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MULTIPLE CHANGE-POINT DETECTION FOR PIECEWISE

STATIONARY CATEGORICAL TIME SERIES

Cong Ye, PhD

University of Pittsburgh, 2015

In this dissertation, we propose a fast yet consistent method for segmenting a piecewise

stationary categorical-valued time series, with a finite unknown number of change-points

in its autocovariance structure. To avoid loss of information, instead of arbitrarily assign-

ing numerical numbers in analysis of the original time series, we focus on the multinomial

process, which is derived by denoting each category of the original series as a unit vector.

The corresponding multinomial process is then modeled by a nonparametric multivariate

locally stationary wavelet process, where the piecewise constant autocovariance structure

for any given variate is completely described by the wavelet periodograms for that variate

at multiple scales and locations. Further, we propose a criterion that optimally selects the

scalings and provides the generation of the trace statistics whose mean functions inherit the

piecewise constancy. The resulting statistics will serve as input sequences for later segmen-

tation. Change-point detection is accomplished by first examining the input sequence at

each scale with a proposed binary segmentation procedure, and then combining the detected

breakpoints across scales. The consistency result of our method is established under cer-

tain conditions. In addition, several simulation studies and a real-data analysis of a DNA

sequence are provided to demonstrate the viability of our methodology.

Keywords: categorical-valued time series, piecewise stationarity, locally stationary wavelet

process, wavelet analysis, binary segmentation, DNA sequences.
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1.0 INTRODUCTION

Categorical time series are serially correlated data which are recorded in terms of categories

(or states) at discrete time points. This kind of series is found in many fields of application,

such as analyzing DNA sequence data (Stoffer et al. (1993a) [1]) and analyzing a person’s

sleep states with data obtained from electroencephalography (EEG) (Stoffer et al. (1988) [2]).

Typically, the categories in a categorical time series are assigned “scalings” (numerical

values) in order to facilitate graphing and analysis. However, arbitrarily assigning numbers

may mask some interesting features (such as periodic patterns) in the data. Under the as-

sumption of stationarity, Stoffer et al. (1993a) [1] first introduced the concept of spectral

envelope to the process of spectral analysis for stationary categorical time series. The spec-

tral envelope approach, based on the Fourier analysis, could select scalings that could help

emphasize any periodic feature of the series. This dissertation will focus on the dependence

structure of categorical time series.

The assumption of stationarity is appealing for developing theoretical results. However,

this assumption is often unrealistic since local behaviors in practical problems are widely

prevalent. An example is DNA sequence (see more details in Chapter 2).

Many models and methods for dealing with non-stationarity have focused on numerical

time-dependent data. Priestley (1965) [3] first proposed a time-dependent Cramér-like spec-

tral representation for non-stationary time series, where spectral properties change slowly

over time. Dahlhaus (1997) [4] refined the ideas in Priestley and introduced the class of

locally stationary process, which allows for a smoothly time-varying spectrum in the asymp-

totic limit. These early stage models for non-stationary time series are generalized from

the Cramér spectral representation by using time-varying transfer functions, while keeping

the Fourier basis functions, which are not localized in time, as building blocks. Thus, those
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models cannot adequately represent processes whose spectral properties evolve with time in

more general ways. In order to alleviate the time localization problem, other basis func-

tions were considered as building blocks. Nason (2000) [5] developed the locally stationary

wavelet (LSW) process in exactly the same spirit as the Dahlhaus model where the Fourier

basis is replaced by a wavelet basis, localized both in time and scale. Ombao et al. (2002) [6]

constructed the so-called Smooth Localized complex EXponential (SLEX) basis functions

and developed the SLEX model, which allows for statistical inference as well as the estab-

lishment of the estimation theory. As for (turning to) a special class of non-stationary time

series, piece-wise stationary time series, many models and methods have been developed to

automatically divide it into segments, where certain statistical properties are approximately

the same within each segment. Adak (1998) [7] and Ombao et al. (2002) [6] proposed

methods that divided the univariate time series into dyadic blocks and that selected the

best segmentation according to BBA (Best Basis Algorithm, see Wickerhauser (1994) [8]).

Adak’s work was based on the windowed Fourier transform and Ombao’s work utilized the

SLEX (smooth localized complex exponentials) basis. Later, Ombao et al. extended their

research to multivariate cases (Ombao et al.(2005) [9]) . Cho et al. (2012) [10] applied the

binary segmentation method in the locally stationary wavelet (LSW) process, which was first

introduced by Nason (2000) [5]. Their follow-up work in multivariate cases was presented in

Cho et al. (2014) [11].

As discussed previously, those working with non-stationary categorical time series en-

counter the additional challenge of choosing appropriate scalings. There is considerably

less research about the spectral domain analysis of non-stationary categorical time series.

The most recent work was introduced by Stoffer et al. (2002) [12], whose approach com-

bined dyadic tree-based adaptive segmentation (TBAS) and spectral envelope methodologies.

However, one restriction of the dyadic tree-based method is that the change-points should

be at dyadic locations; if not, the location of an estimated change-point would be a crude

approximation. To overcome this restriction, we propose a detection method that involves

extending the idea of spectral envelope with wavelet techniques and introducing the binary

segmentation procedure; thus, the detection method could handle more flexible cases of

change-point locations.
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The rest of the dissertation is organized as follows: Chapter 2 briefly describes the

common problems in DNA sequence data that will be used to validate our proposed method.

Chapter 3 gives the related definitions and background techniques for our research. Chapter 4

is devoted to our proposed method and consistency result. Chapter 5 and Chapter 6 present

simulation results and an application to the Epstein-Barr Virus (EBV) DNA sequence data.

Finally, future directions are presented in Chapter 7.
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2.0 DNA SEQUENCE DATA

This dissertation considers data from the EBV DNA sequence. This chapter briefly reviews

the special problems in analyzing DNA sequence data.

DNA is commonly viewed as a genetic material in all life forms that is responsible for stor-

ing and encoding genetic information. Naturally, DNA molecules exist as double-stranded

helices, consisting of two long biopolymers of nucleotides. Each nucleotide is composed of

a phosphate group, a five-carbon sugar, and a nucleobase. The nucleobases are classified

into four types—tadenine (A), guanine (G), cytosine (C), and thymine (T)—forming four

different nucleotides. These nucleotides are linked together by a backbone made of alter-

nating sugars and phosphate groups to form a single strand of DNA. The sequence of these

four nucleobases in the strand contains genetic information specific to the organism. Two

single strands of DNA, when complementary to each other, will hybridize to each other to

form double-stranded DNA, following the base-paring rule (i.e. A pairs with T, and G pairs

with C). This complementary base pairing rule allows the sequence in a single strand to

represent the information in a DNA molecule. Thus, one strand of DNA can be recorded

as a categorical sequence. For example, Table 1 shows part of the Epstein-Barr Virus DNA

sequence derived from a single strand.

The information carried by DNA is held in the genes, which are pieces of a DNA sequence.

Within a gene, the sequence of nucleobases along a DNA strand defines one or more protein-

coding sequences (CDS) and hence can influence the phenotype of an organism. In many

species, only a small fraction of the total sequence of the genome encodes protein. For

instance, only about 1.5% of the human genome consists of protein-coding exons, with over

50% of human DNA carrying non-coding repetitive sequences [13]. Thus, a common problem

in analyzing long DNA sequence data is identifying CDS that are dispersed throughout the

4



Table 1: Part of the Epstein-Barr Virus DNA sequence (read across and down)

GCCCTGGGGT AAGTCTGGGA GGCAGAGGGT CGGCCTAGGC CCGGGGAAGT GGAGGGGGAT

CGCCCGGGTC TCTGTTGGCA GAGTCCGGGC GATCCTCTGA GACCCTCCGG GCCCGGACGG

TCGCCCTCAG CCCCCCAGAC AGACCCCAGG GTCTCCAGGC AGGGTCCGGC ATCTTCAGGG

GCAGCAGGCT CACCACCACA GGCCCCCCAG ACCCGGGTCT CGGCCAGCCG AGCCGACCGG

CCCCGCGCCT GGCGCCTCCT CGGGGCCAGC CGCCGGGGTT GGTTCTGCCC CTCTCTCTGT

CCTTCAGAGG AACCAGGGAC CTCGGGCACC CCAGAGCCCC TCGGGCCCGC CTCCAGGCGC

CCTCCTGGTC TCCGCTCCCC TCTGAGCCCC GTTAAACCCA AAGAATGTCT GAGGGGAGCC

sequence and separated by regions of noncoding sequences (Stoffer et al (2000) [12]).

It is well known that DNA is heterogeneous (Karlin and Macken, 1991) [14]. As Braun

and Muller (1998) [15] pointed out, it is suitable to partition the DNA sequence into segments,

where each segment has a certain degree of internal homogeneity. The stationary assumption

might not be appropriate, but piecewise stationary assumption might be plausible here.

Hence, the problem becomes how to detect the multiple change-points in piecewise stationary

categorical time series.
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3.0 BACKGROUND

In this chapter, we present some definitions and technical background that will help in un-

derstanding our proposed method. We first give the definition of piecewise categorical time

series in Section 3.1. Next, in Section 3.2, we discuss wavelet techniques related to our re-

search. Binary segmentation algorithm is illustrated in Section 3.3. Finally, in Section 3.4,

we briefly review the local spectral envelope methodology. Our proposed method will com-

bine aspects of all those methodologies in order to perform fast and automatic detection of

multiple changepoints in piecewise categorical time series.

3.1 PIECEWISE STATIONARY CATEGORICAL TIME SERIES

Before presenting the definition of piecewise stationary categorical time series, we first intro-

duce the stationary categorical time series. Let Yt be a categorical-valued time series with

finite state-space C = {c1, · · · , cp}. If Yt is stationary, the probabilities pj = pr{Yt = cj} > 0

for j = 1, 2, · · · , p do not depend on time t. For β = (β1, β2, · · · , βp)′ ∈ Rp, denote by Xt(β)

the real-valued stationary time series corresponding to the scaling that assigns the category

cj the numerical value βj, j = 1, 2, · · · , p.

It is often very useful to represent the categories in terms of the unit vectors ~e1, ~e2, · · · , ~ep,

where ~ej represents the p × 1 vector with 1 in the j-th row and 0 elsewhere. Let Zt = ~ej

when Yt = cj. Assume that the vector process Zt has a continuous spectral density denoted

by fZ(ω). For each ω, fZ(ω) is a p × p complex-valued Hermitian matrix. Assume the

existence of fX(ω;β), the spectral density of Xt(β). With the relationship Xtβ = β′Zt, we

have fX(ω;β) = β′fZ(ω)β = β′f reZ (ω)β, where V is the variance-covariance matrix of Zt.
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By the definition of Stoffer et al. (2002) [12], p × 1 vector-valued piecewise stationary

process, {Zs,T}T−1
s=0 , is defined as:

Zs,T =
B∑
b=1

Zs,bI(s/T, Ub); (3.1)

here, Ub = [ub−1, ub) ⊂ [0, 1) are intervals, in which Zs,b are stationary processes. I(s/T, Ub)

is an indicator that takes the value 1 if s/T ∈ Ub, and 0 otherwise. Let Mb represent the

number of observations in segment b and
∑B

b=1 Mb = T .

A categorical time series, {Yt,T}, on a finite state-space and with nonzero marginal prob-

abilities, is piecewise stationary if the corresponding p×1 point process, {Zt,T}, is piecewise

stationary.

3.2 NON-DECIMATED DISCRETE WAVELET TRANSFORM (NDWT)

We will use the non-decimated discrete Haar wavelet transform in the first stage of our

method. Some basic notation and results are presented in this section. For more details

about wavelet analysis, please refer to the books by Mallat (2008) [16] and Daubechies

(1992) [17]. In addition, the books by Nason (2008) [18] and Vidakovic (2009) [19] are

monographs about wavelet methods in statistics. For wavelet methods specialized in time

series, please refer to Percival et al. (2006) [20].

The Fourier transform is used in the classical spectral analysis of stationary time series.

The big disadvantage of the Fourier transform is that it has only frequency resolution but no

time resolution (Figure 1). That is, although we might be able to identify all the significant

frequencies in the series, we do not know when they are present and how they evolve with

time. This will be a big problem when we analyze the non-stationary time series, where

the frequency domain properties may change over time. To overcome this problem, several

solutions have been developed, which are intended to keep track of the information from

both time and frequency domains. The wavelet transform is the most recent solution to the

shortcomings of the Fourier transform.
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Figure 1: Time (left) and frequency (right) representations of signals

The simplest wavelet is the Haar wavelet. The Haar mother wavelet (Figure 2) is defined

by

ψ(x) =


1 x ∈ [0, 1

2
),

−1 x ∈ [1
2
, 1),

0 otherwise.

Figure 2: Haar mother wavelet

The Haar wavelet gives us an intuition of three main characteristics of wavelets. Wavelets

are oscillated, double-indexed functions with compact support (not all wavelets have compact
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support, but they must decay to 0 rapidly). The double-indexing scheme enables us to

obtain the information from time and frequency simultaneously. The compact support in

time domain will better facilitate the capture of local behaviors in a signal.

The set of wavelets generated by dilation and translation operations, as follows,

ψi,k(x) = 2i/2ψ(2ix− k),

where i, k are integers, can form bases for various spaces of functions: e.g. {ψi,k(x)}i,k∈Z is

a complete orthonormal basis for L2(R).

Thus, given a function f(x) ∈ L2(R), the discrete wavelet transform (DWT) is to de-

compose f ,

f(x) =
∞∑

i=−∞

∞∑
k=−∞

di,kψi,k(x),

where, due to the orthogonality of the wavelets, we have

di,k =

∫ ∞
−∞

f(x)ψi,k(x) dx

for integers i, k. The numbers, {di,k}i,k∈Z, are called the wavelet coefficients of f (Nason

(2008) [18]).

However, the standard DWT is not shift-invariant. To be more specific, in the DWT,

wavelet coefficients of a shift version (of the input data) may change drastically compared to

those of the original data. Hence, the non-decimated wavelet transform (NDWT) with the

desired property of shift-invariance is more favorable in time series analysis.

In the rest of this dissertation, the Meyer-Mallat scale numbering scheme will be adopted:

scale 0 is the data itself, while −1 is the finest scale and −J where J = log2(T ) is the coarsest

scale for decomposition.

In practice, Nason et al. (2000) [5] constructed the compactly supported non-decimated

discrete wavelets for discrete-time processes. Let {hk} and {gk} be the low- and high-

pass quadrature mirror filters that are used in the construction of Daubechies’ compactly

supported wavelets. They first obtained the compactly supported discrete wavelets, ψi =

(ψi,0, · · · , ψi,(Ni−1)), of length Ni for scale i < 0 using the following formulae,

ψ−1,n =
∑
k

gn−2kδ0,k = gn, for n = 0, · · · , N−1 − 1,

9



ψi−1,n =
∑
k

gn−2kψi,k, for n = 0, · · · , Ni−1 − 1,

Ni = (2−i − 1)(Nh − 1) + 1,

where δ0,k is the Kronecker delta,

δ0,k =

1 k = 0,

0 k 6= 0,

and Nh is the number of non-zero elements of {hk}.

Then, non-decimated discrete wavelets permit a wavelet to be shifted to any location

but not only to “dyadic” locations as in the standard DWT. We note that the set of wavelet

coefficients of DWT at each scale i is of length 2iT . In contrast, the wavelet coefficients of

NDWT at each scale will have the same length T as the original series.

For example, the discrete Haar wavelets at scales −1 and −2 respectively are

ψ−1 = (g0, g1) = (1,−1)/
√

2,

ψ−2 = (h0g0, h1g0, h0g1, h1g1) = (1, 1,−1,−1)/
√

2,

and so on.

The non-decimated discrete Haar wavelet vectors at scale −1 and different locations for

discrete-time series of length T are

ψ−1,0,T = (1/
√

2,−1/
√

2, 0, 0, 0, · · · , 0)′,

ψ−1,1,T = (0, 1/
√

2,−1/
√

2, 0, 0, · · · , 0)′,

ψ−1,2,T = (0, 0, 1/
√

2,−1/
√

2, 0, · · · , 0)′,
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and so on. We can see from the above example that the non-decimated wavelets at the same

scale are just shift versions of each other. The non-decimated discrete Haar wavelets at scale

−2 and different locations are

ψ−2,0,T = (1/2, 1/2,−1/2,−1/2, 0, 0, 0, · · · , 0)′,

ψ−2,1,T = (0, 1/2, 1/2,−1/2,−1/2, 0, 0, · · · , 0)′,

ψ−2,2,T = (0, 0, 1/2, 1/2,−1/2,−1/2, 0, · · · , 0)′,

and so on.

3.3 BINARY SEGMENTATION

We will use the binary segmentation procedure in the second step of our proposed method.

The binary segmentation procedure is widely used in dealing with multiple change-point

detection problems. Venkatraman (1992) [21] employed the procedure to a sequence of

independent normal variables with piecewise constant mean function, and proved that the

detected change-points were consistent in terms of number and locations. Cho et al. (2012)

[10] applied the procedure to a sequence of correlated scaled χ2 variables with multiple

change-points in its mean and establish the consistency results. The implementation of

binary segmentation is conceptually easy. First, a single change-point is located, and further

change-points are searched for to the left and right of the detected change-point. The

procedure then recursively moves forward until no further changes are found.

To be more specific, we use {It,T} to denote the input series and use Cvs,e to denote the

CUSUM-type operator on the interval with starting point s and ending point e:

Cvs,e(It,T ) =

√
e− v

(e− s+ 1) · (v − s+ 1)

v∑
t=s

It,T −

√
v − s+ 1

(e− s+ 1) · (e− v)

e∑
t=v+1

It,T . (3.2)

The first step of the binary segmentation procedure is to find the likely location of a

change-point in the interval (0, T −1) by searching for the point that maximizes the absolute

value of

Cvs,e(It,T ) =

√
T − v − 1

T · (v + 1)

v∑
t=0

It,T −

√
v + 1

T · (T − v − 1)

T−1∑
t=v+1

It,T . (3.3)
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Such a point, b = argmaxvCvs,e(It,T ), will be considered as the likely position of a change-

point. Next, d = Cbs,e(It,T ) is compared with a certain critical value to test the null hypothesis

that no change-point is present. In Section 4.5 we will describe how to establish the critical

value. If the null hypothesis is rejected, the algorithm will simultaneously locate and test

to find further change-points in the left and right segments of b. The algorithm is repeated

recursively until no further change-point is found. We use the binary segmentation algorithm

in Cho et al. (2012) [10] in the second stage of our proposed method. Their algorithm is

listed as follows:

1. Begin with (j, l) = (1, 1). Let sj,l = 0 and ei,j = T − 1.

2. Iteratively compute Cvsj,l,ej,l(It,T ) as in (3.2) for v ∈ (sj,l, ej,l). Then, find bj,l, which

maximizes its absolute value while satisfying

max{
√

(bj,l − sj,l + 1)/(ej,l − bj,l),
√

(ej,l − bj,l)/(bj,l − sj,l + 1)} ≤ c

for a fixed constant c ∈ (0,∞), where nj,l = ej,l − sj,l + 1. Let dj,l = Cbj,lsj,l,ej,l(It,T ) and

mj,l =
∑ej,l

t=sj,l
It,T/
√
nj,l.

3. Perform hard thresholding on |dj,l|/mj,l with the threshold tj,l = τT θ
√

log T/nj,l so that

d̂j,l = dj,l if |dj,l| > mj,l · tj,l, and d̂j,l = 0 otherwise.

4. If either d̂j,l = 0 or max{bj,l−sj,l, ej,l−bj,l+1} < ∆T for l, stop the algorithm on the interval

[sj,l, ej,l]; if neither, let (sj+1,2l−1, ej+1,2l−1) = (sj,l, bj,l) and (sj+1,2l, ej+1,2l) = (bj,l + 1, ej,l),

and update the level j as the level j → j + 1.

5. Repeat Steps 2-4.

3.4 LOCAL SPECTRAL ENVELOPE

The local spectral envelope analysis will be employed in the post-processing step of our

proposed method. Notation, general idea, as well as basic theoretic results of the local

spectral envelope methodology are given in this section. For more details, please refer to

Stoffer et al. (1993) [1] and Stoffer et al. (2002) [12].
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If {Yt,T} is a piecewise stationary categorical time series with known stationary segmen-

tation, the local spectral envelope in Stoffer et al. (2002) [12] is defined as

λb(ω) = sup
β 6∝1
{
β′f reZ,b(ω)β

β′Vbβ
}, (3.4)

where Vb is the variance-covariance matrix of Zt,b and b = 1, . . . , B. The corresponding

eigenvector βb(ω) is called the local optimal scaling of block b and frequency ω.

λb(ω) dω can be considered as the largest proportion of the total power in block b that

can be attributed to the frequencies within a dω neighborhood of ω for any particular

scaled process, Xt,b(β) = βZt,b. Thus, the value λb(ω) has a meaningful interpretation: it

envelopes the standardized spectrum of any scaled process. That is to say, given any β

normalized so that Xt,b(β) has total power of 1, fb(ω;β) ≤ λb(ω) with equality if and only

if β is proportional to β(ω), where fb(ω;β) is the spectrum of Xt,b(β). The name “spectral

envelope” comes from this appealing interpretation. Furthermore, information is lost when

one restricts attention to the spectrum of Xt,b(β); less information is lost when one considers

the spectrum of Zt,b. Directly dealing with the spectral density fZ,b(ω) is cumbersome since

it is a complex Hermitian matrix with each element as a function. From this perspective,

spectral envelope can be thought of as a parsimonious tool for exploring the periodic nature

of a categorical time series with minimal loss of information.

Given an estimate, f̂Z,b(ω) of fZ,b(ω), the estimate of the local spectral envelope λ̂b(ω) is

defined as the largest eigenvalue of ĝreb (ω), where

ĝreb (ω) = V̂
−1/2
b f̂Z,b(ω)V̂

−1/2
b . (3.5)

The local sample optimal scaling, β̂b(ω), is then defined by β̂b(ω) = V̂b
−1/2ûb(ω), where

ûb(ω) is the normalized eigenvector associated with λ̂b(ω).

In the rest of this section, we will present asymptotic results for estimators of the local

spectral envelope and the corresponding local scaling vectors established by Stoffer et al.

(2002) [12]. Theorem 3.4.1 displays the results of local spectral envelope estimators based

on the local periodogram Ib(ω) (see Equation(3.6)). The consistent window spectral estimate

f̂Z,b(ω) (see Equation (3.8)) is chosen as the estimate of fZ,b(ω) in Theorem 3.4.2.
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The local periodogram Ib(ω) is given by

Ib(ω) = db(ω)d∗b(ω), (3.6)

where

db(ω) = M
−1/2
b

Mb−1∑
t=1

Zt,b exp{−2πitω} (3.7)

is the finite Fourier transform of the data {Zs,T : s/T ∈ Ub}.

Let W [p, ν,Σ] denote the Wishart distribution of dimension p on ν degrees of freedom

and with p× p covariance Σ; Wc[p, ν,Σ] denotes the complex Wishart distribution. Details

about Wishart distribution can be found in Brillinger (2001) [22].

Theorem 3.4.1. Under the established notation and conditions, and for f̂Z,b(ω) = Ib(ω),

the collection, {λ̂b(ωj), β̂b(ωj) : j = 1, · · · , J}, converges in distribution to λb,j,βb,j : j =

1, · · · , J}, where {βb,j = V
−1/2
b ub,j and {λb,j,ub,j : j = 1, · · · , J} are the largest eigenvalue

and eigenvector of independent W re
c [p − 1, 1, gb(ωj)] matrices, with ub,j normalized so that

u′b,jub,j = 1 and the first nonzero entry of ub,j is positive.

Finally, we consider local consistent window spectral estimates. Consider a window

function, Wb(α),−∞ < α < ∞, that is real-valued, even and of bounded variation, where∫∞
−∞Wb(α) dα = 1, and

∫∞
−∞ |Wb(α)| dα <∞. f̂Z,b(ω) is defined as

f̂Z,b(ω) = M−1
b

Mb−1∑
l=0

WMb
(ω − l/Mb)Ib(l/Mb), (3.8)

where WMb
(α) = B−1

Mb

∑∞
j=−∞Wb(B

−1
Mb

[α + j]) and BMb
is a bounded sequence of non-

negative scale parameters such that BMb
→ 0 and BMb

Mb → ∞ as T → ∞. Let νMb
=

(BMb
Mb)

1/2(
∫∞
−∞Wb(α)2 dα)−1/2.

Theorem 3.4.2. Under the stated conditions and assumptions, and for f̂Z,b(ω) defined by

(3.8), if for each j = 1, · · · , J, the largest root of greb (ωj) is distinct, then {νMb
[λ̂b(ωj) −

λb(ωj)]/λb(ωj); νMb
[β̂b(ωj) − βb(ωj)] : j = 1, · · · , J} converges jointly in distribution to

{zj;yj : j = 1, · · · , J} with zj and yj being independent for j = 1, · · · , J . Furthermore,
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for each j = 1, · · · , J , zj has a standard normal distribution and is independent of yj which

is multivariate normal with mean 0. The covariance matrix of V
1/2
b yj is given by

{λb(ωj)Hb(ωj)
+greb (ωj)Hb(ωj)

+ − ab(ωj)ab(ωj)′}/2, (3.9)

where Hb(ωj) = greb (ωj) − λb(ωj)Ip−1,ab(ωj) = Hb(ωj)
+gimb (ωj)V

1/2
b ub(ωj), Ip−1 denotes the

(p−1)× (p−1) identity matrix, and Hb(ωj)
+ refers to the Moore-Penrose inverse of Hb(ωj).

In practice, the following approximations work well when Mb is large, according to Stoffer

et al. (2002) [12]. By using a first-order Taylor expansion

log λ̂b(ω) ≈ log λb(ω) +
λ̂b(ω)− λb(ω)

λb(ω)
, (3.10)

thus, νMb
[log λ̂b(ω)− log λb(ω)] is approximately standard normal under appropriate condi-

tions. It also follows that E[log λ̂b(ω)] ≈ log λb(ω) and var[log λ̂b(ω)] ≈ ν−2
Mb

. Stoffer et al.’s

(2002) [12] simulations showed that the average value of λ̂b(j/Mb) is closer to 2.5/Mb when

there is no signal present. According to this recommended value, the α critical value for

λ̂b(ω) will be (2.5/Mb) exp(zα/νMb
). When analyzing DNA sequence data, Mb is suggested

by Stoffer et al. (2002) [12] to be at least 28.
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4.0 PROPOSED METHOD

In this chapter, we present our proposed method for dealing with multiple change-point

problems in piecewise stationary categorical time series. We first put forth the general idea

behind our proposed method in Section 4.1. The detailed steps of our proposed algorithm are

given in Section 4.2. Consistency result of our proposed method is presented in Section 4.3.

When the stationary segmentation is unknown, previous notation needs to be slightly

modified to enable the time-varying property. Let {Yt,T}T−1
t=0 be a categorical-valued time

series with finite state-space C = {c1, · · · , cp}. For βt = (βt,1, βt,2, · · · , βt,p)′ ∈ Rp, let

Xt,T (βt) denote the real-valued time series corresponding to the scaling that assigns the

category cj the numerical value βt,j at time t. Then Xt,T (βt) = β′tZt,T , where Zt,T is the

corresponding p × 1 point process. Let ZT = (Z0,T ,Z1,T , · · · ,ZT−1,T ) = (Z
(1)
T , · · · ,Z(p)

T )′,

where Z
(j)
T = (Z

(j)
0,T , Z

(j)
1,T , · · · , Z

(j)
T−1,T )′. The p×T matrix ZT represents the data matrix. To

simplify, Y always represents categorical time series, Z is a point process, and X denotes

numerical series in this dissertation.

4.1 KEY IDEA

Assigning different values to the categories will bring out different features of the categorical

data. Instead of arbitrarily assigning numerical values, we focus on scalings that could best

assist us in locating the change-points. If there is a change in the structure of Yt,T , the

change occurs at the same location in Zt,T . We believe that for certain βi,t, the changes

in the original categorical series could be detected by examining Xt,T (βi,t) = β′i,tZt,T . It

should be noted that our goal is change-point detection. Thus, we do not necessarily need
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to estimate the exact scalings βi,t. For certain βi,t, the wavelet coefficient of Xt,T (βi,t) is

wi,t,T (βi,t) =
∑
k

Xk,T (βi,t)ψi,k(t) = β′i,tZTψi,t,T ,

where ψi,t,T ’s are the non-decimated discrete Haar wavelets discussed in Section 3.2, and

ψi,k(t) is the kth element of vector ψi,t,T . The raw wavelet periodogram (RWP) is:

Ii,t,T (βi,t) = |wi,t,T (βi,t)|2 = β′i,tZTψi,t,Tψ
′
i,t,TZ′Tβi,t.

Here, rather than using the same scaling for all scales, we allow that the scalings are different

in i and t, and denote it by βi,t. We are only interested in those βi,t’s in which βi,t 6∝ 1p and

β′i,tβi,t = 1. Thus, the RWP can be represented as:

Ii,t,T (βi,t) =
β′i,tZTψi,t,Tψ

′
i,t,TZ

′
Tβi,t

β′i,tβi,t
.

The idea is to focus on scalings such that at each scale i and time t, the raw wavelet

sequences Ii,t,T (βi,t)’s achieve their maximum values among arbitrary scalings where βi,t’s

are subject to β′i,tβi,t = 1. Let ΣIi,t,T = ZTψi,t,Tψ
′
i,t,TZ

′
T , i.e.,

ΣIi,t,T =


I

(1)
i,t,T I

(1,2)
i,t,T · · · I

(1,p)
i,t,T

I
(1,2)
i,t,T I

(2)
i,t,T · · · I

(2,p)
i,t,T

...
...

. . .
...

I
(1,p)
i,t,T I

(2,p)
i,t,T · · · I

(p)
i,t,T

 ,

where I
(j)
i,t,T = Z

(j)
T
′ψi,t,Tψ

′
i,t,TZ

(j)
T and I

(j,l)
i,t,T = Z

(j)
T
′ψi,t,Tψ

′
i,t,TZ

(l)
T .

Let λi,t,T denote the largest eigenvalue of ΣIi,t,T . It follows immediately that

λi,t,T = sup
β′i,tβi,t=1

Ii,t,T (βi,t).

Note that rank(ΣIi,t,T ) = 1. We have λi,t,T = tr(ΣIi,t,T ) =

p∑
j=1

I
(j)
i,t,T .

To be consistent with the convention that random variables are usually written in upper

case letters, let Ii,t,T ≡ λi,t,T =

p∑
j=1

I
(j)
i,t,T . Ii,t,T ’s will be the input sequences for further binary

segmentation.
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Next, we discuss the logic explaining that breakpoints in the autocovariance structure

can be detected by examining Ii,t,T ’s. This dissertation focuses on what is arguably one

of the simplest forms of departure from non-stationarity, piecewise stationarity, where the

dependence structure is piecewise constant. The nonparametric model we use for this pur-

pose is the multivariate locally stationary wavelet (LSW) process. The LSW process was

first developed by Nason et al. (2000) [5] and was later extended to the bivariate case by

Sanderson et al. (2010) [23]. Recently, Cho et al. (2014) [11] established the LSW process

for the multivariate case. The p-variate LSW process {Zt,T = (Z
(1)
t,T , . . . , Z

(p)
t,T )′}T−1

t=0 has the

following representation:

Z
(j)
t,T =

−1∑
i=−∞

∞∑
k=−∞

W
(j)
i (k/T )ψi,k(t)ξ

(j)
i,k for each j = 1, . . . , p,

where ξi,k = (ξ
(1)
i,k , ξ

(2)
i,k , · · · , ξ

(p)
i,k )′ are orthonormal, identically distributed random variables.

Cho et al. (2014) [11] defined the local autocovariance function as

c(j)(z, h) :=
∑
i

S
(j)
i (z)Ψi(h),

and the evolutionary wavelet spectrum as

S
(j)
i (z) := |W (j)

i (z)|2,

where Ψi(h) =
∑

k ψi,kψi,k(h). They proved that

c(j)(z, h) = lim
T→∞

cov(Z
(j)
[zT ],T , Z

(j)
[zT ]+h,T ),

and

S
(j)
i (z) =

∑
i′

A−1

i,i′

∑
h

c(j)(z, h)Ψi
′ (h),

where Ai,i′ =
∑

h Ψi(h)Ψi′ (h).

Although the collection {Ψi(h)} is not orthogonal, it is indeed a linearly independent

system. Therefore, {Ψi(h)} can still serve as a wavelet basis for an non-orthogonal expansion.

The redundancy in the non-orthogonal autocorrelation wavelet family {Ψi(h)} is measured

by A = (Ai,i′ )i,i′<0, which Nason et al. (2000) [5] first introduced. They also showed that

for all Daubechies compactly supported wavelets, A is an invertible operator. And for each
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Figure 3: Input sequence for binary segmentation at scale i

Yt,T

ZT

Ii,t,T (βi,t)

ΣIi,t,T

Ii,t,T ≡

λi,t,T

ΣIi,t,T = ZTψi,t,Tψ
′
i,t,TZ

′
T

λi,t,T = sup
β′i,tβi,t=1

Ii,t,T (βi,t)

Ii,t,T (βi,t) =

β′i,tZTψi,t,Tψ
′
i,t,TZ′Tβi,t.

Observed categori-

cal series {Yt,T}

p × T matrix

λi,t,T is the largest

eigenvalue of ΣIi,t,T

p×p matrix at each t and i

RWP of β′i,tZt,T

Input sequence for binary segmentation

J , the norm of A−1
J is bounded from above by some constant, where J-dimensional matrix

AJ := (Ai,i′ )i,i′=−1,...,−J .

Thus, S
(j)
i (z) can be viewed as the linear combination of c(j)(z, h)’s. That is to say,

every breakpoint in c(j)(z, h) will result in a breakpoint in S
(j)
i (z) at one or multiple scales.

Further, ι
(j)
i (z) =

∑
i′ S

(j)

i′
(z)Ai,i′ , and T−1

∑T−1
t=0 | EI

(j)
i,t,T − ι

(j)
i ( t

T
) |2→ 0 (Proposition 2 in

Cho et al. (2014) [11]). Therefore, EI(j)
i,t,T is close enough to the piecewise constant function

ι
(j)
i ( t

T
) in the sense that the integrated squared bias between them converges to 0. Actually,

EI(j)
i,t,T is piecewise constant other than on the intervals around jumps of ι

(j)
i ( t

T
).

4.2 PROPOSED ALGORITHM

Detailed steps of our algorithm are listed as follows:

Step 1: Prepare the input sequences (Flow chart in Figure 3).

Get the input sequences {Ii,t,T , t = 0, 1, · · · , T − 1} at scales i = −I∗, . . . ,−1 for further

binary segmentation, where I∗ = −b log2 T
2
c.

Step 2: Perform binary segmentation.
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For each i, use the binary segmentation procedure described in Cho et al. (2012) [10] (Sec-

tion 3.3) to examine the input sequence {Ii,t,T , t = 0, 1, · · · , T −1} at scales i = −I∗, . . . ,−1.

Denote the detected change-points at scale i as B̂i = {η̂(i)
q , q = 1, . . . , N̂i}.

(Optional): Monitor eigenvectors βi,t associated with the largest eigenvalue.

Augment: At each scale i, calculate the distance of βi,t and βi,t−1, i.e: dist(βi,t) =

‖βi,t−βi,t−1‖. Then, perform the binary segmentation on dist(βi,t) sequence at each scale i.

Denote the detected change-points by B̂aug
i = {η̂aug(i)

q , q = 1, . . . , N̂aug
i }. Arrange all detected

change-points in B̂i ∪ B̂aug
i into groups so that those within the distance of ΛT from each

other are classified in the same group. If there exists η̂
aug(i)
q0 ∈ B̂aug

i , such that η̂
aug(i)
q0 itself

forms a group, add η̂
aug(i)
q0 to the set B̂i. For simplicity, retain the notation of the set of the

detected change-points at scale i after this step as B̂i = {η̂(i)
q , q = 1, . . . , N̂i}.

Step 3: Combine the detected change-points across scales (here we use the across-scales

post-processing step in Cho et al. (2012) [10]).

3.1: Group the detected change-points in
⋃

i=−I∗,··· ,−1

B̂i such that those close enough to

each other (within distance ΛT = b εT
2
c) are classified into the same group; denote the groups

by G1, · · · ,GB̂.

3.2: Find the scale index i0 with the maximum number of detected change-points. If

there is more than one scale having the same maximum number of detected change-points,

choose whichever is the finest scale, i.e. i0 = max{argmax−I∗≤i≤−1N̂i}.

3.3: If N̂i0 = B̂, and for any b = 1, · · · , B̂, there exists η̂
(i0)
q0 ∈ Gb, set B̂ = B̂i0 . Otherwise,

proceed to 3.4.

3.4: Set B̂ = {η̂b, b = 1, . . . , B̂}, where η̂b ∈ Gb with the maximum scale index i.

Step 4: Post-process using spectral envelope technique.

4.1: Calculate the local sample spectral envelope λ̂b(ωk) at each fundamental frequency

ωk = k

M̂b
, k = 0, · · · , M̂b/2, M̂b = ν̂b − ν̂b−1 + 1 for each estimated segment [ν̂b−1, ν̂b). Let

ν̂0 = 0, ν̂B̂+1 = T − 1.

4.2: Define a discrepancy measure D[·, ·] between the spectral envelope estimates of two

adjacent intervals [ν̂b−1, ν̂b), [ν̂b, ν̂b+1). If D[λ̂b+1(ω), λ̂b(ω)] < Dr, remove η̂b from B̂.

4.3: Repeat 4.2 with the reduced set of change-points until the set does not change.

Denote the set of estimated change-points after this step as B̂ = {ν̂post
b , b = 1, . . . , B̂post}.
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Step 5: Complete classification (for DNA sequence data).

Use the information in the estimated local spectral envelope based on the previous seg-

mentation to classify a segment as (i) highly likely to contain coding sequence, (ii) containing

noncoding, or (iii) uncertain. The recommended classification rule established by Stoffer et

al. (2001) [12] is summarized in Section 4.4 and will be used in our real data example.

Before proceeding, we note the following:

• On threshold in binary segmentation:

The input sequences we use are the largest eigenvalue sequences Ii,t,T ’s, with different

statistical properties from those in Cho et al. (2012) [10]. Thus, the critical values need to

be redesigned. In Section 4.5 we will describe how to establish those critical values. We will

show in the next section that the null hypothesis is rejected with probability converging to

1 under our assumptions, when a change-point exists.

• On optional augmentation:

The optional augmentation of monitoring βi,t is done to ensure that, even under some

extreme situations, we could still capture the structural changes of the data. Normally,

the largest eigenvalue λ1 of a matrix M will change as the structure of M changes. How-

ever, in some special cases, λ1 will stay the same even when several elements of M change

significantly. For example, suppose the symmetric matrix has changed from M1 to M2,

where

M1 =

5 3

3 2

, M2 =

2 3

3 5

 .

Both M1 and M2 have the same largest eigenvalue 6.85. The eigenvector associated with

the largest eigenvalue has changed from (−0.85,−0.53)′ to (0.53, 0.85)′. Under those special

situations, there will be a peak in the distance of the adjacent βi,t’s. In all types of cases,

as long as the structure of a matrix changes, either the largest eigenvalue or the associated

eigenvector will change. We mainly focus on examining the largest eigenvalue sequence

because it is relatively less complex. One can skip this step if the above situation can be

eliminated after carefully evaluating the real cases.

21



• On computational efficiency :

It is necessary to use computationally efficient methods when analyzing very long time

series data sets. The computational complexity of binary segmentation is typically of order

O(T log T ). Both the non-decimated wavelet transform in Step 1 and the estimates of

spectral envelope in Step 4 can be implemented by the Fast Fourier Transform (FFT),

which is also of order O(T log T ). With regard to obtaining the largest eigenvalue sequences

in Step 1, as we pointed out earlier that Ii,t,T = tr(ΣIi,t,T ), trace calculation is fast. Overall,

for small p, our proposed algorithm is efficient.

• On discrepancy measure in Step 4 :

In this dissertation we use the distance measure recommended by Stoffer et al. (2002) [12].

Any appropriate distance measure between spectra such as Kolmogorov-Smirnov distance or

Cramér Von-Mises distance described in Adak (1998) [7] may also be used.

• Relationship to Stoffer algorithm:

The Stoffer et al. (2002) [12] method can be viewed as “bottom-up.” They first deter-

mined the smallest possible size of the segmented blocks and then combined the blocks with

similar local spectral envelope information. Our algorithm is “top-down-up” in the sense

that binary segmentation is “top-down,” and the post-processing step goes “up” again by

combining similar blocks. By going through the “top-down-up” track, we first take advan-

tage of the good time resolution of the non-decimated wavelet technique, we then benefit

from the good frequency resolution by employing the local spectral envelope methodologies.

Therefore, we could gain more flexibility in estimating the locations of change-points, as well

as retain good performance in capturing the signal at very narrow bands of frequency.

4.3 CONSISTENCY RESULT

Consistency results of the binary segmentation procedure have been established in different

situations. Venkatraman (1992) [21] showed the consistency of the binary segmentation
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procedure when it was applied to a sequence of independent normal variables with multiple

breakpoints in the sequence’s mean function. Cho et al. (2012) [10] proved the consistency

results for the multiplicative model where dependence exists among observations. Under our

assumptions, variables in the input sequence for further binary segmentation are correlated

to each other and are non-normal. In this section, we would like to extend the consistency

results under our assumptions.

Assumption 1. Let c(z, h) =
∑p

j=1 c
(j)(z, h). Assume that c(z,h)’s are piecewise constant

functions with a finite number of change-points in set

B ≡ {ub, b = 1, . . . , B}

= {ub ∈ (0, 1) : ∃h, such that lim
z→u−b

c(z, h) 6= lim
z→u+b

c(z, h)}.

The one-to-one correspondence under Assumption 1 is summarized in Figure 4, where

Si(z) =
∑p

j=1 S
(j)
i (z), and ιi(z) =

∑p
j=1 ι

(j)
i (z). Note that, ιi(z) =

∑p
j=1

∑
i′ S

(j)

i′
(z)Ai,i′ =∑

i′ Si′ (z)Ai,i′ ; and that

T−1

T−1∑
t=0

| EIi,t,T − ιi(
t

T
) |2

= T−1

T−1∑
t=0

|
p∑
j=1

EI(j)
i,t,T −

p∑
j=1

ι
(j)
i (

t

T
) |2

≤ T−1

T−1∑
t=0

p∑
j=1

| EI(j)
i,t,T − ι

(j)
i (

t

T
) |2

→ 0, (4.1)

as long as p� T as T →∞. Denote the set of change-points in the original time domain

as:

B ≡ {νb : νb = bubT c, b = 1, . . . , B}.

Based on the one-to-one correspondence discussed above and under Assumption 1, for

each i, ιi(z) is a piecewise constant function. Denote the number of breakpoints in ιi(t/T ) by

Ni and the breakpoints themselves by 0 < η
(i)
1 , . . . , η

(i)
Ni
< T − 1, with η

(i)
0 = 0, η

(i)
Ni+1 = T − 1

for all i. Let Bi = {η(i)
q , q = 1, . . . , Ni}. Note that B = ∪iBi.
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Figure 4: Illustration of one-to-one correspondence
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)

ιi(z) =
−1∑

i′=−∞

Si′ (z)Aii′

Si(z) =∑
i′ A

−1

i,i′
∑

h c(z, h)Ψi′ (h)

Piecewise con-

stant function

This dissertation focuses on changes in the autocovariance structure. Possible extensions

of our method, based on complex wavelets, could further enable the consideration of changes

in both autocovariance and cross-covariance structures.

Assumption 2. Assume that the minimum length of each stationary segment is bounded by

δT , where δT � TΘ, Θ ∈ (θ + 1
2
, 1) and θ ∈ (1

4
, 1

2
). Further, there exists a positive constant

c, such that

max
q
{
η

(i)
q − η(i)

q−1 + 1

η
(i)
q+1 − η

(i)
q

,
η

(i)
q+1 − η

(i)
q

η
(i)
q − η(i)

q−1 + 1
} ≤ c for each scale i.

Assumption 2 ensures that each segment is long enough for the purpose of examining

and that the change-points occur at “balanced” locations so that one segment is not much

longer than its neighboring segment.

Assumption 3. Assume that there exist Mµ,mµ > 0 such that, for each scale i,

inf
q
| ιi(η(i)

q /T )− ιi(η(i)
q+1/T ) |> mµ and sup

t
|ιi(t/T )| ≤Mµ.
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Assumption 4. Let ρ(j)(h) = sup
z,T
|cor(Z

(j)
[zT ],T , Z

(j)
[zT ]+h,T )| and ρ

(j)
∞ =

∑
h ρ

(j)(h), where j =

1, . . . , p. There exists a positive constant M
(j)
ρ , such that ρ

(j)
∞ ≤M

(j)
ρ .

Assumption 4 requires the absence of long memory in the original data, which makes

more sense when we segment the data based on the autocovariance structure.

In practice, if the data exhibit long-range dependency in addition to local features, we

could first apply a high-pass filter or detrend the series to eliminate the long memory before

the segmentation procedure.

In fact, in the proof of our consistency result, we only require the absence of long memory

in the wavelet periodogram sequences I
(j)
i,t,T ’s (see (A.2)). A nice feature of wavelet transform

is the whitening property, also known as the decorrelating property, which is to say that

the correlation between wavelet coefficients both within and between scales will generally

be small even if the data are highly autocorrelated. Dijkerman et al. (1994) [24], Flandrin

(1992) [25], Tewfik et al. (1992) [26], and Wornell (1993) [27] introduced the whitening

property theoretically for the fractional Brownian motion process. Later, Fan (2003) [28]

showed that the DWT has optimally decorrelating properties for the wider class of signals

with 1/f -like power spectral density functions. Thus, the wavelet periodogram sequences are

often much less autocorrelated than the original data, and (A.2) is a much easier condition

to satisfy in practice than is Assumption 4.

Theorem 4.3.1. Suppose {Zt,T }T−1
t=0 is a p-variate LSW process. Under Assumptions 1, 2, 3,

and 4, and for p fixed, the number and locations of the detected change-points are consistent.

That is, P{B̂ = B; |ν̂b − νb| ≤ CεT , 1 ≤ b ≤ B} → 1 as T →∞, where ν̂b, b = 1, · · · , B̂ are

detected change-points and εT = T
1
2 log T .

4.4 CLASSIFICATION RULE FOR GENE DETECTION

Based on the extensive experience with the Fourier analysis of DNA sequences (e.g. Stoffer et

al. (1993) [1]; Cornette et al. (1987) [29]; Tiwari et al. (1997) [30] ), Stoffer et al. (2002) [12]

established the following classification rules:
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• A block is designated as containing only coding if the local estimated spectral envelope

exhibits a peak at frequency 1/3 (and possibly other nonzero frequencies like 1/10), but

no peak exists at zero frequency.

• A block is designated as containing both coding and noncoding if the spectral envelope

exhibits a peak at (or near) the zero frequency as well as a peak at frequency 1/3, and

possibly other nonzero frequencies.

• A block is designated as containing noncoding (noise) if the spectral envelope is either

flat, indicating white noise, or has a peak at, or near, the zero frequency and no other

peaks, indicating fractional noise.

• A block is designated as containing other interesting features (e.g. repeat regions) if

spectral envelope exhibits several nonzero peaks other than 1/3.

• If adjacent blocks are classified in the same way, they may be recombined.

We will use these recommended decision rules in our real data example in Chapter 6.

4.5 PRACTICAL CHOICE OF ∆T , θ, τ

Stoffer et al. (2002) [12] suggested that asymptotic approximations of spectral envelope

worked well when the number of observations in each stationary segment was at least 28.

In the last step of our proposed algorithm, we need to use the estimate of spectral envelope

and its critical value for post-processing and classification. Thus, we require each stationary

segment should be at least 28 and set ∆T = 28. With regard to θ, we use θ = 0.251, which

is recommended by Cho et al. (2012) [10] in their binary segmentation procedure. The

selection of τ is not straightforward. In theory, a certain range of thresholds may lead to

consistent results. We propose a “practical” threshold selection procedure, which performs

well in practice. Our final application area will be DNA sequences where at each time point

there are 4 possible categories (A,C,G,T). So we consider here the case of the 4 categories,

i.e., p = 4.

26



We first perform the spectral envelope analysis on the whole series {Zt,T}. Denote the

smallest non-zero significant frequency by ωτ . Simulate Xτ
t,T = Aτ cos(2πωτ t) + εt, where εt

is Gaussian white noise process with unit variance. Categorize each simulated Xτ
t,T into 4

categories in the following manner

Zτ
t,T =



(1, 0, 0, 0)
′

if Xτ
t,T < cτ1

(0, 1, 0, 0)
′

if cτ1 ≤ Xτ
t,T < cτ2

(0, 0, 1, 0)
′

if cτ2 ≤ Xτ
t,T < cτ3

(0, 0, 0, 1)
′

if cτ3 ≤ Xτ
t,T ,

where (1, 0, 0, 0)
′
, (0, 1, 0, 0)

′
, (0, 0, 1, 0)

′
, (0, 0, 0, 1)

′
represents A, C, G, T respectively.

It was stated in Stoffer et al. (2002) [12] that about 65% of the observations correspond to

C and G. Here, we use cτ1 = qnorm(17.5%), cτ3 = qnorm(82.5%) and cτ2 = runif(cτ1, c
τ
3).

Next, we calculate the trace of Zτ
Tψi,t,Tψ

′
i,t,TZτ ′

T , λτi,t,T , for each scale i. After obtaining

{λτi,t,T}, we find v ∈ (1, T ) that maximizes

Cv1,T (λτi,t,T ) = |
√
T − v
T · v

v∑
t=1

λτi,t,T −
√

v

T · (T − v)

T∑
t=v+1

λτi,t,T |.

Let bτi = argmaxvCv1,T (λτi,t,T ). We then compute dτi,T =
Cb
τ
i

1,T (λτi,t,T )

T−1
∑T
t=1 λ

τ
i,t,T ·T θ

√
log T

. By repeating

the above process 100 times, we obtain τi, which is the 95% quantile of dτi,T for given i and T .

Numerical experiments indicate that in comparison to length T , ωτ and Aτ have relatively

less impact on dτi,T .
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5.0 SIMULATION

5.1 SIMULATION SCHEMES

We generate Zt by discretizing the numerical series Xt. We will apply our method to the

analysis of DNA sequences, so we discretize Xt into four categories,

Zt =



(1, 0, 0, 0)
′

if Xt,T < c1

(0, 1, 0, 0)
′

if c1 ≤ Xt < c2

(0, 0, 1, 0)
′

if c2 ≤ Xt < c3

(0, 0, 0, 1)
′

if c3 ≤ Xt,

where (1, 0, 0, 0)
′
, (0, 1, 0, 0)

′
, (0, 0, 1, 0)

′
, (0, 0, 0, 1)

′
represents A, C, G, T respectively.

It was suggested by Stoffer et al. (2002) [12] that about 65% of the observations correspond

to C and G. Here we use c1 = qnorm(17.5%), c3 = qnorm(82.5%) and c2 = runif(c1, c3).

All the simulation models are categorized in the manner shown above.

We first test our method on series with a single change-point. A change occurs at a

dyadic location in (A1) and (A2), while occurring at a non-dyadic location in (B). In (A2),

a change occurs at an “unbalanced” location as the second segment is much longer than the

first one.

(A) Dyadic example with single change-point

(A1) Single change-point, dyadic case 1

Xt =

1.5 cos(2πt
3

) + ε1(t) 1 ≤ t ≤ 1024

1.5 cos(2πt
10

) + ε2(t) 1025 ≤ t ≤ 2048,
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where εi(t)’s are Gaussian white noise processes with unit variance as in all subsequent

examples unless specified otherwise;

(A2) Single change-point, dyadic case 2

Xt =

1.5 cos(2πt
3

) + ε1(t) 1 ≤ t ≤ 512

1.5 cos(2πt
10

) + ε2(t) 513 ≤ t ≤ 2048;

(B) Non-dyadic example with single change-point

Xt =

1.5 cos(2πt
3

) + ε1(t) 1 ≤ t ≤ 729

1.5 cos(2πt
10

) + ε2(t) 730 ≤ t ≤ 2048.

The following two simulation models (C) and (D) are adopted from Stoffer et al. (2002)

[12] to mimic the signature patterns in DNA sequences. A great many experiences with anal-

ysis of DNA sequences in the literature suggest that a CDS typically contains the frequency

ω = 1/3. Other frequencies, such as ω = 1/10, may also present. We generate S1(t), S2(t)

(representing CDS) by discretizing two sinusoidal processes:

X1(t) = 2[cos(
2πt

3
) + cos(

2πt

10
)] + ε1(t);

X2(t) = 2 cos(
2πt

3
) + ε2(t).

The first signal contains the signature 1/3 frequency and the additional presence of a 1/10

frequency. In the second signal, only the signature 1/3 frequency is present. And we use

Ni(t) to denote the point process obtained from i.i.d Gaussian white noise process via the

same categorized manner described at the beginning of this section (representing noncoding

area). In the first simulation study, the Model (C) is divided in a dyadic manner; in Model

(D), changes occur at non-dyadic locations, as follows:

(C) Dyadic Example with multiple change-points
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Zt =



N1(t) 1 ≤ t ≤ 512

S1(t) 513 ≤ t ≤ 1024

N2(t) 1025 ≤ t ≤ 2048

S2(t) 2049 ≤ t ≤ 3072

N3(t) 3073 ≤ t ≤ 4096;

(D) Non-Dyadic Example with multiple change-points

Zt =



N1(t) 1 ≤ t ≤ 564

S1(t) 565 ≤ t ≤ 1023

N2(t) 1024 ≤ t ≤ 2199

S2(t) 2200 ≤ t ≤ 3024

N3(t) 3025 ≤ t ≤ 4096,

where Zt represent the point process associated with a simulated DNA sequence of length

T = 4096.

5.2 SIMULATION RESULTS

To obtain the threshold τ for the binary segmentation step (Step 2), we first perform the

spectral envelope analysis on the entire series (Figure 5).

The smallest non-zero significant frequency is 1/10, so we choose ωτ = 1/10. Based on

our extensive simulations, a range of Aτ values could generate appropriate τ . All simulations

and the application in this dissertation use Aτ = 2. The results of detected locations without

the post-processing step (Step 4) are summarized in Table 2.

From Table 2, we can conclude that our method without the post-processing step works

well for single change-point cases. For multiple change-point cases, our method is sensitive in

the sense that every true change-point has been identified, although the number of change-

points may be overestimated. To illustrate the feasibility of our proposed post-processing

30



Figure 5: Estimated spectral envelope of the entire series for each simulation model

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

frequency

S
pe

ct
ra

l E
nv

el
op

e 
(%

)

(a) model (A1)
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(b) model (B)
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(c) model (C)
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(d) model (D)

step, we estimate the spectral envelope of each segmentation based on our detection result

in Table 2 for model (C) (Figure 6) and model (D) (Figure 7).

In Figure 6, no signal is present in segments [1, 514], [1017, 1625], [1626, 2028] and [3068,
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Table 2: Estimated change-points before post-processing for each simulation model

τ generated by ωτ = 1
10
, Aτ = 2

Simulation Model True Detected

(A1) 1024 1025

(A2) 513 518

(B) 729 747

(C) 513, 1025, 2049, 3073 515, 1017, 1626, 2029, 2497, 3068

(D) 565, 1024, 2200, 3025 559, 1021, 1882, 2156, 2677, 3025

4096]. In contrast, there are clear signals at ω = 1/10 and ω = 1/3 in the block [515, 1016].

Moreover, the adjacent blocks, [2029, 2496] and [2497, 3065], show a significant signal at

ω = 1/3. Based on visual inspection of Figure 6, segments [1017, 1625], [1626, 2028] and

[2029, 2492], [2497, 3067], respectively, can be recombined, which means that 1626, 2497 can

be removed from the final set of detected change-points.

Results after the post-processing step are shown in Table 3. Figure 8 and Figure 9 display

the estimated spectral envelope for each segment based on the results in Table 3 for model

(C) and model (D). Both Figure 8 and Figure 9 indicate that we can not further combine

any neighboring blocks.

To further examine the sensitivity of our method, we simulate each model 100 times

and obtain the corresponding Zt. If the number of detected change-points B̂ ≥ B, and

for every true change-point νb, there exists a ν̂b in the set of the detected change-points B̂,

s.t. | νb − ν̂b |< 5%T , we will count it as a successful detection. The results are summarized

in Table 4.
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Figure 6: Estimated spectral envelope of each segment for simulation Model (C) before

post-processing
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Figure 7: Estimated spectral envelope of each segment for simulation Model (D) before

post-processing
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Table 3: Estimated change-points after post-processing for each simulation model

τ generated by ωτ = 1
10
, Aτ = 2

Simulation Model True Detected

(A1) 1024 1025

(A2) 513 518

(B) 729 747

(C) 513, 1025, 2049, 3073 515, 1017, 2029, 3068

(D) 565, 1024, 2200, 3025 559, 1021, 2156, 3025

Table 4: Results over 100 simulations

τ generated by ωτ = 1
10
, Aτ = 2

Model (A1) 97

Model (A2) 100

Model (B) 100

Model (C) 95

Model (D) 96
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Figure 8: Estimated spectral envelope of each segment for simulation model (C) after post-

processing
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Figure 9: Estimated spectral envelope of each segment for simulation model (D) after post-

processing
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6.0 APPLICATION

6.1 APPLICATION: ANALYSIS OF THE EBV DNA SEQUENCE

The real data set used here is a subsequence of the EBV DNA sequence. The complete

sequence information can be accessed through the National Center for Biotechnology In-

formation (NCBI) official website: http://www.ncbi.nlm.nih.gov/nuccore/V01555.2. This

subsequence consists of bp 46333 to bp 54524. Total length is: T = 8192 = 213. Interesting

features are the following:

CDS : 46333 . . . 47484

CDS : 48385 . . . 49967

repeat region : 50578 . . . 52115.

The subsequence we analyzed here contains two coding sequences (CDS), one from bp 46333

to bp 47484, and the other from bp 48385 to bp 49967. In addition, there is a large repeat

region from bp 50578 to 52115. By shifting the start bp 46333 to 1, the locations of the

breakpoints of interest are: 1153, 2054, 3636, 4346, 5784.

We first perform the spectral envelope analysis on the entire subsequence considered

here. The smallest significant non-zero frequency is ω = 1
10

. We then use τω = 1
10
, τA = 2 to

generate τ as discussed in Section 4.5.

The estimated locations of change-points before post-processing are listed in Table 5.

The estimated spectral envelope for each segment identified by our algorithm is displayed

in Figure 11. Our algorithm locates three interesting segments. In particular, the first and

the third estimated segments contain significant signals at ω = 1
10

and ω = 1
3

respectively.
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Figure 10: Estimated spectral envelope of the entire EBV DNA subsequence , T = 8192
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Table 5: Estimated change-points of the EBV DNA subsequence

τ generated by ωτ = 1
10
, Aτ = 2

True 1153, 2054, 3636, 4346, 5784

Detected 1107, 2342, 3336, 4087, 5687, 6264
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Figure 11: Estimated spectral envelope of each segment for the EBV DNA subsequence

before post-processing
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According to the classification rule in Section 4.4, those two segments are classified as coding

sequences. In addition, the fifth segment correctly identifies the large repeat region.

Further, the last two adjacent segments are classified as noncoding sequences. Thus,

they can be recombined, i.e., 6264 could be removed from the set of detected change-points.

After removing 6264, the estimated spectral envelope for each segment is shown in Figure 12.

No further segments can be recombined.

41



Figure 12: Estimated spectral envelope of each segment for the EBV DNA subsequence after

post-processing
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7.0 CONCLUSION AND FUTURE WORK

The challenge in analyzing long DNA sequence data is to identify coding sequences that are

dispersed throughout the DNA and separated by regions of noncoding. Motivated by such

kinds of local behavior problems in categorical time series, we proposed a method to deal

with multiple change-point detection for piecewise categorical time series.

In particular, without loss of generality, we first represented the categorical time series as

a multinomial process by denoting each category with a unit vector. We then modeled the

corresponding multinomial process by the nonparametric multivariate LSW model, where

the piecewise constant autocovariance structure of the process is completely described by

local wavelet periodograms at multiple scales. We proposed an optimality criterion to find

scalings that can help emphasize local features and summarize the information in the au-

tocovariance structure of the multinomial process. Simultaneously as those scalings were

selected, statistics inheriting the piecewise constancy in the autocovariance structure of the

multinomial process were also generated, and served as input sequences for further segmen-

tation. Multiple change-point detection was accomplished via a binary segmentation method

that was applied to our input sequence separately at each scale, followed by a within-scale

and across-scales post-processing procedure to obtain consistent estimators of breakpoints

in the autocovariance structure. Furthermore, the consistency result of our method has

been derived under certain conditions. We note that our input sequence no longer follows

a multiplicative model as in Inclán et al. (1994) [31] and Cho et al. (2012) [10]. Thus,

our consistency result is different from previous consistency results of binary segmentation

methods in that it allows for correlated and non-normal data, such as categorical time series.

In this dissertation, we also provided several simulation studies and a real data analysis

to demonstrate the viability of our methodology. In other applications, it is possible to apply
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our proposed method to other real data.

Possible extensions of our work can be done by using complex-valued wavelets instead

of the real-valued non-decimated Haar wavelets, as building blocks in modeling the corre-

sponding multinomial process of categorical time series. We note that by using real-valued

wavelets, the eigenvalues of the wavelet counterpart of the Fourier spectrum matrix only

contain local information in the autocovariance structure of the multinomial process. How-

ever, if complex wavelets could be introduced to the LSW process, those eigenvalues could

capture local information about both autocovariance and cross-covariance structure. One

possible class of such wavelets could be complex-valued compactly supported wavelets gen-

erated from the complex valued wavelet transform proposed Lawton (1993) [32]. As Nason

et al. (2000) [5] stated that the LSW process could theoretically admit the possibility of

using this class of wavelets as building blocks. Another class of complex wavelets that might

work is that generated from the dual tree complex wavelet transform (CWT), which was

first introduced by Selesnick et al. (2005) [33]. The CWT shares the shift invariant property

as the non-decimated wavelet transform, which is essential for analysis of time series. More-

over, CWT enjoys additional properties: It is directionally selective and substantially less

redundant than non-decimated wavelet transform, which are important when dealing with

multivariate time series. Although complex wavelets possess additional properties when they

serve as building blocks for multivariate non-stationary time series, one should note that the

consistency theory might be quite involved, because the theory will be related but not limited

to figuring out the asymptotic distribution of the largest root of a random matrix.
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APPENDIX

PROOF

A.1 PROOF OF THE CONSISTENT RESULT

For each scale i, following from Assumption 4, there exist positive constant Mv and M I
ρ ,

such that

sup
t,T

var(Ii,t,T ) ≤Mv, (A.1)

ρIi∞ =
∑
h

ρIi(h) =
∑
h

sup
t,T
| cor(Ii,t,T , Ii,t+h,T ) |≤M I

ρ . (A.2)

Let s and e represent the starting and ending points, respectively, of a segment. Define

Ỹb
i,s,e =

√
e− b

√
n
√
b− s+ 1

b∑
t=s

Ii,t,T −
√
b− s+ 1
√
n
√
e− b

e∑
t=b+1

Ii,t,T , (A.3)

and

S̃bi,s,e =

√
e− b

√
n
√
b− s+ 1

b∑
t=s

µi,t,T −
√
b− s+ 1
√
n
√
e− b

e∑
t=b+1

µi,t,T , (A.4)

where µi,t,T = E(Ii,t,T ) and n = e − s + 1. Note that, because of (4.1), the bias between

E(Ii,t,T ) and ιi(
t
T

) does not affect the results of the following lemmas.

The lemmas of this Appendix will hold for any scale i and thus for notational convenience

we drop the i index in the Ỹ, S̃ and η (from Assumption 2). Obviously, ηq0 ≤ s < ηq0+1 <

· · · < ηq0+v < e ≤ ηq0+v+1 for 0 ≤ q0 ≤ B − v at all stages of the algorithm. In Lemmas
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1-2 below, we require that s and e should either be the true breakpoints or close to the true

breakpoints in the sense that

(ηq0+1 − s) ∧ (s− ηq0) ≤ CεT and (ηq0+v+1 − e) ∧ (e− ηq0+v) ≤ CεT , (A.5)

where ∧ is the minimum operator. In addition, we impose the following condition

ηq0+r − s > δT and e− ηq0+r > δT for some 1 ≤ r ≤ v (A.6)

to ensure that segment [s, e] contains at least one breakpoint and that the length of each

subsequent segment is at least δT .

Note that both (A.5) and (A.6) are satisfied as long as the segment [s, e] contains previ-

ously undetected breakpoints before the binary segmentation procedure stops.

Lemma 1. Assume (A.5) and (A.6). If b maximizes |Ỹt
s,e|, then there exists a true change-

point ηq0+r (1 ≤ r ≤ v), such that b is close to this change-point in the sense that |b−ηq0+r| ≤

CεT for a large T .

Proof. We will first show

P(|Ỹb
s,e − S̃bs,e| > logT ) = P(

1√
n
|

e∑
t=s

(Ii,t,T − µi,t,T ) · ct |> logT )→ 0 uniformly in D,

where ct =
√
e− b/

√
b− s+ 1 for t ∈ [s, b] and ct = −

√
b− s+ 1/

√
e− b otherwise; and

D := {1 ≤ s < b < e ≤ T ; e− s+ 1 ≥ CδT , max{
√

b−s+1
e−b ,

√
e−b
s−b+1

} ≤ c}.

For ∀(s, b, e) ∈ D,

P(
1√
n
|

e∑
t=s

(Ii,t,T − µi,t,T ) · ct |> log T )

≤ E(
∑e

t=s(Ii,t,T − µi,t,T ) · ct)2

n log2 T

=

∑e
t=s c

2
t · var(Ii,t,T ) +

∑
l 6=k

s≤l,k≤e

cov(Ii,l,T , Ii,k,T ) · cl · ck

n log2 T

≤

c2 · n ·Mv + c2 ·Mv

∑
l 6=k

s≤l,k≤e

cor | (Ii,l,T , Ii,k,T ) |

n log2 T
.
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Note that

∑
l 6=k

s≤l,k≤e

cor(Ii,l,T , Ii,k,T )

≤ 2(n− 1) · ρIi(1) + 2(n− 2) · ρIi(2) + · · ·+ 2ρIi(n− 1)

≤ 2n · (ρIi(1) + ρIi(2) + · · ·+ ρIi(n− 1))

≤ 2n ·
∑
h

ρIi(h)

≤ 2n · ρIi∞

≤ 2n ·M I
ρ .

We have

P( max
(s,b,e)∈D

1√
n
|

e∑
t=s

(Ii,t,T − µi,t,T ) · ct |> log T ) ≤ O(
1

log T
).

That is,

lim
T→∞

P(|Ỹb
s,e − S̃bs,e| ≤ log T ) = 1 uniformly over D. (A.7)

Since | |Ỹb
s,e| − |S̃bs,e| |≤| Ỹb

s,e − S̃bs,e |, then

lim
T→∞

P(| |Ỹb
s,e| − |S̃bs,e| |≤ log T ) = 1 uniformly over D. (A.8)

According to Lemma 4 in Cho et al. (2012) [10], if (A.5), (A.6), (A.7), and (A.8) are

satisfied, for b = argmaxs<t<e |Ỹt
s,e|, there exists 1 ≤ r ≤ v such that |b− ηq0+r| ≤ CεT for a

large T .

Note that the step after locating the point b that maximizes |Ỹt
s,e| in the binary segmen-

tation procedure is to perform the thresholding on
|Ỹbs,e|

T θ
√

log T ·n−1
∑e
t=s Ii,t,T

and screen out b that
|Ỹbs,e|

T θ
√

log T ·n−1
∑e
t=s Ii,t,T

< τ . Lemma 2 is the logic behind this step.

Lemma 2. Under (A.5) and (A.6), P(|Ỹb
s,e| < τT θ

√
log T · n−1

∑e
t=s Ii,t,T ) → 0 for b =

argmaxs<t<e |Ỹt
s,e|.
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Proof. Denote d̃ = Ỹb
s,e = d̃1 − d̃2 and m̃ = n−1/2

∑e
t=s Ii,t,T = c1d̃1 + c2d̃2, where d̃1 =

√
e−b√

n
√
b−s+1

b∑
t=s

Ii,t,T , d̃2 =
√
b−s+1√
n
√
e−b

e∑
t=b+1

Ii,t,T , and c1 = c−1
2 =

√
b−s+1
e−b . For simplicity, let c2 > c1.

Further, let µi = Ed̃i and ωi = var(d̃i) for i = 1, 2, and define µ = Ed̃ and ω = var(d̃).

Finally, tn denotes the threshold τT θ
√

log T/n. We need to show P(|d̃| ≤ m̃ · tn)→ 0.

Following Lemma 5 in Cho et al. (2012) [10], P(|d̃| ≤ m̃ · tn) is bounded by

4µ−2(1 + c1tn)−2{(c1tn − 1)2ω1 + (c2tn + 1)2ω2 + 4c2
1t

2
nµ

2
1 + (c2 − c1)2t2nµ

2
2}.

Since n > δT > O(T θ+
1
2 ) and θ ∈ (1

4
, 1

2
), tn = τ · T θ log

1
2 T

n
1
2

< O(T
θ
2
− 1

4 log
1
2 T ) → 0 as

T →∞.

Note that

ω1 = var(

√
e− b

√
n
√
b− s+ 1

b∑
t=s

Ii,t,T )

=
e− b

n(b− s+ 1)

b∑
t=s

var(Ii,t,T ) +
e− b

n(b− s+ 1)

∑
s<l,k<b

cov(Ii,l,T , Ii,k,T )

≤ e− b
n(b− s+ 1)

· (b− s+ 1) max var(Ii,t,T ) +
e− b

n(b− s+ 1)
· 2 · (b− s+ 1) · ρIi∞ ·Mv

≤ (2M I
ρ + 1)Mv.

Similarly, ω2 ≤ (2M I
ρ + 1)Mv.

Also, µi’s are bounded by the following:

µ1 = E(

√
e− b

√
n
√
b− s+ 1

b∑
t=s

Ii,t,T )

≤
√
e− b

√
n
√
b− s+ 1

· (b− s+ 1)Mµ

≤
√
nMµ.

The proof of Lemma 4 in Cho et al. (2012) [10] indicates that if b = argmaxs<t<e |Ỹt
s,e|,

then S̃bs,e ≥ S̃s,e − 2 log T , where S̃s,e = maxs<t<e |S̃ts,e|.

According to Lemma 1 in Cho et al. (2012) [10], S̃s,e ≥ CδT/
√
T > T θ

√
log T . Recall

that under Assumption 2, δT = CTΘ, where Θ ∈ (θ + 1
2
, 1). Thus, we have µ = S̃bs,e ≥

S̃s,e − 2 log T > O(δT/
√
T ) > O(T θ

√
log T ).
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As a result, we have

P(|d̃| ≤ m̃ · tn) ≤ O(
t2n · n
δ2
T/T

) = O(
T 2θ log T

δ2
T/T

)→ 0.

Next, Lemma 3 deals with the situation that, except for the true breakpoint that is close

enough to s and e, no other breakpoint is in the segment [s, e]. This situation occurs when

no further breakpoint can be detected; the binary segmentation procedure will then stop.

Lemma 3. For some positive constants C,C ′, let s, e satisfy either

(i) ∃!1 ≤ q ≤ B such that s ≤ ηq ≤ e and [ηq − s+ 1] ∧ [e− ηq] ≤ CεT , or

(ii) ∃1 ≤ q ≤ B such that s ≤ ηq ≤ ηq+1 ≤ e and [ηq − s+ 1] ∨ [e− ηq+1] ≤ C ′εT .

Then, for a large T,

P(|Ỹb
s,e| > τT θ

√
log T · n−1

e∑
t=s

Ii,t,T )→ 0,

where b = argmaxs<t<e |Ỹt
s,e|.

Proof. First we assume (i). Let E = {|Ỹb
s,e| > τT θ

√
log T · n−1

∑e
t=s Ii,t,T} and

F = { 1

n
|

e∑
t=s

(Ii,t,T − µi,t,T )| < d =
(ηq − s+ 1)µi,ηq ,T + (e− ηq)µi,ηq+1,T

2n
}.

We have P(E) = P(E ∩ F) + P(E|F c)P(F c) ≤ P(E ∩ F) + P(F c).

Note that

F = {
e∑
t=s

µi,t,T − n · d <
e∑
t=s

Ii,t,T <
e∑
t=s

µi,t,T + n · d},

and
∑e

t=s µi,t,T = 2n · d.

Thus, by Markov’s inequalities,

P(E ∩ F) ≤ P(|Ỹb
s,e| > τT θ

√
log T · n−1(

e∑
t=s

µi,t,T − nd))

= P(|Ỹb
s,e| > τT θ

√
log T · d)

≤
E|Ỹb

s,e|2

τ 2T 2θ log Td2
.
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Based on Lemmas 2.2 and 2.3 of Venkatraman (1993) [21], |S̃ts,e| achieves its maximum

value only at a breakpoint. In case (i), only one breakpoint ηq is in segment [s, e]; one of the

subsegments is less than CεT in length, and the other subsegment is less than n in length.

Then,

max
s<t<e

|S̃ts,e| = |S̃ηqs,e| =|
√
ηq − s+ 1

√
e− ηq√

n
(µi,ηq ,T − µi,ηq+1,T ) |≤ O(

√
εT ).

From Lemma 1, |Ỹb
s,e − S̃bs,e| ≤ log T . Note that |Ỹb

s,e| − |S̃bs,e| ≤ |Ỹb
s,e − S̃bs,e| ≤ log T , so

we have

|Ỹb
s,e| ≤ |S̃bs,e|+ log T

≤ max
s<t<e

|S̃ts,e|+ log T

≤ |S̃ηqs,e|+ log T

= O(
√
εT ).

Thus,

P(E ∩ F) ≤
E|Ỹb

s,e|2

τ 2T 2θ log Td2

≤ O(
εT

T 2θ log T
)

= O(
T

1
2 log T

T 2θ log T
)

= O(T
1
2
−2θ)

→ 0.

Note that by Assumption 2, θ ∈ (1
4
, 1

2
).
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Now, consider P(F c) = P( 1
n
|
∑e

t=s(Ii,t,T−µi,t,T )| > d). According to Markov’s inequality

and the similar argument in the proof of Lemma 1, we have

P(F c) ≤ E |
∑e

t=s(Ii,t,T − µi,t,T ) |2

n2d2

≤

∑e
t=s var(Ii,t,T ) +

∑
l 6=k

s≤l,k≤e

cov(Ii,l,T , Ii,k,T )

n2d2

≤ n ·Mv + 2n · ρIi∞ ·Mv

n2d2

≤
Mv + 2M I

ρ ·Mv

nd2

→ 0

For case (ii), d in F is different from case (i) and should be set as (ηq − s + 1)µ1 +

(ηq+1 − ηq)µ2 + (e − ηq+1)µ3, where µ1 = µi,ηq ,T , µ2 = µi,ηq+1,T , µ3 = µi,ηq+2,T . Obviously,∑e
t=s µi,t,T = 2n ·d still holds. Another difference is that maxs<t<e |S̃ts,e| = max(|S̃ηq |, |S̃ηq+1|).

Under condition (ii),

|S̃ηq | = |
√
e− ηq√

n
√
ηq − s+ 1

ηq∑
t=s

µi,t,T −
√
ηq − s+ 1
√
n
√
e− ηq

e∑
t=ηq+1

µi,t,T ) |

= |
√
e− ηq

√
ηq − s+ 1
√
n

µ1 −
√
ηq − s+ 1
√
n
√
e− ηq

((ηq+1 − ηq)µ2 + (e− ηq+1)µ3) |

≤ max(|
√
e− ηq

√
ηq − s+ 1
√
n

µ1 −
√
e− ηq

√
ηq − s+ 1
√
n

min(µ2, µ3) |,

|
√
e− ηq

√
ηq − s+ 1
√
n

µ1 −
√
e− ηq

√
ηq − s+ 1
√
n

max(µ2, µ3) |)

≤ O(
√
εT ).

Similarly, |S̃ηq+1 | ≤ O(
√
εT ). Hence, maxs<t<e |S̃ts,e| ≤ O(

√
εT ) still holds. A similar argument

as the proof in case (i) leads to P(|Ỹb
s,e| > τT θ

√
log T · n−1

∑e
t=s Ii,t,T ) → 0 as T → ∞ for

case (ii).

According to Theorem 2 in Cho et al. (2012) [10], post-processing across-scales preserves

the consistency result. Then, the theorem of Section 4.3 follows immediately from Lemmas

1-3.
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