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Long-term, multi-factor studies are necessary to understand the population-level impacts and 

relative importance of species interactions.  Such experiments produce data that are rich in detail 

but challenging to analyse.  In my dissertation I have investigated the population-level impacts of 

two interactions, allelopathy and herbivory, by applying longitudinal statistical models to long-

term experimental data.  These data were collected during a decade-long investigation of impacts 

of white-tailed deer (Odocoileus virginianus) and an allelopathic invader (Alliaria petiolata) on 

forest herbs and trees.   

There is great concern about the impacts of overabundant deer, but little is known about 

how quickly forests respond when deer abundance is reduced.  Using biennial survey data I 

modeled changes in sapling abundance after deer exclusion.  I found that Acer saccharum (sugar 

maple) but not other species exhibited signs of recovery in <7 years, but changes were obscured 

by density declines near the end of the study, likely due to self-thinning.  Using meta-analysis I 

determined that other studies observed desired changes typically after ~20 years.  Few, however, 

carry out frequent surveys and therefore likely miss important processes such as thinning.   

 Invasive plants are also widely considered to be an ecological problem.  Small-scale 

experiments have established that allelopathic invaders can negatively impact plant fitness.  To 

determine if an allelopathic plant has population-level effects, I modeled the impacts of Alliaria 
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removal on the herb Maianthemum racemosum.  While Alliaria removal benefits Maianthemum 

vital rates, changes take >5 years to appear. Broadening the analysis to compare the effects of 

deer and Alliaria on two additional herbs, I found that Alliaria impacts multiples species and 

vital rates, and that at times its effects can be as detrimental as deer browse.   

 Combining the power of experiments with sophisticated statistics, I have shown that 

plant-plant and plant-animal interactions can be similar in magnitude.  Without longitudinal data 

and appropriate models, we would not have been able to characterize the effects of deer on 

saplings, or Alliaria on understory herbs, instead concluding that deer exclusion was not 

impacting forest regeneration and Alliaria removal not improving plant vital rates. 
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1.0  THE NEED FOR LONG-TERM, LONGITUDINAL, AND DEMOGRAPHIC 

STUDIES INTO THE IMPORTANCE OF SPECIES INTERACTIONS 

1.1 INTRODUCTION 

A unifying interest of many ecologists is the role species interactions play in determining the 

distribution and abundance of organisms (Krebs 1972).  Many of ecology’s most enduring – and 

controversial (Peters 1981) – ideas, images, and metaphors involve interactions between species: 

trophic cascades and the green world hypothesis (Hairston et al. 1960, Paine 1980), keystone 

predators (Paine 1969), and herbivores caught between the “devil” of predation and the “deep 

blue sea” of plant defenses (Lawton and McNeill 1979).   

Beginning with the first Pisaster sea star that Paine (1969) tossed into the Pacific, 

experimentation has been central to demonstrating the validity of these ecological principals.  

Since Paine (1969), there have been experiments on aquatic and marine trophic cascades from 

the scale of pitcher plants (Kneitel and Miller 2002) to entire lakes (Carpenter et al. 2001).  

When it was questioned whether the interactions that result in trophic cascades were much 

stronger in aquatic than terrestrial ecosystems, and therefore the idea was “all wet” (Strong 

1992), further experimentation revealed the generality of cascades across biomes (Pace 1999, 

Estes et al. 2011).  Questions inspired by the “green world” hypothesis have been addressed by 
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experimentally manipulating herbivores and predators, from aphids and parasitoid wasps 

(Costamagna et al 2007) to elephants (Ford et al. 2014). 

While observational approaches remain central to ecological understanding (Sagarin and 

Pauchard 2010), progress in an ecological sub-discipline is now often marked by transition from 

initial observational studies to increased experimentation, especially within a null-hypothesis 

framework (Diamond 1986).  For example Williamson (1999) called for increased 

experimentation in invasive species ecology, which over the last decade has been met with 

increasingly experimental and mechanistic approaches (Stricker et al. 2015; Lowry et al. 2013).  

Thanks to these experiments, ecologists have been able to confirm the ecological role of 

species interactions.  The question ecologists now frequently face is not whether a given species 

interaction can be important, but when, where, and how often it is important (Maron and Crone 

2006, Bolker 2005, Kikivide et al. 2011).   That is, how often, when, and where does an 

interaction affect the distribution and abundance of organisms in the real world.  Many 

experiments on species interactions are conducted at relatively small scales, over short time 

periods relative to the generation time of the organism, and focus on a subset of fitness 

components.  Additionally, for plants, many experiments are conducted with seedlings grown 

from seed so that developmental conditions can be controlled.  An essential route for 

understanding how species interactions play out in the real world is to scale experiments up to 

the messier realm of long-term population dynamics of multiple life stages of an organism 

(Maron et al. 2010, Goldberg and Scheiner 2001).   

Similarly, many experiments on species interactions are necessarily focused on a specific 

interaction and remove the influence of other environmental factors or species interactions.  To 

holistically understand a species interaction it therefore needs to be determined how important 
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the focal interaction is (sensu Welden and Slausson 1986) relative to environmental variation and 

other species interactions (Kikvidze et al. 2011; e.g. von Euler et al. 2014, Maron et al. 2014).   

Three interrelated ways to address these questions are population-level experiments that 

are 1) long-term, 2) longitudinal, and 3) demographic.  Such experiments produce larger amounts 

of nested and correlated data.  The analysis of these experiments therefore requires the 

application of modern methods for handling correlated, nested data, and non-normal data (Bolker 

et al. 2009, Zuur et al. 2009, Bolker 2015, Kéry 2010).  These approaches allow researchers to 

observe and assess the impacts of species interactions across life history stages and throughout 

the literal life history of an organism while accounting for spatial variation and temporal 

stochasticity. 

In my dissertation I have used long-term, longitudinal data and a demographic 

perspective to address the importance of two negative interactions plant species must contend 

with: mammalian herbivory and invasive species.  Native plant species often must face both of 

these stresses simultaneously, and I have leveraged the power of contemporary statistical 

methods to assess the relative importance of these two interactions on plant life histories and 

population dynamics. 

1.2 EXPERIMENTAL DESIGN  

Data for most of my dissertation (Chapters 2, 4, and 5) was collected during an ongoing study 

initiated in 2003 to understand how herbaceous and woody plants are impacted by herbivores 

and invasive species (Kalisz et al. 2014, Brouwer et al. 2015).  This study is comprised of six 

pairs of plots; within each pair one plot is fenced to exclude deer while the other is unfenced 
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(Fig. 26 Appendix D).  Half of each plot has had the invasive biennial garlic mustard (Alliaria 

petiolata) removed, resulting in a factorial deer exclusion-invader removal experiment.  In these 

plots >10,000 individuals of six native herb species have been monitored annually since 2003.  

Additionally, over 400 4m2 subplots have been surveyed biennially to monitor change in woody 

and herbaceous vegetation over time.  This research has resulted in a rich but complex dataset 

comprised of longitudinal measurements on individual plants or survey units nested within a 

complex experimental design (split-split plot) where two dynamic species interactions have been 

manipulated. 

1.3 CHAPTER SUMMARIES 

1.3.1 Outline of dissertation 

My dissertation is comprised of four data chapters.  Three are analyses of long-term data from 

the experiment detailed in the previous section, and the third is a meta-analysis of deer exclusion 

experiments from around the globe. 

1.3.2 Chapter 2: Impacts of an allelopathic invader on native vital rates 

Invasive species are often ranked by ecologists as a principal threat to biodiversity (Young and 

Larson 2011) and thought to cause considerable economic harm (Pimentel et al. 2005).  

Numerous small-scale experimental studies have confirmed that invasive plants reduce the 

fitness of native plants (e.g. Gioria and Osborne 2014, Morales and Traveset 2009, Inderjit et al. 
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2011, Liao et al. 2008, Enge et al. 2013), but long-term and/or demographic field studies are 

much rarer (Stricker et al. 2015; but see e.g. Williams and Crone 2006, Dangremond et al. 2010).  

The lack of solid, long-term evidence makes it difficult to conclusively answer vocal critics who 

question the conservation threat posed by invasive species and the uniqueness of the ecological 

and evolutionary situations they create (Rosenzweig 2001, Slobodkin 2001, Davis 2003, Brown 

and Sax 2004, Thomas and Palmer 2015).   

In Chapter 2 of my dissertation (Brouwer et al. 2015), I demonstrate the population-level 

impacts of the invasive plant Alliaria petiolata on a common native herb, Maianthemum 

racemosum.  There is extensive evidence from small-scale studies that Alliaria impacts 

components of plant fitness (Prati and Bossdorf 2004, Callaway et al. 2008, Lankau 2012, 

Leicht-Young et al. 2012), but two recent field experiments have questioned the impacts of 

invasive species in forests (Davalos et al. 2014), particularly Alliaria (Waller and Mass 2013).  A 

major limitation of studies indicating either negative or negligible impacts of Alliaria is that they 

have relied almost entirely on assessing the impacts of Alliaria on native seeds or seedlings in 

their experiments (but see Hale et al. 2011, Hale et al. in press).  In Chapter 2, I use long-term, 

longitudinal data on plant vital rates to demonstrate that Alliaria impacts multiple fitness 

components of Maianthemum adults, which are the life history stage of this species that is most 

important to population growth and persistence (Knight 2004, Franco and Silvertown 2004).  

Key to this analysis is the use of long-term data and longitudinal analyses to identify increases in 

vital rates over time when Alliaria is removed. 
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1.3.3 Chapter 3: Meta-analysis of deer impacts in closed canopy forests 

Along with invasive plant species, overabundant, feral, invasive, or overstocked mammalian 

herbivores are considered a major environmental problem (Fleischner 1994, Campbell and Long 

2009, Sutherland et al 2006, Cote et al. 2004, Flueck 2010).  Deer are some of the most 

frequently problematic mammalian herbivores, especially white-tailed deer (Odocoileus 

virginianus) in their native North American range (Cote et al. 2004) and red deer/elk (Cervus 

elaphus, C. canadensis) where they have been introduce in New Zealand (Coomes et al. 2003).  

Deer are generalist foragers and it is thought that their browse preferences can dramatically alter 

forest community composition (browse preference hypothesis; Waller and Alverson 1997).  This 

has been shown to occur after intense forest management such as clear cuts (e.g. Marquis 1981, 

Horsley et al 2003, Hidding et al. 2013) and it has been assumed that this will also occur in 

closed-canopy forests where successional processes are much slower.  More recently, it has been 

proposed that instead of changing the species composition of forests, deer can change the 

structure of the forest to be more open and parkland- or savanna-like (canopy recruitment 

hypothesis; Tanentzap et al. 2011).  Because of the long timeframes necessary to test hypotheses 

about forest succession it is difficult to address the generality of these proposals.  In Chapter 3 I 

have assessed the plausibility of these two hypotheses using a systematic review and meta-

analysis of all published deer exclusion studies in closed canopy forests.  While both of these 

models of deer-induced forest change are likely to apply in different situations, across all 

available studies I found that deer have stronger impacts on the abundance of woody vegetation 

than on species richness or community diversity.  Additionally, non-palatable species often 

increase in abundance inside deer exclosures.  These results imply that in the presence of deer 
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non-palatable species do not replace palatable species 1:1.  The canopy-recruitment hypothesis 

therefore deserves additional attention when researchers consider the impacts of deer on forests. 

 

1.3.4 Chapter 4: Longitudinal analysis of deer impacts 

Most studies of the impacts of deer, and mammalian herbivores in general, are not longitudinal.  

We therefore do not have much information on the temporal dynamics of vegetation change after 

deer become overabundant, and after they are reduced in density.  In Chapter 4, I analyzed data 

from 432 4m2 woody vegetation plots that have been re-surveyed biennially.  This experiment 

was begun after deer had been overabundant at this site for only ~15 years and so it provides the 

opportunity to monitor continued vegetation change after deer become problematic, as well as 

how vegetation responds to deer exclusion over time.  Surprisingly, many aspects of the woody 

vegetation, such as sapling abundance, increased both inside and outside of exclosure plots and 

were not significantly different between treatments.  I demonstrate, though, that deer do slow the 

rate that saplings grow into the mid-canopy, and that they impact the spatial distribution of 

stems.   

1.3.5 Chapter 5: Are the impacts of invaders as important as herbivores? 

North American forests are frequently invaded by non-native plant species and experience 

browse pressure from high densities of deer (Cote et al. 2004, Martin et al. 2009).  As for almost 

all species interactions, the impacts of these two negative species interactions have mostly been 

studied in isolation (but see Eschtruth and Battles 2008a, Christopher et al. 2014).  This raises 
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the question of whether both of these interactions are important to plant population stability or if 

one is more important than the other (Kikvidze et al. 2011).  As noted previously, two studies 

have recently questioned the relevance of controlling invasive species when deer are 

overabundant (Davalos et al. 2014), specifically calling for de-emphasis on Alliaria control 

(Waller and Maas 2013).  Both of these were replicated field experiments, but both used nursery 

grown seedlings of native species.  The vital rates of adult forest plants, however, are generally 

much more important for population stability (Whigham 2004, Knight 2004).  In Chapter 5 of 

my dissertation I demonstrate that Alliaria impacts can be of similar magnitude as deer for adults 

of three common forests plants.  These changes develop gradually over multiple years and are 

apparent only when annual variation in vital rates is accounted for.  Additionally, I show how the 

effects of deer are highly variable and that native species can temporarily achieve high flowering 

rates despite heavy browse pressure.  This demonstrates that even a strong, well-understood 

negative species interaction can be highly variable and reinforces the need for statistical models 

that can account for temporal variation and gradual change over time. 

1.3.6 Chapter 6: Conclusions 

In chapter six I conclude by summarizing my results and discussing their relevance for plant 

ecology and demography.  I also outline how I think demographic and statistical methods can 

further our understanding of population ecology. 
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2.0  MUTUALISM-DISRUPTING ALLELOPATHIC INVADER DRIVES CARBON 

STRESS AND VITAL RATE DECLINE IN A FOREST PERENNIAL HERB  

2.1 INTRODUCTION 

The majority of flowering plant species form mutualisms with root fungal symbionts (RFS) such 

as arbuscular mycorrhizal fungi (AMF; 74% of angiosperms; Brundrett 2009) and dark septate 

endophytes (DSE; ≥600 species; Jumponnen and Trappe 1998). AMF and DSE live inside plant 

roots and deploy hyphae outside the root that increase water, nitrogen, phosphorus and other soil 

nutrients’ availability to their plant partner (Smith and Read 2008; Newsham 2011). The RFS 

receive a substantial fraction of the plant partner’s fixed carbon (for AMF up to 20%; Smith and 

Read 2008).   

Recent work highlights how anthropogenic changes in the environment, such as invasion, 

can negatively affect mutualisms (Tylianakis et al. 2008; Kiers et al. 2010). Invasive species can 

impact belowground processes and directly or indirectly alter soil microbial communities, 

including RFS. Mechanisms through which belowground impacts can occur (summarized in part 

by Wolfe and Klironomos 2005) include alterations in the quality, quantity, and timing of litter 

inputs and subsequent changes in soil nutrient status (reviewed by Ehrenfeld 2003), direct 

changes to soil nutrient status through novel nutrient fixation strategies by the invader (e.g. 

Vitousek and Walker 1989), mutualist degradation (Vogelsang and Bever 2009), and allelopathy 
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(e.g. Callaway et al. 2008; Grove et al. 2012). Specifically, allelochemicals can act as novel 

weapons that are directly toxic to plants or act indirectly on their associated microbes (Callaway 

and Ridenour 2004; Weir et al. 2004). 

The invasion of North American forests by Alliaria petiolata (Brassicaceae, garlic 

mustard) is an emerging model system for investigations of allelopathic effects on belowground 

processes (Rodgers et al. 2008a). This species produces a suite of allelochemicals (Vaughn and 

Berhow 1999; Cipollini and Gruner 2007) that are toxic to RFS (Roberts and Anderson 2001; 

Stinson et al. 2006; Koch et al. 2011) even at low concentrations (Callaway et al. 2008; Cantor 

et al. 2011). Field studies document that areas infested with Alliaria exhibit shifts in soil fungal 

community composition with frequent reductions in AMF species richness (Burke et al. 2008; 

Lankau 2011a; Lankau et al. 2014), declines in total soil hyphal abundances (Cantor et al. 2011; 

Koch et al. 2011), and changes in the within-root community of AMF-dependent plants (Burke 

2008; Bongard et al. 2013). Together, these studies suggest that within Alliaria-invaded 

ecosystems the function of the mutualistic fungal community can be compromised and that these 

changes contribute to Alliaria’s invasive success.   

Herbaceous perennials dominate the temperate forest understories that Alliaria invades 

and these species as a group are typically highly- to obligately-dependent on RFS (Brundrett and 

Kendrick 1988; Whigham 2004). The fact that temperate forest soils are strongly resource 

limited (Whigham 2004; Gilliam 2015) likely drives the obligate nature of the relationship for 

many understory herbaceous perennials. Typically these species are slow growing (Gilliam 

2015), exhibit high rates of RFS colonization (e.g. Brundrett and Kendrick 1988; Boerner 1990; 

Burke 2008), and have long-lived arbuscules (Brundrett and Kendrick 1990).  Many also lack 

fine roots or root hairs (e.g. LaFrankie 1985) perhaps because their associated RFS hyphae fulfill 
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this soil resource-gathering role. Since resources supplied by RFS are intimately tied to many 

plant metabolic functions (Schweiger et al. 2014), disruption of soil mutualisms is expected to 

severely limit the physiological rates of forest species (Hale et al. 2011). In the absence of RFS, 

plants generally exhibit reduced photosynthetic rates (Allen et al. 1981; Wright et al. 1998; Zhu 

et al. 2011) and subsequent carbon stress can curb their ability to carry out carbon-demanding 

functions such as growth (Lu and Koide 1994) and flowering (Koide et al. 1994).  

Carbon stress is the reduction of a plant’s pool of total non-structural carbohydrates 

(sensu Anderegg et al. 2012).  In herbaceous perennials, chronic carbon stress can alter key vital 

rates including survival (Gremer and Sala 2013), flowering (Crone et al. 2009) and prolonged 

dormancy (Gremer et al. 2012).  Invaders like Alliaria that alter the soil environment and 

essential RFS functions could induce carbon stress or “carbon starvation” (sensu McDowell et al. 

2008), ultimately diminishing the stability of populations of RFS-dependent native species. 

Our prior experiments on the RFS-dependent understory perennial, Maianthemum 

racemosum (Ruscaceae, false Solomon’s seal) confirm the dramatic physiological consequences 

of short-term RFS disruption by Alliaria’s allelochemicals. Key physiological traits including 

stomatal conductance, which is known to be highly dependent on RFS colonization (Augé et al. 

2014), and photosynthetic rate both significantly declined in plants exposed to fresh Alliaria leaf 

litter (Hale et al. 2011).  Soil respiration, to which fungi are the primary contributors (Anderson 

and Domsch 1975), was also reduced with Alliaria treatment. Importantly, in field plots invaded 

by Alliaria and in pot experiments with an Alliaria litter treatment, we demonstrated significant 

declines in the abundance of soil fungal hyphae relative to controls (37% decline, Cantor et al. 

2011; 29-38% decline, A. Hale et al. unpubl. data).  Together these data strongly support the idea 
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that the observed physiological declines are driven by the inhibition of the RFS hyphal network 

in the soil (Hale et al. 2011). 

Here we explore how the physiological stress of RFS mutualism disruption in Alliaria-

invaded forests could result in performance declines in an RFS-dependent forest perennial across 

two time scales. First, we ask: Given that Alliaria’s allelochemicals cause detectable shifts in the 

soil fungal community and alter native plant physiological rates, do they also cause declines in 

carbon storage in plants within a single growing season? In a greenhouse experiment we show 

that Alliaria-treated Maianthemum store significantly less carbon in their rhizome over one 

growing season relative to controls. Second, to determine the potential for short-term effects to 

scale up over time and affect population processes, we conducted a seven-year field experiment 

in an Alliaria-invaded forest in which Alliaria was weeded or left at ambient levels. We test 

whether Maianthemum exhibit lower growth rates consistent with carbon stress in the Alliaria 

ambient plots. We also ask if Alliaria reduces size-based vital rates of Maianthemum and if so, 

how quickly these changes occur. We show that where Alliaria is present, Maianthemum have 

supressed growth and vital rates relative to adjacent plots where Alliaria is removed.  

 

2.2 METHODS 

2.2.1 Greenhouse study: Assessing potential for carbon stress 

The greenhouse study was conducted during the summer of 2010 in the greenhouse facilities at 

the University of Pittsburgh. In May, we obtained bare-root adult Maianthemum plants (N = 42) 
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from a native plant nursery (Prairie Moon Nursery, Winona, MN, USA). Rhizomes ranged in 

size from 6.7 to 39.7 g fresh weight. We potted each rhizome in a 3:1 mixture of autoclaved 

Fafard potting soil and Turface. We inoculated plants with RFS by adding 150 g of field soil 

collected from areas adjacent to Maianthemum plants at our experimental field site (see details 

below). Pots were then placed in the greenhouse and watered every 2-3 days for one month, 

allowing the plants to complete stem elongation and establish the RFS mutualism. 

In June, we assigned each plant to either an Alliaria treatment or a control treatment. To 

control for potential differences in initial carbohydrate status due to differences in plant age 

and/or size (e.g. Olano et al. 2006), we stratified the randomized assignment of rhizomes into the 

treatments to ensure that mean rhizome mass was the same in the Alliaria and control treatments. 

Plants in the Alliaria treatment were then exposed to Alliaria allelochemicals by placing 25 g of 

fresh Alliaria leaf tissue collected from a population with a recent history of invasion (< 20 

years) on top of the soil. When these plants were watered, the glucosinolates leached out of the 

Alliaria leaves and into the soil (A. Hale et al. unpubl. data). As in previous experiments (Hale et 

al. 2011), plants in the control treatment received 25 g of fresh Hesperis matronalis (dame’s 

rocket; Brassicaceae) leaf tissue. Like Alliaria, Hesperis is an invasive mustard in eastern North 

America (Leicht-Young et al. 2012). While Hesperis produces some glucosinolates (Larsen et al. 

1992), RFS hyphae and vesicles have been observed within its root system (DeMars and Boerner 

1995), indicating that Hesperis chemicals are less toxic to RFS than Alliaria. In the field, the 

high mortality rates of Alliaria seedlings and rosettes throughout the year (Davis et al. 2006) and 

the mortality of adults in the summer (Anderson et al. 1996) likely results in a sustained supply 

of allelochemicals into the soil. Thus, we re-applied fresh leaf tissue in both treatments every two 

weeks until the end of August to simulate a season-long supply of Alliaria allelochemicals.  
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We destructively harvested plants three times during the growing season (9 July, 6 

August, and at senescence) to assess the effect of the treatments on carbohydrate status. For the 

last time point, we classified plants as being senesced when 40% of the leaf tissue had yellowed 

and photosynthetic rates were < 1.0 μmol·m-2·s-1. Details of the leaf gas exchange protocol for 

Maianthemum can be found in Hale et al. (2011). To harvest the plants, we carefully clipped the 

shoot and roots away from the rhizome. We also stained the roots of a subset of plants per 

treatment following Brundrett et al. (1984) to confirm RFS colonization.  We then weighed the 

rhizome and immediately flash-froze it in liquid nitrogen. We stored samples at -80°C until they 

could be lyophilized and ground. We followed the protocol of Zuleta and Sambucetti (2001) to 

analyse rhizome inulin (storage carbohydrate) and sucrose (mobile carbohydrate) content via 

HPLC. [Note: Starch is not present in the rhizome of Maianthemum (A. Hale et al., unpubl. 

data)]. In brief, a 0.03 g dried sample for each plant is boiled while stirring with a magnetic stir 

bar. Once samples cool to room temperature, they are filtered through a 0.20 μm filter, and run 

on HPLC (Aminex HPX-87C anion-exchange column, deionized water at 85°C was set as the 

mobile phase with a flux rate of 0.6 mL/min). Standards are used (inulin from dahlia tubers, 

Sigma-Aldrich; sucrose, Sigma-Aldrich) to confirm the identity of the sample peaks and to create 

standard curves to determine inulin and sucrose concentrations. Here, we express inulin and 

sucrose concentrations as a % of the HPLC dry sample mass. We also sum each plant’s inulin 

and sucrose content to determine total non-structural carbohydrate (NSC) concentration (%).  

To explore the effect of our treatments on rhizome carbohydrate status, we use a 

multivariate analysis of covariance (MANCOVA). Following a significant MANCOVA, 

individual ANCOVA tests are conducted for inulin, sucrose, and total NSC. For all models, we 

include harvest date as a main effect because rhizome carbohydrate concentration varies over the 
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growing season in perennial herbs (e.g. Lapointe 1998; Wyka 1999; Kleijn et al. 2005). We also 

include initial plant mass as a covariate to account for differences in carbohydrate storage that 

are related to plant size/age (MANCOVA model: Total NSC + Inulin + Sucrose = Treatment + 

Harvest date + Initial plant mass; ANCOVA models: Carbohydrate = Treatment + Harvest date + 

Initial plant mass). We calculate least squares means and standard errors for all ANCOVA 

models with a significant (P < 0.05) treatment effect. All analyses were conducted in SAS (v. 

9.3, SAS Institute, Cary, NC). 

2.2.2 Field study: Measuring impacts on vital rates of native plants 

2.2.2.1 Study site 

Our experimental plots are located in a beech-maple forest in southwest Pennsylvania (Trillium 

Trail Nature Reserve (hereafter TT), Allegheny Co. PA, USA: 40° 52' 01.40" N; 79° 90" 10.75" 

W) with a rich herbaceous perennial understory flora (Knight et al. 2009). Based on previous 

work at TT (Burke 2008) and other temperate deciduous forests (e.g. Brundrett and Kendrick 

1988) we estimate that 73% of TT herbaceous perennials are AMF-dependent (Hale et al. 2011). 

We detected Alliaria allelochemicals in the soil of TT in concentrations that are toxic to AMF 

spores in lab assays (Cantor et al. 2011).  Additionally, we showed that in soils where Alliaria 

occurs at TT, the density of fungal hyphae is lower (Cantor et al. 2011) and the fungal 

community composition shifts (Burke et al. 2008) relative to paired, non-invaded areas.  

Maianthemum plants collected at TT are heavily colonized by RFS, but their intra-root AMF 

community is significantly altered where Alliaria is present (Burke 2008). These results motivate 

further investigation of mutualism disruption by Alliaria in understanding mechanisms driving 

native plant performance declines. 
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2.2.2.2 Field experiment 

We collected data on naturally occurring individuals of Maianthemum racemosum within six 

14×14m plots in TT from 2003 through 2013. Our six plots are split in half longitudinally so that 

each contains two experimental treatments: Alliaria removal (= low or no allelochemicals) or 

Alliaria present at ambient levels (= allelochemicals present). Annual removal of Alliaria from 

half of each plot (i.e. a 14×7m area) began in spring 2006, ~15 years after Alliaria became 

established at this site (L. Smith pers. comm.) This time frame for TT invasion coincides with 

the estimated Alliaria invasion history in the region that indicates that this invader has been 

present locally for < 25 years (Lankau et al. 2010). We remove Alliaria concurrent with the onset 

of emergence of the perennial herb community.  Alliaria individuals are removed as tiny 

seedlings, minimizing disturbance to the soil and other plants. Removed plants are discarded off 

site. In June of each year prior to Alliaria seed dispersal we erect a barrier at the border of the 

two treatments to block seed dispersal from the ambient into the Alliaria removal treatment. All 

Maianthemum plants emerging in the plots are permanently tagged and have annually been 

scored for individual size, stage (i.e. seedling, non-flowering, flowering, dormant), and deer 

browse status.  Prior to initiation of the Alliaria removal treatment in 2006 there was no 

difference in Alliaria percent cover between the plots (χ2 = 0.11, P = 0.74) or total percent cover 

of all species (χ2 = 0.038, P = 0.85).  

2.2.2.3 Plant vital rates 

We assess the effect of Alliaria removal on Maianthemum growth and three vital rates: annual 

flowering frequency, retrogression of flowering plants to non-flowering the following year, and 

the frequency of prolonged vegetative dormancy (Shefferson 2009). We test for differences 

using data collected prior to the implementation of the removal treatment (2003-2006) and after 
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the removal treatment began (2007-2013). All models have the general form: Response variable 

= Treatment + Year + Treatment*Year. To estimate differences in growth rate, we investigate 

the differences in average size between treatments for the initial cohort of plants first observed 

when the experiment began in 2003. Mean size of this cohort is estimated with a linear mixed 

model for each year since 2006 (Zuur et al. 2009). We model log(plant size) to improve 

normality of the residuals. 

Annual flowering frequencies are modeled using a logistic mixed model. Retrogression 

frequencies were modeled without random effects for the years 2008 to 2013 because of limited 

sample size. Our retrogression model, stated in terms of probability is:  

Pr(Not Floweringtime t|Floweredtime t-1 & Not dormanttime t). 

Our sample for retrogression was therefore set by the number of plants that flowered the 

previous year (time t-1) that emerged as either flowering or non-flowering the next year (time t).  

Growth and vital rate analyses are conducted in R 3.1.0 (R Core Team 2014) using the 

lme4 package (Bates et al. 2014). To account for repeated measures and blocking effects, we 

include random intercepts for individual plants and pairs of treatments within a plot. For each 

response variable we test for significant differences between annual means using the multcomp 

package in R (Bretz et al. 2010). We test for the presence of a long-term trend since 2006 in each 

treatment mean by specifying a trend contrast (Rosenthal and Rosnow 1985, Gurevitch and 

Chester 1986). All tests are planned contrasts so we do not correct for multiple comparisons. To 

further investigate trends in flowering frequencies we also analyze these data using a two-level 

hierarchical model with time as a continuously varying main effect and year as a random effect.  

Results of flowering and retrogression analyses are reported as effect sizes using odds 

ratios (Rita and Komonen 2008). Odds ratios have a lower bound of zero and no upper bound. 
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Odds ratios of 1 indicate no difference between two treatments in the odds of an event 

happening. Statistical tests for odds ratios therefore test whether they are different from 1. Odds 

ratios and their 95% confidence intervals are given in the text on their normal scale but graphed 

on a log scale to improve interpretation (sensu Galbraith 1988). 

Mark-recapture models: We use mark-recapture models, a modified logistic regression 

approach (Kéry et al. 2005), to estimate the probability of prolonged vegetative dormancy. To 

test for pre-existing differences in dormancy rates, we conduct separate mark-recapture analyses 

of the three years prior to implementation of the removal treatment (2003-2005) and the seven 

years after the treatment began (2007-2013). Mark-recapture results are assessed using the small 

sample size corrected information criteria AICc to rank the explanatory ability of different 

models (Anderson 2010). To summarize the data we also analyse the entire data set (2003-2013) 

and calculate the mean difference in dormancy rates between treatments. We first calculate 

dormancy rates for each treatment in each year, calculate the difference between these means, 

and average the differences for the pre- and post-treatment time periods. We use the delta 

method (Powell 2007) in the R package msm to combine multiple standard errors and construct 

95% confidence intervals around our final effect size estimates. Mark-recapture models are run 

in the R package marked (Laake et al. 2013).  

Missing data due to herbivory: Deer browse compromised our ability to gain information 

on some individuals. Deer preferentially browse flowering Maianthemum and flowering 

individuals are of larger size than non-flowering individuals (Brouwer and Kalisz, unpubl. data). 

Accordingly, in the cases where an individual was browsed before its reproductive status was 

determined during the ten annual censuses (n = 103 instances across 10 years), we assumed the 

browsed individual was flowering.  Further, if browse occurred before an individual’s size data 
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was collected or size was otherwise unavailable, we used linear imputation (Gelman and Hill 

2007) to estimate its size (412 instances of size imputation out of 1481 total size records). 

Including imputed size data for the browsed plants prevents biasing our results against detecting 

a treatment effect (Nakagawa and Freckleton 2008; Hadfield 2008).  

 We imputed missing size data using estimates generated from multiple rounds of linear 

regression based on observed size data from the years prior to and after the missing data. We 

averaged these multiple estimates to arrive at a final imputed size estimate for each browsed 

individual. Linear regression models included all available covariates, including previous size, 

current status, treatment and reproductive output for flowering plants. We validated our 

imputations by comparing mean plant size and the overall size distribution in the population with 

and without imputed data (Table 5, Appendix A). 

.  

2.3 RESULTS 

2.3.1 Greenhouse study: Assessing potential for carbon stress 

All Maianthemum racemosum plants examined exhibit colonization by internal RFS structures. 

However, Maianthemum’s rhizome carbohydrates were significantly affected by the Alliaria 

treatment (MANCOVA; Roy’s greatest root = 7.57, P = 0.002), with plants in the Alliaria 

treatment experiencing a significant reduction in total NSC (Fig. 1; ANCOVA F1,36 = 7.31, P = 

0.01).  Specifically, plants treated with Alliaria stored, on average, 17% less inulin relative to 

plants in the Hesperis treatment (Fig.1; ANCOVA F1,36 = 9.28, P = 0.004). While plants in the 
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Alliaria treatment had fewer stored sugars, they had higher sucrose concentrations in their 

rhizomes compared to plants in the Hesperis treatment (Fig. 1; ANCOVA F1,36 = 12.88, P = 

0.001).  The increase in mobile sugars did not compensate for the dramatic difference in stored 

sugars between treatments as total NSC in the Alliaria treated plants was 13% lower than that of 

Hesperis-treated plants.  Harvest date was not a significant predictor of total NSC, inulin, or 

sucrose.   

2.3.2 Field study: Impact on vital rates 

Growth: Prior to implementation of the removal treatment there was no difference in the 

mean size of plants in the initial 2003 cohort (Fig. 2; P = 0.55). By 2013 plants in the removal 

treatment are significantly larger than those in the ambient Alliaria treatment (mean difference = 

6.70 cm, SE = 2.96; P = 0.02). There is a significant positive linear trend in size from 2006 to 

2013 (trend contrast P = 0.0056) in the Alliaria removal plots but no trend in the ambient plots 

(P = 0.91). 

Flowering: There is no significant difference in flowering probability across treatments 

for the first six years of the Alliaria removal (e.g. Fig. 3; P2006 = 0.65, P2007 = 0.29, P2008 = 0.42). 

However, by 2012 the flowering probability is “leaning” (sensu Tukey 1991) in the predicted 

direction (Odds ratio (OR) = 1.72, CI95% = 0.84-3.52, P = 0.14) and by 2013 is significantly 

higher (OR = 1.96 CI95% = 1.0-3.87, P = 0.051) in the removal treatment. Across all years (2006-

2013) there is an increasing trend in flowering probability in the removal treatment (trend 

contrast P = 0.00008) but no increase in the ambient treatment (Ptrend = 0.57). 

Analyses using time as a continuous variable and year as a random effect confirmed that 

flowering frequencies diverged between the treatments (treatment*time χ 2= 6.81, P = 0.009) 
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with a significant positive linear trend in the removal treatment (βremoval*time = 0.18, SE = 0.069) 

contrasted with evidence of a decrease in flowering probability in Alliaria ambient plots (βtime = -

0.10, SE = 0.072).  

Retrogression: The number of flowering individuals was too low in 2005 and 2006 to 

accurately estimate retrogression of flowering plants in 2006 and 2007. By 2011, there was 

evidence that removal-treatment plants were less likely to retrogress (OR = 0.28 CI95% = 0.052-

1.57, P = 0.15) and in 2012 they were significantly less likely to retrogress (OR = 0.14 CI95% = 

0.021-0.96, P = 0.045). There was a significant decreasing trend in retrogression in the removal 

treatment from 2008 until 2013 (Ptrend = 0.011) but no trend in the ambient treatment (Ptrend = 

0.90). 

Dormancy: Dormancy rates were highly variable between years, ranging from less than 

10% to > 30%, but estimated to be lower in the Alliaria removal treatment in six out of seven 

years (Table 6 Appendix A). For years prior to the implementation of the Alliaria removal 

treatment (2003-2006) the best-ranked model contains only a year effect (Table 1) while for 

models of post-treatment years (2007-2013) and the entire dataset (2003-2013) the best models 

contain an effect of Alliaria removal, indicating that dormancy rates were typically lower in this 

treatment. There was an initially large difference in dormancy rates between plots that would be 

allocated to the two treatments in the first year of the study (Table 6 Appendix A), potentially 

resulting in the model of the pre-treatment years containing an Alliaria removal effect (AICc = 

454.6) ranked almost as high as a year-only model (AICc = 452.8). However, since the year-only 

model has a lower AICc and fewer parameters, the larger model is not considered competitive 

(Arnold 2010). Moreover, in the other two pre-treatment years (2004 and 2005) there is no 

difference between dormancy estimates (Table 6 Appendix A). The results of model selection are 
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reinforced by the calculation of average effect sizes for the period prior to Alliaria removal and 

after removal (Fig. 5). Prior to removal there is no significant difference between dormancy rates 

(ES = -0.05, CI95% = -0.13 - 0.03) but after removal dormancy rates are ~7% lower than in the 

Alliaria ambient treatments (ES = -0.069, CI95% = -0.12 - -0.2). 

2.4 DISCUSSION 

To our knowledge this is the first study to explore the connections between an allelopathic 

invasive species’ impacts on the soil biotic environment and changes in individual plants’ carbon 

status and vital rates. The results presented here in conjunction with prior studies substantiate 

multiple steps in a physiologically-based causal pathway between invasion and population-level 

impacts on native plants. Our prior work demonstrates that Alliaria treatment of soil around 

Maianthemum reduces the density of soil fungal hyphae; A. Hale et al., unpubl. data) and plant 

photosynthetic rates (Hale et al. 2011). Here, our results demonstrate that treatment with Alliaria 

across the entire growing season results in negative effects on season-long carbon storage (Fig. 

1). Relative to control plants, Maianthemum exposed to Alliaria stored 17% less inulin in their 

rhizomes and experienced an overall reduction in total non-structural carbohydrates (NSC) at the 

end of the season. Stomatal conductance modulates carbon fixation and is a key physiological 

rate affected by Alliaria exposure (Hale et al. 2011).  Interestingly, a recent meta-analysis (Augé 

et al. 2014) comparing the effects of AMF inoculation on stomatal conductance (gs) in field vs. 

greenhouse studies indicates that greenhouse experiments have smaller effect sizes than field 

studies. Thus, our carbon storage results are likely conservative estimates of the carbon impacts 

of mutualism disruption in the field. 
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Over time, chronic exposure to Alliaria was predicted to compound this carbon deficit 

and affect plant growth and vital rates.  Results from our long-term field study of Alliaria 

removal are consistent with this prediction. Individual aboveground plant size (Fig. 2) and 

multiple carbon-intensive and size-dependent vital rates (Figs. 3-5) are positively affected in 

Alliaria removal relative to Alliaria ambient plots.   

 Other experimental studies where Alliaria and native plants are grown together in pots 

(Meekins and McCarthy 1999, Wixted and McGraw 2010, Lankau 2012, Smith and Reynolds 

2013) or in the field (McCarthy 1997, Carlson and Gorchov 2004, Lankau 2012, Cipollini et al. 

2008) also find negative effects of Alliaria on native species. Competition, direct allelopathic 

phytotoxicity, and allelopathic RFS mutualism disruption are all mechanisms that could 

contribute to these results. Our greenhouse experiment adds support to the idea that it is 

Alliaria’s disruption of key belowground mutualists (RFS) rather than competition or direct 

phytotoxicity that accounts for its success as an invader.  Below we discuss the general support 

or lack thereof for the likelihood of all three mechanisms.   

Competition: We are aware of only two studies that have attempted to quantify reciprocal 

competition between Alliaria and focal plants. These pot studies found that Alliaria was equal to 

or weaker in competitive ability than three of four species tested (Meekins and McCarthy 1999, 

Leicht-Young et al. 2012). However, these studies are problematic in that they cannot separate 

competition from phytotoxicity or mutualism disruption. Bossdorf et al. (2004) found that 

Alliaria individuals from the native range outcompete Alliaria plants from the invaded range, 

supporting the hypothesis that invasive Alliaria express a different trade-off relative to their 

source populations. Invasive Alliaria are armed with novel allelochemical weapons but have 

evolved to be less competitive (Bossdorf et al. 2008). Further, field experiments demonstrate that 
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native competitors can suppress Alliaria performance and abundance when the natives are not 

experiencing overabundant herbivore pressure (Eschtruth and Battles 2008b), as deer 

preferentially consume native plants and facilitate the high population growth and spread of 

Alliaria (Kalisz et al. 2014). In experimental studies that exclude deer from invaded sites, 

Alliaria abundance rapidly declines (Knight et al. 2009, Eschtruth and Battles 2008b, Kalisz et 

al. 2014).  In total, these results underscore the widely held view that Alliaria is a relatively poor 

competitor (Rodgers et al. 2008).   

Direct phytotoxicity: Glucosinolates are known antimicrobial chemicals produced by 

members of the mustard family as defenses against pathogens (Tierens et al. 2001). While 

Alliaria’s allelochemicals can be inhibitory to germinating seeds and inhibit new seedling root 

growth (lettuce and radish seed experiments: Vaughn and Berhow 1999; Roberts and Anderson 

2001; Pisula and Meiners 2010; Impatiens and Viola seed experiments: Prati and Bossdorf 2004; 

Barto et al. 2010; Cipollini and Flint 2013), to our knowledge direct toxicity of Alliaria on 

mature plant tissues has never been demonstrated. Alliaria invades forest understories dominated 

by adult perennial plants dependent on RFS. The direct effect of allelochemicals is inversely 

proportional to target plant density or biomass (Weidenhamer 2006). Single-celled fungal spores 

and thin fungal hyphae should be much more susceptible to Alliaria allelochemicals than mature 

plant tissues. Thus, while we cannot rule out direct phytotoxic effects of Alliaria on adult 

Maianthemum performance in our field or greenhouse experiments, a direct allelochemical effect 

is likely of small magnitude relative to indirect effects on RFS. 

RFS-mutualism disruption: Mounting evidence shows that Alliaria can exert potent 

indirect effects on plants by suppressing RFS. Glucosinolates, like those produced by Alliaria, 

have a short half-life in the soil (<15 hrs; Gimsing et al. 2006). Yet, native plants grown in soils 
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conditioned by Alliaria, treated with Alliaria tissue extracts, or collected from Alliaria-invaded 

sites all express reduced growth (Stinson et al. 2006, Callaway et al. 2008, Wolfe et al. 2008) 

despite the fact that the volatile allelochemicals were likely no longer present.  Importantly, these 

studies demonstrate that Alliaria impacts are similar in magnitude to soil sterilization and that 

experimental soils result in lower colonization of roots by mycorrhizae (Stinson et al. 2006, 

Callaway et al. 2008, Wolfe et al. 2008). Finally, Maianthemum plants treated with Alliaria 

retain RFS structures internal to their roots, while exhibiting significant declines in soil hyphae 

(A. Hale et al. unpubl. data). Together these experiments provide strong support for RFS 

mutualism disruption and that its effects are of large magnitude relative to competition or direct 

phytotoxicity. 

Mechanistically, our working model linking RFS mutualism disruption to carbon stress is 

based on the following premises: If Alliaria’s allelochemicals destroy the hyphal network, yet 

the normally long-lived internal structures (Brundrett and Kendrick 1990) remain intact, then we 

would predict that the plant would increase carbon allocation to its RFS to provision the 

regrowth of the soil hyphal network, resulting in significant carbon stress for the plant. Loss of 

the hyphal network severely limits available soil nutrients and water to the plant (Newsham 

2011, Augé et al. 2014).  As a result, the plants photosynthesize less (Hale et al. 2011) and fix 

less carbon (NSC; Fig. 1). With this limited carbon pool, we suggest that plants may maintain 

concentrations of mobile sugars in the rhizome and roots to re-establish a functional RFS hyphal 

network that is repeatedly destroyed by our application of fresh Alliaria tissue. While our results 

are consistent with this working model (e.g. we observe greater sucrose concentrations in the 

rhizome of Alliaria vs. Hesperis treated plants (Fig. 1), additional experiments are needed to 

fully explore this hypothesis.  
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We note that the effects of allelopathic mutualism disruption by Alliaria could be 

amplified by additional factors. Like other invasive species of deciduous forests (Ehrenfeld et al. 

2001; Poulette and Arthur 2012; Schuster and Dukes 2014; Kuebbing et al. 2014; Smith and 

Reynolds 2012), Alliaria can affect multiple components of the soil environment. Alliaria 

increases soil nutrient availability (Rodgers et al. 2008a; 2008b), litter decomposition rates and 

nitrogen loss (Ashton et al. 2005). Since the RFS community in general (Van Diepen et al 2011) 

and specific RFS-plant interactions (e.g. Klironomos 2002) are sensitive to soil conditions, 

multiple invader-mediated changes to the soil environment could magnify the impacts of 

allelopathic RFS mutualism disruption.  These diverse and widespread consequences of invasive 

species for soil environments and RFS communities are alarming given the potentially central 

role RFS and other microbes play in the diversity, productivity and functioning of plant 

communities (Van Der Heijden et al. 2008). 

 Our greenhouse study indicates that Maianthemum carbon storage declines significantly 

in response to Alliaria treatment in just one growing season. In contrast, we observe a relatively 

slow recovery of individual size, growth and vital rates following Alliaria removal in our field 

study. The predicted significant trends indicative of recovery (Figs. 2-4) emerged after a few 

years of Alliaria removal while significant differences within the single-year comparisons were 

not seen until ~6-7 years post removal (2012 or 2013). Two, non-mutually exclusive 

mechanisms could underlie this lag. First, the lag could be due to Maianthemum’s habit 

(LaFrankie 1985). In general, forest understory herbaceous perennials are light-limited, slow-

growing, long-lived species (Whigham 2004) with slow responses to perturbation (Morris et al. 

2008). Our data are consistent with the idea that following Alliaria removal, Maianthemum may 

take multiple years to re-gain sufficient carbon stores to allow size growth, sustain flowering and 
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maintain low dormancy rates. Second, the observed lag in Maianthemum vital rate responses 

may be due to slow recovery of the RFS soil community following Alliaria removal, a 

phenomenon observed by Anderson et al. (2010) and Lankau et al. (2014). If populations of 

beneficial RFS have gone locally extinct and low dispersal distance limits RFS re-colonization 

(Rout and Callaway 2012), then the observed time lag of Maianthemum could be due to the low 

abundance of effective fungal partners. Given the reciprocal obligate dependence of AMF and 

forest herbaceous perennial plants, declines in the native understory community may drive 

reciprocal declines in the RFS soil community (Lankau et al. 2014).  

2.5 CONCLUSIONS 

Increases in invasive species are generally correlated with declines in native biodiversity (e.g. 

Butchart et al. 2010). However, the mechanistic underpinnings leading to native population 

collapse are rarely understood yet are the subject of numerous studies and invasion hypotheses 

(Levine et al. 2003, Hulme et al. 2013). The disruption of plant soil feedbacks and root fungal 

symbioses are common aspects of plant invasions (i.e. Grove et al. 2012, Meinhardt and Gehring 

2012, Ruckli et al. 2014, Shannon et al. 2014).  As suggested by Hale and Kalisz (2012), chronic 

RFS mutualism disruption could act as the first step in native plant biodiversity loss. In our 

system, the disruption of RFS by an allelopathic invader appears to begin a downward spiral in 

the physiological function (Hale et al. 2011), carbon status (Fig. 1) and ultimately vital rates 

(Fig. 2-5) of a common native forest plant. Loss of these critical belowground mutualisms may 

be the proximate cause of plant mortality that is instead attributed to second order effects (e.g. 

drought or herbivory) that are easier to observe (sensu McDowell 2011). Additional studies in 
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invaded communities that explore the links between plant physiology, carbon allocation, and 

population demographic performance are needed to determine the generality of these results. 

Mutualism disruption may be a widespread mechanism that helps explain how invasive species 

can cause large-scale changes to forest biodiversity observed in the wake of invasion (e.g. 

Rodgers et al. 2008a). 

. 
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Table 1. Ranking of mark-recapture models testing the effects of Alliaria removal on prolonged vegetative 

dormancy.  Three sets of models were run over different time periods during the study: Set 1) Years before 

Alliaria removal began (Pre-treatment), Set 2) Years after the annual weeding treatment was initiated (Post-

treatment), and Set 3) All years.  N is the number of plants tracked over each time period, K is the number of 

parameters in a model, and Ln(lik) is the log likelihood. To calculate the mean pre-treatment and post-

treatment effect size (Fig. 5) we used the parameters from the "Removal*Year" model in the "All years" 

model Set 3. 

Set Period  Model N K AICc ΔAICc Ln(lik) 

1) Pre-Alliaria  Year 158 5 452.8 0.00 -216.21 

 

removal Removal + Year 
 

6 454.6 1.74 -215.00 

 

(2003-2006) Removal * Year 
 

9 466.2 11.59 -214.47 

        2) Post-Alliaria Removal + Year 210 9 1166.4 0.00 -564.73 

  removal Year   8 1172.4 6.03 -569.84 

  (2007-2013) Removal * Year   15 1187.2 14.76 -562.34 

        3) All years Removal + Year 236 12 1646.3 0.00 -798.46 

 

(2003-2013) Year 

 

11 1652.5 6.23 -803.68 

    Removal * Year   21 1680.3 27.74 -795.98 
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Figure 1. Maianthemum racemosum rhizome carbohydrate content (%) from Alliaria (yellow) and Hesperis 

(control; black) treatments in the greenhouse experiment. Total non-structural carbohydrate (NSC) content 

is shown in solid-colored bars. Total NSC is a composite measure of stored sugars (inulin; bars with diagonal 

shading) and mobile sugars (sucrose; stippled bars). Values are least squares means from ANCOVAs +/- 1 

standard error. * indicates P < 0.05; ** indicates P < 0.005. 
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Figure 2. Effect of Alliaria on plant size of Maianthemum marked in the initial 2003 survey of the field 

experiment. a) Mean difference (effect size) in plant size between Alliaria in ambient and removal treatments.  

b) Annual mean plant sizes in both treatments and ANOVA trend contrasts.  Error bars represent +/- 95% 

confidence intervals.   * indicates a significant difference in plant size between the two treatments (P < 0.05). 

Size data were not available for 2008 and 2009. 
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Figure 3. Effect of Alliaria on Maianthemum flowering frequency.  a) Mean difference (Effects size, ES) in 

flowering frequency in Alliaria-ambient and removal plots. ES is expressed as an odds ratio and plotted on 

the log scale.  b) Annual mean flowering frequencies for both treatments and ANOVA trend contrasts.  Error 

bars represent +/- 95% confidence intervals.  * indicates a significant effect of Alliaria removal (P < 0.05). 
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Figure 4. Effect of Alliaria on Maianthemum retrogression from flowering to non-flowering.  a) Annual mean 

difference in retrogression frequency (Effect size, ES) in Alliaria-ambient and removal plot.  ES is expressed 

as an odds ratio and plotted on the log scale.  b) Mean retrogression frequencies in both treatments and 

ANOVA trend contrasts.  Error bars represent +/- 95% confidence intervals.  * indicates a significant effect 

of Alliaria removal (P < 0.05).  Retrogression is calculated conditional on a plant being observed above 

ground and not dormant.  Sample sizes for 2006 and 2007 were insufficient for vital rate calculation. 
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Figure 5. Effect size of Alliaria-removal on the frequency of prolonged vegetative dormancy in Maianthemum 

before (2003-2006; yellow) and after the treatment began (2007-2013; black).  Calculated with mark-

recapture models; error bars represent +/- 95% confidence intervals.  * indicates a significant effect of 

Alliaria removal (P < 0.05).  



 35 

3.0  HOW DO OVERABUNDANT DEER AFFECT LONG-TERM VEGETATION 

CHANGE IN CLOSED CANOPY FORESTS?  USING META-ANALYSIS TO ASSESS 

THE COMMUNITY COMPOSITION CHANGE AND CANOPY RECRUITMENT 

FAILURE HYPOTHESES 

3.1 INTRODUCTION 

Herbivores can have profound impacts on plant populations (Maron & Crone, 2006), 

communities (Olff & Ritchie, 1998), and ecosystem processes (Bardgett and Wardle 2010, 

Peltzer et al. 2010, Tanentzap and Coomes 2012).   While specialist insect herbivores can have 

large-scale effects on a single species’ population (Mattson and Addy 1975), generalist 

mammalian herbivores appear to more readily exert broad impacts at community, ecosystem, and 

biogeographic scales (Crawley 1989; Bond 2005).   Some mammalian species have been termed 

keystone herbivores (Owens-Smith 1987) for their apparent ability to structure entire ecosystems 

through biomass consumption.  This is most frequently hypothesized for large grazers and 

browsers such as bison (Collins et al. 1998, Allerd et al. 2011), elephants (Owen-Smith 1989), 

and moose (Molvar et al. 1993), but has also been proposed for rodents such as voles (Manson et 

al. 2001, Huitu et al. 2012).  Similarly, grazers or browsers influence successional processes 

(Barrette et al. 2014; Seabloom and Richards 2003).  In particular, livestock, overabundant 

ungulates and invasive mammalian herbivores are frequently hypothesized to exert keystone-like 
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effects (Waller and Alverson 1997), impact succession (Bakker et al. 1993; Fleischner 1994), 

and permanently degrade ecosystems (Rietkerk et al. 1997). 

The profound effects of overabundant or invasive mammalian herbivores likely occur 

most frequently and quickly in systems where plant-animal interactions are trait-structured rather 

than size structured.  In open habitats such as grasslands and savannas, as well as in forests after 

large disturbances, a large portion of plant biomass is within reach of mammalian herbivores.  

Most plant life history stages can therefore be impacted by biomass consumption, nutrient 

deposition (van der Wal et al. 2004), trampling, rubbing and debarking (Ihwagi et al. 2010, 

Ramos et al. 2006), or even toppling, in the case of elephants (Asner and Levick 2012).  The 

outcomes of plant-herbivory interactions are therefore heavily influenced by plant traits such as 

specific leaf area, physical defenses and chemical composition (Forsyth et al. 2005, Evju et al. 

2009, Cingolani et al. 2005).  Under many conditions plant traits that influence palatability allow 

mammalian herbivores to act as selective filters against the most palatable species of the 

community (Augustine and McNaughton 1998) and can occur at the rate of plant growth or 

herbivore feeding.  For example, grazer preference for grass can allow open habitats to undergo 

succession towards brushy or wooded systems, while browser preference for woody species can 

prevent further succession of savannas (Straver et al. 2009).  Similarly, after timber harvest, deer 

browse can bias tree communities towards less-preferred species (Marquis et al. 1978).   

In closed canopy forests, mammalian herbivory impacts highly size-structured and are 

most severe on herbs, shrubs, and the smallest size classes of trees in the understory.  While 

rubbing (e.g. Ramos et al. 2006, Boyce and Lubbers 2011), and nutrient deposition (Lucas et al. 

2013) can affect some larger individuals, most stems > 2 m in height in forests enjoy a size 

refuge from direct deer impacts.  In some cases, the youngest and smallest individuals can also 
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experience low rates of herbivory if in the winter they are buried by snow (Alisson 1990).  

Interactions between mammalian herbivores and forest trees are therefore size structured, and 

most impacts on large size classes occur indirectly over time through successional processes at 

the pace of gap-phase dynamics.  Trait-structured interactions in the understory of closed canopy 

forests will eventually impact overstory tree composition or density, but on a time scale of 

decades as less preferred species grow towards the overstory and capture gaps created by 

palatable overstory species.  This is known to have happened in locations where deer have been 

overabundant or invasive for long periods of time, such as the upper Midwest of North America 

(White 2012) and New Zealand (Wright et al. 2012).   

Cervids are now overabundant throughout much of North America (Leopold et al. 1947, 

Cote et al. 2004), are invasive in temperate forests around the world (Flueck 2010, Spear and 

Chown 2009), and in some countries are expanding or re-establishing their ranges (Ward 2005, 

Flueck et al. 2003, Carden et al. 2011).  Many temperate forests are therefore in danger of 

having the successional dynamics and community composition of their overstories reshaped by 

persistent deer impacts to forest understories.  The long time scales involved, however, make it 

difficult to characterize how resistant forests are to deer impacts, or how resilient they are if deer 

abundance can be reduced.  Thus far most studies have only characterized deer impacts to forest 

understories and demonstrated the likelihood of canopy impacts (Bellingham and Lee 2006).   

It is generally hypothesized that overabundant deer will prevent their preferred browse 

species from escaping the understory but that less preferred species will continue to grow, 

perhaps even benefiting from competitive release (Waller and Alverson 1997, Cote et al. 2004).  

With only a subset of the community growing towards the overstory, deer browse will eventually 

cause changes to canopy community composition (H1).  An alternative hypothesis that has been 
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proposed is that deer reduce canopy recruitment of all species, resulting eventually in canopy 

recruitment failure (H2) and more open woodlands (Tanentzap et al. 2012).  In some 

communities all canopy tree species might be relatively palatable to deer.  Deer diet preferences 

are also plastic and at high densities deer switch to less palatable species after their preferred 

browse is depleted (Coomes et al. 2003).  Additionally, it is being increasingly recognized that 

deer can exert negative indirect soil-mediated effects on non-palatable species (Heckel et al. 

2010, Kardol et al. 2014).  Finally, deer browse is thought to facilitate the formation of 

recalcitrant understories by non-palatable herbaceous species such as ferns and grasses (Royo 

and Carson 2006).  These recalcitrant layers reduce germination and seedling growth of all 

species, eventually preventing canopy recruitment. 

In this study, we use data from a systematic review and meta-analysis of deer exclusion 

studies to test the community composition change (H1) and community recruitment failure (H2) 

hypotheses and characterize how forest midstories and understories respond to overabundant 

deer and what successional pathways forests are likely following.  In particular we investigate 

how widespread are deer impacts on forest midstories, how quickly they occur, and whether 

these impacts presage changes in canopy tree composition or canopy recruitment failure.  We 

also assess whether recalcitrant understories (Royo and Carson 2006) are forming in response to 

deer overabundance and affecting to successional processes.  Since most deer exclusion studies 

are short duration and consider only impacts on stems < 2 m in forested sites (Bellingham and 

Lee 2006) we also investigate whether forest understories are shifting towards being dominated 

by non-palatable species or simply being reduced in overall density.   
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3.2 METHODS 

3.2.1 Literature inclusion criteria 

We conducted a systematic review and meta-analysis of deer exclusion studies conducted in 

closed canopy forests.  We searched the peer-reviewed literature for deer exclusion studies 

conducted in both temperate and boreal closed-canopy forests or woodlands that measured 

responses on multiple naturally occurring woody species.  We included studies on any species of 

deer (Family Cervidae) in either their native or invasive ranges but did not include moose (Alces 

alces) or reindeer (Rangifer tarandus).  We did not distinguish between North America elk 

(Cervus canadensis) and old-world red deer (Cervus elaphus).  Much of the literature was 

published before these species were determined to be distinct (Ludt et al. 2004) and we use the 

nomenclature assigned by the authors of the exclusion studies.  

We considered only studies that included experimental treatments with deer access 

controls and fenced deer exclusion plots.  We excluded studies in heavily managed systems such 

as coppice woods in England (e.g. Morecroft et al. 2001).  Studies that included other treatments 

such as gaps (Nuttle et al. 2013, Collard et al. 2010), clearcuts (e.g. Hidding et al. 2013, Beguin 

et al. 2009, Beguin et al. 2011, Casabon and Pothier 2007, Kosco and Bartholome 1983) or fire 

(Nuttle et al. 2013, Andruk et al. 2014) were included only if we could extract information that 

concerned only deer access and exclusion plot data under closed canopies without other 

manipulations.  We did not use studies that considered only a single focal plant species (e.g. 

Simard et al. 2013) or used only planted seeds or seedlings.  If a study focusing on herbaceous 

species also presented separate information on woody species it was included in our analyses 

(e.g. Rooney 2009).  
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In the spring of 2014 we conducted a systematic literature search in Web of Science 

using the terms “TS = (deer) AND TS = (exclos* OR exclus* OR exclud* OR fenc*)”.  We also 

scanned the bibliographies of previous reviews (e.g. Cote et al. 2004, Russel et al. 2001).  From 

the resulting >1000 citations we identified 49 papers that met our inclusion criteria. 

3.2.2 Data extraction 

For each study we identified the response variables (e.g. percent cover, stem density) and size 

classes (e.g. seedling, sapling, small trees) of woody species the authors considered.  For each 

size class we determined how it was delineated, such as maximum height or minimum diameter 

at breast height.  We recorded two kinds of information about the experimental results from each 

study.  First, for each response we determined whether a nominally significant result (p < 0.05) 

was reported.  Second, for responses related to species diversity, species richness, and over-story 

trees, we then calculated the response ratio (Hedges et al. 1999, Gurevitch and Hedges 2001) as 

(ResponseExclosure)/(ResponseControl).  Each study was weighted by the samples size as 

(Ne*Nc)/(Ne+Nc) (Lajeunesse and Forbes 2003).  Usually Nc = Ne = the number of pairs of deer 

exclusion/deer access plots.  However, in some cases summary statistics such as total species 

richness in exclusion plots versus total species in control plots were reported (e.g. Rooney 2009), 

in which case the number of plot pairs was set as 1.   If a study compared exclusion plots to 

controls in other locations (plots were not paired; Murray et al. 2013) or if the study was 

unbalanced we set N as the number of exclosures or controls, whichever was lower.  When 

responses in a single study were reported for multiple sites or stand types (i.e. Bughalo et al. 

2013) we calculated the response ratio for each site and then took the average.  In most cases the 

response ratio was calculated from treatment means for the final time point of the study.  Some 
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studies (e.g. White 2012) report results in terms of change from baseline condition, such as mean 

change within exclusion plots versus mean change within control plots.  In such cases we 

calculated the response ratio from these mean change scores. 

We chose to use the non-parametric version of the response ratio to broaden the number 

of studies we could include (Lajeunesse and Forbes 2003).  The more familiar Hedge’s d as well 

as the parametric response ratio both weight studies using standard errors, which is less 

frequently available than sample sizes, especially from older publications.  Lajeunesse and 

Forbes (2003) found that the non-parametric response ratio compared favorable to Hedges d and 

the parametric response ratio. 

3.2.3 Covariate extraction 

We determined the duration of each experiment and, when available, information on local deer 

density at the time of the study and the duration of deer overabundance prior to fences being 

built.  If studies included exclosures built at different times (e.g. Shelton et al. 2014) we used the 

midpoint between time points to calculate the duration of the experiment.   If authors did not 

report information on ambient deer densities or the duration of overabundance prior to the study 

we consulted external sources to estimate values as follows.   We first determined as much 

geographic information as possible for a site (name of tract of land, county, nearest city) and then 

located relevant studies conducted in the same area, historical records of deer irruptions and 

invasion, and the initiation of controls measures such as culls.   

In most cases no localized information could be found for the duration of deer 

overabundance.  For North American estimates of the duration of overabundance we therefore 

used maps and descriptions from Leopold et al. (1947) to determine if deer had become 
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overabundant at a location in the first half of the 20th century.  The beginning of overabundance 

was set at 1947 for sites located in regions delineated as experiencing overabundant deer by 

Leopold et al. (1947), or earlier if Leopold et al. (1947) provided more detailed information.  For 

sites with no evidence of deer overabundance by 1947, we examined the maps created by the 

Southeastern Cooperative Wildlife Disease Study (SCWDS; http://vet.uga.edu/scwds/range-

maps), which compiled information on deer abundance in much of the eastern USA for 1970, 

1980, 1982 and 1988.  The SCWDS also created a map indicating deer re-introductions in the 

1950s for the southeast and mid-Atlantic states.  We compared these maps and interpolated 

between dates, or one of these dates and the start of a study, to arrive at an estimate for when 

deer likely became overabundant at a site.   

For New Zealand we used historical information provided by study authors, Clark (1949), 

and Atkinson (2006) to determine when deer were introduced onto a given island and/or when 

the expanded their range into a region.  We then determined when deer culls first began for that 

region, assuming this was evidence of negative impacts at a site.  We did not locate historical 

information on deer overabundance for Japan, Europe, or the UK and so only used 

overabundance information if provided directly by authors of the papers. 

3.2.4 Delineating size classes 

We encountered a wide variety of definitions of seedlings, saplings, and small trees with respect 

to the range of height and/or stem diameters included in each stage class.  Because of this 

variation and overlap we assigned studies to several non-exclusive size classes and conducted 

separate analyses on each class.  First, we defined midstory plants as stems in size classes that 

were either ≥ 2 m in height, defined by a minimum diameter at breast height (DBH), and/or was 

http://vet.uga.edu/scwds/range-maps
http://vet.uga.edu/scwds/range-maps
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referred to as a “tree” by the authors of the study.  This class was delineated so that most stems 

would be beyond the typical browse height of deer in during the growing season.  Second, we 

defined understory plants as stems <2 m and/or where not defined by a DBH.  This class was 

delineated so as to include stems that were generally within reach of most species of deer.   Third 

we split the understory class into saplings (≥0.5 m in height or < 2 m in height) and seedlings 

(<0.5 m in height) because these are generally recognized size classes in the literature. 

3.2.5 Meta-regression 

We used mixed model meta-regression to determine the relationship between effect sizes and 

two key predictors: the duration of deer overabundance (DOA), and the duration of deer 

exclusion (DoEx).  We log transformed the response ratio and conducted all analyses in the lme4 

(Bates 2015) package in R 3.1.2 (R Core Team 2014) using study as a random effect.  We 

conducted separate analyses for our four size classes: midstory trees, all understory stems, 

saplings, and seedlings.  Many studies report both species richness and an index of species 

diversity (i.e. Simpson’s diversity H’).  We included both of these as a community metric and 

averaged over them via our study-level random effect.  We constructed 95% confidence intervals 

for all effect sizes using the confint.merMod function in lme4 with 500 bootstrap samples.  

3.2.6 Time-to-event analysis 

To characterize the rate at which changes occur in forests after deer densities are reduced we 

modeled the detection of significant exclosure effect (p < 0.05) using time-to-event analyses 

(also known as survival analysis; Muenchow 1986, Fox 2015).  To conduct this analysis we 
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made two simplifying assumptions.  First, we assumed as an experiment progressed response 

variables such as sapling abundance or species richness would increase in exclosures, while 

controls remained similar to their original state.  Second, we defined an “event” arbitrarily as a 

statistically significant difference being observed between an exclosure and a control.  We 

therefore defined change between treatments in the limited terms of null hypothesis significance 

testing. 

Our data are all left censored and many are right censored (Hosmer and Lemeshow 

1999).  Responses are all left censored because the occurrence of an event, such as a statistically 

significant increase in sapling species richness after deer are excluded, happened at an unknown 

time between when a deer exclosure experiment began and data were collected.  That is, if the 

study had been conducted after less time had elapsed, a statistically significant difference may 

still have been reported.  Our data are also frequently right censored, like most time to event 

datasets, because at the time of measurement an event may not have yet occurred.  Left-

censorship of time-to-event data possess statistical challenges (Klein and Moeschberger 2005) 

and we chose to treat our data as if they were not left censored.  We therefore make the 

conservative assumption that if an “event” occurred, it happened the year the measurements were 

taken.  A consequence of this assumption is that we will overestimate the time that elapses 

between when an experiment starts and when a difference is detected between treatments.   

  We ran two sets of time-to-event analyses.  First, we explored the impact of the duration 

of overabundance (DoA) prior to the start of an experiment on the observation of significant 

impacts after deer are excluded.  Second, we explored the relationship between the duration of 

deer exclusion and the observation of significant impacts.  For both analyses we modeled 
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response for different strata (midstory, saplings, seedlings) and levels of ecological organization 

(population vs. community).  Analyses were conducted in the R package survival.   

3.2.7 Reviewing the nature of community change 

To determine the importance of deer preference for different species in determining experimental 

results we searched all papers for the terms “preference” or “palatable”.  We then examined how 

authors analyzed or discussed their results with regard to preference, such as whether the 

abundance of non-palatable species was increasing over time in the controls, or whether non-

palatable species also benefited from deer exclusion.  To determine if deer recalcitrant 

understories were relevant to the outcomes of exclusion experiments we searched all papers for 

whether  they cited Royo and Carson (2008), used the term “recalcitrant”, or discussed 

understory taxa associated with these layers, such as ferns and dwarf bamboo in Japan.   

3.3 RESULTS 

3.3.1 General description of studies in review 

General information on the 49 studies that met our broad inclusion criteria are given in Table 2 

(See Tables 7, Appendix B for full details).  Most studies were conducted in the USA (n = 26) or 

New Zealand on white-tailed deer (Odocoileus virginianus; n = 28) or red deer (Cervus elaphus; 

n = 6).  Most studies built <10 exclosures (mean = 22.5, median = 7; Fig. 20, Appendix B), 

excluded deer for just over 10 years (mean = 13, median 10, range = 1 - 60) and analyzed only 
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two annual time points of data (mean 2.4, median 2, range 1 - 9).  Studies in the USA were 

typically somewhat shorter (mean 12.5 years; Fig. 20) than in New Zealand (15.7 years).   Based 

on our estimates and interpolations, the duration of overabundance prior to exclusion for our 

studies is about 40 years (range: 1-80).  Deer were overabundant for a shorter period of time in 

North American (mean: ~25 years, range: 1 to 60) than in New Zealand (mean: 75, range:  40-

80).  Deer density varied widely, from 3 to 4 deer km-2 (Husheer et al. 2003; Tanentzap et al. 

2009) to 88.2 km-2 (Abrams and Johnson 2012).    Most studies report densities of 15-30 deer 

km-2. 

3.3.2 Summary of data 

We extracted and summarized 143 responses from these 49 papers.  Most studies reported on 

seedlings (n = 30 studies) and saplings strata (n = 25), but only 18 on mid-canopy or larger trees 

(Fig. 20, Appendix B).  Stems referred to as seedlings were on average less <1 m and saplings < 

2 m.  There was, however, considerable variation between authors in these definitions.  Most 

studies found some nominally significant impact (p < 0.05) on seedlings, shrubs and/or saplings 

(83% of studies).  Mid-story impacts (stems ≥ 2m) were observed less often (45% of studies).  

Community characteristics (richness, diversity, composition) were investigated in many studies 

(n = 28; 57%) but impacts where detected only 50% of the time. 

3.3.3 Meta regression 

We calculated effect sizes for seedling and sapling community-level responses, and all midstory 

abundance and community-level responses.  This resulted in 49 responses from 23 studies for 
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use in our meta-regressions.  Log response ratios for individual studies were almost all >0 

(response ratio > 1) and the grand mean for all studies was significantly greater than zero (grand 

mean of all strata = log RR = 0.49, SE = 0.12, 95% CIbootstrap = 0.06-0.93, n = 49 effects from 23 

studies) and the effect sizes for all individual strata where greater than zero (Fig. 6).  Considering 

abundance and community-level response separately, abundance effect sizes were always greater 

than community-level effect sizes, and some community-level effect sizes were near zero (Fig. 

7).  Pooling seedlings and saplings together into a single understory strata, the community-level 

effect size was significantly less than zero (logRR = -1.78, CIbootstrap = -3.67 -  -0.077; 33 

responses from 16 studies).  Pooling across strata there was no difference between species 

richness and species diversity effect sizes. 

There was no evidence of an increase in effect sizes with increased duration of 

overabundance for any strata (DoA).   In contrast, there was a strong positive relationship 

between the duration of exclusion and log response ratios (Fig. 8; β = 0.027, SE=0.01, CIbootstrap 

= -0.020-0.078; n = 49 responses from 23 studies).  For individual strata there was only sufficient 

data to assess the relationship for saplings, which showed a stronger response than the pooled 

data (Fig. 8; β = 0.066, SE = 0.017, CIbootstrap =  -0.053 - 0.19). 

3.3.4 Time-to-event analysis 

3.3.4.1 Duration of Overabundance (DoA) 

Time-to-event models were used to estimate the median duration of overabundance (DoA) when 

a significant effect is observed.  Among the studies that investigated subcanopy effects (stems 

generally > 2m in height), the median duration of overabundance was estimated as 60 years for 

abundance effects (11 of 14 effects significant at p < 0.05) and 80 years for community-level 
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effects (9 of 12 effects significant).  There was no evidence, however, that these median times 

were different than each other.  Among studies that investigated sapling effects (stems generally 

50 – 200 cm) the median duration of overabundance was 45.5 years for effects on sapling 

abundance (17 of 29 results significant) and 80 years for community effects (10 of 20 results 

significant), though there was no evidence that these medians were different.  Among studies that 

investigated seedling effects (stems generally < 50 cm) the median duration of overabundance 

before was 40 years (12 of 24 results significant).  For community effects four of 13 results were 

significant, but there was insufficient data to estimate a median time-to-event with survival 

models. 

3.3.4.2 Duration of Exclusion 

Time-to-event models were also used to model how much time elapses from the beginning of an 

experiment to when differences between fenced exclosures and controls are observed.  For 

subcanopy trees the median time for a difference to be observed was 18 years (Fig. 9a; n = 22 of 

28 results significant at p<0.05).  Cox proportional hazard models indicated that there was no 

difference between abundance and community metrics in the response time, but did provide 

some evidence that a longer duration of overabundance (DoA) increased the time until a 

difference was observed (p = 0.16).  The median time to event for sapling responses was 16 

years (n = 35 of 59 results significant).  There was no evidence that abundance responses were 

different than community response or of an effect of duration of overabundance.  The median 

time to event for seedling responses was 13 years for abundance (20 of 33 responses significant) 

and 18 years for community metrics (6 of 17 responses significant), but there was no evidence 

that these were statistically different from each other.  There was some evidence that an 

increased duration of overabundance delayed responses after deer exclusion (p = 0.11; Fig. 9b). 
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3.4 DISCUSSION 

Ecologists and foresters around the globe are concerned that overabundant and invasive deer are 

altering the dynamics and structure of forest canopies (North America: Cote et al. 2004; Europe: 

Gill and Beardall 2001; New Zealand: Coomes et al. 2003, Tanentzap et al. 2012; Japan: 

Takatsuki 2009).   Almost every exclusion study we review reported at least some form of 

understory (vegetation < 2 m in height) impact, indicating that overabundant and invasive deer 

consistently act as keystone herbivores (Waller and Alverson 1997) in the understories of forests 

around the globe (Fig. 6).  Studies that are of long enough duration to assess impacts to forest 

midstories (≥2m in height) report significant changes after deer exclusion, indicating that canopy 

recruitment dynamics are potentially becoming different where deer are overabundant.   

Several long-term studies report changes in community composition of midstory trees 

after deer exclusion (e.g. Kain et al. 2011, White 2012, Wright et al. 2012), providing direct 

support of the canopy composition change hypothesis.  In contrast, midstory impacts are stronger 

for the abundance of trees than for community attributes such as species richness and diversity, 

though the difference is not significant (Fig. 7).  In the understory strata (vegetation generally < 2 

m; saplings and seedlings combined), increases in abundance are very strong after deer 

exclusion, yet community attributes decrease.  This is likely occurring because formerly rare 

palatable species are becoming much more common in exclosures, resulting in a decline in 

species diversity.  Overall, this indicates that non-palatable species are not-replacing palatable 

species 1:1 when deer become overabundant, and do not suppress palatable species after deer are 

excluded.  This indicates that forests with overabundant deer have relatively low stem densities 

in their mid- and understories, potentially setting the stage for regeneration failure of both 

palatable and non-palatable species. 



 50 

The few studies that attempted to model changes in abundance as a function of deer 

palatability did find that relative deer preference was an important predictor of responses to 

exclusion (Tanentazap et al. 2009, Wright et al. 2012).  Both of these studies were conducted in 

New Zealand, where deer culls in recent decades have reduced deer densities and deer are 

hypothesized to be at low enough densities that there is not strong competition among the 

remaining deer for their preferred browse.  Under these conditions deer impacts to canopy 

composition are most likely to occur because the remaining deer are at liberty to eat only their 

most preferred browse.  In contrast, several studies report that species normally considered to be 

non-palatable increase when deer are excluded (Allen et al. 1984).  For example, black cherry 

(Prunus serotina) is browsed by deer but is considered much less preferred than other species 

(Horsley et al. 2003, Kruger et al. 2008).  Surprisingly, black cherry’s abundance almost always 

increases when deer are excluded (Kain et al. 2011, Abrams and Johnson 2012, Rossell et al. 

2005, Rossell et al.2007; see also Horsley et al. 2003).  Low-palatability plants benefiting from 

exclusion could indicate that deer have undergone a diet switch due to depletion of preferred 

browse (Hiroshi and Koichi 2001, Coomes et al 2003) or alternatively could result from indirect, 

soil-mediated effects (Heckel et al. 2010, Kardol et al. 2014).  Under these conditions, it is 

possible that deer will cause a general failure of canopy regeneration and potentially direct forest 

succession towards a more open woodland structure (Tanentzap et al. 2011).   

Surprisingly, our meta-regression indicates that there is not a strong connection between 

the duration of overabundance and the magnitude or rate of change.  This is counter to 

predication of Tanentazap et al. (2011) that recovery time should increase non-linearly with 

increasing duration of deer impacts.  Time lags before recovery might not begin to become 

substantial until community composition has progressed and substantially changed seed rain.  In 
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contrast, time lags might not occur at all if general canopy regeneration failure is occurring 

because canopy density is changing, not the composition of seed sources.  As expected, the 

effects of deer exclusion tend to increase in magnitude as the duration of overabundance increase 

(Fig. 8).    

Time-to-event analysis indicates that the median duration of overabundance before 

impacts to this strata was 60 to 80 years.  Many stands in North America that first experienced 

overabundant deer by the middle of the 20th century (Leopold et al. 1947) are therefore 

potentially reaching a critical stage where change in the midstories is occurring.  A median time 

of 60-80 years of deer overabundance until a midstory change occurs agrees with estimates for 

how long it takes some deciduous trees to approach the canopy.  Shade tolerant deciduous trees 

such as North American sugar maple (Acer saccharum) and American beech (Fagus grandifolia) 

can take 60-125 years before being in position to reach the canopy (Canham 1988, 1990).  After 

deer are excluded our time-to-event analysis indicates that it typically takes a median of 13 to 18 

years for changes to be detected, with faster changes occurring in seedling and sapling strata.  

The fact that changes in subcanopy strata can typically be detected in 18 years indicates that deer 

management will have to be conducted on a decadal scale, but that forests do respond to reduced 

deer densities. 

We found no indication that recalcitrant understories were present in any of the studies 

we reviewed.  Collard et al. (2010) specifically monitored ferns and observed no difference in 

abundance between controls and exclosures. Dwarf bamboos occurred in studies in Japan 

(Kumar et al. 2006, Nomiya and Kanazashi 2011) and form monocultures, but they are browsed 

by deer, reducing their impact (Kumar et al. 2006).  Royo and Carson (2006) proposed that 

recalcitrant understories would be most likely to form in deer impacted stands that have also 
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experienced disturbance such as logging.  Many of the stands represented in our studies are 

young and even-aged and therefore likely have few and relatively small canopy gaps (Yamamoto 

2000) and limited opportunities yet for recalcitrant layers to form.  

Our meta-analysis confirms that deer impacts to forest understories are pervasive, and the 

changes to understory populations and communities can be propagated to midstories over the 

course of stand development and maturation.  We find support for both the canopy composition 

change and canopy regeneration failure hypotheses, which highlights the need to consider both 

hypotheses when assessing deer impacts.  Deer have been overabundant in many places in North 

America for >50 years (Leopold et al. 1947) and New Zealand for >100 years (Clark 1949, 

Atkinson 2006).  The midstories of these forest are now potentially structured in a way that will 

result in a future canopy community or structure that is different than the original stand.  Unless 

deer densities are reduced soon these stand will likely begin a process of permanent change.  In 

areas where deer have only recently increased in abundance or become invasive it is unlikely that 

changes have progressed much into forest midstories given the slow rate of tree growth in closed 

canopy forests (Cowden et al. 2014, Rentch et al. 2003, Canham 1988, Canham 1988).  The 

prospects for recovery are therefore much higher in these stands.   



 53 

Table 2. Summary statistics for 49 studies included in review and meta-analysis. 

Summary 
statistic 

Geographic  
Subset Mean 

Stand 
dev. 

Medi
an Mode              Range n %  

Number of 
vegetation 
surveys 

 

2.4  2 1.5 a  1-9 49  

Exclosure 
plot number 

 

22.5 63 7 3 (n=6) b 1-400   
Exclosure 
plot size (m2) 

 

10180 3315
0 400 400 

(n=11) 1-160000   
Deer density 
(km2) 

 

28.8 22.8 23  3.5-88.2 31 63% 

Duration of 
exclusion 

All studies 13 11.6 10  2 to 60   North 
America 12.5 13 8 4 (n=4 ) 2 to 60 27 55% 

New 
Zealand 15.7  14.5  3 to 36.5 10 20% 

Non N. 
Am/NZ 10.8 9.1 8.5  3 to 30 9 18% 

         Duration of 
overabundan
ce prior to 
exclusion 

All 40.8 27.4 30  1 to 80 31 63% 

All studies 26.36 17.1 25.5  1 to 60 27 55% 
New 
Zealand 74 13.3 80 80 40 to 80 10 20% 

Duration of 
overabundan
ce at time of 
study 

All 53.8 39 40  1 to 80 31 63% 
North 
America 38.86 30.1 33.5  1 to 60 27 55% 

New 
Zealand 89.7 13.3 94.5 80 40 to 80 10 20% 

         
Notes: 

a 16 studies with 1 survey, 16 studies with 2 surveys 

b 5 studies used only 1 fenced/control plot pair 
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Figure 6. Meta-analytic mean effect of deer exclusion by woody vegetation strata.  Effect sizes were calculated 

as log response ratios with zero indicating no mean difference in responses between fenced deer exclosures 

and controls.  All strata = grand mean effect size across all strata and all responses.  Stata are not mutually 

exclusive due to heterogeneity in how authors of individual studies defined strata.  Midstory strata were 

generally > 200 cm in height and/or > 2 cm DBH.  Saplings were generally > 50 cm and < 200 cm.  Seedlings 

were generally <50 cm.   Data are pooled across responses related to abundance and community metrics using 

a mixed model.    No covariates (e.g. duration of overabundance) were included in the model.  Error bars are 

+/- bootstrapped 95% confidence intervals. 
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Figure 7. Meta-analytic mean effect of deer exclusion by woody vegetation response type and strata.  

Abundance metrics were usually counts of stems.  Community metrics include species richness and 

community diversity (e.g. Simpson’s diversity).  Effect sizes were calculated as log response ratios with zero 

indicating no mean difference in responses between fenced deer exclosures and controls.  All strata = grand 

mean effect size across all strata and all responses.  Stata are not mutually exclusive due to heterogeneity in 

how authors of individual studies defined strata.  Midstory strata were generally > 200 cm in height and/or > 

2 cm DBH.  Saplings were generally > 50 cm and < 200 cm.  Seedlings were generally <50 cm.   Data are 

pooled across responses related to abundance and community metrics using a mixed model.    No covariates 

(e.g. duration of overabundance) were included in the model.  Error bars are +/- bootstrapped 95% 

confidence intervals. 
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Figure 8. Effect of the duration of deer overabundance on observed effect sizes.  Effect sizes (Log response 

ratios) of all strata (solid red line) and the sapling strata only (dotted blue line) are depicted.  Size of points is 

proportional to the log of the meta-analysis regression weights, with smaller weights contributing less 

information to the regression.  White dots indicate sapling data points.  Error band = 95% confidence 

interval. 
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Figure 9. Time to event analysis indicates the relationship between observation of a significant change at p < 

0.05 between deer exclusion plots and un-fenced controls.  a) Variation in time to event by strata.  b) 

Variation in time-to-event for seedlings for 20 versus 60 years of deer overabundance (DoA).  c) The 

distribution of deer exclusion times in the 49 studies used in this meta-analysis. 
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4.0  COMPLEX TEMPORAL DYNAMICS DISGUISE SIGNIFICANT IMPACTS OF 

DEER EXCLUSION IN FORESTS. 

4.1 INTRODUCTION 

Mammalian and insect herbivores have pervasive impacts on plant biomass (Coupe and Cahill 

2003, Flower and Gonzalez-Meler 2014), demography (Maron and Crone 2006), and diversity 

(Olff and Ritchie 1998, Carson and Root 2000; Allan and Crawley 2011).  Surprisingly, 

reduction or removal of herbivores can fail to result in expected changes in plant populations’ 

biomass, demography or communities’ diversity (Gibson et al. 1990; Carson and Root 2000; 

Howe and Brown 2001; Simard et al. 2013).  This lack of response can result from biotic factors 

such as dispersal limitation of re-colonization (Royo et al. 2010).  Likewise, abiotic factors such 

as disturbance or light can be necessary for germination (Baskin and Baskin 1992) or growth 

(Canham 1988, 1990), even after herbivore removal (Royo et al. 2010, Nuttle et al. 2013).  

Mammalian herbivores can also potentially create coupled abiotic-biotic legacy effects through 

mechanisms such as soil compaction (Persson et al. 2000, Heckel et al. 2010, Kardol et al. 2014) 

or nutrient enrichment (Jensen et al. 2011, Murray et al. 2013) that alter both belowground 

conditions and plant communities (Bardgett and Wardle 2003; Wardle et al. 2004)   

Factors moderating the responses of vegetation to herbivore removal are of great 

relevance to the ecological management of mammalian herbivores.  Overabundant, invasive or 
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overstocked ungulates and other large mammals have been shown to have especially strong 

impacts on biodiversity around the globe (Fleischner 1994; Côté et al. 2004, 2014; Campbell and 

Long 2009; Takatsuki 2009; Kuijper 2011).  Surprisingly, reduction in the abundance of these 

large mammals does not always result in the desired vegetation change (Royo et al. 2010, 

Tanentzap et al. 2012, Collard et al. 2010).  Recent experimental studies have investigated how 

the response of vegetation to the removal of mammalian herbivores can be moderated by abiotic 

and biotic factors, including competition (Royo and Carson, 2006, 2008), disturbance (Royo et 

al. 2010, Nuttle et al. 2013, Collard et al. 2010), and animal density (Knight et al. 2009, Horsley 

et al. 2003, Tremblay et al. 2007).  Temporal factors such as the duration of reduced herbivore 

density (Brouwer 2015 Chapter 3), duration of overabundance prior to management or 

experimentation (Tanentzap et al. 2012, Brouwer 2015 Chapter 3) and the response rates of 

different metrics of vegetation change (i.e. biodiversity, biomass, density and community 

composition; Tanentzap et al. 2012) are likely to be equally important in understanding diverse 

vegetation responses, but are more difficult to address. 

Temporal factors such as the rate at which vegetation changes when mammalian 

herbivores first become overabundant and the rate it changes when they are subsequently 

reduced in density are likely to be affected by numerous factors.  Understanding these dynamics 

is an essential area of research since temporal variation in management intensity plays a central 

role in recent novel approaches for deer management.  McShea (2012) asserted that long-term 

and large-scale reduction of deer herds to historical densities (~4 deer km-2) is not acceptable to 

many stakeholders (e.g. USA: Frye 2010; New Zealand: Nugent and Fraser 1993).  McShea 

(2012) proposed that localized, temporary, but extreme reductions in deer density could create 

suitable windows for forest management goals to be achieved.  One way to achieve this for 
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white-tailed deer (Odocoileus virginianus) could be through strategic doe hunting that removes 

matrilineal groups because deer have high female philopatry and low female dispersal (Porter et 

al. 1991, Hyngstrom et al. 2011; Lutz et al. 2015;).  Sage et al. (2003) concluded that the 

creation of “windows of opportunity” through deer culls were essential to tree regeneration in 

their forestry system in central New York. Temporal and spatial variability in browsing pressure 

is also key to recent proposals to manage herbivores through “hunting for fear” whereby human 

hunters act more like real predators to induce higher vigilance and lower browse rates by deer 

(Cromsigt et al. 2013).  However, a fundamental knowledge of temporal dynamics of vegetation 

change is essential in order to implement these forms of management.  For example, data are 

needed on how long deer densities have to be reduced to achieve different management goals, or 

how long abundances can remain high between periods of intensive management. 

The duration of herbivore reduction or exclusion will determine the amount of time for 

deterministic processes to occur, such as the re-growth of vegetation that tolerates browse, and 

for the chance occurrence of stochastic factors affecting community re-assembly such as seed 

dispersal and disturbance.  Not surprisingly, a recent meta-analysis (Brouwer 2015, Chapter 3) 

confirmed the importance of the temporal dimension of ungulate management by indicating that 

effect sizes of deer exclusion increase significantly with time.  Empirical explorations of how 

deer exclusion effects changes over time are uncommon.  In fact, conclusions from most 

exclusion studies are limited by the short duration of the experiment (Bellingham and Lee 2006, 

Brouwer 2015 Chapter 3) and analyses that either only have available or only use one or two 

time points of data (Wisdom et al. 2006, Brouwer 2015 Chapter 3).  These limitations preclude 

detailed analyses of temporal factors such as the rate and dynamics of vegetation change (but see 

for example Long et al. 2007).  Similarly, the duration of overabundance should an important 
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determinant of how vegetation responds; the longer deer have been overabundant, the more 

severe their impacts and the longer it will take for a forest to recover (Tanentzap et al. 2012).  

Generally, studies that manipulate ungulate densities are conducted at locations with extended 

histories of overabundance, or where the duration is not known (Brouwer 2015 Chapter 3).  We 

therefore do not know how rapidly mammalian herbivores such as deer can change vegetation, or 

which components change most quickly.   

Finally, there is likely to be a consistent temporal sequence of change during the periods 

of overabundance or after reductions in ungulate density.  Tanentzap et al. (2012) hypothesize 

that when ungulates become overabundant, negative impacts will first occur to plant biomass, 

then to abundance, and finally to community diversity.  Changes to vegetation after ungulate 

populations are reduced will likely occur in the same order, as tolerant vegetation grows, 

reproduction results in successful recruitment, and locally extirpated species disperse into a site.  

This sequence was partially observed by Royo et al. (2010) after increased sport hunting reduced 

deer herds; plant biomass and plant population density increased, but there was no increase in 

species diversity after six years.   

To better understand how forests respond to deer impacts over time we experimentally 

excluded deer for a decade at a site that recently experienced an increase in white-tailed deer 

(Odocoileus virginianus, hereafter deer).  Deer densities four times higher than historic levels 

(~20-40 deer km-1; Kalisz et al. 2014) persisted for ~15 years prior to establishment of pairs of 

fenced deer exclusion and unfenced deer access (control) plots.  Woody vegetation was then 

surveyed biennially to track changes over time.  This unique combination of a recent deer 

irruption and intensively monitored experimental exclusion allowed us to address five questions:  

1) Was the relatively short duration of deer overabundance (~15 years) sufficient to suppress 
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woody plant populations and communities?  2) Has a doubling of the duration of deer 

overabundance resulted in continued decline in our control plots?  3) Do the effects of deer 

exclusion on vegentation follow the temporal sequence proposed by Tanentzap et al. (2012), 

with changes occurring first to biomass, then plant populations, then community diversity?  4) 

Has enough time elapsed for changes in understory vegetation within the browse height of deer 

(< 2 m) to affect the abundance or diversity of midstory trees?  5) Are vegetation changes driven 

by the relative palatability of different species as is frequently hypothesized (Waller and 

Alverson 1997; Knight et al. 2009; Tanentzap et al. 2012)? 

We will address these questions by systematically using two statistical comparisons 

across the years of the study.  First, we compare metrics between the two treatments within each 

year.  Second, we compare metrics over time for each treatment to its initial state when the 

experiment began.  Explicitly conducting within-year comparisons between the treatments as 

well as between-year comparisons within treatments allows us determine whether differences 

between treatments are due to recovery in our deer exclusion plots, continued vegetation 

degradation in our deer access control plots, or both (Fig. 21 a-c, Appendix C).  We consider 

three size classes of woody plants that can be affected by deer, seedlings (stems < 30 cm), 

saplings within the browse layer (stems 30 cm - 200 cm) and small tress in the sub-canopy 

(stems ≥200 cm in height), and compare the responses of woody species known to be preferred 

deer browse versus those of less preferred species. 
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4.2 METHODS 

4.2.1 Deer exclusion experiment 

We conducted our study in a beech-maple forest in southwestern Pennsylvania (Fox Chapel 

Borough, Allegheny County; 40° 52' 01.40" N; 79° 90" 10.75" W). The Trillium Trail, a 16 ha 

nature reserve along Squaw Run, is embedded within 1450 ha of forests and parklands owned 

and stewarded by Fox Chapel Borough. This forest contains a diverse array of woody (Table 8 

Appendix C) and herbaceous species (Table 9 Appendix C; see also Appendix 1 in Hale et al. 

2011) growing on moderately sloping (8-15%) silt- loam soils. Increases in deer abundance in 

this area occurred in the early 1990’s (L. Smith, West Penn Conservancy, personal 

communication). Aerial surveys conducted between 1992 and 2002 confirmed high deer 

abundances (range 20-40 deer/km2), which is ~2-4 times the historical average in western 

Pennsylvania (Kalisz et al., 2014).  

In the fall of 2002, six 12 m x 12 m paired deer exclusion and deer access treatment plots 

were established in Trillium Trail. Paired plots were chosen with respect to understory herb 

diversity but without respect to woody species diversity. In autumn 2002, fences surrounding the 

deer exclusion plots were built. Fences are 3 m tall and the mesh size (15 cm x 15 cm) 

effectively excludes deer (Vercauteren et al. 2010) but allows most other vertebrates access. 

Each plot is divided into 36 2m2 subplots and all data is collected within these subplots.  Tree 

falls were left in place except for sections that breech the deer excluding fences.   
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4.2.2 Data collection 

Since 2003 we have censused seedlings and saplings of all vine, shrub, and tree species 

(hereafter “woody species”) biennially.  Seedlings and saplings were defined by height classes 

(<30cm, 30-200cm, respectively) and all individuals of all woody species within the 36 

subplots/plot were counted (Table 8 Appendix C).  As an index of biomass (Hermy 1988) we 

also estimated the percent cover of all woody vegetation ≤ 2 m.  Percent cover for an individual 

species could not exceed 100% but could for the summed cover of multiple species in the same 

sampling unit. 

To determine if understory impacts had propagated beyond the browse layer we collected 

additional data in 2011 and 2013 on all stems ≥200 cm in height. For these mid- and overstory 

stems we measured the diameter at breast height (DBH) of all individuals with any portion of 

their stems rooted in our plots. To determine if deer diet preference (aka “palatability”) impacts 

the magnitude and rate of change of species over time we classified the relative preference of 

deer for all wood species.  Deer preference for each species was qualitatively classified as high 

or low (Table 8 Appendix C) using peer-reviewed studies (Healy 1971, Heinrich 1983, Krueger 

et al. 2009, Long et al. 2007, Wakeland and Swihart 2009, Nuttle et al. 2013), and government 

reports (Latham et al. 2005).  A species was ranked as high preference if most sources indicate 

that deer preferred it, low if most studies indicated that they did not, and equivocal if there was 

no consensus or a lack of information.  Overall, our classification was informed by two 

considerations: deer utilization of or preference for the species, which depends on deer behavior, 

and the palatability of the species to deer, which is generally a function of leaf traits (Mason et 

al. 2010).   
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4.2.3 Statistical analyses 

Because of the large number of sugar maple stems (Acer saccharum), likely due to a mast event 

in the early 2000s (S. Kalisz, personal observation), and the variation in life history among the 

woody species, we analyzed our seedling and sapling data using two approaches.  First, we 

pooled the abundance of all species and analyzed the total number of woody stems in the 

seedling and sapling strata.  Second, we grouped the data in each based on species identity and 

life history. These groups were: sugar maple (A. saccharum), other canopy tree species (all tree 

species except sugar maple capable of joining the canopy; e.g. A. rubrum, Fagus grandifolium, 

Fraxinus americana, Prunus serotina, Quercus rubra, Q. alba, and Tilia americana) and all 

small trees, shrubs, and vines that do not enter the canopy (e.g. Hamamelis virginiana, Lindera 

benzoin, Parthenocissus quinquefolia and Toxicodendron radicans).  

We used two analytical approaches to determine the temporal dynamics of change inside 

and outside our experimental plots.  First, we compared the effects of deer exclusion on the 

density of woody stems, calculated as the sum of the number of stems in all 36 subplots within 

each plot (stems 0.0144 ha-1).  Second, we characterized the spatial distribution of woody stems 

by considering their frequency of occupancy in subplots within each plot.  We defined 

occupancy as the presence of ≥1 stem in a subplot and calculated percent occupancy for each 

plot as (# of subplots with ≥ 1 stem)/(36 subplots). 

We analyzed the woody stem density across sampling years using repeated-measures 

Poisson mixed models (Gelman and Hill 2007; Zuur et al. 2009).  To accommodate 

overdispersion we included an “observation-level” random effect, resulting in a Poisson-normal 

mixed model (PNMM; Kéry 2010; Maindonald and Braun 2010).  We modeled percent 

occupancy over time using a logistic-binomial mixed model.  Proportional data such as these are 
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typically overdispersed (Gelman and Hill 2007) and we included an observation-level random 

effect in these models as well, resulting in a logistic-normal model (Warton and Hui 2011; Kéry 

2010).  To determine the influence of overdispersion we calculated a variance inflation factor 

and tested whether it was different from zero (Gelman and Hill 2007).   

To estimate the impact of deer on the biomass of woody species, we averaged the percent 

cover estimates of species in each 2 m2 subplot across all 36 subplots/plot.  To investigate the 

effect of deer browse on the abundance of palatable versus non-palatable species we used two 

separate methods. First, we calculated the percentage of plants classified as palatable (e.g. # of 

stems in “palatable category/all stems; Table 8 Appenbdix C) in each plot to look for overall 

changes in relative abundance of palatable stems.  We similarly calculated the palatable biomass 

using our percent cover data.  Second, we modeled the abundance of each species in each plot 

using a mixed effects model with partially crossed random effects (Baayen et al. 2008) for plot 

and species.  We only included species that occurred in at least one of the treatments within a 

pair of plots at some time during the experiment.  

To determine the effect of exclusion on the density of subcanopy trees moving beyond 

the browse line, we modeled the number of stems ≥ 2 m in height but ≤ 10 cm DBH in each plot 

with a PNMM.  Since larger trees (i.e. > 10 cm DBH in 2011) were likely to have already 

reached a size refuge from deer browse at the time our experiment began, we did not include 

them in our analyses. 

For each treatment in each plot we determined species richness and calculated inverse 

Simpson’s diversity using the vegan package in R (Oksanen et al. 2013).  Species richness was 

analyzed with a Poisson-normal model and diversity with a linear model. 
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We tested for treatment differences with yearly pairwise contrasts (e.g. Exclosure2013 

versus Control2013).  We also used linear trend contrasts (Bretz et al. 2010; Rosenthal and 

Rosnow 1985; Gurevtich and Chester 1986; Day and Quinn 1989) to determine if there were the 

linear trends within treatments.  Additionally, if trends in control and exclosure plots where both 

significant we tested if the trends had similar patterns of change (Gurevitch and Chester 1986).  

Finally, we tested for evidence of curved or asymptotic dynamics over time using quadratic trend 

contrasts.  Curved patterns over time could potentially be indicative of feedbacks due to inter- or 

intra-specific competition or self-thinning (Coomes and Allen 2007), or plants growing out of a 

size class.  Contrast analyses were conducted using the multcomp package in R (Hothorn et al. 

2010).  To compare the size distributions of small subcanopy trees (≥ 2 m height, ≤ 10 cm DBH) 

between treatments and years we used a Kolmogorov-Smirnov test (Sokal and Rolf 2011; 

Tanentzap et al. 2011). 

For within-year contrasts we calculated effect sizes to permit comparisons between 

different types of response variables (i.e. seedling number, sapling number, species richness).  

For Poisson regression we calculated the log incidence rate ratio (log IRR; Hilbe 2007) and for 

logistic regression the log odds ratio (Rita and Komonen 2008).  Both effect sizes indicate the 

magnitude of difference between treatments.  For example, if the log IRR for the density of 

saplings in the deer excluded versus the deer access control plot is 0.4, the IRR is exp(0.4) = 1.5.  

This means that there are 1.5 times as many seedlings in the absence of deer as in the control.  

We report IRR and OR but plot log IRR and log OR to improve interpretability as recommended 

by Galbraith (1988). Raw means are reported in appendices.  

For all analyses we used mixed models with plots (n=12) nested within pairs of plots 

(pairs = 6) with treatment and year as fixed effects.  Percentage data (cover, palatable stems) 
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were logit transformed (Warton and Hui 2011).  All analyses were conducted in R 3.1.0 (R Core 

Team 2014) using the lme4 1.1-6 mixed modeling package (Bates et al. 2014).   

4.3 RESULTS 

4.3.1 Summary of results 

Changes within our seedling size class (< 30 cm) were similar between treatments (Figs. 22 and 

23, Appendix C) and we therefore focus mostly on dynamics of our sapling (30 cm – 200 cm 

height) and subcanopy (> 200 cm height) size classes.  

To understand the rate at which different aspects of forest vegetation change, we focus 

our attention on five different comparisons (Table 3).  First, we consider the first year that a 

significant difference occurred between the fenced exclusion plots “E” and the control plots  “C” 

(Table 3, column ("Cyear t ≠ Eyear t").  Second, we check if in the final year of the experiment there 

were differences between the control and exclusion plots (“C2013 ≠ E2013”).  Third, we determined 

the first year that a treatment was different from its initial condition in (2003; Table 3 columns 

"Eyear t ≠ E2003" and "Cyear t ≠ C2003").  Fourth, we tested whether either treatment exhibited a linear 

change over time, and whether there was evidence that the dynamics of their trends was similar 

("Ctrend ≠ Etrend").  Fifth, we tested whether either there was any curvature in the response of 

treatment, as indicated by a significant quadratic trend contrast, and whether these curves were 

similar.  Significant curvature could be an indication of self-thinning or competition in exclusion 

plots and/or increased browsed rates in access plots. 
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4.3.2 Total woody biomass (percent cover) 

There was a significant positive trend in woody percent cover in the exclusion plots (Fig. 10; 

linear trend contrast z = 1.15, p = 0.01) but no change in the control plots (z = 0.3, p = 0.8).  This 

resulted in subplots in fenced exclusion plots having ~2 times as much cover of woody species as 

the controls by 2013 (Control cover = 10.23% ± 2.5, Exclusion cover = 20.1% ±/-3.5).  Increases 

in percent cover in the exclusion plots where not completely linear; percent cover increased 

initially through 2009 but then decreased slightly but significantly by 2013 (Fig. 10; Quadratic 

trend contrast: p=0.032).  Percent cover responded fairly quickly to deer exclusion.  After four 

years,, percent cover in the deer exclusion plots exceeded its initial values (p2007=0.04), and by 

2009 was significantly denser than controls (p2009 = 0.053, p2011 = 0.017, p2013 =0.026).   

4.3.3 Seedling dynamics (stems < 30 cm height) 

Seedlings dynamics were similar in the control and exclusion plots for all metrics. Seedling 

abundance (Fig. 22 a-c) and occupancy (Fig. 23 a-c) both declined over time, primarily due to 

declines in sugar maple in both treatment plots (Figs. 22a, 23a).  There were no significant 

differences between treatments in seedling species richness or diversity. 

4.3.4 Sapling dynamics (stems 30 cm to 200 cm) 

4.3.4.1 Sapling density   

Sapling density in both treatments increased over time (Fig. 11c,d, Fig. 22).  In the fenced 

exclusion plots both sugar maple (Fig. 11c; linear trend contrast z = 2.6, p = 0.008) and other 
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canopy tree species increased (Fig. 11d, trend contrast p < 0.001).  In the control plots, sugar 

maple exhibited a net, but non-significant, decline (linear contrast z = 0.8, p = 0.4) while other 

canopy tree species increased (Table 3).  While there were never significant differences in 

sapling density between treatments at the p < 0.05 level, both sugar maple and all other species 

increased in the deer exclusion plots above their starting abundance in 2003 (Table 3; Fig. 

11a,b).  Both sugar maple and other canopy tree species exhibited significant curvature to their 

abundance trends (sugar maple: quadratic trend contrast z = 3.03, p = 0.002; other canopy trees 

species; p = 0.003), due to slight declines in abundance by 2013 relative to 2011.  Increases in 

the control were slow but large enough that the abundance of non-sugar maple stems exceeded 

initial abundances 2011 (p=0.04) and remained high in 2013. 

4.3.4.2 Sapling cccupancy 

Occupancy rates for saplings of sugar maple and all other species increased in both treatments, 

though the rate of change was different between treatments (difference between trends contrast p 

= 0.02).  Both treatments also exhibited quadratic trends (exclusion plots p = 0.03; Control plots 

p = 0.06.  Occupancy in the fenced deer exclusion plots responded quickly and exceeded its 

initial values for sugar maple by 2005 (p = 0.03).  Overall, sugar maple occupancy in the 

exclusion plots doubled from 35% (±16% SE) in 2003 to 75% (±7% SE) in 2013.  Occupancy in 

the control plots for sugar maple (Fig. 11c) and all other canopy tree species (Fig.11d) exceeded 

their initial states, but changed more slowly than the deer exclusion plots. 

4.3.4.3 Sapling community metrics 

Sapling species richness exhibited a significant positive trend in both treatments (Table 3).  

Sapling richness was marginally higher in the deer exclusion plots from 2007-2011 (p2007 = 0.13, 
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p2009 = 0.23, p2011 = 0.17), but exhibited a decline by 2013 (quadratic trend contrast p = 0.002). 

Sapling-layer Shannon diversity decreased over time in both treatments (Table 3, p < 0.001).   

 

4.3.4.4 Sapling palatability 

Sugar maple (Acer saccharum) is a moderately preferred forage for deer in this region and was 

the most abundant seedling, sapling, subcanopy and overstory in both treatments.  Black cherry 

(Prunus serotina) was the most abundant low-preference species, but was relatively rare in the 

understory of this closed canopy site.  We observed no differences between the treatments in the 

percentage (palatable stems/total stems), relative percent cover, or density (stems / plot) of 

palatable species (data not shown). 

4.3.5 Subcanopy tree dynamics (stems > 200 cm height) 

4.3.5.1 Subcanopy tree abundance 

Surveys in 2011 and 2013 indicated that 10 years of deer exclusion marginally increased the 

density of small sugar maple trees (≥ 200 cm height, ≤ 10 cm DBH) relative to the controls.  

Densities of subcanopy sugar maple were higher in fenced enclosures in 2011 (χ2
treatment = 2.57, p 

= 0.11, incidence rate ratio IRR =1.57).  The abundance of sugar maple doubled on average in 

both treatments from 2011 to 2013 (χ2
year=3.8, p = 0.052, IRR = 1.72) but there were no 

significant treatment by time interactions.  The abundance of subcanopy trees, however, was 

highly variably between plots.  There were 151 stems in 2011 > 200 cm, ranging from one to 99 

per plot in 2011, and seven to 194 in 2013. 
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4.3.5.2 Small tree size distribution 

In 2011, the first year we took data on stems > 2 m in height, the distribution of diameter at 

breast height (DBH) measurements of all species combined was significantly different between 

treatments (Fig. 13; Kolmogorov Smirnov test: D2011 = 0.4, p = 0.001; D2013 = 0.3, p = 0.001).  

Within each treatment, the DBH distributions changed from 2011 to 2013 (Ddeer access = 0.48, p < 

0.0001; Ddeer exclusion = 0.69, p < 0.0001). Considering just sugar maple, there was no difference in 

the DBH distribution between treatments in 2011 (D2011 = 0.26, p = 0.2, NE = 58, NC = 24) but 

the distribution was different in 2013 (D2013 = 0.27, p = 0.01, NE = 101, NC = 54).  The 

distribution of non-sugar maple subcanopy trees differed in both years (D2011 = 0.39, p = 0.037, 

NE = 28, NC = 24; D2013 = 0.35, p = 0.012, NE =52, NC = 35).  

4.4 DISCUSSION 

Our experiment compared deer access plots that had experienced ~25 years of deer 

overabundance to exclusion plots that experienced ~15 years deer browse followed by a decade 

of recovery.  Woody vegetation was dynamic regardless of treatment, with increases in sapling 

density and occupancy through time (Figs. 11, 12).  These results indicate that even in at high 

deer densities (20-40 deer/km2, Kalisz et al. 2014) some woody species can continue to grow and 

enter the forest midstory.  However, changes were always larger and occurred faster in deer 

exclusion plots than in deer access plots (Table 3).  Differences in population dynamics were 

most obvious in terms of percent cover (Fig. 10), sapling occupancy (Fig. 12) and the size 

distribution of subcanopy stems (Fig. 13).  Difference in sapling abundance were more subtle 

and most evident when we compared stem densities against their initial levels in 2003, and by 
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considering long-term trends using longitudinal statistical methods.  For example, even though 

comparisons within years implied that saplings in exclusion plots were not more dense than in 

controls, saplings increased above their initial density generally by 2005 in exclusion plots but 

not until 2011 in control plots (Table 3).  Similarly, by considering all seven sampling periods, 

we detected significant upward trends in the abundance of sugar maple in our fenced exclusion 

plots, but there was no such trend in controls. 

Almost all of the increases in sapling abundance and occupancy displayed some 

curvature by 2013, as indicated by significant quadratic trends (Table 3).  This implies that after 

initial increase, sapling abundance began to attenuate. This result could occur due to competition 

within or between species, or stems were growing out of the size class into our subcanopy strata.  

Occupancy is bounded at 100% of the total subplots or subplots with suitable habitat (e.g., not 

obstructed by rocks, treefall, stumps, etc) and it is therefore not surprising that it asymptotes.   

4.4.1 Seedling and sapling dynamics 

When the experiment began in 2003 sugar maple (Acer saccharum) seedlings (stem < 30 cm) 

were extremely dense (Fig. 22a) and quickly declined from 2003 to 2005, consistent with 

mortality of seedlings following a masting event.  Other studies have found that a sugar maple 

mast year can result in >100 seedlings m-2 directly under maternal canopies, with 90% mortality 

within the first several years (Hett 1971, Cleavitt et al. 2014).  Our results indicate that 

regeneration conditions for sugar maple remained high at our study site, despite the elevated deer 

abundance. We saw no evidence of differences in mortality between treatments, and other 

studies have reported no deer-associated mortality with sugar maple seedlings in their first seven 

years (Cleavitt et al. 2014). 
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Interestingly, seedlings of other tree species also declined significantly in both treatments 

(both ptrend < 0.001) and by 2011 were significantly lower in density than when the experiment 

began (deer access control plots: z2011 = -2.37, p = 0.02; deer exclusion plots z2011 = -3.5, p < 

0.001).  We found no evidence that the rate of decline differed between treatments (ptrend comparison 

= 0.5).  Interspecific competition between similarly sized seedlings, especially the cohort of 

sugar maple mast seedlings, shading by larger saplings (Graignic et al. 2014; Hane 2003), and 

some growth into the sapling size class likely account for this. 

  In contrast to declines in seedling abundance, saplings (30 – 200 cm) consistently 

increased in occupancy and abundance in both treatments.  For sugar maple, we observed 

marginal but consistently increases in abundance in our fenced exclusion plots (Fig. 22d) and 

consistent increases in occupancy (Fig. 23d) in both treatments.  Increases in occupancy were 

significantly larger and faster in our fenced plots, indicating that deer exclusion increased the 

rate that sugar maple entered this size class. 

Though they exhibited overall increases, most sapling metrics declined somewhat 

between 2011 and 2013.  Attenuation of abundance is consistent with continued thinning due to 

competition (Coomes and Allen 2007).   Declines in abundance overtime within a large size class 

(e.g. 30 cm – 200 cm) are inevitable consequences of imposing size classes when in fact size is 

continuously distributed. In our study, sugar maple sapling abundance increased in the exclusion 

plots, but quadratic dynamics and modest increases in the controls mask the ecological 

magnitude of this change (Fig. 11).  It is possible that ecologically relevant changes in saplings 

will not appear statistically significant if sapling density declines due to successional processes 

such as self-thinning within exclusion treatments.  
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We observed no evidence of masting or high germination rates among any species other 

than sugar maple; moreover, non-sugar maple seedlings declined overall.  The increase in the 

sapling abundance and occupancy of non-sugar maple saplings is therefore likely due to 

suppressed stems increasing in size.  On both large (Miller et al. 2009, Crimmins et al. 2010) and 

small spatial scales (Jarnemow et al. 2014, Moser et al. 2006) the availability of alternative 

browse can increase the growth of tree seedlings.  Since the increase in non-sugar maple stems 

occurred in both treatments, it is possible that the abundance of highly palatable sugar maple 

stems reduced browse pressure on other species, allowing them to increase in height and 

transition from our seedling to our sapling size class.   

4.4.2 Small tree dynamics 

Some movement of sugar maple saplings into the midstory occurred in both treatments as 

evidenced by marginally significant increases in the abundance of stems > 200 cm between 2011 

and 2013.  Abundance was higher both years in the deer exclusion plots, indicating that release 

from deer browse was beginning to affect midstory transition dynamics.  Additionally, the size 

distribution of sugar maple and other species differed between treatments (Fig. 13).  This study 

therefore provides evidence that the effects of 15 years of overabundance can potentially be 

reversed by a decade of deer exclusion.   

Subcanopy sugar maple exhibited different size dynamics relative to the other tree 

species.  Sugar maple was more abundant both years we surveyed stems > 200 cm in height 

(2011, 2013), but its DBH size distribution was different between treatments only in 2013.  We 

suspect that in our controls abiotic factors allowed some saplings to grow larger despite high 

browse pressure, which resulted in an increase in small sugar maple trees between 2011 and 
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2013.   Other studies have also reported the growth of some stems into larger size classes despite 

deer browse, though exclusion always increases this rate. Stems that grow in the presence of 

browsers are usually less preferred browse species (White 2012, Husheer 2007), but not always 

(Bellingham and Allen 2003).  It is generally assumed that high deer densities in closed canopy 

forest will result in changes to the overstory in terms of density and species composition. Such 

changes are common in stands that have been thinned or cut (Horsley et al. 2003, Beguin et al. 

2009), but are not yet common in un-managed forests because of the slow rate of canopy 

turnover.  Unfortunately, long-term studies in closed canopy forests that could confirm that deer 

effects result in changes in canopy composition are rare (Brouwer 2015 Chapter 3), but are 

clearly needed.  Our study demonstrates that it is possible for a palatable tree species (sugar 

maple) to survive high deer densities and progress towards the midstory.  Masting likely played a 

role in this response and the importance of other stochastic events and disturbance needs more 

study.  A combination of changes in deer density and disturbance appears to be essential for 

regeneration in some closed canopy forests (Collard et al. 2010, Nuttle et al. 2013; Fig. 21f,g, 

Appendix C).  The effects of masting could be studied using seed addition experiments in 

smaller deer exclusion plots.   

4.4.3 Woody cover  

Despite increases in the abundance and occupancy of most sapling species in the controls, 

percent cover did not increase where deer had access; in contrast, it increased by 50% in the 

fenced exclusion plots (Fig. 10).  Tanentzap et al. (2012) propose that plant biomass, which can 

be approximated using cover (Hermy 1988), should be the first vegetation characteristic to 

respond to deer overabundance, and therefore should be the first to respond to deer exclusion.  In 
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our study, percent cover and stem density appear to be somewhat uncoupled.  In the exclusion 

plots, increases in cover match increases in abundance and occupancy, while in the controls 

increase in abundance and occupancy occur without significant changes to cover (likely due to 

browse).  Our data suggest that seedlings and saplings can persist in the understory for prolonged 

periods, and are likely changing little in biomass across long periods of time.  

 

4.4.4 Sapling community 

We expected that there would be no changes in community-level metrics in the exclusion plots 

due to the short duration of overabundance (Tanentzap et al. 2012) and that community 

composition would potentially change in the controls due to the doubling of the duration of 

overabundance.  However, sapling species richness increased in both of our treatments and the 

spike in sugar maple abundance likely drives these dynamics.  Our occupancy data indicate that 

sugar maple appeared in locations where it had previously been absent, thereby increasing 

species richness, but also dominated numerically, decreasing diversity. 

4.4.5 Sapling palatability 

Most species at this site were relatively palatable to deer and the only non-palatable tree capable 

of entering the canopy is black cherry (Prunus serotina), but is it not common in the canopy of 

our study site.   Given the numeric dominance of sugar maple, the paucity of low palatability 

species, and the generally high rate of canopy closure (N Brouwer, personal obs.) it is not 

surprising that differences in deer preference did not affect dynamics in this forest. 
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Changes in sapling dynamics generally followed predictions of Tanentzap et al. (2012) 

with increases in biomass and abundance but no significant changes in richness or diversity.  

However, our fastest responding metric was occupancy.  We suggest that occupancy is a metric 

that possibly integrates the net effects of growth, recruitment, and competition by focusing on the 

occurrence of stems throughout a plot rather than their abundance, which will necessarily decline 

as plants released from browse begin to grow.  To our knowledge we are one of the first studies 

to use this metric. Changes in occupancy indicate that the horizontal distribution of plant 

occurrence and biomass is changing throughout our plot.  It also indicates and that plants, either 

from seed or the seedling bank, are successfully colonizing and growing up into the formerly 

depauperate sapling layer.  Thus not only is the vertical structure of the forest responding to deer 

exclusion as trees grow from seedlings to saplings and from saplings to midstory trees, but also 

the horizontal structure is changing as well.  We note that the use of occupancy as a metric will 

likely be highly dependent on the size of subplot that is considered. 

4.4.6 Relevance for management 

Our study provides information relevant to the proposal of McShea (2012) that a shifting 

landscape of deer management could be used to achieve forestry and biodiversity goals.  At our 

site, ten years of deer exclusion achieved measurable increases in the movement of saplings into 

the overstory (> 200 cm) after a relatively short duration of deer overabundance.  The rate at 

which our system responded could be considered an optimistic maximum rate of recovery since 

our site had not experienced overabundant deer previously and deer density was reduced to zero 

through fencing.  Sites that have experienced longer durations of deer overabundance or that 

cannot reduce deer through exclusion should expect to control deer for a minimum of ten years.  
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A decade of deer exclusion has been proposed in other studies as a minimum for achieving forest 

management goals (Tanentzap et al. 2012; Collard et al. 2010).   
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Table 3. Summary of effects of deer exclusion on sapling responses. The years in the table indicate the first 

year during biennial surveys that a statistically significant (p < 0.05) difference was observed for a specified 

comparison.  Different types of comparisons are in columns, and different response variables (eg abundance, 

occupancy) and groups of species (all species, sugar maple, canopy trees) are in rows. Positive (+) signs 

indicate that responses were larger in fenced exclosures versus controls, e.g., abundance of saplings was 

higher.  Negative (-) signs indicate that responses were larger in controls.  All results are for our sapling size 

class (stems 30 cm - 200 cm in height).  Tests were conducted for all woody species together, for sugar maple 

(Acer saccharum), and all canopy tree species other than sugar maple.  Canopy species are those capable of 

entering the canopy.  The 1st column ("Cyear t ≠ Eyear t") indicates the 1st year that a within-year ANOVA 

contrast shows that the exclosure was not equal to the control.  The 2nd ("Eyear t ≠ E2003") and 3rd columns 

("Cyear t ≠ C2003") indicate the 1st year that conditions within a treatment were not equal to its initial state in 

2003 when the experiment began.  The 4th and 5th columns indicate the significance and direction of any 

linear trends.  If trends were significant, the 6th column ("Ctrend ≠ Etrend") indicates whether there is any 

indication that they changed at unequal rate.  The 7th and 8th columns indicate the significance and direction 

of any significant curvature to the trend (quadratic effect).  The final column ("C2013 ≠ E2013") indicate 

whether curvature to the trend resulted in a non-significant different between the exclosure and control by 

the final year of the study, 2013.   
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 Pairwise comparisons     Linear trend      Quadratic Trends  
Strata & 

Response
Species 
Group 

  Cyear t ≠ Eyear t
 C2013 ≠ 

E2013

 Eyear t ≠ E2003  Cyear t ≠ C2003 E C
Ctrend ≠ 

Etrend

Exclosure Control

Percent Cover All species 2009(+) (+) 2007(+) (+) d (+)

All species 2005(+) (+) (+) (-)

Sugar 
maple e 2005(+) (+) NA (-)

Canopy 
trees

2007(+) 2011(+) (+) (+) (-)

All species 2005(+) (+) 2005(+) 2007(+) (+) (+) (+)

Sugar 
maple

2005(+) (+) 2005(+) 2007(+) (+) (+) (+)a (+)a

Canopy 
Trees

2009(+) 2007(+) 2009(+) (+) (+) (+)b

All species 2007(+) 2011(+) (+) 2007(+) (+)

Canopy 
Trees

2007(+) 2013(+) (+) (+) (+)

All species 2013(+) 2011(+) (+) (+)

Canopy 
Trees

2011(+) 2013(+) (-) (-) (-)

Saplings 
Abundance

Sapling 
Occupancy

Sa ling Species 
Richness

Sapling Species 
Diversity

 

 

 
a Quad trend likely occurs due to saturation of available habitat 
b p=0.06 
c p=0.08 
d For % cover the trend within the exclosure is significant while the control trend is not.  However, the 
difference between the trends is only marginally significant.  This is likely due to the significant quadratic 
effect within the exclosure attenuating the linear trend. 
e p=0.16 
f percent cover includes stems in both the seedling and sapling size classes. 
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Figure 10. Effect size and annual means of total percent cover from five pairs of fenced deer-exclsoures/deer 

access plots at Trillium Trail, PA.  Effect sizes (upper panel) are on the untransformed logit scale.  Our index 

of biomass (lower panel) is the total cover of all woody species within a plot, summed across all 36 subplots.  

Error bars are 95% confidence intervals. 
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Figure 11. Effects of deer exclusion on sapling abundance of sugar maple (a,c; Acer saccharum) and all other 

species that can reach the canopy (b, d) from 2003 to 2013 at Trillium Trail Nature Reserve.  Top panels are 

predictions from a generalized linear mixed model.  Arrows indicate significant trends in mean abundance 

over time.  Lower panels are average annual differences between deer exclosures and access plots.  N = 6 

plots.  Error parts are 95% confidence intervals. 
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Figure 12. Effects of deer exclusion on occupancy of sugar maple (a,c; Acer saccharum) and all other species 

that can reach the canopy (b, d) from 2003 to 2013 at Trillium Trail Nature Reserve.  Top panels are 

predictions from a generalized linear mixed model.  Lower panels are average annual differences between 

deer exclosures and access plots.  N = 6 plots.  Error parts are 95% confidence intervals. 
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Figure 13. Size distribution of subcanopy trees (stems >2m in height) in permanent deer access plots vs. plots 

where deer were excluded since 2003. By 2011 size distributions were significantly different between 

treatments (KS-test, p=0.0011). Size distributions within treatments diverged further between 2011 and 2013 

(p<0.01) due to continued recruitment and growth in deer exclusion plots (i.e. compare distribution of plants 

<3 cm DBH). Note: Large trees (i.e. diameter> 5cm) in both plot types had reached deer browse size refuge 

prior to start of the experiment and were not expected to differ for sugar maple or other canopy-forming 

trees. N= 6 plots per treatment. 
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5.0  LONG-TERM DEMOGRAPHIC RESEARCH REVEALS PERVASIVE EFFECTS 

OF AN ALLELOPATHIC INVASIVE SPECIES ON VITAL RATES AND 

POPULATION DYNAMICS OF COMMON FOREST PLANTS 

5.1 INTRODUCTION 

The increasing use of experiments in invasion ecology (Stricker et al. 2015) is revealing the 

causal links between invasive plants and reduced fitness in native species.  Invasive plants have 

been shown experimentally to impact natives through numerous direct and indirect mechanism, 

including resource competition (Vila and Weiner 2004; Gioria and Osborne 2014), pollinator 

interference (Morales and Traveset 2009, Reid et al. 2009), pathogen spillover (Beckstead et al. 

2010), direct allelopathy (Inderjit et al. 2011, Svensson et al. 2013), allelopathic mutualism 

disruption (Hale et al. 2011, 2015), soil nutrient enrichment from litter and nitrogen fixation 

(Vitousek and Walker 1989; Liao et al. 2008), and apparent competition (Enge et al. 2013).  

Given these experimental advances in our understanding of native-invader interactions it is now 

incontrovertible that invasive plants can exert intense effects on natives and severely reduce their 

fitness.  However, intense species interactions identified in experiments might be attenuated or 

change under field conditions or when scaled up to the population level (e.g. Brown et al. 2011).   

A disconnect between lab and field population studies has recently been identified with 

one of the most well-known invasive animals, the cane toad in Australia (Rhinella marina).   Lab 
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feeding trials have shown that most Australian lizards and amphibians are harmed when they 

consume cane toads (reviewed in Shine 2010).  However, long-term population monitoring of 

these species in the field has indicated that cane toads impact only a subset of the herpetological 

community (Brown et al. 2011, 2013; Somaweera and Shine 2012, Somaweera et al. 2013).  The 

lack of impact by cane toads on the native herpetofauna is partially attributed to behavioral 

adjustment by some native species after initial exposure (O’Donnel et al. 2010).    

A disconnect between experimental results and population studies has also been 

identified in situations when invasive plants disrupt pollination.  Many experimental studies have 

shown that invaders can reduce pollinator visitation and seed set (Brown et al. 2002, King and 

Sargent 2012; reviewed in Morales and Traveset 2009).  However, the magnitude of invader 

impacts on pollinator services varies between experiments (Bjerknes et al 2007), can be spatially 

variable and context-specific (Cariveau and Norton 2009), and native plants may not be pollen or 

seed limited (Palladini and Maron 2013).  Though not specifically investigating the impacts of 

invaders, several demographic experiments have disrupted plant reproductive mutualisms and 

found no impact on recruitment or population growth (Geib and Galen 2012, Ford et al. 2014, 

Lundgren et al. 2015).   

Similarly, even though invaders can exert intense negative effects on natives through 

multiple mechanisms under experimental conditions, one mechanism may be much more 

important (sensu Welden and Salussen 1986, Kikvidze et al. 2011) than another in the field.  For 

example, Palladini and Maron (2013) have shown that direct resource competition by an invasive 

plant has much stronger impacts on plant fitness than pollinator competition. 

  A second issue is that even if invader-native interactions are indeed important at 

population scales, they may be difficult to isolate in observational field studies because of noisy 
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ecological dynamics.  For example, there is ambiguity about cane toad impacts on some native 

amphibian species due to the highly variable population dynamics of these natives (Brown et al.  

2011). This could be evidence that external environmental forcing is more important than toad 

impacts, or there may be insufficient statistical power to isolate a real toad effect.   

In order to overcome the limits of small-scale experiments and noisy population-level 

observational data it is essential to conduct long-term demographic experiments on the impacts 

of invaders.  However, to determine whether the experiment has the power to detect significant 

population-level change and whether the impacts of the invader are truly ecologically important 

relative to other processes, experiments should be designed to manipulate invader density and 

other drivers of native plant population dynamics that are known to have major effect.  This 

approach allows the impacts of the invader to be compared to a factor that is already well 

understood in the community and provides a “positive control”.  It also makes it possible to 

determine how much the effect of a known driver of plant population dynamics can vary in 

intensity due to temporal or spatial variation.  Such information can then be used to gauge how 

much inferential interference is caused by noisy ecological dynamics, which can obscure the 

signal of the factors being investigated. 

Forests of eastern North American are frequently invaded by exotic plant species 

including shade-tolerant herbs, shrubs, and trees (Martin et al. 2009).   Additionally, these forests 

commonly experience high densities of white-tailed deer (Odocoileus virginianus), which are 

known to reduce population growth rates of forest understory plant on average by 5% (Maron 

and Crone 2006; Fig. 24 Appendix D).  The co-occurrence of invasive plants and overabundance 

deer provides the opportunity to explore the relative impacts of putatively important invasive 

species against a powerful “keystone herbivore” (Waller and Alverson 1997).  In this study we 
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test whether an invasive allelopathic herb, Alliaria petiolata (garlic mustard) has widespread 

impacts on the population dynamics of multiple understory herb species, and compare its impacts 

to white-tailed deer (hereafter “deer”).  We use a comparative modeling approach that allows us 

to determine the extent to which the previously demonstrated intense impacts of Alliaria at 

individual (Hale et al. 2011, Hale et al. 2015) and population (Brouwer et al. 2015) scales 

significantly alter demographic rates and characterize their importance relative to the known 

strong impacts of deer.   

Deer impacts on herbaceous plants are highly stage-structured because deer generally 

target large flowering plants (Knight 2004, Kalisz et al. 2014) and thereby prevent reproduction, 

cause plants to shrink in size because of lost photosynthetic capacity and resources (e.g. Lapointe 

et al. 2010), and increase mortality (Rooney and Gross 2003).  Non-flowering plants, however, 

are typically browsed at lower rates (Rooney and Gross 2003, Knight 2004).  Stage-based 

consumer-resource interactions can stabilize predator-prey dynamics (Miller and Rudolf 2011) 

and could slow population declines of plants.  In contrast, Alliaria impacts have been shown to 

affect multiple life stages, vital rates, and species.  Alliaria has been shown to impact seed 

germination of several species and life forms (Prati and Bossdorf 2004, Callaway et al. 2008), 

tree seedling growth and survival (Lankau 2012, Callaway et al. 2008, Stinson et al. 2006), herb 

growth (Wixted and McGraw 2010) and adult herb physiological rates (Hale et al. 2011) and 

resource allocation patterns (Brouwer et al. 2015; Hale et al. in press).  Alliaria’s broad array of 

impacts are likely due to the antimicrobial allelochemicals it produces, which disrupt the 

arbuscular (Cantor et al. 2011, Callaway et al. 2008, Stinson et al. 2006) and ecto-mycorrhizal 

fungal mutualisms that most forest plants rely on for nutrient capture (Whigham 2004; Courtney 

et al. 2010). 
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Given consistent experimental demonstration of Alliaria’s ability to reduce the fitness of 

multiple plant species and life stages, and previous demonstration of its population-level impacts 

at this site on one species (Brouwer et al. 2015), we make two predictions.  First, we expect that 

Alliaria will have pervasive impacts on many herbaceous native perennial species, vital rates and 

population processes in our study community.  Second, because the native species have no size 

refuge from Alliaria’s allelochemicals and basic physiological functions can be suppressed, we 

predict that these impacts can be large and even comparable to the effects of deer browse.  To 

test these predictions we analyze 11 years of field data on the population dynamics of three 

native herb species from a crossed deer exclusion/Alliaria removal experiment.  We analyze the 

data from this experiment with multi-level generalized linear models (West et al. 2006, Bolker et 

al. 2009) that allow us to determine if and how our treatments cause plant vital rates to diverge 

over time.   We can therefore determine if Alliaria impacts are important relative to deer browse 

while accounting for native species differences and temporal variability. 

5.2 METHODS 

5.2.1 Study species 

5.2.1.1 Study species: Natives 

Our focal native herbs in this study are Trillium erectum (Melanthiaceae), Maianthemum 

racemosum (Asparagaceae), and Polygonatum biflorum (Asparagaceae).  All are long-lived 

geophytes common throughout forest understories in much of the USA, especially in eastern 

deciduous forests (LaFrankie 1985, Brundrett and Kendrick 1988, 1990).  All three species are 
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browsed by deer (Kirschbaum and Anaker 2005; Fig. 25 Appendix D) and like most forest 

herbaceous perennials they do not re-sprout until the spring following an episode of browsing by 

herbivores (Whigham 2004).  We found that in some years of our study, flowering Trillium and 

Maianthemum can experience almost 100% herbivory, while Polygonatum is less frequently 

browsed Fig. 25 Appendix D).  Browse is highly stage-based, with deer showing strong 

preference for flowering individuals.  All three species exhibit high colonization rates by 

arbuscular mycorrhizal fungi (AMF) (Brundrett and Kendrick 1988, 1990; Burke 2008) and 

disruption of the AMF mutualism by Alliaria’s allellochemicals reduces physiological rates in 

Maianthemum (Hale et al. 2011), carbon storage (Brouwer et al. 2015) and changes resource 

allocation patterns (Hale et al. 2015). 

5.2.1.2 Study species: Alliaria petiolata 

Alliaria petiolata (garlic mustard; Brassicaceae), is a shade-tolerant Eurasian biennial that 

frequently invades forest understories throughout northeastern North America (Rodgers et al. 

2008) and more recently in the western United States (USDA NRCS 2015).  Each spring, 

Alliaria seeds germinate from both the previous year’s seed crop and from a long-lived seed 

bank (reviewed in Evans et al. 2012; pers. obs.).  Seedlings grow over the course of the summer 

and overwinter as rosettes.  Alliaria bolts in the early summer (May-June) and begins producing 

seeds in June and July (Rodgers et al. 2008).  At our study site, adult senescence and seedling 

mortality coincide with flowering and fruiting of many forest perennial herbs, including our focal 

species (Trillium, Maianthemum and Polygonatum).  Alliaria produces a broad suite of 

allelochemicals, which enter the soil through root exudates (Cippollini and Gruner 2007) and leaf 

litter (Hale et al. 2015).  Alliaria has been the focus of substantial research effort and become a 

model for investigations of the novel weapons (sensu Callaway and Ridenour 2004) and 
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mutualism disruption hypotheses for the success of invasive plant (Stinson et al. 2006; Hale et 

al. 2011, Hale et al. 2015; reviewed in Brouwer et al. 2015).  Previous work in our study plots 

has shown that Alliaria abundance declines when deer are excluded (Kalisz et al. 2014).  This 

was also observed occurring adjacent to our study plots in a nearby large fenced area (Knight et 

al. 2009) and in other experiments (Eschtruth and Battles 2008b).  Importantly, we have never 

observed deer browse of Alliaria. 

5.2.2 Study site: Trillium Trail 

This study was conducted at Trillium Trail Nature Reserve (hereafter, TT) in Fox Chapel, PA 

(40⁰ 52’ 01.40” N; 70⁰ 90’ 10.75” W).  TT is a mature second-growth mixed-mesophytic forest 

typical of southwestern PA, West Virginia and parts of Ohio (Braun 1950).  The TT overstory 

contains a high percentage of sugar maple (Acer saccharum) and American beech (Fagus 

grandifolia), but also oaks (Quercus rubra and Q. alba), black cherry (Prunus serotina), and 

tulip poplar (Liriodendron tulipifera).  The herbaceous community is diverse with over 60 native 

species (Brouwer 2015, Chapter 4).   Alliaria is the most abundant invader but Japanese stiltgrass 

(Microstegium vimeum), lesser celandine (Ranunculus ficaria), various honeysuckle species 

(Lonicera spp.) and other woody invaders are also present.   

5.2.3 Experimental design 

In the fall of 2002 five study locations were established and a pair of 16 m x 16 plots demarcated 

at each location.  Plot pairs are all located on similar mid- to lower slope positions in closed 

canopy forests (Kalisz et al. 2014).  One plot within each pair was designated as a deer access 
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plot (Deer+) and the other as a fenced exclosure (Deer-).  Each plot was divided into 36 4m2 

subplots in a 6 x 6 grid with 0.5 wide pathways every four meters (Fig.  26 Appendix D).  A 1 m 

wide buffer surrounds exclosure plots from a 3 m tall fence of 15 cm x 15 cm steel mesh.  Trees 

that fall on the fence are cut so as not to allow deer to breach the fences but otherwise left in 

place if they fall in the plots.   To prevent soil compaction and disturbance to the plant 

community all work in the subplots is conducted while standing in the buffers or pathways.  

5.2.3.1 Alliaria petiolata removal 

Beginning in 2006 all Alliaria have been removed from the left half of each plot, resulting in 18 

subplots receiving the removal treatment (Fig. 26 Appendix D).  Alliaria on the right half of the 

plot is left un-manipulated and allowed to undergo normal population dynamics.  We refer to this 

as the “ambient” Alliaria treatment (Alli+).  All Alliaria rosettes and adults were removed in 

2006 after the native community emerged, and since then Alliaria have been removed at the 

seedling stage each year in early spring.  Alliaria is also removed from the buffer and paths 

surrounding the subplots receiving the removal treatment.  To prevent seed dispersal between the 

removal and ambient treatments a 1.5 m tall plastic barrier is erected each summer just before 

Alliaria fruit maturation.  The barrier is left in place for approximately three weeks, typically 

from mid-June to early July.  In all plots the barrier runs down the slope and so does not affect 

runoff or the downslope movement of litter.   

5.2.3.2 Field methods & data collection 

In the spring of 2003 the locations of all Trillium, Maianthemum and Polygonatum individuals 

were marked by inserting an aluminum tag into the soil near the base of each plant.  Plant status 

each year is recorded as flowering or non-flowering and plant leaf or stem length measured (see 
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Table 10, Appendix D for species-specific details).  Plants are resurveyed later in the spring and 

summer to determine which plants were browsed, as well as those that achieved successful 

flower and fruit production.  Each year plants that emerge from prolonged vegetative dormancy 

(sensu Shefferson 2009) for the first time or that recruit into the population as multi-leaved 

individuals from seed are tagged.  During their first two years after germinating all three native 

species only have one leaf (LaFrankie 1985; Rhodes and Block 2007); the location of these one-

leaved individuals are recorded, and the number of seedlings counted, but they are not 

individually tagged.  For this study we only consider plants that have recruited to the multi-

leafed life history stage.  Our 4m2 subplots (Fig. 26 Appendix D) are divided into four 1 m x 1m 

quadrats to aid with locating plants and individual location notes are recorded.   

5.2.4 Data analysis 

5.2.4.1 Response variables 

To gain a holistic understanding of deer impacts on plant vital rates and population processes we 

consider five different response variables at two levels of ecological organization.  At the level of 

individual plants’ vital rates, we assessed how our treatments affected flowering frequencies and 

above-ground plant size.  For these analyses we considered only plants that had occurred in the 

study prior to implementation of the Alliaria removal treatment; we therefore considered plants 

first tagged between 2003 and 2006.    At the population level, we considered the overall 

abundance of plants, spatial occupancy throughout our plots, and the number of young plants 

recruiting into the multi-leaved stage each year.  For these population-level patterns we included 

all plants in the analysis regardless of when they were first observed.   
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5.2.4.2 Missing data due to herbivory 

Occasionally deer browsed plants before some data could be collected.  Typically this resulted in 

only missing size data.  Occasionally, browse occurred before a plant’s flowering status could be 

determined.  Stems of all focal species can remain erect for up to one month after being browsed 

(N Brouwer, pers. obs.) and so we are confident that all plants that emerge each year are located, 

even if some details of their status are not know.  Because deer preferentially browse flowering 

plants we assume that the small subset of browsed plants for which we were unable to determine 

their status before deer browse were flowering.  

5.2.4.3 General vital rate summaries 

To summarize how much each species changed over the course of the entire experiment we 

modeled the relative change in our five response variables from the beginning of the experiment 

to 2013.  Though the methods and metrics varied, our calculations all yielded the relative change, 

the ratio (value2013)/(value2003), with a value of 1 indicating that no change occurred.  We used 

Poisson mixed models to calculate the mean relative change in abundance over time.  We used 

logit mixed models to calculate changes in flowering probability between 2003 and 2013, 

yielding an odds ratio.  We used linear mixed models to calculate the change in log plant size.  

For flowering and plant size we calculated these effect sizes just for the group of plants first 

observed in 2003 and which therefore had similar histories and initial sizes.  We analyzed all 

three species in the same model to allow results to be compared between species.  
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5.2.5 Statistical analyses: General approach 

Previous work with a subset of these data (Maianthemum in Deer access plots; Brouwer et al. 

2015) and graphical analyses indicated that vital rates and abundances varied markedly over time 

(Fig. 27-29 Appendix D).  To assess the effects of deer exclusion and Alliaria removal we 

therefore needed to test for changes in population processes due to our treatments while 

accounting for considerable variation due to unknown external forcing and random variation. 

We accomplished this by using multi-level longitudinal mixed effects models 

(Fitzmaurice and Ravichandran 2008, Fitzmaurice and Laird 2004; West et al. 2006; Kéry 2010).  

These models allow us to separate both directional changes over time and divergence in 

responses due to our treatments from annual stochastic variation (Fig. 14).  We modeled annual 

variation in vital rates from 2006 through 2013 with random “year” effects, and directional 

change over time using elapsed time in years as a continuous predictor variable.  We coded deer 

access plots where Alliaria was present (Deer+/Alli+) as our baseline and then modeled 

divergence in vital rates due to deer exclusion (Deer-) and Alliaria removal (Alli-) as treatment-

by-time interactions (βtreatment*time).  Under this modeling approach, if all time coefficients and 

time-by-treatment interactions are not significantly different from zero then there is no net 

increase over time (Fig. 14a).  A significant baseline time effect would indicate directional 

change in vital rates over time for all treatments (Fig. 14b).  A significant time*Deer- interaction 

would indicate divergence over time in a vital rate between the baseline Deer+/Alli+ trend and 

the deer exclusion (Deer-) treatment (Fig. 14c) and so forth.   

Details of our modeling approach are provided below.  In brief, all models contained a 

random intercept for each year (2006-2013) and initially random intercepts to represent the full 

split-split-plot design of the experiment (i.e. Alliaria treatment nested within deer exclusion 
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treatment, nested within plot pair).  Our plot-pair term (n = 5 plot pairs; equivalent to a complete 

block) often accounted for little variance but was left in the model (as recommended by Barr et 

al. (2013)) because it was part of the design of the experiment.  When we found evidence of 

convergence problems or over-fitting we simplified the structure of our random effects by 

removing the plot-pair term, resulting in a split-plot incomplete block design (n = 10 plot-

treatment combinations).  We also fit individual random slopes whenever it was computationally 

possible and biologically relevant. Random slopes were removed if there were problems with 

over-fitting or convergence.   

Our fixed effects were i.) elapsed time since 2006, ii.) deer exclusion treatment, iii.) 

Alliaria removal treatment, and iv.) time by treatment interactions.  Three-way interactions were 

tested and dropped if not significant.  Time was centered to improve model convergence 

(Gelman and Hill 2007).   We used linear, logistic, and Poisson linear mixed models as 

appropriate for our different response variables.  The corresponding link functions, final random 

effects structures, and R packages used for each model are given in Table 11 (Appendix D).  

Plant size data were not available for 2008 and 2009 so our size analysis used data from 2007 

and 2010-2013.   All analyses were conducted in R 3.1.2 (R Core Team 2014) using the package 

lme4 1.1-7 (Bates et al. 2014).     

5.2.5.1 Modeling details 

Individual-level vital rate data: flowering & size 

To assess the impact of our treatments between 2006 and 2013 on individual-level flowering 

probabilities, we fit logistic generalized linear mixed models with random slopes for each 

individual plant.  In these flowering models a significant time*Deer- or time*Alliaria- effect 
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would indicate that over time individual plants are diverging from the baseline Deer+/Alliaria+ 

treatment in their propensity to flower.  To determine the impact of the treatments on plant size, 

we fit linear mixed models to the log of individual plant size, but did not include individual 

random slopes.  Size in Maianthemum and Polygonatum appears to have an upper limit due to 

stem and reproductive architectural constraints (Brouwer and Kalisz, unpub data; N Brouwer 

pers. obs).  Also, large, healthy individuals of all three species frequently shrink in size when 

they produce new clonal stems.  Individual random slopes would therefore model unrealistic 

linear growth on these species.  In our size analyses, significant time-by-treatment interactions 

would indicate that the mean size of individuals in different treatment groups was tending to 

diverge over time. 

Population level data: abundance, recruitment & occupancy 

We modeled change in the abundance of plants at the plot level.   For each pair of plots we 

summed the number of plants in all 4m2 subplots allocated to a combination of treatment (18 

subplots per treatment combination per pair of plots).  Plots varied in the number of plants they 

contained when the study began (Table 10 Appendix D) and we therefore used the log of the 

initial abundance of plants as a covariate.  By 2006 all plots had at least one plant in them so we 

attempted to fit truncated-Poisson mixed models to these data using glmmADMB in R (Skuag et 

al. 2014) but had difficulties with convergence.  We therefore approximated a zero-truncated 

Poisson model by subtracting 1 from the observed abundance.  Due to issues with model 

convergence we dropped the random effect for plot pair and fit the model as an incomplete block 

design rather than a split-split plot (5 plot pairs x 2 main treatments = 10 incomplete blocks). 

We also modeled the number of new multi-leaved individuals tagged for the first time 

each year at the plot scale.  New individuals could appear due to emergence from prolonged 
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dormancy (sensu Shefferson 2009), recruitment from seed, or clonal propagation.  This metric 

therefore integrates across several sub-processes that can be affected by both deer browse and 

Alliaria exposure.  Plots varied widely in the number of plants present when the study began, so 

we controlled for the log-transformed initial abundance of plants in each plot.  The model was fit 

with a Poisson mixed model without random intercepts.  

To investigate if plants were dispersing to new microsites within our plots we determined 

for each year whether each of our 4m2 subplots had ≥1 plant of a given species in them.  

Subplots could become occupied if dormant plants emerged into that subplot, seeds dispersed 

and young plants survived and recruited to the multi-leaved stage, or if a plant’s rhizome grew 

horizontally into the subplot.  We modeled these data using logistic mixed models with 

individual random slopes for each subplot.   

5.3 RESULTS 

5.3.1 Overall Population dynamics 2003-2013 

By the end of the study period in 2013 all species in all treatments had increased significantly in 

abundance relative to 2003 (Fig. 15a).  Trillium began at the highest initial density (Table 10, 

Appendix D) and exhibited the smallest relative increase from 2003 to 2013 (1.3 times larger in 

Deer+/Alli+ to 1.6 time larger Deer-/Alli-).  Polygonatum was 1.5 to 2.5 times more abundant by 

2013 (Deer+/Alli- and Deer-/Alli- treatments, respectively).  Maianthemum exhibited the largest 

increase in relative abundance over the course of the experiment, becoming three times more 

abundant in the Deer+/Alli- treatment by 2013.   
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Similarly, from 2003 to 2013 all species in all treatments experienced overall increases in 

flowering rates (Fig. 15b), though rates varied considerably year to year (Fig. 28, Appendix D).  

Plants that were first observed in 2003 were also generally larger by 2013 (Fig. 16a).  Occupancy 

rates, however, did not increase significantly over the course of the study (Fig. 16b). 

 

5.3.2 Alliaria removal effects 2006-2013 

5.3.2.1 Alliaria effects on abundance 

From 2006 to 2013, deer exclusion had effects on the abundance of all three species, and Alliaria 

removal had effects on the Polygonatum and Trillium (Fig. 17a).  Deer exclusion had a positive 

effect on Maianthemum abundance relative to deer access plots (Fig. 17a; βDeer-*time=0.054, SE= 

0.014, p<0.001).  Alliaria removal from 2006 onward did not have any effect on Maianthemum 

abundance (βAlli-*time=0.01, SE=0.01, p=0.4).  For Polygonatum, both deer exclusion (βDeer-

*time=0.02, SE=0.01, p=0.12) and Alliaria removal (βAlli-*time=0.024, SE=0.013, p=0.054) had 

positive effects on abundance.  Trillium decreased in abundance in exclosures relative to controls 

(βDeer-*time=-0.019, SE=0.007, p=0.01), while abundance tended to increase when Alliaria was 

removed (βAlli-*time=0.011, SE=0.007, p=0.14).   

5.3.2.2 Alliaria effects on recruitment of 3-leaved plants 

From 2006-2013 recruitment to the three-leaved life history phase by Maianthemum seedlings 

was not impacted by either treatment (Fig. 17b).  Polygonatum recruitment did exhibit a 

marginal positive response due to Alliaria removal (βAlli-*time =0.17, SE=0.11, p=0.15).  Trillium 

recruitment responded to both treatments and exhibited a Deer-*Alli- interaction.  From 2006 to 
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2010 deer exclusion had a negative effect on Trillium recruitment relative to deer access plots 

(βDeer-*time=-0.15, SE=0.065, p=0.024).  Alliaria removal in deer access plots had a positive effect 

on Trillium recruitment where deer had access (βAlli-*time=0.17, SE=0.07, p=0.009) but a negative 

effect in deer exclusion treatment (βDeer-*Alli-*time = 0.19, SE=0.09, p=0.041) 

5.3.2.3 Alliaria effects on flowering 

From 2006 to 2013, deer exclusion impacted flowering rates of all species, and Alliaria removal 

impacted Maianthemum and Trillium flowering.  Deer exclusion had a positive effect on 

Maianthemum flowering rates relative to access plots (Fig. 18a; βDeer-*time=0.14, SE=0.059, 

p=0.015).   Alliaria removal also had a positive effect on Maianthemum flowering rates over 

time relative to the ambient Alliaria treatment.  This occurred in both the deer access and deer 

exclosure plots (βAlli-*time=0.17, SE=0.055, p=0.0016) and there was no evidence of a three-way 

Deer-*Alli-*time interaction.  Deer exclusion had a positive effect over time on Polygonatum 

flowering (βDeer-*time=0.19, SE= 0.056, p=0.0005) but unlike Maianthemum, there was no effect 

of Alliaria removal on Polygonatum flowering (βAlli-*time=-0.06, SE=0.06,p=0.3).  Deer exclusion 

had a positive effect over time on Trillium flowering (βDeer-*time=0.07, SE=0.03, p=0.04).  

Surprisingly, removal of Alliaria resulted in a trend towards lower flowering rates (βAlli-*time = -

0.15, SE=0.034, p<0.0001). 

5.3.2.4 Alliaria effects on plant size 

Both deer exclusion and Alliaria removal impacted the size of all three species, though the 

impacts of Alli- were negative for two of the three species. (Fig. 18b).  Deer exclusion had a 

positive effect over time on mean size of Maianthemum (Fig. 18b; βDeer-*time = 0.045, SE=0.005, 

p<0.001), Polygonatum (βDeer-*time =0.016, SE=0.004, p=0.0002), and Trillium (βDeer-*time =0.01, 
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SE=0.002, p<0.001) relative to deer access plots.  Alliaria removal had a positive effect over 

time on Maianthemum size (βAlli-*time=0.014, SE=0.0048, p =0.003).  However, the mean size of 

both Polygonatum (βAlli-*time=-0.016, SE=0.004, p<0.001) and Trillium (βAlli-*time=-0.009, 

SE=0.0024, p<0.001) were negatively impacted over time by Alliaria removal. 

5.3.2.5 Alliaria effects on plant occupancy 

From 2006 to 2013 deer exclusion had a marginal positive effect on Maianthemum occupancy 

(Fig. 19; βDeer-*time=0.12, SE=0.08, p=0.13) but there was no effect of Alliaria removal (βDeer-*time 

=-0.05, SE=0.08, p=0.5).  For Polygonatum, both deer exclusion and Alliaria removal had 

marginal positive effects on occupancy (Deer-: βDeer-*time =0.11, SE=0.071, p = 0.11; Alliaria-: 

βAlli-*time=0.12, SE=0.07, p=0.097).    There was no overall change in Trillium occupancy (βtime 

=0.08, SE=0.09, p=0.4), and no effect of either treatment. 

 

5.4 DISCUSSION 

5.4.1 Overall results 

In this study we tested two hypotheses.  First, that the negative effects of an allelopathic invasive 

plant, Alliaria petiolata are pervasive across species, vital rates, and population processes.  

Second, that Alliaria impacts can be comparable in importance to other antagonistic species 

interactions that native plants must contend with, specifically herbivory.  We addressed these 

hypotheses by comparing the impact of Alliaria removal to deer exclusion while accounting for 
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annual variability over a decade-long experiment; our results support both of our hypotheses 

(Figs. 17-19; Table 4).  We detected significant effects of Alliaria removal on three common 

forest herbs, Maianthemum racemosum (see also Brouwer et al.  2015), Trillium erectum, and 

Polygonatum biflorum.  The type and magnitude of responses varied among the species, but each 

exhibited some form of increased individual or population-level performance after Alliaria was 

removed.  The effects of Alliaria removal did not occur immediately, but were manifested as 

steady divergences over time in annual vital rates between treatments. 

As predicted, the effects of Alliaria removal can be similar in magnitude to deer 

exclusion effects over the same time period.  The abundance and occupancy of Polygonatum was 

increased by Alliaria removal, and the effect of removing the invader was of similar magnitude 

to continued deer exclusion (Fig. 17a, 19).  Increases in Polygonatum abundance were likely due 

the effect of Alliaria removal on recruitment of multi-leaved plants (Fig. 17b).   Similarly, the 

effect of Alliaria removal on Maianthemum flowering was of similar magnitude as the effect of 

deer exclusion (Fig. 18a).  Increases in Maianthemum flowering were likely due to the 

significant effect of Alliaria removal on Maianthemum size (Fig. 18b).  Trillium recruitment 

increased when Alliaria was removed, but only outside of the deer exclosures (Fig. 17b).  When 

deer were excluded and Alliaria removed we observed negative effects on recruitment.   

5.4.2 Trillium declines and other negative dynamics 

Over the course of the experiment (2006-2013) Trillium’s responses to Alliaria removal and 

continued deer exclusion were frequently different from the other two species.  While deer 

exclusion had a positive effect on Trillium size and flowering, Alliaria removal in both controls 

and exclosures had a negative impact on these vital rates (Figs. 18a,b).  Deer exclusion also had a 
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negative impact on Trillium abundance and recruitment of multi-leaved plants (Fig. 17a,b).  

These declines in the exclosures and the negative deer x Alliaria interaction are possibly 

accounted for by intra- and inter-specific interactions.  As Trillium continue to get larger in the 

deer exclusion plots (Fig. 18b), large individuals may be outcompeting smaller individuals and 

inhibiting their recruitment.  Since Alliaria removal has positive effects on Maianthemum and 

Polygonatum, Trillium may be facing increased competition from these and other co-occurring 

native plants in our plots, resulting in negative effects of Alliaria removal on Trillium.  

Polygonatum size is also negatively affected by Alliaria removal (Fig. 18b).  This could 

potentially also be accounted for by competition between Polygonatum and other natives.  

Alternatively, Polygonatum can produce multiple clonal stems from the same rhizome (N 

Brouwer, pers. obs.) so a decrease in average individual size could be due to changes in resource 

allocation towards increased clonal growth.  This would be consistent with increases in 

Polygonatum abundance and multi-leaved recruitment (Fig. 17). 

5.4.3 Maianthemum and Polygonatum dynamics 

In general Maianthemum and Polygonatum are more positively impacted by Alliaria removal 

over the course of the experiment (2006-2013).  These two species have a later phenology than 

Trillium that could increase their exposure to Alliaria allellochemicals.  All three genera are 

highly mycorrhizal (Brundrett and Kendrick 1988, 1990) and this had been confirmed for 

Maianthemum and Trillium at this site (Burke 2008).  Of the three species, Trillium’s phenology 

overlaps the least with periods of Alliaria senescence and seedling death, when its myco-toxic 

allelochemicals are most likely to be detected in the soil (Cantor et al. 2011).  Negative species 

interactions with other natives might therefore be more important for Trillium than exposure to 
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Alliaria.  Trillium three-leaved recruitment does benefit from Alliaria removal, but only when 

deer are at ambient densities and Maianthemum and Polygonatum are therefore being suppressed 

by deer browse.   

5.4.4 Emergence of trends over time 

Alliaria removal did not result in immediate changes in the vital rates of any of our species.  

Instead, Alliaria removal caused vital rates to diverge positively from rates where Alliaria was 

ambient.  This gradual response can be accounted for by two factors: legacy effects of Alliaria 

allelochemicals on the soil fungal community, and the slow life history of forest herbs.  Alliaria 

has pervasive effects on soil microorganisms (AMF: Cantor et al. 2011, Callaway et al. 2008, 

Stinson et al. 2006; EMF: Wolfe et al. 2008) and recovery of mycorrhizal community diversity 

can take years to occur after Alliaria removal (Lankau et al. 2014).  Invaders that modify soil 

conditions frequently establish legacies that persist long after their removal (Marchante et al. 

2009, Rodriguez-Echeverria et al. 2013, Grove et al. 2012, Grove et al. 2015, Perkins and 

Hatfield 2014).  Time lags should therefore be accommodated in the design of field experiments 

testing the impacts of invasive plants.  An alternative but not mutually exclusive explanation is 

that forest herbs generally have slow life histories and may take several years to respond to 

Alliaria removal (Whigham 2004).   

5.4.4.1 Annual variation and deer as a positive control 

 

Almost all vital rates increased over the course of the experiment, even where deer had access 

(Figs. 17-19), and vital rates varied substantially year to year in all treatments (Figs. 27-29 
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Appendix D).  This was especially pronounced from 2008-2009 when almost all of the vital rates 

and population processes we examined declined, perhaps due to environmental forcing.   Some 

year’s vital rates were similar between deer exclusion and deer access treatments.  While 

flowering rates after 2003 were always lower outside of our exclosures, in 2008 Maianthemum 

and Polygonatum flowering rates were nearly identical in both treatments; this was true for 

Trillium in 2009.  This result indicates that plant populations can remain dynamic even in the 

face of powerful stressors such as mammalian herbivores.     

The ability for plants in the deer access plot to temporarily attain high flowering rates 

could occur for several reasons. First, non-flowering plants enjoy a size and stage refuge, which 

potentially allows them to acquire nutrients with which to flower again.  Second, plants under 

stress often alter their resource allocation patterns and life history schedules (Bonser and 

Aaarssen 2009, Santos-del-Blanco et al. 2013).  For example, Heckel (2015) found that 

Arisaema triphyllum from sites with high deer densities had a lower threshold size for flowering 

than plants from sites with low deer densities.  Preliminary analyses indicate that Maianthemum 

and Polygonatum have a lower threshold size for flowering when deer are present 

(Maianthemum p = 0.1, Polygonatum p = 0.12).  

5.4.5 Relative importance of herbivores and invaders 

All three species in our study increased considerably in abundance, flowering, and size due to 

deer exclusion over the 10 years of the study but more slowly and subtly to Alliaria removal.  

Large browsers and grazers frequently reduce population growth rates of the plants they eat 

(Maron and Crone 2006) and deer have been shown to frequently reduce population growth rates 

<1 for Trillium (Kalisz et al. 2014, Knight 2004, Rooney and Gross 2006) and other forest herbs 
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(Maron and Crone 2006; Fig. 24 Appendix D).  Deer impacts are therefore likely to be of 

principal importance for population growth and stability for forest species.    

Our results indicate that Alliaira also plays an important role in plant population 

dynamics, perhaps because it affects all life history stages of native plants and has the ability to 

exert long-term effects on forest soils (Lankau et al. 2014) and create negative plant-soil 

feedbacks.  Deer browse on herbaceous plants at our and other sites is often biased towards large 

flowering plants (Fig. 25 Appendix D).  Deer-plant interactions are therefore highly stage and 

size structured, providing a refuge for smaller, non-flowering plants that have regressed in size 

after being browsed.  This size/stage refuge likely accounts for the persistence of Trillium 

populations despite high browse rates on flowering plants.  In contrast, Alliaria impacts are not 

size structured and affect all plants life history stages from seeds (Pratti and Bossdorf 2006) to 

adult flowering plants (Fig. 17-19; Hale et al. 2011, Brouwer et al. 2015, Hale et al. 2015).  

Plants in forests with overabundant deer and Alliaria might therefore face a demographic 

squeeze where deer impact the largest individuals and Alliaria reduces seed germination (Prati 

and Bossdorf 2004, Callaway et al. 2008) and growth of all individuals (Fig. 18b).  While 

Alliaria and deer effects are additive for individual vital rates, they may have synergistic effects 

on population growth due to this demographic squeeze. 

Community ecologists studying plant competition first promoted consideration of the 

relative importance of species interactions (Weldon and Slausson 1986).  Attempts to develop 

definitive quantitative indices of the importance of competition have generated considerable 

debate (Freckleton et al. 2009, Kikvidze et al. 2010, Rees et al. 2012); however, the concept 

appears useful as a general framework when considering multiple ecological interactions 

(Kikvidze et al. 2011), especially when operationalized in terms of demography (Freckleton et 
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al. 2009, Goldberg and Scheiner, 2001).   One limitation of this framework is that questions of 

importance often seek to rank the relative importance of different interactions and determine the 

most important one.  We believe this is a key idea for evolutionary, ecological, and conservation 

understanding.  However, populations experiencing reduced vital rates and population growth 

due to one stressor could potentially be pushed further towards decline or become more 

susceptible to stochastic events due to what are considered relatively less “important” but still 

significant stressors. 

5.4.6 Conclusions 

Using a long-term experimental demographic approach, we have shown that common native 

species are detrimentally impacted by an invasive species that occurs frequently in eastern North 

American forests, Alliaria petiolata.  Our data indicate that numerous factors can affect vital 

rates, including deer browse, length of Alliaria exposure, and environmental variation, but that 

Alliaria exposure can affect vital rates and population processes to the same degree as deer 

effects.  When vital rates declined synchronously across treatment groups, Alliaria removal 

reduced the amount of decline, and when vital rates increased synchronously, Alliaria removal 

amplified the increase.  Because Alliaria removal benefited vital rates both within and outside of 

our exclosures, Alliaria removal should benefit native plants both when deer densities have been 

reduced and when they remain high.   

Several experimental studies using transplanted seedlings have identified deer as exerting 

stronger effects on native plants than invasive plants (Davalos et al. 2014), particularly garlic 

mustard (Waller and Maas 2013).  It has also been argued that Alliaria’s production of 

allelochemicals declines with time since the invader population is established (Lankau et al. 



 109 

2010).  Some authors have therefore advocated that control of Alliaria and other invaders are less 

of a priority than deer, especially since deer control can reduce the abundance of invaders 

(Alliaria: Knight et al. 2009, Eschtruth and Battles 2008b, Kalisz et al. 2014).  More generally, 

the need to control invaders is hotly debated by some ecologists (Rozenweig 2001, Slobodkin 

2001, Davis 2003, Brown and Sax 2004, Thomas and Palmer 2015).  Our long-term 

demographic study indicates that Alliaria petiolata is indeed suppressing vital rates of forest 

herbaceous perennial plants.  Much of the information on invasive species in general and Alliaria 

in particular comes from either observational studies or short-term experiments (e.g. Hulme et al. 

2013, Stricker et al. 2015).  While short-term studies play a central role in evaluating the impact 

of species interactions such as invasion, long-term experimental demographic studies are 

essential for determining the overall importance of invaders because they allow legacy effects to 

disappear, species with slow life histories to respond to treatments, and environmental 

stochasticity to be accommodated.  Moreover, comparison of invader impacts to other key 

species interactions or ecological processes allows the putative harm of invaders to be gauged 

against a positive ecological control.    
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Table 4. Summary of results of deer exclusion (Deer-) and Alliaria removal (Alli-) experiment.  Analyses were 

run on either all multi-leaved plants (2003-2013) or just those observed prior to the Alliaria  removal 

treatment (2003-2006). ↑= positive effects of treatment (βtreatment*time > 0). ↓ = negative effect of treatment 

(βtreatment*time < 0).  “(=)” indicates that the effect of Alli- and Deer- were similar.  Deer-*Alli- = a three 

way interaction between the treatments and time (βDeer-*Alli-*time ≠ 0).  Empty cells indicate that there was 

no significant effect. 

   

Maianthemum Polygonatum  Trilium  

Ecological 
Level 

Vital rate / 
Population 

Characteristic Cohorts 
racemosum biflorum erectrum 

Individual  
Reproduction 

(successful 
flowering) 

2003-
2006 

Deer - ↑  Deer - ↑  Deer - ↑  

Alli - ↑  (=) 

 

Alli -  ↓  

   

  Size / Growth 2003-
2006 

Deer - ↑  Deer - ↑ Deer - ↑ 

Alli - ↑    Alli - ↓  

      

Population Abundance 2003-
2013 

Deer - ↑  Deer - ↑  Deer - ↓  

 

Alli - ↑  (=) Alli - ↑  

   

  Occupancy 2003-
2013 

 Deer - ↑  Alli - ↑   

      

      

 
3-leaved 

recruitment  
2003-
2013   

Deer - ↓  

 

Alli - ↑  Alli - ↑  

  

Deer-*Alli- ↓ 
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Figure 14. Schematic illustrating how longitudinal multi-level models are interpreted.  Panels a through d represent trends in data from a control and 

experimental treatment.  Panels e) shows the magnitude of the regression coefficient for the dotted control line (βcontrol) while panel f) shows the 

regression coefficient for the solid treatment arrow (βtreatment), which is modeled in terms of its divergence from the control.  The actual slope of the 

treatment line would be βcontrol  + βtreatment.  When control and treatment lines are parallel (top row in a,b,d) βtreatmen = 0 in panel f.
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Figure 15. Relative increase from 2003 to 2013 in plant abundance (a) and flowering rates (b) for three 

species of native plants after deer exclusion and Alliaria  petiolata removal.  A value of one would indicate no 

change.  Error bars are 95% confidence intervals. 
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Figure 16. Relative increase in plant size (a) and subplot occupancy rates (b) for three species of native plants 

after deer exclusion and Alliaria petiolata removal.  A value of one would indicate no change.  Error bars are 

95% confidence intervals. 
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Figure 17. Effects of deer exclusion and Alliaria petiolata removal on changes in a) abundance and b) 

recruitment to 3-leaved life stage.  Changes are from 2006-2013 for three species of perennial plant, 

Maianthemum racemosum, Polygonatum biflorum, and Trillium erectum.   All effects are slope parameter 

from mixed regression models that represented changes in temporal trends relative to rates in deer access 

plots where Alliaria was at ambient density.  Effect sizes are slope parameters from regression models.  For 

Deer exclusion effects, this is the time*deer exclusion parameter from the regression, and for Alliaria removal 

this is time*Alliaria removal parameter.  No three-way interactions (time*deer exclusion*Alliaria removal) 

were significant except for 3-leaved recruitment in Trillium. 
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Figure 18. Effects of deer exclusion and Alliaria petiolata removal on changes in a) flowering rates, b) plant 

size.  All effects are slope parameter from mixed regression models are represented changes in temporal 

trends relative to rates in deer access plots where Alliaria was at ambient density.  Effect sizes are slope 

parameters from regression models.  For Deer exclusion effects, this is the time*deer exclusion parameter 

from the regression, and for Alliaria removal this is time*Alliaria removal parameter.  No three-way 

interactions (time*deer exclusion*Alliaria removal) were significant and effects of deer exclusion and Alliaria 

removal are additive. 
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Figure 19. Effects of Deer exclusion and Alliaria petiolata removal on spatial occupancy.  We defined 

occupancy as one or more stems of a given species present in a subplot. 
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6.0  CONCLUSIONS 

Species interactions play out over time and over the course of the life histories of the 

participating organisms.  In my dissertation I have analyzed long-term, longitudinal data on 

plant-plant and plant-herbivore interactions to understand the importance of this temporal 

dimension for judging the intensity and importance (sensu Welden and Slaussen 1986) of 

putatively strong interactions.  This has required applying generalized linear mixed models 

(Bolker et al. 2009) to longitudinal data embedded in a complex experimental design.   

Using this approach, I confirmed that the strong individual-level impacts of Alliaria 

petiolate, a common invasive species in the forests of North America (Hale et al. 2011, Hale et 

al. 2015), scale up to the population level to impact plant vital rates (Brouwer et al. 2015; 

Chapter 2).  The importance of the impacts of this invader has recently been questioned using 

field-based but short term studies on seedlings (Davalos et al. 2014, Waller and Maas 2013).  My 

results demonstrate the central of importance of considering which life history stages most 

influence population dynamics when conducting species interaction research (Goldberg and 

Scheiner 2001) and assessing impact over a suitable time scale.  In this experiment, Alliaria 

removal did not result in an immediate change to plant vital rates, but this is consistent with 

evidence of soil legacy effects of Alliaria (Lankau et al. 2014), and the slow life history of forest 

plants (Whigham 2004).  Additionally, field-based research is subject to significant variation 

over time and initially small effects can easily be swamped out by noise.   
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In Chapter 3 I used meta-analytic techniques to understand the temporal aspects of 

vegetation change when mammalian herbivores are overabundant.   Successional processes and 

canopy turnover takes decades in closed canopy forest, so I used a comparative approach across 

studies to understand how the ubiquitous problem of overabundant herbivores affects forest 

canopies.   I also utilized a life history perspective, considering different forest strata that interact 

directly (seedlings, saplings) and indirectly (subcanopy trees) with deer.  I found evidence that 

different forests are moving towards canopies dominated by non-palatable species, as it typically 

assumed (Waller and Alverson 1997, Cote et. al 2004), while others are potentially progressing 

towards a more open, woodland structure.  This latter process has only recently been proposed 

(Tanentzap et al. 2011) and deserves more attention.  Meta-analysis has exploded in popularity 

among ecologists (Koricheva et al. 2013) and meta-regression in particular holds great promise 

for understanding how species interactions vary in intensity and importance under different 

conditions.  In my case, it also allowed me to explore ecological questions not proposed by the 

original authors of the studies. 

In Chapter 4 I explored how deer-tree interactions play out over time using a decade of 

empirical data.  As in my other analyzes I found that there was considerable variation between 

life history stages and over time.  Again, a longitudinal approach allowed me to understand how 

vegetation in both deer exclosures and deer access controls where changing dynamically.  

Contrary to our expectations, the abundance and occupancy of saplings increased in both 

treatments, and the impact of deer was most evident in terms of a difference in the rate of 

change. 

Finally, in Chapter 5 I used data on three native species to test the generality of the 

effects of Alliaria petiolata on native plants, and to compare its impacts to deer.  Each species 
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responded differently, but all experienced benefits when Alliaria was removed.  This study 

demonstrates not only that Alliaria can impact native plants at the population level, but its 

impacts are pervasive across multiple species and can be comparable in some cases to those of 

deer. 

A key question of my study of vital rates in Chapter 5 was whether Alliaria impacts could 

be similar to deer.  This approach was inspired by discussions among ecologists studying 

competition about how the importance of competition varies along environmental gradients 

(Kikvidvize et al. 2011).  It is my view that the most holistic way to address questions about the 

importance of ecological interactions requires demographic modeling.  My work in Chapter 2 

and Chapter 5 focused on vital rates of adult perennial plants, which are the most important life 

history stage with regard to population growth and stability for these plants.  Strong impacts on 

factors such as adult size and flowering forebode strong impacts on fitness and population 

growth, but full demographic models are needed to confirm this.  It is possible that Alliaria’s 

impacts are not consistent enough across adult life history transitions to match the known strong 

impact of deer on population growth rate (Maron and Crone 2006).  Since deer impacts are 

stage-structured and Alliaria’s are not, it is possible that Alliaria could strongly impact 

population growth rate, and that populations contending with deer and Alliaira could experience 

considerably lower vital rates.  It will be especially important to extend population models of 

deer and Alliaria impacts using stochastic and periodic demographic approaches because we 

observed considerable temporal variability and cyclic patterns in vital rates as the experiment 

progressed. 

A final question that should be addressed when considering the importance of species 

interactions is how the impact of the interaction compares to the effects of temporal and spatial 
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variability.  The development of variance decomposition techniques for generalized linear 

models, such as Bayesian ANOVA (BANOVA; Gelman 2005, Qian and Shen 2007), holds great 

promise for partitioning the effects of species interactions, spatial variability, and temporal 

stochasticity on fitness components of organism. 



 121 

APPENDIX A 

CHAPTER 2 SUPPLEMENTARY MATERIALS 

Table 5. Validation of imputed Maianthemum racemosum size data.  Imputation was done for plants with 

missing size data due to deer browse (primarily on flowering individuals) and for plants from the two years 

(2008-2009) when sizes could not be collected (n=412 intances). T-tests were conducted on log-transformed 

data. Kolmogorov-Smirnov (KS) test indicates whether two samples come from the same distribution.  

Imputation of size data increases the sample size of flowering plants by 319, which increases the overall mean 

plants size by 2.2 cm.  Within life history stages (non-flowering and flowering) there are no significant 

differences between the original and imputed data. 

Plant Original Data Imputed Data t-test KS-test 

Status Mean (SE) N Mean (SE) N t p D p 

All plants 28.8 (0.5) 963 31.0 (0.4) 1481 3.9 <0.001 0.07 0.004 

Non-
flowering  24.5 (0.3) 808 24.8 (0.3) 1127 1.4 0.2 0.06 0.1 

Flowering  51.5 (1.2) 155 51.0 (0.7) 354 0.01 1 0.07 0.7 
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Table 6. Estimated frequency of prolonged vegetative dormancy in plots allocated to Alliaria Ambient and 

Removal treatments, in years prior to (2004-2006) and after (2007-2013) implementation of the treatment.  

Estimate are from a mark-recapture model using all years of data and a Removal*Year interaction (Model 

set 3, Table 1).  Period indicates years before or after implementation of the Alliaria removal treatment. 

  

Alliaria Ambient Plots Alliaria Removal Plots 

Period Year Frequency SE 

 

Frequency SE 

Pre-Alliaria 2004 0.31 0.078 

 

0.18 0.061 

Removal 2005 0.11 0.052 

 

0.10 0.040 

 

2006 0.08 0.039 

 

0.07 0.032 

       Post-
Alliaria 2007 0.14 0.046 

 

0.09 0.035 

Removal 2008 0.18 0.051 

 

0.09 0.034 

 

2009 0.51 0.065 

 

0.38 0.055 

 

2010 0.25 0.054 

 

0.13 0.035 

 

2011 0.25 0.056 

 

0.12 0.035 

 

2012 0.15 0.047 

 

0.13 0.036 

 

2013 0.09 0.049 

 

0.13 0.043 
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APPENDIX B 

CHAPTER 3 SUPPLEMENTARY MATERIALS 

 

Figure 20. Characteristics of 49 deer exclusion studies in closed canopy forest from around the globe.  

Duration of overabundance extracted from original studies, or assigned using information from Leopold et al. 

1947 and Southeastern Cooperative Wildlife Disease Study http://vet.uga.edu/scwds/range-maps.  a)The 

distribution of deer exclusion times in North America and New Zealand.  b)The distribution of different 

response variables reported in studies.  c)The distribution of different strata reported. 

http://vet.uga.edu/scwds/range-maps
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Table 7. Duration of deeer exclusion, duration of overabundance (DOA), and other details for studies 

included in the meta-analysis.  See methods for information regarding determination of DOA.    

Authors 
Duration  
Exclusion 

(years) 

DOA 
When 
expt. 
began 

DOA 
When 
expt. 

ended 

State / 
Geographic 

Location 

Deer 
density 
(km-2) 

Primary 
deer 

species 

Abrams & Johnson 
2012 18 7 25 PA 83.5 ODOVIR 
Aldous 1952 6 NA NA MI NA ODOVIR 
Allen et al 1984 16 80 96 NZ NA CERELA 
Anderson & Loucks 
1979 5 35 40 WI 75 ODOVIR 
Aronson & Handel 
2011 2 22 23 NJ 67.5 ODOVIR 
Barrett & Stiling 
2006 4 30 34 FL 21.59 ODOVIR 
Bellingham & Allan 
2003 21 80 101 NZ NA ODOVIR 
Bresette et al 2012 18 15 33 VA 33 ODOVIR 
Bughalo et al 2013 4 30 33 NC 7 ODOVIR 
Castleberry et al 
2000 3 13 15 SC 5 ODOVIR 
Collard et al 2010 8 30 38 QU 16 ODOVIR 
Eschtruth & Battles 
2008 4 NA NA PA 15.1 ODOVIR 
Fox et al 2014 4 11 16 IN 56 ODOVIR 
Hegland et al 2013 10 0 0 Nor 5.5 CERELA 
Husheer et al 2003 13 54 67 NZ NA CERNIP 
Husheer et al 2005 20 86 104 NZ NA CERELA 
Husheer 2007 18 19 37 NZ 3.5 CERELA 
Kain et al 2011 60 1 63 PA 12.5 ODOVIR 
Kay & Bartos 2000 40 NA NA UT NA ODOHEM 
Kraft et al 2004 5 47 53 MI 12.5 ODOVIR 
Krueger et al 2009 2 NA NA PA 4.9 ODOVIR 
Kuijper et al 2010 7 0 NA Pol 4.7 Multiple 
Kumar et al 2006 13 0 13 Japan 31 CERNIP 
Lessard et al 2012 11 17 28 TN 35 ODOVIR 
Levine et al 2012 16 27.5 39.5 NY 12 ODOVIR 
Long et al 2007 9 31.5 40.5 PA 12 ODOVIR 
Martin & Baltzinger 
2010 1 NA NA BC 50 ODOVIR 
Mason et al 2010 11.5 80 91.5 NZ NA Multiple 
McGarvey et al 
2013 20 14 35 VA 35 ODOVIR 
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Merganic et al 2009 30 NA NA Czech NA Multiple 
Murata et al 2009 3 NA NA Japan NA CERNIP 
Murray et al 2013 6 58 64 MI NA ODOVIR 
Nomiya et al 2002 3 NA NA Japan 30 CERNIP 
Nuttle et al 2013 5 14 19 WV 14.75 ODOVIR 
Nuttle et al 2014 15 NA NA PA 11 ODOVIR 
Perrin et al 2006 16 NA NA Ire 32 Multiple 
Relva et al 2010 4 41.25 45.25 Arg 36 Multiple 
Riemenschneider et 
al 1995 5 12.5 16.5 IN 88.2 ODOVIR 
Rooney 2009 16 60 76 WI 16 ODOVIR 
Ross et al 1970 16 1927 NA MN 28.5 ODOVIR 
Rossell et al 2007 2 NA NA WADC 23 ODOVIR 
Rossell et al 2005 5 NA NA VA 67 ODOVIR 
Shelton et al 2014 4.5 25.5 30 IN NA ODOVIR 
Stewart & Burrows 
1989 6 NA NA NZ NA ODOVIR 
Tanentzap et al 
2009 36.5 40 76.5 NZ 4.64 CERELA 
Tanentzap et al 
2011 28 28 56 Ont 31 ODOVIR 
White 2012 17 60 77 MN 44.5 ODOVIR 
Willms et al 1979 2.5 NA NA BC NA ODOHEM 
Wilson et al 2006 3 80 83 NZ NA CERELA 
Wright et al 2012 12 80 92 NZ NA Multiple 
Smale et al 1995 NA NA NA NZ 10.5 NA 
Andruk et al 2014 3 45.5 48.5 TX 8.83 ODOVIR 
Thomas-Van Gundy 
2014 9 14 23 WV 14.75 ODOVIR 
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APPENDIX C 

CHAPTER 4 SUPPLEMENTARY MATERIALS 

C.1 CONCEPTUALIZING POTENTIAL RESPONSE TO DEER EXCLUSION 

Deer exclusion experiments in forests usually test the general hypothesis that deer exclusion will 

result in differences between fenced and unfenced sampling unit.  Over time there are numerous 

patterns of change by which these differences could develop (Fig. 21).     In most experiments 

there will be at least a short time lag before any change is observed (Fig. 21b-d, short green 

arrows), though response variables such as growth (e.g. RGR), height or biomass might respond 

almost immediately (Tanentzap et al. 2011).  It is possible that deer exclusion will halt changes 

to vegetation while continued deer browse further degrade the forest.  This is most likely to 

occur if exclusion occurs shortly after deer become overabundant.  Most deer exclusion studies 

appear to implicitly assume that deer exclusion causes conditions sush as sapling density to 

increase while control plots remain in a degraded state (Fig. 21b).  It is also possible that deer 

exclusion improves conditions while in the control conditions continue to degrade, resulting in 

divergence between treatments and a very large effect size (Fig. 21c).  This potentially occurs 

when deer densities are very high and all vegetation, including non-palatable species, are being 

consumed in control plots.  It is also possible that increases in state variable could occur in both 
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treatments, but deer exclusion allows them to occur faster (Fig. 21d).  This will potentially occur 

in younger, successional stands or if there has been a recent disturbance before the study began.  

For example, if a mast event results in more stems than deer can browse, some will escape above 

browse height, but more will escape in the exclosure.   

In some cases, there could be substantial time lags before change can be observed 

between treatments.  For example, in mature stands with low light conditions saplings may grow 

slowly (Fig 21e).  This is hypothesized by Tanentzap et al. (2012) to be a common response.  For 

gap or fire dependent species there might be a time lag after exclusion until a necessary 

stochastic event occurs (Fig. 21f).  It is also possible that disturbances could improve growth 

conditions in both treatments, but that change occur more quickly in exclosures (Fig. 21g).  

Conversely, the effects of a stochastic event such as ice damage, an insect outbreak or drought 

could cause declines in both treatments, but decline in controls are more severe (Fig. 21h).  
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Figure 21. Possible responses to deer exclusion over time (E) relative to controls (C).  Asterisks indicate the relative likelihood of detecting a significant 

effect between treatments by given time.  Arrows with balls on their left end indicate changes possibly affected by stochastic events.  Stochastic events, 

such as fire, treefall, insect outbreaks, ice storms or mast seeding, are represented by lightning bolts. 
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C.2 SUPPLEMENTARY FIGURES AND TABLES 

 

Figure 22. Understory density of woody seedlings <30cm tall (A-C) and saplings 30-200cm tall (D-F) in deer 

access and deer exclusion plots. Woody species are grouped into 3 categories:  sugar maple, (A,D) canopy-

forming trees excluding sugar maple (B,E), and non-canopy forming trees (C,F), shrubs and vines. N= 6 plots 

per treatment and error bars are +/1 SE. 
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Figure 23. Occupancy of woody seedlings <30cm tall (A-C) and saplings 30-200cm tall (D-F) in deer access 

and exclusion plots. Trees were grouped into 3 categories:  sugar maple, canopy trees (tree species that can 

reach the canopy excluding sugar maple), and shrubs and vines (small trees that do not reach the canopy). N= 

6 plots per treatment and error bars are +/1 standard error.  Occupancy was defined as the number of 2m2 

subplots with ≥1 stem/36 total subplots per plot. 
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Table 8. Woody species at Trillium Trail Nature Reserve, Fox Chapel Borough, Allegheny County, PA.  

Native species are coded as “N” and exotic invaders are “E”.   

Genus species Common name Family Exotic? Palatability 

Acer nigrum black maple Aceraceae N Preferred 

Acer rubrum red maple  Aceraceae N Preferred 

Acer saccharum sugar maple Aceraceae N Preferred 

Ailanthus altissima tree of heaven Simaroubaceae E Not Preferred 

Aralia spinosa devil's walking stick Araliaceae N Not Preferred 

Berberis thunbergii Japanese barberry  Berberidaceae E Not Preferred 

Betula nigra black (river) birch Betulaceae N Not Preferred 

Carya tomentosa mockernut hickory Juglandaceae N Equivocal  

Castanea spp. chestnut Fagaceae N Preferred 

Celastrus orbiculatus oriental bittersweet Celastraceae E Not Preferred 

Cornus spp. dogwood Cornaceae N Preferred 

Craetagus spp. hawthorn Rosaceae N Equivocal  

Fagus grandifolia American beech Fagaceae N Not Preferred 

Frangula alnus alder buckthorn  Rhamnaceae E Not Preferred 

Fraxinus americana white ash Oleaceae N Preferred 

Hamamelis virginiana witchhazel Hamamelidaceae N Preferred 

Hydrangea arborescens hydrangea Hydrangeaceae N Not Preferred 

Juglans nigra black walnut Juglandaceae N Not Preferred 

Ligustrum vulgare privet Oleaceae E Not Preferred 

Lindera benzoin spicebush Lauraceae N Not Preferred 

Liriodendron tulipifera tulip poplar Magnoliaceae N Equivocal  

Lonicera spp. honeysuckle Loniceraceae E Preferred 

Magnolia acuminata cucumber magnolia Magnoliaceae N Equivocal  

Morus spp. mulberry Moraceae E Not Preferred 

Ostrya carpinus eastern hophornbeam Betulaceae N Preferred 

Parthencissus quinquefolia Virginia creeper Vitaceae N Equivocal  
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Platanus occidentalis American sycamore Plantanaceae N Not Preferred 

Prunus serotina black cherry Rosaceae N Not Preferred 

Prunus virginiana chokecherry Rosaceae N Preferred 

Quercus alba white oak Fagaceae N Preferred 

Quercus rubra northern red oak Fagaceae N Preferred 

Rhododendron rhododendron Ericaeae E Preferred 

Rubus spp. blackberry Rosaceae N Preferred 

Sambuccus canadensis elderberry Caprifoliaceae N Preferred 

Smilax spp. greenbriar Similicaceae N Preferred 

Staphylea trifoliata American bladdernut Staphyleaceae N Not Preferred 

Tilia americana basswood Tiliaceae N Preferred 

Toxicodendron radicans poison ivy Anacardiaceae N Not Preferred 

Tsuga canadensis eastern hemlock Pinaceae N Not Preferred 

Ulmus rubra slippery elm Ulmaceae N Equivocal  

Viburnum acerifolium maple-leaved viburnum Adoxaceae N Preferred 

Viburnum dentatum arrowwood Adoxaceae N Preferred 

Vitus spp. grape Vitaceae N Preferred 
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Table 9. Herbaceous species at Trillium Trail Nature Reserve, Fox Chapel Borough, Allegheny County, PA. 

Scientific Name Common Name Family Exotic? 

Actea pachipoda white baneberry Ranunculaceae N 

Alliaria petiolata garlic mustard Brassicaeae E 

Anemone quinquefolia wood anemone Ranunculaceae N 

Aquilegia canadensis wild columbine Ranunculaceae N 

Aralia nudicaulis sarsaparilla Araliaceae N 

Arasum canadense wild ginger Aristolochiaceae N 

Arisaema triphyllum  Jack-in-the-pulpit Araceae N 

Aster divaricatus white wood aster Asteraceae N 

Aster pilosus heath aster Asteraceae N 

Campanula americana American bellflower Campanulaceae N 

Cardamine concatenata cut-leaved toothwort Brassicaceae N 

Cardamine concatenata cut-leaved toothwort Brassicaeae N 

Cardamine diphylla broad-leaved toothwort Brassicaceae N 

Cimicifuga racemosa black cohosh Ranunculaceae N 

Circaea quadrisulcata enchanter's nightshade Onagraceae N 

Claytonia virginica spring beauty Portulaceae N 

Clintonia umbellata white clintonia Liliaceae N 

Corydalis sempervirens pale corydalis 
Papaveraceae 
(Fumariaceae) N 

Dicentra canadensis squirrel corn 
Papaveraceae 
(Fumariaceae) N 

Dicentra cucullaria dutchman's breeches 
Papaveraceae 
(Fumariaceae) N 

Epifagus virginiana beech drops Orobanchaceae N 

Erigeron annuus daisy fleabane Asteraceae N 

Eupatorium purpureum joe-pye weed Asteraceae N 

Eupatorium rugosum white snakeroot Asteraceae N 

Eyrithronium americanum yellow trout lily Liliaceae N 

Floerkia proserpinacoides false mermaid Limnanthaceaea N 

Gallium odorutum woodruff Rubiaceae E 
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Gallium spp. bedstraw Rubiaceae N 

Gaultheria procumbens wintergreen Ericaeae N 

Geranium maculatum wild geranium Geranaceae N 

Glechoma hederacea ground ivy  Lamiaceae E 

Helianthus divaricatus woodland sunflower Asteraceae N 

Hepatica nobilis round-lobed hepatica Ranunculaceae N 

Houstonia caerulea bluet Rubiaceae N 

Hydrophyllum virgianum Virginia Waterleaf Hydrophyllaceae N 

Impatiens capensis spotted touch-me-not Balsaminaceae N 

Impatiens pallida pale touch-me-not Balsaminaceae N 

Laportea canadensis wood nettle Urticaceae N 

Maianthemum canadensis canada mayflower Liliaceae N 

Medeola virginiana indian cucumber root Liliaceae N 

Mertensia virginica Virginia bluebell Boraginaceae E 

Microstegium vimenium Asian stilt grass Poaceae E 

Mitella diphylla mitrewort Saxifragaceae N 

Monotropa uniflora indian pipe Monotropaceae N 

Osmorhiza claytonii hairy sweet cicely Apiaceae N 

Osmorhiza longistylus aniseroot Apiaceae N 

Panax tripholius dwarf ginseng Araliaceae N 

Phlox divaricata blue phlox Polemoniaceae N 

Phlox stolonifera creeping phlox Polemoniaceae N 

Phytolacca americana pokeweed Phytolaccaeae N 

Pilea pumila clearweed  Urticaceae N 

Podophyllum peltatum mayapple Berberidaceae N 

Polygala paucifolia fringed polygala Polygalaceae N 

Polygonatum biflorum smooth solomon's seal Liliaceae N 

Polygonum cuspidatum Japanese knotweed Polygonaceae E 

Polygonum persicarium spotted lady's thumb Polygonaceae E 

Ranunculus arbortivus kidney-leaved buttercup Ranunculaceae N 

Ranunculus ficaria lesser celandine Ranunculaceae E 
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Sanguinaria canadensis bloodroot Papaveraceae N 

Sanicula marilandica black snakeroot/sanicle Apiaceae N 

Saxifraga virginiensis early saxifrage Saxifragaceae N 

Sedum ternatum stonecrop Crassulaceae N 

Silene virginica fire pink Caryophyllaceae N 

Silene vulgars bladder campion  Caryophyllaceae E 

Smilacena racemosa false solomon's seal Liliaceae N 

Stellaria media common chickweed Caryophyllaceae E 

Symplocarpus foetidus skunk cabbage Araceae N 

Thalicrum dioicum meadow rue Ranunculaceae N 

Thalictrum thalictroides rue anemone Ranunculaceae N 

Tiarella cordifola foamflower Saxifragaceae N 

Trillium erectum red trillium Liliaceae N 

Trillium grandiflorum large-flowered trillium Liliaceae N 

Trillium sessile toadshade trillium Liliaceae N 

Tussilago farfara coltsfoot  Asteraceae E 

Urtica dioica stinging nettle Urticaceae N 

Uvularia perfoliata bellwort Liliaceae N 

Viola blanda sweet white violet Violaceae N 

Viola canadensis canada violet Violaceae N 

Viola eriocarpa smooth yellow violet Violaceae N 
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APPENDIX D 

CHAPTER 5 SUPPLEMENTARY MATERIALS 

 

Figure 24. Deer reduce λ of palatable and non-palatable forest plants.  a) Deer reduce λ of palatable specices 

by ~5%.  Species that have been studied include including Trillium erectum (Kalisz et al. 2014), T. grandiflora 

(Knight 2004, Rooney and Gross 2003), Panax quinquefolius (Farrington et al.2009, McGraw and Furedi 

2005), Centaurea horrida (Pisanu et al. 2012), and Vaccinium myrtillus (Hegland et al. 2010).  Positive effects 

on λ have been documented in just two species, Laportea Canadensis (Augustine et al. 1998) and Phyteuma 

spicatum (Kolb 2012).  Data extracted from Maron and Crone (2006) and primary literature. b) Across a 

natural gradient of browse pressure, deer also negatively impact the non-palatable species Arisaema 
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triphylllum (Heckel 2015), probably through soil-mediated mechanisms (e.g. compaction; Heckel et al. 2010).  

Indirect soil-mediated effects of deer have also been observed in other species (e.g Kardol et al. 2014). 
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Figure 25. Mean percentage of Maianthemum racemosum, Trillium erectum and Polygonatum biflorum browsed by deer in deer access plots at Trillium 

Trail Nature Reserve, Fox Chapel, PA, 2003-2013.  Error bars are +/- 1 SE.  N = 5 plots per combination of treatments.
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Figure 26. Layout of crossed deer exclusion and Alliaria petiolata removal experiment at Trillium Trail Nature Reserve, Fox Chapel, PA. a) Five study 

sites were sited and a pair of plots designated at each site.  One of each pair was fenced to exclude deer (Deer-).  Each subplot is divided into 36 2 m x 2 

m subplots, and each subplot is approximately divided into 1m2 quadrats.  Alliaria was not manipulated but declined in abundance in fenced exclosures 

from 2003-2006.  b) In late spring of 2006 all Alliaria were removed (Alli-) from half of each plot (18 subplots per plot) while it remained at ambient 

densities in the other half of the plot (Alli+).  Seed dispersal barriers are erected each year when Alliaria fruits become mature.  Each year all Alliaria 

seedlings that emerge from the seedbank in Alli- plots are removed.
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Figure 27. Changes in relative abundance of multi-leaved plants from 2003 to 2013 for all plants (a-c) and 

plants first observed in 2003 (d-e).  A value of 1 indicates no change from the initial abundance in 2003.  

Means are calculated from N = 5 plots per treatment and weighted by the initial abundance in each plot.  

Changes in abundance occur due to mortality, prolonged dormancy, and recruitment of seedlings to the 

multi-leaved stage. 
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Figure 28. Changes in flowering frequencies from 2003 to 2013 for all plants (a-c) and plants first observed in 

2003 (d-e).  Means are calculated from N = 5 plots per treatment and weighted by the initial abundance in 

each plot.  Plants that were browsed before being observed were assumed to be flowering. 
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Figure 29. Changes in mean number of newly tagged multi-leaved plants from 2003 to 2013.  Means are 

calculated from N = 5 plots per treatment.  New multi-leaved plants can appear through recruitment from 

seed and survival of seedlings, emerge from prolonged vegetative dormancy, production of multiple clonal 

stems from a single rhizome, and clonal fragmentation. 
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Figure 30. Changes in mean rate of occupancy of eight 4m2 subplots/treatment over time.  Means are from N 

= 5 plots per treatment combination, with 18 subplots per plot per treatment. 
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Table 10. Plant taxonomic information, species-specific measurement details, and population summaries.  

The number of plants list is the total summed across the entire experiment.   

Species 
information 

Species Polygonatum 
biflorum 

Maianthemum 
racemosum 

Trillium 
erectum 

Alliaria 
petiolata 

Family Asparagacea Asparagacea Melanthiaceae Brassicaceae 

 

Authority 
Walter 
(Elliott) 

L. L. (M. Bieb.) 
Cavara & 
Grande 

 

Common 
Name 

Solomon's 
seal 

false 
Solomon's seal 

Red Trillium Garlic 
Mustard 

 

Size 
measurement 

Stem + 
terminal leaf 

Stem + 
terminal leaf*  

Longest leaf  

Descriptive 
stats 

N 2003 405 351 1389  

N 2006 529 457 1715  

 

N 2013 733 881 1923  

 

N min 296 351 1389  

 

N Max 733 881 2227  

 

 *Stem + terminal leaf, excluding raceme 

https://en.wikipedia.org/wiki/Brassicaceae
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Table 11. Summary of response variables, data subsets, and random effects structure. 

Ecological   
Level 

Vital rate / 
Population 

Characteristic 
Coho-

rts 

Measureme
nt Unit 

Type of  
regression 

model 
R  

Package 

Split-
split-
plot 

Split-
plot 

Random 
slope Covariate 

Individual  
Reproduction 

(successful 
flowering) 

2003-
2006 Plant logistic glmer     

 

 

  Size / Growth 2003-
2006 Plant linear lmer     

  

  

  

Population Abundance 2003-
2013 plot negative 

binomial 
glmm 
ADMB glmer   

2003 
abundance

+ 

  Occupancy 2003-
2013 subplot logistic glmer glmer   

  

  

  

 
3-leaved 

recruitment 
2003-
2013 

 logistic glmer glmer   
2003 

abundance
+ 

subplot 

  

* All models contained random intercepts for the measurement units 

+ Initial abundance in 2004 was used if there were no plants present in 2003 but a plant emerged 

from dormancy in 2004 
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	Figure 6. Meta-analytic mean effect of deer exclusion by woody vegetation strata.  Effect sizes were calculated as log response ratios with zero indicating no mean difference in responses between fenced deer exclosures and controls.  All strata = grand mean effect size across all strata and all responses.  Stata are not mutually exclusive due to heterogeneity in how authors of individual studies defined strata.  Midstory strata were generally > 200 cm in height and/or > 2 cm DBH.  Saplings were generally > 50 cm and < 200 cm.  Seedlings were generally <50 cm.   Data are pooled across responses related to abundance and community metrics using a mixed model.    No covariates (e.g. duration of overabundance) were included in the model.  Error bars are +/- bootstrapped 95% confidence intervals.
	Figure 7. Meta-analytic mean effect of deer exclusion by woody vegetation response type and strata.  Abundance metrics were usually counts of stems.  Community metrics include species richness and community diversity (e.g. Simpson’s diversity).  Effect sizes were calculated as log response ratios with zero indicating no mean difference in responses between fenced deer exclosures and controls.  All strata = grand mean effect size across all strata and all responses.  Stata are not mutually exclusive due to heterogeneity in how authors of individual studies defined strata.  Midstory strata were generally > 200 cm in height and/or > 2 cm DBH.  Saplings were generally > 50 cm and < 200 cm.  Seedlings were generally <50 cm.   Data are pooled across responses related to abundance and community metrics using a mixed model.    No covariates (e.g. duration of overabundance) were included in the model.  Error bars are +/- bootstrapped 95% confidence intervals.
	Figure 8. Effect of the duration of deer overabundance on observed effect sizes.  Effect sizes (Log response ratios) of all strata (solid red line) and the sapling strata only (dotted blue line) are depicted.  Size of points is proportional to the log of the meta-analysis regression weights, with smaller weights contributing less information to the regression.  White dots indicate sapling data points.  Error band = 95% confidence interval.
	Figure 9. Time to event analysis indicates the relationship between observation of a significant change at p < 0.05 between deer exclusion plots and un-fenced controls.  a) Variation in time to event by strata.  b) Variation in time-to-event for seedlings for 20 versus 60 years of deer overabundance (DoA).  c) The distribution of deer exclusion times in the 49 studies used in this meta-analysis.
	Figure 10. Effect size and annual means of total percent cover from five pairs of fenced deer-exclsoures/deer access plots at Trillium Trail, PA.  Effect sizes (upper panel) are on the untransformed logit scale.  Our index of biomass (lower panel) is the total cover of all woody species within a plot, summed across all 36 subplots.  Error bars are 95% confidence intervals.
	Figure 11. Effects of deer exclusion on sapling abundance of sugar maple (a,c; Acer saccharum) and all other species that can reach the canopy (b, d) from 2003 to 2013 at Trillium Trail Nature Reserve.  Top panels are predictions from a generalized linear mixed model.  Arrows indicate significant trends in mean abundance over time.  Lower panels are average annual differences between deer exclosures and access plots.  N = 6 plots.  Error parts are 95% confidence intervals.
	Figure 12. Effects of deer exclusion on occupancy of sugar maple (a,c; Acer saccharum) and all other species that can reach the canopy (b, d) from 2003 to 2013 at Trillium Trail Nature Reserve.  Top panels are predictions from a generalized linear mixed model.  Lower panels are average annual differences between deer exclosures and access plots.  N = 6 plots.  Error parts are 95% confidence intervals.
	Figure 13. Size distribution of subcanopy trees (stems >2m in height) in permanent deer access plots vs. plots where deer were excluded since 2003. By 2011 size distributions were significantly different between treatments (KS-test, p=0.0011). Size distributions within treatments diverged further between 2011 and 2013 (p<0.01) due to continued recruitment and growth in deer exclusion plots (i.e. compare distribution of plants <3 cm DBH). Note: Large trees (i.e. diameter> 5cm) in both plot types had reached deer browse size refuge prior to start of the experiment and were not expected to differ for sugar maple or other canopy-forming trees. N= 6 plots per treatment.
	Figure 14. Schematic illustrating how longitudinal multi-level models are interpreted.  Panels a through d represent trends in data from a control and experimental treatment.  Panels e) shows the magnitude of the regression coefficient for the dotted control line (βcontrol) while panel f) shows the regression coefficient for the solid treatment arrow (βtreatment), which is modeled in terms of its divergence from the control.  The actual slope of the treatment line would be βcontrol  + βtreatment.  When control and treatment lines are parallel (top row in a,b,d) βtreatmen = 0 in panel f.
	Figure 15. Relative increase from 2003 to 2013 in plant abundance (a) and flowering rates (b) for three species of native plants after deer exclusion and Alliaria  petiolata removal.  A value of one would indicate no change.  Error bars are 95% confidence intervals.
	Figure 16. Relative increase in plant size (a) and subplot occupancy rates (b) for three species of native plants after deer exclusion and Alliaria petiolata removal.  A value of one would indicate no change.  Error bars are 95% confidence intervals.
	Figure 17. Effects of deer exclusion and Alliaria petiolata removal on changes in a) abundance and b) recruitment to 3-leaved life stage.  Changes are from 2006-2013 for three species of perennial plant, Maianthemum racemosum, Polygonatum biflorum, and Trillium erectum.   All effects are slope parameter from mixed regression models that represented changes in temporal trends relative to rates in deer access plots where Alliaria was at ambient density.  Effect sizes are slope parameters from regression models.  For Deer exclusion effects, this is the time*deer exclusion parameter from the regression, and for Alliaria removal this is time*Alliaria removal parameter.  No three-way interactions (time*deer exclusion*Alliaria removal) were significant except for 3-leaved recruitment in Trillium.
	Figure 18. Effects of deer exclusion and Alliaria petiolata removal on changes in a) flowering rates, b) plant size.  All effects are slope parameter from mixed regression models are represented changes in temporal trends relative to rates in deer access plots where Alliaria was at ambient density.  Effect sizes are slope parameters from regression models.  For Deer exclusion effects, this is the time*deer exclusion parameter from the regression, and for Alliaria removal this is time*Alliaria removal parameter.  No three-way interactions (time*deer exclusion*Alliaria removal) were significant and effects of deer exclusion and Alliaria removal are additive.
	Figure 19. Effects of Deer exclusion and Alliaria petiolata removal on spatial occupancy.  We defined occupancy as one or more stems of a given species present in a subplot.
	Figure 20. Characteristics of 49 deer exclusion studies in closed canopy forest from around the globe.  Duration of overabundance extracted from original studies, or assigned using information from Leopold et al. 1947 and Southeastern Cooperative Wildlife Disease Study http://vet.uga.edu/scwds/range-maps.  a)The distribution of deer exclusion times in North America and New Zealand.  b)The distribution of different response variables reported in studies.  c)The distribution of different strata reported.
	Figure 21. Possible responses to deer exclusion over time (E) relative to controls (C).  Asterisks indicate the relative likelihood of detecting a significant effect between treatments by given time.  Arrows with balls on their left end indicate changes possibly affected by stochastic events.  Stochastic events, such as fire, treefall, insect outbreaks, ice storms or mast seeding, are represented by lightning bolts.
	Figure 22. Understory density of woody seedlings <30cm tall (A-C) and saplings 30-200cm tall (D-F) in deer access and deer exclusion plots. Woody species are grouped into 3 categories:  sugar maple, (A,D) canopy-forming trees excluding sugar maple (B,E), and non-canopy forming trees (C,F), shrubs and vines. N= 6 plots per treatment and error bars are +/1 SE.
	Figure 23. Occupancy of woody seedlings <30cm tall (A-C) and saplings 30-200cm tall (D-F) in deer access and exclusion plots. Trees were grouped into 3 categories:  sugar maple, canopy trees (tree species that can reach the canopy excluding sugar maple), and shrubs and vines (small trees that do not reach the canopy). N= 6 plots per treatment and error bars are +/1 standard error.  Occupancy was defined as the number of 2m2 subplots with ≥1 stem/36 total subplots per plot.
	Figure 24. Deer reduce λ of palatable and non-palatable forest plants.  a) Deer reduce λ of palatable specices by ~5%.  Species that have been studied include including Trillium erectum (Kalisz et al. 2014), T. grandiflora (Knight 2004, Rooney and Gross 2003), Panax quinquefolius (Farrington et al.2009, McGraw and Furedi 2005), Centaurea horrida (Pisanu et al. 2012), and Vaccinium myrtillus (Hegland et al. 2010).  Positive effects on λ have been documented in just two species, Laportea Canadensis (Augustine et al. 1998) and Phyteuma spicatum (Kolb 2012).  Data extracted from Maron and Crone (2006) and primary literature. b) Across a natural gradient of browse pressure, deer also negatively impact the non-palatable species Arisaema triphylllum (Heckel 2015), probably through soil-mediated mechanisms (e.g. compaction; Heckel et al. 2010).  Indirect soil-mediated effects of deer have also been observed in other species (e.g Kardol et al. 2014).
	Figure 25. Mean percentage of Maianthemum racemosum, Trillium erectum and Polygonatum biflorum browsed by deer in deer access plots at Trillium Trail Nature Reserve, Fox Chapel, PA, 2003-2013.  Error bars are +/- 1 SE.  N = 5 plots per combination of treatments.
	Figure 26. Layout of crossed deer exclusion and Alliaria petiolata removal experiment at Trillium Trail Nature Reserve, Fox Chapel, PA. a) Five study sites were sited and a pair of plots designated at each site.  One of each pair was fenced to exclude deer (Deer-).  Each subplot is divided into 36 2 m x 2 m subplots, and each subplot is approximately divided into 1m2 quadrats.  Alliaria was not manipulated but declined in abundance in fenced exclosures from 2003-2006.  b) In late spring of 2006 all Alliaria were removed (Alli-) from half of each plot (18 subplots per plot) while it remained at ambient densities in the other half of the plot (Alli+).  Seed dispersal barriers are erected each year when Alliaria fruits become mature.  Each year all Alliaria seedlings that emerge from the seedbank in Alli- plots are removed.
	Figure 27. Changes in relative abundance of multi-leaved plants from 2003 to 2013 for all plants (a-c) and plants first observed in 2003 (d-e).  A value of 1 indicates no change from the initial abundance in 2003.  Means are calculated from N = 5 plots per treatment and weighted by the initial abundance in each plot.  Changes in abundance occur due to mortality, prolonged dormancy, and recruitment of seedlings to the multi-leaved stage.
	Figure 28. Changes in flowering frequencies from 2003 to 2013 for all plants (a-c) and plants first observed in 2003 (d-e).  Means are calculated from N = 5 plots per treatment and weighted by the initial abundance in each plot.  Plants that were browsed before being observed were assumed to be flowering.
	Figure 29. Changes in mean number of newly tagged multi-leaved plants from 2003 to 2013.  Means are calculated from N = 5 plots per treatment.  New multi-leaved plants can appear through recruitment from seed and survival of seedlings, emerge from prolonged vegetative dormancy, production of multiple clonal stems from a single rhizome, and clonal fragmentation.
	Figure 30. Changes in mean rate of occupancy of eight 4m2 subplots/treatment over time.  Means are from N = 5 plots per treatment combination, with 18 subplots per plot per treatment.
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