affects excitatory and inhibitory neurons differently, suggesting 

that the synaptic networks of each cell type exhibit distinct mechanisms of experience-dependent 

maturation. Finally, the effects of noise rearing on the distribution of excitatory and inhibitory 

synaptic networks in the IC are restricted to a critical period window, which falls within the first 

week of hearing experience.  
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4.0  REORGANIZATION OF SYNAPTIC CIRCUITS IN THE INFERIOR 

COLLICULUS IN A MOUSE MODEL OF TINNITUS AND ITS PREVENTION BY 

ACOUSTIC ENRICHMENT 

4.1 INTRODUCTION 

Tinnitus is a central hearing condition characterized by the perception of sound without an 

external source (Baguley et al., 2013). Over 50 million people in the U.S. alone experience 

tinnitus, more than 2 million of which are debilitated by it (Shargorodsky et al., 2010). Tinnitus 

predominantly, but not invariably, emerges in individuals who have suffered peripheral hearing 

loss due to noise damage (Helfer et al., 2011; Yankaskas et al., 2013), ototoxic drugs (Dille et al., 

2010), or traumatic brain injury (Yurgil et al., 2015), indicating that cochlear trauma triggers 

plasticity in central auditory brain circuits that eventually can lead to tinnitus (see Gold and Bajo, 

2014 for review).  

Studies in both humans and rodent models have identified hyperactivity as a major 

neuronal correlate of tinnitus (Melcher et al., 2000; Brozoski et al., 2002; Leaver et al., 2011; 

Middleton et al., 2011; Llano et al., 2012; Li et al., 2013; Kalappa et al., 2014; Luo et al., 2014). 

This hyperactive state has been observed in several auditory brain regions and is characterized by 

increased spontaneous firing rates (Brozoski et al., 2002; Seki and Eggermont, 2003; Ma et al., 

2006; Vogler et al., 2011; Li et al., 2013; Manzoor et al., 2012; Ropp et al., 2014), a higher 
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incidence of burst-like firing (Bauer et al., 2008; Pilati et al., 2012a; Kalappa et al., 2014; 

Coomber et al., 2014), an increase in gain (Wang et al, 2002; Niu et al., 2013; Stefanescu et al., 

2015), and enhanced firing synchrony (Seki and Eggermont, 2003; Bauer et al., 2008). Tinnitus-

related hyperactivity has been attributed to increased neuronal membrane excitability and to 

decreased synaptic inhibition. For example, in the dorsal cochlear nucleus (DCN), which is 

thought to be the initial site of tinnitus generation (Kaltenbach, 2007), noise-induced increases in 

the spontaneous firing rates of fusiform cells are mediated by a reduction in voltage-gated 

potassium channel activity (Li et al., 2013; Kalappa et al., 2015; Li et al., 2015), as well as a 

down regulation of both GABAergic (Middleton et al., 2011) and glycinergic neurotransmission 

(Wang et al., 2009; Pilati et al., 2012b). In the inferior colliculus (IC) and auditory cortex, noise 

trauma-induced hyperactivity has been linked to decreased GABAergic inhibition (Dong et al., 

2009, 2010; Yang et al., 2011; Llano et al., 2012). However, clear evidence of whether the 

generation of tinnitus involves the reorganization of central auditory synaptic networks is still 

missing. 

A host of studies have implicated the IC in the generation of tinnitus (Berger and 

Coomber, 2015). The IC is the major subcortical integration center in the mammalian brain, 

receiving ascending inputs from almost all auditory brainstem nuclei (Adams et al., 1979; 

Malmierca et al., 2005), commissural inputs from the contralateral IC (Saldaña et al., 1992), and 

descending inputs from the auditory cortex (Saldaña et al., 1996; Gao and Suga, 1998; Bajo and 

King, 2013). In addition to these extrinsic inputs, the IC also contains an extensive and complex 

network of intrinsic connections, which are thought to encompass the majority of IC synapses 

(Saldaña and Merchán, 2005). Despite their prominence, the contribution of these intrinsic 

networks to auditory processing or the generation of tinnitus has remained poorly understood. 
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During development, both excitatory and inhibitory local IC circuits undergo substantial 

refinement, both before and after hearing onset (Chapter 2; Sturm et al., 2014) raising the 

possibility that some degree of plasticity may be retained at older ages. Since intrinsic IC 

connections provide gain control for IC responses (Grimsley et al., 2013), hearing-loss induced 

changes in the strength and/or the spatial organization of intrinsic IC circuits are plausible 

candidates for generating tinnitus-related IC hyperactivity, which is commonly observed in 

tinnitus patients as well as in animal models (Melcher et al., 2000; Wang et al., 2002; Ma et al., 

2006; Bauer et al., 2008; Dong et al., 2009; Mulders and Robertson, 2009; Dong et al., 2010; 

Manzoor et al., 2012; Niu et al., 2013; Ropp et al., 2014). 

To gain better insight into the organization and plasticity of intrinsic synaptic connections 

in the central nucleus of the IC (CNIC) and to investigate their potential reorganization following 

noise-induced hearing loss, we mapped local connectivity to glutamatergic and GABAergic 

neurons in the IC of mice using laser-scanning photostimulation (LSPS) with caged glutamate. 

We found that noise-induced mild hearing loss leads to profound, yet cell-type and input- 

specific, reorganizations of excitatory and inhibitory local IC circuits. Interestingly, the specific 

nature of these reorganizations strongly correlated with the presence or absence of behavioral 

evidence of tinnitus. In mice with tinnitus, reorganization of excitatory and inhibitory circuits 

resulted in a significant disruption of the overall synaptic excitation: inhibition balance, whereas 

in mice without tinnitus, the synaptic reorganization left the excitation: inhibition balance 

unchanged. Acoustic enrichment (AE) with mild-intensity pulsed white noise immediately 

following acoustic trauma prevented circuit reorganization and the emergence of evidence of 

tinnitus without affecting hearing loss. Our results demonstrate that intrinsic synaptic circuits in 

the IC retain a high degree of plasticity and provide a link between the specific patterns of circuit 
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reorganization and the behavioral evidence of tinnitus. Finally, our results raise the possibility of 

using early acoustic enrichment after cochlear trauma to prevent the development of tinnitus. 

4.2 MATERIALS AND METHODS 

4.2.1 Animals and preparation  

Experimental procedures were carried out in accordance with US National Institutes of Health 

(NIH) guidelines and were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of Pittsburgh. Vgat-ires-cre, and dT-loxP mice were purchased from 

Jackson Labs (Jackson). Vglut2-cre mice were the generous gift of Dr. Rebecca Seal’s 

laboratory. The background strain of all mice was C57BL/6J. In our laboratory, vglut2-cre and 

vgat-ires-cre mice were crossed with dT-loxP mice to generate vglut2-cre-dT-loxP and vgat-ires-

cre-dT-loxP strains.  

 

4.2.2 Noise exposure  

Mice of either sex [postnatal day (P) 20-23] were randomly assigned to one of two groups: 1) 

noise-exposed group or 2) control group. For unilateral noise exposure, mice in the noise-

exposed group were deeply anesthetized with isoflurane and a pipette tip fixed to the end of a 

2.5-cm piece of plastic tubing and attached to a speaker was inserted into their left ear canals. 

Noise exposure consisted of narrow bandpass noise with a 1-kHz bandwidth that was centered at 
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16 kHz and presented at 116 dB sound pressure level (SPL) for 45 min. Mice in the control 

group were not given noise exposure. 

4.2.3 Gap inhibition of the acoustic startle response 

Behavioral evidence of tinnitus was tested using the gap detection methods (Turner et al., 2006; 

Middleton et al., 2011; Li et al., 2013; Kalappa et al., 2015; Li et al., 2015), which has been 

cross-validated with other behavioral measures of tinnitus (Bauer & Brozoski, 2001). Gap 

detection was tested in all mice 1d prior to noise-exposure (P19-22) and then again 7d after 

noise-exposure (P26-30). Gap detection testing was carried out in a sound-attenuating chamber 

(Colbourn Instruments). A piezoelectric transducer was used to record of downward force 

exhibited by the animals during the startle reaction (Clause et al., 2012). During testing, a narrow 

bandpass background sound (1-kHz bandwidth centered at either 10, 12, 16, 20, 24 and 32 kHz) 

was presented at 70 dB SPL for 8-25 seconds (randomly varied) prior to presentation of an 

acoustic startle stimulus (white noise, 140 dB SPL, 20 ms). In 50% of trials, a 50 ms gap was 

introduced into the background sound 130 ms prior to the presentation of the startle stimulus. 

Startle response magnitude was measured (in arbitrary units, AU) as the peak-to-peak value of 

the downward force exerted by mice onto the platform in response to the startle stimulus. Gap 

detection ability was determined for each sound frequency using the gap startle ratio, which is 

the ratio of the startle response amplitude in trials with gaps in the background sound at a given 

sound frequency over the startle response magnitude in trials without gaps at the same sound 

frequency. Gap startle ratios closer to 0 indicate greater gap inhibition of the acoustic startle 

reflex while gap startle ratios closer to 1 indicate less gap inhibition. 
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4.2.4 Tinnitus criteria 

In the gap detection paradigm, a decrease in gap detection ability (measured as an increase in the 

gap detection ratio) serves as the behavioral marker for tinnitus. However, in order to be 

considered evidence of tinnitus, an increase in the gap detection ratio must exceed an 

experimenter-defined threshold. Similar to others (Li et al., 2013; Kalappa et al., 2015; Li et al., 

2015), we defined this threshold as an increase in the gap detection ratio that was at least 2 

standard deviations above the average change in gap detection ratios observed for control mice 

over a 7d period. To control for potential inter-strain differences in gap detection ability, we 

determined separate tinnitus threshold scores for vglut2-cre-dTloxP and vgat-ires-cre-dT-loxP 

mice (Figures 4-1 and 4-2). The probability distributions of changes in gap detection in control 

mice from each strain were fitted with normal distributions (vglut2-cre-dT-loxP; μ= 0.02, SD σ= 

0.141, n= 12 animals: vgat-ires-cre-dT-loxP; μ= 0.02, SD σ= 0.145, n= 12 animals), and tinnitus 

threshold scores were determined to be 0.30 (vglut2-cre-dT-loxP) and 0.31 (vgat-ires-cre-dT-

loxP), similar to the values previously reported for other mouse strains (Li et al., 2013; Li et al., 

2015). Noise-exposed mice that exhibited an increase in the gap startle ratio that exceeded these 

thresholds for at least one sound frequency were considered tinnitus mice (NE-T). Noise-

exposed mice that exhibited a change in the gap startle ratio that was less than the tinnitus 

threshold were considered non-tinnitus mice (NE-NT). To control for tinnitus that was unrelated 

to noise-exposure, control mice that exhibited an increase in the gap startle ratio that exceeded 

the tinnitus threshold in the initial testing (1 vglut2-cre-dT-loxP animal and 1 vgat-ires-cre-dT-

loxP mouse) were excluded from further analysis. To ensure that all mice were able to detect the 

gap in the background sounds prior to noise-exposure, gap startle ratios for individual sound 

frequencies were required to be below 0.9 to be included post-noise-exposure analysis (Li et al., 
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2013). One mouse had no gap startle ratios below 0.9 for any tested frequency and was therefore 

excluded. Utilizing these criteria, 9 out of 18 (50%) noise-exposed vglut2-cre-dT-loxP mice and 

10 out of 19 (53%) noise-exposed vgat-ires-cre-dT-loxP showed behavioral evidence of tinnitus. 

4.2.5 Prepulse inhibition of the acoustic startle response 

Prepulse inhibition (PPI) of the acoustic startle response was assessed in all mice in order to 

control for noise-induced deficits in acoustic sensitivity and potential changes in the neuronal 

circuits related to PPI and startle behavior. In the PPI paradigm, a nonstartling prepulse sound 

decreases startle response amplitudes (Groves et al., 1974). Prior studies have shown that noise-

exposed mice with tinnitus exhibit gap detection deficits in the absence of PPI deficits (Li et al., 

2013). For PPI testing, a 50-ms pre-pulse sound (1-kHz bandwidth centered at 10, 12, 16, 20, 24 

and 32 kHz) was presented 130 ms before the presentation of the startle stimulus (white noise, 

140 dB SPL, 20 ms). The sound intensity of the pre-pulse was similar to the intensity of the 

background sound used in gap detection trials (70 dB SPL). PPI was evaluated for each sound 

frequency with the PPI startle ratio, which is the ratio of the startle response amplitude without 

pre-pulse over the startle response amplitude with pre-prepulse. PPI startle ratios closer to 0 

indicate stronger PPI of the startle response, while PPI startle ratios closer to 1 indicate weaker 

PPI of the startle response. 

4.2.6 Auditory brainstem response 

Auditory brainstem response (ABR) thresholds were assessed in all mice assigned to the noise-

exposed group 1d prior to noise exposure (P19-22), and then again 7d after noise-exposure (P26-
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30). Measurements were conducted in a sound-attenuating chamber (Coulbourn Instruments) 

using a Z-Series 3-DSP Bioacoustic System (Tucker Davis Technologies) with subdermal 

electrodes placed at the vertex, a ground electrode placed ventral to the right pinna, and the 

reference electrode placed ventral to the left pinna. Stimuli were produced using the System 3 

software package (Tucker Davis Technologies). During ABR measurements, animals were 

anesthetized with Isoflurane anesthesia and their body temperatures were maintained around 

36.5-38.5 °C by a heating pad. ABR thresholds were obtained with 1ms clicks as well as 3ms 

tone bursts of 10, 12, 16, 20, 24, and 32 kHz presented at various sound intensities at a rate of 

18.56 per s. Evoked potentials were averaged 1,024 times and filtered using a 300- to 3,000-Hz 

band- pass filter. 

4.2.7 Acoustic enrichment 

Acoustic enrichment (AE) consisted of pulsed white noise (75 dB SPL) delivered in a sound-

attenuating chamber (Coulbourn Instruments) as described previously (Clause et al., 2014). Pulse 

length was set to 138ms, and pseudorandomly presented with an inter-pulse length of 0-450ms 

and a duty cycle of 47%. Acoustic enrichment was started immediately after noise exposure and 

continued for 7 d before animals were used for ABR measurements, behavioral testing, and 

preparation of brain slices. Mice in the AE control group (AE-only) were placed in the AE 

chamber on the same developmental day as NE-AE mice, after which they were treated 

identically to NE-AE mice. 
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4.2.8 Slice preparation 

Coronal brainstem slices were prepared from vglut2-cre-dT- loxP and vgat-ires-cre-dT-loxP 

mice of either sex at P26-30. For brain slice preparation, animals were deeply anaesthetized with 

isoflurane, decapitated, and their brains were removed. Coronal midbrain slices (300 μm) were 

then prepared as previously described (Sturm et al., 2014) using a vibrating microtome and 

incubated to 34° C in artificial cerebrospinal fluid (ACSF) (composition in mM; 0.25 7 H2O x 

MgSO4, 124 NaCl, 5 KCl, 10 Dextrose, 1.25 KH2P04, 26 NaHCO3, 2 CaCl2). Brain slices were 

stored in an interface chamber 1h (30m incubation at 34° C followed by 30m rest at 22-25° C) 

prior to beginning recordings.  

4.2.9 Electrophysiological recordings 

Whole-cell recordings were aimed at the CNIC as previously described (Sturm et al., 2014). 

Recordings were performed in a submersion-type chamber (3-4 ml/min perfusion with 

oxygenated ACSF at 22-25° C) mounted on an upright microscope (Zeiss AxioExaminer A1) 

and were targeted at dT-expressing neurons under epifluorescent illumination. Borosilicate glass 

recording pipettes (3-6 MΩ) contained a potassium-based internal solution containing 

(composition in mM; 115 K-Gluconic acid (C6H11O7K), 5 KCl, 11 EGTA, 1 MgCl2 X 6H2O, 1 

CaCl2 X 2H2O, 10 HEPES, 0.3 GTP disodium salt, 2.0 ATP disodium salt and 0.5 % biocytin, 

pH 7.2, 314 mOsm/l). Whole-cell currents in voltage-clamp and current-clamp modes were 

acquired (Multiclamp 700B amplifier, Digidata- 1440A A/D converter, Molecular Devices) at a 

sampling rate of 4kHz using pClamp 10 software (Molecular Devices). Current-voltage (IV) 

plots were generated in current-clamp mode with 15pA current steps. Spontaneous excitatory 
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(sEPSC) and inhibitory (sIPSC) currents were recorded in voltage-clamp mode, at -65mV and 

0mV, respectively. 

4.2.10 Blinding procedure 

Noise induction, ABR measurements, and behavioral startle measurements where performed by 

Ms. Hannah Roos (HR).  Analysis of ABRs and startle data as well as slice experiments and their 

analysis were performed by JS.  

HR assigned a unique identification number to each animal, and each animal was marked 

by a system of tattoos. JS performed synaptic input mapping without information about the ABR 

and startle-behavior data. However, JS was aware of whether or not each animal had been noise-

traumatized. For experiments that involved acoustic enrichment with pulsed white noise, JS was 

aware of whether the experimental animal had received acoustic enrichment at the time of input 

mapping. While recording and analyzing electrophysiological data and ABR thresholds, JS was 

blinded to tinnitus behavioral status. For analysis, data from animals in each experimental 

condition were grouped together into a single software folder, with data from each cell and 

animal being identified only by the date that the recording was performed. During the analysis 

period, the behavioral statuses that corresponded to each recording date were maintained on a 

separate computer not accessed by JS. Only after all data were analyzed did JS match recording 

dates with tinnitus behavioral status. At this point data were entered into a summary data file, 

which was then used for inter-group statistical comparisons.  
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4.2.11 Synaptic input mapping and map analysis 

The spatial distribution of presynaptic inputs to CNIC neurons was determined using focal 

photolysis of caged glutamate as described in Chapter 3 (see Methods Chapter 3, section 3.2). 

Evoked synaptic responses were distinguished from spontaneous synaptic events and direct 

stimulations using the same detection criteria described in Chapter 3 (see section 3.2.6). 

Excitatory and inhibitory input map areas were calculated as the sum of excitatory and inhibitory 

synaptic response sites, respectively. The synaptic charge transferred (pC) at each response site 

was calculated over a 150ms window, from 10ms post-stimulus to 160ms post-stimulus, and 

averaged across all available mapping iterations (1-3). For each cell, the total amounts of 

excitatory and inhibitory synaptic charge transferred were determined as the sum of excitatory 

and inhibitory synaptic charges found at excitatory and inhibitory synaptic response sites, 

respectively. 

 

Excitation: Inhibition index: Excitation: Inhibition indices for individual cells were 

calculated in terms of input area and input charge according to the following equation: 

E: I index =  (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑒𝑒𝑠𝑠ℎ𝑒𝑒)
(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑠𝑠ℎ𝑒𝑒)

, where the values “exci” and “inhi” are the input areas or input 

charges for each cell. 

4.2.12 Spontaneous synaptic event analysis 

Spontaneous post-synaptic currents: sEPSCs and sIPSCs were analyzed using MiniAnalysis 

software (Synaptosoft). The frequencies and amplitudes of sEPSCs and sIPSCs were determined 
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for each neuron recorded. E:I indices of total synaptic charge were calculated according to the 

following equation: 

E: I index =  (𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡ℎ – 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡ℎ)
(𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡ℎ+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑎𝑎𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡ℎ)

 , where total sEPSC strength 

is the sum of sEPSC amplitudes (pA) recorded over 60s period, and total sIPSC strength is the 

sum of sIPSC amplitudes (pA) recorded over 60s. 

4.2.13 Distinguishing type 1 and type 2 vgat+ neurons 

 To distinguish between type 1 and type 2 GABAergic neurons, an inhibitory input map 

threshold was set. Neurons that exhibited inhibitory input map areas ≤ 0.25 x 105 μm2 and total 

inhibitory input charges ≤ 5pC were considered type 2 neurons.  Neurons that exhibited either 

inhibitory input map area > 0.25 x 105 μm2 or total inhibitory input charge > 5pC were 

considered type 1 neurons.  

4.2.14 Intrinsic properties of type 1 and type 2 vgat+ neurons 

Intrinsic membrane properties were derived from current-voltage plots collected in current-clamp 

mode using 15 pA steps. Input resistance was measured with -15 pA injections from rest. 

Depolarization and repolarization slopes of action potentials were measured as the maximum 

slope during the depolarization phase and the minimum slope during repolarization phase of a 

spike, respectively. Action potential half height width was measured as the width of a spike 

when voltage= spike threshold + (spike amplitude/2). Spike threshold was measured as the 

membrane potential at which the depolarization slope shows the first abrupt change. 
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4.2.15 Gap detection behavior analysis 

 Gap detection ratios were determined individually for each sound frequency as the average 

startle magnitude in the presence of a background sound gap divided by the average startle 

magnitude in the absence of a sound gap. Gap ratio changes were defined as the gap detection 

ratio obtained before noise-exposure (or control) subtracted from the gap detection ratio obtained 

7d later.  

4.2.16 PPI behavior analysis 

 PPI ratios were determined individually for each sound frequency as the average startle 

magnitude in the presence of a prepulse sound divided by the average startle magnitude in the 

absence of that prepulse sound. PPI ratio changes were defined as the PPI ratio obtained before 

noise-exposure (or control) subtracted from the PPI ratio obtained 7d later.  

4.2.17 ABR threshold analysis 

ABR thresholds were analyzed with Biosig software (Biosig) and were defined as the minimum 

sound intensity (in dB SPL) that a given click or tone burst was able to elicit at least 2 waves in 

the ABR waveform and.  

4.2.18 Statistical analysis 

Data are presented as mean +/- SEM. Data were tested for normal distribution using Bartlett’s 
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test. For independent, two-group comparisons, Students t-tests (two-tailed) and Mann-Whitney 

tests were used to determine statistical significance (GraphPad Prism). For two-group 

comparisons that involved repeated measures (gap behavior, PPI behavior and ABR thresholds), 

paired t tests (two-tailed) were used. For 3- and 4- group comparisons, One-way ANOVAs and 

Kruskal-Wallis tests were used to determine statistical significance (GraphPad Prism). Multiple 

comparisons were corrected for with the Tukey method (ANOVAs) and the Dunn pairwise 

method (Kruskal-Wallis). For cumulative probably data, Kolmogorov-Smirnov tests were used. 

Statistical significance was set to p< 0.05. 

4.3 RESULTS 

4.3.1 Tinnitus behavior emerges in a subset of noise-traumatized mice  

In both humans and rodent models, noise-induced hearing loss leads to tinnitus in only a fraction 

of the population (humans: Nondahl et al., 2011; Yankaskas, 2013, rodents: Dehmel et al., 2012; 

Li et al., 2013). We elicited noise-induced hearing loss by unilaterally exposing 20-23 day old 

(P20-23) mice for 45 min to continuous noise (116 dB, 1 kHz band-width centered at 16 kHz). 

One week later, mice were assessed for hearing threshold shifts using auditory brainstem 

responses (ABRs) and tested for behavioral evidence of tinnitus using the acoustic startle gap 

detection method  (Turner et al., 2006; Dehmel et al., 2012; Li et al., 2013). This method is based 

upon inhibition of the acoustic startle reflex (ASR) by a silent gap embedded in a background 

sound preceding the startle stimulus by 130 ms. Mice that experience tinnitus exhibit a decrease 
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in gap-mediated inhibition of the ASR at sound frequencies where their presumed tinnitus 

percept “fills in the gap” (Turner et al., 2006). 

Consistent with previous reports (Li et al., 2013), approximately 50% of noise-exposed 

mice (19/37 animals) exhibited behavioral evidence of tinnitus, as indicated by a significant 

reduction in gap-mediated inhibition of the ASR (Figure 4-1, Figure 4-2). A reduction in gap 

detection was found exclusively for sound frequencies that were at or above the hearing-loss 

frequency range (16-32 kHz) (Figure 4-1, Figure 4-2 and Figure 4-3), which mirrors the situation 

in human patients, where the frequency of tinnitus is usually at or above the frequency of hearing 

loss (Schaette and Kempter, 2009; Sereda et al., 2014). The degree of hearing loss after noise 

exposure was moderate (10-20 dB at 16-32 kHz) and indistinguishable between noise-exposed 

mice with behavioral evidence of tinnitus (NE-T) and mice without tinnitus (NE-NT) (ABR 

threshold shift 16-32 kHz: NE-NT: 17.9 ± 2.9 dB, NE-T: 18.2 ± 2.1, n= 33 animals, p= 0.93) 

(Figure 4-3). Importantly, impaired gap-detection in NE-T mice was not due to impairment in 

detecting the background sounds in which the silent gaps were embedded, because prepulse 

inhibition of the ASR (PPI) with prepulses of similar intensities and frequencies as the 

background sounds used in gap-detection testing was normal (PPI ratio change: Control: -0.12 ± 

0.02, NE-NT: -0.10 ± 0.03, NE-T: 0.00 ± 0.03, n= 255 sound frequencies, p= 0.08) (Figures 4-1 

and 4-2). Taken together, these behavioral results indicate that while all noise-exposed mice 

exhibit similar hearing loss, only about 50% of exposed mice develop behavioral evidence of 

tinnitus. 
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Figure 4-1. Effects of noise exposure on gap detection and PPI in vglut2-cre-dT-loxP mice. 
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Figure 4-1. Effects of noise exposure on gap detection and PPI in vglut2-cre-dT-loxP mice.  

(A) Probability distribution of changes in gap startle ratios (response to startle stimulus with gap present/response to 

startle stimulus alone) over a one week period in control mice. Data are fitted with normal distribution (gray curve, μ 

= 0.02, δ = 0.140, n = 72 sound frequencies). Gap ratio changes greater than 2δ above the distribution mean (0.30) 

are considered evidence of tinnitus. (B) Cumulative probability distribution for changes in gap ratios following 

traumatic noise exposure. (C) Summary graphs of gap startle ratios before and 7d after noise-exposure. Gap 

detection ratios remain stable in NE-NT mice, but are increased for higher sound frequencies in NE-T mice (24 kHz, 

Before= 0.73 ± 0.05; After= 1.03 ± 0.07, n= 9 animals, p< 0.01, Paired t test) (32 kHz, Before= 0.74 ± 0.04; After= 

0.93 ± 0.08, p< 0.01, Paired t-test). (D) Summary graphs of PPI startle ratio before and after noise-exposure. Error 

bars represent SEM. Stars mark statistical significance. *= p< 0.05, **= p< 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 116 

 

Figure 4-2. Effects of noise exposure on gap detection and PPI in vgat-ires-cre-dT-loxP mice. 
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Figure 4-2. Effects of noise exposure on gap detection and PPI in vgat-ires-cre-dT-loxP mice.  

(A) Probability distribution of changes in gap startle ratios (response to startle stimulus with gap present/response to 

startle stimulus alone) over 1w period in control mice. Data fitted with normal distribution (gray curve, μ = 0.02, δ = 

0.145, n = 72). Gap ratio changes greater than 2δ above the distribution mean (0.31) are considered evidence of 

tinnitus. (B) Cumulative probability distribution for changes in gap following noise exposure. (C) Summary graphs 

of gap startle ratios before and 7d after noise-exposure. Gap detection ratios remain stable in NE-NT mice, but are 

increased for higher sound frequencies in tinnitus mice (16 kHz, Before= 0.73 ± 0.03; After= 0.93 ± 0.07, n= 9 

mice, p< 0.05, Paired t-test) (20 kHz, Before= 0.74 ± 0.03; After= 0.93 ± 0.05, n= 9 mice, p< 0.01, Paired t-test) (24 

kHz, Before= 0.73 ± 0.05; After= 1.03 ± 0.07, n= 9 mice, p < 0.01, Paired t-test) (32 kHz, Before= 0.74 ± 0.04; 

After= 0.93 ± 0.08, n= 9 animals, p< 0.05, Paired t-test). (D) Summary graphs of PPI startle ratio before and after 

noise-exposure. Error bars represent SEM. Stars mark statistical significance. *= p < 0.05, **= p< 0.01. Decreases in 

PPIRs were observed at 16 kHz (Before= 0.64 ± 0.07; After= 0.42 ± 0.04, n= 12 mice, p< 0.05, Paired t-test) in 

control animals and at 12 kHz (Before= 0.71 ± 0.07; After= 0.46 ± 0.03, n= 8 mice p< 0.01, Paired t-test) in NE-NT 

animals. 
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Figure 4-3. ABR thresholds are similarly elevated in mice with or without evidence of tinnitus. 
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Figure 4-3. ABR thresholds are similarly elevated in mice with or without evidence of tinnitus.  

(A) Summary graphs of ABR thresholds before and 7d after noise exposure in vglut2-cre-dT animals. Thresholds for 

higher sound frequencies were elevated following noise exposure in both NE-NT and NE-T mice. In NE-NT mice, 

threshold elevations were found at 20 kHz (Before= 33.1 ± 5.0 dB; After= 54.1 ± 3.3 dB, n= 9 mice, p< 0.01, Paired 

t-test), 24 kHz (Before= 33.1 ± 5.0 dB; After= 58.1 ± 5.5 dB, n= 9 mice, p< 0.01, Paired t-test) and 32 kHz (Before= 

38.1 ± 5.3 dB; After= 60.0 ± 4.2 dB, n= 9 mice, p< 0.01, Paired t-test). In NE-T mice, threshold elevations were 

found at 16 kHz (Before= 40.1 ± 3.3 dB, After= 58.1 ± 3.9 dB, n= 10 mice, p< 0.01, Paired t-test), 20 kHz (Before= 

38.1 ± 3.3 dB; After= 50.0 ± 2.0 dB, n= 10 mice p< 0.05, Paired t-test), 24 kHz (Before= 40.0 ± 5.2 dB; After= 56.9 

± 6.7 dB, n= 10 mice, p< 0.05, Paired t-test) and 32 kHz (Before= 43.8 ± 4.0 dB; After= 56.6 ± 1.5 dB, n= 10 mice 

<0.05, Paired t test) (B) same as A, but for vgat-ires-cre-dT animals. Thresholds for higher sound frequencies were 

elevated following noise exposure. In NE-NT mice, significant threshold elevations were found at 16 kHz (Before= 

30.6 ± 4.0 dB; After= 45.6 ± 4.4 dB, n= 9 mice, p< 0.05, Paired t-test), 20 kHz (Before= 33.8 ± 5.0 dB; After= 48.8 

± 3.2 dB, n= 9 mice, p< 0.05, Paired t-test), 24 kHz (Before= 26.7 ± 4.3 dB; After= 46.1 ± 4.2 dB, n= 9 mice, p< 

0.05, Paired t-test) and 32 kHz (Before= 42.8 ± 2.9 dB; After= 51.7 ± 2.8 dB, n= 9 mice, p< 0.01, Paired t-test). In 

NE-T mice, significant threshold elevations were found at 16 kHz (Before: 26.9 ± 2.8 dB; After= 51.9 ± 4.6 dB, n= 

10 mice, p< 0.01, Paired t-test), 20 kHz (Before: 31.9 ± 4.5 dB; After= 50.0 ± 2.7 dB, n= 10 mice, p< 0.01, Paired t-

test), 24 kHz (Before: 27.5 ± 4.6 dB; After= 51.3 ± 4.7 dB, n= 10 mice, p< 0.01, Paired t-test) and 32 kHz (Before: 

35.0 ± 3.9 dB; After= 55.0 ± 3.5 dB, n= 10 mice, p< 0.01, Paired t-test). Error bars represent SEM. Stars indicate 

statistical significance. *= p< 0.05, **= p< 0.01. 
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4.3.2 Reorganization of synaptic inputs onto excitatory IC neurons 

The presence of behavioral evidence of tinnitus in only a fraction of noise-exposed mice affords 

the opportunity to associate hearing-loss-induced changes in auditory circuits to the presumed 

perception of phantom sounds. To identify hearing loss reorganizations of local synaptic circuits 

in the central nucleus of the IC (CNIC), we obtained whole-cell patch-clamp recordings from IC 

neurons contralateral to the exposed ear and used LSPS with caged glutamate in brain slices to 

map their synaptic inputs (Figure 4-4). Since excitatory and inhibitory neurons in the IC cannot 

be reliably distinguished on the basis of morphological or physiological criteria (Malmierca et 

al., 1993; Sivaramakrishnan et al., 2001), we targeted recordings from glutamatergic neurons 

using a mouse line in which the expression of the fluorescent protein dtTomato is restricted to 

glutamatergic neurons expressing the Cre protein under the promoter for the vesicular glutamate 

transporter 2 (vglut2+). 

In control (unexposed) vglut2+ mice aged P26-30, glutamatergic CNIC neurons received 

both excitatory and inhibitory local inputs, which were recoded while holding the neurons at -65 

mV or 0 mV, respectively (Figure 4-4 C, D). Local input maps were dominated by synaptic 

inhibition, as indicated by greater inhibitory input map areas (inhi area= 210% ± 25% of exci 

area, n= 12 neurons, n= 6 animals), greater total inhibitory postsynaptic charge (inhi charge= 

287% ± 97% of exci charge, n= 12 neurons, n= 6 animals), and negative excitation: inhibition 

(E:I) indices for input area (E:Iarea= -0.50 ± 0.09, n= 12 neurons, n= 6 animals) and input charge 

(E:Icharge= -0.58 ± 0.15, n= 12 neurons, n= 6 animals) (see Methods; 4.2.10.) (Figure 4-4 D, E). 

The dominance of inhibition at P26-30 is similar to the dominance of inhibition at P19-22 (Sturm 

et al., 2014), suggesting that developmental synaptic refinement in intrinsic IC circuits is largely 

complete by the end of the third postnatal week. 
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Figure 4-4. Noise-Induced reorganization of synaptic input maps onto glutamatergic IC neurons. 
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Figure 4-4. Noise-Induced reorganization of synaptic input maps onto glutamatergic IC neurons.  

(A) Mice undergo noise trauma at P20-23 and are then tested for behavioral evidence of tinnitus 7d later. 19 of 37 

noise-exposed mice (51%) exhibited evidence of tinnitus. (B) Schematic of synaptic input mapping of vglut2+ 

excitatory neurons (black circle). Excitatory (circle) and inhibitory (triangle) inputs are shown in red. Excitatory and 

inhibitory synaptic input maps are obtained by holding the membrane voltage of the recorded neuron at -65mV (left) 

and 0mV (right), respectively, during laser stimulation. Example excitatory and inhibitory maps for a neuron are 

overlaid over a photograph of the corresponding IC slice. Scale bar 400 μm (C) Examples of excitatory and 

inhibitory synaptic input maps from control (left), noise-exposed with tinnitus (NE-T, middle), and noise exposed 

without tinnitus (NE-NT, right) mice. Traces illustrate excitatory (circle) and inhibitory (triangle) synaptic responses 

to glutamate uncaging (red line) at the map locations indicated by symbols. Uncaging sites that elicited direct 

responses at the recorded neuron are indicated in black. (D) Changes in synaptic input area and total synaptic charge 

induced by traumatic noise exposure. Total excitatory charge (right) was decreased in NE-NT mice compared to 

NE-T mice (Exci Charge, Control= 68.8 ± 25.7 pC; NE-T= 95.8 ± 37.8 pC; NE-NT= 16.4 ± 6.4 pC, n= 36 neurons, 

n= 19 animals, p= 0.04, Kruskal-Wallis test). In contrast, inhibitory input area (left) and total inhibitory charge 

(right) were each decreased in NE-T mice compared to control mice (Inhi Area, Control= 2.9 x 105 ± 0.34 x 105 

μm2; NE-T= 1.0 x 105  ± 0.42 x 105 μm2; NE-NT= 1.7 x 105 ± 0.40 x 105 μm2, n= 34 neurons, n= 19 animals, p= 

0.006, one-way ANOVA) (Inhi Charge, Control= 196.6 ± 66.3 pC; NE-T= 19.7 ± 9.7 pC; NE-NT= 63.1 ± 20.2 pC 

n= 33 neurons, p= .0009, Kruskal-Wallis test). (E) Changes in E:I Index induced by noise-exposure. E:I index 

measures excitation: inhibition balance and is calculated as excitation minus inhibition, divided by the sum of 

excitation and inhibition. In NE-T animals, the E:I indices for input area (left) and input charge (right) were shifted 

from the negative values in control and NE-NT animals, to positive values (Area, Control= -0.50 ± 0.09; NE-T= 

0.41 ± 0.14; NE-NT= -0.28 ± 0.10, n= 34 neurons, n= 19 animals, p< 0.0001, one-way ANOVA) (Charge, Control= 

-0.58 ± 0.15; NE-T= 0.57 ± 0.18; NE-NT= -0.57 ± 0.08, n= 33 neurons, n= 19 animals, p< 0.0001, one-way 

ANOVA). Error bars represent SEM. *= p< 0.05, **= p< 0.01 in post-hoc, pairwise assessments corrected for 

multiple comparisons. Mapping data for control animals is same as data shown in Figure 3-6 in Chapter 3. 
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All noise-exposed mice showed a reorganization of synaptic input maps of glutamatergic 

IC neurons, but the nature of this reorganization differed between mice with and without 

behavioral evidence of tinnitus. In NE-T mice, the size and the strength of excitatory input maps 

of glutamatergic neurons remained unchanged, as the excitatory input areas and total excitatory 

postsynaptic charges in NE-T were not significantly different from control animals (Figure 4-4 

C, D). However, local synaptic inhibition to glutamatergic neurons was substantially diminished, 

as evidenced by dramatically smaller inhibitory input maps (NE-T= 34.7% ± 14.4% of control, 

n= 22 neurons, n= 12 animals) and smaller total inhibitory charges (NE-T= 10.0% ± 4.9% of 

control, n= 22 neurons, n= 12 animals) (Figure 4-4 C, D). As a consequence, in NE-T mice, the 

E: I indices for local inputs to glutamatergic neurons were profoundly shifted from the negative 

values typical for control mice (E:Iarea= -0.50 ± 0.09, E:Icharge= -0.58 ± 0.15, n= 12 neurons, n= 6 

animals), to positive values (E:Iarea= 0.41 ± 0.14, E:Icharge= 0.57 ± 0.18, n= 10 neurons, n= 6 

animals) (Figure 4-4 E). E: I indices were calculated for each neuron as the amount of inhibition 

(area or charge) received subtracted from the amount of excitation received, together divided by 

the sum of excitation and inhibition. Negative E: I indices indicate a dominance of inhibition, 

whereas positive E: I indices indicate a dominance of excitation. Thus, in the IC of control 

animals, the excitation: inhibition balance arising from local circuits onto glutamatergic neurons 

is strongly dominated by inhibition, whereas in NE-T mice, local synaptic inputs onto excitatory 

neurons are strongly dominated by excitation. 

Noise-exposed mice without evidence of tinnitus (NE-NT) also showed a reorganization 

of local inputs to glutamatergic IC neurons, but the pattern of this reorganization was markedly 

different from that of NE-T mice. First, in NE-NT mice, total excitatory synaptic charge was 

significantly reduced compared NE-T mice and trended towards being reduced compared to 
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control mice (p= 0.12, student’s t-test) (Figure 4-4 C, D). Secondly, synaptic inhibition onto 

glutamatergic neurons, which was greatly diminished in NE-T mice, was not significantly 

reduced in NE-NT mice (Figure 4-4 C, D). Although we observed trends towards both decreased 

excitatory and inhibitory input map areas in NE-NT mice compared to control mice, neither 

trend reached statistical significance (Figure 4-4 C, D). As a result, in NE-NT mice there was no 

significant change of the overall E:I index of local synaptic inputs to glutamatergic neurons, and 

local inputs remained dominated by inhibition (Figure 4-4 D). 

We next characterized noise-induced changes in synaptic input on the level of 

spontaneous synaptic events, which, in addition to the activity of local IC connections, also 

captures changes in ascending or descending external inputs (Figure 4-5). Irrespective of the 

presence or absence of tinnitus, all noise-traumatized mice exhibited increased spontaneous 

excitatory drive. This increase was reflected by an approximately two-fold increase in the 

frequency (NE-T= 294% ± 43% of control, NE-NT= 188% ± 20% of control), but not the 

amplitude of spontaneous excitatory postsynaptic currents (sEPSC) (Figure 4-5 A, C). In 

contrast, spontaneous inhibitory drive was unaffected by noise exposure, as indicated by stable 

frequencies and amplitudes of spontaneous inhibitory postsynaptic currents (sIPSC) (Figure 4-5 

B, C). To determine the E:I balance of spontaneous synaptic events, we calculated the E:I index 

for the total synaptic strength received by individual excitatory neurons over a 60 s period (see 

Methods; 3.2.11). Similar to the E:I index of intrinsic input maps, the E:I index of spontaneous 

synaptic events shifted to positive values in NE-T mice, but was unchanged in NE-NT mice 

(Figure 4-5 D).  
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Figure 4-5. Spontaneous synaptic events onto glutamatergic IC neurons in noise-traumatized mice. 

(A) Example traces of sEPSCs. Individual event traces are average of 30-100 events from single cell. (B) Same as 

A, but for sIPSCs. (C) Summary graphs for frequency (left) and amplitude (right) of sPSCs. sEPSC frequency was 

increased in both NE-T and NE-NT mice compared to control mice (Control= 0.50 ± 0.09 Hz; NE-T= 1.47 ± 0.21 

Hz; NE-NT= 0.94 ± 0.10 Hz, n=32 neurons, n= 19 animals, p= 0.0002, Kruskal-Wallis test). sIPSC frequency was 

indistinguishable between groups (p= 0.40, Kruskal-Wallis test). Amplitudes of sEPSC and sIPSC did not differ 

between control and noise-exposed groups (sEPSC Amp, n= 32 neurons, n= 19 animals, p=0.87, one-way ANOVA; 

sIPSC Amp, n= 29 neurons, n= 19 animals, p= 0.18, Kruskal-Wallis test). (D) The E:I index calculated for the sum 

of PSC amplitudes over 60s was increased in NE-T mice relative to control mice (Control= -0.46 ± 0.09; NE-T= 

0.29 ± 0.18; NE-NT= -0.14 ± 0.14, n= 29 neurons, n= 19 animals, p= 0.002, one-way ANOVA). Error bars 

represent SEM. *= p< 0.05, **= p< 0.01 in post-hoc, pairwise assessments corrected for multiple comparisons. 
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In summary, our results demonstrate that traumatic noise exposure leads to a notable 

reorganization of synaptic inputs received by glutamatergic IC neurons and that the specific 

nature of this reorganization is distinct in mice that do and do not develop behavioral evidence of 

tinnitus. In NE-NT mice, the pattern of synaptic reorganization maintains the overall excitation: 

inhibition balance, whereas in NE-T mice the pattern of reorganization leads to a profound shift 

in excitation: inhibition balance in the direction of excitation. 

4.3.3 Two types of GABAergic IC neurons 

Having determined how hearing loss affects the synaptic inputs to glutamatergic IC neurons, we 

next examined the synaptic inputs of inhibitory neurons, which are GABAergic in the IC and 

constitute 20-25% of the population (Oliver et al., 1994). GABAergic IC neurons were identified 

using mice in which dtTomato expression is restricted to neurons expressing Cre under the 

promoter for the vesicular GABA transporter (vgat+), which is a marker of all GABAergic 

neurons in the IC (Ito et al., 2009). Based on their local inputs, GABAergic IC neurons fell into 

two categories. Type 1 neurons (21/30 neurons) received both excitatory and inhibitory local 

synaptic inputs, with a dominance of local inhibition, whereas type 2 neurons (9/30 neurons) 

received predominantly excitatory inputs with very few or no inhibitory inputs (inhi input area ≤ 

0.25 x 105 μm2 and inhi input charge ≤ 5pC, see Methods; 3.2.12) (Figure 4-6 A). Type 1 and 

type 2 neurons did not differ in their intrinsic membrane properties (Table 1), but clearly differed 

in the magnitude of their direct responses to glutamate uncaging at the soma, which were over 2-

fold larger in type 2 neurons than in type 1 neurons (Figure 4-6 A, B). In addition, type 2 neurons 

received greater amount of spontaneous excitatory drive, as indicated by greater amplitudes and 

frequencies of sEPSCs (freq, type 2= 481% ± 175% of type 1, n= 21 neurons, n= 13 animals; 
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amp, type 2= 165% ± 24% of type 1, n= 21 neurons, n= 13 animals) (Figure 4-6 C). These two 

types of GABAergic IC neurons likely correspond to the two major classes of inhibitory neurons 

previously described in the IC (Ito et al., 2009; Ito and Oliver, 2012; Ito and Oliver, 2014). Type 

2 neurons likely correspond to collicothalamic GABAergic projection neurons, which receive 

dense, axosomatic and dendritic glutamatergic synapses, whereas type 1 neurons likely 

correspond to local GABAergic interneurons, which receive fewer glutamatergic inputs, that are 

also located predominantly on dendrites (Ito and Oliver, 2012; Ito and Oliver, 2014). 

The excitatory input maps of type 1 and type 2 GABAergic IC neurons were similar to 

each other, and also were similar to the excitatory input maps of glutamatergic IC neurons (mean 

input area: p= 0.31, n= 43 neurons, n= 19 animals; mean postsynaptic charge: p= 0.98, n= 43 

neurons, n= 19 animals) (Figure 4-4, Figure 4-7 and Figure 4-9). The inhibitory input maps of 

type 1 GABAergic neurons, on the other hand, tended to be smaller than the inhibitory input 

maps of glutamatergic neurons, though the difference did not reach statistical significance for 

either input area (p= 0.28, n= 33 neurons, n= 16 animals) or input charge (p= 0.22, n= 33 

neurons, n= 16 animals) (Figure 4-4 C and Figure 4-7 C). As a consequence, the E:I indices for 

input map area and input charge were both significantly more positive for type 1 GABAergic 

neurons than for glutamatergic neurons (Table 2), indicating that E: I equilibrium for type 1 

inhibitory IC neurons is more balanced compared to glutamatergic neurons. In summary, our 

results identified three types of local IC networks: 1) glutamatergic neurons that receive 

excitation and inhibition with an E:I index that is strongly dominated by inhibition, 2) type 1 

GABAergic inhibitory neurons that receive excitation and inhibition with an E:I index that is 

weakly dominated by inhibition and 3) type 2 GABAergic inhibitory neurons that receive 

excitation, but minimal local inhibition. 
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Figure 4-6 Two types of GABAergic IC neurons. 
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Figure 4-6. Two types of GABAergic IC neurons.  

(A) Excitatory and inhibitory input maps from type 1 (left) and type 2 (right) vgat+ GABAergic neurons. Type 1 

neurons receive both excitatory and inhibitory inputs (left), but type 2 neurons receive predominantly excitatory 

inputs (right). Stimulation sites eliciting direct glutamate responses are in black. Traces show membrane currents 

elicited by glutamate uncaging over the soma. Circle indicates location of stimulation site. (B) Direct response 

amplitude (left) and charge (right) are larger in type 2 than in type 1 neurons (Peak Amplitude, type 1= 223.0 ± 47.6 

pA; type 2= 730.0 ± 139.2, pA, n= 30 neurons, p= 0.0007, Mann-Whitney test) (Peak Charge, Type 1= 6.9 ± 1.3 pC; 

Type 2= 21.4 ± 5.0 pC, n= 30 neurons, p= 0.005, Mann-Whitney test). (C) Spontaneous EPSCs of type 1 and type 2 

neurons. The mean frequency and the mean amplitude of sEPSCs are greater for type 2 neurons than for type 1 

neurons. (Frequency, type 1= 0.81 ± 0.16 Hz; Type 2= 3.9 ± 1.4 Hz, n= 21 neurons, n= 10 animals, p= 0.006, Mann-

Whitney test) (Amplitude, type 1= 14.2 ± 1.0 pA; Type 2= 23.5 ± 3.4 pA, n= 24 neurons, p= 0.008, Mann-Whitney 

test). Error bars represent SEM. Stars indicate statistical significance. *= p < 0.05, **= p< 0.01. 
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Table 1. Intrinsic properties of type 1 and type 2 GABAergic IC neurons. 

All recordings performed in vgat+ IC neurons from non-noise-exposed animals (input resistance, type 1: n = 10 

neurons, n= 5 animals, type 2: n = 6 neurons, n= 4 animals, p = 0.82; depolarization slope, type 1: n = 9 neurons, n= 

5 animals, type 2: n = 6 neurons, n= 5 animals, p = 0.79; repolarization slope, type 1: n = 9 neurons, n= 5 animals, 

type 2: n = 6 neurons, n= 4 animals, p = 0.53; half height width, type 1: n = 9 neurons, n= 5 animals, type 2: n = 6 

neurons, n= 4 animals, p = 0.55; spike threshold, type 1: n = 10 neurons, n= 5 animals, type 2: n = 6 neurons, n= 4 

animals, p = 0.82). Depolarization slope: maximum depolarizing slope, repolarization slope: minimum repolarizing 

slope, spike threshold: minimum voltage of first spike generation.  
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Table 2. Excitation: inhibition balance for excitatory and inhibitory IC neurons. 

All recordings were performed in either vgat+ or vglut2+ IC neurons from non-noise-exposed animals (E:I Index 

input area, vglut2+: n= 12 neurons, n= 6 animals, vgat+: n= 18 neurons, n= 10 animals, p= 0.030, Student’s t test; 

E:I index input charge, vglut2+: n= 12 neurons, n= 6 animals, vgat+: n= 20 neurons, n= 10 animals, p= 0.048, 

Mann-Whitney test; E:I Index spontaneous events, vglut2+: n= 10 neurons, n= 6 animals, vgat+: n= 14 neurons, n= 

10 animals, p=0.25, Student’s t test). 
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4.3.4 Reorganization of synaptic inputs onto GABAergic IC neurons 

The effects of noise trauma on the input maps of type 1 and type 2 GABAergic neurons differed 

substantially from each another, as well as from glutamatergic neurons (Figures 4-7, 4-8 and 4-

9). In NE-T mice, the excitatory input maps of type 1 GABAergic neurons dramatically 

decreased by 72% in size and by 83% in total synaptic charge, whereas the inhibitory input maps 

remained unchanged (Figure 4-7 B). As a result, the mean E:I index of input maps from type 1 

neurons shifted to a significantly more negative value (Figure 4-7 D). Along the same lines, the 

mean E: I index of spontaneous synaptic events for type 1 GABAergic neurons trended towards 

decreasing, though this difference did not reach statistical significance (Figure 4-8 D). Thus, in 

NE-T mice, there is increased net inhibition of type 1 GABAergic neurons (disinhibition) and an 

increased net excitation of glutamatergic IC neurons, both of which may act synergistically to 

increase IC excitability. 

In NE-NT mice, inhibitory input maps for type 1 GABAergic neurons decreased 

significantly, and excitatory input maps exhibited a trend towards decreasing that did not reach 

statistical significance (p= 0.06) (Figure 4-7 C).  However, these changes did not disturb the 

mean E: I index, which remained stable compared to controls (Figure 4-7 D). Despite the 

stability of E:I balance on the level of local input maps for NE-NT animals, there was an increase 

in the spontaneous excitatory drive to these neurons (sEPSC amplitudes, p= 0.05, 172% ± 28% 

of control, n= 21 neurons, n= 13 animals; sEPSC frequencies 275% ± 100% of control, p<0.02, 

n= 21 neurons, n= 13 animals) (Figure 4-8 A, C), whereas sIPSCs were unaffected (Figure 4-8 

B, C). As a result, the mean E: I index of spontaneous synaptic events for type 1 neurons from 

NE-NT mice shifted from the negative values present in control and NE-T mice, to a positive 

value (Figure 4-8 D), indicating increased synaptic excitation of type 1 neurons. 
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Figure 4-7. Noise-induced reorganization of synaptic input maps onto type 1 GABAergic neurons. 
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Figure 4-7. Noise-induced reorganization of synaptic input maps onto type 1 GABAergic neurons.  

(A) Schematic of synaptic input mapping of vgat+ GABAergic neurons (black triangle). Excitatory (circle) and 

inhibitory (triangle) inputs are shown in red. (B) Examples of excitatory and inhibitory input maps from control, 

NE-T, and NE-NT mice. Current traces illustrate excitatory (circle) and inhibitory (triangle) synaptic responses to 

glutamate uncaging (red line) at the locations indicated by symbols. Uncaging sites that elicited direct responses at 

the recorded neuron are in black. (C) Changes in synaptic input area and total synaptic charge following traumatic 

noise exposure. Excitatory input area and total excitatory charge were decreased in NE-T mice, as compared to 

control mice (Exci Area, Control= 1.47 x 105 ± 0.20 x 105 μm2; NE-T=0.41 x 105 ± 0.14 x 105 μm2; NE-NT= 0.88 x 

105 ± 0.22 x 105 μm2; n= 40 neurons, n= 21 animals, p<0.0001, Kruskal-Wallis test) (Exci Charge, Control= 39.6 ± 

14.0 pC; NE-T=6.8 ± 2.4 pC; NE-NT= 15.8 ± 7.3 pC, n= 40 neurons, n= 21 animals, p= 0.005, Kruskal-Wallis test). 

Inhibitory input area and total inhibitory charge were decreased in NE-NT mice compared to control mice (Inhi 

Area, Control= 2.41 x 105 ± 0.27 x 105 μm2; NE-T=1.50 x 105 ± 0.21 x 105 μm2; NE-NT= 1.0 x 105 ± 0.21 x 105 

μm2; n= 43 neurons, n= 21 animals, p= 0.004, Kruskal-Wallis test) (Inhi Charge, Control= 118.8 ± 28.8 pC; NE-

T=68.0 ± 18.5 pC; NE-NT= 31.9 ± 9.6 pC, n= 43 neurons, n= 21 animals, p= 0.049, Kruskal-Wallis test). (D) 

Changes in E:I index induced by noise-exposure. In NE-T animals, the E:I indices for input area and input charge 

were shifted to more negative values relative to both control and NE-NT mice (Area, Control= -0.23 ± 0.07; NE-T= 

-0.66 ± 0.07; NE-NT= -0.16 ± 0.18, n= 40 neurons, n= 21 animals, p= 0.002, Kruskal-Wallis test) (Charge, Control= 

-0.28 ± 0.10; NE-T=-0.84 ± 0.03; NE-NT= -0.39 ± 0.24, n= 40 neurons, n= 21 animals, p= 0.001, Kruskal-Wallis 

test). Error bars represent SEM. *= p< 0.05, **= p< 0.01 in post-hoc, pairwise assessments corrected for multiple 

comparisons. Mapping data for control animals is same as data shown in Figure 3-1 in Chapter 3. 
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Figure 4-8. Spontaneous synaptic events onto type 1 GABAergic neurons in noise-traumatized mice. 

(A) Example traces of sEPSCs. Individual event traces are average of 30-100 events from single cell. (B) Same as 

A, but for sIPSCs. (C) Summary graphs for frequency and amplitude of sPSCs. Frequency of sEPSCs was increased 

in NE-NT mice relative to control mice and both frequency and amplitudes of sEPSCs were increased in NE-NT 

mice relative to NE-T mice (sEPSC Freq, Control= 0.81 ± 0.16 Hz; NE-T= 0.39 ± 0.08 Hz; NE-NT= 2.26 ± 0.84 

Hz, n= 36 neurons, n= 17 animals, p= 0.0022, one-way ANOVA) (sEPSC Amp, Control= 14.2 ± 1.0 pA; NE-T= 

13.1 ± 0.68 pA; NE-NT= 24.4 ± 4.0 pA, n= 36 neurons, n= 17 animals, p= 0.0123, Kruskal-Wallis test). In contrast, 

frequency and amplitudes of sIPSCs were each indistinguishable between groups (sIPSC Freq, n= 36 neurons, n= 17 

animals, p= 0.33, one-way ANOVA) (sIPSC Amp, n= 36 neurons, n= 17 animals, p= 0.79, one-way ANOVA) (D) 

The E:I index calculated for the sum of PSC amplitudes over 60s was increased in NE-NT mice relative to both NE-

T and control mice (Control= -0.27 ± 0.12; NE-T= -0.53 ± 0.08; NE-NT= 0.54 ± 0.11, n= 36 neurons, n= 17 

animals, p< 0.0001, one way ANOVA). Error bars represent SEM. *= p< 0.05, **= p< 0.01 in post-hoc, pairwise 

assessments corrected for multiple comparisons.  
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Noise-trauma had no effect on the synaptic inputs of type 2 GABAergic neurons (Figure 

4-9). Both in NE-T and NE-NT mice, the excitatory input maps of type 2 GABAergic neurons 

were indistinguishable from control mice with respect to excitatory input area as well as and total 

excitatory charge (Figure 4-9 B). Additionally, both the frequency and the amplitudes of sEPSCs 

were unaffected by noise trauma (Figure 4-9 C). Taken together, these results demonstrate cell-

type and input specific reorganizations of synaptic connections onto GABAergic IC neurons, 

whose nature varies with the presence or absence of behavioral evidence of tinnitus. Similar to 

what we observed for glutamatergic IC neurons, the noise-induced reorganization of synaptic 

inputs to GABAergic neurons changed the balance of synaptic excitation and inhibition only in 

mice with behavioral evidence for tinnitus.  
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Figure 4-9. Synaptic inputs onto type 2 GABAergic neurons are stable in noise-traumatized mice. 

(A) Examples of excitatory input maps from control, NE-T, and NE-NT mice. Uncaging sites that elicited direct 

responses at the recorded neuron are indicated in black (B) Noise-exposure has no effect on excitatory input area 

(left) (n= 26 neurons, n= 17 animals, p= 0.97, Kruskal-Wallis test) or on total excitatory postsynaptic charge (right) 

(n= 26 neurons, n= 17 animals, p= 0.62, one-way ANOVA). (C) Spontaneous EPSCs are unchanged by noise-

trauma. Left, example traces of sEPSCs. Individual event traces (top) are average of 30-100 events. Right, noise 

trauma does not change the frequency (n= 23 neurons, n= 17 animals, p= 0.38, one-way ANOVA) or the amplitude 

(n= 23 neurons, n= 17 animals, p= 0.34, one-way ANOVA) of sEPSCs received by type 2 GABAergic neurons. 

Error bars represent SEM. 
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4.3.5 Post-traumatic acoustic enrichment prevents circuit reorganization and the 

behavioral correlates of tinnitus 

In the visual and auditory cortices, sensory deprivation can open periods of enhanced synaptic 

plasticity, which, similar to developmental critical periods, makes neuronal circuits sensitivity to 

sensory experience (He et al., 2006; Zhou et al., 2011; Zhu et al., 2014). We therefore speculated 

that noise-induced hearing loss might open a similar sensitive period that enables the synaptic 

reorganizations in the IC. This scenario would predict that the noise-induced reorganizations of 

IC circuits could be influenced by changes in the post-trauma acoustic environment. To test this 

hypothesis, we exposed noise-traumatized mice for 7 days to moderate intensity pulsed white 

noise (75 dB white noise in pulses of 138 ms duration, delivered pseudo-randomly at intervals 

from 0 to 450 ms, duty cycle 47%, n= 25 animals). For these initial experiments, we chose 

pulsed white noise because of its strong effect in preventing map refinement in the developing 

primary auditory cortex (Zhang et al., 2002) and in interfering with developmental sharpening of 

sound frequency tuning of IC neurons (Sanes and Constantine- Paton, 1985), while having no 

effect on the tonotopic refinement in lower brainstem nuclei (Clause et al., 2014). 

In support of our hypothesis, post-trauma acoustic enrichment (AE) prevented noise-

induced reorganization of both excitatory and inhibitory input maps to glutamatergic as well as 

GABAergic IC neurons (Figure 4-10). In noise-exposed mice that received AE (NE-AE), 

excitatory and inhibitory input maps of glutamatergic IC neurons remained undistinguishable 

compared to maps in control mice (no noise trauma), as evidenced by similar excitatory input 

areas (p> 0.05, n=25 neurons, n= 10 animals) (Figure 4-10 A), inhibitory input areas (p> 0.05, 

n= 22 neurons, n= 10 animals) (Figure 4-10 B), and E:I indices (p> 0.05, n= 21 neurons, n= 10 

animals) (Figure 4-10 C). In addition, the excitatory and inhibitory input maps of type 1 



 139 

GABAergic neurons were also indistinguishable between NE-AE and control mice, as evidenced 

by similar excitatory input areas (n= 26 neurons, n= 14 animals, p> 0.05) (Figure 4-10 D), 

inhibitory input areas (n= 22 neurons, n= 14 animals, p> 0.05) (Figure 4-10 E), and E:I indices 

(n= 22 neurons, n= 14 animals p> 0.05) (Figure 4-10 F). Therefore, in NE-AE mice, the overall 

excitation: inhibition balance in the IC remained at control levels for both glutamatergic and 

GABAergic neurons. Acoustic enrichment by itself had no effect on IC circuits, because control 

mice which did not receive prior noise trauma, but received the same AE, showed no changes in 

intrinsic IC circuitry, as indicated by stable excitatory input maps, inhibitory input areas and E:I 

indices for glutamatergic neurons (all p values> 0.05, n= 21 neurons, n= 10 animals) (Figure 4-

10 G, I) as well as type 1 GABAergic neurons (all p values> 0.05, n=29 neurons, n= 13 animals) 

(Figure 4-10 H, I). Thus, post-traumatic AE prevented noise-induced circuit reorganization in 

both excitatory and inhibitory IC neurons without having an effect on IC circuits in age-matched, 

non-traumatized control mice. 
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Figure 4-10. Acoustic enrichment with pulsed white noise inhibits post- traumatic circuit reorganization. 
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Figure 4-10. Acoustic enrichment with pulsed white noise inhibits post- traumatic circuit reorganization.  

(A) Noise-exposure-related changes in excitatory input maps of glutamatergic neurons (Vglut2+) in NE-NT and NE-

T animals (same data as in Figures 1-2) were absent in animals that received AE (green bars, Exci Area, Control= 

1.38 x 105 ± 0.29 x 105 μm2; NE-AE= 1.58 x 105 ± 0.27 x 105 μm2, n= 25 neurons, n= 10 animals, p> 0.05, corrected 

pairwise comparison after one-way ANOVA). (B) Same as A, but for inhibitory input maps (Inhi Area, Control= 2.9 

x 105 ± 0.34 x 105 μm2; NE-AE= 3.8 x 105 ± 0.66 x 105 μm2, n= 22 neurons, n= 10 animals, p> 0.05, corrected 

pairwise comparison after one-way ANOVA). (C) E:I indexes in excitatory neurons from NE-AE animals remained 

at control levels (Control= -0.50 ± 0.09; NE-AE= -0.29 ± 0.14, n= 21 neurons, n= 10 animals, p> 0.05, corrected 

pairwise comparison after one-way ANOVA). (D-F) Same as in A-C, but for type 1 GABAergic neurons (vgat+). 

(D) Excitatory input maps (Exci Area, Control= 1.47 x 105 ± 0.20 x 105μm2; NE-AE= 2.2 ± 0.50 x 105 μm2, n= 28 

neurons, n= 13 animals, p> 0.05, corrected pairwise comparison after one-way ANOVA). (E) Inhibitory input maps 

(Inhi Area, Control= 2.41 x 105 ± 0.27 x 105 μm2; NE-AE= 2.34 x 105 ± 0.63 x 105 μm2, n= 29 neurons, n= 13 

animals, p> 0.05, corrected pairwise comparison after one-way ANOVA). (F) E:I indices in type 1 GABAergic 

neurons from NE-AE (E:I index, Control= -0.23 ± 0.07; NE-AE= -0.00 ± 0.18, n= 28 neurons, n= 13 animals, p> 

0.05, corrected pairwise comparison after one-way ANOVA). (G) AE had no effect on input maps for glutamatergic 

neurons (vglut2+) from non-noise-traumatized control mice (Exci Area, n= 22 neurons, n= 10 animals, p= 0.41, 

Student’s t-test: Inhi Area, n= 19 neurons, n= 10 animals, p= 0.12, Student’s t-test). (H) Same as G, but for type 1 

GABAergic neurons (vgat+) (Exci Area, n= 29 neurons, n= 13 animals, p= 0.33, Student’s t-test, Inhi Area, n= 29 

neurons, n= 13 animals p= 0.29, Student’s t test). (I) E:I indices for both glutamatergic neurons and type 1 

GABAergic neurons from control mice were not changed by AE (vglut2+ neurons, n= 19 neurons, n= 10 animals, 

p= 0.30, Student’s t-test: vgat+ neurons, n= 29 neurons, n= 13 animals, p= 0.09, Student’s t-test). Error bars 

represent SEM. *= p< 0.05, **= p< 0.01. Mapping data for AE-alone animals in G-I is same data shown for noise-

reared animals in Figures 3-3 and 3-8 in Chapter 3. 
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Interestingly, AE also prevented the emergence of behavioral evidence of tinnitus, 

because noise-traumatized mice with AE had stable gap detection ratios before and after noise 

exposure (Gap Ratio Change, NE-AE= 0.02 ± 0.02, n= 84 tested sound frequencies) (Figure 4-11 

A, B). Acoustic enrichment reduced the percentage of noise-exposed animals that developed 

tinnitus from 51% (19/37 animals) to 12% (3/25 animals) (Figure 4-11 C). AE also had no effect 

on pre-pulse inhibition of the ASR compared to control animals (PPI Ratio Change, NE-AE= -

0.16 ± 0.04, n= 89 tested sound frequencies, Control= -0.12 ± 0.03, n= 90 tested sound 

frequencies) (Figure 4-11). This indicates that the effect of AE was specific for gap detection, 

and that AE did not affect hearing sensitivity or the neuronal circuits that mediate acoustic startle 

behavior. In addition, the protective effects of AE against noise-induced circuit reorganization 

and the emergence tinnitus were not due to a maintenance or restoration of hearing (Zhu et al., 

2014), because AE did not reverse ABR threshold shifts that occur following traumatizing noise 

exposure for either low (10-16 kHz, p= 0.472, n= 30 animals) or high (20-32 kHz, p= 0.85, n= 

30 animals) sound frequencies (Figure 4-11 D). Finally, the effects of AE on gap detection 

behavior were only present in noise-traumatized mice, since non-noise-traumatized control mice 

receiving identical AE showed no changes in gap inhibition of the ASR (p= 0.59, n= 16 animals) 

(Figure 4-11 E), paired-pulse inhibition of the ASR (p= 0.83, n=16 animals) (Figure 4-11 F) or 

hearing thresholds (10-16 kHz: p= 0.44, 20- 32 kHz: p= 0.60, n= 6 animals) (Figure 4-11 G). 
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Figure 4-11. Acoustic enrichment prevents the development of behavioral evidence of tinnitus. 
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Figure 4-11. Acoustic enrichment prevents the development of behavioral evidence of tinnitus.  

(A) Acoustic enrichment prevented noise-induced increases in gap detection ratios (left) (Gap Ratio Change, 

Control= 0.03 ± 0.02; NE-T= 0.18 ± 0.02, NE-NT= 0.00 ± 0.01, NE-AE= 0.02 ± 0.02, n= 376 sound frequencies, 

p<0.0001, Kruskal-Wallis test). (B) Prepulse inhibition of the startle response was unchanged following traumatic 

noise exposure or AE compared to control mice (PPI Ratio Change, Control= -0.12 ± 0.03; NE-T= 0.00 ± 0.03, NE-

NT= -0.10 ± 0.04, NE-AE= -0.15 ± 0.04, n= 344 sound frequencies). (C) The percentage of noise-exposed animals 

that developed behavioral evidence of tinnitus (black) was decreased by AE (green) (n= 62 animals, p= 0.003, 

Fischer Exact Test) (D) AE did not affect noise-induced ABR threshold shifts in low (10-16 kHz, NE-AE= 13.6 ± 

2.8 dB, NE+AE= 16.2 ± 2.0 dB, n= 30 animals, p= 0.47, Student’s t test) or high (20-32 kHz, NE-AE= 16.5 ± 3.0 

dB, NE+AE= 15.8 ± 2.7 dB, n= 30 animals, p= 0.85, Student’s t test) sound frequencies. (E) AE delivered to non 

noise-traumatized control mice had no effect on gap detection ratios relative to age-matched control mice that did 

not receive AE (Gap Ratio Change, Control= 0.03 ± 0.01, AE-only= 0.04 ± 0.02, n= 164 sound frequencies, p= 

0.59, Kolmogorov-Smirnov test). (F) Same as E, but for PPI inhibition of the ASR (PPI Ratio Change, Control= - 

0.12 ± 0.03, AE-only= -0.11 ± 0.04, n= 164 sound frequencies, p= 0.83, Kolmogorov-Smirnov test). (G) Summary 

graph of ABR thresholds before (black) and 7d after (green) AE for low (n= 6 animals, p= 0.43, Wilcoxin test) and 

high (n= 6 animals, p= 0.60, Paired t-test) sound frequencies in non-noise-traumatized mice. Error bars are SEM. 
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4.4 DISCUSSION 

In this study, we demonstrate an unexpected level of plasticity of excitatory and inhibitory 

intrinsic circuits in the central nucleus of the IC of mice following mild hearing loss. By 

combining behavioral testing and synaptic circuit mapping with LSPS, we were able to link 

specific patterns of circuit reorganization to the presence or absence of behavioral evidence of 

tinnitus. While hearing loss led to a substantial reorganization of synaptic connectivity in all 

noise-exposed mice, the specific pattern of this reorganization differed substantially between 

NE-T and NE-NT mice. In NE-T mice, glutamatergic IC neurons show stable excitatory input 

maps but greatly diminished inhibitory input maps, which together lead to a shift in the synaptic 

excitation: inhibition balance in favor of excitation (Figure 4-4 B-D). Type 1 GABAergic IC 

neurons show the reverse effect, having smaller excitatory input maps but unchanged inhibitory 

input maps, leading to a shift the excitation: inhibition balance towards inhibition (Figure 4-7 B-

D). In combination, these circuit changes lead to a functional ‘dis-inhibition’ of the IC in NE-T 

mice. 

In contrast, the synaptic reorganizations that take place in the IC of NE-NT mice preserve 

the overall excitation: inhibition balance at control levels for both glutamatergic (Figure 4-4 D) 

and GABAergic (Figure 4-7 D) neurons. Finally, we demonstrate that post-traumatic AE with 

patterned noise completely prevents noise-induced circuit reorganization of intrinsic IC circuits 

(Figure 4-10), and dramatically reduces the percentage of noise-traumatized mice that develop 

behavioral evidence of tinnitus (Figure 4-11). Taken together, these results establish a link 

between cell-type specific patterns of local circuit reorganization in the IC and the presence of 

behavioral evidence of tinnitus (Figure 4-12). Our results also encourage further investigation of 

using post-traumatic acoustic stimulation as a means to prevent the development of tinnitus. 
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Figure 4-12. Summary of IC network reorganization after noise exposure and/or acoustic enrichment. 

(A) Schematized intrinsic IC circuit with excitatory neurons (circle) and type 1 inhibitory neurons (triangle). Red 

arrows depict the population of excitatory connections and blue lines depict inhibitory connections. Input strength is 

indicated by the widths of connecting lines. In control mice, the total E:I balance for synaptic input maps is strongly 

dominated by inhibition for excitatory neurons and is weakly dominated by inhibition for type 1 inhibitory neurons. 

(B) Total E:I balance incorporates spontaneous synaptic drive as well as synaptic input maps. In control mice, the 

total E:I balance is dominated by inhibition for both excitatory neurons and type 1 inhibitory neurons. (C) Changes 

in connectivity strength in noise-exposed mice with (NE-T) and without tinnitus (NE-NT), and in noise-exposed 

mice that received acoustic enrichment (NE+ AE). Dashed lines indicate weakened connections. Lower row 

summarizes E:I balance after noise exposure and/or acoustic enrichment. 
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4.4.1 Gap detection as a method for tinnitus detection 

Since its inception (Turner et al., 2006), gap-inhibition of the ASR has become a widely used 

behavioral assay for evaluating tinnitus in animal models, and numerous studies utilizing this 

paradigm have shed significant light on the likely synaptic, cellular and molecular underpinnings 

of tinnitus (Wang et al., 2009; Engineer et al., 2011; Middleton et al., 2011; Dehmel et al., 2012; 

Li et al., 2013; Kalappa et al., 2014; Kalappa et al., 2015; Li et al., 2015). This rise in popularity 

of the gap-inhibition paradigm can be attributed to a number of features. First, compared to other 

tinnitus behavior paradigms, many of which require extensive conditioning regimens (Bauer and 

Brozoski, 2001; Lobarinas et al., 2004), the ASR-based method is faster and requires no training 

period beyond test chamber adaptation. Second, unlike conditioning paradigms, the ASR-based 

method requires no food or water restriction, and therefore controls against the confounding 

effects of metabolic disturbances. Finally, since the ASR is a reflex behavior, it is less sensitive 

to shifts in animal attention compared to the learned behaviors utilized by most other tinnitus 

paradigms (Jastreboff et al., 1988a/b; Bauer and Brozoski, 2001; Heffner and Harrington, 2002; 

Lobarinas et al., 2004).  

Despite its wide usage, however, the validity of using gap detection as an indicator of 

tinnitus has recently come under scrutiny. In particular, the concept that gap detection deficits 

represent evidence of a tinnitus percept “filling in” the silent gap has been questioned (Fournier 

and Hebert, 2013; Hickox and Liberman, 2014). It has also remained unclear whether and to 

what degree deficits in gap detection correspond to tinnitus perception in humans. Although 

deficits in gap detection have been found in humans, they do not appear to be restricted to the 

sound frequency range of reported tinnitus percepts (Fourner and Hebert, 2013). Additionally, a 

number of studies have reported normal gap detection in humans with tinnitus (Campolo et al., 
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2013; Boyen et al., 2015). Together, these findings underscore the need for animal models that 

more realistically and reliably depict subjective tinnitus found in humans. However, while gap 

detection deficits should be interpreted with caution, gap-mediated inhibition of the ASR 

currently represents the state of the art in animal research on tinnitus.   

4.4.2 Cell-type specific organization of synaptic input maps in the CNIC 

Synaptic mapping of identified glutamatergic and GABAergic IC neurons enabled us to identify 

three, cell-type specific input map configurations in the CNIC. First, glutamatergic neurons 

receive local excitatory and inhibitory inputs, with an exhibition: inhibition balance that is 

strongly biased towards inhibition (Figure 4-4). This input configuration in four-week old mice is 

similar to the configuration we observed previously in a population of unidentified, but most 

likely predominantly glutamatergic IC neurons in three week-old mice (Chapter 2; Sturm et al., 

2014), suggesting that the developmental refinement of intrinsic IC circuits is largely completed 

by the end of the third postnatal week. Second, type 1 GABAergic neurons, which may resemble 

inhibitory interneurons (Ito et al., 2009), also receive both excitatory and inhibitory intrinsic 

inputs, but the excitation: inhibition index for type 1 neurons is more balanced and is only 

slightly biased towards inhibition (Figure 4-7). Finally, type 2 GABAergic neurons, receive 

predominantly excitatory intrinsic inputs (Figure 4-6). Although this study did not identify the 

projection patterns of type 1 and type 2 GABAergic neurons, the properties of type 2 neurons 

resemble those of thalamic-projecting neurons (Ito et al., 2009), and the lack of local inhibitory 

inputs to type 2 neurons is consistent with their role of providing fast and direct feed-forward 

inhibition from the colliculus to the thalamic medial geniculate nucleus (Ito and Oliver, 2012). 

The organization of synaptic maps to glutamatergic and GABAergic neurons suggest that the 
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fundamental intrinsic synaptic network in the CNIC, in its simplest form, supports intracollicular 

inhibition. 

4.4.3 Reorganization of intrinsic CNIC circuits following noise-trauma 

Noise-induced hearing loss, regardless of whether or not it was accompanied by behavioral 

evidence of tinnitus, led to a substantial reorganization of the intrinsic IC network and to an 

increase in the spontaneous excitatory drive of glutamatergic IC neurons. However, apart from a 

general increase in sEPSC frequency, which likely reflects a homeostatic up-regulation of 

excitatory drive due to decreased sensory-evoked activity (Maffei et al., 2004), the specific 

patterns of synaptic reorganization otherwise correlated with the presence or absence of tinnitus. 

Only NE-T mice exhibit a functional dis-inhibition of local IC circuitry. In NE-T mice, 

glutamatergic IC neurons lose local inhibition, which causes a profound shift in their excitation: 

inhibition balance towards excitation (Figures 4-4 and 4-5). Reciprocally, type 1 GABAergic IC 

neurons lose synaptic excitation, which causes a shift in their excitation: inhibition balance 

towards inhibition (Figures 4-7 and 4-8). Together, these specific circuit reorganizations may 

give rise to the IC hyperactivity that is characteristic of tinnitus in both rodent models (Bauer et 

al., 2008; but see Ropp et al., 2014) and human patients (Melcher et al., 2000). The fact that 

GABAergic neurotransmission is decreased in glutamatergic IC neurons of NE-T mice, but not 

NE-NT mice, provides a possible explanation for the often-conflicting results of prior studies 

describing global up- or down-regulation of indicators of GABAergic neurotransmission in the 

IC after cochlear trauma in animals that were not tested for behavioral signs of tinnitus (Berger 

and Coomber, 2015). The shifts in excitation: inhibition balance in our study, which only 

occurred in NE-T animals, could help to discern which aspects of IC hyperactivity, such as 
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increased spontaneous firing rates (Ma et al., 2006; Bauer et al., 2008; Dong et al., 2009; 

Mulders and Robertson, 2009; Dong et al., 2010), increased burst firing (Bauer et al., 2008; 

Wang et al., 2011), and gain (Wang et al., 2002; Niu et al., 2013), are specifically related to 

tinnitus. Those forms of IC hyperactivity that correlate with tinnitus-associated shifts in 

excitation: inhibition balance are most likely related to tinnitus pathophysiology, whereas those 

that occur in all noise-traumatized mice may be due more generally to hearing loss. 

Very few studies have examined the central effects of noise-trauma in behaviorally tested 

animals that lack signs of tinnitus. A recent study in the mouse DCN demonstrated that resilience 

against tinnitus depends upon the recovery of noise-induced reductions in KCNQ2/3 channel 

activity (Li et al., 2015), which otherwise contribute to the emergence of hyperactivity and 

tinnitus (Li et al., 2013; Kalappa et al., 2015).  In this study, noise-exposed mice that lacked 

signs of tinnitus one week after acoustic trauma also exhibited a reduction of hyperpolarization-

activated cyclic nucleotide-gated channel (HCN) currents in DCN fusiform cells (Li et al., 2015). 

Together, these findings indicate that the post-traumatic dynamics of KCNQ2/3 and HCN 

channels likely determine whether noise exposure leads to DCN hyperactivity in tinnitus. 

However, whereas noise-induced hyperactivity in the DCN is restricted to noise-exposed mice 

that show signs of tinnitus (Le et al., 2013; Stefanescu et al., 2015), in the rat IC, increased firing 

rates have been found in all noise-exposed animals, regardless of their tinnitus classification 

(Ropp et al., 2014). These findings are at odds with the distinct IC circuit reorganizations we 

identified in NE-T and NE NT animals. The fact that IC circuits of NE-NT mice differ 

substantially from those of non-exposed control mice opens an opportunity to investigate the role 

of intrinsic IC circuits in auditory processing by comparing auditory response properties of IC 

neurons or auditory perceptions between NE-NT mice and control mice.  
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Why do only half of noise-exposed mice exhibit the shift in collicular E:I balance that is 

associated with behavioral evidence of tinnitus? Inter-mouse differences in auditory nerve 

activity after hearing loss are unlikely to account for this split, because NE-NT and NE-T mice 

had similar degrees of hearing loss. Additionally, differences in the pre- or post-traumatic 

acoustic environment are unlikely explanations, since NE-NT and NE-T animals were both 

raised and housed in the same room and often in the same cages. Genetic predisposition may be a 

contributing factor, but its influence seems to be weak considering that the fraction of NE-T mice 

was similar for both sexes (50% for males, n=14; 50% for females, n=20), and across different 

mouse strains (this study; Li et al, 2013). It is possible that inter-mouse variability in the baseline 

intrinsic and/or synaptic properties of IC neurons predisposes certain mice to noise-induced 

circuit reorganizations that disrupt E:I balance and lead to tinnitus, a possibility which may be 

addressable with in vivo imaging. In addition to determining whether there are pre-exposure 

differences in the organization of IC circuits in mice that become NE-T or NE-NT mice after 

noise-exposure, such studies could also provide a fine-grained characterization of the time course 

of synaptic reorganization after noise-trauma, which would illustrate whether the reorganizations 

of synaptic inputs onto glutamatergic and GABAergic IC neurons occur independently, or 

whether some circuit changes trigger changes in others. In cortical circuits, decreased inhibition 

has emerged as a key step to initiate plasticity (Takesian and Hensch, 2013; Keck et al., 2011; 

Hübener and Bonhoeffer, 2014). The decrease in inhibitory drive of glutamatergic IC neurons 

and/or the decreased excitatory drive on GABAergic neuron in noise traumatized mice may thus 

represent the first steps in the reorganization of IC circuitry and its magnitude may set the 

direction of subsequent changes.  

It remains to be shown whether the functional circuit reorganizations demonstrated in this 
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study are accompanied or followed by structural reorganizations (i.e. by axonal pruning/growth 

or remodeling of dendritic branches and spines). Few studies have investigated the effects of 

hearing-loss on structural IC connectivity (Nordeen et al., 1983; Moore and Kowalchuk, 1988) 

and none have examined intrinsic connections or neuronal morphology. However, considering 

the close relationship of functional and structural reorganization (Hensch, 2005; Holtmaat and 

Svoboda, 2009; Clause et al., 2014), structural remodeling of intrinsic IC connections after 

cochlear trauma is highly plausible. Compared to the dynamic regulation of synaptic strengths 

and of neuronal membrane excitability, remodeling of neuronal circuits is considered long 

lasting and can permanently impair sensory processing (Wiesel and Hubel, 1963; Linkenhoker et 

al., 2005; Hofer et al., 2009; Sengpiel, 2014). The substantial remodeling of intrinsic IC circuits 

may thus represent changes that support the often life-long persistence of tinnitus. 

4.4.4 IC circuit reorganization and tinnitus 

Although increased activity in the IC is already evident shorty after noise trauma (Willot and Lu, 

1982), several prior studies indicated that during the first weeks of tinnitus development, IC 

hyperactivity is mainly due to increased afferent drive from fusiform cells in the DCN (Mulders 

and Robertson, 2011). DCN ablation shortly after noise exposure abolishes increased IC firing 

rates and tinnitus behavior (Brozoski et al., 2012; Manzoor et al., 2012), whereas DCN ablation 

after several months has no effect on tinnitus (Brozoski and Bauer 2005). The shift in the E:I 

balance in the IC of NE-T but not NE-NT animals, which is already present at least 7 days after 

noise trauma, suggests that the IC is also involved in the early stages of tinnitus, perhaps via an 

additional amplification or synchronization of ascending hyperactivity. This additional 

augmentation may be required to trigger the cortical reorganizations that correlate with tinnitus 



 153 

(Noreña and Eggermont, 2003; Llano et al., 2012; Engineer et al., 2011). On the other hand, 

since the IC receives efferent cortical projections, which not only dynamically influence the 

response properties of IC neurons (Suga et al., 2002), but also play an important role in 

mediating plasticity in the IC (Bajo et al., 2010), it is possible that either the initiation or the 

direction of IC circuit reorganization is mediated by these descending pathways. 

4.4.5 Prevention of circuit reorganization by acoustic enrichment 

Our results demonstrate that immediate, post-traumatic acoustic enrichment with pulsed white 

noise prevents circuit reorganization in the IC (Figure 4-10). Previous studies have shown that 

stimulation with pulsed white noise prevents the developmental refinement of both cortical 

tonotopic maps and frequency tuning in IC neurons (Zhang et al., 2002; Sanes and Constantine-

Paton 1983). However, it is unlikely that the effects of pulsed white noise we observed are due to 

a disturbance of developmental IC refinement, since pulsed white noise had no effect on non-

noise-traumatized control mice. This is consistent with previous studies showing that the IC has 

reached a mature state around the third postnatal week (Shnerson and Willott, 1979; Ehret and 

Romand, 1992; Yu et al., 2005). A more likely explanation for the blockade of IC circuit 

refinement by pulsed white noise is that noise-trauma re-opened a ‘sensitive period’ in the IC, 

which made IC circuits permissive to reorganization by processes that are sensitive to auditory 

experience. This scenario is reminiscent of the re-opening of critical period plasticity in adult 

auditory cortex by long-term noise exposure (Zhou et al., 2011) and in visual cortex by dark 

exposure (He et al., 2006). It also is consistent with previous studies showing that acoustic 

enrichment can alleviate the reorganization of cortical tonotopic maps induced by traumatizing 

noise exposure, although some of these effects may have resulted from a recovery of ABR 
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thresholds (Noreña and Eggermont, 2005). Re-activation of critical period plasticity in cortex 

involves a down regulation of GABAergic inhibition (Huang et al., 2010; Zhou et al., 2011), 

which also occurs in the IC after noise trauma (this study; Milbrandt et al., 2000; Dong et al., 

2010), suggesting that down-regulation of inhibition may be a crucial step in the initiation of 

trauma-induced enhanced plasticity in the IC. 

4.4.6 Prevention of tinnitus behavior by acoustic enrichment 

In addition to preventing noise-induced synaptic circuit reorganization in the IC, post-traumatic 

acoustic enrichment also substantially reduced the percentage of noise-traumatized mice that 

developed behavioral evidence of tinnitus (from 51% to 12%) (Figure 4-11), further supporting a 

role of IC reorganization in the generation of tinnitus. This result also points to the possibility of 

using immediate acoustic stimulation as a prophylactic measure to prevent the development of 

tinnitus after acoustic trauma. Compared to most other existing treatment options for tinnitus, 

most of which have proven ineffective (see Folmer et al., 2014 for review), an acoustic-

enrichment based method would be safe, inexpensive, and easy to implement. Acoustic 

stimulation (e.g. sound therapy) to treat tinnitus has been tried for many years, but has been 

largely unsuccessful (Vanneste et al., 2013; Folmer et al., 2014), perhaps because sound therapy 

is usually started months or years after tinnitus has developed (i.e. after the closure of a trauma-

induced sensitive period). From both a neurobiological as well as a clinical view, it will be 

interesting to determine what types of acoustic stimulation are most effective in preventing 

synaptic reorganization in the IC and the emergence of tinnitus. For example, stimulation with 

pulsed white noise during the critical period produces a permanent disruption of the tonotopic 

map in auditory cortex (Zhang et al, 2001), while map disruptions by stimulation with 
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unstructured noise are reversible (Chang and Merzenich, 2003) and, in the case of noise trauma, 

may delay but not prevent circuit reorganization. A better understanding of the ‘rules’ by which 

auditory experience influences post-traumatic refinement, and a greater level of insight into the 

cellular and molecular mechanisms that open and close sensitive periods in the mature auditory 

system will help to better define and understand the sensitive period in the adult IC and may 

open new avenues to harness this type of plasticity for clinical interventions that prevent tinnitus 

following noise trauma, traumatic brain injury or treatment with ototoxic drugs. 
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5.0  GENERAL DISCUSSION 

5.1 SUMMARY OF FINDINGS 

Through the research described in this dissertation, we sought to shed light on the functional 

organization and experience-dependent plasticity of intrinsic connectivity in the central nucleus 

of the mouse inferior colliculus.  

In Chapter 2, we examined the development of functional synaptic connections in the 

CNIC during the first three weeks of postnatal life. We found evidence of robust excitatory and 

inhibitory synaptic connectivity already at P2, with excitatory and inhibitory input maps 

exhibiting a large degree of spatial overlap, and aligning to the presumed isofrequency axis of 

the CNIC (Figures 2-4, 2-5, 2-7). Although these overall organization principles were preserved 

during the first three postnatal weeks, the sizes and strengths of input maps underwent major 

developmental changes, with an expansion and strengthening of input maps before hearing onset, 

followed by a period of dramatic refinement of input maps after hearing onset (Figure 2-5). 

These changes occurred in parallel for excitatory and inhibitory intrinsic connections, yet 

compared to inhibitory connections, a greater proportion of excitatory connections were 

functionally eliminated after hearing onset, resulting in a predominance of intrinsic inhibition at 

the end of the third postnatal week. Taken together, these findings indicate the existence of 

functional excitatory and inhibitory intrinsic circuits in the CNIC, which are highly plastic during 
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postnatal development. 

In Chapter 3, we explored the role of hearing experience in directing the maturation of 

intrinsic CNIC circuitry by rearing mice in pulsed white noise during distinct developmental 

epochs (P12-P25 or P19-25). In these studies, we increased the cell-specificity of our input 

mapping approach by targeting recordings to glutamatergic or GABAergic neurons using mice 

that express the fluorescent protein tdTomato in cells that express the vesicular glutamate 

transporter 2 and the vesicular GABA transporter genes, respectively.  We found that noise 

rearing from P12-25, but not P19-25, led to substantial, cell-specific reorganizations of synaptic 

input maps received by glutamatergic and GABAergic neurons compared to age-matched control 

mice. In GABAergic neurons, noise rearing from P12-25 led an expansion of input map areas, 

specifically in regions where both excitation and inhibition were found, as well as to a 

strengthening of excitatory, but not inhibitory synaptic inputs (Figures 3-1, 3-2). In glutamatergic 

neurons, on the other hand, noise rearing from P12-25 led to a functional elimination of 

excitatory, but not inhibitory synaptic inputs (Figures 3-6, 3-7). This combination of 

strengthening excitatory inputs onto GABAergic neurons and eliminating excitatory inputs onto 

glutamatergic neurons results in a ‘hyper-inhibited’ state of intrinsic CNIC circuitry at P26-30. 

Taken together, these findings indicate that the nature of acoustic experience plays a profound 

role in sculpting intrinsic synaptic connectivity in the CNIC, particularly during an early critical 

period. 

In Chapter 4, we investigated the impact of noise-induced hearing loss on the 

organization of intrinsic CNIC circuitry in mice that did and did not develop behavioral evidence 

of tinnitus. Furthermore, we explored the role of the early, post-traumatic acoustic environment 

in directing hearing-loss-induced plasticity. We found that hearing loss leads to a profound 
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reorganization of local excitatory and inhibitory synaptic circuits received by both glutamatergic 

and GABAergic IC neurons. However, only in mice that showed behavioral evidence of tinnitus 

did these reorganizations lead to significant disruptions in excitation: inhibition balance (Figures 

4-1, 4-5). In mice with behavioral signs of tinnitus, glutamatergic neurons exhibited a functional 

elimination of inhibitory synaptic inputs, whereas GABAergic neurons exhibited an elimination 

of excitatory synaptic inputs. Together, these synaptic changes resulted in a ‘dis-inhibited’ state 

of the CNIC, which likely contributes to patterns of neuronal hyperactivity that have been tied to 

tinnitus. Most surprisingly, one week of acoustic enrichment with non-traumatic pulsed white 

noise, delivered immediately after noise trauma, was sufficient to prevent both patterns of 

synaptic reorganization and to substantially reduce the percentage of noise-traumatized mice that 

developed behavioral evidence of tinnitus (from 51% to 12%). Taken together, these findings 

suggest that acoustic trauma opens a ‘sensitive window’ in the CNIC, during which excitatory 

and inhibitory synaptic networks are subject to significant experience-dependent modification. 

The nature of auditory experience during this window appears to determine whether patterns of 

synaptic reorganization that contribute to the development of tinnitus take place. 

5.2 ADVANTAGES AND LIMITATIONS OF MAPPING SYNAPTIC 

CONNECTIVITY WITH LSPS 

Laser-scanning photostimulation with caged glutamate is a robust and reliable tool that 

has been used to map the strength and spatial distribution of synaptic networks in a number of 

experimental systems (Callaway and Katz, 1993; Zhao et al., 2009; Shepherd, 2012; Sturm et al., 
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2014). However, as with any experimental tool, LSPS has certain advantages and limitations 

(Shepherd, 2012; Sturm et al, 2015).  

A major advantage of LSPS over both optical-fiber-based glutamate uncaging (Kandler et 

al., 2013) and more traditional electrical stimulation methods is that LSPS can be used to map 

synaptic connectivity over large areas of neural tissue in relatively short periods of time. Prior to 

the research described in this dissertation, neither the location nor the extent of intrinsic synaptic 

connections in the CNIC had been demonstrated. Given this gap in knowledge, it was possible 

that excitatory and inhibitory intrinsic inputs in the CNIC would arise from either very large or 

very small tissue areas, and it was therefore necessary to adopt an input-mapping strategy that 

would be capable of covering large areas of tissue, while at the same time delivering focal 

presynaptic stimulation. Since LSPS systems use software-controlled mirror galvanometers, it is 

possible to rapidly scan through a very large number of stimulation sites over short periods of 

time. Additionally, since ultraviolet light for glutamate uncaging in LSPS is focused through a 

microscope objective, the uncaging spot can be made very small by using high-magnification 

objectives, thus affording a relatively high degree of spatial resolution. 

One important limitation of using LSPS to map synaptic connectivity is its relatively poor 

temporal resolution. With LSPS, presynaptic photostimulation often produces complex, multi-

peaked synaptic responses at the postsynaptic recorded cell, and it is not possible to determine 

whether these responses are the product of multiple presynaptic neurons firing action potentials, 

a single presynaptic neuron firing multiple action potentials, or a combination of both. This 

limitation can complicate the interpretation of input maps, since the ‘strength’ of synaptic 

responses recorded in postsynaptic neurons may vary either because of differences in the number 
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of presynaptic neurons stimulated with LSPS, or because of differences in number of action 

potentials elicited in a constant number of presynaptic neurons. 

A second limitation of using LSPS to map synaptic connectivity is that it does not resolve 

the type (e.g. excitatory or inhibitory) of presynaptic neurons being photo-stimulated. As long as 

neurons express functional glutamate receptors, those neurons are likely to be excited in response 

to glutamate uncaging. In the CNIC, where excitatory and inhibitory neurons are densely packed 

and uniformly distributed (Ito et al., 2013; Ito et al., 2015), even highly-focused areas of 

glutamate uncaging are likely to produce action potentials in multiple presynaptic neurons at a 

time, with the extent of this presynaptic stimulation depending upon the morphological and 

physiological properties of the presynaptic neurons being stimulated (Kim and Kandler, 2003; 

Shepherd, 2012). For example, differences in the dendritic geometry and the dendro-somatic 

distribution of glutamate receptors between CNIC neurons can influence which uncaging 

positions will generate action potential in different cells types, thereby influencing the spatial 

resolution of input maps. Although some of this uncertainty can be overcome by generating 

‘excitability profiles’ for putative presynaptic neurons (see Chapter 2; Kim and Kandler, 2003; 

Shepherd, 2012; Sturm et al., 2014), it is impossible with LSPS to determine precisely which 

presynaptic neurons contribute to a given postsynaptic response at the recorded cell, or to a given 

synaptic input map.  

An alternative approach to LSPS that overcomes these limitations is paired whole-cell 

recordings. Unlike LSPS, paired recordings allow the experimenter to precisely define both the 

location and the identity of the presynaptic neurons that provide either excitatory or inhibitory 

synaptic input to the postsynaptic recorded cell. However, paired recording are, by definition, 

limited to pairs of synaptically-coupled neurons, and these recordings are therefore not suitable 
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for estimating the total amounts of excitatory and inhibitory input received by individual 

neurons. Additionally, depending upon the synaptic connection probability of the brain region 

being studied (which is often quite low), finding pairs of synaptically coupled neurons can be 

both challenging and time intensive. Thus, given that a major experimental goal of this 

dissertation was to map out the spatial extent of functional intrinsic connectivity in the CNIC, 

LSPS was a more appropriate tool than paired whole-cell recordings. 

In contrast to paired whole-cell recordings, optogenetic circuit mapping can be used to 

map synaptic connections over large areas of tissue (similar to LSPS), while at the same time 

limiting presynaptic stimulation to specific classes of neurons (Mancuso et al., 2011). In 

optogenetic circuit mapping, light-sensitive microbial opsins are expressed in specific, 

genetically defined classes of neurons (typically subsets of excitatory or inhibitory neurons), and 

photostimulation is used to drive action potential generation in opsin-expressing cells. While the 

number of presynaptic neurons being stimulated cannot typically be resolved with optogenetic 

circuit mapping, the type of neurons being stimulated can be more tightly controlled compared to 

LSPS. However, whereas both the excitatory and inhibitory inputs of individual neurons can be 

mapped using LSPS, this is more difficult with optogenetic mapping. Unless opsins with distinct 

light-excitation profiles are expressed in excitatory and inhibitory neuron populations, 

respectively, in the same experimental animals, it is not possible to resolve both excitatory and 

inhibitory inputs received by individual neurons. Thus, given that a major experimental goal of 

this dissertation was to investigate synaptic excitation: inhibition balance in the CNIC, both in 

development (Chapters 2 and 3) and following hearing loss (Chapter 4), LSPS was a more 

appropriate tool than optogenetic circuit mapping. 
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In conclusion, while there are a number of important limitations to consider when using 

LSPS of caged glutamate, it nevertheless represents a powerful tool for mapping synaptic 

connectivity. Using LSPS was especially appropriate for mapping intrinsic synaptic connectivity 

in the CNIC, given the relatively large area of tissue being mapped, and the combination of 

excitatory and inhibitory synaptic connections received by individual neurons.  

 

5.3 ORGANIZATION OF INTRINSIC CONNECTIVITY IN THE CNIC 

Acoustic processing in the mouse CNIC matures rapidly during the first week of hearing 

experience and reaches an adult-like state by the end of the third postnatal week of life (around 

P20), as evidenced by adult-like tone-response thresholds, tone-response latencies, frequency 

tuning and tonotopic organization (Romand and Ehret, 1990; Ehret and Romand, 1992). 

Evidence from the functional mapping studies discussed in this dissertation indicates that the 

development of functional intrinsic connectivity in CNIC follows a similar time course, with a 

period of dramatic refinement occurring during the first week of hearing experience (Chapters 2 

and 3). This is in contrast to the extrinsic, ascending synaptic projections received by CNIC 

neurons, which appear to reach relative maturity before hearing onset (Gabriele et al., 2000a, 

2007; Henkel et al., 2007). Accordingly, the rapid maturation of spectrotemporal response 

properties in the CNIC may relate to the refinement of intrinsic synaptic connectivity.  

By P26-30, the intrinsic synaptic networks of CNIC neurons exhibit at least three basic 

configurations (Figure 5-1). The local input maps of glutamatergic neurons consist of both 

excitatory and inhibitory synaptic connections, with a strong predominance of intrinsic inhibition 
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(Figure 3-6, Figure 4-4). The local input maps of type 1 GABAergic neurons also consist of both 

excitatory and inhibitory local inputs, but with only a slight dominance of synaptic inhibition. 

Finally, the local input maps of type 2 GABAergic neurons consist of predominantly excitatory 

inputs, with little or no inhibitory inputs.  

Additional studies will be necessary to distinguish between the functions of type 1 and 

type 2 GABAergic neurons. We predict that type 1 and type 2 GABAergic neurons correspond to 

the two major classes of GABAergic neurons previously documented in the CNIC: local 

interneurons and large tectothalamic projection neurons (Ito et al., 2009; Ito and Oliver, 2012). 

Based upon the findings discussed in this dissertation, we suspect that type 1 neurons correspond 

to local interneurons, and type 2 neurons correspond to the tectothalamic GABAergic neurons.  

Tectothalamic GABAergic neurons are thought to provide fast, feed-forward inhibition to 

the MGB (Ito et al., 2009; Venkataraman and Bartlett, 2013), a function that would likely be 

supported by the strong predominance of local excitatory inputs received by type 2 GABAergic 

neurons. Additionally, tectothalamic GABAergic neurons receive a high density of vglut2-

positive axosomatic glutamatergic synapses (Ito et al., 2009), which may explain why type 2 

neurons exhibit such strong responses to direct stimulation with glutamate uncaging, as well as 

why these neurons receive larger and more frequent spontaneous excitatory postsynaptic currents 

compared to type 1 neurons (Figure 4-6). Comparatively little is known about local GABAergic 

interneurons in the IC, apart from them being smaller than tectothalamic neurons and lacking 

vglut2-positive axosomatic glutamatergic synapses (Ito et al., 2009). However, a number of 

classes of cortical GABAergic interneurons have been found to receive extensive networks of 

both excitatory and inhibitory inputs, including parvalbumin-positive (PV) basket cells and 

somatostatin-positive (SST) Martinotti cells (Harris and Shepherd, 2015). This feature is shared 
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by type 1 GABAergic neurons, suggesting that these neurons may correspond to local inhibitory 

interneurons. Thus, based upon the combination of their local input map configurations, direct 

responses to glutamate uncaging and spontaneous excitatory synaptic currents, we predict that 

type 1 GABAergic CNIC neurons correspond to local interneurons, whereas type 2 GABAergic 

CNIC neurons correspond to tectothalamic projection neurons. 
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Figure 5-1. Intrinsic input map configurations in the CNIC. 

Presynaptic neurons depict populations of synaptic connections. Red and blue circles are glutamatergic and 

GABAergic neurotransmission, respectively. Size of circles reflects amount of synaptic input received by recorded 

neuron. (A) Glutamatergic CNIC neurons receive local excitatory and inhibitory inputs, with a strong predominance 

of local inhibition. (B) Type 1 GABAergic neurons receive local excitatory and inhibitory inputs, with a slight 

excess of inhibition. (C) Type 2 GABAergic neurons receive substantial local excitatory input, with little or no 

inhibitory input. 
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In order to more definitely test the hypothesis that type 1 and type 2 GABAergic neurons 

correspond to local interneurons, and tectothalamic projection neurons, respectively, studies 

combing injections of retrograde neural tracers and synaptic input mapping could be performed. 

For example, injections of green fluorescent RetroBeads (Lumaflour, Inc.) could be performed in 

the MGB of vgat-ires-cre-dT animals, and CNIC neurons that express both tdTomato (indicating 

that the cell is GABAergic) and green fluorescent RetroBeads (indicating that the cell projects to 

the MGB) could be targeted for input mapping. If type 2 GABAergic neurons correspond to 

tectothalamic GABAergic neurons, then input-mapping studies in Bead+/dT+ neurons should 

reveal robust local excitatory input maps with minimal local inhibition. Alternatively, if type 1 

GABAergic neurons correspond to the tectothalamic projection neurons, then these neurons 

receive substantial inhibitory input from local sources.  

It is also possible that both type 1 and type 2 GABAergic neurons can be either local 

interneurons or tectothalamic projection neurons. In this case, the differences in local input map 

organization between type 1 and type 2 neurons may contribute to shaping distinct tuning 

properties (Egorova et al., 2001; Ehret et al., 2003; Portfors et al., 2011), discharge patterns 

(Peruzzi et al., 2000; Sivaramakrishnan and Oliver, 2001) and/or evoked response latencies 

(Hattori and Suga, 1997; Reetz and Ehret, 1999). For example, the significant local inhibition 

received by type 1 neurons may sharpen tuning curves and raise auditory response thresholds for 

sound frequencies that flank neurons’ characteristic frequencies. The dominance of local 

excitation received by type 2 neurons, on the other hand, may broaden tuning curves and 

facilitate rapid sound-evoked response latencies. 

In summary, although additional studies are needed to more clearly elucidate the 

functions of different glutamatergic and GABAergic CNIC neurons, our findings indicate that at 
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least three basic local circuit configurations are present in the CNIC: 1) glutamatergic neurons 

which receive local excitatory and inhibitory inputs, with a strong bias towards inhibition, 2) 

type 1 GABAergic neurons which receive local excitatory and inhibitory inputs, with a slight 

bias towards inhibition, and 3) type 2 GABAergic neurons which receive a predominance of 

local excitation, with little or no local inhibition. 

5.4 A DEVELOPMENTAL CRITICAL PERIOD FOR INTRINSIC CIRCUIT 

PLASTICITY IN THE CNIC  

Neural circuits are highly sensitive to changes in sensory input during developmental CPs and 

then become more resistant to reorganization after CP closure (Hensch, 2004). A classic example 

of the CP principle is seen in the development the visual system, where closure of one eye 

(monocular deprivation) during the initial weeks of visual experience causes a permanent loss of 

visual perception through that eye (Hubel and Wiesel, 1964; reviewed by Hensch, 2005). This 

loss of visual acuity occurs despite there being no damage to the retina or its postsynaptic target, 

the thalamic lateral geniculate nucleus (LGN), due to an expansion of cortical ocular dominance 

columns serving the non-deprived eye in primary visual cortex (V1) at the expense of those 

responding to the deprived eye. This phenomenon, which is referred to as ocular dominance 

plasticity, only occurs when monocular deprivation is delivered during early visual experience, 

while the CP is open (Gordon and Stryker, 1996).  

In cortical circuits, CP opening occurs soon after the onset of sensory experience and 

coincides with the maturation of GABAergic neurotransmission (Hensch, 2005). In the CNIC, 

we demonstrated that excitatory and inhibitory intrinsic input maps undergo a period of dramatic 
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refinement just after hearing onset, involving a functional elimination of both excitatory and 

inhibitory inputs (Figure 2-5). However, while inhibitory input map areas are largely stable 

between P15-22, the functional elimination of excitatory synaptic inputs continues during this 

period (Figure 2-5 B). Thus, it is plausible that the CP for intrinsic CNIC connectivity is opened 

shortly after hearing onset, between P12 and P15, coincident with the maturation of local 

GABAergic inhibition. The continued refinement of synaptic excitation between P15-22, in turn, 

may reflect ongoing activity-dependent re-modeling of excitatory circuits after CP opening.  

 While CP opening closely follows the onset of sensory experience in rodents, CP closure 

often coincides with the developmental time point when neural circuits reach structural and 

functional maturity. For instance, in primary auditory cortex (A1), the topographic organization 

of neuronal characteristic frequency (CF) maps (in terms of size, tonotopic gradient and 

responsiveness) reaches an adult-like state by around P13-14, and the CP for tone-evoked 

reorganizations of CF organization closes around P13 (de Villers-Sidani et al., 2007; Froemke et 

al., 2011). In the CNIC, multiple lines of evidence indicate that acoustic response properties 

reach adult-like levels by the end of the third postnatal week (Willot and Shnerson, 1978; 

Shnerson and Willott, 1979; Ehret and Romand, 1992; Yu et al., 2005). The CP for experience-

driven modifications of acoustic response properties in the CNIC likely closes around this time, 

since noise rearing beginning at the end of the second postnatal week, but not in adulthood, leads 

to long-lasting disruptions in the development of frequency tuning in the CNIC (Sanes and 

Constantine-Paton, 1983; Sanes and Constantine-Paton, 1985; Bures et al., 2014). Our findings 

that pulsed noise rearing from P12-25, but not P19-25, leads to substantial reorganizations of 

local synaptic circuits in the CNIC (Chapter 3), indicate that the CP for intrinsic CNIC 

connectivity also closes by the end of the third postnatal week. Accordingly, noise-rearing-
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induced disruptions in frequency tuning in the CNIC may relate to a rewiring of intrinsic circuits.  

5.5 INTRINSIC CIRCUIT PLASTICITY AFTER HEARING LOSS 

Our findings indicate that noise trauma leads to a substantial reorganization of intrinsic CNIC 

circuits (Chapter 4), suggesting that cochlear hearing loss opens a ‘sensitive window’ for local 

circuit plasticity. This result is conceptually consistent with findings in the visual system, where 

sensory deprivation via dark exposure restores ocular dominance plasticity in V1 after closure of 

the developmental CP (He et al., 2006; Stodieck et al., 2014). In the auditory system, prolonged 

(6 months) noise exposure has been shown to reinstate CP plasticity for CF maps in A1 (Zhou et 

al., 2011), and this re-activation of plasticity may also relate to deprivation of normal acoustic 

input. Our results extend upon these studies, highlighting that the capacity for circuit plasticity 

after CP closure is not unique to cortical circuits, but is also present subcortically, in the auditory 

midbrain. Similar to cortical circuits, local circuit plasticity in the CNIC can also be unlocked via 

sensory deprivation. 

In cortical circuits, sensory deprivation leads to a robust decrease in GABAergic 

inhibition (Takesian and Hensch, 2013; Hübener and Bonhoeffer, 2014), which is thought to 

represent a key step in the re-activation of CP plasticity (Huang et al., 2010; Zhou et al., 2011). 

In V1, for example, the restoration of ocular dominance plasticity in adulthood by dark exposure 

has been shown to involve a reduction in PV-expressing GABAergic interneurons, and is 

prevented by transiently increasing intracortical inhibition with diazepam treatment (Stodieck et 

al., 2014).  
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In the CNIC, the reinstatement of plasticity after hearing loss may involve a similar 

down-regulation of GABAergic inhibition (Chapter 4; Milbrandt et al., 2000; Dong et al., 2010). 

This down-regulation of inhibition may involve a degradation of perineuronal nets (PNNs), 

which have been shown to robustly and preferentially enrapture GABAergic neurons in the 

CNIC (Foster et al., 2014), and which are thought to function as molecular “brakes” on adult 

plasticity (Baveller et al., 2010). Perineuronal nets are aggregates of extracellular matrix that 

primarily consist of chondroitin sulfate proteoglycans, and which are thought to maintain 

excitatory: inhibitory balance in the adult brain (Hartig et al., 1999; Hensch, 2005). In the 

hippocampus, the degradation of PNNs surrounding GABAergic neurons has been shown to 

reduce perisomatic inhibition of pyramidal neuron targets (Saghatelyan et al., 2001), suggesting 

that PNNs are essential for the maintenance of GABAergic neurotransmission. Furthermore, in 

the visual system, degrading PNNs in V1 by injecting chondroitinase-ABC has been shown to 

reactivate ocular dominance plasticity in adulthood (Pizzorusso et al., 2002), presumably via a 

reduction in GABAergic inhibition. Taken together, these findings suggest that PNN degradation 

is sufficient to both decrease GABAergic inhibition and re-instantiate CP plasticity. In our 

studies, noise-induced degradation of PNNs surrounding GABAergic CNIC neurons may have 

contributed to reductions of inhibitory input onto glutamatergic neurons (Figure 4-4), which, in 

turn, may have re-opened the CP for intrinsic CNIC circuit plasticity and enabled other forms of 

synaptic reorganization to take place.  

It is interesting to note that the effects of pulsed noise rearing delivered from P12-25 on 

intrinsic CNIC networks were roughly the inverse of the effects of noise-trauma at P21 (Figure 

5-2). Pulsed noise delivered during the CP led to a reduction in excitatory input onto 

glutamatergic neurons, and to an increase in excitatory input onto type 1 GABAergic neurons, 
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which together produce a ‘hyper-inhibited’ state of the intrinsic CNIC network (Chapter 3). In 

contrast, noise-trauma led to a reduction of inhibitory input onto glutamatergic neurons and to a 

reduction of excitatory input onto type 1 GABAergic neurons, which together produced a ‘dis-

inhibited’ state of intrinsic CNIC networks in mice with behavioral evidence of tinnitus (Chapter 

4). These findings support the view that decreases and increases in GABAergic inhibition can 

open and close sensitive windows for synaptic circuit plasticity, respectively (Hensch, 2005).  

Given that developmental noise rearing effectively results in a hyper-inhibited state of the 

intrinsic CNIC network, whereas noise trauma produces a dis-inhibited state of the network in 

mice with behavioral evidence of tinnitus, it is possible that noise-reared mice would exhibit 

resistance to noise-induced tinnitus. Theoretically, the hyper-inhibited state of the CNIC in 

noise-reared mice should serve as a buffer against hearing loss-related reductions in inhibition 

that correlate with tinnitus. To test this hypothesis, gap detection behavior could be compared 

between noise-reared mice (reared from P12-P25) exposed to acoustic trauma at P26 and age-

matched control mice that were reared under normal housing conditions and that received 

identical acoustic trauma. Since noise rearing is associated with reductions in frequency tuning in 

the IC (Sanes and Constantine-Paton 1983; Sanes and Constantine-Paton, 1985), it would also be 

necessary to control for the possibility that noise rearing alone alters gap detection behavior. To 

account for this, it would be important to include an additional noise-reared control group (reared 

from P12-25) that that did not receive noise trauma. 
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Figure 5-2. Comparison of IC network reorganizations after noise rearing and noise trauma.  

Schematized intrinsic IC circuits with glutamatergic neurons (circle) and type 1 GABAergic neurons (triangle). Red 

arrows depict the population of excitatory connections and blue lines depict inhibitory connections. Input strength is 

indicated by the widths of connecting lines. Dashed lines indicate weakened connections. In noise-reared mice, 

glutamatergic neurons lose excitation and GABAergic neurons gain excitation. In noise-traumatized mice with 

behavioral evidence of tinnitus, glutamatergic neurons lose inhibition and GABAergic neurons lose excitation. 
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5.6 ACOUSTIC EXPERIENCE AFTER HEARING LOSS 

We found that a single week of acoustic enrichment (AE) with non-traumatic patterned white 

noise, delivered immediately after acoustic trauma, was sufficient to block hearing loss-induced 

plasticity in intrinsic CNIC networks (Figure 4-10, 4-11).  This effect of AE is due to one of two 

processes: either 1) AE closes the post-traumatic plasticity window before reorganizations take 

place, or 2) AE reverses reorganizations that have already taken place.  

Distinguishing between these two possibilities would require further studies. It would 

first be necessary to determine the timing of post-traumatic synaptic reorganization in the CNIC, 

which would involve sequential, day-by-day input mapping studies of intrinsic connectivity after 

hearing loss (Figure 5-3 A). Once the timing(s) of post-traumatic synaptic reorganization is 

defined, it would then be possible to divide the post-traumatic plasticity window into two phases: 

a pre-reorganization phase and post-reorganization phase. If AE closes the post-traumatic 

plasticity window prior to synaptic reorganizations taking place, as opposed to reversing 

reorganizations that have taken place, then delivering AE during the post-reorganization phase 

should not prevent circuit reorganizations from taking place (Figure 5-3 B). Alternatively, if 

pulsed noise reverses established patterns of circuit reorganization in the CNIC, then AE 

delivered during the post-reorganization phase should be sufficient to abolish noise-induced 

synaptic reorganizations (Figure 5-3 B).  

It also remains to be determined whether pulsed noise exerts similar effects on the 

functional organization of intrinsic CNIC circuits during the post-traumatic plasticity window 

compared to the developmental CP. The first possibility is that pulsed noise closes plasticity 

windows both during development and following acoustic trauma. If this is the case, then 

intrinsic input maps in mice exposed to pulsed noise from P12-25 should appear similar to input 
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maps from mice at P12 (since activity-dependent refinement would be prevented by premature 

CP closure), and input maps from noise-exposed mice that received AE should appear similar to 

input maps from non-traumatized mice at P21. However, due to differences in both recording 

and stimulation conditions between studies, it was not possible to directly compare the input 

maps from mice aged P26-30 (Chapters 3 and 4) to those from mice aged P2-22 (Chapter 2). 

Instead, we compared noise-exposed mice that received AE to non-exposed control mice at P26-

30. Since intrinsic networks in the CNIC appear to be largely mature by P21, the input maps 

from non-exposed control mice at P26-30 are likely similar to those at P21. Given that both 

glutamatergic and GABAergic neurons from noise-exposed mice that received AE exhibited 

stable excitatory and inhibitory input maps compared to age-matched controls, we suspect that 

pulsed noise closes plasticity windows after acoustic trauma similar to in development.  

There are two alternative explanations. First, rather than closing plasticity windows, 

pulsed noise might exert similar effects during development and after noise trauma.  In this case, 

input maps from noise-exposed mice that received AE might exhibit a combination of the effects 

of noise rearing from P12-25 and noise-trauma (since both forms of reorganization would be 

taking place simultaneously). In this scenario, glutamatergic neurons would exhibit decreased 

excitatory (from pulsed noise, Figure 3-5) as well as decreased inhibitory input (from noise 

trauma, Figure 4-4), and GABAergic neurons would exhibit a combination of increased (from 

pulsed white noise, Figure 3-1) and decreased (from noise trauma, Figure 4-7) excitatory input, 

perhaps resulting in a maintenance of excitatory inputs compared to control levels. However, our 

findings were inconsistent with this prediction.  While GABAergic neurons from noise-exposed 

mice that received AE did exhibit stable excitatory input maps compared to controls, 

glutamatergic neurons did not show reductions in either excitatory or inhibitory input, but rather 
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appeared similar to age-matched control mice (Figure 4-10).  

Second, pulsed noise may exert different effects on intrinsic input maps during 

development and after noise trauma. In this case, input maps from noise-exposed mice that 

received AE might exhibit the effects of noise trauma, in addition to pattern(s) of reorganization 

not found in noise-reared mice. In this scenario, pulsed noise delivered after hearing loss would 

most likely have led to some change in the organization of intrinsic CNIC networks compared to 

control mice. However, this was not the case, since both GABAergic and glutamatergic neurons 

from noise-exposed mice that received AE exhibited excitatory and inhibitory input maps that 

were comparable to control mice (Figure 4-10). Thus, the most parsimonious explanation of our 

findings is that pulsed white noise inhibits plasticity in intrinsic CNIC circuits both during 

development and after hearing loss. 
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Figure 5-3. Determining how post-traumatic AE prevents synaptic circuit reorganization after hearing loss. 

(A) After noise trauma, the post-trauma plasticity window is divided into pre-reorganization and post-reorganization 

phases (yet to be experimentally determined). (B) Delivering AE during the post-reorganization phase will illustrate 

whether AE prevents changes from occurring in local CNIC networks after hearing loss, or whether it reverses 

changes that have occurred. Legend: AE; Acoustic enrichment with pulsed white noise. 
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5.7 CLINICAL RELEVANCE OF DISSERTATION FINDINGS: TINNITUS 

We found that immediate, post-traumatic acoustic stimulation dramatically reduces the 

percentage of noise-traumatized mice that develop behavioral evidence of tinnitus as measured 

by acoustic gap detection (Turner et al., 2006; Li et al., 2014) (Figure 4-11). This result points to 

the exciting possibility of using post-traumatic acoustic stimulation as a prophylactic measure to 

prevent the development of tinnitus after noise trauma in humans. Although acoustic stimulation 

(e.g. sound therapy) has been used in the treatment of tinnitus for many years, it has been largely 

unsuccessful (Vanneste et al., 2013; Folmer et al., 2014). This ineffectiveness may relate to the 

fact that sound therapies are typically delivered long after tinnitus has developed, presumably 

after the post-traumatic plasticity window has closed.  

Why is post-traumatic acoustic stimulation effective in preventing the emergence of 

behavioral evidence of tinnitus? One possibility is that acoustic enrichment bolsters overall 

levels of sound stimulation, and in doing so, prevents deprivation-induced reorganizations of 

auditory circuits from taking place. In this case, the precise spectrotemporal nature of the 

enriching stimulus might have little impact on its effectiveness in preventing tinnitus, and many 

different stimuli may prove effective. Alternatively, the nature of the post-traumatic AE stimulus 

may be crucial. For example, in the developing A1 of rodents, stimulation with pulsed white 

noise during the developmental critical period produces a permanent disruption of tonotopic 

maps (Zhang et al, 2002), whereas map distortions caused by stimulation with unstructured noise 

are reversible (Chang and Merzenich, 2003). Similar principles may govern the post-traumatic 

plasticity window, in which case the precise patterning of AE may be important in closing the 

window and preventing tinnitus-related circuit reorganizations from occurring after acoustic 

trauma. Distinguishing between these possibilities will involve comparing the effectiveness of a 
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variety of post-traumatic acoustic stimuli in preventing the emergence of behavioral evidence of 

tinnitus.  

In addition to determining the importance of AE stimulus makeup in preventing the 

emergence of tinnitus behavior, it will also be critical to define the length of the post-traumatic 

window where AE is effective. A recent study revealed that in a subset of noise-traumatized 

mice, reductions in the activity of KCNQ2/3 potassium channels in fusiform cells of the DCN, 

which are critical for the induction of tinnitus (Li et al., 2013), recover between 4 and 7 days 

after acoustic trauma, and in doing so, boost resilience to tinnitus (Li et al., 2015). Noise-induced 

reductions of KCNQ2/3 channel activity are necessary for the emergence of tinnitus-related 

increases in spontaneous firing rates (SFRs) of DCN fusiform cells (Li et al., 2013), and since 

the CNIC is the major postsynaptic target nucleus of these cells, changes in the firing rates of 

DCN neurons after noise trauma likely either drive or parallel synaptic reorganizations that take 

place in local CNIC circuits (Manzoor et al., 2012). It remains to be determined whether post-

traumatic AE promotes the recovery of KCNQ2/3 channel activity in DCN fusiform cells and/or 

prevents the emergence of increased SFRs in these cells, but it is reasonable to predict that AE 

would be effective in preventing the development of tinnitus as long as it is delivered before 

tinnitus-related changes in the DCN and CNIC are permanently instantiated. Thus, it is likely 

that the post-traumatic window where AE is effective in preventing tinnitus closes between 4 and 

7d after noise trauma, when reductions in KCNQ2/3 channel activity in the DCN that lead to 

hyperactivity in the ascending auditory pathway are reversible.  

It will also important to determine whether the CNIC retains the capacity for further CP 

induction after an initial episode of hearing loss has taken place, since the majority of tinnitus 

patients present for treatment long after the inciting acoustic overexposure has taken place, 
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Effectively treating these chronic tinnitus sufferers may require the ability to harness CP 

plasticity long after the noise-induced neural circuit reorganizations that lead to their tinnitus 

have occurred. It will be therefore be important to determine whether additional episodes of 

acoustic trauma delivered to mice with established tinnitus are able to re-open CP plasticity, and 

in particular, whether AE is able to reverse tinnitus in these animals. The ability to re-open 

plasticity windows in the auditory system, whether by acoustic deprivation or other means, may 

dramatically improve the efficacy of current and future sound-based therapies in the treatment of 

tinnitus and other hearing disorders. 

5.8 CLINICAL RELEVANCE OF DISSERTATION FINDINGS: HEARING 

DEVELOPMENT 

We found that introducing pulsed white noise during an early critical period of hearing 

experience has a profound impact on the maturation of neuronal circuitry in the auditory 

midbrain. Although it has been recognized for some time that developmental hearing loss can 

disrupt neuronal development (see Butler and Lomber, 2013 for review) and produce long-

lasting hearing deficits (see Whitton and Polley, 2011 for review), our results highlight that even 

a seemingly benign manipulation like introducing mild pulsed white noise can have dramatic 

effects on the maturation of auditory circuits. Furthermore, while a number of studies have 

demonstrated changes in auditory cortical processing after developmental hearing loss (Popescu 

and Polley, 2007; Polley et al., 2013; Buran et al., 2014; Mowery et al., 2014; Caras and Sanes, 

2015; see Kral et al., 2005 for Review) or noise rearing (Zhang et al., 2001; Zhang et al., 2002; 

Chang et al., 2005; Zhou and Merzenich, 2008), our findings provide the first evidence that 
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developmental noise rearing can produce substantial synaptic circuit reorganization 

subcortically, at the level of the inferior colliculus.  

These findings may have a number of important clinical implications. Although prior 

human studies have demonstrated that children who experience developmental hearing loss 

(even reversible) are at an increased risk for abnormalities in brainstem physiology (Gravel et al., 

2006), binaural hearing (Gunnarson and Finitzo, 1991; Gravel et al., 2006) and receptive 

language skills (Mody et al., 1999; Catts et al., 1999; Paradise et al., 2003), comparatively little 

is known about the importance of patterned acoustic stimulation for the normal development of 

the human auditory system . Based upon our results, we extrapolate that children growing up in 

different acoustic environments, who are exposed to different patterns of acoustic stimulation 

during early hearing development, may exhibit fundamentally different patterns of auditory 

circuit organization. For example, children who are raised in densely populated, urban 

environments may exhibit differently organized central auditory pathways from children who are 

raised in lightly populated, rural environments. Different acoustic rearing environments may 

result in neuronal circuit arrangements that are adaptive for processing sound attributes prevalent 

in some settings (likely those encountered in early development) and not others. This line of 

reasoning leads to the prediction that when adults who grew up in cities move to rural 

environments (or vice versa), they may experience diminished auditory processing capabilities, 

particularly for types of sounds that are exclusive to their new settings. 

In addition to raising questions about the importance of patterned acoustic stimulation 

during childhood, our findings may also have important implications for the care of preterm 

infants in neonatal intensive care units (NICU). Pre-term infants are especially sensitive to 

environmental noise, due of the early developmental stage of their auditory systems (McMahon 
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et al., 2012), and the noisy, high frequency sounds found in the NICU differ substantially from 

the predominately low frequency sounds encountered in the protected environment of the womb 

(Lahav and Skoe, 2014). Apart from qualitatively differing from the sounds encountered in the 

womb, noise encountered in the NICU can also mask human speech sounds, potentially limiting 

the richness of linguistic stimulations. In response to these concerns, some have advocated for a 

“culture of silence” in NICU settings (Swathi et al., 2014). However, we have concerns with this 

approach as well.  Given our findings that the “nature” of early acoustic experience can be as 

crucial as the “level” of sound exposure for the development of the central auditory pathways, 

we suspect that silence may also be detrimental to proper neuronal development.  In addition to 

keeping overall sound levels at non-traumatic intensities, it may be important to design acoustic 

environments for NICU infants that incorporate the low frequency sounds that they would likely 

encountered in the womb had they not been born early.   

5.9 OVERALL CONCLUSION 

Taken as a whole, evidence from the studies in this dissertation shed significant light on the 

development and plasticity of intrinsic connectivity in the mammalian auditory midbrain. Our 

findings support a view of local circuit connectivity in the CNIC where excitatory and inhibitory 

neurons receive extensive, cell-specific patterns of synaptic input. These local circuits undergo 

substantial developmental refinement, in a manner that is highly sensitive to changes in acoustic 

experience during an early critical period. These circuits also undergo substantial reorganizations 

after hearing loss, the nature of which specifically correlate with the presence or absence of 

behavioral evidence of tinnitus. As in development, hearing-loss-induced circuit reorganizations 
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are highly sensitive to changes in the acoustic environment, and can be prevented by delivering 

early, post-traumatic acoustic enrichment. Most surprisingly, post-traumatic acoustic stimulation 

also dramatically reduces the percentage of noise-traumatized animals that develop tinnitus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 183 

BIBLIOGRAPHY 

Adams JC (1979) Ascending projections to the inferior colliculus. J. Comp. Neurol. 183: 519 –
538. 

Adams JC (1980) Crossed and descending projections to the inferior colliculus. Neurosci. Lett. 
19: 1-5. 

Aitkin L (1979) The auditory midbrain. Trends in Neurosciences 2: 308-310.  

Aitkin LM & Phillips SC (1984b) Is the inferior colliculus an obligatory relay in the cat auditory 
system? Neuroscience Letters 44: 259-264. 

Aitkin LM & Schuck D (1985) Low frequency neurons in the lateral central nucleus of the cat 
inferior colliculus receive their input predominantly from the medial superior olive. 
Hearing Res. 17:87–93. 

Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK (2005) 
Unilateral cochlear ablation in adult ferrets results in upregulation in calretinin 
immunostaining in the central nucleus of the inferior colliculus. Neuroscience 136(3): 
957-969. 

Andersen RA, Roth GL, Aitkin LM & Merzenich MM (1980) The efferent projections of the 
central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J. Comp. 
Neurol. 194(3): 649-662. 

Baguley D, McFerran D & Hall D (2013) Tinnitus. The Lancet. 382: 1600-1607. 

Bajo VM & King AJ (2013) Cortical modulation of auditory processing in the midbrain. Front. 
Neural Circuits 6: 10.3389. 

Bajo VM & Moore DR (2005) Descending projections from the auditory cortex to the inferior 
colliculus in the gerbil, Meriones unguiculatus. J. Comp. Neurol. 486: 101–116. 

Bajo VM, Nodal FR, Moore DR & King AJ (2010) The descending corticocollicular pathway 
mediates learning-induced auditory plasticity. Nat. Neurosci. 13(2): 253-260. 



 184 

Bao S, Chang EF, Davis JD, Gobeske KT & Merzenich MM (2003) Progressive Degradation 
and Subsequent Refinement of Acoustic Representations in the Adult Auditory Cortex. J. 
Neurosci. 23(34): 10765-10775. 

Bauer CA & Brozoski TJ (2001) Assessing tinnitus and prospective tinnitus therapeutics using a 
psychophysical animal model. J. Assoc. Res. Otolaryngol. 2: 54-64. 

Bauer CA, Brozoski TJ, Holder TM & Caspary DM (2000) Effects of chronic salicylate on 
GABAergic activity in rat inferior colliculus. Hearing Res. 147: 175-182. 

Bauer CA, Turner JG, Caspary DM, Myers KS & Brozoski TJ (2008) Tinnitus and inferior 
colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J. 
Neurosci. Res. 86: 2564-2578. 

Baveller D, Levi DM, Li RW, Dan Y & Hensch T (2010) Removing Brakes on Adult Brain 
Plasticity: From Molecular to Behavioral Interventions. J. Neursoci. 30(45): 14964-
14971. 

Bennet JE & Bair W (2015) Refinement and Pattern Formation in Neural Circuits by the 
Interaction of Traveling Waves and Spike-Timing Dependent Plasticity. PLoS Comput. 
Biol. 11(8): e1004422. 

Berger JI & Coomber B (2015) Tinnitus-related changes in the inferior colliculus. Front. Neurol. 
6: 61. 

Bledsoe SC Jr, Nagase S, Miller JM & Altschuler RA (1995) Deafness-induced plasticity in the 
mature central auditory system. Neuroreport 7(1): 225-229. 

Boyen K, Baskent D & van Dijk P (2015) The Gap Detection Test: Can It Be Used to Diagnose 
Tinnitus? Ear Hear. 36(4): e138-145. 

Bregman AS, Abramson J, Doehring P & Darwin CJ (1985) Spectral integration based on 
common amplitude modulation. Percept Pscyhophys. 37: 483-493. 

Brozoski TJ & Bauer CA (2005) The effect of dorsal cochlear nucleus ablation on tinnitus in 
rats. Hear. Res. 206(1-2): 227-236. 

Brozoski TJ, Bauer CA & Caspary DM (2002) Elevated fusiform cell activity in the dorsal 
cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J. Neurosci. 22: 
2382-2389. 

Brozoski TJ, Wisner KW, Sybert LT & Bauer CA (2012) Bilateral dorsal cochlear nucleus 
lesions prevent acoustic-trauma induced tinnitus in an animal model. J. Assoc. Res. 
Otolaryngol. 13(1): 55-66. 

Brunso-Bechtold JK, Thompson GC & Masterton RB (1981) HRP study of the organization of 
auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp. 
Neurol. 197:705–722. 



 185 

Butler BE & Lomber SG (2013) Functional and structural changes throughout the auditory 
system following congenital and early onset deafness: implications for hearing 
restoration. Front. Syst. Neurosci. 7: 92. 

Buran BN, Sarro EC, Manno FA, Kang R, Caras ML & Sanes DH (2014) A sensitive period for 
the impact of hearing loss on auditory perception. J. Neurosci. 24(6): 2276-2284. 

Bures Z, Bartosova J, Lindovsky J, Chumak T, Popelar J & Syka J (2014) Acoustic enrichment 
during early postnatal development changes response properties of inferior colliculus 
neurons in rats. Eur. J. Neurosci. 40: 3674-3683. 

Burger RM & Pollak GD (2001) Reversible inactivation of the dorsal nucleus of the lateral 
lemniscus reveals its role for processing multiple sound sources in the inferior colliculus. 
J. Neurosci. 21:4830–4843. 

Callaway EM & Katz LC (1993) Photostimulation using caged glutamate reveals functional 
circuitry in living brain slices. Proc. Natl. Acad. Sci. 90(16): 7661-7665. 

Case DT, Zhao X & Gillespie DC (2011) Functional refinement in the projection from ventral 
cochlear nucleus to lateral superior olive precedes hearing onset in rat. PLoS One 6(6): 
e20756. 

Caicedo A & Herbert H (1993) Topography of descending projections from the inferior 
colliculus to auditory brainstem nuclei in the rate. J. Comp. Neurol. 328: 377-392. 

Campagnola L & Manis PB (2014) A map of functional synaptic connectivity in the mouse 
anteroventral cochlear nucleus. J. Neurosci. 21: 4830-4843. 

Calford MB & Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: 
evidence for multiple parallel auditory pathways through thalamus. J. Neurosci. 3(11): 
2365-2380. 

Campolo J, Lobarinas E and Salvi R (2013) Does tinnitus “fill in” the silent gaps? Noise Health. 
15: 398-405. 

Cant NB & Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones 
unguiculatus): differences in distribution of projections from the cochlear nuclei and the 
superior olivary complex. J. Comp. Neurol. 495: 511–528. 

Cant NB, & Benson CG (2008) Organization of the inferior colliculus of the gerbil (Meriones 
unguiculatus): projections from the cochlear nucleus. Neuroscience 154: 206–217. 

Catts HW, Fey ME, ZhangX, TomblinJB (1999) Language basis of reading and reading 
disabilities: evidence from a longitudinal investigation. Sci Stud Reading 3:331–361.  

Caras ML & Sanes DH (2015) Sustained Perceptual Deficits from Transient Sensory 
Deprivation. J. Neursoci. 35(30): 10831-10842. 



 186 

Casseday JH, Fremouw T & Covey E (2002) The inferior colliculus: a hub for the central 
auditory system. In: Integrative functions in the mammalian auditory pathway, pp 238–
318. New York: Springer. 

Chandrasekaran L, Xiao Y & Sivaramakrishnan S (2013) Functional architecture of the inferior 
colliculus revealed with voltage-sensitive dyes. Front. Neural Circ. 7: 41. 

Chang EF, Bao S, Imaizumi K, Schreiner CE & Merzenich MM (2005) Development of spectral 
and temporal response selectivity in the auditory cortex. Proc. Natl. Acad. Sci. 102(45): 
16460-16465. 

Chang EF & Merzenich MM (2003) Environmental Noise Retards Auditory Cortical 
Development. Science 300: 498-502. 

Clause A, Kim G, Sonntag M, Weisz CJ, Vetter DE, Rubsamen R & Kandler K (2014) The 
precise pattern of prehearing spontaneous activity is necessary for tonotopic map 
refinement. Neuron 82: 822-835. 

Clause A, Nguyen T & Kandler K (2012) An acoustic startle-based method of assessing 
frequency discrimination in mice. J. Neurosci. Methods. 200: 63-67. 

Coomber B, Berger JI, Kowalkowski VL, Schackleton TM, Palmer AR & Wallace MN (2014) 
Neural changes accompanying tinnitus following unilateral acoustic trauma in guinea 
pigs. Eur. J. Neurosci. 40: 2427-2421. 

Covey E, Kauer JA & Casseday JK (1996) Whole-cell patch-clamp recordings reveals 
subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. 
J. Neurosci. 16: 3009-3018. 

de Villers-Sidani E, Chang EF, Bao S & Merzenich MM (2007) Critical period window for 
spectral tuning defined in primary auditory cortex (A1) in the rat. J. Neurosci. 27(1): 180-
189. 

de Villers-Sidani E, Simpson KL, Lu Y-F, Lin RCS & Merzenich MM (2008) Manipulating 
critical period closure across different sectors of primary auditory cortex. Nat. Neurosci. 
11(8): 957-965.  

Delage H & Tuller L (2007) Language development and mild-to-moderate hearing loss: does 
language normalize with age? Journal of Speech, Language, and Hearing Research : 
JSLHR, 50: 1300–1313 

Dehmel S, Eisinger D & Shore SE (2012) Gap prepulse inhibition and auditory brainstem-
evoked potentials as objective measures for tinnitus in guinea pigs. Front. Syst. Neurosci. 
6: 42  

Dille MF, Konrad-Martin D, Gallun F, Helt W, Gordon J, Reavis KM, Bratt, GW & Fausti A. 
(2010). Tinnitus onset rates from chemotherapeutic agents and ototoxic antibiotics; 
results of a large prospective study. J. Am. Acac. Audiol. 21: 409-417. 



 187 

 

Dong S, Mulders WH, Rodger J & Robertson D (2009) Changes in neuronal activity and gene 
expression in guinea-pig auditory brainstem after unilateral partial hearing loss. 
Neuroscience. 159: 1164-1174 

Dong S, Mulders WH, Rodger J, Woo S & Robertson D (2010) Acoustic trauma evokes 
hyperactivity and changes in gene expression in the guinea pig auditory brainstem. Eur. 
J. Neurosci. 9: 1616-1628 

Dong S, Rodger J, Mulders WH & Robertson D (2010) Tonotopic changes in GABA receptor 
expression in guinea pig inferior colliculus after partial unilateral hearing loss. Brain Res. 
1342: 24-32. 

Egorova M & Ehret G (2008) Tonotopy and inhibition in the midbrain inferior colliculus shape 
spectral resolution of sounds in neural critical bands. Eur. J. Neurosci. 28: 675– 692.  

Egorova M, Ehret G, Vartanian I & Esser KH (2001) Frequency response areas of neurons in the 
mouse inferior colliculus: I. Threshold and tuning characteristics. Exp. Brain Res. 
140:145–161.  

Ehret G & Merzenich MM (1998): Complex sound analysis (frequency resolution, filteraing and 
spectral integration) by single units in the inferior colliculus of the cat. Brain Res. 472(2): 
139-163. 

Ehret G & Romand R (1992) Development of tone response thresholds, latencies and tuning in 
the mouse inferior colliculus. Brain Res. Dev. Brain. Res. 67(2): 317-326. 

Ehret G & Romand R (1994) Development of tonoptopy in the inferior colliculus II: 2-DG 
measurements in the kitten. J. Neurosci. 6: 1589-1595. 

Ehret G, Egorova M, Hage SR & Muller BA (2003) Spatial map of frequency tuning-curve 
shapes in the mouse inferior colliculus. Neuroreport 14: 1365-1369. 

Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, Borland MS & 
Kilgard MP (2011) Reversing pathological neural activity using targeted plasticity. 
Nature 470: 101-104. 

Escabi MA & Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the 
auditory midbrain. J. Neurosci. 22: 4114-4131. 

Fagiolini M & Hensch TK (2000) Inhibitory threshold for critical-period activation in primary 
visual cortex. Nature 404(6774): 183-186. 

Faingold CL (2002) Role of GABA abnormalities in the inferior colliculus pathophysiology- 
audiogenic seizures. Hearing Res. 168(1-2): 223-237. 



 188 

Faingold CL, Anderson CA & Randall ME (1993) Stimulation or blockade of the dorsal nucleus 
of the lateral lemniscus alters binaural and tonic inhibition in contralateral inferior 
colliculus neurons. Hearing Res. 69: 98–106. 

Fathke RL & Gabriele ML (2009) Patterning of multiple layered projections to the auditory 
midbrain prior to experience. Hearing Res. 249:36–43. 

Folmer RL, Theodoroff SM, Martin WH & Whi Y (2014) Experimental, controversial and 
futuristic treatments for chronic tinnitus. J. Am. Acad. Audiol. 35(1): 106-125. 

Foster NL, Mellott JG & Schofield BR (2014) Perineuronal nets and GABAergic cells in the 
inferior colliculus of guinea pigs. Front. Neuroanat. 7: 53. 

Fournier P & Hebert S (2013) Gap detection deficits in humans with tinnitus as assessed with the 
acoustic startle paradigm: does tinnitus fill in the gap? Hear. Res. 295: 16-23. 

Franklin SR, Bruso-Bechtold JK & Henkel CK (2006) Unilateral cochlear ablation before 
hearing onset disrupts the maintenance of dorsal nucleus of the lateral lemniscus 
projection patterns in the rat inferior colliculus. Neuroscience 143 (1): 105-115. 

Franklin SR, Bruso-Bechtold JK & Henkel CK (2008) Bilateral cochlear ablation in neonatal rats 
disrupts development of banded pattern of projections from the dorsal nucleus of the 
lateral lemniscus to the inferior colliculus. Neuroscience 154(1): 346-354 

Froemke RC & Jones BJ (2011) Development of auditory cortical synaptic receptive fields. 
Neuroscience and Biobehavioral Reviews 35: 2105-2113. 

Fubara BM, Casseday JH, Covey E & Schwartz-Bloom RD (1996) Distribution of GABAA, 
GABAB, and glycine receptors in the central auditory system of the big brown bat, 
Eptescus fuscus. J.Comp. Neurol. 369: 83-92. 

Fuzesseery ZM, Richardson MD & Coburn MS (2006) Neural mechanisms underlying 
selectivity for the rate and direction of frequency-modulated sweeps in the inferior 
colliculus of the pallid bat. J. Neurophysiol. 96: 1320-1336. 

Gabriele ML, Brunso-Bechtold JK & Henkel CK (2000a) Development of afferent patterns in 
the inferior colliculus of the rat: projection from the dorsal nucleus of the lateral 
lemniscus. J Comp. Neurol. 416: 368 –382. 

Gabriele ML, Brunso-Bechtold JK & Henkel CK (2000b) Plasticity in the development of 
afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J. 
Neurosci. 20 :6939–6949. 

Gabriele ML, Shahmoradian SH, French CC, Henkel CK & McHaffie JG (2007) Early 
segregation of layered projections from the lateral superior olivary nucleus to the central 
nucleus of the inferior colliculus in the neonatal cat. Brain Research 1173: 66–77. 

http://www.ncbi.nlm.nih.gov/pubmed/16971048
http://www.ncbi.nlm.nih.gov/pubmed/16971048
http://www.ncbi.nlm.nih.gov/pubmed/16971048


 189 

Gao E & Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency 
map in bat auditory system. Proc. Natl. Acad. Sci. 95, 12663-12670. 

Gittelman JX, Li N & Pollak GD (2009) Mechanisms underlying directional selectivity for 
frequency-modulated sweeps in the inferior colliculus revealed by in vivo whole-cell 
recordings. J. Neurosci. 29: 13030-13041. 

Glendenning KK & Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral 
superior olive. J. Neurosci. 3: 1521-1537. 

Gold JR & Bajo VM (2014) Insult-induced adaptive plasticity of the auditory system. Front. 
Neurosci. 8: 110. 

González-Hernández T, Mantolán-Sarmiento B, González-González B & Pérez-González H 
(1996) Sources of GABAergic input to the inferior colliculus of the rat. J. Comp. Neurol. 
372(2): 309-326. 

Goodman CS, Shatz CJ. Developmental mechanisms that generate precise patterns of neuronal 
connectivity. Cell, 1993; 72.  

Gordon JA & Stryker MP (1996) Experience-dependent plasticity of binocular responses in the 
primary visual cortex of the mouse. J. Neurosci. 16(10): 3274-3286. 

Gravel JS, Wallace IF & Ruben RJ (1996) Auditory consequences of early mild hearing loss 
associated with otitis media. Acta Otolaryngol 116 :219 –221  

Gravel JS, Roberts JE, Roush J, Grose J, Besing J, Burchinal M, Neebe E, Wallace IF & Zeisel S 
(2006) Early otitis media with effusion, hearing loss, and auditory processes at school 
age. Ear Hear. 27: 353–368 

Grecova J, Bures Z, Popelar J, Suta D & Syka J (2009) Brief exposure of juniveline rats to noise 
impairs the development of the response properties of inferior colliculus neurons. Eur. J. 
Neurosci. 29: 1921-1930. 

Grimsley CA, Sanchez JT & Sivaramakrishnan S (2013) Midbrain local circuits shape sound 
intensity codes. Front. Neural Circuits. 7: 174. 

Groves GM, Boyle RD, Welker RL & Miller SW (1974) On the mechanism of prepulse 
inhibition. Physiol. Behav. 5: 367-375. 

Guinnan JJ Jr, Guinan SS & Norris BE (1972a) Single auditory units in the superior olivary 
complex. I: Responses to sounds and classifications based on physiological properties. 
Int. J. Neurosci 4: 101-120. 

Guinnan JJ Jr, Norris BE & Guinan SS (1972b) Single auditory units in the superior olivary 
complex. II: Locations of unit categories and tonotopic organization. Int. J. Neurosci. 4: 
147-166. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Mantol%C3%A1n-Sarmiento%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8863133
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gonz%C3%A1lez-Gonz%C3%A1lez%20B%5BAuthor%5D&cauthor=true&cauthor_uid=8863133
http://www.ncbi.nlm.nih.gov/pubmed/?term=P%C3%A9rez-Gonz%C3%A1lez%20H%5BAuthor%5D&cauthor=true&cauthor_uid=8863133


 190 

Gunnarson AD & Finitzo T (1991) Conductive hearing-loss during infancy—effects on later 
auditory brain-stem electrophysiology. J Speech Hear Res. 34:1207–1215 

Haas JS, Nowotny T & Arbarbanel HD (2006) Spike-timing dependent plasticity of inhibitory 
synapses in entorhinal cortex. J. Neurophys. 96(6): 3305-3313.  

Harris KD & Shepherd GMG (2015) The neocortical circuit: themes and variations. Nat. 
Neuroscience. 18: 170-181. 

Harrison RV, Ibrahim D & Mount RJ (1998) Plasticity of tonotopic maps in auditory midbrain 
following partial cochlear damage in the developing chinchilla. Experimental Brain 
Research 123: 449-460. 

Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, Reichenbach A & Brückner G 
(1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are 
predominantly surrounded by perineuronal nets presumed as a buffering system for 
cations. Brain Res. 842(1): 15-29. 

Hattori T & Suga N (1997) The inferior colliculus of the mustached bat has the frequency-vs- 
coordinates. J. Comp. Physiol. A. 180: 271-284. 

He HY, Hodos W, Quinlan EM (2006) Visual deprivation reactivates ocular dominance 
plasticity in adult visual cortex. J. Neurosci. 26(11): 2951-2955. 

Hefner HE & Harrington IA (2002) Tinnitus in hamsters following exposure to intense sound. 
Hear. Res. 170: 83-95. 

Helfer TM, Jordan NN, Lee RB, Pietrusiak P, Cave K & Schairer K (2011) Noise-induced 
hearing injury and comorbidities among postdeployment U.S. Army soldiers: April 2003-
June 2009. Am. J. Audiol. 20: 33-41.  

Henkel CK, Gabriele ML & McHaffie JG (2005) Quantitative assessment of developing afferent 
patterns in the cat inferior colliculus revealed with calbindin immunohistochemistry and 
tract tracing methods. Neuroscience 136:945–955 

Henkel CK, Keiger CJ, Franklin SR & Brunso-Bechtold JK (2007) Development of banded 
afferent compartments in the inferior colliculus before onset of hearing in ferrets. 
Neuroscience 146:225–235. 

Hensch TK (2004) Critical period regulation. Annu. Rev. Neurosci. 27: 549–579. 

Hensch TK (2005) Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 
69: 214-237. 

Hensch TK (2005) Critical Period Plasticity in Local Cortical Circuits. Nat. Rev. Neurosci. 6: 
877-888. 



 191 

Hensch TK & Stryker MP (2004) Columnar architecture sculpted by GABA circuits in 
developing cat visual cortex. Science 303(5664): 1678-1681. 

Hickox AE & Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation 
of hyperacusis or tinnitus? J. Neurophysiol. 111: 553-564. 

 

Hirtz JJ, Braun N, Griesemer D, Hannes C, Janz K, Lohrke S, Muller B & Friauf E (2012) 
Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires 
functional CaV1.3 calcium channels. J. Neurosci. 42: 14602-14616. 

Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M (2009) Experience leaves a lasting 
structural trace in cortical circuits. Nature 457(7227): 313-317. 

Holtmaat A & Svoboda K (2009) Experience-dependent structural synaptic plasticity in the 
mammalian brain. Nat. Rev. Neurosci. 10(9): 647-658. 

Huang S, Gu Y, Quinlan EM & Kirkwood A (2010) A refractory period for rejuvenating 
GABAergic synaptic transmission and ocular dominance plasticity with dark exposure. J. 
Neurosci. 30: 16636-16642.  

Huang S, Gu Y, Quinlan EM & Kirkwood A (2010) A refractory period ofr rejuvenating 
GABAergic synaptic transmission and ocular dominance plasticity with dark exposure. J. 
Neurosci. 30(49): 16636-16642. 

Hubel DH & Wiesel TN (1964) Effects of Monocular Deprivation in Kittens. Naunyn 
Schmiedebergs Arch Exp Pathol Pharmakol. 248:492-7. 

Hübener M & Bonhoeffer T (2014) Neuronal Plasticity: Beyond the Critical Period. Cell 159: 
727-737.  

Huberman AD, Feller MB & Chapman B (2008) Mechanisms underlying development ovisual 
maps and receptive fields. Ann. Rev. Neurosci. 31: 479-509. 

Insanally MN, Albanna BF & Bao S (2010) Pulsed Noise Disrupts Complex Sound 
Representations. J. Neurophys. 103: 2611-2617. 

Insanally MN, Kover H, Kim H & Bao S (2009) Feature-dependent sensitive periods in the 
development of complex sound representation. J. Neurosci. 29(17): 5456-5462. 

Ito T, Bishop DC & Oliver DL (2011) Expression of glutamate and inhibitory amino acid 
vesicular transporters in the rodent auditory brainstem. J. Comp. Neurol. 519(2): 316-
340. 

 



 192 

Ito T, Inoue K & Takada M (2015) Distribution of glutamatergic, GABAergic and glycinergic 
neurons in the auditory pathway of macaque monkeys. Neuroscience 310: 128-151. 

Ito T & Oliver DL (2012) The basic circuit of the IC: tectothalamic neurons with different 
patterns of synaptic organization send different messages to the thalamus. Front. Neural. 
Circ. 6: 48. 

Ito T & Oliver DL (2014) Local and commissural IC neurons make axosomatic inputs on large 
GABAergic tectothalamic neurons. J. Comp. Neurol. 522: 3539-3554. 

Ito T, Bishop DC & Oliver DL (2009) Two classes of GABAergic neurons in the inferior 
colliculus. J. Neurosci. 29:13860 –13869 

Iwai Y, Faglioni M, Obata K & Hensch TK (2003) Rapid critical period induction by tonic 
inhibition in visual cortex. J. Neurosci. 23(17): 6695-702. 

Jastreboff PJ, Brennan JF & Sasaki CT (1988a) An animal model for tinnitus. Laryngoscope 98: 
280-286. 

Jastreboff PJ, Brennan JF, Coleman JK & Sasaki CT (1988b) Phantom auditory sensation in rats: 
an animal model for tinnitus. Behav. Neurosci. 102(6): 811-822. 

Jones TA, Leake PA, Snyder RL, Stakhovskaya O, & Bonham B (2007) Spontaneous discharge 
patterns in the cochlear spiral ganglion cells before the onset of hearing in Cats. J. 
Neurophys. 98: 1989-1908. 

Kalappa BI, Brozoski TJ, Turner JG & Caspary DM (2014) Single unit hyperactivity and 
bursting in the auditory thalamus of awake rats directly correlates with behavioral 
evidence of tinnitus. J. Physiol. 592: 5065-5078. 

Kalappa BI, Soh H, Duigan KM, Furuya T, Edwards S, Tzingounis AV & Tzounopoulos. (2015) 
Potent KCNQ2/3-specific channel activator suppresses in vivo epileptic activity and 
prevents the development of tinnitus. J. Neurosci. 35(23): 8829-8842. 

Kaltenbach JA (2007) The dorsal cochlear nucleus as a contributor to tinnitus: mechanisms 
underlying the induction of hyperactivity. Prog. Brain Res. 166: 89-106. 

Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the 
auditory system. Curr. Opin. Neurobiol. 14(1): 96-104. 

Kandler K & Friauf E (1993) Pre- and postnatal development of efferent connections of the 
cochlear nucleus in the rat. J. Comp. Neurol. 328: 161-184. 

Kandler K, Clause A & Noh J (2009) Tonotopic reorganization of developing auditory brainstem 
circuits. Nat. Neurosci. 12(6): 711-717. 

Kandler K, Nguyen T, Noh J & Givens RS (2013) An optical fiber-based uncaging system. Cold 
Spring Harb Protoc. 2: 118-121. 



 193 

 

Katz LC & Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 
274(5290): 1133-1138. 

Keck T, Scheuss V, Jacobsen RI, Wierenga CJ, Eyesel UT, Bonhoeffer T & Hübener M (2011) 
Loss of Sensory Input Causes Rapid Structural Changes of Inhibitory Neurons in Adult 
Mouse Visual Cortex. Neuron 71: 869-882. 

Kim G & Kandler K (2003). Elimination and strengthening of glycinergic/GABAergic 
connections during tonotopic map formation. Nat. Neurosci. 6: 282-90. 

Kirkby LA, Sack GS, Firl A & Feller MB (2013) A role for correlated spontaneous activity in 
the assembly of neural circuits. Neuron 80(5): 1129-1144. 

Klug A, Bauer EE, Hanson JT, Hurley L, Meitzen J & Pollak GD (2002) Response selectivity for 
species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by 
inhibition. J. Neurophysiol. 88: 1941-1954. 

Knipper M, Van Diijk P, Nunes I, Rüttiger L & Zimmermann U (2013) Advances in the 
neurobiology of hearing disorders: recent developments regarding the basis of tinnitus 
and hyperacusis. Prog. Neurobiol. 111: 17-33. 

Koch M & Schnitzler H-U (1997) The acoustic startle response in rats: circuits mediating 
evocation, inhibition and potentiation. Behav. Brain Res. 89(1-2): 35-49. 

Kral A, Tillein J, Heid S, Hartmann R & Klinke R (2005) Postnatal cortical development in 
congenital auditory deprivation. Cerebral Cortex 15(5): 555-562. 

Krapfer C, Seidl AH, Schweizer H, & Grothe B (2002) Experience-dependent refinement of 
inhibitory inputs to auditory coincidence-detector neurons. Nat. Neuroscience 5: 247-253. 

Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, & Trachtenberg JT (2013) A disinhibitory 
microcircuit initates critical period plasticity in visual cortex. Nature 501(7468): 543-546.  

Kuwada S, Batra R, Yin TC et al (1997) Intracellular recordings in response to monaural and 
binaural stimulation of neurons in the inferior colliculus of the cat. J. Neurosci. 17: 7565-
7581. 

Lahav A & Skoe E (2014) An acoustic gap between the NICU and womb: a potential risk for 
compromised neuroplasticity in the auditory system in preterm infants. Front. Neurosci. 
8: 381.  

Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ & Rauschecker JP. (2011). 
Dysregulation of limbic and auditory networks in tinnitus. Neuron 69: 33-43. 



 194 

Leitner DS, Hammond GR, Springer CP, Ingham KM, Mekilo AM, Bodison PR, Aranda MT & 
Shawaryn MA (1993) Parameters affecting gap detection in the rat. Perception & 
psychophysics 54: 395-405 

Lesica NA & Grothe B (2008) Efficient temporal processing of naturalistic sounds. PLoS One 3: 
e1655 

Li N & Pollak GD (2013) Circuits that innervate excitatory-inhibitory cells in the inferior 
colliculus obtained with in vivo whole cell recordings. J. Neurosci. 33: 6367-6379. 

Li S, Choi V & Tzounopoulos T (2013) Pathogenic plasticity of Kv7.2/3 channel activity is 
essential for the induction of tinnitus. Proc. Natl. Acad. Sci. 110: 9980- 9985. 

Li S, Kalappa BI & Tzounopoulos (2015) Noise-induced plasticity of KCNQ2/3 and HCN 
channels underlies vulnerability and resilience to tinnitus. Elife 4: 07242.  

Linkenhoker BA, von der Ohe CG & Knudsen EI (2005). Anatomical traces of juvenile learning 
in the auditory system of adult barn owls. Nat. Neurosci. 8(1): 93-98. 

Llano DA, Turner JG & Caspary DM (2012) Diminished cortical inhibition in an aging mouse 
model of chronic tinnitus. J. Neurosci. 32: 16141-16148. 

Lobarinas E, Sun W, Cushing R & Salvi R (2004) A novel behavioral paradigm for assessing 
tinnitus using shcedul-induced polydipsia avoidance conditioning (SIP-AC). Hear. Res. 
190: 109-114. 

Loftus WC, Bishop D & Oliver DL (2010) Differential patterns of inputs create functional zones 
in central nucleus of inferior colliculus. J. Neurosci. 30:13396 –13408. 

Loftus WC, Bishop DC, Saint Marie RL & Oliver DL (2004) Organization of binaural excitatory 
and inhibitory inputs to the inferior colliculus from the superior olive. J. Comp. Neurol. 
472: 330 –344.  

Luo H, Pace E, Zhang X & Zhang J  (2014) Blast-Induced tinnitus and spontaneous firing 
changes in the rate dorsal cochlear nucleus. J. Neurosci. Res. 92: 1466-1477. 

Ma WL, Hidaka H & May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J 
mice after manipulations that induce tinnitus. Hear. Res. 212: 9-21. 

Ma X & Suga N (2001) Corticofugal modulation of duration-tuned neurons in the midbrain 
auditory nucleus in bats. Proc. Natl. Acad. Sci. 98(24): 14060-14065. 

Ma X & Suga N (2008) Corticofugal modulation of the paradoxical latency shifts of inferior 
collicular neurons. J. Neurophysiol. 100(2): 1127-1134. 

Maffei A Nelson SB & Turrigiano GG (2004) Selective reconfiguration of layer 4visual cortical 
circuitry by visual deprivation. Nat. Neurosci. 7: 1353- 1359. 



 195 

Maffi CL & Aitkin LM (1987) Differential neural projections to regions of the inferior colliculus 
of the cat responsive to high frequency sounds. Hearing Res. 26: 211–219.  

Magnusson AK, Kapfer C, Grothe B & Koch U (2005) Maturation of glycinergic inhibition in 
the gerbil medial superior olive after hearing onset. J. Physiology 568: 497-512. 

Maling DH (1993) Coordinate systems and map projections, Ed2. Amsterdam: Elsevier.  

Malmierca MS, Blackstad TW, Osen KK, Karagu¨lle T, Molowny RL (1993) The central 
nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of 
neuronal and laminar structure. J Comp Neurol. 333:1–27. 

Malmierca MS, Hernandez O & Rees A (2005) Intercollicular commissural projections 
modulation neurons responses in the inferior colliculus. Eur. J. Neurosci. 21(10): 2701-
10. 

Malmierca MS, Izquierdo MA, Cristaudo S, Hernánndez O, Perez-Gonzalez D, Covey E & 
Oliver DL (2008) A discontinuous tonotopic organization in the inferior colliculus of the 
rat. J. Neurosci. 28: 4767– 4776. 

Malmierca MS, Le Beau FEN & Rees A (1996) The topographical organization of descending 
projections from the central nucleus of the inferior colliculus in guinea pig. Hearing Res. 
93: 167-180. 

Malmierca MS, Merchán MA, Henkel CK & Oliver DL (2002) Direct projections from cochlear 
nuclear complex to auditory thalamus in the rat. J. Neurosci. 22:10891–10897. 

Malmierca MS, Saint Marie RL, Merchan MA & Oliver DL (2005). Laminar inputs from dorsal 
cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior 
colliculus: two patterns of convergence. Neuroscience. 136: 883–894. 

Malmierca, MS (2004) The Inferior Colliculus: A Center for Convergence of Ascending and 
Descending Auditory Information. Neuroembryology and Aging. doi:10.1159/000096799 

Mancuso JJ, Kim J, Lee S, Tsuda S, Chow NB & Augustine GJ (2011) Optogenetic probing of 
functional brain circuitry. Exp. Physiol. 96(1): 26-33. 

Manzoor NF, Licari F, Klapchar M, Elkin RL, Gao Y, Chen G & Kaltenbach JA (2012) Noise-
induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the 
dorsal cochlear nucleus. J. Neurophys. 108(4): 976-988. 

Manzoor NR, Gao Y, Licari F & Kaltenbach JA (2012) Comparison and contrast of noise-
induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear. Res. 
294: 114-123. 

McCalpine D, Martin RL, Mossop JE & Moore DR (1997) Response properties of neurons in the 
inferior colliculus of the monaurally deafened ferret to acoustic stimulation of the intact 
ear. J. Neurophys. 78(2): 767-779.  



 196 

McMahon E, Wintermark P & Lahav A (2012) Auditory brain development in premature infants: 
the importance of early experience. NY Acad. Sci. 1252: 17-24. 

Meininger V, Pol D & Derer P (1986) The inferior colliculus of the mouse: a Nissl and Golgi 
study. Neuroscience 17:1159 –1179. 

Melcher JR, Sigalovsky IS, Guinan JJ Jr. & Levine RA (2000) Lateralized tinnitus studied with 
functional magnetic resonance imaging: abnormal inferior colliculus activation. J. 
Neurophysiol. 83: 1058-1072. 

Mellot JG, Foster NL, Ohi AP & Schofield BR (2014) Excitatory and inhibitory connections in 
parallel pathways from the inferior colliculus to the auditory thalamus. Front. Neuroanat. 
8: 124. 

Merzenich MM & Reid MD (1974) Representation of the cochlea within the inferior colliculus 
of the cat. Brain Research 77: 397-415. 

Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM & Tzounopoulos T (2011) 
Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity 
because of decreased GABAergic inhibition. Proc. Natl. Acad. Sci. 108: 7601-7606. 

Milbrandt JC, Holder TM, Wilson MC, Salvi RJ & Caspary DM (2000) GAD levels and 
muscimol binding in rat inferior colliculus following acoustic trauma. Hear. Res. 147: 
251-260.  

Miller KE, Casseday JH & Covey E (2005) Relation between intrinsic connections and 
isofrequency contours in the inferior colliculus of the big brown bat, Eptesicus fuscus. 
Neuroscience 136: 895–905. 

Mody M, Schwartz RG, Gravel JS & Ruben RJ (1999) Speech perception and verbal memory in 
children with and without histories of otitis media. J. Speech Lang. Hear Res. 52(5): 
1069-1079. 

Moore DR & Kowalchuck NE (1988) Auditory brainstem of the ferret: effects of unilateral 
cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J. 
Comp. Neurol. 272(4): 503-515. 

Moore DR, Kotak VC & Sanes DH (1998) Commissural and lemniscal synaptic input to the 
gerbil inferior colliculus. J. Neurophysiol. 80: 2229-2236. 

Morest DK & Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: 
defining the anatomy of the auditory midbrain. J. Comp. Neurol. 222: 209 –236 

Mossop JE, Wilson MJ, Caspary DM & Moore DR (2000) Down-regulation of inhibition 
following unilateral deafening. Hearing Res. 147(1-2): 183-187. 



 197 

Mowery TM, Kitak VC & Sanes DH (2015) Transient Hearing Loss Within a Critical Period 
Causes Peristent Changes to Cellular Properties in Adult Auditory Cortex. Cerebral 
Cortex 25(8): 2083-2094. 

Mulders WH & Robertson D (2011) Progressive centralization of midbrain hyperactivity after 
acoustic trauma. Neuroscience 192: 753-760. 

Mulders WH, Roberston D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: 
dependence on cochlear activity. Neuroscience 164: 733- 746. 

Myoga MH, Lehnert S, Leibold C, Felmy F & Grothe B (2014) Glycinergic inhibition tunes 
coincidence detection in the auditory brainstem. Nat. Commun. 5: 3790. 

Nagase S, Miller JM, Dupont J, Lim HH, Sato K & Altschuler RA (2000) Changes in cochlaer 
electrical stimulation induced Fos expression in the rat inferior colliculus following 
deafness. Hearing Res. 147: 242-250. 

Nakahara H, Zhang LI & Merzenich MM (2004) Specialization of primary auditory cortex 
processing by sound exposure in the “critical period.” Proc. Natl. Acad. Sci. 101(18): 
7170-7174.  

Nakamoto KT, Jones SJ & Palmer AR (2008) Descending projections from auditory cortex 
modulate sensitivity in the midbrain to cues for spatial position. J. Neurophysiol. 99(5): 
2347-2356. 

Niu Y, Kamaraguru A, Wang R & Sun W (2013) Hyperexcitability of inferior colliculus neurons 
caused by acute noise exposure. J. Neurosci. Res. 91: 292-299. 

Noh J, Seal RP, Garver JA, Edwards RH & Kandler K (2010) Glutamate co-release at 
GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nat. 
Neurosci. 13: 232-8. 

Nondahl DM, Cruickshanks KJ, Huang GH, Klein BE, Klein R, Nieto FJ & Tweed TS (2011) 
Tinnitus and its risk factors in the Beaver Dam offspring study. Int. J. Audiol. 50: 313-
320. 

Nordeen KW, Killackey HP & Kitzes LM (1983) Ascending auditory projections to the inferior 
colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones 
unguicatus. J. Comp. Neurol. 214(2): 144-153. 

Noreña AJ & Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an 
acoustic trauma: implications for neural correlates of tinnitus. Hear. Res. 183: 137-153. 

Noreña AJ & Eggermont JJ (2005) Enrichment acoustic environment after noise trauma reduces 
hearing loss and prevents cortical map reorganization. J. Neurosci. 25: 699-705 



 198 

Okoyama S, Moriizumi T, Kitao Y, Kawano J, & Kudo M (1995) Postnatal development of the 
projection from the medial superior olive to the inferior colliculus in the rate. Hearing 
Res. 88: 65-70. 

Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat. A light 
and electron microscopic study. J. Comp. Neurol. 224: 24-46. 

Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in 
the cat: possible substrates for binaural interaction. The J. Comp. Neurol. 264: 24–46.  

Oliver DL (2000) Ascending efferent projections of the superior olivary complex. Microscopy 
Research and Technique 51: 355–363. 

Oliver DL & Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J. Comp. 
Neurol. 222: 237-264. 

Oliver DL, Beckius GE and Shneiderman A (1995) Axonal projections from the lateral and 
medial superior olive to the inferior colliculus of the cat: a study using electron 
microscopic autoradiography. J. Comp. Neurol. 360: 17-32. 

Oliver DL, Beckius GE, Bishop DC & Kuwada S (1997) Simultaneous anterograde labeling of 
axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior 
colliculus of cat. J. Comp. Neurol. 382: 215–229. 

Oliver DL, Izquierdo MA & Malmierca MS (2011) Persistent Effects of Early Augmented 
Acoustic Environment on the Auditory Brainstem. Neuroscience 184: 75-87. 

Oliver DL, Kuwada S, Yin TC, Haberly LB & Henkel CK (1991) Dendritic and axonal 
morphology of HRP-injected neurons in the inferior colliculus of the cat. J. Comp. 
Neurol. 303: 75–100. 

Oliver DL, Winer JA, Beckius GE & Saint Marie RL (1994) Morphology of GABAergic 
neurons in the inferior colliculus of the cat. J. Comp. Neurol. 340: 27– 42. 

Ono M & Oliver DL (2014) The balance of excitatory and inhibitory synaptic cinputs for coding 
sound location. J. Neurosci. 34(10): 3779-3792. 

Ono M, Yanagawa Y & Koyano K (2005) GABAergic neurons in inferior colliculus of the 
GAD67-GFP knock-in mouse: electrophysiological and morphological properties. 
Neurosci Res. 51: 475– 492. 

Orton LD & Rees A (2014) Intercollicular commissural connections refine the representation of 
sound frequency and level in the auditory midbrain. Elife 18(3): doi: 10.7554. 

Oviedo HV, Bureau I, Svoboda K & Zador AM (2010) The functional asymmetry of auditory 
cortex is reflected in the organization of local cortical circuits. Nat. Neurosci. 13: 1413-
1420. 



 199 

Paradise JL, Feldman HM, Campbell TF, Dollaghan CA, Colborn DK, Bernard BS, Rockette 
HE, Janosky JE, Pitcairn DL, Sabo DL, Kurs-Lasky M & Smith CG (2003) Early versus 
delayed insertion of tympanostomy tubes for persistent otitis media: developmental 
outcomes at the age of three years in relation to prerandomization illness patterns and 
hearing levels. Pediatr Infect Dis J. 22: 309–31 

Pedemonte M, Torterolo P & Velluti RA (1997) In vivo intracellular characteristics of inferior 
colliculus neurons in guinea pigs. Brain Res. 759: 24-31. 

Peruzzi D, Sivaramakrishnan S, Oliver DL (2000) Identification of cell types in brain slices of 
the inferior colliculus. Neuroscience. 101: 403– 416. 

Phillips MA, Colonnesse MT, Goldberg J, Lewis LD, Brown EN & Constantine-Paton M (2011) 
A synaptic strategy for consolidation of convergent visuotopic maps. Neuron 71(4): 710-
724. 

Pilati N, Ison MJ, Barker M, Mulheran M, Large CH, Forsythe ID, Matthias J & Hamann M 
(2012b) Mechanisms contributing to central excitability changes during hearing loss. 
Proc. Nat. Acad. Sci. 109: 8292-8297. 

Pilati N, Large C, Forsythe ID & Hamann M (2012a) Acoustic over-exposure triggers burst 
firing in dorsal cochlear nucleus fusiform cells. Hear. Res. 283: 98-106. 

Pizzorusso, T. et al. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. 
Science 298: 1248–1251. 

Pollak GD, Xie R, Gittelman J, Andoni S & Li N (2011) The dominance of inhibition in the 
inferior colliculus. Hearing Res. 274:27–39. 

Polley DB, Thompson JH & Guo W (2013) Brief hearing loss disrupts binaural integration 
during two early critical periods of auditory cortical development. Nat. Commun. 4: 2547. 

Popescu MV & Polley DB (2010) Monaural deprivation disrupts development of binaural 
selectivy in auditory midbrain and cortex. Neuron. 65(5): 718-31. 

Portfors CV, Felix RA 2nd (2005) Spectral integration in the inferior colliculus of the CBA/CaJ 
Mouse. Neuroscience 136: 1159- 1170. 

Portfors DV, Mayko ZM, Jonson K, Cha GF & Roberts PD (2011) Spatial organization of 
receptive fields in the auditory midbrain of awake mouse. Neuroscience 193: 429-439. 

Razak KA, Richardson MD & Fuzessery ZM (2008) Experience is required for the maintenance 
and refinement of FM sweep selectivity in the developing auditory cortex. Proc. Natl. 
Acad. Sci 105(11): 4465-4470. 

Reetz G & Ehret (1999) Inputs from three brainstem sources to identified neurons of the mouse 
inferior colliculus slice. Brain Res. 816: 527-543. 



 200 

Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR & Kaltenbach JA (2010) J. 
Neurosci. 30(45): 14972-14979. 

Rodriguez FA, Read HL & Escabi MA (2010) Spectral and temporal modulation tradeoff in the 
inferior colliculus. J. Neurophysiol. 103(2): 887-903. 

Romand R & Ehret G (1990) Development of tonotopy in the inferior colliculus: 
Electrophysiological mapping in house mice. Dev Brain Res 54: 221–234. 

Ropp TJ, Tiedemann KL, Young ED & May BJ. (2014) Effects of Unilateral Acoustic Trauma 
on Tinnitus-Related Spontaneous Activity in the Inferior Colliculus. J. Assoc. Res. 
Otolaryngol. 6: 1007-1022. 

Rubel EW (1984) Ontogeny of auditory system function. Annu Rev Physiol. 46: 213-229. 

Ruben RJ (1992) The ontogeny of human hearing. Acta Otolaryngol 112: 192-196. 

Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U & Schachner M (2001) Reduced 
perisomatic inhibition, increased excitatory transmission, and impaired long-term 
potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol. 
Cell Neurosci. 17(1): 226-240. 

Saint Marie RL, Ostapoff EM, Morest DK & Wenthold RJ (1989) Glycine-immunoreactive 
projection of the cat lateral superior olive: possible role in midbrain ear dominance. J. 
Comp. Neurol. 279: 382-396. 

Saint Marie RL, Shneiderman A & Stanforth DA (1997) Patters of γ–aminobutyric acid and 
glycine immunoreactivities reflect structural and functional differences of the cat lateral 
lemniscal nuclei. J. Comp. Neurol. 389: 264-276. 

Saitoh I & Suga N (1995). Long delay lines for ranging are created by inhibition in the inferior 
colliculus of the mustached bat. J. Neurophysiol. 74(1): 1-11. 

Saldaña & Merchán MA (2005) Intrinsic and Commissural Connections of the Inferior 
Colliculus. In: The Inferior Colliculus, New York: Springer. 

Saldaña E & Merchán MA (1992) Intrinsic and commissural connections of the rat inferior 
colliculus. J. Comp. Neurol. 319: 417– 437. 

Saldaña E, Feliciano M & Mugnaini E (1996) Distribution of descending projections from 
primary auditory neocortex to inferior colliculus mimics the topography of intracollicular 
projections. J. Comp. Neurol. 371, 15-40. 

Salvi RJ, Powers NL, Saunders SS, Boettcher F & Clock AE (1992) Enhancement of evoked 
response amplitude and single unit activity after noise exposure. In: Dancer A, Henderson 
D, Salvi RJ & Hamernik RP (eds). Noise-Induced Hearing Loss. Mosby Year Book, St. 
Louis, pp. 156-171.  



 201 

Sanes DH & Constantine-Paton M (1983) Altered activity patterns during development reduce 
neural tuning. Science 221: 1183-1185. 

Sanes DH & Constantine-Paton M (1985) The sharpening of Frequency Tuning Curves Requires 
Patterned Activity during Development in the Mouse, Mus musculus1. J. Neurosci. 5(5): 
1152-1166. 

Sanes DH & Siverls V (1991) Development and specificity of inhibitory terminal arborizations 
in the central nervous system. J. Neurobiol. 22(8): 837-854. 

Saunders J, Dolgin K & Lowry L (1980) The maturation of frequency selectivity in C57BL/6J 
mice studies with auditory evoked response tuning curves. Brain Res. 187: 69-79. 

Schaette R & Kempter R (2009) Predicting tinnitus pitch from patient’s audiograms with a 
computational model for the development of neuronal hyperactivity. J. Neurophysiol. 
101: 3042-3052. 

Schnerson A & Willott JF (1979) Development of inferior colliculus response properties in 
C57BL/6J mouse pups. Exp. Brain Res. 37: 373-385. 

Schofield BR (2001) Origins of projections from the inferior colliculus to the cochlear nucleus in 
guinea pigs. J. Comp. Neurol. 429: 206-220. 

Schreiner CE & Langner G (1988) Periodicity coding in the inferior colliculus of the cat: II. 
Topographic organization. J. Neurophysiol. 60: 1823-1840. 

Schreiner CE & Langner G (1997) Laminar fine structure of frequency organization in auditory 
midbrain. Nature 388:383–386.  

Seidle AH & Grothe B (2005) Development of Sound Localization Mechanisms in the 
Mongolian Gergil is Shaped by Early Acoustic Experience. J. Neurophysiol. 94(2): 1028-
1036. 

Seki S & Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat 
primary auditory cortex after localized tone-induced hearing loss. Hear. Res. 180: 28-38.  

Sengpiel F (2014) Plasticity of the visual cortex and treatment of amblyopia. Curr. Biol. 24(18): 
936-940. 

Sereda M, Edmondson-Jones M & Hall DA (2014) Relationship between tinnitus pitch and edge 
of hearing loss in individuals with a narrow tinnitus bandwidth. Int. J. Audiol. 1-8. 

Shargorodsky J, Curhan GC & Farwell WR (2010) Prevalence and characteristics of tinnitus 
among US adults. Am. J. Med. 123: 711-718.  

Shepherd GM (2012) Circuit mapping by UV uncaging of glutamate. Cold Spring Harb Protoc. 
9: 998-1004 



 202 

Shneiderman A & Henkel CK. (1987) Banding of lateral superior olivary nucleus afferents in the 
inferior colliculus: a possible substrate for sensory integration. J. Comp. Neurol. 266: 
519–534. doi:10.1002/cne.902660406. 

Shneiderman A, Oliver DL & Henkel CK (1988) Connections of the dorsal nucleus of the lateral 
lemniscus: an inhibitory parallel pathway in eh ascending auditory system? J. Comp. 
Neurol. 276: 188-208. 

Sivaramakrishnan S & Oliver DL (2001) Distinct K currents result in physiologically distinct 
cell types in the inferior colliculus of the rat. J. Neurosci. 21: 2861–2877. 

Sivaramakrishnan S & Oliver DL (2006) Neuronal responses to lemniscal stimulation in laminar 
brain slices of the inferior colliculus. J. Assoc Res. Otolaryngol. 7: 1-14. 

Spitzer NC (2006) Electrical activity in early neuronal development. Nature. 444(7120): 707-
712. 

Stebbings KA, Lesicko AMH & Llano DA (2014) The Auditory Corticocollicular System: 
Molecular and Circuit-Level Considerations. Hearing Res. 314: 51-59. 

Stefanescu RA, Koehler SD & Shore SE (2015) Stimulus-timing dependent modifications in the 
rate-level functions in animals with and without tinnitus. J. Neurophysiol. 113: 956-970. 

Stiebler I, & Ehret G (1985) Inferior colliculus of the house mouse. I. A quantitative study of 
tonotopic organization, frequency representation, and ton-threshold distribution. J. Comp. 
Neurol. 238 (1): 65-76. 

Stodieck SK, Greifzu F, Goetze B, Schmidt KF & Lowel S (2014) Brief dark exposure restored 
ocular dominance plasticity in aging mice and after cortical stroke. Exp. Gerontol. 60: 1-
11. 

Sturm J, Nguyen T & Kandler K (2014) Development of Intrinsic Connectivity in the Mouse 
Inferior Colliculus. J. Neurosci. 34(45): 15032-15046. 

Sturm JJ, Nguyen T & Kandler K (2015) Mapping Synaptic Circuits with Photostimulation of 
Caged Glutamate. Auditory Vestibular Research Methods, New York: Springer. 
Accepted. 

Suga N, Xiao Z, Ma X & Ji W (2002) Plasticity and corticofugal modulation for hearing in adult 
animals. Neuron 36(1): 9-18. 

Sun YJ, Wu GK, Liu BH, Li P, Zhou M, Xiao Z, Tao HW & Zhang L (2010). Fine-tuning of 
pre-balanced excitation and inhibition during auditory cortical development. Nature 
465(7300): 927-931. 

Suneja SK, Potashner SJ & Benson CG (2000b) AMPA receptor binding in adult guinea pig 
brain stem auditory nuclei after unilateral cochlear ablation. Experimental Neurology 
165: 355-369. 



 203 

Swathi S, Ramesh A, Nagapoornima M, Fernandes LM, Jisina C, Suman Rao PN & 
Swarnarekha A (2014) Sustaining a “culture of silence” in the neonatal intensive care 
unit during nonemergency situations: a grounded theory on ensuring adherence to 
behavioral modification to reduce noise levels. Int. J. Qual Stud. Heath Well-being. 9: 
10.3402. 

Takesian AE & Hensch TK (2013) Balancing plasticity/stability across brain development. Prog. 
Brain. Res. 207: 3-34. 

Tan ML, Theeuwes HP, Feenstra L & Borst JG (2007) Membrane properties and firing patterns 
of inferior colliculus neurons: an in vivo patch-clamp study in rodents. J. Neurophysiol. 
98: 443– 453. 

Tibussek D, Meister H, Walger M, Foerst A & von WH (2002). Hearing loss in early infancy 
affects maturation of the auditory pathway. Developmental Medicine and Child 
Neurology, 44: 123–129. 

Thompson GC, Cortez AM & Lam DM-K (1985) Localization of GABA immunoreactivity in 
the auditory brainstem of guinea pigs. Brain Res. 339: 119-122. 

Tritsch NX & Bergles DE (2010). Developmental regulation of spontaneous activity in the 
Mammalian cochlear. J. Neurosci. 30(4): 1539-1550. 

Tritsch NX, Yi E, Gale JE, Glowatzki E & Bergles DE (2007) The origin of spontaneous activity 
in the developing auditory system. Nature 450(7166): 50-55. 

Turner JG, Brozoski TJ, Bauer CA, Parrish JK, Meyers K, Hughes LF & Caspary DM (2006) 
Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav. 
Neurosci. 112: 188-195. 

 

Tzounopolous T, Rubio ME, Keen JE & Trussel LO (2007). Coactivation of Pre- and 
Postsynaptic Signaling Mechanisms Determines Cell-Specific Spike-Timing-Dependent 
Plasticity. Neuron 54(2): 291-301. 

Tzounopoulos T, Kim Y, Oertel D & Trussell LO (2004). Cell-specific, spike timing-dependent 
plasticities in the dorsal cochlear nucleus. Nat. Neurosci. 7:719–72. 

Vale C & Sanes DH (2002) The effect of bilateral deafness on excitatory and inhibitory synaptic 
strength in the inferior colliculus. Eur. J. Neurosci. 16(12): 2394-2404. 

Vale C, Juiz JM, Moore DR & Sanes DH (2004) Unilateral cochlear ablation produces a greater 
loss of inhibition in the contralateral inferior colliculus. Eur. J. Neurosci. 20(8): 2133-
2400. 

Vanneste S, van Dongen M, Dre Vree B, Hiseni S, van der Velden E, Strydis C, Joos K, Norena 
A, Serdijn W& De Ridder D (2013) Does enriched acoustic environment in humans 



 204 

abolish chronic tinnitus clinical and electrophysiologically? A double blind placebo 
controlled study. Hearing Res. 296: 141-148. 

Vater M & Feng AS (1990) Functional organization of ascending and descending connections of 
the cochlear nucleus of horseshoe bats. J. Comp. Neurol. 292: 373-395. 

Venkataraman Y & Bartlett EL (2013) Postnatal development of synaptic properties of the 
GABAergic projection from the inferior colliculus to the auditory thalamus.  J. 
Neurophysiol. 109(12): 2866-2882. 

Vetter DE, Saldaña E & Mugnaini E (1992) Input from the inferior colliculus to medial 
olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. 
Hearing Res. 70: 173-186. 

Vogler DP, Robertson D & Mulders WH (2011) Hyperactivity in the ventral cochlear nucleus 
after cochlear trauma. J. Neurosci. 31: 6639-6645. 

Von der Behrens (2014) Animal models of subjective tinnitus. Neural. Plast. 741452. 

Wallace MM, Kavianpour SM & Gabriele ML (2013) Ephrin_B2 reverse signaling is required 
for topography but not pattern formation of lateral superior olivary inputs to the inferior 
colliculus. J. Comp. Neurol. 7: 1585-1597. 

Wallace MN, Shackelton TM & Palmer AR (2012) Morphological characteristics of laminar 
cells in the central nucleus of the inferior colliculus. Front. Neur. Circ. 6: 55. 

Wang H, Brozoski JT & Caspary DM (2011) Inhibitory neurotransmission in animal models of 
tinnitus: maladaptive plasticity. Hear. Res. 279: 111-117. 

Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF & Caspary DM (2009) 
Plasticity of glycinergic synapses in dorsal cochlear nucleus of rats with behavioral 
evidence of tinnitus. Neuroscience. 164: 747-759. 

Wang J, Ding D, Salvi RJ (2002) Functional reorganization in chinchilla inferior colliculus 
associated with chronic and acute cochlear damage. Hear. Res. 168: 238-249. 

Wenstrup JJ & Grose CD (1995) Inputs to combination-sensitive neurons in the medial 
geniculate body of the mustached bat: the missing fundamental. J. Neurosci. 15: 4693-
4177 

Wenstrup JJ & Portfors CV (2011) Neural processing of target distance by echolocating bats: 
functional roles of the auditory midbrain. Neurosci. Biobehav. Rev. 35(10): 2073-2083. 

Wenstrup JJ, Ross LS & Pollak GD (1986) Binaural response organization within a frequency-
band representation of the inferior colliculus: implications for sound localization. J. 
Neurosci. 6: 962–973. 



 205 

Werthat F, Alexandrova O, Grothe B, & Koch U (2008). Experience-Dependent Refinement of 
the Inhibitory Axons Projecting to the Medial Superior Olive. Developmental Biology 
68(13): 1454-1462. 

Whitton JP & Polley DB (2011) Evalutating the perceptual and pathophysiological consequences 
of auditory deprivation in early neonatal life: a comparison of basic and clinical studies. J 
Assoc. Res. Otolaryngol. 12(5): 535-547. 

Wiesel TN & Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of 
vision in one eye. J. Neurophysiol. 26: 1003-10017. 

Willott JF & Lu SM (1982) Noise-induced hearing loss can alter neural coding and increase 
excitability in the central nervous system. Science 216(4552): 1331-1334.  

Willott JF & Shnerson A (1978) Rapid development of tuning characteristics of inferior 
colliculus neurons in mouse pups. Brain Res. 148: 230 –233.  

Wilmington D, Gray L & Jahrsdoerfer R (1994) Binaural processing after corrected congenital 
unilateral conductive hearing loss. Hear. Res. 74: 99 –114.  

Winer JA & Morest DK (1983) Axons of the dorsal medial geniculate body of the cat: a study 
with the rapid Golgi method. J. Comp. Neurol. 224(3): 344-370. 

Winer JA & Morest DK (1983) The medial division of the medial geniculate body of the cat: 
implications for thalamic organization. J. Neurosci. 3(12): 2629- 2651. 

Winer JA & Schreiner CE (2005) The Inferior Colliculus. pp 24. New York: Springer 

Winer JA, Larue DT & Pollak  (1995) GABA and glycine in the central auditory system of the 
mustache bat: structural substrates for inhibitory neuronal organization. J. Comp. Neurol. 
355: 317-353. 

Winer JA, Larue DT, Diehl JJ & Hefti BJ (1998) Auditory cortical projections to the cat inferior 
colliculus. J. Comp. Neurol. 400:147–174. 

Winer JA, Saint Marie RL, Larue DT et al (1996) GABAergic feedforward projections from the 
inferiror colliculus to the medial geniculate body. Proc. Natl. Acad. Sci. 93: 8004-8010. 

Wong RO (1993) The role of spatio-temporal firing patterns in neuronal development of sensory 
systems. Curr. Opin. Neurobiol. 3(4): 595-601. 

Xiao Z & Suga N (2005) Asymmetry in corticofugal modulation of frequency-tuning in 
mustached bat auditory system. Proc. Natl. Acad. Sci. 102(52): 19162-19167. 

Xie R, Gittelman JX & Pollak GD (2007) Rethinking tuning: in vivo whole-cell recordings of the 
inferior colliculus in awake bats. J. Neurosci. 27: 9469-9481. 



 206 

Xiong XR, Liang F, Li H, Mesik L, Zhang KK, Polley DB, Tao HW, Xiao Z & Zhang L (2013) 
Interaural level difference-dependent gain control and synaptic scaling underlying 
binaural computation. Neuron. 79(4): 738-753. 

Xiong XR, Liang F, Zingg B, Ji XY, Ibrahim LA, Tao HW & Zhang L (2015). Auditory cortex 
controls sound-drive innate defense behavioral through corticofugal projections to 
inferior colliculus. Nat. Communications 6: 7224. 

Xu J, Yu L, Cai R, Zhang J & Sun X (2009) Early Continuous White Noise Exposure Alters 
Auditory Spatial Sensitivity and Expression of GAD65 and GABAA Receptor Subunits 
in Rat Auditory Cortex. Cerebral Cortex 20: 804-812. 

Xu J, Yu L, Zhang J, Cai R, Sun X (2010) Early Continuous White Noise Exposure Alters L-α-
Amino-3-Hydroxy-5-methyl-4-Isoxazole Propionic Acid Receptor Subunit Glutamates 
Receptor 2 and γ-Aminobutyric Acid Type A Receptor Subunit β3 Protein Expression in 
Rat Auditory Cortex. Journal of Neuroscience Research 88: 614-619. 

Yan J, Zhang Y & Ehret G (2005). Corticofugal shaping of frequency tuning curves in the 
central nucleus of the inferior colliculus of mice. J. Neurophysiol. 93(1): 71-83. 

Yang S, Weiner BD, Zhang LS, Cho S-J & Bao S (2011). Homeostatic plasticity drives tinnitus 
perception in an animal model. Proc. Natl. Acad. Sci. 108: 14974- 14979. 

Yankaskas K (2013) Prelude: noise-induced tinnitus and hearing loss in the military. Hear. Res. 
294: 3-8. 

Yu X, Wadghiri YZ, Sanes DH & Turnbull DH (2005) In vivo auditory brain mapping in mice 
with Mn-enhanced MRI. Nat Neurosci. 8(3): 961-96. 

Yurgil KA, Clifford RE, Risbrough VB, Geyer MA, Huang M, Barkauskas DA, Vasterling JJ, 
Baker DG & MRS team. (2015). Prospective Associations Between Traumatic Brain 
Injury and Postdeployment Tinnitus in Active-Duty Marines. J. Head. Trauma Rehabil. 
PMID: 25699623  

Zhang Li & Poo MM (2001) Electrical activity and development of neural circuits. Nat. 
Neurosci. 4: 1207-1214. 

Zhang LI, Bao S & Merzenich MM (2001) Persistent and specific influences of early acoustic 
environments on primary auditory cortex. Nat. Neurosci. 4: 1123-1130.  

Zhang LI, Bao S & Merzenich MM (2002) Disruption of primary auditory cortex by 
synchronous auditory inputs during a critical period. Proc. Natl. Acad. Sci. 99(4): 2309-
2314. 

Zhao C, Kao JP & Kanold PO (2009) Functional excitatory microcircuits in neonatal cortex 
connect thalamus and layer 4. J. Neurosci. 29(49): 15479-15488. 



 207 

Zhou X & Merzenich MM (2008) Enduring effects of early structures noise exposure on 
temporal modulation in the primary auditory cortex. Proc. Natl. Acad. Sci. 105(11): 
4423-4428. 

Zhou X, Panizzutti R, de Villers-Sidani E, Madeira M & Merzenich MM (2011) Natural 
Restoration of Critical Period Plasticity in the Juvenile and Adult Primary Auditory 
Cortex. J. Neurosci. 31(15): 5625-5634. 

Zhu X, Wang F, Hu H, Sun X, Kilgard MP, Merzenich MM & Zhou X (2014) Environmental 
acoustic enrichment promotes recovery from developmentally degraded auditory cortical 
processing. J Neurosci. 34: 5406- 5015. 

 


	TITLE PAGE
	COMMITTEE MEMBERS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Intrinsic properties of type 1 and type 2 GABAergic IC neurons. 
	Table 2. Excitation: inhibition balance for excitatory and inhibitory IC neurons. 

	LIST OF FIGURES
	Figure 1-1. Synaptic organization of the inferior colliculus
	Figure 1-2. Functional organization of central nucleus of inferior colliculus
	Figure 1-3. Mapping synaptic connections in the CNIC with laser-scanning photostimulation
	Figure 2-1. Mapping local inputs in the CNIC using laser-scanning photostimulation
	Figure 2-2. intracollicular inhibitory connections are mediated by GABA
	Figure 2-3. Synaptic response latencies are similar for excitatory and inhibitory responses
	Figure 2-4. Excitatory and inhibitory synaptic input maps are oriented along the isofrequency axis
	Figure 2-5. Developmental growth and refinement of local synaptic input maps
	Figure 2-6. Refinement of input maps along the tonotopic and isofrequency axes
	Figure 2-7. Spatial relationship of excitatory and inhibitory synaptic input maps
	Figure 2-8. Development of the strength of intrinsic excitatory and inhibitory inputs
	Figure 2-9. Relative synaptic strength of excitatory and inhibitory responses emanating from individual stimulation sites
	Figure 3-1. Noise rearing increases excitatory input onto GABAergic neurons
	Figure 3-2. Spatial overlap of excitatory and inhibitory inputs on GABAergic neurons after noise rearing from P12-25
	Figure 3-3. A critical period for noise rearing-induced plasticity of local CNIC circuitry
	Figure 3-4. Spatial overlap of excitatory and inhibitory inputs onto GABAergic neurons after noise rearing from P19-25
	Figure 3-5. Noise rearing increases E: I correlations in GABAergic neurons
	Figure 3-6. Noise rearing decreases synaptic excitation onto glutamatergic neurons
	Figure 3-7. Spatial overlap of excitatory and inhibitory inputs onto glutamatergic neurons after noise rearing from P12-25
	Figure 3-8. Noise rearing leads to reorganization of synaptic inputs onto glutamatergic neurons during a parallel critical period
	Figure 3-9. Models of noise-rearing-related increases in dual input area onto GABAergic neurons
	Figure 4-1. Effects of noise exposure on gap detection and PPI in vglut2-cre-dT-loxP mice
	Figure 4-2. Effects of noise exposure on gap detection and PPI in vgat-ires-cre-dT-loxP mice
	Figure 4-3. ABR thresholds are similarly elevated in mice with or without evidence of tinnitus
	Figure 4-4. Noise-Induced reorganization of synaptic input maps onto glutamatergic IC neurons
	Figure 4-5. Spontaneous synaptic events onto glutamatergic IC neurons in noise-traumatized mice
	Figure 4-6. Two types of GABAergic IC neurons
	Figure 4-7. Noise-induced reorganization of synaptic input maps onto type 1 GABAergic neurons
	Figure 4-8. Spontaneous synaptic events onto type 1 GABAergic neurons in noise-traumatized mice
	Figure 4-9. Synaptic inputs onto type 2 GABAergic neurons are stable in noise-traumatized mice
	Figure 4-10. Acoustic enrichment with pulsed white noise inhibits post- traumatic circuit reorganization
	Figure 4-11. Acoustic enrichment prevents the development of behavioral evidence of tinnitus
	Figure 4-12. Summary of IC network reorganization after noise exposure and/or acoustic enrichment
	Figure 5-1. Intrinsic input map configurations in the CNIC
	Figure 5-2. Comparison of IC network reorganizations after noise rearing and noise trauma
	Figure 5-3. Determining how post-traumatic AE prevents synaptic circuit reorganization after hearing loss

	LIST OF ABBREVIATIONS
	PREFACE
	ACKNOWLEDGEMENTS
	1.0  GENERAL INTRODUCTION
	1.1 Activity-dependent construction of auditory circuits
	1.2 The inferior colliculus
	1.3. The central nucleus of the inferior colliculus
	1.4. Integration of excitatory and inhibitory inputs in CNIC
	1.5. Intrinsic circuitry of the CNIC
	1.6. Activity-dependent refinement in the developing CNIC
	1.7. Plasticity of the adult CNIC after hearing loss
	Plasticity of the CNIC in tinnitus
	Summary of dissertation research

	2.0  DEVELOPMENT OF INTRINSIC CONNECTIVITY IN THE CENTRAL NUCLEUS OF THE MOUSE INFERIOR COLLICULUS
	2.1 INTRODUCTION
	2.2 MATERIALS AND METHODS
	2.2.1 Animals and slice preparation 
	2.2.2 Electrophysiological recordings 
	2.2.3 Synaptic input mapping 
	2.2.4 Excitability mapping
	2.2.5 Data analysis
	2.2.6 Statistical analysis

	2.3 RESULTS
	2.3.1 Spatial mapping of local synaptic inputs to single CNIC neurons
	2.3.2 Input maps represent monosynaptic connections
	2.3.3 Spatial organization of excitatory and inhibitory intrinsic inputs
	2.3.4 Developmental refinement of excitatory and inhibitory intrinsic input maps
	2.3.5 Relationship of excitatory and inhibitory input

	2.4 DISCUSSION
	2.4.1 Summary of findings
	2.4.2 Technical considerations
	2.4.3 Organization of intrinsic synaptic input maps
	2.4.4 Intrinsic excitation: inhibition balance
	2.4.5 Developmental changes in intrinsic circuitry during the first 3 postnatal weeks


	3.0  NOISE REARING INDUCES LOCAL CIRCUIT REORGANIZATION IN THE AUDITORY MIDBRAIN DURING A CRITICAL PERIOD
	3.1 INTRODUCTION
	3.2 MATERIALS AND METHODS
	3.2.1 Experimental animals
	3.2.2 Pulsed noise exposure
	3.2.3 Slice preparation
	3.2.4 Electrophysiological recordings
	3.2.5 Synaptic input mapping
	3.2.6 Mapping analysis
	3.2.7 Statistical analysis

	3.3 RESULTS
	3.3.1 Noise rearing increases local excitatory input onto GABAergic neurons  
	3.3.2 Noise-rearing-induced increases in excitation are restricted to a critical period
	3.3.3 Noise rearing enhances E: I synaptic strength correlations in GABAergic neurons
	3.3.4 Noise rearing diminishes excitatory input onto glutamatergic neurons

	3.4. DISCUSSION
	3.4.1. Reorganization of intrinsic IC circuits in noise-reared mice
	3.4.2 A critical period for intrinsic connectivity in the auditory midbrain
	3.4.3 Consequences of CNIC circuit reorganization for the development of hearing 
	3.4.4 Conclusion


	4.0  REORGANIZATION OF SYNAPTIC CIRCUITS IN THE INFERIOR COLLICULUS IN A MOUSE MODEL OF TINNITUS AND ITS PREVENTION BY ACOUSTIC ENRICHMENT
	4.1 INTRODUCTION
	4.2 MATERIALS AND METHODS
	4.2.1 Animals and preparation 
	4.2.2 Noise exposure 
	4.2.3 Gap inhibition of the acoustic startle response
	4.2.4 Tinnitus criteria
	4.2.5 Prepulse inhibition of the acoustic startle response
	4.2.6 Auditory brainstem response
	4.2.7 Acoustic enrichment
	4.2.8 Slice preparation
	4.2.9 Electrophysiological recordings
	4.2.10 Blinding procedure
	4.2.11 Synaptic input mapping and map analysis
	4.2.12 Spontaneous synaptic event analysis
	4.2.13 Distinguishing type 1 and type 2 vgat+ neurons
	4.2.14 Intrinsic properties of type 1 and type 2 vgat+ neurons
	4.2.15 Gap detection behavior analysis
	4.2.16 PPI behavior analysis
	4.2.17 ABR threshold analysis
	4.2.18 Statistical analysis

	4.3 RESULTS
	4.3.1 Tinnitus behavior emerges in a subset of noise-traumatized mice 
	4.3.2 Reorganization of synaptic inputs onto excitatory IC neurons
	4.3.3 Two types of GABAergic IC neurons
	4.3.4 Reorganization of synaptic inputs onto GABAergic IC neurons
	4.3.5 Post-traumatic acoustic enrichment prevents circuit reorganization and the behavioral correlates of tinnitus

	4.4 DISCUSSION
	4.4.1 Gap detection as a method for tinnitus detection
	4.4.2 Cell-type specific organization of synaptic input maps in the CNIC
	4.4.3 Reorganization of intrinsic CNIC circuits following noise-trauma
	4.4.4 IC circuit reorganization and tinnitus
	4.4.5 Prevention of circuit reorganization by acoustic enrichment
	4.4.6 Prevention of tinnitus behavior by acoustic enrichment


	5.0  GENERAL DISCUSSION
	5.1 SUMMARY OF FINDINGS
	5.2 ADVANTAGES AND LIMITATIONS OF MAPPING SYNAPTIC CONNECTIVITY WITH LSPS
	5.3 ORGANIZATION OF INTRINSIC CONNECTIVITY IN THE CNIC
	5.4 A DEVELOPMENTAL CRITICAL PERIOD FOR INTRINSIC CIRCUIT PLASTICITY IN THE CNIC 
	5.5 INTRINSIC CIRCUIT PLASTICITY AFTER HEARING LOSS
	5.6 ACOUSTIC EXPERIENCE AFTER HEARING LOSS
	5.7 CLINICAL RELEVANCE OF DISSERTATION FINDINGS: TINNITUS
	5.8 CLINICAL RELEVANCE OF DISSERTATION FINDINGS: HEARING DEVELOPMENT
	5.9 OVERALL CONCLUSION

	BIBLIOGRAPHY

