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ABSTRACT 

Uterine leiomyomas are benign neoplasms arising from smooth muscle cells of the uterus. They 

are clinically diagnosed in 25% of women and are associated with significant morbidity. Whole 

exome approaches have identified heterozygous somatic mutations in the mediator complex 

subunit 12 (MED12) in about 70% of leiomyomas with a majority harboring in exon 2 of MED12 

with c.131G>A being the most common SNV. MED12 protein is part of the large mediator 

complex and is involved in transcriptional regulation of RNA Polymerase II. To elucidate the role 

of MED12 exon 2 variants in leiomyomagenesis, we generated three different mouse models of 

Med12; loss-of-function, dominant-negative and gain-of-function mouse models.  

The loss-of-function females lacked any leiomyoma-like lesions, instead the reproductive 

tracts were hypoplastic and the females were infertile.  

We engineered a model where we conditionally floxed Med12 c.131G>A cDNA and 

inserted into the ROSA26 locus to generate Med12 ROSA knock-in mice. Amhr2-cre was used to 

drive the expression of the mutant Med12 from the ROSA locus either in the absence (gain-of-

function) or presence (dominant-negative) of X-chromosome wild-type Med12 in the uterine 

mesenchyme. Uteri from (gain-of-function) females displayed leiomyoma-like lesions in about 

87% of females. Similar characterization of uteri of dominant negative females revealed the 

development of leiomyoma-like lesions, but with appearance of smaller lesions and lower 

penetrance (50% of females) as compared to the gain-of-function model, leading us to conclude 
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that the Med12 exon 2 variants are likely to cause uterine leiomyomas via gain-of-function 

mechanism.  

Array comparative genomic hybridization (aCGH) of mouse tumors displayed genome 

wide aberrations, affecting general tumor pathways. Interestingly, several regions previously 

implicated in human leiomyomas were also shared by the mouse leiomyomas, revealing the 

similarities between human and mouse leiomyomas. This data suggests that Med12 exon 2 

mutations are precursors to genomic rearrangements leading to an unstable genome. The public 

health significance of this work includes the successful development of the first animal model for 

uterine leiomyomas, which will be an invaluable tool to understand the role of MED12 in 

leiomyoma genesis, as well as provide a unique platform to test targeted therapeutics as an 

alternative to hysterectomies. 
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1.0  INTRODUCTION 

1.1 UTERINE LEIOMYOMAS 

Uterine leiomyomas (fibroids or myomas) are benign neoplasms arising from the smooth muscle 

layer of the uterus. Leiomyomas are one of the most common gynecological tumors occurring in 

women, with a frequency of occurrence ranging from 20-50% of women of reproductive age (1). 

This number can be even as high as 77% as majority of leiomyomas maybe asymptomatic and 

hence go undiagnosed (2). They are clinically diagnosed in about 25% of women and depending 

on their location in the uterus may be classified as subserous, submucosal or intramural. Grossly, 

leiomyomas often appear to be smooth, spherical and firm and can be as large as 20 cm (3). 

Larger leiomyomas may undergo degenerative changes including hemorrhage (dark red), 

necrosis (demarcated by yellow regions), cystic changes or even calcification. The size, location 

and number of tumors in the uterus often, determines the presentation and intensity of symptoms. 

Leiomyomas requiring treatment are often associated symptoms such as dysmenorrhea (painful 

menstruation), menorrhagia (heavy menstrual bleeding), infertility, miscarriage, ascites, anemia 

and polycythemia (4-6). On the other hand, leiomyomas growing outside or in between uterine 

walls (subserous and intramural) are very common and can cause pelvic discomfort or may even 

pressurize surrounding organs (7). The recurrence, size and unclear etiology of leiomyomas 
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makes their management difficult, making hysterectomies the only available long-term treatment 

option for women with leiomyomas (8).  

1.1.1 Epidemiology and risk factors 

Leiomyomas are usually prevalent after menarche, peak during reproductive years and regress 

after menopause (9, 10). The evidence strongly suggests a strong link between ovarian steroids 

and tumor progression in women. Further, factors such as early menarche in women, increases 

the risk for leiomyomas, while late onset of menarche and longer duration of lactation decreases 

the risk respectively (11-14). One hypothesis suggests that early menarche could expose the 

uterus to longer duration of menstruation and hormones, thereby increasing the number of cell 

divisions and a higher chance of accumulation of mutations in the myometrium. On the other 

hand, later age of menarche and lactation reduces the risk to leiomyomas as the lifetime exposure 

of the uterus to cyclical changes decreases (11). 

Race and ethnicity differences also play a crucial role in determining the incidence, 

presentation and severity of uterine leiomyomas. Studies conducted on North American women 

have shown ~10% higher incidence and a younger age of diagnosis of leiomyomas in African-

American women as compared to Caucasian women (9, 15). African-American women also had 

higher uterine weight, larger and more number of leiomyomas causing more severe symptoms, 

ultimately leading to a younger age at hysterectomy (16, 17). The cause for this racial disparity 

in tumor incidence and presentation is not understood.  A few studies have attributed a difference 

in estrogen metabolism as a possible explanation for the disparity of leiomyoma presentation 

between the two races (18).  
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Sibling and other family studies have strongly indicated a genetic predisposition for 

leiomyomas (19). First-degree relatives of women with leiomyomas have a two time higher risk 

of developing leiomyomas in their lifetime. Other environmental and lifestyle factors may also 

influence the development and outcomes of these tumors. The risk of leiomyomas increases with 

factors such as obesity, caffeine, alcohol, diabetes and hypertension. Interestingly, smoking 

reduces the incidence of leiomyomas (12, 20-24). Few studies have indicated a link between 

vegetarian diet and overall better prognosis of uterine leiomyomas (25).  

Xenoestrogens are compounds with the capability of disrupting estrogenic functions by 

acting as an agonist or an antagonist (26). Few such xenoestrogens have also been associated 

with the development of leiomyomas. For example, DDT (dichlorodiphenyltricholoroethane) has 

been determined to be present at significantly higher levels in leiomyomas as compared to 

normal myometrium (27). DES (Diethylstilbestrol) is another such xenoestrogen that has been 

shown to cause leiomyomas both through in-vivo models (28) and human data (29). 

Larger cohort studies looking at environmental and lifestyle factors and their influence on 

tumorigenesis are required to have a deeper understanding of their contribution to disease 

progression. 

1.1.2 Diagnosis and treatment 

Leiomyomas can be diagnosed during a bimanual pelvic exam and are perceived by an enlarged, 

firm or an irregularly shaped uterus. The initial diagnosis is followed by either an 

ultrasonography, saline-infusion sonohysterography, or by magnetic resonance imaging (MRI) 

(30). Ultrasonography or ultrasound is a relatively cheap imaging technique that is most 

frequently used to carry out differential diagnosis on intramural or subserous leiomyomas, but is 
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inefficient in detecting the exact number or position of leiomyomas (31, 32). Saline-infusion 

sonography can be used to detect submucosal leiomyomas as this technique uses saline to distend 

the uterine cavity, therefore allowing more accurate information to be obtained from the mucosal 

lining of the uterus. The most robust of these techniques is the use of MRI for diagnosis of 

leiomyomas (31, 33). Although, more expensive than a trans-vaginal ultrasound, it provides 

more precise information on the number, position (subserous, intramural, submucosal) and the 

size of leiomyomas with a sensitivity to detect even 5mm lesions (Figure 1.1). Precise diagnostic 

information on the number, size and position of leiomyomas can be crucial for determining the 

treatment and management of the disease (34).  

Figure 1.1 MRI image of an intramural uterine leiomyoma 

(Reproduced from Khan et al., 2014)  (32) 

The management of the disease depends on the severity of symptoms, skills of the 

surgeon, reproductive age and decision of the patients. The kind of treatments currently available 

for leiomyomas includes, medical therapy, minimally invasive procedures and surgery (32). 
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Medical therapies include short-term treatments used to provide either symptomatic relief or 

maybe used as a preoperative measure. These treatments are usually not used in the long-term as 

they often have either long-term risks associated with them, or they lack evidence on the health 

risks posed by their long-term use. Patients for symptomatic relief are often prescribed 

nonsteroidal anti-inflammatory (NSAIDs) drugs (pain) or transexamic acid to control 

menorrhagia (32). Combined oral contraceptives, levonorgestrel-releasing intra-uterine devices 

(Mirena), aromatase inhibitors or gonadotropin-releasing hormone analogs (GnRHa) are 

currently used as a pre-operative adjunct. Estrogen and especially progesterone receptor 

modulators are gaining popularity as an effective treatment option to reduce myoma volumes and 

associated symptoms. Mifepristone (RU486) and Ulipristal acetate are two such examples of 

progesterone receptor modulators, which have been subjected to clinical trials and are now being 

used clinically as a pre-operative measure in both the U.S and Europe (35, 36).  

Surgical therapy is currently, the only long-term and gold standard treatment available for 

uterine leiomyomas. For women of prime reproductive age or with a desire for future 

pregnancies, myomectomy (open or minimally invasive) is usually performed (depending on the 

physician). In the recent years, minimally invasive techniques are providing women not only 

with the option of preserving their uterus and fertility, but also reduce morbidity and recovery 

time in comparison to open surgery (32). Minimally invasive techniques include, uterine artery 

embolization (UAE), Magnetic resonance-guided focused ultrasound surgery (MRgFUS) and 

combined sonography and radiofrequency therapy (VizAblate). UAE is an image-guided 

technique through which the blood to the leiomyomas is blocked resulting in their shrinking (37). 

MRgFUS is a method of thermal ablation using high intensity ultrasound waves for shrinking 

fibroids, but is not widely available to women. The newest of these techniques is using a 
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combination of sonography and radiofrequency waves for treatment of fibroids using a 

transcervical device (VizAblate) (38). Although these techniques are helpful, they are not 

effective in preventing recurrent fibroids. The only definitive solution to the treatment of fibroids 

is a hysterectomy, which is effective in permanently alleviating the symptoms and the fibroids 

themselves. Other than ending a women’s fertility, hysterectomy carries serious risks such as 

damage to the excretory system, pelvic abscess, hemorrhage during surgery or pulmonary 

embolism (39). Thus there is a dire necessity to understand the etiology of this disease and 

develop a model to help better understand the tumor process as well as develop drugs as a 

definitive solution as an alternative to hysterectomies.  

1.1.3 Histopathology and molecular characteristics 

Leiomyomas are composed of whorled, uniform, fusiform plump smooth muscle cells forming 

fascicles. The spindle-shaped cells have indistinct borders, with blunt elongated nuclei, finely 

dispersed chromatin and small nucleoli. Leiomyomas often consist of disorderly arranged 

smooth muscle fibers interspersed abundantly with extracellular matrix deposits (collagen, 

fibronectin, proteoglycan) (Figure 1.2). Hyaline fibrosis and edema are also quite common in 

leiomyomas (3). About 10% of leiomyomas pathologically vary and present as heterogeneous 

lesions, mimicking malignant aspects (Table 1.1). Although, the histology presentation 

resembles malignant lesions, they are clinically diagnosed to be benign and are managed similar 

to conventional leiomyomas (Figure 1.3) (40). 
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Figure 1.2 Histopathology of conventional leiomyomas 

(A) Normal myometrium showing arrangement of smooth muscle fibers. (B) Pathology of typical leiomyoma
lesion marked by fibrosis, disorganized nuclei and ECM deposits. Higher magnification of (A) and (B) are
shown respectively in (C) and (D). Scale bars= Scale Bars = 0.5μm (A, B), 100μm (C, D).
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Table 1.1 WHO based pathological classification of uterine leiomyoma variants. 

Leiomyoma variant Features 

Cellular Leiomyoma   Significantly increased cellularity compared to the surrounding medium

     Lack of nuclear atypia 

Infrequent mitotic figures 

Usually irregular borders mimicking invasion 

Atypical Leiomyoma               Focal occurrence of highly atypical cells in a conventional leiomyoma 

Infrequent mitotic figures 

Lipoleiomyoma   Presence of adipocytes in conventional leiomyoma 

Myxoid leiomyoma Smooth muscle cells separated by myxoid material 

         Lack of cytological atypia 

         Infrequent mitotic figures  

Epitheloid Leiomyoma   Epithelial-like appearance in tumor cells 

Intravenous  leiomyomas       Smooth muscle cells within vascular spaces outside a leiomyoma 

  Infrequent mitotic figure 

(Adapted from Oliva et al., 2014) (40) 
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Figure 1.3 Histopathological variants of uterine leiomyoma 

(A) Cellular leiomyoma. (B) Epithelioid  leiomyoma (C) Atypical leiomyomas (D) Myxoid leiomyomas. (E)
Mitotically active leiomyoma (F) Lipoleiomyomas. These images were reproduced from webpathology
(http://www.webpathology.com/case.asp?case=570)

1.2 GENESIS OF UTERINE LEIOMYOMAS 

Leiomyomas are known to arise from a single cell of the uterus (monoclonal in origin) i.e. each 

fibroid nodule consists of a single type of active X-allele, though independent nodules may have 

different active X alleles (41-44). The initiation of leiomyomas or leiomyomagenesis, involves 

transformation of a normal cell into a neoplastic myometrial cell, which may be influenced by 

genetic, epigenetic, hormonal or remodeling due to monthly cyclical changes. 
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1.2.1 Ovarian hormones and leiomyomagenesis  

A large body of literature and circumstantial evidence show an important role of ovarian 

hormones (estrogen and progesterone) in the development of leiomyomas. The regression of 

fibroids after menopause, and the dramatic changes in leiomyomas associated with hormonal 

changes during early pregnancy or postpartum, are compelling pieces of evidence supporting the 

role of estrogen and progesterone in leiomyomas (9, 10, 45, 46). The mechanisms through which 

ovarian hormones influence the growth of these tumors are not clearly understood but several 

hypotheses suggesting a role of these hormones in tumor initiation and progression exist. One 

such initiation theory suggests the role of estrogen and progesterone in increasing the 

proliferative activity of cells ultimately leading to the rapid accumulation of somatic mutations 

(47). Alternatively, underlying anomalies in normal myometrium may result in an enrichment of 

estrogen receptors and altered estrogen metabolism in leiomyomatous uteri compared to normal 

myometrium (48). Estrogen metabolism is also altered in leiomyomatous uteri (10) through 

reduced levels of 17β-hydroxysteroid dehydrogenase catalyzing estradiol to estrone conversion 

leading to estradiol accumulation, or increased levels of aromatase, catalyzing the conversion of 

androgens into estrogens (49-52). 

In-vivo graft models, where human fibroid tissues are placed under the kidney capsule in 

mice, have shown the importance of progesterone and its receptor, as grafted human fibroid 

tissues show proliferation, accumulation of extracellular matrix and cellular hypertrophy under 

the influence of exogenous progesterone (53). Based on its proliferative role during pregnancy, 

progesterone is more likely to have a function in clonal expansion of tumor cells. It may mediate 

these effects through progesterone receptor, effecting and regulating hundreds of genes (54). 
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Progesterone also prevents apoptosis by increasing the levels of BCL2 in the fibroid tissue 

thereby contributing further to growth and progression of the tumor (55). 

The effects of estrogen and progesterone are often mediated by growth factor such as 

Transforming growth factor-β (TGF-β), basic fibroblast growth factor (bFGF), insulin-like 

growth factor (IGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and 

vascular endothelial growth factor (VEGF) (56) and are often present at higher concentrations in 

leiomyomas as compared to normal myometrium (10). Each of the growth factors may contribute 

to different aspects of tumorigenesis including ECM expansion, angiogenesis or clonal 

proliferation of cells. For example: Increased TGF-β may promote cell proliferation and ECM 

production (57) whereas FGF promotes angiogenesis in leiomyomas and cell proliferation, 

ultimately leading to tumor growth (58). 

1.2.2 Myometrial stem cells and leiomyomagenesis 

In the last few years, there have been emerging reports about the role of stem cells/ progenitor 

cells from human myometrium as a source of origin for human leiomyomas (59). Both human 

and mouse myometrium generate stem cells via asymmetric division, which are capable of 

differentiating into mature smooth muscles cells under the influence of estrogen and 

progesterone. This process is responsible for myometrial regeneration in a normal uterus (59, 

60). In an event of a genetic alteration, a myometrial cell may transform into a fibroid stem cell. 

These fibroid stem cells proliferate continuously to then give rise to a leiomyoma (61). Fibroid 

stem cells lacking ER and PR, often require surrounding myometrial cells rich in ER, PR, and 

ligands to support self-renewal of fibroid stem cells in a paracrine manner (61, 62). Thus steroids 

not only influence development of leiomyomas directly but also influence them indirectly via 
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supporting stem cell renewal and tumor progression. Another hypothesis suggests the role of 

injuries such as hypoxia induced ischemic injury to play a role in initiation of tumors (63). In 

vitro data shows that the myometrial stem cells are capable of differentiating into mature smooth 

muscle cells under hypoxic conditions (64), which would suggest that the stem cells under 

hypoxic conditions may give rise to differentiated leiomyoma cells. As leiomyomas are believed 

to have stem cells of their own, in much lower percentage than normal myometrium, it is also 

possible that the hypoxic environment could possibly cause the myometrial stem cells to convert 

into fibroid stem cells and thus contribute to tumorigenesis (61). 

1.3 GENETICS OF LEIOMYOMAS 

The etiology of fibroids has long been elusive. Twin studies, familial studies and hereditary 

syndromes have suggested a strong genetic component involved in leiomyomagenesis. In the 

past years cytogenetic analysis using classical karyotyping methods have shown 40-50% of 

tumors having tumor specific chromosomal aberrations such as inversions, deletions, duplication 

and translocations (65, 66). Though chromosomal aberrations and the inherited syndromes 

account for a fraction of leiomyomas, the genetic basis for the majority of leiomyomas remains 

unexplained. In this section I will discuss in detail the advances in understanding the molecular 

genetics and cytogenetics of leiomyomas using next generation sequencing technologies. 
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1.3.1 Cytogenetics of leiomyomas 

Chromosomal aberrations in uterine leiomyomas often associate with larger size tumors and are 

specific to the location of the tumor (67, 68). For example, the tumor size of leiomyomas with 7q 

deletions is much smaller in size compared to the size of tumors with 12q14 rearrangements (69). 

Similarly, intramural and subserous leiomyomas display more chromosomal aberrations than 

submucous leiomyomas (70).  

1.3.1.1   12q14-15 translocations 

About 20% of uterine leiomyomas display 12q14-15 rearrangements, making it one of the most 

common karyotypic abnormalities in these tumors (70). The 12q14-15 rearrangements, mostly 

occur as a simple translocation, t(12;14)(q15;q23-24) but can have other complex 

rearrangements (71-77).  Rearrangements in other benign mesenchymal tumors, such as 

angiomyxomas, breast fibroadenomas, endometrial polyps, hemangiopericytomas, lipomas, 

pulmonary chondroid hamartomas, and salivary gland adenomas, also have shown the 

importance of this region in tumorigenesis (78). The 12q breakpoint in uterine leiomyomas maps 

to a region identified as an evolutionarily conserved, high mobility group AT-hook 2 (HMGA2) 

gene, belonging to the high-mobility group A (HMGA) protein family (79, 80). The HMGA 

group of proteins are both positive and negative transcriptional regulators of genes. They 

indirectly regulate gene expression by bringing about conformational changes in the DNA and 

influencing the accessibility of DNA binding proteins (81). They play a role in diverse processes 

such as proliferation, differentiation, growth, and apoptosis (82, 83). HMGA2 protein is 

abundant and expressed ubiquitously during embryonic development, but is almost undetectable 

in adult tissues, except in the lungs and the kidneys (84-86). A majority of chromosome 12 
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breakpoints, in uterine leiomyomas, carrying t(12;14)(q15;q23-24)  map to the 5’ region of 

HMGA2 and a minority map to the 3’ region, suggesting impaired HMGA2 expression (75, 87). 

This may explain the aberrant overexpression of HMGA2 in leiomyomas (84, 88). It is possible 

that the translocation may either disrupt regulatory elements or place the gene near an effective 

promoter causing the aberrant expression. Let7-miRNAs directly regulate HMGA2 by binding to 

the 3’ UTR region and inhibiting HMGA2 expression. Removal of HMGA2 3’ binding site may 

provide another mechanism of HMGA2 overexpression (88-91). There is also a positive 

correlation between larger tumor sizes and the presence of t(12;14)(q15;q23-24), HMGA2 

overexpression and low expression let-7 miRNA (68, 90, 92). Evidence also supports the notion 

that overexpression of HMGA2 may be important for proliferation and maintenance of the 

transformed state of the cell (78). 

 The breakpoints on chromosome 14 involved in t(12;14)(q15;q23-24) in leiomyoma were 

mapped to identify the genes in this region (70, 93, 94). RAD51 paralog B (RAD51B) at the 

14q23~q24 emerged as a strong candidate translocation partner for HMGA2 (95, 96). RAD51B 

plays an essential role in homologous recombination mediated DNA damage repair (97). 

HMGA2 and RAD51B fusion transcripts occur in a small percentage of leiomyomas, but the 

underlying pathogenesis of majority of t(12;14)(q15;q23-24) is not understood (96, 98).  

In some leiomyomas, aberrant expression of HMGA2 may occur without the 12q14-15 

rearrangements (99), suggesting an independent role in leiomyoma pathogenesis (75). 
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1.3.1.2 Deletions of 7q 

Interstitial deletions of chromosome 7, del(7)(q22-32), occurs in about 17% of karyotypically 

abnormal leiomyomas (78). The deletions on the long arm of chromosome 7 have been narrowed 

down to the 7q22 band and are somewhat specific to uterine leiomyomas as compared to other 

solid tumors. The frequent LOH indicates the presence of tumor suppressor genes in this region 

(100-104). The identification of the target sequences in this region has been a challenge due to 

the dense cluster of genes in this region. CUX1 (cut-like homeobox 1) has been identified as one 

of the candidate tumor suppressor genes in this region, with diverse roles in cell proliferation, 

cell motility/invasiveness, and apoptosis (105, 106). This gene has also been identified as a 

frequent target in myeloid neoplasms (107, 108). Few other candidate genes in the 7q22 such as 

ORC5L, PCOLCE, and ZNHIT1 in the 7q22 region have also been identified in uterine 

leiomyomas; yet fail to consistently be in leiomyomagenesis (91, 109-111). The 7q deletions 

may either occur independently or sometimes co-exist with t(12;14) rearrangements in some 

leiomyomas (112). Cells from such leiomyomas persist in culture, compared to leiomyoma cells 

with 7q deletions as the sole cytogenetic anomaly (113). This may indicate the role of 7q 

deletions as a secondary cytogenetic change necessary for the progression of leiomyomas. 

1.3.1.3 6p21 rearrangements 

Rearrangements of 6p21 locus recurrently occur in a variety of benign mesenchymal tumors, 

such as lipomas, pulmonary chondroid hamartomas, and endometrial polyps (78). The 6p21 

rearrangements also occur in uterine leiomyomas with a frequency of <5%, with the majority of 

the rearrangements consisting of translocations and inversions (114-117). The high mobility 

group AT-hook 1 (HMGA1) gene has been identified as one of the targets of rearrangements at 
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the 6p21 locus (118, 119). Breakpoints on HMGA1 have also been demonstrated in pulmonary 

chondroid hamartomas and hamartomas of the breast (120, 121). The HMGA1 gene encodes a 

protein belonging to the HMGA family and also acts as a transcriptional regulator (71). 

Although, HMGA1 and HMGA2 belong to the same protein family, and have sequence and 

structural similarities but correlate with a substantially different expression pattern and 

phenotypic outcome, suggesting different functional roles of HMGA1 from HMGA2. For 

example, in uterine leiomyomas the relative overexpression of HMGA2 is more than HMGA1 

(78). Also, HMGA1 overexpression usually correlates with a more malignant outcome as 

observed in other epithelial tumors and leukemia (122). 

1.3.1.4  Other cytogenetic aberrations 

Trisomy of chromosome 12 affects about 10% of karyotypically abnormal leiomyomas (123). 

This may result in a copy number gain of HMGA2 resulting in overexpression of HMGA2 in 

leiomyomas (78). Other chromosomal aberrations such as deletion 10q, disrupting the K(lysine) 

acetyltransferase 6B (KAT6B) gene (124) or aberrations on chromosome 1,3, 13 and X also occur 

in uterine leiomyomas, but at a much lower frequency (78). These aberrations often occur with 

other cytogenetic rearrangements, indicating as a secondary change, acquired during multi-step 

tumorigenic process. The presence of multiple aberrations in individual tumors may also be 

suggestive of genomic instability in uterine leiomyomas. 

1.3.1.5 Monoclonality of leiomyomas 

Analyses of multiple tumors from a single uterus often display different cytogenetic aberrations 

across different tumors, suggesting the independent origins of each tumor (125). The process of 

lyonization or X-chromosome inactivation is where either of the X allele is inactivated in all 
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female somatic cells during embryonic development (126). The same X-inactivated allele is 

maintained throughout the lifecycle of a cell and is accordingly passed on to daughter cells. The 

process of X-chromosome inactivation has been used to study the clonality of leiomyomas. 

Tumors are monoclonal if they have the same X-allele inactivated in all of its cells, whereas 

polyclonal tumors arise from a mixture of cells. X-inactivation studies in leiomyomas have been 

carried out using various approaches, including glucose-6- phosphate dehydrogenase iso-

enzyme, X-linked androgen receptor CAG- repeats polymorphism, or phosphor-glycerokinase 

(PGK). All of the approaches have shown that independent leiomyomas in a uterus arise from a 

single cell, where independent tumors in the same uterus, exclusively have either of X-alleles 

inactivated (41, 43, 44, 127). 

1.3.1.6 Copy number alterations and gene expression profiling in leiomyomas 

Classical cytogenetics has been used for a long time to detect chromosomal aberrations in 

leiomyomas, but with the advent of newer technologies such as array comparative genomic 

hybridization (CGH), the genomic landscape can be analyzed at a much higher resolution. The 

array CGH technology allows the detection of submicroscopic copy number gains and losses, 

which were not previously, detected using standard karyotyping (G-banding) techniques. Few 

studies using array CGH have been conducted on leiomyomas and have shown additional copy 

number gains and losses including gains in chromosomes 9q and 19 and losses in chromosome 

22q. These gains and losses were present in addition to the classically detected aberrations but 

also did not commonly occur in leiomyomas (128-131). 

Series of gene expression microarray studies were also conducted on leiomyomas and 

normal myometrium to potentially identify differentially regulated genes and associated 

pathways in leiomyomas. Though the expression profiles were variable, genes involved in cell 
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proliferation, extra cellular remodeling, retinoic acid metabolism and apoptosis have been linked 

with leiomyomagenesis. Few examples of relevant genes include ADH1, 30 EGR1, C-FOS, 

IGF2, and TGFBR2. The results from these studies were often inconsistent, and failed to indicate 

any causal genes associated with tumorigenesis. The inconsistencies in the results could have 

been due to differences in microarray techniques, data analysis methods, ethnicity differences, or 

the genetic status of leiomyoma samples.   

Therefore, determining and validating novel genes associated with the initiation and 

progression of leiomyomas is key to developing successful therapeutic strategies against uterine 

leiomyomas. 

1.3.2 Leiomyomas and associated syndromes 

Hereditary cancer syndromes such as hereditary leiomyomatosis and RCC (HLRCC), tuberous 

sclerosis complex (TSC), and Birt-Hogg-Dube ́ (BHD) syndromes also predispose patients for 

developing leiomyomas, implicating a role of genes such as fumarate hydratase (FH), Tuberous 

sclerosis 2 (TSC2) and Birt-Hogg-Dube ́ (BHD) in a small subset of leiomyomas.  

1.3.2.1 Hereditary leiomyomatosis and renal cell cancer (HLRCC) 

Hereditary leiomyomatosis and renal cell cancer (HLRCC; MIM 150800, HLRCC; Gene 

Reviews), also known as multiple cutaneous and uterine leiomyomatosis (MCUL), is a rare 

disorder, with a dominant pattern of inheritance. Only about 100 families around the world are 

reported to have this condition. Individuals tend to develop benign tumors such as cutaneous and 

uterine leiomyomas and are at high risk of developing renal cell cancer (132). Cutaneous 

leiomyomas are benign neoplasms arising from the muscles surrounding hair follicles. Cutaneous 
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lesions may grow as bumps throughout the trunks and limbs, and are sensitive to touch or 

temperature and maybe painful (133). Affected women also develop multiple large uterine 

leiomyomas, with severe symptoms and an earlier age of onset as compared to the general 

population (134). Only about 10-16% of women with this disorder develop renal cell cancer 

(132, 133, 135, 136) but the malignant lesions are often very aggressive and can metastasize very 

quickly making diagnosis and management of cancer very difficult. 

 HLRCC is primarily caused due to heterozygous germline mutations in FH located on 

chromosome 1(1q42) (137). FH gene encodes fumarase or fumarate hydratase, an enzyme 

catalyzing the conversion of fumarate to malate in the tricarboxylic acid cycle (TCA cycle), 

important for generation of energy in the mitochondria.  Germline mutations in FH gene may 

occur as heterozygous missense (~58%), nonsense (~11%), or frameshift mutations (~18%) 

(133, 138). A second hit or bialleleic inactivation of FH mostly occurs due to loss of 

heterozygosity events triggered by environmental factors, but may rarely be caused by a second 

point mutation (132, 139). It is thought that the biallelic inactivation of FH may render fumarase 

inactive, causing a buildup of fumarate or succinate in the cell (140). Excessive fumarate 

stabilizes the HIF1 creating a   “pseudohypoxic” condition (141, 142). HIF1 in turn regulates 

genes responsible for vascularization, glycolysis, and glucose transport, contributing to 

tumorigenesis. Only about 1.3% of FH mutations contribute to leiomyoma pathogenesis (143-

145). 

1.3.2.2  Leiomyomas associated with other syndromes 

Uterine leiomyomas may also be associated with hereditary syndromes such as Tuberous 

sclerosis complex, Birt-Hogg-Dubé (BHD), and Cowden syndrome. TSC is a multi- organ rare 

dominant disorder caused due to heterozygous germline mutations in the TSC1 or TSC2 genes 
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located on chromosome 16 (146). The Eker rat, an animal model for the TSC, carrying 

heterozygous TSC2 mutations have shown spontaneous incidence of uterine leiomyomas (147, 

148). The details of this model will be further discussed in section 1.3.6. Similarly, German 

Shepherd canine models for Birt-Hogg-Dubé syndrome, carrying germline mutations in Bhd 

gene also spontaneously develop leiomyomas (149). Cowden syndrome is caused due to 

germline mutations in PTEN tumor suppressor gene resulting in multiple benign growth or 

hamartomas (150). About 50% of these patients also develop uterine leiomyomas (151). These 

syndromes although genetically associated with leiomyomas, only explain the etiology for a very 

small fraction of leiomyomas.  

1.3.3 Molecular genetics of leiomyomas 

1.3.3.1 Genome wide association studies 

In the past two decades, twin studies and familial aggregation studies have suggested a strong 

genetic component in the occurrence of leiomyomas. Genome wide association studies have 

revealed three chromosomal loci (10q24.33, 22q13.1, and 11p15.5) associated with incidence of 

leiomyomas in Japanese women (152). These findings could not be consistently replicated across 

various other ethnicities (153-155). Another genome wide association study conducted on a 

cohort of European Caucasian women, suggested a novel risk allele on chromosome 17q25.3, 

coding for fatty acid synthase (FASN) (153).  Supporting this evidence, the expression level of 

fatty acid synthase was significantly higher in leiomyomas as compared to surrounding 

myometrium. Previously, fatty acid synthase has been associated with other tumors and has been 

known to promote tumorigenesis (156-158). These associations are still pending confirmation. 
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1.3.3.2 Whole exome sequencing; MED12 exon 2 variants and leiomyomas 

In the past five years, the rapid advancement of next generation sequencing (NGS) has 

revolutionized the field of cancer genomics, allowing us to discover and explore previously 

unknown somatic alterations such as point mutations, indels (insertion and deletions) in tumor 

pathogenesis. Others and we have utilized whole exome technologies to identify novel somatic 

candidate drivers associated with uterine leiomyomas to improve our understanding of genetics 

underlying the development of tumors.  

The first whole exome sequencing studies were conducted on 18 uterine leiomyomas 

from 17 Finnish women (Finnish population) (159). Upon analysis, MED12 was identified as the 

only recurrently mutated tumor specific gene. All of the identified mutations were heterozygous 

and were located in the exon 2 of MED12, with majority of the single nucleotide variants 

occurring specifically in codon 44 of exon 2. To verify the MED12 exon 2 variants, Sanger 

sequencing was performed on the initial eighteen leiomyomas, and an additional 207 

leiomyomas. The results revealed about 70% (159/225) of leiomyomas harboring MED12 exon 2 

mutations. About 70% of the MED12 exon 2 variants were located in codon 44 including all six 

base pair substitutions. The most common non-synonymous missense variant was a c.131G>A 

causing a glycine (G) to aspartic acid (D) amino acid change (pG44D) (159). The glycine on 

codon 44 is conserved across 39 different species including plants and fungi (one of the most 

conserved residues). Other MED12 mutations were observed in codons 36 and 43 of exon 2. 

Indels were also observed in 15% of MED12 mutated leiomyomas. Mutant MED12 allele 

expression (active X) was also confirmed in the cDNA of all leiomyomas.  

MED12 positive mutation status also correlated with smaller tumor sizes and gene 

expression profiling of MED12 positive leiomyomas showed unique clustering of genes affecting 
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focal adhesion, ECM receptor and Wnt signaling pathways. Makinen and colleagues also 

confirmed the presence of 50% MED12 exon 2 heterozygous variants in leiomyomas from 

women of another ethnic background (South African), although the sample sizes were small 

(160).  

We conducted whole exome sequencing in parallel to the Finnish group, and performed 

targeted sequencing studies on 148 leiomyomas from mixed cohort of North American women 

(120 white American and 23 Black American).  We also discovered novel MED12 exon 2 

heterozygous variants in 70% (100/148) of leiomyomas and none in the normal myometrium 

(161). Similar to Makinen et al., studies published from our lab showed 68 out 76-missense 

variant occurring at positions 130 and 131 in the 44th codon, exon 2 of MED12 (Table 1.2). 

Remarkably, in our study as well, the most commonly observed non-synonymous single 

nucleotide variant was the c.131G>A, p. G44D, heterozygous variant (Figure 1.4). Higher 

frequency of MED12 mutations correlated with the presence of multiple tumors per uterus as 

opposed to a single tumor. MED12 exon 2 variants were detected in leiomyomas from both white 

American and African American women (66% and 78% respectively), suggesting a universal 

role of MED12 exon 2 variants in leiomyoma pathogenesis regardless of ethnicity or race. 

MED12 mutation status was also equally distributed among, karyotypically normal and abnormal 

leiomyomas and therefore we could not conclude if the MED12 mutations are true precursors to 

cytogenetic alterations (161).  
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Figure 1.4 MED12 exon 2 variants associated with uterine leiomyomas 

Illustration of all 45 coding exons of the MED12 gene. The asterisk denotes the mutations determined in exon 2 of 
MED12 in leiomyomas from North American women. 71% of these non-synonymous variants occurred in codon 44 
of exon 2 affecting the Glycine residue. The most common missense variant was c.131G>A variant causing a 
glycine to aspartic amino acid change. 

(Figure has been reproduced from McGuire at al., 2012) (161) 
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Table 1.2 List of missense, splice-site variants and indels in exon 2 of MED12 

(Table reproduced from McGuire et al., 2012) (161) 

a The number of leiomyomas with each variant is followed in parentheses by the percentage of the total number of 
leiomyomas under study (148) and the percentage of the total number of mutated leiomyomas (100), respectively. 

Multiple groups have now validated and replicated the presence of MED12 exon 2 mutations, in 

leiomyomas from ethnically diverse women including German, Korean, Japanese, Dutch and 

Hispanic cohorts (162-174). The MED12 mutation rates ranged from 50% to 80%, which may 

Variant type Nucleotide change Protein change Number of mutated 
leiomyomasa 

Missense c.107T>G p.L36R 3 (2.0% / 3.0%) 
(Exon 2) c.128A>C p.Q43P 5 (3.4% / 5.0%) 

c.130G>C p.G44R 7 (4.7% / 7.0%) 
c.130G>A p.G44S 9 (6.1% / 9.0%) 
c.130G>T p.G44C 8 (5.4% / 8.0%) 
c.131G>C p.G44A 5 (3.4% / 5.0%) 
c.131G>A p.G44D 32 (21.6% / 32.0%) 
c.131G>T p.G44V 9 (6.1% / 9.0%) 
c.130G>T; c.131G>T p.G44F 1 (0.7% / 1.0%) 

Splice Site IVS1-8T>A p.E33_D34insPQ 2 (1.4% / 2.0%) 
(Intron1-Exon2) IVS1-1_139del41 Lose splice acceptor 1 (0.7% / 1.0%) 

IVS1-2_141del44insAG Lose splice acceptor 1 (0.7% / 1.0%) 
Deletions c.103_138del36 p.E35_N46del 1 (0.7% / 1.0%) 
(Exon 2) c.107_111del5insGC p.L36_T37delinsR 1 (0.7% / 1.0%) 

c.111_155del45 p.A38_S52del 1 (0.7% / 1.0%) 
c.113_121del9 p.A38_N40del 1 (0.7% / 1.0%) 
c.117_122del6 p.N40_V41del 1 (0.7% / 1.0%) 
c.118_132del15 p.N40_G44del 1 (0.7% / 1.0%) 
c.118_134del17insTA p.N40_F45delinsY 1 (0.7% / 1.0%) 
c.118_146del29insTT p.N40_P49delinsF 1 (0.7% / 1.0%) 
c.122_148del27 p.V41_P49del 1 (0.7% / 1.0%) 
c.122_163del42 p.V41_D54del 1 (0.7% / 1.0%) 
c.123_152del30 p.K42_V51del 1 (0.7% / 1.0%) 
c.126_131del6 p.K42_G44delinsN 1 (0.7% / 1.0%) 
c.126_140del15 p.K42_F45del 1 (0.7% / 1.0%) 
c.129_137del9 p.Q43_N46delinsH 1 (0.7% / 1.0%) 
c.129_143del15 p.G44_Q48del 1 (0.7% / 1.0%) 
c.133_144del12 p.F45_Q48del 1 (0.7% / 1.0%) 
c.149_163del15 p.A50_D54del 1 (0.7% / 1.0%) 
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vary due to location or the size of leiomyomas analyzed. Rarely, somatic MED12 exon 1 

mutations consisting of in-frame insertion-deletions have been reported in a few MED12 exon 2 

negative leiomyomas (175). Yet, the majority of the MED12 mutations occur as hotspot 

mutations in exon 2 of the MED12 gene, underlying their significance in the development of 

uterine leiomyomas.  

  Majority of MED12 mutations seem to occur only in conventional leiomyomas, with rare 

clinical histological subtypes including cellular leiomyomas, HLRRC leiomyomas and 

leiomyomas with bizarre nuclei, harboring only 5-17% of MED12 exon 2 mutations (168, 176). 

Mitotically active leiomyomas had MED12 mutation rates (38%) very similar to that of 

conventional leiomyomas.  About half of the MED12 variants occurring in the histopathological 

leiomyoma variants were in codon 44 of exon 2 of MED12, signifying the importance of this 

codon in leiomyoma pathogenesis irrespective of the clinical sub-type. Interestingly, leiomyomas 

from HLRCC patients showed that MED12 mutations and biallelic loss of FH were mutually 

exclusive events (173, 176). 

1.3.3.3 MED12 mutations and genomic alterations 

Whole genome sequencing provides the most comprehensive sequence data on the genome 

including coding and non-coding genetic variation, copy-number alterations, and structural 

rearrangements (177). Mehine and colleagues performed whole genome sequencing on 38 

uterine leiomyomas including sixteen MED12 positive leiomyomas, four FH deficient 

leiomyomas, and eighteen leiomyomas lacking MED12 and FH mutations (91). The study found 

no new recurrently mutated somatic point mutations but found typical cytogenetic alterations 

associated with leiomyomas such as t(12;14)(q15;q24) and deletions in  chromosome 7q. The 

genome of leiomyomas lacked any large amplified segments (<100 kb) or high-level genomic 
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amplifications, suggesting a mechanism protecting the genome from malignant degeneration 

(91). The most interesting finding was the common occurrence of complex chromosomal 

rearrangements called chromothripsis in both MED12 positive (3/16) and MED12 negative 

leiomyomas (12/16) (91, 178). Chromothripsis is defined as a single genetic event leading to 

shattering and random reassembly of an entire chromosome (179). 

To determine if the recurrent MED12 mutations synergistically acted with other 

cytogenetic alterations, Markowski et al., investigated the association of MED12 mutations in 

leiomyomas with specific recurrent cytogenetic alterations. The findings of the study showed 

that the MED12 mutations and frequent cytogenetic alterations such as the deletion of long arm 

of chromosome 7 and the 6p21 rearrangements coexist (163). This would suggest that the 

MED12 mutations are precursors to some of these genetic alterations and the observed 

cytogenetic changes may be more of a secondary change, occurring during the course of disease 

progression. Interestingly, multiple studies have highlighted a clear distinction between MED12 

mutated leiomyomas and leiomyomas with HMGA2 rearrangements, signifying different 

pathways of MED12 mutated and HMGA2 mediated leiomyomagenesis (91, 172). It is quite 

fascinating to note that MED12 mutations and HMGA2 rearrangements could possibly explain 

85% of the cases. 

Based on gene expression analysis, several reports have suggested that MED12 mutations 

have a unique effect on global transcription patterns. Makinen et al., showed the effect of 

MED12 mutations on pathways associated with focal adhesion, extra cellular matrix remodeling, 

and WNT signaling pathways (159). Markowski et al., investigated the expression of WNT4, as it 

is present in the mesenchyme and is also located at the chromosomal locus, which is altered in 

leiomyomas (1p36). Analysis of WNT4 in leiomyomas with MED12 mutations showed higher 
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expression compared to HMGA2 rearranged leiomyomas or normal myometrium, thus justifying 

its role as a probable target and mediator of MED12 for affecting WNT signaling in the 

myometrium (163). Gene expression studies conducted by Mehine et al., have also shown 

RAD51B, a DNA repair gene, also to be up-regulated in leiomyomas, implicating oncogenic 

stress in the smooth muscle cells possibly caused by MED12 mutations (91). 

1.3.3.4 MED12 mutations in other benign and malignant tumors 

Ever since the discovery of recurrent MED12 exon 2 mutations in uterine leiomyomas, series of 

investigations have been conducted to detect the presence of MED12 mutations in a host of other 

benign and malignant tumor types. To begin with, the frequency of MED12 exon 2 variants was 

examined in malignant counterparts of leiomyomas; i.e. leiomyosarcomas. Uterine 

leiomyosarcomas are clinically rare, aggressive, highly recurrent tumors with poor prognosis and 

survival (176-178, 180). Reports addressing the origins of leiomyosarcomas are often 

contradictory; with some reports indicating a de novo event versus others indicating MED12 

altered precursor leiomyomas as the underlying cause (181-184). Recurrent MED12 exon 2 

variants were discovered only in a limited number of leiomyosarcomas (5-20%), suggesting a 

different pathway of pathogenesis as compared to MED12 positive leiomyomas (162, 164-167, 

169, 172, 185). Smooth muscle tumors with uncertain malignant potential (STUMP) are a group 

of heterogeneous tumors, with an uncertain benign or malignant pathological diagnosis. MED12 

exon 2 variants were determined in STUMPs also with a low frequency (11%) (164). Strikingly 

MED12 expression was found to be undetectable in a majority of leiomyosarcomas and 

STUMPs, including leiomyosarcomas harboring MED12 exon 2 variants. Contrary to the 

malignant tumors, MED12 mutated leiomyomas, expressed MED12 irrespective of the MED12 

mutation status (164, 167, 172). This suggests that MED12 variants are more common in benign 
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tumors than their malignant counterparts, and the MED12 exon 2 variants may exert completely 

different effects in benign versus malignant tumors. 

Other than human leiomyomas, MED12 exon 2 variants have recently been discovered as 

the sole recurrent mutations in other benign tumors such as fibroadenomas and phyllodes tumors 

of the breast. Remarkably, the MED12 mutation rates in these tumors were very similar to that of 

uterine leiomyomas, with 59% of fibroadenomas (186) and 80% of phyllodes tumors harboring 

the MED12 exon 2 variants, suggesting common mechanisms of pathogenesis (187-190). 

Interestingly, MED12 c.131G>A was again the most common missense variant discovered in 

these tumors as well (186, 187). This suggests a very specific role of the MED12 exon 2 variants 

in steroid-driven benign tumors in females. 

MED12 exon 2 variants have been rarely described in few carcinomas such as colon 

carcinomas (0.3-0.5%) (162, 185), basal triple-negative carcinomas (191) and chronic lymphatic 

leukemias (<1%) (CLL) (192). Other than MED12 exon 2 variants, somatic mutations have also 

been observed in other regions of MED12 gene, in hormone related prostate and adrenocortical 

carcinomas (193, 194), but the pattern of these variants are slightly different from the exon 2 

variants, indicating distinct pathways of MED12 between malignant and benign tumors. 

Nonetheless, the high recurrence rate of MED12 exon 2 variants in uterine leiomyomas, 

fibroadenomas, and phyllodes tumors highlights the importance of understanding the role of 

MED12 variants in tumorigenesis.  

1.3.4  MED12 germline mutations 

Prior to the association of MED12 with uterine leiomyomas, germline mutations in the C-

terminus of MED12 have been linked with three X-linked mental retardation syndromes; namely 
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Opitz Kaveggia syndrome (MIM 305450) (195, 196), Lujan-Fryns syndrome (MIM 309520) 

(197), and Ohdo syndrome (Maat-Klevit-Brunner type) (198). All of the above syndromes occur 

in an X-linked recessive fashion, mostly affecting males and have missense mutations in the 

leucine-serine-rich (LS) domain of MED12. For example, MED12 c.2881C>T, c.3020A>G 

missense variants are associated with Lujan-Fryns syndrome, c.5185 C>A is associated with 

Ohdo syndrome, and c.2873 G>A is associated with Opitz Kaveggia syndrome (195-198). 

Patients with these syndromes often exhibit intellectual disability (mild to severe), behavioral 

problems, dysmorphic facial features and hypotonia. There have been no reports describing 

uterine leiomyomas in patients with these syndromes. Contrary to somatic MED12 exon 2 

variants associated with leiomyomas, C-terminal germline MED12 variants are extremely rare 

and are believed to have very different molecular pathogenesis. It is hypothesized that the 

germline MED12 mutations may affect REST-imposed epigenetic silencing of neuronal gene 

expression by disrupting mediator and RE1- silencing elements causing the rare mental 

retardation syndromes (198, 199). 

1.3.5 Mediator complex subunit 12 (MED12) 

The MED12 gene is located on X chromosome (Xq13) and consists of 45 exons, encoding a 

250kDa protein (2177 amino acids) (191, 196). The MED12 protein is highly conserved amongst 

eukaryotes, specifically in mammals (200). The protein is divided into four domains based on 

sequence similarity: a leucine-rich (L), leucine-serine-rich (LS), proline-glutamine-leucine-rich 

(PQL), and an odd-paired (Opa) domain, though not much is known about the function of each 

domain. MED12 has ubiquitous expression in adult human tissues, but has higher expression 

during fetal development (201, 202). 
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Figure 1.5 MED12 as part of the CDK8 kinase module in the mediator complex 

Schematic representation of the mediator complex subunits (denoted by different colors) and the RNA pol II 
transcriptional machinery. The core mediator consists of the head (blue), middle (green), tail (purple) and the kinase 
module (orange). MED12 is part of the CDK8 sub-complex (orange) and reversibly associates with the core 
mediator complex. The mediator complex acts as a bridge between DNA regulatory elements and the transcriptional 
machinery. Components present only in higher eukaryotes are denoted by asterisk.  

(Reproduced from Larivière et al., Science Direct 2012; with copyright permission from Elsevier, 2015) (203). 

MED12 is a part of a large complex of mediator proteins and is involved in 

transcriptional regulation of RNA polymerase II complex in eukaryotic cells (204, 205). The 

mediator complex acts as an intermediate between transcription factors and RNA Pol II and 

relays regulatory information from transcription factors to RNA Pol II, which is an essential step 

during initiation and elongation process of transcription (202-204). The structure of the Mediator 

complex consists of head, middle, tail sub-complexes and a separate kinase (CDK8) sub-

complex. The head and the middle sub-complex bind to Pol II, whereas the tail sub-complex 

binds to other transcription factors and undergoes conformational changes to form the “foot” or 
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the “hook” domain respectively (204, 206, 207). The kinase sub-complex reversibly associates 

with the mediator complex and brings about large structural changes to the core mediator 

complex (Figure 1.5) (203, 208). When the kinase sub-complex disassociates from the core sub-

complex, head and the middle mediator sub-complex binds to RNA Pol II whereas the tail sub-

complex binds to transcription factors or co-activators, leading to highly efficient transcription in 

the cells (207, 208). To render the complex inactive, kinase sub-complex attaches itself to the 

core sub-complex, bringing about structural changes such that it allosterically inhibits the 

interaction of the core mediator and RNA Pol II, thereby inhibiting transcription (209). It is 

believed that the mediator complex can carry out gene specific transcription based on its 

interaction with specific co-regulatory transcription factors, which in turn would mediate its 

effect through cell specific targets in the mediator (204). Given the large structure and the 

complexities of the mediator complex, its role in cell specific gene regulation is not clearly 

understood. 

The kinase sub-complex consists of MED12, MED13, CDK8, and Cyclin C as its 

subunits, which can act as a transcriptional activator or repressor of gene transcription (206, 

210). The kinase sub-complex can also phosphorylate the C-terminus of the Pol II subunit, 

thereby affecting transcription carried out by the RNA Pol II complex (209). The kinase module 

“hooks” onto the core mediator complex via MED13 (211). MED12 is also essential in the kinase 

module for the kinase activity of CDK8, but MED12 can carry out functions independent of 

CDK8 kinase (212). MED12 has been shown to interact with a variety of pathways including 

WNT, nuclear hormone receptor, beta-catenin, and sonic hedgehog pathways through various 

targets (213-216). For example, MED12 binds to β-catenin through its C-terminal β-catenin 

binding domain. β-catenin is a nuclear effector of the canonical Wnt pathway. MED12 and β-
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catenin, together affect the transcription of targets in the WNT canonical signaling (214). 

MED12 directly binds to Gli-3, affecting the sonic hedgehog pathways. MED12 also contributes 

to epigenetic silencing of RE1-silencing transcription factors (REST) via G9a histone 

methyltransferase in non-neuronal cells (199). Zebra fish models have shown that Med12 can 

interact with Sox9 and Sox10 to carry out gene specific functions during embryonic 

development, possibly suggesting a role as a co-regulator of certain specific transcription factors 

(217-219). 

Rocha and colleagues examined the role of Med12 in mouse embryonic development by 

engineering loxP sites flanking exons 1-7 of Med12 and developing Med12flox mice (220). Using 

the Med12flox mice, they generated both Med12 hypomorphs and Med12 null models. Both these 

models resulted in embryonic lethality; but had different timelines of embryonic arrest. 

Med12hypo embryos (90% Med12 truncated) had severe defects in neural tube closure, heart 

defects, axis elongation, and somitogenesis, which resulted in lethality at E9.5. Whereas, the 

Med12δ1-7 embryos were arrested earlier by E7.5 due to aberration of the Wnt/ β-catenin and 

Wnt/ planar cell polarity (PCP) signaling pathways. This implied a role of Med12 in activating 

canonical Wnt/β-catenin signaling and its gene specific transcription during development. 

Similar effects were observed upon mosaic expression of Med12 during development, with 

embryonic lethality occurring at E9.5 to E12.5 (221). The Med12flox mice have been used in this 

thesis for the purpose of generating Med12 conditional knockouts (220).   

Interestingly, with evolution of species (mammals), the kinase module subunits; MED12, 

MED13 and CDK8 have undergone gene duplication to give rise to paralogs as MED12L, 

MED13L and CDK19 respectively with high sequence similarity (222, 223). MED12L, MED13L 

and CDK19 are part of the mammalian mediator complex, but their functions remain elusive. 
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The addition of these paralogs to the complex may indicate towards the extended functions of the 

mediator complex, including gene-specific or tissue-specific regulation (176).  

1.3.6 Animal models of leiomyomas 

Currently, no good animal model for uterine leiomyomas exists, posing a challenge in 

understanding of leiomyomagenesis as well as in development and testing of new drugs. In this 

section we will discuss three such animal models, which were generated with some relevance to 

leiomyoma biology and in an attempt to develop a model with a phenotype similar to that of 

human leiomyomas. Unfortunately, most of the phenotypes displayed by these rodent models 

were confined to myometrial hyperplasia and small lesions with ECM deposits.  

The Eker rat, carrying a heterozygous germline mutation in Tsc2Ek/+ was the first model 

characterized, where leiomyomas were coincidentally observed in 65% of   Tsc2Ek/+ female 

carrier rats by 18 months of age (147). The model was developed initially to study the tuberous 

sclerosis complex and in addition to leiomyomas, this model develops renal cell carcinomas and 

hemangiosarcomas. The leiomyomas in this model often have aberrant expression of HMGA2 

and were also responsive to steroid hormones (148). ELT Cell lines were also developed from 

leiomyomas of the Eker rat model to facilitate an in-vitro model for leiomyomas. Unfortunately, 

the rare occurrence of the tuberous sclerosis syndrome in humans and the long tumor latency 

period in the rodent model neither made this model clinically applicable nor feasible for studying 

uterine leiomyomas.  

Similar to the Eker rat model, a mouse model conditionally expressing Tsc2 mutation in 

the uterine mesenchyme was generated. In this model, Tsc2 conditional knock-out (cKO) led to 

constitutive activation of mTORC1/S6 pathway in uteri causing myometrial hyperplasia and 
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disorganized cells. These lesions were also responsive to steroid hormones, especially to 

estrogen as assessed by ovariectomy followed by estrogen supplementation (224).  

 The next model for leiomyomas was generated by constitutive activation of β-catenin in 

uterine myometrial cells using Amhr2-cre recombinase (225). Females expressing a stable form 

of β-catenin (constitutively activated) in the uterus developed smooth muscle tumors, 

characterized by hyperplasia and ECM deposition and low mitotic index. The severity of the 

phenotype was also affected by age and parity. As Amhr2-cre is also expressed in the stromal 

compartment of the uterus (226), constitutive activation of β-catenin in the uterine stroma also 

lead to the development of endometrial stromal sarcoma-like lesions. Though the model shows 

the effect of sustained activation of WNT signaling on mesenchymal tumors, the development of 

stromal tumors and indirect mechanistic relevance to human data increase the challenges of 

using this model to successfully study leiomyomas. 

 Yet another approach of generating a transgenic mouse model was by overexpressing 

hGPR10-driven with calbindin-D9K promoter (227). This approach stemmed from the fact that 

human leiomyomas had higher expression of GPR10 (neuronal specific G protein coupled 

receptor) due to aberrant loss of REST in the uterus, potentially affecting the PI3K-AKT-mTOR 

signaling. Yet again, the GPR10 model showed hyperplasia and ECM deposits, but no significant 

large lesions were observed. Thus a lack of good models to understand leiomyomagenesis 

encouraged us to develop such a model, which would not only provide us a tool to study 

leiomyomas but would also provide a platform to test targeted therapeutics against leiomyomas. 
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1.3.7 Public health significance 

Uterine leiomyoma or fibroids are some of the most common clinically relevant solid tumors 

occurring in women of reproductive age. More than five million women in the U.S suffer from 

fibroids. The prevalence of this condition may be as high as 70% taking into account the 

occurrence of asymptomatic leiomyomas (2). About 25% of leiomyomas are clinically diagnosed 

and can cause severe morbidity in women including heavy menstrual bleeding and associated 

anemia, pelvic pain, infertility (4-7, 15). Due to the recurring nature of these tumors, a partial 

myomectomy or hormonal antagonists only help with temporary management. Currently, a 

hysterectomy is the only permanent solution to recurrent fibroids (15, 228).  

About 300,000 hysterectomies per year are associated with fibroids in the United States 

(8, 229). This also results in humongous health care costs with approximately $4.1-9.4 billion 

spent every year (surgery, hospital admissions, outpatient visits, and medications) on the 

treatment of leiomyomas (230). However, the lack of an understanding of the etiology or the lack 

of a clinically relevant model makes it difficult to develop new treatment alternatives to 

hysterectomies. Our current approach on developing animal models for fibroids will be an 

essential step in understanding the role of MED12 in uterine leiomyomas, which together with 

the models will be an invaluable tool for developing new treatment strategies against 

leiomyomas as an alternative to hysterectomy. 

1.3.8  Summary 

Ever since uterine leiomyomas have been studied, there have been more speculations than 

evidence regarding the etiology of these tumors. The most promising cytogenetic etiological 
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evidence in the past two decades has implicated chromosome 12q14-15 translocations, 7q 

deletions and 6p21 rearrangements in the etiology of a subset of leiomyomas (78). The advent of 

next generation sequencing technologies, including whole genome and whole exome sequencing 

has revolutionized the era of cancer genomics and we, like many others sought these 

technologies to discover novel variants associated with leiomyoma formation. The discovery of 

MED12 exon 2 variants in 70% of leiomyomas transformed the field, by providing a novel 

candidate driver gene to pursue. We set out to functionally validate this variant by generating 

animal models for Med12 variants. Thus, my thesis work focuses on tackling the following 

questions: 

a) Can Med12 exon 2 variants cause leiomyomas? 

b) Do Med12 exon 2 variants cause leiomyomas via loss of function or gain of function 

mechanisms? 

c) Is Med12 important for maintaining fertility and the normal functionality of the 

uterus? 

d)  Can Med12 exon 2 variants cause the underlying cytogenetic abnormalities 

associated with uterine leiomyomas? 

As means to address the above questions, we have generated and characterized conditional loss 

of function and gain of function mouse models of Med12 exon 2 variants. This dissertation work 

will discuss the various phenotypes observed in both of these models, revealing the role of 

Med12 in fertility, leiomyomagenesis and genomic instability. 
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2.0  LOSS OF MED12 CAUSES INFERTILITY BUT DOES NOT STIMULATE 

TUMORIGENESIS   

Part of the work in Chapter 2 have been published in the Journal of Clinical Investigation.  

2.1 INTRODUCTION 

Uterine leiomyomas are the most common gynecological tumors occurring in women of 

reproductive years, yet the genetic factors associated with the causation and progression of these 

tumors are not well understood. Using whole exome sequencing approaches, others and we have 

shown that MED12 exon 2 mutations are strongly associated with leiomyomas (159, 161). As 

Med12 is present on the X chromosome, there has been speculation regarding the mechanism of 

these mutations causing tumors via loss of function or a gain of function mechanism. Presently, 

no good in vitro models exist as MED12 mutated cells do not survive in culture (231). Neither an 

in vivo model nor an in-vitro with Med12 mutations replicating the human condition is presently 

available. Med12 has already been shown to be important during development as Med12 null 

embryos are arrested at E7.5 due to impaired mesoderm formation and defective Wnt/β-catenin 

signaling pathway (220). Although Med12 is part of the CDK8 sub-complex, it can carry out 

functions independent of CDK8 kinase activity (212). Currently, we understand that the gene is 

important for development, but what role Med12 plays in uterine development, function or in the 
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development of uterine leiomyomas remains unknown. To understand the roles of Med12, we 

decided to generate mouse models of Med12, as it would allow us to study genotype phenotype 

effects without confounding variables (environment). Also, developing in vivo models are 

advantageous in tumor studies as they provide a “niche” a microenvironment essential for the 

progression of the tumor. The embryonic lethality of Med12 global knockouts required us to use 

conditional knockout mice (220).  Med12 is highly conserved among all eukaryotes, allowing us 

to develop mouse models as a means to study the function of Med12 in a tissue specific manner. 

We utilized the Med12 floxed (flanked by loxP) (Med12fl/fl) animals (220) along-with anti 

Mullerian receptor type II cre (Amhr2-cre) (226) animals to generate a loss of function model of 

Med12, by deleting Med12 exon 1-7 in the uterine mesenchyme. The aim of this study was to 

systematically analyze the phenotypic effects of loss of Med12 in the uterine mesenchyme with 

regards to either tumorigenic changes or any other functional effects on the female reproductive 

tract. 

2.2 MATERIALS AND METHODS 

Animal care and experimentation 

Experiments involving mice were approved by the University of Pittsburgh Institutional Animal 

Care and Use Committee and in accordance with the NIH guidelines for humane care of animals. 

Dr. Heinrich Schrewe generously donated the Med12flox mice (220). The Amhr2-cre mice were a 

kind gift of Dr. Richard Behringer (226). The mT/mG mice (GT(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Lou) 

and the Zp3-cre (Tg(Zp3-cre)93Knw/J) mice were obtained from the Jackson Laboratory (Stock 

#007576, # 003651). The Gdf9-cre Tg(Gdf9-icre)5092Coo/J mice were a kind gift of Dr. Austin 
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Cooney (232). The DNA from tail biopsies was used to confirm the genotypes, using standard 

PCR protocols. The primer sets and the PCR protocol used to distinguish Med12 wild-type and 

the recombined alleles in tissue genomic DNA have previously been described (220). Jackson 

laboratory PCR protocols were followed for Amhr2-cre, Gdf9-cre, and Zp3-cre mice. The 

Med12flox, Amhr2-cre, Zp3-cre, Gdf9-cre lines were maintained on a C57BL/6/129Sv hybrid 

background. Litters were weaned at 3 weeks, and breeding pairs were set up at 6 weeks of age. 

All animals were housed under a 12-hour light, 12-hour dark schedule and provided food and 

water ad libitum. 

Histological analyses 

Gross morphology and histology assessments were performed on greater than six weeks of age 

adult females. Prior to harvesting uteri, all females were estrous synchronized with 

intraperitoneal injections of 5 IU PMSG followed by 5 IU of hCG after 48 hours. Females were 

euthanized 20 hours after hCG administration, and uteri were fixed in 10% formalin, processed, 

embedded in paraffin, serially sectioned (6 µm), and stained with hematoxylin and eosin. For 

frozen sections, tissues were embedded in optimal cutting temperature compound and were snap-

frozen in liquid nitrogen. Sections were obtained using a Leica cryostat (6 µm). At least four 

pairs of uteri of each genotype were subjected to gross and microscopic analysis for each 

time point. Images were acquired using an Axio Scope.A1 microscope (Zeiss) equipped with a 

digital camera (Zeiss) and an AxioVision (v4.8) imaging software.  

Histomorphometric analysis 

For histomorphometric analyses, every fifth section was obtained from the long axis of the ovary 

(n=3), stained with periodic-acid and schiff  base, photographed and oocytes containing nuclei 
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were scored. The mean of the total score of oocytes for all the sections was considered as the 

oocyte count per ovary. Primordial follicles were defined as small oocytes (<20µm) surrounded 

by flat epithelial cells. Primary follicles were defined as having larger oocytes surrounded by 

a single layer of cuboidal granulosa cells; secondary follicles defined by two or more layers 

of granulosa cells and pre-antral follicles by the presence of antral fluid (233). 

Med12 antibody generation 

Med12 antigen was produced by cloning the C-terminus of mouse Med12 (561 bp) in the pET-

23b vector (His tag) and expressing the Med12 protein under optimized conditions. The 

expressed protein was purified using nickel resin columns (Novagen). The purified antigen was 

used to immunize guinea pigs. Immunization of guinea pigs was carried out at Cocalico 

Biologicals  (Reamstown, PA). Exsanguination serum containing Med12 antibodies was used for 

further downstream applications. 

Immunofluorescence 

Immunofluorescence was performed on 6-µm frozen sections and subjected to antigen retrieval 

using 10 mM sodium citrate (PH 6.0) for 20 min. Sections were blocked with 3% bovine serum 

albumin for 45 min, followed by incubation with anti- smooth muscle actin (A5228, Sigma 

Aldrich) and anti-Med12 antibodies (custom designed) at 4°C overnight. Following primary 

antibody incubation, sections were washed and incubated in secondary Alexa Fluor 488 (Life 

Technologies) and Alexa Fluor 647 (Life Technologies) and co-stained with DAPI. The sections 

were mounted with Vectashield mounting medium containing DAPI. Images were taken with a 
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Nikon A1 confocal microscope equipped with a digital camera and NIS-Elements software 

(Nikon). For quantitation of Med12 expression, about 300 uterine mesenchyme cells were 

counted for Med12 positive cells in three independent uteri (two cross-sections each).  

To assess the fluorescent signals in the mT/mG reporter mice, frozen sections were washed three 

times in PBS and stained with DAPI. mT (Tomato) and mG (Green) signals were analyzed and 

scored in 300 uterine myometrial cells.  

Reverse transcription and quantitative real-time PCR 

Total RNA was isolated from frozen uteri using the RNeasy Mini Kit (Qiagen). One microgram 

of total RNA was reverse transcribed using Superscript III reverse transcriptase (Invitrogen). 

Med12 gene expression was analyzed by real-time quantitative polymerase chain reaction. A 

SYBR Green detection system (Bio-Rad CFX96 PCR Detect System) was used, along with 

customized Med12 primer sets: Med126-7F: CTGACTTGGGTGCTTGAGTGTT and Med12 6-

7R: CCAATCTCCGGGTACAGAAGTA. Melt curve analysis was performed when using 

SYBR Green to verify a single amplification peak. Data were normalized to an endogenous 

reference (GAPDH) and then relative mRNA expression was calculated using the 2-ΔΔCT method. 

Superovulation 

Superovulation was carried out on 3-5 week old mutant and control female mice with IP 

injections of 5 IU PMSG (Sigma-Aldrich) followed by 5IU hCG after 46-48 hours. Twenty 

hours following hCG administration, females were euthanized, and their oviducts were removed. 

The cumulus-oocyte complexes were separated from the ampulla region of each oviduct by 

puncturing the oviduct. Cumulus cells were then released by incubating the complex in 0.5mg/ml 
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hyaluronidase (Sigma-Aldrich) in DMEM media (Invitrogen). Isolated oocytes were assessed for 

morphology and scored.  

Fertility and Copulation Studies 

The fertility status of mice was examined by housing female mice with a proven male stud and 

vice-versa for at least a period of six months. Data such as litter size, litters per month and the 

pup sexes were recorded over successive pregnancies for a period of at-least 6 months. 

Copulation studies were conducted on estrous synchronized females (administering 5IU PMSG 

followed by hCG) with proven stud males overnight. Following morning the males and females 

were separated and the females were examined for the presence of seminal plugs. The presence 

of the seminal plugs was considered as 0.5dpc. 

Statistical analysis 

Two-tailed Student’s t-test was applied to determine the difference of means between two groups 

and one-way ANOVA test was used to determine the differences among multiple groups using 

GraphPad Prism 4.0 software. Significance was defined at p<0.05. 
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2.3 RESULTS 

2.3.1 Generation of conditional loss of function model of Med12 

We first determined whether the conditional inactivation of Med12 causes leiomyomas. Since 

Med12 is expressed from the X chromosome, random X-chromosome inactivation will lead to 

random expression of either the paternal or maternal Med12 locus in uterine myometrial cells. 

We chose Amhr2- driven cre recombinase (226) to delete Med12 from the uterine mesenchyme 

and granulosa cells of the ovary at E13.5. Since Amhr2-cre acts well after X-chromosome 

inactivation is established (E6.5) (234), loss of Med12 function will not lead to skewed X-

inactivation in mouse uteri. One of the key parameters of our experimentation was the efficiency 

of the cre allele used to delete the floxed allele. To assess the cre-recombination in our hands, we 

crossed the Amhr2-cre mice with the double-fluorescent cre- reporter mT/mG mice (235), which 

express red fluorescence in all tissues and green fluorescence upon cre- mediated recombination. 

Based on our results, (Figure 2.1A, B), about 60% of uterine mesenchymal cells underwent Cre-

mediated excision. As 60% Cre efficiency was sufficient for our experiments, we went ahead and 

utilized the Amhr2-cre mice to generate Med12 cKO animals. 

We crossed Amhr2-cre with Med12fl/fl animals to generate Med12fl/+Amhr2-cre (het cKO) 

females and crossed Med12fl/yAmhr2-cre with Med12fl/fl animals to generate Med12fl/fl Amhr2-cre 

animals (Med12 cKO) (Figure 2.1C). We used different breeding schemes to generate het Med12 

cKO and Med12 cKO animals to introduce the cre alleles from the males and avoid nonspecific 

maternal cre effects (236). In the Med12fl/+Amhr2-cre females we studied the effects of Med12 in 

a subpopulation of cells, where the expression of the Med12 floxed allele or the wild-type allele 

was dependent on random X chromosome inactivation. In the Med12fl/flAmhr2-cre females we 
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could circumvent this problem, as both alleles were floxed. In our models, Amhr2-cre acts to 

delete the floxed sites flanking Med12 exons 1-7, resulting in ablation of Med12 in the uterine 

mesenchyme and the granulosa cells of the ovary at E13.5.  

Recombination of the Med12flox allele was shown in the uteri of both Med12fl/+Amhr2-cre 

and Med12fl/fl Amhr2-cre females (Figure 2.1D). The Amhr2-cre-mediated floxed allele 

recombination was also specific to the uterus and did not occur in other organs (Figure 2.1E). 

Quantitative real time PCR analysis showed that Med12 mRNA levels were decreased in 

Med12fl/+Amhr2-cre uteri (Figure 2.1F).  We had also generated custom Med12 antibodies to 

determine Med12 localization and expression in the uterus. Utilizing the Med12 antibody we 

performed immunofluorescence and co-stained with α-SMA (cytoplasmic) and DAPI (nuclear) 

(Figure 2.1G). Interestingly, Med12 seemed to be mostly expressed in the myometrial layer of 

the uterus with cytoplasmic expression as observed by the Sma and Med12 merge (orange) and 

nuclear pattern of expression as observed by Med12 and DAPI merge (light blue). The nuclear-

cytoplasmic shuttling pattern has also been observed in a variety of cancer cell lines including 

lung and colon cancer cell lines (237). Quantification of cells expressing Med12 in Med12fl/fl, 

Med12fl/+Amhr2-cre and Med12fl/flAmhr2-cre uteri showed a 20-25% decrease of Med12 in 

Med12fl/+Amhr2-cre uteri and 40% decrease in Med12fl/flAmhr2-cre uteri, both with statistical 

significance (Figure 2.1H).  
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Figure 2.1. Evaluation of Amhr2-cre activity, Med12 recombination and expression in loss of Med12 uteri 

We used mT/mG mice to assess the efficiency of Amhr2-cre recombination. (A) 16-week-old mT/mG mice 
displaying ubiquitous mT (Tomato) expression prior to recombination. (B) 16-week-old mT/mG Amhr2-cre uteri 
display mG (Green) expression in cells having undergone cre-mediated excision. The non-recombined cells still 
display mT expression. (C) Schematic representation of the breeding strategy used to generate Med12 het cKO 
(Med12fl/+ Amhr2-cre) and Med12 cKO (Med12fl/fl Amhr2-cre) females (D) Recombination of Med12 floxed alleles 
in uterine genomic DNA of Med12fl/+ Amhr2-cre (Lane 2) and Med12fl/fl Amhr2-cre (Lane 3) females. Med12 
recombined bands are detected at 330 bp in the genomic DNA of cKO (Lane 2 & 3) but not in the uterine genomic 
DNA of controls (Med12fl/fl). (E) The recombined bands (330 bp) were only detected in the genomic DNA of the 
uterus and not in other tissues such as the liver, heart, or kidneys. (F) Relative Med12 mRNA levels are down-
regulated (5-fold) in uteri of het cKO (n=4) as compared to Med12fl/fl uteri (n=4) (p<0.05). (G) Sections from 
Med12fl/fl, Med12fl/+Amhr2-cre and Med12fl/flAmhr2-cre uteri were co-stained with Med12 antibody, SMA and DAPI 
and analyzed for Med12 expression pattern using immunofluorescence. The white arrows in (G) indicate regions 
with loss Med12 in the uterine myometrial cells (H) About 20% of Med12fl/+Amhr2-cre cells and about 45% of 
Med12fl/flAmhr2-cre uterine cells lack Med12 compared to controls, with statistical significance (p<0.05) (n=3). 
Student’s t test was applied to (F) and ANOVA was carried out t compare the groups in (H). Data is presented as 
mean ± SEM. Scale bars = 50μm (A, B, G). 
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2.3.2 Med12 cKO females have atrophic uteri 

We first evaluated the uteri of Med12fl/+ Amhr2-cre females starting at 6 weeks of age and 

continued to evaluate at 12, 16, 24 and 32-week time points (n=4 at each time point). The 

morphology and histology of Med12fl/+ Amhr2-cre (Figure 2.2 D, G) uteri appeared normal at all 

time points. We did not observe any leiomyoma formation or hyperplasia either in the 

nulliparous or multiparous Med12fl/+ Amhr2-cre females (Figure 2.2B, D, G). These results 

indicated that loss of Med12 was not the likely mechanism of leiomyoma formation.  As random 

X chromosome inactivation may play a role in influencing the results observed in the 

Med12fl/+ Amhr2-cre animals, we decided to generate animals where both Med12 alleles are 

floxed. Similar to the het cKO females, we evaluated the uterine morphology and histology of   

Med12fl/fl Amhr2-cre (Med12 cKO) females at 6,12,16,24 and 32-week age time points. We did 

not observe any pathological changes associated with leiomyoma formation but on the contrary 

we observed hypoplastic reproductive tracts of Med12 cKO females (Figure 2.2A) and 

correspondingly the uterine weights of the Med12 cKO were 50% lesser than that of controls 

(p<0.01) (Figure 2.2B). Histological evaluation also corroborated these findings as the uterine 

myometrial layer was severely diminished (Figure 2.2E, H). In addition, there was a noticeable 

reduction in the number of glandular epithelium (Figure 2.2H). It is possible that the loss of 

Med12 can affect glandular development as the reporter cre experiments show cre recombination 

occurring in glandular epithelium as well (Figure 2.1A). 
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Figure 2.2. Med12fl/fl Amhr2-cre females have hypoplastic reproductive tract 

(A) Gross morphology of 12-week old reproductive tracts, showing healthy control (Med12fl/fl) uteri as
compared to reproductive tracts of Med12 cKO females (Med12fl/fl Amhr2-cre). Uterine weights of control
(n=7), het cKO (n=7) and Med12 cKO (n=7) corroborate these findings with a 50% drop in uterine weights
of Med12 cKO females as compared to controls (p<0.01) (t-test), whereas the uterine weights of Med12fl/+ 

Amhr2-cre mice (n=7) did not significantly differ from that of Med12fl/+. Histological evaluation was
conducted on uteri from 8, 12, 16, 24, 32-week control, het cKO and Med12 cKO females. At 12-weeks
control uteri (C) (Med12fl/fl) were normal. (D) Uteri of het cKO (Med12fl/+ Amhr2-cre) also lacked any gross
abnormalities or leiomyoma-like lesions. (E) Corroborating the gross morphology, the uteri of Med12 cKO,
displayed a hypoplastic uterus, with diminished myometrial thickness and a decrease in the number of
glandular epithelia. The white dotted regions in (C), (D) and (E) are shown at higher magnification in panels
(F), (G) and (H), respectively. Data are presented as means ± SEM. ES-endometrial stroma; MY-
myometrium; EM-endometrium. Scale bars = 2000μm(A) 0.5μm (C,D,E), 100μm (F,G,H).
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2.3.3 Med12 cKO females are infertile 

We next investigated the reproductive and the fertility outcomes of Med12 cKO and het cKO 

females by breeding them with proven male studs for a period of six months. Interestingly, the 

Med12 cKO females were infertile and het cKO females were sub-fertile (p<0.001) (Figure 

3.3A). If the Med12 floxed allele is expressed and excised, then the cell is likely to behave like a 

Med12 cKO, whereas if the cell expresses the wild-type Med12 allele then we would expect the 

cell to behave like wild type. Thus the random pattern of X inactivation in het cKO uteri would 

explain the mosaicism observed in the fertility outcomes of het cKO females (Figure 2.3A). 

Another interesting aspect of our findings is the slight sub-fertility of the Med12 cKO (Med12fl/y 

Amhr2-cre) males (p<0.05) (Figure 2.3B).  Previous reports have shown that in addition to the 

female reproductive tracts, Amhr2-cre is also expressed in Leydig cells (somatic) of the testis 

(238) and the loss of Med12 in these cells could affect male fertility. We also observed an

unexpected discrepancy in the number of males to females with a tendency of higher number of 

males born in each litter. The sex ratio was determined to be about 3:2 (p<0.05) (Figure 2.3C). 

The possibility of sex reversal as a cause of sex ratio discrepancies was ruled out by confirming 

the presence of SRY (sex-determining region Y) gene in several sets of male pups born from the 

Med12fl/y Amhr2-cre and Med12fl/fl mating. 
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Figure 2.3. Evaluation of breeding in Med12 cKO males and females 

(A) Fertility data collected from Med12fl/fl, Med12fl/+ Amhr2-cre and Med12fl/fl Amhr2-cre females by breeding them
with wild-type stud males for a period of six months. The Med12fl/+ Amhr2-cre females are sub-fertile and
Med12fl/fl Amhr2-cre females are infertile (p<0.001). (B) Male fertility data collected from Med12fl/y Amhr2-cre
males also show slight sub-fertility as compared to controls (Med12fl/y) when mated with Med12fl/fl females. (C)
Representative dot plot graph showing the skewed sex ratios in pups born from Med12fl/y Amhr2-cre x Med12fl/fl

mating. The observed male to female sex ratio is 3:2 (p<0.05) (n=10). Data are represented as mean± SEM.
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2.3.4 Ovulation occurs under external gonadotropic stimulus in Med12 cKO females 

Amhr2-cre is expressed in the uterine mesenchyme, oviduct and granulosa cells of the ovary 

(226). Hence, deletion of Med12 in the above regions of the female reproductive tract may either 

contribute individually or collectively to the infertility phenotype observed in Med12 cKO 

females. To define the cause of fertility, we examined the ovarian morphology and histology of 

adult females. Upon histological evaluation, control ovaries (n=5) (Med12fl/fl) at 12-weeks of age 

appeared normal and contained follicles at various stages of follicular development (Figure 2.4 

A, D). Similar to the controls, het cKO ovaries also had normal stages of follicular development 

but had the presence of unique “follicular nest” like structures, described as hyper chromatically 

stained, solid, disorganized cells associated with dying follicles (Figure 2.4 B, E)(239). 

Interestingly, the Med12 cKO ovaries appeared to be of normal size, but there were a number of 

“follicular nests” accompanied by dying follicles suggesting a block in follicular development.   

We next tested the ovulatory response of het cKO   and Med12 cKO ovaries, using   external 

gonadotropic   stimulus.   Superovulation was performed on three-four week age het cKO, 

Med12 cKO and control mice.    No significant differences were seen in the oocyte numbers 

recovered from the ampulla region of the oviduct between the mice of various genotypes (Figure 

2.4G). Correspondingly, the histology of superovulated Med12 cKO ovaries appeared normal 

with follicles of all developmental stages and corpora lutea (CL) present in the ovaries (Figure 

2.4H). These results suggest that despite normal ovulatory response under external gonadotropic 

stimulus, reproductive function is affected. To determine the number of follicles in the Med12 

cKO ovaries, we quantitated non-atretic follicles at secondary, pre-antral, large antral, 

preovulatory, corpora lutea and total atretic follicles in 6-week control (Med12fl/fl) (n=3) and 

Med12 cKO (n=3) ovaries. Upon quantitation, it became evident that the numbers of antral, 
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preovulatory and large antral follicles in the Med12 cKO ovaries were few. There were also a 

remarkably large number of atretic follicles in these ovaries (Figure 2.4I). These results suggest a 

block in follicular development at the secondary follicular stage in the absence of external 

gonadotropic stimulus.  
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Figure 2.4. Assessment of ovarian histology and ovulation assay  

(A) Ovarian histology of 12 week control, Med12fl/fl females (n=5) (B) Med12fl/+ Amhr2-cre females n=5) (C)
Med12fl/fl Amhr2-cre females. Higher magnification of (A-C) is shown in (D-F), respectively. (F) Black arrows
indicate the presence of hyper chromatically stained granulosa cells and accompanying dying follicles indicated by
the collapsing zona pellucida layers in Med12 cKO ovaries. (G) Upon performing superovulation assays the number
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of ovulated eggs did not significantly differ between control (Med12fl/fl) (n=5), Med12 het cKO (n=5) and Med12 
cKO (n=5) females. (H) Histology of 4 week PMSG- hCG treated ovaries. (I) Quantification of secondary, pre-
antral (PA), large-antral (LA), corpus luteum (CL) and atretic follicles in 6-week Med12 cKO ovaries (n=3 pairs). 
Data are presented as mean ± SEM. Scale bars = 0.5μm (A,B,C), 100μm (D,E,F,H). 

2.3.5 Med12 is a maternal effect gene important for somatic cell but not germ cell 

development 

In section 2.3.1, we had shown the Amhr2-cre recombinase activity was about 60%. To increase 

the efficiency of floxed allele deletion in the myometrium and decrease the incidence of 

mosaicism, we utilized oocyte specific growth differentiation factor driven cre (Gdf9-cre) (232) 

and zona pellucida driven-cre (Zp3-cre) (240) to generate Med12fl/- females. The generation of 

Med12fl/- animals is advantageous as the Cre recombinase would have to eliminate floxed allele 

from only 50% of cells. 

We tried generating Med12fl/+ Gdf9-cre mice by mating Med12fl/fl females with Gdf9-cre 

males (Figure 2.5A). Unfortunately we were unable to generate Med12fl/+ Gdf9-cre males or 

females. Typically Gdf9-cre is expressed in oocytes, as early as primordial follicles of PD3 

ovaries (232) but reports have also suggested paternal leaky expression of Gdf9-cre (241). This 

would explain the possible embryonic lethality of   Med12fl/+ Gdf9-cre pups.  

As leaky expression of Gdf9-cre did not work in favor of generating Med12fl/- mice, we 

decided to use Zp3-cre as an alternative. Zp3-cre is expressed at PD10 in the primary follicles of 

the ovary(240). We generated Med12fl/+ Zp3-cre females (Figure 2.5B), where about 50% of the 

follicles would lack Med12 and the rest 50% would have wild-type Med12. Using the Med12fl/+ 

Zp3-cre females we again failed to generate Med12fl/- females, suggesting embryonic lethality of 

pups lacking maternal Med12. We tried an alternative strategy to generate Med12fl/fl Zp3-cre by 

utilizing Med12fl/y Zp3-cre males and mating them with Med12fl/fl females. Using this strategy 
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we were able to generate Med12fl/fl Zp3-cre females (primary oocytes will lack Med12). 

Interestingly, the Med12fl/fl Zp3-cre (n=2) when mated with wild-type proven male studs did not 

give rise to any pups either. We evaluated the ovarian histology of Med12fl/fl Zp3-cre females to 

see if normal oogenesis could occur in the absence of Med12 from the oocytes. Remarkably, 

adult Med12fl/fl Zp3-cre ovaries looked normal with follicles of all developmental stages present 

(Figure 2.5 C, D). The likely explanation for the Med12fl/fl Zp3-cre female infertility is the 

embryonic lethality of pups lacking maternal Med12. These results are consistent with the 

interpretation that Med12 is a maternal effect gene. 
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Figure 2.5.  Breeding schemes to generate Med12fl/- females and evaluation of Med12fl/fl Zp3-cre ovaries 

(A) Breeding scheme used to generate Med12fl/+ Gdf9-cre mice. (B) Illustration of breeding schemes used to
generate Med12fl/fl Zp3-cre mice. We were unable to generate Med12fl/- females using the above two strategies.
(C) Histology of 12-week control, Med12fl/fl ovaries and (D) 12 week Med12fl/fl Zp3-cre ovaries exhibiting
normal oogenesis and ovarian histology. Scale bars= 0.5 μm (C, D).

2.3.6 Med12 cKO uteri infrequently develop tumors other than leiomyomas  

Generally the histology of Med12 cKO uteri revealed hypoplastic uteri but in three of thirty 

Med12 cKO uteri, we observed solid tumors other than leiomyomas. In a 16 week Med12 cKO 

uterus we observed a solid mass and appeared to be either a leiomyosarcoma or solid tumor of 

unknown malignant potential (STUMP) (Figure 2.6A, B). Another 16 week Med12 cKO uteri 
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presented with changes associated with adenocarcinoma (stroma) and necrosis (Figure 2.6C, D). 

The third solid tumor was observed in the uteri 24-week old Med12 cKO female. Upon 

histological examination it was apparent that the tumor was a teratoma as different organ cell 

types were present within the same tumor (Figure 2.6 E, F). Therefore, we could conclude that 

loss of Med12 does not stimulate leiomyoma formation but occasionally stimulates other types 

of solid tumors. 
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Figure 2.6. Solid tumors in Med12 cKO uteri 

(A) A solid tumor in 16 week Med12 cKO uteri. Higher magnification of the tumor cells from (A) is
shown in (B). (C,D) Histology of 16-week Med12 cKO uteri displaying adenocarcinoma-like phenotype
and associated necrosis. (E) Histology of 24-week Med12 cKO uteri displaying a teratoma. (F) Higher
magnification shows different cell types present in the solid tumor, typical of teratoma histology. Scale
bars =1000 μm (E), 0.5μm (A,C), 100μm (B,D,F).
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2.4 DISCUSSION 

Med12 exon 2 mutations occur in about 70% of human leiomyomas, yet the mechanisms of these 

mutations in tumor formation are not understood (159, 161). Med12 is known to act as a 

transcriptional regulator of RNA pol II complex but its role in the uterus or reproductive function 

is unknown (204). Therefore, understanding the mechanism of Med12 in tumor causation and 

reproductive function is important. To address these questions, we generated het cKO and 

Med12 cKO females using the Med12fl/fl (220) and Amhr2-cre (226) mice.  

 The uterine histology of het cKO appeared normal, with the absence of any tumorous 

lesions. Contrary to the phenotype of het cKO females, the uterine phenotype of Med12 cKO 

females was more dramatic with diminished myometrial layers causing hypoplastic uteri. Our 

results show that the depletion of Med12 not only caused uterine histological abnormalities in 

Med12 cKO females, but also rendered them infertile. Interestingly, the het cKO females were 

sub-fertile with large variability in the phenotype. This variability in the phenotype can be 

ascribed to the mosaicism caused due to random X inactivation in the female reproductive tract. 

In addition, deletion of Med12 from the interstitial and Leydig cells of the testis (Med12fl/y 

Amhr2-cre) causes mild subfertility in males. The sex ratios of pups generated from the Med12fl/y 

Amhr2-cre males are also slightly skewed. The reasons for the skewed sex ratios are not clear.  

As Amhr2-cre is also expressed in the ovarian granulosa cells (226), we considered the 

possibility that loss of Med12 in the ovarian granulosa cells could contribute to impaired 

ovulation in Med12 cKO females contributing to the infertility phenotype. Though the size of 

Med12 cKO ovaries appeared to be normal (histology and morphology), there was an apparent 

lack of pre-antral, pre-ovulatory follicles and corpora lutea. Instead, a large number of atretic 

follicles were present in the Med12 cKO ovaries. These results indicated a block in ovulation at 
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the antral follicle stage in Med12 cKO ovaries. Cumulatively, the phenotype observed in the 

uterus and ovaries of Med12 cKO females was reminiscent of ER knockout females (242-244). 

Therefore, it is possible that Med12 may play a role in steroidogenesis, a role that might explain 

the recurrence of Med12 mutations in female specific steroid driven tumors. 

In an attempt to improve the cre efficiency we tried generating Med12fl/- mice using 

oocyte specific Zp3-cre or Gdf9-cre, but were unsuccessful in generating any Med12fl/- pups. It is 

likely that Med12fl/- status resulted in embryonic lethality as maternal Med12 maybe essential to 

complete fertilization and blastocyst formation. Analysis of Med12fl/fl Zp3-cre ovaries showed 

that Med12 was not essential for oogenesis but rather was essential for development, 

maintenance and functioning of the somatic component supporting oocyte growth (granulosa 

cells). The Med12fl/fl Zp3-cre females did not give birth to any pups either. This is likely due to 

the fact that paternal Med12 expression is not sufficient to pass through embryonic development 

resulting in lethality. Rocha and colleagues have also observed similar results upon using CMV-

cre to delete Med12 floxed sites during embryogenesis (221). 

Although we never saw leiomyoma-like lesions, we observed rare occurrences of three 

different solid tumors (3/30) including similar to a leiomyosarcoma, a teratoma and 

adenocarcinoma in the Med12 cKO females. Both Bertsch et al., and Perot et al, have previously 

shown Med12 expression to be inhibited in malignant tumors such as STUMP or 

leiomyosarcomas whereas it was unaltered in benign leiomyomas (164, 172). However it is yet 

to be determined as to what targets are triggered by the loss of Med12 leading to the rare 

occurrence of tumorigenesis in Med12 cKO females. 

In summary, loss of Med12 does not stimulate uterine leiomyomas but causes infertility, 

the mechanism of which is to be determined in the future. 
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3.0  MED12 GAIN OF FUNCTION MUTATION CAUSES LEIOMYOMAS AND 
GENOMIC INSTABILITY  

The majority of the work in Chapter 3 has been published in the Journal of Clinical 
Investigation.  

3.1 INTRODUCTION 

The most common MED12 mutation in leiomyomas among American women is a non-

synonymous variant, c.131G>A, predicted to substitute a highly conserved amino acid glycine 

with aspartic (p.Gly44Asp) (161). We wanted to investigate whether the MED12 mutations 

found in women cause leiomyomas and associated instability, by generating a similarly mutated 

Med12 knock-in mouse model. Typically, in tumors, a missense variant like p53, can act either 

via loss of function; gain of function, or in a dominant negative manner (245). Based on the 

results from Chapter 2, we were able to conclude that Med12 exon 2 variants do not act through 

a loss of function mechanism. We needed to develop a mouse model that would allow us to study 

the mechanism of the Med12 exon 2 variants either in the presence or in the absence of X-

chromosome wild-type Med12.  We designed a strategy such that the most common human 

Med12 exon 2 missense variant (c.131G>A) was engineered into a cDNA and was inserted into 

the autosomal ROSA locus. Using these mice, we generated models where Med12 missense 

variant c.131G>A was expressed either with or without X-chromosome wild-type Med12 and 

have shown that Med12 exon 2 variants cause leiomyomas in a gain of function manner. Further, 
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we have investigated the genomic landscape of these tumors, only to reveal that the Med12 exon 

2 mutations can also cause associated genomic instability, which may ultimately contribute to 

tumor progression.  

3.2 MATERIALS AND METHODS 

Generation of Med12 Rosa knock-in mice 

Med12 mutated ROSA knock-in mice were generated by introducing the most common missense 

mutation encountered in leiomyomas of American women, c.131G>A (p.Gly44Asp) (161), into 

the Med12 cDNA of the mice. Full-length mouse Med12 cDNA (8.6 kb) was cloned into pEntry 

vector (Invitrogen) in a stepwise fashion. Initially, a small fragment of Med12 (1.6 kb) fragment 

was amplified via PCR from mouse newborn ovary cDNA, using the following primer set: 

pEntry-mMed12 F: CACCATGGCGGCTTTCGGGATCTT and pEntry-mMed12 

R1: GCGGCCGCGAATTCTACTCGCTCACTT. The longer fragment of Med12 (6.5 kb) was 

then obtained through digestion of the Med12 EST clone (BC057119, GE Dharmacon) with 

EcoRI and NOTI. Finally, the smaller fragment was ligated with the larger fragment, and the 

full-length Med12 sequence (8.1 kb) was confirmed by Sanger sequencing. Site-directed 

mutagenesis was performed using QuikChange Multi Site-Directed Mutagenesis Kit 

(Stratagene), with Mde12131AF: 

ACGGCTTTGAATGTAAAACAAGATTTCAATAACCAGCCTGCTGTC and 

Mde12131AR:GACAGCAGGCTGGTTATTGAAATCTTGTTTTACATTCAAAGCCGT 

primers used according to manufacturer instructions. pROSA26-DV1 vector was used to target 

the ROSA26 genomic locus (246). Mutated Med12 cDNA was inserted into the pROSA26-DV1 
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vector, using LR Clonase Enzyme Mix (Invitrogen). Electroporation was performed, using G4 

ES cells, at the MWRI transgenic core. Two ES cell clones were selected for blastocyst injection 

after confirming appropriate integration into the ROSA26 locus using Rosa26 5' probe (Rosa 5' 

probe F: GCTCAGAGACTCACGCAGCCCTAGT and Rosa 5' probe R: 

AGAGTAGGGGGAGGGGAAGAGTCCT) and Rosa26 3' probe (Rosa 3' probe 

F:CTCCCAAGTGTTGGGAACTAAAGATA and Rosa 3' probe 

R: GCTACATCCTGATCTAGTCCTGAA) (Figure3.1A, B).  

 

Animal care and experimentation 

All procedures were approved by the University of Pittsburgh Institutional Animal Care and Use 

Committee and are in accordance with the NIH Guide for the Care and the Use of Laboratory 

Animals. Med12 ROSA knock-in mice were maintained on a FVB/C57BL/6/129SV background. 

The DNA from tail biopsies was used to confirm the genotypes, using standard PCR protocols. 

The primer sets used for genotyping Med12 ROSA knock in mice include: Rosa A: 

AAAGTCGCTCTGAGTTGTTAT, Rosa B: GCGAAGAGTTTCTCCTCAACC, and Rosa C: 

GGAGCGGGAGAAATGGATATG. The genotyping protocol was as follows: 95οC 5:00, 94οC 

0:30, 60οC 0:30, 72οC 0:30, 72οC 7:00 for 34 cycles. Breeding pairs were set up at 6 weeks of 

age, and litters were weaned at 3 weeks. All animals were housed under a 12-hour light, 12-hour 

dark schedule and provided food and water ad libitum. 

 

Histological Analysis 

Gross morphology and histology assessments were performed on adult female mice. Prior to 

harvesting the uteri, all females were estrous synchronized with IP injections of 5 IU PMSG 
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followed by 5 IU of hCG after 48 hours. Females were euthanized 20 hours after hCG 

administration, and uteri were fixed in 10% formalin, processed, embedded in paraffin, serially 

sectioned (6 µm), and stained with hematoxylin and eosin. For frozen sections, tissues were 

embedded in O.C.T. medium and were, snap-frozen in liquid nitrogen. Sections were obtained 

using a Leica cryostat (6 µm). At least three pairs of uteri of each genotype were subjected to 

gross and microscopic analysis for each time point. Uteri were also subjected to Masson’s 

Trichrome staining (American MasterTech) according to the manufacturer’s protocol. Images 

were acquired using an Axio Scope.A1 microscope (Zeiss) equipped with a digital camera 

(Zeiss) and an AxioVision (v4.8) imaging software. 

 

Immunohistochemistry and immunofluorescence 

Immunohistochemistry was performed on 6-µm paraffin sections and subjected to antigen 

retrieval with 10 mM sodium citrate (pH 6.0) for 20 minutes. In order to quench endogenous 

peroxidase, sections were treated with 3% hydrogen peroxide and then blocked with 3% bovine 

serum albumin for 45 minutes, followed by incubation with anti- SMA antibody (A5228, Sigma 

Aldrich) overnight at 4°C. After primary antibody incubation, sections were washed and 

incubated in biotinylated secondary antibody for 30 minutes, followed by ABC reagent 

(Vectastain for amplification of signal intensity). DAB Peroxidase Substrate Kit (Vector 

laboratory) was then used to develop the immunoreactive signals. Immunofluorescence was 

conducted on 6-µm frozen sections, using a similar protocol, except that the secondary 

antibodies were Alexa Fluor 488 (Life Technologies) and Alexa Fluor 647 (Life Technologies). 

Primary Anti-FLAG (F7425, Sigma Aldrich) antibody was used for immunofluorescence. The 

sections were mounted with Vectashield mounting medium containing DAPI. Images were taken 
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with a Nikon A1 confocal microscope equipped with a digital camera and NIS-Elements 

software (Nikon).  

 

Western blot analysis 

For Western blots, Nuclear and cytoplasmic extracts were prepared from pulverized mouse 

uterine samples as described previously (247). Equal amounts of protein were loaded and 

resolved on 3-8% Tris-acetate gels (Life Technologies). Membranes were then incubated in 

either anti-FLAG (F7425, Sigma Aldrich) or β-tubulin antibodies (T0198, Sigma Aldrich) 

overnight at 4°C. The following day, the membranes were washed and incubated in respective 

secondary antibodies for 1 hour and developed using ECL-Prime (GE, Amersham). 

 

DNA isolation 

Genomic DNA was isolated from frozen tissue samples using DNeasy Blood & Tissue Kit 

(Qiagen) according to the manufacturer’s protocol and was quantitated using both NanoDrop 

spectrophotometer (Thermo Scientific) and Qubit (Life Technologies). 

 

Array CGH 

Agilent SurePrint G3 Mouse Genome CGH 180K microarray kits were used to conduct array 

CGH on mouse uteri. Genomic DNA from uteri of four Med12fl/+ Med12Rmt/+ Amhr2-cre females 

was used as the “experimental” DNA and corresponding littermate control females without 

Amhr2-cre (Med12fl/+ Med12Rmt/+) as the “reference” DNA. The samples were labeled, 

hybridized, and scanned according to the manufacturer’s protocol. Briefly, 750 ng of 

experimental and reference DNA were digested with Alu I and Rsa I (Promega) and labeled with 
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Cy3-dCTP (experimental) or with Cy5- dCTP (reference). The labeled DNA was purified and 

hybridized, and the arrays were washed, and scanned using an Agilent G2565CA Microarray 

Scanner. Raw data were obtained by Agilent Feature Extraction software and imported into the 

Agilent Genomic Workbench 7.0 software for analysis. DNA copy number changes were 

detected by Genomic Workbench software. The ADM-2 statistical algorithm was used with a 

sensitivity of 6.0. The criteria for making aberration calls included positive calls by the software, 

log2 ratios of >0.25 or less than <-0.25, and the presence of three consecutive affected probes. 

 

Human syntenic mapping 

Mouse chromosomal aberrations were mapped onto human chromosomal loci using the UCSC 

genome browser LiftOver tool (http://genome.ucsc.edu). The gene lists for the human intervals 

were determined by the microarray core website developed jointly by the University of Miami 

and Oklahoma University (www.ccs.miami.edu/cgi-bin/ROH/ROH_analysis_tool.cgi). 

 

Reverse transcription and Med12 variant expression detection 

Total RNA was isolated from frozen uteri using the RNeasy Mini Kit (Qiagen). One microgram 

of total RNA was reverse transcribed using Superscript III reverse transcriptase (Invitrogen).  

Med12 exon 2 C.131 G>A variant was evaluated in mutant mouse uteri by performing PCR on 

cDNA, followed by Sanger sequencing with primers using the following forward and reverse 

oligonucleotide that flanked the Med12 exon 2 C.131 G>A variant: Med12 

F: ATGGCGGCTTTCGGGATCTT and Med12 R: AGTTGGAACTGATCTTGGCAGG 

primers, designed within Primer3 (http://bioinfo.ut.ee/primer3-0.4.0). Sequencing results were 

analyzed using Sequencher software (Gene Codes Corporation). 

http://www.genome.ucsc.edu/index.html
http://www.ccs.miami.edu/cgi-bin/ROH/ROH_analysis_tool.cgi
http://bioinfo.ut.ee/primer3-0.4.0
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Statistical analysis 

Two-tailed Student’s t-test was applied to determine the difference of means among groups using 

GraphPad Prism 4.0 software (GraphPad Software, CA, USA). Significance was defined at 

p<0.05. 

3.3 RESULTS 

3.3.1 Generation of mutant Med12 Rosa knock in mice (c.131G>A) 

We investigated whether the Med12 c.131G>A variant caused leiomyoma formation, by 

generating a floxed Med12 mutant knock-in mouse model (Figure 3.1A, B). We engineered the 

c.131G>A variant into the mouse Med12 cDNA (Med12mt) fused with a FLAG tag, subcloned it

into the pROSA26-DV1 vector, and integrated it into the autosomal ROSA26 genomic locus. The 

presence of the FLAG reporter, allowed us to distinguish the expression of mutant Med12 from 

wild-type Med12 (Figure 3.1D, F). The mice generated were heterozygous for mutant Med12 

cDNA at the ROSA26 locus (Med12Rmt/+). We mated Med12Rmt/+ with Amhr2-cre mice to 

conditionally express mutated Med12 (c.131G>A) as early as E13.5 in the mouse uterine 

mesenchyme (226). Upon Cre mediated recombination, mutated Med12 expression is driven by 

the ROSA promoter at the ROSA locus.  All the breeding strategies used to generate the mice in 

this chapter have been shown in Figure 3.2 (C, D). 
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Figure 3.1. Generation of ROSA26 Med12 mice that conditionally express Med12 c.131G>A variant 

(A) Mouse Med12 cDNA was mutated and inserted into the pROSA26-DV1 vector (pROSA26DV-1 Med12
c.131G>A) and electroporated into G4 ES cells for homologous recombination with ROSA26 genomic locus
to generate ROSA26 Med12 c.131G>A mice. Mutated Med12 transcripts expressed from the ROSA26 locus
are fused with FLAG and GFP. (B) Southern blot on DNA extracted from recombined G4 ES cells shows
targeting of mutated Med12 to the ROSA26 locus. Probes corresponding to the 5' (blue) and 3' (orange)
targeting ends are expected to generate 17-Kb wild-type and 8.4-kb mutant fragments and 37-kb wild-type
and 8.8-kb mutant fragments, respectively, when genomic DNA is digested with Sac I and Kpn I enzymes.
(C) Uteri from mice that carry the mutation in the absence of Amhr2-cre (Med12fl/+ Med12Rmt/+) do not
express mutant mRNA, while in the presence of Amhr2-cre (Med12fl/+ Med12Rmt/+ Amhr2-cre), uteri show
significant expression of mutant c.131G>A variant (green chromatogram peak, black arrows). (D) Western
blot analysis shows expression of mutant Med12 protein fused with FLAG in Med12Rmt/+ Amhr2-cre uteri as
compared to control (Med12Rmt/+) uteri that are devoid of Amhr2-cre. Tubulin is used as a loading control.
(E,F) Immunostaining with FLAG antibody shows FLAG expression as a marker for mutant Med12
expression in uteri of Med12fl/+ Med12Rmt/+ Amhr2-cre females but not in control uteri (Amhr2-cre). Green:
FLAG expression, Red: DAPI staining. Scale bars = 50µm (E,F).
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Figure 3.2 Models and breeding schemes of mice used in Chapter 3 
(A) Mouse model 1 (Med12fl/+ Med12Rmt/+ Amhr2-cre). A subset of cells express Med12 c.131G>A variant from the
autosomal ROSA locus while X-chromosome–derived Med12 will either be conditionally excised at one locus or
silenced by X-chromosome inactivation at the other locus. Transcription from mutant autosome (Amt/+) is shown by
the arrow, and the promoter region is depicted in green. The blue star indicates Med12 c.131G>A variant. The pink
star indicates the floxed Med12 allele on the X-chromosome (Xcko), which in the presence of Amhr2-cre will lose
exons 1-7. In the cells where Med12 floxed allele is subject to X inactivation inactivated, wild-type Med12 will  be
expressed. In cells with an active Med12 floxed allele, only mutant Med12 will be expressed. The red chromosome
indicates the inactivated X. (B) Mouse model 2 (Med12Rmt/+ Amhr2-cre). A subset of cells that express Amhr2-cre
will express Med12 c.131G>A variant from the autosomal ROSA locus in the presence of X-chromosome wild-type
Med12. Transcription from mutant autosome (Amt/+) is shown by the arrow, and the promoter region is depicted in
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green. Med12 c.131G>A variant is depicted by a blue star. The red chromosome indicates the inactivated X. (C) 
Breeding schemes used to generate Med12fl/+ Med12Rmt/+ Amhr2-cre, Med12fl/fl Med12Rmt/+ Amhr2-cre, Med12fl/fl 

Med12Rmt/mt Amhr2-cre. (D) Breeding schemes used to generate Med12Rmt/+Amhr2-cre and Med12Rmt/mt Amhr2-cre 
females. 

3.3.2 Expression of the Med12 c.131G>A variant on the background of conditional Med12 

knockout causes leiomyomas 

We investigated whether uterine leiomyomas will form in mice that express the Med12 

c.131G>A variant on a conditional knockout background (Figure 3.2A). In this model, we

generated Med12fl/+ Med12Rmt/+ Amhr2-cre females, such that a subset of uterine cells will 

express Med12 c.131G>A on an X-chromosome Med12-null background (Figure 3.2A, C). We 

analyzed the Med12fl/+ Med12Rmt/+ Amhr2-cre female reproductive tracts at 8, 12, 16, 24 weeks 

of age (n=5 at each time point). Nulliparous Med12fl/+ Med12Rmt/+ Amhr2-cre females presented 

with pathological changes associated with leiomyoma formation as early as 8 weeks (Figure 3.3 

B). Histological evaluation revealed that, beyond 12 weeks, 70% of the uteri contained lesions 

consistent with leiomyomas (248). These lesions consisted of extracellular matrix (ECM) 

deposits accompanied by infiltration of fibroblasts and macrophages, hyperplasia, and 

disorganized muscle fiber arrangement leading to complete destruction of myometrial 

architecture (Figure 3.3D-N). Med12fl/+ Med12Rmt/+Amhr2-cre mutant uteri expressed mutant 

Med12 as shown by expression of FLAG, which is fused to mutant Med12 in our ROSA 

construct (Figure 3.1F). The uteri of Med12fl/+ Med12Rmt/+Amhr2-cre females consistently 

weighed 40-50% higher (all time points) compared to Med12fl/+ Med12Rmt/+ uteri (p<0.05) 

(Figure 3.O). 
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It has been noticed that estrogen and progesterone promote leiomyomatous growth, and 

30% of leiomyomas in human pregnancies increase in volume as elaborated in section 1.2.1 (45). 

To corroborate these observations, we studied the effects of mouse parturition on leiomyoma 

growth. Eighty percent of multiparous Med12fl/+ Med12Rmt/+ Amhr2-cre females had leiomyoma-

like lesions. Multiparous Med12fl/+ Med12Rmt/+ Amhr2-cre females often had either grossly 

visible large leiomyomas (Figure 3.4 A) or multiple small leiomyoma-like nodules (Figure 

3.4D). Histology confirmed that these tumors arose from the smooth muscle layer of the uterus 

and consisted of whorled fascicles of fusiform smooth muscle cells with an abundance of 

eosinophilic cytoplasm and ECM deposits (Figure 3.4B, C, E, F), consistent with the pathology 

seen in human uterine leiomyomas. Large tumors were often necrotic, hemorrhagic, and fibrotic. 

In addition, characteristic of leiomyomas, all tumors stained positive for smooth muscle actin 

and showed an abundance of collagen deposits when stained with Masson’s Trichrome stain 

(Figure 3.5A, B). These tumors also expressed estrogen receptor ER-α. (Figure 3.5C), supporting 

our hypothesis that leiomyomas are hormone dependent for their growth (248).  
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Figure 3.3. Histological evaluation of uteri from nulliparous Med12fl/+ Med12Rmt/+Amhr2-cre females 

Control animals (Med12fl/+ Med12Rmt/+) at each time point show normal uterine histology (A,C,G,K) ; a magnified 
view of the white box shows normal endometrial stroma (ES) and myometrium (MY) in (E,I,M). (B) Pathological 
changes associated with leiomyomas begin as early as 8 weeks of age in the uteri expressing Med12 c.131G>A 
variant on the background of conditional loss of Med12 (Med12fl/+ Med12Rmt/+Amhr2-cre). These uteri often display 
characteristic patterns of leiomyoma development, with the presence of ECM deposits and the appearance of 
dispersed nuclei. Evaluation of uteri at (D,F)12 week, (H,J) 16 week and at (L,N) 24 weeks of age display 
leiomyoma-like lesions with features including hyperplasia, fibrosis, ECM deposits and disrupted smooth muscle 
fibers. The white dotted lines in (D,H,L) outline leiomyomas. (O) Representative of hyperplasia, mutant uteri 
weights were higher at 24 weeks than controls ***(p <0.001).  
Data are presented as mean ± SEM. LM-leiomyoma; ES-endometrial stroma; MY-myometrium; EM-endometrium. 
Scale bars = 0.5μm (C,D,G,H,K,L), 100μm (A,B,E,F,M,N), 50μm (I,J). 
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Figure 3.4.   Multiparous Med12fl/+ Med12Rmt/+Amhr2-cre females develop spectacular leiomyoma-like lesions 
similar to human leiomyomas 

(A) 18-week multiparous Med12fl/+ Med12Rmt/+ Amhr2-cre reveals a 4-mm tumorous lesion (white dotted lines). (B)
Histological examination confirms the presence of a large leiomyoma nodule growing from the smooth muscle layer
of the uterus. A higher magnification of the black boxed neoplastic area appears in (C), showing the presence of
fascicles with plump spindle cells, eosinophilic cytoplasm and ECM deposits. (D) 24-week-old Med12fl/+

Med12Rmt/+ Amhr2-cre multiparous female exhibiting multiple nodules (white arrows). (E) Multiple leiomyoma
nodules are outlined by black dotted lines, the black box, shown at higher magnification in (F), highlighting fibrosis
and ECM deposition. About 80% (8/10 females) exhibited leiomyoma-like lesions and hyperplasia. LM-
Leiomyoma; ES-Endometrial stroma; MY-Myometrium. Scale bars = 2000µm (A,D), 1000µm(B), 500µm
(E),100µm (F), 50 µm(C).

Figure 3.5. Molecular characterization of leiomyoma-like lesions 

(A) Representative image from Med12fl/+ Med12Rmt/+ Amhr2-cre uteri, showing immunoreactivity to anti-SMA
antibodies and staining with Masson’s Trichrome. Anti-SMA antibodies show immunoreactivity (brown) in the
leiomyoma-like lesion (LM) outlined with a dotted black line. SMA is a marker for smooth muscle cells.  (B)
Collagen deposits within the uterine tumors stain blue with Masson’s Trichrome (B). Red stains show muscle fibers;
the blue stain indicates an abundance of collagen deposition in the tumor lesion, a known characteristic of
leiomyomas. Med12fl/+ Med12Rmt/+ Amhr2-cre uteri also stain positive for ER-α. ES- endometrial stroma; MY- 
myometrium; E- endometrium bars = 0.2μm (A), 100μm (B, C).
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We also generated more complex mouse models to determine increasing the expression of 

mutant Med12 and diminishing the expression of WT Med12 would result in different 

phenotypic effects from the above-described outcomes. We generated and analyzed the uterine 

histology of 16-week Med12fl/fl Med12Rmt/+ Amhr2-cre (n=4) and Med12fl/fl Med12Rmt/mt Amhr2-

cre (n=1). We were only able to analyze one female of the Med12fl/fl Med12Rmt/mt Amhr2-cre 

genotype, as the frequency of females born with this genotype was very low. The uteri of 16-

week nulliparous Med12fl/fl Med12Rmt/+ Amhr2-cre (Figure 3.6 C, F) and Med12fl/fl Med12Rmt/mt 

Amhr2-cre females were analyzed and found to have a phenotype (Figure 3.6 I, K) similar to that 

of Med12fl/+ Med12Rmt/+ Amhr2-cre females with the appearance of dispersed smooth muscle 

cells interspersed with ECM deposits leading to fibrosis. As reviewed in Chapter 2, Med12fl/fl

Amhr2-cre females are infertile. Interestingly, the Med12fl/fl Med12Rmt/+ Amhr2-cre females were 

also infertile and therefore we could only analyze the uteri of nulliparous females.  However, a 

remarkable observation was that the Med12fl/fl Med12Rmt/+ Amhr2-cre uteri often had hyperplasia 

with uterine weights 50-60% higher than that of Med12fl/fl Amhr2-cre uteri (p<0.05) (Figure 3.6 

G). This suggested that the mutant Med12 expression could rescue the histology but not the 

fertility-related function of WT X-chromosome Med12.  These results indicate that the Med12 

c.131G>A variant causes leiomyoma-like lesions in mice in a dominant manner, and probably

acts via gain of function mechanism with a novel gene function. 
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Figure 3.6. Histological evaluation of uteri from Med12fl/fl Med12Rmt/+ Amhr2-cre, Med12fl/fl Amhr2-cre and 
Med12fl/fl Med12Rmt/mt Amhr2-cre females 

(A) 16-week Control animals (Med12fl/fl Med12Rmt/+) show normal uterine histology; a magnified view of the white
box shows normal endometrial stroma (ES) and myometrium (MY) in (D). (B) Med12fl/fl Amhr2-cre mice
generated on the C57/B6/129Sv/FVB background show hypotrophic uteri, similar to that of Med12fl/fl Amhr2-cre
mice generated on the C57/B6/129Sv background. (C) The uterine histology of Med12fl/fl Med12Rmt/+ Amhr2-cre
mice on the contrary shows hyperplasia with greater myometrial thickness and ECM deposits as observed in (F),
compared to the myometrium of Med12fl/fl Amhr2-cre mice in (E). (G) This difference is quantified by uterine
weights shown in (G) where the uterine weights of Med12fl/fl Amhr2-cre mice are 50% than that of controls; whereas
the uterine weights of Med12fl/fl Med12Rmt/+ Amhr2-cre females is cumulatively 50% greater than that of control and
Med12fl/fl Amhr2-cre mice (p<0.005). (H) Uterine histology of nulliparous 16-week Med12fl/fl Med12Rmt/mt female
with normal uterine histology with the outlined white box shown at a higher magnification in (J). (I) Uterine
histology of 16-week nulliparous Med12fl/fl Med12Rmt/mt Amhr2-cre females displaying the presence of leiomyoma-
like lesions with the presence of ECM deposits and dispersed pattern of nuclei. Higher magnification of the outlined
white dotted lines is shown in (K) where we observe a leiomyoma-like lesion. Error bars represent mean ±S.E.M.
Asterisk indicates significance using ANOVA test where **p<0.005. LM-leiomyoma; ES-endometrial stroma; MY-
myometrium; EM-endometrium. Scale bars = 0.5μm (A,B,C,H,I), 100μm (D,E,F,J,K).
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3.3.3 Med12 c.131G>A variant can cause uterine leiomyomas on WT background 

We investigated if leiomyoma-like lesions were also present when Med12 c.131G>A variant was 

expressed on the WT background (Figure 3.1B). To accomplish this, we generated animals that 

express mutant Med12 from an autosomal locus in the presence of wild-type Med12 expressing 

from the X chromosome (Med12Rmt/+ Amhr2-cre) by crossing Med12Rmt/mt and Amhr2-cre mice 

(Figure 3.1B, 3.2D). Uteri from nulliparous Med12Rmt/+ Amhr2-cre and control mice 

(Med12Rmt/+) were examined at 8, 12, 16, 24, and 32 weeks of age, and subjected to 

histomorphological evaluation. At 8 weeks of age, no leiomyoma-like lesions were observed in 

Med12Rmt/+ Amhr2-cre females (Figure. 3.7 B). Beyond 12 weeks of age, in addition to 

hyperplasia, we observed leiomyomas in 50% of Med12Rmt/+ Amhr2-cre mutant uteri, which 

were characterized by ECM deposits and disorganized pattern of smooth muscle fiber 

arrangement (Figure 3.7D-R). No such abnormalities were observed in control nulliparous 

females (Med12Rmt/+) at any time point (Figure. 3.7 C-Q). Uteri that expressed mutant Med12 

weighed 20-30% more than control uteri with statistical significance (P<0.05) (Figure 3.7S). 

Similar to the previous model, multiparous Med12Rmt/+ Amhr2-cre females revealed nodules that 

histologically resembled human leiomyomas due to deposition of ECM and, whorl formation 

and, with fewer nuclei present (Figure 3.8B, D). We assessed the uterine histology of both 

nulliparous and multiparous Med12Rmt/mt Amhr2-cre females (n=4, per group)  to explore 

whether the expression of homozygous Med12 variant on a WT background would adversely 

affect the phenotypic outcome. The uterine histology of 16 week Med12Rmt/mt Amhr2-cre 

revealed no significant differences from the uterine histology (Figure 3.9 B,D,E,G,I) of 

Med12Rmt/+ Amhr2-cre females of the same age, both with presentation of disrupted smooth 

muscle fibers interspersed with ECM deposits. These results further reinforce the hypothesis that 
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the Med12 variant causes leiomyomas in a dominant fashion. In contrast to the previous model, 

where Med12 c.131G>A variant was 80% penetrant when expressed on the conditional knockout 

background (Med12fl/+ Med12Rmt/+ Amhr2-cre), the penetrance for leiomyomatous formation of 

Med12 c.131G>A variant on WT background was 50%. Moreover, we never observed large 

leiomyoma-like lesions in Med12Rmt/+Amhr2-cre females as we did in Med12fl/+ Med12Rmt/+ 

Amhr2-cre mice (Figure 3.4). Our results show that the Med12 missense variant c.131G>A 

causes uterine hyperplasia and leiomyomas in the background of both wild type X chromosomes 

or conditional Med12 knockout.  In the background of conditional Med12 deletion, leiomyoma-

like lesions tend to have earlier onset and achieved greater size.  Med12 missense variant 

c.131G>A variant therefore acts as a gain of function mutation.
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Figure 3.7. Histological evaluation of uteri from nulliparous Med12Rmt/+Amhr2-cre females 

Control animals (Med12Rmt/+) at each time point show normal uterine histology (A,C,G,K,O) ; a magnified view of 
the white box shows normal endometrial stroma (ES) and myometrium (MY) in (E,I,M,Q). (B) 8 week old 
Med12Rmt/+Amhr2-cre mice do not show any distinct pathological changes associated with leiomyoma formation. 
The uteri of Med12Rmt/+Amhr2-cre females begin to show ECM deposits and dispersed muscle fibers associated 
with leiomyomas at (D, F) 12-weeks of age. These changes progressively increase with age as observed at (H, J) 16 
weeks, (L, N) 24 weeks of age and ultimately give rise to large fibrotic leiomyoma-like lesions as observed at (P,R) 
32 weeks of age. The white dotted lines outline leiomyomas IN (F,P) or magnified areas (D,H,L). (S) Representative 
of hyperplasia, mutant uterine weights were higher at all ages examined as compared to the controls *(p <0.01).  
Data are presented as mean ± SEM. LM-leiomyoma; ES-endometrial stroma; MY-myometrium; EM-endometrium. 
Scale bars = 2000μm (L,P) 0.5μm (A,B,C,D,G,H,K,O), 100μm (E,F,M,Q), 50μm (I,J,N,R). 
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Figure 3.8 Multiparous Med12Rmt/+ Amhr2-cre uteri develop prominent leiomyomas 

(A, C) Uteri from control mice, Med12Rmt/+, that, in the absence of Amhr2-cre, do not express Med12 
c.131G>A variant and show normal cross-sectional histology. (B, D) Uteri of Med12Rmt/+ Amhr2-cre mice
that express the Med12 c.131G>A variant and reveal leiomyoma-like lesions in ~47% females, with typical
sparse nuclear arrangement, nodular pattern of cellular growth, and ECM deposition (black dotted lines)
LM-Leiomyoma; ES-Endometrial stroma; MY-Myometrium; EM-Endometrium. Scale bars = 500μm
(A,B), 100μm (C,D).
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Figure 3.9 Histological evaluation of uteri from nulliparous and multiparous Med12Rmt/mtAmhr2-cre females 

(A, C) Uteri from control mice, Med12Rmt/mt, that, in the absence of Amhr2-cre, do not express Med12 c.131G>A 
variant and show normal histology. (B, D) 16-week uteri expressing homozygous Med12 c.131G>A variant,  
(Med12Rmt/mtAmhr2-cre) develop leiomyoma-like lesions as observed by the presence of ECM deposits and 
disorganized pattern of nuclei. The incidence and presentation of leiomyomas in the uteri of Med12Rmt/mtAmhr2-cre 
females was very similar to that of Med12Rmt/+Amhr2-cre females. (E) Representative of hyperplasia, mutant uteri 
weights was higher in mutant uteri as compared to controls (p <0.01). (G,I)  Multiparous Med12Rmt/mtAmhr2-cre 
uteri also develop prominent leiomyomas as previously observed in the uteri of multiparous Med12Rmt/+Amhr2-cre 
females. The white dotted lines outline the leiomyoma-like lesions. Data are presented as mean ± SEM. LM-
Leiomyoma; ES-Endometrial stroma; MY-Myometrium; EM-Endometrium. Scale bars = 500μm (A,B,F,G), 100μm 
(C,D,H,I). 
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3.3.4 Med12 mouse mutations and genomic instability 

To understand the underlying mechanisms of mutated Med12 driven tumor development, we 

investigated the genomic landscape of the mouse tumors by performing array comparative 

genomic hybridization (aCGH) on four uteri with leiomyoma-like lesions (Med12fl/+Med12Rmt/+ 

Amhr2-cre) and compared them to uteri from littermate controls without Amhr2-cre 

(Med12fl/+Med12Rmt/+). Aberrations were called as deletions or duplications based on the 

logarithmic values of probe signal intensities as shown in Table 3.1.  

Table 3.1 Table of logarithmic signal intensity ratios to interpret aCGH data 

Log ratios Deletion Duplication 

0/2( -ξ) homozygous 

1/2 (-1) heterozygous 

3/2 (0.58) heterozygous 

4/2 (1) homozygous 

>1 Amplification 

The log ratios, which were not whole numbers, such as ±0.3 or ±1.25, were considered as 

mosaic aberrations. The tumors from each of the four uteri showed a range of chromosomal 

abnormalities (approximately 40 abnormalities per tumor), with chromosomes 2, 7, 14 and 17 

being most frequently affected (Figure 3.10A). An example of a deletion and duplication seen in 

the tumors is shown in Figure 3.10B. Genes in these regions were carefully annotated, 

eliminating common CNVs present in the Welcome Sanger Trust database. The affected regions 

often consisted of genes targeting cell cycle checkpoints or common tumor signaling pathways 



81 

such as Ras, Wnt/β-catenin, Tp53/Rb, NF-kappaβ, and Tgfβ signaling. The complete list of 

aberrations in the uteri of Med12fl/+Med12Rmt/+ Amhr2-cre females is shown in Appendix Table 

5.2. Microarray analysis on genomic DNA from Med12fl/+Med12Rmt/+ Amhr2-cre uteri 

additionally showed a few affected genomic regions with a pattern consistent with focal 

chromothripsis-like alterations (180) (Figure 3.10C). Chromothripsis has been previously 

described by Mehine et al in human uterine leiomyomas as well (178). 

We also mapped these aberrations to the human genome (hg19) to determine regions of 

synteny between mouse and human chromosomes. Approximately 50% of the mouse aberrations 

had syntenic counterparts on human chromosomes (Appendix Table 5.3), and a number of these 

regions are known to be rearranged in human leiomyomas (Table 3.2). For example, mouse 

chromosome locus 17qA3.3, duplicated in Med12fl/+Med12Rmt/+ Amhr2-cre uteri (Figure 3.11A), 

maps to the human 6p21 locus. Similarly, in another Med12fl/+Med12Rmt/+ Amhr2-cre uterus, a 

deletion of the 4qD2.3 locus is syntenic to the human 1p36.1-p35 region (Figure 3.11B). 

Genomic rearrangements in 6p21 and 1p36.1-p35 are common in human leiomyomas. These 

results suggest that Med12 exon 2 mutations are precursors to genomic rearrangements and 

therefore can lead to an unstable genome and which drives tumor progression.  
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Figure 3.10 Representative array profiles of Med12fl/+Med12Rmt/+ Amhr2-cre tumors 

(A) Representative genomic view of  a Med12fl/+Med12Rmt/+ Amhr2-cre tumor showing 19 mouse chromosomes on
the left and the log of signal intensity ratios on the right. We observe numerous deletions (Red arrows) and
duplications (black arrows) throughout the genome of this tumor. (B) Representative example of mosaic gain
followed by a loss of region 18qA1 (chr18: 8457226- 10017847). This region of approximately 345 kb encompasses
the genes Fzd8, Ccny, Cetn1, Thoc1, Usp14, and Colec12. (C) Chromosome view of mouse chromosome 14 of
Med12fl/+ Med12Rmt/+ Amhr2-cre uteri showing chromothripsis.
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Figure 3.11 Representation of human syntenic mapping of uterine rearrangements in mouse Med12fl/+

Med12Rmt/+ Amhr2-cre females  

(A) Genomic duplication observed on mouse chromosome locus 17qA3.3 is syntenic to the human 6p21 locus,
shown in blue. Representative array profile of the 17qA3.3 region, highlighting the 450 kb duplication (chr17:
30586287- 31049473), is also shown. (B) Genomic deletion observed on mouse 4qD2.3 locus is syntenic to the
human chromosome locus 1p36.1-p35. The mouse deletion encompasses 137 kb and is shown in the respective array
profile (chr4: 132799884-132936192). Positions are displayed approximately to scale according to the hg19 and
mm9 physical maps, respectively.
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Table 3.2 Regions shared between human and mouse leiomyomas 

Med12fl/+ Med12Rmt/+ Amhr2-cre uteri chromosomal aberrations and corresponding human syntenic 
regions implicated in human leiomyomas. 

3.3.5  Expression of mutant Med12 in myometrial cells using the Myosin heavy chain 11- 

cre (Myh11-cre) 

We had shown earlier in Chapter 2 that the Amhr2-cre recombination efficiency was 

approximately 50%.  We also wanted to investigate the penetrance and the effects of mutant 

Med12 expression on the phenotype and the penetrance of the Med12 Rosa knock-in model by 

Chr Gain/Loss Size (kb) Genes in region Human 
Syntenic 
loci 

1qH5 Mosaic 
gain 

104 Rab3gap2-TgfB signaling, 
Iars2- cell cycle checkpoint 
network 
Bpnt1-estrogen metabolism 
Mir194,Mir195 

1q41 

1qD Mosaic 
loss 

108 Hjurp- maintenance of genomic 
stability 

2q37.1 

4qD2.3 Mosaic 
Loss 

137 Slc9A1, Map3k6- Mapk/c-Jun 
signaling 

1p36.1-
p35 

6qB1 Mosaic 
gain 

105 Prss1- ECM receptors 
Prss3- cell division  

7q34 

14qD2 Gain 40 Adam28- fibronectin receptor, 
Adam 7- collagen receptors 

8p21.2 

14qD3 Gain 133 Pcdh17 13q21.1 
17qA3.3 Mosaic 

gain 
450 Btbd9-Tp53 network, Glo1-

NFkappaB network, Glp1r-
cAMP signaling 

6p21.1-
p21.3 

18qA1 Mosaic 
gain 

133 Fzd8-Wnt /beta catenin 
network,  
Ccny- cell cycle regulator  
Cetn1- chromosome segregation 

10p11.21 

18qA1 Loss 212 Thoc1- G2/M cell cycle 
checkpoint activator/apoptosis 
pathway, 
Usp14, Colec12 

18p11.32 
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using another smooth muscle specific-cre. We chose to use Myosin heavy chain 11 driven Cre 

that is expressed in all smooth muscle tissues, including the uterine myometrium starting at 

E13.5 (249). We generated the Med12Rmt/+ Myh11-cre by crossing Med12Rmt/mt and Myh11-cre 

mice and evaluated the uterine histology and morphology at 12 weeks of age. The histological 

presentation of   Med12Rmt/+ Myh11-cre was not dramatically different from that of Med12Rmt/+ 

Amhr2-cre uteri, with the presence of ECM deposits and disorganized smooth muscle fibers 

(Figure 3.12 B, D). This suggested to us that the phenotype and the penetrance observed in the 

previous models was independent of the type of specific smooth muscle cre allele used to 

recombine the floxed sites. 

Figure 3.12 Evaluation of 12-week Med12Rmt/+ Myh11-cre uteri 
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(A,C) 12-week control animals (Med12Rmt/+) show normal uterine histology. (B) 12-week Med12Rmt/+ Myh11-
cre shows the development of leiomyoma-like lesions with the outlined white dotted box shown at a higher 
magnification in (D) highlighting the dispersed pattern of nuclei and ECM deposits (white dotted lines). The 
size or the presentation of lesions in Med12Rmt/+ Myh11-cre did not differ from that of 12-week old Med12Rmt/+ 

Amhr2-cre females. Scale bars=0.5μm (A,B), 100μm (C,D). 

3.4 DISCUSSION 

Recurrent human MED12 exon 2 mutations have been associated with benign tumors such as 

uterine leiomyomas (161), breast fibroadenomas (186) and phyllodes tumors (187, 190); 

however, their etiology, genetic mechanism of action, and role in genomic instability are 

unknown. To study the role of Med12 mutations in uterine leiomyomas, we generated a mouse 

model which would conditionally express the most common human Med12 c.131G>A variant 

from the autosomal ROSA26 locus and allow us to study its effects in a tissue-specific manner in 

the uterus. Our strategy allowed us flexibility, to develop mouse models where mutated Med12 

was expressed either in the absence (gain of function) or presence (dominant negative) of X-

chromosome WT Med12. We found that expression of mutated Med12 in the absence or 

presence of X-chromosome Med12 gave rise to leiomyoma-like lesions, regardless of the 

background, although the age of onset and the presentation of leiomyomas were different 

between the two models. Remarkably, the mouse leiomyomas shared histological features of 

human uterine leiomyomas.  

Parity appeared to have an adverse effect on leiomyomatous growth, as multiparous 

females in both models presented with the larger and more distinct leiomyoma-like lesions as 

compared to nulliparous females. This may be explained by the exposure of the Med12 mutated 

uterus, to a milieu of steroid hormones during pregnancy, therefore driving growth of 
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leiomyomas. This finding is in agreement with human data, as reports have suggested that 

pregnancy often has dramatic effects on human fibroids (45). 

In comparison to the dominant negative model, leiomyoma-like lesions in the gain-of-

function model were often larger, more penetrant, and presented as early as 8-weeks of age. 

These findings suggest that the Med12 c.131G>A variant alone drives tumor formations via gain-

of-function mechanism. 

We also examined the phenotypes of animals expressing homozygous mutant Med12 

c.131G>A variant, on a background of Med12 cKO (Med12fl/fl) mice (Med12fl/fl Med12Rmt/+ 

Amhr2-cre and Med12fl/fl Med12Rmt/mt Amhr2-cre). Although the penetrance and the size of 

leiomyoma-like lesions was similar to the previous models (Med12fl/fl Med12Rmt/+ Amhr2-cre and 

Med12Rmt/+ Amhr2-cre), yet the expression of the mutant Med12 was able to rescue the histology 

of the Med12fl/fl Amhr2-cre (Med12 cKO) uteri as observed by the heavier uterine weights of 

Med12fl/fl Med12Rmt/+ Amhr2-cre females. The fact that the Med12fl/fl Med12Rmt/+ Amhr2-cre 

females still remain infertile indicates that the mutant Med12 may have a role distinct of the X-

chromosome Med12 (neomorph). A caveat applies to the models on the background of Med12 

cKO as the tumorigenic changes occurring have to be evaluated against a hypoplastic 

background, making data interpretation difficult. 

There are three published transgenic mouse models of uterine leiomyomas; these include 

transgenic overexpression of hGPR10-driven with calbindin-D9K promoter (227), conditional 

deletion of Tsc2 (224), and conditional expression of a gain-of-function mutant form of β-catenin 

(225). The phenotype in these mice is confined to increased myometrial thickness and formation 

of small nodules, but none show the dramatic tumors we report here (Figure 3.4). Interestingly, 

Amhr2-cre drives mutant Med12 expression in both uterine smooth muscle tissue (myometrium) 
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and stroma, yet we only observed tumors deriving from the mouse myometrium. In contrast, 

Amhr2-cre–driven expression of the gain-of-function mutant form of β-catenin causes tumors 

both in the mouse myometrium and in the stroma (225). These results indicate that Med12 exon 

2 mutations have specific tumorigenic effects in smooth muscle cells. 

 Studies published on human leiomyomas were unable to establish a correlation between 

MED12 positive leiomyomas and underlying cytogenetic changes, which are often observed in 

about 40% of human leiomyomas. We utilized our mouse models to explore this further. Array 

CGH on Med12 c.131G>A mouse uteri revealed genome-wide aberrations affecting regions 

containing genes belonging to a variety of tumor pathways including Ras, Wnt/β-catenin, 

Tp53/Rb, NF-kappaβ, and Tgfβ signaling. We also observed complex chromosomal alterations 

such as chromothripsis. Recently, chromothripsis was reported in human leiomyomas and 

proposed as a possible mechanism of tumor progression (91). This suggests a role of Med12 as a 

global transcriptional regulator and guardian of genome integrity.  

 Another key feature of the mouse leiomyomas, is that some of the chromosomal 

aberrations occurring in these regions, also occur in regions syntenic to human 1p, 1q, 2q, 6p21, 

and 18p loci. It was previously shown that 60% of human leiomyomas with 6p21 rearrangements 

harbored MED12 exon 2 mutations (163).  

 Previous reports had suggested that the MED12 exon 2 mutations uncouple Cyclin C–

CDK8/19 interface leading to diminished CDK8 activity (250). Interestingly, in our array data 

we did not observe any changes in Cdk8, Cyclin C, Med13 or Cdk19, rather we observed more 

global genome-wide changes. The CDK8 and MED12 studies were conducted on baculovirus 

systems (in-vitro) whereas our mechanistic studies were conducted on in-vivo mouse models 
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making it evolutionarily more relevant to the role of human MED12 exon 2 mutations in 

tumorigenesis. 

Overall, we have successfully created the first animal models for uterine leiomyomas 

harboring Med12 exon 2 mutations. This model will be a valuable tool not only to understand the 

genesis of uterine leiomyomas but also other steroid influenced tumors such as breast 

fibroadenomas, and phyllodes tumors, as well. These models will also provide a platform to test 

therapeutic targets to treat uterine leiomyomas as an alternative to hysterectomy. 

The limitations of our model include regulatory differences that may exist in the 

expression of Med12 on the X chromosome versus an autosome. The autosomal Med12 is under 

the control of ROSA promoter, which probably differs from the native Med12 promoter. In 

addition to the model itself, factors such as random X-chromosome inactivation influencing the 

Med12 floxed allele expression and Amhr2-cre mediated allelic recombination add to the 

complexities of this study. Nonetheless, we have successfully created the first animal model for 

uterine leiomyomas and Med12 exon 2 mutations. Our model mimics the human condition and 

shows that Med12 variants can act through a gain-of-function mechanism.  
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4.0  OVERALL SUMMARY AND CONCLUSIONS 

Ever since studies first associated MED12 exon 2 variants with human uterine leiomyomas (159) 

(161), numerous studies have replicated the association of MED12 exon 2 variants with 

leiomyomas from women of ethnically diverse backgrounds. The MED12 exon 2 variant studies 

have now been extended to many different types of benign and malignant tumors . Since its 

discovery using whole exome sequencing, MED12 exon 2 variants have been classified as the 

most frequently occurring variants associated with gynecological tumors. 

Over the years, many groups have speculated on the possible mechanisms of MED12 

exon 2 variants in tumor causation, but such mechanisms are difficult to study in vivo in human 

tissues. Animal models expressing and analyzing in-vivo functions of Med12 exon 2 variants 

have been lacking. Our own observations of the MED12 exon 2 variants in the mixed North 

American women population convinced us of the importance of this gene in leiomyoma biology. 

The high frequency of MED12 mutations in leiomyomas, clustering of the mutations in an 

evolutionary conserved region of the gene, and its location on the X-chromosome made MED12 

an ideal candidate gene for generating animal models and studying its role in tumorigenesis. 

The overarching goal of my thesis work was to investigate the role of MED12 exon 2 

variants, in leiomyoma initiation and to determine the role of MED12 in normal uterine function.  

As the Med12 gene is highly conserved between humans and mice, it gave us the 

opportunity to model this gene in-vivo using mouse models. As typical of modeling any driver 
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mutations in tumors (example: p53) (245), we chose to generate loss of function, gain of function 

and dominant negative models of Med12 exon 2 variants. The first of this thesis entailed 

characterization of Med12 cKO females (loss of function) using the Med12flox (220) and Amhr2-

cre (226) mice. Loss of function did not stimulate leiomyomas. On the contrary, Med12 cKO 

females appeared to have hypoplastic uteri, and were infertile. Although, young Med12 cKO 

ovaries were capable of ovulating under external gonadotropic stimulus, adult Med12 cKO 

ovaries lacked large follicles and had the appearance of hyperchromatic “follicular nests”. Such 

structures have also been reported in the ovaries of mutant beta-catenin females (225) (239). The 

global phenotype observed in the reproductive tracts of the Med12 cKO female point towards a 

defect in estrogen and progesterone synthesis. It is possible that either Med12 directly or 

indirectly targets steroid hormones and their receptors, or simply, the loss of granulosa cells in 

Med12 cKO ovaries may result in reduced steroid hormone synthesis. Based on the phenotypic 

similarities between beta-catenin cKO (239) (225) and Med12 cKO reproductive tracts, one 

could infer that loss of beta-catenin may in part contribute to the infertility phenotype. In the 

future, experiments aimed to assay serum estrogen, progesterone levels, cumulus cell expansion, 

fertilization potential, uterine implantation and decidualization will be important to determine the 

cause of infertility. In addition, determining the expression of beta-catenin and hormone 

receptors will also be important. As part of this aim, I also synthesized a new Med12 antibody to 

quantitate Med12 expression and localization. In addition to protein expression studies, this 

antibody will be a valuable resource to conduct experiments such as IP and ChIP-seq. 

Alternatively, the FLAG reporter fused to Med12 cDNA at the ROSA locus may also be used to 

conduct ChIP-seq experiments. Thus, data from our loss of function mouse model indicates that 

loss of Med12 is not the likely mechanism of Med12 exon 2 variants for leiomyomagenesis, 
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contrary to previous reports based on in-vitro data (250). This model will be a useful tool to help 

understand the function of MED12 in uterine biology and pregnancy. 

To examine the gain of function or dominant negative effects of Med12, we developed 

the conditionally floxed Med12 ROSA knock in mouse model, giving us the opportunity to 

express mutated Med12 from the ROSA locus, either in the absence (gain-of-function) or in the 

presence of X-chromosome wild-type Med12. Thus, the latter half of my thesis focused on 

developing and characterizing various genotypes associated with the gain of function and 

dominant negative mouse models. We remarkably observed leiomyoma-like lesions, in about 

87% of females expressing mutated Med12 in the absence of wild-type Med12 and in about 50% 

of females expressing mutated Med12 in the presence of wild-type Med12, showing that Med12 

c.131G>A alone can cause leiomyomas in a dominant manner. As concomitant deletion of 

Med12 did not ameliorate the phenotype of Med12 knock in mice, but made it worse, we 

conclude that the c.131G>A mutation represents a gain of new function (neomorph) rather than a 

gain of existing function (hypermorph) (248). In both the models, appearance of the most distinct 

leiomyomas was observed in multiparous females, suggesting a role of Med12 in steroid driven 

leiomyomagenesis. This may also explain the presence of recurrent MED12 exon 2 variants in 

other steroid driven tumors such as fibroadenomas (186) and phyllodes tumors (187) of the 

breasts. Our data indicates a link between Med12, steroidogenesis, infertility and tumorigenesis. 

In the future, these models could be used to decipher the specific roles of estrogen and 

progesterone in tumor initiation and progression by performing ovariectomy followed by 

estrogen and progesterone supplementation. Testing gonadotropic antagonists on the Med12 gain 

of function models might be another way to examine their individual roles in tumorigenesis.  
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Not only did the Med12 exon 2 variants cause leiomyomas, they also led to genomic 

instability in the leiomyomas. Moreover, the genomic instability outcomes affected several 

pathways, therefore reflecting the role of MED12 as a global regulator of genome stability (204). 

In the future, it is crucial to determine the specific targets of the exon 2 variants through RNA-

seq or ChIPseq, to help design small molecule inhibitors that will modulate the activity of 

pathways associated with MED12 mutated leiomyomagenesis. Interestingly, several regions 

previously implicated in human leiomyomas were also shared by the mouse leiomyomas, 

revealing the similarities between human and mouse leiomyomas. This data suggests that Med12 

exon 2 mutations are precursors to genomic rearrangements and hence can cause an unstable 

genome and drive tumor progression. The results from this thesis collectively provide novel 

insights into the mechanism of Med12 exon 2 variants in leiomyoma causation, and also 

establish a unique link between Med12, steroidogenesis and fertility. Deciphering the functions 

of Med12 from the loss of function mouse model may be a means to further understand the roles 

of Med12 in tumorigenesis.  

Although there are limitations to our model as explained in section 3.4, we have 

successfully generated a novel model for leiomyomas which successfully replicates the human 

condition with shared pathological and cytogenetic features between mouse and human 

leiomyomas. These models will also serve as a platform to help identify drug targets to develop 

and test small molecule therapeutics, to move the field of leiomyoma research forward. Further, 

these models will help us in understanding the mechanism of Med12 exon 2 variants in other 

benign tumors such as fibroadenomas and phyllodes tumors of the breasts. 
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APPENDIX: ABBREVIATIONS AND TABLES 

Table 4.1 List of abbreviations 

bFGF                  basic fibroblast growth factor 

BHD          Birt-Hogg-Dubé syndrome 

bp           base pair 

BRAF             v-raf murine sarcoma viral oncogene homolog

C                  cytosine 

cDNA                  complementary deoxyribonucleic acid 

CDK19                cyclin-dependent kinase 19 

CDK8                  cyclin-dependent kinase 8 

CUX1                  cut-like homeobox 1 

D          aspartic acid 

DNA                  deoxyribonucleic acid 

DAPI           4’,6- Diamidino-2-2phenylindole, Dihydrochloride 

G                Glutamine 

ECM                  extracellular matrix 

 ER                 estrogen receptor 

FH                  fumarate hydratase 

G                guanine 

 HE         hematoxylin-eosin 

HLRCC                   hereditary leiomyomatosis and renal cell cancer 

HMGA            high mobility group A 
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HMGA1                high mobility group AT-hook 1 

 HMGA2   high mobility group AT-hook 2 

hCG    human chorionic gonadotropin 

IGF             insulin-like growth factor ins insertion 

IP       intra peritoneum 

IU          International Unit 

KAT6B         K(lysine) acetyltransferase 6B 

let-7               lethal-7 

LOH     loss of heterozygosity 

LS     leucine-serine-rich 

MED12           Mediator complex subunit 12 

MED12L                Mediator complex subunit 12-like 

 MED13      Mediator complex subunit 13 

 MED13L             Mediator complex subunit 13-like 

MIM            Mendelian Inheritance in Man 

MRI                magnetic resonance imaging 

p           short arm of a chromosome 

PCR                 polymerase chain reaction 

PMSG          Pregnyl mare serum gonadotropin 

Pol II       RNA polymerase II 

PR     Progesterone receptor 

q     long arm of a chromosome 

RAD51B     RAD51 paralog B 

RAS       rat sarcoma RB1 retinoblastoma 1 

RB1             retinoblastoma 1 

REST     RE1-silencing transcription factor 

RNA               ribonucleic acid 

 Table 4.1 continued
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SNP  single-nucleotide polymorphism 

 t     translocation 

TCA    tricarboxylic acid cycle 

TGF-β             transforming growth factor beta 

TP53      tumor protein 53 

TSC         tuberous sclerosis 

TSC2   tuberous sclerosis 2 

VEGF             vascular endothelial growth factor 

WHO   the World Health Organization 

WNT4         wingless-type MMTV integration site family, member 4 

Table 4.1 continued
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Table 4.2 Regions of aberrations in mouse leiomyomas 

Chr Cytoband Start Stop 
Aberration size 

(Kb) Gain/Loss Region of Aberration 

chr1 qD 90115633 90193738 78.105 deletion 3 
chr1 qE1.1 101591968 101656500 64.532 gain 1 
chr1 qH4 179805696 179926632 120.936 deletion 1 
chr1 qH5 187079059 187183640 104.581 gain 1 
chr2 qA1 3947206 4016684 69.478 deletion 3 
chr2 qC1.3 62554677 62580394 25.717 deletion 4 
chr2 qD 85849412 85920056 70.644 gain 4 
chr2 qH2 161545931 161698753 152.822 gain 1 
chr3 qF1 87188304 87211687 23.383 gain 1 
chr3 qF1 87267733 87302881 35.148 gain 1 
chr3 qF3 110878881 110995945 117.064 gain 1 
chr4 qD1 111726014 113251939 1525.925 deletion 4 
chr4 qD1 111742887 112273763 530.876 deletion 4 
chr4 qD1 111962345 112065411 103.066 deletion 4 
chr4 qD1 112289418 112504314 214.896 deletion 3 
chr4 qD1 112510205 112564300 54.095 deletion 4 
chr4 qD1 112665000 112793116 128.116 deletion 4 
chr4 qD1 112821289 112915923 94.634 deletion 4 
chr4 qD1 113001582 113251939 250.357 deletion 2 
chr4 qD1 113286238 113658273 372.035 deletion 1 
chr4 qD2.2 121649423 122218644 569.221 deletion 1 
chr4 qD2.3 132799884 132936192 136.308 deletion 1 
chr4 qE1 145001092 146793868 1792.776 deletion 3 
chr5 qC3.1 69891606 70097860 206.254 gain 3 
chr5 qE5 105142362 105237345 94.983 gain 1 
chr6 qA1 8556759 8575270 18.511 gain 1 
chr6 qB1 41010073 41112757 102.684 gain 1 
chr6 qB1 41306470 41412425 105.955 gain 2 
chr7 qA2 18382929 18426616 43.687 gain 1 
chr7 qB4 54844755 54883844 39.089 deletion 2 
chr7 qB4 55466579 55715246 248.667 gain 1 
chr7 qC 67475144 67731725 256.581 deletion 1 
chr7 qE3 111430424 111507023 76.599 deletion 1 
chr7 qF1 123631491 123927328 295.837 deletion 2 
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chr7 qF3 136825759 137141925 316.166 gain 1 
chr8 qA1.2 16763830 16826155 62.325 gain 1 
chr8 qA4 40187843 40274870 87.027 gain 1 
chr9 qA3 21968269 22021024 52.755 deletion 1 
chr9 qA5.3 46697499 46906183 208.684 deletion 0 

chr10 qA3 17697339 17744401 47.062 deletion 1 
chr10 qA3 22006887 22072759 65.872 gain 1 
chr12 qE 105048428 105263855 215.427 deletion 2 
chr12 qF1 114886825 114956321 69.496 gain 4 
chr12 qF1 - qF2 115427710 115487987 60.277 deletion 4 
chr12 qF2 115667710 115852666 184.956 gain 4 
chr12 qF2 116155408 116261498 106.09 deletion 4 
chr12 qF2 116515691 116624944 109.253 deletion 4 
chr12 qF2 116840011 117047397 207.386 gain 
chr12 qF2 117198164 117274793 76.629 deletion 
chr13 qA1 12690823 12723384 32.561 Deletion 2 
chr13 qB3 61743712 62048006 304.294 gain 1 
chr13 qC1 75983645 76020728 37.083 Deletion 1 
chr13 qD1 101053361 101110842 57.481 deletion 1 
chr14 qC1 44380406 44579789 199.383 Gain 1 
chr14 qC2 54320774 54422503 101.729 gain 1 
chr14 qD1 69019011 69103662 84.651 gain 1 
chr14 qD2 69209459 69249991 40.532 gain 1 
chr14 qD2 69876584 70090608 214.024 deletion 2 
chr14 qD2 72891034 72930683 39.649 gain 1 
chr14 qD3 84908855 85042415 133.56 gain 1 
chr14 qE1 86407031 86441138 34.107 gain 1 
chr14 qE3 110472070 111123931 651.861 deletion 1 
chr14 qE3 - qE4 110015732 111565569 1549.837 deletion 1 
chr15 qA1 14992022 15100240 108.218 gain 
chr15 qE1 77310653 77364452 53.799 gain 3 
chr16 qB3 35483725 35550180 66.455 gain 1 
chr16 qB3 36245661 36336077 90.416 deletion 1 
chr16 qB4 44819587 44909082 89.495 gain 1 
chr17 qA3.3 30586287 31049473 463.186 gain 4 
chr17 qB1 36199712 36245963 46.251 gain 1 
chr17 qB1 36860348 36909276 48.928 deletion 1 
chr17 qB1 38635045 38791870 156.825 gain 1 
chr17 qB1 - qB2 40082709 40241053 158.344 deletion 4 
chr18 qA1 8457226 9788370 1331.144 gain 1 
chr18 qA1 9813671 10017847 204.176 deletion 3 

Table 4.2 continued
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Chromosomal aberration list of all four-mouse tumors with the interval, number of genes and critical genes in each 
region 

chr19 qD3 60897053 60945155 48.102 Gain 1 

Table 4.2 continued
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Table 4.3 Syntenic regions between mouse aberrations and human chromosomes 

Mouse Human Human Orthologous genes 

Chrom
osome 

chromo
somal 
locus Start Stop Tumor 1 Tumor 2 Tumor 3 Tumor 4 

4qD2.3 chr1 27470631 27690372 

SLC9A1,CHC
HD3P3,WDTC
1, SYTL1, 
MAP3K6 

3qF3 chr1 106701046 106830733 - - 
3qF1 chr1 157764252 157772664 FCRL1 

1qH5 chr1 220229780 220359711 

BPNT1,IA
RS2,MIR2
15,MIR194
-
1,RAB3GA
P2 

13qA1 chr1 236368354 236390748 
ERO1LB, 
GPR137B 

ERO1LB, 
GPR137B 

1qH4 chr1 244734347 244817416 
DESI2,CO
X20 

1qE1.1 chr2 124573472 124762072 
2qC1.3 chr2 163236878 163260207 

1qD chr2 234682002 234812683 
HJURP,TR
PM8,SPP2 

HJURP,MSL3
P1 

HJURP,MSL3P1,
TRPM8 

16qB3 chr3 122738925 122793361 
SEMA5B, 
PDIA5 

5qC3.1 chr4 44613169 44931460 GNPDA2 
YIPF7,GUF1,
GNPDA2 

YIPF7,GUF1,GNP
DA2 

8qA4 chr4 190221667 190228149 

13qC1 chr5 95111576 95153221 
RHOBTB3, 
GLRX 

15qA1 chr5 29027869 29199306 
13qD2.
3 chr5 45614983 45626841 HCN1 HCN1 
13qD1 chr5 66052023 66071066 
13qD1 chr5 70265907 70308766 NAIP 

17qA3.
3 chr6 38457579 39028735 

BTBD9,GL
O1,DNAH
8,GLP1R 

BTBD9,GL
O1,DNAH
8,GLP1R 

BTBD9,GLO1,
DNAH8 

BTBD9,GLO1,DN
AH8,GLP1R 

10qA3 chr6 139348580 139403048 ABRACL ABRACL 
6qA1 chr7 8134096 8148036 
6qB1 chr7 142190236 142250584 
8qA4 chr8 15586895 15636766 TUSC3 

14qD2 chr8 23158977 23414178 
LOXL2,EN
TPD4,SLC
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25A37 

14qD2 chr8 24187964 24229697 ADAM28 
14qD1 chr8 24383271 24461193 
14qD2 chr8 36716399 36733668 KCNU1 
8qA1.2 chr8 3989107 4060094 
2qA1 chr10 14283901 14363312 FRMD4A FRMD4A 

18qA1 chr10 35739803 36669673 
CCNY,GJ
D4,FZD8 

19qD3 chr10 120876971 120932106 

SFXN4, 
COXPD13, 
PRDX3 

7qF3 chr10 122740826 123058528 
2qD chr11 56216083 56241010 SLC25A37 
9qA5.3 chr11 115811243 116008575 KCNU1 
14qD3 chr13 58275467 58409706 PCDH17 
14qE1 chr13 59632641 59660044 

14qE3 
- 
14qE4 chr13 85181293 87535910 

SLITRK6, 
MOB1AP1, 
DDX6P2, 
TXNL1P1 

14qE3 chr13 85660155 86345915 

12qE chr14 94879399 94946027 
SERPINA11, 
SERPINA9 

12qF1 chr14 106209967 106242264 
7qF1 chr16 18175137 18325190 
11qB5 chr17 2938562 2948297 
11qB4 chr17 5417772 5463831 NLRP1 

18qA1 chr18 179212 391932 

USP14,TH
OC1,COLE
C12 

USP14,TH
OC1,COLE
C12 

USP14,THOC1,C
OLEC12 

2qH2 chr20 40900568 41046759 PTPRT 
List of human chromosomal intervals that are syntenic to mouse chromosomal aberration intervals and 
conserved orthologous genes in the conserved regions 

Table 4.3 continued



103 

BIBLIOGRAPHY 

1. Wallach EE, and Vlahos NF. Uterine myomas: an overview of development, clinical
features, and management. Obstetrics and gynecology. 2004;104(2):393-406.

2. Cramer SF, and Patel A. The frequency of uterine leiomyomas. American journal of
clinical pathology. 1990;94(4):435-8.

3. Blaustein A, and Kurman RJ. Blaustein's pathology of the female genital tract. New
York: Springer; 2002.

4. Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293-8.
5. Garcia CR, and Tureck RW. Submucosal leiomyomas and infertility. Fertil Steril.

1984;42(1):16-9.
6. Bukulmez O, and Doody KJ. Clinical features of myomas. Obstetrics and gynecology

clinics of North America. 2006;33(1):69-84.
7. Gupta S, Jose J, and Manyonda I. Clinical presentation of fibroids. Best Pract Res Clin

Obstet Gynaecol. 2008;22(4):615-26.
8. Wu JM, Wechter ME, Geller EJ, Nguyen TV, and Visco AG. Hysterectomy rates in the

United States, 2003. Obstetrics and gynecology. 2007;110(5):1091-5.
9. Marshall LM, Spiegelman D, Barbieri RL, Goldman MB, Manson JE, Colditz GA,

Willett WC, and Hunter DJ. Variation in the incidence of uterine leiomyoma among
premenopausal women by age and race. Obstetrics and gynecology. 1997;90(6):967-73.

10. Flake GP, Andersen J, and Dixon D. Etiology and pathogenesis of uterine leiomyomas: a
review. Environmental health perspectives. 2003;111(8):1037-54.

11. Marshall LM, Spiegelman D, Goldman MB, Manson JE, Colditz GA, Barbieri RL,
Stampfer MJ, and Hunter DJ. A prospective study of reproductive factors and oral
contraceptive use in relation to the risk of uterine leiomyomata. Fertil Steril.
1998;70(3):432-9.

12. Ross RK, Pike MC, Vessey MP, Bull D, Yeates D, and Casagrande JT. Risk factors for
uterine fibroids: reduced risk associated with oral contraceptives. Br Med J (Clin Res Ed).
1986;293(6543):359-62.

13. Parazzini F, Negri E, La Vecchia C, Chatenoud L, Ricci E, and Guarnerio P.
Reproductive factors and risk of uterine fibroids. Epidemiology. 1996;7(4):440-2.

14. Terry KL, De Vivo I, Hankinson SE, and Missmer SA. Reproductive characteristics and
risk of uterine leiomyomata. Fertil Steril. 2010;94(7):2703-7.

15. Baird DD, Dunson DB, Hill MC, Cousins D, and Schectman JM. High cumulative
incidence of uterine leiomyoma in black and white women: ultrasound evidence.
American journal of obstetrics and gynecology. 2003;188(1):100-7.



104 

16. Kjerulff KH, Langenberg P, Seidman JD, Stolley PD, and Guzinski GM. Uterine 
leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod 
Med. 1996;41(7):483-90. 

17. Huyck KL, Panhuysen CI, Cuenco KT, Zhang J, Goldhammer H, Jones ES, 
Somasundaram P, Lynch AM, Harlow BL, Lee H, et al. The impact of race as a risk 
factor for symptom severity and age at diagnosis of uterine leiomyomata among affected 
sisters. American journal of obstetrics and gynecology. 2008;198(2):168 e1-9. 

18. Taioli E, Garte SJ, Trachman J, Garbers S, Sepkovic DW, Osborne MP, Mehl S, and 
Bradlow HL. Ethnic differences in estrogen metabolism in healthy women. J Natl Cancer 
Inst. 1996;88(9):617. 

19. Vikhlyaeva EM, Khodzhaeva ZS, and Fantschenko ND. Familial predisposition to 
uterine leiomyomas. Int J Gynaecol Obstet. 1995;51(2):127-31. 

20. Shikora SA, Niloff JM, Bistrian BR, Forse RA, and Blackburn GL. Relationship between 
obesity and uterine leiomyomata. Nutrition. 1991;7(4):251-5. 

21. Wise LA, Palmer JR, Harlow BL, Spiegelman D, Stewart EA, Adams-Campbell LL, and 
Rosenberg L. Risk of uterine leiomyomata in relation to tobacco, alcohol and caffeine 
consumption in the Black Women's Health Study. Hum Reprod. 2004;19(8):1746-54. 

22. Wise LA, Palmer JR, Spiegelman D, Harlow BL, Stewart EA, Adams-Campbell LL, and 
Rosenberg L. Influence of body size and body fat distribution on risk of uterine 
leiomyomata in U.S. black women. Epidemiology. 2005;16(3):346-54. 

23. Summers WE, Watson RL, Wooldridge WH, and Langford HG. Hypertension, obesity, 
and fibromyomata uteri, as a syndrome. Arch Intern Med. 1971;128(5):750-4. 

24. Faerstein E, Szklo M, and Rosenshein N. Risk factors for uterine leiomyoma: a practice-
based case-control study. I. African-American heritage, reproductive history, body size, 
and smoking. Am J Epidemiol. 2001;153(1):1-10. 

25. Chiaffarino F, Parazzini F, La Vecchia C, Chatenoud L, Di Cintio E, and Marsico S. Diet 
and uterine myomas. Obstetrics and gynecology. 1999;94(3):395-8. 

26. Houston KD, Hunter DS, Hodges LC, and Walker CL. Uterine leiomyomas: mechanisms 
of tumorigenesis. Toxicol Pathol. 2001;29(1):100-4. 

27. Saxena SP, Khare C, Farooq A, Murugesan K, Buckshee K, and Chandra J. DDT and its 
metabolites in leiomyomatous and normal human uterine tissue. Arch Toxicol. 
1987;59(6):453-5. 

28. Newbold RR, Moore AB, and Dixon D. Characterization of uterine leiomyomas in CD-1 
mice following developmental exposure to diethylstilbestrol (DES). Toxicol Pathol. 
2002;30(5):611-6. 

29. Baird DD, and Newbold R. Prenatal diethylstilbestrol (DES) exposure is associated with 
uterine leiomyoma development. Reprod Toxicol. 2005;20(1):81-4. 

30. Parker WH. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril. 
2007;87(4):725-36. 

31. Dueholm M, Lundorf E, Hansen ES, Ledertoug S, and Olesen F. Accuracy of magnetic 
resonance imaging and transvaginal ultrasonography in the diagnosis, mapping, and 
measurement of uterine myomas. American journal of obstetrics and gynecology. 
2002;186(3):409-15. 

32. Khan AT, Shehmar M, and Gupta JK. Uterine fibroids: current perspectives. Int J 
Womens Health. 2014;6(95-114. 



105 

33. Dueholm M, Lundorf E, Hansen ES, Ledertoug S, and Olesen F. Evaluation of the 
uterine cavity with magnetic resonance imaging, transvaginal sonography, 
hysterosonographic examination, and diagnostic hysteroscopy. Fertil Steril. 
2001;76(2):350-7. 

34. Somigliana E, Vercellini P, Daguati R, Pasin R, De Giorgi O, and Crosignani PG. 
Fibroids and female reproduction: a critical analysis of the evidence. Hum Reprod 
Update. 2007;13(5):465-76. 

35. Murphy AA, Kettel LM, Morales AJ, Roberts VJ, and Yen SS. Regression of uterine 
leiomyomata in response to the antiprogesterone RU 486. J Clin Endocrinol Metab. 
1993;76(2):513-7. 

36. Donnez J, Tatarchuk TF, Bouchard P, Puscasiu L, Zakharenko NF, Ivanova T, Ugocsai 
G, Mara M, Jilla MP, Bestel E, et al. Ulipristal acetate versus placebo for fibroid 
treatment before surgery. N Engl J Med. 2012;366(5):409-20. 

37. Banu NS, Gaze DC, Bruce H, Collinson PO, Belli AM, and Manyonda IT. Markers of 
muscle ischemia, necrosis, and inflammation following uterine artery embolization in the 
treatment of symptomatic uterine fibroids. American journal of obstetrics and 
gynecology. 2007;196(3):213 e1-5. 

38. van der Kooij SM, Ankum WM, and Hehenkamp WJ. Review of nonsurgical/minimally 
invasive treatments for uterine fibroids. Curr Opin Obstet Gynecol. 2012;24(6):368-75. 

39. Salama SS, and Kilic GS. Uterine fibroids and current clinical challenges. J Turk Ger 
Gynecol Assoc. 2013;14(1):40-5. 

40. Oliva E. Cellular mesenchymal tumors of the uterus: a review emphasizing recent 
observations. Int J Gynecol Pathol. 2014;33(4):374-84. 

41. Hashimoto K, Azuma C, Kamiura S, Kimura T, Nobunaga T, Kanai T, Sawada M, 
Noguchi S, and Saji F. Clonal determination of uterine leiomyomas by analyzing 
differential inactivation of the X-chromosome-linked phosphoglycerokinase gene. 
Gynecol Obstet Invest. 1995;40(3):204-8. 

42. Linder D, and Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as 
a cell marker in the study of leiomyomas. Science. 1965;150(3692):67-9. 

43. Mashal RD, Fejzo ML, Friedman AJ, Mitchner N, Nowak RA, Rein MS, Morton CC, 
and Sklar J. Analysis of androgen receptor DNA reveals the independent clonal origins of 
uterine leiomyomata and the secondary nature of cytogenetic aberrations in the 
development of leiomyomata. Genes, chromosomes & cancer. 1994;11(1):1-6. 

44. Townsend DE, Sparkes RS, Baluda MC, and McClelland G. Unicellular histogenesis of 
uterine leiomyomas as determined by electrophoresis by glucose-6-phosphate 
dehydrogenase. American journal of obstetrics and gynecology. 1970;107(8):1168-73. 

45. Bulun SE. Uterine Fibroids. New Engl J Med. 2013;369(14):1344-55. 
46. Rosati P, Exacoustos C, and Mancuso S. Longitudinal evaluation of uterine myoma 

growth during pregnancy. A sonographic study. J Ultrasound Med. 1992;11(10):511-5. 
47. Rein MS. Advances in uterine leiomyoma research: the progesterone hypothesis. 

Environmental health perspectives. 2000;108 Suppl 5(791-3. 
48. Richards PA, and Tiltman AJ. Anatomical variation of the oestrogen receptor in the non-

neoplastic myometrium of fibromyomatous uteri. Virchows Arch. 1996;428(6):347-51. 
49. Pollow K, Sinnecker G, Boquoi E, and Pollow B. In vitro conversion of estradiol-17beta 

into estrone in normal human myometrium and leiomyoma. J Clin Chem Clin Biochem. 
1978;16(9):493-502. 



106 

50. Shozu M, Murakami K, and Inoue M. Aromatase and leiomyoma of the uterus. Semin 
Reprod Med. 2004;22(1):51-60. 

51. Otubu JA, Buttram VC, Besch NF, and Besch PK. Unconjugated steroids in leiomyomas 
and tumor-bearing myometrium. American journal of obstetrics and gynecology. 
1982;143(2):130-3. 

52. Folkerd EJ, Newton CJ, Davidson K, Anderson MC, and James VH. Aromatase activity 
in uterine leiomyomata. J Steroid Biochem. 1984;20(5):1195-200. 

53. Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, and Kurita T. Progesterone is 
essential for maintenance and growth of uterine leiomyoma. Endocrinology. 
2010;151(6):2433-42. 

54. Kim JJ, and Sefton EC. The role of progesterone signaling in the pathogenesis of uterine 
leiomyoma. Molecular and cellular endocrinology. 2012;358(2):223-31. 

55. Yin P, Lin Z, Cheng YH, Marsh EE, Utsunomiya H, Ishikawa H, Xue Q, Reierstad S, 
Innes J, Thung S, et al. Progesterone receptor regulates Bcl-2 gene expression through 
direct binding to its promoter region in uterine leiomyoma cells. J Clin Endocrinol 
Metab. 2007;92(11):4459-66. 

56. Hyder SM, and Stancel GM. Regulation of angiogenic growth factors in the female 
reproductive tract by estrogens and progestins. Molecular endocrinology. 
1999;13(6):806-11. 

57. Lyons RM, and Moses HL. Transforming growth factors and the regulation of cell 
proliferation. Eur J Biochem. 1990;187(3):467-73. 

58. Stewart EA, and Nowak RA. Leiomyoma-related bleeding: a classic hypothesis updated 
for the molecular era. Hum Reprod Update. 1996;2(4):295-306. 

59. Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, Ito M, Ohta K, 
Uchida H, Asada H, et al. Side population in human uterine myometrium displays 
phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U 
S A. 2007;104(47):18700-5. 

60. Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, and Teixeira J. 
Adult mouse myometrial label-retaining cells divide in response to gonadotropin 
stimulation. Stem Cells. 2007;25(5):1317-25. 

61. Ono M, Qiang W, Serna VA, Yin P, Coon JSt, Navarro A, Monsivais D, Kakinuma T, 
Dyson M, Druschitz S, et al. Role of stem cells in human uterine leiomyoma growth. 
PloS one. 2012;7(5):e36935. 

62. Mas A, Cervello I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, and Simon C. 
Identification and characterization of the human leiomyoma side population as putative 
tumor-initiating cells. Fertil Steril. 2012;98(3):741-51 e6. 

63. Stewart EA, and Nowak RA. New concepts in the treatment of uterine leiomyomas. 
Obstetrics and gynecology. 1998;92(4 Pt 1):624-7. 

64. Zhou S, Yi T, Shen K, Zhang B, Huang F, and Zhao X. Hypoxia: the driving force of 
uterine myometrial stem cells differentiation into leiomyoma cells. Med Hypotheses. 
2011;77(6):985-6. 

65. Rein MS, Friedman AJ, Barbieri RL, Pavelka K, Fletcher JA, and Morton CC. 
Cytogenetic abnormalities in uterine leiomyomata. Obstetrics and gynecology. 
1991;77(6):923-6. 

66. Nibert M, and Heim S. Uterine leiomyoma cytogenetics. Genes, chromosomes & cancer. 
1990;2(1):3-13. 



107 

67. Brosens I, Deprest J, Dal Cin P, and Van den Berghe H. Clinical significance of 
cytogenetic abnormalities in uterine myomas. Fertil Steril. 1998;69(2):232-5. 

68. Rein MS, Powell WL, Walters FC, Weremowicz S, Cantor RM, Barbieri RL, and Morton 
CC. Cytogenetic abnormalities in uterine myomas are associated with myoma size. Mol 
Hum Reprod. 1998;4(1):83-6. 

69. Hennig Y, Deichert U, Bonk U, Thode B, Bartnitzke S, and Bullerdiek J. Chromosomal 
translocations affecting 12q14-15 but not deletions of the long arm of chromosome 7 
associated with a growth advantage of uterine smooth muscle cells. Mol Hum Reprod. 
1999;5(12):1150-4. 

70. Meloni AM, Surti U, Contento AM, Davare J, and Sandberg AA. Uterine leiomyomas: 
cytogenetic and histologic profile. Obstetrics and gynecology. 1992;80(2):209-17. 

71. Kazmierczak B, Hennig Y, Wanschura S, Rogalla P, Bartnitzke S, Van de Ven W, and 
Bullerdiek J. Description of a novel fusion transcript between HMGI-C, a gene encoding 
for a member of the high mobility group proteins, and the mitochondrial aldehyde 
dehydrogenase gene. Cancer Res. 1995;55(24):6038-9. 

72. Kurose K, Mine N, Doi D, Ota Y, Yoneyama K, Konishi H, Araki T, and Emi M. Novel 
gene fusion of COX6C at 8q22-23 to HMGIC at 12q15 in a uterine leiomyoma. Genes, 
chromosomes & cancer. 2000;27(3):303-7. 

73. Markowski DN, Nimzyk R, Belge G, Loning T, Helmke BM, and Bullerdiek J. 
Molecular topography of the MED12-deleted region in smooth muscle tumors: a possible 
link between non-B DNA structures and hypermutability. Mol Cytogenet. 2013;6(1):23. 

74. Mine N, Kurose K, Konishi H, Araki T, Nagai H, and Emi M. Fusion of a sequence from 
HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res. 
2001;92(2):135-9. 

75. Quade BJ, Weremowicz S, Neskey DM, Vanni R, Ladd C, Dal Cin P, and Morton CC. 
Fusion transcripts involving HMGA2 are not a common molecular mechanism in uterine 
leiomyomata with rearrangements in 12q15. Cancer Res. 2003;63(6):1351-8. 

76. Velagaleti GV, Tonk VS, Hakim NM, Wang X, Zhang H, Erickson-Johnson MR, 
Medeiros F, and Oliveira AM. Fusion of HMGA2 to COG5 in uterine leiomyoma. 
Cancer genetics and cytogenetics. 2010;202(1):11-6. 

77. Wanschura S, Dal Cin P, Kazmierczak B, Bartnitzke S, Van den Berghe H, and 
Bullerdiek J. Hidden paracentric inversions of chromosome arm 12q affecting the 
HMGIC gene. Genes, chromosomes & cancer. 1997;18(4):322-3. 

78. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue 
tumors: leiomyoma. Cancer genetics and cytogenetics. 2005;158(1):1-26. 

79. Ashar HR, Fejzo MS, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC, 
and Chada K. Disruption of the architectural factor HMGI-C: DNA-binding AT hook 
motifs fused in lipomas to distinct transcriptional regulatory domains. Cell. 
1995;82(1):57-65. 

80. Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, and Van de 
Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in 
benign mesenchymal tumours. Nature genetics. 1995;10(4):436-44. 

81. Fusco A, and Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 
2007;7(12):899-910. 

82. Grosschedl R, Giese K, and Pagel J. HMG domain proteins: architectural elements in the 
assembly of nucleoprotein structures. Trends Genet. 1994;10(3):94-100. 



108 

83. Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene. 
2001;277(1-2):63-81. 

84. Gattas GJ, Quade BJ, Nowak RA, and Morton CC. HMGIC expression in human adult 
and fetal tissues and in uterine leiomyomata. Genes, chromosomes & cancer. 
1999;25(4):316-22. 

85. Gross KL, Neskey DM, Manchanda N, Weremowicz S, Kleinman MS, Nowak RA, 
Ligon AH, Rogalla P, Drechsler K, Bullerdiek J, et al. HMGA2 expression in uterine 
leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes, 
chromosomes & cancer. 2003;38(1):68-79. 

86. Rogalla P, Drechsler K, Frey G, Hennig Y, Helmke B, Bonk U, and Bullerdiek J. HMGI-
C expression patterns in human tissues. Implications for the genesis of frequent 
mesenchymal tumors. The American journal of pathology. 1996;149(3):775-9. 

87. Schoenberg Fejzo M, Ashar HR, Krauter KS, Powell WL, Rein MS, Weremowicz S, 
Yoon SJ, Kucherlapati RS, Chada K, and Morton CC. Translocation breakpoints 
upstream of the HMGIC gene in uterine leiomyomata suggest dysregulation of this gene 
by a mechanism different from that in lipomas. Genes, chromosomes & cancer. 
1996;17(1):1-6. 

88. Klemke M, Meyer A, Hashemi Nezhad M, Belge G, Bartnitzke S, and Bullerdiek J. Loss 
of let-7 binding sites resulting from truncations of the 3' untranslated region of HMGA2 
mRNA in uterine leiomyomas. Cancer genetics and cytogenetics. 2010;196(2):119-23. 

89. Mayr C, Hemann MT, and Bartel DP. Disrupting the pairing between let-7 and Hmga2 
enhances oncogenic transformation. Science. 2007;315(5818):1576-9. 

90. Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, and Wei JJ. Antiproliferative effects 
by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 
2008;6(4):663-73. 

91. Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, Heinonen 
HR, Butzow R, Kilpivaara O, Kuosmanen A, et al. Characterization of Uterine 
Leiomyomas by Whole-Genome Sequencing. New Engl J Med. 2013;369(1):43-53. 

92. Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, Mittal K, Soteropoulos P, and Wei 
JJ. A micro-RNA signature associated with race, tumor size, and target gene activity in 
human uterine leiomyomas. Genes, chromosomes & cancer. 2007;46(4):336-47. 

93. Heim S, Nilbert M, Vanni R, Floderus UM, Mandahl N, Liedgren S, Lecca U, and 
Mitelman F. A specific translocation, t(12;14)(q14-15;q23-24), characterizes a subgroup 
of uterine leiomyomas. Cancer genetics and cytogenetics. 1988;32(1):13-7. 

94. Turc-Carel C, Dal Cin P, Boghosian L, Terk-Zakarian J, and Sandberg AA. Consistent 
breakpoints in region 14q22-q24 in uterine leiomyoma. Cancer genetics and 
cytogenetics. 1988;32(1):25-31. 

95. Ingraham SE, Lynch RA, Kathiresan S, Buckler AJ, and Menon AG. hREC2, a RAD51-
like gene, is disrupted by t(12;14) (q15;q24.1) in a uterine leiomyoma. Cancer genetics 
and cytogenetics. 1999;115(1):56-61. 

96. Schoenmakers EF, Huysmans C, and Van de Ven WJ. Allelic knockout of novel splice 
variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. 
Cancer Res. 1999;59(1):19-23. 

97. Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett. 
2005;219(2):125-35. 



109 

98. Takahashi T, Nagai N, Oda H, Ohama K, Kamada N, and Miyagawa K. Evidence for 
RAD51L1/HMGIC fusion in the pathogenesis of uterine leiomyoma. Genes, 
chromosomes & cancer. 2001;30(2):196-201. 

99. Klemke M, Meyer A, Nezhad MH, Bartnitzke S, Drieschner N, Frantzen C, Schmidt EH, 
Belge G, and Bullerdiek J. Overexpression of HMGA2 in uterine leiomyomas points to 
its general role for the pathogenesis of the disease. Genes, chromosomes & cancer. 
2009;48(2):171-8. 

100. Saito E, Okamoto A, Saito M, Shinozaki H, Takakura S, Yanaihara N, Ochiai K, and 
Tanaka T. Genes associated with the genesis of leiomyoma of the uterus in a commonly 
deleted chromosomal region at 7q22. Oncol Rep. 2005;13(3):469-72. 

101. Sell SM, Altungoz O, Prowse AA, Meloni AM, Surti U, and Sandberg AA. Molecular 
analysis of chromosome 7q21.3 in uterine leiomyoma: analysis using markers with 
linkage to insulin resistance. Cancer genetics and cytogenetics. 1998;100(2):165-8. 

102. van der Heijden O, Chiu HC, Park TC, Takahashi H, LiVolsi VA, Risinger JI, Barrett JC, 
Berchuck A, Evans AC, Behbakht K, et al. Allelotype analysis of uterine leiomyoma: 
localization of a potential tumor suppressor gene to a 4-cM region of chromosome 7q. 
Mol Carcinog. 1998;23(4):243-7. 

103. Vanharanta S, Wortham NC, Laiho P, Sjoberg J, Aittomaki K, Arola J, Tomlinson IP, 
Karhu A, Arango D, and Aaltonen LA. 7q deletion mapping and expression profiling in 
uterine fibroids. Oncogene. 2005;24(43):6545-54. 

104. Zeng WR, Scherer SW, Koutsilieris M, Huizenga JJ, Filteau F, Tsui LC, and Nepveu A. 
Loss of heterozygosity and reduced expression of the CUTL1 gene in uterine 
leiomyomas. Oncogene. 1997;14(19):2355-65. 

105. Hulea L, and Nepveu A. CUX1 transcription factors: from biochemical activities and 
cell-based assays to mouse models and human diseases. Gene. 2012;497(1):18-26. 

106. Vadnais C, Davoudi S, Afshin M, Harada R, Dudley R, Clermont PL, Drobetsky E, and 
Nepveu A. CUX1 transcription factor is required for optimal ATM/ATR-mediated 
responses to DNA damage. Nucleic acids research. 2012;40(10):4483-95. 

107. McNerney ME, Brown CD, Wang X, Bartom ET, Karmakar S, Bandlamudi C, Yu S, Ko 
J, Sandall BP, Stricker T, et al. CUX1 is a haploinsufficient tumor suppressor gene on 
chromosome 7 frequently inactivated in acute myeloid leukemia. Blood. 
2013;121(6):975-83. 

108. Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, Tiffen JC, 
Kober C, Chronic Myeloid Disorders Working Group of the International Cancer 
Genome C, Green AR, et al. Inactivating CUX1 mutations promote tumorigenesis. 
Nature genetics. 2014;46(1):33-8. 

109. Ishiai M, Dean FB, Okumura K, Abe M, Moon KY, Amin AA, Kagotani K, Taguchi H, 
Murakami Y, Hanaoka F, et al. Isolation of human and fission yeast homologues of the 
budding yeast origin recognition complex subunit ORC5: human homologue (ORC5L) 
maps to 7q22. Genomics. 1997;46(2):294-8. 

110. Ligon AH, Scott IC, Takahara K, Greenspan DS, and Morton CC. PCOLCE deletion and 
expression analyses in uterine leiomyomata. Cancer genetics and cytogenetics. 
2002;137(2):133-7. 

111. Schoenmakers EF, Bunt J, Hermers L, Schepens M, Merkx G, Janssen B, Kersten M, 
Huys E, Pauwels P, Debiec-Rychter M, et al. Identification of CUX1 as the recurrent 



110 

chromosomal band 7q22 target gene in human uterine leiomyoma. Genes, chromosomes 
& cancer. 2013;52(1):11-23. 

112. Sait SN, Dal Cin P, Ovanessoff S, and Sandberg AA. A uterine leiomyoma showing both 
t(12;14) and del(7) abnormalities. Cancer genetics and cytogenetics. 1989;37(2):157-61. 

113. Xing YP, Powell WL, and Morton CC. The del(7q) subgroup in uterine leiomyomata: 
genetic and biologic characteristics. Further evidence for the secondary nature of 
cytogenetic abnormalities in the pathobiology of uterine leiomyomata. Cancer genetics 
and cytogenetics. 1997;98(1):69-74. 

114. Nilbert M, Heim S, Mandahl N, Floderus UM, Willen H, and Mitelman F. Different 
karyotypic abnormalities, t(1;6) and del(7), in two uterine leiomyomas from the same 
patient. Cancer genetics and cytogenetics. 1989;42(1):51-3. 

115. Kiechle-Schwarz M, Sreekantaiah C, Berger CS, Pedron S, Medchill MT, Surti U, and 
Sandberg AA. Nonrandom cytogenetic changes in leiomyomas of the female 
genitourinary tract. A report of 35 cases. Cancer genetics and cytogenetics. 
1991;53(1):125-36. 

116. Ozisik YY, Meloni AM, Altungoz O, Surti U, and Sandberg AA. Translocation 
(6;10)(p21;q22) in uterine leiomyomas. Cancer genetics and cytogenetics. 
1995;79(2):136-8. 

117. Sornberger KS, Weremowicz S, Williams AJ, Quade BJ, Ligon AH, Pedeutour F, Vanni 
R, and Morton CC. Expression of HMGIY in three uterine leiomyomata with complex 
rearrangements of chromosome 6. Cancer genetics and cytogenetics. 1999;114(1):9-16. 

118. Kazmierczak B, Wanschura S, Rommel B, Bartnitzke S, and Bullerdiek J. Ten 
pulmonary chondroid hamartomas with chromosome 6p21 breakpoints within the HMG-
I(Y) gene or its immediate surroundings. J Natl Cancer Inst. 1996;88(17):1234-6. 

119. Williams AJ, Powell WL, Collins T, and Morton CC. HMGI(Y) expression in human 
uterine leiomyomata. Involvement of another high-mobility group architectural factor in 
a benign neoplasm. The American journal of pathology. 1997;150(3):911-8. 

120. Dal Cin P, Wanschura S, Christiaens MR, Van den Berghe I, Moerman P, Polito P, 
Kazmierczak B, Bullerdiek J, and Van den Berghe H. Hamartoma of the breast with 
involvement of 6p21 and rearrangement of HMGIY. Genes, chromosomes & cancer. 
1997;20(1):90-2. 

121. Xiao S, Lux ML, Reeves R, Hudson TJ, and Fletcher JA. HMGI(Y) activation by 
chromosome 6p21 rearrangements in multilineage mesenchymal cells from pulmonary 
hamartoma. The American journal of pathology. 1997;150(3):901-10. 

122. Cleynen I, and Van de Ven WJ. The HMGA proteins: a myriad of functions (Review). Int 
J Oncol. 2008;32(2):289-305. 

123. Nilbert M, Heim S, Mandahl N, Floderus UM, Willen H, and Mitelman F. Trisomy 12 in 
uterine leiomyomas. A new cytogenetic subgroup. Cancer genetics and cytogenetics. 
1990;45(1):63-6. 

124. Moore SD, Herrick SR, Ince TA, Kleinman MS, Dal Cin P, Morton CC, and Quade BJ. 
Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer 
Res. 2004;64(16):5570-7. 

125. Ligon AH, and Morton CC. Genetics of uterine leiomyomata. Genes, chromosomes & 
cancer. 2000;28(3):235-45. 

126. Morey C, and Avner P. The demoiselle of X-inactivation: 50 years old and as trendy and 
mesmerising as ever. PLoS genetics. 2011;7(7):e1002212. 



111 

127. Zhang P, Zhang C, Hao J, Sung CJ, Quddus MR, Steinhoff MM, and Lawrence WD. Use 
of X-chromosome inactivation pattern to determine the clonal origins of uterine 
leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37(10):1350-6. 

128. Bowden W, Skorupski J, Kovanci E, and Rajkovic A. Detection of novel copy number 
variants in uterine leiomyomas using high-resolution SNP arrays. Mol Hum Reprod. 
2009;15(9):563-8. 

129. Levy B, Mukherjee T, and Hirschhorn K. Molecular cytogenetic analysis of uterine 
leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer genetics 
and cytogenetics. 2000;121(1):1-8. 

130. Meadows KL, Andrews DM, Xu Z, Carswell GK, Laughlin SK, Baird DD, and Taylor 
JA. Genome-wide analysis of loss of heterozygosity and copy number amplification in 
uterine leiomyomas using the 100K single nucleotide polymorphism array. Exp Mol 
Pathol. 2011;91(1):434-9. 

131. Packenham JP, du Manoir S, Schrock E, Risinger JI, Dixon D, Denz DN, Evans JA, 
Berchuck A, Barrett JC, Devereux TR, et al. Analysis of genetic alterations in uterine 
leiomyomas and leiomyosarcomas by comparative genomic hybridization. Mol Carcinog. 
1997;19(4):273-9. 

132. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, Sistonen P, Herva R, and 
Aaltonen LA. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc 
Natl Acad Sci U S A. 2001;98(6):3387-92. 

133. Lehtonen HJ. Hereditary leiomyomatosis and renal cell cancer: update on clinical and 
molecular characteristics. Fam Cancer. 2011;10(2):397-411. 

134. Smit DL, Mensenkamp AR, Badeloe S, Breuning MH, Simon ME, van Spaendonck KY, 
Aalfs CM, Post JG, Shanley S, Krapels IP, et al. Hereditary leiomyomatosis and renal 
cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin 
Genet. 2011;79(1):49-59. 

135. Csatlos E, Rigo J, Laky M, Brubel R, and Joo GJ. The role of the alcohol dehydrogenase-
1 (ADH1) gene in the pathomechanism of uterine leiomyoma. Eur J Obstet Gynecol 
Reprod Biol. 2013;170(2):492-6. 

136. Ishikawa H, Shozu M, Okada M, Inukai M, Zhang B, Kato K, Kasai T, and Inoue M. 
Early growth response gene-1 plays a pivotal role in down-regulation of a cohort of genes 
in uterine leiomyoma. J Mol Endocrinol. 2007;39(5):333-41. 

137. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman 
P, Lamlum H, Rahman S, et al. Germline mutations in FH predispose to dominantly 
inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature 
genetics. 2002;30(4):406-10. 

138. Bayley JP, Launonen V, and Tomlinson IP. The FH mutation database: an online 
database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor 
syndrome and congenital fumarase deficiency. BMC Med Genet. 2008;9(20. 

139. Kiuru M, Launonen V, Hietala M, Aittomaki K, Vierimaa O, Salovaara R, Arola J, 
Pukkala E, Sistonen P, Herva R, et al. Familial cutaneous leiomyomatosis is a two-hit 
condition associated with renal cell cancer of characteristic histopathology. The American 
journal of pathology. 2001;159(3):825-9. 

140. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, 
Olpin S, Moat SJ, et al. Accumulation of Krebs cycle intermediates and over-expression 



112 

of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol 
Genet. 2005;14(15):2231-9. 

141. Pollard P, Wortham N, Barclay E, Alam A, Elia G, Manek S, Poulsom R, and Tomlinson 
I. Evidence of increased microvessel density and activation of the hypoxia pathway in 
tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J Pathol. 
2005;205(1):41-9. 

142. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, Merino M, Trepel J, 
Zbar B, Toro J, et al. HIF overexpression correlates with biallelic loss of fumarate 
hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer 
Cell. 2005;8(2):143-53. 

143. Kiuru M, Lehtonen R, Arola J, Salovaara R, Jarvinen H, Aittomaki K, Sjoberg J, 
Visakorpi T, Knuutila S, Isola J, et al. Few FH mutations in sporadic counterparts of 
tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer 
Res. 2002;62(16):4554-7. 

144. Lehtonen R, Kiuru M, Vanharanta S, Sjoberg J, Aaltonen LM, Aittomaki K, Arola J, 
Butzow R, Eng C, Husgafvel-Pursiainen K, et al. Biallelic inactivation of fumarate 
hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. 
The American journal of pathology. 2004;164(1):17-22. 

145. Vaidya S, Shaik NA, Latha M, Chava S, Mohiuddin K, Yalla A, Rao KP, Kodati VL, and 
Hasan Q. No evidence for the role of somatic mutations and promoter hypermethylation 
of FH gene in the tumorigenesis of nonsyndromic uterine leiomyomas. Tumour Biol. 
2012;33(5):1411-8. 

146. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout 
D, van den Ouweland A, Halley D, Young J, et al. Identification of the tuberous sclerosis 
gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805-8. 

147. Everitt JI, Wolf DC, Howe SR, Goldsworthy TL, and Walker C. Rodent model of 
reproductive tract leiomyomata. Clinical and pathological features. The American journal 
of pathology. 1995;146(6):1556-67. 

148. Walker CL, Hunter D, and Everitt JI. Uterine leiomyoma in the Eker rat: a unique model 
for important diseases of women. Genes, chromosomes & cancer. 2003;38(4):349-56. 

149. Lingaas F, Comstock KE, Kirkness EF, Sorensen A, Aarskaug T, Hitte C, Nickerson ML, 
Moe L, Schmidt LS, Thomas R, et al. A mutation in the canine BHD gene is associated 
with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the 
German Shepherd dog. Hum Mol Genet. 2003;12(23):3043-53. 

150. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, 
Peacocke M, et al. Germline mutations of the PTEN gene in Cowden disease, an 
inherited breast and thyroid cancer syndrome. Nature genetics. 1997;16(1):64-7. 

151. Hobert JA, and Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 
2009;11(10):687-94. 

152. Cha PC, Takahashi A, Hosono N, Low SK, Kamatani N, Kubo M, and Nakamura Y. A 
genome-wide association study identifies three loci associated with susceptibility to 
uterine fibroids. Nature genetics. 2011;43(5):447-50. 

153. Eggert SL, Huyck KL, Somasundaram P, Kavalla R, Stewart EA, Lu AT, Painter JN, 
Montgomery GW, Medland SE, Nyholt DR, et al. Genome-wide linkage and association 
analyses implicate FASN in predisposition to Uterine Leiomyomata. Am J Hum Genet. 
2012;91(4):621-8. 



113 

154. Wise LA, Ruiz-Narvaez EA, Palmer JR, Cozier YC, Tandon A, Patterson N, Radin RG, 
Rosenberg L, and Reich D. African ancestry and genetic risk for uterine leiomyomata. 
Am J Epidemiol. 2012;176(12):1159-68. 

155. Edwards TL, Hartmann KE, and Velez Edwards DR. Variants in BET1L and TNRC6B 
associate with increasing fibroid volume and fibroid type among European Americans. 
Human genetics. 2013;132(12):1361-9. 

156. Liu H, Liu JY, Wu X, and Zhang JT. Biochemistry, molecular biology, and 
pharmacology of fatty acid synthase, an emerging therapeutic target and 
diagnosis/prognosis marker. Int J Biochem Mol Biol. 2010;1(1):69-89. 

157. Pizer ES, Chrest FJ, DiGiuseppe JA, and Han WF. Pharmacological inhibitors of 
mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor 
cell lines. Cancer Res. 1998;58(20):4611-5. 

158. Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, and Kuhajda FP. 
Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer 
cells. Cancer Res. 1996;56(12):2745-7. 

159. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, 
Enge M, Taipale M, et al. MED12, the mediator complex subunit 12 gene, is mutated at 
high frequency in uterine leiomyomas. Science. 2011;334(6053):252-5. 

160. Makinen N, Heinonen HR, Moore S, Tomlinson IPM, van der Spuy ZM, and Aaltonen 
LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African 
patients. Oncotarget. 2011;2(12):966-9. 

161. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, and Rajkovic A. Whole exome 
sequencing in a random sample of North American women with leiomyomas identifies 
MED12 mutations in majority of uterine leiomyomas. PloS one. 2012;7(3):e33251. 

162. Je EM, Kim MR, Min KO, Yoo NJ, and Lee SH. Mutational analysis of MED12 exon 2 
in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044-E7. 

163. Markowski DN, Bartnitzke S, Loning T, Drieschner N, Helmke BM, and Bullerdiek J. 
MED12 mutations in uterine fibroids-their relationship to cytogenetic subgroups. Int J 
Cancer. 2012;131(7):1528-36. 

164. Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, Coindre JM, Stoeckle E, 
Floquet A, MacGrogan G, et al. MED12 alterations in both human benign and malignant 
uterine soft tissue tumors. PloS one. 2012;7(6):e40015. 

165. Ravegnini G, Marino-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, Nucci MR, George 
S, Angelini S, Raut CP, et al. MED12 mutations in leiomyosarcoma and extrauterine 
leiomyoma. Mod Pathol. 2013;26(5):743-9. 

166. Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, Tsuda H, and 
Kanai Y. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle 
tumours. Histopathology. 2013;62(4):657-61. 

167. Markowski DN, Huhle S, Nimzyk R, Stenman G, Loning T, and Bullerdiek J. MED12 
mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes, 
chromosomes & cancer. 2013;52(3):297-304. 

168. Makinen N, Vahteristo P, Kampjarvi K, Arola J, Butzow R, and Aaltonen LA. MED12 
exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 
2013;21(11):1300-3. 



114 

169. de Graaff MA, Cleton-Jansen AM, Szuhai K, and Bovee JV. Mediator complex subunit 
12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms 
genetic heterogeneity. Hum Pathol. 2013;44(8):1597-604. 

170. Rieker RJ, Agaimy A, Moskalev EA, Hebele S, Hein A, Mehlhorn G, Beckmann MW, 
Hartmann A, and Haller F. Mutation status of the mediator complex subunit 12 (MED12) 
in uterine leiomyomas and concurrent/metachronous multifocal peritoneal smooth muscle 
nodules (leiomyomatosis peritonealis disseminata). Pathology. 2013;45(4):388-92. 

171. Schwetye KE, Pfeifer JD, and Duncavage EJ. MED12 exon 2 mutations in uterine and 
extrauterine smooth muscle tumors. Hum Pathol. 2014;45(1):65-70. 

172. Bertsch E, Qiang W, Zhang Q, Espona-Fiedler M, Druschitz S, Liu Y, Mittal K, Kong B, 
Kurita T, and Wei JJ. MED12 and HMGA2 mutations: two independent genetic events in 
uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27(8):1144-53. 

173. Heinonen HR, Sarvilinna NS, Sjoberg J, Kampjarvi K, Pitkanen E, Vahteristo P, 
Makinen N, and Aaltonen LA. MED12 mutation frequency in unselected sporadic uterine 
leiomyomas. Fertil Steril. 2014;102(4):1137-42. 

174. Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, and Al-Hendy A. Novel 
MED12 gene somatic mutations in women from the Southern United States with 
symptomatic uterine fibroids. Mol Genet Genomics. 2015;290(2):505-11. 

175. Kampjarvi K, Park MJ, Mehine M, Kim NH, Clark AD, Butzow R, Bohling T, Bohm J, 
Mecklin JP, Jarvinen H, et al. Mutations in Exon 1 highlight the role of MED12 in 
uterine leiomyomas. Hum Mutat. 2014;35(9):1136-41. 

176. Mäkinen N. Helsinki: University of Helsinki,; 2014:1 verkkojulkaisu (86 s.). 
177. Garraway LA, and Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17-

37. 
178. Mehine M, Kaasinen E, and Aaltonen LA. Chromothripsis in uterine leiomyomas. N Engl 

J Med. 2013;369(22):2160-1. 
179. Forment JV, Kaidi A, and Jackson SP. Chromothripsis and cancer: causes and 

consequences of chromosome shattering. Nat Rev Cancer. 2012;12(10):663-70. 
180. Forment JV, Kaidi A, and Jackson SP. Chromothripsis and cancer: causes and 

consequences of chromosome shattering. Nat Rev Cancer. 2012;12(10):663-70. 
181. Lee WY, Tzeng CC, and Chou CY. Uterine leiomyosarcomas coexistent with cellular 

and atypical leiomyomata in a young woman during the treatment with luteinizing 
hormone-releasing hormone agonist. Gynecol Oncol. 1994;52(1):74-9. 

182. Mittal K, and Joutovsky A. Areas with benign morphologic and immunohistochemical 
features are associated with some uterine leiomyosarcomas. Gynecol Oncol. 
2007;104(2):362-5. 

183. Mittal KR, Chen F, Wei JJ, Rijhvani K, Kurvathi R, Streck D, Dermody J, and Toruner 
GA. Molecular and immunohistochemical evidence for the origin of uterine 
leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod 
Pathol. 2009;22(10):1303-11. 

184. Yanai H, Wani Y, Notohara K, Takada S, and Yoshino T. Uterine leiomyosarcoma 
arising in leiomyoma: clinicopathological study of four cases and literature review. 
Pathol Int. 2010;60(7):506-9. 

185. Kampjarvi K, Kim NH, Keskitalo S, Clark AD, von Nandelstadh P, Turunen M, 
Heikkinen T, Park MJ, Makinen N, Kivinummi K, et al. Somatic MED12 mutations in 



115 

prostate cancer and uterine leiomyomas promote tumorigenesis through distinct 
mechanisms. Prostate. 2015. 

186. Lim WK, Ong CK, Tan J, Thike AA, Ng CC, Rajasegaran V, Myint SS, Nagarajan S, 
Nasir ND, McPherson JR, et al. Exome sequencing identifies highly recurrent MED12 
somatic mutations in breast fibroadenoma. Nature genetics. 2014;46(8):877-80. 

187. Yoshida M, Sekine S, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T, and 
Ochiai A. Frequent MED12 mutations in phyllodes tumours of the breast. Br J Cancer. 
2015;112(10):1703-8. 

188. Piscuoglio S, Murray M, Fusco N, Marchio C, Loo FL, Martelotto LG, Schultheis AM, 
Akram M, Weigelt B, Brogi E, et al. MED12 somatic mutations in fibroadenomas and 
phyllodes tumours of the breast. Histopathology. 2015. 

189. Pfarr N, Kriegsmann M, Sinn P, Klauschen F, Endris V, Herpel E, Muckenhuber A, 
Jesinghaus M, Klosterhalfen B, Penzel R, et al. Distribution of MED12 mutations in 
fibroadenomas and phyllodes tumors of the breast--implications for tumor biology and 
pathological diagnosis. Genes, chromosomes & cancer. 2015;54(7):444-52. 

190. Mishima C, Kagara N, Tanei T, Naoi Y, Shimoda M, Shimomura A, Shimazu K, Kim SJ, 
and Noguchi S. Mutational analysis of MED12 in fibroadenomas and phyllodes tumors 
of the breast by means of targeted next-generation sequencing. Breast Cancer Res Treat. 
2015;152(2):305-12. 

191. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, 
Haffari G, et al. The clonal and mutational evolution spectrum of primary triple-negative 
breast cancers. Nature. 2012;486(7403):395-9. 

192. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R, Feller SM, Grocock R, 
Henderson S, Khrebtukova I, et al. Monitoring chronic lymphocytic leukemia 
progression by whole genome sequencing reveals heterogeneous clonal evolution 
patterns. Blood. 2012;120(20):4191-6. 

193. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White 
TA, Stojanov P, Van Allen E, Stransky N, et al. Exome sequencing identifies recurrent 
SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature genetics. 
2012;44(6):685-9. 

194. Assie G, Letouze E, Fassnacht M, Jouinot A, Luscap W, Barreau O, Omeiri H, Rodriguez 
S, Perlemoine K, Rene-Corail F, et al. Integrated genomic characterization of 
adrenocortical carcinoma. Nature genetics. 2014;46(6):607-12. 

195. Risheg H, Graham JM, Jr., Clark RD, Rogers RC, Opitz JM, Moeschler JB, Peiffer AP, 
May M, Joseph SM, Jones JR, et al. A recurrent mutation in MED12 leading to R961W 
causes Opitz-Kaveggia syndrome. Nature genetics. 2007;39(4):451-3. 

196. Rump P, Niessen RC, Verbruggen KT, Brouwer OF, de Raad M, and Hordijk R. A novel 
mutation in MED12 causes FG syndrome (Opitz-Kaveggia syndrome). Clin Genet. 
2011;79(2):183-8. 

197. Schwartz CE, Tarpey PS, Lubs HA, Verloes A, May MM, Risheg H, Friez MJ, Futreal 
PA, Edkins S, Teague J, et al. The original Lujan syndrome family has a novel missense 
mutation (p.N1007S) in the MED12 gene. J Med Genet. 2007;44(7):472-7. 

198. Vulto-van Silfhout AT, de Vries BB, van Bon BW, Hoischen A, Ruiterkamp-Versteeg 
M, Gilissen C, Gao F, van Zwam M, Harteveld CL, van Essen AJ, et al. Mutations in 
MED12 cause X-linked Ohdo syndrome. Am J Hum Genet. 2013;92(3):401-6. 



116 

199. Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X, Joseph SM, Friez MJ, Schwartz 
CE, Pradhan S, et al. Mediator links epigenetic silencing of neuronal gene expression 
with x-linked mental retardation. Molecular cell. 2008;31(3):347-59. 

200. Kitano T, Schwarz C, Nickel B, and Paabo S. Gene diversity patterns at 10 X-
chromosomal loci in humans and chimpanzees. Mol Biol Evol. 2003;20(8):1281-9. 

201. Philibert RA, Winfield SL, Damschroder-Williams P, Tengstrom C, Martin BM, and 
Ginns EI. The genomic structure and developmental expression patterns of the human 
OPA-containing gene (HOPA). Human genetics. 1999;105(1-2):174-8. 

202. Philibert RA, King BH, Winfield S, Cook EH, Lee YH, Stubblefield B, Damschroder-
Williams P, Dea C, Palotie A, Tengstrom C, et al. Association of an X-chromosome 
dodecamer insertional variant allele with mental retardation. Mol Psychiatry. 
1998;3(4):303-9. 

203. Lariviere L, Seizl M, and Cramer P. A structural perspective on Mediator function. Curr 
Opin Cell Biol. 2012;24(3):305-13. 

204. Borggrefe T, and Yue X. Interactions between subunits of the Mediator complex with 
gene-specific transcription factors. Semin Cell Dev Biol. 2011;22(7):759-68. 

205. Conaway RC, and Conaway JW. Function and regulation of the Mediator complex. Curr 
Opin Genet Dev. 2011;21(2):225-30. 

206. Samuelsen CO, Baraznenok V, Khorosjutina O, Spahr H, Kieselbach T, Holmberg S, and 
Gustafsson CM. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are 
functionally conserved through evolution. Proc Natl Acad Sci U S A. 2003;100(11):6422-
7. 

207. Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong X, Yang J, and Cai G. Redefining the 
modular organization of the core Mediator complex. Cell Res. 2014;24(7):796-808. 

208. Knuesel MT, Meyer KD, Bernecky C, and Taatjes DJ. The human CDK8 subcomplex is 
a molecular switch that controls Mediator coactivator function. Genes & development. 
2009;23(4):439-51. 

209. Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, and Young RA. Temporal 
regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. 
Molecular cell. 1998;2(1):43-53. 

210. Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, and Kornberg RD. A complex 
of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. The Journal of 
biological chemistry. 2002;277(46):44202-7. 

211. Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, and Asturias FJ. 
Subunit architecture and functional modular rearrangements of the transcriptional 
mediator complex. Cell. 2014;157(6):1430-44. 

212. Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, and Taatjes DJ. The human CDK8 
subcomplex is a histone kinase that requires Med12 for activity and can function 
independently of mediator. Molecular and cellular biology. 2009;29(3):650-61. 

213. Belakavadi M, and Fondell JD. Role of the mediator complex in nuclear hormone 
receptor signaling. Rev Physiol Biochem Pharmacol. 2006;156(23-43. 

214. Kim S, Xu X, Hecht A, and Boyer TG. Mediator is a transducer of Wnt/beta-catenin 
signaling. The Journal of biological chemistry. 2006;281(20):14066-75. 

215. Zhou H, Kim S, Ishii S, and Boyer TG. Mediator modulates Gli3-dependent Sonic 
hedgehog signaling. Molecular and cellular biology. 2006;26(23):8667-82. 



117 

216. Zhou H, Spaeth JM, Kim NH, Xu X, Friez MJ, Schwartz CE, and Boyer TG. MED12 
mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic 
Hedgehog signaling. Proc Natl Acad Sci U S A. 2012;109(48):19763-8. 

217. Zhou R, Bonneaud N, Yuan CX, de Santa Barbara P, Boizet B, Schomber T, Scherer G, 
Roeder RG, Poulat F, and Berta P. SOX9 interacts with a component of the human 
thyroid hormone receptor-associated protein complex. Nucleic acids research. 
2002;30(14):3245-52. 

218. Rau MJ, Fischer S, and Neumann CJ. Zebrafish Trap230/Med12 is required as a 
coactivator for Sox9-dependent neural crest, cartilage and ear development. 
Developmental biology. 2006;296(1):83-93. 

219. Vogl MR, Reiprich S, Kuspert M, Kosian T, Schrewe H, Nave KA, and Wegner M. 
Sox10 cooperates with the mediator subunit 12 during terminal differentiation of 
myelinating glia. J Neurosci. 2013;33(15):6679-90. 

220. Rocha PP, Scholze M, Bleiss W, and Schrewe H. Med12 is essential for early mouse 
development and for canonical Wnt and Wnt/PCP signaling. Development. 
2010;137(16):2723-31. 

221. Rocha PP, Bleiss W, and Schrewe H. Mosaic expression of Med12 in female mice leads 
to exencephaly, spina bifida, and craniorachischisis. Birth defects research Part A, 
Clinical and molecular teratology. 2010;88(8):626-32. 

222. Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, Banks CA, 
Jin J, Cai Y, Washburn MP, et al. A set of consensus mammalian mediator subunits 
identified by multidimensional protein identification technology. Molecular cell. 
2004;14(5):685-91. 

223. Bourbon HM. Comparative genomics supports a deep evolutionary origin for the large, 
four-module transcriptional mediator complex. Nucleic acids research. 
2008;36(12):3993-4008. 

224. Prizant H, Sen A, Light A, Cho SN, DeMayo FJ, Lydon JP, and Hammes SR. Uterine-
specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Molecular 
endocrinology. 2013;27(9):1403-14. 

225. Tanwar PS, Lee HJ, Zhang L, Zukerberg LR, Taketo MM, Rueda BR, and Teixeira JM. 
Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the 
development of mesenchymal tumors in mice. Biology of reproduction. 2009;81(3):545-
52. 

226. Jamin SP, Arango NA, Mishina Y, Hanks MC, and Behringer RR. Requirement of 
Bmpr1a for Mullerian duct regression during male sexual development. Nature genetics. 
2002;32(3):408-10. 

227. Varghese BV, Koohestani F, McWilliams M, Colvin A, Gunewardena S, Kinsey WH, 
Nowak RA, Nothnick WB, and Chennathukuzhi VM. Loss of the repressor REST in 
uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates 
mammalian target of rapamycin pathway. P Natl Acad Sci USA. 2013;110(6):2187-92. 

228. Farquhar C, Brown PM, and Furness S. Cost effectiveness of pre-operative 
gonadotrophin releasing analogues for women with uterine fibroids undergoing 
hysterectomy or myomectomy. BJOG. 2002;109(11):1273-80. 

229. Farquhar CM, and Steiner CA. Hysterectomy rates in the United States 1990-1997. 
Obstetrics and gynecology. 2002;99(2):229-34. 



118 

230. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, and Segars JH. The 
estimated annual cost of uterine leiomyomata in the United States. American journal of 
obstetrics and gynecology. 2012;206(3):211 e1-9. 

231. Nadine Markowski D, Tadayyon M, Bartnitzke S, Belge G, Maria Helmke B, and 
Bullerdiek J. Cell cultures in uterine leiomyomas: rapid disappearance of cells carrying 
MED12 mutations. Genes, chromosomes & cancer. 2014;53(4):317-23. 

232. Lan ZJ, Xu X, and Cooney AJ. Differential oocyte-specific expression of Cre 
recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biology of 
reproduction. 2004;71(5):1469-74. 

233. Myers M, Britt KL, Wreford NG, Ebling FJ, and Kerr JB. Methods for quantifying 
follicular numbers within the mouse ovary. Reproduction. 2004;127(5):569-80. 

234. Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding 
facultative heterochromatin formation. Nat Rev Genet. 2011;12(8):542-53. 

235. Muzumdar MD, Tasic B, Miyamichi K, Li L, and Luo L. A global double-fluorescent 
Cre reporter mouse. Genesis. 2007;45(9):593-605. 

236. Heffner CS, Herbert Pratt C, Babiuk RP, Sharma Y, Rockwood SF, Donahue LR, Eppig 
JT, and Murray SA. Supporting conditional mouse mutagenesis with a comprehensive cre 
characterization resource. Nat Commun. 2012;3(1218. 

237. Huang S, Holzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, 
Grernrum W, Sun C, Prahallad A, et al. MED12 controls the response to multiple cancer 
drugs through regulation of TGF-beta receptor signaling. Cell. 2012;151(5):937-50. 

238. Jeyasuria P, Ikeda Y, Jamin SP, Zhao L, De Rooij DG, Themmen AP, Behringer RR, and 
Parker KL. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in 
gonadal function. Molecular endocrinology. 2004;18(7):1610-9. 

239. Boerboom D, Paquet M, Hsieh M, Liu J, Jamin SP, Behringer RR, Sirois J, Taketo MM, 
and Richards JS. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell 
tumor development. Cancer Res. 2005;65(20):9206-15. 

240. de Vries WN, Binns LT, Fancher KS, Dean J, Moore R, Kemler R, and Knowles BB. 
Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. 
Genesis. 2000;26(2):110-2. 

241. Douglas NC, Arora R, Chen CY, Sauer MV, and Papaioannou VE. Investigating the role 
of tbx4 in the female germline in mice. Biology of reproduction. 2013;89(6):148. 

242. Walker VR, and Korach KS. Estrogen receptor knockout mice as a model for endocrine 
research. ILAR J. 2004;45(4):455-61. 

243. Couse JF, and Korach KS. Reproductive phenotypes in the estrogen receptor-alpha 
knockout mouse. Ann Endocrinol (Paris). 1999;60(2):143-8. 

244. Couse JF, and Korach KS. Estrogen receptor null mice: what have we learned and where 
will they lead us? Endocr Rev. 1999;20(3):358-417. 

245. Willis A, Jung EJ, Wakefield T, and Chen X. Mutant p53 exerts a dominant negative 
effect by preventing wild-type p53 from binding to the promoter of its target genes. 
Oncogene. 2004;23(13):2330-8. 

246. Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M, De Clercq S, 
Drogat B, Haenebalcke L, Bartunkova S, et al. Efficient mouse transgenesis using 
Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic 
acids research. 2009;37(7):e55. 



119 

247. Jeyasuria P, Wetzel J, Bradley M, Subedi K, and Condon JC. Progesterone-regulated 
caspase 3 action in the mouse may play a role in uterine quiescence during pregnancy 
through fragmentation of uterine myocyte contractile proteins. Biology of reproduction. 
2009;80(5):928-34. 

248. Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, and Rajkovic A. Med12 gain-of-
function mutation causes leiomyomas and genomic instability. J Clin Invest. 
2015;125(8):3280-4. 

249. Xin HB, Deng KY, Rishniw M, Ji G, and Kotlikoff MI. Smooth muscle expression of Cre 
recombinase and eGFP in transgenic mice. Physiol Genomics. 2002;10(3):211-5. 

250. Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, Makinen N, Gao FJ, 
Palin K, Nurkkala H, et al. Uterine Leiomyoma-Linked MED12 Mutations Disrupt 
Mediator-Associated CDK Activity. Cell Rep. 2014;7(3):654-60. 

 
 


	Title Page
	Committe Members
	Copyright
	Abstract
	Table of Contents
	List of Tables
	List of figures
	Preface
	1.0  INTRODUCTION
	1.1 UTERINE LEIOMYOMAS
	1.1.1 Epidemiology and risk factors
	1.1.2 Diagnosis and treatment
	Figure 1.1 MRI image of an intramural uterine leiomyoma

	1.1.3 Histopathology and molecular characteristics
	Figure 1.2 Histopathology of conventional leiomyomas
	Table 1.1 WHO based pathological classification of uterine leiomyoma variants.
	Figure 1.3 Histopathological variants of uterine leiomyoma


	1.2 GENESIS OF UTERINE LEIOMYOMAS
	1.2.1 Ovarian hormones and leiomyomagenesis
	1.2.2 Myometrial stem cells and leiomyomagenesis

	1.3 GENETICS OF LEIOMYOMAS
	1.3.1 Cytogenetics of leiomyomas
	1.3.1.1   12q14-15 translocations
	1.3.1.2 Deletions of 7q
	1.3.1.3 6p21 rearrangements
	1.3.1.4  Other cytogenetic aberrations
	1.3.1.5 Monoclonality of leiomyomas
	1.3.1.6 Copy number alterations and gene expression profiling in leiomyomas

	1.3.2 Leiomyomas and associated syndromes
	1.3.2.1 Hereditary leiomyomatosis and renal cell cancer (HLRCC)
	1.3.2.2  Leiomyomas associated with other syndromes

	1.3.3 Molecular genetics of leiomyomas
	1.3.3.1 Genome wide association studies
	1.3.3.2 Whole exome sequencing; MED12 exon 2 variants and leiomyomas
	Figure 1.4 MED12 exon 2 variants associated with uterine leiomyomas
	Table 1.2 List of missense, splice-site variants and indels in exon 2 of MED12

	1.3.3.3 MED12 mutations and genomic alterations
	1.3.3.4 MED12 mutations in other benign and malignant tumors

	1.3.4  MED12 germline mutations
	1.3.5 Mediator complex subunit 12 (MED12)
	Figure 1.5 MED12 as part of the CDK8 kinase module in the mediator complex

	1.3.6 Animal models of leiomyomas
	1.3.7 Public health significance
	1.3.8  Summary


	2.0  LOSS OF MED12 CAUSES INFERTILITY BUT DOES NOT STIMULATE TUMORIGENESIS
	2.1 INTRODUCTION
	2.2 MATERIALS AND METHODS
	2.3 RESULTS
	2.3.1 Generation of conditional loss of function model of Med12
	Figure 2.1. Evaluation of Amhr2-cre activity, Med12 recombination and expression in loss of Med12 uteri

	2.3.2 Med12 cKO females have atrophic uteri
	Figure 2.2. Med12fl/fl Amhr2-cre females have hypoplastic reproductive tract

	2.3.3 Med12 cKO females are infertile
	Figure 2.3. Evaluation of breeding in Med12 cKO males and females

	2.3.4 Ovulation occurs under external gonadotropic stimulus in Med12 cKO females
	Figure 2.4. Assessment of ovarian histology and ovulation assay

	2.3.5 Med12 is a maternal effect gene important for somatic cell but not germ cell development
	Figure 2.5. Breeding schemes to generate Med12fl/- females and evaluation of Med12fl/fl Zp3-cre ovaries

	2.3.6 Med12 cKO uteri infrequently develop tumors other than leiomyomas
	Figure 2.6. Solid tumors in Med12 cKO uteri


	2.4 DISCUSSION

	3.0  MED12 GAIN OF FUNCTION MUTATION CAUSES LEIOMYOMAS AND GENOMIC INSTABILITY
	3.1 INTRODUCTION
	3.2 MATERIALS AND METHODS
	3.3 RESULTS
	3.3.1 Generation of mutant Med12 Rosa knock in mice (c.131G>A)
	Figure 3.1. Generation of ROSA26 Med12 mice that conditionally express Med12 c.131G>A variant
	Figure 3.2 Models and breeding schemes of mice used in Chapter 3

	3.3.2 Expression of the Med12 c.131G>A variant on the background of conditional Med12 knockout causes leiomyomas
	Figure 3.3. Histological evaluation of uteri from nulliparous Med12fl/+ Med12Rmt/+Amhr2-cre females
	Figure 3.4. Multiparous Med12fl/+ Med12Rmt/+Amhr2-cre females develop spectacular leiomyoma-like lesionssimilar to human leiomyomas
	Figure 3.5. Molecular characterization of leiomyoma-like lesions
	Figure 3.6. Histological evaluation of uteri from Med12fl/fl Med12Rmt/+ Amhr2-cre, Med12fl/fl Amhr2-cre andMed12fl/fl Med12Rmt/mt Amhr2-cre females

	3.3.3 Med12 c.131G>A variant can cause uterine leiomyomas on WT background
	Figure 3.7. Histological evaluation of uteri from nulliparous Med12Rmt/+Amhr2-cre females
	Figure 3.8 Multiparous Med12Rmt/+ Amhr2-cre uteri develop prominent leiomyomas(A,
	Figure 3.9 Histological evaluation of uteri from nulliparous and multiparous Med12Rmt/mtAmhr2-cre females

	3.3.4 Med12 mouse mutations and genomic instability
	Table 3.1 Table of logarithmic signal intensity ratios to interpret aCGH data
	Figure 3.10 Representative array profiles of Med12fl/+Med12Rmt/+ Amhr2-cre tumors
	Figure 3.11 Representation of human syntenic mapping of uterine rearrangements in mouse Med12fl/+Med12Rmt/+ Amhr2-cre females
	Table 3.2 Regions shared between human and mouse leiomyomas

	3.3.5  Expression of mutant Med12 in myometrial cells using the Myosin heavy chain 11- cre (Myh11-cre)
	Figure 3.12 Evaluation of 12-week Med12Rmt/+ Myh11-cre uteri


	3.4 DISCUSSION
	3.5 ACKNOWLEDGEMENTS

	4.0  OVERALL SUMMARY AND CONCLUSIONS
	APPENDIX: ABBREVIATIONS AND TABLES
	Table 4.1 List of abbreviations
	Table 4.2 Regions of aberrations in mouse leiomyomas
	Table 4.3 Syntenic regions between mouse aberrations and human chromosomes

	BIBLIOGRAPHY



